

Progress in Computer Science and Applied Logic
Volume 19

Editor

John C. Cherniavsky, National Science Foundation
Associate Editors

Robert Constable, Cornell University

Jean Gallier, University of Pennsylvania

Richard Platek, Cornell University
Richard Statman, Carnegie-Mellon University

Arthur O. Pittenger

An Introduction to
Quantum Computing
Algorithms

Birkhiuser
Boston ¢ Basel * Berlin

Arthur O. Pittenger

Department of Mathematics and Statistics
University of Maryland, Baltimore County
Baltimore, MD 21250

US.A.

Library of Congress Cataloging-in-Publication Data
Pittenger, Arthur O., 1936-
An introduction to quantum computing algorithms / Arthur O. Pittenger.
p. cm — (Progress in computer science and applied logic ; v. 19)
Includes bibliographical references and index.
ISBN 0-8176-4127-0 (alk. paper) — ISBN 3-7643-4127-0
1. Quantum computers. 2. Computer algorithms. I. Title. II. Series.
QA76.889.P58 1999
004.1-dc21 99-0457513
CIP

AMS Subject Classifications: 68Q10, 68Q20

Printed on acid-free paper. . . ®
©2000 Birkhiuser Boston Birkhduser

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Birkhéuser Boston, c/o Springer-Verlag New York, Inc., 175 Fifth Avenue,
New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, evenif the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks
and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN 0-8176-4127-0
ISBN 3-7643-4127-0

Reformatted from author's disk by TgXniques, Inc., Cambridge, MA.
Printed and bound by Hamilton Printing, Rensselaer, NY.
Printed in the United States of America.

Contents

Preface

Acknowledgments

1

Quantum Statics

L1 Context
1.2 Experimental motivation for quantum mechanics
1.3 Thebasicmodel
1.4 The basic example: spin 1/2 particles
1.5 Diracnotation.
1.6 Unitary transformations

Basics of Quantum Computation

2.1 Qubits and tensor products
2.2 The basic strategy of quantum algorithms
23 Quantumgates
2.4 Quantum subroutines: addition on a quantum computer
2.5 Quantum subroutines: a teleportation circuit

Quantum Algorithms

3.1 Deutsch-Jozsa algorithm
3.2 Simon’s algorithm
3.3 Grover'salgorithm

vii

xi

vi

3.5 Shor’s algorithm: factoring N=pg
3.6 The finite Fourier transform
3.7 Eigenvalues in quantum algorithms
3.8 Group theory and quantum algorithms

Quantum Error-Correcting Codes

4.1 Quantum dynamics and decoherence
4.2 Error correction
4.3 Shor’s nine-qubit error-correcting code
4.4 A seven-qubit quantum error-correcting code . . .
4.5 A five-qubit error-correcting code
4.6 Stabilizers and the five-qubit code
4.7 Theoretical aspects of stabilizer codes
4.8 CSScodes
4.9 Abstract quantum error correction
4.10 Further aspects of quantum error-correcting codes

Afterword
References

Index

Contents

Preface

In 1994 Peter Shor [65] published a factoring algorithm for a quantum
computer that finds the prime factors of a composite integer N more
efficiently than is possible with the known algorithms for a classical com-
puter. Since the difficulty of the factoring problem is crucial for the se-
curity of a public key encryption system, interest (and funding) in quan-
tum computing and quantum computation suddenly blossomed. Quan-
tum computing had arrived.

The study of the role of quantum mechanics in the theory of computa-
tion seems to have begun in the early 1980s with the publications of Paul
Benioff [6], [7] who considered a quantum mechanical model of computers
and the computation process. A related question was discussed shortly
thereafter by Richard Feynman [35] who began from a different perspec-
tive by asking what kind of computer should be used to simulate physics.
His analysis led him to the belief that with a suitable class of “quantum
machines” one could imitate any quantum system.

A separate line of research into the thermodynamics of computation in
the 1970s and 1980s had led to the concept of “reversible programming.”
Motivated by mechanistic and biological models of computation, the idea
was that the energy expenditures of computation could be reduced if no
machine state had more than one logical precursor. (See 8] for a survey
of the field at that time and associated references.) Since a quantum me-
chanical model of computation would involve unitary transformations,
which are indeed invertible, there was the additional incentive to explore
the advantages and limitations of computing devices based on quantum

v Preface

mechanics. In particular it was soon noticed that the logic gates of re-
versible programming [74], for example, could also be modeled as specific
unitary maps of collections of two-state quantum systems, as in [36] where
a simple addition routine is described.

Building on these ideas David Deutsch [25] developed the thesis that
quantum theory and a “universal quantum computer” constitute the cor-
rect context for an extended Church-Turing principle, that is, that “ev-
ery finitely realizable physical system can be perfectly simulated by a
universal model computing machine operating by finite means.” He also
analyzed the role of quantum parallelism, which we will see is a key el-
ement in the theory of quantum algorithms, and he commented on the
role of quantum complexity theory.

In [26] Deutsch expanded on the concept of quantum computational cir-
cuits, and in a 1992 paper with Richard Jozsa [27] described an algorithm
that illustrates the power of quantum computation. Other algorithms
demonstrating the power of quantum parallelism and “entanglement” in
the solution of theoretical computational problems soon followed, and a
1994 result of Simon [67] inspired Shor’s work.

The purpose of this book is to make these quantum algorithms acces-
sible to the mathematically literate reader who is not familiar with the
subject and who may have forgotten, or has never seen, some of the di-
verse tools and notation of the trade. The challenge has been to provide
enough background to make the context and details of the algorithms
understandable, but without lapsing into encyclopedic detail.

The focus in this exposition is exclusively on the “software” side of
the subject. While there is intense experimental work on the “hardware”
side of quantum computation, progress has been much slower. For ex-
ample, the problems involved in creating stable microphysical devices for
“quantum bits” have motivated experiments that are at the boundary of
currently feasible technology. Indeed, there continues to be some question
about the ultimate feasibility of a quantum computer complex enough to
implement Shor’s algorithm for even modestly large N.

We begin in Chapter 1 by very briefly motivating the need for quantum
mechanics and then developing and illustrating some of the mathemati-
cal framework of finite-dimensional quantum statics. There are no formal
prerequisites, but the reader is assumed to be familiar with undergradu-
ate linear algebra. Key definitions and theorems from linear algebra are
introduced in the context of the static model and then rewritten in Dirac
notation, which is used unabashedly thereafter. References are given for
the reader who wishes a more complete presentation of the history of

Preface ix

quantum mechanics and of the physical motivation for the mathematical
model.

In Chapter 2 the mathematical framework is further expanded to ac-
commodate multi-particle models and to illustrate the motivation for
some of the notation. Wiring diagrams and quantum logic gates are in-
troduced, and some representative quantum subroutines are presented.
In particular, a simple “teleportation” circuit is examined in detail.

Chapter 3 illustrates the development of quantum algorithms from the
explicit to the abstract. We begin with the Deutsch-Jozsa algorithm and
describe what proves to be the typical structure of most quantum algo-
rithms. Grover’s search algorithm differs somewhat from the others, and
we examine it in a simple case, revealing the structure that applies in
general. In a similar fashion we work through Shor’s algorithm in the
simple case of N = 15 and identify the techniques and the difficulties
that occur in the more general context. A key step in Shor’s factoring
algorithm is the finite Fourier transform, and we illustrate its implemen-
tation as well. This leads to a discussion of the role of eigenvalues and
eigenvectors, and the chapter concludes with a group theoretic model of
quantum algorithms.

Since the implementation of even the simplest logic gate is experimen-
tally challenging, it was soon recognized that error-correction techniques
could play an important role in a functioning quantum computer. Semi-
nal papers by Shor [64] and Steane [68, 69] suggested a methodology, and
a theory of quantum error-correcting codes was soon in place. In Chapter
4 we trace the development of this class of algorithms, beginning with a
brief discussion of the physical problem of decoherence and discussing the
early models of Shor and Steane. A “truly quantum” five-“qubit” code
is discussed in detail, since it provides the paradigm for the “stabilizer”
codes which are described subsequently. The relation of classical codes to
stabilizer codes is recorded, and we conclude with a discussion of error-
correcting codes from the abstract Hilbert space perspective & la Knill
and Laflamme [47].

There is much more to the subject of quantum computation and re-
lated fields than we discuss here. For example, in 1984 Charles Bennett
and Gilles Brassard [10] introduced a key distribution system based on
quantum mechanical principles. Without going into detail, the goal is to
enable sender and receiver (Alice and Bob) to securely construct a key se-
quence for encryption using the properties of photons. Thus, concurrently
with quantum computers and quantum algorithms, the fields of quantum
cryptography and quantum communication were developing. This quickly
led to quantum information theory and to related complexity issues.

X Preface

The notation and results we present here provide a good foundation
for further reading in these various subjects. A broad overview from the
information-theoretic perspective is given in [70], and readers interested
in learning more about these various topics will find appropriate refer-
ences at the start of the bibliography section.

Acknowledgments

An Introduction to Quantum Computing Algorithms reflects my own
experience in learning the mathematics and theoretical physics required
for the subject. I am most grateful to many colleagues who helped in
that process, especially the core members of our Quantum Computation
Seminar at the Baltimore County campus of the University of Maryland
(UMBC) who comprised the (usually) patient audience for the initial
presentation of parts of this book. Special thanks go to Rich Davis, Keith
Miller, and Mort Rubin who read all or parts of the manuscript in its
various incarnations. Readers who find additional errors are encouraged
to notify me at pittenge@math.umbc.edu.

I am also indebted to the many scholars who routinely made their
research available on the Los Alamos web site quant-ph. The field has
developed so quickly that an introduction of this nature would not have
been possible otherwise.

Ann Kostant at Birkhauser Boston was most supportive throughout
the entire process, and indeed there would have been no book without
her encouragement. Viet Ngo provided crucial support in preparing the
various drawings, and I also received critical technical help in the prepara-
tion of the manuscript from Rouben Rostamian, Boris Alemi, and Esther
M. Scheffel, colleagues at UMBC. That assistance is gratefully acknowl-
edged.

Finally, I would like to record my appreciation to my family — J udith,
Laurence, Christopher and Elise — for making the last however many
years worthwhile and for their continuous support coupled, of course,

xii Acknowledgments

with occasional subtle reminders that my intellectual activities were not
the center of the family universe.

1

Quantum Statics

To begin to describe quantum algorithms, we need an understanding
of the physical phenomena that motivate quantum mechanics, a simple
mathematical model of a potential quantum storage device and the nota-
tion to describe and manipulate such a model. In this chapter we present
the context in which we will work, motivate the need for quantum me-
chanics and provide a quick introduction to the essential mathematical
tools and notation to be used throughout the book. As part of the price
of brevity, we will work with a static model of quantum mechanics and
will defer additional mathematical definitions until they are needed. The
reader who is already familiar with this material can easily skip to Chap-
ter 2, giving only a cursory glance at Chapter 1 to identify any idiosyn-
cratic notation.

1.1 Context

In a “classical” digital computer, information is physically stored as bits,
each of which represents a zero or a one, and n-long vectors of bits are ma-
nipulated to model functional evaluation and to implement algorithms.
The stability of the stored information and the reliability of these ma-
nipulations is based on classical physics and the use of error-correction
techniques. In particular, it is assumed that one can examine storage de-
vices to determine the “value” of their contents without affecting those
contents.

However, if information is stored at the microphysical level where quan-
tum mechanics prevails, the context is radically different. For example, at

2 1. Quantum Statics

the quantum level a storage bit could represent both zero and one simul-
taneously, and measurements and manipulations of those quantum bits
turn out to be quite different processes that are modeled as matrix op-
erations. Thus, the physical context in which information is represented
becomes an important aspect of the theory.

One of the basic principles of quantum mechanics is the correspondence
principle, whereby quantum mechanical results lead to classical results as
the physical system moves from the microscopic to the macroscopic. The
correspondence principle played an important role in the development
of quantum mechanics, and certain classical concepts such as Hamilton-
ians and Poisson brackets are embedded in the conceptual framework of
quantum mechanics. Thus, an introduction to even elementary quantum
mechanics could well require a firm foundation in classical physics to
motivate the resulting mathematical model.

The mathematical structure of quantum mechanics is quite sophisti-
cated. Indeed the requirements and the success of the theory have stim-
ulated the development of modern mathematics to a remarkable degree.
Thus, an introduction to quantum mechanics could well presuppose a
high level of mathematical sophistication and an understanding of math-
ematics ranging from abstract functional analysis to group representa-
tions.

In this book we take a middle road by defining a mathematical model
which provides the essential ideas of quantum mechanics without requir-
ing the full scope of mathematics and physics necessary for a complete
theory. The goal is to provide the appropriate context for understanding
and developing algorithms that are suitable for a prospective quantum
computer. Since the model itself may appear quite arbitrary, we motivate
the need for some of the axioms of quantum mechanics by giving a brief
overview of two experiments. For a careful development of the conceptual
meaning of quantum mechanics, the reader is referred to Peres [56]. For
a comprehensive view of the subject and its development, the reader is
also referred to Shankar [63] and Sakurai [60] for a good introduction to
the mathematics of quantum mechanics.

1.2 Experimental motivation for quantum
mechanics

Let us begin with the two-slit experiment for electrons. (For a thorough
but elementary exposition of this experiment, see Volume III of Feyn-
man’s Lectures in Physics [35].) A source produces a mono-energetic

1.2 Experimental motivation for quantum mechanics 3

stream of electrons which move in the positive z-direction. An absorb-
ing screen, perpendicular to the electron stream, has two narrow slits
through which the electrons can pass on their way to counters on a sec-
ond screen set beyond the first screen. If only one of the slits is open,
the counters record a pattern of impacts that resembles a truncated nor-
mal distribution, i.e., the distribution one would expect from a stream
of particles impinging on one slit. However, if both slits are open and
are sufficiently close to one another, the distribution of impacts shows
interference, that is, the same distribution of intensity that one observes
from monochromatic light waves impinging on the second screen. In par-
ticular, the pattern of observed counts with two slits open is not the sum
of the patterns of counts obtained by opening each slit separately.

Moreover, since the experiment can be conducted so that the imping-
ing electrons are separated in time, the wavelike behavior of interference
suggests that each electron is somehow interfering with itself, which is
completely inconsistent with the particulate presumption that each elec-
tron must have gone through exactly one of the slits. And to make matters
more confusing, it can be argued (cf. [35]) that no matter how cleverly one
attempts to measure which slit each electron traversed, the interference
pattern will be affected.

The Stern-Gerlach experiment is another of the fundamental experi-
ments that motivate the mathematical structure of quantum mechanics.
It has been found that an “elementary” particle has an intrinsic angular
momentum or a “spin” which can be experimentally detected by beam-
ing a stream of particles through an appropriate inhomogeneous magnetic
field. (See, for example, [60] or [63].) Moreover, it is an experimental fact
that a quantization effect is observed: instead of observing a continuum
of deflections, the beam of particles is deflected in a finite number of
ways. In particular, it is observed that certain particles have “spin 1/2,”
which means that the impinging beam of particles splits into exactly two
subbeams.

More concretely, if a suitably prepared beam of particles is moving
along the z-axis, and if the magnetic field is arranged to have a large
inhomogeneous component in a direction perpendicular to the z-axis,
say in the z-direction, then one subbeam diverges (up) in the positive
z direction and the other diverges (down) in the negative z direction.
Although one cannot predict whether an individual particle will go up
or down, the two subbeams have equal intensity, and we describe the
particles in the first subbeam as having 2-spin up or being in a state (2, +)
and the particles in the second subbeam as having z-spin down or as being
in a state (z, —). Moreover, if a subsequent Stern-Gerlach measurement

4 1. Quantum Statics

is made on the (z,+) subbeam with the same relative orientation, then
only one beam emerges - the (z,+) beam itself, as would be expected
intuitively. Thus, prior to the second experiment the behavior of the
particles in the (z,+) subbeam can be predicted, they will emerge in
state (z,+).

The same phenomenon is observed in other directions, so that if a
subsequent Stern—Gerlach experiment with the inhomogeneity in the y
direction, a “y-oriented” Stern—Gerlach experiment, is performed on (say)
the (z,+) subbeam, two new subbeams are observed, denoted by (y,+)
and (y,—) in the obvious notation. Again, the two new subbeams will
have equal intensity although in which y-direction an individual particle
goes cannot be predicted.

But now a strange thing happens. If a second z-oriented Stern—-Gerlach
measurement is made on the (y,+) subbeam which was selected from
the (z,+) subbeam, both a (z,+) subbeam and a (z,—) subbeam are
detected in equal intensity. In other words, the measurement of the y-spin
orientation somehow erased the effect of the first z-spin measurement on
the surviving particles, and this is not an intuitive result for particles.

As with the two-slit experiment, there is an analogy with wave phenom-
ena. Suppose one sends a beam of light through three polarized filters:
the polarization directions of the first and third filters are at right angles,
and the polarization of the middle filter is at a 45° angle to each of the
other two. If the middle filter is removed from the experiment, no light is
observed passing through the third filter, as is to be expected. However,
if the middle filter is in place, light polarized in the direction of the third
filter is observed. Again, after the second filter the selective effects of the
first filter on the polarization seem to have vanished. (See [35] for a nice
discussion of these ideas.)

Assuming the validity of these assertions for particles and the fact
that classical physics cannot account for them, several conclusions can
be made. One conclusion is that, depending on the nature of the observa-
tion, particles evince wavelike behavior and, based on other experiments,
that light exhibits particle-like behavior. A second conclusion is that any
theory describing the behavior of matter at the microphysical level can-
not ignore the effect an observation has on the physical system. Thus,
for example, one cannot modify the two-slit experiment to observe the
wavelike behavior of the electrons via the interference pattern, while si-
multaneously observing particle-like behavior by determining which slits
the electrons traversed.

A third conclusion is one of indeterminism, that is, the outcome of a fu-
ture measurement of a system cannot always be predicted with certainty.

1.2 Experimental motivation for quantum mechanics 5

Instead, at the microphysical level, one may be able to predict future
behavior only with a prescribed probability. Thus, for example, in the
Stern—Gerlach 2-spin experiment above, one can predict with certainty
that a particle in the (z, +) state will go up in a subsequent z-oriented ex-
periment but can only predict the behavior of the particle in a subsequent
y-oriented experiment with a certain probability.

From the two-slit experiment, or more precisely as part of the reasoning
underlying an analysis of that experiment, a fourth conclusion is that
there is a limit to the accuracy of simultaneous measurements of certain
physical properties such as position and momentum. This conclusion was
reached by Heisenberg on physical grounds and is denoted in the quantum
mechanics literature as the Heisenberg uncertainty principle.

A fifth and crucial conclusion is that one must distinguish between the
evolution of a system and the measurement of a system. Sending a spin
1/2 particle through a Stern—Gerlach device is an example of the former;
measuring which trajectory the particle took is an example of the latter.

These are nontrivial conclusions to draw from just two examples. Suf-
fice it to say that there is a body of experimental evidence supporting
these conclusions as documented, for example, in the cited work by Feyn-
man [35] and in texts on the subject such as those by Bohm [14], Peres
[56], Sakurai [60] and Shankar [63]. However, acceptance of these conclu-
sions and of the subsequent mathematical models does not come easily,
and the history of the debate over various aspects of the theory makes
fascinating reading. (For example, see Jammer [43], Sudbery [72] and
Wick [77].)

In particular, Einstein was troubled by aspects of the theory and in a
famous paper in 1935 with Podolsky and Rosen [32] proposed a thought
experiment which assumed an intuitively appealing principle of “local
reality.” The principle of local reality concerns the existence of an el-
ement of physical reality which corresponds to a measurable physical
quantity, and the analysis in EPR [32] leads to the conclusion that one
could assign simultaneous values to two particular quantities when quan-
tum mechanics precludes such an assignment. We cannot go into details
of the argument here, but the conclusion of EPR was that the theory of
quantum mechanics was incomplete. (See [56] for a detailed discussion.)

It was shown by Bell in 1964 that the hypothesis of local reality is
testable, and subsequent experiments confirmed the validity of quantum
mechanics and the untenability of the local reality hypothesis. These
EPR-related experiments are closely connected to the ideas of quantum
computation, since they involve “entangled states” which we will see are
crucial to quantum algorithms. In addition, some of the EPR experiments

6 1. Quantum Statics

have produced results that are counter-intuitive and serve as a caution
against using classical reasoning with quantum algorithms. We resist the
temptation to describe these results here and instead refer the reader to
the literature for additional information and references. (For a discussion
of the Einstein-Padolsky—Rosen paradox and the issue of “locality,” see
Bohm [14], Jammer [43], Peres [56] or Wick [77]. For Bell’s papers on
EPR and other aspects of quantum theory, see [5]. For an example of an
EPR experiment producing bizarre results, see Pittman et al [57], and
for a recent gedanken experiment, see Mermin [53].)

1.3 The basic model

We thus assume that a mathematical apparatus modeling quantum be-
havior must (1) represent physical states as mathematical entities, (2)
model interference phenomena, (3) model nondeterministic predictions,
(4) model the effect that a measurement has on the system being mea-
sured and (5) allow for evolution of a quantum system as distinct from
its measurement. We begin by developing explicitly the standard, non-
relativistic linear model which meets these requirements. Initially we leave
implicit the dynamics of the system, concentrating instead on a “static”
model.

Suppose y denotes some physical object. If y is a hydrogen atom, for
example, then we might be concerned with its trajectory or perhaps with
its energy levels. In extreme cases we might even be concerned with the
constituent quarks of the proton. The point is that when we represent y
in some mathematical model, that representation may capture only some
of the possible degrees of freedom of the physical system itself. Thus, the
mathematical state space H is specific to the context of analysis.

Moreover, by analogy with the classical model for wave phenomena,
the second constraint suggests that H should be a linear space over the
complex numbers C, and that vectors correspond to physical states.

(1.1) Definition. H is a Hilbert space over the complex numbers C.
The inner product is linear in the second term and complex linear in the
first term so that (u, v) equals (v, u) and (w, au+bv) = a(w, u) + b(w, v).
If H is finite dimensional, vectors are represented as column vectors. e

(1.2) Example. As the simplest example relevant to quantum com-
puting, let H denote a two-dimensional vector space over C with an
orthogonal basis of column vectors,

em{(3) ()}

1.3 The basic model 7

where the basis vectors denote the defining states of a two-state quantum
system. Since H is a linear space, it thus contains vectors that represent
the quantum system as being in a linear combination of the two defining
physical states. °

The third constraint requires a probabilistic component in the model,
and this is an essential feature of the theory. Indeed, Peres [56] (p. 13)
puts it this way: “In a strict sense, quantum theory is a set of rules
allowing the computation of probabilities for the outcome of tests which
follow specified preparations.”

Let us use discrete probability as a motivation for the model. If an
observed random phenomenon A has n real outcomes {ay, ... ,a,} which
occur with respective probabilities {py, ... ,pn}, then the expected out-
come (expectation) of A is given by 3 prax. To suggest the generalization
we follow Parthasarathy [55] and calculate this expectation in another
way. Let p denote an n x n matrix with the p,’s in order down the main
diagonal, pir = pk, and let A be an n x n matrix with the real entries ay
also in order down the main diagonal. Then it is easy to check that the
expectation of the random variable coincides with the trace of the matrix
product pA.

(1.3) Definition. The trace tr(A) of a square matrix A is defined as the
sum of the diagonal entries of A in a particular coordinate representa-
tion. It can then be shown that tr(A) is independent of the coordinate
representation and that tr(AB) = tr(BA). (See, for example, Axler [1]
or any standard linear algebra textbook for proofs.) °

Thus, if U is an invertible matrix, tr(UAU) = tr(A). For the matrices
in (1.8) and (1.9) below, tr(p) = 1 and tr(A) = 0.

To make the generalization to H, we retain the matrix representation
and the key properties of p and A. The probability “context” or state
of a physical system is then modeled by a positive semidefinite linear
transformation p which has trace equal to one, imitating the fact that
the total weight of a probability measure is one. As we will see below,
it is possible to construct an appropriate p from a vector in H, and the
word “state” in that context is sometimes taken to mean the vector and
sometimes taken to mean the probability density p constructed from the
vector.

The matrix A which models the experimental outcome has real eigen-
values, and its orthogonal eigenvectors span an n-dimensional space. Its
generalization, an “observable” A, is taken to be a Hermitian matrix,
which means that A continues to have real eigenvalues and a complete
set of eigenvectors.

8 1. Quantum Statics

(1.4) Definition. A is a Hermitian matriz if A = A', ie., aje = ax;.

Using the inner product cleverly, it is easy to confirm that A has real
eigenvalues. It is standard linear algebra fare that A also has a complete
set of orthonormal eigenvectors and a spectral decomposition

(1.5) A= NP,
k

where the A¢’s denote the (real) eigenvalues and the Py’s denote orthog-
onal projections on the corresponding eigenspaces Hy. (See the continu-
ation of Example (1.2) below (1.10).) For proofs see any standard text in
linear algebra.

(1.6) Definition. An observable A in the (finite-dimensional) state space
H is a Hermitian operator. The probability “state” or density of the sys-
tem is a positive semidefinite operator p with trace one, and the proba-
bility of observing a system in a subspace Hy is defined as tr(pP), where
P is the orthogonal projection on Hy. The expectation of the observable
A relative to p is tr(pA). .

If A has the representation given in (1.5), it is easy to check that tr(pA)
equals > Actr(pPk), so that the definitions of probability and expectation
are consistent. (For example, see (1.14).) In words, a single measurement
of A in state p produces a value A; with probability tr(Pyp). We call the
pair (H, p) a quantum probability space (QPS).

(1.7) Exercise. By definition p is positive semidefinite if and only if for
any vector u, (u,pu) > 0. Show that such a p is also Hermitian. (Hint:
consider u’s with only one or two nonzero components.) °

As an illustration continue with the context of Example (1.2). Let p
be defined by the outer product

(1.8) p=(5)-(r 0=(5 o)

and let

(1.9) A= (? ?)

Thus p, the state of the system, is defined by the column vector (1,0)?,
where (1,0)* denotes the transpose of (1,0), and the expectation of A
relative to p is 0. We will see below that this can be interpreted as a
measurement of the expected y-spin of a particle in a z-spin up state.

1.3 The basic model 9

Much of our discussion applies in a general Hilbert space, but then
one has to develop the apparatus of infinite-dimensional vector spaces
and general functional analysis. Since quantum computing algorithms are
modeled in a finite-dimensional setting, we simplify matters by staying
in the finite-dimensional context. In addition, we resist the temptation
to present the consequences of our hypotheses as a generalization of a
probability space. (See Parthasarathy [55].)

The physics underlying the next assumption is that after the measure-
ment of an observable, the physical system will be in the state associated
with the observed eigenvalue. For example, if a Stern—Gerlach experiment
shows an electron has a particular spin orientation, then immediately af-
ter that measurement the electron will have that particular orientation
with probability one. This is a fundamental assumption of quantum me-
chanics.

(1.10) Assumption. An observable A is “measured” by detecting one
of its eigenvalues. If the physical system is not destroyed by the measure-
ment, then it is subsequently modeled by a QPS (H, p'), where p' assigns
probability one to the associated eigenspace of A. °

Again referring to the continuation of Example (1.2), A has eigenvalues
1 and —1, and the spectral theorem for Hermitian matrices guarantees A
can be written in terms of its eigenvectors and eigenvalues as

oo (L]) (])

ﬂ'%(: 7)““”'%(—2 i)

Suppose that a physical measurement gives +1 as the measurement.

L1 =i

Then 3 (2 1

ment, and it is easy to check that p’ is positive semidefinite and has trace
equal to one.

It is important to emphasize the sequence of events in an observation.
Before the observation, the physical system is modeled by (H, po), and
the probability that an observable A will have (eigen) value a is tr(poP,),
where P, is the projection on the a-eigenspace of A. Subsequent to the
measurement, the physical system is modeled by (H, p;), and tr(p, P,)
equals one. One way to describe this is to say that the system “collapses”
into the measured state. An alternative description is that the probability

is the probability state p’ subsequent to that measure-

10 1. Quantum Statics

density subsequent to the measurement is defined by the results of the
measurement.

The fifth constraint leads to an aspect of the basic model that is cru-
cial for quantum algorithms, and that is the use of unitary mappings to
model actions which modify the system without affecting the inner prod-
uct of two vectors of H. It is the clever combination of unitary mappings
and selected measurements that constitute the essence of quantum algo-
rithms. To avoid too much notation at one time, however, we defer the
discussion of unitary maps to the end of the chapter and instead give an
example of a static model.

1.4 The basic example: spin 1/2 particles

We illustrate these definitions by modeling a spin 1/2 particle as described
earlier. (Example (1.2) is actually part of this example.) Although it is
unlikely a quantum computer would use spin information to represent
zero and one, spin 1/2 particles present a clean and nonclassical paradigm
for a two-state quantum system.

The Stern—Gerlach experiment shows the 2-spin orientation of an elec-
tron is either up or down, and we take H to be C?, a two-dimensional
vector space over the complex numbers. Following the notation of Section
1.2, let (2,+) denote the (vector) state of the particle when the z-spin
is up and (z,—) the (vector) state of the particle when the z-spin is
down. The experimental evidence that the z-spin is either up or down is
modeled by saying (z,+) and (z,—) are orthonormal, and thus the two
vectors define a basis for H. The experimental measurement is modeled
by defining the vectors (z,+) as eigenvectors for a 2-spin measurement
which is given by S,:

S.(z,£) = £h/2(2, %)

where as usual A = h/27, and h denotes Planck’s constant.

Particles can be measured for spin effects in any orientation, and we
can thus talk about an z-spin and a y-spin in our model. Based on the ex-
periments described earlier, it follows that regardless of the z-spin orien-
tation, the particle is equally likely to have its z-spin in either z-direction,
and the corresponding (z, +) states can be modeled in the same space in
terms of the (z,+) vectors. In fact, one can derive

(111) (g, 4) = ((zH) +(z-)/V2 (g,-) = ((z+) = (,-))/V2.

In a similar fashion, the y-spin states can also be represented as a linear
combination of the z-spin vectors and in proper relation to the z-spin

1.4 The basic example: spin 1/2 particles 11

vectors, provided one allows complex coefficients. Although a particle’s
intrinsic spin is not a classical concept, its mathematical representation
can be derived from an analysis of the angular momentum of a particle.
(See [60] or [63] for details.) Following standard conventions this gives

(1.12) (3, 4) = (2, +) +i(2,-))/V2 (3,=) = ((z,4) —i(2,-))/V2.

In a coordinate representation for which S, is diagonal, so that (z,+) =

[(1)] and (z,—) = [(1)] one has

(1.13) (z,4) = % [ill] (v, %) = % [ilz] .

(1.14) Example. Suppose we have measured the 2-spin, and the particle
has z-spin up. Then the model representing the state of the particle spin

0 8 , and we compute, for example, the probability that
the y-spin is (y, —) as tr(poP;), where P; denotes the projection matrix
1 2
-1 1
in this case, we obtain 1/2 as expected, and analogous results would
be obtained for the other spin orientations. A = 1P, + (—1)P; is the
spectral representation of A given below (1.10), where P, is the projection
on (y,+), and as noted in (1.6) we can confirm the consistency of the
definition of the expectation:

has po = (1

on the one-dimensional space spanned by (y, —). Since P; = 3

tr(poA) = (1)tr(poPy) + (—1)tr(poPy) = 0. °

(1.15) Example. Continuing according to our prescription, suppose that
we now know the particle is in the (y, —) state. Using the same basis, it
follows that the appropriate quantum probability space is now (H, p;)

with
RYSE
pl - 2 —l 1]

which is just the projection matrix P; computed in the preceding exam-
ple. If we want to measure the (new) probability of the particle having
2-spin down, for example, we find T}, the projection on (z,—), and com-
pute tr(p1Ty) = 1/2, consistent with experiment. .

12 1. Quantum Statics

In terms of the z-spin basis, the “z-spin operator” S, has the ma-

1
0
+(%/2)(z, £), and using the z-spin basis, it is easy to check that S, has

trix representation #/2 _01) The x-spin operator S, maps (z,+) to

the representation (%/2) 1) , and similarly S, has the representation

0

10
0 —i .

(ﬁ/2)<i 0) The matrices

_ (01 (0 =i (1 0
2=\10 =\ oo 72=\o0 -1

are known as Pauli spin matrices. If we let oy denote the identity matrix,
it is easy to check that these four 2 x 2 matrices define a basis for the
linear space of 2 x 2 matrices over the complex numbers and a basis for
2 x 2 Hermitian matrices over the real numbers.

(1.16) Exercise. Verify the preceding assertions and confirm that the
Pauli spin matrices are Hermitian and have eigenvalues +1. °

The foregoing illustrates the way a QPS is defined and “evolves” as
measurements are made. (Note that this “evolution” is based upon mea-
surements and not on the dynamics of the system.) This example also
illustrates the need for a tractable notation which facilitates both numer-
ical and symbolic calculations.

1.5 Dirac notation

In developing quantum algorithms we will be working with higher dimen-
sional spaces, and the notation used so far becomes cumbersome. In order
to keep track of the physical system being modeled and to simplify the
theoretical manipulations of the theory, Dirac introduced notation which
has become standard in the field.

To emphasize the relationship of vectors with physical states, vectors
in H are associated with physical states using the bra-ket notation. The
“ket” |¢) stands for a vector in H associated with the physical state ¥ and
would be represented by a column vector in the finite-dimensional case.
The “bra” (3| denotes the adjoint of |¢), and in the finite-dimensional
case would be represented as a row vector whose entries are complex
conjugates of the entries of |1): (1| = |¢)!. Thus we can say that the ket
|2,+) denotes the particle with state (z,+) and the ket |z, —) denotes
the particle in state (z,—). Similarly, we use the kets |z,+) and |y, %)
for the corresponding = and y spin states.

1.5 Dirac notation 13

The inner product between a bra and a ket — between a row vector
and a column vector — is denoted by the bracket notation (p|¢), (now

[{P%2)

you “c” it), and corresponds to the inner product of Definition (1.1).

(1.17) Example. To illustrate the notation, let {|ux),1 < k < n} be an
orthonormal basis for H. Then it is easy to check that the outer product
|uk) (uk| is the projection operator onto the vector space spanned by |uy)
and that the identity operator can be written I =) |ux)(ux|. Given
those facts, one easily obtains the representation of a ket relative to that
basis:

[0 =Y () (D)) = D Juw) (w9

k k

(We used the outer product below (1.10) to derive the spectral represen-
tation of A.) .

(1.18) Example. Suppose a spin 1/2 system is known to have z-spin
up, so that the associated py is |z, +)(z, +|. If |z, +) and |z, —) are chosen
as basis elements, then the coordinate representation of py is the matrix
Po = [(1)] -[1,0] = (é 8) as illustrated in (1.8). Analogously, if the
system is known to be in state |y, —), then the corresponding probability
state is pg = |y, —Xy, —|, which can be represented in the z-spin basis by

the matrix (715 _12 iz) =3 _ll ;), confirming (or deriving)
the expression used in Example (1.15). o

(1.19) Example. Using the 2-spin vectors to define the coordinate sys-
tem in a spin 1/2 system, consider the basis defined by the y-spin vectors.

. . . —1 1
Then one can represent the identity matrix I as % <: 12 +% i ;))

where the first term is the projection on |y, +) and the second term is the
projection on |y, —). If we take |¢) to be |z, +), then it is easy to check
that

1
lz,+) =y, +) - (w, +Hz, +) + 1y, =) - (y, =2, +) = %(Iy&) +ly,—)) o

If we know that a system is in a particular state |¢), then the density
p must reflect that fact: a measurement of that aspect of the system
should show it to be in |¢) with probability one. To achieve that feature,
a density p is routinely associated with a physical state i using the
associated bra and ket via the outer product, so that p = (w—hb)jw)(w, and

14 1. Quantum Statics

thus p has trace one. It is for this reason that physicists associate densities
p with kets with norm one. By the same token, if c is a complex number
with norm one, both |¢) and c|¢)) define the same p. (As far as expressing
the state of a system via p, some authors identify the physical state 3
with the entire “ray” c|¢), where ¢ # 0.) We record these observations in
Lemma 1.21 below.

Recall that an observable is associated with a Hermitian operator A.
Then since A equals A!, (Aly))! = (Y|AT = (Y|4, and (p|AlY) =
(| Algp). Cognoscenti of Dirac notation interpret this last equation as
follows. Suppose an orthonormal basis for H contains the orthonormal
states |¢) and |p). Then the operator A is represented by a matrix whose
|), |¢)’th entry is the complex conjugate of its |1/}, |p)’'th entry. We also
have the representation of a Hermitian operator in Dirac notation, i.e.,
the translation of the spectral representation of (1.5) above:

(1.20) A= NelvXal,

where the \;’s are the (real) eigenvalues of the orthonormal eigenvectors

llﬁk) of A.

(1.21) Lemma. Let A be a Hermitian matrix, and let [¢) be a ket.
Let (y|Al¢) denote the inner product of (| and Aly). Then p = |¥) (Y|
is positive semidefinite and has trace one if and only if |¢) has norm
one. In addition, tr(pA) = (¥|A[¢). Thus, if the system is in state |¢),
the expectation of an observable A is (y|A|y), and the probability of
measuring the system in a subspace defined by a projection matrix F is

(Y| Pol®).

Proof: If |u) is any vector in H, (u|(|¥Xv|)|u) = |(¥|u)|?, so that p
is positive semidefinite. Since the trace is independent of the choice of
basis, choose {ux,1 < k < n} to be an orthonormal basis for H with
uy = [¢). Taking u = u; in the foregoing equation, it is easy to see from
the definition of the trace that p has trace one if and only if the ket |¢)
has norm one in H. For the last assertion, use the properties of the trace
and the fact that p is a projection:

tr(pAd) = tr(l)XylA) = tr(([WXP)A(YX¥))
(WA tr([YXY]) = (Y] Alp). .

The state p of (1.21) is called a pure state, since it arises from one
particular state |¢)) of the system. A density p is a mized state if it
is defined as a convex combination of pure states as in the following
example.

1.6 Unitary transformations 15

(1.22) Example. Let {p;, 1 < j < n} be a set of nonnegative real
numbers whose sum is one. Let {|p;),1 < j < n} denote an orthonormal
set of kets. Then

p="_pileiXesl

is positive semidefinite with trace one, and for Hermitian A,

tr(pA) = Y _ pi(p;lAle;)- .

. _ [cos(t) —sin(t) .
(1.23) Example. Define the rotation R(t) = (sin (&) cos(t)) relative
1

to the z-spin basis of a spin 1/2 space. We know that |y, +) = 7 [ﬂ

and |y,—) = —\%5 [_lz] are orthonormal basis vectors. Then R(t)|y,+)

and R(t)|y, —) are also orthonormal vectors. More generally, we have in
Dirac notation:

(ulv) = (u|R()'R(t)Iv)

for any two vectors in the space, which is another way of saying that
R(t)' = R(t)™!, the defining property of a unitary matrix. .

1.6 Unitary transformations

Example (1.23) illustrates the fifth aspect of the basic (static) model.
Suppose we have a given finite-dimensional space H over the complex
numbers and we map H into itself with a unitary transformation U, so
that U~! = U'. Then the image space is just H itself, since dimensionality
and orthogonality are preserved by a unitary transformation. However,
if a vector u represents a specific physical state of the quantum system,
then Uu may be a linear combination of vectors representing different
physical states of the system. Alternatively, we can consider U as a change
of basis mapping, so that the description of a system is changed from one
perspective to a different perspective. For example, instead of using the
2-spin orientation as the computational basis, we could change to the
z-spin basis instead.

(1.24) Exercise. Prove that U is a unitary matrix on H = C? if and

only if U = €* (_O‘B g) , where |af? + 'ﬁlz =1 .

16 1. Quantum Statics

(1.25) Exercise. Suppose {uy,... ,ux} is a set of orthonormal vectors
in a complex linear space H. If U is an n x n unitary matrix, confirm that
{Uuy, ... ,Uu} is also a set of orthonormal vectors and that U takes an
orthonormal basis into an orthonormal basis. .

For purposes of quantum algorithms, unitary transformations model
the manipulation of information or data “without looking,” while pro-
jections model the measurement of the values of the information or the
data — what we see when we look at the system. These two aspects of
a quantum system thus codify the distinction between manipulating a
system containing information and observing a system to measure the
information it contains.

(1.26) Example. Suppose we have a QPS in the (normalized) state [¢)
so that the density operator is p = |¢)}¢|. Let U be a unitary trans-
formation and let |¢) = U|y). Then the new probability operator is
pr = U|w)w|UT. If A is a Hermitian operator, then

tr(pA) = (plAlp) = (W|UTAUp) = tr(pAy),
where A; = UTAU. .

Thus, we could think of the state having changed and measure the
observable A using the new state p;, as on the left of the equation above,
or we could think of the state having stayed the same and use that to
measure the new observable A;, as on the right of the equation above.
Either way, we get the same result.

We continue to defer a discussion of Schrodinger’s equation, but it
is appropriate to note here that a solution of that equation involves a
group of 1\1nifgr}r matrirec f’f(f\l related tn the time—evn]ving state of
the quantum system by |¥(¢)) = U(t)|¥(0)). Using these time-dependent
operators in the preceding example, we could imagine the state evolving
in time as p(t) = U(t)pU'(t), which is the Schrédinger picture. or the
observable evolving in time as A(t) = U'(t) AU (t), which is the Heisenberg
picture.

Now by using matrices to model measurements and transformations,
we have introduced the feature of noncommutativity and that plays an
important role in the theory.

(1.27) Definition. The operator [A, B] = AB — BA is the commutator
of two operators and is a measure of their noncommutativity. .

Recall the Pauli spin matrices

(01 (0 —i (1 0
7==\1 0 =i 0 2=\o -1)°

1.6 Unitary transformations 17

which were introduced above (1.16). It is easy to check that these matrices
are both Hermitian and unitary and that 0,0, = —0,0, = i0,, so that
different spin matrices do not commute. In general,

(1’28) [077 Us] =003 — 030, = 27;61‘stata

where €, equals 1 if st is a positive (i.e., even) permutation of zyz,
equals —1 if rst is a negative (i.e., odd) permutation of zyz and equals 0
otherwise.

(1.29) Exercise. If 7i - & = n,0, + ny0, + n,0,, show that

(m-G)(7A- &) =nm-fog+i(M X i) -7
where 0y is the identity matrix and 7 X 7 is the usual cross product of
vectors. °
(1.30) Exercise. Show that any A in SU(2), the set of 2 x 2 unitary
matrices with determinant 1, can be written as

aogop + a-ic y

where the aj are real and af + a2 + a2 + a2 =1. .

(1.31) Exercise. Suppose A and B are Hermitian and |¢) is a given
state. Show that the commutator [A4, B] is anti-Hermitian, [A, B]! =
—[A, B], and conclude that (¥|[A, B]|¢) is a purely imaginary number.
Let {A, B} = AB + BA denote the anticommutator and confirm that
(¥|{A, B}|¢) is a real number. .

We have enough machinery in place to confirm that the required un-
certainty relations follow as a consequence of the definitions. (See, for
example, [60, 63]). Specifically, suppose a system is in state |¢)) and that
A and B denote two Hermitian matrices. If AA = A — (¢|A|y)] and
AB = B — (y|Blt)I, where [is the identity operator, then it is easy to
verify that (¢|AA|¢) = 0 and similarly for AB. Thus,

(WI(AA)[)(BI(AB)[y) > [(¥|(AAAB)[)?

follows from the Cauchy-Schwarz inequality, and from elementary algebra
we have

2(Y|(AAAB)Y) = (YI[A, Bllv) + (Y[{AA, AB}).
Using (1.31) we obtain

(W(AA)YXY(AB)TY) 2 i(l(iﬁllA, Bll$)* + (¥I{AA, AB} %))

18 1. Quantum Statics

and thus a generalization of the Heisenberg uncertainty principle:

(1.32) (WI(AA?[)(WI(AB)|y) 2 i(l(t/}l[A,B]Iw)I?)-

We have thus shown that the mathematical model developed so far in-
cludes the Heisenberg uncertainty principle as a consequence. The mean-
ing of the inequality is that if two operators do not commute, then there is
an intrinsic randomness in the outcomes of experimental measurements,
a randomness which is independent of the accuracy of the measuring
apparatus.

2

Basics of Quantum Computation

In this chapter we build on the basic model developed in Chapter 1 by
extending the notation to handle quantum systems with multiple qubits.
With that terminology in place, we can illustrate the ideas which are ba-
sic to quantum algorithms and can confirm theoretically that the unitary
transformations we need can be implemented as a sequence of operations
involving only one or two qubits. Quantum algorithms can be constructed
using a small number of quantum gates, and we discuss those gates next.
We then use quantum gates to construct an addition subroutine and
complete the chapter with a teleportation subroutine, which is the first
illustration of the potential importance of entanglement for communica-
tion.

2.1 Qubits and tensor products

A key component of a putative quantum computer is a quantum system
with two states which can represent 0 and 1. We have used the spin state
of an electron as a paradigm, and we let the z-spin up state |z, +) denote 0
and the z-spin down state |z, —) denote 1. In the basic model these states
are represented by orthonormal vectors |0) and |1), respectively, and the
vectors are referred to as the computational basis. Following Schumacher
[61], we will call the mathematical model of such a physical system a
qubit.

As of this writing, it is not clear what quantum system could be used
physically to realize a practical qubit, and there is active research on the

20 2. Basics of Quantum Computation

subject. One possibility is the use of trapped ions: a finite number of
similarly charged particles captured in a specially designed field which
allows limited motion only along a line. Two selected energy states of an
ion represent 0 and 1, and it is physically possible to operate on such
an ion to achieve superposition. While it is also physically possible to
trap several ions at the same time, it appears to be quite difficult to
manipulate them in such a way as to implement the rudimentary logic
gates we will discuss below. (See [21].) A detailed discussion of trapped
ions and other possible quantum systems defining qubits would take us
too far afield at this point, and we’ll continue to concentrate on the
theoretical context, keeping in mind that the choice of the physical system
may significantly affect the implementation of algorithms. (For more on
possible implementations see, for example, [37], [51] and [73].)

In order to implement any useful quantum algorithm we need to deal
with many qubits in one QPS, and the appropriate model is a tensor
product of qubits. Specifically, if we have n qubits, each with a given
computational basis in a two-dimensional QPS H;, then the tensor prod-
uct is a 2"-dimensional space with a computational basis consisting of 2"
vectors

livia .. in) = [i1) ® i) @ - ® |in),

where the indices i) take on the values 0 and 1. That notation indicates
that there are two ways of viewing vectors defined as tensor products.
One way is as vector number ¢, .. .14, and the other way is in terms of the
tensor product notation. The first representation emphasizes the fact that
the n-bit index can stand for the binary representation of an integer k,
0< k < 2"—1, while the second expression emphasizes the representation
as qubits.

(2.1) Example. Let n = 2 so that H = H,® H, is a four-dimensional
space with a basis {|00),|01),|10),|11)}. If the encoding of information
is in terms of energy levels of trapped ions, for example, then the first
(high-order) bit denotes the energy level of the first ion, and the second
(low-order) bit denotes the energy level of the second ion. If the encoding
is in terms of z-spin, then the first (high-order) bit denotes the z-spin of
the first particle, and the second (low-order) bit denotes the z-spin of the
second particle. .

Once we have n qubits and the tensor product space representing them,
we will want to apply unitary and Hermitian mappings. The most basic
mapping is one which affects only one qubit, say the first qubit, and
leaves the other qubits unchanged. If A; is the mapping applicable to

2.1 Qubits and tensor products 21

H,, then the mapping A; ® I ® --- ® I,, denotes the extension to the
tensor product space. In general,

(A1® - @An)([1)® -+ ®lin)) = A1i1) @ - - ® Anlin)

denotes the action of a tensor product of linear maps on a basis vector
of the tensor product space. The extension of the operator to arbitrary
vectors in H is defined by linearity in the obvious way.

(2.2) Example. Let H denote the space of Example (2.1) and suppose
we want to operate on H by A® B. In terms of the matrix representations
in the computational basis, let

=) =)

so that A ® B is a 4 x 4 matrix which operates on [¢p) = Y 3 a;i|5)|k)
in the coordinate representation by
00

r s r s
@ t u b t u o1
A®BlY) = r s r 8 !
(v a) el o) e
t u t u 11

where we have written the matrix in terms of 2 x 2 blocks. Note that

S 9 9 9

tr(A ® B) = (ar + au + dr + du) = tr(A)tr(B). .

We should make a cautionary comment here about the definition of
the matrix representation of the tensor product. In order for the left bit
to denote the high order bit we need to define the matrix representation
as above. However, other definitions may reverse that ordering and the
matrix representation of the tensor product would differ from the matrix
above by a permutation of the rows and columns.

(2.3) Example. Suppose the operators A; are each unitary (Hermitian)
in H;. Then the tensor product A is unitary (Hermitian) on the tensor
product space H. We leave it to the reader to check the details, using the
fact that

(2.4) Example. If we wish to perform a measurement on H, then as
usual we do so with respect to a positive semidefinite matrix p with trace

22 2. Basics of Quantum Computation

one. As we have seen above, such a matrix could be defined using a state
|} in H and the outer product: p = |1))(1|. Suppose, for example, that we
chose [¢) = |1)® - - - ® |¢),), where each of the components of the tensor
product is a normalized state in the corresponding component space. Let
A denote a tensor product of Hermitian matrices Ax. Then

@WlAY) = tr([WX¥lA) = tr([i)¥1|Ai1® - - ® [¥n)¥nldn)
= T tr(weXenlde) = Tl Axlvn)

k k

as we would expect in this simple case. o

2.2 The basic strategy of quantum algorithms

We can now summarize the fundamental differences between a classical
computer and a quantum computer. In a classical computer, n bits can
represent one integer k, where 0 < k < 2" — 1. However, because of
superposition, it is theoretically possible for n qubits to represent simul-
taneously all 2" integers in that range.

In a classical computer we can examine the n bits and read off the
integer value without changing the values of the bits. However, if we
attempt to read off the contents of n qubits which are in superposition,
we are performing a measurement, and the theory tells us the outcome
is not predictable. Moreover, once we read the contents of the qubits we
lose the superposition.

This distinction between the presumed simultaneous “existence” of su-
perposed states (an ontological issue) and the actual measurement of
exactly one of those states (an epistemological issue) is at the heart of
philosophical interpretations of quantum mechanics and also at the heart
of quantum computing. We act as if all 2" numbers are stored in the
qubits, even though we can only know what we actually measure. We
will never be able to see (i.e., measure) more than one n-bit integer at a
time.

If qubit k& is in the state |1) = g, |0) + ax, |1) With |ak|? + |ak, |* =1,
then relative to the tensor product state, the probability of observing the
number represented by the basis vector |12z . .. %,) is [, (k] R-(kk)Wk) =
[Tx lak, |*, where Pi(kk) denotes the projection of the k’th qubit onto |ix),
and that will equal 2™ if each component computational basis vector is
equally likely. Thus, while n qubits might enable us to simultaneously
represent all 2" numbers, the probability of each one being measured is
correspondingly small.

2.2 The basic strategy of quantum algorithms 23

The strategy then is to take advantage of superposition, which enables
us to calculate the value of a function at all 2" integers simultaneously,
while avoiding premature measurements which destroy the superposition
and which don’t necessarily guarantee our reading out a useful result
with any significant probability.

How do we enhance the probability of getting something useful? The
answer is that we can still apply unitary transformations to the qubits
and try to change the initial state vector to a state vector which will
significantly increase the probability of measuring something useful. In a
sense, unitary transformations enable us to manipulate all of the super-
posed states simultaneously “without looking” until we finally arrive at
a state for which a measurement is appropriate.

(2.5) Example. Suppose we have two qubits |1;) and |t,), each of
which is in the superposed state (|0) + |1))/+/2 in the coordinate basis of
its respective space H;. Assume the state of the tensor product space is
|¥) = |1) ® |+2) and that we can operate on |¢)) by a unitary matrix U
as follows:

1 -1 0 0 1/2
B 1|1 1 0 o0 1/2
oy = UM ="Z510 0 -1 -1 1/2
0 0 1 -1 1/2

0

1 1
- 5|4 = —5(101) - 110)).
0

If we now compute the probability of being in state |10), we find that
instead of 1/4, the probability of being in |10) before applying U,

tr(l) (el Pro) = (| Prolp) = 1/2. °

In Example (2.5) we used Dirac notation, tensor notation and stan-
dard matrix notation where the rows and columns were labeled in lexi-
cographical order: 00, 01, 10, 11. The matrix U is unitary but is not a
tensor product of operators on the subspaces, and the resulting state is
not a tensor product of states. Such a mixture is referred to as an entan-
gled state and is a crucial ingredient in our algorithms. Entangled states
are central to EPR experiments and have the peculiar property that al-
though the particles defining the two qubits may be widely separated
in space and can be separately measured, they constitute one quantum
state and do not possess “separate” or “local” properties (a two-particle

24 2. Basics of Quantum Computation

system rather than a system of two particles). This is the point that gave
Einstein pause, and which we mentioned in Chapter 1.

If we wish to entangle two qubits, we will need to implement uni-
tary transformations which involve those qubits and which are not ten-
sor products of operators on the separate subspaces. In fact, quantum
algorithms require that we entangle a large number of qubits, and from
the brief discussion of trapped ions the reader can surmise that it would
simplify the engineering if such a mapping could be implemented by a
sequence of unitary operations involving no more than two qubits at a
time. This is indeed mathematically possible, and we give the proof as
presented in [33].

(2.6) Proposition (Deutsch 1985). Let U be a unitary matrix on a d-
dimensional space. Then the action of U can be written as a product of
2d? — d unitary matrices, each of which acts within a two-dimensional
subspace defined by a fixed set of d basis vectors. Thus any unitary
transformation on n qubits can be realized by a sequence of unitary
operations, each of which affects no more than two qubits.

Proof: Let uy,...,uy denote d orthonormal eigenvectors of U with
eigenvalues Aq,...,\,. If u; equals (z1,...,24) in a given basis, then
using the obvious notation, the block diagonal matrix

1 T, o
e (B (—a7 o) ’ 1)
effectively operates as a 2 x 2 matrix on the first two coordinates and maps
up to (t2,0,z3,...,24), where to = y/|z1|2 + |z2|2. A total of d — 1 such
maps Ay, produces (1,0,...,0). Multiplying (1,0,...,0) by the eigen-
value \; = €1, a one-dimensional operation, and applying the inverses
of the Aj;’s in reverse order has the effect of multiplying the first eigen-
vector u; by the first eigenvalue A; in 2d — 1 one- and two-dimensional
unitary operations. By the orthogonality of the eigenvectors, the other
eigenvectors are mapped to and then from a vector with a zero in the
first component and are thus unaffected by the procedure. Repeating that
process for each of the d eigenvectors, it follows that U can be modeled
as a product of d(2d — 1) one- and two-dimensional unitary matrices,
completing the proof.)

There are two caveats to this analysis. We wish to construct algorithms
that are polynomial in n, the number of qubits, but the dimension d
of the underlying Hilbert space is 2". Proposition (2.6) guarantees the
representation of a unitary map as a product of poly(2") one- and two-
dimensional maps, which is not good enough. What we need to show is

2.3 Quantum gates 25

that a unitary map in a quantum algorithm is feasible; that is, it can be
realized by a sequence of poly(n) one- and two-qubit unitary mappings.

The second caveat is that most likely we cannot assume that every
one- or two-qubit unitary map is physically implementable. Instead, we
would have to restrict ourselves to maps that can be well approximated by
sequences of maps from a (presumably) finite number of physically imple-
mentable one- and two-qubit operations. This problem was also studied
by Deutsch (cf. [33]), who showed that one could define a finite collection
of eight transformations that generate under composition a group dense
in the set of two-dimensional unitary transformations. (Ekert and Jozsa
[33] remark that the work by Bernstein and Vazirani [13] implies that a
matrix implementing a rotation by a fixed irrational angle and the map

< (1] _01) suffice to approximate an arbitrary 2 x 2 unitary mapping.)

We revisit this issue below.

2.3 Quantum gates

A guantum gate is the analogue of a logic gate in a classical computer,
and quantum gates are the basic units of quantum algorithms. The dif-
ference between the classical and quantum context is that a quantum
gate has to be implemented unitarily and, in particular, must be a re-
versible operation. For example, the classical OR statement on two bits is
not invertible since the four possible inputs {00, 01, 10,11} map onto two
possible outputs {0,1}. A quantum analogue would require four possible
outputs. (See XOR below.)

The simplest examples of quantum gates are operations on one qubit.
For example, in Dirac notation the NOT operation is X|k) = |k @ 1),
where the addition is mod(2), and a phase operation on one qubit is
Alk) = e=D%%|k) In matrix notation

0 1 ¢ 0
X“’"(l 0) A=(0 e‘i"’)'

Once again we emphasize that we are not addressing the issue of phys-
ical feasibility but instead are assuming that the indicated operations
could be implemented, provided they meet the theoretical requirements
of unitarity.

(2.7) Example. Suppose a qubit is initially in one of the computational

basis states, say, |0) in Dirac notation or ((1)) in the computational

26 , 2. Basics of Quantum Computation

(1)

a unitary matrix, then the new state |¢) = R|0) is a superposition of the
computational basis states, and each basis state now has probability 1/2
of being observed:

basis notation. If

pi = (Y|RJY) =1/2,
where P; denotes the projection on |¢). In particular,
0) = ((0) + [1))/V2.

The map R is the Hadamard mapping on the space spanned by {|0), 1)},
and we shall be using tensor products of R below. °

On a notational point, we have used R in lieu of the more customary
H for Hadamard, since H also denotes a Hilbert space as well as the
Hamiltonian operators in Schrodinger’s-equation. .

(2.8) Exercise. Write R in terms of the spin matrices as 71 - & and verify
the relations Ro.R = 0,, Ro,R = 0, and RoyR = —0,. °

Logic gates involving more than one qubit also have matrix represen-
tations in the computational basis, but since the dimensions grow ex-
ponentially with the number of qubits, an alternative “wiring” notation
has evolved, motivated by an early paper of Feynman [36]. If one of two
qubits is affected by the NOT operation, for example, we write

X

to indicate the operation on the first qubit. The intended flow of the logic
is from left to right, and the transition is from |j)|k) to |j & 1)|k).

(2.9) Example. The controlled not or exclusive or operation XOR ap-
plies a NOT gate to a target qubit only if the control qubit is in state 1,
and the transition in Dirac notation is

i) k) — 1517 @ k),

where the notation as usual denotes a mod(2) sum. Note that the two
qubits are entangled after the XOR operation, and the state of the system

2.3 Quantum gates 27

cannot be represented as a simple tensor product of the states of the
individual qubits. The wiring diagram is

p

N

Ay

(2.10) Example. Using the computational basis with the topmost qubit
representing the high-order bit, the NOT operation X has the matrix

(1) (1) ® I, which easily generalizes if there are more
unaffected qubits. The matrix U for XOR is

representation

[R e R
SO = O
_= O O O
o = O O

and it is easy to confirm that these are unitary operations. °

(2.11) Exercise. Show that the matrix U in (2.10) is similar to

100 O
010 O
001 O
000 -1

(Hint: use a change of basis matrix of the form I ® R, where R is defined
in (2.7).) What is the representation of U after the basis change R ® I?
Show that the basis change R® R reverses the roles of the first and second
qubits in the XOR operation:

(R®RU(R®R) =

S O O
= O OO
o= OO
OO~ O

It’s useful to illustrate the last assertion in Exercise (2.11) using Dirac
notation. Let U denote the linear operator that implements XOR:
U(l5)1k)) = |7)|7 @ k), where the states are in the computational ba-
sis. Recall that |0;) = (|0) + |1))/v/2 denotes the z-spin up state and
1) = (|0) —|1))/v/2 denotes the z-spin down state. The result of (2.11)

28 2. Basics of Quantum Computation

is that if we look at U in the {|0,),|1,)} basis, we find that the second
qubit controls the first qubit. For example:

1
U(102)[12)) = 3U(|00) +]10) —[01) — |11))
1
= 5(100) +[11) = 01) = [10)) = [1:)|12).
Two equivalent wiring diagrams are

R R
R

a
A\ %

\J

For the consequences of this observation, see the end of Chapter 4.

(2.12) Example. Combining three XOR gates, we can interchange the
states of two qubits “without looking.” Basis states change by |7)|k) —
|k)|7) and thus

(@|0) + BI1))(710) + 8]1)) — (710} + 6[1))(«[0) + B[1)).
The following wiring diagram gives the schematic for the operation:

oD
A\ %4

Va
\J

AV

C)‘ °

What’s the utility of Example (2.12)7 It’s reasonable to suppose in
a physical implementation of a quantum computer that it’s easier to
operate on two adjacent qubits than it is to operate on separated qubits.
The circuit above shows that if we wanted to operate on separated qubits
a and b, we could use operations on adjacent qubits to shift the state of
qubit b to qubit ¢, a qubit adjacent to qubit a, perform the desired
operation on qubits a and ¢, and then shift the resulting state in qubit ¢
back to qubit b. Of course, the relative advantage of all of that shifting
would depend on the physical implementation of the quantum computer.

The XOR gate can also be extended to the case when there are n bits
controlling the reversal of the last qubit. Of particular use is the “2XOR”
gate, which in Dirac notation maps [i,j,k) to |i, 7, k & ij); that is, the
third bit is reversed only if both of the first two qubits are in state 1. The
matrix representation is obvious, and the wiring diagram is

—_—

____E}_

2.3 Quantum gates 29

This gate is called the Toffoli gate ([74] or [3]) and it is a key component
in quantum “circuits.” We will have occasion later on to use an n-fold
conditional command, that is, an operation is performed on qubit (n+1)
conditional on the contents of qubits 1 through n.

The original motivation for looking at such operations was to define
logic gates for “reversible programming,” and it was noted that the Toffoli
gate suffices for the implementation of classical logic gates. Since the not
and and gates are sufficient, it is enough to demonstrate that they can
be implemented by the Toffoli gate.

(2.13) Exercise. Show that the Toffoli gate models the not gate by
mapping (1,1,a) to (1,1, -a) and the and gate by

(a,b,0) — (a,b,a A b). .

If it proves to be easy to work with three qubits, the Toffoli gate could
be implemented as above and could be considered a basic operation.
However, if unitary operations on only one or two qubits are possible,
then the Toffoli gate would have to be realized using more fundamental
operations. In fact, using an earlier result of Deutsch, DiVincenzo [28]
showed that the XOR gate and unitary operations on one qubit suffice
for quantum programming. Such matters are discussed in detail in [3], and
we illustrate some of the results of that paper in the following lemmas.

(2.14) Lemma. Let U denote a 2 x 2 unitary matrix and let 2XU denote
the analogue of 2XOR, i.e., U is applied to the third qubit only if the first
two qubits are 1. Suppose V is unitary and V2 = U. Then 2XU can be
realized by a circuit in which at most two qubits at a time are affected.
Specifically, the following two wiring diagrams are equivalent:

—_———

—_—

i

+—e¢
a
A\ 4
\

Proof: Neither of the first two qubits is different at the end of the
routine, and if the first and second qubits are in state 1, then V2 is
applied to the third qubit. If either of the first two qubits is in state 0,
then either the identity I, V=1V or VV-1 is applied to the third bit,
completing the proof. .

(2.15) Example. The Toffoli gate can be implemented physically by
two-qubit operations, provided the controlled XOR and V can be imple-

30 2. Basics of Quantum Computation

mented, where V is defined as

et [1 —i
-5 7)) '

Even if operations on two qubits are feasible, they probably will not
be implementable in practice in the generality of (2.14). However, at
the cost of additional one-qubit operations, it is possible to reduce our
requirements for two-qubit operations to only the XOR operation.

(2.16) Proposition. Let W be a 2 x 2 unitary matrix with determinant
1; that is, W is in SU(2). Then a controlled W operation can be imple-
mented by the following circuit, where A, B and C are also in SU(2).

III A Fan B C
144 \ % \L/

Proof: Using the results of (1.24), we see that any 2 x 2 unitary matrix
W can be written as a product of matrices in the form:

W o= & e~ {0+9/2 cos5(0/2) €-1+9)/25in(6/2)
= €\ —el-9/25in(0/2) €0+9)/2 cos(6/2)

If W is in SU(2), the phase factor ¢'® has to be £1 and can be absorbed
into the middle matrix.

Let us denote the first and last matrices in the last line as R,(y) and
R.(6), which we will see below can be interpreted as rotations about the
z-axis in a three-dimensional space by angles v and 6, respectively, while
the middle matrix R,(6) can be interpreted as a rotation about the y-axis
by an angle 6. (We expand on this terminology below.) If we set

C = R.(Y)Ry(6/2) B = Ry(~0/2)R.(—(v+6)/2) A= R.((6-1)/2),
then CBA = I. Since

R,(8/2)0:R,(—6/2)0, = R,(6)
and

0 R (= (v +6)/2)0: = R.((v + 6)/2),

(37) (2R 26 (737)

2.3 Quantum gates 31

we have
Co.Bo,A = R.(7)Ry(0)R.((v +6)/2)R.((6 —)/2) = W.

It is then immediate that the two wiring diagrams are equivalent: if the
first qubit is in state |0), CBA is applied to the second qubit, while if the
first qubit is in state |1), Co,Bo, A is applied. .

To handle all 2 x 2 unitary matrices, it remains to show that a condi-

tional multiplication by the phase factor €% can be implemented without
a conditional operation.

i
(2.17) Lemma. Let S = eO e?“’) and E = (1) e?¢) Then the

following circuits are equivalent and consequently any 2 x 2 unitary matrix
can be implemented with no more than four one-qubit operations and two
XORs.

E

Uh—e

Proof: Simply confirm that the same 4 x 4 unitary matrix

10 0 O
01 0 O
U= 0 0 & 0
00 0 £
is represented by both wiring diagrams. °

There is a well-developed theory justifying the interpretation of matri-
ces in SU(2) as rotations in a three-dimensional space, and we summarize
just enough of that theory here to justify the terminology. (See, for ex-
ample, the physics texts cited earlier or Sternberg [71].)

The physical phenomenon of spin arises in a relativistic context, and it
is appropriate to use real vectors x = (o, 1, T2, z3) with Lorentz metric

l2|* = 2§ — 2% — 23 - <
to denote points in space-time. The relationship with the spin matrices
is obtained by defining a bijective linear mapping from this real space of

four-vectors to the linear space of 2 x 2 Hermitian matrices over the reals
by !

T(x):(Ty + T3 $1—i1?2)

Ty 41Ty Xo— T3

32 2. Basics of Quantum Computation

so that 7(z) = xo0g + 210, + 220, + 30,. (Recall that in (1.16) we noted
that {09, 0,,0,,0,} is a basis for the linear space over the real numbers
of Hermitian matrices.) Moreover, det(r{z)) = ||z||2.

Using this identification of vectors with matrices, for any 2 x 2 unitary
matrix U we can define a linear mapping T'(U) on z by

T(U)z = 7~ H(Ur(z)UY),

a valid definition since Ur(z)U' is Hermitian. Since U is unitary, ||z||?
equals ||T(U)z||?, and from the definition of 7(x) it can be shown that
the zo component of z is unchanged by T'(U). If we simply set zo = 0,
we can consider T(U) to be a mapping on R®. Building on these ideas,
it can be shown that T maps SU(2) in a two-to-one fashion onto SO(3),
the group of orthogonal matrices on Rs/with determinant equal to one.
e~/2

0 2) It is easy to confirm

As an example, suppose U = (

that
H(T(U)z) = (Totas ez iz)
e’”’(:cl + 21‘2) Tog — T3

and thus the z3 coordinates are unchanged. The interpretation is that
T(U) rotates the z;, x5 plane through an angle v about the z3 axis, and
that explains the notation R, () in Proposition (2.16).

(2.18) Exercise. Let B = (__Z?;Eggg i:;gzgg) If e, denotes the
four-vector (0,0, 1,0), show that T(B)e; = e, and that in general T'(B)
represents a rotation of the z3, z; plane through angle about the y = z,
axis, explaining the notation of R,(6) in Proposition (2.16). .

If we could implement R, (6) for 6y/27 irrational, then any R,(6) could
be approximated arbitrarily well by sufficiently many iterates of R, (6y). If
we could also implement R, (&) for dp/27 irrational, then it follows from
(2.16) that any U in SU(2) could be approximated arbitrarily closely by
iterates of just two implementable operations, and therefore by (2.15) and
(2.16) two one-qubit operations and the two-qubit XOR are minimally
sufficient to realize the logic gates needed for quantum computation.

Finally, we note that the R, and R, mappings are conjugate to one
another so that if a basis change operation is available, then only one

rotation is needed. To see this, define the SU(2) matrix U = % (i i)

and verify that Uo,U' = 0, and U, U = —0,. Hence,

(Sl o) V' = VO s = (%).

confirming the relationship.

2.4 Quantum subroutines: addition on aquantum computer 33

2.4 Quantum subroutines: addition on a
quantum computer

By patching quantum logic gates together, we can construct basic, uni-

tary computational units. To give the reader an idea of the methodology,

we present in detail the wiring diagrams required for addition mod (V).
To begin, consider the following two wiring diagrams:

C

—_——————— f— —_———

S A

U IR fany

M DN R A A
o— Y o

The SUM subroutine adds the bits from the top two qubits to the third
qubit,

l5,5,k) = |i,j,i @ j @ k),

and is unitary since it’s the product of two unitary maps. SUM is also
its own inverse.

CARRY is used in an addition subroutine to be described below and
as usual reads from left to right. If we label the four qubits from top to
bottom as c, a, b and d, respectively, then ¢ will be used to denote a
lower-order carry, and a and b will denote the bits to be added. If d is
zero at first, d at the output will be the next carry bit. Under CARRY,

lc,a,b,d) = |c,a,a ® b,d ® ab® ac @ bc).

(2.19) RCARRY. As part of the addition subroutine it will be necessary
to run CARRY from right to left, and in that case the position of the
vertical bar indicates the reversal. That is, the three operations defining
CARRY are carried out in reverse order. This “reversed carry” effects

Iu’x7y7v) - |u7z?x®y’v®uy®xy®x>ﬂ

and we leave it to the reader to check that this is in fact the inverse of
the CARRY operation. Again, both operations are unitary since they’re
the product of unitary maps. °

The routines for addition, addition mod (N), controlled multiplication
mod(N) and exponentiation mod(N) are defined in complete detail in
[76]. There is no claim that the proposed routines are the simplest pos-
sible, but they do give some understanding of the complexities of pro-
gramming with unitary matrices. To keep the presentation manageable,

34 2. Basics of Quantum Computation

we shall study in detail only the first two routines. The multiplication and
exponentiation mod (V) routines are central to Shor’s algorithm, and we
refer the reader to [76] for the wiring diagrams. (See also [4].)

We give the explicit wiring diagram for the addition of two three-bit
numbers, and since the generalization to two n-bit numbers is obvious,
we confine the analysis to the example. The flow is from left to right, as
usual, and since each of the component operations is unitary, so is the
entire addition routine. Note that the CARRY subroutine is run forward
three times and in reverse order twice. The SUM subroutine is used three
times and XOR once.

—1 Co o g
— ;0 [
b o —

Bl B o |
o a, S L

- b, . —

h— cZ] Cz —

b S

b 7] =1]ath

—_ b, L I
— b3 b3 —

The input is aga;ag and 0bgby by, while the output is asaiap and a + b,
where the b3 line denotes the possible high-order carry qubit. The three
carry qubits, denoted by c;, are initially zero and are also zero at the end
of the routine, as we shall see. The b3 qubit is considered to be an input
qubit and is also equal to zero initially. The virtue of setting the carry
qubits back to zero is that those qubits can serve as carry qubits for a
subsequent addition and are disentangled from the a and b qubits.

At the end of the third CARRY subroutine, c¢;, co and b3 contain
the appropriate carry information, the a; qubits are unchanged and the
other b; qubits are in state (a; @ b;). Applying XOR next affects only
the by qubit, restoring it to its input state, so that the subsequent SUM
operation puts the mod(2) sum of ¢;, az and b, into the by qubit, as
required for addition. Having used the carry information contained in c3,
the first reversed CARRY returns c; and b; back to their input states
without affecting the other qubits, so that the next significant bit of the
sum can be put into the b; qubit. The process is repeated once more,
completing the calculation of a + b and restoring the first three carry
qubits to their input state of zero. Note that bs, the high-order carry
qubit, is not restored to its input state.

Since the ADDER routine has to be invertible, we need to examine the
mapping when the qubit designated for the high-order carry isn’t initially

2.4 Quantum subroutines: addition on a quantum computer 35

in state zero, i.e., when b3 isn’t initially zero. If we denote the final value
of the high-order carry bit as r and let (b) and (a + b) denote the terms
excluding the high-order carry bit, then the four possibilities are

o] herntes

| e a,(a+ r=

ADDER: | 1. "(b).0) la, (a+b), 1), (r = 1)
la, (8), 1) la, (a+b),0), (r = 1)

(2.20) R-ADDER. As with the CARRY operator, ADDER can be
run backwards, defining (almost) a subtracter. Suppose u and v are the
inputs, with v and v strictly less than 2". That is, we separate out the
high-order qubit. Then since ADDER is invertible, we have

lu,v,0), (u <) |u,v — u,0)
o lw,v, 1), (uw < v) lu,v —u,1)
R—ADDER: lu,v,0), (u>v) - lu, 2" + v — u, 1) ¢
lu,v,1), (u > v) lu, 2" + v — u, 0)

In the next example, a and b are less than NV, and we want to compute
(a+ b) mod (N) on a quantum computer. We follow the approach given
in [76], which requires five applications of the ADDER subroutine, two
of which are run in reverse. Schematically, the routine is represented in
the diagram below. (As before, we use the vertical line to indicate the
direction of the ADDER.) We assume that a and b are n-bit numbers less
than N, that N is less than 2"*! and that s denotes the state of a qubit
associated with an (n + 2)nd carry bit in the ADDER subroutine. We
allow n+1 qubits for each of a,b and N, and s is the separated high-order
carry bit. As with ADDER, we index beginning with 0.

ADDITION MOD N

=

> |
>]

>
>

mod N

.
Y
N
VYV
B =

36 2. Basics of Quantum Computation

The input to the routine in order is a, b, the high-order “s-qubit” which
is initially in state 0, the number N stored in another bank of n + 1
qubits and the “t-qubit,” also preset to 0. The action of the first adder
is |a,b,0, N,0) — |a,a + b,0, N,0). In the operation of the first reversed
adder, N plays the role of u, and using the results of the example in
(2.20), we have

la,a +b,0,N,0), N <a+b . la,a +b— N,0,N,0)
|a,a +b,0,N,0), N >a+1b la,2"*1 +a+b— N,1,N,0) |

The state of the s-qubit carries the information about the relative size
of a + b and N, and that information is next copied into the unused t-
qubit, whose state is the fifth entry in the state vector, so that ¢t = 1 if
and only if N < a+b. The vertical arrow denotes a conditional operation
requiring the utility qubits in R which are initially set equal to zero. If
the t-qubit is in state 0, there is no interchange of the N- and R-qubits,
and ADDER reverses the prior subtraction of N. If the t-qubit is in state
1, the N and R registers are interchanged before ADDER, so that 0 is the
“a” input, and ADDER has no effect. In either case, subsequent to that
addition, the conditional interchange is applied once more, returning the
qubits initially holding N to their original state and guaranteeing that
each of the R-qubits is in state 0. The result is the following mapping:

la,a+b— N,0,N,1) |a,a + bmod (N),0,N,1)
la,2"*' +a+b— N,1,N,0) |a,a + b mod (N),0,N,0) |

Thus, we have computed (a + b) mod (N) but have entangled the ¢-
qubit in the process and need to undo that if ADDITION MOD N is
to be used as a subroutine in other calculations. The remainder of the
computation achieves that purpose. We first run ADDER in reverse once
again, this time with a and (a + b) mod (V) as the inputs, and obtain

|a,a + bmod (N),0,N,1) . la,2"*1 +b— N,1,N, 1)
la,a + bmod (N),0,N,0) |a,b,0,N,0) !

where the form of the right-hand side is forced by virtue of the prior
calculations. The intervening XOR command converts the t-qubit to its
input state of zero, and a final application of ADDER reverses the prior
subtraction, leaving the system in |a,a+b mod (N),0, N,0) and the util-
ity qubits in their initial states.

(2.21) Exercise. The last two applications of ADDER — forward and
in reverse — were necessary to disentangle the t-qubit from the output.

2.5 Quantum subroutines: a teleportation circuit 37

Is there a less expensive way to accomplish this? (There is no school
solution.) °

In [76] the subroutines described above are used to construct a con-
trolled multiplication mod(/N) routine and subsequently an exponentia-
tion mod(N) routine. The interested reader can inspect the flow charts
presented in that paper for the details.

2.5 Quantum subroutines: a teleportation circuit

In 1984 Bennett and Brassard [10] suggested the use of entangled states as
a means of public key distribution, and in [11] the use of entangled states
as a means of quantum “teleportation” was proposed. At the simplest
level, the idea of teleportation is that if a sender and a receiver share an
entangled state of the form (]00)+|11))/+/2, then it is theoretically possi-
ble for the sender to transmit an arbitrary one-qubit superposition to the
receiver using only classical means of communication. This idea quickly
leads into questions of quantum communication theory and quantum in-
formation theory, and we limit the discussion to one simple example. The
official rationale for including it here is that this example could be rel-
evant to a quantum computer as an internal circuit. The real reason is
that it is a very clever idea which illustrates the bizarre consequences of
quantum theory.

We follow the presentation in [17], beginning with an explicit wiring
diagram

> L S oS A x>
1 : W/ A\ 24
]

10> L . \ ! ly>
be oo 4

o o L >

1
where

-0 7)) =6 =0)

The vertical dashed line in the center of the diagram is intended to de-
marcate the area of influence of the sender (left) and the receiver (right),
or Alice and Bob in the standard parlance. Sender and receiver could
denote different parts of a quantum computer or, more dramatically, Al-
ice and Bob could be separated by a continent. The right-angled dashed

38 2. Basics of Quantum Computation

line denotes a potential delay in communication, which will be discussed
below.

Let us trace the effect of the circuit. We begin with an input to the
sender of (a|0) + (3]|1))|0)|0) which is («|0) + £]1))(|00) + |11)) after the
first two operations, ignoring the normalizing factor, and completing the
first stage. At this point, the sender might transmit the third qubit to the
receiver for storage, retaining the second qubit in storage for later use.
Alternatively, the processing might continue as sketched in the wiring
diagram. In either case, a word of caution is in order. Because the second
and third qubits are entangled, they operate as one physical state and
must be treated that way even though they may be separated in space.
While this seems counterintuitive, it has been verified by experiment, and
it is this entanglement that is the basis for the teleportation.

The second stage consists of the next two operations in which the
sender completes the processing of the input, acting on the first qubit,
which has not been needed until now. Continuing to ignore the normal-
izing factor, we first have

(a|0) + B]1))(]00) + |11)) — «(|000) + |011)) + B(|110) + |101}).
Then an application of L™} gives
(J000) — |100) + [011) — |111)) + B(|010) + |110) + |001) + |101))

completing the second stage of the circuit.

Suppose the first two qubits are transmitted as qubits to the receiver,
who then applies S to the first qubit and XOR to the second and third
qubits, obtaining

a(i)000) — |100) + §|010) — |110)) + B(:|011) + |111) + §001) + [101)).

After the next XOR, the S and T mappings and the final XOR the system
is in the state

«(]000) + |100) + |010) + |110)) + B(|011) + |111) + |001) + |101)),
which can be written as
(10) +11)) ® (10) + 1)) ® (a]0) + B|1)).

In other words, the superposition entering at the first qubit now appears
in the third qubit, and the first two qubits contain the same uniform
superposition of the basis states. Thus, the circuit effects the mapping

[$)10)]0) — |9} |)¥), where |¢) = (10) +1))/v2.

2.5 Quantum subroutines: a teleportation circuit 39

In Example (2.12) we showed how to interchange the contents of two
qubits, retaining superposition, so the result above may not appear too
surprising. However, suppose that at the end of the second stage, just
before the vertical dashed line, the sender measured the first two qubits
and sent via classical communication the results of those measurements.
If the receiver loads into quantum states the transmitted classical infor-
mation, then just past the dashed line, the system is in one of the four
states

|0)0)(|0) +B]1)) [0)|1)(c|1) + 5]0))
[D10)(=el0) + B11)) [1)[1)(—el1) + 5]0)).

And here’s the remarkable feature of the wiring. If the receiver now com-
pletes the circuit, the original input again appears in the third qubit, and
moreover the transmitted classical states appear in the same positions at
the end of the computation!

(2.22) Exercise. Verify that, after the second procedure, the input does
in fact appear in the third qubit at the end of the computation. .

If the technology permitted it, here’s how one could construe the re-
sult as teleportation. The sender creates an initial entangled state and
transmits one of the entangled states to the receiver, both of them stor-
ing their share of the entanglement for future use. Sometime later the
sender receives a superposed state. Operating as indicated, the sender
completes the second stage locally and measures the results, transmit-
ting over classical channels the results of the measurements. The receiver
inputs that classical information into the latter part of the circuit and
reproduces the initial quantum superposition without receiving any ad-
ditional quantum mechanical information. That is, using the resources
of a prior entanglement and the communication of two classical bits, the
sender can transmit an arbitrary qubit.

3

Quantum Algorithms

We are now ready to assemble quantum subroutines into quantum algo-
rithms. A reasonable first question is: Are there problems which can be
solved efficiently on a quantum computer? In his analysis of a universal
quantum computer [25], Deutsch illustrated quantum parallelism by con-
structing a procedure to compute the parity f(0) & f(1) of a function
on one bit. In a generalization of this context, Deutsch and Jozsa [27]
defined a quantum algorithm that could solve a problem more efficiently
than is possible on a classical computer. This problem helped motivate
the search for algorithms that could solve “real” problems, and Simon
[67] provided an example that inspired Shor’s subsequent work on the
factoring problem and on the discrete logarithm problem.

We begin this chapter by describing the Deutsch-Jozsa algorithm and
then describe Simon’s algorithm, emphasizing the structure that serves
as a motivation for other quantum algorithms such as Shor’s algorithms
and part of Grover’s search algorithm. An important component of Shor’s
algorithms is the finite Fourier transform, and we also examine that al-
gorithm in detail. Having worked through these significant algorithms,
we discuss their common features, completing the chapter with a general
theory which we apply to the discrete log problem.

3.1 Deutsch—Jozsa algorithm

Suppose we are challenged to distinguish between two different classes of
functions which map V" to {0, 1}, where V™ denotes the linear space of n-

42 3. Quantum Algorithms

long binary vectors. Functions in one class are constant while functions in
the second class are balanced: exactly 2"~! vectors map to 0 and exactly
2"~1 vectors map to 1. Given a particular function f, we would have to
evaluate f on at least two vectors and on at most 2" ! +1 vectors in order
to determine with certainty the class to which f belonged. If n is large,
certainty may not be possible with classical computers, even though the
probability of making an error decreases exponentially with the number
of evaluations of the function. However, on a quantum computer, only
one call of the function is required.

Here’s the context. We assume n qubits initially in state |0) and another
qubit which is also in state |0). We assume there is an algorithm which
actually evaluates f(z) via a quantum algorithm for a given input vector
z and stores the result in one additional qubit. The trick is to use the
Hadamard transform R™ before and after an evaluation of the function
f, and we first examine that operation in detail.

Specifically, suppose we have a state |k) = |kn,—1) ® - - - ® |ko), where
the k; denote the usual values in the binary expansion of k and 0 < k <
2" — 1. Then the Hadamard transform R™ of |k) is defined as

2n-1

(3'1) 2n/2 Z ku,u),

where k- u =)_ kju; mod (2) is the mod(2) dot product of the n-long
binary vectors defined by the binary representations of k and u.

(3.2) Lemma. The Hadamard transform R(™ is a feasible operation,

implemented by n applications of R = 715 (} _11 > first defined in
Example (2.7).

Proof: If we apply R to each of the n qubits, we map |k) to

Rlk,_1) ® -~ ® Rlko) = 2n/g(lo) + (=1 1) @+ @ (10) + (=1)*1)).

When we multiply out the right-hand side, we get 2" terms which can be
indexed by the choice of |0) or |1) from each of the n factors. Using the
same ordering as in the definition of k, let u be the resulting integer with
binary terms wu;. Then, as advertised, |k) maps to

2n—-1 2" -1

2n/2 Z kn 1Un—1+- +kouolu 2n/2 Z(1 kulu R(")lk)~ °

3.1 Deutsch—Jozsa algorithm 43

The special case when k£ = 0 is worth recording separately, and we
note that the effect is a “randomization” or the construction of a uniform
superposition over all of the integers 0 < k < 2" — 1:

2n—-1
(3.3) 0)=10)®---®0) — WZU

Here’s how Deutsch and Jozsa [27] determine the character of f in two
calls of the function. (We show later in the section how only one call of
the function suffices.)

(3.4) Deutsch—Jozsa Algorithm.

Step 1: Randomize the initial setting by applying R to each of the first
n qubits:

2n-1

0,0, 0)0) — 5 >l

Step 2: Evaluate the function and store the result:

2"-1 2n-1

e E 1910) = Z INIFG))-

Since the 2" states are in superposition, we have in some sense computed
f simultaneously on all of the states with one call of the f-subroutine.
Step 3: Apply the unitary operator U = o, to the last qubit, obtaining

2"-1 2n—-1

WZU 1£G)) = 2,,/22!])(1)79|£(5)).

Step 4: Again evaluate the function and add the result into the last
qubit;:

12"1 2n-1

onf2 Z 1) (=1 D[£()) — 2,,/2 Z 17)(=1)790).

This step has the effect of disentangling the last qubit from the first n
qubits, a requisite part of the algorithm.
Step 5: Apply R™ a second time to the first n qubits:

2"n-1 2n-1 2n-1

2,,/2 Z li)}(=1)’?)0) — Z u)]0) 3 (~1)*9(=1)70),

u=0 7=0

44 3. Quantum Algorithms

Now suppose that f is a constant function. Then the summation over
J produces zero for u # 0 and 2" for u = 0. Hence, a measurement of the
first n qubits gives u = 0 with probability one. If f is a balanced function
and u = 0, then the summation over j is zero and a measurement over the
first n qubits gives some u # 0 with probability one. It follows that the
measurement at Step 5 distinguishes between the classes with certainty,
completing the algorithm. °

As we see next, a clever modification of Step 2 makes it unnecessary
to call f a second time, so that the class to which f belongs can be deter-
mined with only one call of the function. This trick appears in [22] and
improves on the original solution. However, as the reader will recall from
the examples in Chapter 2, the evaluation of a function on a quantum
computer also involves the restoration of the ancillary states to their orig-
inal form, and qualitatively that can make the algorithm twice as long
as its classical counterpart. As another illustration of this technique, see
Example (3.7) below.

(3.5) Lemma. Only one call of f is required in the Deutsch-Jozsa algo-
rithm.

Proof: The point of Step 3 above is to obtain the factor (—1)f\) and the
point of Step 4 is to disentangle the last qubit from the first n qubits. Both
steps are unnecessary if the (n + 1)st qubit is initially in a superposition
of the basis states and the value of f(j) is stored differently at Step 2:

(10) = 11)/V2 = (0@ f(7) -1 @ f(4))/V2
= (=19 ((l0) - [1)/v2).

The multiplicative phase factor can then be associated with the first n
qubits, which in turn have no entanglement with the state of the (n+1)st
qubit. °

3.2 Simon’s algorithm

We have now shown that there is a problem that can be solved more
efficiently on a quantum computer than on a classical computer. The
key ingredients were the two applications of the Hadamard transform
separated by an entanglement created by the evaluation of a function.
The effect was to change the probability amplitudes of the states so that
a subsequent measurement gave definitive information.

3.2 Simon’s algorithm 45

Suppose we relax the requirement that one measurement tells all, and
allow several runs of the quantum algorithm with the cumulative infor-
mation acquired sufficing to solve a problem. As an example, suppose
there is an unknown n-bit vector £ which we want to find. Suppose also
that there is a function or an oracle f on all n-bit binary vectors z
which has the property that f(z) = f(y) if and only if z = y ® £, where
@ denotes as usual coordinate-wise mod(2) addition. In group-theoretic
terms, K = {0,£} is a subgroup of F3', the group of binary n-vectors, and
f is constant on cosets of K and takes different values on different cosets.
Simon’s algorithm uses the properties of such a function to enhance the
probability of measuring something useful in determining &.

To do this we need three registers of qubits: an n-qubit register for the
domain of f, a j-qubit register for the value of f with j > n — 1 and an
ancillary set of qubits which are left implicit. Here is the algorithm.

(3.6) Simon’s Algorithm.

Step 1: Initialize each of the n + j qubits to the computational basis
state |0).

Step 2: Randomize the n-input qubits using R™ as in (3.3), so that
with N = 2",

10,...,0)[0) — Z k)10) = |%)/0).
k—O

Step 3: Evaluate the function f:
] N1
75 L) =

Step 4: Apply the Hadamard transform R(™ to the first n qubits a
second time:

1 N-1 2" -1 k
v, f) — ﬁgiufz |£ (k)
1 N

-1
5 2 1 DTN (1+ (1)) = o),

u=0 m

where m denotes a representative of one of the 2"~! cosets, and f(m) is
the common value of f on that coset. Note that if u is not orthogonal to

&, that is, if u - € is not equal to zero, then the coefficient of |u) is zero.

46 3. Quantum Algorithms

Step 5: Measure the first n qubits, obtaining a particular state v or-
thogonal to £ with probability

(@IPuly) = sz N+ D) = o

That is, each of the 2"~! binary vectors orthogonal to the unknown ¢ is
measured with equal probability.

Step 6: Repeat the process until r linearly independent vectors orthog-
onal to £ have been obtained.

Step 7: Classically solve for vectors orthogonal to the space spanned by

v1,..., .. If that orthogonal subspace has sufficiently small dimension,
& can be determined by appropriate secondary testing. (And if r =n—1,
no secondary testing is necessary!) °

The underlying idea of this algorithm is that periodic properties of
the function f can be realized in the phase factor of a state and then
transformed into enhanced probabilities of states which can subsequently
provide information about the unknown vector £€. The solution of the ac-
tual problem may require secondary calculations and the basic quantum
computation may have to be repeated several times. This approach can
be abstracted in terms of an underlying Abelian group structure and the
characters of that group, but at this point we confine ourselves to specific
examples.

3.3 Grover’s algorithm

Before describing Shor’s factoring algorithm, which also translates peri-
odicity into increased probabilities, we describe a slightly different use of
the Hadamard transform which Grover [41] developed for an exhaustive
search algorithm. Suppose we have an oracle which is a “needle-in-the-
haystack” function f defined on integers k, 0 < k < 2™ — 1, so that
f(k) = 0 for all k except for k = ko, and f(ko) = 1. If we search through
the domain of f, classically evaluating f(k) until we find ko, we can expect
to make about N/2 evaluations of f, where N = 2". Grover’s algorithm is

a quantum algorithm which estimates that O(\/N) evaluations will be

required to find ko. An analysis of Grover’s algorithm by [16] identified
an underlying geometry in the algorithm and generalized the approach
to the case when f takes the value one t times, that is, when there are t
needles in the haystack.

As we saw in the preceding section, simple subroutines can be rather in-
volved, and assuming that f can be evaluated is assuming a large amount

3.3 Grover’s algorithm 47

of quantum programming. Nonetheless, we shall make that assumption
and work through the details of Grover’s algorithm to illustrate in detail
the implementation of the basic strategy of a potentially useful quantum
algorithm: compute in superposition and maximize the probability of a
useful outcome.

(3.7) Example. Suppose the problem consisted of comparing an n-bit
number z with a given m-bit number m and letting f(z) equal one if
z = m and equal zero otherwise. The following wiring diagram illustrates
the kind of computation assumed as a subroutine in Grover’s algorithm
as well as the use of the state (]0) —|1)) in the utility qubit. (We suppress
the normalizing factor of 1//2.)

8 e — o

ml] I [Im
R[_Lgl.l__l I—nXUR'—I L_LEJ_IR
: v :
[10>- 1D L L

The qubits containing x are in the top n qubits, and those containing
the given m are in the second array of n qubits. R denotes n qubits
initially in state 1. The first operation consists of n distinct SUMs which
have the effect of keeping each qubit in R equal to 1 if and only if the
corresponding x and m qubits are equal. The nXOR operation denotes an
n-fold XOR operation on the f qubit. Thus, the f-qubit contains a phase
factor of (—1) if and only if equals m. The rest of the operations map
the R qubits back to their initial fills. Note that nXOR can be realized
using unitary maps which affect only a few qubits at a time, so that it is
a feasible operation. See [3] for specific details. .

As with Simon’s algorithm, we present Grover’s algorithm as a se-
quence of steps represented in both Dirac notation and the N-dimensional
computational basis notation, where N = 2" as before. The basic prin-
ciples are easily illustrated in a two-qubit context, which we analyze in
detail; the generalization to n qubits is immediate. Finally, we discuss
the feasibility of the algorithm; that is, we show that the unitary opera-
tions of the algorithm can be implemented by sequences of unitary maps
involving only a few qubits at a time.

(3.8) Grover’s Algorithm.
Step 1: Initialize n qubits to 0 and the last qubit to |x) = (]0)—|1))/v/2.

48 3. Quantum Algorithms

Step 2: Randomize the n input “domain” qubits as above, so that

0,...,0)]x) — Zaklk X)) = [¥)Ix),

k=

where q;, = 1/\/N
Step 3: Perform steps a and b m times, where m will be defined in
(3.15):
a. Compute the value of f via a unitary map U and add it into the
last qubit to obtain the phase factor (—1)/®*)

N-1
[)X) = [0)Uslx) = Y axlk)(=1)"P]x).
k=0

We denote this transformation as 7.

b. Apply the “diffusion” operator D = —I 4+ 2J/N to the n domain
qubits, where J is the all-ones matrix. It is easy to check that D is
orthogonal and hence unitary. We show below that D equals R™SR™
where R™ is the Hadamard transform and S = —I except for S (0,0)=1:

Zak Y Olk)|x) — Za‘”nk

Step 4: Measure the domain qubits and determine a state k. This is
not a unitary operation, and superposition is lost after the measurement.
Step 5: Evaluate f(k). If f(k) = 1, quit. Otherwise go to Step 1. o

Note that the use of |x) as the state of the utility qubit enables us to
use the trick described in Lemma (3.5) and to complete Step 3 with m
calls of the function.

Since the initialization and randomization steps can be accomplished
by operating on the qubits one at a time, they are feasible steps. Thus, it
suffices to examine the iterative step to understand the algorithm and to
establish its feasibility. We begin with the two-qubit case, so that N = 4,
and for specificity we also assume that kg = 2. Then the initialization
and randomization give

)x)-

3
1
k=0

The operations in Steps 3a-b can be modeled by a matrix multiplication.
T is a diagonal matrix with diagonal entries (—1)/® = (1 — 2f(k)), and

3.3 Grover’s algorithm 49

both T and D are 4 x 4 matrices. Then it is easy to compute the entries
of the mapping DT

-05 05 -05 05
05 —-05 —-05 0.5
05 05 05 05
05 05 -05 -—-05

M= DT =

If we were to measure the system before applying M, we would find
each of the four states with equal probability. However, after applying M
we have

-05 05 —05 05 0.5
05 —05 —05 0.5 0.5
o) = Mly) = 05 05 05 05 0.5
05 05 —05 —0.5 0.5

o= O O

Now if we measure the system, we find state kp with probability 1.
If we were to run the iterative step twice, we would find

M?|p) = 0.5]2) — > _0.5[k),

k#2

which means that doing twice the work actually produces a lower prob-
ability of finding the correct state. Thus, we have to specify in advance
the value of m, the number of times the iterative step is run, in order to
maximize the probability of finding the correct state.

To get a better idea of the effect of the iterative step, let’s continue
with the example when N = 4. We begin the iterative step with all of the
numerical coefficients equal to 0.5. However, abstract a bit by letting rq
denote the initial common value of the coefficients of the incorrect states
and sp the coefficient of the correct state. Then an application of M gives

—-0.5 0.5 -0.5 0.5 To 0.57‘0 - 0.580 ™
05 -05 -05 0.5 o | _| 0570—=05s | | ™
05 05 05 05 so | | 15r0+05s | | s
05 05 -05 -0.5 To 0.579 — 0.5s¢)

so that the incorrect states also have a common coefficient after the map-
ping, and the evolution of the coefficients can be summarized in a 2 x 2

matrix:
) _ (05 =05 To
s1/ \15 05 so /-

50 3. Quantum Algorithms

It is also easy to check that 32 +s? = 3r2+s2 = 1, which is the necessary
normalization.

We can rewrite the last equation using that normalization. If we define
a; = V/3r; and b; = s;, the -5 equation above is equivalent to

()= D)2) (5 D) =2 (=),

where
Vs 5 =3
R (5) - (\%?2 0.2/2 > ’

denotes a counterclockwise rotation through the indicated angle. The
interpretation is that we are looking at the evolution of the probability
amplitudes of the incorrect and the correct subspaces. Since the initial
subspace probability amplitude is

bo sin ())’

we have an explanation of the phenomena noticed above. One application
of M, as encoded in R(3), rotates the subspace amplitude vector by 60°,
guaranteeing that a measurement will detect the correct solution, since
the initial amplitude vector is at an angle of 30°. However, a second ap-
plication of M rotates the amplitude another 60° so that the probability
of measuring a correct solution is random. Pictorially, the situation looks
like this:

(alvbl) (am,bm)
(a;,b;)

(az,by) (ag,by)
2 29,09, (a,by)

N=4 =2"

Thus, we need to specify in advance the value of m, the number of
times the iterative step is taken. That value turns out to be dependent
on N and also on ¢, the number of correct solutions. As in the two-qubit
case, an incorrect choice of m in the general case could lead to doing

3.3 Grover’s algorithm 51

too much work and the possible reduction of the probability of finding a
solution.

The general case of n qubits is immediate. As before, we compute the
function £, obtaining the factor (—1)f(*) and defining the mapping T. The
overall effect of Step 3 is M = DT:

M (ko, k) = 2/N, k # ko M(k,ko) = —=2/N

M(ko, ko) =1 —2/N kaékm{ M(k,k) = -1+2/N
M(k7])=2/N,]7-L-k,k0

Again, it is easy to see that if the incorrect states have equal coefficients
before applying M, they will have equal coefficients after applying M and
that the values are related by

Tit+1 _ 1 —2/N —2/N T
(3.9) (Si+1) - <2—2/N 1'—2/N S; ’
This time the normalization is (N — 1)r2 + s? = 1, and the subspace am-

plitudes are a; = /N — 1r; and b; = s;. The r-s matrix again translates
into an amplitude rotation with

1-2/N -2yN-1/N
(3.10) R(0) = (oWN—-1I/N 1-2/N)

and the initial probability amplitudes are

(3.11) (Zg) = (' \I/I/—lj\/,N) = (‘;ﬁf’gﬁ;)

Since the number of iterations m should satisfy
O(m +1/2) ~ /2,
it follows that if N is large, so that 6 is approximately 2/ VN, then

(3.12) m~VNr/4—1/2.

(3.13) Exercise. Confirm the assertions above and also confirm that the
angle in the rotation matrix is twice the angle of the initial probability
amplitude. (Hint: use a trigonometric identity.) °

The preceding analysis carries over to the case when there are exactly ¢
distinct values of k for which f(k) = 1. The algorithm has been presented

52 3. Quantum Algorithms

to accommodate more than one correct solution, and the only difficulty
is finding the entries of M and confirming that the “equal coefficient
property” holds in this case. Conceptually there is nothing new, and we
leave the calculation of the initial probability amplitude and the subspace
rotation matrix to the reader.

(3.14) Exercise. Show that if there are ¢ solutions, then

g = arcsin (\/t/_N)

is the angle of the initial amplitude vector. Again each application of M
rotates the subspace amplitude vector through twice the initial angle:

()=o)
(50) = (). .

(3.15) Calculation of m. The representation of M in terms of a ro-
tation enables us to specify the value of m, the number of iterations in
Grover’s algorithm, for known ¢. Assuming that t is much less than N,
we iterate until the correct subspace amplitude vector is at an angle of
approximately 7/2, and it is easy to check that m ~ m,/N/16t. For a
discussion of how to specify m when the number of correct solutions is
not known, see [16]. o

and

Grover’s algorithm illustrates the fact that a calculation may not suc-
ceed and may have to be repeated. Thus, in assessing how many times
the function is evaluated, we have to take into account the number of
times the entire algorithm has to be repeated.

(3.16) Work Factor. Suppose there are ¢ correct solutions, and m is
computed as in (3.15). Then the number of times f is evaluated is m times
the expected number of repetitions of Grover’s algorithm. The probability
that a correct solution is found after applying Grover’s algorithm once is
u = sin®(a), where a = (2m+1)8, so the expected number of repetitions
Ris

o

E(R) = Znu(l —u)" ' =1/u.

n=1

3.3 Grover’s algorithm 53

Since u can be bounded well away from 0, it follows that the number of
calls of f is O(m) and thus O (\/) (See [9] and [16] for comments

that Grover’s algorithm is within a constant factor of the theoretical
optimal solution.) o

It remains to demonstrate the feasibility of Grover’s algorithm. Specif-
ically, we have to show that each of the unitary matrices defined in the
iterative step can be implemented in a (small) finite number of unitary
operations involving a small number of qubits. We have already assumed
that f can be so calculated via Uy, and we have seen how T can be
implemented as part of the call of the function f.

D is defined as -I + 2J/N, and the claim is that D = R™SR™ where
R™ is the Hadamard transform, the n-fold tensor product of R, and S
is —I except that S(0,0) = 1. Since R™ is its own inverse, the claim is
equivalent to

2

SR™ = _R™ 4
Since J is the all-ones matrix, the entries of R(™J are zero everywhere
except for the first row, and it is then obvious that the matrix on the
right equals —R(™ except in the first row where the entries equal those
of R™. It is trivial to check that SR(™ achieves the same result.

As we saw in (3.2), R™ is a tensor product of unitary matrices and can
be implemented by operating on each of the n “domain” qubits in turn. S
is also feasible, although the analysis is more involved. One way to realize
S is to apply o, to each of the first n qubits and then use an nXOR gate
to change a utility qubit from |0) to |1) if and only if the system was
originally in |0,...,0). Using the utility qubit to conditionally multiply
one of the domam qublts by —1 distinguishes the original all-zero state.
A second application of nXOR resets the utility qubit to its initial state,
and another application of o, to each of the first n qubits restores them
to their original state. We have achieved —S with these steps so that an

unconditional operation of (h (1) _(1)) on one of the qubits will complete
the proof that S is feasible.

(3.17) Exercise. Confirm that the description above does in fact im-
plement S. If possible, find a more efficient implementation, perhaps by
using the technique of Lemma (3.5). °

There is another way of viewing the effect of the iteration step in
Grover’s algorithm which sometimes goes under the rubric of “amplitude
amplification.” Instead of lumping the states together into the “correct”

54 3. Quantum Algorithms

and “incorrect” subspaces, let ax(n) denote the (real) amplitude of state
|k) after n iterations. For example, in the two-qubit case with ko = 2,
(k#2) = ax(0) =055 a}(0) =053 0.0 = ay(1)
(k=2) = a(0)=055a)(0) =052 1.0 = ay(1)
and
(k#2) = a(1)=005a,(1) =003 -05=a,(2)
(k=2) = a(1)=1.05aj(1) = -1.032 0.5 = az(2).

This can be viewed as a “reflection about the mean.” After the T-mapp-
ing, compute the average of the amplitudes. Then the D-mapping reflects
about that average as illustrated schematically below for the mapping

ar(0) — ax(1).

1/2

(3.18) Amplitude Amplification. Confirm the generality of the pre-

ceding discussion for any n by showing that if a(n) EN br(n), the D-
mapping effects

bi(n) = B(n) = (be(n) — b(n)) = ax(n +1),
where b(n) = (3, bx(n))/N. o

3.4 Shor’s algorithm: factoring N = 15

The potentially practical importance of quantum computers was first
demonstrated by Shor (see [65]), who developed an algorithm for fac-
toring a number N with a work factor which is polynomial in log(N)
in contrast to the work factor of exp(c(log(NV))!/3(log(log(V)))?/?) of the
number field sieve approach [50]. Since the difficulty of factoring numbers
N which are the products of two large primes is crucial to the security
of some public key encryption schemes, there was enhanced interest in

3.4 Shor’s algorithm: factoring N = 15 55

the feasibility of quantum computers. In this section we present Shor’s
algorithm in a simple case that illustrates the underlying concepts. In
the next section, we present and analyze the general algorithm. The dis-
cussion is based on the presentations in [65] and in Ekert and Jozsa [33],
which is also a good introduction to the subject of quantum computation.

Before describing the algorithm, we review some elementary number
theory. Let N denote the large, positive integer we wish to factor. (For the
illustration, 15 will be defined as large.) Suppose we choose another posi-
tive integer y which is less than N and which, presumably, has (y, N) =1,
where (a, b) denotes the greatest common divisor of the integers a and b.
(If (y, N) > 1, Euclid’s algorithm can be used efficiently to find a factor
of N, namely (y,N), and we don’t need to use a quantum computer!)
It is known that if (y, N) = 1, then there is a smallest positive integer
r < N — 1 such that y" = 1 mod (N), and we define r as the period of
y. For example, if y = 13, then modulo 15 the powers of y equal

13,4,7,1,13,4,7,1,...

and 13 has period r = 4 with respect to 15.

Now suppose that the period is even: r = 2s, so that y* — 1 = 0 mod
(N). Suppose further that y* # —1 mod (N). (We know that y° can’t
equal +1 mod (N) since s is half the period.) Then for some nonzero
integer k,

(¥ +1)(y* - 1) =kN,

and we can use the Euclidean algorithm to find (N,y® £ 1), obtaining
nontrivial divisors of N. In our example, 132 — 1 = 168, 132 + 1 = 170,
(168,15) = 3, and (170,15) = 5, so that we can find the factors of
N = 15 using the period of 13. Thus, the problem of factoring N reduces
to finding even periods r = 2s for which the term y*+ 1 is not degenerate
modulo N.

If N is very large, it is impractical to compute r classically, since that
might require evaluating O(N) powers of y. On a quantum computer,
however, one could evaluate all of the powers of y simultaneously, and
then the challenge would be one of adjusting the probability amplitudes
to obtain the value of » with a reasonably high probability. Shor shows
how to do this using two facts. First, the powers of y mod (N) define
a periodic function. Second, as in Simon’s algorithm, the finite Fourier
transform can transform the cyclic behavior of a periodic function into
enhanced probability amplitudes of certain states.

We illustrate these basic ideas in the special case N = 15, introducing
some of the general notation in the process. We keep track of two different

56 3. Quantum Algorithms

registers — one to represent the values of the exponents of y and the other
to represent the values of f(k) = y* mod (N). A utility register of qubits
is presumed, but not specified.

(3.19) Shor’s Algorithm for N = 15

Step 1: Choose n = 4 so that 15 < S = 2* = 16. Choose y so that
(y,15) = 1. For example, if y = 13, (13,15) = 1.

Step 2: Initialize two four-qubit registers to state 0: |1) = |0)|0).

Step 3: Randomize the first register:

[o) — [v1) = Zakuc)|0),

where a; = 1/V/16.
Step 4: Unitarily compute the function f(k) = 13* mod (15):

hex) — [eta) Zakik)F(K))-

Step 5: Operate on the first four qubits by the finite Fourier transform
F = Fyg. (See the discussion below.) That operation gives

Z exp(2miuk/16)|u)

u—0

and is implementable unitarily. Thus,

[2) = [s) = 15 Z|u>2exp<2muk/16)lf()

u=0 k=0

Step 6: Since 13 has (unknown) period r, the function f is periodic. In
this case the period happens to divide 16, so that we can write k = m+jr,
where 0 < m <rand 0 < j < 16/r, and f(k) can be written as f(m).
Then the new state can be expressed as

r— (16/r)-1
|3) = Z |u) Z m)) exp(2mium/16) E exp(2miurj/16).
u~0 m=0 7=0

Calculating the summation over j and including the lead factor of 1/16,
we obtain finally

|3) = Z |u)b, Z | f(m)) exp(2mium/16),

u=0 m=0

3.5 Shor’s algorithm: factoring N = pq 57

where b, = 1/r if 16 divides ur, or 16|ur, and is zero otherwise.

Step 7: Measure the state of the first register. If P, denotes the pro-
jection mapping onto the state denoting the value u, then, as defined in
(1.21), the probability of observing u is

9 -} if 16|ur

(¥s|Puls) = rlbu| ={ 0 othervs!'ise.

Step 8: Use the known value of u and the known value of 16 to deduce
a putative value of r:

a. If no inference can be made or if r is odd, return to Step 2 and
repeat.

b. If r = 2s is even, and y* = —1 mod (15), return to Step 2 and repeat.

c. If (15,y® £ 1) > 1, quit; otherwise, return to Step 2 and repeat. e

Let’s see what occurs in our special case. In this case r = 4, r divides
16 and the only u’s with a positive probability of being observed are
multiples of 4: u = 0, 4, 8, and 12, each one occurring at Step 7 with
probability 0.25. Since ur = 16k, for some integer k, we can infer nothing
about 7 if u = 0. The remaining cases give equations for r of the form
r = 4k, r = 2k and 3r = 4k. In two of those cases the presumption that
r and k are relatively prime is correct, leading to the putative value of
r = 4 for the period. We know that value to be correct and that 15 has
to divide the product of 132 — 1 and 132 + 1, enabling us to find both of
its factors.

In the remaining case the presumption would lead to r = 2, giving
values of 12 and 14 for y*+1. Because the numbers are so small, we happen
to discover a factor of 15 in this case, since one of three consecutive
numbers is divisible by 3. However, r = 2 isn’t the period, and in general
we're not guaranteed to obtain a factor of N if we get the wrong value of
r. Hence, we can say that we know we succeed in factoring N = 15 after
only one run through the procedure with a probability of 0.5. Following
the same reasoning as in (3.16), the work factor is thus proportional to
2, the expected number of calls of the procedure.

3.5 Shor’s algorithm: factoring N = pq

Shor’s algorithm works for odd N that are not powers of primes. How-
ever, to simplify the presentation a bit and since the theory extends in
a straightforward manner to the general case, we will assume N = pq,
the product of two odd primes, and the letters p and ¢q will denote those
primes henceforth.

58 3. Quantum Algorithms

There are three difficulties in Shor’s algorithm. First of all, the y that
we choose may have an odd period or else the period r may equal 2s
but y* = —1 mod (N). For example, if we had chosen y = 14 above, we
would have found 7 = 2 and y! = —1 mod (15). (As we will see below, for
N =15, the period in that case always divides 8, and so is odd only for
y = 1.) Second, it is most likely that r does not divide 2", where n denotes
the register length, and we must adjust the algorithm accordingly. Third,
it may happen that y has a suitable period r but we cannot deduce the
true value of 7 from the measurement.

We begin the discussion of the first difficulty in the case N = pq by re-
viewing the relevant number theory. The well-informed and/or impatient
reader can skip to the statement of Lemma (3.25) for the key result. For
omitted details, see, for example, Hardy and Wright [42].

(3.20) Exercise. Let (p,q) denote the greatest common divisor of the
integers p and ¢q. Then show that if (p,q) = 1, there exist integers r
and s such that 1 = rp + sq. (Hint: show that the minimum element in
{m :0 < m =1ip+ jq} is precisely (p,q).) .

(3.21) Exercise. (Chinese remainder theorem) Suppose (p,q) = 1 and
let 0 < a<pand 0 < b < q. Show that there is a unique z, 0 < z < pgq,
such that £ = amod (p) and z = bmod (g). (Hint: choose n so that
0< z=0brp+asq+npq < pq.) °

The effect of (3.21) is that we can uniquely specify an = mod (pq) by
specifying its residues mod (p) and mod(g). Put another way, if {z : 0 <
z < pq} is given a uniform distribution, then its mod(p) and mod(q)
residues can be treated as independent random variables.

(3.22) Definition and Properties of ¢. The Euler ¢ function, or
the totient function, is defined as follows: ¢(n) equals the number of y,
0 < y < n, such that (y,n) = 1. Thus, ¢(p) = p — 1 for p prime, and it
is easy to check that ¢(p¥) = p¥~1(p— 1) and é(pq) = (p—1)(¢ — 1) if p
and q are different primes. Using those results, it can be shown that ¢ is
multiplicative: if (m,n) = 1, ¢(mn) = ¢(m)¢(n) for positive integers m
and n. The Euler-Fermat theorem states that if (y,n) = 1, then y*™ =1
mod(n). In addition, if p is prime, then {z* mod (p), 1 < k < p} equals
{a:1< a < p} for some z. (See [42], Theorem 111.) .

(3.23) Definition. Suppose (y,n) = 1. Then the period of y with respect
to n is the smallest positive integer r such that y" = 1 mod (n). It follows
that if f(a) is defined as y* mod (n), then f is a periodic function with
period r. °

3.5 Shor’s algorithm: factoring N = pq 59

(3.24) Exercise. (a) If 1 < y < n, then show that r, the period of y
with respect to n, divides ¢(n).

(b) Suppose n = pq, p and q prime, and s and t denote the periods of
y with respect to p and to g, respectively. Then r = lem(s, t), the least
common multiple of s and t. °

For example, if (y, 15) = 1, the period of y with respect to 15 has to be
a power of 2, since ¢(15) = 8. We saw above that f(a) = 13% mod (15)
has period 4, and it is easy to check that 13 has period 2 with respect to
3 and period 4 with respect to 5.

We are now ready to compute the proportion of y’s whose periods are
suitable for a successful completion of Shor’s algorithm.

(3.25) Lemma. Suppose N =pgand S={y:1< y< N, (y,N) =1}.
Then at least 1/2 of the integers y in S have even period 2k and satisfy
y* # —1 mod (N).

Proof : Suppose y is in S and has period 7 = lem(s, t), where s and t are
the periods of y with respect to p and to g, respectively. If we write s = 2'u
and t = 2/v, where u and v are odd integers, then r = 2mx()]cm(u, v),
and r will be odd if and only if both ¢ and j are zero.

Suppose r = 2k is even. From (3.21), ¥* = —1 mod (N) if and only if
y* = —1 mod (p) and y* = —1 mod (g). But if (say) i < j, then k is a
multiple of s, and y* = 1 mod (p), a contradiction. A similar result holds
if j < 4, and thus it is easy to show that y* = —1 mod (N) if and only if
the periods s and ¢ have the same number of factors of 2.

Let p— 1 = 2™z with z odd. From the last sentence in (3.22) we know
that the nonzero integers mod(p) are generated by the p — 1 powers of
some z with (z, p) = 1. It follows that an integer b will have an odd period
with respect to p if and only if b equals z to a power 2™w, 1 < w < z, and
the proportion of such integers is therefore 2. Furthermore, precisely
those b’s equal to z to a power 2™ *w, w odd, will have a period with
exactly k powers of 2. It follows that w can take odd values from 1
through 2Fz — 1, and there are precisely 2°~!z such integers. That is,
the proportion of integers in S whose period has exactly k powers of 2 is
2k=1-m_Tor example, if p = 7, then m = 1 and half of the integers have
period 2 or 6 and half have period 1 or 3.

Suppose then that p—1 = 2™z and ¢—1 = 2"w, where 1 < m < n and
z and w are odd. Using the probability interpretation of Exercise (3.21)
we see that the proportion of integers in S which have an odd period or

60 3. Quantum Algorithms

which have even period 2u with y* = —1 mod (N) is

B O () <

and the assertion follows from this inequality. °

(3.26) Exercise. Show that the bound 1/2 is exact if N = 77. If N =
119, show that only 1,18,33,86,101, and 118 fail to have even period
with /2 # —1 modN. °

We thus see that at least half of the y’s that might be chosen will have
a suitable period, and we turn to the second difficulty - that the period
of y does not divide 2", where n is the number of qubits in the first
register. To handle this case Shor requires that n be chosen so that 2"
is significantly larger than N, thus requiring more “domain” qubits than
might be strictly necessary in special cases. Here’s the general algorithm,
which is a modest modification of the algorithm for N = 15.

(3.27) Shor’s Algorithm for Odd N = pq.

Step 1: Choose n so that N2 < § = 2" < 2N2. Choose y so that
(y, N)=1.

Step 2: Initialize two n-qubit registers to state 0: |¢yp) = |0)|0).

Step 3: Randomize the first n “domain” qubits:

n
—

o) — 1) = 3 —=[k)]0).

>

Il

©
0

Step 4: Evaluate the function f(k) = ¥* mod (N):

S—

1) = |ibe) = Z

k=

Step 5: Transform the first n qubits using the finite Fourier transform
F = Fs. That operation maps

S-1

k) — % ; exp(2miuk/S)[u)

and is implementable unitarily and feasibly, as we will see later:

5-1
[¥2) — |¢3) = ZI Zlf)) exp(2miuk/S).
k=0

3.5 Shor’s algorithm: factoring N = pq 61

Step 6: Since y has (unknown) period r, the function f is periodic with
period r. Because the period need not divide S, we write k = m + jr,
where 0 < m < rand 0 £ j < A, with A equaling [;5], the smallest
integer bigger than or equal to S/r. Again, f(k) equals f(m). Then the
new state can be expressed as

A-1

lips) = Z Zlf)) exp(2mium/S) > exp(2miur/S)Imrj<s),

j=0

where the last term indicates that the summation doesn’t exceed S — 1.
Including the lead factor in the summation over j, we obtain

S—-1 r—1
) =D |u) > |f(m)) exp(2mium/S)bym,

u=0 m=0

where

A-1

1 .
bum = 5 ; exp(2miurj/S)(mrj<s)-

If A= S/r, then Iimyrjcs) = 1 for all m and j in the summations. It
is easy to confirm that if S = (A — 1)r + k with 0 < £ < r — 1, then
Iim+rj<sy = 1 unless j = A—1and k < m < r — 1. Ignoring the small
error when the j-summation excludes an A — 1 term, we take as the final
state:

S5-1r-1

[¥s) =Y > buexp(2mium/S)[u)| f(m)),

u=0 m=0
where

_ 11—exp(2miurd/S) b
“7 S 1—exp(2miur/S) ~ ™

using the limiting value if S divides ur.
Step 7: Measure the first register, obtaining as before a value u with
probability

(¢3|Pu|'¢)3> = Tb?l

Step 8: Interpret the known value of u vis-a-vis the known value of S
to deduce a putative value of r.

62 3. Quantum Algorithms

a. If no inference can be made or if r is odd, return to Step 2 and
repeat.

b. If r = 2s is even, and y* = —1 mod (N), return to Step 2 and
repeat.

c. Use the Euclidean algorithm to compute (N, y* £ 1). If the result
is bigger than 1, quit. Otherwise, return to Step 2 and repeat. °

The work factor in computing the function f(k) = y* mod (N) and
in taking the finite Fourier transform can be shown to be polynomial in
n = log(N), the number of bits of N. (See [76] for the former and the
comments after Proposition (3.31) for the latter.) The estimated number
of repetitions will be shown to be polynomial in (log(N)), confirming the
advantage of this approach to the number field sieve algorithm.

We begin the analysis of the output of the algorithm by examining
values of u for which there is an integer k such that

(3.28) —g <ur—kS< -’21

Since S/r is approximately A and u is bounded above by S, there are
approximately r such u’s corresponding more or less to multiples of A.
(If r divides S, these are exact values.) For such a u, we calculate

p_ T (l—cos(27rurA/S)) r (sin(mA/S))"’

T 52 1 — cos (2mur/S) s sin (mur/S)

again using limiting values if necessary. In Exercise (3.30) we approximate
the right-hand side and find a lower bound essentially of the form

(3.29) rb2 > 14 (1 - 3) > 94
T

for large N. Thus, since there are approximately r such u’s satisfying
(3.28), with a probability greater than 0.4 the measurement will result in
one of those u’s.

In the case when r divides S exactly, as we saw for N = 15, we have
ur = kS for such a u, so that u/S in lowest terms equals k/r. In the
general case the inequality (3.28) can be written as

1

u k
<
- 28

S r

and interpreted as the known fraction u/S being approximated to within
1/(2S) by the unknown fraction k/r with denominator less than N. Since

3.5 Shor’s algorithm: factoring N = pq 63

1/(25) < 1/(2N?), there can be at most one such approximation and that
can be found in polynomial time using a continued fraction expansion
of the known fraction u/S. (See, for example, Hardy and Wright, [42],
Chapter X and Knuth [48].) We have thus dealt with the second difficulty,
that is, when the period doesn’t divide S.

(3.30) Exercise. (Verification of (3.29)) The restrictions of (3.28) are
sufficient for the lower bound in (3.29). By assumption, we can write
ur/S = k +t, where |t| < 1/2. Defining g(y) = sin(y)/y, we have

sin®(mur/S) = sin?(nt) = (nt)%g*(nt) < (mt)?,
since |g| is bounded by 1. Next observe that

Ar Ar
———<
55 < Aur/S — Ak = At < — 35

and since A — 1 < S/r < A implies 1 < Ar/S < A/(A — 1), it follows
that

1 T 1
2(1+A_1)<7TAt<§<1+ﬁ)

Since r < N and N2< S, N < S/r < A, and it follows that

T 1 1
—3 (1+N—-1) <7I'At<—<l+m)

It follows that |mAt| is in [0, 7], where the function g(y) = sin(y)/y is
decreasing. Hence,

sin®(murA/S) = (mAt)*¢*(nAt) > (rAt)*g* (2 (1 + ﬁ))

rA2 4 (N -1)\2 1
> a--
2 s (5) o (5 (1 wt):

We leave the final steps as an exercise: show that
14 2 1 (m
>~ —_— e — | — = 3
b u= a2 (1 N N2(8 1)) ¢

Now for the third difficulty: computing » from this information. If k is
relatively prime with respect to r, then the denominator computed from

and

64 3. Quantum Algorithms

u/S by continued fractions equals r; otherwise, that denominator is a
factor of r. Hence, assuming a uniform distribution on the value of &,
the probability that we correctly read off r from u/S is the probability
that k is relatively prime with respect to 7, and that is ¢(r)/r. Again
quoting Hardy and Wright [42], (Theorem 328), we can obtain ¢(r)/r >
d/log(log(r)) for some positive d, so that the probability of measuring
a “usable” u and correctly calculating r from that measurement is at
least 0.46/ log(log(r)) > 0.4/ log(log(N)). Thus, repeating the procedure
O(log(log(N))) times will give a high probability of success, provided
we have chosen a y whose period satisfies the factoring requirements.
Since that occurs at least half the time, we can repeat the foregoing with
different y’s, if necessary, maintaining the polynomial time result.

In [65], the author discusses variations on the theme that he and others
have suggested since the algorithm was first published. For example, if
the denominator computed from u/S is not , it is a factor of r, and one
could use multiples of that number for the period. Or, if two putative
values of 7 have been computed, the least common multiple could be
tried. In addition, it has been noticed that the physical implementation
might be simplified by making partial measurements during the finite
Fourier transform, and we discuss that briefly in the next section. Finally,
a different perspective of the algorithm gives an alternative motivation
for the actual steps, and that is discussed in Sections 3.7 and 3.8 below.

3.6 The finite Fourier transform

The practicality of Shor’s factoring algorithm depends on the feasibility of
implementing the finite Fourier transform, and we concentrate on that is-
sue next. The quantum implementation is motivated by the classical fast
Fourier transform, and we elaborate on the presentation in [33], illus-
trating the concept by giving an explicit wiring diagram for four qubits.
Ekert and Jozsa [33] attribute this particular algorithm to Coppersmith
[24] and Deutsch. (See [33], p. 741 for additional references and comments
and [22] for an independent analysis of the finite Fourier transform similar
to the one presented here.)

Let R denote the now-familiar rotation of (2.7) which acts on one qubit.
Let B(k), 0 < k < n, denote an operator acting on two qubits with the
following matrix representation in the computational basis:

o O O

B(k) =

o O O
O O = O
o= OO

3.6 The finite Fourier transform 65

where 8, = exp(im27¥). Thus B(k) represents the controlled phase oper-
ation |a)|b) — exp(imab27%)|a)|b).
Now consider the following wiring diagram for four qubits:

k>R, fby by
k,> 4R by [r by
lkp. 2) K fo; @ by
SO NI P P S ' lby>

where the implementation of the B(k)’s is controlled by the indicated
qubit. As in the case of the Hadamard transform, the initial state is
|k) = |ks)|k2)|k1)|ko), where k = 23k3 + 22k, + 2k; + ko, so that the high-
order bit in the wiring diagram is on the top, and the tensor product
notation is implicit.

The first application of R and the first set of controlled phase changes
yield

k) — (IO) +a(0, k)[1)) |k2) k1) | ko)

1 o 2mikb
_ _zexp<) Ikl o),

where

) ke ki ko)
a(0,k) = exp (ur <k3 + 5 + 2 + ¥>) = exp(2mik/24).

Notice that after these two mappings, the basis state |k), which is a tensor
product, has been transformed into another tensor product, a fact that
is clarified by the notation on the left and obscured by the notation on
the right. From the recursive structure of the wiring diagram up to the
switching operations, we can conclude that the final state will also be a
tensor product.

At the second stage, we rotate the second qubit and apply the con-
ditional phase shifts, obtaining the superposition 7- (10) + a(1,k)|1)) in
the second qubit, where

o(1,k) = exp (wr (kz + % +];‘2’)) = exp (2mi - 2k/2%) .

66 3. Quantum Algorithms

Notice that the high-order bit k3 enters with a factor of 27¢ and thus
doesn’t affect the value of the constant. Letting b; denote the new index
for the states of the rotated second qubit, we have, after the second set
of operations,

L35S e (22 o2 B o)

bo=0 b1 =0

and the pattern is clear. At the end of the four rotations, the original
state has been transformed into the state

Z Z Z Z eXp(2m (bo + 2by + 4b2 + 8b3))| o),

bo=0 b1 =0 bo=0 b3=0

where |c¢) = |bo)|b1)|b2)|bs).

This is almost the finite Fourier transform Fijg of |k); the only problem
is that the high-order bit is in the bottom position instead of the top
position. To correct that, we perform two swap operations, denoted by
the arrows and using the logic of Example (2.12), and obtain the final
form of the transform:

241

k) — % bg; exp(2mikb/2%)|b) .

The generalization of the algorithm and the wiring diagram to arbitrary
n is obvious, and we record the final result without a formal proof.

(3.31) Proposition. Given n qubits in the state |k) = |k,—1) ... |ko), we
define the finite Fourier transform F5» on basis states by

2n-1

1
Forlk) =» — exp(2mikb/2™)|b). °
k) = 5= 3 exp(amikb/ 2l

It is easy to see that Fjn can be effected by n applications of R to single
qubits, n(n — 1)/2 controlled phase operations involving two qubits each
and [n/2] two-qubit swaps each requiring three XORs. Thus, the work
factor of implementing the finite Fourier transform is polynomial in n.
Moreover, Fy» maps tensor product basis states to tensor products.

A close look at the factoring algorithm shows that there was no mea-
surement of the qubits containing the value of the exponential function

3.6 The finite Fourier transform 67

whose role was, in effect, to transform the probability amplitudes. Fur-
thermore, the only actual measurement of the first register that was made
occurred just after the implementation of the finite Fourier transform.
Now we have observed that once the rotation and the first set of condi-
tional phase changes involving the top qubit are made, that qubit is not
involved in subsequent operations until the swap operation. If we delete
the swap from the algorithm, then the next time the top qubit is affected
occurs when the measurement is made.

Griffiths and Niu [40] observed that if one measured the domain qubits
sequentially during the finite Fourier transform, rather than waiting un-
til the transform was completed to measure them at the same time, one
could implement the phase mappings as one-qubit operations whose im-
plementation is based on a measurement, rather than as two-qubit uni-
tary operations. The practicality of this approach remains to be seen, but
it does offer the potential of shifting some of the technical problems to
the classical domain.

We illustrate the idea using four domain qubits as in Section 3.4 and
explicitly expressing the dependence of the function on the binary expan-
sion of the integers k. Suppose we have computed f and are beginning
the finite Fourier transform. We first apply the rotation R to the top
qubit and, ignoring normalizing factors, obtain the superposition of

10) (32 k)l ko) £(0, ka, e, ko)) + D ko) k) ko) £ (1, K K, o))
and
1) (32 k) ko) £(0, ka, v, ko)) = D kol o) 1£(L, K K, o))

Next measure the high-order qubit and, according to the wiring diagram,
effect the phase changes as one-qubit operations on the three low-order
qubits, conditional on the results of the measurement. We thus obtain
for the state of the system either the parenthetical factor in the first
expression unchanged by any phase factors or else the corresponding fac-
tor in the second expression, where each term is modified by the phase
change exp (im (% + % + %)). In either case the state of the system can
be written as the normalization of

1
2mikb
S k)b Y exp (22
k 7=0

where by is the known state of the high-order qubit. (Compare this with
the expression for |¢3) in Step 5 of Shor’s algorithm for N = 15.) Con-
tinuing this same approach on the next three qubits, we will ultimately

) f(]? k?ykhko),

68 3. Quantum Algorithms

find a four-tuple byb;bybs with the same probability as if we had made all
four measurements at the end of the transform.

There is another consideration to be noted, and that is the practicality
of actually performing controlled small-phase operations. This particular
point is addressed by Coppersmith [24] in his definition of an approxi-
mate finite Fourier transform, and he shows that for the purpose of the
factoring algorithm, one can omit implementing B(k) for sufficiently large
k. Again, the wiring diagram suggests a way of calculating the effect of
ignoring small phase changes, and we use the four-qubit example to il-
lustrate the methodology.

Let F denote the complete transform and suppose we didn’t implement
the high-order phase change exp(7i/8). Let G denote the finite Fourier
transform without that factor. Then F|k) is the tensor product of terms
of the form — (|0) + a (j, k)|1)), where

a(j, k) = exp(2mik2i—4),
and G|k) is a tensor product of similar terms 715 (10) + B (4,k)|1)), where
B(0,k) = a(0,k) exp (—miko/2?)

and B = a otherwise. Then (F — G)|k) can be written as
75 (1= exp (=miko/Z))|1) 83 (25 (0) +a G)
\/§]=]_ \/2— il y

and it follows that

1-— exp(—7riko/23)|2
2

(k| (F = G)? |k) = =2 (sin? (rko/2%)) < n2277.
We can abstract this approach to apply to the case of n qubits and the
omission of the r smallest phase changes, obtaining as an upper bound on
the L? error a sum of terms similar to the square root of the expression
above. Since no new concepts are involved, we forego the exercise.

3.7 Eigenvalues in quantum algorithms

There is a common structure in at least part of each of the algorithms
presented so far: apply a finite Fourier transform to a “domain” set of n
qubits, compute a given function and thus entangle the domain states,
apply a second finite Fourier transform to the domain qubits and then

3.7 Eigenvalues in quantum algorithms 69

make a measurement. In [46] Kitaev gave an approach to a general class
of problems, which includes the factoring problem, using the estimation
of certain eigenvalues as a central theme. As nicely presented by Cleve et
al. [22], the use of eigenvalues of unitary operators depending on given
functions gives a revealing perspective of the common structure of quan-
tum algorithms and also relates it to interferometry experiments, so that
quantum algorithms could be considered multiple-particle interferometry.
In this section we present some of the results in [22] and recommend the
entire paper to the reader.

We have already noted this perspective in Lemma (3.5). Recall that
we could replace several steps in the Deutsch-Jozsa algorithm with

(10) = 1)/v2 - 7—-(|0€9f(i) —11e f())
= (-1f9(0) - 1)) /v2.

Now f(j) has to be computed by a unitary transformation U #(j)> S0 that
we could represent the shortcut by

(3-32) Usi) (10) = 11)) = (=1)T9(j0) — [1)) .

In other words, |0) — |1) is an eigenvector for the unitary mapping Uy;
and the factor (—l)f) used in the calculation is the corresponding eigen-
value. We used the same trick in the iterative step of Grover’s algorithm.

The Deutsch-Jozsa algorithm showed the existence of a better-than-
classical algorithm, but seemed a little contrived since the outcome only
identified the class to which the unknown function belonged. However,
one can actually identify the function if additional structure is assumed,
and (3.32) is again an integral part of the algorithm.

(3.33) Example. (Bernstein and Vazirani [13]) Let F* denote the vector
space of n-long binary vectors over Z, = {0,1} and suppose f : FJ —
Z, is defined by f(z) = (a-z) & b, where the unknown a is in FP, the
unknown b is in Z; and the notation denotes a mod(2) dot product of
the vectors and mod(2) scalar addition as usual. Then the vector a can
be computed in one pass of the Deutsch—-Jozsa algorithm. (We ignore
normalizing factors throughout.)

0...0)([0) = 1)) — D [k)(I0) — [1)) — Zlk 1)@9%(|0) — |1))
k
= (=1 |u) Z(—l)(°®“) *(10) —11))
u k
= (=1)°2"[a)(|0) — |1)),

70 3. Quantum Algorithms

where the Hadamard transform R(™ is applied at the first and third
mappings and the unitary mapping implementing f is applied in between.
A measurement of the first n qubits then returns a with probability 1. e

There is an immediate generalization to higher dimensions which uses
the same eigenvector trick in a somewhat more involved fashion.

(3.34) Example. Let A be an unknown m x n binary matrix and b
a binary m-vector. Let f be the affine map from F3' to F3* defined by
f(z) = Az ®b, where this time the addition is mod(2) addition of binary
m-vectors and the matrix multiplication is also mod(2). Assuming f is
computable, the problem is to determine A using fewer calls of f than is
possible classically. This is an extension of (3.33), and m calls of f are
necessary. The approach is to compute m different n-vectors of the form
c®A, for a suitable set of m-long row vectors c{®). This can be done by
initializing m utility qubits with the fill |c;cs . .. cm), Where we drop the
superscript, and by employing an additional Hadamard transform at the
start of the algorithm. Note that we use the fact that the Hadamard

transform of |cic; .. . ¢p) is also a tensor product:

0...0)ercs - cm) = S KY((I0) + (~1)[1)) ® -~ ® (0) + (~1)[1))).

k

For a given k, f(k) = (Ak) @ b= (f1,..., fm) is an m-vector, and we
can store each component from the action of U) using the corresponding
eigenvector:

08 fr) + (=D)“[1& f;) = (=17 (|0) + (=1)~|1)).

Combining all of the phase factors gives the final factor of (—1)c(4®b),
Applying a second Hadamard transform to the first n qubits gives each
state |u) a numerical coefficient of (—1)¢*3", (—1)4®¥)* which is zero
unless u = cA. Thus, a subsequent measurement of the first n states gives
cA with probability 1. °

Example (3.34) could have been solved using specific vectors ¢, but the
virtue of the generality is that we have illustrated the construction of an
eigenstate|y.) with eigenvalue (—1)c(4k®b) relative to the unitary oper-
ator Usx) which implements the mapping f from FJ' to F3*. Moreover,
the methodology applies more generally.

(3.35) Exercise. Assume f maps FJ to F". Let Uy denote a unitary map
which computes and stores each bit of the value of f(k) as in (3.34). Then
show that for each m-vector ¢ there is a ket |t¢.) such that Usy|ve) =

(=1)*T®ee). .

3.7 Eigenvalues in quantum algorithms 71

(3.36) Example. (Simon’s problem) Suppose f maps F} to Fi* in such
a way that f(a) = f(a+ k) for every k in a subgroup K of order 2™ in
F}; that is, f is constant on cosets of K. Find K with a minimal number
of evaluations of f. (This is a generalization of Simon’s problem analyzed
earlier.) Taking the context and notation of (3.34) and (3.35), we begin
by following the same approach:

IO e O>|C162 . Cm> - Z |a>|¢c) - Z la)(_l)c.f(a)l'wc)'

Taking the Hadamard transform as usual and rearranging terms gives

Z |u)|tbe) Z(_l)u‘a(_l)c-f(a) — Z |u) (1) Z(__l)u-yQOf(y) Z(_l)k'“
u y k

u a

with the k-summation over K and the y-summation over the cosets of
K. It follows that a measurement on the domain qubits gives only those
u that annihilate K: for every k in K, k - u = 0 mod (2). Then, as in
(3.6), K can be calculated from its annihilator. Note that we have not
used all of the information available, since the y-summation must also be
nonzero, and that could be useful in special cases.)

The utility of this general approach depends in part on the ease with
which the associated eigenvector can be prepared. From our earlier work
we have seen that |0) —|1) is a feasible initial state as is the tensor product
leica . . . cm) and its Hadamard transform. However, for some problems a
known eigenstate can’t be prepared easily, and that may require approx-
imations that lead to obtaining the desired information with probability
less than one. In addition, the unitary map U may not be known ex-
plicitly, although the action of U may be computable on a quantum
computer, and it also may be necessary to know the value of the phase
¢ of the eigenvalue €2™® of U, where ¢ need not be a binary rational
number and hence can only be approximated by a finite number of bits.

As a specific example, let us revisit the factoring problem analyzed
earlier. Recall that the goal is to find the period r of an integer y with
respect to a relatively prime integer N, that is, y" = 1 mod (N), where
0 < y < N. Suppose we could construct an initial state

r-1

) = 3 exp(=2mij/r)|y’ mod (V).

=0

Let f(k) = ky mod (N). As we noted in Chapter 2, there is a rather com-
plicated routine developed in [76] which effects f, and this is an example of

72 3. Quantum Algorithms

a unitary map U which can be implemented without really being known
explicitly as a matrix. Then |¢) is an eigenstate of U, since it is easy to
confirm that

r—1

Uy = 3 exp(~2mij/r) 57+ mod (N)) = exp(2mi/r)[¥).
j=0
Now suppose that we could feasibly iterate an arbitrary U with eigen-

vector |¢) and eigenvalue €2™** and could apply it conditionally as illus-
trated in the following circuit:

[0>_R . [0>+ e2mime |1
7% lm >

with R denoting the usual rotation. Then as indicated in the diagram
above, up to a scaling factor the effect of the circuit is to alter the input
state by

0)[#) — 0)) + €™ |1)[9) = (|0) + e*™™|1))[).

Assuming then that such a U could be implemented, we generalize
the foregoing and apply selected powers of U conditionally to an initial
preparation |0...0)|¢) with m input qubits, as represented by the next
circuit.

0>_R _ _lop+ ez
10>_R - 0>+ e2mi2™ 01>
10> R _ |0>+ e2mi4e|1>
10>_R S 0>+ e2"2¢|1>
0> R - 0>+ e2mie 1>
v J 2 — W

(3.37) Exercise. Show that up to the scaling factor the effect of the
preceding circuit is the mapping

2m—1

0...0)[) = > exp(2mibe)|b)|¥). .

b=0

3.7 Eigenvalues in quantum algorithms 73

Now return to the factoring problem and apply the preceding scenario
in that case. If r were such that

m-1
¢= 1/7‘ = 2“"‘Zaj2j,
3=0

then the output of the circuit could also be written as

2m-1

> exp(2miab/2™)[b)[v).

b=0

Comparing this with the results in Proposition (3.31), we see that apply-
ing the inverse Fourier transform to the first m qubits produces |a})|v),
and we can read off the value of 1/r in this case. If 1/r is not of that
form, we can still read off the best binary m-tuple approximation with
probability approximately 4/72, as verified in [22] with the same kind of
analysis as used in (3.30).

It remains to consider the construction of the eigenstate |¢), and as
noted in [22] there seems to be no simple way to do this. However, if we
consider the family of eigenstates whose members are defined as

r—1

[¥x) = Y exp(—2mijk/r)ly’ mod (N)),

j=0

the same analysis shows that |¢)) is an eigenvector of U with eigenvalue
exp(2mik/r), and we would get an estimate of k/r instead of 1/r. Again,
this is one of the issues addressed in the discussion of Shor’s algorithm.

Although the states |ix) may be difficult to prepare, the state |1) is
easy to prepare. But then it is straightforward to check that, up to a
normalizing factor,

r

)=l

k=1

and that {|¢x),1 < k < r} is an orthogonal set of eigenvectors with the
same weight. If we were to apply the conditional powers of U as above
but with |¢) replaced by |1), after the application of the inverse Fourier
transform the system would be in the general form

T

> (axl[k2m/r]) + belor)lihe)

k=1

74 3. Quantum Algorithms

where |ax|2 > 0.4/r. Each value [k2™ /7] is equally likely to result from a
measurement of the first m qubits, and the inference of r from [k2™/r] and
the estimate of |a|? are also features of Shor’s algorithm. Thus, the entire
factoring algorithm can be derived from the perspective of estimating the
phases of the eigenvalues of a particular unitary transformation.

(3.38) Exercise. Show that (¢y|¢x) is the same for each k and confirm
the orthogonality of {|¢x),1 < k < r}. Verify that, up to normalization,

EDP .
k=1

3.8 Group theory and quantum algorithms

In Section 3.7 we viewed some of the quantum algorithms from the per-
spective of eigenvectors of unitary operators and found that phases of
the eigenvectors contained the desired information. In this section we
emphasize the group-theoretic foundations of the eigenvector approach
and develop a general theory for which many of the known quantum
algorithms are special cases. There are a variety of references for this
analysis including [22], Jozsa [44], [45] and a recent paper by Mosca and
Ekert [54]. See also [65] as well as the web sites of John Preskill at the
California Institute of Technology and Umesh Vazirani at the University
of California at Berkeley.

To motivate the notation, take a slight modification of Simon’s prob-
lem, as discussed in (3.36). Let G denote the Abelian group F3 and let
K be a subgroup of order 2"™™ on which a given function f is to be
constant. This time, however, we assume the range of f is modeled by
the states of a quantum register |f(a)) for each a in G. We continue to
assume that f is constant and distinct on different cosets of K, so that
f induces a one-to-one map between G/K, the quotient group of K, and
the states of the register.

A second abstraction is the assumption that for each z in G, the con-
trolled unitary map Uy ;) can be implemented on each state |f(a)):

(3.39) Us) f(a)) = | f(z + a)).

For example, if f(a) = Aa, then Uj(;)|Aa) = |A(z + a)), as in Simon’s
algorithm. In Shor’s algorithm f(a) = |y* mod (N)) and

Us(w)ly® mod (N)) = [y*y* mod (N)) = [y*“**) mod (N)).

3.8 Group theory and quantum algorithms 75

Now revisit Simon’s algorithm with this notation. We start with two
registers in the initial state |0)| f(0)), where 0 denotes the identity element
in G = F3, and follow the usual ritual: successively apply R™ to the
first register, Uy to the entire system and R(™ a second time to the first
register:

0) T 3" la)l£(0))

a€G

(3.40) N TO)

a€G

TS B If@)-

beG a€G

If we let H' denote a set of representatives of the cosets [h] in G/K, we
can decompose the summation over a into summations over H’ and K.
Since f is constant on cosets of K, we can misuse f by writing either f(h)
or f([h]) as required. Thus,

O1F0) = ST 1) 3 1£ () (-1)P* 3 (—1

beG heH' keK

As was the case before, the last factor is zero unless b is in K+, the
annihilator of K, and thus up to constant multiples

beK+

where we define

(3.41)) = D 1f(R)) (-

heH’

Thus, a measurement of the first register gives the representation of a b
in K+.

An additional result of this format is that we have constructed |¢) in
the second register, and [¢s) is an eigenvector for each Uy,

Upwls) = D _(-1)"*|f(z + h)) = “Z(1)"* £(h)).

h

Since b is in K+, (—1)*” is also constant on cosets of K, and the mea-
surement of the first register equivalently gives the factor b in the phase

76 3. Quantum Algorithms

of the eigenvalue. Note that we could also write the eigenvector in (3.41)
in terms of the quotient group G/K.

To abstract this methodology to arbitrary finite Abelian groups G, we
need the dual group G* of G.

(3.42) Definition. G* denotes the set of homomorphisms of G to the
multiplicative group of complex numbers with modulus 1. °

The elements of G* are called characters, and if we define an operation
®1 g2 by

(1 92)(9) = ¢a(9) - ¥2(9),

then G* is a group in its own right with identity ¢o(g) = 1 for every g
in G and ¢~ 1(g) = p(—g). Since G is finite, each element g has finite
period, and it follows that ¢(g) is a root of unity for each g.

For example, if G = Z,,, the integers modulo p, then

vx(9) = exp(2migk/p)

defines a character for each k, 0 < k < p, and in fact
Zy ={px,0 < k < p}.

If G = F7, then for each ¢ in G* there is an n-vector b = (by,... ,b,)
such that

n

(P(.’L') = H(_l)bkl'k — (_l)b-z

k=1

for each z = (x1,... ,z,) in F3. Thus, G* = {ps, b € F'}, with the obvi-
ous notation. It can be shown in general that there is a group isomorphism
between G and G*, as illustrated by

(¢a - ©6)(9) = Patb(9),

and in particular the cardinality of the two groups is the same: |G| = |G*|.
The set of characters defines an orthogonal basis for an inner product
space of complex-valued functions on G, and in particular

_J 1G] ife=1¢o
(3.43) ;‘P(g)= { 0 otherwise
g
and
_[1G* ifg=0
(3.44) Z plg) = { 0 otherwise,

pEG*

3.8 Group theory and quantum algorithms 77

where 0 denotes the identity of G and (, the identity of G*. The related
Fourier transform Fg is defined using the normalizations of the charac-
ters:

(3.45) VIGIFef(6) =Y wu(9)£(a),

geG

and maps functions on G to functions on G*. (For precise definitions,
details and additional results see, for example, Dym and McKean [31].)

In Simon’s problem we needed to write ¢,([z]) when ¢ is identically
equal to one on the subgroup K; that is, we wanted a character on H =
G/K, the quotient group of K. Indeed, each character in H* can be
identified with a representative of a coset of characters in G*, each of
which equals one on elements of K.

We now have the tools to generalize the steps in Simon’s algorithm.
First, note that whatever the difference in the representation of an a in
G and a character ¢, in G*, the identity elements 0 and ¢, will have the
same representation (0, ... ,0) in the first register. We can now follow the
steps of (3.40). Thus, applying the inverse Fourier transform as the first
step, we have

(3.46) o)l £(0)) & " 1a)1£(0)
aeG
Next we apply the controlled unitary map to the entire system:
U

(3.47) d_1a)I£(0) 2 la)lf(a)),

a€G a€G
and then the Fourier transform to the first register:
(3.48) Yo la)lf@) > o) > If(@)e(a).

a€G wEG* a€G

Since f is constant on cosets of K, we can again decompose the summation
over G into sums over representations h of cosets [h] of G/K and over K

itself:
Do 1f@)e(@) =D If(R)e(h) Y (k).

a€G h keK

The last factor is | K| or zero, as ¢ is in the annihilator K+ or not, where

(3.49) K'={pe G :pk) =1,k K)}.

78 3. Quantum Algorithms

(As noted above, K+ is isomorphic to (G/K)*.)
Thus, up to a multiplicative constant, the three transformations of
(3.46), (3.47) and (3.48) combine to give

(3.50) leo) | £(0)) = D @)y,
peKL
where
(3.51) o) =Y @(h)|f(R))
heH

is an eigenvector of Uy(,) with eigenvalue (—|z]).

There is an equivalent derivation of (3.50) which emphasizes the role
of the eigenvectors and which was put forward by Kitaev [46]. We leave
the details to the reader in Exercise (3.53).

Take, for example, Shor’s algorithm when the period r of a generator
y in Zy divides the order g of the group G = Z,, as in Section 3.4. Then
the subgroup K is

K={g:y"=1mod (N)} = {g : r divides g},
so that ¢, is in K+ if for all j

1 = py(rj) = exp(2nibrj/q).

In particular, br/q = k, an integer. Hence, the measured state |b) = |¢3)
gives the now-familiar result

Thus, the output of Shor’s algorithm when r divides g is a special case
of a general theory. As discussed in Section 3.5, additional analysis is
necessary if 7 doesn’t divide gq.

As another application of the general theory, let us describe Shor’s
algorithm for the discrete log problem, again in the special case when the
order of K divides the order of G. For the additional analysis necessary
when that condition isn’t satisfied, see [65].

Given a prime p, let b be a generator of the multiplicative group Z
consisting of the nonzero elements of Z,. Then for every a in Z there is
anmin {0,1,...,p— 2} such that a = b’". It is easy to compute a given
p and m, but hard to compute m given a and p, and that’s the discrete

3.8 Group theory and quantum algorithms 79

log problem. For example, if p = 17, then 3* = 13 mod (17) is easy and
finding m for a = 7 is harder.

To use the general theory, let G = Z, x Z, and for the sake of simplicity
assume that p = ¢ + 1, where ¢? is the order of G. The function f on G
is defined by

f(z,y) = a"b¥ mod (p),

where b is the assumed generator of Zp, and we want to find the exponent
m associated with a given a. In this case,

K = {(z,9):a"0¥ =1mod (p)}
= {(z,y):y=—-mzmod (p-1)},
and |K| = p — 1. We assume that f is unitarily implementable as usual:
Ufof(2,9)) = 1ab%”W mod (p)) = |f(z + ¢,y + d)).

If the characters of G are represented by

2w
cafe) = exp (Zac+ua)).
then the general theory gives

oo £(0,00) = Y [0)y),

peKL

where ¢(.,q) € K* if and only if
exp(2;” (ze+yd) =1

for all (z,y) in K. Equivalently,
cx —mzd + j(z)(p — 1) = 0 mod (gq),

where j(z) depends on z and m. In the simplified case when p = ¢ + 1,
choosing z = 1 gives

(3.52) c=mdmod (p — 1).

Thus, a measurement of the first register gives a pair (c,d) satisfying
(3.52), and if d and p — 1 are relatively prime, we can solve for m:

m = cd™} mod (p — 1).

80 3. Quantum Algorithms

That condition is met with positive probability, so that repeated runs
of the algorithm will produce a solution m with an extra multiplicative
work factor, as in (3.16).

(3.53) Exercise. Using the notation of the general theory and (3.51),
prove that, up to a multiplicative constant,

F0) =Y 1),

peKL

so that

(3.54) o) F(0)) = Y leo)laby)-
peKL

Apply the steps of (3.46), (3.47) and (3.48) to the right-hand side of (3.54)
and use the fact that the |¢,,) are eigenvectors of Uy to derive (3.50). e

4

Quantum Error-Correcting Codes

4.1 Quantum dynamics and decoherence

So far we have been dealing with a highly idealized situation in which
physical states have been assumed to be stable and independent of time
and in which unitary transformations on these states can be effected in a
reliable fashion. The real situation is considerably more complicated and
requires a model for the dynamics of a quantum system.

The main addition to our idealized static model is Schridinger’s equa-
tion, which describes the time evolution of the physical system subject
to the various forces involved. Assume that the underlying Hilbert space
H is now an appropriate, infinite-dimensional function space and that we
have a physical system v with a ket |¢)) which is a function of both time
and position in H. The evolution of the state is assumed to be given by

(4.) iH 1) = Hold),

where Hj denotes the Hamiltonian, a Hermitian operator appropriate to
the physical situation, and as usual & = h/27.

(4.2) Example. In the special case where |¢) is a finite-dimensional,
time-dependent vector and Hj is a time-independent Hermitian matrix, it
is easy to check that |¢)(t) = exp(—itHo/h)|1)(0) satisfies Schrodinger’s
equation, where exp() denotes the usual infinite series expansion. .

82 4. Quantum Error-Correcting Codes

It goes well beyond the scope of this book to develop a mathematical
framework suitable for a sensible discussion of Schrédinger’s equation
and of the way the Hamiltonian is defined. (The reader is referred to
[60] and [63] for the basic development of the theory.) However, we can
indicate one of the consequences of Schrédinger’s equation. Suppose the
operator Hj does not depend explicitly on t and has a countable number
of eigenvectors |¢,,) with real eigenvalues \,. Then using a separation of
variables approach we would find

[¥)(t) = Z an exp("it)‘n/h)lwn>

with the proviso that)~ |a,|? = 1. The interpretation is that the system
is in a linear combination of eigenstates whose probability amplitudes
have a time-dependent phase. Since some of the quantum gates are sensi-
tive to perturbations of the phase factor of the coefficients of the compu-
tational basis states, control and correction of the phase factor becomes
an issue for both hardware and software.

(4.3) Example. Let |¢) = (]0)+|1))/+/2 be the spin state of an electron
with respect to the canonical (z-spin) computational basis. Suppose there
is a phase perturbation so that the new state is

|6) = (]0) + e7(1))/ V2.

Then the probability distribution of the system’s z-spin remains the same,
but the probability distribution of the z-spin and y-spin depend on a.
For example, using the results of (1.15) we can compute the probability
of the y-minus spin as

w(orelP) =i (| e | [1) = 3+ sinaa,

—1

which is certainly dependent on the phase change. °

A consequence of considering the environment of a quantum system or
its additional degrees of freedom is that the physical state representing
one of the qubits can decay over time, so that encoded information be-
comes incorrect or even so that the physical system is in a third state. For
example, if two energy levels of a particle were used as the computational
basis states, the particle could make a transition to a third energy level.
Given the difficulty of working at the microphysical level, it seems likely
that such problems will be inherent in any quantum computer.

4.1 Quantum dynamics and decoherence 83

One result of a quantum system interacting with its environment is
the loss of superposition, and the effect is referred to as the decoher-
ence of the system. Decoherence is of great concern for the development
of quantum computers because its effect is to undo the superpositions
and entanglements of states on which quantum algorithms rely, replacing
them instead with mixtures of states. Its explanation has proved to be
a source of some controversy in the theoretical physics community, and
the reader is referred to Zurek [79] for one presentation and subsequent
rebuttals. (See also [75].)

To appreciate the effect of decoherence, we discuss a simple example,
following the approach in [79]. (Since there are scholarly tomes dedicated
to this topic, the informed reader can consider the attempt to describe
this phenomenon in so few words as an example of quantum chutzpah.) As
illustrated in Example (4.3), the measurement of the state of a quantum
system is modeled by using the trace operation, projection matrices and
the density matrix of the system. What is added here is the introduction
of states representing the measuring device and the environment to better
describe the actual process of measurement.

For example, suppose the state of a two-state quantum system is the
superposition «|0) + $|1), where the coefficients satisfy the usual nor-
malization |a|? + |8]2 = 1. Suppose this state becomes entangled with a
measuring device which is to be subsequently read:

(al0) + BI1))|D) — [¢e) = |0)| Do) + B|1)| Dy).

Then the resulting density matrix of the system before the measurement
is

Pe = |te){the| = 0|0} Do)(0|(Ds| + 3/0)| Do) (1|(D:|
+8a(1)| D1){0|(Do| + 85]1)| D1)(1[{D|.

Since the measuring device is “classical” it will either be in state Dy or
state D;. In the first case, the measurement produces

(Dolpe| Do) = |a|?|0)(0],

which we interpret as saying that the probability of finding the quantum
system in state |0) is |a|?. In the second case we obtain

(D1lpe| D1} = |BI*|1)(1],

with an analogous probabilistic interpretation.

84 4. Quantum Error-Correcting Codes

This approach distinguishing the role of classical systems was postu-
lated by von Neumann. (See [72, p. 51] however.) The tacit assumption
that (D;|Do) = 0 can be reformulated as saying that after entanglement
with a classical measuring device, the density is not given by pe but rather
by the mized density

pr = 1al*|0)| Do){0(Do| + |81%(1)| D1){1|(D],

which leads to the same probabilistic interpretation given above. Thus
pr differs from p, by the elimination of the off-diagonal terms and can
be considered to be the density of the system before the measuring de-
vice is read. The advantage is that the coefficients |a|? and |8[? can be
interpreted as classical probabilities.

Note that the density of the system after the measurement but before
the results of the measurement are known could be modeled by

Pm = (Dolpe| Do) + (D1pe| D1) = |a*|0)(0] + |87 1)(1].

This operation is called a “tracing-out” of a density over one of the vari-
ables, in this case the measuring apparatus. More generally, a pure density
of the form

p= (Z k| d)
k=1

traces out over the third component to give a mixed density:

k=1

Xk)|¢k>) (Zék(¢k|(Xk|(¢k|>

2ok (Crlpln) = iy (onldi) Ixk)) (@ (k] (xil) (Won k)
= 3 ken lokl*B) Ixk) (Drl (xkl-

(4.4)

Now suppose that in addition to the two-state quantum system and
the two-state measuring device, we also take into account the rest of
the “environment” with which the system and the detector can interact.
Then the environment becomes entangled as well, and the overall density
is

pe = (2|0)| Do) | Ev) + BI1)| D1)| E1))(a{0[{Do| {Eo| + B(1[(D1[(Ex]).

If the environment is considered to be an apparatus over which we have no
control, then following von Neumann’s approach, we must trace over the

4.2 Error correction 85

environmental states as in (4.4) to model the environmental “measure-
ment.” Assuming orthogonality and equal weight of the environmental
states,

(Eolpc| Eo) + (Erlpc|Er) = pr.

That is, even if the measuring device is not classical, the uncontrolled
“measurement” by the environment leads to the reduced density matrix
pr postulated by von Neumann and thus the loss of some of the entan-
glement on which our quantum algorithms rely.

More sophisticated models show the loss of the off-diagonal terms as
functions of time, which is intuitively consistent with the idea that the
more isolated the quantum system is from its environment, the longer
entanglement should persist. We should also note that the foregoing
model is basis dependent. Decoherence can take different forms in dif-
ferent bases, as illustrated in (4.3).

In any case, the conclusion is that errors will inevitably occur, and the
reliability of a quantum computer will depend on detecting and correct-
ing those errors. Remarkably enough, there are already quantum error-
correction techniques available, and we discuss some of those algorithms
next.

4.2 Error correction

To begin the discussion of quantum error correction, let us recall the use
of various error-correcting codes to address the problem of controlling
errors when transmitting information classically. For example, if before
transmission the bit 1 is encoded as (111) and 0 as (000), then after the
transmission, the value of the original bit could be assumed to be the
majority value of the three received bits. If at most one error occurred
during the transmission, this procedure produces the correct initial value.
A well-developed theory of error-correcting codes deals with such prob-
lems and is presented in texts such as [52].

Originally, it was thought that analogous error-correction techniques
would not apply to the transmission of qubits. For one thing, a measure-
ment forces the collapse of the qubit into a specific state, and superposi-
tion is lost. Thus, sending three copies of a qubit and taking a majority
vote at the receiving end would lose the original superposition which was
to be preserved. Equally important was the observation that there is a
problem with copying or “cloning” an arbitrary quantum state in the first
place. Since the proof is easy, we present a version of the “no-cloning”
theorem of Wootters and Zurek [78].

86 4. Quantum Error-Correcting Codes

(4.5) Proposition. There does not exist a perfect, linear amplifying
device which clones an arbitrary state of a quantum system.

Proof: Suppose there were such a device so that
|45)[)|0) — [As)|s)]s),

where the subscripts denote the state of the apparatus before and after
the operation. Then from

145)10)[0) — |40)[0)[0) [Ap)[1)|0) — [A1)[1)[1),
we would have from the assumed linearity

|45)(2]0) + 8]1))I0) — |Am)((0) + BI1))(]0) + 5]1))
= a|40)|0)|0) + 8| A1)|1)]1). |

Measuring the amplifying device in the first expression on the right gives
mixed terms such as |0)|1)(0|(1| in the resulting density, but the same
measurement of the density of the second expression produces no terms
of that form. Hence, for general a and 3 cloning is not possible. °

However, as we saw in the discussion of the XOR gate, it is possible
to clone a basis state, giving

(@0) + 6]1))0) — [0)[0) + BI1)[1).

In other words, while we can’t clone arbitrary superpositions, we can
create entangled states which contain duplicates of basis states, and it
might be possible to use such entanglements to create an error-correcting
mechanism.

The idea of using entangled states as the mechanism for error cor-
rection was put forward independently by Shor [64] and by Steane [68]
and is the basis for a burgeoning industry in quantum error-correcting
codes. Because of the rapid development of the field, it is impossible to
provide the chronology and all of the results to date in a limited space.
Inevitably, that also means that not every contribution to the field of
quantum error correction will be mentioned and not every contributor will
be cited. What we will do instead is examine specific examples of quantum
error-correcting codes and illustrate some of the emerging theory using
these examples, giving references that contain a more complete account
of the current state of the art. As particularly apt examples of such
references, we should mention Bennett et al. [12], Calderbank et al. [18],
Knill and Laflamme [47], Steane [69] and the thesis of Gottesman [39],

4.2 Error correction 87

which contains an extensive bibliography as well as a theoretical context
for a large number of error-correcting codes.

The kinds of errors that can occur will certainly depend on the physical
implementation of qubits, so at least initially one has to idealize the errors
to be addressed. A basic simplifying assumption is that errors on qubits
are defined independently of one another. Then, at the very least, one
error which should be included is a switch in the computational basis,
that is, |k) — |k & 1) or

al0) + B|1) — al1) + 5]0).
A second type of error which should be included is the phase error:
al0) + B|1) — a|0) — B|1).

And if we’re going to be mathematical about this, we should also include
the possibility that both errors occur:

al0) + 5[1) — af1) — 5]0).

These errors are closely related to the Pauli spin matrices which were
introduced above (1.16) and used in Section 2.3. If we write the state
a|0) + B|1) in the computational basis, then the errors can be represented
as the results of matrix multiplication:

(5)=(2) =(5)=(5) »(5)=(72)

Thus, a switch of the basis state is modeled by multiplication by o, a
phase error of 7 is modeled by multiplication by ¢, and the combination
of the two is modeled by multiplication by o,, modulo the factor of i.

Moreover, we saw in (1.30) that any matrix in SU(2) can be expressed
as a linear combination of the Pauli matrices and the 2x2 identity matrix,
and that fact will enable us to correct any one-qubit error represented as
multiplication by a matrix in SU(2). (See Theorem (4.14).) Consequently,
when modeling errors to be corrected, we have an incentive to think of the
errors in terms of the Pauli spin matrices, and that is a key assumption
for a theory of quantum error-correcting codes.

Detection of these errors requires measurements, and measurements re-
quire determining eigenvalues of Hermitian operators. For example, sup-
pose a o0, error affects the first qubit in an entangled state:

[¥) = (]00) + [11))/v2 — (]10) + [01))/V2 = |3").

88 4. Quantum Error-Correcting Codes

If we had measured the eigenvalue of the operator o,®c, when the system
was in the state |¢), we would have found A = 1; while if we performed
the same measurement after the error, we would have found A = —1. In
other words, in the computational basis a o, error affects the parity of
the contents of qubits and can be detected by making measurements of
o, operators.

Suppose, however, that the original system was changed by a o, error
on the first qubit, so that the new state is

[¥") = (|00) — [11))/v2.

This time a post-error measurement of the eigenvalue of o, ® o, gives
+1, and there is no change of eigenvalue; i.e., a measurement in the
computational basis doesn’t reveal the o, error. (This same result was
also noted in Example (4.3)). However, suppose we were to make the
z-direction the computational basis direction. Physically, this amounts
to making measurements along the z-spin axis or else rotating the phys-
ical system appropriately so that a z-spin measurement of the rotated
system is equivalent to an z-spin measurement of the original system.
Mathematically, it means making a (unitary) change of basis mapping of
both qubits using the R of (2.7) and based on (2.8):

k) = [0) + (=1)*]1)
for k = 0,1 so that the state |¢”) is mapped as follows:
[¢") = (100) — |11))/v2 — (|01) + [10))/V2 = |¢}).

But now a measurement of o, ® o, in the context of the rotated sys-
tem gives an eigenvalue of (—1), and the phase error can be detected!
Moreover, a o, error would be detected in either basis.

(4.6) Example. We can also compute the eigenvalues using the outer
product notation, so that

05 0 0 05

0 00 0

Id’)("bi: 0 00 O

05 0 0 05

and

1 0 00

(o -1 00

:@0: =1 o o -1 0

0 0 01

4.3 Shor’s nine-qubit error-correcting code 89

in the original computational basis. Then tr(|¢)(¥]o, ® 0,) = 1. As an
exercise, represent |¢')(¢’| in terms of the computational basis and show
that tr(|¢')(¢'|o, ® 0,) = —1. °

Of course, the difficulty with this approach is that the measurements
described above would destroy any superposition of even and odd par-
ity states that existed before the measurement. Thus, we have to see if
there is a way to make parity measurements which can detect Pauli-type
errors while preserving superpositions. In fact, the idea is very simple.
Suppose we were to add a third qubit in a known state and perform two
XOR operations on the two-qubit states |1) and |¢'). Then, for example,
[£)|7)10) — |2)|7)|i & 7), so that we have three entangled states. We can
then take the spin measurement of the last qubit and find the parity in
the first two states without knowing their actual values.

4.3 Shor’s nine-qubit error-correcting code

We begin with the example of Shor [64] in which the quantum analogue
of the classical three-bit repetition scheme is developed. One part of the
structure of the code is designed to detect bit changes while the other
part is designed to detect phase changes. Specifically, Shor presumes that
one qubit is encoded into nine qubits via the following scheme:

a|0) + Bl1) — a(J000) + |111)) ® (|000) + |111)) ® (]000) + |111))
+6(|000) — |111)) ® (J000) — [111)) ® (|000) — |111)),

where we continue the practice of ignoring constant factors which can
be recovered from the normalization. The nine qubits are transmitted
to a receiver, and the goal is to recover the original superposition, as-
suming that no more than one “Pauli-type” error has occurred during
transmission. The trick is to use specified entanglements with additional
or ancillary qubits and measures of those ancillary qubits to correct the
error. Moreover, that has to be done so that the original superposition is
retained in some way. As with the classical majority vote algorithm, the
recovery process does not necessarily work if more than one error occurs.

The first problem is the encoding. Suppose we are given a qubit in the
superposition. We are also given eight qubits initially in the zero state.
Then if we apply the following schema to the first three qubits, we obtain
some of the desired entanglement. (We use the usual XOR operation and
R mappings.)

90 4. Quantum Error-Correcting Codes

1% R
102 -
10>, &

(4.7) Exercise. Verify that the wiring diagram above leads to part of
Shor’s entanglement. Then construct the complete encoding of the three
groups of three qubits. .

We begin by describing the following wiring diagram:

[k, R R

1992 R R

Ik,> R R

121> e A p b
[by>
1. 994 R R
ks>
ke R R
|a,> DD A, A
[by> 5

[k, >
[kg>
(k>

l2s> A3j 4

o3> B—Bs
[ey>

lc>

D
AY
d
WJ

<
=

N,
D
N,
D
oo

o o
o o o

\

D

N D C,

L/ —
h—C,
4

NN
\YZAav7y
o
VAN
farWa\
V7N
AV
.

Va
—

Suppose the encoded nine qubits denoted by |k;) are transmitted and
that at most one of the Pauli-type errors occurred. The trick is to measure
the computational basis parity of two pairs of each of the three sets of
three qubits, projecting the entanglement of each triple from an eight-
dimensional subspace to a two-dimensional subspace in the process. The
results of the parity measurements will show which qubit, if any, in each
group of three was affected by a basis change, i.e., a o, error. After those
six measurements, two additional measurements are possible, and they
can be used to determine if a o, (phase) error occurred. The coding is
stable under other error changes, but first let’s describe the circuitry.

The eight ancillary qubits initially in the zero state are grouped in
four pairs of two qubits. Each of the first three pairs of ancillary qubits
is used to measure the basis parity of pairs of the related group of three

4.3 Shor’s nine-qubit error-correcting code 91

transmitted qubits. The last pair of ancillary qubits is used to measure
the phase parity of the three triples. The additional piece of notation is
the writing of two distinct XORs involving each of the first three qubits
(the long vertical lines).

As we noted above, a measurement of |a;) in the computational basis
is a measure of the eigenvalues of o,; - 0,2, where the second subscript
denotes the relevant qubit, and the eigenvalues are (—1)F1+*2 . We let “0”
denote even parity and “1” denote odd parity. Suppose, for example, that
the result of the first pair of measurements (A3, By) is (0,1). This means
that in the computational basis the first two qubits have the same parity
and the first and third bits have opposite parity. Under the assumption
that at most one error has occurred, we can conclude that the third qubit
is in the wrong computational basis state and thus a 0,3 map will undo
the damage. Note that we do not know the actual state of the third qubit,
only that an error has occurred. The initial superposition is preserved in
a two-dimensional subspace involving the first three qubits.

As with classical codes the dibit pattern of the measurements (A, B)
is called the error syndrome of the measurement and determines the
corrective mapping, which is denoted schematically by the arrow leading
back up to the related three qubits:

(A B) U (AB) U
(0,00 I (
(0,1) 0.3 (y

In fact, this procedure will correct the state error caused by one o, or o,
error in each triple.

Having corrected a possible state error, the remainder of the circuit
corrects a phase error caused by a o, or g, error. Again, we want to
change bases, and the mapping R takes the state |k) to |0) + (—1)¥|1),
where we continue to ignore the normalizing factor in favor of emphasizing
the 0-1 patterns of the states.

(4.8) Exercise. Show that up to normalizing factors the mapping R ®
R ® R gives

|000) + [111) — [000) + [011) + |101) + [110)

and

000) — |111) — |111) + |100) + |010) + |001). .

92 4. Quantum Error-Correcting Codes

We next add the first six qubits into the seventh ancillary qubit and
the first three and last three qubits into the last ancillary qubit, so that
a subsequent measurement in the computational basis gives the parity
of the two sums. But, as we see from (4.8), each of the words in the
rotated qubit triples representing |0) should have even parity and each
of the words in the rotated qubit triples representing |1) should have
odd parity. If one of the minus signs of one of the triples is in error,
that will show up as a computational basis parity error in the (Cj, Cs)
measurement. The error can be corrected by applying an appropriate o,
mapping to one of the qubits in the triple with the incorrect parity after
the R mappings have returned the nine qubits to their prior state. Note
that we cannot distinguish which qubit in a triple suffered the phase error
but we can still correct the effect.

Thus, assuming that these parity operations haven’t introduced ad-
ditional errors into the nine transmitted qubits, we have been able to
correct a possible o, error in each of the groups of three qubits and one
phase error in the nine qubits. This scheme also corrects one o, error in
the process, without our actually knowing the original state.

(4.9) Exercise. Recall from (2.8) that 0, = Ro,R and that —o, =
RoyR. Find analogous unitary mappings S and T that transform o,
to o, and to o,, respectively, leaving the third Pauli matrix invariant,
possibly up to a factor. °

There is a practical aspect to this exercise. We have written Shor’s
nine-qubit error correction as if it were feasible to measure the state of
a qubit in only one way. But if it were physically possible to measure a
qubit with respect to different bases, then one could reduce the number
of operations in an error-correction algorithm. For example, instead of
performing eighteen R operations in the nine-qubit algorithm, we would
be able to assume that the requisite measurements of o, could be made
directly. In particular, Steane [69] emphasized this perspective in his work
on quantum error-correcting codes.

4.4 A seven-qubit quantum error-correcting code

We have seen how Shor used the structure of the three-bit parity code,
the simplest classical code, to construct an encoding that would correct
single-qubit errors in the encoding qubits. Steane [68], [69] and Calder-
bank and Shor [20] also used classical codes to construct quantum error-
correcting codes. We illustrate the ideas using their example, which en-

4.4 A seven-qubit quantum error-correcting code 93

codes one qubit in seven qubits and which can detect and correct a single
error affecting any of the seven qubits.

The idea is to use classical coding theory to prescribe suitable mea-
surements in both the z-spin basis and the z-spin basis. For example,
suppose one encoded |k) in the (computational) 2-spin basis as the fol-
lowing equally-weighted linear combinations:

|0) — |0000000) + [0001111) + |0110011) + [0111100)
+[1101001) + |1010101) + |1100110) + |1011010)

and

|1) — |1111111) + |1110000) + |1001100) + [1000011)
+/0010110) + 0101010) + [0011001) + |0100101).

The reader familiar with classical error-correcting codes will recognize
that the encoding is based on the classical [7,4,3] Hamming code, where
the notation means that the code words are 7-long vectors defining a 4-
dimensional linear subspace over GF(2), and that the minimal number of
differences between any two code words is 3. |0) is encoded as the equally
weighted sum of the eight seven-bit words with even parity, and |1) is
encoded as the equally weighted sum of the complements of those eight
seven-bit words. Alternatively, |0) is encoded as a sum over a subspace
of the Hamming code, and |1) is encoded as a sum over a translation of
that subspace.

(4.10) Exercise. Verify that the set {(0111100),(1011010),(1101001)}
defines a basis for the space of eight words representing |0). .

Let C denote the subspace defined by the [7,4,3] Hamming code. If
a o, error has occurred in one of the qubits, then the parity of each
word in C is changed, and that can be detected using the classical parity
matrix, which is defined by basis vectors for C*+, the linear space defined
by the dual code of C. (C* denotes the subspace of 7-long vectors whose
mod(2) dot product with every vector in C is zero.) In this case, the
dual code is the [7,3,4] simplex code which is precisely the set of even
weight vectors of the Hamming code. It follows from (4.10) that we can
use {(0111100),(1011010),(1101001)} as the basis code words for C*.

The end result of those observations is that every word in the encoding
of |0) and of |1) must have even parity in the three sets of positions
{2,3,4,5}, {1,3,4,6} and {1,2,4,7}. But that means we can check for a one-
qubit o, error by performing three measurements in the computational
basis and use the resulting three-bit error syndrome to correct the error.

94 4. Quantum Error-Correcting Codes

Moreover, the choice of basis vectors of C* defines the following wiring
diagram for three measurements on the seven qubits. (The last vertical
line with seven slashes denotes the correction mappings based on the
error syndrome.)

Ik,
Ik,
Iks
ks>
lks»
ke
ks>
10> ¢
10> —¢
0>

|a>

b> > (abyc)]
le>

(4.11) Exercise. Verify that C* consists of the eight even-weight vectors
in the Hamming code. Using the indicated measurements, find the error
syndrome for a o, error in qubit k, 1 < k < 7. Confirm that distinct
one-qubit errors have distinct syndromes. .

\vrg
PanWan
P

DD-D.

oy
\v >4

fan

aD-
Y >4

AN A =4
Ay >4
fany
Ay >4

a
N

If we were to rotate each qubit by applying the operator R, we would
obtain a representation (in the original z-spin basis) of the encoding of
|0) and 1) in the z-spin basis. In this particular case, we obtain sums
of words with exactly the same 0-1 patterns as the 0-1 patterns of the
original words. The compulsive reader can confirm directly that using
|k) — |0) + (—=1)¥|1) we obtain:

|0) —]0000000) + [0001111) + |0110011) + [0111100)
+|1101001) + |1010101) + |1100110) + |1011010)
+ |1111111) + |1110000) + |1001100) + |1000011)
+(0010110) + [0101010) + |0011001) + [0100101)

and

|1} — |0000000) + |0001111) + |0110011) + |0111100)
+ [1101001) + [1010101) + |1100110) + |1011010)
— (J1111111) + |1110000) + |1001100) + |1000011))
— (/0010110) + |0101010) + |0011001) + [0100101)).

4.4 A seven-qubit quantum error-correcting code 95

But then the parity patterns of the new words are the same as those
in the original representation and that means we can detect and correct
a one-qubit ¢, error by making the same three measurements after the
rotations. Since a o, error will be detected as an error in both bases, this
encoding will detect the type and location of any single-qubit error.
Abstracting this example gets a bit tricky, since it requires two distinct
but closely related classical codes, and we provide the details in Section
4.8. (See especially Example (4.32).) The key to the whole approach is
that the Hadamard transform took a z-spin representation to an z-spin
representation, and we confirm the generality of that fact.

(4.12) Proposition [68], [20]. Suppose C denotes the subspace, includ-
ing the all-zeros word, of n-bit words defined by a linear code over GF(2).
Suppose |1) denotes an equally weighted superposition of the n-qubit
words whose bit patterns in the z-spin basis correspond to those of the
words in C. Then in the z-spin basis |¢) is an equally weighted super-
position of n-qubit words whose bit patterns correspond to C+, the dual
code of C defined as the set of n-bit words orthogonal to C, using the
mod(2) inner product on bjnary vectors.

Proof: By assumption, and ignoring the normalizing constant,

) = |wi...wp) =D |wi) @+ ® |wy).

weC weC

The representation in the z-spin basis can be modeled by writing each
qubit in the z-spin basis or by applying R to each qubit. (This is just the
Hadamard transform R™ as used in Grover’s algorithm and elsewhere.)
Again, using |k) — |0) 4+ (—1)*|1), we can collect terms in the calculation
as follows:

2n-1
D Rlwy)® - @Rlwa) = Y Y (—1)@r+rinvnliy) i),
weC =0 weC

where the i;’s denote the bits in the binary expansion of ¢, with i, now
the low-order bit. Since the linear code is generated by k basis elements

vy,... , Uk, We can also express this as a product:
-1k
D Ruw) @ ®Rlw.) =D [[] 1+ (-1)")
weC =0 r=1

using the usual dot product over GF(2). But then it is immediate that a
state has the same nonzero coefficient if and only if 7 is in C*, completing
the proof. °

96 4. Quantum Error-Correcting Codes

This approach using classical codes not only leads to the definition of
the wiring diagram for the measurements, but it also enables one to define
the initial encoding. Since both of those procedures can be determined
as special cases of the stabilizer approach to be discussed below, we omit
the details and defer the generalization of this approach to Section 4.8.

4.5 A five-qubit error-correcting code

Shor’s encoding scheme requires nine qubits for each encoded piece of
information whereas the Calderbank-Shor-Steane (CSS) code uses seven,
and it’s logical to ask if one could do as well with fewer qubits. For
example, suppose one used a total of n qubits to encode one qubit’s
worth of information and wanted to be able to detect one error to the
system which could be any of the three Pauli-type errors to each of the n
qubits as well as the condition that no errors occurred. Having n qubits
means that n — 1 measurements are possible, giving 2"~! error patterns,
so a perfect code would have the minimal number of qubits: 3n+1 = 2”1
orn=>5.

Motivated by this calculation and by the seven-qubit code given in
[68], Laflamme et al. [49] found a five-qubit quantum error-correcting
code that can detect the 16 possible one-qubit error occurrences and is
not based on a classical error-correcting code. The strategy is similar to
that used above: information from one qubit is encoded in words based
on five qubits and a mechanism for detecting a subsequent error via four
measurements is provided. In fact, the detection algorithm in this case is
precisely the inverse of the encoding algorithm. That is, an input state
is mapped into a linear combination of five-qubit words via an explicit
wiring diagram. If a single Pauli error then occurs, running the circuit
backwards and taking measurements on the four supplementing qubits
defines a four-bit error syndrome that indicates which error occurred and
the state of the middle qubit which is still in superposition. A subsequent
unitary mapping transforms the middle qubit to its original form.

A five-qubit coding scheme was also presented independently in [12]
and the relationship to the code in [49] is discussed by DiVincenzo and
Shor [30]. We first begin with the algorithm of [49] and present the en-
coding scheme in the first diagram below. The actual code words differ
slightly from the published version by a reversal of the signs of each of
the first two words in the encoding of |0) and |1).

4.5 A five-qubit error-correcting code 97

10> _R |a>
0> _R X X ? 5>
Iv> DD H ? &>
0>_R X X IIX >
10> 1 ¥ S & ? |d>

ot

The notation follows past usage with the addition of “II” denoting
multiplication by (—1). The vertical arrows denote the possibility of a
o-error occurring after the encoding.

The initial encoding of |¢)) = «|0) + 3|1) represented by the wiring
diagram defines the mappings of the data qubits into a superposition of
five-qubit words:

|0) — |00000) — |01111) — |10011) + |11100)
+ |00110) + 01001) + |10101) + |11010)

and

|1) — |11111) — |10000) + |01100) — |00011)
+ |11001) + |10110) — |01010) — |00101).

assuming the encoding scheme above works without errors. Thus, |¢)
maps into a linear combination of the code words above.

(4.13) Exercise. Confirm that the asserted encoding of |0) and |1) is
correct (optional). Note that there is a common even parity among a
fixed pattern of four of the five qubits. °

Now assume that we wish to correct for a possible Pauli-type error
which occurred after the encoding, as denoted by the arrows. In this
algorithm we first run the (assumed error-free) network backwards to
obtain |a')|b')|¢')|c')|d’) and then measure the contents of the four ap-
pended qubits, obtaining the error syndrome (a't’'c’d’). That four-tuple
indicates which single error occurred and also indicates the corresponding
form of the middle qubit.

For example, suppose the syndrome is (0110). That signifies that a o,
error affected the last qubit with the result that |¢') = —a|1) — 3|0} , so
that an appropriate unitary map can restore the original superposition.
The calculations to determine the significance of all 16 syndromes and the
related status of |¢’) are not particularly enlightening and are omitted.

98 4. Quantum Error-Correcting Codes

(Table 1 in [49] relates the syndromes to the possible Pauli errors and
gives examples of the form of |¢).)

In (4.13) we asserted that a particular four-bit pattern has even parity
in each of the five-qubit words resulting from the encoding. If a o, or o,
error had occurred in one of those four qubits after the encoding which
altered that parity, then that change would be detectable by a measure-
ment of the eigenvalue of the product of the four related o, operators. In
their study of the five-qubit code of [12], DiVincenzo and Shor [30] related
the two encodings and showed that a four-bit error syndrome could be
defined by four such parity checks, one of which was based on the parity
in the [49] representation mentioned in (4.13). The encoding algorithm
differs from the measurement algorithm and turns out to be preferable
from the standpoint of minimizing the propagation of errors during the
measurement process, a topic we touch on briefly below.

So far we have concentrated on correcting one-qubit errors which are
modeled by an application of a Pauli spin matrix. In fact, we also have
the following result, which shows in particular that any unitary one-qubit
error can be corrected by the algorithm above.

(4.14) Theorem. Suppose we have an encoding, an entangling with
ancillary qubits, a measurement scheme of the ancillary qubits and a
corrective unitary mapping algorithm that distinguishes and corrects each
of the four possible errors to one particular qubit caused by one of the
Pauli spin operators or the identity operator. Then that schema will also
correct an error modeled by an application of any unitary matrix to that
qubit.

Proof. If A is in SU(2), we have from Exercise (1.30)
A = ag0og + ayi0, + agioy + asio,,

where the coefficients are real and ¥ |ax|* = 1. Suppose we have an
encoding |¢) and ancillary qubits initially in the zero state, so that the
system is in state |p)|0). Assume the error A occurs so that

£)10) — a000|¢)|0) + a1i02|9)|0) + a20,i|¢)|0) + asic.|#)[0).

By assumption, there is an entanglement such that a subsequent measure-
ment of the ancillary qubits will distinguish among the ¢’s. Symbolically,
this means that after the entanglement the system is in the state

ag00|p)|wo) + a1io:|p)|wi) + azioy|p)|wa) + asio.|p)|ws),

where the |w)’s denote four orthogonal states. Once a measurement of
the ancillary bits is made, wy, is known and the remaining part of the

4.6 Stabilizers and the five-qubit code 99

system is in a state caused by the Pauli “error” associated with wy.
Because such an error is unitarily correctable, it follows that the system
can be restored to its original state, and since any 2 x 2 unitary matrix
can be written as a phase factor times a matrix in SU(2), the proof is
complete. .

4.6 Stabilizers and the five-qubit code

The five-qubit encoding representation of [12] was found by a computer
search, but subsequently a general theory was developed which explains
both the encoding and the error syndrome. The theory goes under the
rubric of stabilizer codes and is presented from slightly different perspec-
tives in papers such as [18], [19], [38] and [39]. We begin with a develop-
ment of the five-qubit code from the stabilizer point of view, amplifying
somewhat some of the related results as presented in [39] and providing a
paradigm for general stabilizer codes. One possible novelty is the discus-
sion between (4.20) and (4.21), although the conclusion itself is standard
fare.

Each qubit defines a two-dimensional, “initial coordinate” subspace of
a 2%-dimensional complex Hilbert space Hs defined by the tensor product.
Encoding one “data” qubit is the same as mapping that two-dimensional,
initial coordinate subspace to another two-dimensional subspace of Hj
with the proviso that |0) and |1) are encoded as orthonormal basis vec-
tors of the two-dimensional subspace Hp: Hy = span(|0.),|1le)), using
the obvious notation. Assuming the encoding mapping is linear, the in-
formation in a superposition a|0) + 3|1) is thus spread out across five
qubits.

Let G5 denote the set of matrices defined by five-fold tensor products
of Pauli matrices:

{aok, ® ok, Ok, ®0k, ® Ok, ki € {0,z,y,2}, @ € {£1,%i}},

where oy denotes the identity. Thus, together with scalar multiples of 1,
—1, ¢ and —i, G5 represents the set of possible qubit errors with which
we will be concerned, and the context is that the operators of G5 act on
the vectors of Hs.

(4.15) Exercise. With the operation between two elements of G5 defined
as the product of tensor products, prove that Gs is a group of 4 - 4°
Hermitian matrices. Show that if M and N are elements of G5, then
MM = +] and MN = +NM. Find L, M and N such that LM N =il

100 4. Quantum Error-Correcting Codes

thus showing the necessity of including the constant factors a in the
definition of Gs. °

Following the precedent of making measurements of operators which
are the tensor products of Pauli matrices, we select the following four
elements of Gs;:

M = 0,000®0,80,®0,
M, 0, 0,80, R0, 0y
M3 Uz®0x®00®ax®az
My, = 00®0, 0,0, 0.

(4.16)

(The reasoning behind the numbering of the subscripts will be ex-
plained below.) Each operator M; has the property that M? = I, and
using the fact that different Pauli matrices anticommute, it is easy to
check that these four operators commute with one another. For example,

MM, = o0y®o0,® (—io,) ®io, @0,
= 00®0,Qi0,Q (—ioy) @ g, = MyM,.
Since none of the four operators is the product of the others, it is also
easy to check that they generate an Abelian subgroup S of order 16. The
operators in S will be shown below to define an encoding such that each

element in S leaves vectors in Hy invariant. In fact, S contains all such
mappings and is called the stabilizer of Hy.

(4.17) Exercise. Verify that the operator X also commutes with every
M in S, where
X =0, 0,0, 0, R0,.

Optional: Find explicit representations of the members of the subgroup S
generated by M;, M,, M3 and M,. Note that factors of o, always occur
in pairs, so that factors of 7 occur in even powers. °

Now, suppose that we define the encoding of |0) by

|0c) = M|00000)
MeS

and that of |1) by

|1e) = X > M]|00000).

MeS

4.6 Stabilizers and the five-qubit code 101

Using the explicit representation of the 16 elements in S, we are then able
to derive the encoding of [12]:

0.) =]00000) + |10100) + [01010) + [00101) + |10010) -+ |01001)
— (|11000) + |01100) + |00110) + |00011) + |10001))
— (|01111) + |10111) + |11011) + |11101) + |11110))

Il.) = [11111) +|01011) + |10101) + |11010) + |01101) + |10110)
— (|00111) + |10011) + |11001) + |11100) + |01110))
— (|10000) + |01000) + |00100) + |00010) + |00001)).

Note that each word in |0.) has even parity and each word in |1.) has
odd parity.

(4.18) Exercise. Use the definition of |k.) and the fact that S is an
Abelian group to confirm that for each M in S, M|k.) = |k.), where k is
0 or 1. Thus, Hj is in the A = 1 eigenspace of each M in S. In addition,
verify that (0.|1.) = 0. .

There is method in the foregoing madness. Suppose we let E denote
one of the 15 “one-qubit-error” elements of Gs; that is, E is a tensor
product of four identities and one Pauli matrix. Then it is easy to check
that there is at least one generator Mj such that E and M, anticommute:
EM; = —ME. For example, if

E=0,80®00® 0y 0y,
then EM3; = —M3E. Since
<je|E|ke> = (jelEM3|ke> = _<je|M3E|ke) = _<je|E|ke>

for an arbitrary choice of j and k, F maps Hy into a two-dimensional
space H, orthogonal to Hy. In fact, if E and F denote operators for
different one-qubit errors, then there is an M in S such that EF also
anticommutes with M, and the analogous calculation gives (j.|EF|k.) =
0. Thus, each of the 15 one-qubit error operators maps Hy into one of 15
mutually orthogonal two-dimensional subspaces of Hs.

(4.19) Example. The table below gives the set of one-qubit mappings of
G5 which anticommute with the corresponding generator. (We indicate
the type of Pauli error together with the index of the qubit on which it

102 4. Quantum Error-Correcting Codes

occurs.) Given two different one-qubit error mappings E and F, verify
that there is a generator of S which anticommutes with the product EF.

Generator Sy ={E: EMy = —-ME}
Mi=0,80080,80, 80, {041,0:1,043,023,024,0y4,0z5,045}
M2 =0, 80,80,80,; 09 {Uyly 021,022,042, 023,043, 04, 024}
M3 =0,80,Q00Q0, R0, {Uzlydyla ay2,02270y4;az47015a0y5}
My=000,0,80,Q0; {0y27 022,023,093, 0z4,0y4,Oy5, 025}

Suppose |¢) = «a|0.) + B|1.) is the encoded superposition, so that
|) is in Hy and Mg|) = |¢). If no error or an error not in S; has
occurred, we would continue to measure an eigenvalue of +1, but if one
of the errors in S; has occurred, the system is in the state E|¢) so that
M,E|¢) = —E|¢), and we would measure an eigenvalue of —1. Using
“0” as code for eigenvalue +1 and “1” for eigenvalue —1, the results of
measuring each of the eigenvalues of the four generators produces a code
that uniquely specifies which one-qubit error occurred. For example, 1001
corresponds to S; N S§NS§N Sy = {0,4}. Thus, assuming we can do the
four required measurements and still preserve a superposition, we have
related a unique four-bit error syndrome with a one-qubit error and the
qubit on which it occurred. Note that if we allowed a larger class of errors,
each four-bit error syndrome would correspond to a set of errors. °

(4.20) Exercise. Verify that the error syndromes 1100 and 1101 corre-
spond to {0,1} and {o,3}, respectively. Optional: Construct the table of
error syndromes and the related Pauli errors. °

In order to compute the error syndrome, we need to make four measure-
ments, one for each of the generators, and we also need to demonstrate
an appropriate wiring diagram. Again, the structure of the generators is
crucial. For example, if |¢) is an eigenvector for M,, then

M2|¢) = (Uz ®o, 0,80,V UO)I¢> = i|¢)

Now define My = 0, ® 0, ® 0, ® 0, ® 0o and use Exercise (2.8) to obtain
Ro, = 0, R and thus

(RRoy® 0o ® R® 00)My = My(R® 09 ® 00 ® R ® 0p).
This gives the key result
Mp|¢) = £|¢) & Molth) = £[9),

where |¢) = (R® 0o ® 09 ® R ® 0p)|¢). In other words, to determine
the eigenvalue of |¢)) with respect to M, it is equivalent to rotate the

4.6 Stabilizers and the five-qubit code 103

first and fourth qubits, obtaining |¢), and then determine the eigenvalue
of |¢) with respect to the operator M. But Mp operates on a five-qubit
word by multiplying it by (—1)*, where k is the number of 1’s in the first
four positions of the word. It follows that each word in the presentation
of an encoding state after the two rotations must have the same parity in
the first four positions. In particular, if the eigenvalue is +1, each word
must have even parity.

(4.21) Example. Let |¢x) = (R® 09 ® 0o ® R® 09)|ke), referring to the
encoding above (4.18). Then it can be painfully shown that

|#o) = |00000) + |10011) + [00110) + [00111) + |01011) + |10010)
— (]01010) + |01100) + [01101) + |00001) + |10100) + |11110))
+]10101) + |11000) + |11001) + |11111)

and

|¢1) = [11111) + |10010) + |00111) + |11001) + |11110) + |01101)
— (/00001) + |00110) + |11000) + [00000) + |10011))
— (]10100) + |10101) + [01010) + |01011) + [01100))

confirming what we believed in the first place: each word has even parity
in the first four positions. (This approach differs slightly from that in
[30], where an initial rotation on the encoded vectors led to eight words
in the presentation.) °

This analysis also suggests the way to define a wiring diagram for the
four measurements. Given the encoding defined above, for each generator
we rotate appropriate pairs of qubits, apply four XOR gates to an ancil-
lary qubit and measure the result. The resulting error syndrome defines
which Pauli matrix to apply to which qubit to correct a one-qubit error.
And the reason for the subscripts on the generators is that we wished to
minimize the number of times that R is required. We rotate qubits 3 and
1 for the first measurement, 3 and 4 for the second, 1 and 2 for the third
and 4 and 5 for the fourth. Performing the measurements in that order
means we only need to rotate and “unrotate” each qubit once.

The result is the diagram below, which is essentially the same as that
in [30].

104 4. Quantum Error-Correcting Codes

9 R R e
la, R R 1,\ lo,y
lg,> & R ? leyy
lap R R 4\ ey
g R R ey
C)C)(/\)‘n%
|0> |0><'.><>C<')L!12 —hdhdan, (B Syn)
Io>\.l\l\.l\f e . A m

|0>w\1\.>\/ 4

The five-qubit array is augmented by four ancillary qubits initially set
to 0. The first two rotations are applied to qubits 1 and 3, and the first
measurement is made. Rotations are applied to qubits 3 and 4, and the
second measurement made and so forth. After the final measurement, the
last two rotations are applied and a one-qubit error-correcting mapping
is made based on the four-bit error syndrome. The result is the correction
of any one-qubit error.

It remains to construct a wiring diagram implementing the encoding,
and that can also be deduced from the generators. First of all, note that
the choice of generators is not unique, since we could use appropriate
multiples of the original generators to define a new set of generators. For
example, we will see later the motivation for choosing

Ny = MyMsMy=0,80,00080,Q0,
N, My=00®0,80.80,®0;

N3 M MoMsMy=0,80, 80, Q00 0,
Ny = MsMy=0,90080,90,Q0,.

The encoding scheme works equally well with the N;’s as generators, and
we observe that

4
=) N|00000) = H (I + N;)|00000).
NeS k=1

(We used essentially the same trick in the proof of Proposition (4.12).)
Recall that |1.) is obtained from |0.) by applying X =0, ® 0, ® 0, ®
0, ® 0. Equivalently,

=" NX|00000) = > NMX|00000),

NeS§S NesS

4.6 Stabilizers and the five-qubit code 105

where M is any mapping in S, and we will see the motivation for choosing
M to be N NyN3N,. Defining X = M X, we have

X=(-1)0.®00®00®0, ® 0,

and the encoding can be expressed as

o|0) + 1) — [J(+ M) (a|00000) + 5X|00000)) ,
k

which will help define an explicit wiring diagram.

Each of the N,’s contains a bit flip operation only on the k’th qubit and
on the last qubit, and X contains a bit flip on the last qubit and nowhere
else. Thus, if we begin with the initial state &|00000) + 3X|00000) and
sequentially apply in order I + N, we will know that the k’th qubit is
in state |0) prior to the k’th mapping. But then it is easy to confirm
that the action of I + Ny can be implemented by applying the rotation
R to the k’th qubit and then the conditional operations defined by N.
This leads to the following wiring diagram for the initial encoding of
|¢) = a|0) + B|1). (Note the analogous structure of the finite Fourier
transform in Section 3.6.)

>__g R , O : - la>
0> l, R I, lap>
10> R & la>
|0> —_’('Gz) sz z R Gz Iq4>
Ve e

The diagram is written so that several conditional operations are col-
lected on one vertical line, and the preceding explanation rationalizes
each operation except for the application of the two unconditional o,
operations on qubits 1 and 4 and the use of 0,0, in place of o,. Both
N; and Ny flip bits using a ¢, mapping rather than a o, mapping. Since
there are two o, mappings in each of N; and Ny, there are two factors of
¢ unaccounted for, and the unconditional application of o, together with
the conditional use of 0,0, makes the necessary correction to the phase.

(4.22) Exercise. Verify that the use of the rotation R, of o,, and the

subsequent conditional command actually does implement the operator
I + N 1- []

106 4. Quantum Error-Correcting Codes

(4.23) Exercise. Confirm that Z = 0, ®0, ®0, 0, ®0, also commutes
with each of the generators. Show that X and Z act like o, and o, on
the encoded states |0,) and |1.) and in particular that they map the span
of the encoded vectors to itself. °

4.7 Theoretical aspects of stabilizer codes

In working through the five-qubit code from the perspective of its sta-
bilizer, we have seen how the generators defined the encoding scheme
and its wiring diagram, the error measurement wiring diagram and the
error syndrome. None of these capabilities is peculiar to that particular
example, and in this section we isolate the relevant theoretical proper-
ties that permit the generalization of the approach. Although some of
the theoretical results we derive are standard fare, we provide details
for completeness and note that the paper of [18] provides the linkage
with a different perspective. In addition [19] gives a thorough analysis of
quantum error-correcting codes using GF(4) as the base field.

Let H,, denote a 2"-dimensional Hilbert space over the complex num-
bers, and let G,, denote the group of matrices defined as n-fold tensor
products of the Pauli spin matrices, including the 2 x 2 identity matrix
09, together with the scalar factors +1 and +i. As before, G,, models the
errors on individual qubits and acts on the qubit space H,.

(4.24) Lemma. Suppose S is a subgroup of G,, which fixes each vector
in a subspace Hy of H,,. Then S is an Abelian group of order 2¢ for some
integer d and is generated by a set of d matrices My, M,,..., My. Each M
in § is self-invertible, and if M is in S, then aM is not in S unless a = 1.
In particular, —I is not in S.

Proof: Since G, has order 4 - 4", it follows that the order of S is also
a power of 2. As in Exercise (4.15), MM = +I and MN = £NM, and
since mappings in S fix the vectors in Hy, it follows that M M must be
+I for M in S. Similarly, M N must equal NM, and if both M and aM
are in S, then aM M = al is also in S. But al doesn’t fix the vectors
in Hy unless a equals 1. For the last assertion, note if M; is in S, then
{M;} generates a subgroup of S of order 2. If M, is in S — {I, M;}, then
it is easy to check that {M;, M,} generates a larger subgroup of order 4.
Continuing in this fashion, we ultimately find d matrices which generate
all of S, completing the proof. °

The subspace Hy will be the space of k encoded qubits and, as in
Section 4.6, will actually be defined by a subgroup S with the properties of
(4.24). Henceforth we refer to a group with those properties as a stabilizer

4.7 Theoretical aspects of stabilizer codes 107

group. The relevant fact is that Hy will be 2% dimensional, where d+k = n,
thus relating d, the number of generators, and n, the number of qubits
available, to k, the number of qubits that can be encoded.

(4.25) Lemma. Suppose S is a stabilizer subgroup of G, with d gen-
erators. Then there is a 2" %-dimensional space Hy, whose vectors are
1-eigenvectors for each M in S. Moreover, M is in S if and only if ev-
ery vector in Hy is a 1-eigenvector for M, and every vector that is a
1-eigenvector of every M in S is in Hp.

Proof: Each of the d generators M of S is a tensor product of Pauli
matrices, and it is easy to check that M has eigenvalues £1 and that each
eigenspace is 2"~! dimensional, proving the first assertion for d = 1. Since
the matrices in S commute, they can be simultaneously diagonalized.
Thus, H, can be decomposed into four subspaces on which the eigenvalue
pattern of M; and M, is (1,1), (1,-1), (-1,1) and (-1, —1), respectively.
Since M; M, also has eigenvalues 1, it is easy to check that each of those
subspaces has dimension 27~2. Continuing in this way, we find that the
d generators define 2¢ eigenspaces of dimension 2"~¢, each of which is
defined by the eigenvalue pattern of the generators. In particular, Ho,
the common 1-eigenspace of all d generators, must have dimension 2",
Since every matrix in S is a multiple of the generators, it follows that Hy
is also a 1 -eigenspace for every M in S.

Finally, suppose every vector in Hy is a 1-eigenvector for some M and
M is not in S. Then M would define a (d + 1)st generator, and the
preceding argument shows that M would have to have (—1)-eigenvectors
in Hy, completing the proof. °

We saw in Exercise (4.23) for the five-qubit example that X and Z
commuted with each M in S but did not fix the vectors in Hy. However,
both X and Z do map Hj to itself. A relevant group-theoretic definition
and result are contained in the next lemma.

(4.26) Lemma. Let S be a stabilizer group with d generators. Let C(S)
denote {N: MN = NM for all M in S }, the centralizer of S, and let
N(S) denote {N: NS = SN}, the normalizer of S. Then N(S) = C(S),
and operators in N(S) map Hj to itself.

Proof: Since MN = £NM for every M and N, if N is in N(S) -
C(S), there must be an M in S for which MN = —NM. Since N is in
the normalizer, that means that —/N M must be in S, contradicting the
assumption that S is a stabilizer group. If N is in C(S), it is easy to see
that for every v in Hy, Nv is a 1-eigenvector for every M in S; hence Nv
must be in Hy, completing the proof. °

108 4. Quantum Error-Correcting Codes

Up to the factor of ¢, o, can be represented as o,0,. Thus, we can
think of o, as (0,1), o, as (1,0) and o, as (1,1). Each generator Mj
can then be represented as two binary n-vectors, one of which indexes
the occurrences of o, while the other indexes the occurrences of o,. If
both vectors have a 1 in the same position, we can interpret that as an
occurrence of o,. Thus, for example, the two vectors associated with the
mapping M; = 0, ® 09 ® 0, ® 0, ® 7, of (4.19) in the five-qubit code
are X5, = (1,0,1,0,0) and Zp;, = (0,0,0,1,1). In that same section
(0,0,0,1,1) and (1,0,1,1,1) are the respective X- and Z-vectors of

Ny=MsMy=0,000®0, R0, 0,.

Now N, was derived by multiplying two of the original generators to-
gether, and its X- and Z-vectors could have been derived by performing
GF(2) arithmetic coordinate by coordinate on the X- and Z-vectors of
the generators. Conversely, combining the X- and Z-vectors of the gen-
erators defines N4 up to factors of ¢ and (—1). Since we require S to be
Abelian, we don’t have to worry about factors of (—1) arising from issues
of commutativity. Since the o, factors appear an even number of times
in each element of S, the number of o, factors determines the sign of the
product arising from factors of i, and that can also be inferred from the
X- and Z-vectors. Note also that each element in S can be represented as
a tensor product of real matrices with appropriate factors of (—1). Those
remarks constitute an outline of the proof of the next result.

(4.27) Lemma. Suppose § is a real stabilizer group, i.e., factors of o,
appear an even number of times in each operator in S. If M and N are
in S and R = MN, then (Xg, Zgr) = (X & Xn), (Zm & Zn)). °

This observation means that we can represent operators in S as binary
vectors and group operations in S as linear operations on the representing
binary vectors. In particular, if we represent the d generators of S in a
d X 2n matrix, we are allowed to perform row operations on the matrix
to obtain a standard representation of the generators. (As noted earlier,
these mathematical insights are articulated in [18] and in detail in [23] and
[39].) In the particular example of the five-qubit code, we can represent
the X- and Z-vectors of the four M and N generators as

M| X Z N| X Z

10100 | 00011 10001 | 11011
10010 | 01100 | — 01001 | 00110
01010 | 10001 00101 | 11000
01001 | 00110 00011 | 10111

=] Wl Do
PN ISR o

4.7 Theoretical aspects of stabilizer codes 109

where the right-hand side is obtained using elementary row operations
and mod(2) arithmetic. Note that we may also permute columns, if nec-
essary, since that is only a relabeling of the qubits.

We now treat the general case, following the approach in [39]. Suppose
we have d generators of a real stabilizer group S. Then we can use row
operations, and column permutations if necessary, to obtain the following
d X 2n array:

X-Block Z-Block
rld—-r—s|n—d+s| r |d—r—s|n—d+s
T I A2 A3 Bl 0 B3
d—r—s|0 0 0 C I Cs
s 0 0 0 D 0 0

The (d —r — s) X (d — r — s) identity in the Z-block was defined using
row operations on generators whose o, factors had been eliminated in the
derivation of the r x r identity in the X-block. If s is positive, then there
is a mapping in S whose only nonidentity factors are o, operators in the
first r positions. But such mappings cannot commute with the reduced
operators of the first r rows; hence, D is the zero matrix. Since we assume
the generators are independent, we can’t have a row of zeros and that
means s = 0.

As an example, the reduced form for the five-qubit code is in this
standard form in the “N-table” above, where r = d = 4 and the last
bit of the five-bit X- and Z-vectors is in the “n — d” column. The 4 x 4
array defined by the first four bits of the X-vectors of each of the four N-
operators corresponds to the r x r identity in the X-block of the standard
form, and that was the rationale for defining the N-operators in the first
place.

It is easy to confirm that the commutativity of two operators can be
expressed in terms of their X-Z representation as

D (Xn(k) - Zn (k) @ (Zas(k) - Xn(K))) =0,
k

using the mod(2) inner product and mod(2) addition. In terms of the
submatrices above, one can show that this becomes

(Ia A25A3a Bl70, B3) : (CI7IaC3y07070)t = 0,

where the superscript denotes the transpose, which also applies to the
submatrices, i.e., a column of transposed matrices. Equivalently,

Ci=(Cs- AL) @ AL,

110 4. Quantum Error-Correcting Codes

It’s obvious that reduced generators with only ¢, components commute
with themselves, and the commutativity of the reduced generators in the
first r rows is summarized by

(Iy A?aAZ’n Bl707 B3) : (Bla05 B3,I7A27A3)t(i7j) =0

for all i # j. The remaining condition is that o, factors appear an even
number of times, and that translates to the mod(2) equation

By(i,i) =) _ As(i,k)Bs(i, k)
k

for each of the first r rows.

We can milk some additional information from this approach and char-
acterize the normalizer N(S). The resulting representation will then en-
able us to encode k qubits. Rather than go through the derivation, we
instead summarize a variation of the results of the analysis in [39] and
confirm the existence of an additional 2k operators which, together with

S, generate N(S).

(4.28) Proposition. Let S be a real stabilizer group defined by d gen-
erators in G,. Then N(S) has n + k generators, where k = n — d, and
defines an encoding scheme mapping k qubits into n qubits. S and N(S)
can be represented in the following standard reduced form of the X-Z
representation, where the submatrices satisfy the indicated constraints:

X-Block Z-Block
rid—r| k| r|d-1]|k
T I A2 A3 31 0 Bg
d—r|0 0 0| C; I C3
k 0| C} I | B} 0 0
k 0 0 0 | A} 0 1

and using mod(2) arithmetic C; = (C; - A%) @ A%, B; @ (B; - A}) is
symmetric, and finally

By(i,i) = Y _ As(i, k)Bs(i, k) mod (2)
k

forl1< i< r.

Proof: We have already confirmed the validity of the first two row
blocks. The condition on C] is equivalent to commutativity between the
generators in those blocks and the second condition is equivalent to com-
mutativity within the first row block. The third condition states that an
even number of o, factors appears in each reduced generator.

4.7 Theoretical aspects of stabilizer codes 111

Think of the third row block as denoting k generators for X -type
operators in N(S) and the fourth row block as denoting k generators for
Z-type operators. Then it is easy to check that those generators commute
with every reduced generator of S and furthermore do not contain any
o, terms. By construction these generators are independent and satisfy
the commutativity condition except for the 7’th pair in each block, since
X; and Z ; anticommute: X;-Z; = — Z;-X; mod (2).

Finally, suppose N is a mapping in N(S), and append its X-Z repre-
sentation as a new row. If N is in S, we know that row can be reduced to
a row of zeros. If N is not in S, we can still apply row operations using S
generators to transform its first 7 X-entries and its middle d —r Z entries
to zero. Using the k-type generators we can map the last k X-entries to
0 and then use the k-type generators to map the last k Z-entries to 0.
Thus, the reduced vector looks like (0u0v00), where u and v denote d —r-
and r-long vectors, respectively. We leave it to the reader to confirm that
the requirement of commutativity with the generators of S forces those
vectors to equal zero as well. Hence, every N in N(S) can be represented
as the product of n — k S generators and 2k N(S) - S generators, com-
pleting the proof. °

The foregoing analysis for the five-qubit case gave r = d = 4, so that
there are no reduced Z generators. We denote the corresponding dimen-
sion as zero and the entries as null entries. The last two rows denote the
reduced form of X and Z, respectively, and the representation of N(S)
for the five-qubit code has the following canonical form:

X-Block Z-Block

r d—r k r d—r k
N, [1000 ¢ 1[1101 ¢ 1
N, |[0100 ¢ 1(0011 ¢ O
N3 |0010 ¢ 1[1100 ¢ O
Ny |0001 ¢ 1(1011 ¢ 1
d=r| ¢ ¢ ¢ ¢ ¢ ¢
X [0000 ¢ 1]1001 ¢ O
Z |0000 ¢ 01111 ¢ 1

where we use ¢ to denote “no entry.”

(4.29) Example. (The CSS seven-qubit code) Refer back to the wiring
diagram of Section 4.4 and rearrange the ordering of the qubits from
(1234567) to (5671243). In the new ordering we can read off the X -vectors
of the first three generators from the three measurements as (1000111),

112 4. Quantum Error-Correcting Codes

(0101011), and (0011110) and the Z-vectors of the last three generators
have the same pattern. In this case d equals 6, r equals 3 and k equals 1.
We leave it to the reader to confirm that the canonical (reduced) repre-
sentation of the generators of N('S) in this case is given by the 8 x 14 array
below. The fact that the code is based on separate X and Z measure-
ments remains clear, but the definition of the canonical representation
obscures the fact that they have the same structure.

X-Block Z-Block
r d—r k| r d-r k
N 100 011 1]000 000 O
N, 010 101 1000 000 O
N, 001 111 0]000 000 O
N, 000 000 0101 100 1 ¢
N; 000 000 0011 010 1
N 000 000 0111 001 O
X 000 110 1]000 000 O
Z 000 000 0110 000 1

We have now reached the point where we can see how the five-qubit case
served as a paradigm for defining the encoding wiring diagram. Denote
the k X-type generators as X;, where the subscript corresponds to the
7'th coordinate in a k-long qubit to be encoded. Then following the same
sequential strategy of encoding, prepare the states to be encoded by the
map

2k_1 ok_1 . ‘
Z ;7)) — Z a; X7 - X{°0...0),
Jj=0 j=0

where the superscripts correspond to the binary expansion of the state
index. Since each X-type operator makes a base change in only one of the
last k qubits, we can use the same techniques used in the five-qubit case
to define a wiring diagram. Note that these operators may also introduce
base changes in the middle d—r qubits but not in the first 7 qubits. Since
the operators also commute with the generators of S, it follows as before
that the overall encoding is linear and that the same strategy of applying
the rotation R and using conditional operations on the first » qubits will
lead directly to a feasible wiring diagram encoding k qubits in n qubits.
(See [23] and [39] for more details.)

In a similar fashion, the techniques used in defining the measurements
to detect errors in the five-qubit case also apply in general. We determine

4.8 CSS codes 113

sets of error mappings that anticommute with each of the generators, and
make d measurements by applying a suitable tensor product of rotation
operators to bring the system to the appropriate state for a parity check in
the computational basis. If the resulting error syndrome uniquely defines
one of the allowed potential errors, then a corrective operation can be
made.

4.8 CSS codes

In the preceding section we showed the centrality of the generators of the
stabilizer group to the analysis and implementation of a quantum error-
correcting code. In this section we follow the ideas in Calderbank and Shor
[20] and in Steane [68], [69] and generalize the example of Section 4.4 to
show how to use classical codes to define the generators of a quantum
error-correcting code. The basic idea is to use two classical codes, one
to correct o, errors and one to correct o, errors, in such a way that the
corrections of one type of error do not affect the corrections of the other
type of error.

Here is the context. Assume that C; and C, are two classical lin-
ear error-correcting codes in F}', the linear space of n-long vectors over
GF(2), and that C; C Cy, or equivalently C{ C C7. (Recall that if
C is a set of vectors, C* is the linear space of orthogonal vectors rel-
ative to the usual mod(2) dot product. The notation [n, k,d] denotes a
code whose words are n-bits long in a k-dimensional subspace, where the
number of differences between any two code words is at least d.) In the
example of Section 4.4, C; is the [7,4,3] Hamming code and C, is the
[7,3,4] simplex code. Assume that C3 is an [n,n — r,ey] code and that
Ci is an [n,n — s, €] code, so that necessarily s +r < n. If ¢; is defined
as |251], the largest integer less than or equal to (¢52), then Cy is a t
error-correcting code and C is a t; error-correcting code.

(4.30) Theorem. Let C; and C, be as above and suppose 7 + s < n.
Then there is a quantum, min(¢;,t;) error-correcting stabilizer code C
which has r+s generators and which encodes n—r—s qubits. In addition,
C corrects up through ¢, ¢, errors and t, o, errors.

Proof: Let {uy, ... ,u,} be a basis of n-vectors for Cs, and let {v1,...,
v} be a basis for Ci. For each vector w in F* define
My(z)=0"® - ® ok,
where o) = g9, and define M,,(z) analogously using o,. If |b) is a qubit
with an n-long pattern of 0’s and 1’s corresponding to b, then it is easy

114 4. Quantum Error-Correcting Codes

to check that
(4.31) My(z)|b) = [bdw) and M,(z)[b) = (=1)>¥|b).
Define S as the subgroup generated by
{Mu,.(z),Mvj(a:),l <i<r1<j<s}

Since each u; is in C; and each v; is in C{ CC#, using mod(2) arith-
metic it follows that u;-v; = 0. That means that the number of positions
in which M, (2) and M,,(x) both have nonidentity factors is even, and
hence the operators commute. Since each of the generators is its own
inverse, we can conclude that S is an Abelian group, and that each M in
S can be written as the product M, (z)M,(z) for some n-long vectors u
in Cy and v in C7. It is then easy to see that if both M and aM are in
S, a =1 and we can conclude that S is a stabilizer group.

C{ is a normal subgroup of Cy and if w is in Cy, then w@Cy is a
coset of C{ in Cy. For each such w define

s) = D wew) = > My(z)lw),

veCt veCt

ignoring the normalizing constant. If w; & w, is not in C{, it is easy to

check that
(Swy|Swp) = Z Z v @ wy|ve P wy) =

v1ECT v2€Ct

while if w; @ w, is in C{, it is also easy to check that |s,,) = |s,,). Hence,
there are as many orthogonal states |s,,) as there are distinct cosets of
C{ in C#, and that is precisely 24im(C1)-dim(C2) — gn-r=s Tt follows that
using a suitable identification of coset representatives with orthogonal
computational states of n — r — s qubits, we can consider the span of the
|sw)’s to be the encoding space Hp. Since S has r + s generators, if we
can show that each M in S leaves each state in Hy invariant, then by the
general results of the preceding section, we know that S is the stabilizer
group for Hy.
To do that, assume v is in Cj. Then for every w in Cy,

My(2)I50) = Myp(z) D vdw) = > [ne @ v w) = |s.).

veCt veCt

Suppose that u is in Cy and again that w is in Cy-. Then

M(2)lsw) = Mu(2) Y w@w) = Y (1) o @ w) = |su).

veCit veCt

4.9 Abstract quantum error correction 115

Hence the generators of S leave each state in Hy invariant, and S is the
stabilizer group of Hp.

Recall that we measure o, errors by performing o, measurements in the
computational basis. Since C5 is a classical t, error-correcting code, the
r measurements using the M,,(z) operators will detect t2 o, errors. Anal-
ogously, we detect o, phase errors by using o, measurements and since
C, is a classical t; error-correcting code, measurements involving the
M,,,(x) operators will detect ¢; o, errors. Since a quantum error-correcting
code must also detect o, errors, the resulting code is a min(t;,t3) error-
correcting code, and the proof is complete. °

(4.32) Example. In the special case discussed in Section 4.4, C is the
[7,4,3] Hamming code, C, is the [7,3,4] simplex code and the roles of
the codes and their “perps” is a bit tricky. For example, the encoding of
|0) involves a sum over C7 in this section, but in Section 4.4 it appears as
if the sum were over Cs. Since C{ equals C in this case, the encodings
coincide. .

(4.33) Exercise. We have assumed that the |s,) are defined in the
computational basis. To correct o, errors, we transform to the z-spin
basis using the Hadamard transform R™. Show that R™ takes |s,) to

lew) = Y (=1"*)|w).
ueC
(See Proposition (4.12).) o
(4.34) Exercise. In the notation of this section, the encoding of |0) is
lso) =) o).
veCt

Show that this representation is equivalent to the stabilizer encoding

0) =) " NJ0...0). .

NeS

4.9 Abstract quantum error correction

In the preceding sections we have concentrated on specific encoding algo-
rithms and the related wiring diagrams. In this section we take a different
perspective and consider an abstract theory of quantum error-correcting

116 4. Quantum Error-Correcting Codes

codes. This perspective is intimately related to quantum information the-
ory and to quantum communication, but it is possible to develop a general
theory without first defining and discussing salient topics such as entropy
and channel capacity. Our goal is to give necessary and sufficient condi-
tions for a given encoding to correct errors modeled by a given set of
operators. We follow the development given in Knill and Laflamme [47],
noting that related analyses appear in Ekert and Macchiavello [34] and
in [12].

Suppose that we are given as a coding space a Hilbert space H which
contains an encoding space, a sub-Hilbert space Hy which contains en-
coded information and which we wish to preserve intact. We will be
working with a class A of error-causing operators, each of which maps
H, into H. In order to correct the errors caused by operators in A, we
may need an ancillary space H(anc) and operations which unitarily map
HQ®H{(anc) to itself. Subsequently, measurements can be made on the an-
cillary space, and based on those measurements corrective unitary map-
pings of H made. The assumption we make is that from the perspective of
H, the measurements and corrective actions can be modeled by recovery
mappings, which are projections followed by unitary maps.

For example, consider the five-qubit, one error-correcting QECC dis-
cussed in Section 4.6. In this example the coding space H is the 32-
dimensional space defined by the five qubits, and the encoding space Hy
is the 2-dimensional subspace defined by the encoding of |0) and |1). The
set A contains 16 operators: the 15, one-qubit error operators A, and
the identity operator Ag. We have seen that A, maps Hy to H, and that
those 16 2-dimensional spaces are orthogonal. Subsequent to a putative
error mapping, unitary mappings involving auxiliary qubits are applied,
and four measurements are made which have the effect of identifying a
and projecting the system onto one of the H,. The corrective unitary
mapping M, in this particular case coincides with A;! =A,, since each
of the error mappings is defined on all of H and is its own inverse.

Let R denote the set of recovery mappings, which in the five-qubit
example consists of 16 recovery mappings

R, = Mr(|0r><0rl + |1r><]~r|)

and the index set for the recovery mappings happens to coincide with
that of the error mappings. Then the error-followed-by-recovery process
in the five-qubit case can be modeled as

ko) = Z R, Aolko) = ZMT(IOrHOrI + 11,:)(1r]) Aal ko)

4.9 Abstract quantum error correction 117

for each a and for each of the two values of kq. Since we can always
normalize a state, we could generalize somewhat by allowing the error-
followed-by-recovery process to produce a multiple of the original state.
Equivalently, if p; is any density matrix defined by states in Hy, such as
2k, Prolko)(ko|, we could require for each error mapping A,

(4'35) a(av Pi)pi apz Z RrAapzAIzRi,

where S is the “superoperator” defined on densities p as Y. R.pRl,
a(a, p;) is a positive constant and p; is any Hp density. Note that in
the example the recovery mappings also have the additional property
that

(4.36) Y RIR. =) PM!M,P. =1,
r T

where the P, are the appropriate orthogonal projections and I is the

identity operator on H.

We have motivated the definition of S using a linear mapping of positive
semidefinite matrices to positive semidefinite matrices. With a slightly
strengthened definition of the positivity-preserving property, such oper-
ators are called superoperators, and it can be shown, as for example in
[62], that one can always find mappings R, so that S(p) has an “operator-
sum representation” as above. That being the case, we take the general
operator-sum representation with condition (4.36) as part of the defini-
tion.

(4.37) Definition. A linear operator S mapping positive semidefinite
matrices of H to positive semidefinite matrices of H is called a superop-

erator on H if there is a set of linear mappings R = {R,: r in I(S)}, where
I(S) is an index set, such that S(p) =Y., R.pRl and > _RIR, =1. e

We now have the requisite level of abstraction. The encoding space Hy
sits inside the coding space H. There is a family A of error-causing oper-
ators and a set R of recovery mappings which defines a superoperator S
on H satisfying (4.35) for every Ho-density matrix. We wish to determine
the relationship between A and R with Hy being fixed, and we will find
conditions on the error-causing operators which are both necessary and
sufficient for the existence of a recovery superoperator.

Let us begin with the assumption that a recovery set R = {R, } exists
and let A(Ho,R) denote the set of error operators corrected by R. If A,
is in A(Hp,R), then for p; = |po)po| With |po) in Hp,

a(Aa, po)lpo)pol = ZRA |ooXwol AL R,

118 4. Quantum Error-Correcting Codes

where a = a(A,, ¢o) is a positive constant depending on A, and o). If
) is any other state in H, then it is easy to see that

a(¥leo)* = 3 (IR Adlpo)

In particular, for every state |1) orthogonal to |o), we conclude that |4)
is also orthogonal to R, A,|¢o) for every r. But that means that R, A,|po)
is in the span of |@o) and hence for some A(r, Aq, o),

(4.38) RrAaI‘pO) =)\(’f’, Aa, SOO)I‘PO)

Using the linearity of the mappings R, A,, it is easy to confirm that the
eigenvalue A(r, A,, o) is the same for every state in H, and we denote
the common value by A(r, a).

(4.39) Exercise. Verify that A(r, A, o) doesn’t depend on |¢g). By
choosing [¢) = |po) show that 3 |A(r,a)|?> = a(Aa, o) and conclude
that a is also independent of the state |¢p). (The proof is similar in spirit
to that of the no-cloning theorem, Proposition (4.5).) .

Next assume that A, and A, are two error-causing operators corrected
by R. Then for any two states in H,

(WAl Aslo) =Y~ (W ALRIR Ay o) = (¥ 19) Y X (r,a) A(r,b),

r

leading to the following lemma.

(4.40) Lemma. Let |p) and |¢)) be normalized states in Hy and let A,
and Ay be error-causing operators corrected by R. Then

(W]p) = 0=> (Y| Al Aplp) = 0,

c(a,b) = (p|AfAylp) is independent of the (normalized) state |¢), and
c(a, a) is strictly positive for each operator A, corrected by R.)

(4.41) Exercise. In the five-qubit example let C denote the 16 x 16 ma-
trix with entries c(a,b) defined as in (4.40). Verify that C is the identity
matrix. .

We can now state the main result of this section.

(4.42) Theorem. Let H, denote an encoding sub-Hilbert space of H.
Then there exists a recovery superoperator S for a finite set of error-

causing mappings A if and only if the mappings in A satisfy the conditions
described in (4.40).

4.9 Abstract quantum error correction 119

Proof: We have already confirmed the necessity of (4.40), even without
the assumption of finiteness, so let us assume a finite set A satisfying
(4.40) and let C denote the matrix with entries c(a, b). It is easy to check
from the definition that C is Hermitian and moreover that C is positive
semidefinite:

w'Cw =) " w(a)c(a, byw(b) > 0

a,b

for any vector w. It then follows from the standard linear algebra results
that C has real, nonnegative eigenvalues, and is unitarily diagonalizable,

D =Utcy,

in such a way that the resulting diagonal matrix D has strictly positive
entries in the first ro positions on the main diagonal and zero entries
elsewhere.

Let {|k),1 < k < d} be an arbitrary but fixed orthonormal basis for
H, and let V* denote the span of {A,|k),1 < a < ag}, where we let ag
denote the number of error mappings in A. For each r, 1 < r < 1y, define
the mapping @, on Hy by

Q-lk) =" Adlku(a,r),

where u(a,r) is the (a,7)’th entry of the diagonalizing matrix U . It is
obvious that for each k, Q,|k) is in V*, and, since U~! = U*,

Alky =" Qlk)a(d,)

so that we also have V¥ = span(Q.|k),1 < r <). Using the assumed
properties of the error mappings,

(K|QIQulk) = > a(a,r) (k| Al Aslk)u(b, 5)

a,b

= Z a(a,r)c(a, b)u(b, s) = D(r,s),

a,b

and it follows that {Q,|k),1 < r < g} is an orthogonal basis for V*.
The effect of the preceding calculations is that we have defined linear

combinations of the “physical” error mappings in A which act like the

error mappings of the five-qubit example, the images of the encoding

120 4. Quantum Error-Correcting Codes

space are mapped onto orthogonal subspaces of H. The verification of
that fact uses the other property of A described in (4.40), and we leave
the details as an exercise within the proof.

(4.43) Exercise. Confirm that (j|QIQ,|k) = (4, k) D(r, s). .

The significance of (4.43) is that we can now easily construct the re-
covery superoperator S. To define the set R, let W, denote the range of
Q- and note from (4.43) that @, maps the given orthonormal basis of
Hj to the orthogonal basis {Q,|k),1 < k < d}. Hence we can define a
unitary map M, from W, to Hy which maps the normalization of the
Q- image of each |k) back to |k) and which can be extended to be a
unitary map on all of the coding space H. The r’th recovery mapping is
then defined as R, = M, P,, where P, is the projection onto W,. The re-
covery set R is the set of those ry mappings together with the additional
mapping R. defined as the projection on the orthogonal complement of
Wl@-.-@ W, ie., on the orthogonal complement of the range of the
error mappings.

It is easy to verify that] = RIR. + Y, RIR, and that R defines a
superoperator S mapping densities to densities. To see that S corrects
errors in A, we choose a basis state of Hy, use the fact that Aplk) =
> Qr|k)u(b, r) for every b, and simply trace out the definitions, noting
that R. plays no role in the calculation:

S(Aalk){k|AL) = > ReAd|k)(k|ALRE = 3 M, P Adk) (k| ALP. M}

> Ma(a,r)Q k) (k|Qlu(a, r) M}
|k) (k| Y~ @(a,m)D(r, r)u(a, r) = |k)(k|c(a,).

Since this holds for an arbitrary basis state of Hy, it holds for any density
with support in Hy, completing the proof. °

The five-qubit encoding algorithm illustrates the case when the error-
causing mappings are in one-to-one correspondence with the recovery
mappings. Knill and Laflamme give an example when there are more
error-causing mappings than recovery mappings, and we reproduce a
slight modification of that example to complete this section.

(4.44) Example. Let H denote the Hilbert space modeling two qubits
and let Ho denote the space spanned by {|00),|11)}. A consists of three
error-mappings parametrized by g, where 0 < ¢ < 0.5. Using the usual

4.9 Abstract quantum error correction 121

basis for H, the matrix representations for the A, are

,/_?.‘1— 00 0
10 0
A= o 01
0 00 yI=2q
and
22 00 0 Va2 00 0
A — 0 1 0 4/q/2 A= 0 1 0 —/q/2
" V@201 o Tl -vg2 01 0
0 0 Va/2 0 00 +/g/2

The images of |00) are

{\/1——|00), v/2/2(]00) + [10)), v/g/2(|00) — |1o}
and those of |11) are

{VI=24111), Va72(1o1) + 11)), Va72(~110) + 1)) }

under the mappings of A, and these sets are obviously linearly dependent.
It is easy to check that A satisfies the conditions of (4.40), and letting ¢
denote /q(1 — 2q)/2, we find that

1—2¢ t t
C= t q 0
t 0 ¢q

(0 V(1-29/(1-q9 -+v4/(1-9))

and

1/vV2 Ve/2l-q) V(1-29)/2(1-9)

-1/vV2 Ve/21-q) V(1 -29)/2(1-q)

where the columns of U correspond, respectively, to the eigenvalues ¢,
1—g¢and 0 of C.

Following the recipe in (4.42) we obtain the mappings @; and Q. on
Ho:

Qu[00) = /g|10) @1]00) = /I
Qu11) = go1) Qull) = /I
and thus Ry = |00)(10] + [11)(01| and R, = 100)(001+|11><11| .

(4.45) Exercise. Confirm the statements in (4.44) and verify that {R;,
R»} corrects the error mappings of A. .

122 4. Quantum Error-Correcting Codes

4.10 Further aspects of quantum error-correcting
codes

The study of quantum error-correcting codes has developed rapidly, and
this introduction is not intended as a comprehensive presentation of the
field. In particular, there are a number of significant topics that have not
yet been discussed. We mention some of them below, indicating the ideas
and citing the literature for further study.

Generation of Quantum Error-Correcting Codes. We have described in
detail how an appropriate set of generators of a code defines the wiring
diagrams for encoding and error detection. The trick then is to select the
set of generators for an appropriate encoding. In Section 4.8 we showed
how CSS codes can be defined using classical coding theory. Another
approach involves modifying existing codes, and Gottesman’s thesis [39)
contains a wealth of detail on such techniques as well as analyses of other
aspects of quantum error-correcting codes. For an example of a code that
is not a stabilizer code, see [59].

(4.46) Exercise. Define a perfect, n-qubit, one-error-correcting code as
one in which d qubits are encoded in n qubits, and n — d measurements
distinguish exactly among the 3n+1 possible single errors. The five-qubit
code of Section 4.6 is an example with d = 1. Could there be an example
with d = 2?7 How about d = 157 (See [39].) .

Computations on Encoded Qubits. The operators in N(S)-S map the
encoded subspace to itself and could be used to perform logical operations
without decoding. For example, in the five-qubit case, X interchanges
0c) and [1.), while Z performs the analogue of o, on the encoded qubits.
Zurek and Laflamme [80] discuss such “qubyte” operations in the context
of Steane’s encodings; [39] contains other references and also includes a
related discussion in the context of fault-tolerant computation.

Fault-Tolerant Computations. The five-qubit code of [49] has the virtue
of combining the encoding and the error detection in one wiring but the
liability of facilitating the propagation of errors. Errors can propagate
both “forwards” and “backwards,” and the overuse of the same qubit
in computations should be avoided. Thus, for example, Steane’s use of
ancillary qubits for measurements inhibits some but not all of that error
propagation.

(4.47) Example. Suppose an XOR operation is to be applied to |i)|k)
with the first qubit acting as the control qubit. If an error has occurred
in the first qubit, so that the actual state is |i & 1)|k), then after the

4.10 Further aspects of quantum error-correcting codes 123

XOR operation, the second qubit will be in the state |: ® k & 1) and
the error has propagated “forwards.” If the system were in the state
(a]0) + B3|1))(J0) £ |1)), where the plus/minus sign indicates a potential
error o,, then after the XOR operation the system can be written as
(a]0) £+ B]1))(|0) £ |1)), which can be interpreted as saying the second
qubit is unchanged and the control qubit now has a o, error. (See the
discussion after Exercise (2.11).) .

The use of entangled ancillary qubits can further reduce error prop-
agation, as noted in [66], and aspects of fault-tolerant computation are
described, for example, in [20] and [39]. The construction of fault-tolerant
algorithms appears to be crucial for the development of feasible algo-
rithms for quantum computation, and a nice discussion of the subject is
given in [58].

Abstract Theory of Quantum Error-Correcting Codes. One can abstract
the context and machinery of quantum error-correcting codes, examining
the problem from a more general perspective, and we mention just a
few of the relevant papers. An early paper by Schumacher [61] took an
information-theoretic approach and introduced the idea of fidelity in the
quantum domain. (Schumacher also introduced the term “qubit” to the
literature.) Knill and Laflamme [47] emphasize the Hilbert space context
and the role of “superoperators,” and in the preceding section we gave
their necessary and sufficient conditions for a code to correct a given
set of errors. (See also [34].) The relationships among quantum error-
correcting codes, quantum cryptography and EPR entangled states are
emphasized in [12], and a group-theoretic framework is used in [18] and
[19]. For additional references, see [39] and the ever-changing LANL (Los
Alamos) web site quant-ph.

Afterword

Since the penultimate draft of this manuscript was prepared, additional
references have become available which may be of interest to the reader
interested in algorithms or other topics not covered in this book. For
example, John Preskill has prepared notes and problems for a course at
the California Institute of Technology and has made them available at
his web site: preskill@theory.caltech.edu. Similarly, notes from a course
taught by Umesh Vazirani are also available at vazirani@cs.berkeley.edu.

The proceedings from a 1996 conference at Santa Barbara contain some
of the references cited here, including [22], as well as many other relevant
articles: Proc. Roy. Soc. London A, vol. 454 (Jan. 1998). There have
been some special issues of journals dedicated to aspects of quantum
computing, such as SIAM J. Comput., vol. 26, no. 5 (Oct. 1997) which
contains [9)].

Other recent publications include a book on the subject (Colin Williams
and Scott Clearwater, Explorations in Quantum Computing, Springer-
Telos (1997)) and an edited volume to appear: Introduction to Quantum
Computation and Information, edited by H.-K. Lo, S. Popescu and T. P.
Spiller, World Scientific, Singapore (1998), which contains [58].

Many of the references cited in the text appeared first on the “quant-
ph” site of the Los Alamos National Laboratory and subsequently in
proceedings or journals. If possible, both references are given, and papers
with only a quant-ph reference may well have been published elsewhere
since this bibliography was prepared.

References

(1] Sheldon Axler, Linear Algebra Done Right, 2nd ed., Springer, New
York (1997).

[2] Adriano Barenco, “Quantum physics and computation,” Clarendon
Laboratory, Oxford, UK, preprint (1995-96).

[3] Adriano Barenco, Charles Bennett, Richard Cleve, David DiVin-
cenzo, Norman Margolus, Peter Shor, Tycho Sleator, John Smolin,
Harold Weinfurter, “Elementary gates for quantum computation,”
Phys. Rev. A, vol. 52, no. 5, 3457-3467 (Nov. 1995).

[4] David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni,
John Preskill, “Efficient networks for quantum factoring”, Phys.
Rev. A, vol. 54, no. 2, 1034-1063 (Aug. 1996).

[5] John Bell, Speakable and Unspeakable in Quantum Mechanics, Cam-
bridge Univ. Press, London and New York (1993).

(6] Paul Benioff, “The computer as a physical system: A microscopic
quantum mechanical Hamiltonian model of computers as represented
by Turing machines,” J. Stat. Physist, vol. 22, no. 5, 563-590 (1980).

[7] Paul Benioff, “Quantum-mechanical Hamiltonian models of Turing
machines that dissipate no energy,” Phys. Rev. Lett., vol. 48, 1581
1585 (1982).

128 References

[8] Charles H. Bennett, “The thermodynamics of computation — a re-
view,” Int. J. of Theo. Phys., vol. 21, no. 12, 905-940 (1982).

[9] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, Umesh Vazi-
rani, “Strengths and weaknesses of quantum computing,” SIAM J.
Comput., vol. 26, no. 5, 1510-1523 (Oct. 1997).

[10] Charles H. Bennett, Gilles Brassard, “Quantum cryptography: Pub-
lic key distribution and coin tossing,” in Proc. IEEE International
Conference on Computers, Systems, and Signal Processing, Banga-
lore, India, 175-179 (1984).

[11] Charles H. Bennett, Gilles Brassard, Claude Crepeau, Richard Jozsa,
Asher Peres, William Wootters, “Teleporting an unknown quan-
tum state via dual classical and Einstein—Podolsky—Rosen channels,”
Phys. Rev. Lett., vol. 70, 1895-1899 (1993).

[12] Charles H. Bennett, David P. DiVincenzo, John A. Smolin, William
K. Wootters, “Mixed state entanglement and quantum error correc-
tion,” Phys. Rev. A, vol. 54, 3824-3851 (1996); quant-ph/9604024
v2 (Aug. 1996).

[13] E. Bernstein, U. Vazirani, “Quantum complexity theory,” in Proc.
25th ACM Symposium on Theory of Computing, ACM, New York
(1993).

(14] David Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ
(1951).

[15] D. Boneh, R. J. Lipton, “Quantum cryptanalysis of hidden linear
functions,” extended abstract, Lecture Notes in Computer Science,
963, 424-437, Springer-Verlag (1995).

[16] Michel Boyer, Gilles Brassard, Peter Hoyer, Alain Tapp, “Tight
bounds on quantum searching,” Forstschritte Der Physik, Special

issue on quantum computing and quantum cryptography, vol. 4,
820-831 (1998); quant-ph/9605034 (May 1996).

[17] Gilles Brassard, “Teleportation as a quantum computation”, Physica
D120, 43-47 (1998); quant-ph/9605035 (May 1996).

[18] A.R. Calderbank, E. M. Rains, P. W. Shor, N. J. Sloane, “Quantum
error correction and orthogonal geometry,” Phys. Rev. Lett., vol. 78,
405-408 (1997); quant/ph/96,/05/005 (May 1996).

References 129

[19] A.R. Calderbank, E. M. Rains, P. W. Shor, N. J. Sloane, “Quantum
error correction via codes over GF(4),” IEEE Trans. Inform. Theory,
to appear; quant/ph/96/08/006 v5 (10 Sept. 1997).

[20] A. R. Calderbank, P. W. Shor, “Good quantum error-correcting
codes exist,” Phys. Rev. A., vol. 54, 1098-1105 (1996).

[21] J. 1. Cirac, P. Zoller, “Quantum computation with cold trapped
ions,” Phys. Rev. Lett., vol. 74, no. 20, 4091-4094 (May 1995).

[22] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, “Quantum algo-
rithms revisited,” Proc. Roy. Soc. London A, vol. 454, 339-354
(1998); quant-ph/9708016 (Aug. 1997).

[23] Richard Cleve, Daniel Gottesman, “Efficient computations of encod-
ings for error correction,” quant-ph/9607030 (July 1996).

[24] D. Coppersmith, “An approximate Fourier transform useful in quan-
tum factoring,” IBM Research Report no. RC 19642 (1994).

[25] David Deutsch, “Quantum theory, the Church-Turing principle and
the universal quantum computer,” Proc. Roy. Soc. London A, vol.
400, 97-117 (1985).

[26] David Deutsch, “Quantum computational networks,” Proc. Roy.
Soc. London A, vol. 425, 73-90 (1989).

[27] David Deutsch, Richard Jozsa, “Rapid solution of problems by quan-
tum computation,” Proc. Roy. Soc. London A, vol. 439, 553-558
(1992).

(28] David DiVincenzo, “Two-bit gates are universal for quantum com-
putation,” Phys. Rev. A, vol. 51, 1015-1022 (1995).

[29] David DiVincenzo, “Quantum gates and circuits”, in Proc. ITP Con-
ference on Quantum Coherence and Decoherence, December 1996,
Proc. Roy. Soc. London A, (Jan. 1998); quant-ph9705009 (May
1997).

[30] David DiVincenzo, Peter Shor, “Fault-tolerant error correction with
efficient quantum codes,” Phys. Rev. Lett., vol. 77, no. 15, 3260-3263
(Oct. 1996).

[31] H. Dym, H. P. McKean, Fourier Series and Integrals, Academic
Press, New York (1972).

130 References

[32] A. Einstein, B. Podolsky, N. Rosen, “Can quantum-mechanical de-
scription of physical reality be considered complete?” Phys. Rev.,
vol. 47, 777 (1935).

[33] Artur Ekert, Richard Jozsa, “Quantum computation and Shor’s al-
gorithm,” Rev. Modern Phys., vol. 68, no. 3, 733-753 (July 1996).

[34] Artur Ekert, Chiara Macchiavello, “Quantum error correction for
communication,” Phys. Rev. Lett., vol. 77 (12), 2585-2588 (Sept.
1996).

[35] Richard Feynman, Lectures in Physics, Vol III, Addison-Wesley,
Reading, MA (1965).

[36] Richard Feynman, “Quantum mechanical computers,” Found. Phys.,
vol. 16, no. 6, 507-531 (1986).

[37] Neil Gershenfeld, Isaac Chuang, “Bulk spin-resonance quantum com-
putation,” Science, vol. 275 (17 Jan. 1997).

[38] Daniel Gottesman, “A class of quantum error-correcting codes sat-
urating the quantum Hamming bound,” Phys. Rev. A, vol. 54, 1862
(1996); quant-ph/96/04/038 (Apr. 1996).

[39] Daniel Gottesman, “Stabilizer codes and quantum error correction,”
thesis, Calif. Inst. Tech., Pasadena, CA, quant-ph/97/05/052 (1997).

[40] R. B. Griffiths and C. S. Niu, “Semiclassical Fourier transform for
quantum computation,” Phys. Rev. Lett., vol.76, 3228-3230 (1996).

[41] Lov Grover, “A fast quantum-mechanical algorithm for database
search,” in Proc. 28th Annual ACM Symposium on Theory of Com-
puting, ACM, New York (1996).

[42] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Num-
bers, 5th ed., Oxford Univ. Press, New York (1979).

[43] Max Jammer, The Philosophy of Quantum Mechanics, Wiley, New
York (1974).

[44] Richard Jozsa, “How can we find new quantum algorithms?” In-
stitute for Theoretical Physics, Univ. Calif. Santa Barbara, Santa
Barbara CA, preprint (Aug. 1996).

[45] Richard Jozsa, “Quantum algorithms and the Fourier transform,”
Proc. Roy. Soc. London A, vol. 454, 323-337 (1998).

References 131

[46] A. Yu. Kitaev, “Quantum measurements and the Abelian stabilizer
problem,” Landau Institute for Theoretical Physics, Moscow, Russia,
preprint (June 1996); quant-ph/9511026 (1995).

[47) Emanuel Knill, Raymond Laflamme, “Theory of quantum error-
correcting codes,” Phys. Rev. A, vol. 55 (2), 900-911 (Feb. 1997).

[48] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminu-
merical Algorithms, 2nd ed., Addison-Wesley, Reading, MA (1980).

[49] R. Laflamme, C. Miquel, J-P. Paz, W. H. Zurek, “A perfect quantum
error-correcting code,” Phys. Rev. Lett., vol. 7, 198-201 (July 1996).

[50] A. K. Lenstra and H. W. Lenstra Jr., eds., The Development of the
Number Field Sieve, Lecture Notes in Math., vol. 1554, Springer,
Berlin and New York (1993).

[51] Seth Lloyd, “Quantum-mechanical computers,” Scientific American,
44-49 (Oct. 1995).

[52] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam (1977).

[53] David Mermin, “What’s wrong with these elements of reality?”
Physics Today, 9-11 (June 1990).

[54] Michele Mosca, Artur Ekert, “The hidden subgroup problem and
eigenvalue estimation on a quantum computer,” quant-ph/9903071
(Mar. 1999).

[55] K. R. Parthasarathy, An Introduction to Quantum Stochastic Cal-
culus, Monographs Math., vol. 85, Birkhauser, Basel (1992).

[56] Asher Peres, Quantum Theory: Concepts and Methods, Kluwer, Dor-
drecht (1995).

[57] T.B.Pittman, Y. H. Shih, D. V. Strekalov, A. V. Sergienko, “Optical
images by means of 2-photon quantum entanglement,” Phys. Rev.
A, vol. 52, R3429-32 (1995).

[58] John Preskill, “Fault-tolerant error computation,” in Introduction
to Quantum Computation and Information, edited by H.-K. Lo, S.
Popescu, and T P. Spiller, World Scientific, Singapore (1998); quant-
ph/9712048 (Dec. 1997).

132 References

[59] Eric M. Rains, R. H. Hardin, Peter W. Shor, N. J. A. Sloane, “A non-
additive quantum code,” Phys. Rev. Lett., vol. 79, 953-954 (1997);
quant-ph/9703002 V2 (May 1997).

[60] J. J. Sakurai, Modern Quantum Mechanics, rev. ed., Addison-
Wesley, New York (1994).

[61] Benjamin Schumacher, “Quantum Coding,” Phys. Rev. A, vol. 51,
2738-2747 (Apr. 1995).

[62] Benjamin Schumacher, “Sending entanglement through noisy chan-
nels,” quant-ph/9604023 (Apr. 1996).

[63] Ravi Shankar, Principles of Quantum Mechanics, 2nd ed., Plenum
Press, New York (1994).

[64] Peter Shor, “Scheme for reducing decoherence in quantum computer
memory,” Phys. Rev. A, vol. 52, no. 4, R2493-R2496 (Oct. 1995).

[65] Peter Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput., vol.
26, no. 5, 1484-1509 (Oct. 1997); quant-ph950802/V2 (Jan. 1996).

[66] Peter Shor, “Fault-tolerant quantum computation,” in Proc. 37th
Symposium on Foundation of Computing, IEEE Computer Society
Press, 56-65 (1996).

[67] Daniel Simon, “On the power of quantum computation,” in Proc.
35th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 116-123 (1994).

[68] A. M. Steane, “Error correcting codes in quantum theory,” Phys.
Rev. Lett., vol. 77, no. 5, 793-797 (July 1996).

[69] A.M. Steane, “Multiple-particle interference and quantum error cor-
rection,” Proc. Roy. Soc. London A, vol. 452, 2551-2577 (1996).

[70] A. M. Steane, “Quantum computing,” qaunt-ph/9708022 (Aug.
1997).

[71] S. Sternberg, Group Theory and Physics, Cambridge Univ. Press,
London and New York (1994).

[72] Anthony Sudbery, Quantum Mechanics and the Particles of Nature:
An Outline for Mathematicians, Cambridge Univ. Press, London and
New York (1986).

References 133

[73] Gary Taubes, “Putting a quantum computer to work in a cup of
coffee,” Science, vol. 275, 307-309 (17 Jan. 1997).

[74] T. Toffoli, “Reversible computing,” in Automata, Languages, and
Programming, Seventh Colloquium, Lecture Notes in Computer Sci-
ence vol. 84, eds. J. W. de Bakker and J. van Leeuwen, Springer, New
York, 632-644 (1980).

[75] W. G. Unruh, “Maintaining coherence in quantum computers,”
Phys. Rev. A, vol. 51, no. 2, 992-997 (Feb. 1995).

[76] Vlatko Vedral, Adriano Barenco, Artur Ekert, “Quantum networks
for elementary arithmetic operations,” Phys. Rev. A, vol. 54, 147
(1996).

[77] David Wick, The Infamous Boundary — Seven Decades of Contro-
versy in Quantum Physics, Birkhauser, Boston, MA (1995).

[78] W. K. Wootters, W. H. Zurek, “A single quantum cannot be cloned,”
Nature, vol. 299, 802 (1982).

[79] Wojciech Zurek, “Decoherence and the transition from quantum to
classical,” Physics Today, 3645 (Oct. 1991); replies in Physics Today
(Apr. 1993).

[80] Wojciech Zurek, Raymond Laflamme, “Quantum logical operations
on encoded qubits,” quant-ph/9605013 (May 1996).

Index

ADDER, 34

Abelian group, 46, 74

abstract quantum error correction,
115

addition mod(N), 33, 35

amplitude amplification, 53, 54

ancillary qubits, 45, 89

angular momentum, 11

annihilator, 71, 77

anticommutator, 17

balanced, 42

basic model, 6

Bell, 5

Benioff, vii

Bennett, vii, 86

Bennett and Brassard, 37
Bernstein and Vazirani, 25, 69
Bohm, 6

bra, 12

bracket, 13

Cc+, 113
CARRY, 33
Calderbank, 86, 96

Cauchy-Schwarz inequality, 17
centralizer, 107

characters, 46, 76

Chinese remainder theorem, 58
Church-Turing principle, viii
classical OR, 25

classical channels, 39

classical coding theory, 93
cloning, 85

commutator, 16, 17
computational basis, 19
continued fraction expansion, 63
controlled multiplication, 33
controlled not, 26
Coppersmith, 64
correspondence principle, 2
cross product, 17

CSS codes, 113

decoherence, 81, 83

density, 8

Deutsch, viii, 24, 25
Deutsch-Jozsa algorithm, 41
diffusion operator, 48

Dirac notation, 12

136

discrete Fourier transform, 55
discrete log problem, 41, 78
DiVincenzo and Shor, 96
dual group, 76

eigenvalues, 7, 70
eigenvectors, 7, 70, 71
Einstein, Podolsky and Rosen, 5
Ekert and Jozsa, 25, 55
encoding scheme, 104
entangled states, 5
environment, 84
epistemological issue, 22
EPR, 5, 23

error correction, 85

error operators, 116

error syndrome, 91
Euclidean algorithm, 55
Euler ¢ function, 58
Euler-Fermat theorem, 58
exclusive or, 26
expectation, 8, 14
exponentiation mod(N), 33

F}, 69

fault-tolerant computations, 122

feasible, 25, 53

Feynman, vii, 2, 5

finite Fourier transform, 41, 60,
64

five-qubit code, 99

Gs, 99

G, 106

GF(4), 106

Gottesman, 86

greatest common divisor, 55
Griffiths and Niu, 67

group theory, 74

Grover’s algorithm, 46

Index

H(anc), 116

Hadamard mapping, 26

Hadamard transform, 42

Hamiltonian, 81

Hardy and Wright, 64

Heisenberg picture, 16

Heisenberg uncertainty principle,
5, 18

Hermitian, 7, 8

Hilbert space, 6

indeterminism, 4

initial subspace probability am-
plitude, 50

inner product, 6, 8, 10

interchange, 28

ion trap, 19

Jammer, 5

ket, 12
Kitaev, 69
Knill, 86

Laflamme, 86

least common multiple, 59
local reality, 5

Lorentz metric, 31

M, (z), 113

M,(z), 113
measurement, 5, 9, 83, 88
Mermin, 6

mixed density, 84

mixed state, 14

mod(2) addition, 45

NOT, 25

nXOR, 47

no-cloning theorem, 85
noncommutativity, 16
normalizer, 107

number field sieve approach, 54

Index

observable, 7, 8

ontological issue, 22
operator-sum representation, 117
oracle, 45

orthogonal projections, 8

outer product, 8, 13

parity, 88

Pauli spin matrices, 12, 16, 87
Pauli-type error, 89

Peres, 2, 5-7

perfect codes, 122

period, 55

Planck’s constant, 10
polarization, 4

positive semidefinite, 14
positive semidefinite operator, 8
Preskill, 74

probabilistic component, 7
probability, 14

probability state, 8
projection, 9, 11

pure state, 14

quant-ph, 123

quantum algorithms, 41

quantum chutzpah, 83

quantum circuits, 29

quantum communication theory,
37

quantum cryptography, 123

quantum error-correcting codes,
81, 122

quantum gate, 25

quantum information theory, 37

quantum parallelism, viii

quantum probability space, 8

qubit, 19

quotient group, 74

R-ADDER, 35
RCARRY, 33

137

randomization, 43

real stabilizer group, 108

recovery mappings, 116

reflection about the mean, 54

reversible programming, vii, 29

rotations in a three-dimensional
space, 31

S0O(3), 32

SU(2), 17, 30, 31

S., 10, 12

[7,3,4] simplex code, 93, 115

[7,4,3] Hamming code, 93, 115

SUM, 33

Sakurai, 2, 5

Schrodinger picture, 16

Schrodinger’s equation, 81

seven-qubit code, 111

seven-qubit quantum error-correcting
code, 92

Shankar, 2, 5

Shor’s algorithms, 41, 54, 78

Shor’s error-correcting codes, 89,
92

Simon’s algorithm, 41, 44

Simon’s problem, 71

spectral decomposition, 8

spectral representation, 14

spin, 3

spin 1/2, 3, 10

stabilizer, 99, 105

stabilizer group, 107

state, 7

Steane, 86, 113, 122

Stern—-Gerlach experiment, 3

Sudbery, 5

superoperator, 117

superposition, 22

teleportation, 37
tensor product, 20

138

thermodynamics of computation,
vii

Toffoli gate, 29

trace, 7

tracing-out, 84

trapped ions, 19

two-slit experiment, 2

uniform superposition, 43
unitary mappings, 10

unitary matrix, 15

universal quantum computer, viii

v, 41
Vazirani, 74
von Neumann, 84

Index

Wick, 5
Wootters and Zurek, 85
work factor, 52

X-block, 109
z-spin, 10

X, 104

XOR, 25, 26, 28

y-spin, 10

Z-block, 109
z-spin, 3, 10
Z, 105
Zurek, 83

Progress in Computer Science and Applied Logic

PCS 1 Mathematics for the Analysis of Algorithms, 3rd Edition
Daniel H. Greene & Donald E. Knuth

PCS 2 Applied Probability—Computer Science: The Interface, Volume I
Edited by Ralph L. Disney & Teunis J. Ott

PCS 3 Applied Probability—Computer Science: The Interface, Volume I
Edited by Ralph L. Disney & Teunis J. Ott

PCS 4 Notes on Introductory Combinatorics
George Pélya, Robert E. Tarjan, & Donald R. Woods

PCS 5 The Evolution of Programs
Nachum Dershowitz

PCS 6 Lecture Notes on Bucket Algorithms
Luc Devroye

PCS 7 Real-Time Control of Walking
Marc D. Donner

PCS 8 Logic for Computer Scientists
Uwe Schoning

PCS 9 Feasible Mathematics
Edited by Samuel R. Buss & Philip J. Scott

PCS 10 Graph-Based Proof Procedures for Horn Clauses
Stan Raatz

PCS 11 A Proof Theory of General Unification
Wayne Snyder

PCS 12 Logical Methods: In Honor of Anil Nerode's Sixtieth Birthday
Edited by John E. Crossley, Jeffrey B. Remmel, Richard A. Shore,
& Moss E. Sweedler

PCS 13

PCS 14

PCS 15

PCS 16

PCS 17

PCS 18

PCS 19

Feasible Mathematics 11
Edited by P. Clote & J.B. Remmel

Learning and Geometry: Computational Approaches
Edited by David W. Kueker & Carl H. Smith

Symbolic Rewriting Techniques
Manuel Bronstein, Johannes Grabmeier,
& Volker Weispfenning

Bounded Queries in Recursion Theory
William I. Gasarch & Georgia A. Martin

Number Theoretic Methods in Cryptography:
Complexity lower bounds
I. Shparlinski

Interpolating Cubic Splines
Gary D. Knott

An Introduction to Quantum Computing Algorithms
Arthur O. Pittenger

