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Preface

Object recognition (OR) has been an area of extensive research for a long time.
During the last decades, a large number of algorithms have been proposed. This
is due to the fact that, at a closer look, “object recognition” is an umbrella term
for different algorithms designed for a great variety of applications, where each
application has its specific requirements and constraints.

The rapid development of computer hardware has enabled the usage of automatic
object recognition in more and more applications ranging from industrial image
processing to medical applications as well as tasks triggered by the widespread use
of the internet, e.g., retrieval of images from the web which are similar to a query
image. Alone the mere enumeration of these areas of application shows clearly that
each of these tasks has its specific requirements, and, consequently, they cannot
be tackled appropriately by a single general-purpose algorithm. This book intends
to demonstrate the diversity of applications as well as to highlight some important
algorithm classes by presenting some representative example algorithms for each
class.

An important aspect of this book is that it aims at giving an introduction into
the field of object recognition. When I started to introduce myself into the topic, I
was fascinated by the performance of some methods and asked myself what kind of
knowledge would be necessary in order to do a proper algorithm design myself such
that the strengths of the method would fit well to the requirements of the application.
Obviously a good overview of the diversity of algorithm classes used in various
applications can only help.

However, I found it difficult to get that overview, mainly because the books deal-
ing with the subject either concentrate on a specific aspect or are written in compact
style with extensive usage of mathematics and/or are collections of original articles.
At that time (as an inexperienced reader), I faced three problems when working
through the original articles: first, I didn’t know the meaning of specific vocabulary
(e.g., what is an object pose?); and most of the time there were no explanations
given. Second, it was a long and painful process to get an understanding of the
physical or geometrical interpretation of the mathematics used (e.g., how can I see
that the given formula of a metric is insensitive to illumination changes?). Third,
my original goal of getting an overview turned out to be pretty tough, as often the
authors want to emphasize their own contribution and suppose the reader is already
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familiarized with the basic scheme or related ideas. After I had worked through an
article, I often ended up with the feeling of having achieved only little knowledge
gain, but having written down a long list of cited articles that might be of importance
to me.

I hope that this book, which is written in a tutorial style, acts like a shortcut
compared to my rather exhausting way when familiarizing with the topic of OR. It
should be suitable for an introduction aimed at interested readers who are not experts
yet. The presentation of each algorithm focuses on the main idea and the basic algo-
rithm flow, which are described in detail. Graphical illustrations of the algorithm
flow should facilitate understanding by giving a rough overview of the basic pro-
ceeding. To me, one of the fascinating properties of image processing schemes is
that you can visualize what the algorithms do, because very often results or inter-
mediate data can be represented by images and therefore are available in an easy
understandable manner. Moreover, pseudocode implementations are included for
most of the methods in order to present them from another point of view and to
gain a deeper insight into the structure of the schemes. Additionally, I tried to avoid
extensive usage of mathematics and often chose a description in plain text instead,
which in my opinion is more intuitive and easier to understand. Explanations of
specific vocabulary or phrases are given whenever I felt it was necessary. A good
overview of the field of OR can hopefully be achieved as many different schools of
thought are covered.

As far as the presented algorithms are concerned, they are categorized into
global approaches, transformation-search-based methods, geometrical model driven
methods, 3D object recognition schemes, flexible contour fitting algorithms, and
descriptor-based methods. Global methods work on data representing the object
to be recognized as a whole, which is often learned from example images in
a training phase, whereas geometrical models are often derived from CAD data
splitting the objects into parts with specific geometrical relations with respect to
each other. Recognition is done by establishing correspondences between model
and image parts. In contrast to that, transformation-search-based methods try to
find evidence for the occurrence of a specific model at a specific position by
exploring the space of possible transformations between model and image data.
Some methods intend to locate the 3D position of an object in a single 2D
image, essentially by searching for features which are invariant to viewpoint posi-
tion. Flexible methods like active contour models intend to fit a parametric curve
to the object boundaries based on the image data. Descriptor-based approaches
represent the object as a collection of descriptors derived from local neighbor-
hoods around characteristic points of the image. Typical example algorithms are
presented for each of the categories. Topics which are not at the core of the
methods, but nevertheless related to OR and widely used in the algorithms, such
as edge point extraction or classification issues, are briefly discussed in separate
appendices.

I hope that the interested reader will find this book helpful in order to intro-
duce himself into the subject of object recognition and feels encouraged and
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well-prepared to deepen his or her knowledge further by working through some
of the original articles (references are given at the end of each chapter).

Munich, Germany Marco Treiber
February 2010
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Chapter 1
Introduction

Abstract Object recognition is a basic application domain of image processing and
computer vision. For many decades it has been – and still is – an area of extensive
research. The term “object recognition” is used in many different applications and
algorithms. The common proceeding of most of the schemes is that, given some
knowledge about the appearance of certain objects, one or more images are exam-
ined in order to evaluate which objects are present and where. Apart from that,
however, each application has specific requirements and constraints. This fact has
led to a rich diversity of algorithms. In order to give an introduction into the topic,
several areas of application as well as different types of requirements and constraints
are discussed in this chapter prior to the presentation of the methods in the rest
of the book. Additionally, some basic concepts of the design of object recognition
algorithms are presented. This should facilitate a categorization of the recognition
methods according to the principle they follow.

1.1 Overview

Recognizing objects in images is one of the main areas of application of image pro-
cessing and computer vision. While the term “object recognition” is widely used, it
is worthwhile to take a closer look what is meant by this term. Essentially, most of
the schemes related to object recognition have in common that one or more images
are examined in order to evaluate which objects are present and where. To this
end they usually have some knowledge about the appearance of the objects to be
searched (the model, which has been created in advance). As a special case appear-
ing quite often, the model database contains only one object class and therefore the
task is simplified to decide whether an instance of this specific object class is present
and, if so, where. On the other hand, each application has its specific characteristics.
In order to meet these specific requirements, a rich diversity of algorithms has been
proposed over the years.

The main purpose of this book is to give an introduction into the area of object
recognition. It is addressed to readers who are not experts yet and should help
them to get an overview of the topic. I don’t claim to give a systematic coverage

1M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
DOI 10.1007/978-1-84996-235-3_1, C© Springer-Verlag London Limited 2010



2 1 Introduction

or even less completeness. Instead, a collection of selected algorithms is presented
attempting to highlight different aspects of the area, including industrial applica-
tions (e.g., measurement of the position of industrial parts at high precision) as well
as recent research (e.g., retrieval of similar images from a large image database or
the Internet). A special focus lies on presenting the general idea and basic con-
cept of the methods. The writing style intends to facilitate understanding for readers
who are new to the field, thus avoiding extensive use of mathematics and compact
descriptions. If suitable, a link to some key articles is given which should enable the
interested reader to deepen his knowledge.

There exist many surveys of the topic giving detailed and systematic overviews,
e.g., the ones written by Chin and Dyer [3], Suetens et al. [12], or Pope [9]. However,
some areas of research during the last decade, e.g., descriptor-based recognition,
are missing in the older surveys. Reports focusing on the usage of descriptors can
be found in [10] or [7]. Mundy [6] gives a good chronological overview of the
topic by summarizing evolution in mainly geometry-based object recognition during
the last five decades. However, all these articles might be difficult to read for the
inexperienced reader.

Of course, there also exist numerous book publications related to object recog-
nition, e.g., the books of Grimson [4] or Bennamoun et al. [1]. But again, I don’t
feel that there exists much work which covers many aspects of the field and intends
to introduce non-experts at the same time. Most of the work either focuses on spe-
cific topics or is written in formal and compact style. There also exist collections
of original articles (e.g., by Ponce et al. [8]), which presuppose specific knowledge
to be understood. Hence, this book aims to give an overview of older as well as
newer approaches to object recognition providing detailed and easy to read expla-
nations. The focus is on presenting the key ideas of each scheme which are at the
core of object recognition, supplementary steps involved in the algorithm like edge
detection, grouping the edge pixels to features like lines, circular arcs, etc., or clas-
sification schemes are just mentioned or briefly discussed in the appendices, but a
detailed description is beyond the scope of this book. A good and easy to follow
introduction into the more general field of image processing – which also deals with
many of the aforementioned supplementary steps like edge detection, etc. – can be
found in the book of Jähne [5]. The book written by Steger et al. [11] gives an
excellent introductory overview of the superordinated image processing topic form
an industrial application-based point of view. The Internet can also be searched for
lecture notes, online versions of books, etc., dealing with the topic.1

Before the presentation of the algorithms I want to outline the wide variety of
the areas of application where object recognition is utilized as well as the different
requirements and constraints these applications involve for the recognition methods.
With the help of this overview it will be possible to give some criteria for a
categorization of the schemes.

1See, e.g., http://www.icaen.uiowa.edu/∼dip/LECTURE/lecture.html or http://homepages.inf.
ed.ac.uk/rbf/CVonline/ or http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip.html (last visited
January 26, 2010).
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1.2 Areas of Application

One way of demonstrating the diversity of the subject is to outline the spectrum
of applications of object recognition. This spectrum includes industrial applications
(here often the term “machine vision” is used), security/tracking applications as well
as searching and detection applications. Some of them are listed below:

• Position measurement: mostly in industrial applications, it is necessary to accu-
rately locate the position of objects. This position information is, e.g., necessary
for gripping, processing, transporting or placing parts in production environ-
ments. As an example, it is necessary to accurately locate electrical components
such as ICs before placing them on a PCB (printed circuit board) in placement
machines for the production of electronic devices (e.g., mobile phones, laptops,
etc.) in order to ensure stable soldering for all connections (see Table 1.1 for some
example images). The

[
x, y

]
-position of the object together with its rotation and

scale is often referred to as the object pose.
• Inspection: the usage of vision systems for quality control in production envi-

ronments is a classical application of machine vision. Typically the surface of
industrial parts is inspected in order to detect defects. Examples are the inspec-
tion of welds or threads of screws. To this end, the position of the parts has to be
determined in advance, which involves object recognition.

• Sorting: to give an example, parcels are sorted depending on their size in postal
automation applications. This implies a previous identification and localization
of the individual parcels.

• Counting: some applications demand the determination of the number of occur-
rences of a specific object in an image, e.g., a researcher in molecular biology
might be interested in the number of erythrocytes depicted in a microscope image.

• Object detection: here, a scene image containing the object to be identified is
compared to a model database containing information of a collection of objects.

Table 1.1 Pictures of some SMD components which are to be placed at high accuracy during the
assembly of electronic devices

Resistors in chip 
(above) or MELF 
(metal electrode 
leadless faces) 
packaging 

IC in BGA (ball grid 
array) packaging: the balls 
appear as rings when 
applying a flat angle 
illumination

IC in QFP (quad flat 
package) packaging with 
“Gullwing” connections
at its borders 
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Table 1.2 Example images of scene categorization

Scene categorization: typical images of  type “building,” “street/car,” or 
“forest/field” (from left to right) 

A model of each object contained in the database is often built in a training
step prior to recognition (“off-line”). As a result, either an instance of one of the
database objects is detected or the scene image is rejected as “unknown object.”
The identification of persons with the help of face or iris images, e.g., in access
controls, is a typical example.

• Scene categorization: in contrast to object detection, the main purpose in cate-
gorization is not to match a scene image to a single object, but to identify the
object class it belongs to (does the image show a car, building, person or tree,
etc.?; see Table 1.2 for some example images). Hence categorization is a matter
of classification which annotates a semantic meaning to the image.

• Image retrieval: based on a query image showing a certain object, an image
database or the Internet is searched in order to identify all images showing the
same object or similar objects of the same object class.

1.3 Requirements and Constraints

Each application imposes different requirements and constraints on the object
recognition task. A few categories are mentioned below:

• Evaluation time: especially in industrial applications, the data has to be processed
in real time. For example, the vision system of a placement machine for electrical
SMD components has to determine the position of a specific component in the
order of 10–50 ms in order to ensure high production speed, which is a key feature
of those machines. Of course, evaluation time strongly depends on the number of
pixels covered by the object as well as the size of the image area to be examined.

• Accuracy: in some applications the object position has to be determined very
accurately: error bounds must not exceed a fraction of a pixel. If the object to be
detected has sufficient structural information sub-pixel accuracy is possible, e.g.,
the vision system of SMD placement machines is capable of locating the object
position with absolute errors down to the order of 1/10th of a pixel. Again, the
number of pixels is an influence factor: evidently, the more pixels are covered by
the object the more information is available and thus the more accurate the com-
ponent can be located. During the design phase of the vision system, a trade-off
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between fast and accurate recognition has to be found when specifying the pixel
resolution of the camera system.

• Recognition reliability: of course, all methods try to reduce the rates of “false
alarms” (e.g., correct objects erroneously classified as “defect”) and “false posi-
tives” (e.g., objects with defects erroneously classified as “correct”) as much as
possible. But in general there is more pressure to prevent misclassifications in
industrial applications and thus avoiding costly production errors compared to,
e.g., categorization of database images.

• Invariance: virtually every algorithm has to be insensitive to some kind of vari-
ance of the object to be detected. If such a variance didn’t exist – meaning that
the object appearance in every image is identical – obviously the recognition task
would be trivial. The design of an algorithm should aim to maximize sensitiv-
ity with respect to information discrepancies between objects of different classes
(inter-class variance) while minimizing sensitivity with respect to information
discrepancies between objects of the same class (intra-class variance) at the same
time. Variance can be introduced by the image acquisition process as well as
the objects themselves, because usually each individual of an object class differs
slightly from other individuals of the same class. Depending on the application,
it is worthwhile to achieve invariance with respect to (see also Table 1.3):

– Illumination: gray scale intensity appearance of an object depends on illumination
strength, angle, and color. In general, the object should be recognized regardless
of the illumination changes.

– Scale: among others, the area of pixels which is covered by an object depends
on the distance of the object to the image acquisition system. Algorithms should
compensate for variations of scale.

– Rotation: often, the rotation of the object to be found is not known a priori and
should be determined by the system.

– Background clutter: especially natural images don’t show only the object, but
also contain background information. This background can vary significantly for
the same object (i.e., be uncorrelated to the object) and be highly structured.
Nevertheless, the recognition shouldn’t be influenced by background variation.

– Partial occlusion: sometimes the system cannot rely on the fact that the whole
object is shown in a scene image. Some parts might be occluded, e.g., by other
objects.

– Viewpoint change: in general, the image formation process projects a 3D-object
located in 3D space onto a 2D-plane (the image plane). Therefore, the 2D-
appearance depends strongly on the relative position of the camera to the object
(the viewpoint), which is unknown for some applications. Viewpoint invariance
would be a very desirable characteristic for a recognition scheme. Unfortunately,
it can be shown that viewpoint invariance is not possible for arbitrary object
shapes [6]. Nevertheless, algorithm design should aim at ensuring at least partial
invariance for a certain viewpoint range.
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Table 1.3 Examples of image modifications that can possibly occur in a scene image containing
the object to be recognized (all images show the same toy nurse)

Template image of a toy  
nurse 

Shifted, rotated, and 
scaled version of the
template image 

Nonlinear illumination 
change causing a  bright 
spot 

Viewpoint change Partial occlusion Scale change and clutter

Please note that usually the nature of the application determines the kinds of vari-
ance the recognition scheme has to cope with: obviously in a counting application
there are multiple objects in a single image which can cause much clutter and
occlusion. Another example is the design of an algorithm searching an image
database, for which it is prohibitive to make assumptions about illumination
conditions or camera viewpoint. In contrast to that, industrial applications usu-
ally offer some degrees of freedom which often can be used to eliminate or at
least reduce many variances, e.g., it can often be ensured that the scene image
contains at most one object to be recognized/inspected, that the viewpoint and
the illumination are well designed and stable, and so on. On the other hand,
industrial applications usually demand real-time processing and very low error
rates.
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1.4 Categorization of Recognition Methods

The different nature of each application, its specific requirements, and constraints
are some reasons why there exist so many distinct approaches to object recognition.
There is no “general-purpose-scheme” applicable in all situations, simply because
of the great variety of requirements. Instead, there are many different approaches,
each of them accounting for the specific demands of the application context it is
designed for.

Nevertheless, a categorization of the methods and their mode of operation can be
done by means of some criteria. Some of these criteria refer to the properties of the
model data representing the object, others to the mode of operation of the recogni-
tion scheme. Before several schemes are discussed in more detail, some criteria are
given as follows:

• Object representation: Mainly, there are two ways information about the object
can be based on: geometry or appearance. Geometric information often refers
to the object boundaries or its surface, i.e., the shape or silhouette of the
object. Shape information is often object centered, i.e., the information about
the position of shape elements is affixed to a single-object coordinate sys-
tem. Model creation is often made by humans, e.g., by means of a CAD-
drawing. A review of techniques using shape for object recognition can be
found in [13], for example. In contrast to that, appearance-based models are
derived form characteristics of image regions which are covered by the object.
Model creation is usually done in a training phase in which the system
builds the model automatically with the help of one or more training images.
Therefore data representation is usually viewpoint centered in that case mean-
ing that the data depends on the camera viewpoint during the image formation
process.

• Scope of object data: Model data can refer to local properties of the object
(e.g., the position of a corner of the object) or global object characteristics (e.g.,
area, perimeter, moments of inertia). In the case of local data, the model con-
sists of several data sections originating from different image areas covered by
the object, whereas in global object representations often different global fea-
tures are summarized in a global feature vector. This representation is often only
suitable for “simple objects” (e.g., circles, crosses, rectangles, etc. in 2D or cylin-
ders, cones in the 3D case). In contrast to that, the local approach is convenient
especially for more complex and highly structured objects. A typical example is
industrial parts, where the object can be described by the geometric arrange-
ment of primitives like lines, corners. These primitives can be modeled and
searched locally. The usage of local data helps to achieve invariance with respect
to occlusion, as each local characteristic can be detected separately; if some
are missing due to occlusion, the remaining characteristics should suffice for
recognition.

• Expected object variation: Another criterion is the variance different individu-
als of the same object class can exhibit. In industrial applications there is very
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little intra-class-variance, therefore a rigid model can be applied. On the opposite
side are recognition schemes allowing for considerable deformation between dif-
ferent instances of the same object class. In general the design of a recognition
algorithm has to be optimized such that it is robust with respect to intra-class
variations (e.g., preventing the algorithm to classify an object searched for as
background by mistake) while still being sensitive to inter-class variations and
thereby maintaining the ability to distinguish between objects searched for and
other objects. This amounts to balancing which kind of information has to be
discarded and which kind has to be studied carefully by the algorithm. Please
note that intra-class variation can also originate from variations of the con-
ditions during the image formation process such as illumination or viewpoint
changes.

• Image data quality: The quality of the data has also a significant impact on algo-
rithm design. In industrial applications it is often possible to design the vision
system such that it produces high-quality data: low noise, no background clutter
(i.e. no “disturbing” information in the background area, e.g., because the objects
are presented upon a uniform background), well-designed illumination, and so
on. In contrast to that, e.g., in surveillance applications of crowded public places
the algorithm has to cope with noisy and cluttered data (much background infor-
mation), poor and changing illumination (weather conditions), significant lens
distortion.

• Matching strategy: In order to recognize an object in a scene image a matching
step has to be performed at some point in the algorithm flow, i.e., the object model
(or parts of it) has to be aligned with the scene image content such that either a
similarity measure between model and scene image is maximized or a dissimilar-
ity measure is minimized, respectively. Some algorithms are trying to optimize
the parameters of a transformation characterizing the relationship between the
model and its projection onto the image plane of the scene image. Typically
an affine transformation is used. Another approach is to perform matching by
searching correspondences between features of the model and features extracted
from the scene image.

• Scope of data elements used in matching: the data typically used by various
methods in their matching step, e.g., for calculation of a similarity measure, can
roughly be divided into three categories: raw intensity pixel values, low-level fea-
tures such as edge data, and high level features such as lines or circular arcs. Even
combinations of lines and/or cones are utilized. As far as edge data is concerned,
the borders of an object are often indicated by rapid changes of gray value inten-
sities, e.g., if a bright object is depicted upon a dark background. Locations of
such high gray value gradients can be detected with the help of a suitable oper-
ator, e.g., the Canny edge detector [2] (see Appendix A for a short introduction)
and are often referred to as “edge pixels” (sometimes also the term “edgels” can
be found). In a subsequent step, these edge pixels can be grouped to the already
mentioned high-level features, e.g., lines, which can be grouped again. Obviously,
the scope of the data is enlarged when going from pixel intensities to high-level
features, e.g., line groups. The enlarged scope of the latter leads to increased
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information content, which makes decisions based on this data more reliable.
On the other hand, however, high-level features are more difficult to detect and
therefore unstable.

Some object recognition methods are presented in the following. The focus
thereby is on recognition in 2D-planes, i.e., in a single-scene image containing
2D-data. This scene image is assumed to be a gray scale image. A straightforward
extension to color images is possible for some of the methods, but not considered in
this book. For most of the schemes the object model also consists of 2D-data, i.e.,
the model data is planar.

In order to facilitate understanding, the presentation of each scheme is structured
into sub-sections. At first, the main idea is presented. For many schemes the algo-
rithm flow during model generation/training as well as recognition is summarized in
separate sub-sections as well. Whenever I found it helpful I also included a graphical
illustration of the algorithm flow during the recognition phase, where input, model,
and intermediate data as well as the results are depicted in iconic representations if
possible. Examples should clarify the proceeding of the methods, too. The “Rating”
sub-section intends to give some information about strengths and constraints of the
method helping to judge for which types of application it is suitable. Another pre-
sentation from a more formal point of view is given for most of the schemes by
implementing them is pseudocode notation. Please note that the pseudocode imple-
mentation may be simplified, incomplete, or inefficient to some extent and may also
differ slightly from the method proposed in the original articles in order to achieve
better illustration and keep them easily understandable. The main purpose is to get
a deeper insight into the algorithm structure, not to give a 100% correct description
of all details.

The rest of the book is arranged as follows: Global approaches trying to model
and find the object exclusively with global characteristics are presented in Chapter 2.
The methods explained in Chapter 3 are representatives of transformation-search-
based methods, where the object pose is determined by searching the space of
transformations between model and image data. The pose is indicated by minima
of some kind of distance metric between model and image. Some examples of
geometry-based recognition methods trying to exploit geometric relations between
different parts of the object by establishing 1:1 correspondences between model and
image features are summarized in Chapter 4. Although the main focus of this book
lies on 2D recognition, a collection of representatives of a special sub-category of
the correspondence-based methods, which intend to recognize the object pose in 3D
space with the help of just a single 2D image, is included in Chapter 5. An introduc-
tion to techniques dealing with flexible models in terms of deformable shapes can
be found in Chapter 6. Descriptor-based methods trying to identify objects with the
help of descriptors of mainly the object appearance in a local neighborhood around
interest points (i.e., points where some kind of saliency was detected by a suitable
detector) are presented in Chapter 7. Finally, a conclusion is given in Chapter 8.

Please note that some of the older methods presented in this book suffer from
drawbacks which restrict their applicability to a limited range of applications.
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However, due to their advantages they often remain attractive if they are used as
building blocks of more sophisticated methods. In fact, many of the recently pro-
posed schemes intend to combine several approaches (perhaps modified compared
to the original proposition) in order to benefit from their advantages. Hence, I’m
confident that all methods presented in this book still are of practical value.
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Chapter 2
Global Methods

Abstract Most of the early approaches to object recognition rely on a global object
model. In this context “global” means that the model represents the object to be
recognized as a whole, e.g., by one data set containing several global characteristics
of the object like area, perimeter, and so on. Some typical algorithms sharing this
object representation are presented in this chapter. A straightforward approach is
to use an example image of the model to be recognized (also called template) and
to detect the object by correlating the content of a scene image with the template.
Due to its simplicity, such a proceeding is easy to implement, but unfortunately also
has several drawbacks. Over the years many variations aiming at overcoming these
limitations have been proposed and some of them are also presented. Another pos-
sibility to perform global object recognition is to derive a set of global features from
the raw intensity image first (e.g., moments of different order) and to evaluate scene
images by comparing their feature vector to the one of the model. Finally, the prin-
cipal component analysis is presented as a way of explicitly considering expected
variations of the object to be recognized in its model: this is promising because
individual instances of the same object class can differ in size, brightness/color,
etc., which can lead to a reduced similarity value if comparison is performed with
only one template.

2.1 2D Correlation

2.1.1 Basic Approach

2.1.1.1 Main Idea

Perhaps the most straightforward approach to object recognition is 2D cross corre-
lation of a scene image with a prototype representation of the object to be found.
Here, the model consists of a so-called template image, which is a prototype rep-
resentation of the gray value appearance of the object. Model generation is done
in a training phase prior to the recognition process. For example, the template
image is set to a reference image of the object to be found. 2D correlation is an

11M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
DOI 10.1007/978-1-84996-235-3_2, C© Springer-Verlag London Limited 2010
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example of an appearance-based scheme, as the model exclusively depends on the
(intensity) appearance of the area covered by the “prototype object” in the training
image.

The recognition task is then to find the accurate position of the object in a scene
image as well as to decide whether the scene image contains an instance of the
model at all. This can be achieved with the help of evaluating a 2D cross correla-
tion function: the template is moved pixel by pixel to every possible position in the
scene image and a normalized cross correlation (NCC) coefficient ρ representing
the degree of similarity between the image intensities (gray values) is calculated at
each position:

ρ(a, b) =

W∑

x=0

H∑

y=0

(
IS (x+ a, y+ b)− IS

) · (IT (x, y)− IT
)

√
W∑

x=0

H∑

y=0

(
IS (x+ a, y+ b)− IS

)2 ·
W∑

x=0

H∑

y=0

(
IT (x, y)− IT

)2

(2.1)

where ρ(a, b) is the normalized cross correlation coefficient at displacement [a, b]
between scene image and template. IS (x, y) and IT (x, y) denote the intensity of
the scene image and template at position

[
x, y

]
, IS, and IT their mean and W

and H the width and the height of the template image. Because the denominator
serves as a normalization term ρ can range from –1 to 1. High-positive values of
ρ indicate that the scene image and template are very similar, a value of 0 that
their contents are uncorrelated, and, finally, negative values are evidence of inverse
contents.

As a result of the correlation process a 2D function is available. Every local
maximum of this matching function indicates a possible occurrence of the object
to be found. If the value of the maximum exceeds a certain threshold value t,
a valid object instance is found. Its position is defined by the position of the
maximum.

The whole process is illustrated by a schematic example in Fig. 2.1: There, a
3× 3 template showing a cross (in green, cf. lower left part) is shifted over an image
of 8 × 8 pixel size. At each position, the value of the cross-correlation coefficient
is calculated and these values are collected in a 2D matching function (here of size
6 × 6, see right part. Bright pixels indicate high values). The start position is the
upper left corner; the template is first shifted from left to right, then one line down,
then from left to right again, and so on until the bottom right image corner is reached.
The brightest pixel in the matching function indicates the cross position.

In its original form correlation is used to accurately find the
[
x, y

]
-location of a

given object. It can be easily extended, though, to a classification scheme by calcu-
lating different cross correlation coefficients ρi; i ∈ {1, .., N} for multiple templates
(one coefficient for each template). Each of the templates represents a specific object
class i. Classification is achieved by evaluating which template led to the highest
ρi,max. In this context i is often called a “class label”.
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Fig. 2.1 Illustration of the “movement” of a template (green) across an example image during the
calculation process of a 2D matching function

2.1.1.2 Example

Figure 2.2 depicts the basic algorithm flow for an example application where a toy
nurse has to be located in a scene image with several more or less similar objects. A
matching function (right, bright values indicate high ρ) is calculated by correlating
a scene image (left) with a template (top). For better illustration all negative values
of ρ have been set to 0. The matching function contains several local maxima, which
are indicated by bright spots. Please note that objects which are not very similar to
the template lead to considerable high maxima, too (e.g., the small figure located
bottom center). This means that the method is not very discriminative and therefore
runs into problems if it has to distinguish between quite similar objects.

Correlation

Fig. 2.2 Basic proceeding of cross correlation
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2.1.1.3 Pseudocode

function findAllObjectLocationsNCC (in Image I, in Template T,
in threshold t, out position list p)

// calculate matching function

for b = 1 to height(I)
for a = 1 to width(I)

if T is completely inside I at position (a,b) then

calculate NCC coefficient ρ(a,b,I,T) (Equation 2.1)

else

ρ(a,b) ← 0

end if

next

next

// determine all valid object positions

find all local maxima in ρ(a,b)
for i = 1 to number of local maxima

if ρi(a,b) ≥ t then

append position [a,b] to p
end if

next

2.1.1.4 Rating

This simple method has the advantage to be straightforward and therefore easy to
implement. Additionally it is generic, i.e., the same procedure can be applied to any
kind of object (at least in principle); there exist no restrictions about the appearance
of the object.

Unfortunately, there are several drawbacks. First, the correlation coefficient
decreases significantly when the object contained in the scene image is a rotated
or scaled version of the model, i.e., the method is not invariant to rotation and scale.

Second, the method is only robust with respect to linear illumination changes:
The denominator of Equation (2.1) is a normalization term making ρ insensitive
to linear scaling of contrast; brightness offsets are dealt with by subtracting the
mean image intensity. However, often nonlinear illumination changes occur such as
a change of illumination direction or saturation of the intensity values.

Additionally, the method is sensitive to clutter and occlusion: as only one global
similarity value ρ is calculated, it is very difficult to distinguish if low maxima
values of ρ originate from a mismatch because the searched object is not present in
the scene image (but perhaps a fairly similar object) or from variations caused by
nonlinear illumination changes, occlusion, and so on.

To put it in other words, cross correlation does not have much discriminative
power, i.e., the difference between the values of ρ at valid object positions and some
mismatch positions tends to be rather small (for example, the matching function
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displayed in Fig. 2.2 reveals that the upper left and a lower middle object lead to
similar correlation coefficients, but the upper left object clearly is more similar to
the template).

Furthermore the strategy is not advisable for classification tasks if the number of
object classes is rather large, as the whole process of shifting the template during
calculation of the matching function has to be repeated for each class, which results
in long execution times.

2.1.2 Variants

In order to overcome the drawbacks, several modifications of the scheme are pos-
sible. For example, in order to account for scale and rotation, the correlation
coefficient can also be calculated with scaled and rotated versions of the tem-
plate. Please note, however, that this involves a significant increase in computational
complexity because then several coefficient calculations with scaled and/or rotated
template versions have to be done at every

[
x, y

]
-position. This proceeding clearly

is inefficient; a more efficient approach using a so-called principal component anal-
ysis is presented later on. Some other variations of the standard correlation scheme
aiming at increasing robustness or accelerating the method are presented in the next
sections.

2.1.2.1 Variant 1: Preprocessing

Instead of the original intensity image it is possible to use a gradient image for corre-
lation: The images of the training as well as the recognition phase are preprocessed
by applying an edge detection filter (e.g., the canny filter [3], see also Appendix A);
correlation is then performed with the filtered images (cf. Fig. 2.3).

This stems from the observation that in many cases characteristic information
about the object is located in the outer shape or silhouette of the 3D object resulting
in rapid changes of the gray values in the image plane. The Canny filter responds to
these changes by detecting the gray value edges in the images. The main advantage

Corr.

Fig. 2.3 Basic proceeding of cross correlation with preprocessing
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is that discriminative power is enhanced as now relatively thin edge areas must
overlap in order to achieve high values of ρ. As a consequence the correlation
maxima are now sharper, which leads to an increased accuracy of position deter-
mination. Robustness with respect to nonlinear illumination changes is increased
significantly, too.

Furthermore, partly occluded objects can be recognized up to some point as ρ

should reach sufficiently high values when the thin edges of the non-occluded parts
overlap. However, if heavy occlusion is expected better methods exist, as we will
see later on.

Example

The algorithm flow can be seen in Fig. 2.3. Compared to the standard scheme, the
gradient magnitudes (here, black pixels indicate high values) of scene image and
template are derived from the intensity images prior to matching function calcula-
tion. Negative matching function values are again set to 0. The maxima are a bit
sharper compared to the standard method.

Pseudocode

function findAllObjectLocationsGradientNCC (in Image I, in

Template T, in threshold t, out position list p)

// calculate gradient images

IG ← gradient magnitude of I
TG ← gradient magnitude of T

// calculate matching function

for b = 1 to height(IG)

for a = 1 to width(IG)

if TG is completely inside IG at position (a,b) then

calculate NCC coefficient ρ(a,b,IG,TG) (Equation 2.1)

else

ρ(a,b) ← 0

end if

next

next

// determine all valid object positions

find all local maxima in ρ(a,b)
for i = 1 to number of local maxima

if ρi(a,b) ≥ t then

append position [a,b] to p
end if

next
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2.1.2.2 Variant 2: Subsampling/Image Pyramids

A significant speedup can be achieved by the usage of so-called image pyramids
(see, e.g., Ballard and Brown [1], a book which also gives an excellent introduc-
tion to and overview of many aspects of computer vision). The bottom level 0 of
the pyramid consists of the original image whereas the higher levels are built by
subsampling or averaging the intensity values of adjacent pixels of the level below.
Therefore at each level the image size is reduced (see Fig. 2.4). Correlation ini-
tially takes place in a high level of the pyramid generating some hypotheses about
coarse object locations. Due to the reduced size this is much faster than at level 0.
These hypotheses are verified in lower levels. Based on the verification they can
be rejected or refined. Eventually accurate matching results are available. During
verification only a small neighborhood around the coarse position estimate has to
be examined. This proceeding results in increased speed but comparable accuracy
compared to the standard scheme.

The main advantage of such a technique is that considerable parts of the image
can be sorted out very quickly at high levels and need not to be processed at lower

Fig. 2.4 Example of an image pyramid consisting of five levels
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levels. With the help of this speedup, it is more feasible to check rotated or scaled
versions of the template, too.

2.1.3 Phase-Only Correlation (POC)

Another modification is the so-called phase-only correlation (POC). This technique
is commonly used in the field of image registration (i.e., the estimation of parameters
of a transformation between two images in order to achieve congruence between
them), but can also be used for object recognition (cf. [9], where POC is used by
Miyazawa et al. for iris recognition).

In POC, correlation is not performed in the spatial domain (where image data
is represented in terms of gray values depending on x and y position) as described
above. Instead, the signal is Fourier transformed instead (see e.g. [13]).

In the Fourier domain, an image I (x, y) is represented by a complex signal:
FI = AI (ω1, ω2) · eθI(ω1,ω2) with amplitude and phase component. The amplitude
part AI (ω1, ω2)contains information about how much of the signal is represented
by the frequency combination (ω1, ω2), whereas the phase part eθI(ω1,ω2) contains
(the desired) information where it is located. The cross spectrum R (ω1, ω2) of two
images (here: scene image S (x, y) and template image T (x, y)) is given by

R (ω1, ω2) = AS (ω1, ω2) · AT (ω1, ω2) · eθ(ω1,ω2) (2.2)

with θ(ω1, ω2) = θS (ω1, ω2)− θT (ω1, ω2) (2.3)

where θ(ω1, ω2) denotes the phase difference of the two spectra. Using the phase
difference only and performing back transformation to the spatial domain reveals
the POC function. To this end, the normalized cross spectrum

R̂ (ω1, ω2) = FS (ω1, ω2) · FT (ω1, ω2)∣
∣FS (ω1, ω2) · FT (ω1, ω2)

∣
∣ = eθ(ω1,ω2) (2.4)

(with FT being the complex conjugate of FT) is calculated and the real part of its
2D inverse Fourier transform r̂ (x, y) is the desired POC function. An outline of the
algorithm flow can be seen in the “Example” subsection.

The POC function is characterized by a sharp maximum defining the x and y dis-
placement between the two images (see Fig. 2.5). The sharpness of the maximum
allows for a more accurate translation estimation compared to standard correlation.
Experimental results (with some modifications aiming at further increasing accu-
racy) are given in [13], where Takita et al. show that the estimation error can fall
below 1/100th of a pixel. In [13] it is also outlined how POC can be used to perform
rotation and scaling estimation.
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Fig. 2.5 Depicting 3D plots of the correlation functions of the toy nurse example. A cross corre-
lation function based on intensity values between a template and a scene image is shown in the left
part, whereas the POC function of the same scene is shown on the right. The maxima of the POC
function are much sharper

2.1.3.1 Example

The algorithm flow illustrated with our example application can be seen in Fig. 2.6.
Please note that in general, the size of the template differs from the scene image
size. In order to obtain equally sized FFTs (fast Fourier transforms), the template
image can be padded (filled with zeros up to the scene image size) prior to FFT. For
illustrative purposes all images in Fourier domain show the magnitude of the Fourier
spectrum. Actually, the signal is represented by magnitude and phase component in
Fourier domain (indicated by a second image in Fig. 2.6). The POC function, which
is the real part of the back-transformed cross spectrum (IFFT – inverse FFT), is very
sharp (cf. Fig. 2.5 for a 3D view) and has only two dominant local maxima which
are so sharp that they are barely visible here (marked red).

FFT

FFT
Cross

Spectrum

IFFT

Fig. 2.6 Basic proceeding of phase-only correlation (POC)
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2.1.3.2 Pseudocode

function findAllObjectLocationsPOC (in Image S, in Template

T, in threshold t, out position list p)

// calculate fourier transforms

FS ← FFT of S // two components: real and imaginary part

FT ← FFT of T // two components: real and imaginary part

// POC function

calculate cross spectrum R̂ (ω1, ω2, FS, FT ) (Equation 2.4)

r̂ (x, y) ← IFFT of R̂ (ω1, ω2)

// determine all valid object positions

find all local maxima in r̂ (x, y)
for i = 1 to number of local maxima

if r̂i (x, y) ≥ t then

append position
[
x, y

]
to p

end if

next

2.1.4 Shape-Based Matching

2.1.4.1 Main Idea

Steger [12] suggests another gradient-based correlation approach called “shape-
based matching”. Instead of using gradient magnitudes, the similarity measure is
based on gradient orientation information: an image region is considered similar to
a template if the gradient orientations of many pixels match well. The similarity
measure s at position [a, b] is defined as

s(a, b) = 1

W · H
W∑

x=0

H∑

y=0

〈dS (x+ a, y+ b) , dT (x, y)〉
‖dS (x+ a, y+ b)‖ · ‖dT (x, y)‖ (2.5)

where the operator 〈·〉 defines the dot product of two vectors. dS and dT are the gra-
dient vectors of a pixel of the scene image and the template, respectively (consisting
of the gradients in x- and y-direction). The dot product yields high values if dS and
dT point in similar directions. The denominator of the sum defines the product of the
magnitudes of the gradient vectors (denoted by ‖·‖) and serves as a regularization
term in order in improve illumination invariance.

The position of an object can be found if the template is shifted over the entire
image as explained and the local maxima of the matching function s (a, b) are
extracted (see Fig. 2.7 for an example).

Often a threshold smin is defined which has to be exceeded if a local maximum
shall be considered as a valid object position. If more parameters than translation
are to be determined, transformed versions of the gradient vectors t (dT) have to
be used (see Chapter 3 for information about some types of transformation). As a
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⋅

Fig. 2.7 Basic proceeding of shape-based matching

consequence, s has to be calculated several times at each displacement [a, b] (for
multiple transformation parameters t).

In order to speed up the computation, Steger [12] employs a hierarchical search
strategy where pyramids containing the gradient information are built. Hypotheses
are detected at coarse positions in high pyramid levels, which can be scanned
quickly, and are refined or rejected with the help of the lower levels of the pyramid.

Additionally, the similarity measure s doesn’t have to be calculated completely
for many positions if a threshold smin is given: very often it is evident that smin
cannot be reached any longer after considering just a small fraction of the pixels
which are covered by the template. Hence, the calculation of s(a, b) can be aborted
immediately for a specific displacement [a, b] after computing just a part of the sum
of Equation (2.5).

2.1.4.2 Example

Once again the toy nurse example illustrates the mode of operation, in this case for
shape-based matching (see Fig. 2.7). The matching function, which is based on the
dot product 〈·〉 of the gradient vectors, reflects the similarity of the gradient orien-
tations which are shown right to template and scene image in Fig. 2.7, respectively.
The orientation is coded by gray values. The maxima are considerably sharper com-
pared to the standard method. Please note also the increased discriminative power
of the method: the maxima in the bottom part of the matching functions are lower
compared to the intensity correlation example.

2.1.4.3 Pseudocode

function findAllObjectLocationsShapeBasedMatching (in Image

S, in Template T, in threshold t, out position list p)

// calculate gradient images

dS ← gradient of S // two components: x and y

dT ← gradient of T // two components: x and y
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// calculate matching function

for b = 1 to height(dS)

for a = 1 to width(dS)

if dT is completely inside dS at position (a,b) then

calc. similarity measure s(a,b,dS,dT) (Equation 2.5)

else

s(a,b) ← 0

end if

next

next

// determine all valid object positions

find all local maxima in s(a,b)
for i = 1 to number of local maxima

if si(a,b) ≥ t then

append position [a,b] to p
end if

next

2.1.4.4 Rating

Compared to the correlation of intensity values, shape-based matching shows
increased robustness to occlusion and clutter. Missing parts of the object lead to
uncorrelated gradient directions in most cases, which in total contribute little to the
sum of Equation (2.5). Please note that in the presence of occlusion or clutter usually
gradient orientation information is much more uncorrelated compared to intensity
values, which explains the increased robustness. An additional improvement can
be done if only pixels are considered where the norm ‖dS‖ is above a pre-defined
threshold.

Moreover, the fact that the dot product is unaffected by gradient magnitudes to
a high extent leads to a better robustness with respect to illumination changes. The
proposed speedup makes the method very fast in spite of still being a brute-force
approach. A comparative study by Ulrich and Steger [15] showed that shape-based
matching achieves comparable results or even outperforms other methods which are
widely used in industrial applications. A commercial product adopting this search
strategy is the HALCON R© library of MVTec Software GmbH, which offers a great
number of fast and powerful tools for industrial image processing.

2.1.5 Comparison

In the following, the matching functions for the toy nurse example application
used in the previous sections are shown again side by side in order to allow for a
comparison. Intensity, gradient magnitude, gradient orientation (where all negative
correlation values are set to zero), and phase-only correlation matching functions
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are shown. All matching functions are calculated with identical template and scene
image. For each of the methods, only translation of the template is considered when
calculating the matching function. Please note that the figure in the upper right
part of the scene image is slightly rotated and therefore doesn’t achieve very high
similarity values for all correlation methods (Table 2.1).

Table 2.l Example of correlation performance

Template image of a toy
(left) and magnitude of 
its gray value gradient
(right; high val. = black)

Scene image containing 
seven toys with different
appearance and 
particularly size

Magnitude of gray value 
gradient of the scene 
image (high-gradient 
values are shown in black)

Correlation result when using raw gray 
values: flat maxima, low discriminative 
power. Observe that an areas exists

where ρ is high, but where no object 
present (one is marked blue)

Correlation result when using gradient 
magnitudes: maxima are sharper and 
more distinctive compared to the 
correlation of intensities

Correlation result using gradient orien-
tation information: again, the maxima
are more distinct compared to intensity
or gradient magnitude correlation

Phase-only correlation; very sharp
maxima (marked red ), very distinctive:
only the two upper left objects are 
similar enough to the template
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2.2 Global Feature Vectors

Another possibility to model object properties are so-called global feature vectors.
Each element of the vector describes a global characteristic of the object. Over the
years many proposals which characteristics to use have been made; some exam-
ples to be mentioned are area (e.g., the number of pixels covered by the object),
perimeter, circularity (perimeter2/area), moments, mean gray value, Fourier descrip-
tors, etc. Note however, that these vectors are suited for classifying objects, but in
general not for computing accurate locations. Niblack et al. incorporated several
features into the QBIC system (Query Image by Content) [11], which retrieves all
images considered to be similar to a query image from a large database. After a
short description of the basic proceeding, two types of features, namely moments
and Fourier descriptors, are presented in more detail.

2.2.1 Main Idea

If we make a geometrical interpretation, each feature vector representing a specific
object defines a point in a feature space. Each coordinate of the feature space cor-
responds to one element of the feature vector. In a training phase feature vectors of
objects with known class label are extracted. Their corresponding points in feature
space should build clusters (one cluster for each class) if the objects of the same
class are similar enough. Hence, a query object can be classified by deciding to
which cluster it belongs, based on its feature vector.

The selection of the features (which features should be chosen for a good object
representation?) has to aim at maximizing the distinctiveness between different
object classes (maximize the distance between the clusters) and minimizing the vari-
ance of the feature vectors of objects of the same class (minimize the “size” of the
clusters). In other words, the feature vector has to maintain enough information (or
the “right” part of it) in order to keep the ability to uniquely identify the object
class, but, on the other hand, also discard information in order to become insensitive
to variations between objects of the same class. Therefore the dimensionality of the
feature vector is usually chosen much lower than the number of pixels of the objects,
but mustn’t be reduced too far.

2.2.2 Classification

During recognition classification takes place in feature space. Over the years many
propositions of classification methods have been made (see e.g. Duda et al. [6] for
an overview, a short introduction is also given in Appendix B). A basic and easy
to implement scheme used for the classification of global feature vectors is nearest
neighbor classification, where a feature vector, which was derived from an input
image, is compared to feature vectors of known class type which were calculated
during a training stage. The object is classified based on the class labels of the most
similar training vectors (the nearest neighbors, see Appendix B).
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2.2.3 Rating

Compared to correlation, classification in the feature space typically is faster.
The object representation is very compact, as usually only a few feature values
are calculated. Additionally, it is possible to account for some desired invariance
in the design phase of the feature vector by an appropriate choice of the fea-
tures, e.g., area and perimeter are invariant to rotation, the quotient thereof also to
scaling.

On the other hand, this scheme typically requires a segmentation of the object
from the background in a preprocessing stage. Especially in the presence of back-
ground clutter this might be impossible or at least error prone. As far as occlusion
is concerned, usually it has the undesirable property of influencing every global
quantity and hence all elements of the global feature vector. Furthermore, the infor-
mation of only a few global features often not suffices to distinctively characterize
“complex” objects exhibiting detailed surface structure.

Nevertheless, due to its speed this principle can be attractive for some industrial
applications where the image acquisition process can be influenced in order to ease
the task of segmentation (“good data”: uniform background, proper illumination)
and the objects are “simple.” Additionally, feature vectors can be used for a quick
pre-classification followed by a more sophisticated scheme.

2.2.4 Moments

2.2.4.1 Main Idea

Simple objects can often be characterized and classified with the help of region or
gray value moments. Region moments are derived from binary images. In order
to use them for object recognition, a gray value image has to be transformed to
a binary image prior to moment calculation, e.g., with the help of thresholding.
Its simplest form is fixed-value thresholding: all pixels with gray value equal to
or above a threshold t are considered as “object” pixels, all pixels with gray value
below the threshold are considered as “background.”

The region moments mpq of order p+ q are defined as

mpq =
∑

(x,y)∈R

xpyq (2.6)

where the sum is taken over all “object pixels,” which are defined by the region
R. Observe that low-order moments have a physical interpretation. The moment
m00, for example, defines the area of the region. In order to calculate moments as
characteristic features of objects independent of their size, normalized moments npq

are utilized. They are given by

npq = 1

m00
·

∑

(x,y)∈R

xpyq (2.7)
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The first-order normalized moments n10 and n01 define the center of gravity of
the object, which can be interpreted as the position of the object. In most applica-
tions requiring a classification of objects, the moments should be independent of the
object position. This can be achieved by calculating the moments relative to their
center of gravity yielding the central moments μpq:

μpq = 1

m00
·

∑

(x,y)∈R

(x− n10)
p (y− n01)

q (2.8)

The second-order central moments are of special interest as they help to define the
dimensions and orientation of the object. In order to achieve this we approximate the
object region by an ellipse featuring moments of order 1 and 2 which are identical
to the moments of the object region. An ellipse is defined by five parameters which
can be derived form the moments. Namely these parameters are the center of gravity
defined by n10 and n01, the major and minor axes a and b as well as the orientation
φ. They are given by

a =
√

2

(
μ20 + μ02 +

√
(μ20 − μ02)

2 + 4μ2
11

)
(2.9)

b =
√

2

(
μ20 + μ02 −

√
(μ20 − μ02)

2 + 4μ2
11

)
(2.10)

φ = −1

2
arctan

2μ11

μ02 − μ20
(2.11)

Another feature which is often used is called anisometry and is defined by a
/

b. The
anisometry reveals the degree of elongatedness of a region.

The extension of region moments to their gray value moment counterparts is
straightforward: basically, each term of the sums presented above is weighted by
the gray value I(x, y) of the current pixel

[
x, y

]
, e.g., central gray value moments

μ
g
00 are defined by

μ
g
00 =

1

mg
00

·
∑

(x,y)∈R

(
x− ng

10

)p (
y− ng

01

)q · I (x, y) (2.12)

2.2.4.2 Example

Over the years, there have been many proposals for the usage of moments in object
recognition (see e.g. the article of Flusser and Suk [8]). Observe that mainly low-
order moments are used for recognition, as high-order moments lack of physical
interpretation and are sensitive to noise. In the following, an illustrative example,
where the anisometry and some low-order moments are calculated for printed
characters, is given (see Table 2.2).
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Table 2.2 Anisometry and low-order moments for some printed characters

Character

Anisom. 1.09 3.21 1.05 1.24 1.27 1.40
μ11 1.46 0 –20.5 –0.148 –0.176 113

μ20 368 47.9 481 716 287 331

μ 02 444 494 507 465 460 410

μ 22 164,784 23,670 168,234 351,650 134,691 113,767

Some characters show their distinctive properties in some of the calculated val-
ues, for example, the anisometry of the “I” is significantly higher compared to the
other characters. As far as the moment μ11 is concerned, the values for “P” and “G”
differ from the other characters due to their lack of symmetry. On the other hand,
however, some moments don’t contain much information, e.g., the values of μ02
are similar for all objects. Classification could be done by integrating all values into
a vector followed by a suitable multidimensional classification scheme. It should
be noted, however, that the moments calculated in this example barely generate
enough discriminative information for a robust optical character recognition (OCR)
of the entire alphabet, especially if handwritten characters are to be recognized.
More sophisticated approaches exist for OCR, but are beyond our scope here.

Moments can also be combined in such a way that the resulting value is invariant
with respect to certain coordinate transforms like translation, rotation, or scaling,
which is a very desirable property. An example of these so-called moment invariants
is given later in this book (in Chapter 7).

2.2.5 Fourier Descriptors

2.2.5.1 Main Idea

Instead of using the original image representation in the spatial domain, feature val-
ues can also be derived after applying a Fourier transformation, i.e., in the spectral
domain. The feature vector calculated from a data representation in the transformed
domain, which is called fourier descriptor, is considered to be more robust with
respect to noise or minor boundary modifications. This approach is widely used in
literature (see, e.g., [17] for an overview) and shall be illustrated with the help of
the following example.

2.2.5.2 Example

So-called fiducials of PCBs, which consist of simple geometric forms (e.g., cir-
cle, diamond, cross, double cross, or rectangle; cf. Table 2.3), are used for accurate
positioning of PCBs.



28 2 Global Methods

Table 2.3 Examples of different fiducial shapes

The task considered here is to extract the geometry of the fiducials in an auto-
matic manner. To this end, a classification of its shape has to be performed. This
shape classification task shall be solved with Fourier descriptors; the process is
visualized in detail in Fig. 2.8.

First, an image of the object, which is selected by the user and exclusively con-
tains the fiducial to be classified, is segmented from the background. Next, the
contour points of the segmented area (e.g., all pixels having a direct neighbor which
is not part of the segmented object area) and their distance to the object center are
determined.

When scanning the contour counterclockwise, a “distance function” consisting of
the progression of the pixel distances to the object center can be built (also referred
to as “centroid distance function” in literature). In order to compare structures of
different size, this function is resampled to a fixed length, e.g., 128 values. Such
a centroid distance function is an example of the more general class of so-called
signatures, where the 2D information about the object contour is summarized in
a 1D function. For each geometric form, the fixed-length distance function can be
regarded as a distinctive feature vector.

In order to increase performance, this vector is transformed to Fourier space.
This Fourier description of the object contour (cf., e.g., [4] or [16]) is a very

Fig. 2.8 Example of feature vector classification: locally intensity normalized image → seg-
mented object→ object boundary→ centroid distance function→ Fourier-transformed centroid
distance function→ classification vector (smallest distance marked blue)
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compact representation of the data. Just a few Fourier coefficients are sufficient
for a distinctive description if we deal with “simple” objects. Classification is done
by nearest-neighbor searching in Fourier space, i.e., calculating the Euclidean dis-
tance of the Fourier-transformed feature vector of a scene object to the known
Fourier-transformed feature vectors of the prototypes. Each prototype represents
one geometric form (circle, cross, etc.).

2.2.5.3 Modifications

As an alternative, a wavelet representation of the object contour can also be used
(e.g., [5]). Compared to Fourier descriptors, wavelet descriptors have the advan-
tage of containing multi-resolution information in both the spatial and the frequency
domain. This involves, however, that matching is extended from 1D (which is very
fast) to a more time-consuming 2D matching. Fourier descriptors can be com-
puted and matched fast and have the desirable property to incorporate global and
local information. If the number of coefficients is chosen sufficiently large, Fourier
descriptors can overcome the disadvantage of a rather weak discrimination ability,
which is a common problem of global feature vectors such as moments.

The characterization of objects by means of Fourier descriptors is not restricted
to the object boundary (as it is the case with the centroid distance function). Fourier
descriptors can also be derived from the region covered by the object. A calculation
based on regions is advantageous if characteristic information of the object is not
restricted to the boundary. The descriptor representation is more robust to boundary
variations if regional information is considered in such cases.

A straightforward approach would be to calculate the descriptors from the 2D
Fourier transform of the intensity image showing an object. However, this is not rec-
ommendable as neither rotation invariance nor compactness can be achieved in that
case. In order to overcome these limitations, Zhang and Lu [17] suggest the deriva-
tion of so-called “generic Fourier descriptors” from a modified polar 2D Fourier
transform: to this end, a circular region of the original intensity image is sampled
at polar coordinates r and θ and can be re-plotted as a rectangular image in the
[r, θ ]-plane. The [r, θ ]-representation is then subject to a conventional 2D Fourier
transform. Figure 2.9 illustrates the principle.

The Fourier descriptors can be derived by sampling the thus obtained Fourier
spectrum (which is the amplitude derived from the real and imaginary part of the
transformed signal); see [17] for details. They stated that as few as 36 elements are
sufficient for a compact and distinctive representation. For speed reasons, compar-
ison of objects is done by evaluating the so-called city block distance of descriptor
vectors instead of the Euclidean distance, where simply the differences between the
two values of elements with identical index are summed up.

Without going into details, let’s briefly discuss the properties of the modified
polar 2D Fourier transform: First, a rotation of the object in Cartesian space results
in circular shift in polar space. This circular shift does not change the Fourier spec-
trum and hence rotation invariance of the descriptor can be achieved in a natural
way. Moreover, since the gray value image is a real-valued function, its Fourier
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FFT

Sampling[]
GFD

Fig. 2.9 Illustrative example for a calculation of generic Fourier descriptors with a 1 Euro
coin: Original image: 1 Euro coin → Circular image region re-plotted after polar transforma-
tion→ Magnitude of Fourier transformed signal of the polar image→ Sampling→ Descriptor
Calculation

transform is circularly symmetric. Therefore, only one quarter of the spectrum func-
tion is needed to describe the object. That’s the reason why the light blue sampling
points in Fig. 2.9 are all located in the upper left quadrant of the spectrum.

Compared to the Fourier spectra directly calculated from an
[
x, y

]
-representation,

it can be observed that polar Fourier spectra are more concentrated around the ori-
gin. This is a very desirable property, because for efficient object representation, the
number of descriptor features which are selected to describe the object should be as
small as possible. The compact representation allows a fast comparison of objects,
which makes the method applicable in online retrieval applications. Despite still
being a global scheme, the method can also cope with occlusion to some extent.
However, a proper segmentation from the background is still necessary.

2.2.5.4 Pseudocode

function classifyObjectWithGFD (in Image I, in model

descriptors dM,i, in distance threshold t, out classification

result c)

// calculate generic fourier descriptor of I
perform background subtraction, if necessary: only the object

has to be shown in the image

IP ← polar transform of I
FI ← FFT of IP // two components: real and imaginary part

AI ←
√

Re {FI}2 + Im {FI}2 // power spectrum

a ← 0

for m = 0 to M step s

for n = 0 to N step s
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derive GDF element dI (a) from AI (m, n)

a ← a + 1

next

next

// calculation of similarity to classes of model database

for i = 1 to number of models

dist (i) ← city block distance between dI and dM,i
next

if min (dist (i)) ≤ t then

c ← index of min

else

c ← -1 // none of the models is similar enough

end if

2.3 Principal Component Analysis (PCA)

2.3.1 Main Idea

The principal component analysis (PCA) aims at transforming the gray value object
appearance into a more advantageous representation. According to Murase and
Nayar [10], the appearance of an object in an image depends on the object shape, its
reflectance properties, the object pose, and the illumination conditions. While the
former two are rather fixed for rigid objects, the latter two can vary considerably.
One way to take account for these variances is to concentrate on rather stable fea-
tures, e.g., focus on the object contour. Another strategy is to explicitly incorporate
all sorts of expected appearance variations in the model. Especially if 3D objects
have to be recognized in a single 2D image, the variance of object pose, e.g., due to
change of camera viewpoint usually causes considerable appearance variations.

For many applications, especially if arbitrarily shaped objects are to be rec-
ognized, it is most convenient if the algorithm automatically learns the range of
expected appearance variations. This is done in a training stage prior to recognition.
A simple strategy would be to sample the object at different poses, different illu-
mination settings and perhaps also from different viewpoints, and store all training
images in the model. However, this is inefficient as the training images all show
the same object and despite the variances almost certainly exhibit a considerable
amount of redundancy.

As a consequence, a better suited representation of the sampled data is needed.
To this end, the input data is transformed to another and hopefully more compact
representation. In this context an image I (x, y) with W × H pixels can be regarded
as an N = W · H–dimensional vector x. Each element i ∈ 1..N of the vector x
represents the gray value of one pixel. A suitable transformation is based on the
principal component analysis (PCA), which aims at representing the variations of
the object appearance with as few dimensions as possible. It has been suggested by
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Turk and Pentland [14] for face recognition, Murase and Nayar [10] presented an
algorithm for recognition of more general 3D objects in a single 2D image, which
were taken from a wide rage of viewpoints.

The goal is to perform a linear transformation in order to rearrange a data set of
sample images such that most of its information is concentrated in as few coeffi-
cients as possible. To this end, an image x can be defined as the linear combination
of several basis vectors wi defining a basis W:

x =
N∑

i=1

yi · wi (2.13)

W = [
wT

1 wT
2 · · ·wT

N

]
(2.14)

with the yi being the transformation coefficients. We should aim for an accurate
estimate x̂ of x while using as few coefficients as possible at the same time

x̂ =
n∑

i=1

yi · wi with n << M (2.15)

M defines the number of samples of the object to be recognized which are avail-
able in a training phase. Dimensionality reduction is possible because the samples
should look similar and thus contain much redundancy. Therefore the xm should be
located close to each other in the transformed space and can be represented by using
a new, low-dimensional basis. Mathematically speaking, this amounts to a projec-
tion of the original data xm onto a low-dimensional subspace (see Fig. 2.10 for
illustration).

Fig. 2.10 The cloud in the left part illustrates the region containing the training “images” in a
3D space. Clearly, a 2D representation signalized by the blue arrows is better suited than the
original 3D representation signalized by the black arrows. The effect of dimensionality reduction
is illustrated in the right part: its geometric interpretation is a projection of a sample point (3D,
blue arrow) onto a subspace (here a 2D plane, red arrow). The error made by the projection is
illustrated by the dashed blue line
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With a good choice of the projection parameters, the error E2
n of this estimation

should be minimized. It can be defined by the expected Euclidean distance between
x̂ and x:

E2
n = E

{∥
∥x̂− x

∥
∥2

}
=

N∑

i=n+1

wT
i · E

{
x · xT}wi (2.16)

with E {·} denoting the expectation value. The matrix E
{
x · xT

}
contains the expec-

tation values of the cross-correlations between two image pixels. It can be estimated
by the sampled training images

E
{
x · xT} ≈

M∑

m=1

xm · xT
m = S (2.17)

The matrix S defines the so-called scattermatrix of the sample data. In other words,
the transformation is optimized by exploiting statistical properties of the samples
in a training phase. With the constraint of W defining an orthonormal basis sys-
tem a component-wise minimization of E2

n leads to the well-known eigenvalue
decomposition of S (I defines the identity matrix):

E2
n =

N∑

i=n+1

[
wT

i · S · wi − λi
(
wT

i · wi − 1
)]

(2.18)

∂E2
n

/
∂wi
≡ 0 leads to (S− λi · I) · wi = 0 (2.19)

The relation between an image x and its transformation y is defined as

y =WT · x x =W · y (2.20)

The calculation of the eigenvalues λi and eigenvectors wi of S is time-consuming,
(please note that the dimensionality of S is defined by the number of pixels of the
training images!) but can be done off-line during training. The absolute values of λi

are a measure how much the dimension defined by wi contributes to a description of
the variance of the data set. Typically, only a few λi are necessary for covering most
of the variance. Therefore, only the wi belonging to the dominant λi are chosen for
transformation, which yields an efficient dimensionality reduction of y. In literature
these wi are denoted as “eigenimages” (each wi can also be interpreted as an image
if its data is rearranged to a W × H-matrix).

If object classification has to be performed, the joint eigenspace WJ of sam-
ples from all object classes k ∈ {1..K} of the model database is calculated. During
recognition, a scene image is transformed into the eigenspace and classified, e.g.,
simply by assigning the class label of the nearest neighbor in transformed space.
However, this involves a comparison with each of the transformed training image,
which is time-consuming. In order to accelerate the classification, Murase and Nayar
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suggest the introduction of a so-called parametric manifold gk
(
θ0,θ1,...,θn

)
for each

object class k which describes the distribution of the samples of object class k in
feature space with the help of the parameters

(
θ0,θ1,...,θn

)
. A classification can then

be performed by evaluating the distances of the transformed input image to the
hyperplanes defined by the parametric manifolds of various object classes.

If, on the other hand, the pose of a known object class has to be estimated, a spe-
cific eigenspace Wk; 1 ≤ k ≤ K is calculated for each object class k by taking only
samples from this class into account during training. Subsequently transformation
of a scene image using this specific transformation reveals the object pose. Again
this is done with the help of a parametric manifold fk

(
θ0,θ1,...,θn

)
. The pose, which

can be derived from the parameters
(
θ0,θ1,...,θn

)
, can be determined by finding the

parameter combination which minimizes the distance of the transformed image to
the hyperplane defined by the manifold. Please note that the pose of the object in
the scene image has to be “covered” during training: if the current pose is far away
from each of the poses of the training samples, the method will not work. Details of
the pose estimation can be found in [10].

2.3.2 Pseudocode

function detectObjectPosPCA (in Image I, in joint eigenspace

WJ, in object class eigenspaces Wk, parametric manifolds

gk
(
θ0,θ1,...,θn

)
and fk

(
θ0,θ1,...,θn

)
, in distance threshold t, out

classification result c, out object position p)

perform background subtraction, if necessary: only the object

has to be shown in the image

stack I into a 1-dim. vector xI

// object classification

transform xI into the joint eigenspace: yJ ← WT
J · xI

for k = 1 to number of models

dk ← distance of yJ to parametric manifold gk
(
θ0,θ1,...,θn

)

next

if min (dk) ≤ t then

c ← index of min

else

c ← -1 // none of the models is similar enough

return

end if

// object pose estimation

transform xI into the eigenspace of class c: yc ← WT
c · xI

get parameters
(
θ0,θ1,...,θn

)
which minimize the distance of yc to

parametric manifold fk
(
θ0,θ1,...,θn

)

derive object pose p from
(
θ0,θ1,...,θn

)
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2.3.3 Rating

The PCA has the advantageous property of explicitly modeling appearance varia-
tions in an automatic manner. As a result, strong invariance with respect to these
variations is achieved. 3D object recognition can be performed from a single 2D
image if the variations caused by viewpoint change are incorporated in the model.
Moreover, the method is not restricted to objects with special properties; it works
for arbitrarily shaped objects, at least in principle.

On the other hand, a considerable number of sample images are needed for a
sufficiently accurate modeling of the variations – a fact that might cause much effort
during acquisition of the training images. Other drawbacks of PCA-based object
recognition are that the scheme is not able to detect multiple objects in a single
image, that the scene object has to be well separated from the background, and that
recognition performance degrades quite rapidly when occlusion increases.

Additionally it is more suited for a classification scheme where the position of
an object is known and/or stable, but not so much for pose estimation, because
unknown position shifts between model and scene image cause the scene image to
“move away” from the subspace in parameter space defined by the model.

2.3.4 Example

The eigenspace calculated from sample images containing shifted, rotated, and
scaled versions of a simple triangle form is shown in Table 2.4. It was calculated
from 100 sample images in total. As can easily be seen in the top part of the
table (which shows a subset of the sample images), the sample images contain a
considerable amount of redundancy.

The eigenimages depicted in the bottom part (with decreasing eigenvalue from
left to right and top to bottom; the last two rows show only a selection of eigen-
vectors), however, show a different behavior: the first eigenvector corresponds to
the “mean” of the training samples, whereas all following eigenimages visualize
certain variances.

As the sample triangles are essentially plain bright, their variances are located
at their borders, a fact which can easily be verified when comparing two of them
by subtraction. Accordingly, the variances shown in the eigenimages belonging to
dominant eigenvalues in the first row are clearly located at triangle borders, whereas
especially the eigenimages shown in the last two rows (a selection of the eigenvec-
tors ranked 25–100) exhibit basically noise indicating that they contain very little or
no characteristic information of the sampled object.

Please note that the covariance matrix C is often calculated instead of the scat-
termatrix S in literature. C is strongly related to S, the only difference is that it is
calculated from the outer product of the differences of the data samples with respect
to their mean x̄ instead of the data samples themselves:

C =
M∑

m=1

(xm − x̄) · (xm − x̄)T with x̄ = 1

M

M∑

m=1

xm (2.21)
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Table 2.4 Sample images and eigenspace of a simple triangle form

Concerning the eigenspace of C, its eigenvectors are the same except that the mean
is missing.

The covariance matrix C estimated from the sample triangle images can be seen
in Fig. 2.11. Bright areas indicate high-positive values and black areas high-negative
values, respectively, whereas values near zero are gray. Both bright and black areas
indicate strong correlation (either positive or negative) among the samples. The
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Fig. 2.11 Showing the
covariance matrix of the
triangle example

Fig. 2.12 Showing the
distribution of the eigenvalues
of the covariance matrix of
the triangle example

matrix – which always is symmetric – is highly structured, which means that only
some areas of the samples contain characteristic information. The PCA aims at
exploiting this structure.

The fact that the covariance matrix is clearly structured indicates that much of the
information about the variance of the example images can be concentrated in only a
few eigenvectors wi. Accordingly, the eigenvalues λi should decrease fast. Actually,
this is true and can be observed in Fig. 2.12.

2.3.5 Modifications

The transformation defined by the principal component analysis – when a joint
transformation for all object classes is used, e.g., for object classification –
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maximizes the overall variance of the training samples. Hence, there is no mech-
anism which guarantees that just the inter-class variance is maximized, which
would be advantageous. A modification proposed by Fisher [7] has been used by
Belhumeur et al. for face recognition [2]. They point out that it is desirable to max-
imize the inter-class variance by the transformation, whereas intra-class variance
is to be minimized at the same time. As a result, the transformed training samples
should build compact clusters located far from each other in transformed space. This
can be achieved by solving the generalized eigenvalue problem

SB · wi = λi · SC · wi (2.22)

with SB denoting the between-class scattermatrix and SC the within-class scatter-
matrix.
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Chapter 3
Transformation-Search Based Methods

Abstract Another way of object representation is to utilize object models consist-
ing of a finite set of points and their position. By the usage of point sets recognition
can be performed as follows: First, a point set is extracted from a scene image.
Subsequently, the parameters of a transformation which defines a mapping of the
model point set to the point set derived from the scene image are estimated. To
this end, the so-called transformation space, which comprises the set of all possible
transform parameter combinations, is explored. By adopting this strategy occlusion
(resulting in missing points in the scene image point set) and background clutter
(resulting in additional points in the scene image point set) both lead to a reduc-
tion of the percentage of points that can be matched correctly between scene image
and the model. Hence, occlusion and clutter can be controlled by the definition of a
threshold for the portion of the point sets which has to be matched correctly. After
introducing some typical transformations used in object recognition, some examples
of algorithms exploring the transformation space including the so-called generalized
Hough transform and the Hausdorff distance are presented.

3.1 Overview

Most of the global appearance-based methods presented so far suffer from their
invariance with respect to occlusion and background clutter, because both of them
can lead to a significant change in the global data representation resulting in a
mismatch between model and scene image.

As far as most of the methods presented in this chapter are concerned, they
utilize object models consisting of a finite set of points together with their posi-
tion. In the recognition phase, a point set is extracted from a scene image first.
Subsequently, transformation parameters are estimated by means of maximizing the
similarity between the scene image point set and the transformed model point set
(or minimizing their distance respectively). This is done by exploring the so-called
transformation space, which comprises the set of all possible transform parameter
combinations. Each parameter combination defines a transformation between the
model data and the scene image. The aim is to find a combination which maximizes

41M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
DOI 10.1007/978-1-84996-235-3_3, C© Springer-Verlag London Limited 2010
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the similarity (or minimizes a distance, respectively). Finally, it can be checked
whether the similarities are high enough, i.e., the searched object is actually present
at the position defined by the transformation parameters.

Occlusion (leading to missing points in the scene image point set) and back-
ground clutter (leading to additional points in the scene image point set) both result
in a reduction of the percentage of points that can be matched correctly between
scene image and the model. Hence, the amount of occlusion and clutter which still
is acceptable can be controlled by the definition of a threshold for the portion of the
point sets which has to be matched correctly.

The increased robustness with respect to occlusion and clutter is also due to the
fact that, with the help of point sets, local information can be evaluated, i.e., it can
be estimated how well a single point or a small fraction of the point set located
in a small neighborhood fits to a specific object pose independent of the rest of
the image data (in contrast to, e.g., global feature vectors where any discrepancy
between model and scene image affects the global features). Additionally, it is pos-
sible to concentrate the point set on characteristic parts of the object (in contrast to
gray value correlation, for example).

After a brief discussion of some transformation classes, some methods adopting
a transformation-based search strategy are discussed in more detail. The degrees of
freedom in algorithm design for this class of methods are

• Detection method for the point set (e.g., edge detection as proposed by Canny [3],
see also Appendix A). The point set must be rich enough to provide discrimina-
tive information of the object. On the other hand, however, large point sets lead
to infeasible computational complexity.

• Distance metric for measuring the degree of similarity between the model and
the content of the scene image at a particular position.

• Matching strategy of searching the transformation space in order to detect the
minimum of the distance metric. A brute force approach which exhaustively
evaluates a densely sampled search space is usually not acceptable because the
algorithm runtime is too long. As a consequence a more intelligent strategy is
required.

• Class of transformations which is evaluated, e.g., affine or similarity transforms.

3.2 Transformation Classes

Before we take a closer look at some methods which search in the transforma-
tion space we have to clarify what kind of transformation is estimated. Commonly
used transformation classes are similarity transformations and affine transforma-
tions. Both of them are linear transformations, a fact that simplifies calculations
and therefore reduces the computational complexity significantly compared to the
usage of non-linear transformations. In reality, however, if a 3D object is moved in
3D space, the appearance change of the object in a 2D image acquired by a cam-
era at fixed position can only be modeled exactly by a perspective transformation,
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which is non-linear. Fortunately, the perspective transformation can be approxi-
mated by an affine transformation with good accuracy if the “depth” of the object
resulting from the third dimension is small compared to the distance to the cam-
era and therefore the object can be regarded as planar. Affine transformations are
given by

xS,i =
[

xS,i
yS,i

]
= A · xM,i + t =

[
a11 a12
a21 a22

]
·
[

xM,i
yM,i

]
+

[
tx
ty

]
(3.1)

where xS,i denotes the position of a point or feature (e.g. line segment) in the scene
image and xM,i its corresponding model position. The matrix A and a translation
vector t parametrize the set of all allowed transformations. Altogether, affine trans-
formations are specified by six parameters a11, a12, a21, a22, tx, and ty. A further
simplification can be done if only movements of planar 2D objects perpendicular
to the optical axis of the image acquisition system together with scaling have to be
considered. In that case the affine transformation can be reduced to the similarity
transform

xS,i =
[

xS,i
yS,i

]
= S · xM,i + t = s ·

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

]
·
[

xM,i
yM,i

]
+

[
tx
ty

]
(3.2)

characterized by four parameters s,ϕ, tx, and ty. s denotes a scaling factor, ϕ a rota-
tion angle, and tx and ty a translation in the image plane. If s is explicitly set to 1,
the transformation is called rigid transformation.

Some types of transformations are illustrated in Table 3.1: The rigid transform
comprises translation and rotation; the similarity transform in addition contains scal-
ing. The affine transform maps parallel lines to parallel lines again, whereas the
perspective transform, which is nonlinear, maps a square to a quadrangle in the
general case.

Perspective transformations can actually also be modeled linear if so-called
homogeneous coordinates are used: a 2D point for example is then represented by
the triple

[
λ · x, λ · y, λ

]
, where λ denotes a scaling factor. Points are regarded as

equivalent if they have identical x and y values, regardless of the value of λ. Using
homogeneous coordinates, the projective transformation of a point located in a plane
to another plane can be described as

Table 3.1 Overview of some
transformation classes

Translation Rigid 
transform 

Similarity
transform  

Affine
transform 

Perspective
transform  
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xS,i =
⎡

⎣
λ · xS,i
λ · yS,i

λ

⎤

⎦ = T · xM,i =
⎡

⎣
t11 t12 t13
t21 t22 t23
t31 t32 1

⎤

⎦ ·
⎡

⎣
xM,i
yM,i

1

⎤

⎦ (3.3)

Hence, eight parameters are necessary for characterization of a perspective
transform.

3.3 Generalized Hough Transform

3.3.1 Main Idea

The Hough Transform was originally developed for the detection of straight lines
(cf. Hough [7] or Duda and Hart [4]), but can be generalized to the detection of
arbitrarily shaped objects if the object shape is known in advance.

Now let’s have a look at the basic idea of the Hough transform: given a set of
points P, every pixel p = [

x, y
] ∈ p could possibly be part of a line. In order to

detect all lines contained in P, each p “votes” for all lines which pass through that
pixel. Considering the normal form

r = x · cos (α)+ y · sin (α) (3.4)

each of those lines can be characterized by two parameters r and α. A 2D accu-
mulator space covering all possible [r, α], which is divided into cells, accounts for
the votes. For a given point

[
x, y

]
, all parameter combinations [r, α] satisfying the

normal form can be determined. Each of those [r, α] increases the corresponding
accumulator cell by one. Taking all pixels of the point set into account, the local
maxima of the accumulator reveal the parameters of the lines contained in the point
set (if existent).

The principle of voting makes the method robust with respect to occlusion or data
outliers, because even if a fraction of the line is missing, there should be enough
points left for a “correct” vote. In general the Hough transform works on an edge-
filtered image, e.g., all pixels with gradient magnitude above a certain threshold
participate in the voting process.

For a generalization of the Hough transform (cf. Ballard [1]) a model of the
object contour has to be trained prior to recognition. The thus obtained information
about the object shape is stored in a so-called R-Table. Subsequently, recognition is
guided by this R-Table information. The R-Table generation proceeds as follows.

3.3.2 Training Phase

1. Object contour point detection: In the first step all contour points xT ,i =
�xT ,i, yT ,i� of a sample image showing the object to be trained are located
together with their gradient angle θi, e.g., with the help of the canny edge
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θ1

θ2

x1 ; x2 

x3

… … 

… … 

Fig. 3.1 Illustrative example of the generalized Hough transform. Left: R-table generation with
three example points; Right: 3D accumulator for translation and scale estimation of size 5 × 5 × 4

detector [3] including non-maximum suppression (cf. Appendix A). The under-
lying assumption is that the object contour is characterized by rapid gray value
changes in its neighborhood due to the fact that the background usually differs
from the object in terms of gray value appearance.

2. Center point definition: Specification of an arbitrary point
[
xC, yC

]
.

3. R-table calculation: For each detected contour point, remember its gradient angle
θi and the distance vector to the center �xR,i, yR,i� = �xT ,i − xC, yT ,i − yC�. This
model data can be stored in form of a table (often referred to as R-Table in the
literature) where for each θ the corresponding distance vectors to the center are
stored. The space of θ (usually ranging from –180◦ to 180◦) is quantized into
equally sized intervals. If, for example, each R-table entry covers an interval of
1◦, it consists of 360 entries altogether. Note that multiple distance vectors can
belong to a single gradient angle θ if multiple contour points exhibit the same θ .
Figure 3.1 gives an example for three arbitrarily chosen contour points and the
corresponding fraction of the R-table.

3.3.3 Recognition Phase

1. Object contour point detection: find all contour points xS,i = �xS,i, yS,i� in a
scene image and their gradient angle θi, in general by applying the same method
as during training, e.g., the canny edge detector with non-maximum suppression.

2. Derivation of assumed center points and voting: For each detected contour point
xS,i, assumed center points xCE,l = �xCE,l, yCE,l� can be calculated considering
the gradient angle θi and the model data:

[
xCE,l
yCE,l

]
=

[
xS,i
yS,i

]
+ s ·

[
xR,l
yR,l

]
(θi) (3.5)
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θ1

θ2

x1 ; x2 

x3

… …

Fig. 3.2 Illustrating the voting process for one object contour point. In this example two entries
can be found in the R-table for the current angle θ1. Consequently, the content of two accumulator
cells (marked blue) is increased

The distance vectors xR,l = �xR,l, yR,l� (θ) are obtained based on the R-table
information: For each gradient angle θ a list rθ consisting of L distance vectors
xR,l with l ∈ [1, ..., L] can be retrieved by a look-up operation in the R-table. For
each distance vector a specific xCE,l is calculated and the corresponding cell in a
2D accumulator array is increased by one (cf. Fig. 3.2). Every cell represents a
certain range of x and y position values. The selection of the cell size is a trade-off
between accuracy and, on the other hand, memory demand as well as algorithm
runtime. s denotes a scale factor. Typically, s is varied in a certain range and with
a certain step size depending on the expected scale variation of the object and
the desired accuracy in scale determination. For each s another assumed center
point can be calculated. Hence, for each R-table entry multiple center points are
calculated and therefore multiple accumulator cells are increased. This can be
done in a 2D accumulator or alternatively in a 3D accumulator where the third
dimension represents the scale (see right part of Fig. 3.1). In most of the cases,
also the object angle φ is unknown. Therefore, again multiple center points can
be determined according to

[
xCE,l
yCE,l

]
=

[
xS,i
yS,i

]
+ s ·

[
xR,l
yR,l

]
(θi + φ) (3.6)

where φ is varied within a certain range and with a certain step size. Please note
that the distance vectors retrieved from the R-table have to be rotated by φ in that
case. The object angle φ represents a fourth dimension of the accumulator.

3. Maximum search in the accumulator: All local maxima above a threshold t are
found poses of the object.

3.3.4 Pseudocode

function findAllObjectLocationsGHT (in Image I, in R-Table

data R, in threshold t, out position list p)

// calculate edge point information

calculate x and y gradient of I: Ix and Iy

detect all edge points xS,i based on Ix and Iy, e.g. by
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non-maximum suppression and hysteresis thresholding(Canny)

for i=1 to number of edge points

θi ← arctan
(
Iy/Ix

)
// edge point orientation

next

//voting

init 4-dimensional accumulator accu with borders

�xmin, xmax, xStep�, �ymin, ymax, yStep�, �φmin, φmax, φStep�, �smin, smax, sStep�
for i=1 to number of edge points

for φ = φmin to φmax step φStep
retrieve list rφ+θi of R (entry at position φ + θi)

for l=1 to number of entries of list rφ+θi

for s = smin to smax step sStep
xR,l ← distance vector (list entry rφ+θi,l),

rotated by φ and scaled by s
calculate assumed object center point

xCE,l
(
xR,l, xS,i, s, φ

)
according to Equation 3.6

if xCE,l is inside
[
x, y

]
-pos. bounds of accu then

increment accu at position
[
xCE,l, yCE,l, φ, s

]

end if

next

next

next

next

// determine all valid object positions

find all local maxima in accu
for i=1 to number of local maxima

if accu (xi, yi, φi, si) ≥ t then

append position
[
xi, yi, φi, si

]
to p

end if

next

3.3.5 Example

Table 3.2 illustrates the performance of the generalized Hough transform: as an
example application, the pose of a key (x, y, scale, and rotation) has to be deter-
mined. The image shown in the left column of the top row served as training image
for R-table construction in all cases.

The left column shows scene images where the key has to be detected, whereas
the contour points extracted by a Canny edge detector with non-maximum sup-
pression are depicted right to it. In the rightmost two columns two cuts through
the 4D accumulator at the found position are shown; one cut revealing the

[
x, y

]
-

subspace of the accumulator at the found [s, φ]-position and another revealing the
[s, φ]-subspace of the accumulator at the found

[
x, y

]
-position.
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Table 3.2 Performance of the generalized Hough transform in the case of the unaffected training
image, when the object undergoes a similarity transform, in the presence of illumination change,
noise, and occlusion (from top to bottom)

Scene image 

Edge image extracted 
from scene image with 
the Canny edge 
detector 

XY accu RS accu 

y s

x Φ

The x and y accumulator size are the image dimensions (cell size 2 pixels), the
scale ranges from 0.6 to 1.4 (cell size 0.05) and the rotation from –36◦ to 36◦ (cell
size 3◦). The following examples are shown: same image for training and recogni-
tion, a similarity-transformed object, illumination change, strong noise, and finally
occlusion (from top to bottom). In all examples the accumulator maximum is sharp
and distinctive, which indicates good recognition reliability.
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Please note that the accumulator maximum position remains stable in case of
illumination change, noise, and occlusion despite a considerable appearance change
of the object caused by these effects. As far as the similarity transform example
is concerned, the accumulator maximum moves to the correct position (left and
upward in the XY accu; to the extreme top and right position in the RS accu)
and remains sharp. However, runtime of the algorithm is rather high, even for rel-
ative small images of size 300 × 230 pixels (in the order of 1 s on a 3.2 GHz
Pentium 4).

3.3.6 Rating

The main advantage of the generalized Hough transform is that it can compensate
for occlusion and data outliers (as demonstrated by the key example) as there should
be enough contour pixels left which vote for the correct object pose. On the other
hand, however, the accumulator size strongly depends on the dimensionality of the
search space and the envisaged accuracy.

Let’s consider an example with typical tolerances and resolutions: x-/y-
translation tolerance 200 pixel, cell resolution 1 pixel, rotation tolerance 360◦, cell
resolution 1◦, scale tolerance 50–200%, cell resolution 1%. As a consequence, the
4D accumulator size amounts to 200 × 200 × 360 × 150 = 2.16 × 109 cells,
leading to probably infeasible memory demand as well as long execution times due
to the time-consuming maximum search within the accumulator. Therefore, mod-
ifications of the scheme exist which try to optimize the maximum search in the
accumulator.

Another disadvantage is that the rather rigid object representation does only allow
for a limited amount of local object deformations. If the deformation is restricted to
minor parts of the object contour, the method is robust to these outliers, but if large
parts of the shape show minor deformations the accumulator maximum might be
split up into multiple maxima at similar poses. Noise can be another reason for
such a split-up. This fact can be alleviated by choosing a coarse accumulator reso-
lution. Then every accumulator cell covers a larger parameter range, and therefore
a boundary point at a slightly different location often still contributes to the same
accumulator cells. But keep in mind that the price we must pay is a reduction of
accuracy!

There exist numerous applets in the Internet which are very suitable for experi-
menting with and learning more about the Hough transform, its performance, and
limitations. The interested reader is encouraged to check it out.1

1See e.g. http://d0server1.fnal.gov/users/ngraf/Talks/UTeV/Java/Circles.html or http://homepages.
inf.ed.ac.uk/rbf/HIPR2/houghdemo.htm (links active January 13th 2010)
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3.3.7 Modifications

Even if the generalized Hough transform suffers from its high memory demand
and complexity, due to its robustness with respect to occlusion and large out-
liers the usage of the Hough transform as a pre-processing step providing input
for other schemes which actually determine the final pose is an interesting com-
bination. In that case rather large accumulator cell sizes are chosen as only
coarse pose estimates are necessary. This involves low or at least moderate mem-
ory and time demand as well as considerable tolerance with respect to local
deformations.

A possible combination might consist of the GHT and so-called active contour
models (see Chapter 6): contrary to the Hough transform, approaches aiming at
compensating local deformations by finding exact object contours with the help of
local information (e.g., like Snakes) only have a limited convergence area and there-
fore demand a reliable rough estimate of the object pose as input. Hence, advantages
of both approaches can be combined (see, e.g., the method proposed by Ecabert and
Thiran [5]).

In order to overcome the memory demand as well as speed limitations of the gen-
eralized Hough transform, Ulrich et al. [11] suggest a hierarchical approach utilizing
image pyramids for determining the x, y and φ position of an object. According to
their approach, the pyramids are built for the training as well as the scene image. On
the top pyramid level, a conventional GHT is performed yielding coarse positions
which are refined or rejected at lower levels. Therefore, a scan of the compete trans-
formation space has only to be performed at top level, where quantization can be
chosen very coarse which is beneficial in terms of memory demand. The knowledge
obtained in this step helps to speed up the computation as well. It can be exploited
as follows:

• Accumulator size reduction: as only parts of the transformation space close to the
coarse positions have to be examined, the size of the accumulator can be kept
small despite of the finer quantization.

• Limitation of image region: based on the coarse position and its estimated uncer-
tainties, the image region for gradient orientation calculation can be restricted
efficiently.

• Accelerated voting: as the object rotation φ is already approximately known,
look-up in the R-table can be restricted to very few rotation steps.

Ulrich et al. implemented a strategy incorporating separate R-tables for each
pyramid level and possible object rotation. This involves an increased memory
demand for the model, but they showed that this is overcompensated by the reduc-
tion of accumulator size as well as runtime. Both can be reduced by several orders
of magnitude compared to the standard scheme. In a comparative study Ulrich and
Steger [10] showed that a GHT modified in such a way can compete with other
recognition schemes which are widely used in industrial applications.
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3.4 The Hausdorff Distance

3.4.1 Basic Approach

3.4.1.1 Main Idea

The Hausdorff distance H is a nonlinear metric for the proximity of the points
between two point sets. When applied in object recognition, one point set M rep-
resents the model whereas the second, I, describes the content of a scene image
region. H can be used as a measure of similarity between the image content in the
vicinity of a given position and the model. If H is calculated for multiple positions it
is possible to determine the location of an object. The absolute value of H indicates
whether the object is present at all. H is defined by

H (M, I) = max (h (M, I) , h (I, M)) with (3.7)

h (M, I) = max
m∈M

(
min
i∈I
‖m− i‖

)
and h (I, M) = max

i∈I

(
min
m∈M
‖ i− m‖

)
(3.8)

where ‖·‖ denotes some kind of distance norm between a model point m and an
image point i, e.g., the Euclidean distance norm. h (M, I) is called forward dis-
tance and can be determined by calculating the distance to the nearest point of I
for each point of M and taking the maximum of these distances. h (M, I) is small
exactly when every point of M is located in the vicinity of some point of I.

h (I, M) (the reverse distance) is calculated by evaluating the distance to the near-
est point of M for each point of I and taking the maximum again. h (I, M) is small
exactly when every point of I is located in the vicinity of some point of M. Finally,
H is calculated by taking the maximum of these two values.

Figure 3.3 should make things clear. The proceeding of calculating the forward
distance is shown in the top row: at first, for each model point (marked green)

Fig. 3.3 Illustrating the
process of calculating the
Hausdorff distance (model
points are marked green,
image points red)
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the nearest image point (marked red) is searched. This is explicitly shown for two
model points in the two leftmost point sets (the thus established correspondences
are marked by bright colors). After that, the forward distance is set to the maximum
of these distances (shown in the right part; marked light green). In the bottom row
the calculation of the inverse distance can be seen: for each image point the nearest
model point is detected (illustrated for two example image points marked light in
the leftmost two columns). Subsequently, the inverse distance is set to the maxi-
mum of these distances (marked light red). Finally, the Hausdorff distance is set to
the maximum of the forward and reverse distance.

Please note that, in general, forward and inverse distance are not equal:
h (M, I) �= h (I, M). In fact, this is also true for our example as one of the corre-
spondences established during calculation of the forward distance differs from the
correspondence of the reverse distance (see the upper left areas of the point sets
depicted in the right part of Fig. 3.3, where correspondences are indicated by red
and green lines).

The Hausdorff distance has the desirable property that the total number of model
points and the total number of image points don’t have to be identical, because
multiple image points i can be matched to a single model point m and vice versa.
Hence, a reliable calculation of the metric is still possible if the number of model
points differs from the number of image points, which usually is the case in real-
world applications.

For the purpose of object detection the directed Hausdorff distances have to
be adjusted to the so-called partial distances hfF (M, I) and hfR (I, M). Imagine an
image point set where one point, which is located far away form the other points,
is caused by clutter. This would result in a large value of h (I, M), which is obvi-
ously not intended. Respectively, an isolated point of M would produce large values
of h (M, I) if it is not visible in the image due to occlusion (see Table 3.3 for an
illustration).

Such a behavior can be circumvented by taking the k-largest value instead of the
maximum during the calculation of the directed distances h (I, M) and h (M, I). We
can define fF as the fraction of model points which need to have a nearest distance
below the value of hfF (M, I) which is finally reported. hfF (M, I) is called the partial
directed forward distance. If for example fF = 0.7 and the model consists of 10
points, their minimum distances to the image point set can be sorted in ascending
order and hfF (M, I) is set to the distance value of the seventh model point. For
fF = 1 the partial distance hfF (M, I) becomes equal to h (M, I). A respective
definition of fR exists for hfR (I, M).

As a consequence, it is possible to control the amount of occlusion which should
be tolerated by the recognition system with the choice of fF. The parameter fR
controls the amount of clutter to be tolerated, respectively.

3.4.1.2 Recognition Phase

Rucklidge [9] proposes to utilize the Hausdorff distance as a metric which indicates
the presence of searched objects. He suggests to scan a 6D transformation space in
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Table 3.3 Illustrating the problems due to occlusion and clutter which can be solved by the
introduction of the partial Hausdorff distance measures

Model point set (dark 
green) and image point 
set (dark red ) that match 
well. H is small. Please 
note that the number of 
model points is not 
equal to the number of 
image points 

The same situation, but 
with an extra model 
point (light green) which 
is not detected in the 
image, e.g., due to occlu-
sion. H is large because
of the forward distance. 

Now the image point set 
contains an extra point 
(light red ), e.g., due to 
clutter. H is large 
because of the reverse 
distance. 

order to determine the parameters of an affine transformation. To this end, the trans-
formation space is sampled and for every sampled position, which consists of six
specific parameter values and defines a specific transformation t, the partial forward
and reverse Hausdorff distances hfF

t (t (M) , I) and hfR
t (I, t (M)) with respect to the

transformed model points t (M) are calculated. Valid object positions are reported
for transformation parameters where the Hausdorff distance reaches local minima.
Additionally, the distances have to remain below user defined thresholds τF and τR:

hfF
t (t (M) , I) < τF ∧ hfR

t (I, t (M)) < τR (3.9)

Hence the search can be controlled with the four parameters τF , τR, fF, and fR.
Each dimension of the transformation space (defined by one of the six transfor-

mation parameters) is sampled equally spaced with a step size such that the resulting
position difference of each transformed model point between two adjacent param-
eter values tk and tk+1 does not exceed the size of one pixel: |tk (m)− tk+1 (m)| ≤
1 pixel ∀ m ∈ M. Additionally, for each transformation t the transformed model
points t (m) are rounded to integer positions for speed reasons (see below). As
a result, no sub-pixel accuracy can be achieved, but a finer sampling and/or the
abdication of rounding would be prohibitive in terms of runtime. However, there is
still much demand for an acceleration of the search, which is until now still brute-
force, in order to reduce runtime. To this end, Rucklidge [9] suggests the following
modifications:

• Size restriction of the search space: The space of transformations which are rea-
sonable can be restricted by applying constraints. First, all transformed model
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points t (m) have to be located within the borders of the scene image under inves-
tigation. Additionally, in many applications a priori knowledge can be exploited,
e.g., the scale and/or rotation of the object to be found have to remain within
some rather narrow tolerances.

• Box-reverse distance: Usually, the objects to be located only cover a rather
small fraction of the search image. Therefore only points located in a box[
xmin···xmax, ymin···ymax

]
have to be considered when calculating the reverse

distance at a given position.
• Optimization of calculation order: A speedup due to rearranging the calculations

can be achieved in two ways:

– For most of the positions, the distances will not meet the threshold crite-
ria. Therefore it is worthwhile to calculate only the forward distance at first
and then to check whether its value is below τF . Only if this criterion is
met, the reverse distance has to be calculated, because otherwise the current
transformation has to be rejected anyway regardless of the reverse distance.

– Furthermore, with a modification of the partial distance calculation it is often
possible to stop the calculation with only a fraction of the points being exam-
ined. Let’s consider the forward distance: instead of calculating the minimum
distance to the image point set of every transformed model point t (m) and
then evaluating whether the distance at the fF-quantile is below τF , it is bet-
ter to count the number of model points which have a minimum distance to
the image point set that remains below τF . The final check is then whether
this number reaches the fraction fF of the total number of model points. This
enables us to stop the evaluation at a point where it has become clear that
fF cannot be reached any longer: this is the case when the number of model
points, which are already checked and have a distance above τF , exceeds the
fraction 1− fF with respect to the number of model points.

• Usage of the so-called distance transform: If the transformed model points are
rounded to integer positions, it is likely that the same position results for differ-
ent model points and transformations, i.e., t1 (ma) = t2 (mb). Therefore – when
evaluating the forward distance – it might be worthwhile to remember the mini-
mum distance to the image point set at a specific position t (m): provided that the
already calculated distance for t1 (ma) has been stored, the distance for t2 (mb)

can be set to the stored distance of t1 (ma) immediately. It can be shown that
an even more efficient way is to perform a calculation of the minimum distance
to the image point set for every pixel of the scene image prior to the Hausdorff
distance calculation, because then information can be re-used for adjacent pix-
els. This is done by calculating the so-called distance transform �

[
x, y

]
, which

specifies the minimum distance of position
[
x, y

]
to the image point set, and is

defined by

�
[
x, y

] = min
i∈I

∥∥[x, y
]− i

∥∥ (3.10)
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( )( )IMth fF
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count

<τF

dist.
Fig. 3.4 Illustrating the
usage of the distance
transform (depicted as
grayscale image) in order to
speedup calculation of the
forward distance

As a consequence, each t (m) only probes �
[
x, y

]
during the calculation of

hfF
t (t (M), I). Figure 3.4 illustrates the proceeding: �

[
x, y

]
can be derived from

the image point set (red points) in a pre-processing step. Dark values indicate low
distances to the nearest image point. A model point set (green points) is super-
imposed according to the transformation t currently under investigation and the
forward distance can be calculated very fast. Besides, this speedup is the rea-
son why the forward distance is calculated first: a similar distance transform for
the reverse distance would depend on the transformation t, which complicates its
calculation prior to the search.

• Recursive scan order: Probably the most important modification is to apply a
recursive coarse-to-fine approach, which allows for a significant reduction of the
number of transformations that have to be checked in most cases. Roughly speak-
ing, the transformation space is processed by dividing it recursively into equally
spaced cells. In the first recursion step the cell size s is large. For each cell it is
evaluated with the help of a quick check whether the cell possibly contains trans-
formations with a Hausdorff distance below the thresholds. In that case the cell
is labeled as “interesting.” Only those cells are recursively split into sub-cells,
which are again evaluated, and so on. The recursion stops either if the cell can-
not contain Hausdorff distances meeting the criteria for a valid object location
or if the cell reaches pixel-size. The quick evaluation of a cell containing many
transformations is based on the observation that the distance transform �

[
x, y

]

decreases at most by 1 between adjacent pixels. Hence, many transformations
with similar parameters can be ruled out if �

[
x, y

]
is large for a certain parameter

setting. For details the interested reader is referred to [9].

3.4.1.3 Pseudocode

function findAllObjectLocationsHausdorffDist (in scene image

S, in model point set M, in thresholds fF, fR, τF, τR, out pos-

ition list p)

// calculate edge point information

detect all edge points e based on image gradients, e.g. by

non-maximum suppression and hysteresis thresholding (Canny)

set scene image point set I to locations of edge points e



56 3 Transformation-Search Based Methods

// preprocessing: calculate distance transform

for y = 1 to height (S)
for x = 1 to width (S)

calculate �
[
x, y

]
(Equation 3.10)

next

next

// scanning of transformation space

s ← sstart // set cell size to start size (coarse level)

while s ≥ 1 do

set the step sizes of the six transformation parameters

such that one step causes at most s pixels position diff.

// sampling-loop (actually six nested for-loops)

// use step sizes just derived

for each possible transformation cell (t’s within bounds)

if current cell of transformation space has not been

rejected already then

// evaluation of forward distance

r ← 0 // initialize number of rejected points

while unprocessed model points exist do

m ← next unprocessed point of M
if � [t (m)] > τF then

r ← r + 1 // reject current point

if r/NM > 1− fF then

r ← NM // forward distance too high

break // abort while-loop through all m
end if

end if

end while

if r/NM > 1− fF then

mark current cell defined by t as “rejected ”

else

// forward-dist. ok -> evaluate reverse dist.

calculate reverse distance hfR
t (I, t (M))

if hfR
t (I, t (M)) > τR then

mark current cell defined by t as “rejected”

else if s == 1 then

// finest sampling level-> object found

append position defined by t to p
end if

end if

end if

next

adjust cell size s // e.g. multiplication with 0.5

end while
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// post-processing

merge all adjacent positions in p such that only local

minima of the hausdorff distance are reported

3.4.1.4 Example

Two examples where the Hausdorff distance is used for object recognition are shown
in Figs. 3.5 and 3.6. In each case the objects to be found have been undergone a per-
spective transformation. For each example the model point set is shown in part (a),
followed by the scene image where the object has been undergone a projective trans-
formation (b), the point set extracted from the scene image by edge detection (c) and,
finally, all recognized instances in the scene image overlaid on the scene image point
set in bold black (d). The point sets are set to edge pixels, which can be extracted,
e.g., with the Canny detector including non-maximum suppression (cf. [3]).

It can be seen that all instances are recognized correctly, even in the presence
of clutter and partial occlusion (second example). The computational complexity is
very high, because of the rather high dimensionality of the transformation space (six
dimensions, as the parameters of an affine transformation are estimated) as well as
the cardinality of the sets (in the order of magnitude of 1,000 points for the model

Fig. 3.5 Taken from Rucklidge [9]2 showing an example of the detection of a logo

2 With kind permission from Springer Science+Business Media: Rucklidge [9], Fig. 1, © 1997
Springer.
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Fig. 3.6 Taken from Rucklidge [9]3 showing another example of the detection of a logo with
partial occlusion

and 10,000 points for the scene image). As a consequence, Rucklidge reported exe-
cution times in the order of several minutes for both examples. Even if the used
hardware nowadays is out of date, the method seems infeasible for industrial appli-
cations. But the method is not restricted to low-level features like edge pixels which
occur in large numbers. When high-level features like line segments are used, the
number of points in the point sets can be reduced significantly.

3.4.1.5 Rating

Due to the flexible object model consisting of an arbitrary point set a large range
of objects, including complex shaped objects, can be handled with this method.
The model generation process, which, e.g., extracts all points with gradient above
a certain threshold from a training image, imposes no a priori constraints about the
object appearance. Moreover, because of the usage of partial distances the method
is robust to occlusion and clutter.

On the other hand, the gradient threshold also implies a dependency on the illu-
mination: if the image contrast is reduced in the scene image, some points might
be missed which are contained in the model. Additionally, the method tends to be

3With kind permission from Springer Science+Business Media: Rucklidge [9], Fig. 2, © 1997
Springer.
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sensitive to erroneously detect object instances in image regions which are densely
populated with pixels featuring a high gradient (“false alarms”). Therefore, Ulrich
and Steger [10] reported the robustness inferior to other methods in a comparative
study. In spite of the significant speedup when searching the transformation space,
the scheme still is very slow. One reason is that no hierarchical search in the image
domain is applied. Finally, the method doesn’t achieve sub-pixel accuracy.

3.4.2 Variants

3.4.2.1 Variant 1: Generalized Hausdorff Distance

In addition to the gradient magnitude, most edge detection schemes determine
gradient orientation information as well. As the object recognition scheme utiliz-
ing the Hausdorff distance discussed so far doesn’t use this information, Olson
and Huttenlocher [8] suggested a modification of the Hausdorff distance which is
applicable to sets of edge pixels and also considers orientation information of the
edge points. For example, the thus obtained generalized forward Hausdorff distance
ha (M, I) is defined as

ha (M, I) = max
m∈M

min
i∈I

max

(∥∥
∥∥

[
mx − ix
my − iy

]∥∥
∥∥ ,

∣∣mϕ − iϕ
∣∣

a

)

(3.11)

The original h (M, I) serves as a lower bound for the new measure, i.e., the gradient
orientation difference mϕ−iϕ between a model and an image point is considered as a
second measure and the maximum of these two values is taken for the calculation of
ha (M, I). The parameter a acts as a regularization term which enables us to compare
location and orientation differences directly. For a robust detection the fF-quantile
instead of the maximum distance of all points m ∈ M can also be used.

Please note that the distance transform �
[
x, y

]
now becomes a 3D function, with

the additional dimension characterizing the distance measure evolving from orienta-
tion differences. An elegant way of considering this fact is to use separate models for
each possible rotation step of the object to be found, e.g., by successively rotating
the object model with a certain step size.

According to Olson and Huttenlocher [8], the additional consideration of the
orientation information leads to a significantly decreased false alarm rate, espe-
cially in densely populated image regions. Interestingly enough, they also reported a
considerable acceleration of the method as fewer transformations have to be checked
during the search.

3.4.2.2 Variant 2: 3D Hausdorff Distance

Another suggestion made by Olson and Huttenlocher is to extend the method to
a recognition scheme for 3D objects undergoing projective transformation. To this
end, each object is represented by multiple models characterizing its shape from a
specific viewpoint. Each model is obtained by rotating a sample of the object in 3D
space with a certain step size. The recognition phase is done by calculation of the
Hausdorff distance to each model.
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An observation which can be exploited for accelerating the scheme is that at least
a portion of the models should be very similar with respect to each other. To this end,
the models are clustered hierarchically in a tree structure during the training phase.
Each model is represented by a leaf at the bottom tree level. In higher levels, the most
similar models/leafs (or, alternatively, nodes already containing grouped leafs) are
grouped to nodes, with each node containing the portion of the edge points identical
in the two sub-nodes/leafs. The congruence incorporated in this structure can be
exploited in the recognition phase in a top-down approach: if the point (sub-)set
assigned to a certain node suffices for a rejection of the current transformation, this
holds for every leaf belonging to this node.

3.4.2.3 Variant 3: Chamfer Matching

A closely related approach, which is called “hierarchical chamfer matching”,
has been reported by Borgefors [2]. It utilizes the average distance of all trans-
formed model points to their nearest image point as a distance measure instead
of a quantile. For a rapid evaluation a distance transform is used, too. There
exists a fast sequential way of calculating the distance transform of a scene
image point set by passing the image only twice. Sequential distance trans-
forms are known as “chamfer distances” explaining the name of the method. The
search of the transformation space is not done by brute force; instead, the algo-
rithm relies on reasonable initial position estimates which are refined by iterative
optimization.

Speedup is achieved by employing a hierarchical search strategy, where an image
pyramid of the edge image of the scene (edge pixels are used as point sets) is built. A
distance transform can be computed for each level of the pyramid. As the start image
is a binary image, averaging or smoothing operations for calculating the higher lev-
els of the pyramid obviously don’t work. Therefore a logical “OR” operation is used
when adjacent pixels are summarized for higher levels.

Compared to the Hausdorff distance, chamfer matching has the property that due
to averaging occluded model points still contribute to the reported distance value
if a minor part of the object is not visible. Another point is the lack of a measure
comparable to the reverse Hausdorff distance: this results in an increased sensitivity
to false alarms in densely populated image regions which contain many edge points.

3.5 Speedup by Rectangular Filters and Integral Images

3.5.1 Main Idea

In their article “Robust Real-time Object Detection,” Viola and Jones [12] proposed
a transformation-search-based method which is optimized for computation speed.
They showed that their scheme is capable to do real-time processing when applied
to the task of detection of upright, frontal faces.

The method localizes instances of a single object class by applying a set of
rectangular-structured filters to a query image instead of using a point set. The
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filter kernels are reminiscent of Haar wavelet filters , as they can be represented by
a combination of step-functions and consist of piecewise constant intervals in 2D.
The input image is convolved with a set of filters at various positions and scales.
Subsequently, a decision whether an object instance is present or not can be made
at each position. These decisions are based on weighted combinations of the filter
outputs. In other words, the

[
x, y, s

]
-space is searched.

The search can be done very fast, because the specific shape of the rectangular
filters allows for an extremely efficient implementation of the convolutions with the
help of so-called integral images. Additionally, the outputs of different filters are
combined in a smart way such that most of the time only a fraction of the filter set
has to be calculated at a particular position. Overall, three major contributions are
to be mentioned:

• Integral images: prior to recognition, a so-called integral image F is derived from
the input image I. Roughly speaking, F contains the integrated intensities of I
(details will follow). This pre-processing allows for a very rapid calculation of
the filter responses, as we will see below.

• Learning of weights: as there are many possible instances of rectangular-shaped
filter kernels, it has to be decided which ones to use and how to weight the indi-
vidual outputs of the chosen filters. These questions are answered by a modified
version of the AdaBoost algorithm proposed by Freund and Schapire [6], which
learns the weights of the filters from a set of sample images in a training phase.
The weighting favors filters that perform best if a single filter is utilized for object
detection.

• Cascaded classifying: for speed reasons, not the complete filter set is applied to
every position and scale. Instead, only a small subset of the filters searches the
complete transformation space. Just promising areas, where a simple classifier
based on these few filter responses reports possible object locations, are examined
further by larger subsets, which are used to refine the initial estimate in those
areas, and so on. This proceeding enables us to sort out large regions of I, which
are very likely to be background, very quickly.

3.5.2 Filters and Integral Images

The filter kernels used by Viola and Jones [12] exhibit a rectangular structure and
consist of two to four sub-rectangles. Some examples can be seen in Fig. 3.7. The
filter output fi of the convolution of an input image I with such a kernel ki is defined
by the sum of the intensities of I which are covered by the white areas minus the
sum of intensities covered by the black areas.

Fig. 3.7 Examples of filter
kernels utilized by Viola and
Jones
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Hence, the filter is well suited for rectangular-structured objects and yields high
responses for object areas with a partitioning similar to the filter kernel. Different
scales during search can be covered by different kernel sizes.

Overall, a great multitude of combinations of two to four sub-rectangles are pos-
sible. Note that the kernel center position, which is set arbitrarily by definition, can
be shifted with respect to the actual center of the filter structure. Therefore multiple
kernels with identical configurations of sub-rectangles exist.

The learning algorithm presented below has to choose the most promising filter
configurations for the recognition phase. In order to make this task feasible the vari-
ety of kernels can be restricted, e.g., by considering only sub-rectangles of equal
size, limiting the number of overall kernel sizes, or considering only small shifts or
shifts spaced at a rather large step size.

The so-called integral image F is specified as follows: its value at position
[
x, y

]

is defined by the sum of intensities of I considering all pixels located inside the
rectangular area ranging from [0, 0] up to and including

[
x, y

]
:

F (x, y) =
x∑

a=0

y∑

b=0

I (a, b) (3.12)

An example can be seen in Fig. 3.8, where the integral image is calculated for a
simple cross-shaped object.

The integral image F can be calculated in a pre-processing stage prior to recog-
nition in a recursive manner in just one pass over the original image I as follows:

R (x, y) = R (x, y− 1)+ I (x, y) (3.13a)

F (x, y) = F (x− 1, y)+ R (x, y) (3.13b)

where R (x, y) denotes the cumulative row sum. R and F are initialized by
R (x,−1) = 0 and F (−1, y) = 0.

By usage of F a very fast calculation of the convolution of I with one of the rect-
angular filter kernels is possible, because now the sum of intensities of a rectangular
area ranging from

[
x0, y0

]
to

[
x1, y1

]
can be calculated by just considering the values

Fig. 3.8 Example of an
integral image (right) of a
cross-shaped object (left)
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Fig. 3.9 Exemplifying the calculation of the sum of intensities in a rectangular region with the
help of integral images

of F at the four corner points of the region instead of summing up the intensities of
all pixels inside:

x1∑

a=x0

y1∑

b=y0

I (a, b) = F (x1, y1)− F (x0, y1)− F (x1, y0)+ F (x0, y0) (3.14)

Figure 3.9 illustrates the proceeding: In order to calculate the intensity sum of the
purple region sown in the top left image, just four values of F have to be considered
(as stated in Equation 3.14). This is shown in the top middle image, where the four
corner points of the region are overlaid in color upon the integral image. The value of
F (x0, y0) defines the sum of intensities of the area marked yellow (as indicated in the
top right image), F (x1, y0) the intensity sum of the red, F (x0, y1) the intensity sum
of the blue, and F (x1, y1) the intensity sum of the green area, respectively (cf. the
images in the bottom row). As a consequence, the intensity sum of any rectangular-
shaped area can be calculated by considering as few as four values of F, regardless
of its size. This allows for an extremely fast implementation of a convolution with
one of the rectangular-shaped filter kernels describe above.

3.5.3 Classification

If multiple filter kernels are applied at a specific position, the question is how to
combine their outputs in order to decide whether an instance of the object is present
at this particular position or not. To this end, a so-called linear classifier cl is chosen:
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its output is set to 1 (indicating that an instance is present) if a weighted combination
of binarized filter outputs bt (which is a classification in itself by thresholding the
“original” filter outputs ft) is larger than a threshold, otherwise the output is set to 0:

cl (x, y, s) =
{

1
∑T

t=1 αt · bt (x, y, s) ≥ 1/2 ·∑T
t=1 αt

0 otherwise
(3.15)

where the αt denotes the weights of the particular filters. Details of linear classifica-
tion can be found in Appendix B.

Now it is also clear why shifted kernels with identical sub-rectangle configura-
tion are used: it’s because filters responding to different parts of the object should
contribute to the same object position.

In order to formulate such a classifier, the two tasks of selecting the filter ker-
nels kt and determining their weights αt are solved in a training step with the help
of a set of positive as well as negative training samples (i.e., images where the
object is not present). To this end, Viola and Jones [12] suggest an adapted version
of the AdaBoost algorithm (see Freund and Schapire [6]), where so-called “weak
classifiers” (which show relatively high error rates, but are simple and fast) are com-
bined to a so-called “strong classifier” . This combination, which can be a weighted
sum, enables the strong classifier to perform much better (“boost” its performance)
compared to each of the weak classifiers.

The learning of the weights αt and the selection of the kernels kt is done in T
rounds of learning. At each round t = 1, ..., T one kernel kt is selected. To this end,
a classification of the training images is done for each filter kernel ki based on its
binarized output bi. As the correct classification is known for every training image,
an error rate εi can be calculated for each bi. The kernel with the lowest error rate is
chosen as kt and its weight αt is adjusted to this error rate (low εi lead to high αt).

As training proceeds, the training images themselves are also weighted: if the
weak classifier based on kt misclassifies an image, its weight is increased; otherwise
it is decreased. The error rates in the next round of training are calculated based on
this weighting. This helps to find kernels that perform well for “critical images” in
later rounds. Overall, all terms/factors which are necessary for applying the linear
classifier as defined by Equation (3.15) are determined at the end of training.

Viola and Jones report good detection rates for classifiers consisting of approx-
imately 200 filters for their example of detection of upright, frontal faces. With an
implementation on a 700 MHz Pentium desktop computer processing a 384 × 288
image took approximately 0.7 s, which, however, is still too much for real-time
processing.

In order to achieve a speedup, they altered the classification to a cascaded appli-
cation of multiple classifiers. In the first stage, a classifier consisting of just a few
filters is applied for the whole transformation space. Search in the scale space is
implemented by changing the filter size. In the next stage, a second classifier, which
is a bit more complex, is applied only at those

[
x, y, s

]
-positions where the first

one detected an instance of the object. This proceeding goes on for a fixed number
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of stages, where the number of filters contained in the classifiers increases pro-
gressively. At each stage, positions, which are highly likely to be background, are
sorted out. In the end, only those positions remain which are classified to contain an
instance of the object to be searched.

Each classifier has to be trained separately by the boosting procedure just
described. Please note that, compared to the threshold used in Equation (3.15),
the decision threshold has to be set much lower as we don’t want the classi-
fier to erroneously sort out positions where an object instance is actually present.
Nevertheless, much of the background can be sorted out very quickly in the first
stages. Experiments by Viola and Jones revealed that a speedup of a factor of about
10 could be achieved for a 10-stage cascaded classifier with 20 filters at each stage
compared to a monolithic classifier of 200 filters at comparable detection rates for
the example application of face detection.

3.5.4 Pseudocode

function detectObjectsCascadedClassify (in Image I, in list of

linear classifiers cl, out position list p)

// calculate integral image

for y = 1 to height (I)
for x = 1 to width (I)

calculate F(x,y) according to Equation 3.13

next

next

// cascaded classification

init 3D array map with 1’s // 1: obj. present; 0: no obj.

for i = 1 to number of stages

for y = 1 to height (I) step yStep
for x = 1 to width (I) step xStep

for s = 1 to smax step sStep
if map(x,y,s) == 1 then // current pos still valid

for t = 1 to nbr of kernels of current stage i
scale kernel ki,t acc. to current scale s

convolve I with filter kernel ki,t, use F
next

// classification according to cli
if cli(ki,1,. . .,ki,T)==0 then

map(x,y,s) ← 0 // mark as background

end if

end if

next

next
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next

next

// determine all valid object positions

for y = 1 to height(I) step yStep
for x = 1 to width(I) step xStep

for s = 1 to smax step sStep
if map(x,y,s)==1 then

append position [x,y,s] to p

end if

next

next

next

3.5.5 Example

Viola and Jones report experimental results for the detection of upright, frontal
faces. In the training images, the faces were approximately 24 × 24 pixel in
size. Their cascaded detector consists of 32 stages with approximately 4,300 fil-
ters used in total. As far as the detection rates are concerned, this classifier performs
comparable to other state-of-the-art detectors for that task, but takes much less time.

Fig. 3.10 Showing an example of the detection of an upright, frontal face with the filter kernels
used in the first stage of the cascaded classification proposed by Viola and Jones [12]
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They report processing times of about 70 ms for a 384 × 288 image on a 700 MHz
Pentium processor.

Apparently, the combination of extremely fast filtering by integral images with
the speedup through cascading works very well. In fact, the classifier used in
first stage consists of as few as two filters and discards approximately 60% of
the background region while almost 100% of the objects are retained at the same
time.

An example can be seen in Fig. 3.10: the two filters selected by AdaBoost for the
first stage relate to the facts that the eye regions typically are darker than the upper
cheeks (first filter) and usually also darker than the bridge over the nose (second
filter). The results of the convolution of these two filters with an example image are
shown in the second row (bright areas indicate high convolution results).

3.5.6 Rating

On the positive side, in contrast to many other transformation-based schemes the
method proposed by Viola and Jones is extremely fast. Real-time processing of
video sequences of medium sized image frames seems possible with this method
when using up-to-date hardware. Additionally, detection results for the example
application of upright, frontal face recognition are comparable to state-of-the-art
methods.

On the other hand, the extremely fast filtering is only possible for-rectangular-
shaped filter kernels. Such a kernel structure might not be suited for some object
classes. Clearly, the kernels fit best to objects showing a rectangular structure them-
selves. However, the authors argue that due to the extremely fast filtering a large
number of filters can be applied (much larger compared to other methods using
filter banks), which should contribute to alleviate such a misfitting. Another disad-
vantage which has to be mentioned is that the method does not explicitly account
for differences of object rotation between training and recognition.
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Chapter 4
Geometric Correspondence-Based Approaches

Abstract Correspondence-based approaches are often used in industrial applica-
tions. Here, the geometry of the objects to be found is usually known prior to
recognition, e.g., from CAD data of the object shape. Typically, these methods are
feature based, meaning that the object is characterized by a limited set of primitives
called features. For example, the silhouette of many industrial objects can be mod-
eled by a set of line segments and circular arcs as features. This implies a two-stage
strategy during the recognition phase: in a first step, all possible locations of features
are detected. The second step tries to match the found features to the model, which
leads to the pose estimation(s) of the found object(s). The search is correspondence
based, i.e., one-to-one correspondences between a model feature and a scene image
feature are established and evaluated during the matching step. After a short intro-
duction of some feature types, which typically are used in correspondence-based
matching, two types of algorithms are presented. The first type represents the cor-
respondences in a graph or tree structure, where the topology is explored during
matching. The second method, which is called geometric hashing, aims at speeding
up the matching by the usage of hash tables.

4.1 Overview

In industrial applications the geometry of the objects to be found is usually known
a priori, e.g., shape information can be supplied by CAD data or another kind of
“synthetic” description of object geometry. Hence, there is no need to train it from
example images, which potentially contain some kind of imperfection like noise,
scratches, or minor deviations of the actual object shape compared to the ideal.
Usually, this results in a more accurate representation of the object geometry. This
representation, however, also involves a concentration on the geometric shape of
the object; other kinds of information like gray value appearance or texture can not
be included.

Typically, the object representation is feature based, i.e., the objects are
characterized by a set of primitives called features. The silhouette of many industrial
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parts can be modeled by a set of line segments and circular arcs as features, for
example.

During recognition, we can take advantage of this feature-based representation
by applying a two-stage strategy: the first step aims at detecting all positions where
features are located with high probability. Sometimes the term “feature candidates”
is used in this context. In the second step we try to match the found features to the
model. This matching is correspondence-based, i.e., one-to-one correspondences
between model and image features are established and evaluated. Pose estimation(s)
of the found object(s) can then be derived from the correspondences.

There exist several degrees of freedom as far as the design of correspondence-
based algorithms is concerned, the most important are as follows:

• Selection of the feature types, e.g., line segments, corners.
• Selection of the detection method in order to find the features. Of course, this

strongly relates to the types of features which are to be utilized.
• Selection of the search order for evaluating the correspondences in the matching

step. The a priori knowledge of the object geometry can be exploited for the
deduction of an optimized search order, e.g., salient parts of the model, which
are easy to detect and/or characterize the object class very well, are detected first.
This yields a hypothesis for the object pose, which can be verified with the help
of other parts/features of the object.

Before some algorithms making use of geometric features for an evaluation of
correspondences are presented, let’s briefly review what kinds of features can be
used and how they are detected.

4.2 Feature Types and Their Detection

The algorithms presented in this chapter perform object recognition by matching a
set of feature positions to model data. Therefore the features have to be detected
prior to the matching step. A great number of methods dealing with feature detec-
tion have been proposed over the years. As the main focus of this book lies on the
matching step, a systematic introduction into feature detection shall not be given
here. Let’s just outline some main aspects of the field.

Most of the geometry-based algorithms presented in this book make use of two
different kinds of feature types: one category intends to model the object contour
(which is usually represented in the image by a curve of connected pixels featuring
high intensity gradients) by a set of primitives like line segments and circular arcs.
In contrast to that, some methods try to detect more or less arbitrarily shaped parts
of the contour with the help of so-called geometric filters.

The main principle of both approaches shall be presented in the following. It
should be mentioned, however, that – apart from the original proposition – the
feature types can be used interchangeably for most of the matching methods.
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4.2.1 Geometric Primitives

In the case of the usage of primitives, feature detection is composed of three steps:

1. Edge point detection: As the object contour should be represented by pixels with
high intensity gradient, the edge pixels are detected first, e.g., with the canny
operator including non-maximum suppression (cf. [2]).

2. Edge point linking: Subsequently, the found edge pixels are combined to curves
of connected pixels. To this end, a principle called hysteresis thresholding can
be applied: pixels with very high-gradient magnitude (i.e., when the gradient
magnitude is above a certain threshold) serve as starting points (“seeds”). In a
second step, they are extended by tracing adjacent pixels. A neighboring pixel
is added to the current curve if its gradient remains above a second, but lower
threshold. This process is repeated until the curve cannot be extended any longer.
In fact, the last step of the canny operator adopts this strategy (see Appendix A
for details).

3. Feature extraction: In the last step the thus obtained curves are approximated by
a set of feature primitives. Some algorithms exclusively use line segments for this
approximation, e.g., the method proposed by Ramer [8], which will be explained
in more detail below. Of course, this is not sufficient if the object contour features
circular parts, therefore there exist algorithms for a joint segmentation of the
curve into line segments and circular arcs as well (see e.g. [3])

4.2.1.1 Polygonal Approximation

If a curve can be approximated accurate enough by line segments only, comparative
studies performed by Rosin [9] revealed that one of the oldest algorithms, which
was presented by Ramer [8], performed very good. The main principle of the so-
called polygonal approximation of the curve is a recursive subdivision of the current
approximation at positions where the distance of the approximating polygon to the
curve (i.e., the approximation error) attains a maximum.

The proceeding is illustrated in Fig. 4.1. Iteration starts with a single line con-
necting the two end points of the curve (or, in the case of a closed curve, two
arbitrarily chosen points located sufficiently far away from each other). At each
iteration step i the pixel pi,max of the curve with maximum distance di,max to the
approximation is determined. If di,max is above a certain threshold ε, a subdivision
of the line is performed, where pi,max is taken as a new end point of the two sub-
lines. The same procedure can be recursively applied to each of the two sub-lines,
and so on. Convergence is achieved if the maximum deviation of the curve to the
approximating polygon remains below ε for all curve pixels.

4.2.1.2 Approximation with Line Segments and Circular Arcs

A lot of different methods have been proposed for the segmentation of a curve into
line segments and circular arcs. Roughly speaking, they can be divided into two
categories:



72 4 Geometric Correspondence-Based Approaches

d1

d2

Fig. 4.1 Illustrative example of the approximation scheme proposed by Ramer [8], which consists
of two iteration steps here: in the left part, a curve (blue) together with the initial approximation line
(black) is shown. As the maximum distance d1 between the curve and its approximation (position
marked red) is larger than ε, the line is subdivided (middle). In a second step, the lower line segment
is subdivided again (d2 > ε); the final approximation is shown on the right

• Algorithms intending to identify so-called breakpoints on the curve (which define
the starting and end points of the lines and arcs) with the help of an analysis of
the curvature of the curve.

• Methods where the curve is approximated by line segments only first. A subse-
quent step explores if there are segments which can be combined again, e.g., to
circular arcs.

A method falling into the first category (analysis of curvature) was suggested by
Chen et al. [3]. In this method curvature is modeled by the change of the orienta-
tions of tangents on the curve. At each curve pixel pi a tangent on the curve passing
through pi can be determined. In the case of high curvature, the orientations of the
tangents change rapidly between adjacent curve pixels, whereas parts with low cur-
vature are indicated by nearly constant tangent orientations. The tangent orientation
ϑi,k as well as its first derivative δi,k can be calculated directly from the positions of
two neighboring curve pixels as follows:

ϑi,k = tan−1
(

yi − yi−k

xi − xi−k

)
(4.1)

δi,k = tan−1
(

yi+k − yi

xi+k − xi

)
− tan−1

(
yi − yi−k

xi − xi−k

)
(4.2)

where
[
xi, yi

]
determines the position of curve pixel pi (for which the tangent ori-

entation is calculated), i serves as an index passing through the curve pixels, and,
finally, k defines the shift between the two pixels considered and thus the scope of
the calculations.

Based on an evaluation of ϑi,k and δi,k Chen et al. [3] define two ways of segment-
ing the curve: on the one hand, corners (which usually occur at intersections between
two line segments and therefore define starting- and end points of the line segments)
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are indicated by a discontinuity in curvature. Such discontinuities are detected by a
peak search in the first derivative δ(i) of the tangent orientation function.

Please note that corners, however, are not sufficient for the detection of all
end points of circular arcs. Sometimes a “smooth join” (where no discontinuity
is present) can be observed at transitions between a line segment and a circular arc
or two arcs. But a circular arc involves sections in the tangent orientation function
ϑ(i) where the slope of ϑ(i) is constant and non-zero. Therefore it can be found by
fitting a line segment with non-zero slope into ϑ(i) and taking the end points of the
segment as breakpoints (see Table 4.1 for an example).

The breakpoints define the position of the starting point and end point of each
primitive. The parameters of the primitives can be estimated for each primitive sep-
arately by minimization of the deviation between the positions of the curve pixels
and the primitive.

A drawback of the usage of curvature, however, is its sensitivity to noise. In order
to alleviate this effect the curve is smoothed prior to the calculation of the tangent
orientation functions. However, smoothing also involves a considerable shift of the
breakpoint locations in some cases. Therefore the breakpoint positions are refined
in a second stage, which is based on the original data (for details see [3]).

Table 4.1 Example of curve segmentation into line segments and circular arcs according to [3]

Image of a coin cell including its 
contacts (left) and its outer contour 
detected with the canny operator 
including non-maximum suppression 
(right).The breakpoints/corners are
 marked by red circles

Tangent orientation function ϑ(i) 
calculated from the outer contour. The
starting point at i = 0 is the upper left
corner (light red circle in the contour
image). i increases as the curve is 
traversed clockwise (red arrow)

δ(i), which is the first derivative of

ϑ(i). All detected peaks are marked by
red circles and correctly correspond to
their true locations. The starting point
is again marked light red

ϑ(i) with detection result: sections
parallel to the i-axis (marked green) 
define line segments, whereas sections
with constant slope >0 define circular
arcs of the contour (marked red )
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4.2.2 Geometric Filters

The technique of so-called geometric filters is not widely spread, but can be very
efficient in certain cases. A geometric filter consists of a set of point pairs which are
arranged along the object contour which is to be modeled. The two points of each
point pair are located at different sides of the object contour: one point is located
inside the object and the other one outside.

Figure 4.2 illustrates the principle for a rectangular-shaped feature: A dark rect-
angle is depicted upon a bright background. The black lines define the pixel grid.
Altogether, the filter consists of 12 point pairs (each pair is marked by a blue ellipse),
where each point pair is made up of a “+” (red) and a “–” point (green). The “+”
points are located on the brighter, the “–” points on the darker side of the object
boundary.

In order to decide whether a feature which corresponds well to the shape of the
geometric filter is present at a specific position in a query image I, the filter can be
positioned upon this specific image position – like a template image for cross coef-
ficient calculation – and a match score can be calculated. To this end, the intensity
difference of the two pixels which are covered by the two points of a single point
pair is calculated for each point pair. Coming back to Fig. 4.2 helps to explain the
issue: if the gray value of the “+”-pixel exceeds the gray value of the “–”-pixel by
at least a certain threshold value tGV , a point pair “matches” to the image content at
a given position. This criterion can be written as follows:

I (x+, y+) ≥ I (x−, y−)+ tGV (4.3)

The match score of the entire filter can then be set to the fraction of all point
pairs fulfilling Equation (4.3), related to the overall number of point pairs. Hence,
the match score can range between 0 (no point pair fulfills Equation (4.3)) and 1
(Equation (4.3) is fulfilled by all point pairs). If the filter is located exactly upon
the object contour from which it was derived, there exist many pairs with one

Fig. 4.2 Exemplifying the
functional principle of
geometrical filters
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point being located outside and the other one inside the object. As a consequence,
Equation (4.3) is fulfilled for many pairs, which leads to a high match score at this
position.

If the filter is shifted over the image a 2D matching function can be computed.
All local maxima of the matching function exceeding a threshold indicate occur-
rences of the feature to be searched. In fact, this proceeding relates closely to 2D
correlation with a template, but in contrast to correlation only a subset of the pixels
is considered. This involves a concentration on the parts with high information con-
tent (the contour) as well as faster computations. On the other hand, however, the
filter is more sensitive to noise.

However, information about the shape of the features must be available in
advance in order to design suitable filters. Interestingly, though, this a priori knowl-
edge can be utilized in order to make the matching method more robust, because it
is possible “suppress” certain areas and concentrate on parts of the object that are
known to be stable. For example, some regions of the object to be detected could
be salient in a single image (and thus would lead to many edge points), but could
change significantly between two different batches of the object (e.g., inscriptions)
and therefore should not be considered during recognition.

Please note also that due to the distance between the “+”- and “–”-points of each
pair the filter allows for minor object deformations. If, for example, the course of the
rectangle boundary depicted in Fig. 4.2 was slightly different, Equation (4.3) would
still hold for all point pairs. Therefore the extent of acceptable contour deformation
can be controlled by the choice of the pixel distance between the two points of a pair.
As a consequence, geometric filtering also allows for minor rotation and/or scaling
differences without explicitly rotating or scaling the filter.

Compared to the usage of geometric primitives, the filter-based approach has
the advantage that arbitrary object contours can be modeled more exactly as we
are not restricted to a set of primitives (e.g., lines and circular arcs) any longer.
Moreover, the filters are quite insensitive to contour interruptions, e.g., due to
noise or occlusion, at least as long as only a minor portion of the point pairs is
affected. Contrary to that, a line segment can break into multiple parts if noise
causes interruptions in the grouped edge pixels. On the other hand, the method
becomes impractical if a large variance in rotation and/or scaling of the feature to
be detected has to be considered. This stems from the fact that the match scores
have to be calculated with many rotated and/or scaled versions of the filter in that
case, resulting in a significant slow down.

4.3 Graph-Based Matching

4.3.1 Geometrical Graph Match

4.3.1.1 Main Idea

One approach to model the geometry of objects is to represent them as graphs : a
graph G = (N, E) consists of a set of nodes N as well as a set of edges E, where each
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edge e(a, b) links the two nodes na and nb. Each node represents a salient feature of
the object (e.g., a characteristic part of the contour like a line, corner or circular arc);
each edge represents a geometric relation between two nodes (e.g., the distance of
their center points). Such a model doesn’t have to be trained, it can, e.g., be derived
from CAD data (which is usually available in industrial applications), thus avoiding
a disturbing influence of imperfections of the training data (e.g., noise, small object
deformations) during the model formation process.

The graph represents a rigid model: feature distances, for example, are an explicit
part of the model. Thereby, the model doesn’t allow for much intra-class variation.
This property might not be suitable for the interpretation of real-world scenes, but
in industrial applications it is often desirable, as the objects to be recognized must
fulfill certain quality criteria, e.g., placement machines of SMT components must
check that all connections are not bent in order to ensure that every connection is
placed properly on the corresponding pad of the printed circuit board.

Matching between the model and scene image content is done with the help of
a so-called association graph (cf. Ballard and Brown [1]). Each node nq of the
association graph represents a combination of a model feature xM,i(q) and a fea-
ture candidate xS,k(q) found in the scene image. Hence, the graph nodes represent
pairings between model and scene image features. Two nodes na and nb of the asso-
ciation graph are connected by an edge e(a, b) if the distance between the model
features represented by the two nodes (xM,i(a) and xM,i(b)) is consistent with the dis-
tance between the found feature candidates xS,k(a) and xS,k(b). For the definition of
“consistent” in this context a so-called bounded error model can be applied: a graph
edge e(a, b) is only built if the difference of the inter-feature distance between two
features of the model and two features of the scene image doesn’t exceed a fixed
threshold td:

∣∣∥∥xM,i(a) − xM,i(b)

∥∥− ∥∥xS,k(a) − xS,k(b)

∥∥∣∣ ≤ td (4.4)

A match is found when enough feature correspondences are consistent with respect
to each other in the above sense (details see below). Finally, the object pose can be
estimated based on the found correspondences.

4.3.1.2 Recognition Phase

Object recognition using graph models can be performed in four steps (cf. Fig. 4.3):

1. Feature detection: at first, feature candidates are detected in a scene image and
their position is estimated. This can be done with the help of an edge detection
operator, followed by a linking process grouping the detected edge points to
features like line segments, circle arcs as described in the previous section.

2. Association graph creation: The association graph is built node by node by a
combinatorial evaluation of all possible 1 to 1 correspondences between the
detected feature candidates and the model features. It is complete when each
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Fig. 4.3 Algorithm flow of geometrical graph matching after the initial feature extraction step

possible feature combination is represented by a node and it has been checked
whether each possible node pairing can be connected by an edge.

3. Matching: The next step aims at determining the correct matching between
model and scene image features. For a better understanding let’s have a look at
the information content of the graph: Each node in the association graph can be
interpreted as a matching hypothesis defining a specific transformation between
model and scene image (and thus defining an object position in the scene image).
Graph edges indicate whether a matching hypothesis is broadly supported by
multiple nodes and thus is reliable or just is a spurious solution. Hence, the cor-
rect matching can be found by detecting the largest clique c of the graph, i.e.,
the largest sub-graph where all node pairs are exhaustively connected by an edge
(An example is given in Table 4.2).

4. Position estimation: With the help of these correspondences, the parameters of
a transformation t determining the object position in the scene image can be
calculated in the last step. To this end, similarity or rigid transformations are typ-
ically used in industrial applications. Without going into detail, these parameters
can be determined by setting up an error function Ec quantifying the remaining
displacements between the positions of the scene image features xS,k and the
transformed positions of the model features t

(
xM,i

)
. Under certain assumptions,

the minimization of E leads to an over-determined linear equation system with
respect to the model parameters. This equation system can be solved with a least
squares approach revealing the desired parameters (cf. the digital image process-
ing book written by Jähne [6], a more detailed theoretical overview of parameter
estimation is given in [4]).
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The proceeding just described allows for translation and rotation; in order to
allow for considerable scaling an alternative way to build edges of the association
graph can be applied: a scaling factor is estimated when the first edge of a graph
clique is built; additional edges are only added to the clique if the scaled distances
are consistent with this estimation.

Please note that – as only distances are checked during graph creation – the
method also produces a match when a feature set is compared to its mirrored version.

4.3.1.3 Pseudocode

function detectObjectPosGGM (in Image I, in model feature data
[xM , lM], in distance threshold td, in recognition threshold tr,
out object position p)

detect all feature candidates in scene image I :
[
xS, lS

]

// graph creation

// nodes

for i = 1 to number of model features

for k = 1 to number of scene features

if lM,i = lS,k then // features have the same label

insert new node n (i, k) into graph

end if

next

next

// arcs

for a = 1 to number of nodes-1

for b = a + 1 to number of nodes

// distance between model features of nodes na and nb
dM (a, b) ← ∥∥xM,i(a) − xM,i(b)

∥∥

// distance between scene features of nodes na and nb
dS (a, b) ← ∥

∥xS,k(a) − xS,k(b)

∥
∥

if |dM (a, b)− dS (a, b)| ≤ td then // dist below threshold

connect nodes na and nb by an edge e(a, b)
end if

next

next

// detection

find largest clique c in graph G = (N, E)

nc ← number of nodes in c
if nc ≤ tr then // sufficient features could be matched

perform minimization of position deviations

p ← arg min (Ec (p)) // minimization of position deviations

else

p ← invalid value // object not found

end if
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4.3.1.4 Example

Table 4.2 Geometrical graph match example: a scene image with 6 found feature candidates 1–6
is matched to a model consisting of 4 features A–D

Location of four model features (green,
A–D) and six features found in a scene
image (red, 1–6). The features 1, 3, 4,
and 6 are shifted and rotated compared
to the model, features 2 and 5 are
additional features, e.g., resulting from
clutter

Matching result: the locations of the
model features are transformed
according to the found parameters and
are depicted slightly displaced for a
better illustration

Association graph built during matching. Each circle (node) represents a pairing
between one model and one image feature. Two circles are connected by a line
(edge) if the distances are consistent, e.g. (1,C) is connected to (4,D) because the
distance between scene feature 1 and 4 is consistent with the distance between
model feature C and D. The proper solution is the correspondences (1,A), (4,B),
(3,C), and (6,D). The largest clique of the association graph, which contains exactly
this solution, is shown in red. As easily can be seen, the nodes of the largest clique
are exhaustively connected

4.3.1.5 Rating

As an advantage, geometrical graph matching can handle partial occlusion (as the
remaining features still form a large clique in the association graph) as well as clut-
ter (nodes resulting from additional image features won’t be connected to many
other nodes). However, because it is a combinatorial approach computational cost
increases exponentially with the number of features. Therefore graph matching in
this form is only practicable for rather simple objects which can be represented by a
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small number of features/primitives. In order to reduce the number of nodes in the
association graph, labels l can be assigned to the features (e.g., “line,” “circle arc”).
In that case feature pairing is only done when both features have identical label
assignments. A related approach trying to reduce the computational complexity is
presented in the next section.

Additionally the partitioning into features during recognition can be extended
in a natural way to perform inspection, which is very often required in industrial
applications. The dimensional accuracy of drillings, slot holes, etc., or the overall
object size can often be checked easily, e.g., because drillings or lines may have
already been detected as a feature during recognition.

Another property is that due to an evaluation of inter-feature distances, graph
matching employs a very rigid object model. This is suitable for industrial applica-
tions, but not in cases where the shapes of objects of the same class deviate from
each other considerably.

4.3.2 Interpretation Trees

4.3.2.1 Main Idea

A significant acceleration can be achieved by replacing the combinatorial search for
the largest clique in the association graph by a carefully planned search order. To
this end, the 1-to-1 correspondences between a model feature and a feature candi-
date found in the scene image are organized in a tree (cf. the search tree approach
proposed by Rummel and Beutel [10]). Starting from a root node, each level of
the tree represents possible pairings for a specific model feature, i.e., the first level
consists of the pairings containing model feature 1 (denoted as fM,1; with position
xM,1), the second level consists of the pairings containing model feature 2 (denoted
as fM,2; with position xM,2), and so on. This proceeding implies the definition of a
search sequence of the model features (which feature is to be searched first, second,
third, etc.?), which usually is defined prior to the recognition process. The sequence
can be deduced from general considerations, e.g., features located far away from
each other yield a more accurate rotation and scale estimate and therefore should be
selected in early stages.

Each node nq,1 of the first level can be seen as a hypothesis for the matching based
on the correspondence between a single model and as scene image feature, which
is refined with links to nodes of the next level. Based on this matching hypothesis,
estimates of the transformation parameters t can be derived. A link between two
nodes na,lv and nb,lv+1 can only be built between successive levels lv and lv + 1;
it is established if the transformed position t

(
xM,lv+1

)
of the model feature of the

“candidate node” of level lv+1 (based on the current transform parameter estimates)
is consistent with the position xS,k(b) of the scene image feature of the candidate
node. Each node of level lv can be linked to multiple nodes of level lv + 1. Again,
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a bounded error model can be applied in the consistency check: the deviation of the
positions has to remain below a fixed threshold td:

∥
∥xS,k(b) − t

(
xM,lv+1

)∥∥ ≤ td (4.5)

The structure resulting from the search is a tree structure with the number of levels
being equal to the number of model features. From a node in the “bottom level”
containing the leafs which define pairings for the last model feature, complete cor-
respondence information for a consistent matching of all model features can be
derived by tracking the tree back to the first level.

4.3.2.2 Recognition Phase

In the object recognition phase the tree is built iteratively. In each iteration step,
a single node na,lv is processed (see also example in Table 4.3): For all consistent
pairings between a scene image feature fS,k and the model feature fM,lv+1 new nodes
nb,lv+1 are inserted in the tree at level lv + 1 and linked to the current node na,lv.
To this end, for each node candidate nb,lv+1 (defining a correspondence between the
model feature fM,lv+1 and one feature fS,k(b) of the scene) a so-called cost function
based on the position disparities between model and scene features is calculated.
It can contain a local part (how much is the position deviation between the trans-
formed position of the “new” model feature t

(
xM,lv+1

)
and the corresponding scene

feature position xS,k(b), see Equation 4.5) as well as a global part (how much is
the sum of all position deviations between a transformed model feature position
and the corresponding scene image feature position when tracking the tree from
the root node to the current node candidate). If the cost function remains below a
certain threshold the node is inserted in the tree. The inverse of the cost function
value of each node can be interpreted as a quality value q, which is assigned to
each node.

In order to speedup computation, only a part of the tree is built (cf. Table 4.3,
where only seven correspondences are evaluated compared to 24 nodes of the asso-
ciation graph in geometrical graph matching for the same feature configuration.).
For the identification of one instance of the model object it is sufficient for the tree
to contain only one “leaf-node” at bottom level. Therefore, at each iteration step, we
have to elect the node from which the tree is to be expanded. It should be the node
which is most likely to directly lead to a leaf node. This decision can be done with
the help of a guide value g which is based on the quality value q of the node as well
as the level number lv of the node:

g = wq · q+ wlv · lv (4.6)

With the help of the weighting factors wq and wlv the search can be controlled: high
wq favor the selection of nodes at low lv (where q is usually higher due to lower
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Table 4.3 Tree search example showing the construction process of an interpretation tree
consisting of five steps

A scene image containing six features 
1-6 (red ) is to be matched to a model 
consisting of four features A-D (green). 
The search tree is initialized with an 
empty root node (black ; right ) 

Based on a priori knowledge the location 
of the first feature A can be limited 
to the blue region. As two image features
are located within it, two correspondences
are added to the tree. 

Based on the guide factor, the (wrong) 
correspondence (A,2) is chosen to be 
further processed. A new ROI for 
searching correspondences to feature C 
can be derived (blue region). As no 
scene image feature is located within 
that ROI, the new node is only an 
“estimation node” (red ). 

As the quality of the red node is devalued, 
the node (A,1) is processed next. 
A new correspondence (C,3) is 
found and inserted into the tree. 

In the next step node (C,3) is expanded.
The size of the search region (blue) can 
be reduced as the position estimate
becomes more accurate. Two 
correspondences are found and added 
to the tree.

In the next step, the ROI size can be
reduced further and a correspondence 
for last model feature of the search
order (B) is found. Hence, a complete
solu-tion is available (green node). An 
accu-rate position estimation based on the
found correspondences is also possible.

global cost values) and lead to a mode complete construction of the tree, whereas
high wlv favor the selection of nodes at high lv and result in a rapid construction of
“deep” branches.

In the case of partial occlusion no consistent pairings can be detected for the
next level of some nodes. In order to compensate for this, a node ne,lv+1 containing
the estimated position based on the current transformation can be added to the tree
when no correspondence could be established. Its quality q is devalued by a pre-
defined value.
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Fig. 4.4 Illustrating the proceeding of object detection with interpretation trees for a stamped
sheet as a typical example for an industrial part

The overall recognition scheme in which the search tree is embedded can be
characterized by four main steps (cf. Fig. 4.4, an example of a more complicated
scene with some clutter is presented in Table 4.4)

1. Feature detection: In the first step, all features fS,k =
[
xS,k, lS,k

]
in a scene image

are detected and summarized in the list fS. Their data consists of the position
xS,k as well as a label lS,k indicating the feature type. One way to do this are the
methods presented in Section 4.2, e.g., by a geometrical filter consisting of point
pairs.

2. Interpretation tree construction: Based on the found feature candidates fS as
well as the model features fM the interpretation tree is built. As a result of
the tree construction, correspondences for all model features have been estab-
lished. This step is very robust in cases where additional feature candidates
which cannot be matched to the model are detected. This robustness justifies
the usage of a “simple” and fast method for feature detection, which possibly
leads to a considerable number of false positives. Additionally, for many indus-
trial applications the initial tolerances of rotation and scaling are rather small.
A consideration of this fact often leads to a significant reduction of possible
correspondences, too.

3. Transformation estimation: The four parameters translation
[
tx, ty

]
, rotation θ

and scale s are estimated with the help of the found correspondences.
4. Inspection: Based on the detected features it is often very easy to decide whether

the quality of the part is ok. For example, it could be checked whether the posi-
tion of a drilling, which can easily be represented by a specific feature, is within
its tolerances, etc.



84 4 Geometric Correspondence-Based Approaches

4.3.2.3 Pseudocode

function detectObjectPosInterpretationTree (in Image I, in
ordered list fM of model features fM,i =

[
xM,i, lM,i

]
, in distance

threshold td, in recognition threshold tr, out object position
list p)

detect all feature candidates fS,k =
[
xS,k, lS,k

]
in scene image I

and arrange them in list fS

while fS is not empty do // loop for multiple obj. detection

init of tree st with empty root node nroot and set its quality

value qroot according to maximum quality

bFound ← FALSE

// loop for detection of a single object instance

while unprocessed nodes exist in st and bFound == FALSE do

// expand interpretation tree

choose next unprocessed node ni,lv from st which yields

highest guide value g (Equation 4.6)

get next model feature fM,lv+1 to be matched according to

level lv and search order

calculate position estimate t
(
xM,lv+1

)
for fM,lv+1

find all correspondences between elements of fS and

fM,lv+1 (fS,k must be near t
(
xM,lv+1

)
, see Eq. 4.5) and

arrange them in list c
if list c is not empty then

for k = 1 to number of found correspondences

create new node nk,lv+1 based on current ck
calculate quality value qk of nk,lv+1
if qk ≥ tr then

mark nk,lv+1 as unprocessed

else

mark nk,lv+1 as processed // expansion useless

end if

add nk,lv+1 to st as child node of ni,lv
next

else // no match/correspondence could be found

create new “estimation node” ne,lv+1
calculate quality value qe of ne,lv+1
if qe ≥ tr then

mark ne,lv+1 as unprocessed

else

mark ne,lv+1 as processed // expansion useless

end if

add ne,lv+1 to st as child node of ni,lv
end if
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mark node ni,lv as processed

// are all model features matched?

if fM,lv+1 is last feature of search order then

mark all “new nodes” nk,lv+1 as processed

find node ngoal with highest qual. qmax among nk,lv+1
if qmax ≥ tr then

bFound ← TRUE

end if

end if

end while

if bFound = TRUE then

// refine position estimate based on branch of st from

nroot to ngoal
perform minimization of position deviations

add arg min (Ec (p)) to position list p
remove all matched features from list fS

else

return // no more object instance could be found

end if

end while

4.3.2.4 Example

Table 4.4 Giving more detailed information about the detection and position measurement of
stamped sheets, which are a typical example of industrial parts

Scene image containing several
stamped sheets. Due to specular reflec-
tions the brightness of the planar surface
is not uniform. One object is completely
visible and shown in the upper-left area

Visualization of the detection results for
the lower right corner of the part. It was
detected with an L-shaped point pair filter
Due to ambiguities two positions are
reported
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Table 4.4 (continued)

Visualization of the detection results for 
the stamped hole located in the upper
right area of the part. It is detected 
correctly with a filter with circular
arranged point pairs

View of all detected features (marked
red ). The object model consists of the
holes and some corners, which are 
detected independently. Several additional
features are detected due to clutter

Interpretation tree: found correspon-
dences are marked as green, estimated
correspondences are marked as red. Due
to clutter, many correspondences are 
found for the first feature of the search 
order, but the search is very efficient,
e.g., the  solution is almost unique after
the third level

Matched features of the final solution of 
the tree (marked green). All correspon-
dences are established correctly. An 
inspection step, e.g., for the holes,  could
follow

4.3.2.5 Rating

Like graph matching the interpretation tree approach also employs a very rigid
object model, because the correspondences are built based on inter-feature dis-
tances. This is suitable for industrial applications, where parts very often have to
meet narrow tolerances, but not for many “real-world objects” with considerable
intra-class variations. In general, many statements made for the geometrical graph
matching method are valid for interpretation trees, too, e.g., that the inspection is a
natural extension of the feature-based approach.

Moreover, in spite of being applied to rather complex models, the method is very
fast (recognition time in the order of 10–100 ms are possible), mainly because of
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two reasons: First, the geometric filters efficiently reduce the number of features
subject to correspondence evaluation (compared to, e.g., the generalized Hough
transform, where contour points are used for matching, which are typically much
more numerous). Second, the number of correspondences to be evaluated is kept
small due to pruning the interpretation tree efficiently.

As a consequence, however, the usage of filters involves the limitation that a
priori knowledge is necessary for a proper filter design. Additionally, there exist
object shapes which are not suited to the filter-based approach. Furthermore it has
to be mentioned that – if symmetric components have to be measured – there exist
multiple solutions due to symmetry.

Please note also that the method is much more robust with respect to clutter
(when trying to expand the tree at a node that is based on a correspondence origi-
nating from clutter there is no consistent correspondence very quickly) compared to
occlusion (awkward roots of the tree are possible if the first correspondences to be
evaluated don’t exist because of occlusion).

To sum it up, interpretation trees are well suited for industrial applications,
because the method is relatively fast, an additional inspection task fits well to the
method and we can concentrate on detecting characteristic details of the objects. On
the other hand, the rigid object model is prohibitive for objects with considerable
variations in shape.

4.4 Geometric Hashing

4.4.1 Main Idea

Another possibility to speedup the matching step is to shift computations to a pre-
processing stage that can be performed off-line prior to recognition. To this end,
Lamdan et al. [7] suggest building a so-called hash table based on information
about geometric relations between the features. They use deep concavities and sharp
convexities of the object contour as feature points (i.e., contour locations where
the change of the tangent angle at successive points attains a local maximum or
minimum, respectively). It should be mentioned, however, that the scheme is also
applicable to other types of features.

The relationship between the positions of the model features xM,i and scene
image features xS,k is modeled by the affine transformation xS,k = A · xM,i + t.
In the 2D case, this type of transformation has six degrees of freedom (A is a
2 × 2-matrix, t a 2D vector). Therefore, the positions of three non-collinear feature
points are sufficient to determine the six transformation parameters. As a conse-
quence, it is possible to generate a hypothesis of the object pose when as few as
three non-collinear scene feature points are matched to model points.

Recognition starts by arbitrarily choosing three points. A hypothesis for the six
affine transformation parameters could be generated if the 1-to-1 correspondences
of the three feature points to the model features were known. The information stored
in the hash table is utilized to reveal these correspondences (and thus formulate the
hypothesis) with the help of the other features in a voting procedure (details see
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below). In case of rejection (no correspondences could be found for the chosen
feature triplet), this proceeding can be repeated with a second feature triplet, and
so on.

The usage of a hash table is an example of a more general technique called index-
ing: with the help of some kind of indexed access or index function (here via look-up
in the hash table) it is possible to retrieve information about the object model(s) very
quickly, which can be used for a rapid generation of a hypothesis of the object pose.
Another example, where indexing is used for 3D object recognition, is presented
later on. Now let’s have a look at geometric hashing in detail.

4.4.2 Speedup by Pre-processing

In the pre-processing stage of the algorithm, hash table creation is done as follows
(see also Fig. 4.5):

• Detect all features in a training image such that the object to be searched is
represented by a set of features points.

• For each triplet of non-collinear feature points, do the following:

– Compute the parameters of an affine transformation mapping the three feature
point positions to coordinates (0,0), (0,1), and (1,0).

– Transform the position of all remaining feature points using the transformation
parameters just calculated.

– Each transformed position generates an entry in the hash table. Each entry
consists of information about the transformed position (the “index” of the hash
table) in combination with the triplet from which it was calculated.
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Fig. 4.5 Illustrates two steps of hash table creation in the training stage of geometric hashing (new
table entries in green)
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Two steps of this proceeding are shown in Fig. 4.5. After arbitrarily choosing
features (left, marked light green), the transformation parameters are estimated and
the positions of the remaining feature are transformed accordingly (middle part).
Finally the hash table is extended based on the transformed positions (right). Please
note that for illustrative purposes a basis consisting of only two points (which is
sufficient for determining the parameters of a similarity transform) is used. Observe
that a second basis pair is entered at two hash table entries in the second step even
if the feature positions don’t coincide exactly. This is due to the fact that each hash
table bin actually covers a position range in order to allow for small deformations,
noise, etc.

4.4.3 Recognition Phase

During recognition the hash table is used this way (cf. Fig. 4.6):

1. Feature point detection: determine all feature points in a scene image showing
the object.

2. Triplet choice: choose a triplet of non-collinear feature points by random
3. Parameter estimation: Compute the parameters of an affine transformation

mapping the triplet to the coordinates (0,0), (0,1), and (1,0).
4. Transformation of feature positions: Transform the positions of the remaining

features according to these parameters
5. Voting by indexed access: for each transformed position, check whether there is a

hash table entry containing this position. In order to allow for small variances of
geometry and due to image noise, the transformed positions don’t have to match
the table index exactly, but their distance has to fall below a certain threshold
(i.e., the hash table entries have a certain bin size, see [7] for details). If there is a
suitable hash table entry, the feature triplet being stored in the entry gets a vote.

6. Verification: if a model triplet gets a sufficient number of votes, the matching
between model and scene image is found: the features of the randomly chosen
triplet belong to the model triplet with the highest number of votes. Otherwise,
another triplet is chosen and voting is repeated.

7. Transformation parameter determination: with the help of the correspondences
revealed in the last step, the affine transformation parameters mapping the model

(0.4;1.0) 3 – 4

3 – 4

3 – 4
3 – 1
3 – 1
3 – 1

(0.9;0.6) 3 – 4; 3 – 1

3 – 4; 3 – 1
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(0;–0.6)
(0.3;–0.8)
(0.8;–0.5)
(–0.3;–0.6)
(–0.2;–1.0)

Voting

Fig. 4.6 Showing the recognition process using the indexing functionality of geometric hashing
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to the scene can be calculated. Without going into detail, these parameters can
be determined by setting up and minimizing an error function Ec quantifying
the displacements between the positions of the scene image features xS,k and the
transformed positions of the model features t

(
xM,i

)
.

This proceeding is summarized in Fig. 4.6. Again, just two arbitrarily chosen
points (marked light) serve as a basis for the estimate of transform parameters. All
other points are transformed according to these parameters. Their positions are used
as indexes into the hash table. If a hash table entry exists for a specific index, all
basis pairs stored in this entry get a vote. If a specific basis pair gets enough votes, a
correct correspondence between the two arbitrarily chosen scene image points and
this basis pair is found (for this example, the pair 3-1 of the above training step).

In many industrial applications the camera viewpoint is fixed and therefore
the objects undergo a similarity transformation defined by the four parameters
t = [

tx, ty
]
, rotation θ and scale s. Instead of using triplets feature pairs are sufficient

to define the four parameters in such cases.

4.4.4 Pseudocode

function detectObjectPosGeometricHashing (in Image I, in hash

table H, in threshold t, out object position p)

detect all features in scene image I : xS
v ← 0 // init of number of votes

// main loop (until threshold is reached)

while v < t ∧ untested feature triplets exist do

choose indexes k, l and m by random

estimate parameters t which transform xS,k, xS,l and xS,m
to coordinates (0,0), (0,1) and (1,0)

init of accu
for i = 1 to number of scene features

if i �= k ∧ i �= l ∧ i �= m then

xt
S,i ← t

(
xS,i

)
// transform feature position

retrieve list hxt
S,i

of H (hash table entry whose

index relates to position xt
S,i

for j = 1 to number of entries of list hxt
S,i

cast a vote for model triplet defined by entry j

in accu
next

end if

next

v ← maximum of accu
end while
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// position estimation

if v < t then

return // no object instance could be found

end if

determine feature correspond. based on matching hypothesis

// perform minimization of position deviations

p ← arg min (Ec (p))

4.4.5 Rating

For perfect data, the usage of a hash table accelerates the recognition stage dramati-
cally, as only one arbitrarily chosen feature triplet suffices to calculate the matching
parameters. In practice, however, additional/spurious features can be detected in the
scene image that don’t relate to any model feature (e.g. due to clutter). Additionally,
a feature might not be visible because of occlusion or its position is significantly
disturbed. For that reason, usually multiple feature triplets have to be checked. In
the worst case, if the scene image doesn’t contain the searched object, all possi-
ble triplet combinations have to be examined. Therefore geometric hashing is most
suitable for situations with well detectable features and a high probability that the
searched object is actually present, otherwise it is questionable if a significant speed
advantage can be realized.

A drawback of the scheme results from the fact that the transformation param-
eters are estimated based upon as few as three features in the early stages of the
recognition phase. Implicitly, this leads to forcing the position deviation between
the scene image feature and the corresponding model feature to zero for all three
features of the triplet under investigation. As a result, the quality of the parame-
ter estimation is highly sensitive to the accuracy of the position estimation of these
features. If these positions are influenced by noise, for example, this might lead to
significant errors in the position calculation for the remaining features, potentially
leading to a rejection of the current triplet even if the correspondences themselves
are correct. This is a problem for many correspondence-based search strategies,
but in geometric hashing it is particularly apparent as the algorithm tries to reduce
the number of features for the initial parameter estimation as much as possible.
In contrast to that, matching strategies searching the transformation space often
are profiting from some kind of interpolation as they don’t enforce exact position
matches for a feature correspondence.

4.4.6 Modifications

The algorithm can be extended to a classification scheme if the pre-processing
stage is performed for multiple object classes. In that case the object class label is
additionally stored in the hash table. Each table entry now contains a (point triplet,
class label) pair. Hence, during voting in the recognition stage the table entries reveal
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transformation as well as classification information. Please note that the fact that
the model database contains multiple object classes does not necessarily lead to
an increase of recognition time! In best case only one feature triplet check is still
sufficient, regardless of the number of model classes. Compared to that, the straight-
forward approach of repeatedly applying a recognition scheme for each model class
separately results in a time increase which is linear to the number of object classes.
Therefore indexing schemes are especially attractive if the model database contains
a large number of object classes.

A related scheme is the alignment method proposed by Huttenlocher and Ullman
[5]. The alignment method also tries to reduce the exponential complexity inher-
ent in correspondence-based matching when all possible correspondences between
two feature sets are evaluated. Similar to geometric hashing, Huttenlocher and
Ullman split up the recognition process in two stages: the first stage tries to gen-
erate a matching hypothesis by aligning just the minimum number of features
necessary for unique determination of the transformation coefficients, e.g., three
points/features when the parameters of an affine transform have to be estimated. The
subsequent second stage verifies the hypothesis by evaluating the distances between
the complete point sets of query image and transformed model according to the
hypothesized transformation.

During recognition all possible combinations of feature triplets are evaluated. We
can then choose the hypothesis with the smallest overall error. As only triplets are
considered when establishing the correspondences, the complexity has been reduced
from exponential to polynomial order O

(
p3
)

(with p being the number of features).
Compared to geometric hashing, where a notable speedup is achieved by accel-

erating the matching step via indexing such that many hypotheses can be checked
quickly, an evaluation of O

(
p3
)

correspondences still is too much. Therefore the
alignment method aims at minimizing the number of feature triplets which have to
be evaluated by classifying the features themselves into different types and allowing
only correspondences between features of the same type. This assumes, how-
ever, that the features themselves can be classified reliably (and therefore matched
quickly): only then it is possible to exclude a large number of potential model –
scene feature pairings, because they belong to different feature classes.
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Chapter 5
Three-Dimensional Object Recognition

Abstract Some applications require a position estimate in 3D space (and not just in
the 2D image plane), e.g., bin picking applications, where individual objects have to
be gripped by a robot from an unordered set of objects. Typically, such applications
utilize sensor systems which allow for the generation of 3D data and perform match-
ing in 3D space. Another way to determine the 3D pose of an object is to estimate
the projection of the object location in 3D space onto a 2D camera image. There
exist methods managing to get by with just a single 2D camera image for the esti-
mation of this 3D→ 2D mapping transformation. Some of them shall be presented
in this chapter. They are also examples of correspondence-based schemes, as the
matching step is performed by establishing correspondences between scene image
and model features. However, instead of using just single scene image and model
features, correspondences between special configurations of multiple features are
established here. First of all, the SCERPO system makes use of feature groupings
which are perceived similar from a wide variety of viewpoints. Another method,
called relational indexing, uses hash tables to speed up the search. Finally, a sys-
tem called LEWIS derives so-called invariants from specific feature configurations,
which are designed such that their topologies remain stable for differing viewpoints.

5.1 Overview

Before presenting the methods, let’s define what is meant by “3D object recogni-
tion” here. The methods presented up to now perform matching of a 2D model to
the 2D camera image plane, i.e., the estimated transformation between model and
scene image describes a mapping from 2D to 2D. Of course, this is a simplification
of reality where the objects to be recognized are located in a 3D coordinate system
(often called world coordinates) and are projected onto a 2D image plane. Some of
the methods intend to achieve invariance with respect to out-of-plane rotations in
3D space, e.g., by assuming that the objects to be found are nearly planar. In that
case, a change of the object pose can be modeled by a 2D affine transformation.
However, the mapping still is from 2D to 2D.

95M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
DOI 10.1007/978-1-84996-235-3_5, C© Springer-Verlag London Limited 2010
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In contrast to that, 3D matching describes the mapping of 3D positions to 3D
positions again. In order to obtain a 3D representation of a scene, well-known meth-
ods such as triangulation or binocular stereo can be applied. Please note that many
of the methods utilize so-called range images or depth maps, where information
about the z-direction (e.g., z-distance to the sensor) is stored dependent on the

[
x, y

]
-

position in the image plane. Such a data representation is not “full” 3D yet and
therefore is often called 21/2 D.

Another way to determine the 3D pose of an object is to estimate the projection
of the object location in 3D space onto the 2D camera image, i.e., estimate the
parameters of a projective transformation mapping 3D to 2D, and that’s exactly what
the methods presented below are doing. The information provided by the projection
can for example be utilized in bin picking applications, where individual objects
have to be gripped by a robot from an unordered set of objects.

The projective transformation which maps a [X, Y , Z]T position of world coordi-
nates onto the

[
x, y

]
-camera image plane is described by

⎡

⎣
a
b
c

⎤

⎦ = R ·
⎡

⎣
X
Y
Z

⎤

⎦+ t (5.1)

[
x
y

]
=

[
f · a/c
f · b/c

]
(5.2)

with R being a 3 × 3-rotation matrix, t a 3D translation vector, and f is determined
by the camera focal length. Observe that in order be a rotation matrix, constraints are
imposed upon R, which makes the problem of finding the projective transformation
a non-linear one, at least in the general case. Detailed solutions for the parameter
estimation are not presented in this book; our focus should be the mode of operation
of the matching step.

Performing 3D object recognition from a single 2D image involves matching 2D
features generated from a sensed 2D scene image to a 3D object model. The meth-
ods presented here implement the matching step by establishing correspondences
between scene image and model features (or, more generally, feature combinations)
and are therefore also examples of correspondence-based schemes.

In terms of object representation, a complete 3D model can be derived either
from 3D CAD data or from multiple 2D images acquired from different viewpoints.
There exist two main strategies for model representation: an object-centered one,
where the model consists of a single feature set containing features collected from
all viewpoints (or the entire CAD model, respectively) or a view-centered one where
nearby viewpoints are summarized to a viewpoint class and a separate feature set is
derived for each viewpoint class.

Algorithms that perform 3D object recognition from a single 2D image are
mostly applied in industrial applications, as industrial parts usually can be modeled
by a restricted set of salient features. Additionally, the possibility to influence the
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imaging conditions alleviates the difficulty involved by the fact of relying on config-
urations of multiple features, because usually it is very challenging to detect them
reliably. Three methods falling into this category are presented in the following.

5.2 The SCERPO System: Perceptual Grouping

5.2.1 Main Idea

The SCERPO vision system (Spatial Correspondence, Evidential Reasoning and
Perceptual Organization) developed by Lowe [3] is inspired by human recognition
abilities. It makes use of the concept of perceptual grouping, which defines group-
ings of features (e.g., lines) that are considered salient by us humans and therefore
can easily be perceived (cf. Fig. 5.1).

There is evidence that object recognition of the human vision system works in
a similar way. As there should be no assumptions about the viewpoint location
from which the image was acquired, these feature groupings should be invariant
to viewpoint changes, enabling the algorithm to detect them over a wide range of
viewpoints. Lowe describes three kinds of groupings that fulfill this criterion:

• Parallelism, i.e., lines which are (nearly) parallel
• End point proximity, i.e., lines whose end points are very close to each other
• Collinearity, i.e., lines whose end points are located on or nearby a single

“master-line.”

Fig. 5.1 Showing three kinds of perceptually significant line groupings: five lines ending at posi-
tions which are very close to each other in the lower left part, three parallel lines in the lower right,
and, finally, four almost collinear lines in the upper part of the picture
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5.2.2 Recognition Phase

Based on the concept of perceptual grouping, Lowe proposes the following algo-
rithm for recognition. Lets assume model data is available already, e.g., from CAD
data. Figure 5.2 illustrates the approach: as an example, the 3D poses of multiple
razors have to be found in a single scene image:

1. Edge point detection: at first, all edge points e have to be extracted from the
image. To this end, Lowe suggests the convolution of the image with a Laplacian
of Gaussian (LoG) operator. As this operation relates to the second derivative
of image intensity, edge points should lie on zero-crossings of the convolution
result. In order to suppress zero crossings produced by noise, pixels at zero
crossing positions additionally have to exhibit sufficiently high gradient values
in order to be accepted as edge pixels.

2. Edge point grouping: derivation of line segments li which approximate the edge
points best (see also the previous chapter for a brief introduction).

3. Perceptual grouping of the found line segments considering all three kinds of
grouping. In this step, a group gn of line segments is built if at least two lines
share the same type of common attribute (collinearity, parallelism or proximal
end points).

4. Matching of the found line groups to model features taking the viewpoint con-
sistency constraint into account. The viewpoint consistency constraint states
that a correct match is only found if the positions of all lines of one group
of the model can be fit to the positions of the scene image lines with a single
common projection based on a single viewpoint. In other words, the posi-
tions of the lines have to be consistent with respect to the transformation
parameters.

5. Projection hypothesis generation: each matching of a model line group to some
scene image features can be used to derive a hypothesis of the projection
parameters between a 3D object pose and the scene image.

6. Projection hypothesis verification: based on the hypothesis, the position of other
(non-salient) features/lines in the scene image can be predicted and verified. The
hypothesis is valid if enough consistent features are found.

As it might be possible to formulate many hypotheses it is desirable to do a
ranking of them with respect to the probability of being a correct transformation.
Most promising are groups consisting of many lines as they are supposed to be
most distinctive and have the additional advantage that most likely all projection
parameters can be estimated (because sufficient information is available; no under-
determination). This concept of formulating hypotheses with only a few distinctive
features followed by a verification step with the help of additional features can be
found quite often as it has the advantage to be insensitive to outliers (in contrast to
calculating some kind of “mean”).
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5.2.3 Example

Edge
Grouping  

Perceptual
Grouping  

Model 

Matching +
Hypotheses  

Verification 

Fig. 5.2 Individual razors are detected by perceptual grouping with the SCERPO system1

5.2.4 Pseudocode

function detectObjectPosPerceptualGrouping (in Image I, in

list of model groups gM , in list of model lines IM , in

distance threshold td , in similarity threshold tsim , out object

position list p)

//line segment detection

Convolve I with Laplacian of Gaussian (LoG) operator

IG ← gradient magnitude at zero crossings of convol. result

threshold IG in order to obtain list of edge points e
group edge points e to line segments li, if possible

remove very short segments from line segment list IS

// perceptual grouping

while unprocessed line segments exist in IS do

take next line segment lS,i from list IS

1Contains images reprinted from Lowe [3] (Figs. 9, 10, 11, 12, 14, and 16), © 1987, with
permission from Elsevier.
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init of group gn with lS,i
for all line segments lS,k in the vicinity of lS,i

if
[
endpt_prox

(
lS,k, gn

) ∨ collin
(
lS,k, gn

) ∨ parallel
(
lS,k, gn

)]∧
group type fits then

append lS,k to gn

set type of group gn if not set already (collinear,

endpoint prox. or parallel)

end if

next

if number of lines of gn >= 2 then

accept gn as perceptual group and add it to list

of perceptual groups in scene image gS
remove all line segments of gn from list lS

end if

end while

// matching

for i = 1 to number of model groups (elements of gM)

for j = 1 to number of scene groups (elements of gS)

if viewpoint consistency constraint is fulfilled for

all lines of gM,i and gS,j then

estimate transform parameters t // hypothesis

//hypothesis verification

sim ← 0

for k = 1 to total number of line combinations

if
∥∥t

(
lM,k

)− lS,k
∥∥ ≤ td then // positions fit

increase sim
end if

next

if sim ≥ tsim then

append t to position list p
end if

end if

next

next

5.2.5 Rating

An advantage of this procedure is that it is a generic method which doesn’t include
many specific assumptions about the objects to be detected. Furthermore, one image
is enough for 3D recognition.

In order to make the method work, however, it has to be ensured that there exist
some perceptual groups with suitable size which are detectable from all over the
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expected viewpoint range. Compared to the methods presented below only lines
are used, which constrains the applicability. Additionally, 3D model data has to be
available, e.g., from a CAD model.

5.3 Relational Indexing

5.3.1 Main Idea

The algorithm presented by Costa and Shapiro [2], which is another example of
aiming at recognizing 3D objects from a single 2D image, uses a scheme which is
called relational indexing. In this method object matching is performed by estab-
lishing correspondences, too. However, these correspondences are not identified
between single features; a pair of so-called high-level features is used instead. The
features utilized by Costa and Shapiro are extracted from edge images (which, e.g.,
can be calculated from the original intensity image with the operator proposed by
Canny [1] including non-maximum suppression) and are combinations of primitives
such as lines, circular arcs, or ellipses. Therefore the method is suited best for the
recognition of industrial parts like screws, wrenches, stacked cylinders. A summary
of high-level features can be found in the top tow rows of Table 5.1. Most of them
are combinations of two or more primitives.

For matching, two of these high-level features are combined to a pair, which can
be characterized by a specific geometric relation between the two features, e.g., two
features can share one common line segment or circular arc (see also the bottom two
rows of Table 5.1).

The main advantage of the usage of two features and their geometric relation is
that their combination is more salient and therefore produces more reliable matches
compared to a single feature. This implies, however, that the object to be recognized
contains enough such combinations. Additionally, these combinations have to be
detected reliably, which is the more difficult the more complex the combinations are.

Object matching is performed by establishing correspondences between a pair
of two high-level model features (and their geometric relation) and pairs found in a
scene image. A correspondence is only valid if both pairs are composed by identical
feature types and share the same geometric relation. Each of the found correspon-
dences votes for a specific model. By counting these votes hypotheses for object
classification as well as pose identification can be derived.

In order to achieve invariance with respect to viewpoint change, a view-based
object model is applied. Therefore images taken at different viewpoints are pro-
cessed for each object in a training phase. Images where the object has a similar
appearance are summarized to a so-called view-class. For each view-class high-
level feature pairs are derived and stored separately, i.e., the model for a specific
object class consists of several lists of high-level feature pairs and their geometric
relation, one list for each view class.
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Table 5.1 High-level feature types (top two rows) and types of relations between the features
(bottom two rows) used by relational indexing

Ellipses Coaxials-3 Coaxials-multi Parallel-far Parallel-close

U-triple Z-triple L-Junction Y-Junction V-Junction

Share one arc Share one line Share two lines

Coaxial Close at extremal points Bounding box encloses/
enclosed by bounding box  

The method is a further example of an indexing scheme; it can be seen as an
expansion of geometric hashing, which utilizes single features, to the usage of two
features and their relation for generating two indices (one based on the feature types,
one based on the geometric relation) when accessing the (now 2D) look-up table.
The entries of the look-up table represent view-based models which can be used
directly to cast a vote for a specific model – view-class combination.

5.3.2 Teaching Phase

The teaching process, which can be repeated for different view classes, consists of
the following steps:

1. Edge image generation: In the first step all edge pixels have to be identified.
A suitable implementation for this step is the Canny edge detector with non-
maximum suppression proposed in [1]. In principle one intensity image suffices
for the edge image generation. Nevertheless, Costa and Shapiro [2] suggest to
combine two intensity images with differently directed illumination in order to
exclude edges from the model which are caused by shading.
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2. Mid-level feature extraction: Line segments lM , i and circular arcs cM,i are
extracted from the edge image. As the main focus here is on the matching
method, this step shall not be discussed in detail here (a short introduction to
feature detection is given in the previous chapter).

3. Mid-level feature grouping: in order to utilize the high-level features described
above (denoted by gM,i), they have to be extracted first. This is done by grouping
the mid-level features detected in the previous step.

4. High-level feature grouping: the high-level features just created are combined to
pairs (denoted by pgM,i) consisting of two high-level features and their geometric
relation (see the two bottom rows of Table 5.1). Later on, these groups act as an
index into a look-up table for the retrieval of model information.

5. Look-up table generation: the last training step consists of generating the look-up
table just mentioned (see also Fig. 5.3). The look-up table is a 2D table, where
one dimension represents the high-level feature combination (each high-level
feature type is labeled with a number; for a specific feature pair, these num-
bers are concatenated). The other dimension incorporates the geometric relation
between the two features; again each relation type is represented by a specific
number. After teaching, each element of the look-up table contains a list hM,ab

of model/view-class pairs, i.e., numbers of the object model and the class of
views from which the feature group was detected in the training phase. If, for
example, a pair of parallel lines and a z-triple of lines which share two lines
are detected for the model “2” in a viewpoint belonging to view-class “3” dur-
ing training, the information “2–3” is added to the list of the hash table entry
being defined by the indexes of “parallel-far”-“z-triple” and “share two lines.”
Please note that, in contrast to geometric hashing or the generalized Hough
transform, no quantization of the spatial position of the features is necessary
here.

Figure 5.3 shows one step of the 2D hash table generation in more detail. In
this example a high-level feature pair (briefly called “feature pair” in the following)
consisting of parallel-far lines (e.g., defined as feature number 2) and a z-junction

Parallel-far lines: No. 2

Z-Junction: No. 7

Share two lines: No. 5

5 

27 

2D- Hash Table Hash Table
Entry list  

[ ]31 ,VM

[ ]26 ,VM

[ ]53 ,VM

[ ]44 ,VM

...

. . .

...

...

Fig. 5.3 Illustrating one step of the hash table generation
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(e.g., defined as feature number 7) has been detected. Their relation is character-
ized by the sharing of two lines (number 5). The feature combination “27” as well
as relation “5” define the two indexes a and b of the entry hM,ab of the 2D hash
table which has to be adjusted: The list of this entry, where each list entry defines a
model number and view-class combination

[
Mi, Vj

]
, has to be extended by on entry

(marked blue). Here, the feature combination 27-5 belongs to model number 4 and
was detected in view-class number 4.

5.3.3 Recognition Phase

The beginning of the recognition process is very similar to the teaching phase. In
fact, step 1–4 are identical. At the end of step 4, all feature pairs pgS,k which could
be extracted from the scene image by the system are known. The rest of the method
deals with hypothesizing and verifying occurrences of objects in the scene based on
the extracted pgS,k and proceeds as follows:

5. Voting: For each high-level feature pair pgS,k the two indexes a and b into the
look-up table (a is based on the two high-level features of the pair and b is based
on their geometric relation) can be derived. The element hM,ab of the look-up
table that can be addressed by the two indexes consists of a list of models which
contain a feature pair pgM,i with feature types as well as relation being identical
to the ones of pgS,k and therefore support its occurrence in the scene image.
Each list entry hM,ab.l casts a vote, i.e., a specific bin (relating to the model index
defined in hM,ab.l) in an accumulator array consisting of indexes for all models
(i.e., the model database) is incremented by one.

6. Hypothesis generation: hypotheses for possible model occurrences in the scene
image can be generated by searching the accumulator for values above a certain
threshold tR

7. 3D Pose estimation: based on all feature pairs supporting a specific hypothesis hy
an estimation of the 3D object pose can be derived. To this end, the matched 2D
positions of the features in the scene image to their corresponding 3D positions
of the 3D object model (e.g., a CAD model) are utilized. In order to estimate a
3D pose six such 2D–3D feature matches are required. Details of the estimation
scheme, which in general requires nonlinear estimation, but can be linearized in
special cases, can be found in [2].

8. Verification: roughly speaking, a hypothesis hy is valid if enough edge points
of the back-projected 3D model into the camera image (with the help of the
estimated 3D pose of step 7) are located near an edge point detected in the scene
image. To this end, the directed Hausdorff distance h (t (m) , I) = min

i∈I
‖m− i‖

to the scene image edge point set I is calculated for each back-projected model
edge point m ∈ M. In order to consider a hypothesis as valid, two conditions must
hold: First of all, the average of the Hausdorff distances for all back-projected
model edge points must remain below a threshold tdist and, second, the fraction
of model pixels with actual distance below tdist must be above the value tfr:



5.3 Relational Indexing 105

[M1, V3]
[M6, V2]

2D-Hash Table

Hash Table
Entry list  

+     + 

1M 6M

Voting

Hypothesis 3D Pose est. Verification 

. . .

Fig. 5.4 Screw nut detection with relational indexing

1

M

∑

m∈M

h (t (m), I) ≤ tdist (5.3)

N (m ∈ M|h (t (m), I) ≤ tdist)

M
≥ tfr (5.4)

where N (m ∈ M|h (t (m) , I) ≤ tdist) denotes the number of model points with a
distance at most equal to tdist. In [2] tdist is set empirically to 5 pixels and tfr
to 0.65. Please note that tfr controls the amount of occlusion which should be
tolerated by the system.

The entire recognition process is illustrated in Fig. 5.4: after edge extraction and
edge pixel grouping, several mid-level features (marked blue) are detected. In the
next step, they’re grouped to so-called high-level features (rightmost image in top
row; each high-level feature is indicated by a different color). Subsequently, the
high-level features are combined to pairs (e.g., the combination ellipse-coaxials
combination marked blue and the u-triple-ellipse part-combination marked red).
Note that other combinations are also possible, but are not considered here for bet-
ter visibility. Each combination can be used as an index into the 2D hash table built
during training. The hash table list entries are used during voting. Again, not all list
entries are shown because of better visibility.

5.3.4 Pseudocode

function detectObjectPosRelIndex (in Image I, in 2D hash table

H, in model data M for each object model, in thresholds

tR, tdist and tfr, out object position list p)
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// detection of high-level feature pairs

detect edge pixels (e.g. Canny) and arrange them in list e
group edge points e to line segments lS,k and circular arcs

cS,k and add each found mid-level feature to list lS or cS
group mid-level features to high-level features gS,k, if

possible , and build list gS
build pairs of high-level features pgS,k, if possible, and

collect them in list pgS

// voting

Init of 1-dimensional accumulator accu
for k = 1 to number of list entries in pgS
// derive indexes a and b for accessing the 2D hash table:

a ← concatenation of the types of the two high-level

features gS,i and gS,j which build pgS,k
b ← index of geometric relation between gS,i and gS,j
retrieve model list hM,ab from H(a,b)
for l = 1 to number of model entries in hM,ab

increment accu for model defined by hM,ab,l
next

next

// hypothesis generation

for all local maxima of accu (bin index denoted by m)
if accu(m) ≥ tR then

match model features to the found lS,k and cS,k
estimate t based on the involved feature matches

add hypothesis hy = [t,m] to list hy
end if

next

// hypothesis verification

for i = 1 to number of hypotheses hy
calculate directed hausdorff distances of back-projected

model edge point set

if equations 5.3 and 5.4 are fulfilled then

append hyi to position list p
end if

next

5.3.5 Example

Object recognition results achieved with this method are summarized in Table 5.2
(with images taken from the original article of Costa and Shapiro [2]), where
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Table 5.2 Illustrating the performance of 3D object recognition with relational indexing2

Intensity image with 
directed illumination from
the left

Intensity image with 
directed illumination from
the right

Combined edge image.
Edges resulting from
shading are eliminated    

Found line features Found circular arc 
features 

Found ellipse features 

Incorrect hypothesis Incorrect hypothesis Incorrect hypothesis

Correct hypothesis Correct hypothesis Correct hypothesis

man-made workpieces have to be detected. The first row shows the two input
images (with illumination from different directions: left and right) together with the
combined edge image extracted from them. The different types of mid-level features
derived from the edge image are shown in the second row. The third row contains
some incorrect hypotheses generated in step 6 of the recognition phase; however, all
of them did not pass the verification step. All three objects of the scene were found
with correct pose, as the bottom row reveals.

2Contains images reprinted from Costa and Shapiro [2] (Figs. 22, 23, and 24), © 2000, with
permission from Elsevier.
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5.3.6 Rating

Experiments performed by the authors showed quite impressive results as far as
recognition performance is concerned. They reported no false detections in various
test images, whereas almost all objects actually being present in the images were
detected at correct position at the same time, despite the presence of multiple objects
in most of the images, causing considerable amount of occlusion and clutter.

On the other hand, however, the method relies on the objects to have a “suitable”
geometry, i.e., at least some of the high-level features defined in Table 5.1 have to
be present. Additionally, the feature groups must be detectable in the scene image.
Indeed, the major constraint of the method stems form the instability of the detec-
tion of the feature groups: sometimes a feature is missing, sometimes a feature is
split because of occlusion (e.g., a long line might be detected as two separate line
segments), and so on. Bear in mind that the feature group is only detected correctly
if all mid-level features are found correctly as well!

5.4 LEWIS: 3D Recognition of Planar Objects

5.4.1 Main Idea

In order to recognize objects with arbitrary 3D pose it is desirable to derive
features from the image of an object which remain constant regardless of the rel-
ative position and orientation of the object with respect to the image acquisition
system. Such so-called invariants allow for 3D object recognition from a sin-
gle 2D image of arbitrary viewpoint, because the viewpoint is allowed to change
between teaching and recognition phase. The invariant value remains stable even
if the object undergoes a projective transform. One example using invariants is
perceptual grouping described by Lowe [3] which was already presented in a
previous section. Although it can be shown that such invariants don’t exist for
arbitrarily shaped 3D objects, invariants can be derived for specific configura-
tions of geometric primitives (e.g., lines or conics) or a set of linearly independent
points.

The LEWIS system (Library Entry Working through an Indexing Sequence)
developed by Rothwell et al. [4] makes use of two different types of invariants when
performing recognition of planar objects (in this context “planar” means that the
object is “flat,” i.e., can be approximated well by a 2D plane).

Please note that, in contrast to the methods presented above, just a perspective
transformation mapping a 2D model to a 2D image (with eight degrees of freedom,
see Section 3.1) is estimated here. However, an extension to non-planar objects,
where the estimated transformation describes a projection of the 3D object pose
onto a 2D image plane, is possible and provided by the same research group [5].
The principle of invariants remains the same for both methods, and that’s the reason
why the LEWIS method is presented here.
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Observe that the usage of invariants imposes restrictions on the objects to be
recognized as they have to contain the aforementioned specific geometric configu-
rations (examples will follow) and, additionally, the invariants have to be detected
reliably in the scene images. A class of objects which meets these constraints
is man-made, planar objects like spanners, lock striker plates, metal brackets
(recognition examples of all of them are given in [4]), and so on.

The outline of the LEWIS method is as follows: Characteristic invariants are
detected from edge images for each object to be recognized and stored in the
model database in an off-line training step. During recognition, invariants of a
scene image are derived with identical procedure. In order to speed up match-
ing, indexing is applied: the value of a single invariant derived from the scene
image leads to a hypothesis for the presence of an object model which con-
tains an invariant of identical type and with similar value. In other words, if an
invariant can be detected in a scene image, its value is derived and serves as
an index into a hash table for retrieving a list of object classes that contain an
invariant of identical type and with similar value. In a last step, the hypotheses
are verified (resulting in acceptance or rejection of a hypothesis) using complete
edge data.

5.4.2 Invariants

For 3D object recognition of planar objects Rothwell et al. [4] make use of two
types of invariants: algebraic and canonical frame invariants. As far as algebraic
invariants are concerned, they consist of a scalar value which can be derived from a
specific geometric configuration of coplanar lines and/or conics. This value remains
stable if the underlying feature configuration undergoes a projective transformation.
Table 5.3 summarizes the geometric configurations which are utilized by the LEWIS
method.

Two functionally independent projective invariants can be derived from five
coplanar lines. Given five lines

li = [μi sin θi,−μi cos θi, μidi]
T ; i ∈ {1, . . . , 5} (5.5)

Table 5.3 Illustration of three different types of geometric configurations of line and circular
features utilized by the LEWIS system in order to derive algebraic invariants

Five lines Two  conics One  conic and two lines  
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(where θi denotes the orientation of line i with respect to the x axis, di the distance
of the line to the origin, and μi the scale factor introduced because of the usage of
homogeneous coordinates) the invariants IL1 and IL2 are defined by

IL1 = |M431| · |M521|
|M421| · |M531| (5.6)

IL2 = |M421| · |M532|
|M432| · |M521| (5.7)

where the matrices Mijk are built by a column-wise concatenation of the parameters
of three lines

[
li, lj, lk

]
.
∣∣Mijk

∣∣ denotes the determinant of Mijk.
Before we define the invariants where conics are used, let’s introduce the rep-

resentation of conics first. A conic is defined by the set of points xi =
[
xi, yj, 1

]

satisfying ax2
i + bxiyi + cy2

i + dxi + eyi + f = 0, or equally, the quadratic form

xT
i · C · xi = 0 with C =

⎡

⎣
a b/2 d/2

b/2 c e/2
d/2 e/2 f

⎤

⎦ (5.8)

In the presence of two conics C1 and C2, two independent invariants IC1 and IC2
can be derived:

IC1 =
tr
(

C−1
1 · C2

)
· |C1|1/3

|C2|1/3
(5.9)

IC2 =
tr
(

C−1
2 · C1

)
· |C2|1/3

|C1|1/3
(5.10)

where tr (·) denotes the trace of a matrix.
Two lines and one conic lead to the invariant ILC which is defined by

ILC =
(
lT1 · C−1 · l2

)2

(
lT1 · C−1 · l1

) · (lT2 · C−1 · l2
) (5.11)

Canonical frame invariants IV can be applied to the more general class of pla-
nar curves. As a projective transformation is specified by eight parameters, it can
be defined by four non-collinear planar points. If four non-collinear points can
be uniquely identified on a planar curve, the mapping of these points onto a so-
called canonical frame, e.g., a unit square, uniquely defines the eight parameters
of a projective transformation. In this context “uniquely defines” means that the
system always detects the same positions on the curve, regardless of the viewpoint
from which the image was taken. To this end, four points around a concavity of the
curve are utilized (see Fig. 5.5). Now the entire curve can be transformed into the
canonical frame. The transformed curve remains stable regardless of the viewpoint.
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Fig. 5.5 Summarizing the derivation of canonical frame invariants as implemented in the LEWIS
method, where curves of connected edge pixels which feature a concavity are exploited

For this reason a signature which is a projective invariant can be derived from the
transformed curve. To this end the lengths of equally spaced rays ranging from the
point [1/2, 0] to the transformed curve are stacked into a vector and serve as a basis
for the desired invariant IV (details see [4]).

Figure 5.5 illustrates the proceeding: In a first step, four non-collinear points
around a concavity are uniquely identified with the help of a common tangent (see
[4] for details). Next, these four points are mapped onto a unit square. Subsequently,
all points of the curve can be transformed to the thus defined canonical frame. The
lengths of equally spaced rays (shown in black in the right part; all originating at
the point [1/2, 0]) are the basis for the desired invariant. Observe that – compared to
algebraic invariants – there are less restrictions on the shape of the object. However,
the curve is not allowed to be arbitrarily shaped, as it is required to detect a common
tangent passing through two distinct points of the curve.

5.4.3 Teaching Phase

The model database can be built iteratively by extracting the model data for each
object class from a training image. For each model class, the data consists of a
collection of edge pixels, geometric features (lines, conics and curves of connected
edge pixels), and the invariant values derived from the features. The data is obtained
as follows:

1. Identification of edge pixels: In the first step all edge pixels with rapidly changing
intensity are found, e.g., with the operator proposed by Canny [1] (including
non-maximum suppression). For many man-made, planar objects, the set of thus
obtained edge pixels, captures most of the characteristics.

2. Feature extraction: Subsequently, all primitives which could potentially be part
of a configuration being suitable for derivation of invariants (namely lines, conics
and curves) are extracted from the edge image.
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3. Feature grouping: Now the lines and cones are grouped to one of the three con-
figurations from which algebraic invariant values can be derived (see Table 5.3),
if possible.

4. Invariant calculation: Subsequently, several invariant values can be calculated
and added to the object model, algebraic invariants, as well as canonical frame
invariants.

5. Hash Table creation: For speed reasons, the invariant values can be used to create
hash tables HL1, HL2, HLC, HC1, HC2, and HV (one table for each functionally
independent invariant). Each table entry consists of a list of object models which
feature an invariant of appropriate type and with a value that falls within the hash
table index bounds.

The data of each object model, which is available after teaching, essentially
consists of the following:

• A list e of edge pixels
• Lists of lines lM , conics cM and curves vM which could be extracted out of e.
• Feature groups gM,L (5-line configurations), gM,LC (2-line and conic config-

urations), gM,C (2-conic configurations) which serve as a basis for invariant
calculation.

• Invariant values IL1,i, IL2,i, ILC,j, IC1,k, IC2,k, and IV ,l derived from the entries of
lM , cM , and vM .

5.4.4 Recognition Phase

Recognition of the objects shown in a scene image is performed by compar-
ing invariants. To this end, invariants have to be derived from the scene image,
too. Hence, steps 1–4 of recognition are identical to training. In the following,
classification and verification are performed as follows:

5. Hypothesis formulation by indexing: in order to formulate a hypothesis for the
occurrence of a specific object based on a specific invariant value the following
two conditions must hold:

– An invariant of the same type (e.g., based on five lines) exists in the model
database.

– The value of the model database invariant is similar to the scene image
invariant value.

A fast hypothesis formulation can be achieved by the usage of hash tables:
each table entry, which covers a range of invariant values, consists of a list of
all object models containing an invariant of the same type whose value also falls
into this range. As we have different types of functionally independent invariants,
multiple hash tables HL1, HL2, HLC, HC1, HC2, and HV are used. At this stage,
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each invariant leads to a separate hypothesis. Based on the model data as well as
the extracted scene image feature groups, the transformation parameters t can be
derived.

6. Hypothesis merging: instead of a separate verification of each hypothesis it is
advantageous to combine them if they are consistent. As a joint hypothesis is
supported by more features, it is more reliable and the transformation parameters
can be estimated more accurately. The merging process is based on topologic and
geometric compatibility of different hypotheses, details can be found in [4].

7. Hypothesis verification: a (joint) hypothesis is verified if it is still broadly sup-
ported when all edge pixels and/or features (and not only the invariant values) are
taken into account. Verification is performed by back-projecting the edge pixel
point set as well as all extracted lines and conics of the model to the scene image.
A hypothesis is accepted if more than a certain proportion of the model data is
consistent with the scene image data. Two lines are regarded consistent if their
orientation is similar, conics have to possess similar circumference and area and
finally, edge pixels must have similar position and gradient orientation. Because
back-projection of many edge pixels is expensive in terms of runtime, it is prefer-
able to perform another verification in advance: in general, when calculating the
eight parameters of the projective transform, it is possible to formulate an over-
determined equation system. Over-determination should be possible, because the
number of available features should exceed four non-collinear points which are
necessary to determine eight transformation parameters. Consequently, if it is
not possible to compute common transformation parameters where the error
(due to the over-determination) remains small, the hypothesis can be rejected
immediately. Otherwise the parameters just calculated can be used for the
aforementioned back-projection verification.

5.4.5 Pseudocode

function detectObjectPosLEWIS (in Image I, in hash tables

HL1, HL2, HLC, HC1, HC2, and HV, in model data M for

each object model, in similarity threshold tsim, out object

position list p)

// invariant calculation

detect all edge pixels (e.g. Canny) (summarized in e)
group edge points e to line segments lS,i, cones cS,k and

curves vS,l and add each found feature to one of the lists

lS, cS or vS
detect all 5-line configurations gS,L,i and build list gS,L
detect all 2-line/1-conic configs gS,LC,j and build list gS,LC
detect all 2-conic configurations gS,C,k and build list gS,C
calculate algebraic invariants IL1,i, IL2,i, ILC,j, IC1,k and
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IC2,k for all elements of lists gS,L, gS,LC, and gS,C
(equations 5.6 - 5.11)

calculate canonical frame invariants IV,l for all elems of vS

// matching

// generation of hypotheses

for i = 1 to number of list entries in gS,L
retrieve model list hM,L1 from HL1 (index specified

by IL1,i)

for m = 1 to number of model entries in hM,L1
estimate t based on gS,L,i and gM,L,n
add hypothesis hy = [t, m] to list hy // m: model index

next

repeat this proceeding with IL2,i
next

repeat this proceeding with gS,LC and gS,C and vS (here,

take the four non-collinear points for estimating t)
// hypothesis merging

for i = 1 to number of hypotheses hy -1

for j = i+1 to number of hypotheses hy
if similarity

(
hyi, hyj

)
then

hyk = merge
(
hyi, hyj

)

replace hyi by hyk and delete hyj
end if

next

next

// hypothesis verification

for i = 1 to number of hypotheses hy
sim ← 0

verify lines: adjust sim based on the position similarity

between lS,i and t
(
lM,i

)

repeat this for all cones and edge pixels

if sim ≥ tsim then

append hyi to position list p
end if

next

5.4.6 Example

The following examples show object poses found and verified by the LEWIS system
as white overlays on the original gray scale scene images. They demonstrate that
the system is able to detect multiple objects even in the presence of heavy occlusion
and/or background clutter, but also disclose some limitations of the method.
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Table 5.4 Recognition examples taken from the article of Rothwell et al. [4].3 The threshold for
the edge match in the verification step was set to 50%

Scene image containing
seven planar objects
which partly occlude each
other. Two of them
(spanner and lock striker
plate) are part of the
model database       

Detected lines and conics
superimposed in white.
Altogether, 100 lines and
27 conics are found by
the system

 The two model objects are
 both found with correct 
pose: the striker plate
with 50.9% edge match
based on a single 
invariant, the spanner with
70.7% edge match based
on three invariants

Example of a false 
positive due to clutter: the
spanner was identified in
wrong pose with 52.1%
edge match

Three detected objects in
another scene image with
74.4% edge match 
(2 invariants), 84.6% (1 inv.)
and 69.9% (3 inv.) from
left to right     

Spanner detected with the
help of canonical frame
invariants with 55.5%
edge match

5.4.7 Rating

As the examples show, it is indeed possible to utilize invariants for 3D object
recognition of planar objects with only a single image independent of the viewpoint
from which it was acquired. Experiments performed by the authors, where objects
were rotated full circle with a certain step size, revealed that algebraic as well as
canonical frame invariants remained stable (the standard deviation was at approx-
imate 1.5% of the mean value). There are numerous examples where objects were
found in spite of considerable occlusion and/or clutter. Moreover, the system is
also capable of identifying multiple objects in a single scene image. Compared to
an alignment approach, the number of hypotheses to be tested in the verification
step could be reduced dramatically (by 2–3 orders of magnitude for some example
images).

3With kind permission from Springer Science+Business Media: Rothwell et. al. [4], Figs. 27, 28,
32, and 42, © 1995 Springer.
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On the other hand, however, the system sometimes tends to generate false posi-
tives, especially in the presence of heavy clutter. This is due to the fact that clutter
leads to a dense occurrence of features. Consequently, sometimes a spurious solu-
tion can occur when an invariant calculated from clutter can be matched to the model
database (one example is shown in Table 5.4). The system doesn’t consider texture
or, more generally, appearance information which could contribute to alleviate this
effect. Additionally, the method only works well if objects are suited, i.e., if they
contain several feature primitives like lines or conics. More seriously, many fea-
tures have to be detected reliably in order to make the method work. This makes
the invariant calculation instable: for example, if only a single line of a five-line
group is occluded by another object, it is not possible to calculate the corresponding
invariant value any longer. In the meantime it is common sense that this limitation
is the main drawback of methods relying on invariants.
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Chapter 6
Flexible Shape Matching

Abstract Some objects, e.g., fruits, show considerable intra-class variations of their
shape. Whereas algorithms which are based on a rigid object model run into diffi-
culties for deformable objects, specific approaches exist for such types of objects.
These methods use parametric curves, which should approximate the object contour
as good as possible. The parameters of the curve should offer enough degrees of
freedom for accurate approximations. Two types of algorithms are presented in this
chapter. Schemes belonging to the first class, like snakes or the contracting curve
density algorithm, perform an optimization of the parameter vector of the curve in
order to minimize the differences between the curve and the object contour. Second,
there exist object classification schemes making use of parametric curves approxi-
mating an object. These methods typically calculate a similarity measure or distance
metric between arbitrarily shaped curves. Turning functions or the so-called cur-
vature scale space are examples of such measures. The metrics often follow the
paradigm of perceptual similarity, i.e., they intend to behave similar to the human
vision system.

6.1 Overview

In certain applications the shapes of the objects to be found exhibit considerable
variations, e.g., the shape of potatoes can have substantial differences when one
potato is compared to another. However, despite of these variations, most potatoes
can easily be recognized and are perceived as “similar” by humans. Algorithms
exploiting geometric properties like distances between characteristic features of the
object or point sets are often based on a rigid object model, thus running into dif-
ficulties for deformable objects. Therefore methods have been designed which are
flexible enough to cope with deformations in the object shape. Some of them intend
to establish similarity measures which are inspired by the mode of operation of
human visual recognition.

In this chapter, methods using parametric curves are presented. A parametric
curve v (s, ϕ) can be written as

117M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
DOI 10.1007/978-1-84996-235-3_6, C© Springer-Verlag London Limited 2010
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v (s, ϕ) = [
x(s, ϕ), y (s, ϕ)

]
(6.1)

with ϕ being a vector of model parameters specifying the curve and s being a scalar
monotonously increasing from 0 to 1 as the curve is traversed. The course of the
curve should approximate the object contour as good as possible. The parameter
vector ϕ should offer enough degrees of freedom which enable the curve to be
flexible enough for an accurate approximation of the object shape.

Two types of algorithms shall be presented in this chapter. The first class con-
tains schemes consisting of an optimization of the parameter vector ϕ such that
the discrepancies between the curve and the object contour are minimized. Strictly
speaking, these methods are not able to classify an object shown in a scene image;
instead they try to locate the exact position of a deformable object contour, e.g., find
the exact borders of potatoes. Therefore they are often seen as segmentation meth-
ods. Nevertheless, they are presented here (in the first two sections of this chapter),
because they offer the possibility to enhance the performance of other object recog-
nition schemes. For example, they can be combined with a Hough transform giving
a rough estimate about the object location in order to refine the object border esti-
mation. The main motivation for such a proceeding is to combine the advantages of
both schemes.

Additionally, curves which are an accurate approximation of an arbitrarily shaped
object can be utilized for a subsequent classification. To this end, methods exist
which calculate a similarity measure or distance metric between arbitrarily shaped
curves. Some of them are presented in the second part of this chapter. Based on
these measures the aforementioned classification is possible. The metrics often fol-
low the paradigm of perceptual similarity, i.e., they intend to behave similar to the
human vision system. Therefore they should be able to recognize objects which are
perceived similar by us humans as well, even if their contour shows considerable
deformations.

The usage of curves for object recognition offers the advantage of modeling arbi-
trarily shaped objects. Moreover, deformations can be considered in a natural way,
which makes the utilization of curves suitable for flexible shape matching. However,
many of the methods optimizing parametric curves rely on a stable segmentation of
the object from the background, which is in itself a nontrivial task.

6.2 Active Contour Models/Snakes

6.2.1 Standard Snake

6.2.1.1 Main Idea

Snakes are parametric curves as described above and have been proposed by Kass
et al. [3] as a method being able to detect contours of deformable objects. They
act like an elastic band which is pulled to the contour by forces. Being an itera-
tive scheme, eventually the course of the band converges to the object border being
searched. The forces affect the snake with the help of a so-called energy functional,
which is iteratively minimized.
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During energy minimization by optimization of the curve model, the snakes
change their location dynamically, thus showing an active behavior until they reach
a stable position being conform with the object contour. Therefore they are also
called active contour models. The “movement” of the curve during iteration reminds
of snakes, which explains the name. Snakes are an example of a more general class
of algorithms that match a deformable model to an image with the help of energy
minimization.

According to Kass et al. [3] the energy functional E can be written as:

E =
1∫

0

Eint (v (s, ϕ))+ Eimage (v (s, ϕ))+ Econ(v (s, ϕ))ds (6.2)

As can be seen, the total energy consists of three components:

• Eint is called the internal energy and ensures the curve to be smooth. Eint depends
on the first- and second-order derivatives of v (s, ϕ) with respect to s. Considering
the first order ensures to exclude discontinuities and the second-order part helps
punishing curves containing sections of high curvature. In this context, curvature
can be interpreted as a measure of the energy which is necessary to bend the
curve.

• Eimage represents the constraints imposed by the image content. The curve should
be attracted by local intensity discontinuities in the image as these gray value
changes are advising of object borders. Eimage can contain terms originating from
lines, edges, or terminations. Minimizing this term of the functional achieves
convergence of the curve toward the salient image features just mentioned.

• With the help of external constraints Econ it is envisaged to ensure that the
snake should remain near the desired minimum during optimization. This can
be achieved by user input (e.g., when Econ is influenced by the distance of the
curve to user-selected “anchor points,” which are specified as lying on the object
contour by the user) or by feedback of a higher level scene interpretation in a
subsequent step of the algorithm.

During optimization, the curve parameter vector ϕ has to be adjusted such that
the energy functional E reaches a minimum. The optimization procedure is outlined
in the following, details can be found in the appendix of [3].

6.2.1.2 Optimization

The internal energy is often modeled by a linear combination of the first- and
second-order derivatives of v (s, ϕ) with respect to s:

Eint = 1/
2 ·

[
α |vs (s, ϕ)|2 + β |vss (s, ϕ)|2

]
(6.3)

where the parameters α and β determine the relative influence of the first- and
second-order derivatives (denoted by vs and vss) intending to punish discontinuities
and high curvature parts, respectively. If β is set to 0, the curve is allowed to contain
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corners. It is possible to model α and β dynamically dependent on s or statically as
constants.

Eimage should take smaller values at points of interest such as edge points.
Therefore the negative gradient magnitude is a natural measure for Eimage. As object
borders produce high-gradient values only within a very limited area in the sur-
rounding of the border, this convergence area is usually very limited. It can be
increased, though, by utilizing a spatially blurred version of the gradient magnitude.
To this end, a convolution of the image content with a Gaussian kernel G (x, y, σ) is
applied:

Eimage (x, y) = − ∣∣∇ [
G (x, y, σ) ∗ I (x, y)

]∣∣2 (6.4)

with G(x, y, σ ) = 1√
2πσ

· e−
(
x2+y2

)/
2σ 2

(6.5)

where ∇ and ∗ denote the gradient and convolution operator, respectively.
As far as the external constraints Econ are concerned, they are often set to zero

and therefore aren’t considered any longer in this section.
A minimization of the energy functional is usually performed without explicit

calculation of the model parameters ϕ of the curve. Instead, the curve position is
optimized at N discrete positions v (si) =

[
x(si), y(si)

]
with i ∈ [1..N] and si+1 =

si+�s. �s denotes a suitably chosen step size. If the internal and image constraints
are modeled as described above, the snake must satisfy the Euler equation (which
actually is a system of two independent equations, one in x and one in y) in order to
minimize E. It is defined by

N∑

i=1

αvss (si)− βvssss (si)−∇Eimage (si) = 0 (6.6)

with vss(s) being the second-order derivative and vssss (s) the fourth-order derivative
of v with respect to s. A solution of this equation can be found by treating v as a
function of time t and iteratively adjusting v(s, t) until convergence is achieved (see
the Appendix of [3] for details).

6.2.1.3 Example

Figure 6.1 shows an example of fitting an initially circle-shaped curve to a tri-
angle form. It was generated with the java applet available at the Computer
Vision Demonstration Website of the University of Southampton.1 The energy is
minimized iteratively with the help of sample points located on the current curve

1http://users.ecs.soton.ac.uk/msn/book/new_demo/Snakes/ (link active 13 January, 2010), images
printed with permission. There also exists a book written by a member of the research group [7],
which gives a very good overview of snakes as well as many other image processing topics.
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Fig. 6.1 Several iteration
steps captured during the
fitting of an initial
circle-shaped curve to a
triangle form are shown

representation (green squares). The images show the location of the sample points
at start, after 6, 10, 15, 20, and final iteration (from top left to bottom right). The
“movement” of each sample point as iteration proceeds is also shown by a specific
curve for each point (green and red curves).

6.2.1.4 Rating

With the help of snakes it is possible to detect the exact contour of deformable
objects. Given a reasonable estimate, arbitrarily shaped contours can be approxi-
mated (at least in principle); the method is not restricted to a specific class of objects.
In contrast to the classical approach of edge detection and edge linking, snakes as a
global approach have the very desirable property of being quite insensitive to con-
tour interruptions or local distortions. For this reason they are often used in medical
applications where closed contours often are not available.

A major drawback of snakes, though, is the fact that they rely on a reasonable
starting point of the curve (i.e., a rough idea where the object border could be)
for ensuring convergence to the global minimum of the energy functional. If the
starting point is located outside the convergence area of the global minimum the
iteration will get stuck in a local minimum not being the desired solution. This is a
general problem of numerical iterative optimization schemes. The convergence area
is defined by the scope of the gray value gradients. This scope can be extended by
increasing the σ value of Gaussian smoothing, but this is only possible at the cost
of decreasing the gradient magnitude. That’s the reason why σ cannot be increased
too far. Another attempt to overcome this limitation is to perform several energy
minimizations at different starting points. Additionally, snakes sometimes fail to
penetrate into deep concavities (see next section).

In order to get an impression of the performance and limitations of the method,
it is suggested to search the Internet for java applets implementing the snake
algorithm2 and experiment a bit.

2See, e.g., http://www.markschulze.net/snakes/index.html (link active 13 January, 2010).
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6.2.2 Gradient Vector Flow Snake

6.2.2.1 Main Idea

Xu and Prince [10] suggested a modification aiming at extending the convergence
area of the snake. Additionally, they showed that with the help of their modification,
snakes were able to penetrate in deep concavities of object boundaries as well, which
often isn’t possible with the standard scheme. Having these two goals in mind, they
replaced the part which represents the image constraints in the Euler equation (6.6),
namely −∇Eimage, by a more general force field f(x, y)

f(x, y) = [a(x, y), b(x, y)] (6.7)

which they called gradient vector flow (GVF). A specific tuning of f(x, y) intends
to enlarge the convergence area as well as increase the ability to model deep
concavities correctly.

Figure 6.2 presents a comparison of the GVF snake (bottom row) with the stan-
dard snake method (top row) with the help of an example contour shown in the left
column (in bold). It features a deep concavity. Additionally the convergence pro-
cess of the snake is displayed in the left column. The iterative change of the snake
approximation shows that the standard scheme isn’t able to represent the concavity
correctly, but the GVF snake is. In the middle, the force fields of both methods are
displayed. Clearly, the GVF snake has a much larger convergence area. A close-
up of the force field in the area around the concavity is shown in the right part.
It reveals the reason why the standard snake doesn’t penetrate into the concavity,

Fig. 6.2 Taken from Xu and Prince [10] (© 1998 IEEE; with permission): Comparison of the
standard snake scheme (top row) with a GVF snake (bottom row)
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but the GVF snake does: forces of the standard scheme inside the concavity have
no portion pointing downward into the concavity, whereas the GVF forces possess
such a portion.

The calculation of f(x, y) starts with the definition of an edge map e(x, y), which
should be large near gray value discontinuities. The above definition of a Gaussian-
blurred intensity gradient is one example of an edge map. The GVF field is then
calculated from the edge map by minimizing the energy functional

ε =
∫∫

μ
(

a2
x + a2

y + b2
x + b2

y

)
+ |∇e|2 |f−∇e|2 dxdy (6.8)

with (·)n being the partial derivative in the n-direction. A closer look at ε reveals
its desirable properties: near object boundaries, minimization of ε usually results in
setting f very close to or even identical to ∇e and thus a behavior very similar to the
standard snake. In homogenous image regions, however, |∇e| is rather small, and
therefore ε is dominated by the partial derivatives of the vector field, leading to a
minimization solution which keeps the spatial change of f(x, y) small and hence to
enlarged convergence areas. The parameter μ serves as a regularization term.

According to Xu and Prince [10], the GVF field can be calculated prior to snake
optimization by separately optimizing a(x, y) and b(x, y). This is done by solving the
two Euler equations

μ∇2a− (a− ex)
(

e2
x + e2

y

)
= 0 (6.9a)

and μ∇2b− (
b− ey

) (
e2

x + e2
y

)
= 0 (6.9b)

where ∇2 denotes the Laplacian operator (see [10] for details). The thus obtained
solutions minimize ε (cf. Equation (6.8)). Once f(x, y) is calculated, the snake can
be optimized as described in the previous section.

6.2.2.2 Pseudocode

function optimizeCurveGVFSnake (in Image I, in segmentation

threshold tI, out boundary curve v(si))

// pre-processing

remove noise from I if necessary, e.g. with anisotropic

diffusion

init of edge map e(x, y) with Gaussian blurred intensity

gradient magnitude of I (Equation 6.4)

calculate GVF field f(x, y) by solving Equation 6.9

// init of snake: segment the object from the background and

derive the initial curve from its outer boundary

for y = 1 to height(I)
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for x = 1 to width(I)
if I(x, y)≤ tI then

add pixel [x, y] to object area o
end if

next

next

get all boundary points b of o
sample boundary points b in order to get a discrete

representation of parametric curve v(si, 0)

// optimization (just outline, details see [3])

t ← 1

do

v(si, t) ← solution of Euler equation 6.6// update curve

update Euler equation 6.6 (adjust the terms of 6.6

according to the new positions defined by v(si, t))
t ← t + 1

until convergence

6.2.2.3 Example

GVF snakes are incorporated by Tang [8] in a lesion detection scheme for skin
cancer images. Starting from a color image showing one or more lesions of the
skin, which can contain clutter such as hairs or specular reflections in the lesion
region, the exact boundary of the lesion(s) is extracted (cf. Fig. 6.3 and image (C)
of Table 6.1).

Aniso.
Diff. 

Segm.

GVF
Calculation

Snake
Optimization

Fig. 6.3 Illustrating the boundary extraction of the lesions of skin cancer images (after the initial
gray value conversion).3 The proceeding is explained in the text

3Contains some images reprinted from Tang [8] (Figs. 2 and 7), © 2009, with permission from
Elsevier.
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Table 6.1 Illustrating the convergence problem in case of multiple objects4

(A) Example of
convergence problems
when multiple objects are
present with GVF snakes
(blue curve)

(B) Correct convergence
achieved with the
directional GVF snake

(C) Example of a 
multilesion detection

The method consists of four steps:

1. Conversion of the original color image to a gray value image.
2. Noise removal by applying a so-called anisotropic diffusion filter: the basic idea

of anisotropic diffusion is to remove noise while preserving gradients at true
object borders at the same time. To this end, the image is iteratively smoothed by
application of a diffusion process where pixels with high intensity (“mountains”)
diffuse into neighboring pixels with lower intensity (“valleys”). This is done in
an anisotropic way: diffusion does not take place in the directions of dominant
gray value gradients (thereby gradient blurring is avoided!), but perpendicular to
it. Details can be found in [8] and are beyond the scope of this book.

3. Rough segmentation with the help of simple gray value thresholding. This step
serves for the determination of reasonable starting regions for the subsequent
snake optimization.

4. Fine segmentation using a GVF snake. Compared to the GVF snake presented
above, Tang [8] applied a modified version in order to make the method suitable
for multi-lesion images where it should be possible to locate multiple lesions
being close to each other. In those cases the snake has to be prevented to partly
converge to one lesion and party to another lesion in its vicinity. This can be
achieved by replacing the edge map e(x, y) by a gradient that always points
toward the center point of the lesion currently under investigation. The thus
obtained directed gradient vector flow ensures that the whole snake converges
toward the boundary of the same lesion (cf. images (A) and (B) of Table 6.1).

6.2.2.4 Rating

As shown in the example application, some restrictions of the standard snake
scheme can be overcome or at least alleviated by the usage of GVF snakes. The

4Contains some images reprinted from Tang [8] (Figs. 4 and 7), © 2009, with permission from
Elsevier.
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additional degrees of freedom obtained by the introduction of more general force
fields can be utilized to enlarge the convergence area or make the optimization more
robust in situations where the scene image contains multiple objects.

On the other hand, the calculation of the force field involves a second optimiza-
tion procedure during recognition which increases the computational complexity of
the method. Moreover, a reasonable initial estimation of the object boundary is still
necessary.

6.3 The Contracting Curve Density Algorithm (CCD)

6.3.1 Main Idea

Another algorithm falling into the class of fitting a curve model to supposed
object boundaries is the contracting curve density algorithm (CCD) suggested by
Hanek and Beetz [2]. It works on RGB color images and also utilizes a paramet-
ric curve model. In addition to that, a model for the probability distribution of
the curve parameters is used, too. This means that the curve model is not deter-
ministic, but instead consists of a “mean” parameter vector mϕ and a covariance
matrix �ϕ describing the joint probability distributions of the parameters ϕ of the
curve model.

The algorithm consists of two iteration steps which are performed in
alternation:

1. During the first step, local image statistics, e.g., the distribution of RGB values,
are calculated for each of the two sides of the curve. To this end, the pixels in the
vicinity of the curve are assigned probabilistically to a specific side of the curve
with the help of the current curve model. Based on that assignment, the statistics
can be estimated for each side separately.

2. The curve model consisting of the mean parameter vector and its covariance
matrix is refined in the second step. This can be done by calculating the proba-
bility of occurrence of the actually sensed RGB values based on the assignment
of each pixel to a curve side as well as the local statistics, both derived in the first
step. To put it in other words: How likely are the actually acquired RGB values
to occur, given the estimates of step 1? Now the curve model is updated such that
it maximizes this probability. These two steps are performed iteratively until the
curve model converges, i.e., the changes of mϕ and �ϕ are small enough (see
also Fig. 6.4).

Please note that, as the local image statistics are allowed to change as the curve
is traversed and can additionally be updated in each iteration step, it is possible to
use dynamically adjusted criteria for the assignment of pixels to a side of the curve.
This is a considerable improvement compared to using pre-defined criteria which are
applied by many conventional image segmentation schemes such as homogeneity or
gradient-based information.
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6.3.2 Optimization

The details of the optimization procedure involve extensive use of mathematics and
are beyond our focus. Therefore just the outline of the proceeding at each iteration
step i shall be presented here; the interested reader is referred to the original article
of Hanek and Beetz [2] for details.

The first question that has to be answered is how to assign the pixels to side
n ∈ {1, 2} of the curve v. The assignment can be done by calculating a quantity
ap,1(mϕ , �ϕ) for each pixel p in the vicinity ν of v which indicates the probability
of p belonging to side 1 of the curve. It depends on the location of p relative to
v as well as the curve model parameters mϕ and �ϕ . Here, the term “vicinity”
means that p is located close enough to v such that it has to be considered in the
optimization procedure. The probability that p belongs to side 2 of the curve is given
by ap,2 = 1− ap,1. ap,1 consists of two parts: the probability ãp,1 for a given vector
of model parameters ϕ (which corresponds to the fraction of p which is located
at side 1 of the curve and is 0 or 1 in most cases) and the conditional probability
p(ϕ|mϕ , �ϕ) defining the probability of occurrence of this parameter set, given the
statistical properties of the model:

ap,1(mϕ , �ϕ) =
∫

ãp,1 (ϕ) · p(ϕ|mϕ , �ϕ)dϕ (6.10)

Second, for each pixel p in the vicinity of the curve v(s, ϕ) the statistics of its local
neighborhoods have to be modeled. To this end, a Gaussian distribution is chosen
for modeling the probability of occurrence of a specific RGB value, which is char-
acterized by a 3D mean vector mp,n (corresponding to the mean red, green and blue
intensity) and a 3 × 3 covariance matrix �p,n modeling their joint probabilities.
The statistics Sp,n =

(
mp,n, �p,n

)
for each pixel p are calculated separately for each

of the two sides of the curve, i.e., the neighborhood is separated into two parts,
one for each side of the curve. mp,n and �p,n can be calculated based on weighted
sums of the actual RGB values of the two parts of the neighborhood. As s increases
when traversing the curve, the weights are varying (only the local neighborhood of
p shall be considered) and therefore the local statistics are allowed to change, which
results in a suitable neighborhood representation even in challenging situations of
inhomogeneous regions.

Finally, a way of updating the curve model mϕ and �ϕ has to be found. To this
end, a probability distribution for the occurrence of the RGB values at each pixel
p (how likely is a specific value of Ip, given the statistics Sp,n?) is calculated based
on the assignments ap,n as well as the local neighborhood statistics Sp,n. Again, a
Gaussian distribution is chosen. It is given by

mp = ap,1mp,1 + ap,2mp,2 (6.11)

and �p = ap,1�p,1 + ap,2�p,2 (6.12)
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Given this distribution, the probability p(Ip|mp, �p) of the occurrence of the actual
RGB value Ip of p can be calculated. The probability of occurrence of the sensed
image data for the entire vicinity ν is characterized by the product of p(Ip|mp, �p)
for all pixels located within ν:

p(Iν |mν , �ν) =
∏

p∈ν
p(Ip|mp, �p) (6.13)

The updated mean vector mi+1
ϕ can be set to the parameter vector ϕ that maximizes

the following product:

mi+1
ϕ = arg max

[
p (Iν |mν , �ν) · p

(
ϕ|mi

ϕ , �i
ϕ

)]
(6.14)

�i+1
ϕ is calculated based upon a Hessian matrix derived from this product, for details

see [2].

6.3.3 Example

In Fig. 6.5 the exact contour of a mug is determined: starting from the initial contour
estimation shown as a red curve, the algorithm converges to the contour shown in
black. Estimating the contour is a difficult task here, as both the object and the
background area are highly inhomogeneous in terms of RGB values due to texture,
shading, clutter, and highlights.

Fig. 6.5 Taken from Hanek and Beetz [2]6 showing the precise contour detection of a mug as a
challenging example application

6With kind permission from Springer Science+Business Media: Hanek and Beetz [2], Fig. 2, ©
2004 Springer.



130 6 Flexible Shape Matching

6.3.4 Pseudocode

function optimizeCurveCCD (in Image I, in initial curve

estimate v(ϕ0), convergence limits εm and ε�, out refined

curve estimate v(ϕi))

// iterative optimization

i ← -1

do

i ← i + 1

// step 1: estimate local statistics

for each pixel p∈ ν

calculate probability ap, 1 that p belongs to side

1 of the curve according to Equation 6.10

ap, 2 ← 1 - ap, 1
next

for each pixel p∈ ν

// calculate statistics Sp of the neighborhood of p
for each pixel q at side 1 and in neighborhood of p
update mp, 1 and �p, 1 according to q weighted by

the distance between p and q
next

for each pixel q at side 2 and in neighborhood of p
update mp,2 and �p,2 according to q weighted by

the distance between p and q
next

estimate mp and �p acc. to Equation 6.11 and 6.12

next

// step 2: refine estimate of model params mϕ
i+1 and �ϕ

i+1

for each pixel p∈ ν

calculate p(Ip |mp, �p) and update p(Iν | mν , �ν)

(probability that actual RGB values are observed; Equ.

6.13)

next

mϕ
i+1 ← argmax of Equation 6.14 // update mean

update �ϕ
i+1 based on Hessian matrix

until ||mϕ
i+1 - mϕ

i||≤ εm ∧||�ϕ
i+1 - �ϕ

i||≤ ε�

6.3.5 Rating

With the help of examples, the authors give evidence that the algorithm achieves
high accuracy when detecting the object border even in very challenging situa-
tions with, e.g., severe texture, clutter, partial occlusion, shading, or illumination
variance while featuring large areas of convergence at the same time (see Fig. 6.5
where the border of a mug is detected accurately despite being located in a highly
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inhomogeneous background; the detection result is superior to other segmentation
methods for that kind of situations). This is due to the fact that the algorithm uti-
lizes a “blurred” model (probability distribution of the curve parameters) and does
not blur the image content like other algorithms do in order to enlarge convergence
area.

Besides, the dynamic update of the statistical characterization of the pixel neigh-
borhoods especially pays off in challenging situations like the mug shown in the
example. If the object and/or background regions are highly inhomogeneous, a
dynamic adjustment of the statistics is clearly superior to a segmentation based on
any kind of pre-defined thresholds.

On the other hand, this algorithm is rather time-consuming and relies on a
reasonable starting point as well.

6.4 Distance Measures for Curves

Once a curve approximating an object boundary is available, it can be compared
to curves which describe the contour of known object classes and are stored in the
model database. This can be done by applying a distance metric, which yields a
dissimilarity measure between the curve of the query object and a model curve of
the database. This measure, in turn, can be used for a classification of the object.
These metrics often intend to identify curves being perceptually similar, which is an
approach trying to imitate the human vision system with its impressive capabilities
as far as pattern recognition is concerned.

In the following two metrics, one being derived from the curve itself (based on
the so-called curvature scale space) as well as another derived from a polygonal
approximation of the curve (based on a so-called turning function) are presented.
Both of them showed good performance in a comparative study performed by
Latecki et al. [5]).

6.4.1 Turning Functions

6.4.1.1 Main Idea

According to van Otterloo [9], a so-called turning function can be calculated from a
polygonal approximation of the curve. In a second step, two polygons can be com-
pared by means of a distance metric based on the discrepancies of their turning
functions. For the moment, let’s assume that a suitable polygonal approximation
of the object contour, i.e., a polygon consisting of line segments located in the
vicinity of the object boundary, is already available (see Chapter 4 how such an
approximation can be obtained).

The turning function Tp(s) of a polygon p defines the cumulative angle between
the line segments of the polygon and the x-axis as a function of the arc length s,
which increases from 0 to 1 as the polygon is traversed. Starting at an end point
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s

T

Fig. 6.6 Example for the calculation of Tp (s): The polygon is depicted in the left part; the deduced
turning function can be seen on the right. The starting point is marked light blue

of p (or, equivalently, at s = 0), T is initialized by the angle between the line seg-
ment which contains the end point and the x-axis. As s increases, the value of Tp(s)
is changed at each vertex connecting two line segments of the polygon. Tp(s) is
increased by the angle between two successive line segments if the polygon turns to
the left and Tp(s) is decreased by the angle between two successive line segments if
the polygon turns to the right (see Fig. 6.6).

Let’s have a look at some properties of the turning function: First of all, it can
easily be seen that T is translation invariant. As the polygons are normalized such
that s ranges from 0 to 1, the turning function is scale invariant, too. A rotation
θ of the polygon leads to a vertical shift of T. In the case of closed contours, a
“movement” of the starting point along the contour results in a horizontal shift of T.
Apart from these shifts, which can be identified easily, turning functions are suitable
for a comparison of polygons featuring minor deformations due to their cumulative
nature: even if the course of the polygon is different at a certain position, in cases
where the polygons are perceptually similar the cumulative angle should be similar,
too. This is a very desirable property for flexible model fitting.

Based on the turning function, a distance metric d (a, b) between two polygons a
and b, which integrates the differences of the cumulative angles, can be calculated
as follows:

d(a, b) =
⎛

⎝
1∫

0

|Ta(s)− Tb(s)+ θ0|n ds

⎞

⎠

1/n

(6.15)

where Ta(s) and Tb(s) denote the turning functions derived from the polygons a and
b. The parameter n is often chosen to n = 2. With the help of θ0 a possible rota-
tion between the two polygons can be compensated: θ0 is chosen such that d(a, b)
is minimized. As a consequence, the metric is invariant to the class of similarity
transformations.

An example can be seen in Fig. 6.7: Two polygons differing especially in one
vertex in their upper right part are compared there. The differences of their turning



6.4 Distance Measures for Curves 133

s

T

Fig. 6.7 Example of the turning-function-based distance metric

functions are indicated by gray areas in the right part of the figure. Observe that
the arc lengths in T are normalized: actually, the light blue polygon is longer than
the dark blue polygon. Despite considerable appearance variations between the two
polygons, their turning functions are quite similar, which correlates well with the
visual perception of the polygons: the basic characteristics of both polygons are
usually perceived similar by human observers.

6.4.1.2 Example

Latecki and Lakämper [4] presented an object recognition scheme based on the
turning function as distance measure for the comparison of curves. The method
starts when the curve approximating the border of a query object has already been
extracted, e.g., by a proper segmentation scheme or a snake refinement. Recognition
then consists of the following steps:

1. Polygonal approximation of the curve: every planar curve can be represented by
a series of pixels which define the locations of the curve in 2D space. This pixel
representation can already be interpreted as a polygon, because any two consecu-
tive pixels define a very short line segment. Of course, such a (initial) polygonal
representation is of little use in respect of the turning function as even small
amount of noise causes many turns. Hence, an iterative process called discrete
contour evolution or discrete curve evolution (DCE) is applied. At each iteration
step, the two line segments l1 and l2 with the least significant contribution to the
curve are replaced by a single new line segment which connects the outmost two
end points of l1 and l2 (see also Fig. 6.8) The significance of the contribution is
measured by a cost function which increases with the turning angle between l1
and l2 as well as the length of the segments. The iteration stops if the previously
defined distance metric d (p0, pi) between the initial curve p0 and the polygonal
approximation pi at iteration step i exceeds a certain threshold. This proceed-
ing results in a smoothing of spurious and noisy details while the characteristic
course of the curve is preserved at the same time.

2. Distance metric calculation: once an appropriate polygonal approximation of the
object contour is available, its similarity to objects stored in a model database can
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Fig. 6.8 Example of discrete curve evolution (DCE) taken from Latecki and Lakämper [4] (©
2000 IEEE; with permission). A few iteration stages of the DCE algorithm are shown when approx-
imating the contour of a fish. The original contour is presented in the upper left part. At first,
variations of small scale are removed. Finally, an entirely convex polygon remains (lower right)

be calculated with the help of the turning function-based distance metric defined
by (6.15). Bear in mind, though, that a global representation of the object contour
by means of a single closed polygon is sensitive to occlusion. Therefore, in order
to increase robustness, the polygons are split into visual parts, and each part vpi

is compared separately to a part of a model polygon or concatenations of such
parts. Details of this partitioning can be found in [4].

3. Classification: based on the previously computed distances to the objects of a
model database, the assignment of the query object to a certain model object can
be made, e.g., by nearest-neighbor classification (cf. also Appendix B).

6.4.1.3 Pseudocode

function classifyCurveTurningFunction (in Image I, in boundary

curve v(s) of object in scene image, in visual parts vpM of

all models, in maximum polygonal approx. deviation tp,max, in

similarity threshold tsim, out model index m)

// DCE approximation

// set initial polygonal approximation to boundary curve

p0 ← v(s)
i ← 0; dev ← 0

while dev ≤ tp,max do

sigmin ← MAX_FLOAT // init of significance minimum

// detect the two least significant lines

for j = 1 to number of lines of pi-1

for k = j + 1 to number of lines of pi
calculate significance sigj,k of lines lj and lk
for polygon pi
if sigj,k ≤ sigmin then

sigmin ← sigj,k
end if

next
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next

replace the two lines from which sigmin was derived

by one line connecting their outer endpoints in pi
dev ← d(p0, pi)// compare p0 to pi acc. to Equation 6.15

i ← i + 1

end while

split pi into visual parts vpS,i and store them in list vpS

// classification

for each model index m // loop for all database models

errm ← 0 // cumulated turning function discrepancies

for i = 1 to number of visual parts (elements of vpS)

find closest match vpm,k to vpS,i (Equation 6.15)

increment errm according to d(vpm,k,vpS,i)

next

next

find model index mmin with smallest deviation error errm,min
if errm,min ≤ tsim then

// valid object class identified

return mmin
else

return -1 // in order to indicate an error has occurred

end if

6.4.1.4 Rating

The authors regard the main strength of their method to be the capability to find
correct correspondences between visual salient parts of object contours. The DCE-
algorithm, which can be seen as a pre-filter, effectively suppresses noise, which
facilitates the matching step. The method proved to outperform many other schemes
in a comparative study, where database retrieval applications were simulated [5].

However, the partitioning into parts with subsequent combinatorial matching
also involves a considerable increase in computational complexity. Moreover, the
scheme concentrates on classification; an estimation of the pose of the object being
approximated by the polygon is not straightforward.

6.4.2 Curvature Scale Space (CSS)

6.4.2.1 Main Idea

A distance metric, which is directly based on a curve representing the border of
an object, was introduced by Mokhtarian et al. [6]. It is derived from the so-called
curvature scale space, and based on the observation that dominant characteristics
of a curve remain present for a large range of scales whereas spurious characteristics
soon disappear as scale increases.
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Mokhtarian et al. consider locations where the curvature of the curve passes
through a zero crossing as characteristic points of the curve (an interpretation which
is shared by many other authors, too). A geometric interpretation is that the change
of the tangent angle changes its sign at such a point, i.e., the point is located at the
transition between a concave and a convex part of the curve.

After an initial segmentation step, the object boundary usually contains many
curvature zero crossings, mainly due to noise and/or quantization effects. But if the
curve which represents the object boundary is smoothed further and further, the spu-
rious zero crossings will soon disappear, whereas the crossings being characteristic
of the boundary remain present even in the case of strong smoothing.

An example of the evolution of zero crossings can be seen in Table 6.2, where the
zero crossings of a maple leaf contour are detected at multiple smoothing levels. The
original binary image is shown upper left. The blue curves represent the extracted
boundaries at different levels of smoothing. All detected curvature zero crossings are
marked red. It can be seen that more and more zero crossings disappear as smoothing
increases. The starting point of the boundary curve is located at the top of the leaf
and marked green.

Smoothing of a curve v (s) = [
x(s), y(s)

]
can be realized by a separate convolu-

tion of each of the two components x(s) and y(s) with a 1D Gaussian function. The
extent of smoothing can be controlled with the standard deviation σ of the Gaussian
function. As σ increases, more and more curvature zero crossings will disappear;
typically, two crossings cancel each other out at a certain scale. Finally, when σ is

Table 6.2 Evolution of a curve with increasing smoothing

Boundary at  σ  = 14

Boundary at  σ = 32 

Original image Extracted boundary;  σ = 5

Boundary at σ = 72 Boundary at σ = 120 
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sufficiently high, v(s) is entirely convex and therefore no curvature zero crossings
are present any longer (cf. Table 6.2, lower right curve).

For a given smoothing level σ , it is possible to plot all positions of curvature
zero crossings in terms of the arc length s at which they occur. When the plotting
is repeated for various σ , the position change of the zero crossings is shown in the
[s; σ ]–plane, which defines the curvature scale space. The pair-wise annihilation
of zero crossings is observable very well in curvature scale space. Zero cross-
ings resulting from noise, etc., disappear at comparably low σ , whereas dominant
characteristics annihilate at high σ (see Table 6.3).

The 2D pattern (“fingerprint”, denoted as fp) of all annihilation positions (which
are alternatively called “maxima”, denoted as fpi) in curvature scale space which are
located at a sufficiently high σ level (e.g. above a threshold value tσ ) is considered
as characteristic for a certain object boundary and should remain similar even if
minor distortions occur. The positions in s-direction of the maxima should roughly
correspond to locations with maximum/minimum curvature, as they are located in
between two zero crossings or inflection points of the initial curve. This relates
the scheme to a certain extent to the discrete curve evolution method presented in
the previous section, as the polygon vertices typically are located in regions with
extremal curvature, too.

The appearance of objects in CSS can be exploited for object classification by
matching the 2D pattern of annihilation points of a query object to the patterns
stored in a model database. The total distance between two patterns, which can be
used as a measure for classification, can be set to the summation of the Euclidean
distances between matched maxima of the pattern plus the vertical positions of
all unmatched maxima. This ensures a proper penalization for patterns with many
unmatched maxima.

Table 6.3 Curvature scale space example

Curvature scale space of the maple leaf
example  

All characteristic maxima (annihilation
points above red line) are marked red

2D pattern of  CSS maxima of the
above example (red points), compared
to a second pattern (blue crosses)   

The comparison with a shifted version
of the blue pattern reveals high
similarity. The alignment is based on
the positions of the two dominant
maxima (second from right)     
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Please note that a change of the starting point (where s = 0) results in a horizontal
shift of the whole pattern along the s-axis. As a consequence, the two patterns have
to be aligned prior to matching. This can be done, for example, by aligning the
“highest” maxima (annihilation points occurring at highest σ ) of the two pattern
(see bottom part of Table 6.3).

6.4.2.2 Pseudocode

function classifyCurveCSS (in Image I, in boundary curve v(s)
of object in scene image, in fingerprints of CSS maxima fpM
of all models, in sigma threshold tσ, in similarity threshold

tsim, out model index m)

// CSS calculation

σ0 ← 1.0

init of curvature scale space css
for i = 1 to n

// smooth boundary curve

vi(s) ← v(s)∗G(σ i) // convolution with Gaussian

calculate zero crossings z of vi(s)
update css according to z and σ i.

σ i+1 ← σ i · k // e.g. k = 1.2
next

// calculation of CSS pattern fpS of scene image

fpS ← all local maxima in css
for i = 1 to number of maxima (elements of fpS)

if σ(fpS,i) ≤ tσ then // maximum is not dominant

remove fpS,i from fpS
end if

next

// classification

for each model index m
align fpm and fpS horizontally

errm ← 0

for i = 1 to number of maxima in CSS (entries in fpS)

find closest match fpm,k to fpS,i
if no match found then

// add sufficiently large penalty value pen
errm ← errm + pen

else

increment errm according to distance between

fpm,k and fpS,i
end if
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next

next

find model index mmin with smallest deviation error errm,min
if errm, min ≤ tsim then

// valid object class identified

return mmin
else

return -1 // in order to indicate that no object was found

end if

6.4.2.3 Rating

Tests performed by the authors with various data sets showed that the CSS-metric
is capable to reliably identify objects being similar to a query object, which is
considered similar by human observers, too. The method, together with the turning-
function based metric, proved to outperform many other schemes in a comparative
study where database retrieval applications were simulated [5].

On the other hand, observe that, in contrast to polygonal approximation, a back
calculation from the CSS pattern to a curve is not possible. Due to its global nature
a disadvantage of this measure is that the object contour has to be present as a
complete closed contour, i.e., the objects have to be segmented completely from the
background, which might not be possible in some cases. Additionally, the fingerprint
of CSS maxima is not scale-invariant. In order to make the method robust to changes
of scale shifts have to be performed in scale direction during the matching of the 2D
fingerprints. Moreover, as matching of the fingerprint has to be carried out in a 2D
space (and maybe also shifts are necessary) the computational complexity is rather
high.

6.4.3 Partitioning into Tokens

6.4.3.1 Main Idea

Methods relying on a closed contour of the object are very sensitive to occlusion.
Partly occluded objects can be found, however, if the contour is split into parts. Then
it is possible to search each part individually first. It doesn’t matter if some of the
parts are missing in the query image as long as the detected parts can gather enough
evidence for the presence of an object.

Berretti et al. [1] adopt the strategy of breaking up an object contour into parts,
which they call tokens. Additionally, they choose a representation of the tokens
which is intended to fit well to the concept of perceptual similarity. With the help
of this representation it should be possible to detect objects which show consider-
able intra-class variation, but are considered similar by us humans. Moreover, they
applied the principle of indexing in order to speed up the recognition process. The
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usage of indexing aims at a fast retrieval of the token being most similar to a query
token form the model database.

Now let’s have a closer look at the three contributions of the work of Berretti
et al. [1] which were considered most significant by the research group:

1. Partitioning into tokens: There is evidence that the human vision system splits
a connected contour at positions of extremal curvature, i.e., points where the
contour bends most sharply. For that reason Berretti et al. [1] suggest to partition
the curve at points where the curvature of the curve attains a local minimum.
These points correspond to the bounding points of protrusions of the contour. If
a parametric description v(s) = [

x(s), y(s)
]
, s ∈ [0, 1] of the contour is available,

its curvature cv(s) is defined by

cv (s) = xs (s) yss (s)− xss (s) ys (s)
(
x2

s (s)+ y2
s (s)

)3/2
(6.16)

where xs (s), xss (s), ys (s), and yss (s) denote the first and second derivatives of x
and y with respect to s, respectively. An example of the partitioning according to
the minima of cv (s) can be found in Fig. 6.9 (right image).

2. Token representation: As mentioned already, the representation of each token τk

should reflect the concept of perceptual similarity. One feature which strongly
influences perception is the “width” of a token: “narrow” tokens are considered
to be dissimilar to “wide” tokens. A quantitative measure of the “width” is the
maximum curvature mk along τk. As the end points are defined by local minima
of curvature, there also has to be a local maximum of curvature somewhere along
the token. The higher mk, the more “narrow” the token is perceived. A second
characteristic measure for the token is its orientation θk with respect to the x-axis.

Fig. 6.9 With images taken from Berretti et al. [1] (© 2000 IEEE; with permission): In the left
part, details of the calculation of the token orientation θk are shown. The right part depicts the
partitioned contour of a horse together with the descriptor values of the tokens in the notion of
(maximum curvature, orientation)
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θk is determined by the angle between a specific line of the token and the x-axis of
a reference coordinate system. The specific line connects the point of maximum
curvature with the point which is located in the center of a line connecting the
two end points of τk (see left part of Fig. 6.9). Overall, each token is characterized
by its [mk, θk]-tuple.

3. Indexing via M-trees: At some stage in the matching process the token of a
model database which is most similar to a given query token (detected in a query
image) has to be found. In order to avoid exponential complexity which would
be involved by the straightforward approach of a combinatorial evaluation of the
similarity measures, the most similar model token is found by indexing. To this
end, the model tokens are arranged in a tree structure. At the bottom or “leaf”
level, each node ni represents one token. Tokens with [mk, θk]-tuples of similar
value – which form a cluster in the 2D feature space – are summarized into a new
node of the tree, which is a parent of the leaf nodes. Each node is characterized
by the centroid of the cluster as well as the dimension of the cluster in fea-
ture space. In higher levels of the tree several clusters can be summarized again,
which yields a new node, and so on. During matching, a top-down processing of
the resulting tree permits a fast determination of correspondences between query
and model tokens. The term “M-Tree” results from the learning method when
building the tree in a teaching stage (see [1] for details).

6.4.3.2 Example

Berretti et al. [1] applied the token-based object models in a retrieval system, where
the user inputs a hand-drawn sketch and the system reports images from a database
containing objects with a contour being most similar to the user sketch (cf. Fig. 6.10,
which illustrates the algorithm flow). In order to retrieve the most similar objects,
the user sketch is partitioned into tokens first. Images containing similar shapes are
found by establishing 1-to-1 correspondences between the tokens of the sketch and

Fig. 6.10 Algorithm flow for retrieving images containing shapes which are similar to a user
sketch as proposed by Berretti et al. [1], where the user sketches the outline of a head of a horse
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the tokens of the database. As a measure of distance dij between two tokens τi =
[mi, θi] and τj =

[
mj, θj

]
a weighted sum of curvature and orientation differences is

applied:

dij = α · ∣∣mi − mj
∣∣+ (1− α) · ∣∣θi − θj

∣∣ (6.17)

where α denotes a weighting factor. The search of the most similar tokens is speeded
up by the tree-based organization of the model token database. The similarity mea-
sure between two shapes amounts to the sum of token differences. Geometric
relations between the tokens are not considered. As a result, the images with the
lowest overall dissimilarity measures (which are based upon the sum of the dij) are
reported by the system.

6.4.3.3 Pseudocode

function retrieveSimilarObjectsToken (in boundary curve v(s)
of object in scene image, in token lists τM of all models, in

M-Trees of all models MTM, in similarity threshold tsim, out

list of indices of all similar images a)

// token partitioning of input curve

calculate curvature cv(s) of boundary curve v(s) according

to Equation 6.16

detect all minima of cv(s) and store them in list cv, min
partition v(s) into tokens τS: each token is bounded by the

position of two successive minima cv, min, k and cv,min,k+1
for k = 1 to number of tokens τS

calculate maximum curvature mk in token τS,k
calculate orientation θk of token τS,k
τS,k ← [mk,θk] // store representation of current token

next

// matching

for a = 1 to number of models in database

erra ← 0

for k = 1 to number of tokens τS
// detect correspondence of current token

i ← 1

ni ← root node of MTM,a
while ni contains child nodes do

find node ni+1 representing the most similar model

token among all child nodes of ni (Equation 6.17)

i ← i + 1

end while

τM,a,l ← model token defined by ni
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erra← erra + distance dkl between τS,k and τM,a,l
according to Equation 6.17

next

if erra ≤ tsim then

append index a to position list of similar images a

end if

next

6.4.3.4 Rating

In their article, Berretti et al. [1] gave evidence that their system was capable of
retrieving similar images even in the presence of partial occlusion. The retrieval
performance was competitive to other systems. The authors also showed that the
usage of M-trees significantly accelerated the correspondence search.

However, invariance is only achieved with respect to scale, not rotation, because
the token orientations θk were calculated with respect to an absolute coordinate
system. By calculating relative angles (angle between one token with respect to
another) rotation invariance can be achieved, but only at the cost of increased sensi-
tivity to occlusion: if the “reference token” isn’t present, the relative angles cannot
be calculated. Additionally, the usage of curvature involves sensitivity to noise, as
second derivatives are used.
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Chapter 7
Interest Point Detection and Region Descriptors

Abstract Object recognition in “real-world” scenes – e.g., detect cars in a street
image – often is a challenging application due to the large intra-class variety or the
presence of heavy background clutter, occlusion, or varying illumination conditions,
etc. These tough demands can be met by a two-stage strategy for the description
of the image content: the first step consists of the detection of “interest points”
considered to be characteristic. Subsequently, feature vectors also called “region
descriptors” are derived, each representing the image information available in a local
neighborhood around one interest point. Object recognition can then be performed
by comparing the region descriptors themselves as well as their locations/spatial
configuration to the model database. During the last decade, there has been extensive
research on this approach to object recognition and many different alternatives for
interest point detectors and region descriptors have been suggested. Some of these
alternatives are presented in this chapter. It is completed by showing how region
descriptors can be used in the field of scene categorization, where the scene shown
in an image has to be classified as a whole, e.g., is it of type “city street,” “indoor
room,” or “forest”, etc.?

7.1 Overview

Most of the methods presented up to now use either geometrical features or
point sets characterizing mainly the object contour (like the correspondence-based
schemes) or the global appearance of the object (like correlation or eigenspace meth-
ods). When object recognition has to be performed in “real-world” scenes, however
(e.g., detect cars in a street image), a characterization with geometric primitives like
lines or circular arcs is not suitable. Another point is that the algorithm must com-
pensate for heavy background clutter and occlusion, which is problematic for global
appearance methods.

In order to cope with partial occlusion, local evaluation of image information is
required. Additionally, gradient-based shape information may not be enough when
dealing with a large number of similar objects or objects with smooth brightness

145M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
DOI 10.1007/978-1-84996-235-3_7, C© Springer-Verlag London Limited 2010
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Fig. 7.1 Illustrative example of the strategy suggested by Schmid and Mohr [31]: first, interest
regions are detected (middle part, indicated by blue circles). Second, a descriptor is calculated for
each interest region (right part)

transitions. To this end, Schmid and Mohr [31] suggested a two-stage strategy for
the description of the image content: the first step consists of the detection of so-
called interest points (sometimes also called “keypoint” in literature), i.e., points
exhibiting some kind of salient characteristic like a corner. Subsequently, for each
interest point a feature vector called region descriptor is calculated. Each region
descriptor characterizes the image information available in a local neighborhood
around one interest point. Figure 7.1 illustrates the approach.

As far as descriptor design is concerned, the objective is to concentrate local
information of the image such that the descriptor gets invariant to typical variations
like viewpoint or illumination change while enough information is preserved at the
same time (in order to maintain discriminative power, i.e., ability to distinguish
between different object classes).

Object recognition can then be performed by comparing information of region
descriptors detected in a scene image to a model database. Usually the model
database is created in an automated manner during a training phase. Recognition
is done by matching both the descriptor content (establishing point-to-point corre-
spondences) and the spatial relations of the interest points.

In contrast to most of the correspondence-based matching techniques presented
in the previous chapters, the number of correspondences between model and
scene image descriptors can efficiently be reduced prior to spatial relation-based
matching by comparing the descriptor data itself. Additionally, the information
gained by using region information compared to point sets leads to increased
robustness with respect to clutter and occlusion as fewer feature matches are neces-
sary. Besides, the keypoint detection concentrates on highly characteristic image
regions in an automatic manner; no assumptions about the object appearance
have to be made in advance. Mainly, the descriptors are derived from appear-
ance information, but there also exist methods making use of descriptors which
are derived from shape information, e.g., the object silhouette or detected contour
points.
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During the last decade, there has been extensive research on this approach to
object recognition and many different alternatives for interest point detection and
region descriptors have been suggested (a good overview is given in [26] or [28]).
Before presenting some of the alternatives for interest point detection as well as
region description, a key method adopting this strategy called scale invariant fea-
ture transform (SIFT) is presented as a whole. After discussing the variations, some
methods applying the local descriptor approach to shape information are presented.
The chapter is completed by showing how region descriptors can be used in the field
of scene categorization, where the scene shown in an image has to be classified as a
whole, e.g., is it of type “city street,” “indoor room,” or “forest,” etc.?

7.2 Scale Invariant Feature Transform (SIFT)

The SIFT descriptor method suggested by Lowe [17, 18] has received considerable
attention and is representative for a whole class of algorithms performing object
recognition by representing an object with the help of regional descriptors around
interest points. Its principles for interest point detection and region description as
well as the embedding overall object recognition strategy adopted by the SIFT
method are presented in the following.

7.2.1 SIFT Interest Point Detector: The DoG Detector

7.2.1.1 Main Idea

As far as interest point detection is concerned, we have to consider that apart from
the spatial position image information can be present at different scales, e.g., texture
details can be visible only in fine scales whereas the outline of a large building will
probably be present also at a very coarse scale. Hence, image information can be
regarded to be not only a function of the spatial directions x and y but also a function
of scale s, which is called the scale space [33].

When going from finer to coarser scales, information can only disappear and
must not be introduced. A function for the calculation of image representations at
different scales satisfying this constraint is the Gaussian kernel G(x, y, σ). An image
representation Is(x, y, σ) at a specific scale s can be calculated by the convolution of
the original image I(x, y) with G(x, y, σ):

Is (x, y, σ) = G (x, y, σ) ∗ I (x, y) (7.1)

with G (x, y, σ) = 1√
2πσ

· e−
(
x2+y2

)/
2σ 2

(7.2)

The choice of σ defines the scale s. In order to determine all “locations” containing
some kind of characteristic information, interest point localization (Lowe also uses
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the term “keypoint”) amounts to the detection of local maxima and minima in scale
space. To this end, the difference D(x, y, σ) of images at nearby scales is calculated
by convolution of the image with a difference of Gaussian (DoG) function, where
the σ -values of the Gaussians differ by some constant factor k (typical values of k
range between 1.1 and 1.4):

D (x, y, σ) = (G (x, y, kσ)− G (x, y, σ)) ∗ I (x, y) (7.3)

Here ∗ denotes the convolution operator. The scale space can be explored by varia-
tion of σ , e.g., a multiple calculation of D (x, y, σ) with a fixed step size at which σ is
increased. Local maxima and minima are detected by comparing D (x, y, σ) at loca-
tion (x, y, σ) with its eight neighbors of the same scale σ and the 3 × 3 regions of
the two neighboring scales centered at the same x and y (see Fig. 7.2 for an example
of the thus detected keypoints).

7.2.1.2 Example

An example of the regions found by the DoG detector can be found in Fig. 7.2. On
the right, the image is shown with superimposed arrows based on detection results
of the DoG region detector. The direction of the arrow is equal to the dominant
orientation of the region, its starting point the location of the keypoint and its length
corresponds to the detected scale. Altogether, 289 keypoints were found by the DoG
detector. The right image was generated with the software tool available at Lowe’s
homepage.1

Fig. 7.2 Outdoor scene depicting a building with much structural information

1http://www.cs.ubc.ca/∼lowe/keypoints/ (link active 13 January, 2010), images printed with
permission.
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7.2.2 SIFT Region Descriptor

7.2.2.1 Main Idea

The design of the descriptor is motivated by biological vision, in particular by the
observation that certain neurons in the primary visual cortex respond to particular
gradient orientations. In order to trigger a specific response of these neurons, the
location of the gradient on the retina is allowed to exhibit a small shift in x- and
y-position, an observation which is also exploited by Edelman et al. [4].

What consequences does this have for the SIFT descriptor? First, a keypoint
region defined by the DoG detection results (x, y, orientation, and scale) is par-
titioned into 4 × 4 rectangular sub-regions. Subsequently, the intensity gradients
are determined and their orientations are accumulated in an 8-bin histogram for
each sub-region separately (see also Fig. 7.3). A weighting depending on gradient
magnitude and distance to the region center is applied. The area covered by each
sub-region typically is several pixels in size, which relates to the aforementioned
spatial fuzziness of human vision.

This proceeding can be modified in several respects, most of them aiming at
making the descriptor robust to small variations (see [18] for details). For example,
if the gradient orientation of a pixel changes slightly it has to be prevented that this
change makes the pixel contribute to a totally different histogram bin. To this end,
each histogram entry is multiplied by the factor 1 − d with d being the difference
of a gradient orientation to the orientation corresponding to the bin center. Thereby
quantization effects are avoided, which is a primary concern of SIFT descriptor
design.

The descriptor vector for one region contains 4 × 4 × 8 = 128 elements
altogether, a number which seems to be a good trade-off between dimensional-
ity reduction (the region size usually is larger than 128 pixels) and information
preservation.

Fig. 7.3 Example of a SIFT descriptor (right) derived from gradient orientations of an image patch
(left)
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7.2.2.2 Example

Figure 7.3 illustrates the derivation of SIFT descriptors (right side) from image
patches (left side). The arrows display the orientation and magnitude of the gradients
of each pixel in a 9 × 9 image patch. The right part shows the SIFT descriptor for
that region. For illustrative purposes, the region is divided into 3× 3 sub-regions and
for each sub-region an 8-bin orientation histogram is shown. Hence, the descriptor
would consist of 9 × 8 = 72 elements.

7.2.3 Object Recognition with SIFT

In order to recognize objects, their descriptor representations have to be trained
prior to the recognition phase, where descriptors are extracted from a scene image
and compared to the model representations.

7.2.3.1 Training Phase

According to Lowe [18] the feature extraction process in the training phase consists
of four major steps:

1. Interest point detection by searching in the so-called scale space of the image for
extrema of the DoG detector.

2. Exact keypoint localization ipM,l =
[
x, y, σ

]
by refinement of the scale space

positions obtained in step 1 (see “modifications”).
3. Assignment of the dominant orientation θ ip,l to each keypoint which is based on

the weighted mean gradient orientation in the local neighborhood of a keypoint
(see “modifications”).

4. SIFT descriptor calculation based on gradient orientations in the region around
each keypoint. The regions are defined in x, y, and scale by the maxima of the
scale-space DoG function. The descriptors dM,l consist of histograms represent-
ing the distribution of gradient orientations (relative to the assigned orientation)
in the local neighborhood of the keypoints. This proceeding ensures invariance
of the SIFT descriptor with respect to translation, rotation, and scale.

7.2.3.2 Recognition Phase

In order to utilize the SIFT method for object recognition, descriptors are extracted
from a query image and compared to a database of feature descriptors. Calculation
of the descriptors is identical to training. Additionally, the recognition stage consists
of the following steps (see also Fig. 7.4 for an overview):

5. Descriptor matching, i.e., finding pair-wise correspondences c = [
dS,k, dM,l

]

between descriptors dM of the database and descriptors dS extracted form the
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DoG Detector

Descriptors
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Fig. 7.4 Illustrating the algorithm flow of the SIFT method. Please note that the DoG detector
is visualized with an image pyramid here, because Lowe suggested to downsample the image for
large values of σ

scene image. To this end the content of the descriptors is compared. This
correspondence search can, e.g., be done by nearest-neighbor search, i.e., a cor-
respondence is established between a scene descriptor dS,k and the database
descriptor dM,l with minimum Euclidean distance to it (in feature space, see
also Appendix B). Additionally, this distance has to remain below a pre-defined
threshold td,sim, which means that the two descriptors must exhibit enough
similarity.

6. Creation of hypotheses for object pose by correspondence clustering with the
Hough transform. Mainly due to background clutter, there is possibly a consid-
erable amount of outliers among the correspondences (potentially over 90% of
all correspondences) making it hard to find a correct object pose. Therefore in
this step, a hypothesis for the object pose (x- and y-translation, rotation θ , and
scale s) is created by a voting process where only a few geometrically consistent
keypoint locations suffice to generate a hypothesis. The Hough transform is cho-
sen for hypothesis generation because it has the desirable property of tolerating
many outliers, as transformation estimations based on geometrically consistent
correspondences should form a cluster in Hough space. From each keypoint cor-
respondence estimations of the four pose parameters based on the locations,
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orientations, and size of their regions can be derived. Each estimation casts a
vote in a 4D Hough space. A hypothesis is created by each accumulator cell
containing at least three votes, which means that at least three descriptor corre-
spondences have to be geometrically consistent in order to generate a hypothesis
of the object pose. In order to keep memory demand limited and tolerate for local
distortions, viewpoint changes, etc., the bin size of the accumulator cells is kept
rather large.

7. Hypothesis verification: Based on a hypothesis which consists of at least three
keypoint correspondences, the six parameters of an affine transformation t
between the model keypoint locations and scene keypoint locations can be
estimated by taking all correspondences into account which contribute to this
hypothesis. With the help of this transformation estimation it can be checked
which correspondences are really consistent with it (meaning that the trans-
formed location of a model keypoint t

(
ipM,l

)
has to be located nearby the

corresponding scene keypoint ipS,k), and which have to be excluded. Based on
these checks, the transformation parameters can be refined, other points excluded
again, until the iteration terminates. In the end, a decision can be made whether
the hypothesis is accepted as a valid object location or not. One criterion might
be that at least three correspondences have to remain.

7.2.3.3 Pseudocode

function detectObjectPosSIFT (in Image I, in model descriptors

dM, in model interest point data ipM, in descriptor

similarity threshold td,sim, out object position list p)

// interest point detection: DoG operator

σ0 ← 1.0
Is,0 ← I ∗ G (σ0)

for i = 1 to n

σi ← σi−1 · k // e.g. k = 1.4

Is,i ← I ∗ G (σi)

Di ← Is,i − Is,i−1
next

detect all local extrema in Di’s; each extremum defines an

interest point ipS,k =
[
x, y, σ

]

// refinement of interest point locations (see modifications)

for k = 1 to number of interest points ipS
refine position in scale space

([
x, y, σ

])

// calculate dominant orientation θip,k
for each pixel p located within the region defined by ipS,k

calculate gradient magnitude mp and orientation θp

update histogram h at bin defined by θp, weighted
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by mp

next

assign maximum of h to mean orientation θip,k
if multiple dominant maxima exist in h then

add a new interest point with identical location, but

different mean orientation for each dominant maximum

end if

next

for k = 1 to number of interest points ipS // descr. calc.

calculate descriptor dS,k (see Fig. 7.3)

next

// matching

for k = 1 to number of descriptors dS
find model descriptor dM,l being most similar to dS,k
if similarity

(
dS,k, dM,l

) ≥ td,sim then // match found

add correspondence c = [
dS,k, dM,l

]
to list c

end if

next

// generation of hypotheses

for i = 1 to number of list entries in c

estimate transformation t based on interest point

locations of current correspondence ci
cast a vote in accu according to t and model index m

next

// hypothesis verification

determine all cells of accu with at least three votes

for i = 1 to number of cells of accu with >= 3 votes

do

re-estimate t based on all ck which contributed to

current accu cell

discard all “outliers” and remove these corresp.

until convergence (no more discards)

if number of remaining ck >= 3 then

add hypothesis hy = [t, m] to list p
end if

next

7.2.3.4 Example

Figure 7.5 shows the recognition result for two objects (a frog and a toy railway
engine; training images are depicted upper left) in the presence of heavy occlusion
and background clutter in the scene image. It can be seen that the two instances of
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Fig. 7.5 Taken from Lowe [18]2 illustrating the recognition performance in the presence of heavy
occlusion and background clutter

the railway engine and one instance of the frog are recognized correctly (matched
keypoint locations and region sizes are shown by red, yellow and green overlays).

7.2.3.5 Rating

The sheer fact that SIFT is used as a benchmark for many propositions of interest
point detectors and region descriptors is a strong hint of its good performance, espe-
cially in situations with heavy occlusion and/or clutter (as shown in the example).
A particular strength of the method is that each step is carefully designed and,
additionally, all steps work hand in hand and are well coordinated.

2With kind permission from Springer Science+Business Media: Lowe [18], Fig. 12, © 2004
Springer.
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However, the method only works well if a significant number of keypoints can
be detected in order to generate enough descriptor information and therefore relies
heavily on the keypoint detector performance. Later publications also show that
overall performance can be increased if some part of the method, e.g., the descriptor
design, is substituted by alternatives (see next section).

7.2.3.6 Modifications

Without going into details, Lowe [18] suggests several additional steps and checks
for the selection and refinement of keypoint locations in scale space. They include
accepting only extrema with an absolute value above some threshold and position
refinement by fitting the scale space function to a parametric function. Furthermore,
as the location of a point being part of a straight line edge is accurately defined only
in the direction perpendicular to the edge, no keypoints should be located along
such edges. Respective keypoints are sorted out accordingly. In contrast to that, the
location of, e.g., corner points is well defined in two directions and therefore they
are well suited as keypoints (see [18] for details).

In order to make the descriptors insensitive to image rotation between training
and recognition the average orientations of the local neighborhoods around each
keypoint are computed prior to descriptor calculation (cf. step 3 of teaching phase).
The orientations used for the histogram of the descriptor can then be related to this
mean orientation. To this end, the gradient orientations of all pixels located within
such a neighborhood are calculated (the region size is defined by the scale of the
scale-space extremum) and accumulated in an orientation histogram. Orientations
are weighted by the gradient magnitude as well as the proximity to the region cen-
ter with the help of a Gaussian weighting function. The assigned orientation of a
keypoint corresponds to the maximum of the orientation histogram. In case there
exist multiple dominant orientation maxima, multiple keypoints located at the same
spatial position are generated.

In the recognition phase, many false correspondences can occur due to back-
ground clutter. In order to handle this situation, the ratio of the distance of the closest
neighbor to the distance of the second closest neighbor is evaluated instead of the
closest distance value alone. Correspondences are only established if this ratio is
below a certain threshold. Here, the second closest neighbor distance is defined as
the closest neighbor that is known to originate from a different object class than the
first one. Please note that this step can become very time-consuming if some 10,000
pairs have to be evaluated. To this end, Lowe suggested an optimized algorithm
called best bin first (see [18] for details).

7.3 Variants of Interest Point Detectors

Correspondences between model and scene image descriptors can only be estab-
lished reliably if their interest points are detected accurate enough in both the scene
and the training images. Therefore interest point detector design is an important
issue if reliable object recognition is to be achieved with this kind of algorithms.
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For example, the invariance properties of the detector are especially important
in presence of illumination changes, object deformations, or change of camera
viewpoint.

A considerable amount of alternatives to the DoG detector has been reported in
literature. Basically, they can be divided in two categories:

• Corner-based detectors respond well to structured regions, but rely on the
presence of sufficient gradient information.

• Region-based detectors respond well to uniform regions and are also suited to
regions with smooth brightness transitions.

7.3.1 Harris and Hessian-Based Detectors

A broadly used detector falling into the first category is based on a method reported
by Harris and Stephens [9]. Its main idea is that the location of an interest point is
well defined if there’s a considerable brightness change in two directions, e.g., at a
corner point of a rectangular structure.

Imagine a small rectangular window shifted over an image. In case the window
is located on top of a corner point, the intensities of some pixels located within the
window change considerably if the window is shifted by a small distance, regardless
of the shift direction. Points with such changes can be detected with the help of the
second moment matrix M consisting of the partial derivatives Ix and Iy of the image
intensities (i.e., gray value gradient in x- and y-direction):

M =
[

I2
x IxIy

IxIy I2
y

]
=

[
a b
b c

]
(7.4)

In order to reduce the sensitivity of the operator to noise each matrix element is
usually smoothed spatially by convolution with a Gaussian kernel: For example, the
spatially smoothed value of matrix element a at pixel

[
x, y

]
is obtained by convolv-

ing the a’s of the pixels in the vicinity of
[
x, y

]
with a Gaussian kernel. Corner points

are indicated if the cornerness function fc based on the Gaussian-smoothed second
moment matrix MG

fc = det (MG)− k · tr (MG)2 =
(

ac− b2
)
− k · (a+ c)2 (7.5)

attains a local maximum. Here, tr (·) denotes the trace and det (·) the determinant
of matrix MG. k denotes a regularization constant whose value has to be chosen
empirically, in literature values around 0.1 have been reported to be a good choice.
The combined usage of the trace and the determinant has the advantage of making
the detector insensitive to straight line edges.

Similar calculations can be done with the Hessian matrix H consisting of the
second order derivatives of the image intensity function:

H =
[

Ixx Ixy

Ixy Iyy

]
(7.6)
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where the Ixx, Ixy, and Iyy denote the second-order derivatives in x- and y-directions.
Interest points are detected at locations where the determinant of H reaches a
local maximum. In contrast to the Harris-based detector the Hessian-based detector
responds to blob- and ridge-like structures.

7.3.1.1 Rating

These two detectors have the advantage that they can be calculated rather fast, but on
the other hand they do neither determine scale nor orientation. In order to overcome
this disadvantage, modifications have been suggested that incorporate invariance
with respect to scale (often denoted as Harris–Laplace and Hessian–Laplace detec-
tor, respectively, as they are a combination of the Harris- or Hessian-based detector
with a Laplacian of Gaussian function (LoG) for scale detection, cf. [16], for
example) or even affine transformations (often referred to as Harris-affine and
Hessian-affine detector, respectively; see the paper of Mikolajczyk and Schmid [22]
for details). The price for invariance, however, is a considerable speed loss.

7.3.2 The FAST Detector for Corners

Another detector for corner-like structures is the FAST detector (Features from
Accelerated Segment Test) proposed by Rosten and Drummond [27]. The basic idea
behind this approach is to reduce the number of calculations which are necessary at
each pixel in order to decide whether a keypoint is detected at the pixel or not as
much as possible. This is done by placing a circle consisting of 16 pixels centered at
the pixel under investigation. For the corner test only gray value differences between
each of the 16 circle pixels and the center pixel are evaluated, resulting in very fast
computations (cf. Fig. 7.6).

Fig. 7.6 Demonstrates the application of the FAST detector for the dark center point of the
zoomed region shown in the right. A circle is placed around the center point (marked red) and
consists of 16 pixels (marked blue). For typical values of t the cornerness criterion (Equation 7.7a)
is fulfilled by all circle pixels, except for the pixel on top of the center pixel
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In the first step, a center pixel p is labeled as “corner” if there exist at least n
consecutive “circle pixels” c which are all either at least t gray values brighter than
p or, as a second possibility, all at least t gray values darker than p:

Ic ≥ Ip + t for n consecutive pixels (7.7a)

or Ic ≤ Ip − t for n consecutive pixels (7.7b)

Ic denotes the gray value of pixel c and Ip the gray value of pixel p respectively.
After this step, a corner usually is indicated by a connected region of pixels where
this condition holds and not, as desired, by a single pixel position. Therefore, a
feature is detected by non-maximum suppression in a second step. To this end, a
function value v is assigned to each “corner candidate pixel” found in the first step,
e.g., the maximum value of n for which p is still a corner or the maximum value t
for which p is still a corner. Each pixel with at least one adjacent pixel with higher
v (8-neighborhood) is removed from the corner candidates.

The initial proposition was to choose n = 12, because with n = 12 additional
speedup can be achieved by testing only the top, right, bottom, and right pixel of
the circle. If p is a corner the criterion defined above must hold for at least three of
them. Only then all circle pixels have to be examined. It is shown in [27] that it is
also possible to achieve similar speedup with other choices of n. However, n should
not be chosen lower than n = 9, as for n ≤ 8 the detector responds to straight line
edges as well.

7.3.2.1 Rating

Compared to the other corner detectors presented above, Rosten and Drummond
[27] report FAST to be significantly faster (about 20 times faster than the Harris
detector and about 50 times faster than the DoG detector of the SIFT scheme).
Surprisingly, tests of Rosten and Drummond with empirical data revealed that the
reliability of keypoint detection of the FAST detector is equal or even superior to
other corner detectors in many situations.

On the other hand, FAST is more sensitive to noise (which stems from the fact
that for speed reasons the number of pixels evaluated at each position is reduced) and
does not provide neither scale nor rotation information for the descriptor calculation.

7.3.3 Maximally Stable Extremal Regions (MSER)

The maximally stable extremal region (MSER) detector described by Matas et al.
[20] is a further example of a detector for blob-like structures. Its algorithmic princi-
ple is based on thresholding the image with a variable brightness threshold. Imagine
a binarization of a scene image depending on a gray value threshold t. All pixels
with gray value below t are set to zero/black in the thresholded image, all pixels
with gray value equal or above t are set to one/bright. Starting from t = 0 the
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threshold is increased successively. In the beginning the thresholded image is com-
pletely bright. As t increases, black areas will appear in the binarized image, which
grow and finally merge together. Some black areas will be stable for a large range
of t. These are the MSER regions, revealing a position (e.g., the center point) as well
as a characteristic scale derived from region size as input data for region descriptor
calculation. Altogether, all regions of the scene image are detected which are sig-
nificantly darker than their surrounding. Inverting the image and repeating the same
procedure with the inverted image reveals characteristic bright regions, respectively.

7.3.3.1 Rating

In contrast to many other detectors, the regions are of arbitrary shape, but can be
approximated by an ellipse for descriptor calculation. The MSER detector reveals
rather few regions, but their detection is very stable. Additionally, the MSER detec-
tor is invariant with respect to affine transformations, which makes it suitable for
applications which have to deal with viewpoint changes.

7.3.4 Comparison of the Detectors

The well-designed SIFT method often serves as a benchmark for performance eval-
uation of region descriptor-based object recognition. As far as detector performance
is concerned, Mikolajczyk et al. [24] reported the results of a detailed empirical eval-
uation of the performance of several region detectors (Mikolajczyk also maintains a
website giving detailed information about his research relating to region detectors as
well as region descriptors3). They evaluated the repeatability rate of the detectors for
pairs of images, i.e., the percentage of detected interest regions which exhibit “suf-
ficient” spatial overlap between the two images of an image pair. The repeatability
rate is determined for different kinds of image modifications, e.g., JPEG compres-
sion artefacts, viewpoint or scale changes, etc., and different scene types (structured
or textured scenes); see [24] for details.

As a result, there was no detector that clearly outperformed all others for all vari-
ations or scene types. In many cases, but by far not all, the MSER detector achieved
best results, followed by the Hessian-affine detector. There were considerable dif-
ferences between different detectors as far as the number of detected regions as
well as their detected size is concerned. Furthermore, different detectors respond to
different region types (e.g., highly structured or with rather uniform gray values).
This gives evidence to the claim that different detectors should be used in parallel in
order to achieve best performance of the overall object recognition scheme: comple-
mentary properties of different detectors increase the suitability for different object
types.

3http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html (link active 13 January 2010).
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Another aspect is invariance: some of the detectors are invariant to more kinds of
transformations than others. For example, the MSER detector is invariant to affine
transformations. Compared to that, the FAST detector is only rotation invariant.
While the enhanced invariance of MSER offers advantages in situations where the
objects to be detected actually have been undergone affine projection, it is often not
advisable to use detectors featuring more invariance than actually needed.

7.4 Variants of Region Descriptors

A simple approach for characterizing a region is to describe it by its raw intensity
values. Matching amounts to the calculation of the cross-correlation between two
descriptors. However, this proceeding suffers from its computational complexity (as
the descriptor size is equal to the number of pixels of the region) as well as the
fact that it doesn’t provide much invariance. Descriptor design aims at finding a
balance between dimensionality reduction and maintaining discriminative power.
Additionally, it should focus on converting the information of the image region
such that it becomes invariant or at least robust to typical variations, e.g., non-linear
illumination changes or affine transformations due to viewpoint change.

Basically, many of the descriptors found in literature belong to one of the
following two categories:

• Distribution-based descriptors derived from the distribution of some kind of
information available in the region, e.g., gradient orientation in SIFT descrip-
tors. Commonly, the distribution is described by a histogram of some kind of
“typical” information.

• Filter-based descriptors calculated with the help of some kind of filtering. More
precisely, a bank of filters is applied to the region content. The descriptor con-
sists of the responses of all filters. Each filter is designed to be sensitive to a
specific kind of information. Commonly used filter types separate properties
in the frequency domain (e.g., Gabor filters or wavelet filters) or are based on
derivatives.

Some descriptors for each of the two categories are presented in the following.

7.4.1 Variants of the SIFT Descriptor

Due to its good performance, the descriptor used in the SIFT algorithm, which is
based on the distribution of gradient orientations, has become very popular. During
the last decade several proposals have been made trying to increase its performance
even further, as far as computation speed as well as recognition rate is concerned.

Ke and Sukthankar [12] proposed a modification they called PCA-SIFT. In prin-
ciple they follow the outline of the SIFT method, but instead of calculating gradient
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orientation histograms as descriptors they resample the interest region (its detection
is identical to SIFT) into 41 × 41 pixels and calculate the x- and y-gradients within
the resampled region yielding a descriptor consisting of 2 × 39 × 39 = 3,042 ele-
ments. In the next step, they apply a PCA to the normalized gradient descriptor (cf.
Chapter 2), where the eigenspace has been calculated in advance. The eigenspace is
derived from normalized gradient descriptors extracted from the salient regions of
a large image dataset (about 21,000 images). Usually the descriptors contain highly
structured gradient information, as they are calculated around well-chosen charac-
teristic points. Therefore, the eigenvalues decay much faster compared to randomly
chosen image patches. Experiments of Ke and Sukthankar [12] showed that about
20 eigenvectors are sufficient for a proper descriptor representation.

Hence descriptor dimensionality is reduced by a factor of about 6 (it consists of
20 elements compared to 128 of standard SIFT method) resulting in a much faster
matching. Additionally, Ke and Sukthankar also reported that PCA-SIFT descrip-
tors lead to a more accurate descriptor matching compared to standard SIFT. A
more extensive study by Mikolajczyk and Schmid [23], where other descriptors are
compared as well, showed that accuracy of matching performance of PCA-SIFT
(compared to standard SIFT) depends on the scene type; there are also scenes for
which PCA-SIFT performs slightly worse than standard SIFT.

Another modification of the SIFT descriptor called gradient location orientation
histogram (GLOH) is reported by Mikolajczyk and Schmid [23] and is based on an
idea very similar to the log-polar choice of the histogram bins for shape contexts,
which are presented in a subsequent section. Contrary to the SIFT descriptor, where
the region is separated into a 4 × 4 rectangular grid, the descriptor is calculated for
a log-polar location grid consisting of three bins in radial direction, the outer two
radial bins are further separated into eight sectors (see Fig. 7.7).

Hence the region is separated into 17 location bins altogether. For each spatial
bin a 16-bin histogram of gradient orientation is calculated, yielding a 272 bin his-
togram altogether. The log-polar choice enhances the descriptors robustness as the
relatively large outer location bins are more insensitive to deformations. Descriptor
dimensionality is reduced to 128 again by applying a PCA based on the eigenvectors
of a covariance matrix which is estimated from 47,000 descriptors collected from
various images. With the help of the PCA, distinctiveness is increased compared to
standard SIFT although descriptor dimensionality remains the same. Extensive stud-
ies reported in [23] show that GLOH slightly outperforms SIFT for most image data.

Fig. 7.7 Depicts the spatial
partitioning of the descriptor
region in the GLOH method
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Fig. 7.8 Showing an
example of a CCH descriptor.
For illustration purposes, the
region is just separated into
two radial and four angular
sub-regions (four radial and
eight angular bins are used in
the original descriptor)

Contrast context histograms (CCH), which were proposed recently by Huang
et al. [10] aim at a speedup during descriptor calculation. Instead of calculating the
local gradient at all pixels of the region, the intensity difference of each region pixel
to the center pixel of the region is calculated, which yields a contrast value for each
region pixel. Similar to the GLOH method, the region is separated into spatial bins
with the help of a log-polar grid. For each spatial bin, all positive contrast values
as well as all negative contrast values are added separately, resulting in a two-bin
contrast histogram for each spatial bin (see Fig. 7.8 for an example: at each sub-
region, the separate addition of all positive and negative contrast values yields the
blue and green histogram bins, respectively.).

In empirical studies performed by the authors, a 64-bin descriptor (32 spa-
tial bins, two contrast value for each spatial bin) achieved comparable accuracy
compared to the standard SIFT descriptor, whereas the descriptor calculation was
accelerated by a factor of 5 (approximately) and the matching stage by a factor of 2.

7.4.2 Differential-Based Filters

Biological visual systems give motivation for another approach to model the con-
tent of a region around an interest point. Koenderink and Van Doorn [13] reported
the idea to model the response of specific neurons of a visual system with blurred
partial derivatives of local image intensities. This amounts to the calculation of a
convolution of the partial derivative of a Gaussian kernel with a local image patch.
For example the first partial derivative with respect to the x-direction yields:

dR,x = ∂G (x, y, σ) /∂x ∗ IR (x, y) (7.8)

where ∗ denotes the convolution operator. As the size of the Gaussian deriva-
tive ∂G/∂x equals the size of the region R, the convolution result is a scalar dR,x.
Multiple convolution results with derivatives in different directions and of different
order can be combined to a vector dR, the so-called local jet, giving a distinctive,
low-dimensional representation of the content of an image region. Compared to
distribution-based descriptors the dimensionality is usually considerably lower here.
For example, partial derivatives in x- and y-direction (Table 7.1) up to fourth order
yield a 14D descriptor.
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Table 7.1 Showing the 14 derivatives of a Gaussian kernel G (Size 41 × 41 pixel, σ = 6.7) in
x- and y-direction up to fourth order (top row from left to right: Gx, Gy, Gxx, Gxy, Gyy; middle
row from left to right: Gxxx, Gxxy, Gxyy, Gyyy, Gxxxx; bottom row from left to right: Gxxxy, Gxxyy,
Gxyyy, Gyyyy)

In order to achieve rotational invariance, the directions of the partial derivatives
of the Gaussian kernels have to be adjusted such that they are in accord with the
dominant gradient orientation of the region. This can be either done by rotating the
image region content itself or with the usage of so-called steerable filters developed
by Freeman and Adelson [7]: they developed a theory enabling to steer the deriva-
tives, which are already calculated in x- and y-direction, to a particular direction and
hence making the local jet invariant to rotation.

Florack et al. [5] developed so-called “differential invariants”: they consist of
specific combinations of the components of the local jet. These combinations make
the descriptor invariant to rotation, too.

7.4.3 Moment Invariants

Moment invariants are low-dimensional region descriptors proposed by Van Gool
et al. [32]. Each element of the descriptor represents a combination of moments
Ma

pq of order p+ q and degree a. The moments are calculated for the derivatives of
the image intensities Id (x, y) with respect to direction d. All pixels located within
an image region of size s are considered. The Ma

pq can be defined as

Ma
pq = 1/s

∑

x

∑

y

xpyq · Id (x, y)a (7.9)
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Flusser and Suk [6] have shown for binary images that specific polynomial combina-
tions of moments are invariant to affine transformations. In other words, the value of
a moment invariant should remain constant if the region from which it was derived
has undergone an affine transformation. Hence, the usage of these invariants is a
way of achieving descriptor invariance with respect to viewpoint change. Several
invariants can be concatenated in a vector yielding a low-dimensional descriptor
with the desired invariance properties.

Note that in [32] moment invariants based on color images are reported, but the
approach can be easily adjusted to the usage of derivatives of gray value intensities,
which leads to the above definition.

7.4.4 Rating of the Descriptors

Mikolajczyk and Schmid [23] investigated moment invariants with derivatives in
x- and y-directions up to second order and second degree (yielding a 20D descriptor
without usage of Ma

00) as well as other types of descriptors in an extensive compar-
ative study with empirical image data of different scene types undergoing different
kinds of modifications. They showed that GLOH performed best in most cases,
closely followed by SIFT. The shape context method presented in the next section
also performs well, but is less reliable in scenes that lack of clear gradient infor-
mation. Gradient moments and steerable filters (of Gaussian derivatives) perform
worse, but consist of only very few elements. Hence, their dimensionality is con-
siderably lower compared to distribution-based descriptors. These two methods are
found to be the best-performing low-dimensional descriptors.

7.5 Descriptors Based on Local Shape Information

7.5.1 Shape Contexts

7.5.1.1 Main Idea

Descriptors can also be derived from the shape information of an image region.
Belongie et al. [2] proposed a descriptor with focus on the capability of classify-
ing objects that are subject to considerable local deformation. At the core of the
method is the concept of so-called shape contexts : Let’s assume that the object is
represented by a set of contour points (“landmark points”), located at positions with
rapid local changes of intensity. At each landmark point, a shape context can be
calculated: it defines a histogram of the spatial distribution of all other landmark
points relative to the current one (see also Fig. 7.9). These histograms provide a dis-
tinctive characterization for each landmark point, which can be used as a descriptor.
Correspondences between model landmark points and their counterparts detected
in a scene image can be established if their descriptors show a sufficient degree of
similarity.
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Fig. 7.9 With images taken from Belongie et al. [2] (© 2002 IEEE; with permission) exemplifying
shape context calculation

Shape contexts are pretty insensitive to local distortions of the objects, as each
histogram bin covers an area of pixels. In case the exact location of the shape varies,
a contour point still contributes to the same bin if its position deviation does not
exceed a certain threshold defined by the bin size. Thus, large bins allow for more
deformation than small bins. That’s the reason for the choice of a log-polar scale for
bin partitioning: contour points located very close to the landmark point for which
the shape context shall be calculated are expected to be less affected by deformation
than points located rather far away. Accordingly, bin size is small near the region
center and large in the outer areas.

A shape context example is depicted in Fig. 7.9: In the left part, sampled con-
tour points of a handwritten character “A” are shown. At the location of each of
them, the local neighborhood is partitioned into bins according to the log-polar grid
shown in the middle. For each bin, the number of contour points located within that
bin is calculated. The result is a 2D histogram of the spatial distribution of neigh-
boring contour points: the shape context. One randomly chosen example of these
histograms is shown on the right (dark regions indicate a high number of points).

7.5.1.2 Recognition Phase

The recognition stage consists of four steps (see also Fig. 7.10 for an overview):

1. Calculation of descriptors called “shape contexts” at contour points located
upon inner or outer contours of the object shown in a scene image.

2. Establishment of correspondences between the shape contexts of the scene image
and those of a stored model based on their similarity.

3. Estimation of the parameters of an aligning transform trying to match the loca-
tion of each contour point of the scene image to the location of the corresponding
model point as exactly as possible.

4. Computation of the distance between scene image shape and model shape (e.g.,
the sum of matching errors between corresponding points). Based on this dis-
tance a classification of the scene image can be done if the distance is calculated
for multiple models.
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Fig. 7.10 Images taken from Belongie et al. [2]; © 2002 IEEE; with permission (illustrating the
algorithm flow of the shape context method)

The shape contexts are calculated by detection of internal and external contour
points of an object, e.g., with the help of an edge detector sensitive to rapid local
changes of intensity. A preferably uniformly sampled subset of these contour points
is chosen to be the set of landmark points for shape context calculation. At the
location of each landmark point its shape context is calculated as a histogram of the
log-polar spatial distribution of the other landmark points.

Correspondence finding can be achieved by comparing the distribution described
by the histograms and thus calculating a measure of histogram similarity, e.g., with
a χ2 test metric.

Once the correspondences are established, the parameters of the transform that
describes the mapping between the locations of the sampled contour points xS,i in
the scene image and their model counterparts xM,k have to be estimated. Affine
transformations given by xS,i = A · xM,k + t don’t allow for local deforma-
tions. Therefore, transformations are modeled by thin plate splines (TPS). TPS are
commonly used when more flexible coordinate transforms performing non-linear
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mappings are needed. Without going into detail, the transform is modeled by a low-
degree polynomial and a sum of radial symmetric basis functions, thereby being
able to model local deformations (details of the method can be found in [21]).

After estimation of the transformation parameters object classification can be
done by calculating a measure of similarity for each object class. Details are given
in Chapter 5 of [2].

7.5.1.3 Pseudocode

function detectObjectPosShapeContext (in Image I, in model

shape contexts dM , in model contour point locations xM,

in shape context similarity threshold td,sim, in position

similarity threshold tp,sim, out object position list p)

// shape context calculation

detect all edge pixels (e.g. with Canny detector) and store

them in list e
xS ← sampling of edge points e, preferably uniform

for i = 1 to number of landmark points xS
// calculate shape context dS,i of landmark point xS,i
for each landmark point xS,k located in the vicinity of xS,i

increase dS,i at the bin of the log-polar spatial grid

defined by the geometric relation between xS,k and xS,i
next

next

// matching

for i = 1 to number of shape contexts dS
find model shape context dM,k being most similar to dS,i
if similarity

(
dS,i, dM,k

) ≥ td,sim then // match found

add correspondence c = [
dS,i, dM,k

]
to list c

end if

next

// generation of hypothesis

find all models with a sufficient number of correspondences

for m = 1 to number of thus found model indices

estimate transformation tm based on all correspondences

cm of c which support model m with thin plate splines

// hypothesis verification

err ← 0

for i = 1 to number of cm

increase err according to position deviation

dist
(
xS,i, tm

(
xM,k

))
(contour points defined by corresp. cm,i)
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next

if err ≤ tp,sim then

add hypothesis [tm, m] to list p
end if

next

7.5.1.4 Rating

Shape contexts are a powerful scheme for position determination as well as object
classification even when local distortions are present, because the possibility of local
deformations is explicitly considered in descriptor design and transform parameter
estimation. Compared to, e.g., Hausdorff distance-based schemes, the principle of
matching the shape with the help of a rich descriptor is a considerable improvement
in terms of runtime, as the descriptor offers enough information in order to establish
1-to-1 correspondences between two shape contexts. With the help of the correspon-
dences, the estimation of the transform parameters can be accelerated significantly
compared to the search in parameter space.

However, the method relies on the assumption that enough contour information is
present and thus is not suitable when the objects lack of high-gradient information.

7.5.2 Variants

7.5.2.1 Labeled Distance Sets

Instead of summarizing the geometric configuration in the neighborhood of a con-
tour point in a histogram, Grigorescu and Petkov [8] suggest to use so-called
distance sets as descriptors of the contour points. A distance set d (p) is a vector,
where each element di (p) represents the distance between the contour point p (for
which d (p) is to be calculated) and another contour point in the vicinity of p. The
dimensionality of the vector d (p) is set to N, which means that the N contour points
located closest to p contribute to d (p). The choice of N allows – to a certain extent –
to control the size of the neighborhood region which contributes to the descriptors.

The dissimilarity D (q, p) between a contour point q of a query object and a
point p of a model object can be calculated by summing the normalized differences
between the elements di and dπ(i) of the sets:

D (q, p) = min
π

[
N∑

i=1

∣∣di (p)− dπ(i) (q)
∣∣

max
(
di (p) , dπ(i) (q)

)

]

(7.10)

where π denotes a mapping function which defines a 1-to-1 mapping between the
elements of the two distance sets under consideration. The denominator serves as
a normalization term. As the dissimilarity between two sets should be a metric for
the “best” possible mapping, we have to choose a mapping π such that D (q, p) is
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Fig. 7.11 Illustrative example for the construction of labeled distance sets for the character “1”

minimized. Efficient techniques exist which avoid a combinatorial test of possible
mappings in order to find the minimum (see [8] for details).

When comparing the whole query object to a database model a matching coeffi-
cient based on the sum of the D (q, p)’s of all contour points q is calculated. As the
mapping between the contour points is not known a priori, it has to be determined in
the matching process by establishing a mapping for each q to the point of the model
point set where D (q, p) attains a minimum. Unmatched points can be considered by
a penalty term.

In order to increase the discriminative power of the matching coefficient, differ-
ent labels can be assigned to each point q and p. The labels characterize the type of
the points, e.g., “end point,” “line,” “junction”. An example is shown in Fig. 7.11,
where the contour points are labeled as “end point” (blue), “junction” (red), and
“line” (green). For each contour point, the distances to its neighbors are summa-
rized in a vector (here, each descriptor consists of five elements; exemplarily shown
for the two blue points in the right part of Fig. 7.11). In the case of labeled points, the
dissimilarity between two points q and p is defined by calculating a separate Dl (q, p)

for each label l, where only points of identical type l are considered, followed by a
weighted sum of all Dl (q, p).

7.5.2.2 Shape Similarity Based on Contour Parts

The method proposed by Bai et al. [1] is based on the shape context descriptor,
but works with contiguous contour parts instead of a discrete point set. It is a
combination of a curve matching scheme with a descriptor-based approach.

It works as follows: after edge detection and grouping, the object contour is
approximated by the discrete contour evolution algorithm presented in the last chap-
ter (DCE, cf. [14]). Subsequently, it is split into segments, each containing at least
two successive line segments of the polygonal approximation obtained by DCE.
Each of the so-calledvisual parts, which is defined by the original contour between
the two end points of the previously obtained segments, can be transformed by map-
ping the “outer” end points to coordinates (0,0) and (1,0) in a 2D coordinate frame.
As a result, the transformed description of each part is invariant to translation, rota-
tion, and scale. Subsequently, a polar grid is superimposed onto the center point of
the curve in the transformed frame. Finally, the descriptor is obtained by counting
the number of edge pixels which are located within that bin for each bin of the polar
grid. The process is shown in Fig. 7.12.



170 7 Interest Point Detection and Region Descriptors

0
1

Fig. 7.12 Showing the process of calculating a descriptor for the center point (marked red) of a
visual part

Please note that especially the invariance with respect to scale is difficult to obtain
for a part-based representation as there is no a priori knowledge how much of the
object is covered by a certain part. Therefore common normalizations utilized for
closed contours, e.g., normalizing the arc length to the interval [0,1], don’t work for
parts.

The matching is performed with the help of the descriptors just described, which
shall be called “shape contexts,” too. For speed reasons, at first only one shape
context of each transformed contour part, e.g., the context of the center point, is
calculated and matched to a database of shape contexts of known objects in order to
perform a fast pre-classification. All correspondences which are considered as simi-
lar in this step are examined further by calculating the shape context of each pixel of
the transformed contour part and matching it to the database. The correspondence
that passes this extended test with minimum dissimilarity can be considered as a
matching hypothesis of the complete object.

7.6 Image Categorization

7.6.1 Appearance-Based “Bag-of-Features” Approach

The task of image categorization is to label a query image to a certain scene type,
e.g., “building,” “street,” “mountains,” or “forest.” The main difference compared to
recognition tasks for distinct objects is a much wider range of intra-class variation.
Two instances of type “building,” for example, can look very different in spite of
having certain common features. Therefore a more or less rigid model of the object
geometry is not applicable any longer.

7.6.1.1 Main Idea

A similar problem is faced in document analysis when attempting to automatically
assign a piece of text to a certain topic, e.g., “mathematics,” “news,” or “sports”.
This problem is solved by the definition of a so-called codebook there (cf. [11] for
example). A codebook consists of lists of words or phrases which are typical for a
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Scene
type 1 

Scene 
type 2

Fig. 7.13 Exemplifying the process of scene categorization

certain topic. It is built in a training phase. As a result, each topic is characterized
by a “bag of words” (set of codebook entries), regardless of the position at which
they actually appear in the text. During classification of an unknown text the code-
book entries can be used for gathering evidence that the text belongs to a specific
topic.

This solution can be applied to the image categorization task as well: here, the
“visual codebook” consists of characteristic region descriptors (which correspond
to the “words”) and the “bag of words” is often described as a “bag of features” in
literature. In principle, each of the previously described region descriptors can be
used for this task, e.g., the SIFT descriptor.

The visual codebook is built in a training phase where descriptors are extracted
from sample images of different scene types and clustered in feature space. The
cluster centers can be interpreted as the visual words. Each scene type can then be
characterized by a characteristic, orderless feature distribution, e.g., by assigning
each descriptor to its nearest cluster center and building a histogram based on the
counts for each center (cf. Fig. 7.13). The geometric relations between the features
are not evaluated any longer.

In the recognition phase, the feature distribution of a query image based on the
codebook data is derived (e.g., through assignment of each descriptor to the most
similar codebook entry) and classification is done by comparing it to the distribu-
tions of the scene types learnt in the training phase, e.g., by calculating some kind
of similarity between the histograms of the query image and known scene types in
the model database.

7.6.1.2 Example

Figure 7.13 shows a schematic toy example for scene categorization. On the left
side, an image with 100 randomly sampled patches (blue circles) is shown. A
schematic distribution of the descriptors in feature space (only two dimensions are
shown for illustrative purposes, e.g., for SIFT we would need 128 dimensions) is
depicted in the middle. The descriptors are divided into five clusters. Hence, for
each scene type a 5-bin histogram specifying the occurrence of each descriptor class
can be calculated. Two histogram examples for two scene types are shown on the
right.
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7.6.1.3 Modifications

Many proposed algorithms follow this outline. Basically, there remain four degrees
of freedom in algorithm design. A choice has to be made for each of the following
points:

• Identification method of the image patches: the “sampling strategy”
• Method for descriptor calculation
• Characterization of the resulting distribution of the descriptors in feature space
• Classification method of a query image in the recognition phase

The identification of image patches can be achieved by one of the keypoint detec-
tion methods already described. An alternative strategy is to sample the image by
random. Empirical studies conducted by Nowak et al. [25] give evidence that such a
simple random sampling strategy yields equal or even better recognition results,
because it is possible to sample image patches densely, whereas the number of
patches is limited for keypoint detectors as they focus on characteristic points. Dense
sampling has the advantage of containing more information.

As far as the descriptor choice is concerned, one of the descriptor methods
described above is often chosen for image categorization tasks, too (e.g., the SIFT
descriptor).

A simple clustering scheme is to perform vector quantization, i.e., partition the
feature space (e.g., for SIFT descriptors a 128D space) into equally sized cells.
Hence, each descriptor is located in a specific cell. The codebook is built by taking
all cells which contain at least one descriptor into account (all training images of
all scene types are considered); the center position of such a cell can be referred
to as a codeword. Each scene type can be characterized by a histogram counting
the number of occurrences of visual code words (identified in all training images
belonging to that type) for each cell. Please note that such a partitioning leads to
high memory demand for high-dimensional feature spaces.

An alternative clustering scheme is the k-means algorithm (cf. [19]), which
intends to identify densely populated regions in feature space (i.e., where many
descriptors are located close to each other). The distribution of the descriptors is
then characterized by a so-called signature, which consists of the set of cluster cen-
ters and, if indicated, the cluster sizes (i.e., the number of descriptors belonging to
a cluster). The advantage of k-means clustering is that the codebook fits better to
the actual distribution of the data, but on the other hand – at least in its original
form – k-means only performs local optimization and the number of clusters k has
to be known in advance. Therefore there exist many modifications of the scheme
intending to overcome these limitations.

If the descriptor distribution of a specific scene type is characterized by a
histogram, the classification of a query image can be performed by calculating sim-
ilarity measures between the query image histogram HQ and the histograms of the
scene types HS,l determined in the training phase. A popular similarity metric is the
χ2 test . It defines a distance measure dχ2,l for each scene type l:
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dχ2,l

(
HQ, HS,l

) =
∑

i

(
hQ,i − mi

)2

mi
(7.11a)

with mi = hQ,i + hS,l,i

2
(7.11b)

where hQ,i denotes the value of bin i of HQ and hS,l,i denotes the value of bin i of
HS,l respectively.

An alternative method, the Earth Mover’s Distance (EMD, cf. the article of
Rubner et al. [29]), can be applied if the distribution is characterized by a signature,
i.e., a collection of cluster centers and the sizes of each cluster. For example, the
signature of the distribution of the descriptors of a query image consists of m cluster
centers cQ,i and a weighting factor wi; 1 ≤ i ≤ m as a measure of the cluster size.
A scene type l is characterized by signature cS,l,j and wl,j; 1 ≤ j ≤ n, respectively.
The EMD defines a measure of the “work” which is necessary for transforming one
signature into another. It can be calculated by

dEMD,l =

m∑

i=1

n∑

j=1
dijfij

m∑

i=1

n∑

j=1
fij

(7.12)

where dij denotes a distance measure between the cluster centers cQ,i and cS,l,j (e.g.,
Euclidean distance). fij is a regularization term influenced by wi and wl,j, see [29]
for details.

The Earth Mover’s Distance has the advantage that it can also be calculated if
the numbers of cluster centers of the two distributions differ from each other, i.e.,
m �= n. Additionally, it avoids any quantization effects resulting from bin borders.

Results of comparative studies for a number of degrees of freedom in algorithm
design like sampling strategies, codebook size, descriptor choice, or classification
scheme are reported in [25] or [34].

7.6.1.4 Spatial Pyramid Matching

A modification of the orderless bag-of-features approach described by Lazebnik
et al. [15], which in fact considers geometric relations up to some degree, is
called spatial pyramid matching. Here, the descriptor distribution in feature space is
characterized by histograms based on a codebook built with a k-means algorithm.

Compared to the bag-of-features approach, additional actions are performed: spa-
tially, the image region is divided into four sub-regions. Consequently, an additional
distribution histogram can be calculated for each sub-region again. This process
can be repeated several times. Overall, when concatenating the histograms of all
pyramid levels into one vector, the resulting description is in part identical to the
histogram computed with a bag-of-features approach (for level 0), but has additional
entries characterizing the distribution in the sub-images
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Level 0 Level 1 Level 2

x ¼ x ¼ x ½

Fig. 7.14 Giving an example of the method with three descriptor types (indicated by red circles,
green squares, and blue triangles) and three pyramid levels

The similarity metric for histogram comparison applied by Lazebnik et al. [15]
differs from the χ2 test. Without going into details, let’s just mention that a simi-
larity value of a sub-histogram at a high level (“high” means division of the image
into many subimages) is weighted stronger than a similarity value at a lower level,
because at higher levels matching descriptors are similar not only in appearance but
also in location. Lazebnik et al. report improved performance compared to a totally
unordered bag-of-features approach.

The proceeding is illustrated in Fig. 7.14, where a schematic example is given
for three descriptor types (indicated by red circles, green squares, and blue trian-
gles) and three pyramid levels. In the top part, the spatial descriptor distribution
as well as the spatial partitioning is shown. At each pyramid level, the number of
descriptors of each type is determined for each spatial bin and summarized in sep-
arate histograms (depicted below the spatial descriptor distribution). Each level is
weighted by a weighting factor given in the last row when concatenating the bins of
all histograms into the final description of the scene.

7.6.2 Categorization with Contour Information

Apart from the appearance-based bag-of-features approach, many propositions
intending to exploit shape or contour information in order to solve the object cat-
egorization task have been made recently. Here, we want to identify all objects
belonging to a specific category (e.g., “cars”) in a scene image. Compared to scene
categorization, the intra-class variance is a bit narrowed down, but still much higher
compared to the task of object detection. The method proposed by Shotton et al.
[30], where recognition performance is demonstrated by the identification of objects
of category “horse,” shall be presented as one example for this class of methods.
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7.6.2.1 Main Idea

Shotton et al. [30] use an object representation which is based upon fragments of
the contour and their spatial relationship. When dealing with object categorization,
closed contours are not feasible due to the large intra-class variance within a specific
object class. Therefore the contour is broken into fragments. This proceeding also
circumvents the problem that closed contours are difficult to extract anyway. As far
as the spatial relationship between the fragments is concerned, it has to be flexible
enough to allow for considerable variations. In turn, the advantage of including spa-
tial relationships into the model is the ability to determine the position of detected
objects as well. An example of an object model showing contour fragments of a
horse can be seen in Fig. 7.15.

In a training stage, contour fragments which are considered characteristic are
learned in an automatic manner from a limited set of example images for each
object class. To this end, edge pixels (edgels) are extracted from the original inten-
sity images, e.g., with the Canny edge detector including non-maximum suppression
(cf. [3] or Appendix A) and grouped to contour fragments.

During recognition, matching of a query image is performed by applying a mod-
ified chamfer distance measure between the edgel point sets of the query image
contour fragments and the fragments of the model database. The basic principle of
the chamfer distance has already been presented in Chapter 3; here the modified dis-
tance also considers orientation differences of the edgels and allows for comparing
point sets differing in scale, too (see [30] for details).

The question now is which fragments have to be compared. The answer is
as follows: At first, hypothetic object locations are sampled in scale space (i.e.,
hypotheses for locations are generated by sampling the

[
x, y

]
-position as well as

scale s). For each hypothesis the modified chamfer distance is calculated for each
contour fragment pair that is geometrically consistent with this hypothesis: the rela-
tive position of the fragment center to the object centroid (defined by the hypothesis)
has to be similar to the position of the model fragment. As a result, a valid object
position xk for a specific object class m is reported by the system if enough evidence

Fig. 7.15 Taken from
Shotton et al. [30] (© 2008
IEEE; with permission): the
object model consists of four
contour fragments. Their
spatial relationship is
modeled by the distance
vectors (blue arrows)
between the center points of
the fragments (red crosses)
and the object centroid (green
cross)
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for the occurrence of an instance of this class at position xk has been collected, i.e.,
several fragments showed low chamfer distance measures.

7.6.2.2 Training Phase

1. Detection of edge pixels: In the fist step, all edge pixels (edgels e) are detected
by applying, e.g., a Canny edge detector to the original intensity image including
non-maximum suppression. Only pixels with gradient above a threshold value t
are kept. This process is performed for all training images.

2. Grouping to fragments: Initially, all edge pixels which are detected in the first
step and are located in a rectangular sub-region of the object area defined by[
xi, yi, si

]
(spatial position

[
xi, yi

]
and scale/size si) are considered to belong to

a specific contour fragment Fi. Hence, there is no need to obtain connected sets
of edgels (which sometimes is a problem, e.g., in noisy situations). Multiple
fragments are extracted by randomly choosing the position as well as the size
of the rectangles. Some examples of extracted contour fragments are depicted in
Fig. 7.16. They contain characteristic fragments (like the horse head) as well as
“noise fragments” (e.g., the fragment shown down to the right) which should be
removed in the following cleaning step.

3. Cleaning of fragments: In order to remove non-characteristic fragments, the
edgel density (number of edgels divided by the area of the rectangular region)
is compared to two thresholds. All fragments with density below threshold η1
are discarded, as they are not supposed to represent characteristic parts of the
object. If the density exceeds a second threshold value η2 (η2 >> η1) the frag-
ment is discarded as well, because it is assumed to contain a significant amount
of background clutter. Even if this is not the case, it is advisable not to consider

Fig. 7.16 Taken from Shotton et al. [30] (© 2008 IEEE; with permission) where some examples
of contour fragments extracted from a horse image can be seen
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the fragment as the matching step would require much computation time due to
the large number of edgels.

4. Virtual sample generation: In order to capture sufficient characteristics of an
object class and its intra-class variations, a considerable number of fragment
samples is necessary. However, the system should also work in situations where
only a few training examples for each object class are available. To this end,
modified versions of the contour fragments are generated by scaling and rotat-
ing the edgels around the fragment center as well as rotating and shifting the
fragment relative to the object centroid to some extent. The parameters for these
transformations are chosen at random within some reasonable bounds.

5. Fragment clustering: Up to now, each training image has been processed sepa-
rately. In the last training step, contour fragments which have similar occurrences
in multiple training images are identified. To this end, a modified chamfer dis-
tance is calculated between pairs of two fragments of different training images. If
several fragments originating from different training images show a low distance,
they are supposed to share a characteristic part of the contour of the object class.
Additionally, the center point locations of the bounding rectangles of similar
fragments should build clusters in the

[
x, y

]
-plane. See Fig. 7.17 for an exam-

ple with horse fragments: It is clearly visible that the occurrence of the pair of
legs (upper left fragment) mainly splits into two clusters in the lower part of
the image, whereas the head of the horse is clustered in the upper left part of
the image. A fragment with no characteristic information about the horse object
class is depicted in the lower right. No clusters can be detected for that fragment.

Hence, only the clusters are included in the model. For each of the found clusters,
a prototype representation (the fragment of the cluster which has minimum overall
chamfer distance to the other cluster members) is taken. Altogether, the model of a

Fig. 7.17 Taken from Shotton et al. [30] (© 2008 IEEE; with permission) displaying the spatial
distribution of occurrence for some example fragments (green cross: object centroid)
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specific object class m consists of fragment data Fm,l of each found cluster l. Each
fragment data Fm,l =

[
E, xf , σ

]
consists of (see also Fig. 7.15):

• The edge map E consisting of the edgels of the prototype representation of the
cluster Fm,l.

• The mean xf of the distance vectors xf of all fragments of cluster Fm,l to the
object centroid.

• The variance σ of the distance vectors xf of all fragments of the cluster Fm,l.

7.6.2.3 Recognition Phase

During recognition, the system tries to find matches between contour fragments FS

in the scene image and the fragments FM of the model database. To this end, the
fragments FS,k have to be extracted first by applying the same process as used in
training up to step 3. Next, the modified chamfer distance is calculated between
the detected query fragments and the model fragments. To this end, the template
fragments of the model database are shifted and scaled by uniformly sampling the[
x, y, s

]
-space with carefully chosen stepsizes.

For speed reasons, not all template fragments are compared at all positions.
Instead, a technique called boosting is applied. Suppose we want to examine the
hypothesis

[
xi, yi, si, m

]
(stating that an instance of object class m is present at posi-

tion
[
xi, yi, si

]
). In principle boosting here works as follows: At first, the chamfer

distance is calculated for only one fragment Fm,l: based on the supposed
[
xi, yi, si

]
-

position of the object centroid as well as the distance vector xf of fragment Fm,l,
a supposed position of its matching counterpart can be derived. Subsequently, the
modified chamfer distance of a scene image fragment FS,k in the vicinity of this posi-
tion is calculated (if some fragment close to the expected position actually exists).
Shotton et al. [30] suggest a modification of the distance measure such that frag-
ments are penalized if their location differs considerably from the hypothesized
position.

If this distance turns out to be low, this is a hint that an object actually is present
at the current

[
xi, yi, si

]
-position. If it is high, however, this is a sign of rejecting

the current hypothesis. Subsequently, other fragments of the same object class m
are chosen for further refinement of the hypothesis. In order to allow for object
variations, there just has to be a rather coarse alignment between the positions of
different fragments. The thus obtained measures either give evidence to weaken
or enforce the current hypothesis. The process is repeated until the hypothesis can
finally be rejected or confirmed.

7.6.2.4 Example

A recognition example is shown in Fig. 7.18, where the system aims at detecting all
horses in a test image dataset. The appearance of the horses changes considerably
from instance to instance, mainly because they belong to different breeds as well as
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Fig. 7.18 With images taken from Shotton et al. [30] (© 2008 IEEE; with permission) illustrating
the recognition performance of the method when applied to a horse test dataset

due to non-rigid motion of the horses and viewpoint changes. Some of the images
show substantial background clutter. All correctly identified instances are marked
green, the wrongly detected instances are marked red, and the horses missed by the
system are marked yellow. Whereas most of the horses are correctly found by the
system, some are also missed, especially in situations where the horse moves (look
at the legs!) or the viewpoint is considerably different compared to training (which
was performed with view from the side).

7.6.2.5 Pseudocode

function categorizeObjectsContourFragments (in Image I, in

model contour fragments FM, in density thresholds η1 and

η2, in probability thresholds tP,accept and tP,reject, out object

position list p)

// contour fragment calculation

detect all edge pixels (e.g. with Canny operator) and arrange

them in list e
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for i = 1 to number of random samples N
// random sampling of position

[
xi, yi, si

]

xi ← random (xmin, xmax)

yi ← random (ymin, ymax)

si ← random (smin, smax)

calculate density de of edgels in edge map E (E = all

elements of e located within a region defined by
[
xi, yi, si

]
)

if de ≥ η1 ∧ de ≤ η2 then

// accept current contour fragment

add fragment info Fi =
[
E, xi, yi, si

]
to list FS

end if

next

// boosted matching

for k = 1 to number of position samples

sample position: hypothesis xk =
[
xk, yk, sk

]

for m = 1 to number of model indices

//init of probability that object m is at position xk
P (m, xk) ←

(
tP,accept + tP,reject

)/
2

while P (m, xk) ≥ tP,reject ∧ P (m, xk) ≤ tP,accept do
choose next model fragment Fm,l
retrieve scene image fragment FS,i closest to xk,

corrected by xf of Fm,l
calculate modified chamfer distance dk,i,l between

FS,i and Fm,l (including penalty for pos. mismatch)

adjust P (m, xk) according to value of dk,i,l
end while

if P (m, xk) ≥ tP,accept then

// hypothesis is confirmed

add hypothesis
[
xk, m

]
to list p

end if

next

next

7.6.2.6 Rating

In their paper Shotton et al. [30] give evidence that fragmented contour information
can be used for object categorization. Their method performs well even in challeng-
ing situations. The partitioning of the contour into fragments together with a coarse
modeling of the relative positions of the fragments with respect to each other showed
flexible enough to cope with considerable intra-class object variations. The advan-
tages of the usage of contours are an effective representation of the objects (effective
natural data reduction to a limited set of edgels) as well as increased invariance
with respect to illumination and/or color changes. Compared to the usage of local
image patches, contours can be matched exactly to the object boundary, whereas
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the mostly used rectangular or circular image patches of appearance-based descrip-
tors inevitably include some part of the background, at least for arbitrarily shaped
objects.

However, when restricting oneself to contours some potentially important infor-
mation might be lost, especially if the objects feature smooth intensity transitions.
Additionally the scheme is sensitive to out-of-plane viewpoint changes. Another
point is that the method is inefficient for large databases as the chamfer dis-
tances have to be calculated separately for each model class/position hypothesis
combination. In general, the computational complexity is rather high.
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Chapter 8
Summary

Abstract The last chapter summarizes the methods presented in this book by com-
paring their strengths as well as limitations. A brief rating with respect to several
criteria, such as algorithm runtime, object complexity, or invariance with respect to
intra-class object variation, viewpoint change, occlusion, is also given. Please note
that such a rating can only be done at coarse level as algorithm performance depends
heavily on the application context. Nevertheless the comparison should help the
reader to asses which kind of algorithm might be suitable for a specific application.

One major concern of this book is to point out that in the field of object recognition
a general purpose algorithm doesn’t exist. The existence of numerous applications
with characteristic requirements – ranging from industrial applications with good
imaging conditions, but very tough demands as far as accuracy, reliability, or execu-
tion time is concerned to tasks like categorization of real-world scenes with difficult
conditions like heavy background clutter, significant intra-class variations, or poor
illumination or image quality – has lead to many different solutions with specific
properties.

Global methods like cross-correlation or principal component analysis have the
advantage of making no a priori assumptions about the object to be recognized and
therefore are applicable to a wide variety of objects. In general, this also holds for
feature vectors; however, it often is advisable to choose features which are most
suited for specific properties of the objects under consideration. Furthermore, most
of the global methods are straightforward and easy to implement.

However, the flip side of simplicity often is inefficiency, e.g., for cross-correlation
extra calculations of the correlation coefficient for scaled and rotated templates are
necessary at every position if scaled and rotated versions of the objects are also
to be found. Additionally, many global methods are not very discriminative and
can therefore be used to classify clearly distinct objects only. Please note also that
many global methods pre-suppose a correct segmentation of the object from the
background, which often is a difficult task and in particular problematic in the case
of partial occlusion.

Transformation-search based schemes like the generalized Hough transform or
methods based on the Hausdorff distance are applicable to a wide variety of objects,
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too. Although they are based on a global distance or similarity measure, they are able
to deal with considerable occlusion, because the object representation is restricted
to a finite set of points and each element of the model point set makes a local con-
tribution to the measure. For that reason it is tolerable if some points are missing
as long as there are enough points remaining which can be matched to the model
correctly. Similar considerations can be made with respect to background clutter.
This also implies that no segmentation of the object is necessary.

However, the process of scanning the transformation space leads to imprac-
tical memory demands (generalized Hough transform) and/or execution times
(Hausdorff distance), at least if there is a large search space to be investigated (e.g.,
transformations with many parameters and/or a large parameter range).

Another point is that the reduction of the object representation to a finite point set
is commonly achieved by edge detection, i.e., the calculation of intensity gradients
followed by thresholding. This makes the methods robust to illumination changes to
some extent, but not completely: minor reductions of contrast between training and
recognition can cause some edge pixels, which still are detected during training, to
remain below the gradient threshold, which has the same effect as partial occlusion.

The method proposed by Viola and Jones includes some alternative approaches,
where local contributions to the overall match score are made by special haar-like
filters instead of using point sets. The specific design of the filters allows for fast
calculations when scanning the transformation space, but restricts the applicability
of the method a bit. It is best suited for objects which show a more or less block-like
structure.

The number of features typically utilized in correspondence-based schemes like
graph matching is significantly lower than the cardinality of the point sets of
transformation-search based methods. This leads to a much faster execution time,
especially if the combinatorial approach of evaluating all possible correspondences
is replaced by a more sophisticated strategy (see, e.g., interpretation trees for an
example). Further speedup can be achieved through indexing (as implemented by
geometric hashing), especially if large model databases have to be explored.

On the other hand, such a proceeding restricts the applicability of these methods
to objects which can be characterized well by a small set of primitives/features.
Additionally, these features have to be detected reliably. In general, this is the
case for man-made objects, which makes these methods most suitable for indus-
trial applications. This coincides well with the fact that the rigid object model these
algorithms employ fits well to the objects to be recognized in industrial applica-
tions: they usually show little intra-class variation and are well characterized by the
geometric relations between the features.

The usage of invariants or feature configurations which remain perceptually sim-
ilar even in the case of perspective transformations allows for the design of methods
which are able to detect objects in 3D space from a wide variety of viewpoints
with only a single 2D intensity image as input for recognition. This is a notable
achievement, and some methods could be presented which indeed have proven
that a localization of objects in 3D space with aid of just a single 2D image is
possible.
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The methods are restricted, however, to objects which can be characterized well
by specific feature configurations. Additionally, it is crucial that these feature con-
figurations, which usually are groups of some kind of primitives, can be detected
reliably. This stable detection, though, is very difficult to achieve if multiple fea-
tures are involved. Therefore the methods seem to be suited most for industrial
applications, e.g., determining gripping points for lifting objects out of a bin.
Yet personally I doubt that the recognition rates reported in the original articles
are sufficient for industrial applications, where error rates usually have to remain
close to 0%.

Active contour models like Snakes aim at locating the borders of deformable
objects: they explicitly account for local deformations by fitting a parametric curve
to the local image content at the cost of only a limited area of convergence.
Therefore they have the necessity of a reasonable initial estimate of the object
contour.

On the other hand they allow for the determination of a closed contour even
in challenging situations where the contour is “interrupted” frequently, which for
example, is typical of medical imaging. Given an estimate of a closed contour, it
is possible to derive similarity measures which are related to perceptual similarity.
Therefore they are able to identify objects as similar in situations where the con-
tours show considerable discrepancies in a distance metric sense, but are considered
similar by humans.

Recognition methods based on region descriptor matching are a major contribu-
tion of recent research. They are capable to cope with significant variety, as far
as the intra-class variety of the objects themselves as well as the imaging con-
ditions like viewpoint or illumination change or background clutter is concerned.
Their design aims at focusing on characteristic data as the descriptors are derived
from local neighborhoods around interest points considered significant in some
way. Furthermore, the dimensionality of the descriptors is reduced intending to
make them insensitive to “undesired” information change and retaining their dis-
criminative power at the same time. In the meantime methods utilizing appearance
information have come to a high degree of maturity, whereas methods evaluating
shape information are beginning to emerge more and more.

A disadvantage of this kind of algorithms is the rather high computational com-
plexity of most of the methods, no matter whether appearance or shape information
is used.

A coarse and schematic overview of some properties of the recognition methods
described in this book is given in Table 8.1.

A worthwhile consideration often is to combine different approaches in order
to benefit from their contrary advantages, e.g., employing the generalized Hough
transform as a pre-processing stage for a flexible model matching approach, which is
capable to estimate the boundary of an object very accurately, but has only a limited
area of convergence. Besides, this is one reason why older or simple methods like
the global feature vectors shouldn’t be considered out of date: They’re still widely
used in recent approaches – as building blocks of more sophisticated schemes.



Appendix A
Edge Detection

The detection of edge points is widely spread among object recognition schemes,
and that’s the reason why it is mentioned here, although it is not an object recog-
nition method in itself. A detailed description could fill a complete book, therefore
only a short outline of some basic principles shall be given here.

Edge points are characterized by high local intensity changes, which are typical
of pixels located on the border of objects, as the background color often differs
significantly from object colour. In addition to that, edge points can also be located
within the object, e.g., due to texture or because of a rapid change of the object
surface normal vector, which results in changes of the intensity of light reflected
into the camera.

Mathematically speaking, high local intensity changes correspond to high first
derivatives (gradients) of the intensity function. In the following, the Sobel Operator
as a typical method of fast gradient calculation is explained. Additionally, the Canny
edge detector, which in addition to gradient calculation, also classifies pixels as
“edge point” or “non-edge point” shall be presented.

But first let’s mention a few reasons why edge detection is so popular:

• Information content: much of the information of object location is concentrated
on pixels with high gradient. Imagine a simple plain bright object upon a dark
background: if its position changes slightly, the intensity of a pixel located near
the centre will essentially not change after movement. However, the intensity of a
pixel, which is also located inside the object, but close to its border, might change
considerably, because it might be located outside the object after movement.
Figure A.1 illustrates this fact for a cross-shaped object.

• Invariance to illumination changes: brightness offsets as well as linear bright-
ness changes lead to differing intensities of every pixel. The first derivative of the
intensity function, however, is less affected by those changes: constant offsets,
for example, are cancelled out completely.

• Analogy to human vision: last but not least there is evidence that the human
vision system, which clearly has very powerful recognition capabilities, is
sensitive to areas featuring rapid intensity changes, too.

187M. Treiber, An Introduction to Object Recognition, Advances in Pattern Recognition,
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(a) (b) (c)

Fig. A.1 The gray value differences (image c) of each pixel between two the two images (a) and
(b) are shown. Images (a) and (b) show the same object, but are displaced by 2 1/2 pixels in x- and
y-direction. Dark values in (c) indicate that (a) is darker than (b), bright values that (a) is brighter
than (b)

A.1 Gradient Calculation

As we are working with digital images, discrete data has to be processed. Therefore
a calculation of the first derivative amounts to an evaluation of the gray value differ-
ence between adjacent pixels. Because we have 2D data, two such differences can
be calculated, e.g., one in the x-direction and one in the y-direction.

Mathematically speaking, the calculation of intensity differences for all pixels
of an input image I is equivalent to a convolution of I with an appropriate filter
kernel k. The first choice for such a kernel might be kx = [−1, 1] for the x-direction,
but unfortunately, this is not symmetric and the convolution result would represent
the derivative of positions located in between two adjacent pixels. Therefore the
symmetric kernel kx = [−1, 0, 1] is a better choice.

Another problem is the sensitivity of derivatives with respect to noise. In order
to suppress the disturbing influence of noise, the filter kernels can be expanded in
size in order to perform smoothing of the data. Please note, however, that the size of
the filter kernel affects the speed of the calculations. Edge detection usually is one
of the early steps of OR methods where many pixels have to be processed.

Many filter kernels have been proposed over the years. A good trade-off between
speed and smoothing is achieved by the 3×3 Sobel filter kernels kS,x and kS,y:

kS,x = 1/4 ·
⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦ and kS,y = 1/4 ·
⎡

⎣
1 2 1
0 0 0
−1 −2 −1

⎤

⎦ (A.1)

Convolution of the input image I with kS,x and kS,y leads to the x- and y-gradient
Ix and Iy:

Ix = I ∗ kS,x and Iy = I ∗ kS,y (A.2)
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Table A.1 Example of the Sobel operator

Intensity image X-Gradient
(bright=pos.
val.;dark=neg.)

Y-Gradient
(bright=pos.
val.;dark=neg.)

Gradient
magnitude
(bright = high 
magn.)

Gradient
orientation
(coded as gray
values)

An alternative representation to Ix and Iy is the gradient magnitude IG and ori-
entation Iθ (see Table A.1 for an example). Due to speed reasons, IG is often
approximated by the summation of magnitudes:

IG = |Ix| +
∣∣Iy

∣∣ and Iθ = arctan
(
Iy
/

Ix
)

(A.3)

A.2 Canny Edge Detector

One of the most popular detectors of edge pixels was developed by Canny [1]. As
far as gradient calculation is concerned, Canny formulated some desirable properties
that a good gradient operator should fulfil and found out that convolutions of I with
the first derivatives of the Gaussian filter kernel in x- as well as y-direction are good
approximations. After gradient filtering, the output has to be thresholded in some
way in order to decide which pixels can be classified as “edge pixels.”

Now let’s have a closer look at the optimality criteria defined by Canny:

• Good detection quality: ideally, the operator should not miss actual edge pixels
as well as not erroneously classify non-edge pixels as edge pixels. In a more
formal language, this corresponds to a maximization of the signal-to-noise ratio
(SNR) of the output of the gradient operator.

• Good localization quality: the reported edge pixel positions should be as close
as possible to the true edge positions. This requirement can be formalized to a
minimization of the variance of the detected edge pixel positions.

• No multiple responses: a single true edge pixel should lead to only a single
reported edge pixel as well. More formally, the distance between the extracted
edge pixel positions should be maximized.
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It was shown by Canny that the first derivative of the Gaussian filter is a good
approximation to the optimal solution to the criteria defined above. The convolution
of the input image with such a filter performs smoothing and gradient calculation at
the same time. As we have 2D input data, two convolutions have to be performed,
one yielding the x-gradient and one the y-gradient.

Another desirable property of those filters is the fact that they show a good trade-
off between performance and speed, as they can be approximated by rather small
kernels and, furthermore, they’re separable in the 2D-case. Hence, Ix and Iy can be
calculated by a convolution with the following functions:

gx (x, y) = √2πσ · ∂g (x)
/
∂x · g (y) (A.4a)

gy (x, y) = √2πσ · ∂g (y)
/
∂y · g (x) (A.4b)

with g(a) = 1
/(√

2πσ
)
· e−a2

/(
2σ 2

)
being the 1D-gaussian function. Please note

that the factor
√

2πσ serves as a regularization term which compensates for the fact
that derivative amplitudes decline with increasing σ . Numerically, a sampling of
gx and gy leads to the filter kernels kC, x and kC,y, with which the convolutions are
actually carried out.

Overall, the Canny filter consists of the following steps:

1. Smoothed Gradient calculation: In the first step the gradient magnitude IG is
calculated. It can be derived from its components Ix and Iy (e.g., by Equation
(A.3)), which are calculated by convolution of the input image I with the filter
kernels kC, x and kC,y as defined above.

2. Non-maximum suppression: In order to produce unique responses for each true
edge point, IG has to be post-processed before thresholding, because the smooth-
ing leads to a diffusion of the gradient values. To this end, the gradient of all
pixels which don’t have maximum magnitude in gradient direction is suppressed
(e.g., set to zero). This can be achieved by examining a 3×3 neighborhood sur-
rounding each pixel p. At first, the two pixels of the neighborhood which are
closest to the gradient direction of p are identified. If one of those pixels has a
gradient magnitude which is larger than those of p, the magnitude of p is set to
zero.

3. Hysteresis thresholding: In the last step, the pixels have to be classified into
“edge” or “non-edge” based on their gradient value. Pixels with high gradient
magnitude are likely to be edge points. Instead of using a single threshold for
classification two such thresholds are used. At first, all pixels with gradient mag-
nitude above a rather high threshold th are immediately classified as “edge.”
These pixels serve as “seeds” for the second step, where all pixels adjacent to
those already classified as “edge” are considered to be edge pixels as well if
their gradient magnitude is above a second, rather low threshold tl. This process
is repeated until no more additional edge pixels can be found.
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An example of the different steps of the Canny edge detector can be seen in
Fig. A.2.

a b c d e

Fig. A.2 An example of the Canny operator is shown: (a) intensity image; (b) output of gradient
filter in pseudocolor, the gradient magnitude increases in the following order: black – violet – blue –
green – red – yellow – white; (c) gradient after non-maximum suppression in pseudocolor; (e)
detected edges with high thresholds; (f) detected edges with low thresholds

Of course there are many alternatives to the Canny edge filter. Deriche [2], for
example, developed recursive filters for calculating the smoothed gradient which
are optimized with respect to speed. Freeman and Adelson [3] proposed to replace
the gaussian-based filter by so-called quadrature pairs of steerable filters in Canny’s
framework. They argued that the filter derived by Canny, which is optimized for
step-edges, is sub-optimal in the case of other contours, e.g., bar-like structures or
junctions of multiple edges. Therefore they derived an energy measure form quadra-
ture pairs of steerable filters as an alternative, which shows good results for a variety
of edge types.
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Appendix B
Classification

In many object recognition schemes so-called feature vectors x = [x1, x2, . . . , xN]T

consisting of some kind of processed or intermediate data are derived from the input
images. In order to decide which object class is shown in an image, its feature vector
is compared to vectors derived from images showing objects of known class label,
which were obtained during a training stage. In other words, a classification takes
place in the feature space during recognition. Over the years many proposals of clas-
sification methods have been made (see, e.g., the book written by Duda et al. [3] for
an overview). A detailed presentation is beyond the scope of this book – just some
general thoughts shall be given here. Some basic classification principles are briefly
discussed. However, this doesn’t mean that the choice of the classification scheme
is not important in object recognition, in fact the opposite is true! A good overview
how classification can be applied to the more general field of pattern recognition can
be found in [1].

B.1 Nearest-Neighbor Classification

A basic classification scheme is the so-called 1-nearest neighbor classification.
Here, the Euclidean distances in feature space between the feature vector of a scene
object and every of the feature vectors acquired during training are calculated. For
two feature vectors x = [x1, x2, . . . , xN]T and y = [

y1, y2, . . . , yN
]T consisting of N

elements, the Euclidean distance d in RN is defined by

d (x, y) =
√√√
√

N∑

n=1

(yn − xn)
2 (B.1)

If the distances d
(
x, yi

)
of the vector x derived from the scene image to the

vectors yi derived from the training samples are known, classification amounts to
assigning the class label of the training sample yk with minimum Euclidean dis-
tance to x : d

(
x, yk

)
< d

(
x, yi

) ∀ i �= k (yk is then called the “nearest neighbor” in
feature space). This procedure can be simplified to calculating the distances to some
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Fig. B.1 Different variations
of nearest neighbor
classification are illustrated

prototype vectors, where each object class is represented by a single prototype vec-
tor (e.g., the center of gravity of the cluster which is defined by all samples of the
same object class in feature space).

An extension is the k-nearest neighbor classification, where k nearest neighbors
are considered. In that case, the class label being assigned to a feature vector x is
determined by the label which receives the majority of votes among the k-training
sample vectors located closest to x.

The different proceedings are illustrated in Fig. B.1: In each of the three cases, the
black point has to be assigned to either the green or the blue cluster. In the left part,
1-nearest neighbor classification assigns the black point to the green class, as the
nearest neighbor of the black point belongs to the green class. In contrast to that, it
is assigned to the blue class if distances to the cluster centers are evaluated (shown
in the middle; the cluster centers are marked light). Finally, a 5-nearest neighbor
classification is shown in the right part. As four blue points are the majority among
the five nearest neighbors of the black point, it is assigned to the blue cluster.

B.2 Mahalanobis Distance

A weakness of the Euclidean distance is the fact that it treats all dimensions
(i.e., features) in the same way. However, especially in cases where different mea-
sures/features are combined in a feature vector, each feature might have its own
statistical properties, e.g., different variances. Therefore, distance measures exist
which try to estimate the statistical properties of each feature from a training
set and consider this information during distance calculation. One example is the
Mahalanobis distance, where the contribution of each feature value to the distance
is normalized with respect to its estimated variance.

The motivation for this can be seen in Fig. B.2: there, the euclidean distance to
the center of the green point set (marked light green) is equal for both of the two
blue points, which is indicated by the blue circle. But obviously, their similarity to
the class characterized by the set of green points is not the same. With a suitable
estimation of the statistical properties of the distribution of the green points, the
Mahalanobis distance, which is equal on all points located upon the green ellipse,
reflects the perceived similarity better.

Such a proceeding implies, however, the necessity of estimating the statistics
during training. A reliable estimation requires that a sufficiently high number of
training samples is available. Additionally, the statistics shouldn’t change between
training and recognition.
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Fig. B.2 The problems
involved with the Euclidean
distance if the distribution of
the data is not uniform are
illustrated

B.3 Linear Classification

Classification can also be performed by thresholding the output of a so-called deci-
sion function f, which is a linear combination of the elements of the feature vector
x. In the two-class case, x is assigned to class 1 if f is greater than or equal to zero
and to class 2 otherwise:

f =
N∑

n=1

wn · xn + w0

{ ≥ 0→ assign x to class 1
< 0→ assign x to class 2

(B.2)

where w0 is often called bias and the wn are the elements of the so-called weight
vector.

The decision boundary, which is defined by f = 0, is a N−1-dimensional hyper-
plane and separates the N-dimensional feature space in two fractions, where each
fraction belongs to one of the two classes. Figure B.3 depicts a 2D feature space,
where the decision boundary reduces to a line (depicted in black). The location of
the hyperplane can be influenced by the weights wn as well as the bias w0. These
parameters are often defined in a training phase with the help of labeled training
samples (here, “labeled” means that the object class of a sample is known).

If we have to distinguish between K > 2 classes we can formulate K decision
functions fk; k ∈ [1, 2, ..., K] (one for each class) and classify a feature vector x
according to the decision function fk with the highest value: x is assigned to class k
if fk (x) > fj (x) for all j �= k.

Fig. B.3 The separation of a
2D feature space into two
fractions (marked green and
blue) by a decision boundary
(black line) is shown
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B.4 Bayesian Classification

Another example of exploiting the statistical properties of the distribution of the
feature vectors in feature space is classification according to Bayes’ rule. Here, the
probability of occurrence of the sensed data or alternatively a feature vector x is
modeled by a probability density function (PDF) p(x). This modeling helps to solve
the following classification problem: given an observation x, what is the probability
that it was produced by class k? If these conditional probabilities p(k |x ) were known
for all classes k ∈ [1, 2, ..., K], we could assign x to the class which maximizes
p (k |x ).

Unfortunately the p(k |x ) are unknown in most applications. But, based on
labeled training samples (where the class label is known for each sample), it is pos-
sible to estimate the conditional probabilities p(x |k ) in a training step by evaluating
the distribution of all training samples belonging to class k. Now the p(k |x ) can be
calculated according to Bayes’ rule:

p(k |x ) = p(x |k ) · p(k)

p(x)
(B.3)

The probability p(k) of occurrence of a specific class k can be estimated dur-
ing training by calculating the fraction of training samples belonging to class k,
related to the total number of samples. p(x) can then be estimated by the sum

K∑

k=1
p(x |k ) · p(k). Hence, all terms necessary for calculating Equation (B.3) during

recognition are known.

B.5 Other Schemes

Several other classification schemes are also trying to exploit the statistical proper-
ties of the data. Recently, support vector machines (SVM) have become very popular
(cf. [2], for example). SVM’s are examples of so-called kernel-based classification
methods, where the input data x to be classified is transformed by a non-linear
function φ(x) before a linear decision-function is calculated:

fSVM (x) = wT · φ(x)+ b (B.4)

Essentially this involves making the decision boundary more flexible compared
to pure linear classification. During training, only a small subset of the training
samples is taken for estimating the weights, based on their distribution. The chosen
samples are called “support vectors.” Such a picking of samples aims at maximizing
some desirable property of the classifier, e.g., maximizing the margin between the
data points and the decision boundary (see [2] for details).

A different approach is taken by neural networks (NNs). Such networks intend
to simulate the activity of the human brain, which consists of connected neurons.
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Each neuron receives input from other neurons and defines its output by a weighted
combination of various inputs from other neurons. This is mathematically modeled
by the function

fNN (x, w) = g
(
wT · φ (x)

)
(B.5)

where g (·) performs a nonlinear transformation.
Accordingly, a neural net consists of multiple elements (“neurons”), each imple-

menting a function of type (B.5). These neurons are connected by supplying their
output as input to other neurons. A special and widely-used configuration is the so-
called feed-forward neural network (also known as multilayer perceptrons), where
the neurons are arranged in layers: the neurons of each layer get their input data
from the output of the preceding layer and supply their output as input data to the
successive layer. A special treatment is necessary for the first layer, where the data
vector x serves as input, as well as the last layer, where the output pattern can be
used for classification. The weights w as well as the parameters of φ are adjusted
for each neuron separately during training.
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A
Accumulator, 44
Active contour models, 118–126
AdaBoost, 61
Alignment, 92
Anisometry, 26
Anisotropic diffusion, 125
Association graph, 76

B
Bag of features, 171
Bayesian classification, 195
Bias, 194
Binarization, 158
Bin picking, 96
Boosting, 178
Breakpoint, 72

C
Canny edge detector, 8
Canonical frame, 110
CCD, see Contracting curve density
CCH, see Contrast context histogram
Center of gravity, 26
Centroid distance function, 28
Chamfer matching, 60
Chi-square (χ2) test, 166, 172
Circular arc, 70
City block distance, 29
Classification methods, 24, 192
Class label, 12
Clique, 77
Clutter, 5
Codebook, 170
Collinearity, 97
Conics, 110
Contour fragments, 175
Contracting curve density,

126–131

Contrast context histogram, 162
Cornerness function, 156
Correlation, 11–22
Correspondence-based OR, 70
Correspondence clustering, 151
Cost function, 81
Covariance matrix, 35
CSS, see Curvature scale space
Curvature, 72
Curvature scale space, 135–139

D
DCE, see Discrete contour evolution
Decision boundary, 194
Decision function, 194
Depth map, 96
Descriptor, 9

distribution-based, 160
filter-based, 160

Differential filters, 162–163
Differential invariant, 163
Discrete contour evolution, 133,

169
Distance sets, 168–169
Distance transform, 54–55
DoG detector, 148

E
Earth Mover’s Distance, 173
Edgel, 8, 74
Edge map, 123
Eigenimage, 33
Eigenvalue decomposition, 33
Eigenvector, 33
EMD, see Earth Mover’s Distance
Energy functional, 118
Euclidean distance, 192
Euler equation, 120
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F
False alarms, 5
False positives, 5
FAST detector, 157–158
Feature space, 24, 192
Feature vector, 24–31
Feed-forward NN, 196
Fiducial, 27
Force field, 122
Fourier descriptor, 27–31
Fourier transform, 18

FFT, 19
polar FT, 29

G
Gabor filter, 160
Generalized Hausdorff distance, 59
Generalized Hough transform, 44–50
Generic Fourier descriptor, 29
Geometrical graph match, 75–80
Geometric filter, 74–75
Geometric hashing, 87–92
Geometric primitive, 71
GHT, see Generalized Hough transform
GLOH, see Gradient location orientation

histogram
Gradient, 188–189
Gradient location orientation histogram, 161
Gradient vector flow, 122–126
Graph, 75–87
GVF, see Gradient vector flow

H
Haar filter, 60–61
Harris detector, 158
Hash table, 87
Hausdorff distance, 51–60

forward distance, 51
partial distance, 52
reverse distance, 51

Hessian detector, 156–157
Hessian matrix, 156–157
Homogeneous coordinates, 43
Hough transform, 44–50
Hypothesis generation, 104
Hysteresis thresholding, 71, 190

I
Image

plane, 5
pyramid, 17–18, 50
registration, 18
retrieval, 4

Indexing, 88

Inflection point, 137
Integral image, 61
Interest points, 9, 145–181
Internal energy, 119
Interpretation tree, 80–87
Invariance, 5
Invariants, 108

algebraic, 109
canonical frame, 109

K
Kernel-based classification, 195
Keypoint, 146
K-means, 172

L
Labeled distance sets, 168–169
Landmark point, 164
Laplacian of Gaussian, 98
Least squares solution, 77
LEWIS, 108–116
Linear classification, 194
Linear classifier, 63–64
Line segment, 69–70
Local jet, 162
Log-polar grid, 162
LoG, see Laplacian of Gaussian

M
Machine vision, 3
Mahalanobis distance, 193
Maximally stable extremal region, 158–159
Metric, 51
Moment invariants, 27, 163
Moments, 25–27

central moments, 26
gray value moments, 26
normalized moments, 25
region moments, 25

MSER, see Maximally stable extremal region
M-tree, 141
Multilayer perceptron, 196

N
Nearest neighbor classification, 192–193
Neural networks, 195
Non-maximum suppression, 45

O
Object

appearance, 5, 7
categorization, 184
counting, 3
detection, 3
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inspection, 3
scale, 5
shape, 7
sorting, 3

Occlusion, 5

P
Parallelism, 97
Parametric curve, 117–118
Parametric manifold, 33–34
PCA, see Principal component analysis
PCA-SIFT, 160
Perceptual grouping, 97–101
Phase-only correlation, 18–20
Planar object, 43
POC, see Phase-only correlation
Point pair, 74
Polygonal approximation, 71
Pose, 3
Position measurement, 3
Principal component analysis, 31–38
Probability density function, 195

Q
QBIC system, 24

R
R-table, 44
Radial basis functions, 167
Range image, 96
Region descriptor, 145–181
Relational indexing, 101–108

S
Scale invariant feature transform, 147–155
Scale space, 147
Scaling, 43
Scattermatrix, 33
Scene categorization, 4, 145, 147
SCERPO, 97–101
Search tree, see Interpretation tree
Second moment matrix, 156
Segmentation, 25
Shape-based matching, 20–22
Shape context, 164–168

SIFT, see Scale invariant feature transform
descriptor, 149
detector, 147

Signatures, 28, 172
Snakes, 118–126
Sobel operator, 187
Spatial pyramid matching, 173–174
Steerable filter, 163
Strong classifier, 64
Subsampling, 17–18
Subspace projection, 32
Support vector machines, 195

T
Tangent, 72
Template image, 11
Thin plate spline, 166
Thresholding, 25, 158
Token, 139–143
TPS, see Thin plate spline
Transformation, 41–67

affine transform, 42
perspective transform, 42–43
rigid transform, 43
similarity transform, 42

Transformation space, 41
Turning function, 131–135

V
Variance

inter-class, 5
intra-class, 5

View-class, 101
Viewpoint, 5
Viewpoint consistency constraint, 98
Virtual sample, 177
Visual codebook, 171
Visual parts, 134, 169

W
Wavelet descriptors, 29
Wavelet filter, 160
Weak classifier, 64
Weight vector, 194
World coordinates, 95
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