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Foreword 1

The Italian Chapter of the EATCS (European Association for Theoretical Computer
Science) was founded in 1988, and aims at facilitating the exchange of ideas and
results among Italian theoretical computer scientists, and at stimulating cooperation
between the theoretical and the applied communities in Italy.

One of the major activities of this Chapter is to promote research in theoretical
computer science, stimulating scientific excellence by supporting and encouraging
the very best and creative young Italian theoretical computer scientists. This is done
also by sponsoring a prize for the best Ph.D. thesis. An interdisciplinary committee
selects the best two Ph.D. theses, among those defended in the previous year, one
on the themes of Algorithms, Automata, Complexity and Game Theory and the
other on the themes of Logics, Semantics and Programming Theory.

In 2012 we started a cooperation with Atlantis Press so that the selected Ph.D.
theses would be published as volumes in the Atlantis Studies in Computing.

The present volume contains one of the two theses selected for publication in
2014:

Type Disciplines for Systems Biology by Livio Bioglio (supervisor: Prof.
Mariangiola Dezani, University of Torino, Italy)

and
Algorithms for Biological Graphs: Analysis and Enumeration by Andrea Marino

(supervisor: Prof. Pierluigi Crescenzi, University of Firenze, Italy).
The scientific committee which selected these theses was composed of Profs.

Franco Barbanera (University of Catania), Arturo Carpi (University of Perugia) and
Rossella Petreschi (Sapienza University of Rome).

They gave the following reasons to justify the assignment of the award to the
thesis by Andrea Marino:

The Ph.D. dissertation “Algorithms for biological graphs: analysis and enumer-
ation” by Andrea Marino deals with efficient algorithms for enumeration problems
on graphs. The main application fields for these algorithms are biological and social
networks, for which data can be conveniently modeled as graphs. This thesis presents
both deep theoretical results and extensive experimental implementations.
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Moreover, in Chap. 2, an overview of basic techniques used for enumeration algo-
rithms is reported. Namely in this thesis it is possible to find algorithms for
enumerating:

• all diametral and radial vertices;
• all maximal directed acyclic sub-graphs of which sources and targets belong to a
predefined subset of the vertices (stories);

• all cycles and/or paths in an undirected graph;
• all pairs of (s, t)-paths sharing only nodes s and t ((s, t)-bubbles).

Summarizing, this thesis contains several important contributions in the area of
graph algorithms and can be considered an important reference for all the
researchers that have to work with enumerating problems.

I would like to thank the members of the scientific committee, and I hope that
this initiative will further contribute to strengthen the sense of belonging to the
same community of all the young researchers that have accepted the challenges
posed by any branch of theoretical computer science.

Rome, January 2015 Tiziana Calamoneri
President of the Italian Chapter of EATCS
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Foreword 2

The development of algorithms for enumerating all possible solutions of a specific
combinatorial problem has a long history, which dates back to, at least, the 1960s,
when the problem of enumerating some specific graph-theoretic structures (such
shortest paths and cycles) has been attacked. As already observed by David
Eppstein in 1997, these enumeration problems have several applications, such as
(1) looking for structures which satisfy some additional constraints which are hard
to optimize, (2) evaluating the quality of a model for a specific problem, in terms
of the number of incorrect structures, (3) computing how sensitive the structures are
to variation of some problem’s parameters and (4) examining not just the optimal
structures, but a larger class of structures, to gain a better understanding of the
problem. As a matter of fact, in the last 50 years a large variety of enumeration
problems have been considered in the literature, ranging from geometry problems to
graph and hypergraph problems, from order and permutation problems to logic
problems, and from set problems to string problems. A very recent compendium has
been compiled by Kunihiro Wasa, which includes 350 combinatorial problems and
more than 230 references. Nevertheless, the research area of enumeration algo-
rithms is still very active and still includes many interesting open problems. This is
where this book comes into play, by first presenting an overview of the main
computational issues related to the design and analysis of enumeration algorithms,
and by then contributing to this research area with several significant results, both
theoretical and experimental.

Although the emphasis of the book is on enumeration problems, it is worth
noting that the original main application area of the thesis of Andrea Marino has
been computational biology. Indeed, in the previous years, biologists have accu-
mulated a huge amount of information, at different levels of observation, from the
molecular level to the population one. This information usually describes interac-
tions or relationships among entities of biological nature, and they are often rep-
resented by means of networks (or, equivalently, graphs). Graphs allow researchers
to abstract from the specific individual information: the complexity of a biological
entity is enclosed into a vertex of the network and the complex interaction
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mechanisms between two entities are simply described by means of an arc. Clearly,
the biological application determines the meaning of the nodes and of the arcs and
influences the network topology: typical networks at the molecular level are gene
regulation networks, protein interaction networks and metabolic networks, while
typical networks at the macroscopic level are, instead, phylogenetic networks and
ecological networks. Reducing problems arising in biology to the analysis of net-
works allows us to take advantage of the many results and algorithmic techniques
that have been developed in graph theory and, more recently, in the analysis of
complex networks. In other words, the observation of biological phenomena is
turned into the observation of the network, of its structure and of its properties. The
network becomes a tool to investigate the macromolecular interactions at the level
of genes, metabolites and proteins to extract the cellular phenotypes, or the con-
glomerate of several cellular processes resulting from the expression of the genes
and of the proteins.

The main goal of this book is the application of algorithm design and complexity
analysis techniques to the analysis of biological (and, more in general, of complex)
networks, by focusing mainly on topological property computation and subnetwork
extraction tasks. Several quantifiable tools of network theory offer unforeseen
possibilities to understand biological network organization and evolution. Some
well-known examples of these tools are measures like the degree distribution, the
diameter (that is, the longest shortest path) and the clustering coefficient. These
topological properties of biological networks can be seen as the result of a network
evolution process: hence, one can formulate evolving network models for biological
networks which produce networks consistent with the above topological properties.
This implies that efficient algorithms have to be designed in order to compute these
properties in a very little amount of time and (maybe more importantly) of space
(note that, sometimes, even polynomial-time/space algorithms might turn out to be
too expensive if a massive experimentation has to be done and/or if the size of the
network is quite large). For what concerns the second task, that is, subnetwork
extraction, observe that, in general terms, this task consists in extracting a subgraph
that best explains the relationships between a given set of nodes of interest in a
graph. A typical example in communication networks of such a problem is the
Steiner tree problem which consists in finding the lightest tree connecting a specific
subset of vertices of the network. Subnetwork extraction is a common tool while
studying biological networks: for example, in 2010, Faust et al. investigated six
different approaches, all based on subnetwork extraction, to extract relevant path-
ways from metabolic networks. One of the main issues with the subgraph extraction
approach is to determine the kind of subgraph to be extracted, which clearly has to
be meaningful from a biological point of view. After that, even in this case it turns
out that most of the times the extraction of desired subgraphs is a computationally
difficult problem. Finally, as it is common in the bioinformatics research area,
finding one subgraph is not usually enough: no clear optimization criterium is
usually known, so that the problem becomes even more difficult since it requires to
enumerate all possible subgraphs.
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All the enumeration problems attacked in this book arise from real-world
applications, either in the specific field of computational biology or in the more
general field of complex networks. Some of these problems (such as the enumer-
ation of cycles and the enumeration of diametral vertices) were already well known
and widely studied. Others (such as the enumeration of bubbles and the enumer-
ation of stories) are closely related to previously known problems (such as the
enumeration of cycles and the enumeration of feedback vertex sets). For all these
problems, efficient algorithms and/or heuristics are proposed in order to deal with
them: all these algorithms have been implemented and experimented, thus vali-
dating their usefulness in solving the original application problem. Indeed, one
of the main beautiful characteristics of this book is the fact that it combines deep
theoretical results and practical implementation and experimentation: thus signifi-
cantly contributing both to the solution of (biological) very interesting practical
questions and to the field of theoretical computer science. In particular, I would like
to emphasize one of the most impressive theoretical results contained in this book,
that is, the first optimal algorithm for enumerating cycles in an undirected graph.
This result significantly improves the solution of a 40-year-old problem! And I
would also like to emphasize one of the most impressive experimental results
contained in this book: that is, the design, analysis and implementation of a new
very efficient heuristic for enumerating diametral vertices in a graph. By making use
of these new heuristics, for example, the diameter of a snapshot of a subgraph of the
Facebook network, that contained approximately 150 millions of vertices and
almost 16 billions of edges, has been computed in just 20 minutes (for the sake of
curiosity, the diameter value is 41)!

In summary, I think that this book is a very cute example of how theory and
practice should proceed together, by exploiting the “virtuous circle” in which
practical problems (in this case, mostly biological ones) motivate significant and
deep contributions to theoretical computer science, which in turn allow efficient,
useful and practical solutions to the original problems.

Florence, January 2015 Pierluigi Crescenzi
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Chapter 1
Introduction

The aim of enumeration is listing all the feasible solutions of a given problem: this
is particularly useful whenever the goal of the problem is not clear and we need to
check all its solutions.

Since the number of solutions to be enumerated is often exponentialwith respect to
the size of the input, enumeration algorithms require often at least exponential time.
Whenever the size of the input is small, brute force algorithms are helpful: in this case
the algorithm produces the solutions one after the other by checking if the current
solution has been already generated or not. However, when the number of solutions
grows up the time needed to produce a new solution heavily increases. In such a con-
text, the complexity classes of enumeration problems are defined depending on the
number of solutions, so that if the number of solutions is small, an efficient algorithm
has to terminate after short (polynomial) time, otherwise it is allowed to spend more
time. According to this idea in 1988 in a popular paper by Johnson, Papadimitriou,
and Yannakakis the main complexity classes have been defined [1]: “the least that we
could ask is that the time required to output all solutions be bounded by a polynomial
in n (the size of the input) and C (the number of solutions)” (Polynomial Total Time),
while more strictly we could require that “the delay between any two consecutive
solutions is bounded by a polynomial in the input size” (Polynomial Delay). In other
words, while the first imposes a polynomial average delay between two consecu-
tive solutions, the second class imposes a fixed polynomial delay between any two
consecutive solutions.

In this work, we will show some new examples of enumeration algorithms that
(in some sense) can fit with the above categories, in particular we will show how
to: enumerate stories by making use of an efficient brute force algorithm; enumerate
bubbles by using a polynomial (linear) delay algorithm; enumerate paths or cycles
by using an optimal algorithm whose total time is bounded by the size of the paths or
cycles to be enumerated.Moreover, in the last partwewill talk also about enumerating
central and peripheral vertices of a network (and computing diameter and radius):
the number of solutions of this latter problem is polynomial, but since it is often
applied to real world huge networks, a linear time algorithm is desirable.

© Atlantis Press and the authors 2015
A. Marino, Analysis and Enumeration, Atlantis Studies in Computing 6,
DOI 10.2991/978-94-6239-097-3_1
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2 1 Introduction

All the problems above were motivated by some biological problemsmodelled by
using biological networks. However, even if all the problems we will discuss share
the common biological application, the corresponding computational problems we
define are of more general interest and our results hold in the case of arbitrary
networks. In the following we will briefly introduce the application and explain what
stories, bubbles, paths, cycles, central, and peripheral vertices are. We will then
overview our results, giving the main references to find the original works. We will
use the standard notations and definitions, described in Sect. 1.6.

1.1 An Application: Biological Graph Analysis

Since one peculiar property of biological networks is the uncertainty, a scenario in
which enumeration algorithms can be helpful is biological network analysis. Mod-
elling biological networks indeed introduces bias: arc dependencies are neglected
and underlying hyper-graph behaviours are forced in simple graph representations
to avoid intractability. Moreover, the dynamical behaviours of biological networks
are often not considered: indeed most of the currently available biological network
reconstructions are potential networks, where all the possible connections are indi-
cated, even if edges/arcs and vertices are hardly present all together at the same time.
For these aspects of biological networks, we invite the reader to see the following
work.

[2] Cecilia Klein, Andrea Marino, Marie-France Sagot, Paulo Vieira Milreu, and
Matteo Brilli. Structural and dynamical analysis of biological networks. Brief-
ings in functional genomics, 2012.

In this scenario, when defining and solving a problem on a biological network, it
is quite natural for a biologist to ask all the solutions to check whether these make
sense or they are merely artifacts of the model.

1.2 Enumerating Stories

The problemof enumerating storieswasmotivated initially by the biological question
in [3] related to Metabolic networks, in particular to compound graphs, in which
vertices are compounds and there is an arc from a compound x to a compound y
if there is a metabolic reaction that consumes x and produces y (see Sect. 3.2.2).
A subset B corresponds to compounds that have been experimentally identified as
having a significantly higher or lower production in a given condition (for instance
when an organism is exposed to some stress). The aim is then to extract all the
interaction dependencies among the compounds in B which do not create cycles
but at the same time involve as many compounds as possible. These may require
intermediate steps that concern compounds not in B, but the initial and final steps

http://dx.doi.org/10.2991/978-94-6239-097-3_3


1.2 Enumerating Stories 3

must involve only compounds inB. A solution, that is a possible scenario ofmetabolic
dependencies, is called a (metabolic) story.

A metabolic story has to capture the relationship between the vertices of interest
in a way that allows us to define a flow of matter from a set of sources to a set of target
compounds. The need for this hierarchy between the compounds led us to consider
acyclic solutions. The maximality condition has been added in order to capture all
alternative paths between the sources and the targets. The problem is then to “tell”
all possible stories given as input a graph G and a subset B of the vertices of G.

Wewill present a polynomial algorithm to find one story and an exact but exponen-
tial approach for the enumeration problem [4, 5]. This definition is a generalization
of a well-known problem which is the feedback arc set problem. However, any
polynomial-delay algorithm to enumerate feedback arc sets (for instance [6]) can
only be used in some particular instances that, as we have shown in [4, 5], corre-
spond to graphs encoding a Metabolic network which do not contain the so-called
“bad vertices”, which are any not interesting vertex v such that for any predecessor
p of v and for any successor s of v, there exists a cycle containing the arcs (p, v) and
(v, s). Moreover we will show that finding a story with a specified set of sources or
targets is NP-hard.

Our contribution appeared in the following works.

[4] Vicente Acuña, Etienne Birmelé, Ludovic Cottret, Pierluigi Crescenzi, Vincent
Lacroix, Alberto Marchetti-Spaccamela, Andrea Marino, Paulo Vieira Milreu,
Marie-France Sagot, and Leen Stougie. Telling stories. Workshop on Graph
Algorithms and Applications selected for submission to the special issue of
Theoretical Computer Science in honor of Giorgio Ausiello in the occasion of
his 70th birthday, 2011.

[5] Vicente Acuña, Etienne Birmelé, Ludovic Cottret, Pierluigi Crescenzi, Fabien
Jourdan,VincentLacroix,AlbertoMarchetti-Spaccamela,AndreaMarino, Paulo
Vieira Milreu, Marie-France Sagot, and Leen Stougie. Telling stories: Enumer-
ating maximal directed acyclic graphs with a constrained set of sources and
targets. Theor. Comput. Sci., 457:1–9, 2012.

The open problems arising from these works have been presented in the following
workshop.

[7] Vicente AcuŻna, Etienne Birmelé, Ludovic Cottret, Pierluigi Crescenzi, Fabien
Jourdan,Vincent Lacroix,AlbertoMarchetti-Spaccamela,AndreaMarino, Paulo
V.Milreu,Marie-France Sagot, and Leen Stougie.Metabolic stories: uncovering
all possible scenarios for interpreting metabolomics data. In First RECOMB
Satellite Conference on Open Problems in Algorithmic Biology (RECOMB-AB),
2012.



4 1 Introduction

1.3 Enumerating Bubbles

A DNA fragment, that is an RNA-coding sequence, is transformed in a Pre-mRNA
sequence, through the transcription phase, inwhich sequences of exons and sequences
of introns alternatively occur. The removal of all the sequences of introns and of
some sequences of exons leads to the mRNA sequence that is a protein-coding
sequence that translated leads to a protein. Since not any exon is transcribed in the
mRNA sequence, there can be many possible mRNA sequences. For instance, let
〈e1, i1, e2, i2, e3, i3, e4, i4〉 be a fragment of DNA, where for any j , with 1 ≤ j ≤ 3,
e j and i j are the j th sequence of exons and introns respectively. The possible
resultingmRNA sequences containing e1 are 〈e1, e2, e3, e4〉, 〈e1, e2, e3〉, 〈e1, e2, e4〉,
〈e1, e3, e4〉, 〈e1, e2〉, 〈e1, e3〉, 〈e1, e4〉. The underlying phenomenon is called alter-
native splicing and checking all the alternative events has been shown in [8] to
correspond to checking recognisable patterns in a de Bruijn graph built from the
reads provided by a sequencing project (see Sect. 3.2.4). The pattern corresponds
to an (s, t)-bubble: an (s, t)-bubble is a pair of vertex-disjoint (s, t)-paths that only
shares s and t .

Since the k-mers correspond to all words of length k present in the reads (strings)
of the input dataset, and only those, in relation to the classical de Bruijn graph for all
possible words of size k, the de Bruijn graph for NGS data may then not be complete.
We will ignore all the details related to the treatment of NGS data using De Bruijn
graphs, and consider instead the more general case of finding all (s, t)-bubbles in an
arbitrary directed graph.

In particular we show the first linear delay algorithm to identify all bubbles. A
previous known algorithm presented in [8] was an adaptation of Tiernan’s algorithm
for cycle enumeration [9] that does not have a polynomial delay. In the worst case
the time elapsed between the outputs of two solutions is proportional to the number
of paths in the graph, i.e. exponential in the size of the graph. Our algorithm is a non-
trivial adaptation of Johnson’s cycle enumeration algorithm [10] in a directed graph
with the same theoretical complexity. Notably, the method we propose enumerates
all bubbles with a given source with O(|V | + |E |) delay. The algorithm requires an
initial transformation of the graph, for each source s, that takes O(|V |+|E |) time and
space; this transformation reduces the enumeration of bubbles to the enumeration of
constrained cycles in a special graph.

Our algorithm is the result of the following work.

[11] Etienne Birmelé, Pierluigi Crescenzi, Rui A. Ferreira, Roberto Grossi, Vincent
Lacroix, Andrea Marino, Nadia Pisanti, Gustavo Akio Tominaga Sacomoto,
and Marie-France Sagot. Efficient bubble enumeration in directed graphs. In
String Processing and Information Retrieval - 19th International Symposium,
SPIRE 2012, pages 118–129, 2012.
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1.4 Enumerating Cycles or Paths 5

1.4 Enumerating Cycles or Paths

Studying paths or cycles of biological networks can be useful for several purposes.
In the case of interaction graphs, such as Gene Regulatory networks, the importance
of enumeration has been shown in [12]. These networks are directed, their vertices
are genes, and their arcs are signed, where the sign or weight of the arcs indicates
the causal relationship between the vertices, such as activation or inhibition (see
Sect. 3.2.3). In particular, cycles and paths can be useful for studying dependencies
among vertices, the steady state and multistationarity of dynamic models. Moreover
cycles and paths respectively correspond to feedback loops [13, 14] related to robust-
ness in cell signaling networks [15], and signaling paths, i.e. the different positive
and negative routes along which a molecule can affect another.

We have considered the problem of enumerating paths and cycles in the case of
undirected graphs. This result can be useful for undirected Protein-Protein Interaction
networks, where vertices are proteins and edges are interactions (see Sect. 3.2.1), but
in the case of interaction networks in general, our approach neglects the effects of
the controls, i.e. the sign and direction of the arcs.

Listing all the paths and cycles in a graph is a classical problem whose effi-
cient solutions date back to the early 70s. The best known solution in the literature
is given by Johnson’s algorithm [10] and takes O((|C (G)| + 1)(|E | + |V |)) and
O((|Pst (G)| + 1)(|E | + |V |)) time for a graph G = (V, E), where C (G) and
Pst (G) denote respectively the set of cycles and (s, t)-paths in G. However there
exists graphs for which this algorithm is not optimal.

We will present the first optimal algorithm to list all the paths and cycles in
an undirected graph G. Our algorithm requires O(|E | + ∑

c∈C (G) |c|) time and is
asymptotically optimal: indeed, Ω(|E |) time is necessarily required to read G as
input, and Ω(

∑
c∈C (G) |c|) time is necessarily required to list the output. Moreover,

our algorithm lists all the (s, t)-paths in G optimally in O(|E | + ∑
π∈Pst (G) |π |)

time, observing thatΩ(
∑

π∈Pst (G) |π |) time is necessarily required to list the output.
Our algorithm exploits the decomposition of the graph into biconnected compo-

nents and without loss of generality restricts to study paths and cycles in a same
biconnected component. Thus it recursively lists the cycles or (s, t)-paths using the
classical binary partition: given an edge e in G, list all the solutions containing e, and
then all the solutions not containing e, at each time modifying the graph. In order
to avoid recursive calls (in the binary partition) that do not list solutions, we will
use a certificate, as a data structure, whose cost for dynamically updating is constant
with respect to the number of solutions produced. In order to prove the complexity
obtained, we will exploit the properties of the binary recursion tree corresponding to
the binary partition.

This work appeared in the following.

[16] Etienne Birmelé, Rui A. Ferreira, Roberto Grossi, Andrea Marino, Nadia
Pisanti, Romeo Rizzi, and Gustavo Sacomoto. Optimal listing of cycles and st-
paths in undirected graphs. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, pages 1884–1896, 2013.
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6 1 Introduction

1.5 Further Analysis: Enumerating Central
and Peripheral Vertices

The structural analysis of real world networks, such as citation, collaboration,
communication, road, social, and web networks, has attracted a lot of attention and
the fundamental analysis measures have been reviewed in [17]. An aim of structural
analysis is the identification of important and not important vertices within a net-
work. In the biological domain, the importance of a vertex can be defined in many
different ways. With neighbourhood-based centrality measures, such as degree, the
importance of the vertices is inferred from their local connectivity and the more con-
nections a vertex has the more central it is. Closeness, eccentricity, and shortest path
based betweenness rely on global properties of a network, such as distance between
vertices.

We will focus on the enumeration of the radial and diametral vertices, i.e. vertices
that are central and peripheral according to the eccentricity notion of centrality, and
on the computation of the radius and diameter of real world graphs. The diameter and
radius of a graph are respectively the maximum andminimum eccentricity among all
its vertices, where the eccentricity of a vertex x is the distance from x to its farthest
vertex.

Thus, intuitively, the diametral source vertices are the vertices that hardly reach
the others, the diametral target vertices are the vertices hardly reachable from the
other ones, and the radial vertices are the vertices that easily reach all the vertices
of the network. In order to calculate the vertices that can be easily reached from any
other vertex, it is sufficient to consider the transposed graph.

Wewill present the difubAlgorithm, which is able to list all the diametral sources
and targets and to compute the diameter of (strongly) connected components of
a graph G = (V, E) in time O(|E |) in practice, even if, in the worst case, the
complexity is Θ(|V ||E |). Analogously, we will present a new algorithm to list all
the central vertices and to compute the radius of (strongly) connected components
of a graph in almost O(|E |) time in practice.

This running time allows to compute radius and diameter of real world networks
in practice. Indeed, the size of these networks has been increasing rapidly, so that
in order to study such measures, algorithms able to handle huge amount of data are
needed. Since the algorithms available until now were not able to compute diameter
and radius in the case of huge real world graphs, the contribution of our algorithms
is not just limited to biological networks analysis, but extends also to the analysis of
complex networks in general. We thus have shown their effectiveness also for several
other kinds of complex networks.

Our work appeared in the following.

[18] Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino. On
computing the diameter of real-world directed (weighted) graphs. In Experi-
mental Algorithms - 11th International Symposium, SEA 2012, pages 99–110,
2012.
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This has been the generalization of the following works.

[19] Pierluigi Crescenzi, Roberto Grossi, Claudio Imbrenda, Leonardo Lanzi, and
Andrea Marino. Finding the diameter in real-world graphs - experimentally
turning a lower bound into an upper bound. In Algorithms - ESA 2010, 18th
Annual European Symposium. Proceedings, Part I, pages 302–313, 2010.

[20] Pierluigi Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, and
AndreaMarino.OnComputing theDiameter ofReal-WorldUndirectedGraphs.
Workshop on Graph Algorithms and Applications selected for submission to
the special issue of Theoretical Computer Science in honor of Giorgio Ausiello
in the occasion of his 70th birthday, 2011.

[21] Pilu Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea
Marino. On computing the diameter of real-world undirected graphs. Theor.
Comput. Sci., 514:84–95, 2013.

Our algorithm in [21], has been used to compute the diameter of Facebook Net-
work (721.1Mvertices, 68.7G edges, and diameter 41)with just 17 bfses in a popular
work ([22, 23], divulged by New York Times on November 22, 2011).

1.6 Basic Definitions and Notations

Given a set X = {x1, . . . , xn}, the cardinality of X is denoted by |X |. The power set
2X is the set of all subsets (including the empty set) of X . A sequence S is an ordered
set and is denoted by 〈s1, . . . , sn〉. The length of the sequence is also denoted by |S|.
The concatenation of S with an element sn+1 is the sequence 〈s1, . . . , sn, sn+1〉 and
is denoted by 〈S, sn+1〉.

A graph G is a pair of sets (V, E), where the elements of V are called vertices and
the elements of E are pairs of vertices, so that E ⊆ V × V . In the case of undirected
graphs, these pairs are not ordered, so that (x, y) ∈ E implies (y, x) ∈ E , and we
refer to them as edges, while for directed graphs, these pairs are ordered and called
arcs. In the following we will denote by n = |V | the number of vertices and m = |E |
the number of edges or arcs. For any arc (x, y), we say that it is from x to y, or it
is incoming to y and out-going from x , or x is the out-neighbour of y and y is the
in-neighbour of x , or y is a successor of x and x is a predecessor of y. For any edge
(x, y) we say that x and y are neighbours. Any edge or arc (x, x) is called self-loop.

If E is a multi-set, then G is called multi-graph, otherwise it is called simple
graph. If not specified, we will refer to simple graphs simply as graphs.

For a vertex u ∈ V , for an undirected graph we denote by N (u) its neighbourhood
and by d(u) = |N (u)| its degree, while for a directed graph we denote by N+(u)

and N−(u) its out- and in-neighbourhood respectively, and by d+(u) = |N+(u)|
and d−(u) = |N−(u)| its out- and in-degree respectively. Vertex u is called source
if d+(u) = 0 and d−(u) > 0 and target if d−(u) = 0 and d+(u) > 0.

For a directed graph G = (V, E), we define its transposed graph as G ′ = (V, E ′),
where E ′ = {(u, v) : (v, u) ∈ E}.
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A path π is a sequence of vertices 〈v1, . . . , vk〉, such that for any i with 1 < i ≤ k,
vi is neighbour or out-neighbour of vi−1. Thus, we refer to a path π by its natural
sequence of vertices or arcs/edges. A path π from s to t , or (s, t)-path, is denoted
by π = s � t . Additionally, P(G) is the set of all paths in G and Ps,t (G) is the
set of all (s, t)-paths in G. When s = t we have cycles, and C (G) denotes the set of
all cycles in G. If a directed graph does not contain cycles, then it is called Directed
Acyclic graph (in short, DAG). Whenever for any pair of vertices u, v, there is a
path from u to v, we say that the graph is connected if G is undirected, or strongly
connected if G is directed.

The number of arcs or edges in a path π is called length and denoted by |π |.
Analogously the number of arcs or edges in a cycle c is called length and denoted
by |c|. In this work, we will consider just simple paths and simple cycles.

For any two vertices u, v, the length of the shortest path from u to v is called
distance and denoted by d(u, v), that is d(u, v) = minπ∈Pu,v(G)|π |. Whenever there
is no path from u to v, v is said to be not reachable from u and d(u, v) = ∞. The
diameter ofG is theminimum D such that for anypair of verticesu, v,d(u, v) is less or
equal than D, that is D = maxu,v∈V ×V d(u, v). We define the forward (respectively,
backward) eccentricity of u and denote it by eccF (u) (respectively, eccB(u)) the
maxv∈V d(u, v) (respectively, maxv∈V d(v, u)). In the case of undirected graphs,
forward and backward eccentricities coincide and are both called simply eccentricity
and denoted by ecc(u). Thus, the diameter is defined as the maximum forward or the
maximum backward eccentricity, i.e. D = maxu∈V eccF (u) = maxu∈V eccB(u).
The radius R of G is the minimum forward eccentricity of its vertices, i.e. R =
minu∈V eccF (u), or, in the case of undirected graphs, R = minu∈V ecc(u). Notice
that in general, in directed graphs minu∈V eccF (u) 	= minu∈V eccB(u). We denote
by T F

u (respectively, T B
u ) a forward (respectively, backward) Breadth-First Search (in

short, bfs) tree rooted at node u, so that eccF (u) (respectively, eccB(u)) is its height.
In an undirected graph for any vertex u in V , the levels of the forward breadth-first
search tree rooted at node u, T F

u , coincide with a backward bfs tree rooted at the
same node, T B

u : thus we refer to both trees simply by Tu .
For a vertex v ∈ V , the postorder dfs number of v is the relative time in which v

was last visited in a Depth-First Search (in short, dfs) traversal, i.e. the position of
v in the vertex list ordered by the last visiting time of each vertex in the dfs.

The subgraph induced by a set of vertices V ′ ⊆ V is a graph G ′ = (V ′, E ′),
where E ′ = {(u, v) : (u, v) ∈ E, u, v ∈ V ′}. Thus, G[V ′] denotes the subgraph
induced by V ′, and G − u is the induced subgraph G[V \ {u}] for u ∈ V . Likewise
for e ∈ E , we adopt the notation G − e = (V, E \ {e}), and, for any F ⊆ E ,
G − F = (V, E \ F).

A rooted tree T is an undirected graph such that any two vertices are connected
by a unique path and there is one special vertex r called root. The parent of a vertex
v in T is the vertex connected to it on the path to the root. A child of v is a vertex of
which v is the parent. The set of all children of v is denoted by N+(v). The subtree
of T rooted at v is denoted by T (r). The depth of a vertex is the length of its unique
path to the root. The height of a vertex is the length of the longest downward path to
a leaf from that node.
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In order to avoid confusions, we use the term node exclusively when referring
to trees. For a given recursive algorithm, in its recursion tree T , each node x ∈ T
corresponds to a call of the algorithm, each y ∈ N+(x), child of x , corresponds
to a recursive call done inside (the call corresponding to) x , and the root is the
initial call to the algorithm. We will use the terms node (of the recursion tree), call
(to the algorithm) and iteration (of the algorithm) interchangeably. Moreover, when
analysing the time complexity of recursive algorithms, we consider that the cost of
an iteration does not include the cost of its recursive calls.

1.7 Structure of the Work

The work is structured as follows: in Chap.2, we overview the main issues related to
enumeration problems and themain techniques to design algorithms andproving their
complexity; in Chap.3, we overview the main kinds of biological networks and we
highlight the dynamical structure of the biological networks:we argue the importance
of enumeration algorithms for biological network analysis; in the subsequent chapters
we show some examples of enumeration algorithms related to biological problems:
in Chap.4 we discuss the problem of enumerating stories, in Chap. 5 we discuss
the problem of enumerating bubbles, and in Chap.6 we discuss the problem of
enumerating cycles or paths. Additionally, in Chap.7 we discuss the problem of
enumerating central and peripheral vertices. We conclude in Chap.8, summarizing
and reporting some open problems.

http://dx.doi.org/10.2991/978-94-6239-097-3_2
http://dx.doi.org/10.2991/978-94-6239-097-3_3
http://dx.doi.org/10.2991/978-94-6239-097-3_4
http://dx.doi.org/10.2991/978-94-6239-097-3_5
http://dx.doi.org/10.2991/978-94-6239-097-3_6
http://dx.doi.org/10.2991/978-94-6239-097-3_7
http://dx.doi.org/10.2991/978-94-6239-097-3_8
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Chapter 2
Enumeration Algorithms

2.1 Introduction

The aim of enumeration is listing all the feasible solutions of a given problem.
For instance, given a graph G = (V, E), enumerating all the paths or the shortest
paths from a vertex s ∈ V to a vertex t ∈ V , enumerating cycles, or enumerating all
the feasible solutions of a knapsack problem, are classical examples of enumeration
problems. An enumeration algorithm solves an enumeration problem.

While an optimization problem aims to find just the best solution according to an
objective function, i.e. an extreme case, an enumeration problem aims to find all the
solutions satisfying some constraints, i.e. local extreme cases. This is particularly
useful whenever the objective function is not clear: in these cases, the best solution
should be chosen among the results of the enumeration.

Moreover, sometimes it can be interesting to capture local structures of the data,
instead of the global one, so that enumerating all remarkable local structures becomes
particularly helpful.

In such a context, a good model is the result of a tradeoff between the size and
the number of the solutions: whenever the sizes of the solutions are huge, it is more
desirable to have relatively few solutions. For these reasons, the models usually
include some parameters (such as solution size, frequency, and weight) or unify
similar solutions.

It is worth observing that the number of solutions increases with the size of the
input. Whenever this size is small, brute force algorithms are helpful, and simple
implementations can successfully solve the problem. On the other hand, for large-
scale data more sophisticated approaches from algorithm theory are required in order
to guarantee a bounded increase of computation time when the input size increases.

In this chapter, we will present an overview of the main computational issues
related to enumeration problems and the main techniques to design algorithms and
to prove their complexity. These are part of the lecture notes, written together with
Gustavo A.T. Sacomoto, during the lectures given by Takeaki Uno at the school
on Enumeration Algorithms and Exact Methods (ENUMEX) in Bertinoro, Italy, on
September 25–26th, 2012.

© Atlantis Press and the authors 2015
A. Marino, Analysis and Enumeration, Atlantis Studies in Computing 6,
DOI 10.2991/978-94-6239-097-3_2
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Algorithm 1: BruteForce(i, X)

Input: An integer i ≥ 1, a sequence of values X = 〈x0, . . . , xi−1〉, eventually empty
Output: All the feasible sequences of length n whose prefix is X

1 if no solution includes X then return;
2 if i > n then
3 if X is a solution then output X ;
4 else
5 foreach feasible value e of xi do
6 BruteForce(i + 1, 〈X, e〉)
7 end
8 end

Structure of the Chapter
The chapter is structured as follows: in Sect. 2.2 we exploit the main algorithmic
issues related to enumeration andwe showsomebrute force approaches to solve them.
In Sect. 2.3 we report the main technical framework to design efficient enumeration
algorithms and in Sect. 2.4 we show the main amortization schema. In Sect. 2.5, we
briefly discuss the tractability of enumeration problems in practice.

2.2 Algorithmic Issues and Brute Force Approaches

The design of enumeration algorithms involves several aspects that need to be taken
into account in order to achieve correctness and effectiveness. Indeed, any enumera-
tion algorithm has to guarantee that each solution is output exactly once, i.e. should
avoid duplication. A straightforward way to achieve this is to store in memory all
solutions already found, and whenever a new solution is encountered, test whether
it has been already output or not. Clearly, this approach can be memory inefficient
when the solutions are large with respect to the memory size, or there are too many
of them. Dealing with this would require dynamic memory allocation mechanism
and efficient search (hash). For these reasons, deciding whether a solution has been
already output without storing the solutions already generated is a more suitable
strategy that many enumeration algorithms try to apply.

Besides that, there are cases in which implicit forms of duplication should also be
avoided, i.e. avoid outputting isomorphic solutions. To this aim, it is often useful to
define a canonical form of encoding for the solutions allowing easy comparisons. The
canonical form should provide a one-to-one mapping between the objects and their
representation, without increasing drastically their size. In this way the problem
of enumerating certain objects is turned into the enumeration of their canonical
forms. However, in some cases, like graphs, sequence data and matrices, checking
isomorphism is hard even by defining a canonical form. Nonetheless, in these cases
the isomorphism can be still checked by using exponential algorithms that in practice
turn out to be often efficient when the number of solutions is small.
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Algorithm 2: BruteForce(X, D)

Input: A pattern X, a reference to a global database D
Output: All the patterns containing X not isomorphic between them and to any pattern

contained in D
1 D ← D ∪ {X}
2 if no solution includes X then return;
3 if X is a solution then output X ;
4 foreach X ′ obtained by adding an element to X do
5 if 	 ∃Z ∈ D such that Z isomorphic to X ′ then
6 BruteForce(X ′, D)

7 end
8 end

Simple structures, such as cliques and paths are generally easy to enumerate, since
cliques can be obtained by iteratively adding vertices, and the set of paths can be
easily partitioned. More complex structures, such as maximal (nothing can be added
to the solution without losing some required property) or minimal (nothing can be
subtracted from the solution without losing some required property) structures, or
constrained structures, are more difficult to enumerate. In these cases, even if a solu-
tion can be found in polynomial time, the main issue is designing a way to generate
other solutions from a given one, i.e. defining a solution neighbourhood, in order to
allow visiting all the solutions by moving iteratively through the neighbourhoods.

It should be noted that using an exponential time approach to find each neigh-
bour or having an exponential number of neighbouring solutions, can lead to time
inefficiency. When an exponential number of possible choices have to be applied
to a solution in order to possibly obtain other solutions, the enumeration process
can take an exponential time for each solution, since there is no guarantee that any
choice leads to a solution. For example this is very often the case concerning maxi-
mal solutions: removing some elements and adding others to get maximality allows
to move iteratively to any solution, but, when the number of these combinations is
exponential, the final cost per solution is also exponential. In such a context, if pos-
sible, restricting the number of neighbours of a solution or applying some pruning
strategy to avoid redundant computation, can lead to more efficiency.

More complex cases concern the problems in which even finding a solution is NP-
complete, such as SAT or Hamiltonian cycle. Nonetheless, in these cases, heuristics
often effectively apply, specially when the problem turn out to be usually easy, like
SAT, the solutions are not huge, like maximal and minimal structure enumeration,
and the size of the solution space is bounded.

When the instance sizes are small, another approach to these problems, is to
use brute force algorithms. For example, using a divide and conquer approach to
enumerate all the candidates and selecting all feasible solutions, or by enlarging the
solutions one by one and removing the isomorphic ones. Two basic schemas for brute
force algorithms are informally described inAlgorithms 1 and 2. InAlgorithm1 every
solution is seen as an ordered sequence of values: by invoking BruteForce(1,∅),
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the feasible values are recursively found by enlarging the current solution; in this
case, just the test whether X is a solution or not is required. Also Algorithm 2 tries to
enlarge the current solution, but at each stepwe checkwhether the current solution has
been already considered in the past computation: the result of the past computation
is stored in a database D.

Note that for both the algorithms, it is necessary to know how to transform a
candidate X into another candidate X ′. Moreover, it is worth observing that, in both
cases, an accurate a priori checking whether X is contained in any solution or not
could save a lot of useless computation.

2.3 Basic Algorithms

Since the number of solutions ofmany enumeration problems are usually exponential
in the size of the instance, enumeration algorithms require often at least exponential
time. On the other hand, it is quite natural to ask for a polynomial time algorithm
whenever the number of solutions is polynomial. In such a context, the complexity
classes of enumeration problems are defined depending on the number of solutions,
so that if the number of solution is small, an efficient algorithm has to terminate after
short (polynomial) time, otherwise it is allowed to spend more time. According to
this idea, the following complexity classes have been defined [1].

Definition 2.1 An enumeration algorithm is polynomial total time if the time
required to output all the solutions is bounded by a polynomial in the size of the
input and the number of solutions.

Definition 2.2 An enumeration algorithm is polynomial delay if it generates the
solutions, one after the other in some order, in such a way that the delay until the first
is output, and thereafter the delay between any two consecutive solutions, is bounded
by a polynomial in the input size.

Intuitively, the polynomial total time definition means that the delay between any
two consecutive solutions has to be polynomial on the average, while the polyno-
mial delay definition implies that the maximum delay has to be polynomial. Hence,
Definition2.2 implies Definition2.1.

For a comprehensive catalogue of known enumeration algorithms and their clas-
sification we invite the reader to see [24].

The basic technique for designing enumeration algorithms are: backtracking
(depth-first search with lexicographic ordering), binary partition (branch and bound
like recursive partition algorithm), reverse search (search on traversal tree defined
by parent-child relation). The rest of this section is devoted to exploit the features of
these schemas. It is worth observing that this categorization is not strict, since very
often these technique overlap each other.
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2.3.1 Backtracking

A set F ⊆ 2U (of subsets of U ) satisfies the downward closure if for any X ∈ F
and for any X ′ ⊆ X , we have X ′ ∈ F , in other words, for any X belonging to F
we have that any subset of X also belongs to F . Given a set U and an oracle to
decide whether X ⊂ U belongs to F , an unknown set of 2U satisfying the downward
closure, we consider the problem of enumerating all (maximal) elements of F . The
backtracking technique is mainly applied to these problems. In this approach by
starting from an empty set, the elements are recursively added to a solution. The
elements are usually indexed, so that in each iteration, in order to avoid duplication,
only an element whose index is greater than the current maximum element is added.
After all the examinations concerning one element, by backtracking, all the other
possibilities are exploited. The basic schema of backtracking algorithms is shown
by Algorithm 3. Note that whenever it is possible to apply this schema, we obtain
a polynomial delay algorithm, whose space complexity is also polynomial. The
technique proposed relies on a depth-first search approach. However, it is worth
observing that in some cases of enumeration of families of subsets exhibiting the
downward closure property, arising in the mining of frequent patterns (e.g., mining
of frequent itemsets), besides the depth-first backtracking, a breadth-first approach
can be also successfully used. For instance this is the case of the Apriori algorithm
for discovering frequent itemsets [25].

Algorithm 3: Backtrack(S)

Input: S ⊆ U a set (eventually empty)
Output: All the solutions containing S

1 output S
2 Let π(x) be the index associated to an element x ∈ U
3 foreach e > maxx∈S π(x) do
4 if S ∪ {e} is a solution then
5 Backtrack(S ∪ {e})
6 end
7 end

Algorithm 4: SubsetSum(S)

Input: S a set (eventually empty) of integers belonging to the collection U = {a1, . . . , an}
Output: All the subsets of U containing S whose sum is less than b.

1 ouput S
2 Let π(x) be the index associated to an element x
3 foreach i > maxx∈S π(x) do
4 if ai + ∑

x∈S x < b then
5 SubsetSum(S ∪ {ai })
6 end
7 end
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2.3.1.1 Enumerating All the Subsets of a Collection U = {a1, . . . , an}
Whose Sum is Less Than b

By using the backtracking schema, it is possible to solve the problem as shown by
Algorithm 4. Each iteration outputs a solution, and take O(n) time, so that we have
O(n) time per solution. It is worth observing that if we sort the elements of U , then
each recursive call can generate a solution in O(1) time, so that we have O(1) time
per solution.

2.3.2 Binary Partition

Let X be a subset of F , the set of solutions, such that all elements of X satisfy a
property P . The binary partition method outputs X only if the set is a singleton,
otherwise, it partitions X into two sets X1 and X2, whose solutions are characterized
by the disjoint properties P1 and P2 respectively. This procedure is repeated until
the current set of solutions is a singleton. The bipartition schema can be successfully
applied to the problem of enumeration of paths of a graph connecting two vertices
s and t , of the perfect matchings of a bipartite graph [26], of the spanning trees of a
graph [27]. If every partition is non-empty, i.e. all the internal nodes of the recursion
tree are binary, we have that the number of internal nodes is bounded by the number
of leaves. In addition, if we have that the partition oracle takes polynomial time, since
every leaf outputs a solution, we have that the resulting algorithm is polynomial total
time. On the other hand, even if there are empty partitions, i.e. internal unary nodes
in the recursion tree, if the height of tree is bounded by a polynomial in the size of
the input and the partition oracle takes polynomial time, then the resulting algorithm
is polynomial delay.

2.3.2.1 Enumerating All the (s, t)-Paths in a Graph G = (V, E)

The partition schema chooses an arc e = (s, r) incident to s, and partitions the
set of all the (s, t)-paths into the ones including e and the ones not including e.
The (s, t)-paths including e are obtained by removing all the arcs incident to s, and
enumerating the (r, t)-paths in this new graph, denoted by G −s. The (s, t)-paths not
including e are obtained by removing e and enumerating the (s, t)-paths in the new
graph, denoted by G − e. The corresponding pseudocode is shown by Algorithm
5. It is worth observing that if the arc e is badly chosen, a subproblem could not
generate any solution; in particular, the set of the (r, t)-paths in the graph G − s
is empty if t is not reachable from r , while the set of the (s, t)-paths in G − e is
empty if t is not reachable from s. Thus before performing the recursive call to the
subproblems it could be useful to test the validity of e, by testing the reachability of
t in these modified graphs. Notice that the height of the recursion tree is bounded
by O(|V | + |E |), since at every level the size of the graph is reduced by one vertex
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or arc. The cost per iteration is O(|V | + |E |), the reachability test. Therefore, the
algorithm has O((|V | + |E |)2) delay or O(|E |2) delay for connected graphs.

This problem has been studied in [9, 28, 29], and in [10], guaranteeing a linear
delay. In Chap.5 we will modify this latter algorithm in order to enumerate bubbles.
In the particular case of undirected graphs, in Chap. 6 we will show an algorithm
based on this bipartition approach having an output sensitive amortized complexity,
as shown in [16]. In the particular case of shortest paths, the enumeration problem
has been studied in [30]. It is worth observing that the problem of enumerating all
the (s, t)-paths in a graph is equivalent to the problem of enumerating all the cycles
passing through a vertex.

Algorithm 5: Paths(G, s, t, S)

Input: A graph G, the vertices s and t , a sequence of vertices S (eventually empty)
Output: All the paths from s to t in G

1 if s = t then
2 output S
3 return
4 end
5 choose an arc e = (s, r)

6 if no (r, t)-path in G − s then
7 Paths(G − e, s, t, S)

8 return
9 end

10 if no (s, t)-path in G − e then
11 Paths(G − e, r, t, 〈S, s〉)
12 return
13 end
14 Paths(G − s, r, t, S)

15 Paths(G − e, s, t, S)

2.3.3 Reverse Search

The reverse search schema defines for any solution a solution called parent solution
[31], in a way that this parent-children relationship does not induce a cyclic graph
or DAG, but induces a tree. In this way, in order to enumerate all the solutions, it is
sufficient to traverse the tree by performing a depth first search, so that the number
of iterations is equal to the number of solutions. It is worth observing that the tree
induced by the parent child relationship does not need to be stored in memory, but
it is sufficient to use an algorithm for finding all the children of a parent. Moreover
it could be preferable to have an algorithm able to find the (i + 1)th child of a node,
given the i th child.

Since the number of iterations is equal to the number of solutions, we have that
the cost per solution is equal to the cost per iteration. Thus if finding the next child of

http://dx.doi.org/10.2991/978-94-6239-097-3_5
http://dx.doi.org/10.2991/978-94-6239-097-3_6
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a node costs O( f (n)) time, where n is the input size, the resulting computation time
per iteration is O( f (n)). Hence the algorithm is polynomial total timewhenever f (n)

is polynomial. The space complexity is given by the memory usage of an iteration
and by the height of the depth first search tree. This latter cost is not required when
we have an algorithm able to find the (i + 1)th child of a node, given its i th child.
The delay between two successive solutions is also O( f (n)) by using the alternative
output technique [32].

Indeed alternative output technique aims to reduce the delay, by avoiding that the
depth first search backtrack along long paths without outputting any solution. As
shown by Algorithm 7 the solutions are outputted before the recursive calls when the
current depth first search level is even, otherwise, i.e. in the odd levels, the solutions
are output after the recursive calls. In this way for any two successive solutions we
have a delay at most 2 f (n), where f (n) is the cost of an iteration. Indeed suppose
that the parent child relationship induces a path of solutions x1, . . . , xg(n) and there
is a solution xg(n)+1 that is a child of x1, where g(n) is a function of n. If the cost
per iteration is O( f (n)), by applying Algorithm 6, for any i with 1 ≤ i ≤ g(n),
the delay is O( f (n)), and the delay between xk and xk+1 is O(g(n)). By applying
Algorithm 7, by supposing g(n) odd, the solutions are generated in the follow-
ing order x2, x4, . . . xg(n)−1, xg(n), xg(n)−2, xg(n)−4, . . . , x3, x1, xg(n)+1, so that the
delay is O(2 · f (n)) = O( f (n)).

In conclusion, by applying this technique, every time an enumeration algorithm
takes O( f (n)) time in each iteration and also outputs a solution on each iteration,
the delay O( f (n)) can be turned into a worst case delay O( f (n)).

Algorithm 6: ReverseSearch(S)

1 output S
2 foreach child S′ of S do
3 ReverseSearch(S′)
4 end

Algorithm 7: AlternativeOutput(S, depth)

Input: A solution S, an integer depth
Output: All the solutions descendants of S in the tree induced by the parent-child

relationship
1 if depth is even then output S;
2 foreach child S′ of S do
3 AlternativeOutput(S, depth + 1)
4 end
5 if depth is odd then output S;
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2.3.3.1 Maximal Clique Enumeration

A clique is a complete graph, i.e. a graph in which any two vertices are connected.
Finding the clique of maximum size in a graph G = (V, E) is NP-hard [33], while
finding a maximal clique is an easy task that can be solved in O(|E |) time: by
starting with an arbitrary clique (for instance, a single vertex), grow the current
clique one vertex at a time, adding it if connected to each vertex in the current
clique, and discarding it otherwise. The clique enumeration problem is the problem
of enumerating all the complete subgraph of a given graph in input. This problem
has been widely studied by [34–36]. The bipartite clique enumeration problem is the
problem of enumerating all the complete bipartite subgraphs of a bipartite graph and
it can be efficiently reduced to a clique enumeration problem [34].

It is worth observing that the set of cliques is monotone, since any subset of the
vertices of a clique is also a clique. This means that the backtracking technique can
be successfully applied. Checking whether a recursive call is going to produce at
least a clique costs O(|E |) time, and has to be repeated for at most |V | recursive
calls, so that the final cost is O(|V ||E |) per clique.

When the number of solutions increase exponentiallywhen the size of the instance
input increases linearly, it seems hard post-processing the solutions found, so that
often the simple enumerationproblem is turned in enumerationofmaximal structures.
In this way, the solution set becomes not redundant. More formally, a solution X is
maximal if for any X ⊂ X ′, X ′ is not a solution. In general the problem of finding
maximal solutions is more difficult, since it is often harder to find a neighbourhood
relationship between them. However there are some exceptions, like enumerating
maximal clique.

Also in real contexts it seemsmore promising enumerating all themaximal cliques
instead of all the cliques: it has been estimated that in real world graphs, even if they
are sparse and the size of their cliques is small, the number of maximal cliques
is between 0.1 and 0.001% the number of its cliques (see also [37]). Moreover,
restricting the enumeration to maximal cliques does not lead to lose any information
since any clique is included in at least one maximal clique.

Given a graph G = (V, E), whose vertices are indexed, a set of vertices X ⊆ V
is said to be lexicographically greater than Y ⊆ V if the vertex whose index is
minimum in (X \ Y ) ∪ (Y \ X) is contained in X . Moreover, for any X, Y ⊆ V , the
trichotomy property holds, i.e. exactly one of the following holds: X < Y , X = Y ,
or Y > X . For any vertex set S, we define S≤i as S ∩ {v1, . . . , vi }.

Let C(K ) be the lexicographically smallest maximal clique including a clique
K ⊆ V , C(K ) can be computed by greedily adding vertices to K in lexicographic
order of the indices. Observe that for any set K ,C(K ) is not lexicographically smaller
than K .

Given a maximal clique K we define the parent of K , P(K ), as C(K≤i−1), such
that i is the maximum index satisfying C(K≤i−1) 	= K . Notice that C(K≤i−1) can
be efficiently computed by removing the vertices from K by starting from the ones
whose index is greater and computing C on the remaining vertices while C(K ) = K
holds. The lexicographically smallest clique, denoted as K0, has no parent. Since for
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Algorithm 8: EnumMaximalCliques(G, K )

Input: A graph G = (V, E), a maximal clique K ⊆ V
Output: All the maximal cliques descendants of K in the tree induced by the parent-child

relationship between maximal cliques
1 output K
2 foreach vertex v ∈ V not in K do
3 K ′ ← K [v]
4 if P(K ′) = K then
5 EnumMaximalCliques(G, K )

6 end
7 end
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Fig. 2.1 A graph and the recursion tree induced by Algorithm 8

any K , P(K ) is lexicographically greater than K , and P(K ) is uniquely defined, the
parent-child relationship induces an acyclic graph, that is a tree (Fig. 2.1).

For anymaximal clique K and any vertex vi , we define K [vi ] asC((K≤i ∩N (vi ))∪
{vi }), where N (vi ) is the neighbourhood of vi . Thus a maximal clique K ′ is a child of
the maximal clique K , if there exists vi , with vi /∈ K , such that K ′ = K [vi ]. Hence
in order to compute the children of a maximal clique K , it is sufficient to check for
any vi whether P(K [vi ]) is equal to K .

Observe that for any maximal clique K , C(K ) and P(K ) can be computed in
O(|E |) time. All children of K can be found by at most |V | tests, so that the cost
of each iteration is bounded by O(|V ||E |) time. Thus, since the number of itera-
tions is equal to the number of solutions, the final cost is O(|V ||E |) per maximal
clique.

2.3.3.2 Non-Isomorphic Ordered Tree Enumeration

Several enumeration problems aim to enumerate all the substructures of a given
instance, like paths of a graph. However, applications sometimes require solutions
satisfying certain constrains, like enumerating path or cycles of a fixed length or
enumerating the cliques of a given size. Other problems instead aim to find all the



2.3 Basic Algorithms 23

structures of a given class, like enumerating the permutations of size n, enumerating
trees, crossing lines in a plane, matroids, and binary matrices. Enumerating non
trivial structures often implies enumerating non isomorphic structures. In general
two structures are isomorphic whenever it is defined a one-to-one correspondence
between their elements. For instance a circular sequence is isomorphic to another if
and only if it can be transformed in it by using a rotation, a matrix is isomorphic
to another matrix if and only if each one can be transformed in the other one by
swapping rows and columns, a graph is isomorphic to another graph if and only if
their adjacency matrices are isomorphic, i.e. there is a one to one mapping between
their vertices that preserves the adjacency.

Let us consider the problem of enumerating ordered trees, trees in which the
ordering of the children of each vertex is specified. The isomorphism between two
ordered trees is inductively defined as follows: two leaves are isomorphic; two trees
rooted on x and y, whose order lists of children are 〈x1, . . . , x p〉 and 〈y1, . . . , yq〉
respectively, are isomorphic if p = q and for any i , with 1 ≤ i ≤ p = q, the subtree
rooted on xi is isomorphic to the subtree rooted on yi . This problem has been studied
in [38], and by fixing the number of leaves in [39].

Given an ordered tree, we define the indexing of its vertices as the visiting order
of a left-first DFS, i.e. a depth first search that visits the children of a vertex following
their order. This indexing procedure is unique and isomorphism between two ordered
trees, whose vertices are indexed as described, can be checked comparing the edge
sets: the two indexed trees are isomorphic if and only if they have the same edge set.

Moreover, the left-first DFS can be used to encode the ordered trees. To this aim,
we define the depth sequence as 〈h1, . . . , hn〉, where hi is the depth of vertex vi in
the left-first DFS tree, where vi is the i th vertex visited by a left-first DFS. There
is a one-to-one correspondence between the ordered trees and the depth sequences,
so that isomorphism can be checked by comparing the depth sequences, as shown
by Fig. 2.2.

By following the reverse search schema, we define the parent-child relationship
between non-isomorphic trees. In particular the parent of an ordered tree is defined by
the tree, obtained by removing the vertex having the largest index, i.e. by removing
from a depth sequence its last element (the last element visited by a left-first DFS).
Recall that the indexing induced by the left-first DFS is such that the largest index
is the leaf of the rightmost branch of the tree. Observe that the size of the parent is

1

2 5 6

743

1

2 4 5

63 7

(a) (b)

Fig. 2.2 Two non isomorphic ordered trees, labelled by using left-first DFS, and their depth
sequences. a 〈0, 1, 2, 2, 1, 1, 2〉. b 〈0, 1, 2, 1, 1, 2, 2〉
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smaller than the size of the children, any ordered tree have exact one parent, except
the empty tree, so that the relationship induces an acyclic graph.

For any ordered tree T , whose depth-sequence is 〈h1, . . . , hn〉, the children of
T according to the parent-child relationship defined before, are all the ordered trees
obtained by adding a new vertex vn+1 as the rightmost child of a vertex belonging
to the rightmost path. Let hn+1 be the depth of the new vertex vn+1. Since hn is the
rightmost leaf of T , we have that it belongs to the rightmost path, to be precise, vn is
the last vertex of this path. Thus, the depths of the vertices of the rightmost path of
T , from the root to vn , are exactly the interval [0, hn]. Since the new vertex vn+1 is
a child of a vertex in this path, the depth hn+1 is in the interval [1, hn + 1]. Thus the
children of an ordered tree T , with depth-sequence 〈h1, . . . , hn〉, are all the ordered
trees whose depth sequence is 〈h1, . . . , hn, hn+1〉, with 1 ≤ hn+1 ≤ hn + 1. An
example is given in Fig. 2.3.

By using these observations, we can enumerate all the ordered trees of size less
than k, as shown by Algorithm 9. Notice that the inner loop takes constant time, so
that the time complexity is O(1) per solution.

Algorithm 9: EnumOrderedTree(T, k)

Input: A tree T (eventually empty) and an integer k
Output: All the non-isomorphic trees of size at most k, whose depth sequence contains as

prefix the depth sequence of T
1 output T
2 if size of T = k then return;
3 foreach vertex v in the right most path do
4 Let T ′ be the tree obtained from T by adding a rightmost child to v
5 EnumOrderedTree(T ′, k)

6 end

(a)

(b) (c) (d)

Fig. 2.3 An ordered tree, its depth sequence (a), and its children with their depth sequences (b), (c)
and (d). a 〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2〉. b 〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2, 1〉. c 〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2, 2〉.
d 〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2, 3〉
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2.3.3.3 Non-Isomorphic Tree Enumeration

Wenowconsider the problemof enumerating non-ordered trees, i.e. trees inwhich the
ordering of the children of each vertex is not specified. The isomorphismbetween two
(non-ordered) trees is inductively defined as follows: two leaves are isomorphic; two
trees rooted on x and y, whose children lists are X and Y respectively, are isomorphic
if |X | = |Y | = p and there exist two permutations of X and Y , 〈x1, . . . , x p〉 and
〈y1, . . . , yp〉 respectively, such that for any i , with 1 ≤ i ≤ p, the subtree rooted on
xi is isomorphic to the subtree rooted on yi . This problem has been studied in [40],
by fixing the diameter in [41], and in the more general case of coloured rooted trees
in [42].

The näive approach, to use the same algorithm for ordered tree enumeration to
enumerate non-ordered trees, would produce many duplicate solutions, since each
non-ordered tree may correspond to an exponential number of ordered trees. Which
in turn, would be very inefficient.

In order to define the canonical form of representation of a rooted tree, we use
its left-heavy embedding, defined as the lexicographically maximum depth sequence
among all the ordered trees corresponding to T (Fig. 2.4). Therefore, two non-ordered
rooted trees are isomorphic if and only if they have the same left-heavy embedding.

The parent child relationship between canonical forms is defined as follows: the
parent of a left-heavy embedding is obtained by the removal of the rightmost leaf
of the corresponding tree, the same for ordered trees. Observe that the parent t ′ of a
left-heavy embedding t of T is a left-heavy embedding too, otherwise there would
be another sequence greater than t ′ such that by adding back the rightmost leaf of
T we would obtain a depth sequence for T that is lexicographically greater than t
(Fig. 2.5).

Hence any child of a rooted tree T is obtained by adding a vertex as children of the
vertices belonging of the rightmost path, like for ordered trees. However, some trees
obtained by adding a vertex in this way are not children of T , since the resulting
sequence does not coincide with their left-heavy embedding. This can happen if
there exists a vertex x in the rightmost path of T , such that the depth sequence
t = 〈s1, . . . , sp〉 of T (r), where r is the rightmost child of x , is a prefix of the depth
sequence t ′ = 〈s1, . . . , sp, . . . sq〉 of T (r ′), where r ′ is the second rightmost child
of x , so that the depth sequence of T ends with t concatenated with t ′. Indeed, in
this case, by adding a vertex at depth y to T (r) and obtaining t ′′ = 〈s1, . . . , sp, y〉

(a) (b) (c)

Fig. 2.4 Three isomorphic rooted tree and their depth sequences. The first one is the left heavy
embedding. a 〈0, 1, 2, 3, 3, 2, 2, 1, 2, 3〉. b 〈0, 1, 2, 2, 3, 3, 2, 1, 2, 3〉. c 〈0, 1, 2, 3, 1, 2, 3, 3, 2, 2〉



26 2 Enumeration Algorithms

(a)

(b) (c) (d)

Fig. 2.5 An rooted tree, and its depth sequence (a). b and c are its children, while d is not a
child of (a). a 〈0, 1, 2, 3, 3, 2, 1, 2, 3, 2〉. b 〈0, 1, 2, 3, 3, 2, 1, 2, 2, 1〉. c 〈0, 1, 2, 3, 3, 2, 1, 2, 2, 2〉.
d 〈0, 1, 2, 3, 3, 2, 1, 2, 2, 3〉

as depth sequence of T (r), the depth sequence of T ends with t concatenated with
t ′′: if sp+1 is lexicographically smaller than y, this is not a leaf-heavy embedding,
since the depth sequence ending with t ′′ concatenated with t is lexicographically
greater. Thus, since sp+1 is the depth of the rightmost leaf of T (r ′), to get all and
just the children of T , we have to consider all the possible ways to add a vertex as
children of a vertex belonging to the rightmost path, so that its depth is smaller or
equal to sp+1.

The copy vertex is thus defined as the highest (lowest depth) vertex x in T with
at least two1 children, r and r ′ (the rightmost and the second rightmost child respec-
tively), such that the depth sequence 〈s1, . . . , sp〉 of T (r) is a prefix of the depth
sequence 〈s1, . . . , sp, . . . sq〉 of T (r ′). Given a tree T with copy vertex x , in order
to generate the children of T , we have to consider two cases: the prefix of the depth
sequences is proper or the depth sequences are equal. In the first case, there exists
sp+1 and by attaching a new rightmost child to a vertex v, with depth ≤ sp+1, in
the rightmost path of T we obtain a new tree T ′ that is also a left-heavy embedding.
Moreover, the new copy vertex of T ′ is v, if the depth v is not equal to the depth
of x ; or x , otherwise. On the other case, the subtrees T (r) and T (r ′) are equal and
by attaching a new rightmost child to a vertex v, with depth smaller or equal to the
depth of x , in the rightmost path of T we obtain a new tree T ′ that is also a left-heavy
embedding, and the new copy vertex of T ′ is v. In both cases, we are able to generate
the new tree T ′ and update the copy vertex in constant time. The algorithm is shown
by Algorithm 10. Each iteration of the loop costs O(1), so that we have a final cost
of O(1) per solution.

1 If T is a path, the copy vertex is defined as the root.
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Algorithm 10: EnumRootedTree(T, x)

Input: A tree T (eventually empty), an integer k, and a vertex x
Output: All the non-isomorphic rooted trees of size at most k, whose depth sequence

contains as prefix the depth sequence of T
1 output T
2 if size of T = k then return;
3 r ← the rightmost child of x
4 r ′ ← the second rightmost child of x
5 if depth sequence of (T (r ′) 	= depth sequence of T (r) then
6 y ← the vertex of T (r ′) after the prefix T (r)

7 else
8 y ← x
9 end

10 foreach vertex v in the rightmost path of T , in increasing depth order do
11 add a rightmost child to v
12 if depth of v = depth of y then
13 EnumRootedTree(T, x)

14 break
15 end
16 EnumRootedTree(T, v)
17 remove the rightmost child of v
18 end

2.4 Amortized Analysis

In this section, we explore techniques to analyse the running time of a certain kind
of enumeration algorithms. Specifically, enumeration algorithms with a tree-shaped
recursion structure.

Suppose a enumeration algorithm with a tree-shaped recursion structure takes
O(n) time per node. Based only on this, it is not possible to polynomially bound the
time spent to output each solution.We can have exponentiallymany nodes and a small
number of solutions as in, for example, the enumeration of feasible solutions of SAT
using a branch-and-bound algorithm. However, if every node outputs a solution, then
algorithm takes O(n) per solution. Now, suppose that each leaf outputs a solution
and each node takes O(n) time. Again, this is not enough to polynomially bound
time per solution, since we can have an exponential number of internal nodes and
only few leaves. In addition, we need that either the height of the tree is bounded, in
this case the number of nodes is bounded by the number of solutions (leaves) times
the height; or each internal node has at least two children, the number of nodes is
bounded by two times the number of solutions.

These three scenarios: every node outputs a solution, every leaf outputs a solu-
tion and the height of the tree is bounded, and every leaf outputs a solution and
each internal nodes has at least two children, are the typical ones in which we can
polynomially bound the time complexity. In each case, the time complexity per solu-
tion depends on the maximum time complexity O(n) over all nodes. In order to do
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better, we have to use amortized analysis. The rest of the section is devoted to three
amortized analysis techniques: basic amortization, amortization by children and push
out amortization.

2.4.1 Basic Amortization

A recursive enumeration algorithm usually solves the problem by breaking it into
subproblems, which are generally smaller, in both input and output size, than the
original problem. The recursion tree for this case has many bottom level nodes
taking a short time and a fewer nodes closer to the root taking a long time. We call
this effect in the recursion tree bottom-wideness. However, this observation alone is
not enough to provide good amortized bounds. For instance, Fig. 2.6a, b have bottom
level nodes (leaves) taking O(1), but the amortized complexity is still O(n), the
maximum cost among the nodes. In both cases, there were a sudden decrease in the
computation times.

In the tree of Fig. 2.6c each internal node has two children, all the nodes in the same
level have the same cost, and the cost of each node decreases by a constant at each
level. It is not hard to show that the average complexity per node in this case is O(1).
That is, there was a reduction from O(n) to O(1) when considering the amortized
complexity. Lemma2.2 presents a generalization of this example, every node has two
children and the costs are proportional to the height of the node. Technical Lemma2.1
is used in the proof of the Lemma2.2.

Lemma 2.1 For any polynomial p(x) = ∑m
k=0 ak xk , there exists δ and α < 1, such

that p(x+1)
2p(x)

< α, for all x > δ.

n
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1
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1

1
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Fig. 2.6 Recursion trees with the cost of each node. a The cost of the internal nodes decrease by
1 and the all leaves have cost 1. b The nodes in the same level have the same cost, decreasing by
1 from n until n − 2. The leaves have cost 1. c The nodes in the same level have the same cost,
decreasing by 1 from n until 1
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Proof It is easy to prove that limx→∞ p(x+1)
2p(x)

= 1/2. Thus, from the definition of

limit, there exist ε and δ (depending only on ε), such p(x+1)
2p(x)

−1/2 < ε for all x > δ.

Choosing ε < 1/2, we have that p(x+1)
2p(x)

< ε + 1/2 = α < 1 for all x > δ.

Lemma 2.2 Let T be a recursion tree with height n, such that every internal node
has degree 2; and the cost for each node is O(p(i)), where p(i) is a polynomial and
i is the height of the node. Then, the amortized cost for each node is O(1).

Proof The number of nodes with height i is 2n−i , since the internal nodes have
degree 2. The cost of each level i of the tree is bounded by 2n−i p(i) and the total
cost of the tree is

∑n
i=1 2

n−i p(i). Let us consider the ratio of the cost of two adjacent
levels in the tree,

r(i) = 2n−(i+1) p(i + 1)

2n−i p(i)
= p(i + 1)

2p(i)
.

By Lemma2.1, r(i) < α < 1, for all i > δ. Implying that the cost of each level
i ≥ δ decrease by α and the sum of the costs of all levels i ≥ δ is bounded by the
sum of the geometric series, i.e.

∑

δ≤i≤n

2n−i p(i) < 2n−δ p(δ)
∑

δ≤i≤n

αi−δ < 2n−δ p(δ)

∞∑

i=0

αi = 2n−δ p(δ)

1 − α
.

Therefore, amortized cost of each node in the levels above δ is

∑
δ≤i≤n 2

n−i p(i)
∑

δ≤i≤n 2
n−i

<
2n−δ p(δ)

1 − α

1

2n−δ
= p(δ)

1 − α
= O(1).

The last equality follows from the fact that α and delta are constants. Moreover,
the cost of the nodes with i ≤ δ is also O(1).

Theorem2.1 is a straightforward generalization of Lemma2.2.

Theorem 2.1 Let T be a recursion tree with height n, such that every internal
node has degree at least 2; and the cost for each node is O(p(i)), where p(i) is a
polynomial and i is the height of the node. Then, the amortized cost for each node is
O(1).

2.4.1.1 Enumerating Connectivity Elimination Orderings
of a Connected Graph G

Given a connected graph G = (V, E), a connectivity elimination ordering is an
ordering of the vertices such that the removal of each vertex keeps the remaining
graph connected. Algorithm 11 enumerates all connectivity elimination orderings.
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Each call of the algorithm takes O(|V |3) time, since for each v ∈ V it checks if
G −v is connected. Moreover, for any connected graph there are at least two vertices
such that their removal maintain the graph connected. Therefore, the hypothesis of
Theorem2.1 are satisfied, and the amortized complexity per node is O(1). Since, in
this case, the number of nodes is at most 2 times the number of leaves, the amortized
complexity per solution is also O(1).

Algorithm 11: EnumOrderings(G = (V, E), X)

Input: A graph G and sequence X that is a prefix of a connectivity elimination order.
Output: The set of all connectivity elimination orders of G.

1 if V = ∅ then
2 output X
3 end
4 foreach v ∈ V do
5 if G − v is connected then
6 EnumOrderings(G − v, 〈X, v〉)
7 end
8 end

2.4.2 Amortization by Children

The basic amortization strategy presented in the previous section, in the form of
Theorem2.1, requires that every leaf has the same depth, and the cost of each node
depends uniformly on the height. Though there are applications for Theorem2.1,
these requirements are global, they depend on the tree as whole, imposing a very
strict structure in the recursion tree. In this section, we start developing amortization
techniques with weaker hypothesis, so that they can be applied also in the case of
more biased trees. For this, we focus on local tree structure. Theorem2.2 presents a
simple amortization scheme using only the parent-children structure.

Theorem 2.2 Let T be a recursion tree and T (x) the cost of node x ∈ T . The
amortized cost for each node is O(maxz∈T

T (z)
|N+(z)|+1 ).

Proof We divide the cost T (x) between the node x and its children N+(x). In this
way the new cost of x is T (x)

|N+(x)|+1 plus the cost received from its parent y. Thus,

T ′(x) = O

(
T (x)

|N+(x)| + 1
+ T (y)

|N+(y)| + 1

)

= O

(

max
z∈{x,y}

T (z)

|N+(z)| + 1

)

= O

(

max
z∈T

T (z)

|N+(z)| + 1

)

.
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2.4.2.1 Enumerating All Simple Paths of G Starting from s

Given a graph G = (V, E) and a vertex s ∈ V , we consider the problem
of enumerating all simple paths of G that start on s. Algorithm 12 solves this
problem. Each call outputs a solution and takes O(|N (s)|) time, since we have
to explore all edges from s. Moreover, each edge from s generates a recursive
call. Therefore, applying Theorem2.2 we have that the amortized cost per node
is O(maxz∈T

|N (z)|
|N (z)|+1 ) = O(1).

Algorithm 12: EnumPaths(G = (V, E), s, π)

Input: A graph G, a vertex s and a path π from s.
Output: The set of all paths from s in G with prefix π .

1 output π
2 foreach v ∈ N (s) do
3 EnumPaths(G − s, v, 〈π, s〉)
4 end

2.4.3 Push Out Amortization

In Lemma2.2 the key property was that the total cost on each level increases with a
constant factor, by going to the next deeper level. Intuitively, the increase of com-
putation time is good because it forbids a sudden decrease, as the one of the trees in
Fig. 2.6a, b. In this section, we apply the same idea locally. Instead of comparing the
total cost of two adjacent levels we compare the cost of a nodewith the total cost of its
children. Lemma2.3 gives a precise statement for this local increase property. After-
wards, Theorem2.3 generalizes Lemma2.3, by combining it with the amortization
by children of Theorem2.2.

Lemma 2.3 Let T be a recursion tree, such that the cost of each leaf is O(T ∗); and
there exist α > 1 such that every internal node x ∈ T satisfy

∑
y∈N+(x) T (y) ≥

αT (x), where T (x) is the cost of x. Then, the amortized cost for each node is O(T ∗).

Proof Consider a node x ∈ T and defineC(x) = ∑
y∈N+(x) T (y).We divide the cost

T (x) proportionally among the children, so that each y ∈ N+(x) receives T (x)
T (y)
C(x)

.

Observe that
∑

y∈N+(x) T (x)
T (y)
C(x)

= T (x), i.e. all the cost T (x) is divided among
the children. By doing this division recursively, starting from the root, we have that
a node z ∈ T receives from its parent at most T (z)

α−1 .
Let us prove the last claim by induction on the depth of the node. Assume that

all nodes w with depth d − 1 receive at most T (w)
α−1 from its parent. The base case is

trivial, because the root receives no cost. Let z be a node with depth d, its parent w
has depth d − 1. By the induction hypothesis, the cost received by w from its parent
is T (w)

α−1 and the total cost of w is T (w) + T (w)
α−1 . Thus, the cost received by z is:
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T (z)

C(w)

(

T (w) + T (w)

α − 1

)

= T (z)
T (w)

C(w)

α

α − 1
≤ T (z)

1

α

α

α − 1
= T (z)

α − 1
.

The inequality follow from T (w)
C(w)

= T (w)∑
y∈N+(w) T (y)

≤ 1
α
. Completing the proof of

the claim.
In the end of the cost division process the only nodes that have non-zero cost are

the leaves. For any leaf the cost received from its parent is at most T ∗
α−1 . Therefore,

the total cost is O(T ∗ + T ∗
α−1 ) = O(T ∗), since α is a constant.

Theorem2.3 is a generalization of Lemma2.3. In the theorem, for every node
x satisfying item 2 we can use the same amortization strategy of the lemma, i.e.
proportionally divide all the cost T (x) among the children. However, instead of
stopping this process only on the leaves, we stop on the first node satisfying item 1
or 3. If the node x satisfies item 1 and its ancestrals satisfy item 2, we know that the
cost pushed to x is O( T ∗

α−1 ) and the total cost of x is O(T ∗ + T ∗
α−1 ) = O(T ∗). On

the other hand, if a node x satisfies item 3 we can amortize T (x) among the �(
T (x)
T ∗ )

children or solutions. In this way, each child receives O(T ∗) (that is not passed to its
grandchildren), so that the cost of x is O(T ∗) and we have the same case of item 1.

Theorem 2.3 Let T be a recursion tree, such that each node x ∈ T satisfy one of
the following properties:

1. T (x) = O(T ∗);
2.

∑
y∈N+(x) T (y) ≥ αT (x), where α > 1 is a constant;

3. x has �(
T (x)
T ∗ ) children, or outputs �(

T (x)
T ∗ ) solutions.

Then, the amortized cost for each node is O(T ∗).

2.4.3.1 Matching Enumeration

Given an undirected graph G = (V, E), a matching M in G is a set of pairwise
non-adjacent edges, i.e. for any two edges (u, v) 	= (x, y) ∈ M , we have that
{u, v} ∩ {x, y} = ∅. The set of all matchings of G is denoted by M (G). Several
variants of matching enumeration have been studied: perfect (every vertex has an
incident edge in M) matching enumeration in bipartite graphs [26, 43–45], perfect
matching in general graphs [46], maximal matchings in bipartite graphs [45] and
maximalmatchings in general graphs [47]. In this section,we consider the problemof
enumerating allmatchings of a graph. First,wepresent a simple algorithm (Algorithm
13) that correctly enumerates all matchings. Then, we modify it (Algorithm 14) to
satisfy the hypothesis of Theorem2.3, so we can use it to improve the algorithm
complexity.
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Algorithm 13 uses the binary partition method, each recursive call partitions
M (G) in two sets: matchings not including the edge (u, v) and the ones includ-
ing it. In the first case (line 6), we remove (u, v) from G and leave M unchanged.
In the second case (line 7), we add (u, v) to the matching M and remove from G
all edges adjacent to (u, v). The cost of a node is bounded by, the number of edges
removed, O(|V |). Now let us analyse the structure of the recursion tree. The condi-
tional of line 1 ensures that only leaves output solutions. Moreover, there is always a
matching including (u, v) and one not including it, so every node leads to a solution.
Thus, in the recursion tree all internal nodes have exactly two children and every
leaf output a solution. Therefore, the number of nodes is bounded by 2|M (G)|, and
Algorithm 13 takes O(|V |) time for each matching.

Algorithm 13: EnumMatching(G = (V, E), M)

Input: A graph G and a matching M (eventually empty)
Output: M (G), the set of matchings of G

1 if E = ∅ then
2 output M
3 return
4 end
5 choose an edge (u, v) ∈ E
6 EnumMatching(G − (u, v), M)

7 EnumMatching(G − {(x, y) ∈ E |x ∈ {u, v}}, M ∪ {(u, v)})

Actually, each node in the recursion tree ofAlgorithm13 takes O(|N (u)|+|N (v)|)
time. Consider a node x with the input graph G = (V, E), the input graph of its
children contain |E | − 1 and |E | − |N (u)| − |N (v)| edges. Hereafter, for the sake of
clear analysis, we bound the computation time of each node by c|E |. In this way, the
cost for x is T (x) = c|E | and, T (y1) = c(|E | − 1) and T (y2) = c(|E | − |N (u)| −
|N (v)|) for each child. Based on this costs we cannot apply Theorem2.3. The leaves
take O(1) time, satisfying item 1. However, the internal nodes do not satisfy item 2
or 3. Each internal node has exactly two children and do not output solutions, so that
item 3 is not satisfied. On the other hand, the total computation time of the children
is not increasing by constant factor over the parent, i.e. there is no constant α > 1
such that T (y1) + T (y2) ≥ αT (x).

In order to satisfy item 3 of Theorem2.3 we need |N (u)|+ |N (v)| to be bounded,
so that T (y2) is not too small. The key property is that for any graph either there
is an edge (u, v) such that |N (u)| + |N (v)| < |E |/2 or there is a vertex u with
|N (u)| ≥ |E |/4. Algorithm 14 is a modified version of Algorithm 13 that uses this
property. If there exists an edge (u, v) such that |N (u)| + |N (v)| < |E |/2 (line 5),
we have that

T (y1) + T (y2) ≥ c(|E | − 1) + c
|E |
2

≥ 3

2
T (x),
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satisfying item 2. Alternatively, if there exists u such that |N (u)| ≥ |E |/4 (line 8),
we create at least |E |/4 children, satisfying item 3. Therefore, applying Theorem2.3
and using that the number of internal nodes is bounded by 2|M (G)|, we have that
Algorithm 14 takes O(1) time amortized for each matching enumerated.

Algorithm 14: EnumMatching(G = (V, E), M)

Input: A graph G and a matching M (eventually empty)
Output: M (G), the set of matchings of G

1 if E = ∅ then
2 output M
3 return
4 end
5 if ∃(u, v) ∈ E s.t. |N (u)| + |N (v)| < |E |/2 then
6 EnumMatching(G − (u, v), M)

7 EnumMatching(G − {(x, y) ∈ E |x ∈ {u, v}}, M ∪ {(u, v)})
8 else
9 choose u s.t. |N (u)| ≥ |E |/4

10 EnumMatching(G − u, M)

11 foreach v ∈ N (u) do
12 EnumMatching(G − {(x, y) ∈ E |x ∈ {u, v}}, M ∪ {(u, v)})
13 end
14 end

2.5 Data-Driven Speed up

Polynomial delay algorithms, especially linear delay, can be considered as being
very close to optimal algorithms in practice. Indeed since the delay is defined as a
function of the input size, it can be often considered very small or negligible with
respect to the usual exponential number of outputted solutions. However, there are
certain applications, particularly in data mining, in which the input data are very
large (frequent pattern mining, candidate enumeration, community mining, feasible
solution enumeration). In such a context, when the number of outputted solutions is
expected to be small (polynomial in the input size), the problem is said to be large-
scale tractable. This is the case of enumerating peripheral or central vertices in large
graphs, as shown in Chap.7.

On the other hand, when the number of solutions increases exponentially with a
linear increase in the instance size, we usually have that many solutions are similar
and therefore redundant. In these cases, a post processing step is required to suppress
the redundant solutions. Since the number of solutions is huge, the post processing is
very time consuming or even infeasible, so these problems are considered intractable.
This could be potentially the case of the frequent itemset problem, that is the problem
of enumerating all the patterns appearing frequently in a large database, where a
pattern can be a sequence of items, a short string, or a subgraph (any subset of a

http://dx.doi.org/10.2991/978-94-6239-097-3_7
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frequent itemset is also frequent). However this intractability is very often linked to
the application: for example, even if in theory the number of maximal cliques can be
exponential in the size of the graph, in practice for large sparse graphs this number is
usually polynomial in the size of the graph. On the other hand, however, the number
of independent sets in a graph is huge both in theory and in practice.



Chapter 3
An Application: Biological Graph Analysis

3.1 Introduction

Biological networks, are currently being studied with approaches derived from the
mathematical and physical sciences. Their structural analysis enables to highlight
vertices or structures with special properties that have sometimes been correlated
with the biological importance of a gene/protein or event. However, the way in which
the biological networks are modelled often neglects the condition-dependencies and
the relationship of their links, since a complex behaviour is forced in a form of
representation of a simple graph, instead of a directed weighted hypergraph. More-
over, biological networks are dynamic both on the evolutionary time-scale, as well
as on the much shorter time-scale of physiological processes. There is therefore
not a unique network for a given cellular process, but potentially many realizations,
each with different properties because of regulatory mechanisms. Such realizations
provide snapshots of a same network in different conditions, enabling the study of
condition-dependent structural properties. In such a context, by defining and solv-
ing a problem on this simplified form of representations, we need to check all its
solutions in order to select the realistic ones.

Structure of the Chapter
The chapter is structured as follows: in Sect. 3.2 we report the overview of biolog-
ical networks; in Sect. 3.3 we highlight the dynamical structure of the biological
networks and we argue the importance of enumeration algorithms for biological
network analysis. This second part of the chapter appeared in [2].

3.2 Biological Networks

High-throughput technologies have recently allowed a new perspective in biology,
where the cell is interpreted as a large and complex system composed of highly inte-
grated sub-systems. Interpretation of these systems as networks of interactions has
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spurred the application of analytical tools developed since long by mathematicians
and physicists to biological networks.

Several kind of biological networks have been defined, such as Protein-Protein
Interaction networks (see Sect. 3.2.1), Metabolic networks (see Sect. 3.2.2), Gene
Regulatory networks (see Sect. 3.2.3), de Bruijn graph (see Sect. 3.2.4).

3.2.1 Protein-Protein Interaction Network

Proteins form an essential part of organisms and participate in virtually every process
within cells. They can be enzymes that catalyse biochemical reactions, or they can
have structural or mechanical functions. Moreover, they can be involved in cell
signalling, immune responses, cell adhesion, and in the cell cycle.

Proteins are biochemical compounds consisting of one or more polypeptides.
A polypeptide is a single linear polymer chain of amino acids bonded together
by peptide bonds between the carboxyl (carbon double linked with oxygen) and
amino (nitrogen linked to two hydrogen) groups of adjacent amino acid residues.
The sequence of amino acids in a protein is defined by the sequence of a gene, which
is encoded in the genetic code. In general, the genetic code specifies 20 standard
amino acids. In the cell, a protein is produced by applying transcription and after
translation.

Protein-protein interactions occur when two or more proteins bind together, often
to carry out their biological function.

In a Protein-Protein Interaction network (in short PPIN), vertices are proteins
and edges, that are undirected, represent physical interaction between them. Since
these interactions can be further combined among them and can happen at different
times, in a simple graph representation, whenever a protein hasmore than one partner
(protein complex) we do not know if the different interactions take place together or
at different times.

3.2.2 Metabolic Network

Metabolism is the set of chemical reactions that happen in the cells of livingorganisms
to sustain life. These processes alloworganisms to growand reproduce,maintain their
structures, and respond to their environments. A reaction transforms some chemical
molecules into others.

The molecules that describe a reaction are called chemical compounds, or shortly
compounds, and in particular, the chemical compounds involved in metabolism are
called metabolites. The input compounds of a reaction are called substrates, while
the output compounds are called products. Reactions may be reversible, meaning
that it is possible to transform its set of products into its set of substrates.
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A Metabolic network (in short MN) represents the set of chemical reactions
involved in the metabolism of an organism, together performing tasks of putting
together and breaking apart molecules in a living cell, e.g. photosynthesis, glycoly-
sis. These chemical reactions are organized into metabolic pathways, in which one
or more chemical are transformed through a series of steps into other chemicals, by
a sequence of reactions. Enzymes allow organisms to drive desirable reactions that
require energy and will not occur by themselves, by coupling them to spontaneous
reactions that release energy.

A Metabolic network may be interpreted and built in different ways: vertices can
bemetabolites or reactions (respectively giving rise to the compound and the reaction
graphs), and arcs can be reactions or shared metabolites (see [48, 49]). In particular,
a Metabolic network can be modelled as a bipartite directed graph, whose set of
vertices can be divided into a set of reactions R and a set of compounds C , and
whose set of arcs can be from a reaction to a compound and vice versa: a reaction
has an incoming arc for each one of its substrates and one outgoing arc for each
of its products. Alternatively a Metabolic network can be modelled as a directed
hypergraph, whose vertices are compounds and hyperarcs are reactions: an hyperarc
is a pair (VS(r), VP (r)), where VS(r) and VP (r) are respectively the set of substrates
and the set of products of reaction r (see [50] for other examples of hypergraphs
applied to biological questions and the associated computational problems).

The reconstruction may lead to a loss of fundamental information, as for instance
stoichiometry, that is the relative amount produced and consumed by each reaction.
The stoichiometricmatrix S ∈ R|C|×|R|, is defined for any compound c and reaction r
as follows.

Sc,r =
⎧
⎨

⎩

k if r produces k units of c
−k if r consumes k units of c
0 otherwise

Since Metabolic networks describe the reactions taking place inside a cell, there
might be external compounds to the network: input (e.g. nutrients) and output (final
product of a cell) compounds.

The problems modelled by using hypergraphs (or directed bipartite graphs) are
usually hard, so that very oftenMetabolic networks are studied as Compound graphs,
in which the vertices correspond to compounds and there is an arc between two
compounds if there is a reaction where one is a substrate and the other is a product.
For the sake of completeness, we will mention also Reaction graphs that are the
graphs in which the vertices correspond to reactions and there is an arc between two
reactions if there is a compound produced by one and consumed by the other [51].

In Fig. 3.1 we summarize these graph models to represent Metabolic networks by
considering the reactions R1, R2, and R3 involved in the Gluconeogenesis metabolic
pathway.
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Fig. 3.1 Modelling Metabolic networks. a Directed hypergraph. b Bipartite network. c Compound
network. d Reaction network

3.2.3 Gene Regulatory Network

Regulation of gene expression (or gene regulation) includes the processes that cells
and viruses use to regulate the way that the information in genes is turned into gene
products. Although a functional gene product can be RNA, the majority of known
mechanisms regulates protein coding genes. Gene regulation drives the processes of
cellular differentiation and cell living cycle.

AGeneRegulatory network (GRN)models a collection ofDNA segments in a cell
which interact with each other indirectly, through their RNA and protein expression
products, and with other substances in the cell, thereby governing the rates at which
genes in the network are transcribed into mRNA.

In aGeneRegulatory network, signed arcs connect vertices representing transcrip-
tional regulators to the vertices corresponding to their targets. The sign or weight
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of the arcs indicates the effect of the control. Because of combinatorial regulation
whose output depends on the architecture of promoters, which is not encoded in a
basic Gene Regulatory network, an hypergraph representation could also be better
for these networks [52–54].

Moreover, the system can have as input proteins such as transcription factors, and
as output the level of gene expression.Thedependencies among links canbemodelled
using new vertices that correspond to functions that can be obtained by combining
basic functions upon the inputs (in a Boolean network model these are boolean
functions, typically and, or, and not). These functions have been interpreted as
performing a kind of information processing within the cell, which determines the
cellular behaviour.

In Fig. 3.2 we summarize the main forms of representation of a Gene Regulatory
network. A genetic circuit is a visual representation of a biological system. The
bipartite graph has vertices for proteins and different logical gates for combinatorial
regulation: and requires the presence of both regulators to have transcription, while
or means that it can be activated by one of the regulators alone. The information
on the promoter logic is lost in a simple representation, while it is encoded in a
hypergraph representation. If a regulator z is removed, when analysing a simple
network, one may infer that the auto-regulation of w continues to take place, which
is not true, as correctly predicted by the bipartite graph.

y

w

z

x y w z x

ORANDAND

(a)

(b) (c)

Fig. 3.2 ModellingGeneRegulatory networks. aGenetic circuit: dark grey arrows for transcription
and translation, and light grey arrows for transcriptional regulation. b Simple network. c Bipartite
network
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3.2.4 De Bruijn Graph

Ever since Watson and Crick elucidated the structure of the DNA molecule in 1953,
thus proving that it carried the genetic information, the challenge of reading the
DNA sequence became central for biological research. The earliest chemical meth-
ods for DNA sequencing were extremely inefficient, laborious and costly. Over the
next few decades, sequencing became more efficient by orders of magnitude. In the
1970s, two classical methods for sequencing DNA fragments were developed by
Sanger and Gilbert, the dominant sequencing technologies from the late 1970s to
the late 2000s used for all of the initial genome sequencing projects (H. influenzae,
Yeast, Drosophila, Arabidopsis, human, and so on). In the 1980s these methods were
augmented by the advent of partial automation as well as the cloning method.

Over the past couple of years, new sequencing technologies, called Next Gener-
ation Sequencing, have emerged. These new techniques sequence millions of frag-
ments efficiently and in parallel. These fragment sequences are called reads, and
they form the input for the computational problems.

Next generation sequencing can be used for SNP (single nucleotide polymor-
phism, i.e. a variation of a single nucleotide in the genetic code of a population)
detection or even whole genome re-sequencing. In the first case, it requires the
knowledge of most of the sequence in order to identify just rare differences among
individuals. This can be used to model organisms that already have a high-quality
reference genome sequence available. There are three next generation sequencing
platforms that are commercially available and in widespread use: 454 (also known as
pyrosequencing or Roche GS FLX, the first next generation method to be commer-
cially available and the first to be applied to large-scale sequencing projects, such as
sequencing the genome of James Watson), Solexa (also known as Illumina, used to
sequence the entire genome of one African and one Asian human, plus the genome
of a cancer patient), SOLiD (ABI).

Since all of these methods give short reads, they have mainly been used for
resequencing. In this case, it is not necessary to do a complete, independent genome
assembly, but the sequence reads can be aligned to a reference genome sequence.
For example, the sequence reads from a single person can be aligned to the reference
human genome. However, all of the above methods have been modified to produce
paired reads in which both ends of a DNA fragment of known length are sequenced.
This makes it possible to do de novo assemblies of genomes [55].

Performing a completely independent genome assembly is still an interesting
topic of research: given h l-long reads S1, . . . , Sh , how to find the sequence of the
full genome? In order to answer to this question the de Bruijn graph has been used.
A de Bruijn graph (DBG) is a directed graph G = (V, E) whose set of vertices V
are labelled by k-mers, i.e. words of length k that are subsequences of the reads. An
arc in E links a vertex u to a vertex v if the suffix of length k − 1 of u is a prefix
of v. A path in this graph defines a potential contiguous subsequence in the genome
sufficiently covered by the reads. Hence, a read can be converted to its corresponding
path and the full genome sequence is a long walk in this graph.
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3.3 Analysis and Enumeration of Biological Networks

Network metrics have been mainly developed for non-biological purposes, but in
some cases they provided meaningful biological information. Several topological
metrics are often used to analyse biological networks, like for instance, centrality to
predict essential genes/reactions/compounds/proteins, average distance and diameter
to inspect the compactness of a network, assortativity and dyadicity to study the
modularity of a network and correlations between the properties of the vertices.

However, structural analyses are not always able to take into account regula-
tory mechanisms: the activity of enzymes is often regulated by one or more effector
metabolites but since the effector metabolite is not consumed, they are not encoded in
aMetabolic network.This canhaveprofound consequences because these regulations
have important roles in stabilizing metabolic states and in generating complex and
biologically important dynamic behaviours [56–58]. These effectors are moreover
able to cross the boundaries between different biological levels, such as metabolism
and gene regulation; therefore building integrated models taking these cross talks
into account represents a major challenge in systems biology. Modelling efforts have
demonstrated that none of the different biological layers is truly isolated [59–61] so
that perturbations propagate between them, and that enzymes also have regulatory
functions, exerted through their control over the concentration of particular metabo-
lites. These considerations lead to a view of the cell as a network of networks, whose
understanding requires considering regulatory interactions not only within but also
between biological networks.

Moreover, biases in the network reconstructions or manipulation can strongly
affect the results of the analysis, confounding (if there exist) the correlations of
biological and topological properties [62]. Indeed, topologicalmeasures are the result
of a partial reconstruction and many measures are strongly affected by the sampling
[63, 64].

In general, biological networks are often studied as static entities, but it should
be stressed that they are instead very dynamic at widely different time-scales. They
are dynamic in evolutionary time like any other biological structure, and even more
on short time-scales, since regulatory connections and feedbacks change the con-
nectivity of the network depending on the physiological state. Consequently, we
should interpret most of the currently available biological network reconstructions
as potential networks, where all the possible connections are indicated. By the term
potential, we highlight the fact that edges/arcs and vertices in this network will be
hardly present all together in vivo. If we consider for instance a Protein-Protein
Interaction network, not all interaction partners of a protein will be expressed in a
given condition, reducing the number of actual partners. On the converse, we may
speak of network realizations when focusing on the active subgraph of the potential
network, defined on the basis of experimental data [65–68]. The dynamic nature of
biological networks is also at the basis of differential network analysis [69], which
aims at capturing the subgraphs specific of a given network realization.
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These considerations are important since they affect the analysis of biological
networks. As there are many condition-specific realizations of a biological network,
they plausibly have different structural properties. It has indeed been shown that
random subgraphs of a network do not necessarily maintain the same degree dis-
tribution as the entire network [70], suggesting that other structural properties may
also change. Similarly, it has been shown that power-law degree distributions can be
obtained through random sampling of networks with different topology, indicating
that it might be not possible to infer the true degree distribution from partial network
reconstruction [71].

Several works try to take into account realizations. Han et al. [65] estimated the
temporal connectivity of hubs in the Yeast Protein-Protein Interaction network by
using gene expression data. Luscombe et al. [66] analysed the structural properties
of the Yeast Gene Regulatory network in different conditions. Starting from a widely
validated Gene Regulatory network, they used gene expression data to extract the
subnetworks supposed to be active during environmental stress or the cell cycle, high-
lighting important differences (see also [65, 67, 68]). The use of realization networks
is currently limited by the need for high-quality and high-throughput experimental
data, today available only for a few organisms. Nevertheless, large-scale experimen-
tal data will be more easily obtained in the future, giving the occasion to develop the
algorithms required for a similar approach.

Since biological networks are so complex, the structural analysis must take into
account more biological information, whenever this is possible, or it requires enu-
merating all the feasible structures (given some set of constraints) in order to select a
posteriori the realistic ones fromabiological point of view.Thus, in this scenario, very
often enumeration algorithms can be helpful and they have been applied for several
purposes, for instance: enumerating interesting vertices [72], central or peripheral
vertices (see Chap. 7), enumerating motifs [73–75], that are statistically overrep-
resented subgraphs in a network and have been recognized as “the simple building
blocks of complex networks”, and enumerating subgraphs [76, 77] (seeChap.4), enu-
merating paths or cycles as chains of interactions or feedback loops [12] (see Chaps. 5
and 6), enumerating functional clusters [78], dense modules [79], or cliques [80].

http://dx.doi.org/10.2991/978-94-6239-097-3_7
http://dx.doi.org/10.2991/978-94-6239-097-3_4
http://dx.doi.org/10.2991/978-94-6239-097-3_5
http://dx.doi.org/10.2991/978-94-6239-097-3_6
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Chapter 4
Telling Stories: Enumerating Maximal
Directed Acyclic Graphs with Constrained
Set of Sources and Targets

4.1 Introduction

A classical goal of metabolic studies is to try to understand which are the metabolic
processes involved in the adaptation to an environmental change. Although it is pos-
sible to keep track of some monitored metabolites, the internal mechanisms that lead
to the observed variation are not clear. For “genome scale” networks, the metabolism
of awhole organism is taken into account, while ametabolic perturbationmay impact
only a small portion of this complex network.

Recently, metabolomic techniques gained the spotlight by providing a way to
monitor metabolism by measuring the concentration of metabolites in different con-
ditions or time points. Typical results from these experiments are lists of metabolites
whose concentrations significantly changed when the cell was exposed to stress.
How to interpret this list of metabolites became then a new research topic, consisting
in identifying the metabolic processes that link the metabolites of interest, possibly
explaining the observed variations in their concentrations.

Some examples of approaches to deal with this kind of data may be found in
[76, 81, 82].

Informally, we call a set of metabolic reactions linking all the metabolites of
interest a metabolic story. For instance, a metabolomics study analysis compared a
Yeast cell under two conditions, with and without exposition to cadmium [3]. The
Metabolic network reconstruction of Yeast has about 1300metabolites and the exper-
iment identified a list of 22 metabolites whose concentrations changed. Figure4.1
presents the Yeast network, and the highlight vertices, i.e. the light grey and the dark
grey vertices, correspond to the metabolites identified in the experiment. The light
grey vertices are those whose concentrations increased while the dark grey ones are
the ones whose concentrations decreased. The concentrations of the other metabo-
lites did not change significantly. Figure4.2 presents a metabolic story that gives
one possible explanation for the change in the concentration of the metabolites in
the network. This particular story was found as one of the top scores using a score
function that assigns a value to a story, after the enumeration process, based on the
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Fig. 4.1 Compound Metabolic Network of Yeast

concentration data from the metabolomic experiment. The chain of reactions present
in this story is very close to the conclusions found in [3], since the order in which
metabolites are transformed is almost the same. There are several other considered
and finding all of them is the metabolic stories problem. Possible scenarios with a
score close to the one of this story that could be considered and could provide new
insights on the biology of the underlyingmetabolic process. Finding and enumerating
all those alternatives is the metabolic stories problem.

Hence, a metabolic story should capture the relationship between the vertices
of interest. Each individual story should explain how some metabolites are derived
from others through a chain of reactions. In this sense, only light grey and dark grey
vertices are allowed to be sources and targets in a story, even if they can appear as
intermediate vertices in some stories. In order to enumerate all scenarios in which
only dark grey or light grey vertices play the role of sources and/or targets, we
introduce the acyclicity constraint. On the other hand, alternative pathways between
these vertices that do not create cycles should always be included since they give
additional explanations on the interconnection between them, and for this reason we
introduce a maximality condition.
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Fig. 4.2 A story of the
Compound Metabolic
Network of Yeast

Contribution
In this chapter we define the new problem of enumerating stories, that is a constrained
version of the problemof enumerating allmaximal directed acyclic subgraphs (DAG)
of a graph G [6]. In our version, only a given subset B of the vertices are allowed to
be sources or targets of the DAGs to be enumerated. For the computational problem,
we will not distinguish dark and light grey metabolites, modelling them in the same
way as black vertices.

The problem seems to be related to a Steiner tree/network problem, since the goal
is to connect a distinguished set of vertices. Although the problem was originally
motivated by biology where Steiner tree approaches have been widely explored [83],
it is surprising that, as far as we know, such a constraint on sources and targets
was never considered before edition. In this chapter, we show that introducing this
constraint is enough to change the nature of the enumeration problem. Enumerating
DAGs without the constraint is equivalent to enumerating feedback arc sets (FASs).
A feedback arc set is a set of arcs that break all the cycles, i.e. it is the complement of
a DAG. In this sense enumerating stories is a generalisation of enumerating minimal
FASs, since the complement of a story is a minimal set of arcs that breaks all the
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cycles and also avoids sources or targets that are not in B. A sets of arcs that breaks
all the cycles and also avoids sources or targets that are not in B is called story
arc sets (SASs). Hence every SAS is a FAS. We show that not every minimal FAS
is a minimal SAS, and give evidence that telling stories is possibly harder than
enumerating minimal feedback arc sets.

In this chapter we will show a polynomial algorithm to compute one story, and
then describe two different algorithms to enumerate all possible stories.

The contents of this chapter appeared in [4, 5, 84]. Moreover, the open problems
we propose appeared in [7].

Structure of the Chapter
The chapter is organised in the following way. After introducing the main definitions
and notations in Sect. 4.2, Sect. 4.3 presents some operations to simplify the graph
without losing solutions. Section4.4 shows a polynomial time algorithm for finding
one story and also a proof that the problem of finding stories with a specific set of
sources and targets is NP-complete. Sections4.5.1 and 4.5.2 propose two different
approaches to enumerate stories: the first one makes use of a minimal feedback-
arc-set enumerator but can only be applied to a specific class of graphs while the
second one is an extension of our algorithm to enumerate one story based on an initial
permutation of the vertices and can be used for any graph; the example in Sect. 4.6
shows how this latter enumerator works. Section4.7 provides complexity results for
an alternative definition of stories and, finally, Sect. 4.8 conclude with some open
problems.

4.2 Preliminaries

Let G = (B∪W, E) be a directed graph such thatB ∩ W = ∅.Wewrite V = B∪W.
Vertices in B are said to be black while those inW are said to be white.

A pitch of G is an acyclic subgraph G ′ = (B ∪ W
′, E ′) of G with W

′ ⊆ W and
E ′ ⊆ E and, for each vertex w ∈ W

′, d+(w) > 0 and d−(w) > 0. A trivial pitch
is G ′ = (B ∪ ∅,∅): the subgraph containing all the black vertices and no arc. We
define a story as a maximal pitch. We denote by Σ(G) the set of stories of G. Thus,
given G = (B ∪ W, E), we want to enumerate Σ(G).

For independent reading, we define a feedback arc set (FAS) of a directed graph
G = (V, E), which is a subset F of E such that G − F = (V, E\F) is acyclic. A
FAS is said to be minimal if there exists no f ∈ F such that F\{ f } is a FAS. We
notice that, if V = B ∪ W, the complement of a FAS is not always a story since
G − F may contain white sources or targets. Indeed, the FAS enumeration problem
is a particular instance of our problem in which every vertex is black, i.e., W = ∅.
We define a story arc set (SAS) as a FAS S with the extra property that no white
vertex in G − S is a source or a target. A SAS is said to be minimal if there exists
no subset S′ of S such that S\S′ is a SAS. This implies that if S is minimal, then
for every s ∈ S, the graph G = (B ∪ W, (E\S) ∪ {s}) either contains a cycle or
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c y

Fig. 4.3 In this case, B = {a, b, c} andW = {x, y}. There are 4 possible minimal FASs: {(a, x)},
{(x, c)}, {(c, y)}, and {(y, a)}. Only one of these minimal FASs (that is, the first one) is also a
minimal SAS. For example, the second one is not a SAS since G − (x, c) contains a white target
(that is, vertex x). On the other hand, another minimal SAS is {(c, y), (y, a)}, which is not aminimal
FAS (even though it is a FAS)

contains a white source or target. If S is a minimal SAS, then G − S is a story. A SAS

is also a FAS. However, the example in Fig. 4.3 shows that, as expected, not every
minimal FAS is a minimal SAS and, more surprisingly, that not every minimal SAS
is a minimal FAS. For this reason, the use of a polynomial-time-delay enumeration
algorithm for minimal FAS as the one proposed in [6] to enumerate stories is limited,
since some minimal SASs may not be detected. We shall see in a later section that
this is not the case when we restrict ourselves to a particular class of graphs.

4.3 Preprocessing the Graph

In this section, we show how a graph may be simplified without essentially changing
the set of its stories. The simplifications allow shorter proofs of our results.

The simplified graphs turn out to be interesting from a biological point of view
since they correspond to amore compact representation of graphs that is equivalent in
terms of story sets. We applied the preprocessing steps described in this section on a
collection of 107 Metabolic networks obtained fromMetExplore [49, 85], randomly
choosing sets of black vertices with sizes varying from 5 to 15%. The compression
ratio on the number of vertices goes from 65 to 98% with an average reduction of
83%, while the compression ratio on the number of arcs goes from 56 to 99% with
an average reduction of 77%. This more compact representation of the interaction
between the black vertices greatly facilitates the visualisation and analysis of the
input data.
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We now define the following four simplification operations:

• A white source and target removal consists in removing iteratively a white vertex
from the graph that is either a source or a target. Clearly such vertices cannot
appear in any story. Let de(G) be the graph resulting of such removals.

• A self-loop removal consists in removing all arcs of the form (u, u). Since stories
are acyclic, such arcs do not appear in any story. Let sl(G) be the resulting graph
of such removals.

• A forward bottleneck removal consists in removing a white vertex v whose out-
degree is equal to 1, and directly connecting any predecessor of v to the unique
successor of v (without creating multi-arcs). Let fb(G, v) be the resulting graph.

• A backward bottleneck removal consists in removing a white vertex whose in-
degree is equal to 1, and directly connecting the unique predecessor of v to the
successors of v (without creating multi-arcs). Let bb(G, v) be the resulting graph.

We prove that the last two operations leave the set of stories essentially unaltered.
First an observation:

Observation 1 Let v, p, and s be three vertices such that (p, v), (v, s), (p, s) ∈ E
and v is a (white) bottleneck. Then, for any story S, (p, v), (v, s) ∈ S if and only if
(p, s) ∈ S.

Given three vertices v, p, s ∈ V with (p, v), (v, s) ∈ E and (p, s) �∈ E , let
ab(G, v, p, s) denote the graph obtained by adding to G the arc (p, s).

Lemma 4.1 Let v ∈ W be a forward bottleneck and let p, s ∈ V be such that
(p, v), (v, s) ∈ E and (p, s) �∈ E. Then there exists a bijection from Σ(G) to
Σ(ab(G, v, p, s)).

Proof For any story S ∈ Σ(G), we define f (S) = S ∪ {(p, s)} if (p, v) ∈ S (and
hence, (v, s) ∈ S since v is a forward bottleneck), otherwise f (S) = S. To prove that
f (S) ∈ Σ(ab(G, v, p, s)), we use Observation 1 to show that f (S) is acyclic if and
only if S is acyclic. We now show that f (S) is maximal. Indeed, if (p, s) ∈ f (S),
then no set of arcs could be added to f (S) since otherwise it could also be added to
S. Otherwise, if (p, s) could be added to f (S), then, from Observation 1 also (p, v)
and (v, s) could be added to f (S) and, hence, these two arcs could be added to S.

Let us now prove that, if S1 and S2 are two stories such that S1 �= S2, then
f (S1) �= f (S2). If (p, v) �∈ S1 ∪ S2, then f (S1) = S1 �= S2 = f (S2). Otherwise,
if (p, v) ∈ S1 ∩ S2, then f (S1) = S1 ∪ {(p, s)} �= S2 ∪ {(p, s)} = f (S2). Finally,
if (p, v) ∈ S1\S2 (the other case can be dealt with similarly), then (p, s) ∈ f (S1)
while (p, s) �∈ f (S2) and, hence, f (S1) �= f (S2).

It remains to show that, for any S′ ∈ Σ(ab(G, v, p, s)), there exists a S ∈
Σ(G) such that f (S) = S′. Define S = S′\{(p, s)}. Since S′ is acyclic, so is S.
If (p, s) �∈ S′, then S = S′ and S ∈ Σ(G), since the only difference between G
and ab(G, v, p, s) is the arc (p, s). Otherwise, from Observation 1, it follows that
(p, v), (v, s) ∈ S′ and, hence, (p, v), (v, s) ∈ S: the maximality of S then follows
from the maximality of S′, since any set of arcs that could be added to S could also
be added to S′.
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By this lemma we may assume that, for any forward bottleneck v ∈ W whose
unique successor is s, and for any predecessor p of v, the graph contains the arc (p, s).
To complete the forward bottleneck removal operation, we then need to delete the
vertex v without changing the stories set of the graph. Consider now the following
operation: given a graph G with a forward bottleneck v, dp(G, v) denote the graph
obtained by deleting from G the vertex v and all incident arcs.

Lemma 4.2 Let v ∈ W be a forward bottleneck and s its unique successor. Suppose
that for any predecessor p of v, the graph contains the arc (p, s). Then there is a
bijection from Σ(G) to Σ(dp(G, v)).

Proof For any S ∈ Σ(G), we define f (S) = S\{v}, that is the subgraph obtained
by removing v and all incident arcs from S if v ∈ S. Since S is acyclic, so is f (S).
Moreover, from Observation 1, it follows that if (p, v), (v, s) ∈ S, then (p, s) ∈ S
and, hence, (p, s) ∈ f (S). Themaximality of f (S) then follows from themaximality
of S, since any set of arcs that could be added to f (S) could also be added to S.

Let us now prove that, if S1 and S2 are two stories such that S1 �= S2, then
f (S1) �= f (S2). If (p, s) �∈ S1 ∪ S2, then (p, v), (v, s) �∈ S1 ∪ S2 and f (S1) = S1 �=
S2 = f (S2). Otherwise, if (p, s) ∈ S1∩S2, then (p, v), (v, s) ∈ S1∩S2 and f (S1) =
S1\{(p, v), (v, s)} �= S2\{(p, v), (v, s)} = f (S2). Finally, if (p, s) ∈ S1\S2 (the
other case can be dealt with similarly), then (p, s) ∈ f (S1) while (p, s) �∈ f (S2)
and, hence, f (S1) �= f (S2).

Finally, let S′ be a story of dp(G, v). Then S obtained by adding to S′ the path
(p, v), (v, s) for every predecessor p of v such that (p, s) ∈ S′ is clearly a story and
f (S) = S′.

Using the two previous lemmas, we obtain a justification for the third simplifica-
tion operation.

Theorem 4.1 For any forward bottleneck v ∈ W, Σ(G) = Σ(fb(G, v)).

Analogously, we can justify the fourth operation.

Theorem 4.2 For any backward bottleneck v ∈ W, Σ(G) = Σ(bb(G, v)).

For any graph G, let fb(G) (respectively bb(G)) denote the graph obtained by
applying as many times as possible the forward (respectively backward) bottleneck
removal operation. Notice that, even if G does not contain self-loops, it might hap-
pen that fb(G) (respectively bb(G)) contains self-loops created by one bottleneck
removal. Remember also that sl(G) denotes the graph obtained by the removal of
all self-loops from G and de(G) denotes the graph obtained by the iterative removal
of all white sources and targets from G. Our simplification procedure can now be
described as follows.

(1) Let G0 = sl(de(G)) and let i = 0.
(2) Let Gi+1 = sl(bb(sl(fb(Gi )))).
(3) If Gi+1 = Gi then return Gi , otherwise let i = i + 1 and go to Step 2.
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As a consequence of the previous results, we have that if H is the graph returned
by this procedure, then there is a bijection between Σ(G) and Σ(H), and we may
enumerate Σ(H) instead. Hence from now on, we assume that any v ∈ W has
d+(v) > 1 and d−(v) > 1. Notice that this avoids graphs like the one shown in
Fig. 4.3. Indeed, in this case, the two arcs (c, y) and (y, a) would disappear and the
arc (c, a)would be inserted. Furthermore, also x will disappear andwe get arcs (b, c)
and (a, c). Observe also that this simplification procedure does not guarantee that a
minimal FAS enumerator would produce all possible minimal SAS as we shall see
in the next section.

4.4 Finding Single Stories

Let us first consider the case of finding some story. We show that this can be done in
polynomial time. Our algorithm basically starts with a pitch and grows it into a story
by adding paths between black vertices while avoiding cycles. We can start with a
trivial pitch such as the subgraph containing all the black vertices and no arcs.

Algorithm 15: complete_pitch(G, P)

Input: A graph G = (B ∪ W, E)) with B ∩ W = ∅ and an initial pitch P;
Output: A story completing P

1 i ← 1;
2 π ← any topological order of P;
3 while i ≤ |V (P)|) do
4 u ← i-th element according to π with u ∈ V (P);
5 Apply B F S(u, G\E(P)) until reach a vertex v ∈ V (P);
6 if π(u) < π(v) ∨ (u and v are incomparable) then
7 include the path u � v in P and update π ;
8 i ← 1;
9 else

10 if no such vertex v exists then
11 i ← i + 1;
12 end
13 end
14 end
15 return P;

Theorem 4.3 A story can be determined in polynomial time.

Proof The algorithm complete_pitch determines a story by completing a starting
pitch P . It chooses a topological order π of the vertices consistent with the pitch.
Starting in u, which can be any of the first vertices in this order that has not been
scanned yet, a breadth-first search (BFS) is performed using only arcs not in E(P).
Any branch of the BFS tree is pruned as soon as it hits a vertex v ∈ V (P). If v has
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π(u) < π(v) or u and v are incomparable, then the path u � v is added to P and the
topological order is updated. This addition creates no cycle since there was no path
v � u in P due to the fact that π(u) < π(v) or u and v were incomparable, which
can be checked in polynomial time. Moreover, since P contained no white source
nor target before the addition of the path, then it does not contain any after adding
the path because u and v, which are the only candidates to become source or target,
were already present in P . Hence, the addition of u � v to P creates a new pitch.

This procedure is repeated until no new path starting from u can be found. At this
point, we continue with the next vertex in the updated order π . Every time a new
path is found, π is updated and the procedure is started from the minimum vertex
according to the new order. Since at each updating of the topological order, we add at
least one arc, the algorithm terminates in polynomial time. The final pitch produced
by this procedure is maximal and, therefore, a story.

Weproceed by showing that the problembecomesNP-complete ifwewish to iden-
tify a specific single story, i.e., one having a particular set of sources and/or targets.

Theorem 4.4 Deciding whether there exists a story with a given set of sources and
targets is NP-complete.

Proof In order to prove this theorem, we show how the 3-SAT problem [86] is
reducible to the problem of deciding whether, given a directed graph G = (V, E)

and two subsets S and T of V , G contains a maximal DAG with its set of sources
equal to S, and its set of targets equal to T . If this is true for maximal DAGs, it is
also true for stories since any story is also a maximal DAG.

Consider a 3-CNF Boolean formula ϕ with clauses Ci , i = 1, . . . , m, over a set
Boolean variables x j , j = 1, . . . , n. We define a directed graph G as follows (see
also Fig. 4.4).

• For each variable x j , we create a set of six vertices, p j , ps
j , pt

j , n j , ns
j , nt

j , and
for each clause Ci , two vertices si and ti . We define the set S = {ps

j , ns
j | j =

Fig. 4.4 The subgraph
corresponding to the clause
C7 = ¬x2 ∨ x5 ∨ x9

p2 n2 p5 n5 p9 n9

ps
2

pt
2 ns

2

nt
2

pt
5

ps
5

ns
5

nt
5

pt
9

ps
9

ns
9

nt
9

s7 t7



56 4 Telling Stories: Enumerating Maximal Directed Acyclic Graphs …

1, . . . , n} ∪ {si | i = 1, . . . , m} and the set T = {pt
j , nt

j | j = 1, . . . , n} ∪ {ti |
i = 1, . . . , m}.

• The set of arcs of G includes the six arcs

(ps
j , p j ), (p j , pt

j ), (p j , n j ), (n j , p j ), (n
s
j , n j ), (n j , nt

j )

related to each variable x j and the arc (ti , si ) for each clause Ci .
• For each clause Ci = l1i ∨ l2i ∨ l3i , we introduce for each literal two arcs: if lh

i = x j

then we create the arcs (si , p j ) and (n j , ti ), and if lh
i = ¬x j the arcs (si , n j ) and

(p j , ti ), h = 1, 2, 3.

We prove that ϕ is satisfiable if and only if G includes a maximal DAG whose
sets of sources and targets are, respectively, S and T .

Suppose ϕ is satisfiable and let τ be a satisfying truth-assignment. In the FAS F
we include the arc (n j , p j ) if τ(x j ) = true and the arc (p j , n j ) if τ(x j ) = false.
Moreover, for each clause Ci , we include in F the arc (ti , si ) (see Fig. 4.5). Clearly,
the resulting subgraph G − F is a DAG whose set of sources (respectively, targets)
is equal to S (respectively, T ). Moreover, G − F is maximal since removing any arc
from F would create either a two-vertex variable cycle or, for some clause Ci , at
least one six-vertex cycle corresponding to a true literal in Ci .

Now suppose that G ′ is a maximal DAG with sources S and targets T . Clearly,
for each clause Ci , the arc (ti , si ) is not in G ′. Maximality of G ′ implies that for
each variable x j , exactly one of (p j , n j ) and (n j , p j ) is in G ′. All other arcs are
included in G ′. Let τ be a truth-assignment defined as follows: for each variable x j ,
τ(x j ) = true if and only if (p j , n j ) is in G ′. We prove that this assignment satisfies
ϕ. Suppose, to the contrary, that there exists an unsatisfied clause Ci . Wlog we may
assume that Ci = x1 ∨ x2 ∨ x3 (see Fig. 4.6). Then the three cycles containing the
arc (ti , si ) are broken both by this arc and by the three arcs (n j , p j ), j = 1, 2, 3 not
in G ′. Hence, G ′ is not maximal since the arc (ti , si ) can be added to G ′ without
creating any new cycle. This contradicts the hypothesis on G ′.

Fig. 4.5 The directed
acyclic subgraph
corresponding to the truth
assignment τ(x2) = true,
τ(x5) = false, and
τ(x9) = true that satisfies
the clause
C7 = ¬x2 ∨ x5 ∨ x9: the
dashed arcs are in the FAS
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Fig. 4.6 A directed acyclic
subgraph (the dashed arcs
are in the FAS)
corresponding to the truth
assignment τ(x2) = true,
τ(x5) = false, and
τ(x9) = false that does
not satisfy the clause
C7 = ¬x2 ∨ x5 ∨ x9: the
DAG is not maximal since
the arc (t7, s7) can be taken
out from the FAS
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It is easy to modify the previous reduction in order to prove that the same result
holds even if we specify only the set of sources or only the set of targets.

4.5 Enumerating Stories

4.5.1 Enumerating Stories by Enumerating FASs

We already noticed that there exist graphs for which the setS (G) of minimal SASs
and the set F (G) of minimal FASs are not comparable in terms of the inclusion
relation. In this section, we show that, for some particular cases,S (G) is contained
inF (G).

A white vertex v ∈ W is called bad if, for any predecessor p of v and for any
successor s of v, there exists a cycle containing the arcs (p, v) and (v, s) (see Fig. 4.7).

Proposition 4.1 Any v ∈ W, which is not bad, belongs to every story.

Proof Consider a pitch P not containing v. As v is not bad, it has a predecessor
p and a successor s such that there exists no cycle containing the arcs (p, v) and
(v, s). By simplification rule 2, there exists a path pk, pk−1, . . . , p1 = p with k ≥ 1
such that pk ∈ B and pi ∈ W, for any i with i < k. Let j be the minimum i < k
such that pi ∈ P: if no such j exists, then we define j = k. Similarly a path
s = s1, . . . , s�−1, s� ending in a black vertex exists, and let s j ′ be the first vertex on
that path belonging to P , or s j ′ = s� if no such vertex exists.

Then P ′ = P ∪ {(p j , p j−1), . . . , (p, v), (v, s), . . . , (s j ′−1, s j ′)} has no white
source nor target as p j and s j ′ are not white sources or targets in P . Moreover, P ′ is
acyclic as P is acyclic and any cycle containing the additional path would contradict
the fact that v is not a bad vertex. Thus any pitch not containing v is not maximal,
hence not a story.
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Fig. 4.7 Example of a bad
vertex. The minimal SAS
{(a, x), (b, x), (x, c), (x, d)}
is not a minimal FAS

a
b

c d

x

Corollary 4.1 If G does not include any bad vertex, then any minimal SAS is a
minimal FAS.

Proof By absurdum, assume that A is a minimal SAS which is not a minimal FAS.
Then, there exists an arc e = (u, v) ∈ A such that A\{e} is a FAS but not a SAS.
This implies that in G − (A\{e}), either u is a white target or v is a white source.
We restrict ourselves to consider the latter case, since the former one can be dealt
with similarly. Since v is a white source in G − (A\{e}), and it is not in G − A, all
arcs incident to v are in A. In other words, the story corresponding to A does not
contain v, which contradicts Proposition 4.1.

The previous proposition and its corollary state that, in a graph with no bad
vertices, each story corresponds to aminimal FAS. This suggests that for such graphs,
we could enumerate all stories by enumerating all theminimal FASs and by checking
for each of themwhether the resulting graph is a story (which can be done by checking
that no white vertex is source or target). Unfortunately, there are graphs with no bad
vertices inwhich the number ofminimalFASs is exponentially larger than the number
of minimal SASs. An example is given in Fig. 4.8.

· · ·

Fig. 4.8 Graph with no bad vertex and in which the number of minimal FASs is 2n and the number
of minimal SASs is 2
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4.5.2 Enumerating Stories by Enumerating Permutations

In the previous section, we suggested a method for enumerating all stories in the
case of graphs with no bad vertices. Unfortunately, many graphs arising from the
biological application briefly described in Sect. 4.1 contain a huge number of bad
vertices. We thus need a method for enumerating stories which is able to deal with
these cases.

Remember howwecanfind a single story as explained in the proof ofTheorem4.3.
Consider the following two simple operations, clean and consistent_arcs. For
any graph G(B ∪ W, E), and for any total order π of the vertices:

• G ′(B ∪ W, E ′) ≡ consistent_arcs(G, π): for each arc (u, v) ∈ E , (u, v) ∈ E ′
if π(u) < π(v);

• G ′(B∪W
′, E ′) ≡ clean(G): recursively remove white vertices that are sources,

targets or isolated in G.

We can thus define the composed operation

pitch(G, π) = clean(consistent_arcs(G, π)).

pitch produces a pitch since the resulting graph G ′ contains only arcs that respect the
order π and therefore is acyclic. Moreover, due to the cleaning step, G ′ is guaranteed
to have neither white sources nor white targets.

Theorem 4.5 For any story S, there exists a permutation π such that pitch(G, π)

= S.

Proof It is enough to show that, for any story S of G = (B ∪ W, E) and for
any topological order π of V (S), pitch(G, π) = S. Because of the maximality
of a story, it suffices to show that S ⊆ pitch(G, π). Given an arc (u, v) of S, we
have π(u) < π(v). Therefore (u, v) is in consistent_arcs(G, π). Since (u, v)
is an arc of S, there exists a path p in S between two black vertices containing
u and v. Then p is also in consistent_arcs(G, π), and thus u and v are both
black or, if one or both of them is white, then they are neither source nor target in
consistent_arcs(G, π). Since clean(consistent_arcs(G, π)) removes neither
black nor white vertices that are neither source nor target, we conclude that (u, v) is
also in clean(consistent_arcs(G, π)) = pitch(G, π).

This theorem together with Theorem 4.3 suggest an approach to enumerate stories
which simply consists in generating all permutations π of the vertices of G and
computing P = pitch(G, π): if P is not a story, then we use complete_pitch to
grow it into a story.

In order to avoid to output several times the same story, we store in memory
the previous solutions and every time we check whether the current story has been
already generated.

It is worth observing that, in order to enumerate all the stories, all the possible
permutations should be inspected. Thus the resulting total complexity isΩ(n!), even
in the case of a graphwith a constant number of stories, like the one shown in Fig. 4.8.
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4.6 Enumerating Stories: An Example

Referring to the graph G = (B ∪ W, E) shown in Fig. 4.9a, the subgraph of G,
G ′ = (B∪W, {(a, b), (c, d), (e, f ), ( f, c)}) is a pitch. Let π = 〈a, b, e, f, c, d〉 be
an ordering of its vertices. In order to complete this pitch in a story, Algorithm 15
consider in the first iteration the vertex b and aBFS from b until the vertices belonging
to the pitch c and f are reached: the corresponding paths are simply the arcs out-going
from b, (b, c) and (b, f ); since b is not comparable with c and f , both the arcs are
added. The next vertex to be considered is f : the BFS from f gives the arcs ( f, a) and
( f, d); the arc ( f, a) cannot be added since a > f , while the arc ( f, d) is added since
f < d. The next vertex considered is thus d, and the BFS from d until the vertices
belonging to the pitch are reached: the corresponding path is the arc (d, e) and, since
d > e, this arc is not added to the pitch. The subgraph of G, shown in Fig. 4.9b, G ′′ =
(B ∪ W, E ′′), where E ′′ = {(a, b), (b, c), (b, f ), (c, d), (e, f ), ( f, c), ( f, d)}, is
thus a story.

Given a new ordering of the vertices π = 〈 f, d, e, a, b, c〉, the operation con-

sistent_arcs activates the following set of arcs:

{(a, b), (b, c), (d, e), ( f, a), ( f, c), ( f, d)}

that are the arcs compatible with the given order. Indeed the arcs (b, f ), (c, d), (e, f )

are not compatible with π . Since f is a white source, the operation clean deletes
the arcs ( f, a), ( f, c), ( f, d). The resulting set of arcs {(a, b), (b, c), (d, e)} induces
a pitch. By applying Algorithm 15, it is thus possible to complete the pitch in order
to get a story.

Observe that in the graph shown in Fig. 4.9a, it is possible to verify the
Theorem 4.5: for any story S there exists an order π of its vertices such that
pitch(G, π) = S. Considering the story G ′′, shown in Fig. 4.9b, the ordering of

Fig. 4.9 An example of
network and story
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the vertices π = 〈a, b, e, f, c, d〉 is such that pitch(G, π) = G ′′. Indeed by starting
from this order, the operation consistent_arcs activates all the arcs in E ′′, that are
the arcs compatible with the given order. The arcs (d, e) and ( f, a) are indeed not
compatible with π . The operation clean does not affect the solution, since no white
source or target is present. Thus E ′′ induces a pitch that is also a story.

4.7 Alternative Definition of a Story

It is clear that, according to our definition of a story, no white vertex can be either
source or target in the original graph, since otherwise such a white vertex would not
belong to any story. This implies that the original graph can be seen as the union of
a finite set P of directed paths between black vertices: in particular, if P includes
all paths between every pair of black vertices, then it is easy to verify that a story is
a maximal subset S of P such that the graph defined as the union of the paths in
S is acyclic and there exists no path p in P − S that can be added to S without
disturbing the acyclicity. Let us call this alternative definition of story a path-story. A
minimal number of paths to be removed fromP such that the union of the remaining
paths is a path-story is called a feedback path set.

A natural question is whether the problem changes when a setP is given as input,
and the graph GP is defined by the union of the paths ofP , where the endpoints of
the paths inP form the set of black vertices ofGP . Clearly, sinceP maynot contain
all paths between every pair of the black vertices in GP , the set of path-stories of
GP is different from the set of stories of GP (see for an example Fig. 4.10). We will
prove that enumerating path-stories is at least as hard as enumerating hitting sets,
which is a well-known enumeration problem (for a survey, we refer to [87]) with its
computational complexity still open, after more than 28years.

a b

dc

Fig. 4.10 Graph obtained by two paths (a, b, d, c) and (b, a, c, d). According to the alternative def-
inition, this graph clearly contains only two stories, which correspond to the two paths. According to
the original definition, instead, the graph contains the following four minimal SAS: {(a, b), (c, d)},
{(a, b), (d, c)}, {(b, a), (c, d)}, and {(b, a), (d, c)}. Note that these four minimal SAS originated
four stories which are all different from the two stories obtained according to the second definition
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Theorem 4.6 Enumerating path-stories is at least as hard as enumerating minimal
hitting sets.

Proof Let C be a collection of subsets of a domain set X . H ⊂ X is a hitting set of
C if for any C ∈ C , H ∩ C �= ∅.

We reduce C to a collectionP of paths, such that there is a bijective correspon-
dence between (minimal) hitting sets of C and (minimal) feedback path sets of P
and, hence, between hitting sets of C and path-stories of P .

We order all sets of C and all elements of X . Within any set of C the elements
are ordered. For each element in each set we create a vertex of the graph GP .
For each set Ci ∈ C with Ci = {xi1 , . . . , xiki

}, create a cycle by introducing the
arcs (xi� , xi�+1), � = 1, . . . , ki and (xiki

, xi1). We call this cycle also Ci . Moreover,
suppose that xi� = x j is the h-th occurrence of x j and xrt the next occurrence, then
we introduce an arc (xi�+1 , xrt ), i.e., there is a path of two arcs between any two
consecutive occurrences of the same element. Let us call the latter set of arcs the
element-arcs and the set of arcs on the cycles the set-arcs. Notice that the element
arcs are not in any cycle.

Now for each element x j we define a path Pj ∈ P , by starting in the vertex of
the first occurrence of x j , and every time selecting the two arcs connecting it to the
next occurrence vertex, until we arrive at the last occurrence vertex.

The graph induced by P contains all the arcs just introduced. In particular it
contains all the cycles corresponding to the sets in C . An example of the reduction
is shown in Fig. 4.11.

It is easy to see that a path Pj cuts cycle Ci if and only if x j hits the set Ci .
Hence there is a one-to-one correspondence between a minimal path set ofP and a
minimal hitting set of C . This proves the theorem.

A1

B1

C1

D1 C2

D2

E1

A2

B2

E2

A3 D3

F1G1

Fig. 4.11 An example of reduction: C1 = {A, B, C, D}, C2 = {C, D, E}, C3 = {A, B, E}, and
C4 = {A, D, F, G}
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In this chapter we have mainly focused our attention on the first definition of
stories, since this definition seems to fit betterwith the informal subnetwork definition
the biologists are looking for.

4.8 Conclusion and Open Problems

In this chapter, we have introduced the new notion of a story, which is a maximal
acyclic subgraph of a directed graph in which only specified vertices can be sources
or targets. We have proved some complexity results and designed some algorithms
for enumerating all possible stories of a graph. From a theoretical point of view, the
main question left open is to establish the complexity of the enumeration problem.
Indeed the enumeration algorithm presented, even if it works well in practice, as
shown by [84], gives no guarantee on the delay between the output of two consecutive
solutions. Notice that any changes in the definition will imply a revision of the formal
results, and may even imply that finding one story cannot be polynomial-solvable.
We address as a future work, exploiting the relationship between stories and subset
feedbackvertex sets, that has been studied in [88] by applying aMeasure and Conquer
approach [89]. The algorithm presented here has been recently improved in [90] by
enumerating pitches with linear time delay.

From a practical point of view, for some graphs the number of solutions found
is extremely large and therefore the analysis of the results is compromised. Adding
more constraints to the model could be a way to filter a priori the set of solutions.

This observation on the size of the output leads us to consider the problem from a
modeling point of view. For instance, the acyclicity constraint could be relaxed allow-
ing cycles between white vertices. Moreover, the model could be enriched by explor-
ing the information on the concentrations given by the metabolomics experiment.
Notice that in this case the nature of the problem changes into an optimization prob-
lem. Another alternative is to consider integrated models, adding to the Metabolic
network other layers of information such as regulation, or taking the stoichiometry
of the reactions into account. Finally, in metabolomics a current challenge is to cor-
rectly predict which are the metabolites corresponding to the peaks in the spectrum
and whether the changes in concentration are actually significant, which suggests
that the model should also account for noisy data corresponding to on incertitude on
the interesting or not interesting labels assigned to the vertices.



Chapter 5
Enumerating Bubbles: Listing Pairs
of Vertex Disjoint Paths

5.1 Introduction

In recent papers [8, 91], algorithms for identifying two types of polymorphism,
respectively SNPs (SingleNucleotide Polymorphisms) inDNA, and alternative splic-
ing in RNA-seq data were introduced. Both correspond to recognisable patterns in
a de Bruijn graph (DBG) built from the reads provided by a sequencing project. In
both cases, the pattern corresponds to two vertex-disjoint paths between a pair of
source and target vertices s and t . Properties on the lengths or sequence similarity of
the paths then enable to differentiate between different types of polymorphism.

Such patterns have been studied before in the context of genome assembly where
they have been called bulges [92] or bubbles [93–95]. However, the purpose in
these works was not to enumerate all these patterns, but “only” to remove them
from the graph, in order to provide longer contigs for the genome assembly. More
recently, ad-hoc enumeration methods have been proposed but are restricted to non-
branching bubbles [96], i.e., each vertex from the bubble has in-degree and out-
degree 1, except for s and t . Furthermore, in all these applications [92–96] since the
patterns correspond to SNPs or sequencing errors, the authors only considered paths
of length smaller than a constant. On the other hand, bubbles of arbitrary length have
been considered in the context of splicing graphs [97]. However, in this context, a
notable difference is that the graph is a DAG. Additionally, vertices are coloured and
only unicolour paths are then considered for forming bubbles. Finally, the concept of
bubble also applies to the area of phylogenetic networks [98], where it corresponds to
the notion of a recombination cycle. Again for this application, the graph is a DAG.

In this chapter, we adopt the term bubble, which is being most used in the commu-
nity, and this will denote two vertex-disjoint paths between a pair of source and target
vertices with no condition on the path length or the degrees of the internal vertices.
We then consider the more general problem of enumerating all bubbles in a arbitrary
directed graph. That is, our solution is not restricted to acyclic or de Bruijn graphs.
This problem is quite general but it was still an open question whether a polynomial-
delay algorithm could be proposed for solving it. The algorithm presented in [8] was
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an adaptation of Tiernan’s algorithm for cycle enumeration [9] which does not have
a polynomial delay, in the worst case the time elapsed between the output of two
solutions is proportional to the number of paths in the graph, i.e. exponential in the
size of the graph. It was not clear at the time if more efficient cycle enumeration
methods in directed graphs such as Tarjan’s [28] or Johnson’s [10] could be adapted
to efficiently enumerate bubbles in directed graphs.

Contribution
The aim of this chapter is to show a non-trivial adaptation of Johnson’s cycle (what he
called elementary circuit) enumeration algorithm to identify all bubbles in a directed
graph in the same theoretical complexity.Notably, themethodwepropose enumerates
all bubbles with a given source with O(|V | + |E |) delay. The algorithm requires an
initial transformation, described in Sect. 5.3, of the graph for each source s that takes
O(|V | + |E |) time and space. Our work appeared in [11].

Structure of the Chapter
The chapter is organised as follows. We start by recalling in Sect. 5.2 what is a de
Bruijn graph representation of a set of reads, and how polymorphisms in DNA- and
RNA-seq data correspond to bubbles in this graph. We then explain in Sect. 5.3 how
to transform the original graph into a new graph where bubbles will correspond to
cycles with some properties. We present in Sect. 5.4 the algorithm for enumerating
all cycles corresponding to bubbles in the initial graph and we provide an example in
Sect. 5.5. We prove in Sect. 5.6 that this algorithm is correct and has linear delay; in
Sect. 5.7 we explain how to avoid duplicate bubbles with no additional cost. Finally
in Sect. 5.8 we conclude with some open problems.

5.2 Preliminaries

Recall that a de Bruijn graph (DBG) is a directed graph G = (V, E) whose set of
vertices V are labelled by k-mers, i.e. words of length k. An arc in E links a vertex
u to a vertex v if the suffix of length k − 1 of u is a prefix of v. By an (s, t)-bubble,
we mean two vertex-disjoint (s, t)-paths that only shares s and t .

In the case of next generation sequencing (NGS) data, the k-mers correspond to
all words of length k present in the reads (strings) of the input dataset, and only those.
In relation to the classical de Bruijn graph for all possible words of size k, the DBG
for NGS data may then not be complete. Vertices may also be labelled by the number
of times each k-mer is present in the reads. In general a vertex will be labelled by
both a k-mer and its reverse complement, and the DBG used in practice will thus
be a bi-directed multigraph. Figure5.1 gives an example of a portion of a DBG that
corresponds to a bubble generated by a SNP or a sequencing error.

In this chapter, we ignore all details related to the treatment of NGS data using de
Bruijn graphs that are not essential for the algorithm described, and consider instead
the more general case of finding all (s, t)-bubbles in an arbitrary directed graph.
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CATCT

ATCTA TCTAC CTACG GCGTA ACGCA

CGCAG

ATCT TCT C CT CG T CGC CGCA

Fig. 5.1 Bubble due to a substitution (gray letter)

5.3 Turning Bubbles into Cycles

Let G = (V, E) be a directed graph, and let s ∈ V . We want to find all (s, t)-bubbles
for all possible target vertices t . We transform G into a new graph G ′

s = (V ′
s , E ′

s)

where |V ′
s | = 2|V | and |E ′

s | = O(|V | + |E |). Namely,

V ′
s = {v, v | v ∈ V }

E ′
s = {(u, v), (v, u) | (u, v) ∈ E and v �= s} ∪ {(v, v) | v ∈ V and v �= s} ∪ {(s, s)}

Let us denote by V the set of vertices of G ′
s that were not already in G, that is

V = V ′
s \ V . The two vertices x ∈ V and x ∈ V are said to be twin vertices. Observe

that the graph G ′
s is thus built by adding to G a reversed copy of itself, where the

copy of each vertex is referred to as its twin. The arcs incoming to s (and outgoing
from s) are not included so that the only cycles in G ′

s that contain s also contain
s. New arcs are also created between each pair of twins: the new arcs are the ones
leading from a vertex u to its twin ū for all u except for s where the arc goes from s
to s. An example of a transformation is given in Fig. 5.2.

We define a cycle of G ′
s as being bipolar if it contains vertices of both V and V .

As the only arc from V to V is (s, s), then every bipolar cycle C contains also only

s a b c d

e

s

s

a

a

b

b

c

c

d

d

e

e

(a)

(b)

Fig. 5.2 Graph G and its transformation G ′
s . We have that 〈s, e, e, b, a, s, s〉 is a bubble-cycle with

swap arc (e, e) that has a correspondence to the (s, e)-bubble composed by the two vertex-disjoint
paths 〈s, e〉 and 〈s, a, b, e〉. a Graph G. b Graph G ′

s
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one arc from V to V . This arc, which is the arc (t, t) for some t ∈ V , is called the
swap arc of C . Moreover, since (s̄, s) is the only incoming arc of s, all the cycles
containing s are bipolar. We say that C is twin-free if it contains no pair of twins
except for (s, s) and (t, t).

Definition 5.1 (Bubble-cycle) A bubble-cycle in G ′
s is a twin-free cycle of size

greater than four.1

Proposition 5.1 Given a vertex s in G, there is a one-to-two correspondence
between the set of (s, t)-bubbles in G for all t ∈ V , and the set of bubble-cycles
of G ′

s .

Proof Let us consider an (s, t)-bubble in G formed by two vertex-disjoint (s, t)-
paths P and Q. Consider the cycle of G ′

s obtained by concatenating P (resp. Q), the
arc (t, t), the inverted copy of Q (resp. P), and the arc (s, s). Both cycles are bipolar,
twin-free, and have (t, t) as swap arc. Therefore both are bubble-cycles.

Conversely, consider any bubble-cycle C and let (t, t) be its swap arc. C is com-
posed by a first subpath P from s to t that traverses vertices of V and a second subpath
Q from t to s composed of vertices of V only. By definition of G ′

s , the arcs of the
subpath P form a path from s to t in the original graph G; given that the vertices in
the subpath Q from t to s are in V and use arcs that are those of E inverted, then Q
corresponds to another path from s to t of the original graph G. As no internal vertex
of Q is a twin of a vertex in P , these two paths from s to t are vertex-disjoint, and
hence they form an (s, t)-bubble.

Notice that there is a cycle s, v, v, s for each v in the out-neighbourhood of s.
Such cycles do not correspond to any bubble in G, and the condition on the size of
C allows us to rule them out.

5.4 The Algorithm

In the previous chapter we have seen several techniques to enumerate cycles, and
in particular the Johnson’s Algorithm [10], that is a polynomial delay algorithm for
the cycle enumeration problem that works also in the case of directed graphs. We
propose to adapt the principle of this latter algorithm because, since the graphs in
which we are interested in are directed, we cannot apply the algorithm presented in
Chap.6.

In particular wewill use the idea of the pruned backtracking, to enumerate bubble-
cycles in G ′

s , modified to take into account the twin vertices. Proposition 5.1 then
ensures that running our algorithm on G ′

s for every s ∈ V is equivalent to the
enumeration of (twice) all the bubbles of G. To do so, we explore G ′

s by recursively
traversing it while maintaining the following three variables. We denote by N+(v)
the set of out-neighbours and N−(v) as the set of in-neighbours of v.

1 The only twin-free cycles in of size four in G ′
s are generated by the outgoing arcs of s. There are

O(|V |) of such cycles.

http://dx.doi.org/10.2991/978-94-6239-097-3_6
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1. A variable stack which contains the vertices of a path (with no repeated vertices)
from s to the current vertex. Each time it is possible to reach s from the cur-
rent vertex by satisfying all the conditions to have a bubble-cycle, this stack is
completed into a bubble-cycle and its content output.

2. A variable status(v) for each vertex v which can take three possible values:

• free: v should be explored during the traversal of G ′
s ;

• blocked: v should not be explored because it is already in the stack or because
it is not possible to complete the current stack into a cycle by going through
v—notice that the key idea of the algorithm is that a vertex may be blocked
without being on the stack, avoiding thus useless explorations;

• twinned: v ∈ V and its twin is already in the stack, so that v should not be
explored.

3. A set B(v) of in-neighbours of v where vertex v is blocked and for each vertex
w ∈ B(v) there exists an arc (w, v) in G ′

s (that is, w ∈ N−(v)). If a modification
in the stack causes that v is unblocked and it is possible to go from v to s̄ using
free vertices, then w should be unblocked if it is currently blocked.

Algorithm 16 enumerates all the bubble-cycles in G by fixing the source s of the
(s, t)-bubble, computing the transformed graph G ′

s and then listing all bubble-cycles
with source s in G ′

s . This procedure is repeated for each vertex s ∈ V . To list the
bubble-cycles with source s, procedure CYCLE(s) is called. As a general approach,
Algorithm 18 uses classical backtracking with a pruned search tree. The root of the
recursion corresponds to the enumeration of all bubble-cycles in G ′

s with starting
point s. The algorithm then proceeds recursively: for each free out-neighbour w of
v the algorithm enumerates all bubble-cycles that have the vertices in the current
stack plus w as a prefix. If v ∈ V and v is twinned, the recursion is also applied to
the current stack plus v, (v, v) becoming the current swap arc. A base case of the
recursion happens when s is reached and the call to CYCLE(s) completed. In this
case, the path in stack is a twin-free cycle and, if this cycle has more than 4 vertices,
it is a bubble-cycle to output.

The key idea that enables to make this pruned backtracking efficient is the block-
unblock strategy. Observe that when CYCLE(v) is called, v is pushed in the stack
and to ensure twin-free extensions, v is blocked and v̄ is twinned if v ∈ V . Later,
when backtracking, v is popped from the stack but it is not necessarily marked as
free. If there were no twin-free cycles with the vertices in the current stack as a
prefix, the vertex v would remain blocked and its status would be set to free only
at a later stage. The intuition is that either v is a dead-end or there remain vertices
in the stack that block all twin-free paths from v to s. In order to manage the status
of the vertices, the sets B(w) are used. When a vertex v remains blocked while
backtracking, it implies that every out-neighbour w of v has been previously blocked
or twinned. To indicate that each out-neighbour w ∈ N+(v) (also, v ∈ N−(w) is an
in-neighbour of w) blocks vertex v, we add v to each B(w). When, at a later point in
the recursion, a vertex w ∈ N+(v) becomes unblocked, v must also be unblocked as
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Algorithm 16: Main algorithm
Input: A graph G = (V, E)

Output: All the bubbles in G
1 for s ∈ V do
2 stack ← ∅;
3 for v ∈ G ′

s do
4 status← free;
5 B(v) = ∅;
6 end
7 CYCLE(s);
8 end

Algorithm 17: Procedure UNBLOCK(v)
Input: A vertex v ∈ V
/* recursive unblocking of vertices for which popping v

creates a path to s */
1 status(v)← free;
2 for w ∈ B(v) do
3 delete w from B(v);
4 if status(w)= blocked then
5 UNBLOCK(w);
6 end
7 end

possibly there are now bubble-cycles that include v. Algorithm 17 implements this
recursive unblocking strategy.

An important difference between the algorithm introduced here and Johnson’s is
that we now have three possible states for any vertex, i.e. free, blocked and twinned,
instead of only the first two. The twinned state is necessary to ensure that the two
paths of the bubble share no internal vertex. Whenever v is twinned, it can only be
explored from v. On the other hand, a blocked vertex should never be explored. A
twin vertex v can be already blocked when the algorithm is exploring v, since it could
have been unsuccessfully explored by some other call. In this case, it is necessary
to verify the status of v, as it is shown in the graph of Fig. 5.3a. Indeed, consider
the algorithm starting from s with (s, a) and (a, b) being the first two arcs visited in
the lower part. Later, when the calls CYCLE(c̄) and CYCLE(b̄) are made, since ā
is twinned, both b̄ and c̄ remain blocked. When the algorithm backtracks to a and
explores (a, c), the call CYCLE(c) is made and c̄ is already blocked.

Another important difference with respect to Johnson’s algorithm is that there is
a specific order in which the out-neighbourhood of a vertex should be explored. In
particular, notice that the order in which Algorithm 18 explores the neighbours of a
vertex v is: first the vertices in N+(v) \ {v̄} and then v̄. A variant of the algorithm
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s a b c

s a b c

(a)

s a b c

s a b c

(b)

Fig. 5.3 a Example where the twin v is already blocked when the algorithm starts exploring v. By
starting in s and visiting first (s, a) and (a, b), the vertex c is already blocked when the algorithm
starts exploring c. b Counterexample for the variant of the algorithm visiting first the twin and then
the regular neighbours. By starting in s and visiting first (s, a) and (a, b), the algorithm misses the
bubble-cycle 〈s, a, c, c, b, s〉

where this orderwould be reversed, visiting first v̄ and then the vertices in N+(v)\{v̄},
would fail to enumerate all the bubbles. Indeed, intuitively a vertex can be blocked
because the only way to reach s̄ is through a twinned vertex and when that vertex
is untwinned the first one is not unblocked. Indeed, consider the graph in Fig. 5.3b
and the twin-first variant starting in s with (s, a) and (a, b) being the first two arcs
explored in the lower part of the graph. When the algorithm starts exploring b the
stack contains 〈s, a, b〉. After, the call CYCLE(b̄) returns true andCYCLE(c) returns
false because ā and b̄ are twinned. After finishing exploring b, the blocked list B(b)
is empty. Thus, the only vertex unblocked is b, c (and c̄) remaining blocked. Finally,
the algorithm backtracks to a and explores the arc (a, c), but c is blocked, and it fails
to enumerate 〈s, a, c, c, b, s〉.

One way to address the problem above would be to modify the algorithm so that
every time a vertex v̄ is untwinned, a call to UNBLOCK(v̄) is made. All the bubble-
cycles would be correctly enumerated. However, in this case, it is not hard to find
an example where the delay would then no longer be linear. Intuitively, visiting first
N+(v) \ {v̄} and, then v̄, works because every vertex u that was blocked (during the
exploration of N+(v) \ {v̄}) should remain blocked when the algorithm explores v̄.
Indeed, a bubble would be missed only if there existed a path starting from v, going
to s through u and avoiding the twinned vertices. This is not possible if no path from
N+(v) \ {v̄} to u could be completed into a bubble-cycle by avoiding the twinned
vertices, as we will show later on.

5.5 Enumerating Bubbles: An Example

Consider the graph in Fig. 5.2a and its transformation in Fig. 5.2b. We want to enu-
merate all the bubble-cycles of the graph in Fig. 5.2b by using Algorithm 16 and thus
Algorithms 17 and 18. At the beginning every vertex has a status that is free, the



72 5 Enumerating Bubbles: Listing Pairs of Vertex Disjoint Paths

Algorithm 18: Procedure CYCLE(v)
Input: A vertex v ∈ V
Output: All the bubbles in G starting from v

1 f ← false;
2 push v;
3 status(v) ← blocked;
/* Exploring forward the arcs going out from v ∈ V */

4 if v ∈ V then
5 if status(v) = free then status(v)← twinned ;
6 for w ∈ N+(v) ∩ V do
7 if status(w) = free then
8 if CYCLE(w) then f ← true;
9 end

10 end
11 if status(v) = twinned then
12 if CYCLE(v) then f ← true ;
13 end

/* Exploring forward the arcs going out from v ∈ V */
14 else
15 for w ∈ N+(v) do
16 if w = s then
17 output the cycle composed by the stack followed by s and s;
18 f ← true;
19 else if status(w) = free then
20 if CYCLE(w) then f ← true;
21 end
22 end
23 end
24 if f then UNBLOCK(v) ;
25 else
26 for w ∈ N+(v) do
27 if v /∈ B(w) then B(w) = B(w) ∪ {v} ;
28 end
29 end
30 pop v;
31 return f ;

stack is empty and Algorithm 18 is called with input s. At this point s is put on the
stack, its status is now blocked and the status of s̄ is now twinned. Then CYCLE(a),
CYCLE(b), CYCLE(c), CYCLE(d) are called in this order, blocking and putting on
the stack the vertices a, b, c, d, respectively, and twinning the vertices ā, b̄, c̄, d̄,
respectively. Observe that, since s is already blocked, CYCLE(c) does not call again
CYCLE(s). At this point the stack is s, a, b, c, d. Since the unique neighbour of d
is d̄ , CYCLE(d̄) is called and d̄ is blocked and put on the stack. This corresponds to
the code after line 14 in Algorithm 18. Since c̄ is twinned, CYCLE(c̄) is not called,
while, since ē is free, CYCLE(ē) is called and ē is thus blocked and put on the stack.
Once again, since b̄ is twinned, CYCLE(b̄) is not called, and s̄ is reached: the cycle
containing the vertex on the stack plus s̄, s, a, b, c, d, d̄, ē, s̄, is output.
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After the output, the call CYCLE(ē) returns and ē is unblocked and removed from
the stack. The same happens for the calls CYCLE(d̄) and CYCLE(d). At this point
the stack is s, a, b, c and CYCLE(c̄) is called: c̄ is thus blocked and put on the stack.
Since b̄ is twinned, CYCLE(b̄) is not called, while since ē is free, CYCLE(ē) is called
and ē is thus blocked and put on the stack. Once again, since b̄ is twinned, CYCLE(b̄)
is not called, and s̄ is reached: the cycle containing the vertex on the stack plus s̄,
s, a, b, c, c̄, ē, s̄, is output.

After this latter output, the call CYCLE(ē), and after CYCLE(c̄) and CYCLE(c),
return, so that ē, c̄, and c are unblocked and removed from the stack. Now the
stack is s, a, b and we are exploiting other feasible neighbours of b: in particular
CYCLE(e) is called. We have that e is now blocked and put on the stack. Since c is
free, CYCLE(c) is called; this latter calls CYCLE(d), that calls CYCLE(d̄). At this
point the stack is s, a, b, e, c, d, d̄ and it is not possible to complete the stack in order
to get a bubble-cycle. Thus f is false, and for any out-neighbour w of d̄ , v is added
to B(w), so that d̄ is added to B(c̄) and to B(ē). Hence CYCLE(d̄) returns and, also
in CYCLE(d), f remains false, so that d̄ is added to B(d). At this point CYCLE(d)
returns, we are in CYCLE(c) and we have to finish to exploit the neighbours of c. The
stack is s, a, b, e, c, the vertices s, a, b, c, d, e, d̄ are blocked, the vertices s̄, ā, b̄, c̄, ē
are twinned. With this settings, CYCLE(c) calls CYCLE(c̄) that returns false; c̄ is
thus added to B(b̄) and B(ē). Also CYCLE(c) returns false, so that c is added to
B(d) and B(c̄). We are thus in CYCLE(e): c has been already considered and d
is blocked, CYCLE(ē) is thus called. Observe that CYCLE(e) never calls directly
CYCLE(d) because it is known that it would return false, thanks to the previous
calls from CYCLE(c). This avoids useless computation by realizing the so-called
pruning strategy. At this point CYCLE(ē) reaches s̄ and a bubble-cycle is output:
s, a, b, e, ē, s̄. Summarizing, s, a, b, c, d, e, c̄, d̄ are blocked, s̄, ā, b̄, ē are twinned.
In particular B(d) = {c}, B(b̄) = {c̄}, B(c̄) = {d̄, c}, B(d̄) = {d}, B(ē) = {d̄, c̄},
and the other B sets are empty.

After the output, vertex ē is removed from the stack, unblocked, and any vertex
w ∈ B(ē) is recursively unblocked, so that d̄ and c̄ are unblocked, and succes-
sively also d and c are unblocked. Thus B(x) is empty for any vertex x except for
B(b̄) = {c̄}. CYCLE(ē) returns inside CYCLE(e), also e is removed from the stack
and unblocked and CYCLE(e) returns inside CYCLE(b). Now the unique blocked
vertices are s, a, b and s̄, ā, c̄ are the unique twinned vertices: the algorithm contin-
ues by calling CYCLE(b̄) and after CYCLE(ā). Then it returns inside CYCLE(s̄),
where, with empty stack, no blocked vertices, empty B sets, and no twinned vertices,
CYCLE(e) is called.

By proceeding in the same way, also the bubble-cycles:

• s, e, c, c̄, b̄, ā, s̄,
• s, e, d, d̄, c̄, b̄, ā, s̄, and
• s, e, ē, b̄, ā, s̄

are outputted.
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5.6 Proof of Correctness and Complexity Analysis

The first part of this section is devoted to prove that Algorithm 18 enumerates all
bubbles with source s.

Lemma 5.1 Let v be a vertex of G ′
s such that status(v) = blocked, S the set of

vertices currently in the stack, and T the set of vertices whose status is equal to
twinned. Then S ∪ T is a (v, s) separator, that is, each path, if any exists, from v to
s contains at least one vertex in S ∪ T .

Proof The result is obvious for the vertices in S ∪ T . Let v be a vertex of G ′
s such

that status(v) = blocked and v /∈ S ∪ T . This means that when v was popped for
the last time, CYCLE(v) was equal to false since v remained blocked.

Let us prove by induction on k that each path to s of length k from a blocked
vertex not in S ∪ T contains at least one vertex in S ∪ T .

We first consider the base case k = 1. Suppose that v is a counter-example for
k = 1. This means that there is an arc from v to s (s is an out-neighbour of v).
However, in that case the output of CYCLE(v) is true, a contradiction because v
would then be unblocked.

Suppose that the result is true for k − 1 and, by contradiction, that there exists a
blocked vertex v /∈ S ∪ T and a path (v,w, . . . , s) of length k avoiding S ∪ T . Since
(w, . . . , s) is a path of length k − 1, we can then assume that w is free. Otherwise, if
w were blocked, by induction, the path (w, . . . , s) would contain at least one vertex
in S ∪ T , and so would the path (v,w, . . . , s).

Since the call to CYCLE(v) returned false (v remained blocked), either w was
already blocked or twinned, or the call to CYCLE(w) made inside CYCLE(v) gave
an output equal to false. In any case, after the call to CYCLE(v), w was blocked or
twinned and v put in B(w).

The conditional at line 11 of the CYCLE procedure ensures that when untwinned,
a vertex immediately becomes blocked. Thus, since w is now free, a call to
UNBLOCK(w) was made in any case, yielding a call to UNBLOCK(v). This con-
tradicts the fact that v is blocked.

Theorem 5.1 The algorithm returns only bubble-cycles. Moreover, each of those
cycles is returned exactly once.

Proof Let us first prove that only bubble-cycles are output. As any call toUNBLOCK
(either inside the procedure CYCLE or inside the procedure UNBLOCK itself) is
immediately followed by the popping of the considered vertex, no vertex can appear
twice in the stack. Thus, the algorithm returns only cycles. They are trivially bipolar
as they have to contain s and s to be output.

Consider now a cycle C output by the algorithm with swap arc (t, t). Let (v,w)
in C with v �= s and v �= t . If v is free when v is put on the stack, then v is twinned
before w is put on the stack and cannot be explored until w is popped. If v is blocked
when v is put on the stack, then by Lemma 5.1 it remains blocked at least until v is
popped. Thus, v cannot be in C , and consequently the output cycles are twin-free.
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So far we have proven that the output produces bubble-cycles. Let us now show
that all cycles C = {v0 = s, v1, . . . , vl−1, vl = s, v0} satisfying those conditions are
output by the algorithm, and each is output exactly once.

The fact that C is not returned twice is a direct consequence of the fact that the
stack is different in all the leaves of a backtracking procedure. To show that C is
output, let us prove by induction that the stack is equal to {v0, . . . , vi } at some point
of the algorithm, for every 0 ≤ i ≤ l − 1. Indeed, it is true for i = 0. Moreover,
suppose that at some point, the stack is {v0, . . . , vi−1}.

Suppose that vi−1 is different from t . As the cycle contains no pair of twins except
for those composing the arcs (s, s) and (t, t), the path {vi , vi+1, . . . , vl} contains no
twin of {v0, . . . , vi−1} and therefore no twinned vertex. Thus, it is a path from vi to s
avoiding S ∪ T . Lemma 5.1 then ensures that at this point vi is not blocked. As it is
also not twinned, its status is free. Therefore, it will be explored by the backtracking
procedure and the stack at some point will be {v0, . . . , vi }. If vi−1 = t , vi = t is not
blocked using the same arguments. Thus it was twinned by the call to CYCLE(t)
and is therefore explored at line 12 of this procedure. Again, the stack at some point
will be {v0, . . . , vi }.

As in [10], we show that Algorithm 18 has delay O(|V | + |E |) by proving that a
cycle has to be output between two successive unblockings of the same vertex and
that with linear delay some vertex has to be unblocked again. To do so, let us first
prove the following lemmas.

Lemma 5.2 Let v be a vertex such that CYCLE(v) returns true. Then a cycle is
output after that call and before any call to UNBLOCK.

Proof Let y be the first vertex such that UNBLOCK(y) is called inside CYCLE(v).
Since CYCLE(v) returns true, there is a call to UNBLOCK(v) before it returns, so
that y exists. Certainly, UNBLOCK(y) was called before UNBLOCK(v) if y �=
v. Moreover, the call UNBLOCK(y) was done inside CYCLE(y), from line 24,
otherwise it would contradict the choice of y. So, the call to CYCLE(y) was done
within the recursive calls inside the call to CYCLE(v). CYCLE(y) must then return
true as y was unblocked from it.

All the recursive calls CYCLE(z) made inside CYCLE(y) must return false, oth-
erwise there would be a call to UNBLOCK(z) before UNBLOCK(y), contradicting
the choice of y. Since CYCLE(y) must return true and the calls to all the neighbours
returned false, the only possibility is that s ∈ N+(y). Therefore, a cycle is output
before UNBLOCK(y).

Lemma 5.3 Let v be a vertex such that there is a (v, s)-path P avoiding S ∪ T at
the moment a call to CYCLE(v) is made. Then the return value of CYCLE(v) is true.

Proof First notice that if there is such a path P , then v belongs to a cycle in G ′
s . This

cycle may however not be a bubble-cycle in the sense that it may not be twin-free,
that is, it may contain more than two pairs of twin vertices. Indeed, since the only
constraint that we have on P is that it avoids all vertices that are in S and T when v
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is reached, then if v ∈ V , it could be that the path P from v to s contains, besides s
and s, at least two more pairs of twin vertices. An example is given in Fig. 5.2b. It
is however always possible, by construction of G ′

s from G, to find a vertex y ∈ V
such that y is the first vertex in P with y also in P . Let P ′ be the path that is a
concatenation of the subpath s � y of P , the arc (y, y), and the subpath y � s in P .
This path is twin-free, and a call to CYCLE(v) will, by correctness of the algorithm,
return true.

Theorem 5.2 Algorithm 18 has linear delay.

Proof Let us first prove that between two successive unblockings of any vertex v, a
cycle is output. Let w be the vertex such that a call to UNBLOCK(w) at line 24 of
Algorithm 18 unblocks v for the first time. Let S and T be, respectively, the current
sets of stack and twinned vertices after popping w. The recursive structure of the
unblocking procedure then ensures that there exists a (v,w)-path avoiding S ∪ T .
Moreover, as the call toUNBLOCK(w)wasmade at line 24, the answer toCYCLE(w)
is true so there exists also a (w, s)-path avoiding S ∪ T . The concatenation of both
paths is a again a (v, s̄)-path avoiding S ∪ T . Let x be the first vertex of this path to
be visited again. Note that, if no vertex in this path is visited again there is nothing to
prove, since v is free, CYCLE(v) needs to be called before any UNBLOCK(v) call.
When CYCLE(x) is called, there is a (x, s)-path avoiding the current S ∪ T vertices.
Thus, applying Lemma 5.3 and then Lemma 5.2, we know that a cycle is output
before any call to UNBLOCK. As no call to UNBLOCK(v) can be made before the
call to CYCLE(x), a cycle is output before the second call to UNBLOCK(v).

Let us nowconsider the delay of the algorithm. In both its exploration and unblock-
ing phases, the algorithm follows the arcs of the graph and transforms the status or
the B lists of their endpoints, which overall require constant time. Thus, the delay
only depends on the number of arcs which are considered during two successive
outputs. An arc (u, v) is considered once by the algorithm in the three following
situations: the exploration part of a call to CYCLE(u); an insertion of u in B(v); a
call to UNBLOCK(v). As shown before, UNBLOCK(v) is called only once between
two successive outputs. CYCLE(u) cannot be called more than twice. Thus the arc
(u, v) is considered at most 5 times between two outputs. This ensures that the delay
of the algorithm is O(|V | + |E |).

5.7 Avoiding Duplicate Bubbles

The one-to-two correspondence between cycles in G ′
s and bubbles starting from s in

G, claimed by Proposition 5.1, can be reduced to a one-to-one correspondence in the
following way. Consider an arbitrary order on the vertices of V , and assign to each
vertex of V the order of its twin. Let C be a cycle of G ′

s that passes through s and
contains exactly two pairs of twin vertices. Denote again by t the vertex such that
(t, t) is the arc through which C swaps from V to V . Denote by swap predecessor
the vertex before t in C and by swap successor the vertex after t in C .
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Proposition 5.2 There is a one-to-one correspondence between the set of (s, t)
-bubbles in G for all t ∈ V , and the set of cycles of G ′

s that pass through s, contain
exactly two pairs of twin vertices and such that the swap predecessor is greater than
the swap successor.

Proof The proof follows the one of Proposition 5.1. The only difference is that, if we
consider a bubble composed of the paths P1 and P2, one of these two paths, say P1,
has a next to last vertex greater than the next to last vertex of P2. Then the cycle of
G ′

s made of P1 and P2 is still considered by the algorithm whereas the cycle made of
P2 and P1 is not. Moreover, the cycles of length four which are of the type {s, t, t, s}
are ruled out as s is of the same order as s.

5.8 Conclusion and Open Problems

We showed in this chapter that it is possible (Algorithm 18) to enumerate all
bubbles with a given source in a directed graph with linear delay. Moreover, it
is possible to enumerate all bubbles, for all possible sources (Algorithm 16), in
O((|E | + |V |)(|C | + |V |)) total time, where |C | is the number of bubbles. This
required a non trivial adaptation of Johnson’s algorithm [10]. The main question
arising from our work is whether it is possible to generalize our result, by finding
a linear delay algorithm enumerating k-tuple of vertex disjoint paths. Finally we
remark that further developments in [99] allow to enumerate bubbles of constrained
length in linear delay.



Chapter 6
Enumerating Cycles and (s, t)-Paths
in Undirected Graphs

6.1 Introduction

Listing all the simple cycles (hereafter just called cycles) in a graph is a classical
problem whose efficient solutions date back to the early 70s. For a graph with n
vertices and m edges, containing η cycles, the best known solution in the literature
is given by Johnson’s algorithm [10] and takes O((η + 1)(m + n)) time. In the case
of biological networks, studying paths or cycles can be useful for several purposes.
In the case of interaction graphs, such as gene regulatory networks, the importance
of enumeration has been shown in [12], and two algorithms for this problem have
been proposed in [53, 12]. As shown in Chap. 3, these networks are directed and their
arcs are signed, where the sign or weight of the arcs indicates the causal relationship
between the vertices, such as activation or inhibition. In particular, as summarized
by [12], cycles and paths can be useful for studying:

• dependencies among vertices: a vertex x activates another vertex y when at least
one positive path from x to y exists but no negative one [53].

• the steady state and multistationarity of dynamic models [100, 13, 14].
• monotonicity with respect to changes in the initial conditions [101].

In particular the enumeration of cycles and paths can be useful for investigating:

• feedback loops, that are claimed to be sources of complex dynamics [13, 14].
Moreover feedback loops are related to robustness in cell signalling networks [15].

• signalling paths, by analysing the different positive and negative routes along
which a molecule can affect another.

• (Minimal) cut sets: for a given set of feedback loops or signalling paths one may
compute a set of interventions interrupting the signal flow in them [53].

In the following we will consider the problem of enumerating paths and cycles
in the case of undirected graphs. Our contribution is not just restricted to biological
networks, but extends also to arbitrary graph.
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Previous Work
The classical problem of listing all the cycles of a graph has been extensively studied
for its many applications in several fields, ranging from the mechanical analysis
of chemical structures [102] to the design and analysis of reliable communication
networks, and the graph isomorphism problem [103]. In particular, at the turn of the
seventies several algorithms for enumerating all cycles of an undirected graph have
been proposed. There is a vast body of work, and the majority of the algorithms
listing all the cycles can be divided into the following three classes (see [104, 105]
for excellent surveys).

1. Search space algorithms. According to this approach, cycles are looked for in
an appropriate search space. In the case of undirected graphs, the cycle vector
space [106] turned out to be the most promising choice: from a basis for this
space, all vectors are computed and it is tested whether they are a cycle. Since the
algorithm introduced in [103], many algorithms have been proposed: however,
the complexity of these algorithms turns out to be exponential in the dimension
of the vector space, and thus in n. For planar graphs, an algorithm listing cycles
in O((η + 1)n) time was presented in [107].

2. Backtrack algorithms. By this approach, all paths are generated by backtrack
and, for each path, it is tested whether it is a cycle. One of the first algorithms is
the one proposed in [9], which is however exponential in η. By adding a simple
pruning strategy, this algorithm has been successively modified in [28]: it lists
all the cycles in O(nm(η + 1)) time. Further improvements were proposed in
[10, 108, 29], leading to O((η + 1)(m + n))-time algorithms that work for both
directed and undirected graphs.

3. Using the powers of the adjacency matrix. This approach uses the so-called vari-
able adjacency matrix, that is, the formal sum of edges joining two vertices. A
non-zero element of the pth power of this matrix is the sum of all walks of length
p: hence, to compute all cycles, we compute the nth power of the variable adja-
cencymatrix. This approach is not very efficient because of the non-simple walks.
Algorithms based on this approach (e.g. [109, 110]) basically differ only on the
way they avoid to consider walks that are neither paths nor cycles.

Almost 40 years after Johnson’s algorithm [10], the problem of efficiently list-
ing all cycles of a graph is still an active area of research (e.g. [11, 111–116]).
Nevertheless, no significant improvement has been obtained from the theory stand-
point: in particular, Johnson’s algorithm is still the theoretically most efficient. His
O((η + 1)(m + n))-time solution and its linear delay guarantee is surprisingly not
optimal for undirected graphs as we show in this chapter.

Contribution
We present the first optimal solution to list all the cycles in an undirected graph G.
Specifically, let C (G) denote the set of all these cycles (|C (G)| = η). Our algorithm
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requires O(m+∑
c∈C (G) |c|) time and is asymptotically optimal: indeed,Ω(m) time

is necessarily required to read G as input, and Ω(
∑

c∈C (G) |c|) time is necessarily
required to list the output. Since the length of a cycle |c| ≤ n, the cost of our algorithm
never exceeds O(m + (η + 1)n) time.

Along the same lines, we also present the first optimal solution to list all the simple
paths from s to t (shortly, (s, t)-paths) in an undirected graph G. LetPst (G) denote
the set of (s, t)-paths in G. Our algorithm lists all the (s, t)-paths in G optimally in
O(m + ∑

π∈Pst (G) |π |) time, observing that Ω(
∑

π∈Pst (G) |π |) time is necessarily
required to list the output.

We prove the following reduction to relate C (G) and Pst (G) for some suitable
choices of vertices s, t : if there exists an optimal algorithm to list the (s, t)-paths in
G, then there exists an optimal algorithm to list the cycles in G. Hence, we can focus
on listing (s, t)-paths.

Our work appeared in [16].

Difficult Graphs for Johnson’s Algorithm
It is worth observing that the analysis of the time complexity of Johnson’s algo-
rithm is not pessimistic and cannot match the one of our algorithm for listing
cycles. For example, consider the sparse “diamond” graph Dn = (V, E) in Fig. 6.1
with n = 2k + 3 vertices in V = {a, b, c, v1, . . . , vk, u1, . . . , uk}. There are
m = Θ(n) edges in E = {(a, c), (a, vi ), (vi , b), (b, ui ), (ui , c), for 1 ≤ i ≤
k}, and three kinds of (simple) cycles: (1) (a, vi ), (vi , b), (b, u j ), (u j , c), (c, a)

for 1 ≤ i, j ≤ k; (2) (a, vi ), (vi , b), (b, v j ), (v j , a) for 1 ≤ i < j ≤ k;
(3) (b, ui ), (ui , c), (c, u j ), (u j , b) for 1 ≤ i < j ≤ k, totalizing η = Θ(n2) cycles.
Our algorithm takes Θ(n + k2) = Θ(η) = Θ(n2) time to list these cycles. On the
other hand, Johnson’s algorithm takes Θ(n3) time, and the discovery of the Θ(n2)

cycles in (1) costsΘ(k) = Θ(n) time each: the backtracking procedure in Johnson’s
algorithm starting at a, and passing through vi , b and u j for some i, j , arrives at c:
at that point, it explores all the vertices ul (l �= i) even if they do not lead to cycles
when coupled with a, vi , b, u j , and c.

Fig. 6.1 Diamond graph

a

v1

vk

b

u1

uk

c
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Structure of the Chapter
This chapter is organised as follows: after introducing the main definitions and nota-
tions in Sect. 6.2, in Sect. 6.3 we show themain ideas of our algorithm; in Sect. 6.4 the
general amortization strategy of our analysis is reported and in Sect. 6.5 the main-
tenance of the certificate, a data structure used by the algorithm, is described; in
Sect. 6.6 we show how the algorithm works through an example and in Sect. 6.7 we
explain in detail the operations performed by the algorithm and its analysis; finally,
we conclude in Sect. 6.8.

6.2 Preliminaries

LetG = (V, E)be anundirected connected graphwithn = |V |vertices andm = |E |
edges, without self-loops or parallel edges. Recall that P(G) is the set of all paths
in G andPs,t (G) is the set of all (s, t)-paths in G. When s = t we have cycles, and
C (G) denotes the set of all cycles in G. In this chapter, given an undirected graph
G = (V, E) we consider the problems of listing all the cycles c ∈ C (G) (listing
Cycles) and all the paths π ∈ Ps,t (G) between two given distinct vertices s, t ∈ V
(listing (s, t)-Paths).

Our algorithms assume without loss of generality that the input graph G is con-
nected, hence m ≥ n − 1, and use the decomposition of G into biconnected com-
ponents. Recall that an articulation point (or cut-vertex) is a vertex u ∈ V such that
the number of connected components in G increases when u is removed. G is bicon-
nected if it has no articulation points. Otherwise, G can always be decomposed into a
tree of biconnected components, called the block tree, where each biconnected com-
ponent is a maximal biconnected subgraph of G (see Fig. 6.2), and two biconnected
components are adjacent if and only if they share an articulation point.

s

t

Fig. 6.2 Block tree of G with bead string Bs,t in gray
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6.3 Overview and Main Ideas

While the basic approach is simple (see the binary partition in point 3), we use
a number of non-trivial ideas to obtain our optimal algorithm for an undirected
(connected) graph G as summarized in the steps below.

1. Prove the following reduction. If there exists an optimal algorithm to list the
(s, t)-paths in G, there exists an optimal algorithm to list the cycles in G. This
relates C (G) and Pst (G) for some choices s, t .

2. Focus on listing the (s, t)-paths. Consider the decomposition of the graph into
biconnected components (bccs), thus forming a tree T where two bccs are adja-
cent in T iff they share an articulation point. Exploit (and prove) the property
that if s and t belong to distinct bccs, then (i) there is a unique sequence Bs,t of
adjacent bccs in T through which each (s, t)-path must necessarily pass, and (ii)
each (s, t)-path is the concatenation of paths connecting the articulation points
of these bccs in Bs,t .

3. Recursively list the (s, t)-paths in Bs,t using the classical binary partition (i.e.
given an edge e in G, list all the cycles containing e, and then all the cycles not
containing e): now it suffices to work on the first bcc in Bs,t , and efficiently
maintain it when deleting an edge e, as required by the binary partition.

4. Use a notion of certificate to avoid recursive calls (in the binary partition) that
do not list new (s, t)-paths. This certificate is maintained dynamically as a data
structure representing the first bcc in Bs,t , which guarantees that there exists at
least one new solution in the current Bs,t .

5. Consider the binary recursion tree corresponding to the binary partition. Divide
this tree into spines: a spine corresponds to the recursive calls generated by the
edges e belonging to the same adjacency list in Bs,t . The amortized cost for each
listed (s, t)-path π is O(|π |) when there is a guarantee that the amortized cost in
each spine S is O(μ), whereμ is a lower bound on the number of (s, t)-paths that
will be listed from the recursive calls belonging to S. The (unknown) parameterμ,
which is different for each spine S, and the corresponding cost O(μ), will drive
the design of the proposed algorithms.

6.3.1 Reduction to Paths

We now show that listing cycles reduces to listing (s, t)-paths while preserving the
optimal complexity.

Lemma 6.1 Given an algorithm that solves the problem of listing (s, t)-Paths in opti-
mal O(m + ∑

π∈Ps,t (G) |π |) time, there exists an algorithm that solves the problem
of listing Cycles in optimal O(m + ∑

c∈C (G) |c|) time.

Proof Compute the biconnected components of G and keep them in a list L . Each
(simple) cycle is contained in one of the biconnected components and therefore we
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can treat each biconnected component individually as follows. While L is not empty,
extract a biconnected component B = (VB, EB) from L and repeat the following
three steps: (i) compute a DFS traversal of B and take any back edge b = (s, t) in B;
(ii) list all (s, t)-paths in B − b, i.e. the cycles in B that include edge b; (iii) remove
edge b from B, compute the new biconnected components thus created by removing
edge b, and append them to L . When L becomes empty, all the cycles in G have
been listed.

Creating L takes O(m) time. For every B ∈ L , steps (i) and (iii) take O(|EB |)
time. Note that step (ii) always outputs distinct cycles in B (i.e. (s, t)-paths in B −b)
in O(|EB | + ∑

π∈Ps,t (B−b) |π |) time. However, B − b is then decomposed into
biconnected components whose edges are traversed again. We can pay for the latter
cost: for any edge e �= b in a biconnected component B, there is always a cycle in B
that contains both b and e (i.e. it is an (s, t)-path in B − b), hence

∑
π∈Ps,t (B−b) |π |

dominates the term |EB |, i.e.∑π∈Ps,t (B−b) |π | = Ω(|EB |). Therefore steps (i)–(iii)
take O(

∑
π∈Ps,t (B−b) |π |) time. When L becomes empty, the whole task has taken

O(m + ∑
c∈C (G) |c|) time.

6.3.2 Decomposition in Biconnected Components

We now focus on listing (s, t)-paths.We use the decomposition of G into a block tree
of biconnected components. Given vertices s, t , define its bead string, denoted by
Bs,t , as the unique sequence of one or more adjacent biconnected components (the
beads) in the block tree, such that the first one contains s and the last one contains
t (see Fig. 6.2): these biconnected components are connected through articulation
points, which must belong to all the paths to be listed.

Lemma 6.2 All the (s, t)-paths in Ps,t (G) are contained in the induced subgraph
G[Bs,t ] for the bead string Bs,t . Moreover, all the articulation points in G[Bs,t ] are
traversed by each of these paths.

Proof Consider an edge e = (u, v) in G such that u ∈ Bs,t and v /∈ Bs,t . Since the
biconnected components of a graph form a tree and the bead string Bs,t is a path in
this tree, there are no paths v � w in G −e for any w ∈ Bs,t because the biconnected
components in G are maximal and there would be a larger one (a contradiction).
Moreover, let B1, B2, . . . , Br be the biconnected components composing Bs,t , where
s ∈ B1 and t ∈ Br . If there is only one biconnected component in the path (i.e. r = 1),
there are no articulation points in Bs,t . Otherwise, all of the r −1 articulation points in
Bs,t are traversed by each path π ∈ Ps,t (G): indeed, the articulation point between
adjacent biconnected components Bi and Bi+1 is their only vertex in common and
there are no edges linking Bi and Bi+1.

We thus restrict the problemof listing the paths inPs,t (G) to the induced subgraph
G[Bs,t ], conceptually isolating it from the rest of G. For the sake of description, we
will use interchangeably Bs,t and G[Bs,t ] in the rest of the chapter.
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6.3.3 Binary Partition Scheme

We list the set of (s, t)-paths in Bs,t , denoted by Ps,t (Bs,t ), by applying the binary
partition method (wherePs,t (G) = Ps,t (Bs,t ) by Lemma 6.2): we choose an edge
e = (s, v) incident to s and then list all the (s, t)-paths that include e and then all
the (s, t)-paths that do not include e. Since we delete some vertices and some edges
during the recursive calls, we proceed as follows.

Invariant: At a generic recursive step on vertex u (initially, u := s), let πs = s � u
be the path discovered so far (initially, πs is empty {}). Let Bu,t be the current bead
string (initially, Bu,t := Bs,t ). More precisely, Bu,t is defined as follows: (i) remove
from Bs,t all the vertices in πs but u, and the edges incident to u and discarded so
far; (ii) recompute the block tree on the resulting graph; (iii) Bu,t is the unique bead
string that connects u to t in the recomputed block tree.

Base case: When u = t , output the (s, t)-path πs .

Recursive rule: Let P(πs, u, Bu,t ) denote the set of (s, t)-paths to be listed by the
current recursive call. Then, it is the union of the following two disjoint sets, for an
edge e = (u, v) incident to u:

• Left branching: the (s, t)-paths in P(πs · e, v, Bv,t ) that use e, where Bv,t is the
unique bead string connecting v to t in the block tree resulting from the deletion
of vertex u from Bu,t .

• Right branching: the (s, t)-paths in P(πs, u, B ′
u,t ) that do not use e, where B ′

u,t
is the unique bead string connecting u to t in the block tree resulting from the
deletion of edge e from Bu,t .

Hence, Ps,t (Bs,t ) (and so Ps,t (G)) can be computed by invoking P({}, s, Bs,t ).
The correctness and completeness of the above approach is discussed in Sect. 6.3.4.

At this point, it should be clear why we introduce the notion of bead strings in
the binary partition. The existence of the partial path πs and the bead string Bu,t

guarantees that there surely exists at least one (s, t)-path. But there are two sides of
the coin when using Bu,t .

1. One advantage is that we can avoid useless recursive calls: If vertex u has only
one incident edge e, we just perform the left branching; otherwise, we can safely
perform both the left and right branching since the first bead in Bu,t is always
a biconnected component by definition (thus there exists both an (s, t)-path that
traverses e and one that does not).

2. The other side of the coin is that we have to maintain the bead string Bu,t as Bv,t

in the left branching and as B ′
u,t in the right branching by Lemma 6.2. Note that

these bead strings are surely non-empty since Bu,t is non-empty by induction
(we only perform either left or left/right branching when there are solutions by
item 1).

To efficiently address point 2, we need to introduce the notion of certificate as
described next.
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6.3.4 Introducing the Certificate

Given the bead string Bu,t , we call the head of Bu,t , denoted by Hu , the first bicon-
nected component in Bu,t , where u ∈ Hu . Consider a DFS tree of Bu,t rooted at u
that changes along with Bu,t , and classify the edges in Bu,t as tree edges or back
edges (there are no cross edges since the graph is undirected).

To maintain Bu,t (and so Hu) during the recursive calls, we introduce a certificate
C (see Fig. 6.3): It is a suitable data structure that uses the above classification of the
edges in Bu,t , and supports the following operations, required by the binary partition
scheme.

Algorithm 19: list_pathss,t (πs, u, C)

if u = t then1
output(πs) ;2
return ;3

end4
e = (u, v) ← choose(C, u) ;5
if e is back edge then6

I ← right_update(C, e) ;7
list_pathss,t (πs , u, C) ;8
restore(C, I ) ;9

end10
I ← left_update(C, e) ;11
list_pathss,t (πs · (u, v), v, C) ;12
restore(C, I ) ;13

Fig. 6.3 Example certificate
of Bu,t

s

u

z4

t

v

z1
z3

z2
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• choose(C, u): returns an edge e = (u, v)with v ∈ Hu such that πs ·(u, v) ·u � t
is an (s, t)-path such that u � t is inside Bu,t . Note that e always exists since
Hu is biconnected. Also, the chosen v is the last one in DFS postorder among the
neighbours of u: in this way, the (only) tree edge e is returned when there are no
back edges leaving from u. (As it will be clear in Sects. 6.4 and 6.5, this order
facilitates the analysis and the implementation of the certificate.)

• left_update(C, e): for the given e = (u, v), it obtains Bv,t from Bu,t as dis-
cussed in Sect. 6.3.3. This implies updating also Hu , C , and the block tree, since
the recursion continues on v. It returns bookkeeping information I for what is
updated, so that it is possible to revert to Bu,t , Hu , C , and the block tree, to their
status before this operation.

• right_update(C, e): for the given e = (u, v), it obtains B ′
u,t from Bu,t as

discussed in Sect. 6.3.3, which implies updating also Hu , C , and the block tree. It
returns bookkeeping information I as in the case of left_update(C, e).

• restore(C, I ): reverts the bead string to Bu,t , the head Hu , the certificate C ,
and the block tree, to their status before operation I := left_update(C, e) or
I := right_update(C, e) was issued (in the same recursive call).

Note that a notion of certificate in listing problems has been introduced in [117],
but it cannot be directly applied to our case due to the different nature of the problems
and our use of more complex structures such as biconnected components.

Using our certificate and its operations, we can now formalize the binary partition
and its recursive callsP(πs, u, Bu,t ) described in Sect. 6.3.3 as Algorithm 19, where
Bu,t is replaced by its certificate C .

The base case (u = t) corresponds to lines 1–4 of Algorithm 19. During recursion,
the left branching corresponds to lines 5 and 11–13, while the right branching to
lines 5–10. Note that we perform only the left branching when there is only one
incident edge in u, which is a tree edge by definition of choose. Also, lines 9
and 13 are needed to restore the parameters to their values when returning from the
recursive calls.

Lemma 6.3 Algorithm 19 correctly lists all the (s, t)-paths in Ps,t (G).

Proof For a given vertex u the function choose(C, u) returns an edge e incident
to u. We maintain the invariant that πs is a path s � u, since at the point of the
recursive call in line 12: (i) is connected as we append edge (u, v) to πs and; (ii) it is
simple as vertex u is removed from the graph G in the call to left_update(C, e)
in line 11. In the case of recursive call in line 8 the invariant is trivially maintained
as πs does not change. The algorithm only outputs (s, t)-paths since πs is a s � u
path and u = t when the algorithm outputs, in line 2.

The paths with prefix πs that do not use e are listed by the recursive call in line 8.
This is done by removing e from the graph (line 7) and thus no path can include e.
Paths that use e are listed in line 12 since in the recursive call e is added to πs . Given
that the tree edge incident to u is the last one to be returned by choose(C, u), there
is no path that does not use this edge, therefore it is not necessary to call line 8 for
this edge.
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A natural question is what is the time complexity: we must account for the cost
of maintaining C and for the cost of the recursive calls of Algorithm 19. Since we
cannot always maintain the certificate in O(1) time, the ideal situation for attaining
an optimal cost is taking O(μ) time if at least μ (s, t)-paths are listed in the current
call (and its nested calls). Unfortunately, we cannot estimateμ efficiently and cannot
design Algorithm 19 so that it takes O(μ) adaptively. We circumvent this by using
a different cost scheme in Sect. 6.3.5 that is based on the recursion tree induced by
Algorithm 19. Section6.5 is devoted to the efficient implementation of the above
certificate operations according to the cost scheme that we discuss next.

6.3.5 Recursion Tree and Cost Amortization

We now show how to distribute the costs among the several recursive calls of Algo-
rithm 19 so that optimality is achieved. Consider a generic execution on the bead
string Bu,t . We trace this execution by using a binary recursion tree R. The nodes of
R are labelled by the arguments of Algorithm 19: specifically, we denote a node in
R by the triple x = 〈πs, u, C〉 iff it represents the call with arguments πs , u, and C .1

The left branching is represented by the left child, and the right branching (if any)
by the right child of the current node.

Lemma 6.4 The binary recursion tree R for Bu,t has the following properties:

1. There is a one-to-one correspondence between the paths in Ps,t (Bu,t ) and the
leaves in the recursion tree rooted at node 〈πs, u, C〉.

2. Consider any leaf and its corresponding (s, t)-path π : there are |π | left branches
in the corresponding root-to-leaf trace.

3. Consider the instruction e := choose(C, u) in Algorithm 19: unary (i.e. single-
child) nodes correspond to left branches (e is a tree edge) while binary nodes
correspond to left and right branches (e is a back edge).

4. The number of binary nodes is |Ps,t (Bu,t )| − 1.

Proof We proceed in order as follows.

1. We only output a solution in a leaf and we only do recursive calls that lead us to a
solution. Moreover every node partitions the set of solutions in the ones that use
an edge and the ones that do not use it. This guarantees that the leaves in the left
subtree of the node corresponding to the recursive call and the leaves in the right
subtree do not intersect. This implies that different leaves correspond to different
paths from s to t , and that for each path there is a corresponding leaf.

2. Each left branch corresponds to the inclusion of an edge in the path π .
3. Since we are in a biconnected component, there is always a left branch. There can

be no unary node as a right branch: indeed for any edge of Bu,t there exists always
a path from s to t passing through that edge. Since the tree edge is always the last

1 For clarity, we use “nodes” when referring to R and “vertices” when referring to Bu,t .



6.3 Overview and Main Ideas 89

one to be chosen, unary nodes cannot correspond to back edges and binary nodes
are always back edges.

4. It follows from point 1 and from the fact that the recursion tree is a binary tree.
(In any binary tree, the number of binary nodes is equal to the number of leaves
minus 1.)

We define a spine of R to be a subset of R’s nodes linked as follows: the first node
is a node x that is either the left child of its parent or the root of R, and the other
nodes are those reachable from x by right branching in R. Let x = 〈πs, u, C〉 be
the first node in a spine S. The nodes in S correspond to the edges that are incident
to vertex u in Bu,t : hence their number equals the degree d(u) of u in Bu,t , and the
deepest (last) node in S is always a tree edge in Bu,t while the others are back edges.
Figure6.4 shows the spine corresponding to Bu,t in Fig. 6.3. Summing up, R can be
seen as composed by spines, unary nodes, and leaves where each spine has a unary
node as deepest node. This gives a global picture of R that we now exploit for the
analysis.

We define the compact head, denoted by HX = (VX , EX ), as the (multi)graph
obtained by compacting the maximal chains of degree-2 vertices, except u, t , and
the vertices that are the leaves of its DFS tree rooted at u.

The rationale behind the above definition is that the costs defined in terms of HX

amortize well, as the size of HX and the number of (s, t)-paths in the subtree of R
rooted at node x = 〈πs, u, C〉 are intimately related (see Lemma 6.6 in Sect. 6.4)
while this is not necessarily true for Hu .

Recall that each leaf corresponds to a path π and each spine corresponds to
a compact head HX = (VX , EX ). We now define the following abstract cost for
spines, unary nodes, and leaves of R, for a sufficiently large constant c0 > 0, that
Algorithm 19 must fulfill:

T (r) =
⎧
⎨

⎩

c0 if r is unary
c0|π | if r is a leaf
c0(|VX | + |EX |) if r is a spine

(6.1)

Lemma 6.5 The sum of the costs in the nodes of the recursion tree
∑

r∈R T (r) =
O(

∑
π∈Ps,t (Bu,t )

|π |).

Fig. 6.4 Spine of the
recursion tree

Bu,t

Bz1,t Bz2,t Bz3,t Bz4,t Bv,t
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Section6.4 contains the Proof of Lemma6.5 and related properties. Setting u := s,
we obtain that the cost in Lemma 6.5 is optimal, by Lemma 6.2.

Theorem 6.1 Algorithm 19 lists all the (s, t)-paths in optimal O(m+∑
π∈Ps,t (G) |π |)

time.

By Lemma 6.1, we obtain an optimal result for listing cycles.

Theorem 6.2 The cycles of an undirected graph can be optimally listed in O(m +∑
c∈C (G) |c|) time.

6.4 Amortization Strategy

We devote this section to prove Lemma 6.5. Let us split the sum in Eq. (6.1) in three
parts, and bound each part individually, as

∑

r∈R

T (r) ≤
∑

r : unary
T (r) +

∑

r : leaf
T (r) +

∑

r : spine
T (r). (6.2)

We have that
∑

r : unary T (r) = O(
∑

π∈Ps,t (G) |π |), since there are |Ps,t (G)|
leaves, and the root-to-leaf trace leading to the leaf for π contains at most |π | unary
nodes by Lemma 6.4, where each unary node has cost O(1) by Eq. (6.1).

Also,
∑

r : leaf T (r) = O(
∑

π∈Ps,t (G) |π |), since the leaf r for π has cost O(|π |)
by Eq. (6.1).

It remains to bound
∑

r spine T (r). By Eq. (6.1), we can rewrite this cost as
∑

HX
c0(|VX | + |EX |), where the sum ranges over the compacted heads HX associ-

ated with the spines r . We use the following lemma to provide a lower bound on the
number of (s, t)-paths descending from r .

Lemma 6.6 Given a spine r , and its bead string Bu,t with head Hu, there are at
least |EX |− |VX |+1 (s, t)-paths in G that have prefix πs = s � u and suffix u � t
internal to Bu,t , where the compacted head is HX = (VX , EX ).

Proof HX is biconnected. In any biconnected graph B = (VB, EB) there are at least
|EB | − |VB | + 1 xy-paths for any x, y ∈ VB . Find an ear decomposition [106] of B
and consider the process of forming B by adding ears one at the time, starting from a
single cycle including x and y. Initially |VB | = |EB | and there are 2 xy-paths. Each
new ear forms a path connecting two vertices that are part of a xy-path, increasing the
number of paths by at least 1. If the ear has k edges, its addition increases V by k −1,
E by k, and the number of xy-paths by at least 1. The result follows by induction.

The implication of Lemma 6.6 is that there are at least |EX | − |VX | + 1 leaves
descending from the given spine r . Hence, we can charge to each of them a cost of
c0(|VX |+|EX |)
|EX |−|VX |+1 . Lemma 6.7 allows us to prove that the latter cost is O(1) when Hu is

different from a single edge or a cycle. (If Hu is a single edge or a cycle, HX is a
single or double edge, and the cost is trivially a constant.)
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Lemma 6.7 For a compacted head HX = (VX , EX ), its density is |EX |
|VX | ≥ 11

10 .

Proof Consider the following partition VX = {r} ∪ V2 ∪ V3 where: r is the root; V2
is the set of vertices with degree 2 and; V3, the vertices with degree ≥ 3. Since HX

is compacted DFS tree of a biconnected graph, we have that V2 is a subset of the
leaves and V3 contains the set of internal vertices (except r ). There are no vertices
with degree 1 and d(r) ≥ 2. Let x = ∑

v∈V3
d(v) and y = ∑

v∈V2
d(v). We can write

the density as a function of x and y, namely,

|EX |
|VX | = x + y + d(r)

2(|V3| + |V2| + 1)

Note that |V3| ≤ x
3 as the vertices in V3 have at least degree 3, |V2| = y

2 as vertices
in V2 have degree exactly 2. Since d(r) ≥ 2, we derive the following bound

|EX |
|VX | ≥ x + y + 2

2
3 x + y + 2

Consider any graph with |VX | > 3 and its DFS tree rooted at r . Note that: (i) there
are no tree edges between any two leaves, (ii) every vertex in V2 is a leaf and (iii)
no leaf is a child of r . Therefore, every tree edge incident in a vertex of V2 is also
incident in a vertex of V3. Since exactly half the incident edges to V2 are tree edges
(the other half are back edges) we get that y ≤ 2x .

With |VX | ≥ 3 there exists at least one internal vertex in theDFS tree and therefore
x ≥ 3.

minimize
x + y + 2
2
3 x + y + 2

subject to 0 ≤ y ≤ 2x,

x ≥ 3.

Since for any x the function is minimized by the maximum y s.t. y ≤ 2x and for
any y by the minimum x , we get

|EX |
|VX | ≥ 9x + 6

8x + 6
≥ 11

10
.

Specifically, let α = 11
10 and write α = 1 + 2/β for a constant β: we have that

|EX | + |VX | = (|EX | − |VX |) + 2|VX | ≤ (|EX | − |VX |) + β(|EX | − |VX |) = α+1
α−1

(|EX |−|VX |). Thus, we can charge each leaf with a cost of c0(|VX |+|EX |)
|EX |−|VX |+1 ≤ c0

α+1
α−1 =

O(1). This motivates the definition of HX , since Lemma 6.7 does not necessarily
hold for the head Hu (due to the unary nodes in its DFS tree).

One last step to bound
∑

HX
c0(|VX |+ |EX |): as noted before, a root-to-leaf trace

for the string storing π has |π | left branches by Lemma 6.4, and as many spines,



92 6 Enumerating Cycles and (s, t)-Paths in Undirected Graphs

each spine charging c0
α+1
α−1 = O(1) to the leaf at hand. This means that each of

the |Ps,t (G)| leaves is charged for a cost of O(|π |), thus bounding the sum as∑
r spine T (r) = ∑

HX
c0(|VX | + |EX |) = O(

∑
π∈Ps,t (G) |π |). This completes the

Proof of Lemma 6.5. As a corollary, we obtain the following result.

Lemma 6.8 The recursion tree R with cost as in Eq. (6.1) induces an O(|π |) amor-
tized cost for each (s, t)-path π .

6.5 Certificate Implementation and Maintenance

The certificateC associatedwith a node 〈πs , u, C〉 in the recursion tree is a compacted
and augmentedDFS tree of bead string Bu,t , rooted at vertex u. TheDFS tree changes
over time alongwith Bu,t , and ismaintained in such away that t is in the leftmost path
of the tree. We compact the DFS tree by contracting the vertices that have degree 2,
except u, t , and the leaves (the latter surely have incident back edges). Maintaining
this compacted representation is not a difficult data-structure problem. From now on
we can assume w.l.o.g. that C is an augmented DFS tree rooted at u where internal
nodes of theDFS tree have degree≥ 3, and each vertex v has associated the following
information.

1. A doubly-linked list lb(v) of back edges linking v to its descendants w sorted by
postorder DFS numbering.

2. A doubly-linked list ab(v) of back edges linking v to its ancestors w sorted by
preorder DFS numbering.

3. An integer γ (v), such that if v is an ancestor of w then γ (v) < γ (w).
4. The smallest γ (w) over all w, such that (h, w) is a back edge and h is in the

subtree of v, denoted by lowpoint(v).

Given three vertices v, w, x ∈ C such that v is the parent of w and x is not in the
subtree2 of w, we can efficiently test if v is an articulation point, i.e. lowpoint(w) ≤
γ (v). (Note that we adopt a variant of lowpoint using γ (v) in place of the preorder
numbering [118]: it has the same effect whereas using γ (v) is preferable since it is
easier to dynamically maintain.)

Lemma 6.9 The certificate associated with the root of the recursion can be computed
in O(m) time.

Proof In order to set t to be in the leftmost path, we perform a DFS traversal of
graph G starting from s and stop when we reach vertex t . We then compute the DFS
tree, traversing the path s � t first. When visiting vertex v, we set γ (v) to depth of
v in the DFS. Before going up on the traversal, we compute the lowpoints using the
lowpoints of the children. Let z be the parent of v. If lowpoint(v) ≤ γ (z) and v is not

2 The second condition is always satisfied when w is not in the leftmost path, since t is not in the
subtree of w.
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in the leftmost path in the DFS, we cut the subtree of v as it does not belong to Bs,t .
When first exploring the neighbourhood of v, if w was already visited, i.e. e = (u, w)

is a back edge, and w is a descendant of v; we add e to ab(w). This maintains the
DFS preordering in the ancestor back edge list. Now, after the first scan of N (v) is
over and all the recursive calls returned (all the children were explored), we re-scan
the neighbourhood of v. If e = (v, w) is a back edge and w is an ancestor of v, we
add e to lb(w). This maintains the DFS postorder in the descendant back edge list.
This procedure takes at most two DFS traversals in O(m) time. This DFS tree can
be compacted in the same time bound.

Lemma 6.10 Operation choose(C, u) can be implemented in O(1) time.

Proof If the list lb(v) is empty, return the tree edge e = (u, v) linking u to its only
child v (there are no other children). Else, return the last edge in lb(v).

We analyse the cost of updating and restoring the certificate C . We can reuse parts
of C , namely, those corresponding to the vertices that are not in the compacted head
HX = (VX , EX ) as defined in Sect. 6.3.5. We prove that, given a unary node u and
its tree edge e = (u, v), the subtree of v in C can be easily made a certificate for the
left branch of the recursion.

Lemma 6.11 On a unary node, left_update(C, e) takes O(1) time.

Proof Take edge e = (u, v). Remove edge e and set v as the root of the certificate.
Since e is the only edge incident in v, the subtree v is still a DFS tree. Cut the list
of children of v keeping only the first child. (The other children are no longer in the
bead string and become part of I .) There is no need to update γ (v).

We now devote the rest of this section to show how to efficiently maintain C on a
spine. Consider removing a back edge e from u: the compacted head HX = (VX , EX )

of the bead string can be divided into smaller biconnected components.Many of those
can be excluded from the certificate (i.e. they are no longer in the new bead string,
and so they are bookkept in I ) and additionally we have to update the lowpoints that
change. We prove that this operation can be performed in O(|VX |) total time on a
spine of the recursion tree.

Lemma 6.12 The total cost of all the operations right_update(C, e) in a spine
is O(|VX |) time.

Proof In the right branches along a spine, we remove all back edges in lb(u). This is
done by starting from the last edge in lb(u), i.e. proceeding in reverse DFS postorder.
For back edge bi = (zi , u), we traverse the vertices in the path from zi towards the
root u, as these are the only lowpoints that can change.While moving upwards on the
tree, on each vertex w, we update lowpoint(w). This is done by taking the endpoint
y of the first edge in ab(w) (the back edge that goes the topmost in the tree) and
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choosing the minimum between γ (y) and the lowpoint of each child3 of w. We stop
when the updated lowpoint(w) = γ (u) since it implies that the lowpoint of the vertex
can not be further reduced. Note that we stop before u, except when removing the
last back edge in lb(u).

To prune the branches of the DFS tree that are no longer in Bu,t , consider again
each vertex w in the path from zi towards the root u and its parent y. We check if the
updated lowpoint(w) ≤ γ (y) and w is not in the leftmost path of the DFS. If both
conditions are satisfied, we have that w /∈ Bu,t , and therefore we cut the subtree of w
and keep it in I to restore later. We use the same halting criterion as in the previous
paragraph.

The cost of removing all back edges in the spine is O(|VX |): there are O(|VX |)
tree edges and, in the paths from zi to u, we do not traverse the same tree edge twice
since the process described stops at the first common ancestor of endpoints of back
edges bi . Additionally, we take O(1) time to cut a subtree of an articulation point in
the DFS tree.

To compute left_update(C, e) in the binary nodes of a spine, we use the fact
that in every left branching from that spine, the graph is the same (in a spine we
only remove edges incident to u and on a left branch from the spine we remove
the vertex u) and therefore its block tree is also the same. However, the certificates
on these nodes are not the same, as they are rooted at different vertices. Using the
reverse DFS postorder of the edges, we are able to traverse each edge in HX only a
constant number of times in the spine.

Lemma 6.13 The total cost of all operations left_update(C, e) in a spine is
amortized O(|EX |).
Proof Let t ′ be the last vertex in the path u � t s.t. t ′ ∈ VX . Since t ′ is an articulation
point, the subtree of the DFS tree rooted in t ′ is maintained in the case of removal of
vertex u. Therefore the only modifications of the DFS tree occur in the compacted
head HX of Bu,t . Let us compute the certificate Ci : this is the certificate of the left
branch of the i th node of the spine where we augment the path with the back edge
bi = (zi , u) of lb(u) in the order defined by choose(C, u).

For the case of C1, we remove u and rebuild the certificate starting form z1 (the
last edge in lb(u)) using the algorithm from Lemma 6.9 restricted to HX and using t ′
as target and γ (t ′) as a baseline to γ (instead of the depth). This takes O(|EX |) time.

For the general case ofCi with i > 1wealso rebuild (part) of the certificate starting
from zi using the procedure from Lemma 6.9 but we use information gathered in
Ci−1 to avoid exploring useless branches of the DFS tree. The key point is that, when
we reach the first bead in common to both Bzi ,t and Bzi−1,t , we only explore edges
internal to this bead. If an edge e leaving the bead leads to t , we can reuse a subtree

3 If lowpoint(w) does not change we cannot pay to explore its children. For each vertex we dynam-
ically maintain a list l(w) of its children that have lowpoint equal to γ (u). Then, we can test in
constant time if l(w) �= ∅ and y is not the root u. If both conditions are true lowpoint(w) changes,
otherwise it remains equal to γ (u) and we stop.
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of Ci−1. If e does not lead to t , then it has already been explored (and cut) in Ci−1
and there is no need to explore it again since it will be discarded. Given the order
we take bi , each bead is not added more than once, and the total cost over the spine
is O(|EX |).

Nevertheless, the internal edges E ′
X of the first bead in common between Bzi ,t

and Bzi−1,t can be explored several times during this procedure.4 We can charge the
cost O(|E ′

X |) of exploring those edges to another node in the recursion tree, since
this common bead is the head of at least one certificate in the recursion subtree of
the left child of the i th node of the spine. Specifically, we charge the first node in the
leftmost path of the i th node of the spine that has exactly the edges E ′

X as head of its
bead string: (i) if |E ′

X | ≤ 1 it corresponds to a unary node or a leaf in the recursion
tree and therefore we can charge it with O(1) cost; (ii) otherwise it corresponds to a
first node of a spine and therefore we can also charge it with O(|E ′

X |). We use this
charging scheme when i �= 1 and the cost is always charged in the leftmost recursion
path of i th node of the spine. Consequently, we never charge a node in the recursion
tree more than once.

Lemma 6.14 On each node of the recursion tree, restore(C, I ) takes time pro-
portional to the size of the modifications kept in I .

Proof We use standard data structures (i.e. linked lists) for the representation of
certificate C . Persistent versions of these data structures exist that maintain a stack
of modifications applied to them and that can restore its contents to their previous
states. Given the modifications in I , these data structures take O(|I |) time to restore
the previous version of C .

Let us consider the case of performing left_update(C, e). We cut at most
O(|VX |) edges from C . Note that, although we conceptually remove whole branches
of theDFS tree, we only remove edges that attach those branches to theDFS tree. The
other vertices and edges are left in the certificate but, as they no longer remain attached
to Bu,t , theywill never be reached or explored. In the case ofright_update(C, e),
we have a similar situation, with at most O(|EX |) edges being modified along the
spine of the recursion tree.

From Lemmas 6.10 and 6.12–6.14, it follows that on a spine of the recursion tree
we have the costs: choose(u) on each node which is bounded by O(|VX |) time as
there are atmost |VX | back edges inu;right_update(C, e),restore(C, I ) take
O(|VX |) time; left_update(C, e) and restore(C, I ) are charged O(|VX | +
|EX |) time. We thus have the following result, completing the Proof of Theorem 6.1.

Lemma 6.15 Algorithm 19 can be implemented with a cost fulfilling Eq. (6.1), thus
it takes total O(m + ∑

r∈R T (r)) = O(m + ∑
π∈Ps,t (Bu,t )

|π |) time.

4 Consider the case where zi , . . . , z j are all in the same bead after the removal of u. The bead strings
are the same, but the roots zi , . . . , z j are different, so we have to compute the corresponding DFS
of the first component | j − i | times.



96 6 Enumerating Cycles and (s, t)-Paths in Undirected Graphs

6.6 Enumerating Paths: An Example

Let us consider the graph in Fig. 6.5. In this case Lemma 6.2 is witnessed by ver-
tex h: indeed the bead string Bs,t is B1, B2, where B1 is the graph induced by
{s, a, b, c, d, e, f, g, h, i} and B2 is the graph induced by {h, l, m, t}, and h is an
articulation point; all the paths between s and t pass through h.

By considering asVX and EX respectively thevertices and edges in B1, Lemma 6.6
with u = s states that there are at least |EX | − |VX | + 1 = 16 − 10 + 1 = 7 paths
between s and t . Indeed observe that in the DFS in Fig. 6.6, B1 is already compacted
since the unique vertex with degree two is c, that is a leaf. Moreover, observe that
|EX |/|VX | = 16/10 ≥ 11/10, as stated by Lemma 6.7.

Lemma 6.9 builds the certificate shown in Fig. 6.6. Observe that for any vertex v,
whose children are z1, . . . , zk ,

lowpoint(v) = min{lowpoint(z1), . . . , lowpoint(zk), min
(v,w)∈ab(v)

{γ (w)}}.

Moreover the elements in any set lb are put in the ascending order defined by the
post-order DFS numbering of their extremes. The elements in any set ab are put in
the ascending order defined by the pre-order DFS numbering of their extremes.

The first bipartition is applied by considering the edge (s, g), that is the last edge
in the list lb(s). The right branch operation simply deletes this edge, and modifies the
certificate by applying the method described in Sect. 6.7.1. In general by deleting an
edge, some vertices could not reach t , but this is not the case. Moreover this edge has
to be removed also from the ab lists and this can be easily done when removing the
edge from lb; finally the lowpoints have to be updated. The unique vertices, whose
lowpoints change, are on the path of tree edges from g to the root s. Lemma 6.17, in
the following section, states that the sum of these costs along the entire spine of s is
O(|VX |), where VX is the set of vertices in the bead of s and g (Fig. 6.7).

Fig. 6.5 An undirected
graph, whose biconnected
components are B1, that is
the graph induced by
{s, a, b, c, d, e, f, g, h, i},
and B2, that is the graph
induced by {h, l, m, t}
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Fig. 6.6 DFS tree starting
from s, of the graph in
Fig. 6.5, with t in the
leftmost path. Each
biconnected component is
enclosed in a circle. For any
vertex the properties
included by the certificate
are reported in the table

s

f

e

d

gb

i a

ch

l

m

t

Post-order Pre-order
Vertex γ Number Number lb ab lowpoint
s 0 1 13 (s,a),(s,g) γ (s) = 0
a 5 11 7 (a,s) γ (s) = 0
b 4 5 8 (b,c) γ (s) = 0
c 2 12 6 (c,b) γ (b) =4
d 3 4 10 (d,h),(d,i) γ (s) = 0
e 2 3 11 (e,g) γ (s) = 0
f 1 2 12 (f,g) γ (s) = 0
g 4 13 9 (g,s),(g,f),(g,e) γ (s) = 0
h 6 7 4 (h,m) (h,d) γ (d) =3
i 5 8 5 (i,d) γ (d) =3
l 7 8 3 (l,t) γ (h) =6
m 8 9 2 (m,h) γ (h) =6
t 9 10 1

/
/

/
/

/
/
/

/

/

/
/

/0

0
0

0
0

0
0
0

0

0

0
0 (t,l) γ (l) = 7

The left branch operation removes the vertex s and performs a DFS from g, as
shown by Fig. 6.8a. Observe that, since the entry point of the component h, l, m, and
t remains h, it is sufficient to perform the visit just inside the biconnected component
of s and g. In particular, since this is the first back edge of a spine, i.e. we are
computing C1 referring to Lemma 6.13, we have to rebuild the certificate from
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Bs,t , (see Figure 6.6)

Bs,t − (s,g)

Bs,t − (s,g)− (s,a)

Bg,t , (see Figure 6.8a)

Ba,t , (see Figure 6.8b)

Bf ,t , (see Figure 6.8c)

Fig. 6.7 Spine of the recursion tree starting from s
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Fig. 6.8 Certificates in the spine of s. a Bg,t . b Ba,t c B f,t

scratch by applying Lemma 6.9 (see Lemma 6.20). Observe that the component
a, b, c is cut since it does not lead to t and b is compacted.

The second bipartition along the same spine considers the paths from s to t in the
graph induced by Bs,t −(s, g) and the edge (s, a), that is the remaining edge in lb(s).
Once again, the right update operation simply deletes the edge (s, a), removes (s, a)

from both lb and ab, updates the lowpoints along the path of tree edges from s to a,
and checks whether branches have to be compressed or cut. In this case, by removing
the edge (s, a), the vertices a, b, c do not belong anymore to the same biconnected
component of s and each path from s to t in Bs,t − (s, g) − (s, a), using a or c,
should pass more than once through b. This implies that a and c have to be cut (see
also Lemma 6.18). By considering the vertices w along the path of tree edges from
a to s, that are a, b, d, e, f, s, a vertex y along this path is an articulation point if the
updated child w is such that lowpoint(w) ≤ γ (y) (and there exists at least another
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vertex not descendant of y). Once again Lemma 6.18 states that the sum of these
costs along the entire spine of s is O(|VX |), where VX is the set of vertices in the
bead of s and a. Moreover, the vertex b has to be compressed, since by cutting its
right subtree, its degree is just two. This operation takes constant time.

By followingLemma6.13, the left update operationbuilds the certificateC2 shown
in Fig. 6.8b, by reusing information from C1. Indeed observe that the certificates C1,
in Fig. 6.8a (plus the cut component a, b, c), andC2, in Fig. 6.8b, are DFSs defined on
the same graph but with different roots. The first bead in common between these two
certificates is d, b, i, h. In order to build the certificate in Fig. 6.8b, the information
about the components after d, b, i, h in the path of beads from s to t , can be inherited
by C1. However, as stated by Lemma 6.13, the visit of the bead intersection has to be
performed, since the entry points, i.e. respectively d and b, are different: this implies
that the visit of the component d, b, i, h has to be performed more than once along
the spine. Lemma 6.13 (and 6.21) says that these extra costs can be amortized in the
cost of the spines of d and b, since, when performing the recursion in d and b, the
cost along their spine is at least the size of this component.

The third and last bipartition of the spine considers the tree edge (s, f ), by looking
for paths from s to t in Bs,t − (s, g) − (s, a). Observe that, by deleting (s, g) and
(s, a), all the paths from s to t have to pass through f . This implies that the set of
paths in Bs,t − (s, g)− (s, a) not using the edge (s, f ) is empty and the right update
operation does not have to be performed. The left update operation shown in Lemma
6.11 takes constant time, since the certificate shown in Fig. 6.8c is simply obtained
by Bs,t − (s, g) − (s, a) by removing the vertex s and the edge (s, f ). If f has two
or more children, we should consider just the first child, since it is the unique one
leading to t , and cut all the other children; but since f has just one child this operation
is not performed. The lb, ab, γ and lowpoint do not need to be updated.

6.7 Extended Analysis of Operations

In this section, we present all details and illustrate with figures the operations
right_update(C, e) and left_update(C, e) that are performed along a spine
of the recursion tree. In order to better detail the procedures in Lemmas 6.12 and 6.13,
we divide them in smaller parts.We use bead string Bu,t from Fig. 6.3 and the respec-
tive spine from Fig. 6.4 as the base for the examples. This spine contains four binary
nodes corresponding to the back edges in lb(u) and an unary node corresponding to
the tree edge (u, v). Note that edges are taken in order of the endpoints z1, z2, z3, z4, v
as defined in operation choose(C, u).

By Lemma 6.2, the impact of operations right_update(C, e) and
left_update(C, e) in the certificate is restricted to the biconnected component
of u. Thus we mainly focus on maintaining the compacted head HX = (VX , EX ) of
the bead string Bu,t .
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6.7.1 Operation Right_Update(C, e)

Lemma 6.16 (Lemma 6.12 restated) In a spine of the recursion tree, operations
right_update(C, e) can be implemented in O(|VX |) total time.

In the right branches along a spine, we remove all back edges in lb(u). This is
done by starting from the last edge in lb(u), i.e. proceeding in reverse DFS postorder.
In the example from Fig. 6.3, we remove the back edges (z1, u) . . . (z4, u). To update
the certificate corresponding to Bu,t , we have to (i) update the lowpoints in each
vertex of HX ; (ii) prune vertices that cease to be in Bu,t after removing a back edge.
For a vertex w in the tree, there is no need to update γ (w).

Consider the update of lowpoints in the DFS tree. For a back edge bi = (zi , u), we
traverse the vertices in the path from zi towards the root u. By definition of lowpoint,
these are the only lowpoints that can change. Suppose that we remove back edge
(z4, u) in the example from Fig. 6.3, only the lowpoints of the vertices in the path
from z4 towards the root u change. Furthermore, consider a vertex w in the tree that
is an ancestor of at least two endpoints zi , z j of back edges bi , b j . The lowpoint of
w does not change when we remove bi . These observations lead us to the following
lemma.

Lemma 6.17 In a spine of the recursion tree, the update of lowpoints in the certifi-
cate by operation right_update(C, e) can be done in O(|VX |) total time.

Proof Take each back edge bi = (zi , u) in the order defined by choose(C, u).
Remove bi from lb(u) and ab(zi ). Starting from zi , consider each vertex w in the
path from zi towards the root u. On vertex w, we update lowpoint(w) using the
standard procedure: take the endpoint y of the first edge in ab(w) (the back edge that
goes the nearest to the root of the tree) and choosing the minimum between γ (y) and
the lowpoint of each child of w. When the updated lowpoint(w) = γ (u), we stop
examining the path from zi to u since it implies that the lowpoint of the vertex can
not be further reduced (i.e. w is both an ancestor to both zi and zi+1).

If lowpoint(w) does not change we cannot pay to explore its children. In order to
get around this, for each vertex we dynamically maintain, throughout the spine, a list
l(w) of its children that have lowpoint equal to γ (u). Then, we can test in constant
time if l(w) �= ∅ and y (the endpoint of the first edge in ab(w)) is not the root u.
If both conditions are satisfied lowpoint(w) changes, otherwise it remains equal to
γ (u) and we stop. The total time to create the lists is O(|VX |) and the time to update
is bounded by the number of tree edges traversed, shown to be O(|VX |) in the next
paragraph.

The cost of updating the lowpoints when removing all back edges bi is O(|VX |):
there are O(|VX |) tree edges and we do not traverse the same tree edge twice since
the process described stops at the first common ancestor of endpoints of back edges
bi and bi+1. By contradiction: if a tree edge (x, y) would be traversed twice when
removing back edges bi and bi+1, it would imply that both x and y are ancestors of
zi and zi+1 (as edge (x, y) is both in the path zi to u and the path zi+1 to u) but we
stop at the first ancestor of zi and zi+1.
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Let us now consider the removal of vertices that are no longer in Bu,t as
consequence of operation right_update(C, e) in a spine of the recursion tree.
By removing a back edge bi = (zi , u), it is possible that a vertex w previously in
HX is no longer in the bead string Bu,t (e.g. w is no longer biconnected to u and thus
there is no simple path u � w � t).

Lemma 6.18 In a spine of the recursion tree, the branches of the DFS that are no
longer in Bu,t due to operation right_update(C, e) can be removed from the
certificate in O(|VX |) total time.

Proof To prune the branches of the DFS tree that are no longer in HX , consider
again each vertex w in the path from zi towards the root u and the vertex y, parent
of w. It is easy to check if y is an articulation point by verifying if the updated
lowpoint(w) ≤ γ (y) and there exists x not in the subtree of w. If w is not in the
leftmost path, then t is not in the subtree ofw. If that is the case,we have thatw /∈ Bu,t ,
and therefore we cut the subtree of w and bookkeep it in I to restore later. Like in the
update the lowpoints, we stop examining the path zi towards u in a vertex w when
lowpoint(w) = γ (u) (the lowpoints and biconnected components in the path from w
to u do not change). When cutting the subtree of w, note that there are no back edges
connecting it to Bu,t (w is an articulation point) and therefore there are no updates to
the lists lb and ab of the vertices in Bu,t . Like in the case of updating the lowpoints,
we do not traverse the same tree edge twice (we use the same halting criterion).

WithLemmas6.17 and6.18wefinalize theProof ofLemma6.12. Figure6.9 shows
the changes the bead string Bu,t fromFig. 6.3 goes through in the corresponding spine
of the recursion tree.
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Fig. 6.9 Example application of right_update(C, e) on a spine of the recursion tree. a Step 1.
b Step 2. c Step 3. d Step 4 (final)
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6.7.2 Operation Left_Update(C, e)

In the binary nodes of a spine, we use the fact that in every left branching from that
spine the graph is the same (in a spine we only remove edges incident to u and on a
left branch from the spine we remove the vertex u) and therefore its block tree is also
the same. In Fig. 6.10, we show the resulting block tree of the graph from Fig. 6.3
after having removed vertex u. However, the certificates on these left branches are not
the same, as they are rooted at different vertices. In the example wemust compute the
certificatesC1 . . . C4 corresponding to bead strings Bz1,t . . . Bz4,t . We do not account
for the cost of the left branch on the last node of spine (corresponding to Bv,t ) as the
node is unary and we have shown in Lemma 6.11 how to maintain the certificate in
O(1) time.

By using the reverse DFS postorder of the back edges, we are able to traverse
each edge in HX only an amortized constant number of times in the spine.

Lemma 6.19 (Lemma 6.13 restated) The calls to operation left_update(C, e)
in a spine of the recursion tree can be charged with a time cost of O(|EX |) to
that spine.

To achieve this time cost, for each back edge bi = (zi , u), we compute the
certificate corresponding to Bzi ,t based on the certificate of Bzi−1,t . Consider the
compacted head HX = (VX , EX ) of the bead string Bu,t . We use O(|EX |) time to
compute the first certificate C1 corresponding to bead string Bz1,t . Figure6.11 shows
bead string Bz1,t from the example of Fig. 6.3.

Lemma 6.20 The certificate C1, corresponding to bead string Bz1,t , can be com-
puted in O(|EX |) time.

Fig. 6.10 Block tree after
removing vertex u
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Fig. 6.11 Certificates of the
left branches of a spine. a
Bz1,t . b Bz2,t . c Bz3,t . d Bz4,t
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Proof Let t ′ be the last vertex in the path u � t s.t. t ′ ∈ VX . Since t ′ is an articulation
point, the subtree of the DFS tree rooted in t ′ is maintained in the case of removal
vertex u. Therefore the only modifications of the DFS tree occur in head HX of Bu,t .

To compute C1, we remove u and rebuild the certificate starting form z1 using
the algorithm from Lemma 6.9 restricted to HX and using t ′ as target and γ (t ′) as
a baseline to γ (instead of the depth). In particular we do the following. To set t ′ to
be in the leftmost path, we perform a DFS traversal of graph HX starting from z1
and stop when we reach vertex t ′. Then compute the DFS tree, traversing the path
z1 � t ′ first.

Update of γ . For each tree edge (v, w) in the t ′ � z1 path, we set γ (v) = γ (w)−1,
using γ (t ′) as a baseline. During the rest of the traversal, when visiting vertex v, let
w be the parent of v in the DFS tree. We set γ (v) = γ (w) + 1. This maintains the
property that γ (v) > γ (w) for any w ancestor of v.

Lowpoints and pruning the tree. Bottom-up in the DFS-tree, compute the low-
points using the lowpoints of the children. For z the parent of v, if lowpoint(v) ≤ γ (z)
and v is not in the leftmost path in the DFS, cut the subtree of v as it does not belong
to Bz1,t .

Computing lb and ab. In the traversal, when finding a back edge e = (v, w), if w
is a descendant of v we append e to ab(w). This maintains the DFS preorder in the
ancestor back edge list. After the first scan of N (v) is over and all the recursive calls
returned, re-scan the neighbourhood of v. If e = (v, w) is a back edge and w is an
ancestor of v, we add e to lb(w). This maintains the DFS postorder in the descendant
back edge list. This procedure takes O(|EX |) time.

To compute each certificate Ci , corresponding to bead string Bzi ,t , we are able to
avoid visiting most of the edges that belong Bzi−1,t . Since we take zi in reverse DFS



104 6 Enumerating Cycles and (s, t)-Paths in Undirected Graphs

postorder, on the spine of the recursion we visit O(|EX |) edges plus a term that can
be amortized.

Lemma 6.21 For each back edge bi = (zi , u) with i > 1, let EX
′
i be the edges in

the first bead in common between Bzi ,t and Bzi−1,t . The total cost of computing all
certificates Bzi ,t in a spine of the recursion tree is: O(|EX | + ∑

i>1 |EX
′
i |).

Proof Let us compute the certificate Ci : the certificate of the left branch of the i th
node of the spine where we augment the path with back edge bi = (zi , u) of lb(u).

For the general case ofCi with i > 1wealso rebuild (part) of the certificate starting
from zi using the procedure from Lemma 6.9 but we use information gathered in
Ci−1 to avoid exploring useless branches of the DFS tree. The key point is that, when
we reach the first bead in common to both Bzi ,t and Bzi−1,t , we only explore edges
internal to this bead. If an edge e that leaves the bead leads to t , we can reuse a
subtree of Ci−1. If e does not lead to t , then it has already been explored (and cut)
in Ci−1 and there is no need to explore it again since it is going to be discarded.

In detail, we start computing a DFS from zi in Bu,t until we reach a vertex
t ′ ∈ Bzi−1,t . Note that the bead of t ′ has one entry point and one exit point in Ci−1.
After reaching t ′ we proceed with the traversal using only edges already in Ci−1.
When arriving at a vertex w that is not in the same bead of t ′, we stop the traversal.
If w is in a bead towards t , we reuse the subtree of w and use γ (w) as a baseline of
the numbering γ . Otherwise w is in a bead towards zi−1 and we cut this branch of
the certificate. When all edges in the bead of t ′ are traversed, we proceed with visit
in the standard way.

Given the order we take bi , each bead is not added more than once to a certificate
Ci , therefore the total cost over the spine is O(|EX |). Nevertheless, the internal edges
EX

′
i of the first bead in common between Bzi ,t and Bzi−1,t are explored for each back

edge bi .

Although the edges in EX
′
i are in a common bead between Bzi ,t and Bzi−1,t , these

edges must be visited. The entry point in the common bead can be different for zi and
zi−1, the DFS tree of that bead can also be different. For an example, consider the
case where zi , . . . , z j are all in the same bead after the removal of u. The bead strings
Bzi ,t . . . Bz j ,t are the same, but the roots zi , . . . , z j of the certificate are different, so
we have to compute the corresponding DFS of the first bead | j − i | times. Note that
this is not the case for the other beads in common: the entry point is always the same.

Lemma 6.22 The cost O(|EX | + ∑
i>1 |EX

′
i |) on a spine of the recursion tree can

be amortized to O(|EX |).
Proof We can charge the cost O(|EX

′
i |) of exploring the edges in the first bead in

common between Bzi ,t and Bzi−1,t to another node in the recursion tree. Since this
common bead is the head of at least one certificate in the recursion subtree of the left
child of the i th node of the spine. Specifically, we charge the first and only node in the
leftmost path of the i th child of the spine that has exactly the edges EX

′
i as head of its

bead string: (i) if |EX
′
i | ≤ 1 it corresponds to a unary node or a leaf in the recursion
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tree and therefore we can charge it with O(1) cost; (ii) otherwise it corresponds to a
first node of a spine and therefore we can also charge it with O(|EX

′
i |). We use this

charging scheme when i �= 1 and the cost is always charged in the leftmost recursion
path of i th node of the spine, consequently we never charge a node in the recursion
tree more than once.

Lemmas 6.21 and 6.22 finalize the Proof of Lemma 6.13. Figure6.11 shows the
certificates of bead strings Bzi ,t on the left branches of the spine from Fig. 6.4.

6.8 Conclusion and Open Problems

We showed in this chapter the first optimal solution to list all the cycles of an undi-
rected graph and all the paths from a given source to a given target. This result
improves the Johnson’s algorithm, that was still the theoretically most efficient in
the case of undirected graphs. The main question arising from our work is whether
it is possible to obtain an optimal algorithm to list all the paths and cycles in a
directed graph.
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Chapter 7
Enumerating Diametral and Radial Vertices
and Computing Diameter and Radius
of a Graph

7.1 Introduction

Structural analysis allows the identification of important and not important vertices
within a network and for this reason it has become very popular in many disciplines.
In general, the importance of a vertex can be defined in many different ways. The
effectiveness of each centrality measure depends on the context of application.

In this chapter, we will focus on the enumeration of the radial and diametral
vertices, i.e. central and peripheral vertices according to the eccentricity notion of
centrality, and on the computation of the radius and diameter of biological networks
and of real world graphs in general. Recall that the diameter D is the maximum
distance d(x, y) among all the pairs of vertices x, y. In other words, the diameter
of a graph is the maximum forward or backward eccentricity of its vertices, where
the forward and backward eccentricities of a vertex x are respectively eccF (x) =
maxy∈V d(x, y) and eccB(x) = maxy∈V d(y, x). The radius R is instead defined
as the minimum forward eccentricity of its vertices. Diametral sources and targets
are thus defined as all the vertices x such that eccF (x) = D and eccB(x) = D
respectively; the radial vertices are instead all the vertices x such that eccF (x) = D.

In the case of an undirected graph, whenever the graph is not connected, i.e.
when at least for a pair of vertices x, y there is no path from x to y, the radius and
diameter of its connected components are usually studied. In the more general case
of a directed graph, whenever the graph is not strongly connected, i.e. at least for a
pair of vertices x, y there is no path from x to y, we will consider in this work the
radius and diameter of its strongly connected components.

In the case of biological networks, for instance inmetabolic networks, the diameter
indicates howmany reactions have to be performed in order to produce anymetabolite
from any other metabolite [119]. For several biological networks, it has been studied
in [120, 121] and for protein-protein interactions in [122]. The radius can indicate how
many reactions have to be performed at least in order to produce all the metabolites
from any other metabolite.
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The analysis of real world networks in general, such as citations, collaboration,
communication, road, social, and web networks, has attracted a lot of attention, and
in [17] the fundamental analysis measures have been reviewed. Moreover, the size of
these networks has been increasing rapidly, so that, in order to study such measures,
algorithms able to handle huge amount of data are needed. Hence the contribution
of our algorithms is not just limited to biological networks analysis, but extends
to complex networks analysis in general. Indeed, in the case of the diameter, for
social networks, in which every vertex is an individual and the edges represent their
friendship, the diameter has been studied for several social networks in [120, 123,
124], for peer to peer social networks in [125], for mobile social networks in [126],
for Facebook in [22, 23]. For several scientific collaboration networks, in which
every vertex is a scientist and scientists are linked whenever they have collaborated
for a research paper, the diameter has been studied in [127, 120]. In the case of a web
network, in which every vertex corresponds to a web page and the arcs correspond to
hyper links, the diameter indicates how quickly any page can be reached. For several
web networks, this has been estimated in [120, 128, 129]. Because of the huge
size of the networks, in almost any of those works, the diameter of the connected
components of undirected graphs or the strongly connected components of directed
graphs was just estimated. For these reasons, we have shown the effectiveness of
our algorithms not only for biological networks but also for several other kinds of
complex networks.

Previous Work
The Single-source Shortest Path (in short sssp) is the problem of finding all the
shortest paths from a given vertex to all the others. In general this problem has
complexity O(m) in the case of unweighted graphs by using the traditional bfs
algorithmand O((m+n) log n) in the case ofweighted graphs, by using theDijkstra’s
Algorithm.

In general, algorithms for finding the exact radius or diameter solve the All Pairs
Shortest Path problem (in short apsp) that is the problem of finding the shortest path
between all pairs of vertices of the graph, so that the maximum distance obtained
is the diameter. This can be efficiently done by applying the classical text-book
algorithm, i.e. solving for any vertex the sssp problem, or by applying fast matrix
multiplication with complexity O(n2.376) [123]. See [130] for a survey. However,
in the context of huge real world networks, these approaches are not practical and
usually just estimations or bounds can be provided.

Some algorithms are able to estimate the cumulative distribution of the shortest
path lengths of any kind of graph and can be applied to obtain an estimation of the
radius and diameter with a small additive error using much less computations with
respect to the apsp. This is the case of ANF (Approximate Neighbourhood Function)
in [131], HyperANF in [132], HADI in [133], and Cohen frameworks [134–138].

A lower bound of the diameter or an upper bound of the radius can be provided
by using a sample of the vertices and returning respectively the maximum and the
minimum eccentricity found, as done in [139] for the diameter, or by using other
heuristics.
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In the case of the radius, this sampling method has been exploited for a huge web
graph in [128], but as far as we know no other methods have been proposed.

In the case of the diameter, for undirected graphs a lower bound can be provided
by using the so called double sweep algorithm: pick the farthest vertex from a random
vertex and return its eccentricity. The idea can be iterated picking at each step the
farthest vertex from the previous one and maintaining the highest eccentricity found
as in [120]. In realworld networks actually this lower bound is very good and, in order
to prove the effectiveness of this approach, several works, like [19, 140], propose
strategies to find a matching or close upper bound. Recent advances have shown
that in real cases a matching between a lower and upper bound for the diameter
can be found by applying a very small number of computations of sssp, even if,
in the worst case, the time complexity degenerates in the time complexity of the
apsp problem. In [20], and independently in [141], a lower and upper bound on the
diameter are indeed dynamically refined by calculating the eccentricity of vertices
properly chosen, so that also the diameter of huge real world undirected graphs has
been discovered.

The algorithm shown in [20] has been integrated into the library in [142], and has
been used in order to compute the exact diameter of several quite huge subgraphs of
the Facebook graph: a highly parallel version of this method was able to compute
the diameter of the largest subgraph (approximately 149.1M of vertices and 15.9G
of edges) in twenty minutes [22, 23].

For directed graphs, in order to obtain a lower bound for the diameter, the idea of
the double sweep has been adapted by [128]: pick the farthest vertex from a random
vertex and return its backward eccentricity, i.e. its eccentricity in the transposed
graph. In [18] the effectiveness of this directed version of the double sweep has been
verified and the technique in [20] has been reviewed and generalized in order to
calculate the diameter of directed graphs too.

Contribution
As a result of our previous works [18–21], we will present the difub algorithm,
which is able to calculate the diameter and to list all the vertices that are sources or
targets of a diametral path of (strongly) connected components of huge real world
(directed) graphs in time O(m) in practice. Our experimental results are supported by
considering an extensive dataset of real world graphs. By using the same technique,
we will show an algorithm for efficiently computing the radius and listing all the
vertices that are sources of a radial path of such graphs. For the same dataset we will
show the effectiveness of this algorithm. It is worth of noting that our algorithms
extend also to weighted graphs.

Parts of this chapter appeared in [2, 143].

Structure of the Chapter
This chapter is organised as follows: in Sect. 7.2 we will overview the most popular
centrality measures that have been applied to biological networks to discover vertex
essentiality; in Sect. 7.3, respectively Sect. 7.4, we will show our algorithm to com-
pute the diameter, respectively the radius, and to list all the peripheral, respectively the



112 7 Enumerating Diametral and Radial Vertices and Computing Diameter …

central, vertices according to the eccentricity notion of centrality; in Sect. 7.5 we will
show how these algorithms work through an example and in Sect. 7.6, we will report
some graphs in which our algorithms achieve the worst performances; in Sect. 7.7
we will show that this is not the case of real world graphs. Finally, in Sect. 7.8 we
conclude with some open problems.

7.2 Overview on Centrality Analysis for Biological Networks

Given a network, it is natural to wonder how important each vertex is to the function-
ality of the network. A number of graphmeasures have been developed for evaluating
vertex centrality [144–149] and several tools allow to compute networkmetrics, such
as CentiBiN [144], VisANT [150], Visone [151], Pajek [152], CentiScaPe [149], and
CentiLib [153]. Centrality measures can be local (or neighbourhood based) or global
(distance or feedback based).

Local Measures
With neighbourhood-based measures, such as degree, the importance of the ver-
tices is inferred from their local connectivity and the more connections a vertex has
the more central it is. Highly connected vertices (hubs) were found to possess spe-
cial properties in the Yeast Protein-Protein Interaction network: they are more often
essential than non-hub proteins [154, 155]). They tend to play a central role in the
modular organization of a network [156, 65] and seem to be evolutionarily more
conserved [157]. Nevertheless, since then, several works have raised doubts on some
of these associations [158, 159].

There is no consensus in the literature on how to define a hub, and different criteria
have been used: a certain fraction of the highest degree vertices [160]; vertices with
a certain fraction of the total connectivity [161]; a degree greater than an arbitrary
threshold [65, 162, 163].

In order to have an indication about the homogeneity of the vertices of a network,
it is interesting to study the degree distribution that for most biological networks
is well fitted by a power-law (P(k) ∝ k−γ ) with γ ≈ 2, where k corresponds to
the degree. In these networks, a few hubs play a fundamental role for the integrity
and navigability of the network [156], while a vast majority of the vertices has
only a few connections. This degree distribution has been associated to robustness
against random vertex removal. Robustness to the loss of a vertex in the Metabolic
network indicates the presence of alternative pathways bypassing the missing reac-
tion; in Gene Regulatory networks, it may correspond to the presence of alternative
ways of transducing and controlling information. On the contrary, these networks
are highly sensitive to directed attacks, because removal of hubs deeply affects net-
work functionality [164]. Even though much research has been done on the power-
law distribution and its universality in biological networks, criticisms have been
raised [165].
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The local connectivity of vertices can be studied in further detail by using either
assortativity or dyadicity. The first measure is the correlation between the degree
of adjacent vertices [166]. Maslov and Sneppen [167] found that hubs in the Yeast
Protein-Protein Interaction network are mostly connected to non-hubs, and are there-
fore well separated from each other. Dyadicity [168] measures the degree to which
vertices of a network are connected to vertices sharing some characteristic (functional
classification, essentiality, involvement in a disease and so on) and is therefore able
to characterize the modular structure of a network, considering the distribution of
the functions over the vertices and their connectivity [169]. A network is called het-
erophilic (heterophobic) when different categories are connected more (less) often
than expected following a random model. It has been recently used to study the
coupling between structure and functionality in transcriptional and non coding (nc)
RNA-protein interactions networks [170]. The results showed that most transcrip-
tional regulators and ncRNAs tend to connect to genes/proteins of other functional
classes, suggesting that regulators do not really belong to a functional class and tend
to coordinate several of them [170]. On the converse, in Protein-Protein Interaction
networks connections more often involve proteins of a same functional category.

Global Measures
Closeness [171], eccentricity, and shortest path based betweenness [172] are based on
global properties of a network, in particular to the shortest path length between its ver-
tices. The closeness of a vertex depends on its average distance from the others and is
of particular interest for information networks (such as signalling and gene regulatory
networks), because it measures how fast information flows from a vertex of interest
to all the reachable vertices on the average [173]. It has been recently integrated with
biological information in a parameter-free gene prioritization approach thatmeasures
the interconnectedness (ICN) between genes in a network [174]. ICNmeasures close-
ness of each candidate gene to genes possessing the interesting property by consider-
ing alternative paths in addition to the direct link and the shortest path distances. The
closeness can be efficiently approximated in the case of big networks by using [175].

The eccentricity of a vertex is the length of the longest shortest path starting from
it, so that a vertex is central if its farthest vertex is not far. It has been shown that
in the metabolic network of E. coli the rank order of the vertices based on eccen-
tricity yields very similar rank order to the one based on the closeness close to the
central vertices, despite the fact that these measures may disagree significantly in
the case of not central vertices [176]; for the protein network of Yeast, it has been
shown that even if eccentricity is not effective to find essential proteins because not
essential proteins can have high eccentricity, the proteins having high eccentricity
can be considered not essential [176, 177]. In the following section we will exploit
an algorithm to find efficiently all the peripheral and central vertices, according to
this notion of centrality.

Shortest path based betweenness depends on the number of shortest paths cross-
ing a vertex. In Protein-Protein Interaction networks, betweenness can be interpreted
as the relevance of a protein to be intermediary in the interaction between other
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proteins, by assuming that this interaction passes through shortest paths [149]. Bot-
tlenecks are vertices with high betweenness centrality and have been found to be
key connectors with surprising functional and dynamical properties, often essential
[178]. Bottleneck and hub genes were identified in coexpression networks inferred
from experimental data, and found to be often essential for virulence in Salmonella
typhimuriumwith the role ofmediators of transitions between different cellular states
or of sentinels that reflect the dynamics of these transitions [179]. Cell cycle check-
points were found to be bottlenecks in a gene coexpression network of cell cycle
regulated genes in the fission Yeast [180].

Network metrics in general [181–183] and betweenness centrality in particular
are also used for the rational prediction of drug targets [184]. Essential genes are
preferred targets for drug design and central genes are more likely to be essential.
Another constraint was imposed in this particular case: the gene must be essential
for the pathogen but not for the host, to reduce side effects of the drug.

One problem of shortest path based measures is that communication between
biological entities is assumed to pass along those paths, which is often not plausible:
from the point of view of Metabolic networks, the shortest path might be defined on
the basis of the energy/cofactor requirements instead of the number of hops, while
in Gene Regulatory networks and Protein-Protein Interaction networks all active
connections will take place and not only the shortest ones. In the former, targets
with different shortest paths to a common regulator may exhibit hierarchical gene
expression patterns as it is the case for flagellar genes [185].

To overcome the limitation of shortest paths, a vertex can be considered central
when it is crossed by many random walks: this is the case of the random walk based
betweenness centrality [186]. Some feedback based measures are implicitly based
on random walks, like eigenvector [187] and spectral centrality [188]. Eigenvector
centrality has been applied to several metabolic networks [189] and has been shown
to outperform other metrics for the identification of essential proteins in the Protein-
Protein Interaction network of Yeast [190], together with subgraph centrality [191].

However, since the network express just the potential links and not the real ones,
many walks are not feasible, since they traverse edges that are hardly occur together
at the same time in the network. For these reasons, very recently, gene expression
has been integrated in a centrality measure called Pec [192] which has been used to
identify essential genes in Yeast. This measure exploits the strength of the connec-
tivity between two adjacent vertices based on an Edge Clustering Coefficient [193],
weighted by the co-expression between genes in experimental data.

7.3 Computing the Diameter and Enumerating
All the Diametral Vertices

Let G = (V, E) be a directed strongly connected graph and let u be any vertex
in V . Let F F

i (u) be the forward fringe of u, that is, the set of vertices x such that
d(u, x) = i . Similarly, let F B

i (u) be the backward fringe, that is, the set of vertices
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x such that d(x, u) = i . In other words, F F
i (u) (respectively, F B

i (u)) includes all
vertices at level i of T F

u (respectively, T B
u ), where recall that T F

u (respectively, T B
u )

is the forward (respectively, backward) bfs tree.

Remark 7.1 For any two integers i, j with 1 ≤ i ≤ eccB(u) and 1 ≤ j ≤ eccF (u),
for any two vertices x, y such that x ∈ F B

i (u) and y ∈ F F
j (u), d(x, y) ≤ i + j ≤

2max{i, j}.
Indeed, since x ∈ F B

i (u) and y ∈ F F
j (u), there exists a path from x to y passing

through u that is long i + j , so that i + j is an upper bound for d(x, y).

Theorem 7.1 For any integer i with 1 < i ≤ eccB(u), for any integer k with
1 ≤ k < i , and for any vertex x ∈ F B

i−k(u) such that eccF (x) > 2(i − 1), there
exists y ∈ F F

j (u), for some j ≥ i , such that d(x, y) = eccF (x). Moreover for any

y such that d(x, y) = eccF (x), y ∈ F F
j (u) for some j ≥ i .

Proof Since eccF (x) > 2(i −1), there exists y such that d(x, y) > 2(i −1). For any
y such that d(x, y) > 2(i − 1), if y was in F F

j (u) with j < i , then from Remark 7.1
it would follow that d(x, y) ≤ 2max{i − k, j} ≤ 2max{i − k, i − 1} = 2(i − 1),
which is a contradiction. Hence, y must be in F F

j (u) with j ≥ i .

Similarly to the proof of Theorem 7.1, we can also prove the following symmetrical
result.

Theorem 7.2 For any integer i with 1 < i ≤ eccF (u), for any integer k with
1 ≤ k < i , and for any vertex x ∈ F F

i−k(u) such that eccB(x) > 2(i − 1), there
exists y ∈ F B

j (u), for some j ≥ i , such that d(y, x) = eccB(x). Moreover for any

y such that d(y, x) = eccB(x), y ∈ F B
j (u), for some j ≥ i .

In order to describe the difub algorithm, we also need the following definitions. Let

B F
j (u) =

{
maxx∈F F

j (u)eccB(x) if j ≤ eccF (u),

0 otherwise

and

B B
j (u) =

{
maxx∈F B

j (u)eccF (x) if j ≤ eccB(u),

0 otherwise.

By using these two definitions, we are now ready to introduce the difub algorithm,
which is shown inAlgorithm 20. Intuitively, Theorems 7.1 and 7.2 suggest to perform
a forward and a backward bfs from a vertex u, and to visit T F

u and T B
u in a bottom-up

fashion, starting from the vertices in the last fringes. For each level i , we compute
the eccentricities of all the vertices in the corresponding fringes: if the maximum
eccentricity found lb is greater than 2(i − 1) then we can conclude that lb is the
diameter, since the eccentricities of all the vertices of the remaining levels cannot be
greater than lb.
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Algorithm 20: difub to compute the diameter
Input: A strongly connected di-graph G, a vertex u, a lower bound l for the diameter
Output: The diameter D

1 i ← max{eccF (u), eccB(u)};
2 lb ← max{eccF (u), eccB(u), l};
3 ub ← 2i ;
4 while ub − lb > 0 do
5 lb ← max{lb, B B

i (u), B F
i (u)};

6 if lb > 2(i − 1) then
7 return lb;
8 end
9 ub ← 2(i − 1);

10 i ← i − 1;
11 end
12 return lb;

Theorem 7.3 Algorithm 20 correctly computes the value of the diameter of G.

Proof Let D′ be the value returned by Algorithm 20. Note that the diameter cannot
be smaller than D′ since this value is the length of a shortest path. By contradiction
assume that there exists a vertex x such that eccF (x) > D′. Let j be the last value of
i for which Algorithm 21 has computed B B

i (u) and B F
i (u): thus D′ ≥ 2( j − 1). For

any vertex v in F B
j (u) ∪ F B

j+1(u) ∪ · · · ∪ F B
eccB (u)(u), we have computed eccF (v),

and for any vertex w in F F
j (u) ∪ F F

j+1(u) ∪ · · · ∪ F F
eccF (u)(u), we have computed

eccB(w), lb is the maximum eccentricity found. This implies that x have to belong
to F B

h (u) for some h < j . Since eccF (x) > D′ ≥ 2( j −1), from Theorem 7.1, there
exists y ∈ F F

k (u), for some k ≥ j , such that d(x, y) = eccF (x). In other words there
exists y ∈ F F

j (u)∪ F F
j+1(u)∪· · ·∪ F F

eccF (u)(u), such that eccB(y) ≥ eccF (x) > D′.
Since D′ is the maximum eccentricity found, this is a contradiction.

In order to present the algorithm to enumerate all the diametral sources and targets,
we define the following quantities, SF

j (u), that is the set of vertices belonging to

F F
j (u) whose backward eccentricity is B F

j (u), and the set of their farthest vertices

in the transposed graph T F
j (u).

SF
j (u) =

{ {x ∈ F F
j (u) : eccB(x) = B F

j (u)} if j ≤ eccF (u),

∅ otherwise

T F
j (u) =

⋃

x∈SF
j (u)

{y : d(y, x) = B F
j (u)}
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Analogously, we define SB
j (u), that is the set of vertices belonging to F B

j (u) whose

forward eccentricity is B B
j (u), and the set of their farthest vertices T B

j (u).

SB
j (u) =

{ {x ∈ F B
j (u) : eccF (x) = B B

j (u)} if j ≤ eccB(u),

∅ otherwise.

T B
j (u) =

⋃

x∈SB
j (u)

{y : d(x, y) = B B
j (u)}

With respect to Algorithm 20, every time the lower bound lb is updated, because
vertices, whose forward or backward eccentricity is greater than lb are found in
the current fringe sets, Algorithm 21 empties and updates also the set of diametral
sources DS and the set of diametral targets DT. Every time vertices, whose forward
or backward eccentricity is equal to the current value of lb, these vertices are added
to the sets DS and DT, respectively. It is worth observing that whenever the guarding
condition of the loop is satisfied, because lb = ub = 2i , for some i , the eccentricities
of the vertices belonging to F F

i (u) or F B
i (u) have not been checked, while some

of these vertices could have still forward or backward eccentricity equal to 2i . Thus
this check is done in the last part of the algorithm before the returning statement.

Theorem 7.4 Algorithm 21 correctly computes all the diametral sources and targets
of G.

Proof Algorithm 21 performs at least all the visits performed by Algorithm 20 and
return the maximum eccentricity found. From Theorem 7.3, it follows that Algo-
rithm21 returns the diameter D. The following invariant holds: for any vertex v ∈ DS,
eccF (v) ≥ lb; indeed v ∈ SB

i (u) and eccF (v) = lb or v ∈ T F
i (u) for some i and

eccF (v) ≥ lb. Since lb is finally the diameter, all the vertices in DS are diametral
sources. Let us prove that all the diametral sources are in DS. By contradiction,
assume that there exists a vertex x such that x /∈ DS and eccF (x) = D. Let j be the
last value of i for which Algorithm 21 has computed B B

i (u) and B F
i (u). Thus for

any vertex v in F B
j (u) ∪ F B

j+1(u) ∪ · · · ∪ F B
eccB (u)(u), we have computed eccF (v),

and for any vertex w in F F
j (u) ∪ F F

j+1(u) ∪ · · · ∪ F F
eccF (u)(u), we have computed

eccB(w). Observe that for any pair of vertices v, w such that d(v, w) = D, Algorithm
21 is such that, if v belongs to F B

h (u) for some h ≥ j , v is added to DS and w is
added to DT, if w belongs to F F

k (u) for some k ≥ j , w is added to DT and v is
added to DS. Thus x have to belong to F B

h (u) for some h < j and any y, such that
d(x, y) = D, have to belong to F F

k (u) for some k < j . By applying Theorem 7.1,
if D = eccF (x) > 2( j − 1) then y should belong to F F

z (u) for some z ≥ j : thus
D ≤ 2( j − 1). There are the following two cases.

• Algorithm 21 stops and returns inside the loop. In this case, B F
j (u) and B B

j (u) are
the last computed and lb = D > 2( j − 1), that is a contradiction.

• Algorithm 21 stops and returns outside the loop. In this case B F
j (u) and B B

j (u)

are the last computed and lb = ub = D = 2 j , that is a contradiction.
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Algorithm 21: difub to enumerate all the diametral vertices
Input: A strongly connected di-graph G, a vertex u, a lower bound l for the diameter
Output: The diameter D, DS, that is the set of vertices x such that eccF (x) = D, DT, that is

the set of vertices x such that eccB(x) = D.
1 i ← max{eccF (u), eccB(u)};
2 lb ← max{eccF (u), eccB(u), l};
3 ub ← 2i ;
4 DS ← ∅; DT ← ∅;
5 while ub − lb > 0 do
6 if B B

i (u) > lb then
7 lb ← B B

i (u);
8 DS ← SB

i (u); DT ← T B
i (u);

9 else
10 if B B

i (u) = lb then
11 DS ← DS ∪ SB

i (u); DT ← DT ∪ T B
i (u);

12 end
13 end
14 if B F

i (u) > lb then
15 lb ← B F

i (u);
16 DS ← T F

i (u); DT ← SF
i (u);

17 else
18 if B F

i (u) = lb then
19 DS ← DS ∪ T F

i (u); DT ← DT ∪ SF
i (u);

20 end
21 end
22 if lb > 2(i − 1) then
23 return lb, DS, DT;
24 end
25 ub ← 2(i − 1);
26 i ← i − 1;
27 end
28 if B B

i (u) = lb then
29 DS ← DS ∪ SB

i (u); DT ← DT ∪ T B
i (u);

30 end
31 if B F

i (u) = lb then
32 DS ← DS ∪ T F

i (u); DT ← DT ∪ SF
i (u);

33 end
34 return lb, DS, DT;

Analogously, it is possible to prove thatDT contains all and only the diametral targets.

Observe that in order to compute B F
j (u) (respectively, B B

j (u)), we need to

compute eccB(x) (respectively, eccF (x)) for any node x in F F
j (u) (respectively,

F B
j (u)), by performing a visit.
The time complexity of difub can be in the worst case O(nm) where n denotes

the number of vertices and m denotes the number of arcs. Indeed, observe that,
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at each iteration of the while loop, ub − lb decreases at least by 2: this implies
that, given a starting vertex u, the algorithm executes at most max{�eccB(u)/2�,
�eccF (u)/2�} iterations (note that we have that the number of iterations is bounded
by D/2); in the worst case, the number of nodes in F F

j (u) for j > �eccF (u)/2�
or in F B

i (u) for i > �eccB(u)/2� is linear and for each of these nodes a visit is
required (see Sect. 7.6). In the case of Algorithm 21, one iteration more could be
needed.

Since the practical performance of the algorithm depends on the chosen vertex u,
the idea behind a good choice of the starting vertex is preferring vertices having a
small quantity of vertices at distance greater than or equal to D/2. We will consider
the following heuristics to choose the starting vertex and to get a corresponding lower
bound l.

• Degree selection.A simple way of selecting u is choosing a vertex with the highest
in-degree or out-degree. We refer to the composition of difub with these two
selection strategies as difubHdOut and difubHdIn respectively.

• 2-Sweep selection. A more complex way to select u is by using the following
heuristic, called 2dSweep, which is a natural extension to directed graphs of the
2Sweep method (in the following, the middle vertex between two vertices s and t
is defined as the vertex belonging to the shortest path from s to t , whose distance
from s is �d(s, t)/2�).
1. Run a forward bfs from a vertex r : let a1 be the farthest vertex.
2. Run a backward bfs from a1: let b1 be the farthest vertex.
3. Run a backward bfs from r : let a2 be the farthest vertex.
4. Run a forward bfs from a2: let b2 be the farthest vertex.
5. If eccB(a1) > eccF (a2), then set u equal to the middle vertex between a1 and

b1 and l equal to eccB(a1). Otherwise, set u equal to the middle vertex between
a2 and b2 and l equal to eccF (a2).

We will consider the variants in which r is the vertex with highest out-degree
or in-degree, and we will refer to them as 2dSweepHdOut and 2dSweepHdIn
respectively. Moreover we will refer to difub by applying these two starting
strategies as difub+2dSweepHdOut and difub+2dSweepHdIn.

7.3.1 Restricting to Undirected Graphs

If G = (V, E) is an undirected graph and u is any vertex in V , F F
i (u), the forward

fringe of u, coincides with F B
i (u), the backward fringe. By consequence B B

j (u) =
B F

j (u), and the Algorithm 20 in the case of undirected graph can be simplified as
in Algorithm 24, as shown by [194]. Analogously to Theorem 7.3, it is possible to
prove the following.
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Algorithm 22: 2dSweep
Input: A strongly connected graph G, a vertex r
Output: A vertex and a lower bound for D

1 Run a forward bfs from r : let a1 be the farthest vertex;
2 Run a backward bfs from a1: let b1 be the farthest vertex.
3 Run a backward bfs from r : let a2 be the farthest vertex.
4 Run a forward bfs from a2: let b2 be the farthest vertex.
5 if eccB(a1) > eccF (a2) then
6 u ← the middle vertex between a1 and b1;
7 l ← eccB(a1);
8 else
9 u ← the middle vertex between a2 and b2;

10 l ← eccF (a2);
11 end
12 return u and l;

Theorem 7.5 Algorithm 24 correctly computes the value of the diameter of G.

In order to obtain a good starting vertex u in Algorithm 24, we can simplify
2dSweep Algorithm, as shown by Algorithm 23, that is the well known 2Sweep
Algorithm [19, 195].

1. Execute a forward breadth-first search starting from a vertex r : let a1 be the
farthest vertex.

2. Execute a forward breadth-first search starting from a1: let b1 be the farthest
vertex.

3. Return the middle vertex between a1 and b1.

We will consider the variants called 2SweepHd, in which r is the vertex with highest
degree. Moreover we will refer to ifub by applying this strategy to select the starting
vertex as ifub+2SweepHd and to ifub by starting from the vertex with the highest
degree as ifubHd.

In a similar manner, Algorithm 21 can be simplified in order to deal with undi-
rected graphs.

Algorithm 23: 2Sweep
Input: A strongly connected graph G, a vertex r
Output: A vertex and a lower bound for D

1 Run a forward bfs from r : let a1 be the farthest vertex;
2 Run a forward bfs from a1: let b1 be the farthest vertex.
3 u ← the middle vertex between a1 and b1;
4 l ← eccF (a1);
5 return l;
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Algorithm 24: ifub
Input: An undirected connected graph G, a vertex u, a lower bound l for the diameter
Output: The diameter D

1 i ← eccF (u);
2 lb ← max{eccF (u), l};
3 ub ← 2i ;
4 while ub − lb > 0 do
5 lb ← max{lb, B F

i (u)};
6 if lb > 2(i − 1) then
7 return lb;
8 else
9 ub ← 2(i − 1);

10 end
11 i ← i − 1;
12 end
13 return lb;

Algorithm 25: difub for weighted directed graphs
Input: A weighted directed strongly connected graph G, a vertex u, a lower bound for the

diameter l
Output: The diameter D

1 Let d1 < d2 < · · · < dh be the sequence of values d such that FF
d (u) = ∅ or FB

d (u) = ∅
2 i ← h;
3 lb ← max{eccF (u), eccB(u), l};
4 ub ← 2di ;
5 while ub − lb > 0 do
6 lb ← max{lb, B B

di
(u), B F

di
(u)};

7 if lb > 2di−1 then
8 return lb;
9 else

10 ub ← 2di−1;
11 end
12 i ← i − 1;
13 end
14 return lb;

7.3.2 Generalizing to Weighted Graphs

Theorems 7.1 and 7.2 can be easily extended to the case of directed weighted
graphs. Indeed, let T F

u (respectively, T B
u ) denote the forward (respectively, back-

ward) lightest path tree rooted at vertex u, computed, for instance, by means of the
Dijkstra algorithm [196] in G (respectively, in the graph transposed of G). Moreover,
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let eccF (u) (respectively, eccB(u)) denote the weighted forward (respectively,
backward) eccentricity of u, that is the weight of the longest path from (respectively,
to) u to (respectively, from) one of the leaves of T F

u (respectively, T B
u ). Finally, let

F F
d (u) (respectively, F B

d (u)) denote the set of vertices whoseweighted distance from
(respectively, to) u is equal to d: hence, F F

d (u) = ∅ if and only if there exists at least
one vertex x in T F

u such that the weight of the path from u to x is equal to d, and
F B

d (u) = ∅ if and only if there exists at least one vertex x in T B
u such that the weight

of the path from x to u is equal to d.
Let d1, d2, . . . , dh be the sequence of distinct values d such that F F

d (u) = ∅ or
F B

d (u) = ∅ ordered in increasing order, that is, d1 < d2 < · · · < dh : note that
dh = max{eccF (u), eccB(u)}. We then have the following two results, whose proofs
are similar to the proofs of Theorems 7.1 and 7.2, respectively.

Theorem 7.6 For any integer i with 1 < i ≤ h, for any integer k with 1 ≤ k < i ,
and for any vertex x ∈ F B

di−k
(u) such that eccF (x) > 2di−1, there exists y ∈ F F

d j
(u),

for some d j ≥ di , such that d(x, y) = eccF (x). Moreover for any y such that
d(x, y) = eccF (x), y ∈ F F

d j
(u), for some d j ≥ di .

Theorem 7.7 For any integer i with 1 < i ≤ h, for any integer k with 1 ≤ k < i ,
and for any vertex x ∈ F F

di−k
(u) such that eccB(x) > 2di−1, there exists y ∈ F B

d j
(u),

for some d j ≥ di , such that d(y, x) = eccB(x). Moreover for any y such that
d(y, x) = eccB(x), y ∈ F B

d j
(u), for some d j ≥ di .

We can then appropriately modify the difub algorithm in order to deal with
directed weighted graphs. To this aim, we define

B F
di

(u) =
⎧
⎨

⎩

maxx∈F F
di

(u)eccB(x) if F F
di

(u) = ∅ and di ≤ eccF (u),

0 otherwise

and

B B
d j

(u) =
⎧
⎨

⎩

maxx∈F B
d j

(u)eccF (x) if F B
d j

(u) = ∅ and d j ≤ eccB(u),

0 otherwise.

The difub algorithm for directed weighted graphs is then described in Algo-
rithm 25. Analogously to Theorem 7.3, it is possible to prove the following.

Theorem 7.8 Algorithm 25 correctly computes the value of the diameter of G.

Observe that, in order to start the execution of the algorithm, we can also modify
the 2dSweep algorithm by using single source lightest path algorithm executions
instead of bfses.
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Algorithm 26: Computing the radius and enumerating all the radial vertices
Input: A graph G, directed or undirected, a pair of vertices x, y
Output: The radius R and C , the set of vertices whose forward eccentricity is R

1 π ← ordering of the vertices v ∈ V according to max{d(v, x), d(v, y)};
2 C = ∅;
3 ub ← n;
4 for i = 1 to n do
5 v ← π(i);
6 if eccF (v) < ub then
7 ub ← eccF (v);
8 C ← {v};
9 else

10 if eccF (v) = ub then
11 C ← C ∪ {v};
12 end
13 end
14 if i = n then
15 u ← π(i + 1);
16 if ub < max{d(u, x), d(u, y)} then
17 return ub and C ;
18 end
19 end
20 end
21 return ub and C ;

7.4 Computing the Radius and Enumerating
All the Radial Vertices

In the following, as before, we will assume that G is connected whenever G is
undirected, or that G is strongly connected whenever G is directed. Algorithm 26
computes all the vertices whose eccentricity is equal to the radius. In particular,
given in input a pair of vertices x, y, Algorithm 26 orders the vertices v according
to max{d(v, x), d(v, y)} and scans their eccentricity. At each step, a lower bound on
the eccentricities of the vertices still to process can be easily retrieved.

Remark 7.2 For any i , let u be π(i + 1), then

eccF (z) ≥ max{d(z, x), d(z, y)} ≥ max{d(u, x), d(u, y)}

for any z such that z = π( j), with j ≥ i + 1.

For increasing values of i , we can compute the eccentricity of the vertex v = π(i), and
maintain the minimum eccentricity found, that is an upper bound ub for the radius.
Remark 7.2 implies that max{d(u, x), d(u, y)} is a lower bound of the eccentricities
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of the vertices to be processed. Thus if ub is less than this lower bound, we can stop
the computation because it is not possible to decrease ub. In particular this implies
that all the vertices, whose eccentricity has not yet been computed, have eccentricity
strictly greater than R. Then the following result holds.

Lemma 7.1 Algorithm 26 returns all and only the radial vertices.

While scanning the eccentricities of the vertices, a list C , of the examined vertices
whose eccentricity is equal to the current value of the upper bound, is maintained.

The performances of Algorithm 26 are strongly affected by the choice of the
starting pair of vertices x, y. A good strategy is applying the 2dSweep algorithm
and, referring to Algorithm 22, taking a1 and b2. In particular, in the following we
will consider the 2dSweepHdOut and 2dSweepHdIn. We will refer to Algorithm 26
with starting strategies 2dSweepHdOut and 2dSweepHdIn as rad+2dSweepHdIn
and rad+2dSweepHdIn respectively.

Observe that Algorithm 26 can be applied also in the case of undirected graphs. In
this case, by applying 2SweepHd Algorithm, referring to Algorithm 22, the vertices
a1 and b1 can be used as starting vertices for Algorithm 26. In the following, we will
refer to this Algorithm with this starting choice as rad+2dSweepHd. Moreover, by
using Dijkstra’s Algorithm, instead of using the bfs Algorithm, the algorithm can
be applied also in the case of weighted graphs.

7.5 Enumerating Diametral and Radial
Vertices: An Example

Let us consider the graph shown in the top part of Fig. 7.1, whose all pairwise dis-
tances, with the forward and backward eccentricities of all its vertices are shown. If
we choose u = v1, the corresponding two breadth-first search trees T F

u and T B
u are

shown in the bottom part of the figure. From these two trees we can easily derive the
forward and backward fringe sets, which are shown in the bottom part of the figure,
together with B F

i (v1), B B
i (v1), SF

i (v1), T F
i (v1), SB

i (v1), and T B
i (v1).

If we choose i = 2, j = 3, x = v6, and y = v8, then it is easy to verify, by
inspecting the two bfses trees, that we can go from v6 to v8 by first going up in T B

v1
(by means of two arcs) and then by going down in T F

v1 (by means of three arcs).
Hence, as observed in Remark 7.1, d(v6, v8) ≤ 5: indeed, d(v6, v8) = 3 (passing
through v4 and v7). Moreover, if we choose i = 2, k = 1, and x = v4 ∈ F B

1 (v1), then
we have that eccF (v4) = 4 > 2 = 2(i − 1): Theorem 7.1 is in this case witnessed
by vertex y = v2 ∈ F F

2 (v1) (indeed, d(v4, v2) = 3).
Suppose we invoke Algorithm 21 with u = v1 and l = 0. Before the exe-

cution of the while loop starts, the two variables i and lb are both set equal to
max{eccF (v1), eccB(v1)} = 5, while variable ub is set equal to 2i = 10 and the sets
DS andDT are both empty. Since ub−lb = 5 > 0, the algorithm enters thewhile loop
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v12 v11

v2

v1

v3

v8

v10

v5

v9

v6

v13v14

v4

v7

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 eccF
v1 0 2 1 3 1 3 2 3 2 4 1 2 4 5 5
v2 1 0 2 1 2 3 2 3 3 4 2 3 4 5 5
v3 2 1 0 2 3 2 1 2 4 3 3 4 3 4 4
v4 1 3 2 0 2 2 1 2 3 3 2 3 3 4 4
v5 3 2 1 2 0 3 2 2 1 3 4 5 4 5 5
v6 2 4 3 1 3 0 2 3 4 4 3 4 1 2 4
v7 3 4 3 2 2 1 0 1 3 2 4 5 2 3 5
v8 4 3 2 3 1 4 3 0 2 1 5 6 5 6 6
v9 2 4 3 1 2 3 2 1 0 2 3 4 4 5 5
v10 5 4 3 4 2 5 4 1 3 0 6 7 6 7 7
v11 2 4 3 5 3 5 4 5 4 6 0 1 6 7 7
v12 1 3 2 4 2 4 3 4 3 5 2 0 5 6 6
v13 4 6 5 3 5 2 4 5 6 6 5 6 0 1 6
v14 3 5 4 2 4 1 3 4 5 5 4 5 2 0 5
eccB 5 6 5 5 5 5 4 5 6 6 6 7 6 7

v1

v3 v11

v12

v5

v2 v7
v9

v4
v6 v8

v10
v13

v14

v1

v12

v11

v2 v4

v3 v6

v5
v7

v9

v8

v10

v14

v13

i FFi (v1) FBi (v1) BFi (v1) BBi (v1) SFi (v1) TFi (v1) SBi (v1) TBi (v1)

1 v3 ,v5 ,v11 v2 ,v4 ,v12 6 6 v11 v10 v12 v14
2 v2 ,v7 ,v9 ,v12 v3 ,v6 ,v9 ,v11 7 7 v12 v10 v11 v14
3 v4 ,v6 ,v8 v5 ,v7 ,v14 5 5 v4 ,v6 ,v8 v10 ,v11 ,v13 v5 ,v7 ,v14 v2 ,v9 ,v10 ,v12 ,v14
4 v10 ,v13 v8 ,v13 6 6 v10 ,v13 v10 ,v11 ,v13 v8 ,v13 v2 ,v9 ,v10 ,v12 ,v14
5 v14 v10 7 7 v14 v10 ,v11 v10 v12 ,v14

Fig. 7.1 A strongly connected graph with the corresponding all pairwise distances, forward and
backward eccentricities and bfses trees rooted at v1, and the fringe set properties
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with i = 5. Since, B B
5 (v1) = 7 > lb, lb is set to 7 and DS and DT are respectively

set to {v10} and {v12, v14}. Then since B F
5 (v1) = 7 is equal to lb, DS = {v10} ∪

{v10, v11} (v11 is added to DS) and DT = {v12, v14} ∪ {v14} (DT does not change).
Since lb = 7 < 8 = 2(i − 1), the algorithm sets ub equal to 8 and performs another
iterationwith i = 4. Since B F

4 (v1) = B B
4 (v1) = 6 and 6 < 7 = lb the lower bound lb

is not improved and the setsDS andDT are notmodified. Since lb = 7 > 2(i−1) = 6
the algorithm returns: lb = 7 is the diameter of the graph, DS = {v10, v11} is the set
of all the diametral sources (indeed eccF (v10) = eccF (v11) = 7), and {v12, v14} is
the set of all the diametral targets (indeed eccB(v12) = eccB(v14) = 7).

Finally suppose we invoke Algorithm 26, with input the pair of vertices v1, v10.
We define the sets Ci as {u : max{d(u, v1), d(u, v10)} = i} and for any i we show
the corresponding Ci in the following.

i Ci = {u : max{d(u, v1), d(u, v10)} = i}
1 ∅
2 v9
3 v3, v4, v5, v7
4 v1, v2, v6, v8
5 v10, v12, v14
6 v11, v13

Thus Algorithm 26 order the vertices as follows

〈v9, v3, v4, v5, v7, v1, v2, v6, v8, v10, v12, v14, v11, v13〉.

ub is set to n andC is empty. In the first iterationwe have v = v9 and since eccF (v9) =
5, ub is set to 5 and C = {v9}. Since ub = 5 > max{d(v3, v1), d(v3, v10)} = 3,
where v3 is the successor of v9 in the order, the algorithm performs a new itera-
tion. In this latter iteration v = v3, ub is improved and set to eccF (v3) = 4 and
C = {v3}. Since ub = 4 > max{d(v4, v1), d(v4, v10)} = 3, the algorithm does
not stop and considers as new v the vertex v4. Since eccF (v4) = 4, v4 is added
to C , so that C = {v3, v4}. Since ub = 4 > max{d(v5, v1), d(v5, v10)} = 3, the
algorithm performs an iteration by using v5 as v: in this case ub is not improved
and C does not change. The same happens by considering as v the vertices v7, v1,
and v2. When considering as v the vertex v6, since eccF (v6) = 4 = ub, ub is not
improved and v6 is added to C . Since ub = 4 = max{d(v8, v1), d(v8, v10)} = 4,
a new iteration is performed, where v = v8. At the end of this latter iteration,
since eccF (v8) = 6 > ub, ub is not improved and C is not changed; since
ub = 4 < max{d(v10, v1), d(v10, v10)} = 5, the algorithm stops. Indeed all the
vertices after v10 have eccF at least max{d(v10, v1), d(v10, v10)} = 5. Thus ub = 4
is the radius of the graph, and C = {v3, v4, v6} is the set of radial vertices, since
eccF (v3) = eccF (v4) = eccF (v6) = 4.
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7.6 Ad Hoc Bad Cases

There exist graphs, such as the graph shown in Fig. 7.2 and other graphs available
at [197], where our algorithms use Θ(n) bfses. These graphs are characterized by
an extreme regularity: the bfs trees at their vertices are very similar, with the radius
and the diameter values very close, namely, R ≈ D, and all vertices have close
eccentricity. Figure7.2 show an example in which ifub performsΘ(n) bfses even if
the number of diametral vertices is constant, while Fig. 7.4 show an example in which
Algorithm 26 performs Θ(n) bfses even if the number of radial vertices is constant.

Whenever R is close to D, about D/2 iterationswill always be executed in the ifub
algorithm, so that the number of visits performed by ifub is more likely also close
to n, even if the number of diametral vertices is constant. Thus in the case of these
graphs, the complexity of ifub isΘ(nm). For instance, a cyclewith n vertices (n odd),
v1, . . . , vn , connected to a vertex vn+1 by the edge (v1, vn+1) has diameter n+1

2 . Any
of its vertices has the same bfs tree, whose height is n−1

2 , except for vn+1, v n+1
2
, and

v n+1
2 +1 whose eccentricity is

n+1
2 , (see Fig. 7.2). Thus, referring to Algorithm 20 and

Algorithm 21, by starting from any vertexwith eccentricity n−1
2 , ifub repeats its loop

until 2(i −1) ≥ n−1
2 +1, that is i ≥ n+5

4 , and stops the first time that 2(i −1) < n−1
2 +

1, for a total number of iterations equal to n−1
2 − n+5

4 +2 = n+1
4 . Since each level has

at least two vertices, the number of bfses performed by ifub is thus linear and greater
than n+3

2 . Similar result can be found if Algorithm 20 and Algorithm 21 start from
vn+1, v n+1

2
, or v n+1

2 +1. These bad undirected graphs for ifub can be easily adapted

to build bad directed graphs for difub, by replacing each edge by two opposite arcs.

Fig. 7.2 A bad network for
Algorithm 21. By replacing
each edge with two opposite
arcs, this graph becomes a
bad network for difub
algorithm

vn+1

v1v2

v3

vn

vn−1

v n+1
2 −1

v n+1
2

v n+1
2 +1

v n+1
2 +2
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Fig. 7.3 A bad network for
Algorithms 20 and 26 with
small diameter. By replacing
each edge with two opposite
arcs, this graph becomes a
bad network for the directed
versions of the algorithms

Fig. 7.4 A bad network for
Algorithm 26. By replacing
each edge with two opposite
arcs, this graph becomes a
bad network for the directed
version of the algorithm

v1

v2

v3

vn

vn−1

v n+1
2 −1

v n+1
2

v n+1
2 +1

v n+1
2 +2

u2

u3

un

un−1

u n+1
2 −1

u n+1
2

u n+1
2 +1

u n+1
2 +2

Observe that this graph has linear diameter. However there are graphs, like the
one shown in Fig. 7.3 and their generalizations in [197], whose diameter is small,
and for which Algorithm 20 uses a linear number of visits.

In the graph shown in Fig. 7.4, that is composed by two cycles v1, . . . , vn and
v1, u2, . . . un , such that for any i , with 2 ≤ i ≤ n, there is an edge between ui and vi ,
every vertex have eccentricity equal to the diameter D = n+1

2 , except for v1, whose
eccentricity is equal to the radius R = D − 1. If the starting pair of vertices for
Algorithm 26 is u2, v n+1

2 +1, then v1 can be one of the last vertex to be processed, so
that the number of visits performed by Algorithm 26 is linear. Once again, this bad
undirected graph can be easily adapted to build an example of bad directed graph,
by replacing each edge by two opposite arcs.
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7.7 Experiments

We collected several real-world directed or undirected graphs, which have been
chosen in order to cover the largest possible set of network typologies. An important
feature is that almost all graphs in our dataset are sparse (that is, m = O(n)). Note
that, in the case of several of these graphs, the diameter value was still unknown.

Our computing platform is a machine with a Pentium Quad-Core CPU (Intel(R)
Xeon(R) E5405@ 2.00GHz), with a 10GB shared memory. The operating system is
a Ubuntu GNU/Linux 12.04.1, with a Linux version 3.2.0-34 and gcc version 4.6.3.
For each network we report number of vertices and arcs/edges in the original graph
and in the biggest (strongly) connected component. For this latter we have computed
the diameter D and the radius R, together with the diametral sources, the diametral
targets, and the radial vertices.
The code and the data set are available at amici.dsi.unifi.it/lasagne/.

In Sects. 7.7.1 and 7.7.2 we will describe our experiments for directed and
undirected graphs, respectively. In Sect. 7.7.3 we will summarize our results.

7.7.1 Directed Graphs

In the case of directed graphs, we have experimented Algorithm 21 by using several
ways of choosing the starting vertex.

• difubHdOut. difub by starting from the vertex with highest out-degree.
• difubHdIn. difub by starting from the vertex with highest in-degree.
• difub+2dSweepHdOut. Apply 2dSweepHdOut, Algorithm 22 by starting from
the vertex with highest out-degree, and obtain the vertex u; apply difub by starting
from u.

• difub+2dSweepHdIn. Apply 2dSweepHdIn, Algorithm 22 by starting from the
vertex with highest in-degree, and obtain the vertex u; apply difub by starting
from u.

Observe that each experiment is deterministic, since ties between vertices are broken
by considering the vertex whose index is minimum.1

Moreover we have experimentedAlgorithm 26 by considering twoways of select-
ing the starting pair of vertices.

• rad+2dSweepHdOut. Apply 2dSweepHdOut, Algorithm 22 by starting from the
vertex with highest out-degree, and obtain the vertex u; apply Algorithm 26 by
starting from u.

• rad+2dSweepHdIn. Apply 2dSweepHdIn, Algorithm 22 by starting from the
vertex with highest in-degree, and obtain the vertex u; apply Algorithm 26 by
starting from u.

1 Ties are not frequent and no substantial differences have been observed by breaking ties in different
way.
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In the following we will describe the results of our experiments for each category
of networks.

• Biological Networks (from [49, 85]). These are metabolic networks, in particular
bipartite networks, compound networks, and reaction networks, taken from [49,
85]. In particular we have considered only the 76 biological sources whose number
of vertices of the strongly connected component of the bipartite network is greater
than 500. In Bipartite Metabolic Networks, all the difub methods use a number
of visits less than 10%n for more than 66 networks. rad+2dSweepHdOut and
rad+2dSweepHdOut use a number of visits less than 15%n for 68 networks. In
CompoundMetabolic Networks, all the difubmethods use a number of visits less
than 10%n for more than 61 networks, while the radius methods use a number of
visits less than 16%n for more than 66 networks. In Reaction Metabolic Networks
all the difubmethods except difub+2dSweepHdOut, use a number of visits less
than 10%n for more than 61 networks, while for difub+2dSweepHdOut this is
true just for 38 networks. rad+2dSweepHdOut and rad+2dSweepHdOut use a
number of visits less than 15%n for 67 and 38 networks respectively.

• Directed Social Networks (from [198, 199]). This class of networks includes for
instance a who-trust-whom online social network of the general consumer review
site Epinions.com, the social network of LiveJournal, that is a free on-
line community allowing members to maintain journals, individual and group
blogs, and allowing people to declare which other members are their friends, and
the social network of Slashdot, that is a technology-related news website that
allows users to tag each other as friends or foes. Moreover there is the who-votes-
on-whom network Wikipedia network: indeed Wikipedia is a free encyclopedia
written collaboratively by volunteers and in order for a user to become an adminis-
trator a request for adminship is issued and the Wikipedia community via a public
discussion or a vote decides who to promote to adminship [198]. In this class all
the difub algorithms use always less visits than 0.1% of the number of vertices of
the largest strongly connected component, n, except for soc-Slashdot0811
and WikiVote in which difub uses respectively less than 1%n and 2%n. The
computation of radial vertices has used always a number of visits less than 1%n
except for soc-Slashdot0902, soc-Slashdot0811, and wiki-Vote,
in which the number of visits is less than 25%n. For the graph ljournal-2008
we were not able to complete our experiments in the case of rad+2dSweepHdOut
and rad+2dSweepHdIn (see Sect. 7.7.3).

• Web Networks (from [198, 199]). Vertices represent pages and arcs represent
hyperlinks between them. The pages considered are restricted to the one belonging
to berkely.edu, and stanford.edu domains, the nd.edu domain, that is
University of Notre Dame (released by Albert Barabási), the pages considered
in 2002 by Google as a part of a Google Programming Contest, the .it domain,
the Italian CNR domain, the .in and .indochina domains (crawled by the
Nagaoka University of Technology), the .eu domain (collected for the DELIS
project, a collection of web graphs by taking snapshots at a monthly rate focussing
on the .uk domain). Moreover there are the snapshots performed by UbiCrawler



7.7 Experiments 131

of the .uk domain in 2002 and 2005, of the .sk domain in 2005, and one aimed at
countries whose web sites could contain pages written in Arabic in 2005. Finally
we have considered the snapshot obtained by the WebBase crawler in 2001. In
this class of networks difub has used a number of visits always less than 0.1%n,
except when difubHdOut and difubHdIn are applied to: in-2004, in which
the number of visits is less than 4%n, uk-2007-05@100000, in which the
number of visits is about 75%n, and uk-2007-05@1000000, in which the
number of visits is less than 0.5%n. In order to compute all the radial vertices,
our algorithm takes always less than 1%n number of visits, except for the graph
web-Stanford, in which it has used about than 10%n visits. For the biggest
graphs, i.e. the ones with more than 3.5 million of vertices, we were not able to
complete our experiments concerning the radius: indeed the time needed on our
platform for each bfs is greater than 13s (as for indochina-2004), so that,
even by performing just 3%n visits, more than two weeks are needed in order to
complete one single experiment (see Sect. 7.7.3).

• Citation Networks (from [198]). Arxiv Hep-Ph (high energy physics phenom-
enology) and Hep-Th (high energy physics theory) citation graphs are from the
e-print arXiv and covers all the citations from January 1993 to April 2003 in their
respective categories. If a paper i cites paper j , the graph contains an arc from i
to j . Both difub+2dSweepHdOut and difub+2dSweepHdIn have always used
a number of visits less than 1%n in both the graphs. difubHdOut and difubHdIn
have used a number of visits respectively about 15%n and 75%n for cit-HepPh, and
both less than 5%n for cit-HepTh. The computation of radial vertices instead
has required always less than 1.5%n number of visits.

• Communication Networks (from [198, 199]). In this class of networks, given
a set of email messages, each vertex corresponds to an email address, and there
is an arc between vertices i and j , if i sent at least one message to j . This class
of networks include a network generated using email data from a large Euro-
pean research institution, Enron email communication network covering all the
email communication within a dataset of around half million emails (this data was
originally made public, and posted to the web, by the Federal Energy Regulatory
Commission during its investigation). Moreover in the wiki-Talk network, the
vertices represent Wikipedia users and an arc from vertex i to vertex j represents
that user i at least once edited a talk page of user j . In all these graphs difub has
used less than or about 1%n visits to list all the diametral vertices. The computation
of all the radial vertices has required always a number of visits between 10%n and
15%n, except for wiki-Talk.

• P2P Networks (from [198]). A sequence of snapshots of the Gnutella peer-
to-peer file sharing network from August 2002. Vertices represent hosts in the
Gnutella network topology and edges represent connections between the
Gnutella hosts. In these networks difub uses less than 5%n visits, except
for p2p-Gnutella09 (in which a number of visits between 5%n and 12%n
are used) p2p-Gnutella30 (in which a number of visits between 3%n and
15%n are used), p2p-Gnutella08 (in which difubHdOut uses about 24%n
visits), and p2p-Gnutella25, (in which difubHdIn uses about 19%n visits).
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The number of visits required for the computation of the radial vertices ranges
between 0.4%n and about 5%n, except when rad+2dSweepHdIn is applied to
p2p-Gnutella08 and p2p-Gnutella30, requiring about 12%n visits.

• Product co-purchasing Networks (from [198, 199]). These networks were col-
lected by crawling Amazon website and are based on Customers Who Bought
This Item Also Bought feature of the Amazon website, so that if a product i is
frequently co-purchased with product j , the graph contains an arc from i to j .
For these networks difub has used almost always less than 0.05%n visits, except
for amazon0312 and amazon0302 in which the number of visits used ranges
between 0.06%n and 1.32%n. The computation of the radial vertices requires
instead a number of visits in between 0.01%n and 0.72%n.

• Word Association Networks (from [199]). The Free Word Association Norms
Network is a directed graph describing the results of an experiment of free word
association performed by more than 6000 participants in the United States: its
vertices correspond to words and arcs represent a cue-target pair and an arc from
x to y means that the word y was output by some of the participants based on the
stimulus x [199] . The word association network seems to be a real world negative
example for our algorithms: difub uses between 20%n and 70%n visits in all the
strategies while the computation of the radial vertices requires about 45%n visits.

7.7.2 Undirected Graphs

The effectiveness of Algorithm 24 has been experimentally proved in [20, 21, 194]
by using several ways of choosing the starting vertex.

• Random selection. By picking it uniformly at random.
• Degree selection. By choosing a vertex with the highest degree.
• 4-Sweep selection. By using the 4Sweep method, that is an evolution of 2Sweep
method using four bfses. Let r1 be a vertex in V , let a1 be one of the farthest
vertices from r1, and let b1 be one of the farthest vertices from a1. If r2 is the
vertex halfway between a1 and b1, then we define analogously a2 and b2. The
vertex u is then defined as the middle vertex of the path between a2 and b2. In
particular, two different ways of selecting vertex r1 have been considered: one
method chooses r1 uniformly at random, while the other method chooses r1 as a
vertex with the highest degree.

By using these latter two selection strategies, it has been shown that in almost any
graph with more than 10,000 vertices of the considered dataset, the number of visits
is always much less than 0.1% of the number of all vertices in the largest connected
component, except for the road networks (in which the number of executions of the
shortest path algorithm performed is less than 10%) and Erdős-Rényi graphs. Instead
it has been shown that it is not convenient to run ifub by starting from random
vertices, since sometimes the number of performed visits is high with respect to the
number of vertices.
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In the following we will describe the experimental evaluation of the performances
of ifubHd and ifub+2SweepHd when used not just to compute the diameter but
also to enumerate the diametral vertices.

Thus we have experimented Algorithm 21, simplified as shown by Algorithm 24
for undirected graphs, by using the following ways of choosing the starting vertex.

• ifubHd. ifub by starting from the vertex with highest degree.
• ifub+2SweepHd. Apply 2SweepHd, Algorithm 23 by starting from the vertex
with highest degree, and obtain the vertex u; apply ifub by starting from u.

Moreover we have experimented Algorithm 26 by using:

• rad+2dSweepHd. Apply 2SweepHd, Algorithm 23, by starting from the vertex
with highest degree, and obtain the vertex u; applyAlgorithm26 by starting from u.

Observe that several networks that we have tested are not really naturally
undirected since the relationship that they represent is implicitly not symmetrical.
However since they are released by the owner companies or the owner universities
in undirected format, we have catalogued them in this section.

• Protein-Protein Interaction Networks (from [200–206]). In these networks ifub
has almost always used a number of visits in between 0.1%n and 1%n. In the graph
iPfam it has used about 6%n visits. For the computation of the radial vertices
the number of visits has been always less than 3%n except for psimap (6%n),
string (35%n), interdom (43%n).

• Collaboration networks (from [198, 200, 205, 207–211]). This class includes the
graph of movie actors using data from IMDB (Internet Movies DataBase), whose
vertices are actors, and two actors are linked by an edge whenever they collabo-
rated in a movie. Moreover there are the graphs of co-authorship (if an author i
co-authored a paperwith author j , the graph contains an edge from i to j), based on
DBLP, MathSciNet [212], Arxiv Astro Physics, Arxiv Condensed Matter, Arxiv
General Relativity, Arxiv High Energy Physics, Arxiv High Energy Physics The-
ory e-print categories arXiv, and the original Condensed Matter section of arXiv
E-Print Archive between 1995 and 1999 used by Newman in [127]. More pecu-
liar are the networks Eva, in which there is an edge (x, y) from company x to
company y whether the company x is an owner of company y or vice versa [213],
Advogato, a research testbed for testing attack-resistant trust metrics [208],
the network of the collaborations among Jazz musicians [214], and the net-
work of users of the Pretty-Good-Privacy algorithm for secure information inter-
change [215]. Observe that if the collaboration involves k collaborators, this gen-
erates a completely connected subgraph on k vertices. In these networks ifub
has used less than or about 1%n visits except for the smallest networks, jazz,
eva,geom,Newman-Cond_mat, and PGPgiantcompo. The number of visits
required for the computation of the radial vertices is always less tha 5%n, except
for jazz, advogato, and Newman-Cond_mat.

• Undirected Social Networks (from [205, 208, 216]). These networks include
MySpace and Flickr friendship, the membership of Yahoo! users to Yahoo! groups,
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andone network used to test trustmetrics. The number of visits required to compute
all the diametral and radial vertices is less than 0.06%n, except for myspace in
which the diametral and radial vertices are computed with less than 2.2%n visits.

• Undirected Communication Networks (from [216, 217]). There is an edge
between two vertices whether there has been a communication between them. In
these networks ifub+2SweepHd uses always less than 1%n visits, while ifubHd
uses almost always less than 5%n visits, except for d21.txt and d02.txt. The
computation of the radial vertices has required always less than 1%n visits except
for halfyearA and oneyearA (at most 7%n visits).

• Autonomous Systems Networks (from [198, 200]). These networks are
as-skitter anditdk0304_rlinks_undirected, that are Internet topol-
ogy graphs from traceroutes run respectively in 2004 and in 2005. The number of
visits required by ifub is always less than 0.02%n, while the radial vertices can
be computed with at most 0.36%n visits.

• Road Networks (from [198]). These graphs are the road networks of Califor-
nia, Pennsylvania, and Texas. Intersections and endpoints are represented by ver-
tices and the roads connecting these intersections or road endpoints are repre-
sented by edges [198]. The completed experiments are about rad+2dSweepHd:
for roadNet-PA and roadNet-TX the number of visits has been less than
0.2%n, while for roadNet-CA the number of visits has been less than 15%n. The
values of the diameters have been computed by applying Algorithm 20 (see [21]).

• Word Adjacency Networks (from [207, 216, 218]). In these networks, the ver-
tices are words and there is an edge between x and y whether x appears close to
y in at least one phrase of the considered book or web pages. The computation
of the diametral and radial vertices requires almost always at most 1.5%n, except
for the networks eatRS and eatSR, and when rad+2dSweepHd is applied to
japaneseBookInter_st.

7.7.3 Overall Results

In the following we resume the results of our experiments, grouping them by number
of visits v, and showing for any method the number of networks in which it has
performed v visits.

In the case of directed graphs, in order to compute the diametral vertices,
difub+2dSweepHdOut and difub+2dSweepHdIn seems to be the more promis-
ing strategies. No substantial differences have been observed between the methods
rad+2dSweepHdOut and rad+2dSweepHdIn (Table7.1).

In Fig. 7.5awe report the number of visits performedbydifubHdOut,difubHdIn,
difub+2dSweepHdOut, difub+2dSweepHdIn to compute the diameter and the
diametral vertices, as a function of the number of vertices. Analogously in Fig. 7.5b
we report the number of visits performed to compute the radius and the radial ver-
tices using rad+2dSweepHdOut, rad+2dSweepHdIn, as a function of the number
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Table 7.1 For each method and for each v, the number of networks in which the method performs
v visits to compute diameter or radius in directed graphs

v # Networks in which the method performs v visits

Methods

Diameter Radius

difub
HdOut

difub HdIn difub
2dSweep
HdOut

difub
2dSweep
HdIn

rad
2dSweep
HdOut

rad
2dSweep
HdIn

v ≤ 0.01%n 10 13 14 14 1 3

0.01%n <

v ≤ 0.1%n
13 13 16 16 9 7

0.1%n <

v ≤ 1%n
10 8 8 7 14 14

1%n < v ≤
10%n

9 9 7 8 9 7

10%n < v 5 4 2 2 6 8

of vertices. In particular for each one of the directed graphs presented, having x
vertices, in which a method performs y visits, we draw in position (x, y) the symbol
corresponding to the method.

Fig. 7.5 Visits performed by
rad+2dSweepHdOut,
rad+2dSweepHdIn to
compute the radius and the
radial vertices, and visits
performed by difubHdOut,
difubHdIn,
difub+2dSweepHdOut,
difub+2dSweepHdIn to
compute the diameter and
the diametral vertices as a
function of the number of
vertices. For each one of the
directed graphs presented,
with x vertices, in which a
method performs y visits, we
draw in position (x, y) the
symbol corresponding to the
method

(a)

(b)
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Observe that in the case of Fig. 7.5a, when the number of vertices increases, no
increase can be detected in the number of visits. We argue that our methods perform
a constant number of visits in practice. It is worth observing that the maximum
number of visits correspond to the application of difubHdOut and difubHdIn to
uk-2007-05@100000: we argue that the in-degree and the out-degree are not
good centrality measures for this graph: indeed for the same graph, difub is effective
by starting from other vertices.

In the case of Fig. 7.5b, when the number of vertices increases, the number of visits
slightly increases, so that whenever a graph have more than 3.5 millions of vertices,
it seems that 100 thousands of visits (i.e. 2.8%n) are required and if each visit takes
more than 13s, at least 15 days are required to conclude one experiment. This is
the case of the following 7 Networks: uk-2002, indochina-2004, it-2004,
arabic-2005, uk-2005, webbase-2001, and ljournal-2008, for which
we were not able to conclude our experiments concerning radius and radial vertices.
Observe that according to our statistics, whenever the exhaustive method would be
applied, for these graphs at least 526 days would be required to conclude one exper-
iment. In these cases, the methods using external memory seem to be a promising
alternative [219, 220].

In the case of undirected graphs, ifub+2SweepHd seems to be more stable than
ifubHd in order to compute the diametral vertices. Indeed even if there are some
networks in which ifubHd performs less than 0.01%n visits and ifub+2SweepHd
performs slightly more than 0.01%n visits, there are networks in which ifubHd
performs more than 1%n visits and ifub+2SweepHd performs much less visits
(Table7.2).

In Fig. 7.6a we report the number of visits performed to compute the diameter
and the diametral vertices by using ifubHd and ifub+2SweepHd, as a function
of the number of vertices. Analogously in Fig. 7.6b we report the number of visits
performed to compute the radius and the radial vertices by using rad+2dSweepHd,
as a function of the number of vertices. In particular for each one of the undirected

Table 7.2 For each method and for each v, the number of networks in which the method performs
v visits to compute diameter or radius in undirected graphs

v # Networks in which the method performs v visits

Methods

Diameter Radius

ifub Hd ifub 2Sweep Hd rad 2Sweep Hd

v ≤ 0.01%n 13 9 5

0.01%n < v ≤ 0.1%n 13 27 21

0.1%n < v ≤ 1%n 26 24 26

1%n < v ≤ 10%n 17 9 14

10%n < v 4 4 7
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Fig. 7.6 Visits performed by
ifubHd and
ifub+2SweepHd to
compute the diameter and
the diametral vertices, and
visits performed by
rad+2dSweepHd to
compute the radius and the
radial vertices as a function
of the number of vertices.
For each one of the directed
graphs presented, with x
vertices, in which a method
performs y visits, we draw in
position (x, y) the symbol
corresponding to the method

(a)

(b)

graphs presented, having x vertices, in which a method performs y visits, we draw
in position (x, y) the symbol corresponding to the method.

Observe that once again in the case of Fig. 7.6a, when the number of vertices
increases, no increase can be detected in the number of visits. We argue that our
methods perform a constant number of visits in practice. We conjecture that the
impossibility of concluding our experiments in the case of ifub for roadNet-CA,
roadNet-PA and roadNet-TX is due to unidentified special topological proper-
ties of these graphs.

Once again in the case of Fig. 7.6b, when the number of vertices increases, the
number of visits very slightly increases, but in this case this does not hinder the
central vertex computations.

Finally we would like to point out that the lower bounds provided by the 2Sweep
or the 4Sweepmethods turn out to be, in practice, almost always tight: however, there
is, in theory, no guarantee about the quality of the approximation. For this reason,
some methods have been proposed in [19, 195] in order to find an upper bound on
the diameter which bounds the absolute error or even validates the tightness of the
lower bound. ifubis a generalization of [19], meaning that when the second one stops
because the diameter is found, also the first one stops: see [19] for a comparison with
these upper bounding techniques. Moreover, recently and independently from this
work, a new algorithm to compute the diameter of large real-world networks has
been proposed in [141]: see [21] for a comparison with this work.
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7.8 Conclusion and Open Problems

In the previous sections we have described and experimented new algorithms for
computing the diameter and radius of directed and undirected (weighted) graphs,
together with all the diametral and radial vertices. Even though these algorithms
have O(nm) time complexity in the worst case, our experiments suggest that their
execution for real-world networks requires time O(m) in the case of the diameter
and almost O(m) in the case of the radius.

The computation of the radius with our algorithm is affected by the choice of
the starting vertices x, y so that the best performances are achieved whenever x and
y are both diametral targets. The performance of difub depends on the choice of
the starting vertex u (indeed, it could be interesting to experimentally analyse its
behaviour depending on this choice). Ideally, u should be such that the maximum
between the forward and the backward eccentricity of u should be close to the
minv∈V {max{eccF (v), eccB(v)}}. Surprisingly, we have observed that in the case of
real-world graphs, this value is close to the minimum possible, that is D/2. This
peculiar structural property affects the performance of our algorithm: in these cases,
the upper bound on the iterations is minimum and equal to R − D/2 + 1.

The main fundamental questions are now the following. Why our methods, both
in the directed and in the undirected version, are so effective in finding the radius, the
diameter, and vertices with high and low eccentricity? Which one is the topological
underlying property that can lead us to these results? Why real world graphs exhibit
this property? Some progress has been done by [221], but still a lot has to be done.
Finally, it could be interesting to analyse a parallel implementation of the difub
algorithm. Indeed, the eccentricities of the vertices belonging to the same fringe set
can be computed in parallel. Moreover, a variety of parallel bfs algorithms have
been explored in the literature and can be integrated in the implementation of our
algorithm.

Both the algorithms for diameter and radius described in this chapter have been
very recently improved: we invite the interested reader to see [222].



Chapter 8
Conclusions

In thisworkwe have resumed themain schema to design enumeration algorithms.We
have seen that an useful application of enumeration algorithms is biological network
analysis since biological network models introduce several biases: arc dependencies
are neglected and underlying hyper-graph behaviours are forced in simple graph
representations to avoid intractability. Moreover, regulatory interactions between all
the biological networks are omitted, even if none of the different biological layers
is truly isolated. Last but not least, the dynamical behaviours of biological networks
are often not considered: indeed most of the currently available biological network
reconstructions are potential networks, where all the possible connections are indi-
cated, even if edges/arcs and vertices are hardly present all together at the same time.
In this scenario, we have seen that very often enumeration algorithms can be helpful
so that the solutions of a problem can be checked a posteriori by biologists.

The several techniques to design efficient enumeration algorithms include: brute
force approaches, producing solutions and checking whether these are already been
generated; approaches guaranteeing a bound on the time needed to produce two
consecutive solutions; approaches guaranteeing a bound relating the overall time to
enumerate all the solutions and the number of solutions (or their size). Hence, we
have seen a new research example for each of these categories, where each example
can be motivated by a biological application.

In Chap.4 we have introduced the new notion of a story, which is a maximal
acyclic subgraph of a directed graph in which only specified vertices can be sources
or targets.We have proved some complexity results and designed some algorithms for
enumerating all possible stories of a graph. From a theoretical point of view, the main
question left open is to establish the complexity of the enumeration problem. Indeed
the enumeration algorithm presented, even if it works well in practice, gives no guar-
antee on the delay between the output of two consecutive solutions. We address as a
future work, exploiting the relationship between stories and subset feedback vertex
sets that has been studied in [88] by applying Measure and Conquer approach [89].
From a practical point of view, for some graphs, the number of solutions found is
extremely large and therefore the analysis of the results is compromised. Adding
more constraints to the model could be a way to filter a priori the set of solutions.
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This observation on the size of the output leads us to consider the problem from
a modelling point of view. For instance, the acyclicity constraint could be relaxed
allowing cycles between white vertices. Moreover, the model could be enriched by
exploring the information on the concentrations given by the metabolomics exper-
iment. Notice that in this case the nature of the problem changes into an optimiza-
tion problem. Another alternative is to consider integrated models, adding to the
Metabolic network other layers of information such as regulation, or taking the sto-
ichiometry of the reactions into account.

In Chap.5 we showed that it is possible to enumerate all the bubbles, i.e. pairs
of vertex disjoint paths, with a given source in a directed graph with linear delay.
Moreover, it is possible to enumerate all bubbles, for all possible sources, in O((|E |+
|V |)(|C | + |V |)) total time, where |C | is the number of bubbles. This has required a
non-trivial adaptation of Johnson’s algorithm [10].

InChap.6we showed the first optimal solution to list all the cycles of an undirected
graph and all the paths from a given source to a given target. This result improves
the Johnson’s algorithm, that was still the theoretically most efficient in the case of
undirected graphs. The main question arising from our work is whether it is possible
to obtain an optimal algorithm to list all the paths and cycles in a directed graph
in order to deal more efficiently with directed biological interaction networks, like
gene regulatory networks, where the cycle enumeration have been discovered to be
useful for several purposes. The main question arising from our work is whether it
is possible to generalize our result, by finding a linear delay algorithm enumerating
k-tuple of vertex disjoint paths.

Additionally, in Chap. 7 we have described and experimented new algorithms for
enumerating all the diametral and radial vertices and computing the diameter and
radius of directed and undirected (weighted) graphs: this enumeration problem is very
particular since the number of solutions is polynomial in the size of the input.The
growing interest towards centrality measures makes this problem interesting in the
case of real-world networks in general, like social and web networks. In such a
context, even if easy polynomial algorithms to find all the solutions exist, the huge
size of real-world networks does not allow to run these existing algorithms. In the
same scenario, even though our new algorithms have O(nm) time complexity in
the worst case, our experiments suggest that their execution for real-world networks
requires time O(m) in the case of diametral vertices and almost O(m) in the case
of the radial vertices. The main fundamental questions are now the followings. Why
these algorithms, both in the directed and in the undirected version, are so effective
in finding diameter, radius, and vertices with high and low eccentricity?Which one is
the topological underlying property that can lead us to these results? Why real world
graphs exhibit this property? Some progress has been done by [221], studying lower
bound techniques for the diameter, but still a lot has to be done. Finally, it could
be interesting to analyse a parallel implementation of the difub algorithm. Indeed,
the eccentricities of the vertices belonging to the same fringe set can be computed
in parallel. Moreover, a variety of parallel bfs algorithms has been explored in the
literature and can be integrated in the implementation of our algorithm.
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