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Preface

Recent decades have seen rapidly growing research in many areas of computer science, includ-
ing computer vision. This comes from the natural interest of researchers as well as demands
from industry and society for qualitatively new features to be afforded by computers. One es-
pecially desirable capability would be automatic reconstruction and analysis of the surround-
ing 3D environment and recognition of objects in that space. Effective 3D computer vision
methods and implementations would open new possibilities such as automatic navigation of
robots and vehicles, scene surveillance and monitoring (which allows automatic recognition
of unexpected behaviour of people or other objects, such as cars in everyday traffic), medical
reasoning, remote surgery and many, many more.

This book is a result of our long fascination with computers and vision algorithms. It started
many years ago as a set of short notes with the only purpose ‘to remember this or that’ or to
have a kind of ‘short reference’ just for ourselves. However, as this diary grew with the years
we decided to make it available to other people. We hope that it was a good decision! It is our
hope that this book facilitates access to this enthralling area, especially for students and young
researchers. Our intention is to provide a very concise, though as far as possible complete,
overview of the basic concepts of 2D and 3D computer vision. However, the best way to get
into the field is to try it oneself! Therefore, in parallel with explaining basic concepts, we
provide also a basic programming framework with the hope of making this process easier. We
greatly encourage the reader to take the next step and try the techniques in practice.

Bogusław Cyganek, Kraków, Poland
J. Paul Siebert, Glasgow, UK

xv
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Notation and Abbreviations

Ik(x, y) Intensity value of a k-th image at a point with local image coordinates
(x , y)

Ik(x, y) Average intensity value of a k-th image at a point with local image
coordinates (x , y)

I Identity matrix; image treated as a matrix
P A vector (a point), matrix, tensor, etc.
T [I, P] The Census transformation T for a pixel P in the image I
i, j Free coordinates
dx , dy Displacements (offset) in the x and y directions
D(pl , pr ) Disparity between points pl and pr

D Disparity map (a matrix)
U (x, y) Local neighbourhood of pixels around a point (x, y)
Oc Optical centre point
Pc = [Xc, Yc, Zc]T Coordinates of a 3D point in the camera coordinate system
� Camera plane; a projective plane
o = (ox , oy) Central point of a camera plane
f Focus length of a camera
b Base line in a stereo system (a distance between cameras)
hx , hy Physical horizontal and vertical dimensions

of a pixel
P = [X , Y , Z ]T 3D point and its coordinates
℘n N-dimensional projective space
P = [Xh , Yh , Zh , 1]T Homogenous coordinates of a point
M Camera matrix
Mi Intrinsic parameters of a camera
Me Extrinsic parameters of a camera
E Essential matrix.
F Fundamental matrix.
ei Epipole in an i-th image
SAD Sum of absolute differences
SSD Sum of squared differences
ZSAD Zero-mean sum of absolute differences
ZSSD Zero-mean sum of squared differences
ZSSD-N Zero-mean sum of squared differences, normalized

xix
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xx Notation and Abbreviations

SCP Sum of cross products
SCP-N Sum of cross products, normalized
RMS Root mean square
RMSE Root mean square error
<Lxx, Lyy> Code lines from a line Lxx to Lyy
HVS Human Visual System
SDK Software Development Kit
∧ logical ‘and’
∨ logical ‘or’
LRC Left-right checking (cross-checking)
OCC Occlusion constraint
ORD Point ordering constraint
BMD Bimodality rule
MGJ Match goodness jumps
NM Null method
GT RMS Ground-truth RMS
WTA Winner-takes-all
* Convolution operator
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Plate 1 Perspective by Antonio Canal (1765, oil on canvas, Gallerie dell’ Accademia, Venice).
(See page 10)

1

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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Plate 2 Painting by Bernardo Bellotto View of Warsaw from the Royal Palace (1773, Oil on canvas,
National Museum, Warsaw). (See page 11)

(a) (b)

Plate 3 Examples of the morphological gradient computed from the colour image (a, b).
(See page 128)

2
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(a) (b)

Plate 4 (a) Binary image of a skewed rectangle and (b) colour visualization of its structural tensor –
hue H denotes a phase of local orientations, saturation S the coherence, and intensity I conveys trace of
T. (See page 142)

(a) (b)

Plate 5 (a) Monochrome image of a grid and (b) the colour visualization of its structural tensor.
(See page 142)

3
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(a) (b) (c)

Plate 6 (a) Examples of the structural tensor operating on an RGB colour image. (b) Visualization
of the structural tensor computed with the 3-tap Simoncelli filter. (c) Version with the 5-tap Simoncelli
filter. (See page 145)

(a) (b)

Plate 7 “Kamil” image warped with the affine transformations: (a) the original RGB colour image,
(b) the output image after the affine transformation consisting of the -43◦ rotation around a centre point,
scaling by [0.7, 0.8] and translation by the [155, 0] vector. (See page 423)

4
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Plate 8 Eight dominant camera views of a skull. (See page 336)

Plate 9 Five views (four of these have been texture-pasted) of a single complete 3D skull model
computed by marching cubes integration of eight range surfaces. (See page 337)

5
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Plate 10 Two views of the integrated skull model showing the colour-coded contributions from
different range maps. (See page 337)

Plate 11 Four rendered views of a 3D model captured by an experimental five-pod head scanner.
(Subject: His Excellency The Honourable Richard Alston, Australian High Commissioner to the United
Kingdom, 2005–2008). (See page 348)

6
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Plate 12 Left: a generic mesh colour coded to label different anatomic regions of the face. Right:
the generic mesh conformed into the shape of a captured 3D face mesh, reproduced from [295]
(see page 359)

(a) (b)

(c) (d)

Plate 13 The result of the conformation process, using Mao’s basic method, reproduced from [296].
(a) The scanned model with 5 landmarks placed for the global mapping; (b) the generic model; (c) the
conformed generic model; reproduced from [295] (d) the scanned model aligned to the conformed
generic model: the red mesh is the conformed generic model, the yellow mesh is the scanned model.
(See page 358)

7
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Plate 14 A comparison of corresponding vertices between the mean shapes for 3D face models of 1 &
2 year old children in a surgically managed group (unilateral facial cleft): green indicates no statistically
significant difference, while the red indicates a significant difference between the models captured at the
two different ages (0.05 significance), reproduced from [295]. (See page 361)

(a) (b)

(c) (d)

Plate 15 Facial symmetry analysis of an individual model: (a) the original scanned model, (b) the
corresponding conformed model, (c) the original scanned model (the yellow mesh) aligned to the
conformed model (the red mesh), (d) the calculated symmetry vector field, reproduced from [295].
(See page 362)

8
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1
Introduction

The purpose of this text on stereo-based imaging is twofold: it is to give students of computer
vision a thorough grounding in the image analysis and projective geometry techniques relevant
to the task of recovering three-dimensional (3D) surfaces from stereo-pair images; and to
provide a complete reference text for professional researchers in the field of computer vision
that encompasses the fundamental mathematics and algorithms that have been applied and
developed to allow 3D vision systems to be constructed.

Prior to reviewing the contents of this text, we shall set the context of this book in terms
of the underlying objectives and the explanation and design of 3D vision systems. We shall
also consider briefly the historical context of optics and vision research that has led to our
contemporary understanding of 3D vision.

Here we are specifically considering 3D vision systems that base their operation on ac-
quiring stereo-pair images of a scene and then decoding the depth information implicitly
captured within the stereo-pair as parallaxes, i.e. relative displacements of the contents of
one of the images of the stereo-pair with respect to the other image. This process is termed
stereo-photogrammetry, i.e. measurement from stereo-pair images. For readers with normal
functional binocular vision, the everyday experience of observing the world with both of our
eyes results in the perception of the relative distance (depth) to points on the surfaces of ob-
jects that enter our field of view. For over a hundred years it has been possible to configure
a stereo-pair of cameras to capture stereo-pair images, in a manner analogous to mammalian
binocular vision, and thereafter view the developed photographs to observe a miniature 3D
scene by means of a stereoscope device (used to present the left and right images of the
captured stereo-pair of photographs to the appropriate eye). However, in this scenario it is the
brain of the observer that must decode the depth information locked within the stereo-pair and
thereby experience the perception of depth. In contrast, in this book we shall present underly-
ing mechanisms by which a computer program can be devised to analyse digitally formatted
images captured by a stereo-pair of cameras and thereby recover an explicit measurement of
distances to points sampling surfaces in the imaged field of view. Only by explicitly recovering
depth estimates does it become possible to undertake useful tasks such as 3D measurement
or reverse engineering of object surfaces as elaborated below. While the science of stereo-
photogrammetry is a well-established field and it has indeed been possible to undertake 3D
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4 An Introduction to 3D Computer Vision Techniques and Algorithms

measurement by means of stereo-pair images using a manually operated measurement de-
vice (the stereo-comparator) since the beginning of the twentieth century, we present fully
automatic approaches for 3D imaging and measurement in this text.

1.1 Stereo-pair Images and Depth Perception

To appreciate the structure of 3D vision systems based on processing stereo-pair images, it is
first necessary to grasp, at least in outline, the most basic principles involved in the formation
of stereo-pair images and their subsequent analysis. As outlined above, when we observe a
scene with both eyes, an image of the scene is formed on the retina of each eye. However, since
our eyes are horizontally displaced with respect to each other, the images thus formed are not
identical. In fact this stereo-pair of retinal images contains slight displacements between the
relative locations of local parts of the image of the scene with respect to each image of the
pair, depending upon how close these local scene components are to the point of fixation of
the observer’s eyes. Accordingly, it is possible to reverse this process and deduce how far
away scene components were from the observer according to the magnitude and direction of
the parallaxes within the stereo-pairs when they were captured. In order to accomplish this
task two things must be determined: firstly, those local parts of one image of the stereo-pair
that match the corresponding parts in the other image of the stereo-pair, in order to find the
local parallaxes; secondly, the precise geometric properties and configuration of the eyes, or
cameras. Accordingly, a process of calibration is required to discover the requisite geometric
information to allow the imaging process to be inverted and relative distances to surfaces
observed in the stereo-pair to be recovered.

1.2 3D Vision Systems

By definition, a stereo-photogrammetry-based 3D vision system will require stereo-pair im-
age acquisition hardware, usually connected to a computer hosting software that automates
acquisition control. Multiple stereo-pairs of cameras might be employed to allow all-round
coverage of an object or person, e.g. in the context of whole-body scanners. Alternatively, the
object to be imaged could be mounted on a computer-controlled turntable and overlapping
stereo-pairs captured from a fixed viewpoint for different turntable positions. Accordingly,
sequencing capture and image download from multiple cameras can be a complex process,
and hence the need for a computer to automate this process.

The stereo-pair acquisition process falls into two categories, active illumination and passive
illumination. Active illumination implies that some form of pattern is projected on to the
scene to facilitate finding and disambiguating parallaxes (also termed correspondences or
disparities) between the stereo-pair images. Projected patterns often comprise grids or stripes
and sometimes these are even colour coded. In an alternative approach, a random speckle
texture pattern is projected on to the scene in order to augment the texture already present on
imaged surfaces. Speckle projection can also guarantee that that imaged surfaces appear to
be randomly textured and are therefore locally uniquely distinguishable and hence able to be
matched successfully using certain classes of image matching algorithm. With the advent of
‘high-resolution’ digital cameras the need for pattern projection has been reduced, since the
surface texture naturally present on materials, having even a matte finish, can serve to facilitate
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matching stereo-pairs. For example, stereo-pair images of the human face and body can be
matched successfully using ordinary studio flash illumination when the pixel sampling density
is sufficient to resolve the natural texture of the skin, e.g. skin-pores. A camera resolution of
approximately 8–13M pixels is adequate for stereo-pair capture of an area corresponding to
the adult face or half-torso.

The acquisition computer may also host the principal 3D vision software components:

� An image matching algorithm to find correspondences between the stereo-pairs.
� Photogrammetry software that will perform system calibration to recover the geometric

configuration of the acquisition cameras and perform 3D point reconstruction in world
coordinates.

� 3D surface reconstruction software that builds complete manifolds from 3D point-clouds
captured by each imaging stereo-pair.

3D visualisation facilities are usually also provided to allow the reconstructed surfaces to be
displayed, often draped with an image to provide a photorealistic surface model. At this stage
the 3D shape and surface appearance of the imaged object or scene has been captured in
explicit digital metric form, ready to feed some subsequent application as described below.

1.3 3D Vision Applications

This book has been motivated in part by the need to provide a manual of techniques to serve
the needs of the computer vision practitioner who wishes to construct 3D imaging systems
configured to meet the needs of practical applications. A wide variety of applications are now
emerging which rely on the fast, efficient and low-cost capture of 3D surface information. The
traditional role for image-based 3D surface measurement has been the reserve of close-range
photogrammetry systems, capable of recovering surface measurements from objects in the
range of a few tens of millimetres to a few metres in size. A typical example of a classical
close-range photogrammetry task might comprise surface measurement for manufacturing
quality control, applied to high-precision engineered products such as aircraft wings.

Close-range video-based photogrammetry, having a lower spatial resolution than traditional
plate-camera film-based systems, initially found a niche in imaging the human face and body
for clinical and creative media applications. 3D clinical photographs have the potential to
provide quantitative measurements that reduce subjectivity in assessing the surface anatomy
of a patient (or animal) before and after surgical intervention by providing numeric, possibly
automated, scores for the shape, symmetry and longitudinal change of anatomic structures.
Creative media applications include whole-body 3D imaging to support creation of human
avatars of specific individuals, for 3D gaming and cine special effects requiring virtual actors.
Clothing applications include body or foot scanning for the production of custom clothing
and shoes or as a means of sizing customers accurately. An innovative commercial application
comprises a ‘virtual catwalk’ to allow customers to visualize themselves in clothing prior to
purchasing such goods on-line via the Internet.

There are very many more emerging uses for 3D imaging beyond the above and commer-
cial ‘reverse engineering’ of premanufactured goods. 3D vision systems have the potential to
revolutionize autonomous vehicles and the capabilities of robot vision systems. Stereo-pair
cameras could be mounted on a vehicle to facilitate autonomous navigation or configured
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within a robot workcell to endow a ‘blind’ pick-and-place robot, both object recognition ca-
pabilities based on 3D cues and simultaneously 3D spatial quantification of object locations
in the workspace.

1.4 Contents Overview: The 3D Vision Task in Stages

The organization of this book reflects the underlying principles, structural components and
uses of 3D vision systems as outlined above, starting with a brief historical view of vi-
sion research in Chapter 2. We deal with the basic existence proof that binocular 3D vision
is possible, in an overview of the human visual system in Chapter 3. The basic projective
geometry techniques that underpin 3D vision systems are also covered here, including the ge-
ometry of monocular and binocular image formation which relates how binocular parallaxes
are produced in stereo-pair images as a result of imaging scenes containing variation in depth.
Camera calibration techniques are also presented in Chapter 3, completing the introduction of
the role of image formation and geometry in the context of 3D vision systems.

We deal with fundamental 2D image analysis techniques required to undertake image fil-
tering and feature detection and localization in Chapter 4. These topics serve as a precursor to
perform image matching, the process of detecting and quantifying parallaxes between stereo-
pair images, a prerequisite to recovering depth information. In Chapter 5 the issue of spatial
scale in images is explored, namely how to structure algorithms capable of efficiently pro-
cessing images containing structures of varying scales which are unknown in advance. Here
the concept of an image scale-space and the multi-resolution image pyramid data structure is
presented, analysed and explored as a precursor to developing matching algorithms capable
of operating over a wide range of visual scales. The core algorithmic issues associated with
stereo-pair image matching are contained in Chapter 6 dealing with distance measures for
comparing image patches, the associated parametric issues for matching and an in-depth anal-
ysis of area-based matching over scale-space within a practical matching algorithm. Feature-
based approaches to matching are also considered and their combination with area-based
approaches. Then two solutions to the stereo problem are discussed: the first, based on the
dynamic programming, and the second one based on the graph cuts method. The chapter ends
with discussion of the optical flow methods which allow estimation of local displacements in
a sequence of images.

Having dealt with the recovery of disparities between stereo-pairs, we progress logically
to the recovery of 3D surface information in Chapter 7. We consider the process of triangu-
lation whereby 3D points in world coordinates are computed from the disparities recovered
in the previous chapter. These 3D points can then be organized into surfaces represented by
polygonal meshes and the 3D point-clouds recovered from multi-view systems acquiring more
than one stereo-pair of the scene can be fused into a coherent surface model either directly or
via volumetric techniques such as marching cubes. In Chapter 8 we conclude the progression
from theory to practice, with a number of case examples of 3D vision applications covering
areas such as face and body imaging for clinical, veterinary and creative media applications
and also 3D vision as a visual prosthetic. An application based only on image matching is
also presented that utilizes motion-induced inter-frame disparities within a cine sequence
to synthesize missing or damaged frames, or sets of frames, in digitized historic archive
footage.
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Chapter 13
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Chapter 14

Chapter 9

Chapter 10

You are
here...

Figure 1.1 Organization of the book

The remaining chapters provide a series of detailed technical tutorials on projective geom-
etry, tensor calculus, image warping procedures and image noise. A chapter on programming
techniques for image processing provides practical hints and advice for persons who wish to
develop their own computer vision applications. Methods of object oriented programming,
such as design patterns, but also proper organization and verification of the code are dis-
cussed. Chapter 14 outlines the software presented in the book and provides the link to the
recent version of the code.

Figure 1.1 depicts possible order of reading the book. All chapters can be read in number
order or selectively as references to specific topics. There are five main chapters (Chapters
3–7), three auxiliary chapters (Chapters 1, 2 and 8) as well as five technical tutorials (Chap-
ters 9–13). The latter are intended to aid understanding of specific topics and can be read in
conjunction with the related main chapters, as indicated by the dashed lines in Figure 1.1.
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2
Brief History of Research on Vision

2.1 Abstract

This chapter is a brief retrospective on vision in art and science. 3D vision and perspective
phenomena were first studied by the architects and artists of Ancient Greece. From this region
and time comes The Elements by Euclid, a treatise that paved the way for geometry and math-
ematics. Perspective techniques were later applied by many painters to produce the illusion of
depth in flat paintings. However, called an ‘evil trick’, it was denounced by the Inquisition in
medieval times. The blooming of art and science came in the Renaissance, an era of Leonardo
da Vinci, perhaps the most ingenious artist, scientist and engineer of all times. He is attributed
with the invention of the camera obscura, a prototype of modern cameras, which helped to
acquire images of a 3D scene on a flat plane. Then, on the ‘shoulders of giants’ came another
‘giant’, Sir Isaac Newton, whose Opticks laid the foundation for modern physics and also the
science of vision. These and other events from the history of research on vision are briefly
discussed in this chapter.

2.2 Retrospective of Vision Research

The first people known to have investigated the phenomenon of depth perception were the
Ancient Greeks [201]. Probably the first writing on the subject of disparity comes from
Aristotle (380 BC) who observed that, if during a prolonged observation of an object one
of the eyeballs is pressed with a finger, the object is experienced in double vision.

The earliest known book on optics is a work by Euclid entitled The Thirteen Books of the
Elements written in Alexandria in about 300 BC [116]. Most of the definitions and postulates
of his work constitute the foundations of mathematics since his time. Euclid’s works paved
the way for further progress in optics and physiology, as well as inspiring many researchers
over the following centuries. At about the same time as Euclid was writing, the anatomical
structure of human organs, including the eyes, was examined by Herofilus from Alexandria.
Subsequently Ptolemy, who lived four centuries after Euclid, continued to work on optics.

Many centuries later Galen (AD 180) who had been influenced by Herofilus’ works, pub-
lished his own work on human sight. For the first time he formulated the notion of the cyclop-
ean eye, which ‘sees’ or visualizes the world from a common point of intersection within the
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optical nervous pathway that originates from each of the eyeballs and is located perceptually
at an intermediate position between the eyes. He also introduced the notion of parallax and
described the process of creating a single view of an object constructed from the binocular
views originating from the eyes.

The works of Euclid and Galen contributed significantly to progress in the area of optics
and human sight. Their research was continued by the Arabic scientist Alhazen, who lived
around AD 1000 in the lands of contemporary Egypt. He investigated the phenomena of light
reflection and refraction, now fundamental concepts in modern geometrical optics.

Based on Galen’s investigations into anatomy, Alhazen compared an eye to a dark chamber
into which light enters via a tiny hole, thereby creating an inverted image on an opposite
wall. This is the first reported description of the camera obscura, or the pin-hole camera
model, an invention usually attributed to Roger Bacon or Leonardo da Vinci. A device called
the camera obscura found application in painting, starting from Giovanni Battista della Porta
in the sixteenth century, and was used by many masters such as Antonio Canal (known as
Canaletto) or Bernaldo Bellotto. A painting by Canaletto, entitled Perspective, is shown in
Figure 2.1. Indeed, his great knowledge of basic physical properties of light and projective

Figure 2.1 Perspective by Antonio Canal (Plate 1). (1765, oil on canvas, Gallerie dell’Accademia,
Venice)
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Figure 2.2 Painting by Bernardo Bellotto entitled View of Warsaw from the Royal Palace (Plate 2).
(1773, oil on canvas, National Museum, Warsaw)

geometry allowed him to reach mastery in paintings. His paintings are very realistic which
was a very desirable skill of a painter, since we have to remember that these were times when
people did not yet know of photography.

Figure 2.2 shows a view of eighteenth-century Warsaw, the capital of Poland, painted by
Bernaldo Bellotto in 1773. Just after, due to invasion of the three neighbouring countries,
Poland disappeared from maps for over a century.

Albrecht Dürer was one of the first non-Italian artists who used principles of geometrical
perspective in his art. His famous drawing Draughtsman Drawing a Recumbent Woman is
shown in Figure 2.3.

However, the contribution of Leonardo da Vinci cannot be overestimated. One of his famous
observations is that a light passing through a small hole in the camera obscura allows the

Figure 2.3 A drawing by Albrecht Dürer entitled Draughtsman Drawing a Recumbent Woman. (1525,
woodcut, Graphische Sammlung Albertina, Vienna)
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Figure 2.4 Drawing of the camera obscura from the work of the Jesuit Athanasius Kircher, around
1646

observation of all surrounding objects. From this he concluded that light rays passing through
different objects cross each other in any point from which they are visible. This observation
suggests also the wave nature of light, rather than light comprising a flow of separate particles
as was believed by the Ancient Greeks. Da Vinci’s unquestionable accomplishment in the area
of stereoscopic vision is his analysis of partial and total occlusions, presented in his treatise
entitled Trattato della Pittura. Today we know that these phenomena play an important role
in the human visual system (HVS), facilitating correct perception of depth [7] (section 3.2).

Other accomplishments were made in Europe by da Vinci‘s contemporaries. For instance in
1270 Vitello, who lived in Poland, published a treatise on optics entitled Perspectiva, which
was the first of its kind. Interestingly, from almost the same time comes a note on the first
binoculars, manufactured probably in the glassworks of Pisa.

Figure 2.4 depicts a drawing of a camera obscura by the Jesuit Athanasius Kircher, who
lived in the seventeenth century.

In the seventeenth century, based on the work of Euclid and Alhazen, Kepler and Descartes
made further discoveries during their research on the HVS. In particular, they made great
contributions towards understanding of the role of the retina and the optic nerve in the HVS.

More or less at the same time, i.e. the end of the sixteenth and beginning of the seven-
teenth centuries, the Jesuit Francois D’Aguillon made a remarkable synthesis of contemporary
knowledge on optics and the works of Euclid, Alhazen, Vitello and Bacon. In the published
treatise Opticorum Libri Sex, consisting of six books, D’Aguillon analysed visual phenomena
and in particular the role of the two eyes in this process. After defining the locale of visual
convergence of the two eyeballs, which he called the horopter, D’Aguillon came close to
formulating the principles of stereovision which we still use today.

A real breakthrough in science can be attributed to Sir Isaac Newton who, at the beginning
of the eighteenth century, published his work entitled Opticks [329]. As first, he correctly de-
scribed a way of information passing from the eyes to the brain. He discovered that visual
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sensations from the “inner” hemifields of the retina (the mammalian visual field is split along
the vertical meridian in each retina), closest to the nose, are sent through the optic nerves
directly to the corresponding cerebral hemispheres (cortical lobes), whereas sensations com-
ing from the “outer” hemifields, closest to the temples, are crossed and sent to the opposite
hemispheres. (The right eye, right hemifield and left eye, left hemifield cross, while the left
eye, right hemifield and the right eye, left hemifield do not cross.) Further discoveries in this
area were made in the nineteenth century not only thanks to researchers such as Heinrich
Müller and Bernhard von Gudden, but also thanks to the invention of the microscope and
developments in the field of medicine, especially physiology.

In 1818 Vieth made a precise explanation of the horopter, being a spherical placement
of objects which cause a focused image on the retina, a concept that was already familiar to
D’Aguillon. At the same time this observation was reported by Johannes Müller, and therefore
the horopter is termed the Vieth–Müller circle.

In 1828 a professor of physics of the Royal Academy in London, Sir Charles Wheatstone,
formulated the principles underlying stereoscopic vision. He also presented a device called
a stereoscope for depth perception from two images. This launched further observations and
discoveries; for instance, if the observed images are reversed, then the perception of depth
is also reversed. Inspired by Wheatstone’s stereoscope, in 1849 Sir David Brewster built his
version of the stereoscope based on a prism (Figure 2.5), and in 1856 he published his work
on the principles of stereoscopy [56].

The inventions of Wheatstone and Brewster sparked an increased interest in three-
dimensional display methods, which continues with even greater intensity today due to the
invention of the random dot autostereograms, as well as the rapid development of personal
computers. Random dot stereograms were analysed by Bela Julesz who in 1960 showed that

Figure 2.5 Brewster‘s stereoscope (from [56])
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depth can be perceived by humans from stereo-pairs of images comprising only random dots
(the dots being located with relative shifts between the images forming the stereo-pair) and
no other visible features such as corners or edges.

Recent work reported by the neurophysiologists Bishop and Pettigrew showed that in pri-
mates special cells, which react to disparity signals built from images formed on two retinas
of the eyes, are already present in the input layer (visual area 1, V1) of the visual cortex. This
indicates that depth information is processed even earlier in the visual pathway than had been
thought.

2.3 Closure

In this chapter we have presented a very short overview of the history of studies on vision in
art and science. It is a very wide subject which could have merited a separate book by itself.
Nevertheless, we have tried to point out those, in our opinion, important events that paved
the way for contemporary knowledge on vision research, which also inspired us to write this
book. Throughout the centuries, art and science were interspersed and influenced each other.
An example of this is the camera obscura which, first devised by artists, after centuries became
a prototype of modern cameras. These are used to acquire digital images, then processed with
vision algorithms to infer knowledge on the surrounding environment, for instance. Further
information on these fascinating issues can be found in many publications, some of which we
mention in the next section.

2.3.1 Further Reading

There are many sources of information on the history of vision research and photography.
For instance the Bright Bytes Studio web page [204] provides much information on camera
obscuras, stereo photography and history. The Web Gallery of Art [214] provides an enor-
mous number of paintings by masters from past centuries. The book by Brewster mentioned
earlier in the chapter can also be obtained from the Internet [56]. Finally, Wikipedia [215]
offers a wealth of information in many different languages on most of the subjects, including
paintings, computer vision and photography.
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3
2D and 3D Vision Formation

3.1 Abstract

This chapter is devoted mainly to answering the question: “What is the difference between
having one image of a scene, compared to having two images of the same scene taken from
different viewpoints?” It appears that in the second case the difference is a fundamental one:
with two (or more) views of the same scene, taken however at different camera positions, we
can infer depth information by means of geometry: three-dimensional (3D) information can
be recovered through a process known as triangulation. This is why having two eyes makes
a difference.

We start with a brief overview of what we know about the human visual system which is an
excellent example of precision and versatility. Then we discuss the image acquisition process
using a single camera. The main concept here is the simple pin-hole camera model which is
used to explain the transformation from 3D world-space to the 2D imaging-plane as performed
by a camera. The so-called extrinsic and intrinsic parameters of a camera are introduced next.
When images of a scene are captured using two cameras simultaneously, these cameras are
termed a stereo-pair and produce stereo-pairs of images. The properties of cameras so config-
ured are determined by their epipolar geometry, which tells us the relationship between world
points observed in their fields of view and the images impinging on their respective sens-
ing planes. The image-plane locations of each world point, as sensed by the camera pair, are
called corresponding or matched points. Corresponding points within stereo-pair images are
connected by the fundamental matrix. If known, it provides fundamental information on the
epipolar geometry of the stereo-pair setup. However, finding corresponding points between
images is not a trivial task. There are many factors which can confound this process, such
as occlusions, limited image resolution and quantization, distortions, noise and many oth-
ers. Technically, matching is said to be under constrained: there is not sufficient information
available within the compared images to guarantee finding a unique match. However, match-
ing can be made easier by applying a set of rules known as stereo constraints, of which the
most important is the epipolar constraint, and this implies that corresponding points always
lie on corresponding epipolar lines. The epipolar constraint limits the search for correspond-
ing points from the entire 2D space to a 1D space of epipolar lines. Although the positions of
the epipolar lines are not known in advance, in the special case when stereo-pair cameras are
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configured with parallel optical axes – called the canonical, fronto-parallel, or standard stereo
system – the epipolar lines follow the image (horizontal) scan-lines. The problem of finding
corresponding points is therefore one of the essential tasks of computer vision.

It appears that by means of point correspondences the extrinsic and intrinsic parameters
of a camera can be determined. This is called camera calibration and is also discussed in
this chapter. We conclude with a discussion of a practical implementation of the presented
concepts, with data structures to represent images and some C++ code examples which come
from the image library provided with this book.

3.2 Human Visual System

Millions of years of evolution have formed the human visual system (HVS) and within it the
most exquisite, unattainable and mysterious stereoscopic depth perception engine on planet
Earth. The vision process starts in the eye, a diagram of which is depicted in Figure 3.1.

Incident light at first passes through the pupil which controls the amount of light passing to
the lens of the eye. The size of the pupil aperture is controlled by the iris pupilliary sphincter
muscles. The larger this aperture becomes, the larger the spherical aberration and smaller the
depth of focus of the eye. The visual axis joins a point of fixation and the fovea. Although
an eye is not rotationally symmetric, an approximate optical axis can be defined as a line
joining the centre of curvature of the cornea and centre of the lens. The angle between the two
axes is about 5◦. It should be noted that the eye itself is not a separate organ but a 150 mm
extension of the brain. In the context of computer vision, the most important part of the eye
is the retina which is the place of exchange that converts an incoming stream of photons into
corresponding neural excitations.

In the context of binocular vision and stereoscopic perception of depth, it is important that
the eyes are brought into convergence such that the same scene region is projected onto the
respective foveae of each eye. Figure 3.2 presents a model of binocular vision: an image of a
certain point H is created in the two eyes, exactly in the centres of their foveae.

On each retina images of the surrounding 3D points are also created. We mark the distance
of those images in respect to the corresponding fovea. Under this assumption, the two image
points on each of the retinas are corresponding when their distances to their corresponding

Figure 3.1 Schematic of a human eye
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Figure 3.2 Disparity on the retina of an eye. The horopter is denoted by a broken line. H is a point of
fixation

foveae are the same. In Figure 3.2 this condition is fulfilled for the points P1 and P2, but not for
Q. That is, the distances P1R and P1L are the same. This holds also for P2R and P2L but not for
the QR and QL which are in opposite directions from the foveae. However, the latter property
allows the HVS to conclude that Q is further from the horopter. Conducting now the reverse
reasoning, i.e. looking for 3D points such that their retinal images are the same distance from
the two foveae, we find the 3D region known as the horopter. Retinal images of all points
other than those belonging to the horopter are said to be non-corresponding. The relative dif-
ference in distance from the fovea for of each these non-corresponding points is termed retinal
disparity [201, 442]. It is evident now that the horopter points have zero retinal disparity. The
retinal disparity is used by the HVS to assess distance to 3D locations in the world.

The signals induced on the fovea are transferred to the input of the primary visual cortex of
the brain, labelled by neuro-anatomists as Visual Area 1 (V1). This area of the visual cortex is
the first location in the entire structure where individual neurons receive binocular input. It was
also discovered that some neurons in V1 respond exclusively to mutual excitations from the
two eyes. Those neurons, called disparity detectors, are sensitive to stereoscopic stimuli [442].

In addition, the relationship between the firing rates of these disparity detecting neurons,
measured in units of impulses per second, and input retinal disparity is called the disparity-
tuning function. It has an evident maximum for zero retinal disparity (i.e. it is “tuned” to
respond best to zero disparity), that is for 3D points lying on the horopter [201].

Many experiments have been conducted to achieve a better understanding of the stereo-
scopic processes in the HVS. A phenomenon first noticed during such research was the influ-
ence of luminance variation on the process of associating corresponding visual stimuli from
each eye, i.e. disparity detection. In the simplest case this concerns the detection, i.e. correla-
tion, of corresponding image edges in each retina, while correlation of corresponding textured
areas is more complex. In 1979 Marr and Poggio [299] put forward a theory that stereoscopic
matching relies on the correlation of retinal image locations in which the second deriva-
tive of the luminance signal is crossing a zero value; these are the so-called zero-crossings.
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Figure 3.3 Construction of a random dot stereogram: (1) left image; (2) extracted region in the left
image; (3) shift of this region; (4) right image; (5) depth effect when observed by two eyes

Zero-crossings corresponds to those regions in an image that exhibit the greatest change in
the signal instead of the greatest absolute value of the signal itself. Further research under-
taken by Mayhew and Frisby [302] showed that stereoscopic correlation in the HVS does
not depend exclusively on the zero-crossings but on a more generalised matching mechanism
applied to the spectral components of the two-dimensional luminance signal. Mallot et al.
[291] revealed the possibility of a secondary correlation mechanism being invoked when the
luminance signal is changing very slowly. Based on these results it can be stated that the HVS
prefers to correlate more general features, if available, in the image. This relates correlation
based on zero-crossings and also correlation based on signal value maxima. However, corre-
lation based on matching spectral components of the luminance signal dominates when these
are the most distinctive features found in the images. When there are neither significant zero-
crossings nor other signal differences, the HVS is capable of estimating disparity values based
on correlating the maximal values of the low-pass components of the luminance signal.

A qualitatively new development was reported by Julesz in 1960 [235] when he demon-
strated the so-called random dot stereogram.1 A random dot stereogram comprises a stereo-
pair of images in which the first image of the pair is created by generating a field of random
points. The second image of the stereo-pair is generated by copying the first image and then
selecting and displacing by a small amount a specific region within the copy. Figure 3.3 out-
lines steps of this construction. Table 3.4 (page 62) contains another example of a random dot
stereogram. When constructing random stereograms the random dots can be substituted by
random lines [201].

When observed by two eyes, the random dot stereogram allows perception of depth, as
seen in Figure 3.3 in a form of a rectangle closer to the observer. Further research on this
subject has shown that the stereoscopic effect is attained even if one of the random images

1This type of stereogram was already known, however, among artists.
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is disturbed, e.g. by adding some spurious dots or by low-pass filtering. On the other hand, a
change of luminance polarity (i.e. light and dark regions are exchanged in one image of the
stereogram) leads to a loss of the stereo effect.

Research on depth perception based exclusively on a perception of colours has shown that
colour information also affects this process to a limited degree [201].

It has been discovered that the stereo correlation process depends also on other factors,
leading to a theory that predicts that those compared locations which conform in size, shape,
colour, and motion are more privileged during stereo matching. It would also explain why it
takes more time for the HVS to match random dot stereograms which do not possess such
features. This theory can also be interpreted in the domain of computational stereo matching
methods: if a certain local operator can gather enough information in a given neighbourhood
of pixels, such as local frequency, orientation or phase, then subsequent matching can be
performed more reliably and possibly faster than would otherwise be possible when such
information is missing. This rather heuristic rule can be justified by experiment. An example
of a tensor operator that quantifies local image structure is presented in section 4.6.

Another known stereo matching constraint adopted by the HVS is so-called most related
image matching. It implies that if there is a choice, an image or an image sub-region is con-
sidered to be ‘matched’ if it gives the highest number of meaningful matches. Otherwise the
preferred image is one which contains the highest number of space point projections. Due to
this strategy, the HVS favours those images, or their sub-regions, that are potentially the most
interesting to an observer, since they are closest to him or her.

Yet another constraint discovered by Julesz [235], is the disparity gradient limit. This con-
cept, explained in more detail in section 3.5, is very often used in computer image matching.

Other constraints are based on experience acquired from daily observations of the surround-
ing space. One of which is that the daily environment usually is moderately ‘dense’, since we
have to move in it somehow. A similar observation indicates that surrounding objects are not
transparent either. From these observations we can draw other matching constraints based on:
surface continuity, figural smoothness, matching point ordering and matching point unique-
ness (section 3.5). Their function in and influence on the HVS, although indicated by many
experiments, have not yet been completely explained.

Yet another phenomenon plays an important role in both human and machine stereovision,
namely that of occlusions which are explained in Figure 3.4.

How partial occlusions of observed objects influence their binocular perception was inves-
tigated by Leonardo Da Vinci [93]. Recent work by Anderson indicates that the occlusion
phenomenon has a major influence on the stereovision perception process [7]. The area visi-
ble exclusively to the left eye is called the left visible area. Similarly for the right eye we get
the right visible area. In Figure 3.4 these areas are marked in light grey. The area observable
to both eyes simultaneously can be perceived in full stereo vision. In contrast, the dark area
to the left of the object in Figure 3.4 presents a totally occluded location to both eyes. Far
beyond the object there is again an area visible to both eyes, so effectively an object does
not occlude the whole space behind it, only a part. It is also known and easily verified that
the half-occluded regions seen by the right eye falls close to the right edge of the occluding
object. Similarly, the half-occluded regions seen by the left eye fall near the left edge of such
an occluding object. This situation is portrayed in Figure 3.4.

The effect of partial occlusions is inevitably connected with a break in the smoothness
(continuity) of a perceived surface in depth. Thus, due to the presence of partial occlusions,



P1: OTA/XYZ P2: ABC
c03 JWBK288-Cyganek December 5, 2008 1:15 Printer Name: Yet to Come

22 An Introduction to 3D Computer Vision Techniques and Algorithms

Figure 3.4 Phenomenon of occlusions. Partial occlusions are lighter. The dark area remains totally
occluded by an object

it is possible to distinguish depth discontinuities from gradually changing surfaces which, in
turn, are limited by the maximum allowable disparity gradient. These and other facts show
that the HVS actively decomposes vertical and horizontal image parallaxes into disparities
and half-occlusions [7]. They form two complementary sources of visual information. Retinal
disparities provide information about the relative depth of observed surfaces visible to both
eyes simultaneously. On the other hand, partial-occlusions which are visible to each eye
separately, give sufficient data for segmentation of the observable scene into coherent objects
at object boundaries.

It is interesting to mention that also the gradient of the vertical disparity can be used to infer
distance from observed objects, as has been shown by Mayhew and Longuet-Higgins [303]
and discussed also by Brenner et al. [55]. However, recent psychophysical experiments have
indicated that such information is not used by the HVS. Indeed, vertical image differences
are not always vertical parallaxes. Sometimes they are caused by half-occlusions. Based on
these observations and psychophysical experiments, Anderson [7] suggests that interocular
differences in vertical position can influence stereoscopic depth perceived by the HVS by
signalling the presence of occluding contours.

Depth perception by the HVS is not only induced purely by stereovision mechanisms, it is
also supported by the phenomena of head and eye movements, as well as by motion parallax.

Many psychophysical experiments lead to the observation that there is continuous rivalry
between the different vision cues that impinge on the HVS. Then the HVS detects such objects
that arise from maxima in the density of goodmatches, when simultaneously in agreement
with daily experience.

Depth information acquired by the HVS, as well as other visual cues such as informa-
tion on colour, edges, shadows and occlusions are only ingredients gathered by the brain to
generate inferences about the world. How these visual inferences are then integrated and in-
terpreted into a unified percept is still not known, although hypotheses and models have been
proposed by researchers. Knowledge of the function of the visual system has been garnered
indirectly by means of observations of two different sets of phenomena known from medicine
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(b) (a) 

Figure 3.5 Visual illusions. (a) An artificial rectangle is clearly visible although not drawn directly.
(b) The two vertical lines are exactly the same length (which can be verified with a ruler), although the
left one is perceived to be longer

and psychophysiology. The first set of phenomena are described in case studies that record
sight diseases and their subsequent cures. It was clinically observed that those patients who
were visually impaired from birth and then had their ability to perceive visual sensations re-
stored, had difficulties learning how to perceive objects and how to interpret scenes, although
they can easily detect basic features [201, 442]. Indirectly this provides us with some insight
into the conceptual stages and complexity of the seeing mechanisms of our brains.

Visual illusions comprise a second set of phenomena that help us understand how the visual
pathways translate retinal images into the perception of objects. There are many illusions that
trick our visual system by providing visual cues that do not agree with the physics of the 3D
world learned by daily experience [125, 161, 360]. Two simple illusions apparently related to
the human perception of depth are presented in Figure 3.5. The first example (Figure 3.5(a))
illustrates the role of occlusions in visual perception. Our acquired experience on transparency
of objects makes us perceive an illusory figure whose existence is only cued (i.e. made appar-
ent) by the presence of occluding contours overlaid on other visible objects in the image.

The second example (Figure 3.5(b)) shows two lines of exactly the same length, which ter-
minate with an arrow-head at each line end. However, the arrow head pairs for correspondng
line ends point in opposite directions. None the less, the first line gives an impression of being
longer. This phenomenon can be explained by daily experience. The left configuration in Fig-
ure 3.5(b) suggests that the central line is further from the observer compared to the right hand
line configuration. This makes us believe that the left line has to be longer in the 3D world.

What seems a common observation about such illusions in 2D images is that we experi-
ence some false interpretation of the ‘flat’ patterns because our visual system always tries to
interpret image data as if it were views of real 3D objects [442].

In other words the heuristics we have evolved for visual perception are grounded in the as-
sumption that we observe scenes embedded in 3D space. An understanding of these heuristics
may provide the potential means by which we can craft binocular depth recovery algorithms
that perform as robustly as those depth perception mechanisms of the HVS.

3.3 Geometry and Acquisition of a Single Image

In this section we provide an introduction to the geometry and image acquisition of a single
camera. More specifically, we start with an explanation of the projective transformation with
basic mathematics describing this process. Then, the so-called pin-hole model of a camera
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is presented. Finally, we discuss the extrinsic and intrinsic parameters of acquisition with a
single camera.

3.3.1 Projective Transformation

Every image acquisition system, either the human or machine visual system, by its nature
performs some kind of transformation of real 3D space into 2D local space. Finding the pa-
rameters of such a transformation is fundamental to describing the acquisition system.

For most cameras a model that describes the space transformation they perform is based
either on the parallel or central perspective projections. The linear parallel projection is the
simplest approach. However, it only roughly approximates what we observe in real cameras
[185]. Therefore the parallel projection, although linear, can be justified only if the observed
objects are very close to the camera.

A better approach to describing the behaviour of real optical systems can be obtained using
the perspective projective transformation which can be described by a linear equation, in a
higher dimensional space of so-called homogeneous coordinates [95, 119, 122, 180]. Addi-
tionally, when describing real optical elements a simple projective transformation has to be
augmented with nonlinear terms to take into account physical parameters of these [113, 185].

3.3.2 Simple Camera System: the Pin-hole Model

The simplest form of real camera comprises a pinhole and an imaging screen (or plane). Be-
cause the pinhole lies between the imaging screen and the observed 3D world scene, any ray
of light that is emitted or reflected from a surface patch in the scene is constrained to travel
through the pinhole before reaching the imaging screen. Therefore there is correspondence
between each 2D area on the imaging screen and the area in the 3D world, as observed
“through the pinhole” from the imaging screen. It is the solid angle of rays that is subtended
by the pinhole that relates the field of view of each region on the imaging screen to the cor-
responding region imaged in the world. By this mechanism an image is built up, or projected
(derived from the Latin projicere from pro “forward” and jacere “to throw”) from world space
to imaging space. A mathematical model of the simple pin-hole camera is illustrated in Figure
3.6. Notice that the imaging screen is now in front of the pin-hole. This formulation simplifies
the concept of projection to that of magnification. In order to understand how points in the
real world are related mathematically to points on the imaging screen two coordinate systems
are of particular interest:

1. The external coordinate system (denoted here with a subscript ‘W’ for ‘world’) which is
independent of placement and parameters of the camera.

2. The camera coordinate system (denoted by ‘C’, for ‘camera’).

The two coordinate systems are related by a translation, expressed by matrix T, and rotation,
represented by matrix R.

The point Oc, called a central or a focal point, together with the axes Xc, Yc and Zc deter-
mine the coordinate system of the camera. An important part of the camera model is the image
plane �. We can observe in Figure 3.6 that this plane � has been tessellated into rectangular
elements, i.e. tiled, and that within an electronic camera implementation these tiles will form
discrete photosensing locations that sample any image projected onto the plane. Each tile is
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Figure 3.6 Pin-hole model of the perspective camera with two coordinate systems: external W and
internal C

called a pixel, i.e. picture element, and is indexed by a pair of coordinates expressed by nat-
ural numbers. Figure 3.6 depicts the plane � with a discrete grid of pixels. The projection
of the point Oc on the plane � in the direction of Zc determines the principal point of local
coordinates (ox, oy). The principal axis is a line between points Oc and O′

c. The distance from
the image plane to the principal point is known as the focal length. Lastly, the values hx and
hy determine physical dimensions of a single pixel.

Placement of a given point P from the 3D space depends on the chosen coordinate system:
in the camera coordinate system it is a column vector Pc; in the external coordinate system it
is a column vector Pw.

Point p is an image of point P under the projection with a centre in point Oc on to the
plane �. Coordinates of the points p and P in the camera coordinate system are denoted as
follows:2

P = [X, Y, Z ]T

p = [x, y, z]T .
(3.1)

Since the optical axis is perpendicular to the image plane, then taking into account that the
triangles �Ocpo and �OcPO′

c are similar and placing z = f , we obtain immediately

x = f
X

Z
, y = f

Y

Z
, z = f. (3.2)

Equation (3.2) constitutes a foundation of the pin-hole camera model.

2Points are denoted by letters in bold, such as p. Their coordinates are represented either by the same letter in italic
and indexed starting from 1, such as p = (p1, p2, p3, p4), or as p = (x, y) and p = (x, y, z) for 2D or 3D points,
respectively. When necessary, points are assumed to be column vectors, such as p = [x, y, z]T.
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The pin-hole camera model can be defined by providing two sets of parameters.

1. The extrinsic parameters.
2. The intrinsic parameters.

In the next sections we discuss these two sets in more detail.

3.3.2.1 Extrinsic Parameters

The mathematical description of a given scene depends on the chosen coordinate system. With
respect to the chosen coordinate system and based solely on placement of the image plane we
determine an exact placement of the camera. Thereafter, it is often practical to select just
the camera coordinate system as a reference. The situation becomes yet more complicated,
however, if we have more than one camera since the exact (relative) position of each camera
must be determined.

A change from the camera coordinate system ‘C’ to the external world coordinate sys-
tem ‘W’ can be accomplished providing a translation T and a rotation R (Figure 3.6). The
translation vector T describes a change in position of the coordinate centres Oc and Ow. The
rotation, in turn, changes the corresponding axes of each system. This change is described by
the orthogonal3 matrix R of dimensions 3 × 3 [132, 430].

For a given point P, its coordinates related to the camera ‘C’ and external coordinates
related to the external world ‘W’ are connected by the following formula:

Pc = R(Pw − T), (3.3)

where Pc expresses placement of a point P in the camera coordinate system, Pw is its place-
ment in the external coordinate system, R stands for the rotation matrix and T is the translation
matrix between origins of those two coordinate systems. The matrices R and T can be speci-
fied as follows:

R =


R1

R2

R3




3×3

=


 R11 R12 R13

R21 R22 R23

R31 R32 R33




3×3

, T = Ow − Oc =


 T1

T2

T3




3×1

, (3.4)

where Ri denotes an i-th row of the rotation matrix R, i.e. R = [Ri1, Ri2, Ri3]1×3.
Summarizing, we say that the extrinsic parameters of the perspective camera are all the

necessary geometric parameters that allow a change from the camera coordinate system to the
external coordinate system and vice versa. Thus, the extrinsic parameters of a camera are just
introduced matrices R and T.

3That is, RRT = 1.
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3.3.2.2 Intrinsic Parameters

The intrinsic camera parameters can be summarized as follows.

1. The parameters of the projective transformation itself: For the pin-hole camera model, this
is given by the focal length f .

2. The parameters that map the camera coordinate system into the image coordinate system:
Assuming that the origin of the image constitutes a point o = (ox, oy) (i.e. a central point)
and that the physical dimensions of pixels (usually expressed in µm) on a camera plane in
the two directions are constant and given by hx and hy, a relation between image coordinates
xu and yu and camera coordinates x and y can be stated as follows (see Figure 3.6):

x = (xu − ox )hx

y = (yu − oy)hy,
(3.5)

where a point (x, y) is related to the camera coordinate system ‘C’, whereas (xu, yu) and
(ox, oy) to the system of a local camera plane. It is customary to assume that xu ≥ 0 and
yu ≥ 0. For instance, the point of origin of the camera plane (xu,yu) = (0, 0) transforms
to the point (−oxhx,−oyhy) of the system ‘C’. More often than not it is assumed also that
hx = hy = 1. A value of hy/hx is called an aspect ratio. Under this assumption a point
from our example is simply (−ox,−oy) in the ‘C’ coordinates, which can be easily verified
analysing Figure 3.6.

3. Geometric distortions that arise due to the physical parameters of the optical elements of
the camera: Distortions encountered in real optical systems arise mostly from the nonlin-
earity of these elements, as well as from the dependence of the optical parameters on the
wavelength of the incident light [185, 343, 382]. In the first case we talk about spherical
aberration, coma, astigmatism, curvature of the view field and distortions. The second case
is related to the chromatic aberration [50, 185, 382]. In the majority of practical situations,
we can model these phenomena as radial distortions, the values of which increase for points
more distant from the image centre. The radial distortions can be modelled by providing
a nonlinear correction (offset) to the real coordinates of a given image point. This can be
accomplished by adding even-order polynomial terms, as follows:

xv = xu

1 + k1r2 + k2r4
, yv = yu

1 + k1r2 + k2r4
, (3.6)

where r2 = x2
v + y2

v , k1 and k2 are the new intrinsic parameters of the perspective camera
that model the influence of the radial distortions of the optical system; xu and yu are the
ideal (i.e. as if there were no distortions) coordinates of a given image point; and xv and yv

are modified coordinates reflecting the radial distortions.

An iterative algorithm for finding xv and yv is provided by Klette et al. [246]. Trucco and
Verri suggest that for most real optical systems with a CCD sensor of around 500 × 500 image
elements, setting k2 to 0 does not introduce any significant change to the quality of the camera
model [430].
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3.3.3 Projective Transformation of the Pin-hole Camera

Substituting (3.3) and (3.5) into (3.2) and disregarding distortions (3.6) we obtain the linear
equation of the pin-hole camera:4

p = MP, (3.7)

where p is an image of the point P under transformation M performed by the pin-hole camera.
Linearity in (3.7) is due to the homogeneous5 transformation of the point coordinates.

The matrix M in (3.7), called a projection matrix, can be partitioned into the following
product of two matrices:

M = MiMe, (3.8)

where

Mi =




f

hx
0 ox

0
f

hy
oy

0 0 1




3×3

, Me =




R1 −R1T

R2 −R2T

R3 −R3T




3×4

. (3.9)

The matrices R and T are given in (3.4). Mi defines the intrinsic parameters of the pin-hole
camera, that is, the distance of the camera plane to the centre of the camera’s coordinate
system, as well as placement of the central point o and physical dimensions of the pixels on
the camera plane – these are discussed in section 3.3.2.2. The matrix Me contains the extrinsic
parameters of the pin-hole camera and relates the camera and the external ‘world’ coordinate
systems (section 3.3.2.1).

The three equations above can be joined together as follows:

p =


 xuh

yuh

zuh


 =




f

hx
0 ox

0
f

hy
oy

0 0 1




︸ ︷︷ ︸
Mi


R1 −R1T

R2 −R2T

R3 −R3T




︸ ︷︷ ︸
Me

P, (3.10)

where P = [Pw 1]T is a point Pw expressed in the homogeneous coordinates.
Let us observe that

xu = xuh

zuh
, yu = yuh

zuh
. (3.11)

4Derivation of the equations for the projective transformation of a camera can be found in section 3.8.
5Before further study, readers not familiar with the concept of homogeneous coordinates are asked to read sec-
tion 10.1.



P1: OTA/XYZ P2: ABC
c03 JWBK288-Cyganek December 5, 2008 1:15 Printer Name: Yet to Come

2D and 3D Vision Formation 29

As already alluded to, it is often assumed that (ox,oy) = (0,0), and also hx = hy = 1. With
these assumptions (3.10) takes on a simpler form

p =


 f 0 0

0 f 0

0 0 1




R1 −R1T

R2 −R2T

R3 −R3T


P. (3.12)

Equation (3.7) defines a transformation of the projective space ℘3 into the projective plane
℘2. However, note that this transformation changes each point of a line into exactly one and
the same image point of the image plane. This line is given by the central point Oc and any
other point from the projective space. Therefore the projective transformation (3.7) assigns
exactly the same image point to all the points belonging to the mentioned line. This fact can
be embedded into (3.7) by introduction of an additional scaling parameter, as follows:

γ p = MP, (3.13)

where γ is a scalar. Equations (3.7) and (3.13) differ only by the scalar γ . It can also be said
that (3.7) is a version of (3.13) after dividing both sides by a nonzero scalar γ . Thus, without
loss of generality we will assume henceforth that (3.7) holds, where the matrix M is defined
only up to a certain multiplicative parameter γ .

3.3.4 Special Camera Setups

For some camera setups it is possible to assume that distances among observed objects
are significantly smaller than the average distance z̄ from those objects to the centre of
projection. Under this assumption we obtain a simplified camera model; termed weak per-
spective [314, 322, 430]. In this model the perspective projection simplifies to the parallel
projection by the scaled magnification factor f/z̄. Equations (3.2) transform then to the fol-
lowing set of equations:

x = f

Z
X, y = f

Z
Y, z = f, (3.14)

where Z is assumed to be much larger than f and constant for the particular setup of a camera
and a scene. This simplification makes (3.14) independent of the current depth of an observed
point Pw. Thus, in the case of a camera with a simplified perspective the element at indices
3 × 1 of the matrix Me in (3.9) changes to 0, and the element 3 × 2 of this matrix changes
to Z (section 3.8). The latter, in turn, can be defined selecting an arbitrary point Aw, which is
the same for acquisition of the whole scene

Z = R3(Aw − T). (3.15)

The mathematical extension to this simplification is a model of an affine camera in which
proportions of distances measured alongside parallel directions are invariant [122, 314, 322,
430]. There are also other camera models that take into consideration parameters of real
lenses, e.g. see Kolb et al. [251]. Finally, more information on design of real lenses can be
found in [113, 382].
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3.3.5 Parameters of Real Camera Systems

The quality of the images obtained by real acquisition systems depends also on many other
factors beyond those already discussed. These are related to the physical and technological
phenomena which influence the acquisition process. In this section we briefly discuss such
factors.

1. Limited dynamics of the system. The basic photo-transducer element within a modern dig-
ital camera converts the number of photons collected over a specific time interval (the
integration interval of the device, analogous to the exposure time in a film camera) within
each pixel within the sensor array into a voltage. While this voltage is linearly proportional
to the intensity of the input photon flux arriving at a given pixel, the following analog-to-
digital converter circuitry is limited to a finite number of bits of precision with which to
represent the incoming voltage. Therefore, in order to extend the allowable input signal
range nonlinear limiting circuits are introduced prior to digitisation. One such limiter is the
pre-knee circuit [246] whose circuit characteristic causes a small degree of saturation for
higher values of the input signal. As a result, the input range of the system is increased but
at a cost of a slight nonlinearity.

2. Resolution of the CCD element and aliasing. In agreement with the sampling theory, to
avoid aliasing, a device converting continuous signals into a discrete representation must
fulfil the Nyquist sampling criterion (i.e. the sampling frequency has to be at least twice
the value of the highest frequency component of the sampled signal). In the rest of this
book we assume that this is the case and that aliasing is not present [312, 336]. In real
imaging systems there are two factors that can help to alleviate the problem of aliasing. The
first consists of the application of low-pass filters at the input circuitry. The second is the
natural low-pass filter effect due to the lens itself, manifest as a point spread function (PSF)
or modulation transfer function (MTF) which naturally limits the high spatial frequencies
present prior to digitisation [66, 430].

3. Noise. Each image acquisition channel contains many sources of noise. In the CCD de-
vice there is a source of noise in the form of cross-talk. This is the phenomenon of charge
leakage between neighbouring photoreceptors in each row of the CCD. Another source of
noise comes from the filters and the analogue-to-digital converter. The latter adds so-called
quantization noise which is a result of the finite length of bit streams representing ana-
logue signals. The most frequently encountered types of image noise can be represented
by Poison and Gaussian distributions. Schott Noise is by far the most significant source
of noise in a modern imaging sensor. This noise source results from the statistical varia-
tion of the photon arrival rate from any illumination source. In any fixed time interval the
standard deviation of the photon flux rate is proportional to the square of the illumination
intensity. Other sources of noise are now becoming less significant than Schott noise, hence
this fundamental limit of physics now tends to dominate image capture performance. The
interested reader is referred to the ample literature [95, 158, 172, 183, 224, 226, 247, 346,
430]. Different types of noise are also discussed in Chapter 11.

4. Signal saturation. The phenomenon of signal saturation results from an excessive signal
level being applied to the input of the acquisition channel. Such a signal is nonlinearly at-
tenuated and cannot be accurately converted by A/C converters due to their limited dynamic
range. Where there is insufficient scene illumination, as can be caused by shadows, the
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image signal “bottoms-out” providing no visual information by which to compute stereo
matches.

5. Blooming effect. Blooming is caused by an excessive charge appearing in certain areas of a
CCD device. In effect, some parts of this charge spread out to the neighbouring CCD cells
causing visible distortions [54]. This phenomenon is usually caused by light reflections
entering the lens of the camera.

6. Scene lighting conditions. There are many different sources of light that can be used to illu-
minate an observed scene and different photometric models apply [95, 173, 224, 226, 343].
In the rest of this book we assume the Lambertian photometric model, i.e. each point of
the illuminated surface is perceived from each direction as being equally light. This model
is a reasonable approximation for many real situations, especially if we consider only the
scenes comprising matt and opaque objects. In the case of the stereoscopic systems non-
uniformity in scene illumination can potentially lead to an increase in false matches (6.4).
This happens if the stereo method does not attempt to compensate for local inequalities in
the average illumination of the stereo-pair images.

The above mentioned parasitic phenomena arising in real image acquisition systems are
even more severe when capturing colour images, since they can be present in each colour
component independently.

The last question concerns accuracy of the pin-hole model when applied to real camera
systems. Many experimental results with simple camera systems help to answer this question
[314, 408]. For example, for a camera system with a sensor resolution of 512 × 512 pixels, the
difference in accuracy obtained between the real camera and the pin-hole model is about 1/20
of a pixel. Such results justify the application of the pin-hole model in many image processing
methods, including those presented in this book.

More information on different technologies of CCD devices, their manufacturing processes
and application in real machine vision tasks can be found in many publications, some available
also from the Internet. For instance the ‘CCD Primer’ by Eastman Kodak Company gives a
nice introduction to CCD technology [111]. A discussion of CCD versus CMOS devices for
image acquisition can be found in Janesick [228] or in one of the technical reports by Dalsa
Corporation [94]. Information on special imagers using amorphous silicon can be found in
Böhm [54]. Finally, Baldock and Graham [23] discuss CCDs and image acquisition systems
for microscopic imaging systems.

3.4 Stereoscopic Acquisition Systems

In this section we discuss the basic properties of stereoscopic acquisition systems. When two
(static) cameras observe the same scene from different viewpoints, a qualitatively new kind of
observation can be made that is not possible using a single (static) camera alone – this is the
perception of depth by triangulation.

3.4.1 Epipolar Geometry

Figure 3.7 depicts an imaging configuration comprising two projective systems. They create a
stereoscopic image acquisition system. It is based on two pin-hole cameras, each composed of
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Figure 3.7 Epipolar geometry

the projective plane �i (where subscript “i” is changed to l for the left and to “r” for the right
camera respectively) with respective projective centre point Oi. The line coming through the
point Oi and perpendicular to the plane �i crosses this plane in a point called the principal
point. The distance from this point to the centre point Oi is called the focal length f .

The line OlOr connecting the centres Ol and Or is called the base line. Points of its crossing
with the image planes �i determine the epipolar points. In the special case, when the line
OlOr does not cross the image planes �i, the corresponding epipolar points lie in infinity
(section 9.4).

A plane determined by a given 3D point P and the projective centres Ol and Or is called the
epipolar plane �e. The epipolar plane �e intersects the image planes �l and �r – their inter-
sections are the epipolar lines. The role of the epipolar lines can be understood, for example,
by analysing the left image pl (a point is represented as a vector) of the 3D point P. In this
case, the central point Ol and the left point pl define a certain ray Olpl. It can be seen that the
point pl is an image of the point P but also of all the other points on the ray Olpl. This means
that the point P can lie anywhere on this ray, still having the same image. Therefore deter-
mination of its exact space position is not possible having only one image. To clarify space
position we need a second image point, viewed from another position. This is, for example,
an image point pr on the plane �r. The point pr and the second central point Or determine
the second ray Orpr. This ray is fixed at Or and simultaneously it can slide through the ray
Olpl, crossing it in the space point P. Moreover, the crossing point of each ray Olpl or Orpr

with their respective image planes �l or �r lies on the epipolar lines. Similarly, projections
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of these rays on the opposite image planes constitute epipolar lines as well. Hence the very
important conclusion, called an epipolar constraint:

Each image point pi of a space point P lies in the image plane only on the corresponding epipolar
line.

The consequence of this constraint plays an important role when searching for the image
points (not knowing their space points) limiting this process from the whole image plane
to the search along the epipolar line. In the general case positions of the epipolar lines are
not known beforehand. However, for special camera configurations, such as a canonical one,
positions of the epipolar lines are known and this fact can greatly facilitate the search for
corresponding points.

With each of the cameras of the stereo system we associate a separate coordinate system
with its centre coinciding with the central point of the camera. The Z axis of such a coordinate
system is collinear with the optical axis of the camera. In both coordinate systems, the vectors
Pl = [Xl, Y l, Zl]T and Pr = [Xr, Y r, Zr]T represent the same 3D point P. On the other hand, on
the respective image planes, the vectors pl = [xl, yl, zl]T and pr = [xr, yr, zr]T determine two
different images of the space point P. Additionally we notice that zl = f l and zr = f r, where f l

and f r are the focal lengths of the left and right cameras, respectively.
As was already pointed out in section 3.3, each camera is described by a set of extrinsic pa-

rameters. They determine placement of a camera in respect to the external coordinate system.
On the other hand, in the stereo camera setup each camera has its associated local coordinate
system. Similarly to (3.3), it is possible to change from one coordinate system to the other
by a translation T = Or–Ol and rotation determined by an orthogonal matrix R. Thus, for the
two vectors Pl and Pr pointing at the same point P from 3D space the following holds [430]:

Pr = R(Pl − T). (3.16)

The epipolar plane �e in the coordinate system associated with the left camera is spanned
by the two vectors T and Pl. Therefore, also the vector Pl−T belongs to this plane. This means
that their mixed product must vanish, that is

(Pl − T) · (T × Pl) = 0. (3.17)

The product (3.17) can be written in matrix form as a product of a certain matrix A and the
vector Pl, which is presented by the following equation:

T × Pl =

∣∣∣∣∣∣∣
T1 T2 T3

Pl1 Pl2 Pl3

i j k

∣∣∣∣∣∣∣
= i (T2 Pl3 − T3 Pl2) − j (T1 Pl3 − T3 Pl1) + k (T1 Pl2 − T2 Pl1) (3.18)

=


−T3 Pl2 + T2 Pl3

T3 Pl1 − T1 Pl3

−T2 Pl1 + T1 Pl2


 =


 0 −T3 T2

T3 0 −T1

−T2 T1 0




 Pl1

Pl2

Pl3


 = APl



P1: OTA/XYZ P2: ABC
c03 JWBK288-Cyganek December 5, 2008 1:15 Printer Name: Yet to Come

34 An Introduction to 3D Computer Vision Techniques and Algorithms

where i = [1, 0, 0]T, j = [0, 1, 0]T, k = [0, 0, 1]T are the unit vectors and A is a skew
symmetric matrix (section 9.3). Now, substituting (3.16) and (3.18) into (3.17), we obtain

(
R−1Pr

)T
APl = 0. (3.19)

Taking into account that R is orthogonal and after simple rearrangements we have

PT
r RAPl = 0, (3.20)

PT
r EPl = 0, (3.21)

where the matrix

E = RA (3.22)

is called the essential matrix which due to the rank of the matrix A in (3.18) is also of rank
two.

3.4.1.1 Fundamental Matrix

The points pl and Pl, as well as pr and Pr, are connected by relation (3.2). Thus (3.21) can be
written as

pT
r Epl = 0, (3.23)

where pr and pl are image points on the image planes. Since the corresponding points can lie
only on the corresponding epipolar lines, Epl in (3.23) is an equation of the epipolar line on
the right image plane that goes through the point pr, and, as all the epipolar lines, through the
epipole. Therefore both epipolar lines can be expressed as

ur = Epl, (3.24)

ul = ETpr. (3.25)

For a given point pk we find its pixel coordinates from (3.117) as follows:

Mikpk = pk, (3.26)

where Mik is an intrinsic matrix for the k-th image, pk a point in the camera coordinate system
and pk homogeneous pixel coordinates.

Equation (3.23) can be written as

(
M−1

ir pr
)T

EM−1
i l pl = 0, (3.27)

pT
r M−T

ir EM−1
i l pl = 0. (3.28)

Finally we obtain

pT
r Fpl = 0, (3.29)
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where the matrix

F = M−T
ir EM−1

i l (3.30)

is called the fundamental matrix. It describes the epipolar geometry in terms of the pixel
coordinates in contrast to the essential matrix in (3.21) and (3.23) where the homogeneous
camera coordinates are used.

The two matrices E and F are related by (3.30). Substituting (3.22) into (3.30) we obtain
also that

F = M−T
ir RAM−1

i l . (3.31)

Taking into account that the rank of the matrix E is two, the rank of the matrix F is also
two. Further analysis of the matrices E and F can be found in the ample literature on this
subject, e.g. in Luong and Faugeras [288] and Hartley and Zisserman [180]. The method of
representation of a scene by means of the images and their fundamental matrices is discussed
by Laveau and Faugeras [267].

3.4.1.2 Epipolar Lines and Epipoles

Because the point pr lies on the epipolar line ur in the right image plane, then the following
equation must hold (section 9.3):

pT
r ur = 0. (3.32)

Now based on (3.29), similarly to (3.24), it is possible to write the equation of the right
epipolar line as

ur = Fpl. (3.33)

Analogously, the equation of the left epipolar line can be expressed as

ul = FTpr. (3.34)

Let us take a look at Figure 3.7 and notice that all epipolar planes have one common line –
the base line; similarly, all epipolar lines from a given image plane have one common point –
the epipole. Since (3.29) holds for all points from the image plane then we can consider the
case when the left point pl in (3.29) is at the same time the left epipole el. Then (3.29) takes
the form

pT
r Fel = 0. (3.35)

However, the above is obviously fulfilled for all points from the right image plane that lie on
the base line. Therefore, and taking into account that the matrix F is of rank two, we conclude
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that the following must hold:

Fel = 0. (3.36)

Based on (3.36) this means that el must be the kernel transformation defined by the matrix F.
Similarly, er is the kernel of FT:

FTer = eT
r F = 0. (3.37)

Thus, the left and right epipoles can be computed by finding kernels of the transformations
described by F and FT, respectively. This, in turn, can be accomplished by the singular value
decomposition (SVD) of the respective matrix [154, 317, 352, 355, 425]. Changing the matrix
F into the form

F = SVDT, (3.38)

we notice that el is a column of the matrix D that corresponds to the zero-valued element of the
diagonal matrix V. By the same token, er is a column of the matrix S that corresponds to the
zero-valued element of the diagonal matrix V. This can be seen quite easily when substituting
(3.38) into (3.36) and (3.37), respectively, to obtain

SVDTel = 0,

eT
r SVDT = 0.

Let us recall that all columns of D (i.e. rows of DT) are orthogonal, so if el is set to one of them
then all multiplications of this column with other columns of D with different indices will also
be 0. However, the multiplication of el with itself corresponds to the lowest eigenvalue of V
(possibly close to 0). The same analysis can be applied to the computation of the second
epipole er. Nevertheless, in practice computation of the epipoles is sometimes burdened with
numerical instabilities.

3.4.2 Canonical Stereoscopic System

We introduce a notion of disparity in respect of the canonical stereo setup (Figure 3.8).
Considering the similar triangles �pLoLOL and �PXOL, as well as �pRoROR and �PXOR,

we obtain the formula for the horizontal disparity Dx(pl, pr) between two points pl and
pr as

Dx (pl, pr) = pr1 − pl1 = xl − xr = b f

Z
, (3.39)

where the points pl = [pl1, pl2]T, pr = [pr1, pr2]T are images of a certain 3D point P, b is the
base distance between the cameras, f is the camera focus length and Z is the distance from
point P to the base line (depth of a scene). Let us observe that because bf/Z is positive, then
from (3.39) it follows that xl ≥ xr. This limits search range on the epipolar lines and simplifies
the matching algorithms.



P1: OTA/XYZ P2: ABC
c03 JWBK288-Cyganek December 5, 2008 1:15 Printer Name: Yet to Come

2D and 3D Vision Formation 37

f

b

Z

P

xl xr

pl pr

Πl Πr

Ol Or

ol or

X

Figure 3.8 Standard (canonical) system of two cameras with focal lengths f , displaced by a base dis-
tance b. The difference between coordinates xl and xr is called a (horizontal) disparity between points pl

and pr

In the same way we can define the vertical disparity Dy in a direction perpendicular to Dx:

Dy (pl, pr) = pr2 − pl2. (3.40)

Certainly Dy in the canonical stereo setup is zero. Finally, in the canonical stereo setup the
fundamental matrix takes on the following form [122]:

FC =


 0 0 0

0 0 c

0 −c 0


 , (3.41)

where c is a constant value different from 0. Substituting FC into (3.29) we obtain

[
pr1 pr2 1

]0 0 0

0 0 c

0 −c 0




 pl1

pl2

1


 = 0,

which is equivalent to

pl2 = pr2. (3.42)

The equation above states simply that the second coordinates of the matched points are the
same whereas their first coordinates can change, as in (3.39), which gives us information
on parallax. However, we have to remember that the coordinates are expressed in the local
coordinate systems of the two (or more) cameras observing a scene. We need also to take into
account their orientation. In Figure 3.7 these were chosen to comply with common practice of
computer graphics, i.e. the coordinate systems’ axes start from the top left corner of an image
on the screen. Algorithmic aspects of representation of images are discussed further in section
3.7.1.2.
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Figure 3.9 Stereo setup with cameras in the canonical position

Similarly, starting from (3.33) we obtain a formula of an epipolar line in the right image of
the canonical stereo setup for a certain point in the left image:

ur = FCpl =


0 0 0

0 0 c

0 −c 0




 pl1

pl2

1


 =


 0

c

−cpl2


 . (3.43)

We see that in this case ur denotes simply a horizontal line.
Figure 3.9 depicts a canonical stereo setup, i.e. one in which the camera axes are parallel.

The two Marlin R© F033C cameras are mounted on to a geodesic tripod which allows precise
control of the positions due to the three levels installed on it. The cameras are connected
through IEEE 1394 connections to a PC with installed SDK for image acquisition (from Allied
Vision R©). In practice it is not so easy to set up all the cameras to their canonical positions,
however. The best results are obtained when the calibration is done after presenting the grid
calibration pattern to the two cameras and then setting the tripod positions manually to align
corresponding grids. Nevertheless, each movement of the system results in the necessity of a
new calibration; hence the importance of stereo methods that do not require precise canonical
setups. This is especially true for vision systems operating in difficult conditions, such as the
ones assembled on moving vehicles, for instance.

3.4.3 Disparity in the General Case

Having the horizontal and vertical disparities it is possible to define the common disparity
D(pl, pr) as [246]

D (pl, pr) =
√

D2
x (pl, pr) + D2

y (pl, pr). (3.44)
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For the definition of disparity in the general case, see [122].
The term ‘disparity’ used henceforth denotes exclusively the horizontal disparity Dx as

defined by (3.39) unless stated otherwise.

3.4.4 Bifocal, Trifocal and Multifocal Tensors

Dependences among multiple views can be analysed with the help of tensor calculus (see
Chapter 10). The perspective transformation performed by a single pin-hole camera is given
by (3.13). Let us assume that simultaneously we have for instance four such cameras observ-
ing the same 3D point P. It can be easily shown that in this case we can transform (3.13) to
the following compact representation [189]:




M1 p1 0 0 0

M2 0 p2 0 0

M3 0 0 p3 0

M4 0 0 0 p4




︸ ︷︷ ︸
H4




P

−s1

−s2

−s3

−s4


 = 0, (3.45)

where Mi is the 3 × 4 matrix of the projective transformation (3.13) performed by the i-th
camera, P is a 3D point, pi is its image created on the i-th camera plane and si is a scaling
factor. In the case of four cameras H4 is a 12 × 8 matrix created from the matrices Mi and
pi. Its rank has to be up to seven to have nontrivial null space. In other words, (3.45) denotes
a set of homogeneous equations of eight unknowns, and to have a solution different from
[0, 0, . . . , 0]T, det(H4) has to be 0 [259]. In the general case of m cameras, Hm is of rank at
most m + 3. Thus, all minors of size equal to or greater than (m + 4) × (m + 4) are zero. This
feature will be used soon to derive further conditions.

Let us now consider a special case of two images. From (3.45) we build a matrix H2, taking
only two images indexed by 1 and 2. To shorten the notation, from M1 and M2 their first three
rows are taken separately, with upper index denoting the number of a row:

H2 =




M1
1 p1

1 0

M2
1 p2

1 0

M3
1 1 0

M1
2 0 p1

2

M2
2 0 p2

2

M3
2 0 1




6×6

, (3.46)

where Mi
j is the i-th row of the j-th camera matrix and pi

j is the i-th component of the j-th
image point. From the previous discussion we know that the rank of H2 is at most 2 + 3 = 5,
that is

det (H2) = 0, (3.47)
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since H2 is of size 6 × 6. Equation (3.47) can be computed from the Laplace development.
Starting from an expansion by a row containing pi

j , we obtain

det (H2) = p1
1 det




M2
1 0

M3
1 0

M1
2 p1

2

M2
2 p2

2

M3
2 1




︸ ︷︷ ︸
−p2

1 det




M1
1 0

M3
1 0

M1
2 p1

2

M2
2 p2

2

M3
2 1


 + 1 det




M1
1 0

M2
1 0

M1
2 p1

2

M2
2 p2

2

M3
2 1


 = 0. (3.48)

Then we expand each of the three minors. For simplicity we write only the first one

det




M2
1 0

M3
1 0

M1
2 p1

2

M2
2 p2

2

M3
2 1




︸ ︷︷ ︸
= p1

2 det




M2
1

M3
1

M2
2

M3
2


 − p2

2 det




M2
1

M3
1

M1
2

M3
2


 + 1 det




M2
1

M3
1

M1
2

M2
2


 . (3.49)

Inserting (3.49) and the remaining two expansions into (3.48) it becomes obvious that (3.47)
can be written in the form

det (H2) =
3∑

i, j=1

Fij p
i
1 p j

2 = Fij p
i
1 p j

2 = 0, (3.50)

where Fij are elements of the already introduced fundamental matrix (3.31), which in the
tensor notation are elements of the bifocal tensor in accordance with the following.

Definition 3.1. Let εijk be a permutation6 symbol and let Mi
j denote the i-th row of the camera

matrix Mj for the j-th image. The elements of the bifocal tensor, corresponding to views 1 and
2, are given as

Fij = εi i ′i ′′ε j j ′ j ′′ det




Mi ′
1

Mi ′′
1

M j ′
2

M j ′′
2


 . (3.51)

In the above the summation symbol was dropped in accordance with Einstein’s summation
rule (see Chapter 10). The numbers Fij constitute a covariant tensor of second degree. This
means that a change of coordinates systems associated with images 1 and 2 induces a concor-
dant change of Fij.

6The permutation symbol εijk denotes 0, if any pair of its indices is equal, and (−1)p, where p is a minimal number
of index changes, leading to their normal order, i.e. 1, 2, 3. . .
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Further extensions of the presented analysis of minors of the matrix (3.45) lead to higher
degree tensors [189, 421]. For instance the trifocal tensor is obtained in an analogous way,
based on the matrix H3. Then from the rank condition we obtain det(H3) = 0, which leads to
the following trifocal constraint:

T jk
i pi

1ε j j ′ j ′′p j ′
2 εkk ′k ′′pk ′

3 = 0, (3.52)

where

T jk
i = εi i ′i ′′ det




Mi ′
1

Mi ′′
1

M j
2

Mk
3


 . (3.53)

The trifocal tensor is an example of a third-order mixed tensor (section 10.4) in which the
order of images is also important since the first image is treated differently.

3.4.5 Finding the Essential and Fundamental Matrices

The 3 × 3 matrices E and F can be determined based on (3.21) and (3.29), respectively.
There are nine elements to be computed. However, these formulas employ the homogeneous
coordinates, and therefore any solution is determined up to a certain scaling factor (see the
properties of the homogeneous coordinate transformation in section 9.2). Because of this, only
eight different pairs of matched points are necessary to find E or F [278]. Thus the name of
the simplest linear method is the eight-point algorithm [118, 121, 122, 177, 278, 430]. If more
matched pairs are known, then a solution can be found by means of the least-squares method
[70, 154, 352]. Remember that if coordinates of the matched points are expressed in respect
to the external coordinate system then we compute the essential matrix E, otherwise – if the
coordinates are local to the image planes – we deal with the fundamental matrix F.

The rest of this chapter is focused on determination of the fundamental matrix F. Neverthe-
less, computation of the essential matrix E can be accomplished in the same way. Let us now
observe that (3.29) can be rewritten as follows:

3∑
i=1

3∑
j=1

pri Fij plj = 0, (3.54)

where pri and plj are coordinates of the corresponding points from a matched pair, from the
right and left image, respectively, and Fij denotes elements of the fundamental matrix. The
above equation can be rewritten again to involve only one summation:

qTf = r =
9∑

i=1

qi fi = 0, (3.55)
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where qi denotes a component built from the point coordinates, r is called a residual and fi
denotes a coordinate of a vector of nine elements arising from the stacked elements of the
matrix F, as follows:

q = [pl1 pr1, pl2 pr1, pr1, pl1 pr2, pl2 pr2, pr2, pl1, pl2, 1]T , (3.56)

and

f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]T . (3.57)

To find F, being now in the form of a nine-element vector fi, we have to solve (3.55). As
alluded to previously this is possible after gathering at least eight pairs of matched points.
Unfortunately, although simple, the eight-point algorithm shows significant instabilities due
to noise, numerical roundoff errors and mismatched points. A partial remedy to some of these
problems was proposed by Hartley [177]. He suggested normalizing the point coordinates
before one tries to solve (3.55). Finally, after the solution is found, the matrix has to be denor-
malized.

Since the matrix F is defined up to a certain scaling factor, it is necessary to place an
additional constraint to fix the solution. It is most common here to set the norm of f to 1.
However, other options exist which will be discussed later on.

In practice, instead of solving (3.55) exactly for eight points, solution to f is found for a
higher number of matched pairs with a simultaneously imposed constraint on the norm of f.
Each pair of corresponding points gives one equation of the type (3.55). Then, a K ≥ 8 number
of the corresponding points is gathered into a compound matrix QK×9. Therefore the solution
is obtained in the least-squares fashion, as follows:

min
‖ f ‖=1

‖Qf‖2, (3.58)

where Q is a matrix with each row built from a pair of matched points and f is, as before, the
sought vector of stacked elements of the matrix F. In accordance with definition, the norm in
(3.58) can be represented as

‖Qf‖2 = (Qf)T (Qf) = fT (QTQ
)

f. (3.59)

From Q, the so-called moment matrix M = QTQ is created, which is of size 9 × 9. It can be
shown using the optimization theorem of Lagrange–Euler multipliers [352] that a solution to
(3.58) constitutes a minimal eigenvalue of the positive-definite matrix M. This can be done
again by the SVD decomposition algorithm [154, 308, 352]. In this case, the matrix F is given
by the column of the matrix S which corresponds to the position of the lowest singular value
in the matrix V. However, due to discrete positions of the matched points, as well as due to
noise and mismatches, when found this way matrix F does not have rank two.

We can take yet another approach which offers some advantages. The matrix F is found as
an eigenvector w of M which corresponds to the lowest eigenvalue of M. Such F minimizes
the sum of squares of algebraic residuals E = ∑K

k=1 ρk . Therefore, finding the matrix F can
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be written as the following optimization task:

min {E} , (3.60)

where the functional E, which derives from (3.58), is given as

E =
K∑

k=1

ρk =
K∑

k=1

r2
k

fTJf
=

K∑
k=1

aT
k Fbk

fTJf
= fTMf

fTJf
, (3.61)

where J = J1 = diag[1, 1, . . . , 1] is a normalization matrix, which in this form is equivalent
to the optimization constraint ‖f‖ = �if 2

i = 1.
The denominator in (3.61) plays a role of an optimization constraint which allows a solution

from the equivalence class of solutions, excluding the trivial zero results at the same time.
Solution to (3.58) and (3.60) is obtained as an eigenvector fs = w that corresponds to the
lowest eigenvalue λk of the moment matrix M. To impose the rank two of the computed
matrix F we set the smallest singular value found to 0 and then recalculate the fundamental
matrix. This method was first proposed by Tsai and Huang [431]. It proceeds as follows:

F = SVD = S


 v1 0 0

0 v2 0

0 0 v3


D, where v1 ≥ v2 ≥ v3 ≥ 0. (3.62)

Then the smallest eigenvalue v3 is set to 0 to obtain F1 with rank two, as follows:

F1 = S


 v1 0 0

0 v2 0

0 0 0


D. (3.63)

The way to estimate the given point configuration is just to measure how close to 0 is the
smallest singular value of M. Thus optimizing for the smallest singular value leads to the
quality assessment of point matching.

In the simplest case of J = J1 (3.58) and (3.60) are equivalent. However Torr and Fitzgib-
bon [423] go a step further and, instead of setting J = J1, propose to apply a constraint which
is invariant to the Euclidean transformations of coordinates in the image planes. They found
that the Frobenius norm of the form f 2

1 + f 2
2 + f 2

4 + f 2
5 fulfils the invariance requirement.

This corresponds to J2 = diag[1, 1, 0, 1, 1, 0, 0, 0, 0]. Finding fs in this case is more com-
plicated and is equivalent to solving the generalized eigenvector problem fTJf − fTMf = 0.
However, a faster and more stable solution can be obtained by the procedure originally pro-
posed by Bookstein and also cited by Torr and Fitzgibbon [423]. The methodology consists
of partitioning f into f1 = [f 1, f 2, f 4, f 5] and f2 = [f 3, f 6, f 7, f 8, f 9]. Then f1 is obtained as an
eigenvector solution to the equation

Df1 = λf1, (3.64)
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where

D = M11 − M12M−1
22 MT

12 and M =
[

M11 M12

MT
12 M22

]
. (3.65)

M is divided into Mij in such a way that

fTMf = fT
1 M11f1 + 2fT

1 M12f2 + fT
2 M22f2. (3.66)

Then f2 is obtained from M12, M22 and f1, as follows:

f2 = −M−1
22 MT

12f1. (3.67)

Further details of this method and experimental results are presented in [423].
It is also important to notice that the linear methods cannot automatically ensure the rank

constraint. It can be enforced by a proper parameterization of the fundamental matrix. This,
however, leads to a nonlinear problem of finding matrices E and F [119, 180, 289, 458]. They
offer much more accurate solutions and are more resistant to the false matches at a cost, how-
ever, of iterative performance and usually more complicated implementation. Nevertheless,
the linear methods outlined in this section usually can be used as a first estimate which is then
refined by one of the nonlinear methods.

Especially the distance minimization (nonlinear) methods, operating with the parameter-
ized fundamental matrix, were shown to be robust and stable [288]. They start from the linear
estimation of the fundamental matrix with two-rank enforcement, say F0. Then, a nonlin-
ear error function is iteratively minimized with respect to the chosen parameterization and a
distance measure. More details on these methods can be found in [119], for instance.

3.4.5.1 Point Normalization for the Linear Method

The first problem that arises during computation of the essential and fundamental matrices
is that point coordinates are discrete (quantized) values rather than continuous ones. Thus,
we have to deal with a discrete epipolar geometry [171]. This raises a problem of point cor-
respondences which, even if correct on a discrete grid, do not reflect the real ground truth
correspondences. This has a direct influence on the accuracy of the matrix components. In
practice, sufficient resolution of images helps to lessen the influence of this phenomenon.

The second problem comes from the magnitude of the point coordinates. As already pointed
out, the matrix M = QTQ usually does not lead to a stable solution. Indeed, observing how its
elements are composed we notice that they span quite a significant range. For an exemplary
image of size 512 × 512 some elements of this matrix have value 1 while others can be as
much as 5122 = 262 144. A simple normalization of point coordinates to the range [−1, 1]
helps to alleviate this problem [177, 290, 460].

The normalization is done by an affine transformation, given by a matrix N, consisting
of translation and scaling. It takes the centroid of the reference points at the origin of the
coordinate system and ensures that the root-mean-square distance of the points from the origin
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is
√

2. This normalization mapping is given as

p′ = Np =


 s1 0 −m1s1

0 s2 −m2s2

0 0 1




 p1

p2

1


 =


 s1 (p1 − m1)

s2 (p2 − m2)

1


 , (3.68)

where p is a point of an image, expressed with the homogeneous coordinates, pm = [m1, m2,
1] is a mean point with the following coordinates:

m1 = 1

K

K∑
i=1

p1i , m2 = 1

K

K∑
i=1

p2i ; (3.69)

K denotes a total number of points, s1,2 are scaling factors

s1 =
[

1

K

K∑
i=1

(p1i − m1)

]−1/2

, s2 =
[

1

K

K∑
i=1

(p2i − m2)

]−1/2

, (3.70)

which ensure that after normalization an average point distance from the origin point [0, 0, 1]
equals

√
2.

The aforementioned normalization is done independently in each image. Thus we have two
point normalization matrices Npl and Npr in the form (3.68). Substituting (3.68) into (3.29) we
obtain

pT
r Fpl = (

N−1
r p′

r

)T
F
(
N−1

l p′
l

) = p′T
r N−T

r FN−1
l︸ ︷︷ ︸

F′

p′
l = 0 (3.71)

Thus, in the domain of transformed coordinates we actually compute F′ in the form

F′ = N−T
r FN−1

l . (3.72)

Finally to recover F we compute

F = NT
r F′Nl. (3.73)

The denormalization (3.73) is done once. Experimental results show a significant improve-
ment in accuracy of the linear methods when preceded by the point normalization procedure
[177]. Thus, in every method which estimates some parameters from point indices one should
be always concerned with the influence of their magnitudes on accuracy of computations.
This is especially important if coordinates are multiplied or raised to some power, as for in-
stance in the discussed estimation of the fundamental matrix or in other computations, such
as statistical moments, etc. [157, 351].



P1: OTA/XYZ P2: ABC
c03 JWBK288-Cyganek December 5, 2008 1:15 Printer Name: Yet to Come

46 An Introduction to 3D Computer Vision Techniques and Algorithms

3.4.5.2 Computing F in Practice

As alluded to previously, the linear methods of computation of the fundamental or essential
matrices give in practice good results if special precautions are undertaken. The two main
problems one should be aware of are as follows.

1. Excessive dynamics of the products of point coordinates in (3.56) which can be alleviated
by the point normalization procedure (section 3.4.5.1).

2. Incorrectly matched points (outliers) which result in gross errors if not disposed of. This
problem can be mitigated by robust estimation methods, such as RANSAC (section 3.4.6)
or LMedS [420].

Computation of the epipolar geometry can be arranged in a series of steps, such as those
depicted in Figure 3.10. The process starts with acquisition of two (or more) images. Then the
images are processed, optionally to filter out noise, change image resolution or convert from
colour to monochrome representations. In Figure 3.10 this is denoted as filtering. Then the fea-
ture detectors come into action. Their role is to select salient points which are characterized
by sufficient signal variations in their local neighbourhoods. This, in turn, ensures good dis-
criminative abilities for the correlation process. The most common features are corners which
are discussed in section 4.7.1. In our experiments a corner detector is used which is based on
the structural tensor. It is discussed in section 4.7.2. However, other features such as SIFT can
be also used for this purpose [283], at a cost of a more complicated implementation, however.

Point matching is the next stage in the block diagram in Figure 3.10. There are a variety
of methods for this purpose which commonly are known as feature matching, as discussed
in section 6.8. For the purpose of estimation of the epipolar geometry we test two methods
here. The first one requires manual matching. This has an advantage of high reliability in
avoiding large outliers. However, small inaccuracies are still possible. The second method
is a version of the log-polar matching around the corner points, discussed in section 6.3.8.
From a user it requires only setting of a size of a log-polar region around salient points which
are then correlated by the DCV covariance–variance measure (section 6.3.1). If not set explic-
itly, the size of a matching region is set to 17 × 17 pixels as a default, which was found to
be a fair compromise between accuracy and speed. Additionally, a user can select a number
of tiles into which the input image is divided for corner detection, as well as an allowable
amount of the most prominent corners in each of them. The ‘strength’ of a corner is measured
by the value of the lowest eigenvalue of a structural tensor in a neighbourhood of a point

Left
image

Right
image

Filtering

Filtering

Feature
detection

Feature
detection

Point
matching

Point
normalization

Linear or
nonlinear

computation
of the

fundamental
matrix

F
coefficients

denormalization

Figure 3.10 Architecture of the system for computation of the fundamental matrix
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(section 4.7.2). By default an image is divided into 4 × 4 tiles, each containing up to two
corners. The better the separation of the salient points, the more accurate the estimation of
the epipolar geometry. Thus the method used of independent detection of candidate points
in separate image tiles (section 4.7.2) leads to a quality improvement of the matching and
estimation tasks. The additional advantage of this method is its natural ability to select the
potential outliers. If there is an excessive difference in a local log-polar scale or rotation of
a matched region then such a match is marked as an outlier. It has been verified experimen-
tally that for stereo-pairs and video sequences the local scale and rotation of the log-polar
representations of the corresponding points should be almost the same. The technique is safe,
since even rejecting a pair of true correspondences does not influence the estimation results
due to an overdetermined system of equations (i.e. usually there are many more matched pairs
of points than the required minimum of eight). Contrarily, allowing one or more outliers can
influence the accuracy of the estimation.

The areas found around corners in the reference (left) image are then log-polar transformed.
Afterwards, the area-based correlation is applied to these transformed areas and all potential
areas from the other (right) image(s) (see section 6.3.8 for details). In practice, the search for
matches can be reduced to neighbouring tiles. This is true for small baseline stereo or local
motion matching.

The pairs of matched points are then normalized in accordance with (3.68), after which the
fundamental matrix is computed with the linear methods presented in the previous section.
The original matrix is obtained by the denormalization process, given by (3.73). Finally, the
epipoles are computed from (3.36) and (3.37). To check for potential numerical problems the
residuals (3.61) are computed at each stage of estimation of the fundamental matrix.

Figure 3.11 depicts real test images in which eight pairs of corresponding points were
manually selected. Then the epipolar geometry was computed in the system depicted in
Figure 3.10. Numerical values of the computations are provided in Table 3.1 (only four deci-
mal places are shown).

The process of automatic feature detection and matching was applied to the Pentagon
stereo-pair. It is depicted in Figure 3.12 with found corner points. Only the left image was

Figure 3.11 Real test images with manually matched points
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Table 3.1 Computation of the fundamental matrix F for the images in Figure 3.11.

Set of left points Set of right points
pl1 = [77, 87, 1]T pr1 = [81, 83, 1]T

pl2 = [75, 142, 1] T pr2 = [80, 142, 1]T

pl3 = [46, 55, 1] T pr3 = [47, 55, 1]T

pl4 = [204, 190, 1] T pr4 = [213, 191, 1]T

pl5 = [154, 194, 1] T pr5 = [162, 194, 1]T

pl6 = [182, 120, 1] T pr6 = [185, 121, 1]T

pl7 = [217, 171, 1] T pr7 = [224, 172, 1]T

pl8 = [270, 166, 1] T pr8 = [276, 169, 1]T

Left normalization matrix (3.68) Right normalization matrix (3.68)

Nl =




0.0134 0 −2.0523

0 0.0214 −3.0077

0 0 1


 Nr =




0.0131 0 −2.0816

0 0.0210 −2.9523

0 0 1




pm = [153.2, 140.5, 1] pm = [158.9, 140.6, 1]

Set of left points after normalization Set of right points after normalization
p′

l1 = [−1.0203, −1.1470, 1]T p′
r1 = [−1.0178, −1.2129, 1]T

p′
l2 = [−1.0471, 0.0294, 1]T p′

r2 = [-1.0310, 0.0236, 1]T

p′
l3 = [−1.4357, −1.8314, 1]T p′

r3 = [−1.4644, −1.7997, 1]T

p′
l4 = [0.6819, 1.0561, 1]T p′

r4 = [0.7158, 1.0505, 1]T

p′
l5 = [0.0117, 1.1416, 1]T p′

r5 = [0.0460, 1.1134, 1]T

p′
l6 = [0.3870, −0.4411, 1]T p′

r6 = [0.3480, −0.4165, 1]T

p′
l7 = [0.8561, 0.6497, 1]T p′

r7 = [0.8602, 0.6523, 1]T

p′
l8 = [1.5664, 0.5427, 1]T p′

r8 = [1.5432, 0.5894, 1]T

F computed with the linear method (3.58) F after rank two enforcement (3.63)

F =




0 −0.0001 0.0111

0.0001 0 −0.0057

−0.0111 0.0048 0.0673


 F =




0 −0.0001 0.0111

0.0001 0 −0.0057

−0.0111 0.0048 0.0673




Left epipole (3.36) Right epipole (3.37)
el = [0.4420, 0.8970, 0.0084]T

⇒ (52.7578, 107.07)
er = [−0.4125, −0.9109, −0.0088]T

⇒ (46.66, 103.041)

partitioned into 4 × 4 tiles of equal size and subjected to corner detection. A single, strongest
corner response was allowed to be found in each tile. In effect 16 salient points were detected
(Figure 3.12, left). Then each of the square 17 × 17 pixel neighbourhoods around each of the
corners in the left image was transformed into the log-polar representation, which were then
matched with the same sized log-polar versions around points in the right image. The method
is very robust and reliable; therefore cross checking was not applied in this case (section
6.6.6). The matched points are denoted by the same labels in Figure 3.12, right.

Table 3.2 contains results of the computation of the epipolar parameters for the stereo-
pair in Figure 3.12. The interesting observation is that a slight misalignment of the second
coordinate in pair 4, as well as 12, results in the epipolar geometry not following ideally the
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Figure 3.12 Pentagon test images with automatically matched points

canonical setup of the Pentagon pair. Thus F 	= FC and epipoles are out of image space but
not at infinity.

Then the RANSAC procedure (discussed in the next section), controlled by the value of
(3.61), was applied to the same set of points of Figure 3.12. As a best fit the following matrix
was found:

F =


0 0 0

0 0 0.7071

0 −0.7071 0


 ,

which is exactly what we expect, i.e. now it is a fundamental matrix of a canonical stereo
setup in the form (3.41).

The presented techniques were tested for monochrome images. The structural tensor and
as a consequence the corner detector which is based on it, can be easily extended into a
domain of multichannel images [89]. However, the tripled size of colour images does not
necessarily transform into quality of the correlation process, as was verified experimentally
[91]. Therefore the best way seems to be transformation of colour images into monochrome
versions, as already suggested.

3.4.6 Dealing with Outliers

Finding parameters of a line based on point measurements, or components of the fundamen-
tal matrix based on point correspondences, belongs to the broader group of model estimation
problems. Here we have a model, a line, a fundamental matrix, etc., the parameters of which
are unknown. The only data available are measurements of point positions. In practice no
measurement is free of errors, however. When determining point positions and/or their corre-
spondences, two main types of error can be expected.
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Table 3.2 Computation of the fundamental matrix F for the image in Figure 3.12.

Set of left points Set of right points
pl1 = [63 12 1] T pr1 = [66 12 1]T

pl2 = [82 44 1] T pr2 = [81 44 1]T

pl3 = [131 38 1] T pr3 = [130 38 1]T

pl4 = [247 10 1] T pr4 = [244 8 1]T

pl5 = [37 126 1] T pr5 = [36 126 1]T

pl6 = [113 82 1] T pr6 = [115 82 1]T

pl7 = [159 118 1] T pr7 = [156 118 1]T

pl7 = [219 109 1] T pr8 = [220 109 1]T

pl9 = [34 148 1] T pr9 = [33 148 1]T

pl10 = [75 172 1] T pr10 = [73 172 1]T

pl11 = [187 165 1] T pr11 = [188 165 1]T

pl12 = [222 161 1] T pr12 = [224 162 1]T

pl13 = [36 202 1] T pr13 = [37 202 1]T

pl14 = [127 213 1] T pr14 = [128 213 1]T

pl15 = [129 211 1] T pr15 = [130 211 1]T

pl16 = [210 206 1] T pr16 = [212 206 1]T

Left normalization matrix (3.68) Right normalization matrix

Nl =

 0.0144 0 −1.8613

0 0.0146 −1.8349
0 0 1


 Nr =




0.0144 0 −1.8609

0 0.0145 −1.8274

0 0 1




pm = [129.26, 125.68, 1] pm = [129.23, 126.03, 1]

Set of left points after normalization Set of right points after normalization
p′

l1 = [–0.9554, –1.6602, 1] T p′
r1 = [–0.9129, –1.6534, 1] T

p′
l2 = [–0.6821, –1.1944, 1] T p′

r2 = [–0.6975, –1.1893, 1] T

p′
l3 = [0.0225, –1.2818, 1] T p′

r3 = [0.0063, –1.2763, 1] T

p′
l4 = [1.6905, –1.6893, 1] T p′

r4 = [1.6436, –1.7114, 1] T

p′
l5 = [–1.3292, –0.0009, 1] T p′

r5 = [–1.3438, 0, 1] T

p′
l6 = [–0.2364, –0.6413, 1] T p′

r6 = [–0.2092, –0.6382, 1] T

p′
l7 = [0.4251, –0.1174, 1] T p′

r7 = [0.3797, –0.1160, 1] T

p′
l8 = [1.2879, –0.2483, 1] T p′

r8 = [1.2989, –0.2466, 1] T

p′
l9 = [–1.3724, 0.3193, 1] T p′

r9 = [–1.3869, 0.3191, 1] T

p′
l10 = [–0.7828, 0.6686, 1] T p′

r10 = [–0.8124, 0.6672, 1] T

p′
l11 = [0.8277, 0.5667, 1] T p′

r11 = [0.8393, 0.5656, 1] T

p′
l12 = [1.3310, 0.5085, 1] T p′

r12 = [1.3564, 0.5221, 1] T

p′
l13 = [–1.3436, 1.1053, 1] T p′

r13 = [–1.3295, 1.1023, 1] T

p′
l14 = [–0.0351, 1.2654, 1] T p′

r14 = [–0.0224, 1.2618, 1] T

p′
l15 = [–0.0063, 1.2363, 1] T p′

r15 = [0.0063, 1.2328, 1] T

p′
l16 = [1.1585, 1.1635, 1] T p′

r16 = [1.1840, 1.1603, 1] T

F computed with the linear method (3.58) F after rank two enforcement (3.63)

F =

 0 0 −0.0015

0 0 0.0114
0.0016 −0.0114 −0.0103


 F =




0 0 −0.0015

0 0 0.0114

0.0016 −0.0117 −0.0103




Left epipole (3.36) Right epipole
el = [–0.9909, –0.1350, –0.00078]T

⇒ (1284.86, 174.9)
er = [–0.9912, –0.1326, –0.0007]T

⇒ (1336.29, 178.7)
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x

y

y= a1x+ b1

pi
di

Figure 3.13 Fitting a line to points. The task is to estimate parameters a1 and b1 for which the line
y = a1x + b1 is the closest to all measured points, computed as a minimal cumulative distance �id2

i

1. The systematic error associated with the imprecise measurement of point positions. This
follows the Gaussian distribution.

2. The large errors associated with erroneous matches. These mismatched points are called
outliers and usually do not follow the Gaussian distribution.

Especially errors of the second type are severe since even a single outlier can greatly divert
computed estimates from the real parameters. An estimate of a model from data containing
some outliers can be obtained by the smoothing technique which finds an initial estimate from
all the points and then tries to eliminate the invalid ones. However, in practice this method does
not lead to precise estimates, due to a small group of points which differ significantly from
the model. Therefore it is essential to find a method of sieving ‘good’ points, i.e. the inliers,
from the erroneous ones, i.e. from the outliers.

A very successful method called random sample consensus (RANSAC) was proposed by
Fischler and Bolles [126]. Their idea was simple: randomly choose a number of samples from
the set of all measurements, try to fit a model to them, and check how many other points are
in consensus with this model estimate. The process is repeated and the best fit, i.e. an estimate
supported by the maximal number of measurements, is left as a solution. All other points are
treated as outliers.

The best way to illustrate the RANSAC method is to consider a problem of a line fit to
some points on a plane. This is depicted in Figure 3.13. The problem of a line estimate is to
find such parameters a1 and b1 of a line model given by y = a1x + b1, for which a cumulative
distance to the data is minimized. This can be written as7

min
∑

i

d2
i . (3.74)

7It is easy to show that di = |a1xi − yi + b1| /
√

a2
1 + 1.
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outliers

y

pi

x

y = a2x+b2

Figure 3.14 Fitting a line to points in the presence of outliers. New line estimate y = a2x + b2 is biased
towards the group of outliers if not removed from the dataset

The situation is changed if the dataset contains some outliers, i.e. points which are erroneous
for some reason. This is depicted in Figure 3.14.

In most real datasets the problem is that we can expect some outliers; however, we do not
know their values (coordinates) nor their number. Thus, Figure 3.14 shows a rather convenient
situation in which outliers are marked a priori. The true power of RANSAC is that it is able
to partition data into inliers and outliers when no other information on data is given.

Figures 3.15 and 3.16 depict two different attempts of estimation of line parameters with
the RANSAC method. In each step two points are randomly selected and used to place a
hypothesis on the line parameters. These are a3, b3 in Figure 3.15 and a4, b4 in Figure 3.16.

Then, for each hypothesis about a line, the number of points which are in consensus with
that line is counted. Separation of points is achieved simply by placing a constant threshold
τ on a maximal allowable distance di of a point from the estimated line (grey regions in

y=a3x+b3

outliers

outliers

pj

pi

y

x

τ
τ

Figure 3.15 Fitting a line to points: a step of the RANSAC algorithm. Randomly selected pair of
points xi and xj serves an initial estimate y = a3x + b3. Distances of all other points to this estimate are
checked and only those within a predefined threshold (grey area) are considered as inliers
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y=a4x+b4

outliers

outliers

pl

pk

y

x

τ

τ

Figure 3.16 Fitting a line to points by the RANSAC algorithm. Another randomly selected pair of
points xk and xl serves another estimate y = a4x + b4. New region of inliers is denoted in grey

Figures 3.15 and 3.16). In the first example (Figure 3.15) there are 11 inliers and 6 outliers for
a given value of τ .

If another pair of points pk and pl is randomly selected then a new estimate a4, b4 is com-
puted (Figure 3.16). Now, the number of inliers is 6 and the number of outliers 11. Thus, the
first estimate in Figure 3.15 provides a more ‘consistent’ estimate.

This process is repeated a number of times until the most consistent estimate is found, or
until a preset number of steps, or until a sufficiently large set of inliers is found. The flow
chart of the RANSAC method is presented in Algorithm 3.1.

As usual, the immediate question is how to measure the ‘consensus’ of the points. This is
achieved by choosing a suitable threshold value τ . Then a point is classified as an inlier if its
distance is less from τ , and an outlier otherwise. A procedure for finding τ as a function of a
probability distribution of inliers from the model is discussed in [180]. If we assume that the
point measurements follow a Gaussian distribution with zero mean and a variance σ , then τ

can be related to σ as well as to the co-dimension of the estimated model, which is 1 for a line
or fundamental matrix, 2 for homography, 3 for trifocal tensor, and so on. For instance, in the
case of estimates of a line or a fundamental matrix, Hartley and Zisserman provide estimation
of τ = 1.96σ which was computed with an assumption of 95% probability that a point drawn
from a dataset is an inlier [180].

The other parameters to set are the number of samples drawn at each step of the algorithm,
as well as the stopping criteria, i.e. maximal number of steps and/or count of the acceptable
consensus set. As a rule of thumb the number of samples should be rather small: i.e. two
points for a line instead of three or four, for instance. For the stopping criteria the maximal
number of iterations can be set empirically as a tradeoff between accuracy of an estimate and
computation time. Additionally, a priori knowledge of the proportion of inliers to outliers
in data can be of help. Settings of these parameters and further properties of the RANSAC
method are presented in more details in [126, 180].

The RANSAC method has been shown to be very robust in many practical applications and
therefore it should be considered in all cases when determining parameters of a model from
the empirical data for which a number of outliers is also expected.
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Initialize parameters :
Consensus threshold ;

Number of points K;
Min. number of inliers ;

(Max. number of iterations i=0;)

Randomly select K points from the
data D.

Compute parameters of a model M
from the selected K points.

Count number of points
in D which are in

consensus with the
estimated model M

e.g. using threshold

Stop
criteria?

Increase number of
iterations :

++i

No

Yes

START

STOP

(optional )

Algorithm 3.1 RANSAC algorithm

3.4.7 Catadioptric Stereo Systems

By using optical devices8 that bend and reflect the direction of light rays it is possible to
construct cameras with much broader fields of view and also stereo systems which employ
only single cameras [148, 149, 151, 328, 408]. Figure 3.17 depicts such a stereo system that
utilizes two flat mirrors and a single camera.

8Called also catadioptric elements.
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P f

f

Zr

f
Zl

vl

vr
ml

mr

pl pr

o

Figure 3.17 Catadioptric stereo system with two mirrors and a single camera

A 3D point P in Figure 3.17 is projected on to the camera plane as two image points pl and
pr. This is possible due to reflection of the light rays performed by two flat mirrors Zl and Zr.
The points vl and vr are centres of the virtual cameras while the points ml and mr are virtual
images of the real point P.

Catadioptric systems exhibit some differences in respect to classic stereo systems.

� Identical system parameters. In a catadioptric system there is only one analogue or digital
channel transferring the acquired image. Therefore automatically such parameters as band-
width characteristics, distortions, parameters of the CCD or CMOS photodetectors, etc., are
identical (section 3.3.5).

� Calibration. There is only one set of camera parameters to be found. However, when using
nonlinear optical elements, such as parabolic or hyperbolic mirrors, we have to use special
computation methods. Also the epipolar geometry of such catadioptric systems is different
[150, 408].

� Broader field of view.
� Usually simpler and cheaper construction. This is especially valuable for systems working

with multiple (two or more) images.

A practical realization of a catadioptric stereo system working in real time was presented
by Gluckmann et al. [148, 149, 151]. Their systems perform image acquisition followed by a
matching stage. Due to the features and parameters of the systems, matching was possible with
a simple SAD measure (section 6.3.1) since the two acquisition channels have the same char-
acteristics. In effect they obtained high matching quality and fast computation. Gluckmann
et al. reported about 20 frames per second with resolution 320 × 240. The hardware they used
consisted of a Pentium R© II 300 MHz, Sony XC-77 single camera with a 12.5 mm Computar R©
lens, and 5-inch Melles Griot R© mirrors.

3.4.8 Image Rectification

Stereo image rectification is a process of image transformations in such a way that the cor-
responding epipolar lines in all images become collinear with each other and with the image
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scanning lines [17, 122, 139, 340, 430]. In rectified images all optical axes are parallel as well.
The stereo setups that comply with these conditions are called standard or canonical stereo set-
ups. A very important feature of the stereo setups is an inherent constraint of the search space
to one dimension only (the so-called epipolar constraint; see also section 3.5), but in recti-
fied systems we know beforehand the positions of the epipolar lines which is the direction
of the scanning lines. This is a very desirable feature from the computational point of view
[142, 369].

The other interesting feature inherent to the rectified stereo system is a shift of the epipoles
to infinity. Thus, rectification of images can be thought of as a process of changing positions
of epipoles to infinity. The rectification process is limited to the search for the transformation
of the planes �l0 and �r0 to the planes �l1 and �r1, respectively (Figure 3.18). The transfor-
mation sought can be described as a composition of the following transformations [430].

1. Rotation of the left and right camera planes in such a way that the epipoles go to infin-
ity (and thus the epipolar lines become parallel). This rotation is described by a rotation
matrix Q.

2. Rotation of the right camera according to the transformation described by a matrix R from
(3.16).

Additionally, without lost of generality, we assume the following.

1. The focal length f of the two cameras is the same.
2. The origin of the local camera coordinate system is the camera principal point (i.e. the

cross point of the optical axis with the image plane).

The matrix Q can be found by considering three mutually orthogonal unit vectors: q1, q2 and
q3. The vector q1 is collinear with the translation vector T between the focus points of the two
cameras (Figure 3.7) and is given as

q1 = T
‖T‖ . (3.75)

The vector q2 is orthogonal to the vector q1. Because

[−T2, T1, 0] · [T1, T2, T3]T = 0 (3.76)

then q2 takes the form

q2 = [−T2, T1, 0]T√
T 2

2 + T 2
1

. (3.77)

The third vector q3 has to be simultaneously orthogonal to the vectors q1 and q2. Therefore
it can be set to the vector product

q3 = q1 × q2. (3.78)
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Figure 3.18 Stereo image rectification. The epipolar lines become collinear and parallel to the image
scanning lines

The vectors q1, q2 and q3 determine the following rotation matrix Q:

Q =


qT

1

qT
2

qT
3




3×3

. (3.79)

In practice, to obtain integer values of coordinates in the new (i.e. rectified) camera setup, the
rectification process should be performed backwards, i.e. starting from the new coordinates
and applying the inverse transformation Q−1. This way, the new intensity values in the ‘new’
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system can be determined, for example, by the bilinear interpolation of the original values
from the ‘old’ setup (see Chapter 12).

The stereo rectification problem can be approached in another way, taking as a starting
point computation of the fundamental matrix (section 3.4.1.1). This can be done with one
of the methods discussed in section 3.4.5. As alluded to previously, image rectification is a
process which takes epipoles of an original stereo setup into infinity; thus the system be-
comes a ‘canonical’ one, i.e. its fundamental matrix F becomes FC. However, let us start
from the basic epipolar equation (3.29) with F decomposed into singular values (3.38),
as follows:

pT
r

(
SVDT

)
pl = 0,

which can be written

pT
r


[ er s1 s2

]0 0 0

0 v1 0

0 0 v2




 el

d1

d2




pl = 0,

pT
r


[ er s1 s2

]0 0 0

0 1 0

0 0 v




 el

d1

d2




pl = 0, (3.80)

where we put v = v2/v1. The above can be written in an equivalent form [119]

pT
r



[
er s1

√
vs2

]︸ ︷︷ ︸
Hr


0 0 0

0 0 −1

0 1 0




︸ ︷︷ ︸
FC


 el√

vd2

−d1




︸ ︷︷ ︸
Hl


pl = 0, (3.81)

where we notice the canonical fundamental matrix FC as well as two matrices Hr and Hl, each
of dimensions 3 × 3, which denote the two homographies (section 9.5.3). From the above we
obtain finally

(
HT

r pr
)T

FC (Hlpl) = 0. (3.82)

Thus, when points pr and pl from the original stereo images are transformed by the homogra-
phies Hr and Hl, then the obtained system is described by the canonical fundamental matrix
and its epipoles are at infinity.

In practice, however, rectification can lead to excessive and unwanted image distortions.
Therefore care must be taken to alleviate this problem. For instance one can try to de-
sign a transformation that acts as a rigid transformation in the neighbourhood of a certain
(e.g. central) image point [179] or find such transformation that minimizes the effect of
resampling [152].
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A Matlab procedure for a linear rectification of a general unconstrained stereo setup is pro-
vided in the paper by Fusiello et al. [143]. It is assumed that the system is calibrated, that is,
the intrinsic parameters of the cameras are known, as well as parameters of the mutual posi-
tions of the cameras (section 3.6.4). Thus, the procedure takes the two perspective projection
matrices M (3.7) of the cameras and outputs a pair of rectifying projection matrices.

3.4.9 Depth Resolution in Stereo Setups

Figure 3.19 explains the phenomenon of diminishing accuracy of depth measurement with
increasing distance from the camera planes. This is a geometrical limitation since it depends
exclusively on geometrical parameters of a stereo system.

The dependence of the depth accuracy versus camera resolution and distance to the ob-
served scene can be found analysing Figure 3.20. Observing the similarity of triangle �ABC
to �ADF, as well as �AEF to �AHG, we obtain the following relations:

DF

AF
= BC

AC

E F

AF
= G H

AG
.

Let us now introduce new shorter symbols:

AF = b, BC = G H = f, E F = Z , DE = R.

We obtain

r = AG − AC, r = f b

Z
− b f

Z + R
.

Thus, after a simple change

Rfb = r Z (Z + R).

r

f

b

Z R

Figure 3.19 Phenomenon of a limited accuracy of depth measurement with increasing distance from
the camera
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Figure 3.20 Relation of depth measurement accuracy in respect to camera resolution

Finally we obtain the following formula:

R = rZ2

fb − rZ
. (3.83)

Assuming now that fb/Z is much larger than the pixel resolution r, we obtain the following
approximation:9

R ≈ r Z2

f b
. (3.84)

Analysing (3.83) and (3.84), the following conclusions can be drawn. Equation (3.83) is
true under the following condition:

f b 	= r Z .

Gradually as Z approaches the limit value

Z = b f

r
,

the depth measurement resolution value R approaches infinity. For most image acquisition
systems, the values of r, b and f are constant, at least for a single acquisition. This means that
there is such a value Z for which it is not possible to measure the depth of the observed scene
due to geometrical limitations of the stereo camera setup.

9This assumption is justified for relatively small values of Z (Figure 3.19). The focal length f , as well as base distance
b can also change but here they are assumed to be constant at least for a single exposition.
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Table 3.3 Exemplary values of the depth resolution R [m] for a stereo setup with constant parameters
(horizontal pixel resolution Rh = 1024 pixels, view angle α = 60◦, base line b = 5 and 30 cm)

Z[m]

b[m] 0.1 0.5 1.0 5 10

0.05 0.000226 0.0057 0.023 0.635 2.91
0.3 0.000038 0.00094 0.0038 0.096 0.39

For reasonably small ranges of Z and fixed values of r, b and f , the approximate relation
(3.84) exhibits a quadratic relation R of Z. This means that if it is necessary to measure ab-
solute position of real objects with an a priori assumed accuracy, then the parameters of the
stereo setup must be chosen in such a way that R would be at least an order of magnitude less
than the assumed measurement accuracy.

From the following diagram

r

f

2
α

1
2 h

rR

we easily notice that

f

r
= Rh

2 tan(α/2)
,

where Rh is the horizontal resolution of the camera (in pixels) and α the horizontal view angle
of the camera. Table 3.3 presents depth resolution values of R for an exemplary stereo setup.
The values were computed based on (3.83) converted to the following formula:

R = Z2

[Rhb/2 tan(α/2)] − Z
. (3.85)

Examining Table 3.3 it becomes evident that for a distance Z of only 10 m and distance
between cameras of 5 cm, the depth measurement resolution is as much as 3 m! Moving the
cameras apart, for example to 30 cm, allows for an improvement of R to be in this example
about 40 cm.

3.4.10 Stereo Images and Reference Data

Table 3.4 contains pairs of stereo images used for testing of stereo matching algorithms. All
of them are artificial images supplied with the ground-truth data. Apart from the true depth
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Table 3.4 Artificial test stereo-pairs with ground-truth information. One can observe depth by placing
a blank sheet between the two images and observing the left image with the left and the right image
with the right eye

Name Left image Right image

Random dots
stereogram (AGH
University)

Corridor (courtesy
Bonn University
[206])

Tsukuba (courtesy
Tsukuba
University)

Venus (courtesy
Middlebury [370])
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Table 3.4 (Continued )

Name Left image Right image

Sawtooth
(courtesy
Middlebury
[371])

Map (courtesy
Middlebury
[371])

Teddy (courtesy
Middlebury
[371])

Cones (courtesy
Middlebury
[371])
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(a)

(d) (e) (f)

(b) (c)

Figure 3.21 Ground-truth data of (a) ‘Random dots’, (b) ‘Tsukuba’, (c) ‘Corridor’, (d) ‘Sawtooth’,
(e) ‘Venus’ and (f) ‘Map’. (Images (b–f) courtesy of Middlebury University [209])

values, information on half-occluding areas is also provided. Because of such a common plat-
form it is possible to compare qualitatively results of many different stereo matching meth-
ods.10 For a given method, the closer its output is to the ground-truth data, the better the
quality of the method.

The reader can easily experience the stereo effect observing the presented stereo-pairs. This
can be done by ensuring that the left eye is watching exclusively the left image of the stereo-
pair, and the right eye the right image, for example by placing a separating sheet between
the two images. For beginners it can take some time to see the results of this experiment, i.e.
the depth of a scene due to stereovision. Less than 2% of the human population has some
problems with perception of depth [201].

In the case of the images presented in Table 3.4 the ground-truth maps are also available.
They are presented in Figure 3.21. However, most real images do not have ground-truth data
available. Some examples of such stereo-pairs are presented in Table 3.5.

Lack of ground-truth data poses a problem when measuring quality of stereo algorithms.
Discussion of some evaluation methods, other than comparing with ground-truth data, is con-
tained in section 6.4.3.

10The image ‘Tsukuba’ courtesy of Prof. Yuichi Ohta from Tskukuba University, Japan. The image ‘Corridor’
belongs to Bonn University. The images ‘Venus’, ‘Sawtooth’ and ‘Map’ are from the Middlebury Stereo Vision
Page [209], courtesy of Prof. Richard Szeliski. The Middlebury web page provides invaluable source of informa-
tion on all aspect of stereo vision algorithms, their comparison, test data as well as reference papers, such as [194,
370–372].
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Table 3.5 Examples of real stereo-pairs. No ground-truth data available. (‘Trees’ courtesy of SRI,
‘Pentagon’ courtesy of CMU/VASC [212])

Trees (courtesy
SRI)

Pentagon
(courtesy CIL
CMU [212])

Park (AGH
University)

Street (AGH
University)
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3.5 Stereo Matching Constraints

Table 3.6 lists the most common assumptions, constraints and simplifications for the point
matching process in stereo images [47, 68, 122, 246, 413, 454]. These very important re-
lations can greatly facilitate the matching task or help in clarification of point matches. For
instance, the already discussed epipolar constraint limits the search space from the general 2D
to 1D alongside the epipolar lines (section 3.4.1). However, is was already mentioned that the
position of these is not given beforehand, except for the canonical stereo setup. The epipolar
lines can be determined from the fundamental matrix which, in turn, can be computed by one
of the techniques presented in section 3.4.5.

Other frequently used assumptions are the uniqueness and the ordering constraints. They
can be applied if some photometric and geometric characteristics of objects are fulfilled. These
usually hold for a diverse group of real images; therefore the uniqueness and ordering con-
straints can greatly simplify the matching algorithms.

The third group of constraints concerns assumptions on disparity values. These are disparity
continuity, absolute disparity value and disparity gradient limits.

Table 3.6 Stereo matching constraints and assumptions

Name of
constraint Description

Epipolar
constraint

A plane of a 3D point and its image points in the two camera planes contains the
base line, i.e. the line joining two camera centres and the two epipoles. The plane
created this way is called the epipolar plane. The crossings of the epipolar plane
and image planes of the cameras give epipolar lines (section 3.4.1).

As a consequence the corresponding image points lie always on the
corresponding epipolar lines. If the latter are known a priori then the matching
search reduces to a 1D search, i.e. along the epipolar lines. In the canonical stereo
system the epipolar lines are collinear with image scanlines (section 3.4.2).

Uniqueness
constraint

A given pair of the matched points, one lying on the left and second on the right
camera planes, respectively, corresponds at most to the one 3D point.

This constraint is fulfilled for opaque objects. This assumption can greatly
simplify a matching process. For transparent objects it is possible that many
different 3D points have the same image on one or more camera planes.

In other words this constraint means that a 3D point, which belongs to an
opaque object in a scene, is allowed to have only zero or one image point on each
camera plane. The case with zero image points happens if for some reason the 3D
point is not visible for a camera, e.g. due to occlusions.

Photometric
compatibility
constraint

Two regions Ul1 and Ul2, belonging to the left image, and regions Ur1 and Ur2,
belonging to the right image, are corresponding if the following conditions hold:

∀
i
∃
τ

∣∣∣∣∣∣
∑

(x,y)∈Uli

Ili (x, y) −
∑

(x,y)∈Uri

Iri (x, y)

∣∣∣∣∣∣ < τ (3.86)
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Table 3.6 (Continued )

Name of
constraint Description

and

∃
τ

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

(x,y)∈Ul1

Il1(x, y) −
∑

(x,y)∈Ul2

Il2(x, y)

∣∣∣∣∣∣ −
∣∣∣∣∣∣
∑

(x,y)∈Ur1

Ir1(x, y) −
∑

(x,y)∈Ur2

Ir2(x, y)

∣∣∣∣∣∣
∣∣∣∣∣∣ < τ

(3.87)

where Iki(x,y) is an intensity value of the k-th image in the i-th region, τ is a
threshold value. It is not assumed that the regions of consideration are compact or
not.

Geometric
similarity
constraint

The geometric constraint is usually defined in respect to the similarity of angles as
well as edge segments:

1. A segment Sl with spatial orientation W l, belonging to the left image,
corresponds to a segment Sr with orientation W r in the right image, if the
following holds:

|Wl − Wr| < τ, (3.88)

where τ is a threshold value.
2. A segment Sl of length Ll, belonging to the left image, corresponds with a

segment Sr of length Lr in the right image, if

|L l − L r| < τ (3.89)

where τ is a threshold value.

Ordering
constraint (local
gradient
constraint)

The ordering constraint concerns the order of the corresponding image points.
That is, the corresponding points from the left and right images have the same
order.

This constraint is fulfilled only if the specific conditions are met for the 3D
objects of that scene, for instance if all visible objects are located at about the same
distance from the cameras or a continuous surface is observed.

It was shown by Faugeras that by eliminating a forbidden zone from
considerations the ordering constraint holds for all other points of that scene [122].
The forbidden zone contains cones given by lines connecting a certain 3D point M
with its image points ml, mr on the camera planes. However, determination of the
forbidden zone is not a trivial task since it requires a priori knowledge of the scene
geometry.

(continued)
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Table 3.6 Stereo matching constraints and assumptions (Continued )

OrOl

nl

ml mr

nr

M

N

Forbidden 
zone

Figure 3.22 Exemplary scene for which the ordering constraint is not fulfilled

Figure 3.22 presents two points M and N, each belonging to different 3D objects,
for which the ordering constraint does not hold. It is evident that for the left camera
the order of image points is ml, nl, whereas for the right camera it is nr, mr.

The ordering constraint can be expressed also as a constraint on the local
gradient of disparity. Assuming that for a certain point pl(x, y) there is a
corresponding point pr(x + D(x), y), then after advancing the x coordinate by a
positive and nonzero value δ we obtain the new correspondences: p’l(x + δ, y) and
p’r(x + δ + D(x + δ), y).

Assuming further that the point ordering constraint is fulfilled – the point order is
pl, p’l then also it is pr, p’r – from the second relation we obtain that the following
holds:

(x + δ) + D(x + δ) > x + d(x). (3.90)

This, after dividing by δ and taking the limit δ → 0 leads to

∂ D(x)

∂x
> −1 (3.91)

where D(x) is a disparity value in the standard stereo setup (section 3.4.2). The last
equation places a constraint on a horizontal gradient of disparity if point ordering is
to be fulfilled.

Disparity
continuity
constraint

Assume that pl1 = [xl1, yl1]T and pr1 = [xr1, yr1]T is a pair of corresponding points,
from the left and right images respectively. Let us assume that a point pl2 = [xl2,
yl2]T, from a certain local neighbourhood of the point pl1, corresponds to a point
pr2 = [xr2, yr2]T in the right image. Then the disparity continuity constraint states
that the following inequality should be preserved:

∃
τ
|D (pl1, pr1) − D (pl2, pr2)| < τ (3.92)

where D(pi, pj) is disparity between points pi and pj and τ is a certain threshold
value.

This constraint should be applied with great care since it can break on image
boundaries.
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Table 3.6 (Continued )

Name of
constraint Description

Figural
continuity
constraint

This is a version of the disparity continuity constraint but applied only to the edge
points. This formulated figural continuity constraint assumes that edges found in images
correspond to the continuous boundaries of real objects.

Feature com-
patibility
constraint

The feature compatibility constraint states that the two points correspond to each
other if certain image features around these points arise from the same source in the two
images.

This constraint is frequently used for edge points, i.e. an edge point in the one image
can correspond only to an edge point in the second image. In the case of the feature
compatibility constraint applied to the edge points, information on edges is augmented
by a type of signal change (i.e. a sign of the local image gradient) [162, 172, 247].

Figure 3.23 presents an example of the feature compatibility constraint applied to
ensure compatibility of curves in the two images.

A B C 

Left image Right image

Figure 3.23 Example of the figural compatibility constraint for proper contour matching

Around the points A and B the contours are very similar. This cannot be observed for
the points A and C. Therefore the first pair will be preferred in this case.

Disparity
limit

The disparity limit constraint imposes a global limit on the allowable disparity between
images. This can be written as follows:

∀
i
∃
τ
|D (pli, pri)| < τ (3.93)

where D(pi, pj) is disparity between points pi and pj and τ is a threshold value.
This constraint is always present in the matching algorithms; however, precise

determination of the threshold value is usually not possible.

Disparity
gradient
limit

The disparity gradient concept for the two pairs of point correspondences is given by the
following formula [122,162,302]:

� (A, B) = D(A) − D(B)

G(A, B)
(3.94)

(continued)
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Table 3.6 Stereo matching constraints and assumptions (Continued )

where A = (plA, prA) and B = (plB, prB) represent two pairs of corresponding
points, D(A) is a disparity value between points from the pair A, G(A, B) is a
cyclopean distance between pairs of points A and B. The latter is defined as [246]

G(A, B) =
∣∣∣∣plA + prA

2
,

plB + prB

2

∣∣∣∣ . (3.95)

G(A, B) is a length of the distance between middle points of the segments plA and
prA as well as plB and prB respectively. This concept is illustrated in Figure 3.24.

Left image Right image

plA
G

Cyclopean 
distance prA

plB prB

Figure 3.24 Cyclopean distance G

With the help of the aforementioned definitions it is possible to formulate the
disparity gradient constraint as follows:

∃
τ
|�(A, B)| < τ (3.96)

where �(A, B) denotes disparity gradient between two pairs A and B of matched
points and τ is a threshold value (in practice it is in the range 0.5 to 2).

Psychophysical experiments verified that the HVS is limited more by the
disparity gradient than by the absolute value of disparity [164, 201, 302, 442].

3.6 Calibration of Cameras

Camera calibration is a process of finding the intrinsic (section 3.3.2.2) and extrinsic (section
3.3.2.1) parameters of a camera or a subset of these. Because camera calibration usually
precedes depth reconstruction this subject has attracted great attention among researchers
resulting in ample literature, for instance [120, 122, 166, 186, 257, 282, 286, 287, 353, 364,
426, 427, 457].

Special interest has been devoted to the development of fast calibration methods for simple
cameras. For instance, one method proposed by Zhang allows camera calibration using a very
simple pattern which can be obtained from a laser printer [459].

The influence of the measurement accuracy of the calibration patterns on the accuracy of
the computed intrinsic and extrinsic camera parameters was analysed by Lavest et al. [268].
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The theory and implementation of the iterative algorithm to the precise camera calibration
by means of the control circular patterns was presented by Heikkilä [186]. An evaluation
of the three common calibration methods of Tsai, Heikkilä and Zhang can be found in the
paper by Sun and Cooperstock [407]. It provides practical details as well as serving as an
introduction to the field of camera calibration with a brief review of the recent literature on
the subject. Also the book by Gruen and Huang provides an overview of the methods for
camera calibration [166].

The calibration methods for cameras with long focal length (i.e. telelenses), as well as the
methods of creation of the calibration patterns for such optical systems, are discussed by Li
and Lavest [275]. Calibration of such cameras is more difficult mostly due to the change of
the system parameters in time as well as because the simple pin-hole camera model cannot
be applied in this case. Finally, calibration of cameras with wide view angle is analysed by
Swaminathan and Nayar [409].

3.6.1 Standard Calibration Methods

The classic calibration methods are based on specially prepared calibration patterns, i.e. ob-
jects with known dimensions and position in a certain coordinate system. Then features, such
as corners, lines, etc., are extracted from an image of the calibration pattern. Usually the
calibration objects are chosen to have prominent features, which are easy for unambiguous
localization and measurement of their positions. A simple chessboard can serve this purpose
(Figure 3.25).

There is a large number of methods of computation of the internal and external camera pa-
rameters. Most of them rely on the already presented formulas (3.3)–(3.13). One such classic
method was proposed by Tsai [122, 162, 246, 430]. This method uses (3.7) directly to find
out the matrix M, denoting the projective transformation performed by a camera. However,

Figure 3.25 Chessboard as a camera calibration pattern
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the elements of M contain linear combinations of the intrinsic Mi and extrinsic Me param-
eters, according to the formula (3.8). Therefore it is necessary to partition matrix M into
a product MiMe, which can be done analytically as discussed, for instance, in [119, 180].
Considering (3.7) and (3.11) we obtain the conditions joining coordinates of the image points
with the coordinates of the observed real point:

xu = xuh

zuh
= p1

p3
= m11 X1 + m12 X2 + m13 X3 + m14

m31 X1 + m32 X2 + m33 X3 + m34

yu = yuh

zuh
= p2

p3
= m21 X1 + m22 X2 + m23 X3 + m24

m31 X1 + m32 X2 + m33 X3 + m34

(3.97)

where (recall (3.5) and (3.11)) xu and yu are coordinates of image points expressed in the local
coordinate system associated with the camera plane, whereas Pwh = [X1, X2, X3, 1]T = [Pw,
1]T = [Xw, Yw, Zw,1]T, so in effect X1, X2, X3 are ‘world’ coordinates of an observed 3D
point.

Because the matrix M is given up to a certain scaling factor (3.13), in the general case
there are 11 free parameters that have to be determined. They are connected by the formula
(3.97). Taking at least six points, the coordinates of which are already known in the external
as well as camera coordinate system, we are able to solve (3.97) in respect to the unknown mij.
In practice, using a certain calibration pattern, such as the one presented in Figure 3.25, we
obtain more well matched image points. In such a case we have the following set of equations:

Qm = 0, (3.98)

where the matrix Q is composed as follows:

Q =




X11 X12 X13 1 0 0 0 0 −xu1 X11 −xu1 X12 −xu1 X13 −xu1

0 0 0 0 X11 X12 X13 1 −yu1 X11 −yu1 X12 −yu1 X13 −yu1

. . . . . . . . . . . .

0 0 0 0 X N1 X N2 X N3 1 −yuN X N1 −yuN X N2 −yuN X N3 −yuN


 ,

(3.99)

where the coordinates of the k point are denoted as Pk = [Xk1, Xk2, Xk3]T, puk = [xuk, yuk]T.
The vector m is built as a linear composition of elements of the matrix M:

m = [m11, . . . , m14, m21, . . . , m24, m31, . . . , m34]T. (3.100)

Solution of (3.98) can be done by means of the singular value decomposition Q = SVDT [154,
352]. It is simply a column of D which corresponds to an entry of V with a smallest value.
SVD has been discussed already for computation of the fundamental matrix (section 3.4.5)
and is discussed also in section 4.2.2. However, let us stress that also in this case a proper data
normalization is very important to avoid excessive numerical errors. Similarly we have to be
sure that there are no outliers in the calibration data.
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3.6.2 Photometric Calibration

Most of the image processing methods assume the existence of a photosensor with a linear
characteristic of the output signal in respect to the light intensity gathered by the sensor [272].
The following two phenomena concerning real image acquisition systems require proper
calibration.

1. The gamma correction. Real cameras, although endowed with fairly linear CCD devices,
usually contain the so-called gamma correction circuit. It is employed for a proper signal
representation for an output display (such as a monitor screen). In such cameras, to obtain
an undistorted image, it is necessary to perform an inverse process to the gamma correction.
However, this is possible if the parameters of this correction are known beforehand.

2. Polarization in zero light conditions. The CCD device generates electrons even if the whole
device is situated in a totally dark chamber. This is a thermal generation that causes nonzero
output even without any incident light. The level of this signal is called the black initial
level. Although in most applications this does not cause nonlinearities, it should be taken
into consideration when designing a method of image processing.

In stereovision systems an additional photometric calibration is required which consists of
equalization of the average amplification level of the two cameras. Such a calibration should
eliminate any differences of the intensities in the output stereo images. Otherwise an increase
of so-called false matches can be expected, especially if simple matching methods are used
(section 6.6).

3.6.3 Self-calibration

Much research has been devoted to answer the question whether it is possible to calibrate a
camera solely from image sequences taken by the camera. Solution to this problem, known
as camera self-calibration, allows determination of the camera’s intrinsic parameters (section
3.3.2.2). Although this is not a full camera calibration, it allows scene reconstruction up to a
certain scaling factor (section 7.2.2) which is sufficient in many computer vision applications.
Thus, camera self-calibration methods allow computation of the intrinsic camera parameters
based on the matches among series of images of the same scene, taken by a single camera,
but with changed view parameters, such as camera position (translation, rotation, or both), its
focal length or a combination of these [10, 120, 124, 180, 190, 282, 286, 314, 353, 426]. The
main advantage of this approach is that a special calibration pattern is not used (section 3.6.1).
However, not all methods and camera motions used to take a given sequence can be used for
self-calibration [180].

Knowledge of images of the absolute conics as well as the dual absolute conics (sec-
tions 9.4.2.1 and 9.4.2.2), allows determination of the matrix with intrinsic camera param-
eters with the help of so-called Kruppa equations [180, 380]. Hartley showed a direct relation
of the Kruppa equations and elements of the fundamental matrix F (section 3.4.1.1) [176].
He showed also that knowledge of at least three images, which allows determination of the
three fundamental matrices joining mutual pairs of images, is sufficient to find a solution to
the Kruppa equations, and finally to determine matrix Mi of the intrinsic camera parameters
(section 3.3.2.2).
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Let us assume that the fundamental matrix F can be factored as

F = U


 r 0 0

0 s 0

0 0 1




0 −1 0

1 0 0

0 0 0




 0 1 0

−1 0 0

0 0 1


VT. (3.101)

Then the Kruppa equations can be expressed by the equations [176]

vT
2 Cv2

r2uT
1 Cu1

= −vT
2 Cv1

rsuT
1 Cu2

= vT
1 Cv1

s2uT
2 Cu2

, (3.102)

where r and s are elements of the F factorization (3.101), ui stands for an i-th column of the
matrix U, vi is an i-th column of V whereas the matrix C depends exclusively on the matrix
Mi, i.e. the matrix of intrinsic camera parameters. The latter relation is given as

C = MiMT
i . (3.103)

As was shown by Hartley, to determine the matrix C from (3.102) the three fundamental
matrices (each joining a different pair of images) have to be computed. This can be done with
one of the methods already discussed in section 3.4.5. What is left is a final factorization of the
matrix C in accordance with (3.103). This can be done with help of the methods of numerical
linear algebra [154, 352].

As alluded to previously the self-calibration methods have their limitations related to the
camera positions. Triggs [426], as well as Sturm [402], showed the existence of degenerate
camera positions such that Kruppa equations lead to false solutions. One such position is when
the optical centres of consecutive camera positions move on the sphere while their optical exes
go through a centre of this sphere [402].

The work by Lourakis and Deriche [282] presents an alternative approach to using the
Kruppa equations for determination of the intrinsic parameters. There are also other methods
[426] for camera self-calibration that do not have internal limitations associated with (3.102).
However, they are nonlinear and computationally more complicated [180].

The last but not least issue of camera self-calibration is computation of the fundamental
matrices of consecutive views. This process involves matching of consecutive pairs of images,
which is a very common step for the majority of methods studied as so far. Therefore this
problem is addressed separately in Chapter 6.

3.6.4 Calibration of the Stereo Setup

The problem of a stereo setup calibration consists of determination of the parameters of
the two cameras and the two matrices from (3.16). The former can be computed based
on the already presented methods in the previous section. The latter concerns computations
of the rotation matrix R, describing a relative rotation between coordinate systems of the two
cameras, and the vector T that describes translation of the two camera centres.

Let us assume now that the extrinsic parameters are already known for the two cameras of
the stereo system. These are given by four matrices: Rl and Tl for the left camera, and Rr and
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Tr for the right one. Using (3.3), which connects coordinates of a certain 3D point Pw from
an external coordinate system with the camera-related coordinate system, we obtain

Pl = Rl (Pw − Tl)

Pr = Rr (Pw − Tr) ,
(3.104)

where Pw determines coordinates of a certain 3D point in respect of an external coordinate
system, and Pl and Pr are coordinates of this point but in the left and right camera coordinate
systems, respectively. Finally Rl, Tl, Rr, Tr are the rotation and translation matrices between
an external coordinate system and left and right camera coordinate systems, respectively.

On the other hand, the matrices Pl and Pr are related in the stereo system by (3.16). After
factoring out Pw from (3.104) we obtain

Pr = RrRT
l [Pl − Rl (Tr − Tl)], (3.105)

which compared with (3.16) leads to the following relations:

R = RrRT
l

T = Rl (Tr − Tl) ,
(3.106)

where R and T are the sought calibration matrices of the stereo system.

3.7 Practical Examples

In this section we discuss some propositions of practical realizations of the concepts already
discussed in this chapter. For this purpose two software platforms are used. The first is a
software layer of the Hardware Image Library provided with this book [216]. It is written in
C++, taking advantage of its features such as objects, components, templates, etc. (Chapter
13). The second platform is Matlab software, commonly used in many scientific and engi-
neering developments.

3.7.1 Image Representation and Basic Structures

Images are many-dimensional arrays of discrete signals. For image processing with computers
special models have to be created that represent images as data structures that fit into com-
puter resources. The models should be able to represent different types of images and best
if in a uniform way. Fortunately these requirements can be fulfilled using one of the modern
programming languages, such as C++ [401]. Thus, the C++ template class mechanism has
been used as the main design tool for image models. Such an approach has many benefits
which will be clarified in the following sections. The most obvious is the possibility of auto-
matic generation of new types of images based only on a template parameter which is a type of
pixel, even for pixel types which will be defined in the future. This makes design very flexible
and easily extendable. The other important feature that follows from the philosophy of C++ is
that designed this way images will become strongly typed objects. This is a very advantageous
feature that allows avoidance of many programming errors already at the compilation time.
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3.7.1.1 Computer Representation of Pixels

A pixel denotes an atomic element of an image. It is characteristic of a value and an address-
able location within the image [157, 351]. Thus a pixel is an entity with attributes of:

� scalar or nonscalar value or values;
� a position in an image.

A value of a pixel can be a single integer, set of integers, positive integers, real or complex
numbers, etc., but also a vector of integers or real values or even another image, for instance.
In practice, however, the pixel value must be modelled by the best representation available on
a given computer platform. The value attribute of a pixel defines a set of allowable operations
on an image.

The second attribute, the addressable position of a pixel within the image, is a vector whose
dimension reflects the dimension of an image to which the pixel belongs. Due to the nature of
display systems, still images are 2D and video signals are 3D. However, there is no obstacle
in defining other (higher) dimensional images. Because images are digitized it is a common
practice to locate pixels on an integer grid – thus coordinate values of position vectors belong
to the set of integers [356]. However, there are image processing techniques that operate on
fractional displacements or pixel positions (e.g. disparity maps, optical flow, image warping).
In this case pixel positions (or their displacements) need not be integer values any more and
should belong to the real domain. Based on the aforementioned analysis we notice that pix-
els form a discrete or continuous vector field which must then be modelled in hardware or
software resources based on applications.

In practical computer realization there are many different types of pixel values, such as
monochrome pixels (represented usually with 8–10 bits), colour pixels (e.g. 3 × 8–10 bits),
but also fixed and floating point values, etc. On the other hand, choice of a data structure repre-
senting pixels has a crucial effect on robustness of the computations since for instance access
and processing of the floating point data is much more complex than it is for simple bytes.
Therefore the chosen computer representation should fit as closely as possible the physical
values of pixels.

In the presented software platform the following data models are used to represent pixels.

1. For scalar pixels (i.e. one value) the C++ built-in types (e.g. unsigned char, int, long, etc.).
2. For static length vector valued pixels (i.e. more than one value for a pixel but addressed

linearly) the template class parameterized by a type of a single coefficient and number of
such coefficients for a pixel (i.e. pixel depth).

3. For multidimensional valued pixels custom data structures.

Algorithm 3.211 presents the basic implementation of the MMultiPixelFor<> class for
representation of static length vector valued pixels. Pixel values are stored in the fData array.
This is shown to be faster or equal in run-time performance than a simple structure with a
separate data member for each pixel coefficient (e.g. struct {char a; char b; char c;};). At
the same time, an array in C and C++ (and other languages) allows uniform algorithmic
access when extending the class to higher dimensions, or manipulating pixels with different

11A discussion of programming techniques is provided in Chapter 13.
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// Multi-pixel models a pixel with "Channels" values of a type "P". 
template< typename P, int Channels = kDefaultChannels > 
class MMultiPixelFor
{
 public: 

  enum { kChannels = Channels };  
  typedef P PixelClusterArray[ Channels ]; 
  PixelClusterArray fData; 

 public: 

  // A default constructor (all to 0) 
  MMultiPixelFor( void ); 

  // Constructor 
  explicit MMultiPixelFor( const P * data ); 

  MMultiPixelFor( const P singleVal ); 

  // Copy constructors 
  template< class R > 
  MMultiPixelFor( const MMultiPixelFor< R, kChannels > & r ); 

  template<>  // let's make a specialization for its own type 
  MMultiPixelFor( const MMultiPixelFor & r ); 

  // Assignement 
  template< class R > 
  MMultiPixelFor & operator 
           = (const MMultiPixelFor< R, kChannels > & r ); 

  template<>  // let's make a specialization for its own type 
  MMultiPixelFor & operator = ( const MMultiPixelFor & r ); 

 public: 

  bool operator == ( const MMultiPixelFor & r ); 

  ///////////////////////////////////////////////// 
  MMultiPixelFor & operator += ( const MMultiPixelFor & r ); 
  MMultiPixelFor & operator -= ( const MMultiPixelFor & r ); 
  MMultiPixelFor & operator *= ( const MMultiPixelFor & r ); 
  MMultiPixelFor operator + ( const MMultiPixelFor & r ); 
  MMultiPixelFor operator - ( const MMultiPixelFor & r ); 
  // Point-wise multiplication 
  MMultiPixelFor operator * ( const MMultiPixelFor & r ); 
  ///////////////////////////////////////////////// 

  MMultiPixelFor & operator += ( const P val ); 
  MMultiPixelFor & operator -= ( const P val ); 
  // Point-wise multiplication 
  MMultiPixelFor & operator *= ( const P val ); 
  MMultiPixelFor operator + ( const P val ); 
  MMultiPixelFor operator - ( const P val ); 
  // Point-wise multiplication 
  MMultiPixelFor operator * ( const P val ); 

};

Algorithm 3.2 The template class MMultiPixelFor<> which models all types of nonscalar valued
pixels. The class is parameterized by pixel coefficient type and number of coefficients. (Reproduced by
permission of Pandora Int. Inc., London)



P1: OTA/XYZ P2: ABC
c03 JWBK288-Cyganek December 5, 2008 1:15 Printer Name: Yet to Come

78 An Introduction to 3D Computer Vision Techniques and Algorithms

dimensions. There is no easy way of enumerating member fields of struct. There are three
main groups of function-members in the MMultiPixelFor<>.

1. Construction and assignment.
2. Arithmetic operations among pixel objects.
3. Arithmetic operations among pixel object and a scalar value.

The above define basic functionality of the pixel objects. This can be interpreted also in terms
of vector operations.

There are also different specializations for most common pixel types: e.g. three-channel
monochrome and single monochrome representation. The purpose of specialization is to pro-
vide an implementation trimmed to a particular data type. In the case of three channels it
appears to be faster to address all channels directly than in a software loop, for instance.

3.7.1.2 Representation of Images

A flexible data structure for image representation is crucial for efficient image processing. In
this design the data structures used for image representation were implemented in the form
of template classes. There is a tradeoff between different input formats of images and their
internal representation. Further, considering allowable size of images and time complexity of
algorithms, it was decided to represent images as square matrices, programmatically denoted
by the base template class TImageFor<T>, where T stands for a given data type chosen for
representation of a single pixel. Such representation was also chosen to fit requirements for the
envisaged cooperation of the software layer with the hardware acceleration boards which re-
quire frequent DMA transfers of the whole structure to and from the operating memory of the
computer. Figure 3.26 presents the basic class hierarchy proposed to represent digital images.

The heart of the hierarchy presented in Figure 3.26 is the base template class
TImageFor<>. It defines the interface for all images used in the library. The class is pa-
rameterized by pixel type. For different pixels we obtain different instantiations with the same
semantics. So, we can easily create images of bytes, real value representation, colour pixels,
etc., by defining the following types:

typedef TImageFor< unsigned char >     

typedef TImageFor< MMultiPixelFor< unsigned char, 3 > >

MonochromeImage;

RealImage; typedef TImageFor< double >
ColorImage; 

Single pixels can be represented by built-in types or by system defined classes, as
shown in Figure 3.26. For special pixels separate classes have to be defined. These are:
MMultiPixelFor<>, which stands for pixels in a form of vectors, and FixedFor<>, which
add custom fixed-point type.

From the base TImageFor<> the three classes have been derived. These are the following.

1. The TDanglingImageFor<> which models special images with pixels being vectors, pos-
sibly of different length (this is in contrast to the already discussed MMultiPixelFor<>).

2. The TProxyImageFor<> which implements the proxy pattern embedded into a base image.
Objects of this class are used to model regions-of-interest in images. In other words, the
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Figure 3.26 Hierarchy of classes for representation of images

proxy-image objects allow one to treat part of an image as a separate image with its own
local coordinate system (kind of local discrete manifold), although there is only one set of
‘real’ pixels (see also section 13.2.7).

3. The TMultiChannelImageFor<> for multichannel images, i.e. images which are composed
of a number of simpler type images. Objects of this class model for instance noninterlaced
colour images.

Definition of the class TImageFor<>, with the most important members of its interface
highlighted, is presented in Algorithm 3.3. Its template parameter defines a type of pixel for
that image (extension to this is discussed in section 13.3.5). The internal representation of an
image is a 2D matrix (an array). There are three distinct groups of members of the interface.

1. Constructors, used to create images based on their dimensions and initial values of pixels.
2. Pixel access routines (GetPixel, SetPixel and their reference-based counterparts).
3. Image operators in a form of a set of overloaded operators.

Interestingly, pixels can also be other images with their own pixel types. This is the con-
cept behind template images [356], an example of which is depicted in Figure 3.27(a). In
terms of the already introduced mechanisms template images can be created directly from the
TImageFor<> base, providing its template parameter being another TImageFor<>, and so
on. An example for single byte pixels is presented below:

 typedef TImageFor< MonochromeImage > MonochromeImageImage;   
 // an image with pixels being... images 
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///////////////////////////////////////////////////////////////////////
// The basic structure for images. 
//
template< class T > 
class TImageFor
{
public:

typedef typename T PixelType;  

protected:

// contains number of rows of this image  Dimension fRow;  

// contains number of columns of this image  Dimension fCol;  

// pointer to the pixels   T * fData;  

public:

// Default constructor.  
TImageFor( void ) : fRow( 0 ), fCol( 0 ), fData( 0 ) 
{  
}  

public:

//======================================  

///////////////////////////////////////////////////////////  
// Class constructor  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

col - number of columns   //  
row - number of rows   //  

  //  
// OUTPUT:  

  //  
  //  

// REMARKS:  
Memory for data is allocated but   //  

 data is NOT initialized.   //  
  //  

TImageFor( Dimension col, Dimension row  ); 

///////////////////////////////////////////////////////////  
// Class constructor  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

col - number of columns   //  
row - number of rows   //  
init_val - initial value for each pixel   //  

  //  
// OUTPUT:  

  //  
  //  

// REMARKS:  
  //  
  //  

TImageFor( Dimension col, Dimension row, const T init_val ); 

Algorithm 3.3 Template base class TImageFor<> for computer representation of images. The tem-
plate parameter determines the type of pixels. (Reproduced with permission of Pandora Int. Inc.,
London)
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//======================================  

///////////////////////////////////////////////////////////  
// Overloaded binary operators.  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

image - a constant reference to the second image   //  
  //  

// OUTPUT:  
result image (by reference or a local copy,   //  

what should be avoided)    //  
  //  

// REMARKS:  
//  
//  

TImageFor< T > operator + ( const TImageFor< T > & image ) const;  
TImageFor< T > & operator += ( const TImageFor< T > & image );  
TImageFor< T > operator - ( const TImageFor< T > & image ) const; 
TImageFor< T > & operator -= ( const TImageFor< T > & image );  
TImageFor< T > operator * ( const TImageFor< T > & image ) const; 
TImageFor< T > & operator *= ( const TImageFor< T > & image );   
TImageFor< T > operator / ( const TImageFor< T > & image ) const;  
TImageFor< T > & operator /= ( const TImageFor< T > & image );  

// Returns true if the two pictures are the same  
  bool  operator == ( const TImageFor< T > & image ) const; 

//======================================  

///////////////////////////////////////////////////////////  
// This function sets a pixel at position (x,y) or (col,row)  
// of this image.  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

xPixPosition - the horizontal (or column) position of a pixel  //  
yPixPosition - the vertical (or row) position of a pixel  //  
value - a value to be set at pixel position  //  

  //  
// OUTPUT:  

none  //  
  //  

// REMARKS:  
From the OOP point of view this function should be virtual.  //  
However, to avoid run-time panalty it is not virtual.  //  

  //  
void SetPixel( Dimension xPixPosition, Dimension yPixPosition,  

const Tvalue ) const;       

///////////////////////////////////////////////////////////  
// Copy constructor  
///////////////////////////////////////////////////////////  
TImageFor( const TImageFor< T > & ref ); 

///////////////////////////////////////////////////////////  
// Template assignment operator (mixed copy)  
///////////////////////////////////////////////////////////  
template < class U >  
TImageFor< T > & operator = ( const TImageFor< U > & ref );  

///////////////////////////////////////////////////////////  
// An assignment operator  
///////////////////////////////////////////////////////////  
TImageFor< T > & operator = ( const TImageFor< T > & ref );  

template < typename U >  
TImageFor( const TImageFor< U > & ref ); 

///////////////////////////////////////////////////////////  
// Template copy constructor - mixed copy constructor  
///////////////////////////////////////////////////////////  

Algorithm 3.3 (Continued)
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///////////////////////////////////////////////////////////  
// This function sets a pixel at position (x,y) or (col,row)  
// of this image.  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

xPixPosition - the horizontal (or column) position of a pixel  //  
yPixPosition - the vertical (or row) position of a pixel  //  
value - a value to be set at pixel position,  //  

passed by REFERENCE!   //  
  //  

// OUTPUT:  
none   //  

  //  
// REMARKS:  

From the OOP point of view this function should be virtual.  //  
However, to avoid run-time panalty it is not virtual.  //  

  //  
void SetRefPixel( Dimension xPixPosition, Dimension yPixPosition,  

const T & value ) const;     

///////////////////////////////////////////////////////////  
// This function gets a VALUE of a pixel at position   
// (x,y) or (col,row) of this image.  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

xPixPosition - the horizontal (or column) position of a pixel  //  
yPixPosition - the vertical (or row) position of a pixel  //  

  //  
// OUTPUT:  

a copy of a pixel, of type T, from the given position  //  
  //  

// REMARKS:  
The xPixPosition should span from 0 to max_columns-1, while  //  
the yPixPosition from 0 to max_rows-1.  //  

  //  
From the OOP point of view this function should be virtual.  //  
However, to avoid run-time penalty it is not virtual.  //  

//  
T GetPixel( Dimension xPixPosition, Dimension yPixPosition ) const ;  

///////////////////////////////////////////////////////////  
// This function gets a REFERENCE to a pixel at position   
// (x,y) or (col,row) of this image.  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

xPixPosition - the horizontal (or column) position of a pixel  //  
yPixPosition - the vertical (or row) position of a pixel  //  
  //  

// OUTPUT:  
a reference to a pixel, of type T, from the given position  //  
  //  

// REMARKS:  
The xPixPosition should span from 0 to max_columns-1, while  //  
the yPixPosition from 0 to max_rows-1.  //  
  //  
From the OOP point of view this function should be virtual.  //  
However, to avoid run-time penalty it is not virtual.  //  

//  
T & GetRefPixel( Dimension xPixPosition, Dimension yPixPosition );  

///////////////  

Algorithm 3.3 (Continued)
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// INPUT:  
xPixPosition - the horizontal (or column) position of a pixel  //  
yPixPosition - the vertical (or row) position of a pixel  //  
value - a value to be set at pixel position  //  

  //  
// OUTPUT:  

none  //  
  //  

// REMARKS:  
All positive input values are allowed for a pixel position.  //  

  //  
void SetPixel_Modulo ( Dimension xPixPosition, Dimension yPixPosition,   

const T value ) const ;      

///////////////////////////////////////////////////////////  
// This function gets a VALUE of a pixel at position   
// (x,y) or (col,row) of this image.  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

xPixPosition - the horizontal (or column) position of a pixel  //  
yPixPosition - the vertical (or row) position of a pixel  //  
  //  

// OUTPUT:  
a copy of a pixel, of type T, from the given position  //  
  //  

// REMARKS:  
All positive input values are allowed for a pixel position.  //  

//  
T GetPixel_Modulo( Dimension xPixPosition, Dimension yPixPosition );  

///////////////////////////////////////////////////////////  
// This function gets a REFERENCE to a pixel at position   
// (x,y) or (col,row) of this image.  
///////////////////////////////////////////////////////////  

  //  
// INPUT:  

xPixPosition - the horizontal (or column) position of a pixel  //  
yPixPosition - the vertical (or row) position of a pixel  //  

  //  
// OUTPUT:  

a reference to a pixel, of type T, from the given position  //  
  //  

// REMARKS:  
All positive input values are allowed of a pixel position.  //  

//  
T & GetRefPixel_Modulo( Dimension xPixPosition,  

Dimension yPixPosition );       

//==================================================================  

Dimension GetRow( void ) const { return fRow; }  
Dimension GetCol( void ) const { return fCol; }  

};

///////////////////////////////////////////////////////////  
// This function sets a pixel at position (x,y)or (col,row)  
// of this image.  
///////////////////////////////////////////////////////////  

  //  

Algorithm 3.3 (Continued)
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Figure 3.27 Explanation of template images, i.e. images with pixels which are also images

However, very frequently we are interested in template images with a linear number of
channels (Figure 3.27(b)). To meet this requirements a special version of the template images
was created. This is a TMultiChannelImageFor<> template class which is derived from the
base TImageFor<>, for which a pixel type has been set to be another image, i.e. a type of
TImageFor<>, and so on. Attention should be paid to the SetPixel and GetPixel members
which, in contrast to the directly created template images, operate on multichannel pixels
rather than on pixel images. However, the pixel images (i.e. elements of the channels) can
also be accessed by calling SetPixel and GetPixel of the base class.

For most applications only three channels are required which model RGB or HSI colour
images, for instance (thus the default template parameter, denoting number of channels, is
three).

However, multichannel images are not just any collection of channels (or images). The
important feature is that all images must be of the same size. Moreover, the elements (pixels)
located at the same position in each channel compose a multichannel pixel which can be
accessed at once. Thus, the concept of multichannel images can be visualized as presented in
Figure 3.28.

Each multichannel pixel in Figure 3.28 can be accessed providing the number of co-
ordinates is the same as the number of channels. Definition of the image template class
TMultiChannelImageFor<> is presented in Algorithm 3.4 (kDefaultChannels is set to three).

The semantics of the SetPixel and GetPixel methods is different from the corresponding
methods in the base TImageFor<> class. In the derived class they operate on multichannel
pixels, whereas in the base class they refer to the base-class pixels which are images – i.e. the
channels that constitute the derived class.

Real implementation of the aforementioned classes is endowed with a mechanism of
class traits which allows definition of specific class behaviour (such as accessing objects
by reference or by value) depending on a concrete type of pixel. These issues are treated in
section 13.3.5.
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Figure 3.28 Scheme of a multichannel image

////////////////////////////////////////////////////////////////////////
// This type of images can be used for multi-channel images with 
// non-interlaced pixels. Implemented as a template-image pattern 
// (i.e. image with pixels being images) 
////////////////////////////////////////////////////////////////////////
template< class T, int Channels = kDefaultChannels > 
class TMultiChannelImageFor : public TImageFor< TImageFor< T > > 
{
 public: 

  // For each instantiation of the enclosing class 
  // there will be its own type of MMultiPixel. 

  enum { kChannels = Channels }; 

  typedef MMultiPixel< T, Channels > MultiPixel; 

  typedef TImageFor< T >   SingleChannelImage; 

  typedef TImageFor< TImageFor< T > > BaseClass; 

 public: 

  //====================================== 

TMultiChannelImageFor( Dimension col, Dimension row ); 

TMultiChannelImageFor( Dimension col, Dimension row, 
const MultiPixel & init_val ); 

Algorithm 3.4 Definition of the TMultiChannelImageFor<> class representing multichannel images.
(Reproduced with permission of Pandora Int. Inc., London)
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  // The multi-pixel is conveyed by value (a copy is created). 
  /////////////////////////////////////////////////////////// 
  //   
  // INPUT: 
  // xPixPosition - the horizontal (or column) position of a pixel 
  // yPixPosition - the vertical (or row) position of a pixel 
  //   
  // OUTPUT: 
  // multPixel - a multi-pixel value from pixel position 
  //   
  // REMARKS: 
  // The xPixPosition should span from 0 to max_columns-1, while 
  //   the yPixPosition from 0 to max_rows-1. 
  //   
  // 
  MultiPixel GetPixel( Dimension xPixPosition, Dimension yPixPosition 

 ) const;           

  /////////////////////////////////////////////////////////// 
  // This function gets a multi-pixel "multPixel" 
  // at position (x,y)or (col,row) of this multi-channel image. 

 public: 

  /////////////////////////////////////////////////////////// 
  // This function sets a multi-pixel "multPixel" 
  // at position (x,y) or (col,row) of this multi-channel image. 
  // The multi-pixel is conveyed by reference thus there 
  // is no "reference version" (i.e. SetRefPixel) of this function. 
  /////////////////////////////////////////////////////////// 
  //   
  // INPUT: 
  // xPixPosition - the horizontal (or column) position of a pixel 
  // yPixPosition - the vertical (or row) position of a pixel 
  // multPixel - a reference to the multi-pixel value to be 
  // set at pixel position 
  //   
  // OUTPUT: 
  //   none 
  //   
  // REMARKS: 
  // There is a question of passing a mutli-pixel argument either by 
  // reference of by value. In the base implementation of TImageFor<> 
  // the latter was chosen, and the second function SetRefPixel also 
  // supplied. In this class a passing by reference was chosen 
  // already for SetPixel and SetRefPixel is not supplied 
  // However, this can be changed (e.g. by creating a derived 
  // version)after proper PROFILING and measuring performance in 
  // both cases. 
  //   
  void SetPixel( Dimension xPixPosition, Dimension yPixPosition, 
    const MultiPixel & multPixel ) const ; 

Algorithm 3.4 (Continued)
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};

 public: 

  /////////////////////////////////////////////////////////// 
  // Overloaded binary operators. 
  /////////////////////////////////////////////////////////// 
  //   
  // INPUT: 
  //  image - a constant reference to the second 
  //   multi-channel image 
  //   
  // OUTPUT: 
  //  result image (by reference or a local copy, 
  //   what should be avoided) 
  //   
  // REMARKS: 
  //  Each operation is performed on each channel 
  //  separately. For each channel, action is delegated 
  //  to the base implementation of the corresponding 
  //  operator. 
  // 
  //  Additional operators can be added based 
  //  on the supplied ones, either changing this 
  //  class, or (presumably better) by deriving a new class. 
  // 

  // Returns true if the two pictures are the same 
  bool operator == ( const TMultiChannelImageFor< T, Channels > & 

image );           

  // .......... 

Algorithm 3.4 (Continued)

3.7.1.3 Image Operations

Having defined image representations it is possible to provide some operations on them. Fig-
ure 3.29 presents a class hierarchy for this purpose. TImageOperation is the base class for all
operations. It defines the common function operator which is extended in derived classes (sec-
tion 13.3.1). There are four major derived classes that define each type of image operations
and operation compositions. The most general template solution was chosen that allows for
any type to be supplied for arguments of an operation. Wherever possible all parameters of
operators are treated as images. So, an image is a more ample notion than a classic ‘visible’
image. For example, an image can store in its pixels a value of a just found maximum pixel in
another image, as well as x and y coordinates of that pixel, as its next pixels. This is analogous
to a matrix-processing context where each value is treated as a matrix.

It is interesting to notice that the base TImageOperation is a pure virtual class (i.e. it can
serve only to be derived from, no objects of this class allowed) but it is not a template class,
whereas its derived classes are (Algorithm 3.5).

In the class hierarchy (Figure 3.29) there are two types of classes.

1. The base operations of the library (shaded shapes) which consists of the following pure vir-
tual classes: TImageOperation, TUnaryImageOperationFor, TBinaryImageOperationFor,
TImageTemplateOperationFor and TComposedImageOperationFor.

2. The classes for specific image library operations; for example, FindMaxVal OperationFor,
FormatConvert OperationFor, Add OperationFor, 2D Convolve OperationFor and
Horz Convolve OperationFor.
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TImageOperation

TUnaryImageOperationFor<>

+ TImageOperation( ...);
virtual void * operator()( void ) = 0;          // launch  action

TBinaryImageOperationFor<>

TImageTemplateOperationFor<>

_2D_Convolve_OperationFor<>

_Horz_Convolve_OperationFor<>

Add_OperationFor<>

FindMaxVal_OperationFor

TComposedImageOperationFor<>

FormatConvert_OperationFor

# operations_container : vector or set

Figure 3.29 Class hierarchy for the image operators. TImageOperation is the base class that provides
a common functionality which is then specialized in the derived classes. There are four major derived
classes

The skeleton of the hierarchy of image operations is composed of the following classes.

1. The TImageOperation class: its responsibility is to define a common interface for all op-
erations. The most important part of its interface consists of the pure virtual overloaded
functional operator in the following form:

 virtual void * operator()( void ) = 0; 

This is a common operator for all image operations. For the virtual functions it is required
that its declaration is the same throughout the whole hierarchy. Therefore all the necessary
parameters of specific operations are supplied to the constructors of their classes. This is a
common strategy assumed in the whole library.
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2. The TUnaryImageOperationFor class: its responsibility is to compose a branch of specific
unary image operations, i.e. such operations that need only one image as input (Figure
3.29).

3. The TBinaryImageOperationFor class: its responsibility is to start a branch of specific bi-
nary image operations, i.e. such operations that need two images of the same size as input
(Figure 3.29).

class TImageOperation
{

protected: 

TThreadSecurity &
TOperationCompletionCallback &

public: 

/////////////////////////////////////////////////////////// 
// Base class constructor 
/////////////////////////////////////////////////////////// 
//   
// INPUT: 
// resourceAccessPolicy - optional reference to 
//    the thread security object (derivative 
//    of the TThreadSecurity class); by default 
//    the static kgThreadSecurity object is supplied 
//    which does nothing 
// opCompCallback - optional reference to the callback 
//    object which is called upon completion of operation; 
//    by default the static kgOperationCompletionCallback 
//    object is supplied which does nothing 
//   
// OUTPUT: 
//   
//   
// REMARKS: 
//   
//   
TImageOperation ( TThreadSecurity & resourceAccessPolicy 

= kgThreadSecurity,

TOperationCompletionCallback opCompCallback &
= kgOperationCompletionCallback ); 

protected:

/////////////////////////////////////////////////////////// 
// This function should be called at the beginning 
// of each operator() 
/////////////////////////////////////////////////////////// 
//   
// INPUT: 
//       none 
//   
// OUTPUT: 
//       none 
//   
// REMARKS: 
//       It calls resource access function of the 
//       supplied thread security object 
//   
virtual void operator_begin( void ); 

fOperationCompletionCallback; 

fResourceAccessPolicy;

Algorithm 3.5 Definition of the pure virtual TImageOperation class. It is a root class for all other
image operations. (Reproduced with permission of Pandora Int. Inc., London)
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  //      none 
  //   
  // REMARKS: 
  //       It calls resource release function of the 
  //       supplied thread security object 
  //       and the callback 
  //   
  virtual void operator_end( void );  

  ///////////////////////////////////////////////////////////////////// 
 // A helper class... 
 // Just create a local object of this class and the operator_begin() 
 // operator_end() will be called automatically due to auto object 
 // semantics of C++ 
 ///////////////////////////////////////////////////////////////////// 
  class MImageOperationRetinue 
  { 

   private: 

    TImageOperation & fImageOperation; 

    void * operator new ( size_t ); 
  // make the operator new private to disable creation on the heap 

   public: 

    MImageOperationRetinue( TImageOperation & imOper ) : 
      fImageOperation( imOper ) 

    { 
     fImageOperation.operator_begin();  
     // resource acquisition is initialization 

    } 
    ~MImageOperationRetinue() 
    { 
     fImageOperation.operator_end();   
     // destructor de-initializes automatically 

  }; 

  friend class MImageOperationRetinue; 

public:

  /////////////////////////////////////////////////////////// 
  // The function operator which - in a derived class - 
  // defines an image operation. 
  /////////////////////////////////////////////////////////// 
  //   
  // INPUT: 
  //       none 
  //   
  // OUTPUT: 
  //       user defined (in a derived class) void pointer 
  //   
  // REMARKS: 
  //       The necessary input parameters should be supplied 
  //       to an appropriate CONSTRUCTOR of a derived class. 
  //   
  virtual void * operator()( void ) = 0;  

};

/////////////////////////////////////////////////////////// 
// This function should be called at the end 
// of each operator() 
/////////////////////////////////////////////////////////// 
//   
// INPUT: 
//       none 
//   
// OUTPUT: 

    } 

Algorithm 3.5 (Continued)
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4. The TImageTemplateOperationFor class: it is a specialization of the TImageOperation
class where the second image is assumed to be an image template (Figure 3.29).

5. The TComposedImageOperationFor class: this class creates a specific composite – it is a
kind of image operation that is built up from the other image operations, i.e. those that
are derived from the base TImageOperation class (Figure 3.29). Composite is discussed in
section 13.3.3.

The multiparameter template technique used allows flexible creation of specific operations
with strict type checking of its input arguments. This way, an operation defined for a given type
of input image constitutes a type different from the same operation but defined for different
input images.

3.8 Appendix: Derivation of the Pin-hole Camera Transformation

Let us rewrite Equations (3.3)

Pc = R(Pw − T), (3.107)

then (3.5)

xc = (xu − oux )hx

yc = (yu − ouy)hy,
(3.108)

and finally (3.2)

xc = f
Xc

Zc
, yc = f

Yc

Zc
, zc = f (3.109)

with proper coordinate systems explicitly indicated by a subscript letter: ‘w’ for world coor-
dinates, ‘c’ for camera coordinates and ‘u’ for coordinates associated with the local camera
plane. An additional subscript ‘h’ denotes homogeneous coordinates (section 9.2) in contrast
to Cartesian ones. We wish to relate world coordinates of a 3D point Pw with its image point
pu on a camera plane. For this purpose let us write (3.107) as

R(Pw − T) =


R1

R2

R3


 [Pw − T] =


R1 (Pw − T)

R2 (Pw − T)

R3 (Pw − T)


 =


 Xc

Yc

Zc


 = Pc, (3.110)

where Ri denotes the i-th row of the matrix R (i.e. it is a row vector of dimensions 1 × 3).
Inserting the above into (3.109) the following set of equations is obtained:




xc = f
R1 (Pw − T)

R3 (Pw − T)

yc = f
R2 (Pw − T)

R3 (Pw − T)
zc = f

. (3.111)
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Observe that Ri(Pw–T) is a scalar value. Now, inserting (3.111) into (3.108) we find coordi-
nates of a point expressed in a local coordinate system of the camera’s plane:


xu = f

hx

R1 (Pw − T)

R3 (Pw − T)
+ oux

yu = f

hy

R2 (Pw − T)

R3 (Pw − T)
+ ouy

. (3.112)

The above set of two equations for (xu, yu) can be extended into a set of three equations for
the homogeneous coordinates (xuh, yuh, zuh):



xuh = xuR3 (Pw − T) = f

hx
R1 (Pw − T) + ouxR3 (Pw − T)

yuh = yuR3 (Pw − T) = f

hy
R2 (Pw − T) + ouyR3 (Pw − T)

zuh = R3 (Pw − T)

. (3.113)

Thanks to this transformation a nonlinearity due to division is avoided at the cost of an addi-
tional coordinate – this is the main idea behind homogeneous coordinates. From (3.113) we
easily observe that

xu = xuh

zuh
, yu = yuh

zuh
. (3.114)

It is now easy to see that (3.113) can be rewritten as

puh =


 xuh

yuh

zuh


 =




f

hx
0 oux

0
f

hy
ouy

0 0 1




R1 (Pw − T)

R2 (Pw − T)

R3 (Pw − T)


 =




f

hx
0 oux

0
f

hy
ouy

0 0 1




R1 −R1T

R2 −R2T

R3 −R3T



[

Pw

1

]
︸ ︷︷ ︸

Pwh

,

and after some rearrangements

puh =




f

hx
0 oux

0
f

hy
ouy

0 0 1




︸ ︷︷ ︸
Mi


R1 −R1T

R2 −R2T

R3 −R3T




︸ ︷︷ ︸
Me

Pwh. (3.115)

Let us also notice the assumed orientations of the coordinate systems in Figure 3.6 which is
left-handed. This comes from a common practice in algorithmic image processing of placing
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the origin of a coordinate system in the left top corner of the camera’s plane. Then the coordi-
nates are assumed to be always positive and increasing in the directions of the x and y axes of
this system. Such an orientation is also assumed in all of the algorithms presented in this book.

Let us also analyse the following relations among coordinate systems. Assume that Pw

= [Xw, Yw, Zw]T is a certain point from the 3D ‘world’ space. Let Pc = [Xc, Yc, Zc]T be
an image of the point Pw, expressed, however, in the camera coordinate system. Lastly, the
point pu = [xu, xu]T is a point with coordinates related to the local image plane of the camera
(pixel coordinates). Now, transforming Cartesian into homogeneous coordinates we obtain
respectively the following relations (subscript h again means homogeneous coordinate): Pwh

= [Xwh, Ywh, Zwh, 1]T, Pch = [Xch, Ych, Zch, 1]T and puh = [xuh, yuh, zuh]T. Therefore, apart
from the point puh, we have that: Xw = Xwh, . . . , Zw = Zwh, Xc = Xch,’ . . . , Zc = Zch.
Considering now the projective transformation (3.7), expressed in homogeneous coordinates,
and taking into an account (3.8) we obtain the following conditions:

Pc = MePwh, Pch =
[

Me

O 1

]
4×4

Pwh, (3.116)

puh = MiPc, (3.117)

pu =
[

xu

yu

]
=




xuh

zuh

yuh

zuh


 . (3.118)

3.9 Closure

An image is created either by an eye or by a camera. Both transform visual information about
the surrounding world, which in its nature is 3D, into 2D images. In this chapter we discuss
the basic principles of this process and also of recovery of the 3D information. This can be
achieved with two images of the same scene, taken however from different locations. This
process is called stereovision. Further we discuss the basics of the epipolar geometry, point
correspondence, different stereo systems as well as stereo matching constraints. The subject
of calibration of a single camera and stereo systems follows. Finally, theory meets practice in
the proposition of a C++ library. We discuss computer representations of pixels, images and
image operations and provide their C++ implementations.

3.9.1 Further Reading

Direct references to particular topics discussed in this chapter are placed in the text of the
sections. Here we try to give some hints on further reading or ‘where to go next’ to find more
information on the main topics touched upon in this chapter.

The human visual system can be discussed from many aspects. A well-balanced but thor-
ough discussion of the subject can be found in the excellent monograph by Wandell [442].
A more psychologically oriented approach is presented in the classic text by Gregory [161].
High-level vision is discussed in the book by Ullman [432]. The book by Howard and Rogers
[201] is a seminal work on the psychology of binocular vision and stereopsis. Problems of
computational vision are addressed in the book by Mallot [292].
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In this chapter we did not discuss the physical formation of images in the optical systems
nor the aspects of light, photometry, colorimetry, colour representations, etc. These can be
found in many textbooks on physics, such as the one by Halliday et al. [170]. There are
also books devoted solely to the problems of optics, of which the book by Hecht [185]
can be recommended as a first source. The work by Born and Wolf [50] contains advanced
information on all aspects of optics. A nice introduction to colour imaging is provided in the
book by Lee [272].

A very intuitive and clear introduction to most of the fundamental tasks of computer vision
is provided in the excellent book by Trucco and Verri [430].

A must in geometry of multiple views is the excellent book by Hartley and Zisserman [180],
and also that by Faugeras and Luong [119]. The book by Ma et al. [290] is another source of
knowledge on many aspects of computer vision. More information on panoramic image for-
mation and related topics can be found in the book edited by Benosman and Kang [34]. Prob-
lems and methods of camera calibration are addressed in the book by Gruen and Huang [166].

An excellent work on applied numerical methods is the book by Press et al. [352]. In a
unique way it provides both a concise theory and C++ implementations. On the other hand,
Matlab [208] and its toolboxes offer myriads of scientific and engineering methods packed
in a single ‘software laboratory’. Basic information on using Matlab can be found in many
books, such as the one by Gilat [146]. Matlab in the context of image processing is stressed
in the book by Gonzalez et al. [158].

There are few publications on software development for image processing and computer
vision. Some image processing algorithms are provided in the book by Parker [342]. Image
procedures written in C can be found in the somehow dated compendium by Myler and
Weeks [325].

3.9.2 Problems and Exercises

1. Derive the formula on point distance di used in the RANSAC method in section 3.4.6.
2. Implement the RANSAC method for line fitting in accordance with Algorithm 3.1.
3. Using any graphic software, create a random dot stereogram with differently shifted hidden

shapes. Observe the stereo effect when shifting hidden shapes to the left and then to the
right.

4. Verify Equation (3.45).
5. Find the null space of the following fundamental matrix:

F =


0 0 a

0 0 b

c d e




which is called an affine fundamental matrix and arises from affine cameras used instead
of projective ones (section 3.3.4).

6. What denotes a null space of F from the above example?
7. Find equations for the epipolar lines for the affine fundamental matrix.
8. What is the rank of the fundamental matrix?
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4
Low-level Image Processing
for Image Matching

4.1 Abstract

In this chapter we discuss the basic concepts of signal processing which aim at the detection
of features in digital images. What are features? In simple words, we can assume that fea-
tures are any well-distinguishable signal patterns. For example ‘good’ features are lines and
corners, since they are conspicuous and well resistant to noise and some other distortions.
However, in this chapter we focus mostly on methods of feature detection which facilitate 3D
computer vision. For instance we are interested in features which allow most reliable matching
of images.

We start with the basic concepts of digital signal processing that lead to feature detection:
convolution, filtering, mask separability, discrete differentiation; Gaussian and binomial filters
are discussed as well. Discussion of some methods of edge detection follows, presenting also
the concepts of Laplacian of Gaussian and difference of Gaussians. Then we introduce the
structural tensor which is a powerful technique for low-level feature detection. The chapter is
augmented with examples of implementations of the basic techniques as well as with results
of their application. A literature review is also provided, followed by exercises for the reader.

4.2 Basic Concepts

4.2.1 Convolution and Filtering

We can say that signal filtering is a process of changing spectral properties of the signal. In the
frequency domain linear filtering can be done by simple multiplication of the signal spectrum
by some filter function which cuts off specific band(s) of the input signal. The spectrum of
the filter usually is a kind of window-like function in the frequency domain. It can easily be
shown that this multiplication in the frequency domain translates into convolution in the time
domain. Mathematical details of signal processing in time and frequency domains, as well as
discussion of different types of filters can be found in the classic texts on signal processing
(section 4.9.1 contains a discussion of the literature) [9, 312, 336]. In this book we will mostly

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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utilize the concept of 2D convolution in the discrete domain, an approach that is more suitable
to processing of digital images. To define this we start from the definition of the 1D discrete
convolution of a discrete signal x[i] with a filter given by discrete series f [j], as follows:

y [m] = f ∗ x =
r∑

i=−r

f [i]x [m − i] , (4.1)

where y[m] is a filter response at index m, while we assume also that f is defined for all indices
from −r up to r, and the input signal x is defined at least for all from m − r up to m + r. Let
us note that in (4.1) indices in f [·] and x[·] go in different directions, i.e. if i reaches −r then
m − i = m + r; however, when i comes to r, then m − i = m − r. This can be seen in the
following example. Let us compute the response of the following system

f =
[
−1

2
, 0,

1

2

]
− 1 0 1

, x = . . . , 112
−1

, 250
0
↑
m

, 154
+1

, . . . ,

then response y at m is

y [m] = f [−1] x [m + 1] + f [0] x [m] + f [1] x [m − 1]

= −1

2
· 154 + 0 · 250 + 1

2
· 112 = −21.

Filters with symmetrical masks play a special role, i.e. for which

f [−m] = f [m] . (4.2)

The symmetry can be even, which is identical to (4.2), or odd if the right side of (4.2) is
negated. Their importance comes from the fact of pure real or imaginary spectral represen-
tation and thus they exhibit desirable linear phase properties [312]. The advantage is even
twofold since a symmetrical mask can be stored and processed more efficiently due to repe-
tition of data. We notice also that in this case if the mask is odd we can substitute the minus
sign in (4.1) with a plus, and still have the same result.

Let us now extend easily our analysis to the case of digital images. In the 2D signal space,
the convolution takes the following form:

y [m, n] =
q∑

j=−q

r∑
i=−r

f [i, j]x [m − i, n − j], (4.3)

where again we assume that f and x are defined for all index runs in the above sums. The
very important case arises when the 2D filter mask can be represented as a product of two 1D
masks, as follows:

f [i, j] = f1 [i] f2 [ j] . (4.4)
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In this special case – discussed also in the next section – the 2D convolution can be written as

y [m, n] =
q∑

j=−q

f2 [ j]


 r∑

i=−r

f1 [i]x


m − i, n − j︸ ︷︷ ︸

n′






︸ ︷︷ ︸
= x ′

. (4.5)

In the above we can split the two sums into two separate runs: first with mask f 1, then with
f 2. In the inner summation the second index n − j = n′ is fixed. Let us note also that the
inner summation produces the intermediate signal x′. This can be done in a separate run of the
1D convolution. Then the outer summation takes place – this is the second 1D convolution.
This is a very desirable property, since if the 2D mask can be split into two 1D masks, the
computations can be speeded up significantly, as will be discussed in the following sections.

Computational aspects of convolution are discussed, for example, by Jähne [224]. Espe-
cially cumbersome are computations on borders of an image – there are no perfect solutions
to this problem. However, we can always leave a margin of width equal to half the size of the
convolution mask and consider only this created ‘inner’ area of an image. Our C++ imple-
mentation, which follows this idea, is discussed in section 4.8.1.1.

If in (4.3) we substitute the minus sign with plus we obtain the so-called cross-correlation
value, defined as [172]

y [m, n] =
q∑

j=−q

r∑
i=−r

f [i, j]x [m + i, n + j]. (4.6)

We already know that cross-correlation is equal to the convolution in the case of symmetrical
masks. It is often used as a simple measure of similarity between two images.1 In this case,
f [i, j] can be a constant mask (e.g. an object template) or an another image. For instance, in
the work by Antonini et al. it is used in a system for pedestrian tracking to correlate image
patches in consecutive video frames [8].

4.2.2 Filter Separability

Let us assume that an impulse response of a filter is given by a matrix A of dimension m × n.
We know from linear algebra that any matrix A ∈ �m×n can be decomposed as follows [308]:

A = SVDT, (4.7)

where V is a diagonal matrix containing nonnegative singular values and S and D are unitary
matrices, so the following holds:

SST = 1, DDT = 1. (4.8)

1A more in-depth discussion on similarity measures is provided in section 3.3.
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Equivalently we can write

A =
r∑

i=1

vi si dT
i , (4.9)

where the matrices S and D,

S = [s1, s2, . . . , sm] , D = [d1, d2, . . . , dn] , (4.10)

are composed of the vectors si and di, respectively, where vi is the i-th singular value of
A of rank r, si is an m × 1 column vector and di is a 1 × n column vector. Thus, all si

are orthogonal to each other, and the same holds for di. It follows also that vi
2 are positive

eigenvalues of ATA, for which v1 ≥ v2 ≥ · · · ≥ vr > 0 and vr+1 = · · · = vk = 0, for k =
min(m, n), si are eigenvectors of AAT, whereas di are eigenvectors of ATA corresponding to
the eigenvalues vi

2, respectively.2 For symmetrical matrices it holds also that v1 = |λ1|, where
λ1 are eigenvalues of such symmetric matrices.

Decomposition (4.9) is another form of the SVD which was already discussed in the case
of the fundamental matrix F (section 3.4.5).

Let us now consider image filtering with discrete filter mask given by A. It follows that such
a computation requires at least mn multiplications and almost the same additions per pixel.
This can take a considerable amount of time, especially for large values of m and n. How-
ever, observing (4.9) we notice that the full 2D convolution with matrix A can be exchanged
into r 1D convolutions with vectors:

√
vi si and

√
vi di , respectively. This takes approximately

r(m + n) multiplications and a similar number of additions per pixel. If rank r of A is small
(preferably one) this can save much time. More precisely, convolutions with A separated into
a series (4.9) saves computations when its rank r fulfils

r ≤
⌊

mn

m + n

⌋
, (4.11)

where 
·� denotes a floor operation (i.e. the nearest integer that is equal to or less than its argu-
ment). For example, for equal and odd values m = n ∈ {3, 5, 7, 9} we obtain rmax = 1, 2, 3, 4,
respectively. It is obvious that the lower the rank the faster performance – in this respect r = 1
is of special interest since it guarantees the fastest computations.

Concluding, let us analyse some practical filter masks and their decompositions:

A1 = 1

32


3 0 −3

10 0 −10
3 0 −3


 = 1

32


 −3

−10
−3


 · [− 1 0 1

]

=

−0.09375

−0.3125
−0.09375


 · [− 1 0 1

] =

−0.1875

−0.625
−0.1875


 · [− 0.5 0 0.5

]
. (4.12)

2We assume that A is a real-valued matrix, therefore ATA = A
∗
A, where A

∗
denotes a conjugate matrix. In some

texts A
∗
A is called a covariance matrix of A.



P1: OTA/XYZ P2: ABC
c04 JWBK288-Cyganek December 5, 2008 1:36 Printer Name: Yet to Come

Low-level Image Processing for Image Matching 99

Let us analyse what practical implications can be derived from the different representations
of A1 in (4.12). The first representation requires 2D convolution, however with integer data.
The second is equivalent to two 1D convolutions with integer masks, then followed with data
scaling. The third is also a twofold 1D convolution; however the first mask requires fractional
data. The last one requires fractional data in the second mask as well. What solution is the
most appropriate? It depends on the platform of implementation, although separation into
two 1D convolutions always looks more promising. When implementing in a programming
language (like C++ or Java) we have no problem with floating point representation, so we
can use any representation. However, if we implemented this filter in hardware we would
probably adhere to the integer representation. It is interesting to note that A1 is a mask of a
filter proposed by Jähne [224] as an example of the optimized and regularized vertical edge
detector with a minimum angle error. A1

T is a detector with direction orthogonal to A1.
The mask A2 is a smoothing mask. Its decomposition into lower rank representations can

be given as follows:3

A2 = 1

11


1 1 1

1 3 1
1 1 1


 = 4

11
·




1√
6

2 1√
6

1√
6


 ·




1√
6

2 1√
6

1√
6




T

+ 1

11
·




1√
3

− 1√
3

1√
3


 ·




1√
3

− 1√
3

1√
3




T

= 2

33


1

2
1


 ·


1

2
1


T

+ 1

33


 1

−1
1


 ·


 1

−1
1


T

(4.13)

Thus, A2 can be represented as two different twofold 1D convolutions, the results of which
are then added together. However, let us notice that the condition (4.11) is not fulfilled in this
case, contrary to the example (4.12).

Finally we should also be aware that such decompositions can introduce additional com-
putational errors which are due to finite length representation of real-valued data. This should
be separately analysed in concrete realizations.

4.3 Discrete Averaging

Discrete averaging refers to the process of low-pass filtering of discrete signals. Explaining
in simple words, this is a process of substituting a value of a pixel with a value computed
as an average of its surrounding pixels, usually multiplied by some weighting parameters.
However, other algorithms can also be employed for this task. Sometimes these are nonlinear
as a median filter, etc.

Such low-pass filtering is ubiquitous in all areas of digital signal processing, and also in
computer vision. The most common application is removal of the unwanted component of a
signal, commonly known as noise. Different types of the latter are discussed in Chapter 11. In
image matching averaging around a central pixel is employed for the aggregation of a support
in local regions (section 6.5.1.1).

3See also the Matlab example in section 4.8.3.
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Image averaging is also discussed in the section on Savitzky–Golay filters (section 4.4.2).
Some simple averaging masks were also presented when discussing filter separability (4.2.2).
In the next two sections we discuss two types of important low-pass filters: Gaussian and
binomial filters.

4.3.1 Gaussian Filter

The 2D Gaussian kernel G(x,y,σ ) is given by the following formula [259]:

G(x, y, σ ) = 1

2πσ 2
exp

(
− x2 + y2

2σ 2

)
, (4.14)

where x, y denote two free coordinates and σ is a parameter. Figure 4.1 depicts two plots of
the Gaussian kernel G(x,y,σ ) with σ = 1.0 and 5.0, respectively. It can be observed that the
Gaussian kernels are isotropic, i.e. their characteristic is perfectly symmetric in all directions.

After a short scrutiny of (4.14) we notice that this formula can be expressed in the following
form:

G (x, y, σ ) = g (x, σ ) g (y, σ ) , (4.15)

where g(·, σ ) is a one-dimensional Gaussian function given as follows:

g (t, σ ) = 1√
2πσ

exp

(
− t2

2σ 2

)
. (4.16)

The formulas (4.15) and (4.16) mean that the 2D Gaussian kernel (4.14) can be separated into
two operations of the 1D kernel. This very important feature allows much faster implementa-
tion of multidimensional Gaussian filtering.
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Figure 4.1 Plots of 2D Gaussian kernels: (a) σ = 1; (b) σ = 5
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4.3.2 Binomial Filter

Implementation and complexity of the Gaussian filters (4.14) can be cumbersome in some
applications (e.g. in a hardware realization). This is an outcome of the fractional arithmetic
which requires at least fixed point representation.4 However, there is another type of filter
whose spectral response approximates the Gaussian while the implementation can be much
simpler: the binomial filter [226, 351].

4.3.2.1 Specification of the Binomial Filter

The binomial filter is a low-pass filter which shows the following properties:

1. Isotropic response.
2. Separable mask for higher dimensional filters.
3. Approximation of the Gaussian response for sufficiently large masks.
4. Simple implementation.

The ideal isotropic response means that smoothing is the same in all directions. This means
that all image directions are treated in the same way and the transfer function in respect to the
magnitude of the wave number is uniform in all directions, as will be shown in the next section.

The kernel of the binomial filter is based on the following filtering element:

F = 1
2

[
1 1

]
. (4.17)

The effect of applying F to a digital signal is a simple averaging of each pair of its samples.
If we use the same mask F q times we obtain the following response:

Fn
i = F1

i ∗ F1
i ∗ . . . ∗ F1

i , (4.18)

where q is a filter order, i denotes filter direction, ∗ stands for convolution (4.2.1) and by
definition

F1
i ≡ F = 1

2

[
1 1

]
. (4.19)

Expanding (4.18) for some integer values of q, the following filters are obtained:

F2 = 1
4

[
1 2 4

]
,

F3 = 1
8

[
1 3 3 1

]
,

F4 = 1
16

[
1 4 6 4 1

]
,

F5 = 1
32

[
1 5 10 10 5 1

]
,

F6 = 1
64

[
1 6 15 20 15 6 1

]
,

· · · (4.20)

4More on numerical data representation in computers and seminumerical algorithms can be found in the books by
Knuth [249] and by Koren [258].
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Table 4.1 Coefficients of binomial filters

Rank q Scaling factor 2−q Mask Variance σ 2 = q/4

0 1 1 0
1 1/2 1 1 1/4
2 1/4 1 2 1 1/2
3 1/8 1 3 3 1 3/4
4 1/16 1 4 6 4 1 1
5 1/32 1 5 10 10 5 1 5/4
6 1/64 1 6 15 20 15 6 1 3/2
7 1/128 1 7 21 35 35 21 7 1 7/4
8 1/256 1 8 28 56 70 56 28 8 1 2
9 1/512 1 9 36 84 126 126 84 36 9 1 9/4

10 1/1024 1 10 45 120 210 252 210 120 45 10 1 5/2
11 1/2048 1 11 55 165 330 462 462 330 165 55 11 1 11/4
. . . . . . . . . . . .

From (4.20) it is evident that the mask coefficients follow coefficients of the binomial dis-
tribution (a + b)q and can be easily computed from Newton’s expansion formula or Pascal’s
triangle [259]. For an q rank filter, the number of its coefficients equals q + 1. Table 4.1
provides parameters of the binomial filter for different rank q.

The nice feature of the binomial filter comes from its integer mask and the scaling factor
being a power of two. Thus, the necessary scaling can be easily implemented as a shift of a
computer word by q bits to the right.

Given filter variance σ we can find its corresponding filter rank q from the following
formula:

q = 4σ 2. (4.21)

For the Laplacian pyramids frequently employed in image matching it is sufficient to use
filters with σ = 0.5, and thus the nearest rank for a symmetrical mask is q = 2.

4.3.2.2 Spectral Properties of the Binomial Filter

The spectral properties of a digital system can be analysed based on the Fourier transform.
The Fourier representation of a digital signal x[n] can be obtained from the formula [312, 336]

X
(
e jω

) =
+∞∑

n=−∞
x[n]e− jωn, (4.22)

where x[n] is a digital signal (a series of samples) and ω is a digital frequency. The digital
frequency ω is commonly expressed in terms of a wave number k, as follows:

ω = πk and − 1 ≤ k ≤ +1. (4.23)
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The spectral representation of the basic binomial filter F1 can be obtained applying (4.22) to
(4.19) and assuming that the last sample is at n = 0:

F̃1 = 1
2

(
e− jω + 1

)
. (4.24)

However, with the assumption that the first sample in (4.19) is at n = 0 we obtain the following
representation:

F̃1 = 1
2

(
1 + e jω

)
. (4.25)

From (4.24) and (4.25) we conclude that the spectral characteristics of the basic binomial
filter F1 (observe a nonsymmetric mask) belong to the complex domain which means it is
not recommended for practical filtering of images (which by their nature belong to the real
domain).

Based on the above analysis we conclude that the nearest practical mask is the symmetrical
F2. Assuming that the central sample is at n = 0 the spectral response of F2 can be obtained
directly from (4.20) and (4.22) – or by multiplication of (4.24) and (4.25):

F̃2 = 1
4

(
e jω + 2 + e− jω

) = 1
2 (1 + cos ω) = cos2 ω

2 , (4.26)

or alternatively, after applying (4.23):

F̃2 = cos2 πk

2
. (4.27)

We see that (4.27) is characteristic of a desirable real response. It can be further composed
in cascades the spectral responses of which follow the simple formula

F̃2q = cos2q πk

2
, (4.28)

where q denotes the number of cascaded F2 structures.
The analysis above concerned a 1D signal. For multidimensional signals, such as images,

thanks to the feature of separable filters, the multidimensional binomial filter can be composed
directly from (4.28), as a simple multiplication of 1D spectral responses:

F̃2q = F̃2q
x F̃2q

y = cos2q πkx

2
· cos2q πky

2
. (4.29)

It can be shown that (4.29) approaches quickly the Gaussian response for larger values of q
[224]. In practice, a reasonable approximation is chosen as q ≥ 4. The two responses for the
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Figure 4.2 Comparison of spectral responses of the Gaussian and binomial kernels. The horizontal
axis denotes the wave number k. The Gaussian plots are for σ from 0.5 to 2 with step 0.5. The binomial
plots are for q from 2 to 6 with step 1. The binomial plot is almost identical with the Gaussian for
σ = 1 and q = 4

1D case are compared in Figure 4.2 (up to a scaling value). It can be noticed that for some
parameters the two plots are almost identical.

Figure 4.3 depicts spectral characteristics of the 2D binomial kernels for q = 2 and 4.
Comparing these with the plots from Figure 4.1, some isotropic differences are noticeable,
however.
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Figure 4.3 Plots of 2D binomial kernels: (a) q = 2; (b) q = 4
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4.4 Discrete Differentiation

In image processing, differentiation of discrete signals (images) is often abused by the easiest
approximation of differentiation by finite differences. Such an approach is a result of a simple
dropping of the limit in the definition of the continuous differential. Thus, assuming that I(x)
represents a continuous function (i.e. not sampled), for the 1D case we start from the classic
definition

d

dx
I (x) ≡ lim

δ→0

I (x + δ) − I (x)

δ
, (4.30)

assuming that such a limit exists. Then, after dropping the limit we obtain the following [352]:

d

dx
I (x) ≈ I (x + �x) − I (x)

�x
. (4.31)

The above approximation is commonly used in numerical analysis and is justified by a choice
of an appropriately small step �x in (4.31). However, in image processing �x is fixed and
unknown. It is only assumed that consecutive samples I[n] of I(x) are close enough to fulfil
the sampling theorem. Moreover, it is frequently assumed that �x = 1, which leads to the
following (not symmetrical) approximation:

d

dx
I (x) ≈ I [n + 1] − I [n] . (4.32)

On the other hand, the simplest way to obtain a symmetrical formula is as follows:

d

dx
I (x) ≈ I [n + 1] − I [n − 1]

2
. (4.33)

These, in turn, lead directly to the most common discrete differentiators: [−1 +1] and
1/2[−1 0 +1], respectively. Unfortunately, such approximations are not sufficiently accu-
rate for most of the image processing tasks that require precise directional computations of
gradients (e.g. optical flow, structural tensor, edge and corner detection, etc.).

4.4.1 Optimized Differentiating Filters

An interesting solution to the problem of differentiation of discrete signals was proposed by
Farid and Simoncelli [117] and Simoncelli [391]. They propose an alternative approach to
differentiation which is based on differentiating continuous signals that are interpolated from
their initial discrete versions. Figure 4.4 depicts flow charts of the two approaches.

Let us assume that the samples I[n] come from sampling of a (usually unknown) continuous
image signal I(x) with a rate of T samples/length. Let us assume further that in the input signal
there are no higher frequencies than 2π /T cycles/length, so no aliasing is introduced during
sampling. Then from the sampling theorem [147, 312, 317, 336] we know that the continuous
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Continuous signal 
                             l(x)

Discrete samples 
                             l[n]

Approximated 
differential

                dl(x)/dx≈l[n+1]−l[n]

sampling sample differences

Continuous 
signal l(x)

Discrete 
samples l[n]

Differential
                 dA(x)/dx

sampling interpolation

Interpolation to a 
continuous 

function A(x) with 
local values l[n] 

differentiation of 
continuous function

Discrete
differential

sampling

Figure 4.4 Two approaches to differentiation of discrete signals: approximation with simple differ-
ences (upper); approach of Farid and Simoncelli (lower)

signal can be precisely reconstructed from those samples:

I (x) =
+∞∑

n=−∞
I [n] · A (x − nT ) , (4.34)

where we assume that this series is convergent and A(x) is a continuous reconstructing func-
tion.5 Now we can differentiate the continuous function I(x) given by (4.34) by means of the
classic definition for differentiation of continuous functions (4.30). We obtain

d

dx
I (x) = d

dx

[ +∞∑
n=−∞

I [n] · A (x − nT )

]
=

+∞∑
n=−∞

I [n] · d

dx
[A (x − nT )]

=
+∞∑

n=−∞
I [n] · DA (x − nT ) . (4.35)

Finally, sampling (4.35) with the original sampling frequency, we obtain a formula for discrete
differentiation [117]:

d

dx
I [k] =

+∞∑
n=−∞

I [n] · DA (x − nT ) |x=kT =
+∞∑

n=−∞
I [n] · DA [(k − n) T ]

=
+∞∑

n=−∞
I [n] · dA [k − n] = I [k] ∗ dA [k] , (4.36)

5We know that after sampling a continuous signal with sampling frequency above the Nyquist threshold, its basic
spectrum gets periodic with T . The reconstructing function should have a low-pass spectrum to select the primary
band from the infinite series. The simplest solution to this is a function with a box-like spectrum – in the time domain,
this is a sinc function. Thus in (4.34) we have A(x) = sinc(x) = (sin(πx/T))/(πx/T). However, other choice of A(·) is
also possible [312].
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where dA[k − n] is a sampled derivative DA of the approximating function A(x). This is a very
important result which indicates that to compute a discrete derivative of I we need to convolve
I with a derivative mask.

For the 2D case, by the same token we obtain from (4.35)

d

dx
I (x, y) = d

dx

[ +∞∑
n,m=−∞

I [n, m] · A (x − nT, y − mT )

]

=
+∞∑

n,m=−∞
I [n, m] · d

dx
[A (x − nT, y − mT )] (4.37)

and the sampled version

d

dx
I [i, j] =

+∞∑
n,m=−∞

I [n, m] · d

dx
[A (x − nT, y − mT )]

∣∣∣∣x=iT,y= jT

=
+∞∑

n,m=−∞
I [n, m] · dA [i − n, j − m] = I [i, j] ∗ dA [i, j] . (4.38)

The above is not free from a number of practical problems, however. The first one comes
from the fact that in general the discrete convolution in (4.37) spans over infinity and if a
reconstructing functions A(x) has a long support – which, for example, is true for the sinc(x)
function – then this approach gets less practical. The second problem when using (4.37) with
A(x) = sinc(x) comes from somewhat awkward computation of gradients in an arbitrary di-
rection �v . In this case we would like to be able to use the linear property of gradients which
says that the derivative in an arbitrary direction �v can be found as a linear combination of
derivatives in the direction of the axis:

d

d�v I (x, y) = vx
d

dx
I (x, y) + vy

d

dy
I (x, y) , (4.39)

where �v = (vx, vy)T is a unit vector. With the mentioned reconstruction function, taking for
example �v = (1, 1)T, we obtain quite sparse, although infinite response of such a filter, which
is not easy to be applied in practical computations. Therefore Farid and Simoncelli propose to
look for another type of reconstruction function A(x) in (4.35) and (4.37) and their analogues
in higher dimensions. The following assumptions are imposed:

1. The interpolation function A is separable.
2. The interpolation function A is symmetric about the origin.

For the 2D case this implies that

A (x, y) = p (x) · p (y) , (4.40)
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and in consequence

d

dx
A (x, y) = d1 (x) · p (y) , (4.41)

where d1(·) is the first derivative of the 1D function p(·)

d

dx
I [i, j] =

+∞∑
n,m=−∞

I [n, m] · d1 [i − n] · p [ j − m] . (4.42)

The last expression means that the discrete derivatives are computed with two 1D filters,
d1[·] and p[·], which are discrete representations (sampled) of their continuous representations
d1(·) and p(·), respectively. From (4.42) we note also that differentiation in x direction is
achieved by separable convolution with the differentiation filter d1[·] along the x axis, and
with the interpolation filter p[·] in the direction of the y axis (i.e. vertical to x).

The last question is a choice of the p(·). In this respect Farid and Simoncelli propose to look
for such functions that ensure rotation-invariance property which means that (4.39) holds.
Choice of p(·) different from the sinc(·) function means that the reconstruction filter will not
be spectrally flat. In consequence, the derivative filters will compute the derivatives of the
spectrally changed signal, instead of the original one. It is also interesting to notice that the
directional filters computed in accordance with (4.39) in general are not rotated versions of a
common filter. This means that we will not obtain steerable filters.

Starting from (4.39), transformed into the Fourier domain, Farid and Simoncelli built an
error functional E{P, D1} which after minimization leads to the sought filters P and D1 [117].
Tables 4.2–4.5 present numerically found values for some filters commonly used in practice.

As presented in [117] optimized differentiating filters outperform the most common dif-
ferentiators in respect of the accuracy in estimating local orientation in images. This is also
crucial when computing the structural tensor, optical flow, etc., which we shall discuss later
in this chapter.

4.4.2 Savitzky–Golay Filters

Having samples of a signal, the idea behind Savitzky–Golay filtering is to fit a polynomial of
a certain degree around each sample point. Then, a filter response is taken as the value of this
polynomial computed at the point of interest. Once a polynomial is found we can get even

Table 4.2 Symmetrical differentiating Simoncelli–Farid filters of order 1, 2 samples (p, symmetric
prefilter; di, i-th order differentiating antisymmetric filter). Differentiation in x direction is obtained by
separate application of the interpolation filter p in the direction of y axis followed by the differentiation
filter d1 along the x axis

p 0.229879 0.540242 0.229879
d1 0.425287 0 −0.425287

Table 4.3 Symmetrical differentiating Simoncelli–Farid filters of order 1, 3 samples

p 0.037659 0.249153 0.426375 0.249153 0.037659
d1 0.109604 0.276691 0 −0.276691 −0.109604
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Table 4.4 Symmetrical differentiating Simoncelli–Farid filters of order 2, 3 samples

p 0.030320 0.249724 0.439911 0.249724 0.030320
d1 0.104550 0.292315 0 −0.292315 −0.104550
d2 −0.232905 −0.002668 −0.471147 0.002668 0.232905

Table 4.5 Symmetrical differentiating Simoncelli–Farid filters of order 2, 4 samples

p 0.004711 0.069321 0.245410 0.361117 0.245410 0.069321 0.004711
d1 0.018708 0.125376 0.193091 0 −0.193091 −0.125376 −0.018708
d2 −0.055336 −0.137778 0.056554 −0.273118 −0.056554 0.137778 0.055336

more from such a representation; for example, we can compute a derivative of a certain order
at a given point from the domain of this polynomial.

The polynomial is fitted around a chosen ‘central’ point which means that for a 1D function
a number of its left and right neighbour positions have also to be evaluated. Computation
of the coefficients of polynomials is done by a least-squares fitting method. Details of this
procedure, as well as a computer code, are provided in an excellent book by Press et al. [352],
for instance. However, the real beauty of this method comes from the fact that the values of
the polynomial can be obtained as a linear combination of some constant coefficients and
data samples. The coefficients depend only on the kind of chosen polynomial and number
of neighbours around a point, but not signal values at these locations. Hence, they can be
precomputed and stored in a look-up table. Furthermore, having found the coefficients, the
already presented linear filtering scheme in the form of (4.1) can be used. To see this maybe
surprising result, let us rewrite (4.1) as follows:

y [m] =
r∑

i=−r

f [r + i]x [m − i] , (4.43)

where x[i] denotes a series of data samples (a discrete signal), y[m] is a filter response at index
m and f defines a vector of the filter coefficients (sometimes called filter weights). Now, around
a chosen sample at index m and in a certain window W we wish to approximate all values of
x[i] with a polynomial x̃ (i) of order N. This situation, with two different polynomials x̃1 (i)
and x̃2 (i), is depicted in Figure 4.5.

If such a polynomial is known then its value at index m, i.e. at i = 0 in the local coordinate
system of the window W, gives a noise smoothed value of a signal x[i]. It is also straightfor-
ward to find a derivative of a certain order in that point, since x̃ (i) is assumed to be continuous
in the window W. This procedure is repeated again in new window positions, that is, in each
step W is shifted by one index. The advantage of the Savitzky–Golay filters is preservation
of the higher order statistical moments of the filtered signal. This, however, depends on the
chosen order N of the interpolating polynomial, which in practice is two or four. Actually N
determines the highest preserved moment. Moreover, the window W need not be symmetrical
in both directions [352].

Without a loss of generality let us now assume that the fitted polynomial x̃ (i) is of order
four, i.e. N = 4, and that the index iterates from −2 up to 2, i.e. there are five elements in the



P1: OTA/XYZ P2: ABC
c04 JWBK288-Cyganek December 5, 2008 1:36 Printer Name: Yet to Come

110 An Introduction to 3D Computer Vision Techniques and Algorithms
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Figure 4.5 Explanation of the Savitzky–Golay filter principle. The idea is to least-squares fit a poly-
nomial to signal data x[i] in a certain window W. Then a smoothed value or a derivative at a point m is
obtained based on found coefficients of the polynomial

window W, as depicted in Figure 4.5. The interpolation problem can be now written as

x̃ (i) = f0 + f1i + f2i2 + f3i3 + f4i4, for − 2 ≤ i ≤ 2. (4.44)

Thus, a smoothed value of the signal x[i] at a point m will be a polynomial value at index 0 in
the local coordinate system W (see Figure 4.5), that is

x̃ (0) = f0. (4.45)

However, to find f 0 we need to know all values of x[i] in W, as well as needing to at least
partially solve a set of linear equations, as we shall see soon. In a similar fashion we easily
obtain values of the derivatives:

x̃ ′ (0) = f1, x̃ ′′ (0) = 2 f2, x̃ ′′′ (0) = 6 f3, . . . (4.46)

We are interested in finding such parameters f 0, . . . , f 4 for which

x [i] ≈ x̃ (i) . (4.47)

The equation above should hold for each data point in the window W. This leads to the fol-
lowing set of equations:


x [−2] ≈ x̃ (−2) = f0 + f1 (−2) + f2 (−2)2 + f3 (−2)3 + f4 (−2)4

· · ·
x [2] ≈ x̃ (2) = f0 + f1 (2) + f2 (2)2 + f3 (2)3 + f4 (2)4

(4.48)

which is linear in respect to yet unknown values f 0, . . . , f 4. This can be written in a matrix
representation:

Pf = X, (4.49)
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where f is a column matrix of the coefficients fk, X is a column matrix with the signal values
x[k], for k ∈ W, and P is a matrix of powers of indices, i.e.

Pi j = i j , for j < N . (4.50)

The number of equations in (4.49) should be equal or greater to N + 1, since this is the num-
ber of the coefficients of the polynomial x̃ (i). Thus, in our example we have five equations.
However, the number of equations can be greater if the number of samples in W exceeds the
number of coefficients. Due to (4.47), (4.49) can be solved for f by the least-squares method,
discussed also in section 12.8. Based on (12.21)6 the solution is given as

f = (
PTP

)−1
PT︸ ︷︷ ︸

P′

X, (4.51)

where P′ is the pseudo-inverse matrix which depends exclusively on the local coordinate
values and not on the data samples. In consequence each coefficient of the polynomial x̃
is computed as the inner product of one row of the matrix P′ and the vector of discrete signal
values X. Thus, depending on the operation of our filter, whether it is smoothing (4.45) or
differentiation (4.46), only one corresponding row of P′ needs to be computed. As suggested
in [352] this can be done by the LU decomposition. A procedure described in section 12.8 can
also be used.

We can easily extend our methodology to polynomials with an arbitrary order N and higher
dimensions than one. For a 2D case the polynomial (4.44) takes the form

x̃ (i, j) =
N∑

k1,k2=0

fk1k2 i
k1 j k2 , for k1 + k2 ≤ N and −2 ≤ i, j ≤ 2. (4.52)

The parameters fk1k2 are solved in exactly the same way as before after arranging in a single
vector f. For example, for N = 4 we have

x̃ (i, j) = f00 + f01 j + f02 j2 + f03 j3 + f04 j4+
f10i + f11i j + f12i j2 + f13i j3+
f20i2 + f21i2 j + f22i2 j2+ (4.53)

f30i3 + f31i3 j+
f40i4.

Thus, each k-th row Pk of the matrix P takes the form

Pk = [
1 j j2 j3 j4 i i j i j2 i j3 i2 i2 j i2 j2 i3 i3 j i4] (4.54)

6See p. 424.
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for all possible values
{

(i, j) : −2 ≤ i, j ≤ 2
}
, which in this case results in 25 different rows.

Generally, each Pk contains

S = 1
2 (N + 1) (N + 2) (4.55)

elements, i.e. 6 for N = 2, 10 for N = 3, 15 for N = 4, 21 for N = 5, and so on. Hence, in
(4.49) P is of size 25 × 15, f of size 15 × 1 and X of size 25 × 1. In analogy to (4.45), a
smoothed value of the 2D signal corresponds to a value of the polynomial x̃ (i, j) at the point
(0, 0), that is

x̃ (i, j)|(0,0) = f00, (4.56)

which is given by f(0) in (4.51). In other words, to find the value f 00 all we need to do is
multiply a first row of the matrix P′ in (4.51) and the input data.

Similarly, from (4.52) we find the first partial derivatives at point of indices (0, 0) as follows:

∂

∂i
x̃ (i, j)

∣∣∣∣
(0,0)

= f10 and
∂

∂ j
x̃ (i, j)

∣∣∣∣
(0,0)

= f01, (4.57)

which correspond to entries f(6) and f(2), respectively, and also

∂2

∂i2
x̃ (i, j)

∣∣∣∣
(0,0)

= 2 f20,
∂2

∂i∂ j
x̃ (i, j)

∣∣∣∣
(0,0)

= f11 and
∂2

∂ j2
x̃ (i, j)

∣∣∣∣
(0,0)

= 2 f02,

(4.58)

which correspond to entries f(10), f(7) and f(3), respectively.
Getting back to our exemplary settings the few initial rows of P are

P1 = [
1 −2 4 −8 16 −2 4 −8 16 4 −8 16 −8 16 16

]
P2 = [

1 −2 4 −8 16 −1 2 −4 8 1 −2 4 −1 2 1
]

P3 = [
1 −2 4 −8 16 0 0 0 0 0 0 0 0 0 0

]
...

Having found P, from (4.51) we easily obtain the following 5 × 5 filter masks.
• For smoothing f 00. Obtained by multiplication of the following mask with the input signal

(actually m(f 00) is a formatted first row of the matrix P′ in (4.51)).

M(f 00)
0.04163265306122 −0.08081632653061 0.07836734693878 −0.08081632653061 0.04163265306122

−0.08081632653061 −0.01959183673469 0.20081632653061 −0.01959183673469 −0.08081632653061
0.07836734693878 0.20081632653061 0.44163265306122 0.20081632653061 0.07836734693878

−0.08081632653061 −0.01959183673469 0.20081632653061 −0.01959183673469 −0.08081632653061
0.04163265306122 −0.08081632653061 0.07836734693877 −0.08081632653061 0.04163265306122



P1: OTA/XYZ P2: ABC
c04 JWBK288-Cyganek December 5, 2008 1:36 Printer Name: Yet to Come

Low-level Image Processing for Image Matching 113

• First horizontal derivative f 10 (4.57). Obtained by multiplication of the following mask with
the input signal (actually this is a formatted sixth row of the matrix P′ in (4.51)).

M(f 10)
0.07380952380952 −0.10476190476190 0.00000000000000 0.10476190476190 −0.07380952380952

−0.01190476190476 −0.14761904761905 0.00000000000000 0.14761904761905 0.01190476190476
−0.04047619047619 −0.16190476190476 0.00000000000000 0.16190476190476 0.04047619047619
−0.01190476190476 −0.14761904761905 0.00000000000000 0.14761904761905 0.01190476190476

0.07380952380952 −0.10476190476191 0.00000000000000 0.10476190476190 −0.07380952380952

• First vertical derivative f 01 (4.57).

M(f 01)
0.07380952380952 −0.01190476190476 −0.04047619047619 −0.01190476190476 0.07380952380952

−0.10476190476190 −0.14761904761905 −0.16190476190476 −0.14761904761905 −0.10476190476190
0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000
0.10476190476190 0.14761904761905 0.16190476190476 0.14761904761905 0.10476190476191

−0.07380952380952 0.01190476190476 0.04047619047619 0.01190476190476 −0.07380952380952

• Mixed derivative f 11 (4.58).

M(f 11)
−0.07333333333333 0.10500000000000 0.00000000000000 −0.10500000000000 0.07333333333333

0.10500000000000 0.12333333333333 0.00000000000000 −0.12333333333333 −0.10500000000000
0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

−0.10500000000000 −0.12333333333333 0.00000000000000 0.12333333333333 0.10500000000000
0.07333333333333 −0.10500000000000 0.00000000000000 0.10500000000000 −0.07333333333333

• Second horizontal derivative f 20 (4.58).

M(f 20)
−0.04914965986395 0.15374149659864 −0.20918367346939 0.15374149659864 −0.04914965986395

0.01207482993197 0.12312925170068 −0.27040816326531 0.12312925170068 0.01207482993197
0.03248299319728 0.11292517006803 −0.29081632653061 0.11292517006803 0.03248299319728
0.01207482993197 0.12312925170068 −0.27040816326531 0.12312925170068 0.01207482993197

−0.04914965986395 0.15374149659864 −0.20918367346939 0.15374149659864 −0.04914965986395

• Second vertical derivative f 02 (4.58).

M(f 02)
−0.04914965986395 0.01207482993197 0.03248299319728 0.01207482993197 −0.04914965986395

0.15374149659864 0.12312925170068 0.11292517006803 0.12312925170068 0.15374149659864
−0.20918367346939 −0.27040816326531 −0.29081632653061 −0.27040816326531 −0.20918367346939

0.15374149659864 0.12312925170068 0.11292517006803 0.12312925170068 0.15374149659864
−0.04914965986395 0.01207482993197 0.03248299319728 0.01207482993197 −0.04914965986395

To verify the above theory the Savitzky–Golay filter has been applied to the image ‘Lena’,
commonly used for testing of image algorithms.

Results of smoothing with Savitzky–Golay filters with polynomials of order N = 3 and
N = 4 are depicted in Figure 4.6(a) and (b), respectively. The two smoothed versions do not
differ significantly from the original one. Indeed, computed PSNR (11.12) values between
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(a) (b)

Figure 4.6 Low-pass filtering with Savitzky–Golay filter of order (a) N = 3, PSNR = 32.88 and
(b) N = 4, PSNR = 39.77. (Source: www.lenna.org/USC-SIPI Image Database)

each of the smoothed versions and the input image are very high, i.e. 32.88 and 39.77 dB,
respectively.

This means that the higher the order of the polynomial (4.52) used, the stronger the adapta-
tion to the local data in images. Thus, for low-pass smoothing lower powers of the polynomial
should be chosen.

Results of the convolution with masks M(f 11), M(f 10) and M(f 01) are depicted in Figure
4.7(b)–(d), respectively. For proper visualization, values of the derivatives have been linearly
transformed into a viewable range of 0 to 255.

4.4.2.1 Generation of Savitzky–Golay Filter Coefficients

The matrix P (4.49) can be easily computed in C++ or Matlab. Algorithm 4.1 presents imple-
mentation of the Generate SavGol 2D Coordinate Matrix() function which accepts an order
of the polynomial x̃ (i, j), as well as the number of samples in directions top-left and bottom-
right from the point (0, 0). A more elaborate version would allow four different parameters
for the latter values. They define the span of the window W. The function returns an image
with integer pixels – a matrix P of size #W × S, where #W denotes the number of samples in
the window W, and S is given by (4.55).

To find coefficients of the Savitzky–Golay filter we need to compute a pseudo-inverse of the
matrix P in accordance with (4.51). This can be done with the Orphan PseudoInv Matrix()
presented in section 12.8.1 or pinv() command in Matlab (Algorithm 4.2).

Certainly, the filter coefficients have to be computed once, which can be done offline, and
stored for further usage. In applications these precomputed (constant) values are used as a
mask argument in the convolution operation (section 4.8.1.1).
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(a) (b)

(d)(c)

Figure 4.7 Results of Savitzky–Golay filter of order N = 4 applied to (a) the ‘Lena’ image: (b) mixed
derivative f 11; (c) first horizontal derivative f 10; (d) first vertical derivative f 01

4.5 Edge Detection

Edges are important features of images. They reflect edges of real objects observed in a scene,
or other types of edges such as the ones created by occluding objects, shades or other physical
phenomena in the observed scene. Edges are characteristic of strong signal variations, a prop-
erty that is used for their detection. Coordinates of edges, their length and orientation convey
important information characteristics to the contents of an image. Therefore many matching
methods rely only on comparison of edge pixels (sections 6.8.1 and 6.8.3). These features are
also frequently used in contour matching or object detection in images [135, 157, 224, 351].

An observation of luminance values in monochrome images reveals that edges corre-
spond to areas with significant change of the luminance signal. An example is depicted in
Figure 4.8.
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const long kElemsInRow = ( ( kN + 1 ) * ( kN + 2 ) ) / 2; 

( kIndexTo - kIndexFrom + 1 ) * const long kNumOfRows =  
( kIndexTo - kIndexFrom + 1 ); 

register long i, j, a, b; 

//                                           cols         rows 

LongImage * indexMatrix = new LongImage( kElemsInRow, 

kNumOfRows, 0.0 ); 

int row_counter = 0; 

//////////////////////////////////////////////////////////////// 

// These loops run through all possible indexes in the window W 

// i runs horizontally 

// j runs vertically 

for ( j = kIndexFrom; j <= kIndexTo; ++ j ) 
{    

for( i = kIndexFrom; i <= kIndexTo; ++ i ) 
{     

///////////////////////////////////////////      
// These two loops generate a single row Pk      
int col_counter = 0;      

for( a = 0; a <= kN; ++ a ) 
{      

for( b = 0; b <= kN; ++ b ) 
{       

if( a + b <= kN ) 
{        

long Power( long x, long a );        
        

indexMatrix->SetPixel( col_counter ++,          
 row_counter, theElement ); 

   

} 

       

} 

      

} 

     
REQUIRE( col_counter == kElemsInRow ); 

/////////////////////////////////////////////////////////// 
// This function orphans a coordinate matrix for the 
// Savitzky-Golay filter. 
/////////////////////////////////////////////////////////// 
// 
// INPUT: 

kN - degree of the interpolating polynomial // 
kIndexFrom - number of samples to the left // 

from the central one // 
kIndexTo - number of samples from to the right // 

from the central one // 
// 
// OUTPUT: 

Orphaned image - a matrix P // 
// 
// REMARKS: 

The returned object has to be deleted by // 
a calling part. // 

// 
LongImage * Generate_SavGol_2D_Coordinate_Matrix( const long kN,  

{ 

 const long kIndexFrom, const long kIndexTo )   

long theElement = Power( i, a ) * Power( j, b );  

Algorithm 4.1 Function for generation of the matrix P (4.49)
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///////////////////////////////////////////      

// changing any value of i or j moves us to a new row      

    
++ row_counter;                 }  

     
 } 

   
//////////////////////////////////////////////////////////////// 

   REQUIRE( row_counter == kNumOfRows ); 

   return indexMatrix; 

   
} 

  

  
  
  

    
  

    
    
    

  
    
    

  
    
    

  
  

   
   
   
   

/////////////////////////////////////////////////////////// 
// This function computes a power of integer values: x^a 
/////////////////////////////////////////////////////////// 
// 
// INPUT: 

x - argument value // 
a - power value // 

// 
// OUTPUT: 

x ^ a // 
// 
// REMARKS: 
// 
// 
long Power( long x, long a ) 
{ 

register long retVal = 1; 
while( a -- > 0 ) 

retVal *= x;  
return retVal; 

} 

Algorithm 4.1 (Continued)

In this section we present a signal-based approach to edge detection. A more in-depth treat-
ment of the important problem of edge detection can be found in the literature such as the
paper by Canny [60] or the books by Jähne [224], Gonzalez and Woods [157], Forsyth and
Ponce [135] and Pratt [351].

From this perspective there are two basic ways of signal analysis for edge detection.

1. Computation of the modulus of the signal gradient which involves computation of the first
derivatives.

2. Analysis of zero-crossings which is based on the second derivatives of a signal.

4.5.1 Edges from Signal Gradient

Let us assume that the function I(p, q) takes on discrete values of luminance at the image
point given by coordinates p and q. Without lost of generality we can assume also that the
luminance function is a 2D continuous function I(x, y).7 With these assumptions we can use

7Change of a discrete representation into a continuous one is possible, e.g. by interpolation, preserving original values
at the discrete points. This is discussed in section 4.4.
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///////////////////////////////////////////////////////////   
// This function orphans coefficients of the Savitzky-Golay   
// filter.   
///////////////////////////////////////////////////////////   

  //   
// INPUT:   

kN - degree of the interpolating polynomial   //   
kIndexFrom - number of samples to the left   //   

from the central one    //   
kIndexTo - number of samples from to the right   //   

from the central one    //   
  //   

// OUTPUT:   
Orphaned image - a matrix ~P   //   

  //   
// REMARKS:   

The returned object has to be deleted by   //   
a calling part.   //   

  //   
TRealImage * Compute_SavGol_Filer( const long kN,   

{ 

  
LongImage * SG_CoordMatrix = 

   
Generate_SavGol_2D_Coordinate_Matrix( kN,kIndexFrom,kIndexTo ); 

   REQUIRE( SG_CoordMatrix != 0 ); 

   TRealImage tmp_SG_CoordMatrix( * SG_CoordMatrix ); 

   
delete SG_CoordMatrix; 

   TRealImage * SG_FilterCoeffs = 

   
Orphan_PseudoInv_Matrix< double, double >( tmp_SG_CoordMatrix ); 

   return SG_FilterCoeffs; 

   
} 

  

const long kIndexFrom, const long kIndexTo ) 

Algorithm 4.2 Function for computation of the pseudo-inverse matrix P′ (4.51)
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Figure 4.8 Fragment of an image containing an edge – strong variation of the luminance signal
(vertical axis)
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the intensity gradient vector defined as [259]

∇ I (x, y) =
[
∂ I (x, y)

∂x
,
∂ I (x, y)

∂y

]T

. (4.59)

For each image point the triple (x, y, I(x, y)) defines a plane, for which the normal vector is
given as [246, 247]

n =
[
∂ I (x, y)

∂x
,
∂ I (x, y)

∂y
, 1

]T

. (4.60)

For edge detection moduli of the gradient and normal to the gradient vectors,

‖∇ I‖ and ‖n‖ , (4.61)

are analysed. The most common here is application of the L2 norm which leads to the follow-
ing formulas:

‖∇ I‖L2
=

√(
∂ I

∂x

)2

+
(

∂ I

∂y

)2

and ‖n‖L2
=

√(
∂ I

∂x

)2

+
(

∂ I

∂y

)2

+ 1. (4.62)

However, a simplification of computations can be achieved employing the L1 norm in (4.61).
In this case the following approximation of ‖∇ I‖ is obtained:

‖∇ I‖L1
=

∣∣∣∣
(

∂ I

∂x

)∣∣∣∣ +
∣∣∣∣
(

∂ I

∂y

)∣∣∣∣ . (4.63)

The modulus of the gradient vector takes on its minimal value for areas with constant
luminance values, for which all gradients are zero. It grows in areas with much variation of
the luminance signal. The latter happens just in the case of edges. Therefore a value ||∇I‖ is
commonly used for edge detection. In the case of binary images components of the gradient
are computed by means of one of the methods of discrete differentiation (section 4.4).

4.5.2 Edges from the Savitzky–Golay Filter

As alluded to previously, finding edges can be accomplished with computation of a norm of
the signal gradient vector [157, 224]. In the case of the Savitzky–Golay filter (section 4.4.2)
this can be stated in the following form:

‖∇ x̃ (i, j)‖ at a point (i, j) = (0, 0), (4.64)

where x̃ (i, j) is the signal interpolating polynomial.
Depending on the chosen norm, we obtain the formula

‖∇ x̃ (i, j)‖L1
=

∣∣∣∣ ∂

∂i
x̃ (i, j)

∣∣∣∣ +
∣∣∣∣ ∂

∂ j
x̃ (i, j)

∣∣∣∣ (4.65)
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(a) (b)

Figure 4.9 Edge detection with Savitzky–Golay filter of order N = 4: (a) using the L1 norm; (b) using
the L2 norm

for the norm L1 and

‖∇ x̃ (i, j)‖L2
=

√(
∂

∂i
x̃ (i, j)

)2

+
(

∂

∂ j
x̃ (i, j)

)2

(4.66)

for L2. Exemplary results of the two applied to the ‘Lena’ test image are presented in
Figure 4.9.

Obviously computations with L1 require less effort since we avoid multiplications and the
square root.

4.5.3 Laplacian of Gaussian

A detector with much better isotropic8 characteristics can be obtained from the Laplace
operator,9 which is defined as [224]

∇2 I (x, y) = ∂2 I

∂x2
+ ∂2 I

∂y2
. (4.67)

In the case of a signal change the operators with the first derivative, e.g. the gradient modulus
operator (4.61), exhibit one extreme while the operators employing the second derivate, e.g.

8We call a feature detector isotropic if its response does not depend on the local direction of a detected feature.
9Let us recall the rules of repeated applications of the operator ∇ (pronounced ‘del’ or ‘delta’):

∇2(•) ≡ ∇(•) · ∇(•) ≡ (∇ · ∇)(•) ≡ �(•) ≡
(

∂2(•)

∂x2
1

+ · · · + ∂2(•)

∂x2
N

)
≡ div grad(•)

where (•) denotes a differentiable N-dimensional function.
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Figure 4.10 Exemplary edge detector for the 1D continuous case. From top to bottom: input signal,
its first derivative, its second derivative. The latter crosses the zero value at the inflection point

like the Laplace operator (4.67), show two extrema with different signs which implies a zero
value between these two.

Hence, a method of edge detection is based on finding zero crossings of the second deriva-
tive of a signal (so-called zero crossing operator). This is a very useful feature when it comes
to computations since the search for zero crossing is easier than the search for an extreme
value. Figure 4.10 presents an example of an edge signal (top curve) and its first (middle
curve) and second derivatives (bottom curve). We notice that at a central point 0, where we
spot an edge, the first derivative reaches its maximum, whereas the second derivative crosses
the zero value.

In the case of real images, the flaw of the Laplace operator comes from its susceptibility to
noise, which is ubiquitous in images (Chapter 11). This is caused by transmittance function
of this operator in the frequency domain, which is proportional to the square of the frequency
argument. Therefore the response of the Laplace operator is significant also for high frequen-
cies which are characteristic of the noise spectrum. Thus, it is necessary to limit somehow
the noise level in the input signal. This can be done by a prefiltering of the input signal with
a low-pass filter, such as the Gaussian filter (section 4.3.1) or its similar binomial filter (sec-
tion 4.3.2). The connection of these two modules, i.e. the Gaussian filter with the Laplace
operator, is called the Laplacian of Gaussian (LoG) [351]. Mathematically, this idea can be
expressed as

∇2 (G ∗ I ) , (4.68)

where G(x, y, σ ) is a 2D Gaussian function given by (4.14). In the case of continuous function,
(4.68) and (4.14) can be put in the following form:

∇2 (G ∗ I ) = (∇2G
) ∗ I, (4.69)
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which means connection of the smoothing action, done by the Gaussian filter, with the second
order differentiation, accomplished by the Laplace operator, into a single operator. Then the
compound operator is applied to the input image for edge extraction.

The connection of the Gaussian (4.14) with Laplacian (4.67) leads to the following
expression:

∇2G (x, y, σ ) = − 1

2πσ 4

(
2 − x2 + y2

σ 2

)
exp

(
− x2 + y2

2σ 2

)
. (4.70)

Computation of (4.70) can be greatly simplified after noticing [173, 247] that this 2D oper-
ator can be decomposed into an equivalent combination of two 1D operators (section 4.2.2):

g(x, y) = g1(x)g2(y) + g2(x)g1(y), (4.71)

where

g1 (t) = − 1

2πσ 4

(
1 − t2

σ 2

)
exp

(
− t2

2σ 2

)
, g2 (t) = exp

(
− t2

2σ 2

)
. (4.72)

Plots of the functions g1(t) and g2(t) are shown in Figure 4.11.
A transition of the kernel (4.70) to the discrete domain requires proper choice of parameters

in (4.70). The most important is the size of the chosen discrete mask. We obtain width w of
the central negative part of the LoG convolution kernel by comparison of (4.70) with zero and
doubling module of that result (why?):

w = 2
√

2σ. (4.73)

The analysis we have presented so far relates to the case of continuous signals. Now it is
time to scrutinize the discrete case. The application of the LoG operator to the discrete signals
(images) requires determination of the size of its discrete mask. Such a mask is obtained
from uniform sampling with a proper sampling frequency of the continuous function LoG
in a certain finite interval. Analysing Figure 4.11 we conclude that a reasonable size of the
finite interval can be set to 3w × 3w, since outside this range the value of the LoG function
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Figure 4.11 Plots of the functions g2(t) and g1(t) for σ = 2.0
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practically reaches zero.10 The unknown value left is the mentioned sampling frequency. It can
be determined by means of spectral analysis with the Fourier transform of the LoG function.
The latter can be found, at first, by determining the Fourier transform of the Gaussian function,
then with the help of the theorem of the Fourier transform of the function derivative [312].
The Fourier transform from the Gaussian function, and up to the multiplicative constant, is
given as

Ĝ(ω) =
+∞∫

−∞
exp

(
− t2

2σ 2

)
exp (− jωt) dt =

+∞∫
−∞

exp

(
− t2

2σ 2
− jωt

)
dt

=
+∞∫

−∞
exp

(
− 1

2σ 2
(t2 + 2σ 2 jωt)

)
dt =

+∞∫
−∞

exp

(
− 1

2σ 2

[
(t + σ 2 jω)2 + σ 4ω2

])
dt

=
+∞∫

−∞
exp

(
−σ 2ω2

2

)
exp

(
− 1

2σ 2
(t + σ 2 jω)2

)
dt

= exp

(
−σ 2ω2

2

) +∞∫
−∞

exp

(
− 1

2σ 2
(t + σ 2 jω)2

)
dt

=
{

t + σ 2 jω = x
dt = dx

}
= exp

(
−σ 2ω2

2

) +∞∫
−∞

exp

(
− 1

2σ 2
x2

)
dx . (4.74)

The last integral in the above formula can be found based on [259]

+∞∫
−∞

e−a2x2
dx =

√
π

a
, a > 0. (4.75)

From the integral (4.75), and taking the multiplicative scalar from the Gaussian (4.14), we
obtain the transform

G (ω) = 1√
2πσ

exp

(
−σ 2ω2

2

)
. (4.76)

Taking (4.76) and by virtue of the Fourier transform, we obtain

L (ω) = −ω2

√
2πσ

exp

(
−σ 2ω2

2

)
. (4.77)

Figure 4.12 depicts a plot of the function L(ω), for σ = 2.

10Remember that w is a width of the central negative part of the one dimensional LoG convolution kernel (see Figure
4.11). In this case we consider the two dimensional discrete mask.
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Figure 4.12 Plot of the function L(ω) (for σ = 2.0)

From Figure 4.12 it is evident that L(ω) is a band-pass filter whose parameters can be found
after computing extremes of L(ω). For this purpose we compute L′(ω):

L ′ (ω) = −2ω√
2πσ

exp

(
−σ 2ω2

2

)
− ω2

(−ωσ 2
)

√
2πσ

exp

(
−σ 2ω2

2

)
. (4.78)

Equating the above to 0, we obtain the extreme points of the function L(ω) as

ω
(
2 − σ 2ω2

) = 0

ω0 = 0, ω1,2 = ±
√

2

σ
. (4.79)

Analysing the plot of L(ω), shown in Figure 4.12, and considering the angular frequency

ω1 =
√

2

σ
, (4.80)

we can assume that the limit angular frequency of the LoG is

ωg = 3ω1 = 3
√

2

σ
. (4.81)

From this, and based on the sampling theorem [312, 336], we obtain an expression connecting
a distance �x between consecutive samples in the following form:

�x = 1

2 fg
= π

ωg
= πσ

3
√

2
. (4.82)
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Figure 4.13 Normalized LoG filter mask for n = 57, σ = 6.717

Because the minimal mask size was set to 3w × 3w then, based on (4.73) and (4.82), we
obtain the minimal size of the discrete mask of the LoG filter:

3w

�x
× 3w

�x
⇔

3
(

2
√

2σ
)

�x
×

3
(

2
√

2σ
)

�x
⇔ 12

3

π
× 12

3

π
. (4.83)

Taking the minimal size of the discrete mask to be the nearest odd integer value, greater in
value than in (4.83), we obtain finally that the minimal size of the discrete LoG mask is 13 ×
13 pixels. Figure 4.13 shows an exemplary mask of the LoG filter for n = 57.

Tanaka and Kak [415] proposed an additional notation of edges found by this method to
convey information on the type of local neighbourhood centred at the LoG zero crossing.
In this notation p denotes crossing of discrete signal from large to small luminance values,
whereas n denotes the opposite direction; o is set if the classification is not possible (e.g. the

(a) (b)

Figure 4.14 (a) ‘Corridor’ and (b) ‘Trees’ processed by the LoG operator with mask 27 × 27 (σ =
3.18). Plus-minus lines in grey, minus-plus in black
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two neighbouring values are almost identical or at noise level). Figure 4.14 depicts ‘Corridor’
and ‘Trees’ test images processed by the LoG operator with 27 × 27 mask (σ = 3.18); plus-
minus lines are in grey, minus-plus in black.

4.5.4 Difference of Gaussians

The Laplacian of Gaussian (LoG) ∇2G(x, y, σ ), given by (4.70), plays a key role in the scale-
space theory, as shown by Lindeberg [277]. He proved that the LoG normalized by σ 2 (ssLoG),
given as

σ 2∇2G (x, y, σ ) = − 1

2πσ 2

(
2 − x2 + y2

σ 2

)
exp

(
− x2 + y2

2σ 2

)
, (4.84)

is required for the true scale-space invariance. It can be shown that ssLoG is strictly related to
the difference of Gaussians (DoG). As presented by Lowe [283], taking the (heat) diffusion
equation and exchanging the time parameter t by σ , gives

∂G(x, y, σ )

∂σ
= σ∇2G(x, y, σ ), (4.85)

which can be approximated by expanding its left side by the finite difference, since

∂G(x, y, σ )

∂σ
= lim

�σ→0

G(x, y, σ + �σ ) − G(x, y, σ )

�σ
. (4.86)

Placing ∇σ = σ (k − 1) in the above we obtain

∂G(x, y, σ )

∂σ
= lim

k→1

G(x, y, kσ ) − G(x, y, σ )

σ (k − 1)
. (4.87)

Thus, (4.85) can be approximated as

(k − 1) σ 2∇2G(x, y, σ ) ≈ G(x, y, kσ ) − G(x, y, σ ), (4.88)

where the right side of the above denotes the difference of Gaussians, DoG, defined as

D(x, y, σ ) = G(x, y, kσ ) − G(x, y, σ ). (4.89)

Thus, we see that σ 2∇2G(x, y, σ ) ∼ D(x, y, σ ), for k sufficiently close to 1. Nevertheless, Lowe
reports good practical results for k = 21/s, where s > 1 is an integer denoting the number of
intervals within a single scale level.

Compared with many commonly known feature detectors, it appears that extrema of ssLoG
give one of the most stable image features under the group of image distortions [310]. This
property was used in [283] to design a detector of distinctive image features (called SIFT –
Scale Invariant Feature Transform), used with great success for object detection in natural
scenes.
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4.5.5 Morphological Edge Detector

Image morphological operators have attracted great interest in many areas of image process-
ing, such as filtering, segmentation, classification, contour detection, edge cleaning, texture
analysis, etc. They follow mathematical operations defined on a group of sets. However, they
are also equivalent to the group of rank order filters.

In the case of scalar-valued images, denoted as f (x), the operations of dilation d(x) and
erosion e(x) with the structural element denoted by s(y) are defined as [396]

d (x) = max
y∈S

[ f (x + y) + s (y)] , (4.90)

e (x) = min
y∈S∗

[
f (x + y) − s∗ (y)

]
. (4.91)

It is assumed that S and S
∗

denote the support for the structural elements s(y) and s∗(y),
respectively, where s∗(y) = s(−y) for all y ∈ S

∗
.

The morphological gradient (so called Beucher gradient) is defined as the arithmetical dif-
ference between results of dilation and erosion, applied to the same image and with the same
structural element [39, 357]. In terms of the already introduced symbols, the morphological
gradient can be expressed as follows:

g = d − e. (4.92)

It can be shown that the morphological gradient g is equivalent to the norm of the ‘classic’
gradient vector of an image, i.e. it holds that [396]

g ( f ) ≡ ‖∇ f ‖ , (4.93)

where f denotes a differentiable signal of an image.
Some examples of the morphological gradient computed from different signal representa-

tions of the same image are presented in Figure 4.15. The colour version of the input image
and its gradient computed separately in each colour channel depict Plate 3. The monochrome
version and its Beucher gradient depict Figure 4.15(a, b)). The last pair depicts a binary ver-
sion of the image from Figure 4.15(a) obtained after thresholding around its median value.
The morphological gradient for that image is shown in Figure 4.15(d). In all examples the
3 × 3 square structural elements were used.

4.6 Structural Tensor

In this section we present a very useful technique of detecting local structures in images and
their parameters, such as strength of a signal, its coherence as well as local orientation. These
can be used in a variety of computer vision tasks, such as object detection, texture analysis
and image matching.
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(a)

(c) (d)

(b)

Figure 4.15 Examples of the morphological gradient computed from (a, b) grey valued image and
from (c, d) binary version of the image (gradient from a colour version of this image depicted on
Plate 3)

4.6.1 Locally Oriented Neighbourhoods in Images

People easily perceive patterns in images. This is achieved easily even if the only change in
an image is caused by small variation of intensity, change of scale or local orientations. The
latter has been shown by many psychophysical experiments to play a very important role in
perception by humans and other mammals [161, 442].

Observing each of the images depicted in Figure 4.16 we easily perceive an object con-
tained there – the capital letter ‘E’ – although in each instance our knowledge comes from
different phenomena. Change of the luminance signal is one of them (Figure 4.16(a)). Partic-
ularly, its nonzero gradient in a certain direction conveys sufficient information on edges. At
the same time such a gradient can be used to measure local orientation in images [224]. In Fig-
ure 4.16(b) we do not spot such edges. Instead we perceive local change of texture, caused by
a difference of scale in the area of the visible object and the background [398]. Nevertheless,
change of scale allows precise placement of an object in respect to the background. Finally,
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(a) (b) (c)

Figure 4.16 Recognition of the letter ‘E’ in images based on difference in (a) intensities, (b) scale and
(c) orientation of local patterns

observing Figure 4.16(c) we come to the conclusion that even a bare change of orientation of
local patterns is sufficient for us to precisely tell the letter ‘E’ from the rest of an image.

Apparently, our visual system is endowed with mechanisms allowing us to react to local
change in intensity, scale and orientation in local neighbourhoods of pixels. Then, based on
information acquired this way, we are able to draw conclusions about observed 3D space.

Let us now analyse the image in Figure 4.17 and ask what can be thought of as a local
structure. Taking different areas of an image and at different scales we notice that in many of
them we can spot some regular patterns. Moreover, if there is such a regularity then the whole
area can be analysed after being substituted by a simple representation.

Figure 4.17 What is a local neighbourhood in an image?
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(a) (b)

Figure 4.18 Representation of a dominating direction w in local neighbourhoods U(x0). (a) In a ran-
domly changing signal it is not possible to reliably choose a dominating direction. (b) In a regular
structure a dominating directional vector can be determined

4.6.1.1 Local Neighbourhood with Orientation

Let us choose a certain compact neighbourhood U of pixels around a point x0 (Figure 4.18).
Then, for each pixel i ∈ U let us compute a gradient vector qi. Can we now find such a vector
w that fits best all the other vectors qi? If so, then let the vector w represent orientation of the
whole neighbourhood U. What we require is that w is invariant to a rotation of 180◦. We need
also a measure of ‘how reliable’ is such a representation. This can be assessed by measuring
a cumulative deviation of qi to w for all i ∈ U.

In Figure 4.18(a) a neighbourhood U contains points with randomly changing intensity sig-
nal. No uniformly oriented structure can be observed. Therefore the gradients qi in U of will
point more or less in random directions. As a consequence selection of its uniform representa-
tion in a form of a unique directional vector w is not possible. A different situation is depicted
in Figure 4.18(b) in which a regular intensity pattern can be observed. As a result, the gradi-
ent vectors are highly regular reflecting common orientation of the intensity signal. The only
uncertainty is their directions which can differ by 180◦. The two images show us two opposite
examples of local structures. The first one shows no regular orientation. The latter shows a
structure with a perfect orientation. However, a unique orientation cannot be determined in a
pattern with regular rings, depicted in Figure 4.19. We would like to distinguish such a case
from Figure 4.18(a) as well.

For the pattern in Figure 4.19 we notice that the gradient vectors indeed exist; how-
ever, it is not possible to choose such a local orientation w that would represent
them all.

4.6.1.2 Definition of a Local Neighbourhood of Pixels

Based on the discussion above we can conclude that the ideal locally oriented neighbourhood
can be distinguished in an image if signal changes therein reflect a common direction. Such a
case is often called linear symmetry, because luminance changes along the symmetry axis are
constant, whereas those across it show quite significant variations.
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Figure 4.19 Regular ring pattern

Figure 4.18(b) presents an image fragment with evident direction of luminance change in
a certain local neighbourhood of pixels. Figure 4.20 shows the same image with directional
vectors a, b and c at a certain local neighbourhood of pixels around a point x0. The gradient
vectors qi are perpendicular to the areas (lines) of constant intensity and they point in the
direction of a maximal signal change. So, in this simple case, all we need to describe this lo-
cally oriented neighbourhood of pixels is to provide a gradient vector and particular values of
intensity alongside this gradient. In other words, all image points can be uniquely determined
from gradient direction and one intensity value at a given point along that gradient.

Conducting a further analysis we come to a conclusion that a good approximation of a
locally oriented neighbourhood of pixels could be established by introduction of an averaged
gradient vector for that neighbourhood. In such a manner we would be able to substitute
local neighbourhood of pixel intensities with more prominent information on their dominating
direction. However, we have to be careful when thinking of gradient averaging, since a simple
averaging throughout the whole neighbourhood can result in opposing gradients cancelling
out each other.

Figure 4.20 Dimensionality reduction in the case of an ideal local structure
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The above discussion suggests that a good measure of a local orientation in a certain neigh-
bourhood of pixels should be invariant to a rotation of 180◦. This means for example that
a local orientation of 45◦ is indistinguishable from a 225◦ orientation. At the same time it
should be periodic with 180◦, i.e. after reaching 179◦ it should reach 0◦ again. Thus, having a
directional vector of local orientation that phase changes from 0 to 360◦, then the correspond-
ing vector of local orientation will have doubled phase. This conclusion will be used when
deriving the vector of local orientation in pixel neighbourhoods.

The next constraint imposed on such a directional vector is a requirement of additional in-
formation on the type of local structure. This is a new concept that allows for differentiation
between pure anisotropic areas in images from those with clear local structure. Such an in-
dicator we call a coherence measure or just a coherence. This way we are able to selectively
interpret information conveyed by an image only in places that manifest sufficient coherence
coefficient.

The aforementioned postulates are grouped as follows.

1. The local structure in a certain neighbourhood of pixels should be represented by a vector
whose modulus and phase correspond to local signal changes in this neighbourhood.

2. The measure of local orientation should be invariant to a rotation of 180◦.
3. The measure of local orientation should be augmented by additional information on its

type.

Analysing Figure 4.20 we find out that if one of the coordinate axes is oriented in the same
direction as the direction of change in its local neighbourhood, then the whole neighbourhood
can be described by a 1D function. Thus, selection of a certain direction of signal change
leads to reduction of the space dimension. If there is a perfect local orientation in a local
neighbourhood U of pixels around x0, then we can associate a local coordinate system with
U, oriented with w and anchored at x0 (Figure 4.20). Now, a pixel value at different locations
a, b and c in this local system can be found from the inner product of the directional vector
x (such as a, b and c) and one of the axes of the new coordinate system. In other words, the
1D value (i.e. the inner product) plus the directional vector is what is necessary to uniquely
represent such a local neighbourhood of pixels.

These observations can be formalized by introduction of the following definition [160, 224].
Definition 4.1. A local neighbourhood of any dimension is given by a tensor11 S

S(x) = I(x · w), (4.94)

where I denotes a tensor whose dimension depends on the luminance signal of an image, x is
the spatial coordinate, w is a constant vector of direction of the maximal signal change and (·)
denotes a scalar product, i.e. x · w = xTw is a scalar value. This definition states simply that
a local neighbourhood is a tensor whose dimensionality depends on the dimensionality of the
input signal (through the spatial coordinate x); however, its value is a scalar function of the
tensor I in the direction w.

11Chapter 10 gives a brief introduction to tensor analysis.
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4.6.2 Tensor Representation of Local Neighbourhoods

Let us choose a certain local neighbourhood U around a point x0 (see Figure 4.18). Further,
with each point x ∈ U let us associate a vector q(x) representing local signal direction at a
point x. We are looking for such a vector w(x0) that is as close as possible to all directional
vectors q from U. Let us notice also that the vector w(x0) denotes a different thing from q(x0),
although it can happen that the two coincide. Very important is the choice of a measure to
compare how close two vectors are to each other. For this purpose let us compare vectors
with their inner product. Thus, having vectors w and q we compute their inner product ρ as
follows:

ρ = q(x) · w(x0) = qT(x)w(x0). (4.95)

We assume also that the direction of q should be irrelevant for this comparison, so vectors
q and −q are treated the same. We can simply accommodate this request by taking either
an absolute value |ρ| or its square ρ2, which we prefer for reasons explained later on. To
find w(x0) the value of ρ has to be computed for all directional vectors q and their squares
summed over U(x0). This way we obtain a functional Q which takes on a maximum for the
sought w(x0):

Q =
∫

U (x0)

ρ(x)2dx. (4.96)

In these terms, the task of finding w(x0) can be stated as the following maximization problem:

max
w

(Q) = max
w


 ∫

U (x0)

ρ(x)2dx


 . (4.97)

Before we try to solve the optimization task (4.97) let us expand the functional Q given in
(4.96):

Q =
∫

U (x0)

ρ(x)2dx =
∫

U (x0)

(
qT(x)w(x0)

)2
dx

=
∫

U (x0)

(
qT(x)w(x0)

) (
qT(x)w(x0)

)
dx

=
∫

U (x0)

(
wT(x0)q(x)

) (
qT(x)w(x0)

)
dx

= wT(x0)


 ∫

U (x0)

q(x)qT(x)dx


w(x0) = wT(x0)T(x0)w(x0). (4.98)
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In the last expression we introduced the so-called structural tensor T(x0) at a point x0, defined
as [160, 181, 182, 224, 226]

T(x0) =
∫

U (x0)

q(x)qT (x)dx, (4.99)

assuming that such an integral exists. Let us note that q(x)qT(x) expresses the outer product of
the directional vector with itself. This is a result of a π rotation invariance. By this token T is a
symmetrical tensor whose dimension directly follows the dimension of a space of directional
vectors q. As a consequence the two important properties of T are obtained.

1. All elements Tij of T, given as

Ti j =
∫

U (x0)

qi (x)q j (x)dx, (4.100)

are real.
2. Eigenvectors of T create an orthogonal basis [308, 317].

Let us now rewrite (4.97) taking into consideration the structural tensor (4.99):

max
w

(Q) = max
w

(wTTw). (4.101)

The above can be solved for w(x0) by constrained optimization method, i.e. using the theorem
of Lagrange multipliers [36, 127, 317, 331]. This theorem provides sufficient conditions for a
function a(w) to reach its extreme, given certain constraint b(w) = 0. At first, the following
functional is constructed:

L(w) = a(w) − λb(w), (4.102)

where λ is a Lagrange multiplier. Then, sufficient conditions for a minimal or maximal value
require partial derivatives to vanish, that is:

∂L(w, λ)

∂w
= 0 and

∂L(w, λ)

∂λ
= 0. (4.103)

Let us adapt our optimization problem (4.101) to the conditions of the above theorem. At
the beginning let us state a constraint b(w). Without loss of generality we can start from an
inner product

wTw = c, (4.104)

where c = |w|2 is a constant. This leads directly to

b(w) = wTw − c = 0. (4.105)
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Now, considering (4.101) and (4.105), the Lagrange multiplier (4.102) takes on the form

L(w) = wTTw − λ(wTw − c), (4.106)

where λ is a free variable, called a Lagrange multiplier.
A solution comes directly from (4.106) and (4.103) after computing partial derivatives and

equating them to zero:12

∂L(w, λ)

∂w
= ∂

∂w
(wTTw) − λ

∂

∂w
(wTw)

= [
T + TT

]
w − 2λw = 2Tw − 2λw = 0. (4.107)

This after rewriting leads to the formula

Tw = λw. (4.108)

The last equation holds if w = w′ is an eigenvector of T and λ is a corresponding eigen-
value. The second condition in (4.103) is fulfilled immediately from (4.106) and the condition
(4.104).

Up to this point we found conditions for an extreme, but to finish we have to specify con-
ditions for a maximum. This can be done by substituting (4.108) and w′ back into (4.101):

Qmax = w′T Tw′︸︷︷︸
=λw ′

= w′T λw′ = λ w′T w′︸ ︷︷ ︸
=c

= λc, (4.109)

which is maximized if λ is the largest eigenvalue of T and w′ is an eigenvector corresponding
to this eigenvalue.

A possible choice of |ρ| instead of ρ2 in (4.97) would lead to a more cumbersome functional
Q′ in which integration spans over space that is directly dependent on the sought directional
vector w(x0), and which does not lead to a closed form solution like (4.99). Moreover |ρ|,
although being a smooth function, is not differentiable at the origin which can pose some
problems if used in optimization functionals.

12The derivatives can be verified as follows:

f (x) = xTAx = [
x1 · · · xn

]



a11 . . . a1n

...
. . .

...
an1 · · · ann






x1

...
xn


 =

[ n∑
i=1

ai1xi · · ·
n∑

i=1
ain xi

]


x1

...
xn




∂ f

∂x1
=

(
n∑

i=1

ai1xi + x1a11

)
+ x2a12 + · · · + xna1n =

n∑
i=1

(ai1 + a1i ) xi =
(
AT

Col 1 + ARow 1

)
x

· · ·
∂ f

∂xn
= xnan1 + xnan2 + · · · +

(
xnain +

n∑
i=1

ain xi

)
=

n∑
i=1

(ain + ani ) xi =
(
AT

Col n + ARow n

)
x

∇ f (x) =
[

∂ f

∂x1
· · · ∂ f

∂xn

]T

=
[
AT + A

]
x.
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Instead of building the functional Q as it is in (4.97), the problem of finding w(x0) can
be approached in a more statistical fashion. For this purpose a histogram of local orientations
(i.e. phases of gradient vectors qi) in a given neighbourhood can be built, from which the most
frequent one is taken to represent that neighbourhood. Such an approximation was undertaken,
for example, by Lowe in his SIFT detector [283].

4.6.2.1 2D Structural Tensor

Let us now focus on the 2D structural tensor T the components of which – given by (4.100) –
can be denoted in a matrix-like fashion:

T =
[

T11 T12

T21 T22

]
, (4.110)

where all Tij, given by (4.100), are real and symmetrical, i.e.

T12 = T21. (4.111)

This special case is important for at least two reasons. The first is an obvious application to
2D images. The second comes from the close form of formulas for the eigenvalues and eigen-
vectors of T which, as we have already seen in the previous paragraphs, constitute a solution
to our problem of dominating direction in small local neighbourhoods of pixels (4.97).

To find a spectrum of T (i.e. all its eigenvalues) we have to check the singularity of the
resolving matrix: T − λI, where λ stands for eigenvalues and I is a unit matrix (2D in this
case) [259, 317]. The resolving matrix is singular if its determinant is zero:

ϕ (λ) = det [T − λ1] =
∣∣∣∣ T11 − λ T12

T21 T22 − λ

∣∣∣∣
= λ2 − λ (T11 + T22) + (

T11T22 − T 2
12

) = 0. (4.112)

Since the above is a simple quadratic equation with respect to λ, we found its solution in a
plausible closed form:

λ1 = 1

2

[
(T11 + T22) +

√
(T11 − T22)2 + 4T 2

12

]
,

λ2 = 1

2

[
(T11 + T22) −

√
(T11 − T22)2 + 4T 2

12

]
. (4.113)

From this solution it follows easily that

λ1 + λ2 = T11 + T22 = Tr(T), (4.114)

λ1 − λ2 =
√

(T11 − T22)2 + 4T 2
12, (4.115)

λ1λ2 = det (T) = T11T22 − T 2
12, (4.116)
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where Tr(T) denotes the trace of T. The trace is invariant to the similarity transformation
[259], i.e. given a matrix U for which there exists such a nonsingular matrix R that U =
RTR−1. The similar matrices T and U have the same eigenvalues. This indicates that Tr(T) is
invariant to the rotation. From (4.115) we see also that λ1 ≥ λ2.

Having found two eigenvalues let us consider the following special cases which are impor-
tant from a practical point of view:

1. Equal eigenvalues:

λ1 = λ2 ⇔ (T11 = T22 ∧ T12 = T21 = 0). (4.117)

If in addition the two are zero, then

λ1 = λ2 = 0 ⇔ T11 = T22 = 0. (4.118)

2. Different eigenvalues with the smallest one equal to zero:

λ2 = 0 ⇔ {det (T) = 0 ∧ λ1 = Tr(T)}. (4.119)

All that we have achieved so far allows us to employ the 2D structural tensor to the analysis
of characteristic patterns in images. This can be done by checking the eigenvalues of T or,
computationally less expensive, by checking rank of T. Table 4.6 contains four characteristic
cases of local neighbourhoods of pixels which can be deduced directly from eigenvalues or
the rank of T [224].

Table 4.6 Types of local structures from the structural tensor

Rank
of T Eigenvalues Type of local structure

0 λ1 = λ2 = 0 Constant intensity in an image – no signal change.

1 λ2 = 0, λ1 > 0 Intensity signal does not change in the direction associated with the
smallest eigenvalue λ2. However, there is a change in the direction
associated with λ1. This means that there is an ideal local structure.
For vectors q in (4.99) which are intensity gradients, the eigenvector
corresponding to λ1 indicates a direction of maximal signal change in
this neighbourhood of pixels.

A special case of λ1 � λ2 ≈ 0 can indicate lines in images.

2 λ1 > 0, λ2 > 0 The two eigenvalues are greater than zero, this means that there are
changes in all directions. If one of the eigenvalues is dominating, then
there is a dominating direction of signal changes.
A special case of λ1 ≥ λ2 � 0 can indicate corners in images (section
4.7.2).

2 λ1 = λ2 > 0 This is a special case of the above. Signal changes are equal in all
directions. This corresponds to an ideal isotropic structure in the local
neighbourhood of interest
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We can get more quantitative information on local structures after determining eigenvec-
tors of T. As alluded to previously, the eigenvector associated with the greater eigenvalue λ1

constitutes a solution to (4.97). It allows us to determine the local phase and local magnitude
of a neighbourhood, as will be shown later in this chapter. We know also that for symmetrical
real-valued matrices, as is the case of T, the eigenvectors are orthogonal.

To find eigenvectors of T, having already found its eigenvalues (4.113), one can directly
solve (4.108). These eigenvectors can be found as nonzero columns of an adjoint matrix
[T − λ1]ad. In consequence there can be two eigenvectors, say y1 and y2, given as follows:

[
y1 y2

] =
[

y11 y21

y12 y22

]
= [T − λi 12]ad =

[
T22 − λi −T12

−T12 T11 − λi

]
, (4.120)

where y1 and y2 are eigenvectors for a single eigenvalue λi. Substituting (4.113) into (4.120)
we obtain

[
y11 y21

y12 y22

]

=




(T22 − T11) ±
√

(T11 − T22)2 + 4T 2
12

2
−T12

−T12

−(T22 − T11) ±
√

(T11 − T22)2 + 4T 2
12

2


 .

(4.121)

The sign in the above is chosen based on the eigenvalue (it is minus for λ1 and plus for λ2).
Although for each eigenvalue we have up to two eigenvectors, we shall see that the choice
of either one leads to the same result in respect to the vector w(x0). Moreover, each linear
combination of eigenvectors for a single eigenvalue is also an eigenvector by itself.

Finally, we have to note that although we found a formula for an eigenvector of a domi-
nating eigenvalue λ1, it does not comply with an assumption of π rotation invariance, since
we could have two different vectors with the same modulus but different signs. Therefore we
have to find a vector that rotates twice the phase of the directional eigenvector – this vector
will represent the local structure. Thus, it would perform a full rotation while the eigenvector
traverses 0 − π . Let us assume that ξ denotes the phase of the eigenvector for λ1. Then s
rotates with 2ξ , which can be found starting from the formula of doubled tangent:

tan(2ξ ) = 2 tan(ξ )

1 − tan2(ξ )
assuming that tan(ξ ) �= 1. (4.122)

From the definition of the tangent for any angle [259] applied to either eigenvector yi, i = 1, 2

tan(ξi ) = yi2

yi1
, for yi1 �= 0,
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and after substitution into (4.122) we obtain

tan(2ξi ) = 2yi1 yi2

y2
i1 − y2

i2

for yi1 �= yi2. (4.123)

Then, taking (4.121) into the above we obtain finally

tan(2ξ ) =
−4T12

[
(T22 − T11) ±

√
(T11 − T22)2 + 4T 2

12

]
(T22 − T11)2 ± 2(T22 − T11)

√
(T11 − T22)2 + 4T 2

12 + (T22 − T11)2 + 4T 2
12 − 4T 2

12

=
−4T12

[
(T22 − T11) ±

√
(T11 − T22)2 + 4T 2

12

]

2(T22 − T11)

[
(T22 − T11) ±

√
(T11 − T22)2 + 4T 2

12

] = 2T12

T11 − T22
, T11 �= T22.

(4.124)

The last equation remains the same regardless of the chosen eigenvector since they are or-
thogonal, and the following holds:

η = ξ + 90◦; tan(2η) = tan(2ξ + 180◦) = tan(2ξ ). (4.125)

Immediately (4.124) gives us components of w:

tan(θ ) = tan(2ξ ) = 2T12

T11 − T22
= w2

w1
, T11 �= T22. (4.126)

Thus, the sought vector w, representing a local structure in an image, is given as

w =
[

w1

w2

]
=

[
T11 − T22

2T12

]
. (4.127)

There are many ways to get to (4.127). For example, one can rotate the structural tensor T
into the coordinate system of its principal axes [181, 224] or perform the SVD decomposition.

The final step consists of augmenting the structural vector w by a component that allows
us to distinguish between two important cases: λ1 = λ2 = 0 and λ1 = λ2 > 0. This can be
achieved by analysing the trace of T (4.114), which is 0 in the first case and 2λ > 0 in the
second. Thus, we obtain w∗:

w∗ =
[

Tr(T)
w

]
=


 T11 + T22

T11 − T22

2T12


 . (4.128)
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To find the postulated measure of coherency, the following scalar value can be used [224]:

c =


(

λ1 − λ2

λ1 + λ2

)2

= ‖w‖2

[Tr(T)]2 , Tr(T) �= 0

0, Tr(T) = 0
. (4.129)

In the formula for c we profit from the fact that Tr(T) is invariant to the rotation. The coherence
coefficient c takes on a value of 0 for ideal isotropic structures and 1 for structures with ideal
linear direction. The case when Tr(T) = 0 happens for structures with constant intensity. In
the case when ‖w‖ = 0 and Tr(T) �= 0 we have the same changes of intensity in all directions
instead.

Finally let us provide an equivalent representation of the directional vector w∗, given in
(4.128), which in some applications is more useful. It is also composed of three components,
as follows:

s =

 Txx + Tyy

∠w
c


 , (4.130)

where c is a coherence factor given in (4.129) and ∠w denotes a phase of the vector w. It is
given as

∠w =




arctan

(
2Txy

Txx − Tyy

)
, Txx �= Tyy

π

2
, Txx = Tyy ∧ Txy ≥ 0

−π

2
, Txx = Tyy ∧ Txy < 0

(4.131)

If in (4.95) the vector q = �I denotes a local gradient in an image, then it easily follows
that

‖∇ I‖2 = ∇2
x I + ∇2

y I,∫
U

‖∇ I‖2 dx =
∫
U

∇2
x I dx +

∫
U

∇2
y I dx =T11 + T22 = Tr(T). (4.132)

This means that the first component (i.e. the trace) in (4.128) can be interpreted as an averaged
squared modulus of a local gradient. This property will be used later when using T for feature
detection. It is also worth noting that coherence c (4.129) depends on trace of T.

4.6.2.2 Computation of the Structural Tensor

Let us now assume that the directional vector q used to express the structural tensor (4.99) is
the intensity gradient vector �I(x) computed at each pixel in an image. Assuming continuous
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signals, (4.99) can be rewritten as [224]

T(x0) =
∫
U

∇ I (x)∇T I (x)dx =
+∞∫

−∞
h(x0 − x)∇ I (x)∇T I (x)dx, (4.133)

where �I(x) is a gradient vector of intensity signal I at a point x in an image and h(x) is
a window function that models the local neighbourhood U around a pixel x0. With these
assumptions the tensor components (4.100) take the form

Ti j (x0) =
+∞∫

−∞
h(x0 − x)

∂ I (x)

∂xi

∂ I (x)

∂x j
dx, (4.134)

where ∂I(x)/∂xk denotes a set of directional derivatives of I(x) in the direction of the k-th
coordinate axis.

We easily notice that the last expression denotes a continuous convolution of a certain
window function with the product of intensity gradients [312]. Because of this observation
we can now switch to a domain of discrete signals, i.e. samples of the continuous signals (see
also section 4.4). By this token we can transform (4.134) and achieve the following expression
for tensor components in the discrete domain:

T̂i j = F(Ri R j ), (4.135)

where T̂i j is a discrete component of the structural tensor T, F denotes a smoothing operator
in a certain neighbourhood of pixels and Rk is a discrete differentiating operator in the k-th
direction. The RiRj operation means simple multiplication of outputs from the Ri and Rj filters,
respectively.

The only one problem left in (4.135) is a practical choice of the smoothing and differenti-
ating operators. This can be facilitated after examining some examples. The first is a binary
(1/0) rectangle image, depicted in Figure 4.21(a). At the beginning, for each pixel position we
compute three components of the structural tensor in accordance with (4.135). For the direc-
tional operators Ri and Rj we choose the Simoncelli 3-tap filter (section 4.4). The smoothing
operator F is a 3 × 3 Gaussian (section 4.3). Then the three components are transformed into
(4.130) for easier visualization.

Visualization of multicomponent objects, such as vectors, matrices or tensors, requires effi-
cient transformation of the visualized values into other quantities which can be more intuitive
for an observer [446]. The three components of the vector s (4.130) can be easily visualized
in the HSI colour space, by the mapping [224]

∠w → H

c → S (4.136)

Txx + Tyy → I

By this technique we visualize the structural tensor of Figure 4.21(a) in Figure 4.21(b).
We notice that smooth areas for which Tr(T) = Txx + Tyy = 0 give no signal (black) areas.
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(a) (b)

Figure 4.21 (a) Binary image of a skewed rectangle and (b) colour visualization of its structural tensor.
Hue H denotes a phase of local orientations, saturation S the coherence and intensity I conveys the trace
of T (Plate 4)

The only nonzero response is at places with nonzero gradient, i.e. on the edges. The hue
component corresponds to the orientation of an edge. As alluded to previously, it can be un-
ambiguously determined up to a rotation by π . The lower edge in Figure 4.21(b) shows some
irregularities which are due to irregularities in the original image. The saturation component
conveys information on the coherence c.

Figure 4.22(a) depicts a monochrome grid image while Figure 4.22(b) shows the HSI colour
visualization (4.136) of its structural tensor (see Plate 5). All computations in the presented
examples were obtained with the C++ implementation of the structural tensor, provided in
section 4.8.1.2.

(a) (b)

Figure 4.22 (a) Monochrome image of a grid and (b) the colour visualization of its structural tensor
(Plate 5)
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4.6.3 Multichannel Image Processing with Structural Tensor

In the case of multichannel images, such as colour images, the question arises as to the def-
inition of the gradient vector q(x). In this discussion we follow an approach proposed by Di
Zenzo [102], which has been used also in the works by Sochen et al. [395] and Brox et al.
[58] to name a few. It assumes summation of the partial gradient components, computed in-
dependently in image channels. To find the structural tensor for images with M channels we
modify (4.99), as follows:

T(x0) =
∫

U (x0)

M∑
k=1

(
qk(x)qT

k (x)
)
dx

=
M∑

k=1

∫
U (x0)

(
qk(x)qT

k (x)
)
dx =

M∑
k=1

Tk(x0). (4.137)

Thus, the summation in (4.137) spans all the gradient fields, each computed independently for
every channel. This allows computation of local structures in multidimensional spaces such as
multispectral (e.g. colour) images. It is also possible to employ (4.99) and (4.137) to analyse
structures for physical data other than images.

A further extension of the multichannel structural tensor (4.137) is possible. This is a linear
combination of the component tensors Tk:

T(x0) =
M∑

k=1

ckTk(x0), (4.138)

where ck are constants. By this it is possible to separately control the influence of each channel.
A general extension to this is in the form

T(x0) = 
 (Tk (x0)) , (4.139)

where 
 is a function taking the component tensors Tk.
There are also two different space dimensions involved in (4.137)–(4.139).

1. A dimension of T which comes directly from dimension of the gradient vector: It is 2D for
single images (T is 2 × 2) or 3D for video sequences (3 × 3).

2. A dimension that follows the number of image channels, given by M in (4.137) and (4.138).

Similarly, there are two scale-spaces involved in (4.137)–(4.139).

1. The scale associated with the input images (i.e. in the domain of computation of
tensors qi).

2. The scale imposed by the averaging (computation of the components Tij).
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Thus, we extend the discrete version of the structural tensor (4.135) to comprise the above
two scale-space parameters as follows:

T̂i j (ρ, ξ ) = Fρ

(
R(ξ )

i R(ξ )
j

)
, (4.140)

whereR(ξ )
i is a ξ -tap discrete directional operator (i.e. the order of the corresponding filter is

ξ − 1) and Fρ is a smoothing kernel of scale ρ (a second discussed type of scale).
Figure 4.23(b, c) depicts visualization of the structural tensor computed from the RGB

colour image depicted in Plate 6(a). In the first case (Figure 4.23(b)) the 3-tap differentiating
Simoncelli filter was used (section 4.4.1). In the second example (Figure 4.23(c)) the 5-tap
Simoncelli filter was applied. We notice that different structures were detected in the two ex-
amples. As expected, a higher order of the filter results in greater smoothing and less influence
of noise.

4.7 Corner Detection

Corners are very characteristic points of images. Intuitively, they are characterized by strong
two- or multidirectional signal variations. Because of this feature, corner points are highly
discriminative and are often used for image matching or object detection. However, many
types of corners can be defined, and there are many methods for their detection in digital
images.

A good overview of the corner detecting methods can be found in the paper by Zheng
et al. [461] as well as in most classic textbooks on image analysis [157, 351]. A methodology
for assessing the performance of some corner detectors is presented in the paper by Rockett
[361]. It is based on the concept of the receiver operating characteristic (ROC) to check perfor-
mance of the two classes – corners and noncorners – i.e. a labelling problem. A very coherent
approach to the evaluation of interest point detectors is presented in the paper by Schmid
et al. [373].

4.7.1 The Most Common Corner Detectors

Corner detection methods can be divided into three broad categories [373, 461].

1. The first group follows parametric model fitting. They are based on the a priori model
of a corner which is then tried to fit to the intensity signal in an image. However, this
limits potential interest points only to that model. They can be seen as a kind of template
matching in which intensity values are matched to the model template. An example of a
method in which a corner model is built is the method by Rohr [362]. This model depends
on seven different parameters: position, angle of the symmetry axis, angle of the corner,
grey level values and the blur. The optimization procedure is used then to fit a model to the
local data template. Deriche and Blaszka [99] have extended this approach. For a corner
model they employed an exponential function instead of a Gaussian smoothing kernel used
by Rohr. A very original method from this category was proposed by Baker et al. [21].
It allows an automatic construction of a detector based on an arbitrary set of parameters.
Each is represented as a densely sampled parametric manifold. Features are those image
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(a)

(b)

(c)

Figure 4.23 (a) Examples of the structural tensor operating on an RGB colour image. (b) Visualization
of the structural tensor computed with the 3-tap Simoncelli filter. (c) Version with the 5-tap Simoncelli
filter (Plate 6)
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points which, when projected into the lower dimensional subspace, are sufficiently close to
the parametric manifold of a model.

2. Methods of the second group rely on contour of objects present in images. In the first
step contours are detected. Then points are found where two or more contour lines meet
or points are found with a maximal curvature. Sometimes inflection points in the contour
chain are considered as well. An example is the method by Asada and Brady [12]. They
define five groups of contour points: corners, cranks, ends, smooth joins and bumps. For
each of these groups responses to convolution with Gaussian derivatives at different scales
are found. Then each point of a contour is compared with the characteristic response of
each group.

3. The third group constitute the signal-based methods (direct methods). Corners are obtained
directly from the intensity (or colour) signal, analysing signal variations (i.e. its first or sec-
ond derivatives). One of the first and very influential works in this area is the method of
Kitchen and Rosenfeld [245] which relies on a product of grey level curvature and the
magnitude of the gradient of intensity. Therefore this method is known also as a curvature-
times-gradient method. Other methods, such as the one by Paler et al. [338] or by Harris
and Stephens [174], although different, fall into this category. The former consists in sub-
tracting a median filtered version of an image from the original one. Then corner measure is
computed by multiplying the grey-level differences with the contrast over an area of inter-
est. The latter method has gained much attention due to its properties and is described later
in this section. However, many modifications to it have been proposed which show some
improvements over the original proposition. The tensor-based corner detector, presented in
the next section, is an example of such an improvement. Another interesting approach for
corner detection has been proposed by Smith and Brady [394] in their SUSAN method (see
Table 4.7 for an overview).

Table 4.7 summarizes the properties of the common signal-based corner detectors. These
are the methods proposed by Beaudet [31], Harris and Stephens [174] and by Förstner [136],
as well as the SUSAN method by Smith and Brady [394]. The first two rely on a Hessian
matrix (second derivatives), whereas the latter two operate with first derivatives. However, the
way in which they differ is the method of computing these parameters, as well as the way they
are interpreted for corner detection.

Having so many methods to detect corners it is very important to have methods for their
assessment. For this purpose some criteria need to be defined. These are as follows [394, 461].

1. Detection – a good corner detector should detect all corner points, even the ones that are not
characterized by a strong signal response. At the same time it should be insensitive to noise.

2. Localization – corners should be detected and marked in the positions of their true
occurrence.

3. Stability – detected points should persist at their locations even on multiple acquisitions
under varying conditions or some geometric transformations of the same scene. Stability is
often measured by a repeatability measure [373].

4. Speed – it is obvious that the faster the method the better. However, sometimes the speed
factor is in opposition to other parameters of a detector, such as good localization for
instance.
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Table 4.7 Overview of the most common corner detectors based on direct signal analysis

Detector Description, properties, computation

Beaudet Corners are found based on the absolute value of the determinant of the Hessian H:

‖det (H)‖ = ‖H11 H22 − H12 H21‖ = ∥∥Ixx Iyy − I 2
xy

∥∥ , (4.141)

where

H =
[

H11 H12

H21 H22

]
=

[
Ixx Ixy

Iyx Iyy

]
, (4.142)

and

Ii j (x) ≈ ∂2 Î (x)

∂xi∂x j
(4.143)

denotes a discrete approximation of the second order i-th and j-th derivatives of the
continuous intensity signal Î (x). These can be computed for instance with the
Savitzky–Golay differentiating filters (section 4.4.2).

A point x is classified as a corner point if ‖det(H(x))‖ is a local maximum in a
closest neighbourhood of x and if it holds that

‖det (H)‖ < τ, (4.144)

where τ is a specific threshold value, usually different for different images. It appears
that the above determinant of the Hessian matrix is invariant to image rotations. It is
also related to the Gaussian curvature of the image signal (if image surface is defined
as the one containing all points which are distant from the reference plane by their
intensity values) [167, 263]. The most troublesome aspect is the practical choice of the
threshold value τ .

Harris and
Stephens

This is one of the most popular corner detectors and operates on the smoothed first
derivatives of the intensity signal [174]:

T =
[

T11 T12

T21 T22

]
=

[
F(Ix )2 F(Ix Iy)
F(Iy Ix ) F(Iy)2

]
, (4.145)

where F is a smoothing operator. Usually it is a Gaussian kernel G(0, σ ) with a zero
mean value and variance σ (section 4.3.1). However, in practice the binomial filter can
be used as well (section 1.3.2). We easily notice that the above formula is equivalent to
the 2D structural tensor given by (4.100), for which qi is set to the first derivative of
the intensity signal, i.e. q1 = ∂I(x, y)/∂x and q2 = ∂I(x, y)/∂y.

In the method of Harris and Stevens to find a corner the following value has to be
calculated [174]:

R = det (T) − k
[
Tr2 (T)

]
, (4.146)

(continued)
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Table 4.7 Overview of the most common corner detectors (Continued)

Detector Description, properties, computation

where k is parameter in the range 0 to 0.25. Then, for a corner point, its value of R
must constitute a local maximum and be greater than a given threshold. As reported by
Rockett [361] the best results were obtained with k = 0.04. He also pointed out that
the smoothing of the first derivatives with a Gaussian kernel in (4.145) plays a more
fundamental role than simple noise filtering (as stated by Harris and Stephens). Its role
is more essential since it isotropically changes the spectral response of the corner
detector. In other words, if removed then T would be identically zero regardless of
noise in the input signal. This property was explained when discussing the structural
tensor (section 4.6.2).

Förstner This method is also based on the matrix T given in (4.145). It is easy to show that this
matrix is symmetric and positively defined, thus it can be decomposed as follows
[308]:

T = UT

[
λ1 0
0 λ2

]
U,

where U is a certain unitary matrix for which

det (T) = λ1λ2 Tr(T) = λ1 + λ2.

To classify a point x as a corner, two conditions have to be met. The first one, denoted
by W and called a weight of a point, is given as

W = Tr (T)

det (T)
= 1

λ1
+ 1

λ2
. (4.147)

The second parameter q is called the roundness measure and is used to describe the
likelihood of a point:

q = 4 det (T)

T r 2 (T)
= 1 −

(
λ1 − λ2

λ1 + λ2

)2

. (4.148)

A corner is asserted when q and W are local maxima and are greater then certain
thresholds. It is also interesting to notice that q is in the range 0 to 1.

Smith and
Brady
(SUSAN)

SUSAN (Smallest Univalue Segment Assimilating Nucleus) detector developed by
Smith and Brady [394] presents an entirely different approach to the 1D and 2D
feature detection in images, such as edges and corners, respectively. Circular mask M
consisting of 37 pixels is used. The central pixel of the mask is called a nucleus. Then
intensities of all pixels within a mask are compared with an intensity of a nucleus and
an area of ‘similar’ pixels is marked. This area is called USAN (Univalue Segment
Assimilating Nucleus) and it conveys the most important information on a local
structure of an image. Analysing the size, centroid and the second moments of USAN
the exact information on a type of local structure around a nucleus is inferred, such as
edges or corners. For those regions, inverted USAN area shows strong peaks – thus the
term SUSAN – i.e. the smallest USAN. This approach has an additional advantage of
not using any derivatives which are cumbersome to use in the presence of noise.
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Table 4.7 (Continued)

Detector Description, properties, computation

Computing USAN for every pixel in the digital image leads to detection of edges or
corners. The number of pixels of USAN n(r0) is computed as

n(r0) =
∑
r∈M

e
−
(

I (r )−I(r0)
t

)6

, (4.149)

where t is a threshold for a difference of brightnesses and r and r0 are distances to a
pixel and to a nucleus of M, respectively. The value of USAN gets smaller near the
points of interest which are located at local maxima of the following value (a SUSAN
principle):

R(r0) =
{

g − n(r0), for n(r0) < g
0, for n(r0) ≥ g

, (4.150)

where g is half of nmax value of a mask M. The SUSAN corner detection procedure is
outlined as follows.

1. Place a circular mask around a pixel (i.e. a nucleus).
2. Calculate the number n(r0) of pixels within the circular mask which have similar

brightness to the nucleus in accordance with (4.149). Such pixels constitute the
USAN.

3. Compute strength of a corner from (4.150).
4. Test for false positives by finding the centroid of USAN and its contiguity.
5. Use nonmaximum suppression to find corners (details in [394]).

The problem of scale and transformation invariance of interest points in images has been
addressed in the works by Mikołajczyk [310], Mikołajczyk and Schmid [311] and Lowe [283],
to name a few. It is also discussed in the already cited work by Rockett [361].

4.7.2 Corner Detection with the Structural Tensor

Knowing the concepts behind the 2D structural tensor (section 4.6.2.1), we can build a corner
detector based on it with different properties compared to other detectors, such as that of
Harris and Stevens, for instance.

We know that the type of local structure can be inferred solely from the eigenvalues of the
structural tensor (see formulas (4.113) and (4.117)). Thus, the corner points (xi, yi) can be
those which fulfil the following condition [14]:

λ1 (xi , yi ) � λ2 (xi , yi ) > κ, (4.151)

where κ is a threshold for the lower eigenvalue of the structural tensor (discussed in section
4.6.1.2). It can be set to 0 if the point priority technique (described later in this section) is
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employed. The first inequality in the above equation can be written in a form which is more
useful in practical realizations:

λ1 (xi , yi ) − λ2 (xi , yi ) > κ∗, (4.152)

where κ∗ is a second threshold value which in the simplest form can be set to 0. Based on
(4.115) this can be written simply as

[T11 (xi , yi ) − T22 (xi , yi )]
2 + 4T 2

12 (xi , yi ) > κ∗∗. (4.153)

with a new threshold κ∗∗ = (κ∗)2. The main advantages of using the tensor approach to corner
detection are as follows.

1. Tensors allow inherent integration of the multiple channel signals and image scale concepts
into the corner detection (see section 4.6.3).

2. Application of the precise discrete signal differentiation methods, such as Simoncelli filters,
results in better localization parameter (section 4.4).

3. Detection based on the prioritized queues of eigenvalues, set according to their strength,
introduces a natural order among corner points.

4. Simple implementation and fast execution.

To avoid a cumbersome selection of a threshold parameter for eigenvalues in (4.151), a
special priority queue is proposed. Additionally, the input image is partitioned into equal size
tiles and corners are detected independently in each of them. This results in more uniform
detection in the whole image area. Figure 4.24 depicts this technique.

The priority queue in Figure 4.24 is sorted by λ2, denoted further without subscript. So,
for the consecutive cells i and i + 1 it always holds that λi ≤ λi+1. Whenever a new point
is found that fulfils (4.151) it is tried to fit into the queue based on its lower eigenvalue. If
this value is bigger than that already stored at index 0 then it is inserted into the queue at
a position for which λi ≤ λi+1 always holds, then the cell at 0 is removed. To avoid time
consuming shifts the priority queue should be implemented as a linked list [74]. Finally, af-
ter checking all image points the priority queue contains at most M points with the biggest
λ2 values.

With this data structure it is also possible to impose additional constraints, e.g. on a min-
imal allowable distance among adjacent corner points. In this way we can search for more
‘distributed’ corner positions in an image. For instance, we can search for points of interest
that are at least two pixels apart.

The other idea worth considering is to split an input image into a number of smaller size
tiles and look for corners in each tile separately (see Figure 4.24). By this technique we can
select corners which are not concentrated only in one part of an image.
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yi+1yi
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M-1 0 

2 i+1λ2 iλ

Figure 4.24 Priority queue for selection of M most prominent corner points based on the eignevalues
of the structural tensor. Corners are detected independently in each image tile. An image is divided into
TH × TV equal size tiles

Figures 4.25 and 4.26 present application of the tensor corner detection applied to the ‘Air-
plane’ test image. In the first case corners are searched in the whole image. In the second,
prior to detection the image has been divided into 4 × 4, then into 16 × 16 tiles.

4.8 Practical Examples

4.8.1 C++ Implementations

4.8.1.1 Convolution

Algorithm 4.3 lists the C++ implementation of the 2D convolution. It was designed as a
template class named Convolve. The class contains one static member, named Convolve,
which actually does the job. Thanks to C++ templates it is now possible to tailor the class
instantiation to the pixel type T , which is the first type parameter of the template. The second
template parameter ATrait helps in the choice of an appropriate type for an accumulator, i.e.
a variable that stores a common sum, given pixel type. Traits are designed as a special class
hierarchy Accumulation Trait, also parameterized by the type of pixel. Some of the most
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(a) (b)

Figure 4.25 Corners (black crosses) found in the whole ‘Airplane’ image by the tensor-based detector:
(a) 200 corners, no constraints on their mutual distance; (b) 200 corners with imposed distance of one
or more pixels. (Source: USC – 1 SIPI Image Database)

common traits are listed in Algorithm 4.4. We should note, however, that we need a separate
trait for each different type of image (i.e. for each different type of pixel). Traits are discussed
in section 13.3.5.

Implementation of the 2D convolution follows its definition given in (4.3). The algorithm
is implemented in the member function Convolve, which takes three input parameters: a ref-
erence to the input image, to the convolution masks and to the output image. We should note
that the most straightforward implementation of the 2D convolution requires two images of

(a) (b)

Figure 4.26 Detection of corners in the image divided into tiles: (a) 4 × 4 tiles; (b) 16 × 16 tiles,
maximum 10 corners in a tile. (Source: USC – 1 SIPI Image Database)
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///////////////////////////////////////////////////////////
// This class performs 1D horizontal convolution 
//
// The type "T" defines a type of a single pixel. 
// The type "ATrait" defines a type for the 
// accumulator used during convolution. 
//
// We create a class here instead of the template function. 
// The problem is that the template functions don't allow 
// default parameters. In this fashion a user would 
// be forced to provied ATrait all the time. Therefore 
// we have this class. 
//
// For the actual convolution use the helper functions. 
//
///////////////////////////////////////////////////////////
template < typename T, typename ATrait = Accumulation_Trait< T > > 
class _Convolve
{

public:  

///////////////////////////////////////////////////////////   
// This function does the convolution Out = In * Mask.   
// The convolution is performed symmetrically, i.e. at a   
// given point of the image convolution summation goes   
// symmetrically in all directions. If value of a image   
// or mask outside their boundaries is necessary it is   
// assumed that this value is 0.   
///////////////////////////////////////////////////////////   

  //   
// INPUT:   

In - a reference to the input image   //   
Mask - a reference to the convolution kernel image   //   

 Out - a reference to the outcome image   //   
  //   

// OUTPUT:   
 Out = In * Mask   //   

  //   
// REMARKS:   

Although it is not necessary, the best if mask size   //   
is odd in both directions -- in such a case the whole   //   

procedure can be simplified of the conditions. 
  

// 
  

  //   
static void Convolve(  TImageFor< T > & In, const  

const    TImageFor< T > & Mask,            
 

 { 
  register long i,j,m,n,    register long vertMaskIndex,horzMaskIndex,imTempCol,imTempRow;    

typename ATrait::TheAccumulatorType conv_sum;    

const long im_col = In.GetCol();    const long im_row = In.GetRow();    

const long mask_col = Mask.GetCol();    const long mask_row = Mask.GetRow();    

long horzHalfMask = mask_col >> 1; // == mask_col / 2;    long vertHalfMask = mask_row >> 1; // == mask_row / 2;    

// Go through all the points of the input picture    for( i = 0; i < im_row; i ++ )    {    

TImageFor< T > & Out ) 

Algorithm 4.3 C++ implementation of the 2D convolution. (Reproduced by permission of Pandora
Int. Inc., London)
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for( j = 0; j < im_col; j ++ )     
{     

// Count the sum for the whole mask at each point      
conv_sum = ATrait::GetZero();      

for( m = - vertHalfMask; m <= + vertHalfMask; m ++ )      
{      

= m + vertHalfMask; vertMaskIndex       
  = i - m;  imTempRow       

for( n = - n horzHalfMask; n <= + horzHalfMask; n ++ )          

{ 
      horzMaskIndex = n + horzHalfMask;      

  imTempCol = j - n;      
  

if(  imTempCol >= 0 && imTempCol < im_col &&    
       imTempRow >= 0 && imTempRow < im_row   

         
  

// >>> This part of AND is necessary only

        

// if size of the mask is even <<< 

       

mask_col && < horzMaskIndex && 

        

vertMaskIndex  <  mask_row ) 

         

conv_sum+= 

        

Mask.GetPixel( horzMaskIndex, vertMaskIndex )

         

* In.GetPixel( imTempCol, imTempRow ); 

         

} 

      

} 

     

Out.SetPixel( j, i, (T)conv_sum ); 

     

} 

    

} 

   

} 

  };

Algorithm 4.3 (Continued)

the same type and size: the input image, which is only read and not changed, and the output
image, which stores the results of convolution. Some in situ algorithms can be also imple-
mented if necessary. However, we should remember not to overwrite the input pixels before
they are read for all computations of the convolution. Otherwise we would end up with wrong
results.

For a given type T , the sole purpose of its associated Accumulation Trait<T> is to provide
proper types of a zero value and a type for accumulator variable. Because of this automation
we can make a versatile template for such classes as Convolve. Otherwise we would need to
write the number of the convolution copies, each different only by a type of one of its variables
(conv sum in Algorithm 4.3).

We should also remember that being universal the procedure in Algorithm 4.3 is not the
most efficient. If we had a fixed size mask, or we knew it was symmetrical, then we could
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// This trait defines a type which 
// will be used when accumulating 
// data of different types. 
template < typename T > 
class Accumulation_Trait;

// Specific traits are implemented 
// as specializations. 
template <> 
class Accumulation_Trait< double >
{

public: 

};

template <> 
class Accumulation_Trait< unsigned char >
{

public: 
// For char, accumulator is: long 
typedef unsigned long TheAccumulatorType; 

};

// For double, accumulator is: long double 
typedef long double TheAccumulatorType; 
static TheAccumulatorType GetZero( void ) { return 0.0; } 

Algorithm 4.4 Exemplary trait classes which can be used in Convolve. (Reproduced by permission
of Pandora Int. Inc., London)

write a more efficient version for that case. We should always when possible try to use the
separable masks for convolution, as discussed in section 4.2.2. The attached library contains
implementation of the 1D convolution which is used whenever a 2D convolution can be rep-
resented in the form of Equation (4.4), i.e. the filter mask can be separated.

4.8.1.2 Implementing the Structural Tensor

Algorithm 4.5 provides an example of using the library interface and image operators. The
template function TensorTest<T> computes the three components of the structural tensor.
The structural tensor is computed based on the simplest algorithm with separable Simoncelli
and binomial filters (section 4.4).

The template function TensorTestFor<T> is parameterized by a type T of a pixel of images
that will be used for computations of the tensor. However, formats of the input and output
images are fixed in this example:

� monochrome images for input (8 bits per pixel);
� real images for the tensor components (float data for pixels).

Algorithm 4.6 presents an example of calling the TensorTestFor<double> in some other
function. In the TensorTestFor the input image is always copied into the auxiliary image with
floating point pixels. Then, computations are done in floating point precision.
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#include "HIL_BaseDefinitions.h" 
#include "HIL_ArithmeticOperators.h" 
#include "HIL_ConvolveOperators.h" 
#include "HIL_MultiChannelImageFor.h" 

using namespace PHIL; 

template< class T > 
void TensorTestFor(  const MonochromeImage & inImage, 

TRealImage & Jxx, TRealImage & Jxy, TRealImage & Jyy )    
{

const int kCols = inImage.GetCol();  
const int kRows = inImage.GetRow();  

TImageFor< T > inputImage( kCols, kRows );  

( * FormatConverter_AP( inputImage, inImage ) )();  

// three components of the structural tensor  
  outputImage( kCols, kRows ); TMultiChannelImageFor< T >  

// Simoncelli horizontal (vertical) gradient is obtained in two steps: 
 // - first we do vertical (horizontal) smoothing with the prefilter 
 // - then we apply the horizontal (vertical) derivative filter 
 vector< T > theSimoncelliPrefilter; 
 

theSimoncelliPrefilter.push_back( 0.22420981526374817 ); 
 theSimoncelliPrefilter.push_back( 0.5515803694725037 ); 
 theSimoncelliPrefilter.push_back( 0.22420981526374817 ); 
 

vector< T > theSimoncelliDerivative; 
 

theSimoncelliDerivative.push_back( -0.45527133345603943 ); 
 theSimoncelliDerivative.push_back( 0.0 ); 
 theSimoncelliDerivative.push_back( 0.45527133345603943 ); 
 

vector< T > theBinomialSmoothing; 
 

theBinomialSmoothing.push_back( 0.25 ); 
 theBinomialSmoothing.push_back( 0.5 ); 
 theBinomialSmoothing.push_back( 0.25 ); 
 

TImageFor< T > tmpImage_1( kCols, kRows ); 
 TImageFor< T > tmpImage_2( kCols, kRows ); 
 TImageFor< T > tmpImage_3( kCols, kRows ); 
 

TVectorMultiImageOperation * Jxx_Computer = new 

TVectorMultiImageOperation; 
 

 
TVectorMultiImageOperation * Jxy_Computer = new 

TVectorMultiImageOperation; 

 

TVectorMultiImageOperation * Jyy_Computer = new      
TVectorMultiImageOperation; 

  

 

// Compute the tensor components: Jij = F(Ri*Rj) 

 // Precompute the horz derivative (to tmpImage_1) 

 

Jxx_Computer->AddAdoptNewOperation(

 

Vert_Convolve_AP( tmpImage_3, 
inputImage, theSimoncelliPrefilter ) );      

 

Jxx_Computer->AddAdoptNewOperation(

 

Horz_Convolve_AP( tmpImage_1, 

Algorithm 4.5 C++ implementation of the 2D structural tensor. (Reproduced by permission of Pan-
dora Int. Inc., London)
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tmpImage_3, theSimoncelliDerivative ) );       

// Precompute the vert derivative (to tmpImage_2)  
Jxx_Computer->AddAdoptNewOperation( Horz_Convolve_AP( tmpImage_3, 

theSimoncelliPrefilter ) );  inputImage,        
Jxx_Computer->AddAdoptNewOperation(

 
Vert_Convolve_AP( tmpImage_2, 

tmpImage_3, theSimoncelliDerivative ) );       
 

// Jxx  
Jxx_Computer->AddAdoptNewOperation( 

Orphan_Mul( outputImage.GetRefPixel( 0, 0 ), 
tmpImage_1, tmpImage_1 ) );        

Jxx_Computer->AddAdoptNewOperation( Orphan_Vert_Convolve( tmpImage_3, 
outputImage.GetRefPixel( 0, 0 ), theBinomialSmoothing ) );     

Jxx_Computer->AddAdoptNewOperation( 
Orphan_Horz_Convolve( outputImage.GetRefPixel( 0, 
0 ), tmpImage_3, theBinomialSmoothing ) ); 

      
// Jxy  
Jxy_Computer->AddAdoptNewOperation( 

Orphan_Mul( outputImage.GetRefPixel( 1, 0 ),   
tmpImage_1, tmpImage_2 ) ); 

       Jxy_Computer->AddAdoptNewOperation(

 

Orphan_Vert_Convolve( tmpImage_3,  
outputImage.GetRefPixel( 1, 0 ), theBinomialSmoothing ) );   

  Jxy_Computer->AddAdoptNewOperation(

 Orphan_Horz_Convolve( outputImage.GetRefPixel( 1, 
0 ), tmpImage_3, theBinomialSmoothing ) );    

  
// Jyy 

 Jyy_Computer->AddAdoptNewOperation(

 Orphan_Mul( outputImage.GetRefPixel( 2, 0 ),   
tmpImage_2, tmpImage_2 ) );      

  Jyy_Computer->AddAdoptNewOperation(

 

Orphan_Vert_Convolve( tmpImage_3, 
outputImage.GetRefPixel( 2, 0 ), theBinomialSmoothing ) );   

  Jyy_Computer->AddAdoptNewOperation(

 Orphan_Horz_Convolve( outputImage.GetRefPixel( 2, 
0 ), tmpImage_3, theBinomialSmoothing ) ); 

    

  

TVectorMultiImageOperation compoundComputer;//this object is automatic  

 compoundComputer.AddAdoptNewOperation( Jxx_Computer ); 

 

compoundComputer.AddAdoptNewOperation( Jxy_Computer ); 

 

compoundComputer.AddAdoptNewOperation( Jyy_Computer ); 

 // Compute all 

 

compoundComputer(); 

 
// Prepare output image 

 

( * FormatConverter_AP( Jxx, outputImage.GetRefPixel( 0, 0 ) ) ) (); 

 

( * FormatConverter_AP( Jxy, outputImage.GetRefPixel( 1, 0 ) ) ) (); 

 

( * FormatConverter_AP( Jyy, outputImage.GetRefPixel( 2, 0 ) ) ) (); 

 }

Algorithm 4.5 (Continued)

4.8.2 Implementation of the Morphological Operators

Figure 4.27 depicts a class hierarchy for the morphological image operations. All op-
erations are derived from the TImageTemplateOperationFor<> template base class (sec-
tion 3.7.1.3). The template image base class reflects the presence of the mandatory struc-
tural element for each operation from this group. The role of the structural element is to
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void MyFun( void ) 
{

const int kCols = 128;  
const int kRows = 100;  

MonochromeImage theMonoImage( kCols, kRows );  

// ... initialize theMonoImage  

TRealImage Jxx( kCols, kRows );  
TRealImage Jxy( kCols, kRows );  
TRealImage Jyy( kCols, kRows );  

// Compute the structural tensor  
TensorTestFor< double >( theMonoImage, Jxx, Jxy, Jyy );  

// ... the tensor components are ready  

}

Algorithm 4.6 Example of calling the structural tensor procedure

define the structure of the local neighbourhood for morphological operation in the processed
image.

Algorithm 4.7 presents the MorphologyFor<> template class with full implementation of
the Dilate() member. Its organization is somewhat similar to the already discussed convolution
procedures. In the innermost part of the loops the structural element is checked and, if enabled,
then the maximal value in a local window is assessed. Finally, this maximal value constitutes

TImageTemplateOperationFor<> 

Erode_OperationFor<> 

Dilate_OperationFor<> 

Open_OperationFor<> 

Close_OperationFor<> 

MorphoGradient_OperationFor<> 

TopHat_OperationFor<> 

Figure 4.27 Class hierarchy of the morphological image operators
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///////////////////////////////////////////////////////////
//
// The class for morphological operations on different 
// type images. 
//
// This is a general implementation that takes into account 
// the grey valued definition of the morphological 
// operations. This means that the presented functions 
// can operate with almost any types of pixels for which 
// the order relation has been defined. However, this 
// means also that the implementation might not be optimal 
// in many cases (e.g. for pure binary images). 
//
// The structural element is always defined as the masked 
// image. This means that a shape of the structural element 
// is defined by a binary mask inherent to the masked image, 
// whereas the pixel values of the element are taken into 
// computations of the morphological functions. Certainly, 
// if the pixels are set to 0, then only a shape of the 
// structural element is taken into consideration. 
//
// Optimization issues: the most important optimization can 
// be achieved by virtue of SEPARABLE structural elements 
// (the concept similar to the separable convolution masks). 
// For more information see e.g. the book by Soille. 
//
///////////////////////////////////////////////////////////
template < class T > 
class MorphologyFor
{

public:  

typedef std::auto_ptr< TImageFor< T > > TheImageAutoPtr;   

public:  

// ===================================================   
// class default constructor  MorphologyFor( void ) {}   
// class virtual destructor  virtual ~MorphologyFor() {}   

// ===================================================   

public:  

///////////////////////////////////////////////////////////   

// This is morphological dilation on any pixel type input   

// image. The structural element is in the form of a masked   

// image where the mask denotes which pixel belongs to the   

// that element and the values are taken to the computation.   

// The geometrical center of the sctructural element is taken   

// as the central point.   

///////////////////////////////////////////////////////////   

  //   

// INPUT:   

theImage - the input image with pixels of type T   //   
theStructureElement - the structural element with   //   

pixels of type T and binary mask defining    //   
shape of this element    //   

  //   
// OUTPUT:   

Auto ptr to the returned (orphaned) object which   //   
contains a dilated version of the input image   //   

  //   
// REMARKS:   

Algorithm 4.7 Definition of the class with full implementation of the dilation operator. Other members
are available in the library. (Reproduced by permission of Pandora Int. Inc., London)
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  //      The returned object is orphaned!    
  //   

TheImageAutoPtr Dilate( const TImageFor< T > & theImage,   
const TMaskedImageFor< T > & theStructureElement )        

{   
register long i, j, m, n,    

vertMaskIndex, horzMaskIndex, imTempCol, imTempRow;      

const long im_col = theImage.GetCol();    
const long im_row = theImage.GetRow();    

const long mask_col = theStructureElement.GetCol();    
const long mask_row = theStructureElement.GetRow();    

// We don't assume any specific size or center of the structural    
// element here,although most often than not it is symmetrical    
// with geometrical center being a pivoting point.    

long horzHalfMask = mask_col / 2;    
long vertHalfMask = mask_row / 2;    

// This is an output image in its initial state (all pixels 0)    
   

bool row_is_ok, mask_index_in_range;    

// Go through all the points of the input picture    
for( i = 0; i < im_row; i ++ )    
{    

    
    

T maxVal( theImage.GetPixel( j, i ) );      

for( m = - vertHalfMask; m <= + vertHalfMask; m ++ )      
{      

vertMaskIndex = m + vertHalfMask;       

imTempRow = i - m;       

< im_row; imTempRow && 0 >= imTempRow = row_is_ok 
      

mask_index_in_range = vertMaskIndex < mask_row;  

      
for( n =- horzHalfMask; n<= + horzHalfMask; n ++ )

      
{ 

      

imTempCol = j - n; 

       

//imTempRow = i - m; 

       

horzMaskIndex = n + horzHalfMask; 

       

if( imTempCol >= 0 && imTempCol < im_col && row_is_ok 

       

&& horzMaskIndex<mask_col && mask_index_in_range ) 

        

{ 

       

bool is_in_structure; 

        

T pixel = theStructureElement.GetPixel(

        

             

horzMaskIndex, 

   

vertMaskIndex, 
is_in_structure ); 

if( is_in_structure == true ) 

{ 

TheImageAutoPtr outImage( new TImageFor< T >( im_col, im_row )); 

for( j = 0; j < im_col; j ++ ) 
{ 

Algorithm 4.7 (Continued)
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pixel+=theImage.GetPixel(imTempCol,imTempRow );  
         

          

// value as so far 

    } 

        } 
       

} 
      } 

     

outImage->SetPixel( j, i, maxVal );      
    

}    

   
}   

// ... other members   
};

if( pixel > maxVal )  

maxVal = Pixel // store the maximal pixel; 

} 

return outImage; 

Algorithm 4.7 (Continued)

a result of dilation in this local region. Such a process is repeated for local regions around
each pixel in the input image.

4.8.3 Examples in Matlab: Computation of the SVD

The SVD decomposition plays a very important role in many scientific computations. There-
fore, it is not a surprise that Matlab offers such a tool among its myriad others. Let us take a
look at its basic call:

[S,V,D] = SVD(X) 

where X is the matrix for which we compute SVD, S and D are unitary matrices (i.e.
SST = DDT = 1) and V is a diagonal matrix with singular values (which are nonnegative). It
holds that X = SVDT (section 4.2.2). The latter can be checked easily, writing in Matlab:

X1=S*V*D’;

To see a more detailed description of this function, write in Matlab:

help SVD 

To practise this technique let us decompose matrix A2 from (4.13) in Matlab. We can pro-
ceed as follows (here >> denotes the Matlab’s prompt sign):

>> X= [ 1, 1, 1; 1, 3, 1; 1, 1, 1 ]; 
>> [S,V,D]=svd(X); 



P1: OTA/XYZ P2: ABC
c04 JWBK288-Cyganek December 5, 2008 1:36 Printer Name: Yet to Come

162 An Introduction to 3D Computer Vision Techniques and Algorithms

Then let us take a look at the matrices computed for us:

>> S 

S = 

   -0.4082    0.5774   -0.7071 
   -0.8165   -0.5774   -0.0000 
   -0.4082    0.5774    0.7071 

>> V 

V = 

    4.0000         0         0 
         0    1.0000         0 
         0         0    0.0000 

>> D 

D = 

   -0.4082    0.5774    0.7071 
   -0.8165   -0.5774   -0.0000 
   -0.4082    0.5774   -0.7071 

Let us start by analysing the matrix V. We see that for X we have two singular values
different from 0. Therefore its rank is two. Thus X can be decomposed in accordance with
(4.9); for this purpose we take only the two first columns of U and V. Notice, however, that in
numerical computations there is always a limited number of bits for number representation.
Therefore, more often than not we have to deal with numerical errors. Indeed, under closer
scrutiny we see that the third singular value is a very small number which, nevertheless, is
different from ‘pure’ zero.

Let us check now the matrices S and D. We can easily find out that they are unitary matrices,
so SST = 1. Moreover, we see that the columns of S are orthogonal. This feature holds also
for D.

If necessary the Matlab procedures can be also linked to users’ software [208]. Alterna-
tively, the full C++ implementation of the SVD procedure is provided in [352].

4.9 Closure

This chapter is devoted mainly to computer methods for detection of low-level features in
digital images. These are intended to be used for image matching, although their applications
are much broader. The signal processing approach is assumed. At first we discuss the basics
of correlation and convolution with applications to image averaging and differentiation. These
are examples of a much wider group of digital image filters. Differentiation of discrete sig-
nals is presented in the approach proposed by Farid and Simoncelli and also in terms of the
Savitzky–Golay filters.
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Then different edge detection techniques for image matching are discussed. The Laplacian
of Gaussian and morphological operators are presented as well. The former belongs to the
group of linear methods, the latter to the nonlinear ones.

Based on the basic operators the structural tensor is introduced. It allows compact represen-
tation of local neighbourhoods of pixels in terms of their orientation and coherence. Finally,
an overview of corner detection methods is provided. These have found broad applications in
image matching as well.

4.9.1 Further Reading

Good comprehensive texts on signal processing are the books by Oppenheim and Schafer
[336] and by Mitra [312], for example.

Very popular is the Canny edge detector [60] which has not been discussed in this chapter.
However, its description, as well as information on other feature detectors, can be found in
the majority of textbooks on image processing, e.g. in the books by Forsyth and Ponce [135],
by Pratt [351] or by Gonzalez and Woods [157].

The structural tensor has been introduced by Bigün et al. [42]. The book by Granlund and
Knutsson [160] pioneered the subject of tensor operators for representation of local image
structures. Discussion of the structural tensor, its construction and application to the detection
of features, motion and texture analysis is contained in the works by Jähne [224–227].

A recommended book on matrices and linear algebra is the work by Meyer [308]. It can
be used for self-study and also as a reference. However, a shorter and very intuitive approach
is provided in the excellent book by Trefethen and Bau [425]. They also give a very in-depth
introduction to the singular value decomposition (SVD), starting from its intuitive explana-
tion and basic properties, then presenting some hints on implementation. This book could be
recommended for readers not familiar with linear algebra concepts or starting their education
in this field. A numerical approach to SVD is also given in the book by Demmel [96]. How-
ever, recommended reading that provides concise theory with working computer algorithms
in C/C++ is the book by Press et al. [352]. This seminal work provides also an in-depth
analysis of computation of the numerical derivatives.

Finally, a very good text on data structures and algorithms is the book by Cormen et al.
[74]. A comprehensive source on fundamental algorithms and seminumerical algorithms can
be found in the classic texts by Knuth [248, 249].

4.9.2 Problems and Exercises

1. Verify the decompositions given by formulas (4.12) and (4.13).
2. Find the spectral response of the basic differentiation equation (4.33).
3. Design and implement an in situ convolution algorithm, i.e. the procedure Convolve which

takes only input image and a mask. The result goes back to the input image (for more hints
see [226]).

4. Write a 2D convolution procedure which would be tailored for symmetrical 3 × 3 masks
only.
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5. Check the separation properties of the filter given by the following mask:

B =




1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1




What type of signal processing denotes the above operator B?
6. Generate coefficients of the Savitzky–Golay filter of order N = 2 and the window span of

three pixels using the procedures in Algorithm 4.2. Then test your filters.
7. Repeat problem 6 for N = 5 and for the mask of five by five pixels.
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5
Scale-space Vision

5.1 Abstract

The properties of image scale and its implications for image matching algorithms are intro-
duced in this chapter. This is followed by a brief explanation of the concept of scale-space
and how both Gaussian and differential scale-spaces can be constructed. Building on these
concepts, we introduce the multi-resolution image pyramid data structure and how this can
be parameterized in order to build Gaussian and Laplacian of Gaussians image pyramids.
These pyramid structures provide for efficient representation and computation within
scale-space and constitute an essential prerequisite to the formation of general purpose image
matching algorithms. The notion of subdividing the scale-space within the levels of the
pyramid is also presented, such that any specified degree of continuity (in scale) between
pyramid levels can be achieved. Examples of image pyramids coded in both the C++ and
Matlab programming languages illustrate the practical compromises that must be resolved in
practice when building pyramids.

5.2 Basic Concepts

5.2.1 Context

In the preceding chapters we reviewed the geometric process by which stereo-pair images are
formed and how, as a consequence, depth information is implicitly encoded within stereo-
pairs as relative displacements between the stereo-pair image planes. We then developed the
notion of how these relative displacements or disparities can be ‘decoded’ to allow explicit
depth information to be recovered via triangulation. This latter process is reliant upon ex-
plicit knowledge of the stereo-pair imaging geometry and the disparities themselves which
are inferred by solving the stereo correspondence problem, i.e. finding the single locations in
each of the stereo-pair images that both correspond to the same location in the imaged 3D
scene. Although we have now considered the basic operations required to tackle the stereo
correspondence problem in Chapter 4, there remains an intermediate issue that must first be
addressed if we are to develop robust 3D imaging systems, namely that of image scale.

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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5.2.2 Image Scale

Why does scale matter? In the most general sense, image scale represents a degree of freedom
that the underlying image signal can express; other such degrees of freedom include rotation,
contrast and black-level. Scale is simply the manifestation of a change in the spatial size,
or scale, of a feature, region or complete grouping (e.g. object of interest). In the case of a
real camera system, a change in scale of the projected image of an object in the real world
is typically caused by the distance from the camera to the object changing. Due to the finite
nature in which images projected by a camera lens are sampled in the image plane by a
physical sensing device, the amount of information present will also change as the scale of
the projected image changes. Hence, an image of a distant object might subtend only a few
samples on the image plane and the sensing device will capture the object in terms of a small
range of spatial frequencies. As we approach this object, its projection will grow in size on
the imaging plane and a correspondingly larger range of spatial frequencies may be present to
describe more ‘detail’ on the surface of the object. Hence, the gross structure of the object is
resolved in greater detail as we approach it, but does not transform radically, and new detail
emerges as we increase the size of the representation. Evolution of image structure in terms
of emerging detail with increasing image size encapsulates the concept of a multi-resolution
scale-space. The core concept is how to take advantage of the orderly evolution of detail over
scale to be able to process image signals in a scale-independent fashion while exploiting the
finest levels of detail, i.e. highest acuity information available, for a given task.

5.2.3 Image Matching Over Scale

If we were to develop an algorithm that recognizes a specific object, for example a face, we
would like this algorithm to be able to recognize faces regardless of whether they occupy
the entire field of view or simply a small region. In this example, a limiting factor, such as
the minimum recognizable face size, in pixels, might be part of the recognition algorithm’s
input parameterization. In the context of the stereo correspondence problem, we would like
our image-matching algorithm to be able to recover correspondences regardless of how large
(or small) the image structures are in our stereo-pair. Furthermore, we would like to be able to
resolve these correspondences at the finest level of structure available within the stereo-pair
images.

This chapter describes a general analysis framework based on scale-space for represent-
ing images such that it is possible to devise image matching algorithms that operate over a
range of image scales in a consistent manner. As presented in Chapter 4, we shall require
certain classes of image operation, such as convolutions, to be able to tackle the stereo cor-
respondence problem. In other words, we are going to need to filter the stereo-pair images
in order perhaps to extract image features and then match these features between the stereo-
pairs. However, the types of image feature, or, more generally, image structure we extract and
match could conceivably span a very large range of spatial scales and, furthermore, the feature
scales present within the stereo-pairs are not usually known in advance.

The above issues form the central core of the problem of how to achieve scale-invariant
analysis; consider the task of detecting an edge using a Laplacian of Gaussians (LoG) op-
erator (4.5.3). The width of edge to which a given LoG kernel is tuned corresponds to



P1: OTA/XYZ P2: ABC
c05 JWBK288-Cyganek December 5, 2008 1:40 Printer Name: Yet to Come

Scale-space Vision 167

2
√

2σ pixels (Equation (4.73)), where σ is the spread of the Gaussian blur component in
the LoG kernel. Accordingly, the LoG kernel should be at least 4σ pixels in both of its spatial
dimensions to represent the operator with reasonable accuracy. Given that the size of edges
present within captured stereo-pairs will vary continuously, it would be inconceivably cum-
bersome, and computationally inefficient, if we had to construct a set of LoG filters, each
filter corresponding to the (closely approximating) tuning σ required for each width of edge
present. Therefore, densely sampling scale-space by constructing LoG filters tuned to each
scale present in the scale-space over which we are operating is not a viable approach.

An alternative approach to achieving scale-invariant processing is to sample scale-space
with sufficient density such that it is possible to track the evolution of new detail as it emerges
from scale to scale. For example, we could utilize a fixed set of LoG filters such that a fil-
ter tuned to the scale of the largest edge to be processed is applied first and the locations
of these largest edges are labelled. A new LoG filter having a scale tuned to half that of
the previous filter would then be used to label all edges present at this finer level of detail
and so forth until a stack of edge maps is constructed that range from the coarsest-to-finest
sets of edge structure. It is then possible to search, starting with the coarsest edge maps,
for the closest corresponding edges in the map containing the next finest level of detail to
each edge label in the initial coarsest map. This process can then be repeated until the evo-
lution of each new edge label from every coarser edge label has been traced from scale to
scale and hence the term scale-space tracing is applied to this analysis. The purpose of this
process is to be able to describe the structure within an image in a form that can be com-
pared to similar structures in other images, independently of the scale at which the structure
appears in the image. If our structure is compared with a similar structure at lower reso-
lution, there will be a location at a coarser level in the scale-space we constructed for our
image that should match (be similar to) the coarser scale version with which it is being com-
pared. Alternatively, if our structure is compared to another structure containing more detail,
there will be a coarser level of scale in the compared structure that should match our initial
structure.

A computationally more efficient alternative to the above approach to sampling scale-space
is to hold constant the size of the kernel, LoG in this example, and resample the input im-
age to generate a set of images, by low-pass filtering and then subsampling, which exhibit
progressively lower spatial resolutions. This data structure is referred to as an image pyramid
(Figures 5.6 and 5.7) and we shall examine in detail how to parameterize the construction of
image pyramids in section 5.3. Having deconstructed our input image into an image pyramid,
the same size of LoG filter can then be applied to each of the levels of the pyramid to effect
edge detection and labelling over a range of edge scales.

The subject of scale-space analysis is central to modern computer vision theory and covers
a very broad corpus in the literature. Accordingly, an in-depth treatment of scale-space is
beyond the scope of this text and we shall restrict the treatment of scale-space analysis to that
required in the context of stereo-pair matching. To conclude the answer to why we need to
process over scale, we need to address the following issues.

� Image structure and related features exist over a continuous range of sizes in acquired
images.

� The size of features specific to any image is usually not known in advance.
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� Basic image operators, such as filters, must be capable of functioning over the same range
of feature scales as there are present in the input images.

� It is possible to trace the emergence of structure over scale and thereby embed this technique
within a search strategy to achieve scale-independent processing that is also computationally
very efficient.

Considering the issue of scale-independent processing listed above in the context of image
matching, coarse scale information can be matched first and a local search applied at sub-
sequent scales to refine this search process. Such a coarse-to-fine search strategy is central
to solving the correspondence problem successfully and is examined in detail in Chapter 6.
The following sections outline in more detail the concepts that underpin scale-space analysis:
how to construct a scale-space and how to build the image pyramids on which we can apply
scale-independent processing.

5.3 Constructing a Scale-space

5.3.1 Gaussian Scale-space

Lindeberg [277] defines a special form of scale-space that he calls linear scale-space:

Scale-space representation is a special type of multi-scale representation that comprises a contin-
uous scale parameter and preserves the same spatial sampling at all scales. As Witkin [reference
[448] cited] introduced the concept, the scale-space representation of a signal is an embedding of
the original signal into a one-parameter family of derived signals constructed by convolution with
a one-parameter family of Gaussian kernels of increasing width.

In this view, a signal can be considered to be progressively smoothed by means of a
Gaussian kernel. Furthermore, it transpires that only a Gaussian kernel has the form required
to produce a family of smoothed signals that meet the specific criteria required of scale-space,
namely the orderly emergence of image structure as the scale parameter, σ , decreases. An
example of a family of 1D signals derived as a function of σ is illustrated in Figure 5.1 [448].
Note that linear scale-space is not subsampled, as opposed to pyramidal, i.e. multi-resolution,
scale-space.

Lindeberg enumerates the following desirable properties enshrined in his definition of lin-
ear scale-space.

� Shift invariance: spatial isotropy, all spatial positions treated equally.
� Scale invariance: spatial homogeneity, all spatial scales treated equally.
� Causality:

– noncreation of new level curves in scale-space;
– noncreation of new local extrema (turning points);
– nonenhancement of local extrema, i.e. no extrema in a given scale becomes larger in the

scales above or below.

It also transpires that these criteria can be met by considering the signal to be subject to a
first-order diffusion process, as formulated by the standard heat diffusion equation for a heat
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Figure 5.1 Family of signals, progressively smoothed by Gaussian convolution. (Reproduced from
[448], C© 1983 IEEE)

distribution L in an isotropic medium over time t:

∂t L = 1

2
∇2L, (5.1)

a solution of which is the (normalized) Gaussian as a function of σ :

G(t, σ ) = 1√
2πσ

e

(
− t2

2σ2

)
. (5.2)

Unfortunately, for signal dimensions of 2 and higher, it is not possible to meet the causality
requirement using simple kernels, e.g. the 2D Gaussian of:

G(x, y, σ ) = 1

2πσ 2
e
−

(
x2+y2

2σ2

)
, (5.3)

such that the numbers of local extrema are guaranteed never to increase with scale.
Figure 5.2 shows the effect of smoothing an image with progressively larger Gaussian

kernels. We observe that varying the scale (blurring) parameter σ for a Gaussian filter allows
us to compute filters with different degrees of (low-pass) attenuation of high frequencies. Ap-
plying this set of filters produces a set of images containing features according to their spatial
scale. Intuitively, we can think of the Gaussian kernel as a centre weighted averaging filter that
progressively suppresses higher spatial frequencies as the spatial support of the kernel in-
creases with σ .
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Input Image

Progressive Gaussian blur with = 8, 6, 4, 2, 1.5, 1, 0.5

Figure 5.2 Family of images generated by convolution using 2D Gaussian functions. (Input image
reproduced from Final Year Report, Strathclyde University, Iwan Eising)

Examining the sequence of filtered images in Figure 5.2 from coarse-to-fine scale we see
that as high frequencies are introduced (with reducing scale), new levels of complexity appear
in the image. However, each new feature that appears in a given scale then persists and evolves
into subsequent scales, i.e. each new scale contains all the information of the previous scale.
Accordingly, it is possible to track or trace these features from coarse-to-fine images.

The spatial frequency properties of this Gaussian scale-space can be deduced by taking the
Fourier transform of the normalized Gaussian:

G(ω) = e− ω2σ2

2 , (5.4)

where ω is the circular frequency, ω = 2π f .
High frequencies are attenuated according to the above equation, itself Gaussian (for ω >

0) in form. Figure 5.3 illustrates the effect of varying σ on the attenuation properties of the
Gaussian filter for three filters separated by a half-octave and an octave respectively.

5.3.2 Differential Scale-space

The Gaussian scale-space discussed above is redundant in the sense that all the information
contained in each scale also includes all of the information of all previous scales. It is often
more useful to attempt to isolate new information within the scale at which it appears and this
can be accomplished by representing the information difference between scales. The simplest
method for achieving a differential scale-space is to construct a Gaussian scale-space com-
prising a set of Gaussian smoothed images and then to subtract images containing neighbour-
ing scales, pixel-by-pixel, to produce a difference of Gaussians (DoG) scale-space, i.e. DoG
(x, y, σ ) = G(x, y, σ e) − G(x, y, σ i), where, using terminology borrowed from biological
vision, σ e and σ i correspond to the spatial extent of excitatory and inhibitory Gaussian en-
velopes respectively. When the ratio σ e/σ i = 1.6 then the DoG function, introduced in section
4.5.4, provides a good approximation of the Laplacian of Gaussians (LoG) function, section
4.5.3, adopted here to construct a differential scale-space.
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sigma=0.8333
sigma=1.1667
sigma=1.5000
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Nyquist limit after half-octave sub-sampling
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Figure 5.3 Gaussian amplitude response for half-octave and octave separated band passes. (Graphs
and Matlab codes kindly supplied by Dr Sumita Balasuriya)

Differentiating the 2D Gaussian function in (5.3) gives the following partial derivatives in
x and y:

∂G(x, y, σ )

∂x
=

(−x

σ 2

)
1

2πσ 2
e
−

(
x2+y2

2σ2

)
(5.5)

∂G(x, y, σ )

∂y
=

(−y

σ 2

)
1

2πσ 2
e
−

(
x2+y2

2σ2

)
(5.6)

The Laplacian of Gaussians function then corresponds to the sum of the second partial
derivatives of the Gaussian, i.e. the cross-product terms in the usual definition of the Laplacian
are ignored:

∇2G = ∂2G

∂x2
+ ∂2G

∂y2
(5.7)

∇2G(x, y, σ ) = − 1

2πσ 4

(
2 − x2 + y2

σ 2

)
e
−

(
x2+y2

2σ2

)
(5.8)

∇2G(x, y, σ ) =
(

(x2 + y2) − 2σ 2

σ 4

)
G(x, y; σ ) (5.9)
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Images now band pass filtered using LoG filters

Input Image 

Figure 5.4 Set of images filtered by 2D Laplacian of Gaussian functions. (Input image reproduced
from Final Year Report, Strathclyde University, Iwan Eising)

In the frequency domain, the process of isolating information within the scale at which it
appears corresponds to deconstructing the original image into a series of band pass images.
Since each band pass image contains only a range of spatial frequencies, only image features
of a certain characteristic scale will be ‘tuned’ in their spatial dimensions to that of a particular
band pass (and therefore appear with greatest signal strength within this specific band pass
image). Note that such features may also appear in other band pass images, since the pass-
band of each scale normally overlaps significantly with that of its neighbouring scales to
afford continuity over scale. Figure 5.4 illustrates the emergence of high spatial frequency
detail with scale with four examples of an image LoG filtered at progressively finer scales.

Recall in section 4.5.3 taking the Fourier transform of the Laplacian of Gaussian function
(4.77); by integration by parts we obtain the following expression that relates frequency, scale
and signal amplitude:

LoG(ω) = −ω2e− ω2σ2

2

2
σ 2 e−1

, (5.10)

where σ is the standard deviation (sigma) of the filter, ω is the circular frequency, ω = 2π f
and the denominator is the scaling factor that normalizes the filter’s peak response to unity,
when ωpeak =

√
2

σ
. Figure 5.5 illustrates the circular frequency response for three LoG band

passes corresponding to three filters, separated by a half-octave and an octave respectively.

5.4 Multi-resolution Pyramids

5.4.1 Introducing Multi-resolution Pyramids

In the preceding section we constructed both linear and differential scale-spaces with a view
to implementing image-matching algorithms that can operate in a scale-independent manner.
A severe limitation of these ‘pure’ scale-spaces is that as their spatial frequency content re-
duces in (inverse) proportion to scale factor σ , they become not only highly redundant as a
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Figure 5.5 LoG amplitude response for half-octave and octave separated band passes. (Graphs and
Matlab code kindly supplied by Dr Sumita Balasuriya)

representation but also computationally expensive to generate. The standard method of im-
proving the representational efficiency of pure scale-spaces is to subsample the smoothed
signal according to some criterion based on the residual aliasing spectral components present
in the signal, at and above the Nyquist limit for each scale in scale-space. Clearly, the larger
the scale factor, the lower the spatial frequency band pass and therefore the greater the de-
gree of subsampling that is possible. Hence, if this subsampling operation is performed in a
consistent manner, it becomes possible to construct a multi-resolution image data structure
commonly referred to as an image pyramid.

Figures 5.6 and 5.7 show examples of the DoG and LoG pyramids respectively, for an
octave scale-space sampling, i.e. at each level in scale the maximum spatial frequency repre-
sented is half that of the previous (finer) scale. In the case of the DoG pyramid, all frequencies
are present at the finest scale, while the LoG pyramid contains image band passes in each
level of scale. In this latter example, the input image can be reconstructed by expanding and
summing each LoG scale to recombine each band pass into a single image containing all the
spectral components of the original. Three principal advantages are conferred by the pyramid
representation. These are

� improved storage efficiency;
� a uniform basis on which to conduct analysis over scale;
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Figure 5.6 Octave scale Gaussian pyramid. (Original image from Final Year Report, Strathclyde Uni-
versity, Iwan Eising)

� improved computational efficiency, both when constructing the representation and also
when conducting analysis by means of it.

Issues not yet addressed in this discussion are how densely to sample spatial scale itself and
how to select appropriate scale parameters when constructing a scale-space representation. It
transpires that these issues are to some degree dependent upon the particular task that is to be
conducted using the scale-space representation. However, in the following analysis the above
parameterization issues and how to resolve their selection under specific circumstances are
discussed.

An often-cited criticism of the image pyramid is that scale-space is overly sparsely sampled,
increasing the algorithmic complexity of subsequent analysis (more local search is required
at each level of scale if scale-space is not sufficiently continuous between levels). This can
be countered in two ways. Firstly we present a method of analysing pyramid construction
that is not limited to octave sampling in scale, such that any degree of sampling (in scale) is
possible, albeit at a cost. Secondly, the concept of subdivided or semi-pyramids is introduced,
where each level of the pyramid is subdivided in scale, but the spatial sampling resolution
held constant. Other issues surrounding the image pyramid include the possibility of con-
volution artefacts being propagated throughout the representation [277], from the finest to
coarsest level, particularly when separable filters are employed. To balance these negative as-
pects, the reader should be aware that many highly successful stereo-pair matching algorithms
have been implemented based on pyramid representations and that the use of the pyramid
can offer an execution speed advantage of several orders of magnitude over non subsampled
scale-space.

Figure 5.7 Octave scale Laplacian of Gaussians pyramid. (Original image from Final Year Report,
Strathclyde University, Iwan Eising)
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Figure 5.8 Construction of a regular pyramid: apply an initial filter of σ init, filter subsequent levels by
the same σ c and subsample by the same ρ factor at each level

5.4.2 How to Build Pyramids

Pyramid construction comprises two basic steps per sampled scale, namely low-pass Gaussian
filtering followed by subsampling, i.e. image size reduction. As illustrated in Figure 5.8, an
additional, but separate, level of initial filtering can be applied prior to starting the regular
pyramid construction process in order to control the degree of apparent blur within each level
of the final pyramid, detailed in section 5.4.3. A subsampling factor of ρ = 2 (octave reduction
factor) is frequently used to serve many applications; ρ = √

2 (half-octave reduction factor) is
also another useful reduction factor that achieves greater interscale continuity than the octave
reduction case. It is possible to combine subsampling and convolution into a single operation,
e.g. if subsampling by a factor of 2, simply step the kernel over every second pixel of the input
image to output a half resolution image (Figure 5.9). What follows is an extended treatment
of van Hoff’s [197] method for constructing Gaussian and difference of Gaussian pyramids.

5.4.3 Constructing Regular Gaussian Pyramids

The machinery described in section 5.4.2 can be used to construct a regular Gaussian pyramid.
Two additional results are required before we can proceed to pyramid construction. Firstly,
Gaussian filtering by repeated application of one or more kernels is calculated as follows:

σ 2
total = σ 2

a + σ 2
b , (5.11)

where σ a and σ b denote Gaussian kernels applied in cascade and σ total is the scale (blur) of
the equivalent kernel. Secondly, a subsampling factor of ρ reduces the effective size of sigma
by ρ. Based on the above, we can construct a Gaussian pyramid as shown in Figure 5.10.
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Output image

Input image

Advancing kernel 
positions

Figure 5.9 Combined filtering and subsampling, e.g. subsample ×2 by stepping filter kernel over every
second pixel

In order to ensure that we construct a regular Gaussian pyramid, as illustrated in Figure
5.10, we need each level in the pyramid to contain the same apparent level of blur, i.e. if we
generate an image pyramid of a Dirac impulse image, the impulse response at each level in
the pyramid should be the same. Since the response is the same at each level, we can apply the
same analysis algorithms at each level, such that these respond in the same manner. In other
words, in general:

σ0 = σ1 = σ2 . . . σi . (5.12)

L0

L1

L2

L3  

L0, base image: σο= σinit

Filter L1 by G(σc), to get σ2 = σ1
2 + σc

2 

Filter L2 by G(σc), to get σ2 = σ2
2 + σc

2 

Downsample to get L1, σ1
2 = (σ0

2 + σc
2)/ρ2

Downsample to get L2, σ2
2  = (σ1

2 + σc
2)/ρ2

Downsample to get L3, σ3
2  = (σ2

2 + σc
2)/ρ2

Filter L0 by G(σc ), same σc for each level: σ2 = σ0
2 + σc

2

Input Image, filter by G(σinit), 

Figure 5.10 Construction of a Gaussian pyramid
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All that is changing is the spatial scale of the structures within the original image. To
achieve the desired regularity, we need to work out for a given reduction ρ what the rela-
tionship is to σ c and σ init.

Each level of the pyramid illustrated in Figure 5.10 can be implemented efficiently by
repeated convolution of a Gaussian filter σ c, subsampled by a factor ρ. By inspection of
Figure 5.10, we can observe that for the i-th level we can find the blur, σ i, for the current level
as follows:

σi = 1

ρ

√
σ 2

i−1 + σ 2
c . (5.13)

Substituting σ i = σ 0 and σ i–1 = σ 0 in (5.13), where σ 0 should ideally equal the intrinsic
blur in the input image for σ c to remain constant at each level (and thereby avoid the necessity
for an additional initial stage of Gaussian convolution σ init), gives:

σc = σ0

√
ρ2 − 1. (5.14)

The effective σ had they not been reduced is:

σeffective = σ0ρ
i . (5.15)

For an octave pyramid ρ = 2 and σ increases in powers of 2 for each level; therefore
σ c = σ 0

√
3 . In the case of a pyramid with ρ = √

2 , σ c = σ 0. Note that i is numbered such
that i = 0 corresponds to the finest scale. In Figure 5.10 no intrinsic blur has been assumed,
although any image captured using a real (optical) imaging device will typically exhibit a finite
point spread function that may well approximate a Gaussian sufficiently for the purposes of
pyramid construction. Assuming that we have measured the intrinsic input image blur, σ image,
the correct value of σ 0 is simply:

σ0 =
√

σ 2
init + σ 2

image. (5.16)

While an initial level of blurring by σ init might seem redundant, it does allow us to tune the
remaining filter σ c parameters to be the same for each level. In effect σ init allows us to add
an additional degree of blur to the intrinsic blur in the image to generate a regular pyramid
structure of the required blur σ 0 at each level.

5.4.4 Laplacian of Gaussian Pyramids

The straightforward approach to constructing a true Laplacian of Gaussian pyramid (Figure
5.7) is to start by generating a Gaussian pyramid from the input image and then computing
and summing second-order partial derivatives in x and y. In this case σ init is chosen to produce
a value of σ 0 that produces the desired degree of spatial frequency overlap between pyramid
levels, a tradeoff with the degree of aliasing that can be tolerated for an application at hand.

As mentioned, the Laplacians of Gaussians can be approximated by subtracting two differ-
ence of Gaussian functions whose σ values take the ratio 1.6. Three methods for generating
this ratio can be utilized based on constructing two Gaussian pyramids, such that the blur fac-
tor in each level of the (excitatory, E) pyramid, σ Ei, is arranged to be 1.6 times the blur, σ Ii,
in each level of the (inhibitory, I) pyramid. Firstly, the straightforward approach would be to
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copy the original Gaussian (I) pyramid and then apply a second Gaussian filtering operation
σ extra to each of the levels in the copy to generate the E pyramid. For all levels except level 0,
the E/I σ ratio of 1.6 must hold as follows:

σe

σi
= 1.6 =

√
σ 2

0 + σ 2
extra

σ0

⇒ σextra = σ0

√
1.56. (5.17)

Thereafter the I pyramid can be subtracted pixel-wise from the E pyramid to produce a
DoG pyramid.

Secondly, two Gaussian pyramids can be constructed, such that the blur factor in each level
of the E pyramid, σ Ei, is arranged to be 1.6 times the blur, σ Ii, in each level of the I pyramid,
using (5.17) above. Each layer from the I pyramid can be subtracted pixel-wise from the
corresponding layer of the E pyramid to form the DoG approximated LoG pyramid.

Finally, it is possible to expand the next smaller pyramid level, Li+1, to match the current
pyramid level, Li, in size while arranging that the expanded level, Li+1, contains a spread value
1.6 times that of the current level, Li. Levels are subtracted as before. The DoG approximated
LoG pyramid is computed by subtracting each current level, pixel-wise, from each expanded
level, i.e. Li+1 − Li.

5.4.5 Expanding Pyramid Levels

Expansion of a level in a pyramid can be accomplished through the convolution operation
using Gaussian interpolation. For example, if we wish to expand by a factor of two, we require
two (1D) Gaussian kernels; each will be convolved with the input image to be expanded and
will be ‘centred’ on the output pixel location as illustrated in Figure 5.11.

The kernel pair (A, B) generate two output pixels corresponding to the two interpolated
values required for 1D interpolation. Hence two passes, one horizontally and one vertically,

Input image

Output image

Advancing 
kernel 
positions

Kernel B

Kernel A

Figure 5.11 Two kernels required for expansion by Gaussian interpolation
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will generate the four pixel values required to generate an output image of double the input
image dimensions.

While Gaussian interpolation can provide a smoothly expanded image surface, the current
level of blur σ i in the image is combined with the expansion blur σ e to give a total blur, σ exp,
of:

σexp = ρ

√
σ 2

i + σ 2
e . (5.18)

From (5.18) we can now deduce the value of blur σ e required to allow us to construct a
difference of Gaussians pyramid that approximates a Laplacian of Gaussians pyramid using
the reduce–expand–subtract approach. Any level Ln of the LoG pyramid is constructed by
subtracting Ln of the DoG pyramid from Ln+1↑σ e, i.e. where Ln+1 has been expanded with
a Gaussian interpolation expansion filter of blur σ e. To ensure that the ratio (Ln+1↑σ e)/Ln =
1.6, it follows that:

1.6 = σexp

σ0
=

ρ

√
σ 2

0 + σ 2
e

σ0
(5.19)

Rearranging (5.18) allows σ e to be computed from (5.19):

σe = σ
0

√
1.62 − ρ2. (5.20)

The above equation of course implies that the reduce–expand–subtract approach cannot be
used to approximate a LoG pyramid when the expansion factor between levels in the pyramid
is greater than 1.6.

5.4.6 Semi-pyramids

An often-cited criticism of the pyramid representation is that it samples scale-space too
coarsely to achieve adequate continuity between scales for many tasks, including image
matching. A compromise between the computational expense of Lindeberg’s pure scale-space
representation and the typically sparse scale-space sampling of a pyramid can be obtained via
a semi-pyramid. Figure 5.12 shows a semi-pyramid comprising an octave pyramid that has
been subdivided by three to contain two additional interlevel image layers. In this structure,
each intermediate layer represents a subdivision of the scale-space between the pyramid
levels.

Each level Li has been subdivided into sections corresponding to a geometric subdivision of
scale-space reflecting the scale-space sampling imposed by the gross structure of the pyramid
itself. Therefore, as the scale between each pyramid level varies by a factor of ρ, then for a
total of N levels of subdivision between each pyramid level the blur factor, σ n, at the n-th
interlevel will correspond to:

σn = σ0
(

N
√

ρ
)n

, n ∈ 1 · · · N − 1. (5.21)

For example, if a pyramid is to be subdivided in two, N = 2, there will be a single interlevel
at n = 1 (n = 0 would correspond to the first and n = N = 2 would correspond to the second
full level of the pyramid).
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Linput

L0

L1

Ln

Inter-level n = 1
Inter-level n = 2

•
•
•
•

•
•

•
•
•
•

Inter-level n = 1
Inter-level n = 2

Figure 5.12 Semi-pyramid containing an interlevel subdivision factor of three (N = 3) to generate two
interlevels (n = 1, 2), indicated by dotted lines, per full pyramid level

With only a slight loss of efficiency, the semi-pyramid solves the problem of scale-space
continuity and avoids the awkward resampling issues that arise when constructing pyramids
with interlayer ratios that are not factors of two. Unfortunately, by definition (5.21), the semi-
pyramid layers introduce a significant problem in themselves, namely nonuniformity in the
blur factor between these subdivided layers. In turn, this implies that operations on these sub-
divided layers must be performed using spatial support regions that are themselves a function
of σ n. If a relatively low degree of subdivision is adopted, then the added complexity of re-
quiring one to adapt filters to each sublayer may not be particularly onerous. However, is must
be borne in mind that not only filtering algorithms but also search algorithms must be adapted
in their parameters to function correctly within each sublayer.

In order to construct a Gaussian semi-pyramid containing N subdivisions of each level,
we would like to arrange that the current level, Li, is copied and then blurred to form the
next subdivided layer, N − 1 times in all. The additional blur, σ sub, that must be added by
convolution with the current subdivision layer blur, σ n, to provide the correct total blur, σ n+1,
is calculated as follows:

σn = σ0
(

N
√

ρ
)n

, σn+1 = σ0
(

N
√

ρ
)n+1

, (5.22)

(σn+1)2 = (σn)2 + (σsub)2 , (5.23)

σsub = σ0
[

N
2n+2

√
ρ − N

2n
√

ρ
]1/2

. (5.24)
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A Laplacian of Gaussians subdivision can be straightforwardly calculated as described in
section 5.4.4 by summing the partial derivatives in each subdivided level, or forming a DoG
approximation as described before. In this case intersemilevel subtraction can be arranged
to give semilevel band pass spatial filters (and corresponding subdivision of scale-space),
although only very specific subdivisions will produce good LoG approximations.

5.5 Practical Examples

This section provides codes in both C++ and Matlab that implement functional Gaussian
and Laplacian of Gaussians half octave pyramids (reduction factor between levels, ρ, of ρ =√

2 ). A reduction factor of ρ = √
2 was chosen since this value is known to work satisfac-

torily when matching over scale-space stereo-pair images typically captured in close-range
photogrammetry applications. Since

√
2 is not a particularly convenient reduction factor to

implement within a pyramid, the following examples are therefore particularly illustrative,
in terms of implementation compromises that must be reached in practice. In both C++
and Matlab implementations given here separable 1D kernels have been used to compute
Gaussian filtering.

5.5.1 C++ Examples

In this example of constructing a half octave pyramid using the C++ programming language,
a reduction factor of 1.5 has been selected to ease the task of subsampling each level. However,
the filter coefficients adopted assume that the scale-space is being sampled in half octave in-
crements between levels. Direct decimation of the previous level by subsampling and filtering
combined into a single operation has been adopted.

5.5.1.1 Building the Laplacian and Gaussian Pyramids in C++
Figure 5.13 presents class hierarchy for the three types of image pyramids: the Gaussian,
DoG and Laplacian pyramids. The TImagePyramids base class defines a common interface of
this family of classes. Its only derived class is TGaussianImagePyramids from which the
TDOGImagePyramids and TLaplacianImagePyramids are derived in turn. The reason for
such organization is that the last two types of pyramids are built upon the Gaussian pyramids.
This is well visible in Algorithm 5.1(b) as well.

The auxiliary class TRealLinearFilter Factory in Figure 5.13 implements the factory pat-
tern the role of which is to supply different types of linear filter objects such as TBinomialFil-
ter or TGaussianFilter objects. These are discussed in section 13.3.8.

Algorithm 5.1(a) presents the flow chart of the algorithm that produces the Gaussian pyra-
mid. Its input consists of a single image, while an output is composed of a set of images, each
being a copy of an original one but at different scale. Such a set of images forms a pyramid of
images. The implementation can be simplified by substitution of the Gaussian filter (section
4.3.1) with the binomial one (section 4.3.2).

The input parameters of Algorithm 5.1(a) are as follows.

1. A value of σ for the Gaussian filter (expressed in pixels).
2. An input image.
3. A value M of the required levels of the Gaussian pyramid.
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TlmagePyramids

TGaussianImagePyramids

TLaplacianlmagePyramids
TDOGlmagePyramids

TRealLinearFilter_Factory

Reallmage_Vector & theOutputPyramid,
int requiredPyramidLevels ) = o;;

+ virtual bool operator () ( const TReallmage & thelnputlmage,

Figure 5.13 Hierarchy of the scale-space pyramids

The output is as follows.

1. A series (a vector) of M images of the Gaussian pyramid.

Algorithm 5.1(a) consists of the following steps.

1. Creation of the Gaussian mask. The 2D Gaussian mask is created based on the supplied
σ value and (optionally) mask size, given in pixels. The mask is separable which means
that instead of a single 2D mask there are two 1D masks, one horizontal and the second
vertical. This speeds up the convolution (section 4.2).

2. The algorithm assumes a temporary image TMP IM (array of pixels) that stores interme-
diate results.

3. The loop starts at this point. The loop will be performed M times, with an iteration variable
k going from 0 up to M − 1 (inclusive).

4. TMP IM is an image at a scale k in the computed pyramid. Store the TMP IM in the output
data structure after all previously stored images.

5. Filter the TMP IM image with the mask created in step 1. The result is assumed to go to
the TMP IM, although there can be a necessity for an additional storage for intermediate
results of convolution.
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Convolve TMP_IM with the Gaussian mask:
TMP_IM = F( TMP_IM )

Convolve TMP_IM with the Gaussian mask:
TMP_IM = F( TMP_IM )

For k: 0..M-1
For k: 0..M-1

Gaussian Pyramid of M Levels
Gaussian Pyramid of M Levels

Down-Sample (by a factor R) TMP_IM:
TMP_IM = DR( TMP_IM )

Down-Sample (by a factor R) TMP_IM:
TMP_IM = DR( TMP_IM )

Create Gaussian mask
(given parameter sigma)

Create Gaussian mask
(given parameter sigma)

Set the temporary image TMP_IM to be
the initial (input) image

Set the temporary image TMP_IM to be
the initial (input) image

Set (store) the Gaussian image at level "k" as:
TMP_IM

Set (store) the Gaussian image at level "k" as:
TMP_IM

Get Gaussian image at level:
G[ k+1 ]

Get Gaussian image at level:
G[ k+1 ]

For k: 0..N
For k: 0..N

Laplacian Pyramid of N Levels
Laplacian Pyramid of N Levels

Up-Sample the image G[ k+1 ]:
G2 = 2^G[ k+1 ]

Up-Sample the image G[ k+1 ]:
G2 = 2^G[ k+1 ]

Adjust image dimensions of G1:
GA1 = A( G1 )

Adjust image dimensions of G1:
GA1 = A( G1 )

Create the Laplacian image by the following
subtraction:

L[ k ] = GA1 - G2

Create the Laplacian image by the following
subtraction:

L[ k ] = GA1 - G2

Get Gaussian image at level:
G1 = G[ k ]

Get Gaussian image at level:
G1 = G[ k ]

Create the Gaussian pyramid
(vector of N+1 elements G[ i ], where i:0..N)

Create the Gaussian pyramid
(vector of N+1 elements G[ i ], where i:0..N)

(a) (b)

Algorithm 5.1 Flow charts of the algorithms of (a) the Gaussian and (b) Laplacian pyramids

6. Down sample the image just obtained (i.e. after low-pass filtering). The result is assumed
again to go to the TMP IM, although there can be a necessity for an additional storage for
intermediate results of this operation.

7. Go to step 4 and repeat the loop for the next pyramid levels (k←k + 1), unless last level
has been just processed.

An exemplary implementation is presented in Algorithm 5.2.
The flowchart of the Laplacian pyramid is presented in Algorithm 5.1(b). It utilizes the

Gaussian pyramid from Algorithm 5.1(a) as its subroutine. The format of the input and output
parameters is the same as for the Gaussian pyramid. The method proceeds as follows.

1. Create the Gaussian pyramid with N + 1 levels, in accordance with Algorithm 5.1(a).
2. The loop starts at this point and embraces steps 3–6. The loop will be performed N times,

with a variable k going from 0 up to N − 1 (inclusive).
3. Get an image from the Gaussian pyramid at level k + 1 and up-sample. The result goes to

the temporary image G2.
4. Get an image G1 from the Gaussian pyramid at level k and adjust its dimensions to fit

exactly the dimensions of the just-computed image G2. The adjusted image becomes GA1.
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This step is necessary because the consecutive processes, first of down sampling then up
sampling, do not necessarily result in an image with dimensions of the original image.

5. The Laplacian image L[k] at the k-th level of the pyramid is obtained simply by subtraction:
GA1 − G2.

6. Go to step 3 and repeat the loop for the next pyramid levels (k←k + 1), unless the last level
has been just processed.

A function operator which implements the Laplacian pyramid is presented in
Algorithm 5.3.

///////////////////////////////////////////////////////////
// This function creates an image pyramid from the input 
// image. 
///////////////////////////////////////////////////////////

  // 
// INPUT: 

theInputImage - reference to the input image   // 
theOutputPyramid - vector of output images   // 
requiredPyramidLevels - required number of   // 

the pyramid levels    // 
  // 

// OUTPUT: 
true - if operation successful   // 
false - otherwise   // 

  // 
// REMARKS: 

  // 
  // 

bool TGaussianImagePyramids::operator () ( 
const TRealImage & theInputImage,        
RealImage_Vector & theOutputPyramid,        
int requiredPyramidLevels )        

{
// At first we need a Gaussian filter.  
// Get the smoothing filter through the current factory.  
RealLinFilter_AP theSmoothingFilter(  

fRealLinearFilter_Factory( fMaskWidth, fSigma ) );  

TImage_SimpleByTwo_DownSampler theDecimator;  

REQUIRE( theOutputPyramid.size() == 0 ); // require no prior images   

// save the first image of the pyramid (which is the original image)  
     theOutputPyramid.push_back( theInputImage );   

// prepare the starting smoothed version  
 RIAP smoothedImageAtLevel( ( * theSmoothingFilter )(theInputImage) );  

// Go through all remaining levels  
for( int theLevel = 1; theLevel < requiredPyramidLevels; theLevel ++ ) 
{  

// decimate the smoothed version   
 RIAP decimatedImage( theDecimator( * smoothedImageAtLevel ) );   

// save that level of images   
 theOutputPyramid.push_back( * decimatedImage );   

// the starting image for the next level   
smoothedImageAtLevel = RIAP( ( * theSmoothingFilter )(   

                                    * (const TRealImage *) decimatedImage.get() ) ); 
}  

return true;  
}

Algorithm 5.2 Implementation of the functor which builds the Gaussian pyramid. (Reproduced with
permission of Pandora Int. Inc., London)
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bool TLaplacianImagePyramids::operator () ( 

const TRealImage & theInputImage, 
 RealImage_Vector & theOutputPyramid, 

 
int requiredPyramidLevels ) 

 
{

// At first create the pure Gaussian pyramid  
RealImage_Vector thePureGaussianPyramid;  
if( TGaussianImagePyramids::operator ()(  

theInputImage, thePureGaussianPyramid, requiredPyramidLevels+1 )   
== false )     

return false;   

// Now take two neighbouring images from the pure Gaussian pyramid,  
// up-sample the smaller one, and subtract the two.  
// The result put into the output pyramid.  

theImageUpSampler;  TImage_TwoNeighborInterpol_UpSampler  

// Go through all remaining levels  
REQUIRE( thePureGaussianPyramid.size() == requiredPyramidLevels + 1 );  
for( int theLevel=0; theLevel<requiredPyramidLevels-1; theLevel++ ) 
{  

REQUIRE( theLevel + 1 < thePureGaussianPyramid.size() );   
// interpolate the smoothed and down-sampled version   
RIAP upSampledImage(   

 

theImageUpSampler( thePureGaussianPyramid[ theLevel + 1 ] ) );    

// It can happen that the two images we wish to subtract can have   
// different dimensions. This happens because when down sampling,   
// then up sampling, image dimensions are adjusted to the nearest   
// even value. At the same time the second image, the one   
// from the Gaussian pyramid that has not been downsampled,   
// can have an odd dimension.   
// Thus a necessity to adjust image dimensions before subtracting.   

RIAP adjustedGaussianImage(   
thePureGaussianPyramid[ theLevel]. 

OrphanBitBlit( 
0, 0,  
upSampledImage->GetCol(),  
upSampledImage->GetRow() ) );  

theOutputPyramid.push_back(   
 *  adjustedGaussianImage - * upSampledImage ); 

}  

// The last image in the Laplacian pyramid is a low-pass filtered  
// Gaussian image containing only the coarsest structures.  
REQUIRE( theLevel == requiredPyramidLevels - 1 );  
theOutputPyramid.push_back( thePureGaussianPyramid[ theLevel ] );  

return true;  
}

Algorithm 5.3 Implementation of the functor which builds the Laplacian pyramid. (Reproduced with
permission of Pandora Int. Inc., London)
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Figure 5.14 Constructing half octave DoG and LoG pyramids using two octave pyramids, the second
offset by a half octave to the first. (Graphs and codes kindly supplied by Dr Sumita Balasuriya)

The DoG pyramid is built in an analogous way. Details can be found in the source code
accompanying the book [216].

5.5.2 Matlab Examples

In the following Matlab codes (kindly supplied by Dr Sumitha L. Balasuriya who also sup-
plied Figures 5.3, 5.5 and 5.14) to implement a half octave pyramid, an alternative approach
has been adopted to achieving a half octave pyramid reduction factor. Rather than perform
direct subsampling of each pyramid level with an awkward 1.5 reduction factor, which mis-
matches slightly with the desired scale-space subdivision of 2, two octave separated pyra-
mids have been constructed. In this case, one of the octave pyramids has been constructed
from a copy of the input image which has been subsampled by a half octave, as illustrated in
Figure 5.14.

Below are the Matlab codes to implement the half octave pyramid of Figure 5.14.
A Gaussian half octave pyramid is first constructed and the Laplacians of Gaussians
pyramid is then constructed by Laplacian filtering each level of the LoG pyramid,
as follows:
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function Pyr=half_octave(I,levels,sigma_init); 
% rho=1.5 aproximation to half-octave 
% rho=2 octave 

% initialise 
masksize=7; % size of mask used in pyramid 
Pyr{1}=double(I);

% sigma_alpha, subsample down to first octave layer = sigma_c 
sigma_alpha=sigma_init*sqrt(3);

M_alpha=mask(masksize,sigma_alpha,0.5,0.5,'gau',sigma_alpha);
M_alpha=M_alpha/sum(sum(M_alpha));

% sigma_beta, subsample down to first half-octave layer 
sigma_beta=sigma_init*1.1180;

M_beta{1,1}=mask(masksize,sigma_beta,0.25,0.25,'gau',sigma_beta);
M_beta{1,1}=M_beta{1,1}/sum(sum(M_beta{1,1}));
M_beta{3,1}=mask(masksize,sigma_beta,-0.25,0.25,'gau',sigma_beta);
M_beta{3,1}=M_beta{3,1}/sum(sum(M_beta{3,1}));
M_beta{1,3}=mask(masksize,sigma_beta,0.25,-0.25,'gau',sigma_beta);
M_beta{1,3}=M_beta{1,3}/sum(sum(M_beta{1,3}));
M_beta{3,3}=mask(masksize,sigma_beta,-0.25,-0.25,'gau',sigma_beta);
M_beta{3,3}=M_beta{3,3}/sum(sum(M_beta{3,3}));

[height,width]=size(I);

%%%

% HALF-OCTAVE DOWN FROM ORIGINAL IMAGE 

Coarser=Pyr{1};

b=1;
for j=1+(masksize-1)/2:height-(masksize-1)/2, 
    jj=rem(j,3); 
    if jj==0, jj=3; end;  % Matlab indexes from 1 

    if jj~=2, 
        a=1; 
        for i=1+(masksize-1)/2:width-(masksize-1)/2, 
            ii=rem(i,3); 
            if ii==0, ii=3; end;  % Matlab indexes from 1 

            if ii~=2, 
                try 
                    Out(b,a)=sum(sum(Coarser(j-(masksize-1)/2:j+(masksize-1)/2,i-
(masksize-1)/2:i+(masksize-1)/2).*M_beta{ii,jj}));
                    a=a+1;
                catch 

                end 

            end 
        end 
        b=b+1 
    end 
end

Pyr{2}=Out;

% OCTAVE DOWN FROM ORIGINAL IMAGE 

clear Out; 
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Coarser=Pyr{1};

b=1;
for j=1+(masksize-1)/2:height-(masksize-1)/2, 
    if rem(j,2)~=0, 
        a=1; 
        for i=1+(masksize-1)/2:width-(masksize-1)/2, 
            if rem(i,2)~=0, 
                try 
                    Out(b,a)=sum(sum(Coarser(j-(masksize-1)/2:j+(masksize-1)/2,i-
(masksize-1)/2:i+(masksize-1)/2).*M_alpha));
                    a=a+1;
                catch 

                end 

            end 
        end 
        b=b+1 
    end 
end

Pyr{3}=Out;

% OCTAVE SEPERATED CONVOLVE AND REDUCE 

% recursive subsampling 

for level=4:levels, 
    Coarser=Pyr{level-2}; 
    clear Out; 
    [height,width]=size(Coarser); 
    b=1; 
    for j=1+(masksize-1)/2:height-(masksize-1)/2, 
        if rem(j,2)~=0, 
            a=1; 
            for i=1+(masksize-1)/2:width-(masksize-1)/2, 
                if rem(i,2)~=0, 
                    try 
                        Out(b,a)=sum(sum(Coarser(j-(masksize-1)/2:j+(masksize-1)/2,i-
(masksize-1)/2:i+(masksize-1)/2).*M_alpha));
                        a=a+1;
                    catch 

                    end 

                end 
            end 
            b=b+1 
        end 
    end 

    Pyr{level}=Out; 

end

function M=mask(siz,sigma,X,Y,type,sigma2); 
% siz can be even or odd 
% X,Y denotes the subpixel distance of the centre of the 
% gaussian from the centre of the mask 
% M=mask(siz,sigma,X,Y,type,sigma2); 

M=zeros(siz);

[x,y] = meshgrid(-(siz-1)/2:(siz-1)/2,-(siz-1)/2:(siz-1)/2); 
x=x+X;
y=y+Y;
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if type=='gau', 
    h = (1/(2*pi*sigma2^2))*exp(-(x.*x + y.*y)/(2*sigma2*sigma2)); 
    %h = h/sum(sum(h)); % can keep this line if want to be accurate 

elseif type=='dog', 
    h1 = (1/(2*pi*sigma^2))*exp(-(x.*x + y.*y)/(2*sigma*sigma)); 
    %h1 = h1/sum(sum(h1)); % can keep this line if want to be accurate 
    h2 = (1/(2*pi*sigma2^2))*exp(-(x.*x + y.*y)/(2*sigma2*sigma2)); 
    %h2 = h2/sum(sum(h2)); % can keep this line if want to be accurate 

    h=h1-h2; 

elseif type=='cir', 
    h1 = exp(-(x.*x + y.*y)/(2*sigma*sigma)); 
    h1 = h1/sum(sum(h1)); 
    h2 = exp(-(x.*x + y.*y)/(2*sigma2*sigma2)); 
    h2 = h2/sum(sum(h2)); 

    h=h1-h2; 
    h=-(h.*(h>0)); 

elseif type=='log', 
    std = sigma*sigma; 
    h1 = exp(-(x.*x + y.*y)/(2*std)); 
    h = h1.*(x.*x + y.*y - 2*std)/(2*pi*(sigma^6)); 
    h = h - sum(h(:))/prod(size(h));

elseif type=='gab', 
    %[C,S] = gabormask(size,sigma,[],sigma2); 
    %h=C; 

    orient = sigma2; 
    period = []; 
    Size = siz; 

    sy=Size-1; sx=Size-1; 
    period = sigma*2*sqrt(2); 

    % Basic grid 
    hy = sy/2; hx = sx/2; 
    [x, y] = meshgrid(-hx:sx-hx, -hy:sy-hy); 
    x=x+X; 
    y=y+Y; 

    % Parameters 
    omega = 2*pi/period; 
    cs = omega * cos(orient); 
    sn = omega * sin(orient); 
    k = -1/(2*sigma*sigma); 

    % Main computations 
    g = exp(k * (x.*x + y.*y));     % Gaussian mask 
    xp = x * cs + y * sn;           % Rotated x coords, phase 
    cx = cos(xp);                   % cos grating 
    cmask = g .* cx;                % modulated cos grating 
    sx = sin(xp);                   % sin grating 
    smask = g .* sx;                % modulated sin grating 

    % Normalise so that convolution of mask with a harmonic curve of the 
    % matching frequency gives unity peaks 
    cnorm = sum(sum(cmask.*cx)); 
    cmask = cmask/cnorm; 
    snorm = sum(sum(smask.*sx)); 
    smask = smask/snorm; 

    C=cmask; S=smask; 
    h{1}=C; 
    h{2}=S; 
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end

%  [sy,sx]=size(h); 
%  element=h(round(sy/2),1); 
%  M=h.*(h>=element); 
%
%  M=M/sum(sum(M)); 

M=h;

5.5.2.1 Building the Gaussian Pyramid in Matlab

The Gaussian pyramid is constructed using the Matlab code in the previous section as follows.
Invoke the construction of a half-octave Gaussian pyramid using:

  Pyr=half_octave(Image,levels,init) 

The variable definitions are

Image = input image
levels = no. of levels of pyramid
init = Intrinsic blurring in Image
Pyr = Cell data structure with Gaussian pyramid levels.

In this example we construct two pyramids, for the ‘right’ and ‘left’ images of a stereo-pair,
as follows:

Pyr_L=half_octave(Left,7,0.5);
Pyr_R=half_octave(Right,7,0.5);

5.5.2.2 Building the Laplacian of Gaussians Pyramid in Matlab

The code to invoke the construction of the Laplacian of Gaussians pyramid is slightly more
involved than that above, since this is constructed here by convolving each level of a Gaussian
pyramid with a Laplacian filter. A mask generator function is provided with the appropriate
parameters to generate the required Laplacian kernel:

M=mask(siz,sigma,X,Y,type,sigma2);

The variable definitions are

siz = Size of filter
sigma = Sigma of filter
X = Horizontal subpixel offset
Y = Vertical subpixel offset
type = type of filter (‘lap’ in this case)
sigma2 = Sigma of excitatory DoG subfield if generating DoG filter.

Pyr_L=half_octave(Left,7,0.5); Pyr_R=half_octave(Right,7,0.5); 
patchsize=5; sigma=5/6; 
Lap_Pyr_L=laplacian(Pyr_L,patchsize,sigma);
Lap_Pyr_R=laplacian(Pyr_R,patchsize,sigma); 
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5.6 Closure

5.6.1 Chapter Summary

The key concept introduced in this chapter is that of image scale and how this must be accom-
modated to allow matching and analysis algorithms to operate independently of the scale of
image structures represented within images. Scale-space provides an embedded decomposi-
tion of the image signal into a family of signals that provide a structure on which analysis over
scale can be applied. Differential scale-space takes this notion a step further by decomposing
the input image into a set of overlapping band pass images, each band pass representing a
portion of the spatial frequency content of the original image. The image pyramid allows both
Gaussian (low-pass) and Laplacians of Gaussians (band pass) decompositions to be repre-
sented efficiently and these data structures form the foundations of a very substantial fraction
of modern image matching and analysis algorithms. It is possible to parameterize the construc-
tion of the image pyramid to accommodate specific tasks and to achieve specific degrees of
continuity between scales based on careful analysis of the reduction factor between pyramid
levels and the degree of blurring applied. The semi-pyramid also provides a mechanism for
simplifying the construction of pyramid structures with increased continuity between scales
over the basic pyramid structure.

5.6.2 Further Reading

The two key introductory papers to scale-space concepts used here are by Lindeberg [277]
and Florack et al. [130]. Witkin’s seminal paper on search over scale [448] should be read
in the context of image matching (Chapter 6). A number of textbooks have emerged on the
subject of scale-space. Some examples are as follows.

� Front-End Vision and Multi-Scale Image Analysis: Computer Vision Theory and Applica-
tions written in Mathematica by Bart M. Ter Haar Romeny.

� Gaussian Scale-Space Theory by Jon Sporring.
� Scale-space Theory in Computer Vision by Tony Lindeberg.
� Curvature Scale Space Representation: Theory, Applications and MPEG-7 Standardization

by Farzin Mokhtarian and Miroslav Bober.

The final text quoted above is somewhat different in that it deals with curvature embedded
in scale-space, but is none the less highly relevant to understanding certain classes of matching
algorithm.

The state-of-the-art in scale-space theory and techniques has been presented every two
years at the Scale-Space International Conference since 1997. The proceedings published to
date are listed below.

� Scale-Space Theory in Computer Vision: First International Conference, Scale-Space 1997,
Utrecht, The Netherlands.

� Scale-Space Theories in Computer Vision: Second International Conference, Scale-Space
1999, Corfu, Greece.
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� Scale-Space and Morphology in Computer Vision: Third International Conference, Scale-
Space 2001, Vancouver, Canada.

� Scale Space Methods in Computer Vision: Fourth International Conference, Scale-Space
2003, Isle of Skye, UK.

� Scale Space and PDE Methods in Computer Vision: Fifth International Conference, Scale-
Space 2005, Hofgeismar, Germany.

� Scale Space and Variational Methods in Computer Vision, First International Conference,
SSVM 2007, Ischia, Italy.

5.6.3 Problems and Exercises

1. Plot the PSNR for a Gaussian filter: at the Nyquist limit, subsampled a half octave below
this limit and subsampled one octave below.

2. What value of σ is required to ensure a PSNR of 150 dB at each level of a regular Gaussian
pyramid with an octave reduction factor?

3. Plot the PSNR for a Laplacian of Gaussians filter: at the Nyquist limit, subsampled a half
octave below this limit and subsampled one octave below.

4. What value of σ is required to ensure a PSNR of 150 dB at each level of a regular Laplacian
of Gaussians pyramid with an octave reduction factor?

5. How would you construct a Laplacian of Gaussians pyramid such that the spectral overlap
between levels resulted in the half-power points of adjacent band passes (pyramid levels)
being congruent? Plot the frequency response of each level of the resultant pyramid.
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6
Image Matching Algorithms

6.1 Abstract

In this chapter we discuss some basic aspects of image matching algorithms. Matching can be
viewed as a process of finding the degree of correlation between two groups of data. This area
belongs to the one of the most explored topics in computer science. Therefore the key issue
of this chapter is to provide the basic concepts followed by some of the most common image
matching strategies.

We begin with an overview of matching measures, starting with measures operating on
scalar intensity signals, bit strings, progressing then to vector and matrix data, as well as to the
statistical and information theory-based methods. The algorithmic aspects are then discussed
with particular emphasis on techniques for increasing the effectiveness of the methods.

Matching is sometimes more efficient when operating on image signals that have been
transformed in some way, rather than operating on the pure intensity values themselves. Ex-
amples here are the nonparametric Census and Rank. Another type of transformation dis-
cussed is the nonlinear log-polar transform, which allows more reliable image matching. Its
application to area matching around salient points is also presented, where it can be used to
find point correspondences necessary for computation of the fundamental matrix.

The rest of the chapter is devoted to the broad group of stereo matching methods, i.e. the
computer algorithms by means of which disparity information can be extracted from stereo-
pair images of a scene. We discuss some algorithmic problems encountered in stereo match-
ing; different stereo methods are then described with software implementations of some of
them. Finally, gradient-based matching, dynamic programming, graph cuts and optical flow
methods are discussed.

6.2 Basic Concepts

Comparing different things is one of the most common actions performed by humans. We of-
ten compare prices for the best deal, maximum speed of a car with a speed limit sign, people’s
heights, but also we are able to compare meanings of words, or compare chances of politi-
cians in elections, for instance. Each comparison is based on some prerequisites – or a priori
knowledge – that sometimes can be expressed by a simple mathematical formula. Otherwise,

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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people use their own ‘fuzzy’ interpretation of things, sometimes with various meanings for
different persons. Therefore the meanings of a ‘distance’ and a ‘length’ are very important in
science. In mathematics these concepts are known as a metric and a norm, respectively.

In computer vision, and also in other disciplines of science, data matching belongs to one
of the fundamental processing methods. There are also many types of ‘data’ that are to be
matched. For instance, these can be intensity signals, detected shape contours, graphs, etc.

6.3 Match Measures

In this section we analyse the most common and practical matching measures that can be used
to tell which areas in different images fit together and how to assign a scalar value to describe
‘goodness’ of a match.

6.3.1 Distances of Image Regions

Table 6.1 contains a list of the most common area or region matching measures operating
directly on pixels. In all of the following definitions we assume that two compatible image
regions I1 and I2 are compared. Both can belong to the same or different image spaces. I1

is built around a reference point (x, y), expressed in its local coordinate space; I2 is built
around a point (x + dx, y + dy) in its local coordinate space. For both, the matching regions
are defined by a set U of offset values, measured from their reference points, i.e. (x, y) and
(x + dx, y + dy), respectively. Thus, the matched regions are not necessarily compact. We
assume also that all indices defined by U fall into ranges of valid pixel location for I1 and I2,
respectively.

Pixel values can be scalars, vectors, matrices or even tensors, i.e. for pixels we allow all
mathematical objects for which the involved operators and norms are defined. For instance
DSAD can be defined for all such objects (pixels) for which the subtraction operator ‘−’ and
the norm || are defined. However, the following measures are uniquely defined only for scalars.
Usually, for higher dimensional objects a result can be obtained in many different ways. More-
over, we are usually interested to get a scalar value as a result of matching.

In the task of region matching we are usually interested in finding the central points (x, y)
and (x + dx, y + dy), and/or values of dx and dy, for which a matching measure obtains its
extreme value. Table 6.2 presents an explanation of the symbols used in Table 6.1.

Although Table 6.1 gives many possibilities, a practical choice of a proper distance measure
for a given application is not an easy one. The way to overcome this problem is to get some
more in-depth knowledge on the distances and to experimentally verify their behaviour.

The most commonly known and used are DSAD and DSSD, although the first one usually
requires the least computations. This is especially important when the speed of computations
is a priority, although bit matching in the nonparametric domain can be an alternative (section
6.3.7).

Sebe et al. [378] examined relations of the common matching measures with respect to
the noise distribution encountered in real images and different applications of computer vi-
sion. Their results show that the usual assumption about the Gaussian noise distribution and,
as a consequence, choice of DSSD are not well justified in many cases. A better approxima-
tion gives the Cauchy distribution. To cope with real situations Sebe et al. propose either to
precondition image statistical properties, so the inner noise is more Gaussian like, or use a
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Table 6.1 The most common matching measures for intensity signals

DSAD − sum of absolute differences (6.1)

DS AD =
∑

(i, j)∈U

∣∣I1(x + i, y + j) − I2(x + dx + i, y + dy + j)
∣∣

DZSAD − zero mean sum of absolute differences (6.2)

DZ S AD =
∑

(i, j)∈U

∣∣(I1(x + i, y + j) − I1(x, y)
)− (I2(x + dx + i, y + dy + j) − I2(x + dx , y + dy)

)∣∣

DSSD − sum of squared differences (6.3)

DSSD =
∑

(i, j)∈U

(
I1(x + i, y + j) − I2(x + dx + i, y + dy + j)

)2

DZSSD − zero mean sum of squared differences (6.4)

DZ SSD =
∑

(i, j)∈U

[[
I1(x + i, y + j) − I1(x, y)

]− [I2(x + dx + i, y + dy + j) − I2(x + dx , y + dy)
]]2

DSSD−N − normalized sum of squared differences (6.5)

DSSD−N =

∑
(i, j)∈U

[
I1(x + i, y + j) − I2(x + dx + i, y + dy + j)

]2
√ ∑

(i, j)∈U
I1(x + i, y + j)2 · ∑

(i, j)∈U
I2(x + dx + i, y + dy + j)2

DZSSD−N − zero mean normalized sum of squared differences (6.6)

DZ SSD−N =

∑
(i, j)∈U

[(
I1(x + i, y + j) − I1(x, y)

)− (I2(x + dx + i, y + dy + j) − I2(x + dx , y + dy )
)]2

√ ∑
(i, j)∈U

(
I1(x + i, y + j) − I1(x, y)

)2 · ∑
(i, j)∈U

(
I2(x + dx + i, y + dy + j) − I2(x + dx , y + dy )

)2

DCV − covariance-variance (6.7)

DCV =

∑
(i, j)∈U

(
I1(x + i, y + j) − I1(x, y)

) · (I2(x + dx + i, y + dy + j) − I2(x + dx , y + dy)
)

√ ∑
(i, j)∈U

(
I1(x + i, y + j) − I1(x, y)

)2 · ∑
(i, j)∈U

(
I2(x + dx + i, y + dy + j) − I2(x + dx , y + dy)

)2

(continued)
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Table 6.1 The most common matching measures for intensity signals (Continued)

DSCP − sum of cross products (6.8)

DSCP =
∑

(i, j)∈U

I1(x + i, y + j) · I2(x + dx + i, y + dy + j)

DSCP−N − normalized sum of cross products (6.9)

DSCP−N =

∑
(i, j)∈U

I1(x + i, y + j) · I2(x + dx + i, y + dy + j)√ ∑
(i, j)∈U

I1(x + i, y + j)2 · ∑
(i, j)∈U

I2(x + dx + i, y + dy + j)2

metric which better fits real situations. For the latter solution, a good choice is the Cauchy
metric which in their opinion is better than the Kullback measure (section 6.3.4) and much
better than DSSD or DSAD. However, practical application of this idea should be preceded
by a statistical test to verify a hypothesis of a distribution encountered in the images to be
processed. The second problem is determination of a height–tail parameter of the Cauchy dis-
tribution – a suitable algorithm is outlined in [378]. The Cauchy distance DCHY among two
regions can be computed in accordance with (6.26).

Similarly Bhat and Nayar [41] showed that DSAD and DSSD are very sensitive to outliers,
and suggested that other measures should be used for image matching.

Table 6.2 Explanation of symbols used in Table 6.1

Expression in Table 6.1 Description

U = U(x, y) A set of points (in practice, point coordinates) located
around a point with local image coordinates (x, y).

Ik(x, y) An intensity value of the k-th image at a point with local
image coordinates (x, y).

Ik(x, y) = 1
N

∑
(i, j)∈U

Ik(x + i, y + j)

where N = #U

An average intensity value of the k-th image at a certain
neighbourhood U around a point with local image
coordinates (x,y). N denotes the number of points that were
taken into computations or, in other words, the number of
distinctive pairs (i, j) which denote relative displacements
around (x, y). They can be positive or negative with only one
assumption that Ik(x + i, y + j) belongs to the domain of an
image Ik, otherwise a value would not be defined.

dx, dy Parameters that denote relative horizontal and vertical
displacements of the two image blocks being compared.
Note that in many computer vision tasks these are just the
values we are looking for, under a constraint that a distance
measure D( ) from Table 6.1 attains its extreme value (this
leads to the optimization problems).
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Thus, to cope with local inaccuracies caused by noise, different lighting conditions or cam-
era characteristics, other distances, such as DZSAD, DZSSD, DZSSD-N and DCV, can be consid-
ered. The mentioned measures have a common feature – they assume signal preconditioning
to obtain zero mean values in compared regions. In some applications, such as stereo matching
[118] or image registration in the log-polar space [465], DCV gives the best results. However,
its computational complexity is also the highest from the distances presented in Table 6.1.

The nice feature about DCV is that it is invariant to the linear transformation of the two
matched signals, i.e. it holds that

DCV (I1, I2) = DCV (a1 I1 + b1, a2 I2 + b2) , (6.10)

where a1,2 and b1,2 are constants (a1,2 needs to have the same sign). Therefore DCV is fre-
quently used in template matching, where one image, say I1, describes a pattern. Then, each
possible region in I2 is matched against the pattern I1 by means of DCV. The best match can
indicate a region in I2 where the pattern is found.

The other subgroup of distances presented in Table 6.1 constitutes DSCP and DSCP-N. Both
follow the idea of a scalar product between two vectors. In this case components of the vec-
tors are created from the intensity signals of matched blocks of images. The scalar product
can be used to measure the phase difference between vectors,1 assuming however that the
vectors are normalized (i.e. their lengths are set to one). Otherwise, a vector with components
close to zero would match all other vectors, which obviously is not what we are interested in.
The postulate of normalization has been expressed in the DSCP-N measure – at a cost of addi-
tional computations, however. Unfortunately for simple DSCP such normalization conditions
are not met directly. Therefore, in this case, even DSSD does better than DSCP since it takes
into account local signal energies. The two distances are related as follows:

DSSD (I1, I2) =
∑

(i, j)∈U

(
I1(x + i, y + j) − I2(x + dx + i, y + dy + j)

)2
=
∑

(i, j)∈U

(I 2
1 (x + i, y + j) − 2I1(x + i, y + j)I2(x + dx + i, y + dy + j)

+I 2
2 (x + dx + i, y + dy + j)) =

∑
(i, j)∈U

(
I 2
1 (x + i, y + j) + I 2

2 (x + dx + i, y + dy + j)
)

−2
∑

(i, j)∈U

I1(x + i, y + j)I2(x + dx + i, y + dy + j)

= 2


1

2

∑
(i, j)∈U

(
I 2
1 (x + i, y + j) + I 2

2 (x + dx + i, y + dy + j)
)− DSCP (I1, I2)


 . (6.11)

The first factor in the last expression in brackets of (6.11) conveys information proportional
to the cumulative signal energy in the matched image regions. Thus, DSSD can be seen as the
average cumulative signal energy reduced by the dot product DSCP between matched ‘vectors’.

1A scalar product between two vectors, say a and b, is defined as a·b=|a‖b|cos(a,b).
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A choice of the matching window U in (6.1)–(6.7) is even more cumbersome than a choice
of the matching distance. There are no strict rules to define U and a choice usually depends
on the application and image contents.

6.3.2 Matching Distances for Bit Strings

In some cases we can treat data as simple series of bits, each bit conveying some specific
information. For instance an intensity signal can be preprocessed by a nonparametric Census
transformation (section 6.3.7) – in this case each bit reads whether a given intensity value is
less, or is not, than a reference value. In such cases it is better to compare bit strings with
binary measures; some of the most common are presented in Table 6.3.

Table 6.3 The most common matching measures for bit streams

DH – Hamming distance (6.12)

DH (a, b) = 1

N

N∑
i=1

ai ⊗ bi

DT – Tanimoto distance (6.13)

DT (a, b) =



1 if a = b = 0

1 − aTb
aTa + bTb − aTb

otherwise

DDK – Dixon–Koehler distance (6.14)

DDK (a, b) = DH (a, b) DT (a, b)

DWT – weighted Tanimoto distance (6.15)

DWT (a, b) = ηDT (a, b) + (1 − η) DT (¬a, ¬b)

In Table 6.3 a, b are the compared vectors of the same length N, − denotes bit negation and
⊗ denotes the exclusive-or (XOR) operation which is simply a number of mismatched bits
when comparing the aligned vectors bit by bit.

The Hamming measure DH (6.12) treats all compared bits (0 or 1) with the same weight.
The other three metrics, in Table 6.3, originated in biological and chemical sciences. Contrary
to DH, however, DT and DDK stress more matches on ‘1s’ than on ‘0s’ [105]. They can present
some advantage if bits ‘0’ are less important, e.g. denote image areas with the same intensity.
Such areas with uniform intensity, which usually cause problems in matching, will be treated
with a slightly lower weight. In the DWT measure we can control the influence of the matches
on ‘1s’ and ‘0s’ at the same time. The first term in DWT is simply the weighted DT whereas
the second term presents a reversely weighted complement of DT. The weight parameter η
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Table 6.4 Comparison of different matching strategies for bit strings: Hamming DH, Tanimoto DT,
Dixon–Koehler DDK and weighted Tanimoto DWT. The match values are in the range [0, 1] with 0 for
the best and 1 for the worst match

a b DH DT DDK DWT

η in (6.16) η in (6.17)

10010 01101 1 1 1 0.836 0.877
01010 00110 0.4 0.667 0.267 0.508 0.548
01100 11100 0.2 0.333 0.067 0.26 0.279
01101 11111 0.4 0.4 0.16 0.4 0.4
11111 11101 0.2 0.2 0.04 0.226 0.219
11111 11111 0 0 0 0 0
00000 00000 0 1 0 0.667 0.75

stabilizes situations of strong correlations exclusively on ‘1s’ or only on ‘0s’. Usually this
parameter is given as follows [129]:

η = 2 − p

3
, where p = aTa + bTb

2N
. (6.16)

Certainly, p ∈ [0, 1] and aTa is a number of ‘1s’ in a, while bTb in b. However, to favour all
matches on ‘1s’ we can set for example

η = 3 − p

4
. (6.17)

Table 6.4 contains some examples of comparison of bit vectors a and b with the presented
distances.

When observing the consecutive rows in Table 6.4 from top to bottom we see that the
vectors a and b have 0, 1, 2, 3, 4 or 5 matches on ‘1s’, respectively. The last row has no
matches on ‘1s’ but a maximum number of matches on ‘0s’. Notice also that, in contrast to
the distances in Table 6.1, the relative order of bits (i.e. their permutation) does not influence
the results of this group.

In practice, for block matching (section 6.6) the best results in quality and speed are ob-
tained with the DH measure [87]. The other binary distances are more suitable for matching
of binary patterns, such as hand-drawn images or digits [240].

6.3.3 Matching Distances for Multichannel Images

Sometimes we can have images the pixels of which are not scalars (e.g. colour images). In
this case it is also possible to define measures that can be used to compare relative distances
among pixels.

The most popular metrics for vector data follow the Minkowski metric DMα and for 2D
mathematical objects (like matrices or tensors) the Frobenius metric DF. The latter is charac-
terized by its desirable rotation invariance property. Table 6.5 summarizes some of the most
common distances for this type of data.
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Table 6.5 The most common matching measures for vectors and matrices (or tensors)

DM – Minkowsky distance for vectors a and b with parameter α

DMα (a, b) =
(

S∑
k=1

|ak − bk |α
)1/α

(6.18)

DM1 – Minkowsky distance between matrices A and B with α = 1

DM1 (A, B) = max
1≤i≤m

n∑
j=1

∣∣ai j − bi j

∣∣ (6.19)

DM∞ – Minkowsky distance between matrices A and B with α→∞

DM∞ (A, B) = max
1≤ j≤n

m∑
i=1

∣∣ai j − bi j

∣∣ (6.20)

DF – Frobenius distance between matrices A and B

DF (A, B) =
√√√√ m∑

i=1

n∑
j=1

∣∣ai j − bi j

∣∣2 (6.21)

In Table 6.5 ak and bk stand for the k-th component of the vectors a and b from S-
dimensional space, respectively, and α is a parameter. Similarly, A and B are m × n matrices
(or tensors) with scalar elements a and b, respectively.

A common topological question is: what is a unit distance for a given metric? To visualize
the behaviour of the Minkowsky measure with change of the parameter α > 1, without loss of
generality let us assume that the vector a is placed in the centre of the 2D coordinates system,
i.e. a = [0, 0]. Now, the above question can be formulated mathematically as follows:

DMα (0, b) =
(

S∑
k=1

|bk |α
)1/α

?= 1, (6.22)

or in the 2D case

|b1|α + |b2|α = 1. (6.23)

Thus, for α = 1, we have |b1| + |b2| = 1; for α = 2, b2
1 + b2

2 = 1; and so on. The solution
is depicted in Figure 6.1.

Similar plots can be drawn for N-dimensional space. DM with α = 2 (i.e. the SSD measure)
seems to comply with our everyday intuition on geometric distance, which explains the great
popularity of this measure in many applications.
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Table 6.6 The most common statistical distances

DG – Gaussian distance between vectors a and b with parameter σ

DG (a, b) = e−
(

Dx (a,b)
σ

)2

(6.24)

where σ is a parameter that controls the width of the distribution [341]; Dx usually denotes the
Euclidean norm on the difference between a and b, i.e. Dx

2 = DSSD given by (6.3), or the Mahalanobis
distance given below (in this case we set σ = 1).

DMAH – Mahalanobis distance between vectors a and b

DMAH (a, b) = (a − b)T A−1 (a − b) (6.25)

where A is the covariance matrix which is computed for a given population of data points, from which
a and b are drawn.

DCHY – Cauchy distance between vectors a and b with parameter τ

DCHY (a, b) = log

[
1 +

(
Dx (a, b)

τ

)2
]

(6.26)

where τ is a parameter that controls height and tails of the Cauchy distribution. Dx is a norm on the
difference between a and b; usually computed as the Euclidean distance.

6.3.3.1 Statistical Distances

There are some distances which come from the domain of mathematical statistics. These
are the Gaussian and the Mahalanobis distances defined for scalar or N-dimensional vector
data. Additionally, the Mahalanobis distance requires knowledge of the covariance matrix
computed for a population of data. The most common statistical distances are summarized in
Table 6.6.

Computation of the Mahalanobis distance DMAH requires computation of the covariance
matrix A, then finding its inverse. However, this means that we need to know a population of
data, say {x}, in which we then try to compute a distance between two vectors a, b, which do
not necessarily belong to this population. Computation of A−1 may be time consuming for a
large number of data. However, it has to be done once for the whole population.

The covariance matrix A for a population {x} is given as [157, 163, 341]

A{x} = E
{
(x − mx ) (x − mx )T

}
, (6.27)

where x are assumed to be N × 1 column vectors, N being the dimension of the data space,
E{·} denotes the expectation value and mx is a mean vector of the population {x}. The mean
vector can be estimated by the following expression:

mx = 1

N

N∑
i=1

xi . (6.28)
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Figure 6.1 Plots of a unit distance from the origin of the 2D coordinate system in the sense of the
Minkowsky metric for different parameters α

After some rearrangements (6.27) transforms into

A{x} = 1

N

N∑
i=1

xi xT
x − mxmT

x , (6.29)

which can be directly used for computation of A. Discussion of numerical computations of
the inverse matrix can be found, for example, in [352]. Let us note also that if A = I then
DMAH reduces to DSSD.

Some simple examples of colour image segmentation based on the Mahalanobis distance
computed in the RGB space can be found in [157]. More information on the Mahalanobis
distance in the light of statistics for geometric computations can be found in the monograph
by Kanatani [239].

6.3.4 Measures Based on Theory of Information

Very important knowledge about data can be measured by means of the entropy, relative en-
tropy – known also as the Kullback–Leibler distance – and, as a consequence, by the con-
ditional entropy and maximum mutual information principle [75, 184]. These concepts can
be used to build practical and very effective methods of image segmentation, matching, etc.
Table 6.7 presents an overview of the most basic concepts of information theory that can also
be applied to image processing.
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Table 6.7 The most common concepts of information theory

Entropy, a measure of uncertainty of a random variable

H (X ) = −
∑
x∈A

p (x) logB p (x) , (6.30)

where X is a random variable for which a set A of its allowable discrete values is given (called also an
alphabet). B in this and the following formulas denotes the base of the logarithm. Usually it is chosen
to be 2, 10 or e ≈ 2.71. The probability of X taking one of the values is given by the probability mass
function p(x) = Pr{X = x}, x ∈ A [75].

Entropy describes an ‘amount’ of information conveyed by a random variable (or, in other words,
required to describe such a variable).

Joint entropy, a measure of uncertainty of two random variables X and Y

H (X, Y ) = −
∑

x,y∈A

p (x, y) logB p (x, y) , (6.31)

where X, Y are two random variables with the same alphabet A.

Conditional entropy, a measure of uncertainty of one random variable given the second one

H (Y |X ) = −
∑

x,y∈A

p (x, y) logB p (y|x) , (6.32)

where X, Y are two random variables with the same alphabet A.

Kullback–Leibler distance between two distributions p and q (also called relative entropy)

DKL (p, q) =
∑
x∈A

p (x) logB

p (x)

q (x)
, (6.33)

where p and q are two probability functions. It is assumed that 0log(0/0) = 0, 0log(0/q) = 0, and
plog(p/0) = ∞.

DKL is a measure of discrepancy between two distributions p and q. The further the two, the less
justified is the assumption of a distribution q when the true distribution is just p.

Symmetric Kullback–Leibler distance between two distributions p and q (also called J-divergence or
J-distance)

DJ (p, q) = 1

2
[DKL (p, q) + DKL (q, p)] , (6.34)

with the same meaning of symbols as described for the DKL case. The nice feature of DJ is that contrary
to DKL it is a true measure. Thus, a distance from p to q is the same as from q to p. Similarly, the
triangle inequality holds.

Mutual information
This is a relative entropy between the joint distribution p(x, y), and the product of distributions p(x)p(y),
as follows:

I (X, Y ) =
∑

x,y∈A

p (x, y) logB

p (x, y)

p (x) p (y)
. (6.35)

(continued)
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Table 6.7 The most common concepts of information theory (Continued)

Mutual information gives a measure of the amount of information that one random variable conveys
about the second one.

It can be shown that the mutual information can be expressed in terms of entropy and joint entropy,
as follows [75]:

I (X, Y ) = H (X ) + H (Y ) − H (X, Y ) (6.36)

and

I (X, Y ) = H (X ) − H (X |Y ) = H (Y ) − H (Y |X ) . (6.37)

From the above one can easily notice that the mutual information amounts to the uncertainty of X,
given by entropy H(X), reduced by the uncertainty of X due to knowledge of Y , or vice versa.

Entropy can be used to measure the amount of information conveyed in an image by a
certain local region around a pixel. Such information can be used to decide whether this
amount is sufficient for subsequent matching of such regions. If not, then this location can be
skipped or the size of the region needs to be increased. Such a simple concept was employed
for adaptive window growing in the nonparametric representation of images (section 6.3.7).
Matching is done with areas of a minimum size which convey sufficient information for match
discrimination, however. Because of this technique it was possible to increase the accuracy of
the disparity map compared to basic area matching [88].

It is worth noting that entropy of a discrete random variable is invariant to its rotations
and translations. This feature of entropy can be employed for template matching. Sometimes
it is more convenient to consider the entropy (6.30) in terms of the probabilistic expected
value:

H (X ) = E p

{
log

1

p (x)

}
,

where2 the expected value Eq{p(X)} of p(X), with X having the probability distribution func-
tion q(X), is given as [341]

Eq {p (X )} =
∑
x∈X

q (x) p (x). (6.38)

The Kullback–Leibler distance DKL (i.e. the relative entropy) and its symmetries version DJ

are used when comparing two distributions of probability. DKL can be used immediately for
matching of histograms, as discussed in section 6.3.5. In image processing DKL is employed

2Henceforth we skip the base B in the logarithms.
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most frequently for pattern recognition. Let us observe that (6.33) can be expressed as

DKL (p, q) = ∑
x∈A

p (x) log [p (x)] − ∑
x∈A

p (x) log [q (x)]

= E p {log [p (x)]} − E p {log [q (x)]}

= S − E p {log [q (x)]} .

(6.39)

Thus, if we consider p(X) as a model which does not change and q(X) as a test pattern which
changes from instant to instant, then pattern matching with DKL can be seen as a search for the
expected value (6.38) of log[q(X)] in respect to the probability distribution p(X) of a model.
The constant S in the above formula does not depend on the test pattern. Interpretation of
a model and test pattern can be exchanged, however. Thus, we can match many test patterns
against a model, or a test pattern with a database of prototypes. In the former case the matching
can be seen as an optimization problem of the form

arg min
j

[
DKL

(
p, q j

)] = arg min
j

[
E p
{
log
[
q j (X )

]}]
. (6.40)

Joint (6.31) and conditional entropies (6.32) are side products when computing the mutual
information in accordance with (6.36) or (6.37), respectively.

Image matching in terms of their mutual information as a similarity measure has attracted
great interest among researchers. This is especially so in the areas of medical image registra-
tion and object recognition, since it is independent of translation and rotation, as well as being
robust to outliers and noise [365, 439]. Maximization of the mutual information between im-
ages can be thought of as finding their largest overlapping regions such that they explain each
other well in the information theoretic terms, i.e. by minimizing their joint entropy [75].

6.3.5 Histogram Matching

Histograms are 2D diagrams in which the ordinate depicts frequencies of occurrences of val-
ues from the abscissa. More often than not histograms are represented as linear arrays (or
vectors), which belong to the 1D data structures. These data structures have found vast appli-
cation in image processing, mostly to acquire information on the frequency of occurrence of
different features in images. Indeed, when properly normalized, histograms can be thought of
as estimations of the probabilistic density function of a random variable (image features, etc.)
[351].

Approaching the problem of histogram matching we can go two ways, depending on how
we treat these structures. If we look at histograms as vectors of data [145], we can apply any
of the already presented methods for vector matching (Table 6.5; see also Table 6.1). This
is a quite obvious approach when two vectors are of the same length. Otherwise, the partial
matching techniques can be used.

The probabilistic approach is the second way that can be undertaken for histogram match-
ing. In this case, we can treat each entry of the histogram as a discrete value of a probabilistic
density function (pdf) [75, 341, 351]. Thus, matching two histograms is equivalent to match-
ing two probabilistic densities, for which very common is application of the already presented
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Kullback relative information measure. Such a strategy has been suggested by many authors,
for instance Sebe et al. [378] or Pratt [351].

Let us assume that we have two histograms, represented as vectors a and b, each consisting
of N data, i.e. a = {ai}1≤i≤N and b = {bi}1≤i≤N . The two probabilities associated with a and
b can be approximated respectively as [351]

P (ai ) ≈ ai

N∑
k=1

ak

= ai

A
and P (bi ) ≈ bi

N∑
k=1

bk

= bi

B
, (6.41)

assuming that A and B are different from zero. Then, the Kullback–Leibler measure DKL takes
on the form

DKL (a, b) =
N∑

i=1

P (ai ) log
P (ai )

P (bi )
, (6.42)

where it is assumed that ∀ i: P(ai) 
= 0, P(bi) 
= 0. Entering (6.41) into (6.42) we obtain the
following formula which can simplify computation of the DK:

DKL (a, b) = log
B

A
+ 1

A

N∑
i=1

ai log
ai

bi
,

assuming A, B 
= 0 and ∀i :ai , bi 
= 0,

(6.43)

where A = �iai and B = �ibi, as already denoted in (6.41).
The other distance that can be used to match histograms is an approximation of the statisti-

cal χ2 functions, given as

Dχ2 (a, b) =
N∑

i=1

[P (ai ) − P (bi )]
2

P (ai ) + P (bi )
, assuming P(ai ) + P(bi ) 
= 0. (6.44)

The last measure awards matches on larger values of P(ai) and P(bi) which can be advanta-
geous when matching histograms of some image features.

There are many methods of image matching with histograms that measure frequency of
occurrences of different image features, starting from bare intensities up to local orientations
[137]. The latter can be easily obtained with the structural tensor presented in section 4.6.

6.3.6 Efficient Computations of Distances

When computing match measures for successive pixels usually we place a square window
around a given pixel. Then each pixel from that window is taken into the computation of a
match value. The situation is depicted in Figure 6.2 for a 3 × 3 square window Wi.

Additionally for some measures, such as DZSSD-N or DCV, we traverse the window twice
to compute the mean value. However, when moving computations to the next pixel position,
the new window Wi+1 overlaps with the previous window Wi. In Figure 6.2, pixel nos. 1, 4,
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Figure 6.2 Efficient computations of the distance among pixel blocks

7 from window Wi are not taken into computation of a new value in the new window Wi+1.
Instead, new pixel nos. 3, 6, 9 are acquired. However, pixels 2, 3, 5, 6, 8 and 9 in Wi remain,
now numbered respectively as 1, 2, 4, 5, 7 and 8 in Wi+1. For shift invariant measures local
numbering of pixels is not important. Thus, we easily see that when computing mean value in
Wk+1 we can reuse the mean value previously found for Wk. The only thing to do is to subtract
values from positions 1, 4, 7 in Wk, and add new values at pixel locations 3, 6, 9 in Wk+1. The
same can be done when computing match value for comparison of two windows in different
images. Such techniques which save computations by reusing previously computed values are
well known in the computer vision or computer graphics community. It was suggested for
example by Faugeras et al. [118] in their real-time matching system. This method resembles
also the moving histogram algorithm, used for fast update of histograms in the progressing
windows. This technique finds application when computing arbitrary rank filters [396].

The other improvement to the simple window matching technique was proposed by Chen
et al. [67]. It is called a winner-update technique since only the best (winning) match is
checked again and again until another match gets the best value. This method can be applied
when looking for the best match among a number of potential comparisons, such as in stereo
matching or motion analysis. Let us analyse the simple procedure of finding a best match
m(Wj) for a window Wj:

m
(
W j
) = arg min

1≤k≤N

{
Dx
(
W j , Wk

)}
, (6.45)

where Wk denotes a series of check windows and Dx is a match measure between pairs of
windows, for which it is assumed that the best match is given for minimum value of Dx

(section 6.3.1). In the same way we can also search for maximal value. It is very important to
realize that when solving (6.45) basically we are not interested in finding all possible values,
from which the best one is chosen. Instead, we are interested in finding the best value in a
minimum number of steps. Here the winner-update strategy can be of help. The best way to
explain this methodology is to create a simple card game, as proposed in [67] (Figure 6.3).
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Figure 6.3 Explanation of the winner-update technique with a card game. (a) Four players start open-
ing their cards. Only one player with the lowest score at a moment is allowed to draw. After a few steps
(b–e) the winner (f) is the player with the lowest cumulative sum
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At the first step the bottom row of cards is opened. Then, the rule is that a new card can be
opened only in the column that has a minimum total score (if there are two equal values, then
the left one has priority, for example). The winning column is the one which first reaches the
last row named ‘finish’. In the first step in Figure 6.3(a) the last row is opened. Since column
II has a minimal value then this row has a right to draw again – the results are visible in Figure
6.3(b). Now, column IV has a minimum value however. Thus, column IV can be drawn again,
as in Figure 6.3(c), and then once again, as depicted in Figure 6.3(d). At this step, however,
column III reaches a global minimum value, so it is allowed to draw a card. The result of this
is visible in Figure 6.3(e). Now again, column IV is allowed to draw – after this step it reaches
the final row and thus column IV is a winner (Figure 6.3(f)). Notice that to find the best match,
which is column IV in our simple case, we do not need to compute all partial sums; that is,
we do not open all the cards. Thus, we save on computations. In practice we found however
that selection of a current winner in each step can take some time [85], so it is important to
implement a fast technique of best match selection such as a hashing table [74].

The third technique that can speed up computations of the match values can be applied if
sums of pixels are computed many times for different rectangular regions within an image.
This technique, called the cumulative image method (or integral image), is well known in
the computer graphics community [440]. It starts with preparation of an image of cumulative
sums. Each pixel of that image contains partial sums of all pixels from the original image,
whose positions are above and to the left of a current pixel, as depicted in Figure 6.4(a). Thus,
pixels of the cumulative image have to be able to store such sums. For instance, for a HDTV
image (1k × 2k × 10 bits) the cumulative sum has to have width of at least 31 bits.

However, after the cumulative image is ready, computation of the sum of pixel values within
any rectangular window of the original image can be done in linear time equal to reading four
values and performing two subtractions and one addition:

�1 = P1 − P2 − P3 + P4, (6.46)

where �1 is a cumulative sum of pixels in the bold rectangle and P1–P4 are cumulative values
taken from positions presented in Figure 6.4(b). This technique can also be used for efficient
computation of histograms in the selected regions of the original image. Such a method is
called an integral histogram [350]. The cumulative image method has been also used by Vek-
sler for stereo matching with variable windows [435].

6.3.7 Nonparametric Image Transformations

The nonparametric measures transform intensity values of pixels into mutual relations of those
values. These relations can be the number of permutations that are necessary to sort the pix-
els, the number of pixels whose values are greater than the chosen one, a stream of bits that
convey relations of a chosen pixel with its neighbours, etc. By this operation the statistical
parameters of the signal are changed. The input intensity values, usually with unknown statis-
tical distribution, are transformed into data characteristic of the uniform distribution, such as
random value drawn from the set of N integers. The local neighbourhood for computation of
the nonparametric transformation can be set arbitrarily, although the most common is an odd
size square. Moreover, such neighbourhood does not necessarily need to be compact.
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current pixel
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Figure 6.4 Cumulative image method. (a) The image (matrix) of the cumulative sums – each element
stores a cumulative sum of the pixel values from the original image with position to the left and up from
the current pixel position (grey area). (b) For a rectangle R, a sum of its pixels can be computed in two
subtractions and one addition: �R = P1 − P2 − P3 + P4

The two most common nonparametric transformations are Census and Rank. Both were
proposed by Zabih and Woodfill for hardware computation of correspondences in stereo
matching [455]. Nevertheless, they can be used in other computer vision tasks such as object
recognition or optical flow. They have also been shown to be useful for signal conditioning
before application to the input layer of neural networks. Finally, their software or hardware
implementation is also straightforward.

Let us assume that a region around a central pixel was selected in an image. The Rank
transform is defined as the number of pixels in that region for which the intensity signal is
greater than or equal to the central one. The Census transform is an ordered stream of bits
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Figure 6.5 Computation of the nonparametric transformations in a square 3 × 3 neighbourhood. The
central pixel at (m, n) is compared with each other pixel except itself. This results in 1 or 0 depending
on the mutual relation of the compared pixels

where each bit conveys information on whether the intensity of a central pixel is greater than
a pixel from its neighbourhood or not.

Figure 6.5 explains the computation of the Rank and Census transformations in a 3 × 3
window. The central pixel Pc at position (m, n) is compared with each other pixel P in the
window, except itself. Each comparison results in one bit 0 or 1 depending on whether the
central pixel is less than a neighbouring pixel P or not. Assumed is natural bit ordering, i.e.
from left to right, from top to bottom. Thus, in this case, we compare 56 with 10, 56 with
12. . ., and finally 56 with 44, which results in a bit stream of 00011000. From this we easily
find its Rank value which is 2, i.e. there are two ‘1s’ in the bit stream.

An interesting observation for Census is that for 3 × 3 and 5 × 5 windows the length of
the output bit stream is 8 or 24 bits, i.e. one or three bytes, respectively. These fit nicely into
computer memory on bytes boundary.

The Census transformation T for a pixel Pc in the image I is defined as [455]

T [I, Pc] = ⊗
P∈W (Pc,β)

ξ (I, Pc, P) , (6.47)

where I denotes the space of input image with pixels of scalar values, Pc is a central pixel, ⊗
is a bit concatenation operation, W(Pc, β) is a local pixel neighbourhood around a pixel Pc

with a radius β and P denotes pixels belonging to W; ξ is given by the formula

ξ (I, Pc, P) =
{

0 if I (P) ≤ I (Pc)
1 otherwise

, (6.48)

where I(P) is a scalar pixel value in image I at position P. Application of (6.47) and (6.48) to
all pixels in W produces a stream of bits.
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The important feature of the nonparametric representations is their resistance to noise and
local image distortions. This is a direct result of a change of an input signal, which can be
affected by noise, by the stream of bits reflecting mutual relations in local neighbourhoods.
The output bit stream has different statistical properties from the input signal.

6.3.7.1 Reduced Census Coding

Image matching can be done solely on a pixel-by-pixel basis, although if taking only intensity
values, such a strategy leads to many errors which are due to the limited dynamics of the
intensity representation and noise. However, when computing Census representation wider
neighbourhoods are visited and hence information is gathered on more than one pixel. Thus
with sufficiently large windows W in (6.47) it is even possible to perform reliable pixel-by-
pixel matching [87, 90].

Nevertheless, in many cases pixel-by-pixel matching even with the Census representation is
not sufficient (e.g. for large baseline stereo). Therefore larger support regions are necessary for
reliable area-based matching. Then matching is usually done in the corresponding rectangular
windows placed in the source and destination images (section 6.6). However, if the Census
values are computed in square windows, as presented in Figure 6.5, such matching methods
lead to some data redundancy. This is explained in Figure 6.6 for a 3 × 3 match window with
each pixel already converted to the 3 × 3 Census representation (i.e. although having different
meaning, the two windows are of the same size).

In Figure 6.6 it can be seen that if Census was computed for all pixels from the local
neighbourhoods (as in Figure 6.5), then when such Census values are cumulated in a bigger
region some comparisons are done twice. In Figure 6.6 comparisons 0–4 and 4–0 are done
twice. Such repeated bits do not convey useful information since they are highly correlated.
Thus, one comparison can be simply omitted to save on bits in the representation. So, if
computing Census for pixels that will be gathered into aggregation blocks (e.g. very common
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Figure 6.6 Data redundancy in blocks of pixels in Census representation. If Census was computed in
full square windows then comparison 0–4 and 4–0 is done twice. (From [90] with kind permission of
Springer Science and Business Media)
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Figure 6.7 Reduced Census coding for blocks of pixels. (a) 3 × 3 and (b) 5 × 5 neighbourhoods.
Larger neighbourhoods can be encoded in a similar way. (From [90] with kind permission of Springer
Science and Business Media)

in stereo matching) we need only to compute half the number of comparisons (6.48). A simple
modification is proposed in Figure 6.7.

Formally, the reduction of redundant comparisons can be obtained by changing in (6.47)
window W of neighbouring pixels that are used in (6.48). Assuming the top–down and
left–right bit numbering in W, and assuming that a central pixel Pc has an ordinal number
pc, then only pixels with numbers greater than pc are taken into the representation. This adds
to savings in terms of computation time and memory occupation.

The aforementioned reduction technique for blocks of pixels in Census domain can also
be obtained by taking each i-th sample in a block, assuming however that Census has been
computed from the nonreduced windows W. This idea is illustrated in Figure 6.8.

(a) (b)

x x x 

x x 

x x x 

Figure 6.8 Taking each i-th pixel in matching blocks of nonreduced Census pixels: (a) 3 × 3 and
(b) 5 × 5 neighbourhoods. Central pixels are denoted with ‘×’. (From [90] with kind permission of
Springer Science and Business Media)
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However, the drawback of this approach is that it requires a wider representation of the
matching blocks. For example, the 5 × 5 Census transformation and the 3 × 3 matching
block, in this method, would require comparisons within a block of 11 × 11 pixels. In the
case of stereo matching this can produce excessive smearing in the resulting disparity map.

6.3.7.2 Sparse Census Relations

An increase in the size of the Census window W in (6.47) allows the gathering of information
in wider local neighbourhoods. This can improve the quality of the image matching (section
6.6). However, excessive size of W in Census representation does not lead to further im-
provements, since in bigger matching blocks, even if the blocks correspond to each other, the
differences in pixel values are frequent due to different projective transformations of the two
images. From the computational point of view, Census windows W that are too big result in
much slower computations and high memory occupation. For example W of size 7 × 7 results
in 6 bytes per pixel. Thus, instead of increasing W in (6.47) a better idea is to make it not com-
pact and compute Census from a sparsely sampled neighbourhood. Thus, the mutual relations
are computed among the central pixel and its neighbours separated by a certain distance. This
technique is visualized in Figure 6.9. Notice that in this case the reduced aggregation scheme
is also assumed, so only the pixels to the right and down from the central one are considered
to be taken into the relations. This can be seen as a special definition of the window W(Pc, β)
in (6.47).

Figure 6.9 Sparse relations for Census matching. The inner window size is 5 × 5 but we compute
relations with only 4 neighbours distant by d1. In the outer window we also compute only 4 relations
among pixels distant by d2. (From [90] with kind permission of Springer Science and Business Media)



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

Image Matching Algorithms 215

In Figure 6.9 the two Census windows are shown: the inner 5 × 5 and the outer 9 × 9,
respectively. For the inner representation Pc is compared with only four of its neighbours,
P11–P14, separated from each other by d1 pixels.

Such a four-bit representation produces almost the same matching results as the full 5 × 5
representation with 24 bits [90]. However, we can increase discriminative properties even fur-
ther by addition of the next four bits from the outer window given by pixels P21–P22 separated
by a distance of d2 pixels. This results in eight comparisons which can be efficiently encoded
into a single byte. As a payoff we obtain representation of the whole 9 × 9 neighbourhood.
Recall that such sparse sampling is done for each pixel in the matching block.

The sparse Census coding can also be justified in terms of the probabilistic dependence
among pixels and their nearest neighbours. This is a result of some physical phenomena en-
countered in digital cameras, e.g. charge leaking in neighbouring cells of CCD devices.

6.3.7.3 Fuzzy Relationships Among Pixels

Let us enhance the concept of the Census measure to convey more detailed information on
pixel relations. This can be done by assigning more than one bit for the relation between two
pixels, whose relation Dk can now be defined as [86]

Dk = I (Pc) − I (Pk) , (6.49)

where Pc is a central pixel and Pk is a pixel from the neighbourhood of the central one.
Table 6.8 presents a proposition of fuzzy rules F for the relation between pixels based on

their relative difference in intensity. Fuzzy rules have found broad applications in computa-
tions with imprecision, such as in common expressions of a spoken language [242, 456]. Here
they allow a unified description of some more or less precise relations between pairs of inten-
sities. For computer representation each fuzzy relation is encoded on three bits. A proposition
of such an encoding is given in the third column of Table 6.8.

What is still missing is a relation between the fuzzy rules F and the actual value of Dk

in (6.49). This can be obtained directly from a value of Dk, put into the sigmoidal or hyper-
bolic functions. However, much simpler is a piecewise linear approximation which can be
easily computed providing six threshold values on Dk. Nonetheless, thresholds can be a little
cumbersome in practice. Therefore a binary partitioning of Dk has been chosen to facilitate

Table 6.8 Fuzzy rules for the relation between pixels
based on their relative difference in intensity

Relation type F Bit encoding B(F)

1 much smaller 011
2 smaller 010
3 slightly smaller 001
4 equal 000
5 slightly greater 101
6 greater 110
7 much greater 111
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int BF = 0x00; // Initial value of the encoding 
// Dk is an integer difference of pixel values 
if( Dk < 0 ) 
{
  Dk = - Dk;      // Make Dk positive 
  BF = 0x04;    // Set a sign 
}
for( int i = 0; i <= 2; ++ i ) 
{

if( ( Dk >>= 2 ) != 0 )   // Shift R, and if not 0 then 
++ BF ;         // increment E by 1

}

Algorithm 6.1 Bit encoding algorithm for fuzzy relations of pixels. Only operations used are bit shift-
ing and an increment by one

implementation requiring only integer arithmetic. That is, at each iteration the positive value
Dk is shifted right by two bits and if the result is still different from zero, the encoding value
is incremented by 1. Finally, the first bit (i.e. the most significant one) in B(F) conveys infor-
mation on the sign of comparison. This scheme is presented in Algorithm 6.1. Algorithm 6.1
leads to the following discrete thresholds of Dk.

1. If |Dk| ∈ [0, 3] then F is ‘equal’.
2. If |Dk| ∈ (3, 15] then F is ‘slightly smaller/greater’.
3. If |Dk| ∈ (15, 63] then F is ‘smaller/greater’.
4. If |Dk| ≥ 64 then we classify as F is ‘much smaller/greater’.

Smaller/greater is resolved by a sign. The proposed algorithm can be easily implemented in
assembly or in hardware logic since only operations of bit shifting and an increment by one
are necessary.

Finally, let us notice that the described procedure can be used not only for neighbourhood
encoding but also it defines a fuzzy subtraction of images in which each difference of pixels
is given by a fuzzy rule.

6.3.7.4 Implementation of Nonparametric Image Transformations

In the simplest case, the Census and Rank transformations, computed in dense 3 × 3 neigh-
bourhoods, result in the same number of bits as required for monochrome images, which is
eight bits per pixel (section 3.7.1.2). Thus, in this case the nonparametric transformation does
not change the number of bits of pixels, although they belong to different domains. There-
fore it is quite easy to write simple procedures which transform one MonochromeImage with
grey-value pixels into the other MonochromeImage with nonparametric pixels in the Census
or Rank representations. Two exemplary procedures are presented in Algorithms 6.2 and 6.3.
It has to be remembered that the returned image is orphaned, which means that the caller is
responsible of its final disposal. An alternative is to use the auto ptr<> pattern (section 13.4).

In Algorithm 6.2 the first two loops L[33–67] and L[38–65] organize iteration through
all pixels in the input image, given by the input image reference. Then the boundary values
for the inner loops are prepared. These, organized around lines L[48–61] and L[50–60], are
responsible for accessing each pixel in the local neighbourhoods of pixels, which are square
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1 ///////////////////////////////////////////////////////////
2 // This function creates a non-parametric 3x3 Census 
3 // image from the supplied monochrome image. 
4 ///////////////////////////////////////////////////////////
5 //   
6 // INPUT: 
7 //   image - a reference to the input monochrome image 
8 //   
9 // OUTPUT: 
10 //   pointer to the orphaned object - image of which 
11 //    pixels are in the 3x3 Census format 
12 //   
13 // REMARKS: 
14 //   The returned object is orphaned which means 
15 //    that the caller is responsible for destroying 
16 //    this object! 
17 //   
18 MonochromeImage * Orphan_3x3_Census( const MonochromeImage& image ) 

19 {
20   register int i, j, m, n; 
21  register int h_from, h_to, v_from, v_to; 
22 
23  const int kWinSwing = 1; // = 3 / 2; 
24 
25  const int row = image.GetRow(); 
26  const int col = image.GetCol(); 
27 
28  MonochromeImage* nonParamImage = new MonochromeImage(col,row,0); 
29 
30  unsigned char central_pixel, non_param_pixel; // exactly 8 bits 
31 
32   // For each pixel ... 
33 for( i = 0; i < row; i ++ ) 

34  { 
35   v_from = ( i >= kWinSwing ? i - kWinSwing : 0 ); 
36   v_to = ( i + kWinSwing >= row ? row - 1 : i + kWinSwing ); 
37    
38 for( j = 0; j < col; j ++ ) 

39   { 
40    h_from = ( j >= kWinSwing ? j - kWinSwing : 0 ); 
41    h_to = ( j + kWinSwing >= col ? col - 1 : j + kWinSwing ); 
42 
43
 

   central_pixel = image.GetPixel( j, i ); 
44 
45    non_param_pixel = 0; 
46 
47    // Now move in the census window 
48    for( m = h_from; m <= h_to; m ++ ) 

49    { 
50     for( n = v_from; n <= v_to; n ++ ) 

51     { 
52      if( m == j && n == i ) 

53     continue; // skip the central pixel 

54     non_param_pixel <<= 1; // shift left the already

55   // acquired series of bits 
56
57      if( image.GetPixel( m, n ) > central_pixel ) 

58      non_param_pixel |= 0x01;  // set the least

Algorithm 6.2 Listing of the Orphan 3x3 Census function for a computation of the 3 × 3 nonpara-
metric Census representation
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59 
   // significant bit 

60     } 
61    } 
62      
63    // write out the non-param pixel 
64    nonParamImage->SetPixel( j, i, non_param_pixel );  
65   } 
66
67  } 
68
69  return nonParamImage; 
70 }

Algorithm 6.2 (Continued)

3 × 3 panes in this particular implementation. Finally, the first ‘if’ excludes comparison of a
central pixel to itself, whereas the second ‘if’ checks the pixel relation which determines the
bit value.

The Orphan 3x3 Rank procedure in Algorithm 6.3 is organized in the same manner, except
for the second ‘if’ in L[54–55] in the innermost loops which simply count the number of bits
greater than the central one.

In the general case of n × m nonparametric neighbourhoods the input and output pixels
are two different structures with different number of bits. For this purpose a special bit stream
needs to be defined. Then, having defined this new data type, an appropriate image can be cre-
ated almost immediately due to the template definition of the TImageFor<> (section 3.7.1.2).

Implementations of the sparse Census (section 6.3.7.2) and fuzzy encoding (section 6.3.7.3)
representations require only different organization of the inner loops.

6.3.8 Log-polar Transformation for Image Matching

The log-polar transformation takes points (x, y) from the Euclidean space into the (r, ϕ) points
in the polar space defined as [465]

r = logB

(√
(x − x0)2 + (y − y0)2

)
, (6.50)

ϕ = arctan
y − y0

x − x0
, for x 
= x0, (6.51)

for a point (x, y), where O = (x0, y0) is a centre of transformation, and B denotes the base of
the logarithm which can be any positive value different from 1. Usually it is chosen to fit the
maximal expected distance rmax from the centre O in a local coordinate space of a given image.

In many applications it is necessary to find an inverse transformation. For instance, in the
inverse image warping scheme the output pixel grid is given a priori. Then the coordinates in
the input image space have to be found (section 12.5). An inverse log-polar transformation is
given as

x = Br · cos (ϕ) + x0, y = Br · sin (ϕ) + y0, (6.52)
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1 /////////////////////////////////////////////////////////// 
2 // This function creates a non-parametric 3x3 Rank 
3 // image from the supplied monochrome image. 
4 /////////////////////////////////////////////////////////// 
5 //   
6 // INPUT: 
7 //   image - a reference to the input monochrome image 
8 //   
9 // OUTPUT: 
10 //   pointer to the orphaned object - image of which 
11 //    pixels are in the 3x3 Rank format 
12 //   
13 // REMARKS: 
14 //   The returned object is orphaned which means 
15 //    that the caller is responsible for destroying 
16 //    this object! 
17 //   
18 MonochromeImage * Orphan_3x3_Rank( const MonochromeImage & image ) 
19 { 
20   register int i, j, m, n; 
21  register int h_from, h_to, v_from, v_to; 
22
23  const int kWinSwing = 1; // = 3 / 2; 
24
25  const int row = image.GetRow(); 
26  const int col = image.GetCol(); 
27
28  MonochromeImage* nonParamImage = new MonochromeImage(col,row,0); 
29
30  unsigned char central_pixel, non_param_pixel; 
31
32   // For each pixel ... 
33 for( i = 0; i < row; i ++ ) 
34  { 
35   v_from = ( i >= kWinSwing ? i - kWinSwing : 0 ); 
36   v_to = ( i + kWinSwing >= row ? row - 1 : i + kWinSwing ); 
37    
38   for( j = 0; j < col; j ++ ) 
39   { 
40    h_from = ( j >= kWinSwing ? j - kWinSwing : 0 ); 
41    h_to = ( j + kWinSwing >= col ? col - 1 : j + kWinSwing ); 
42
43    central_pixel = image.GetPixel( j, i ); 
44
45    non_param_pixel = 0; 
46
47    // Now move in the rank window 
48    for( m = h_from; m <= h_to; m ++ ) 
49    { 
50     for( n = v_from; n <= v_to; n ++ ) 
51     { 
52      if( m == j && n == i ) 
53       continue; // skip the central pixel 

54      if( image.GetPixel( m, n ) > central_pixel ) 
55           ++ non_param_pixel;   // increase the counter

56     } 
57    } 
58
59    // write out the non-param pixel 
60    nonParamImage->SetPixel( j, i, non_param_pixel );  
61   } 
62
63  } 
64
65  return nonParamImage; 
66 } 

Algorithm 6.3 Listing of the Orphan 3x3 Rank function for a computation of the 3 × 3 nonparametric
Rank representation
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Figure 6.10 Template cropped from the left ‘Venus’ and view of its log-polar transformation. (Image
on left courtesy of Prof. Rick Szeliski, Middlebury University, www.middlebury.edu)

assuming B > 1, and 0 ≤ r ≤ rmax, 0 ≤ ϕ < 2π . We can assume that r is a vertical and ϕ

a horizontal coordinate of the output space. Although the choice of B is arbitrary, in practice
B is chosen to fit all possible values of r, but not to exceed rmax. To fulfil this requirement it
should be set as follows:

B = rmax
√

dmax, dmax > 1, rmax > 1, (6.53)

where d2
max = (xmax − x0)2 + (ymax − y0)2 is the maximal distance of a point in the image

from the centre O. Finally, for discrete images the values of r and ϕ should be quantized.
Image registration is a process that relies on image matching [159]. An image registration

method which employs matching in the log-polar space is proposed by Zokai and Wolberg
[465]. It requires a 4D search, however. Let us assume that a single template is to be matched
in an input image. Then, for each position (xi, yi) in the input image a region of the exact size
of the template is selected and transformed into its log-polar representation. To exemplify
our discussion, Figure 6.10 depicts a left image from the ‘Venus’ stereo-pair3 with a selected
region of size 30 × 30 pixels and its log-polar transformed version. This region of size p × q
pixels constitutes a template that we will try to match in the right image of ‘Venus’.

Matching of the log-polar transformed signals is done in an extended search space depicted
in Figure 6.11. The test pattern is wrapped around to 2q to allow full search of the rotation
value. The range of the scale search is also extended by a distance u, which can be up to width
p of the template. Each position in the extended space is then matched pixel-by-pixel. For
this purpose Zokai and Wolberg propose the DCV measure (section 6.3.1). Alternatively the
template and the extended space can be transformed into the Census representation and the
matching is done with the Hamming measure DH.

The position found of the best match in the extended space reflects the internal change of
scale and rotation (r, ϕ) between the image and the template. Thus, for each checked position
in the input image, the four parameters (xi, yi, r, ϕ) of the best matches are stored. Two
techniques of selecting the best matches can be proposed. The first one relies on setting a

3This and other stereo-pairs can be seen in Table 3.4.
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Figure 6.11 Matching a pattern in the extended log-polar space. For each position a search is done in
two dimensions to account for scale and rotation. Thus, the matching requires a 4D search

fixed threshold value and acceptance of only correlation measures above this threshold. The
second technique is to build a priority queue of a fixed length L, which stores L positions of
the best matches.

Figure 6.12 shows template matching results in the right image from the ‘Venus’ stereo-pair,
as well as its affinely transformed versions. The latter was obtained by an affine transformation
consisting of scaling (sx = 0.77, sy = 0.88) and rotation (−13◦). In both test images the tem-
plate pattern has been found correctly, although the second version was additionally deformed.

Because of the 4D search space the method is not practical for dense image matching,
unless a hardware acceleration is employed. Nevertheless the method is very useful if only

(a) (b)

Figure 6.12 (a) Template matched in the original right ‘Venus’ image, and (b) in its affinely trans-
formed version. (Figure 6.12(a) courtesy of Prof. Rick Szeliski, Middlebury University, www.middle
bury.edu)
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selected points from one image are to be matched with points in another image. Hence, the
method is suitable for finding point correspondences for image rectification (section 3.4.8) or
the fundamental matrix (section 3.4.5).

Simple implementation of the log-polar transformation is discussed in section 6.13.2. It is
based on the warping module outlined in Chapter 12.

6.4 Computational Aspects of Matching

Geometrical properties of a stereo setup were discussed in section 3.4. We know that cameras
convert information of the 3D world into 2D images, from which one tries to recover informa-
tion on 3D space. However, this inverse process might not be unique. For instance, a 3D point
can be visible only to one camera, being occluded to the second one at the same time. Further,
digital images convey information only with highly limited resolution and with quantized lu-
minance values subject to noise and distortions. As a consequence, there are no guarantees
that the best matching points are images of the same real point from the 3D space. Finally,
even if true corresponding points are correctly found their positions are discrete which results
in only integer values of disparity.

In this section we discuss the problems of occlusions, discrete values of the disparity field
and methods for evaluation of the quality of stereo methods.

6.4.1 Occlusions

When observing 3D objects from two different view positions some of their details are visible
for all view positions, some are visible only for one, and some are totally invisible. The prob-
lem of invisible points is due to scene geometry and occlusions of objects in the scene. Such a
situation is depicted in Figure 6.13 where an object B1 is partially occluded by an object B2. A
point ml, which is a left image of a 3D point M on a surface of the object B1, cannot be matched
with any other point on the right image since it is not visible to the right camera. This is an

OrOl

nl

ml

mr
nr

B1

M

N

B2

Π1

Πr

Figure 6.13 Mutual occlusions of objects
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example of a binocular half-occlusion. Moreover, the virtual point mr is substituted by a point
nr, which actually is an image of a 3D point N which belongs to the object B2. Conversely, the
point N can be correctly matched since both its image points are visible to the two cameras.

In real systems the problem of occlusions is inevitable. Thus, it is necessary to consider
this fact in the development of matching methods. Especially it is important to find the oc-
cluded points and provide a means of interpolating depth values in those places. Based on
[114], Table 6.9 summarizes the most common methods that help in the detection of binocular
half-occlusions.

Table 6.9 Methods for detection of binocular half-occlusions

Occlusion method Description

Cross-checking =
left–right
checking (LRC)

In this method the matching process is performed twice: at first with the left
image kept as a reference, then the process is reversed and the right image of a
stereo-pair constitutes a reference image. Then, the two disparity maps are
checked as follows.

1. Given are two input images IL(x, y), IR(x, y) in the canonical setup, as well
as two disparity maps, DL(x, y) and DR(x, y), which are computed with the left
or right reference image, respectively.
2. For each allowable location (x, y) in the left image, take dL = DL(x, y).
3. Compute its corresponding position in the right disparity map: dR = DR(x +
dL, y).
4. If |dL| = |dR| then the (x, y) location in the left-referenced disparity map,
and (x + dL, y) location in the right-referenced disparity map have correct
disparities. Otherwise, the location can be an occluded point.

This method has been applied by many researchers: for example [44, 139, 281,
369, 464, 465].

Occlusion
constraint
(OCC)

In this approach it is assumed that a discontinuity found in the disparity map
corresponds to an occlusion area. Therefore to find occluded areas it suffices to
find discontinuities in the disparity map. This process is performed twice: once
with the left image being a reference, then with the right one (similarly to the
LRC method).

Point ordering
constraint
(ORD)

This follows the ordering constraint presented in Figure 6.13. This method
assumes that if the order of matched points is different in the two images then
the matched point in the scene is an occlusion point.

Bimodality (BMD)
– occlusion
borders only

Bimodality rule says that points near an occlusion have in their close location
disparities that come from the occluding and occluded areas. More precisely,
the disparity histogram in this area shows two close extrema. Detection of such
a situation leads to a potential conclusion of occluded points.

Match goodness
jumps (MGJ) −
occlusion
borders only

This method assumes that if matching the occluded points, their matching
measure will be worse than in the case of not occluded points. Thus, it would
be possible to detect the occlusions directly in the matching method.

Null method (NM) In this approach the occlusion problem is ignored, which follows an idea that
the occluded points are not so numerous compared to the total amount of
matched points. Such an approach is sometimes justified for aerial images.
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The empirical results presented in [114] are as follows.

1. The ORD method has the lowest overall false positive rate and the lowest hit rate, at the
same time.

2. The OCC is usually the best method, having the highest hit rate and the lowest false positive
rate.

3. LRC is almost as good as OCC. However, it shows bad results in areas of the scene with
low spatial frequency structure.

It is interesting to notice that half-occlusions play a very important role in the recognition
process of the human visual system since they provide information on scene structure [7, 201].

6.4.2 Disparity Estimation with Subpixel Accuracy

Disparities are computed as differences between the positions of the corresponding points in
the matched images. Since these positions are restricted to lie on the integer grid of pixels,
then computed disparities can have only integer values. In some situations, for instance in the
case of low image resolution, this can excessive errors during space reconstruction.

One way to alleviate this problem is to take advantage of the shape of matching measure
in a wider range rather than in a single pixel position. This way we can infer a more precise
position of a minimum of a matching measure (a cost function) which, because of continuous
support, does not need to fall under the integer pixel position. The most common technique
is to fit a third-order curve, a parabola, to the three values of a matching measure with a point
of interest being in a centre of the chosen window. Then, the position of a minimum of this
parabola is found, which indicates a new disparity value, now with a subpixel resolution,
however. Certainly, it is also possible to fit higher order polynomials and/or to a larger
number of points. Nevertheless, in practice fitting a parabola is the most efficient method in
terms of accuracy achieved versus computational effort. In this section we present details of
this technique [323, 369].

Figure 6.14 depicts a matching cost function (values denoted by rectangles) – this can be
one of the matching measures presented in Table 6.1 – for which a minimal integer value was
found, denoted as di. Our task now is to take match values at two nearest neighbours of di, i.e.
at di–1 and di+1, and fit a third-order polynomial to them (shown in Figure 6.14). Then a new
minimal value dx can be found which no longer is restricted to lie on an integer grid. More
precisely, we have the following three pairs of data:

{di−1, mi−1} , {di , mi } , {di+1, mi+1} , (6.54)

where mi = m(di) is a match value for the displacement di. Based on them we wish to deter-
mine coefficients of the third-order polynomial, given as

ad2
i + bdi + c = mi , (a 
= 0) , (6.55)

which is a well-known quadratic equation [259]. The point dx of the minimum can be easily
found by doubly differentiating (6.55) with respect to di, and then equating the first derivative
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Figure 6.14 Subpixel estimation of a disparity value in a local neighbourhood of pixels

to zero while requiring the second to be positive:

2adx + b = 0 and 2a > 0,

thus

dx = − b

2a
and a > 0. (6.56)

Inserting (6.54) into (6.55) we obtain a set of three equations




ad2
i−1 + bdi−1 + c = mi−1

ad2
i + bdi + c = mi

ad2
i+1 + bdi+1 + c = mi+1

,

which we solve for a and b. However, it is easier to directly compute b/a using Cramer’s rule
[259]. Prior to this, we can simplify things by assuming that di–1 = −1, di = 0 and di+1 = 1.
This is equivalent to shifting the origin of the coordinate system to the point (di, 0) which we
will account for at the end of our computations. Thus

b′

a′ = −

∣∣∣∣∣∣
1 mi−1 1
0 mi 1
1 mi+1 1

∣∣∣∣∣∣∣∣∣∣∣∣
−1 mi−1 1
0 mi 1
1 mi+1 1

∣∣∣∣∣∣
= − mi−1 − mi+1

mi−1 − 2mi + mi+1
, (6.57)
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where a′ and b′ are in the shifted coordinate system. Now, we insert (6.57) into (6.56) and
shift by di, to obtain the subpixel disparity dx, as follows:

dx = di + mi−1 − mi+1

2 (mi−1 − 2mi + mi+1)
, (6.58)

for which we assume that

(mi−1 − mi ) + (mi+1 − mi ) > 0, (6.59)

which simply is a consequence of the assumption made that a > 0. From Figure 6.14 we
see that the above means that di indeed is a local minimum. This feature will be used further
for match clarification. For example, in [323] it is proposed to consider a match as unique if
only one value, or at most two values, lie below a threshold mτ . However, if a third smallest
value does not lie above this threshold, then such a match is considered as bad. Thus the
authors of [323] propose to keep track of the three smallest values. The smallest of them
sets a threshold above which the third smallest value should lie to be considered as a valid
match. They propose to set this threshold in the range 5–20% above the minimum value of a
matching measure. In [323] only the DSAD (Equation (6.1)) was used; however, we can extend
this technique to other matching measures as well. In practice this technique has been shown
to be very efficient.

6.4.3 Evaluation Methods for Stereo Algorithms

To evaluate the quality of computed disparity maps by different stereo matching methods we
need special measures. The most obvious is comparison with the truth data, i.e. true disparity
or depth values for a scene, usually acquired by other methods, such as laser scanner or created
for artificial images. However, such reference data are not easy to gather and only a few
artificial test images are available (section 3.4.10). This and other evaluation methods are
discussed in this section (Table 6.10).

There are many advantages and disadvantages of the presented comparison methods. On
the one hand, the ground-truth approach seems to be very appealing. However, in practice
only a few images are equipped with the ground-truth data. Usually this is available for only
artificial images (see section 3.4.10) or when a precise laser range scanner is available. It
happens also that because we compute the measure for the whole image, a visually worse
disparity map can have a higher GT RMS than other visually better maps. A similar problem
can be encountered with the method of comparison of the synthesized view.

As discussed by Gong and Yang, the G(I) measure penalizes mostly the regions with large
dissimilarities in disparity. As a consequence, it does not produce the best evaluation for the
ground-truth data. Nevertheless, both measures F(I) and G(I) are suitable alternatives for eval-
uation of disparity maps, although sometimes their best results are not what we call visually
the best.

The measure relying on the number of rejected points by the LRC method can be
used if no ground-truth data is available. However, it is obvious that this method depends
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Table 6.10 The most popular quality measures for evaluating performance of matching algorithms

Quality measure Description

RMS on
ground-truth
data GT RMS

This quality measure assumes a priori knowledge of the true values of
disparities in each pixel position. In practice, this can be fulfilled for
artificial stereo-pairs, such as the ones presented in section 3.4.10. Further,
the measure can be computed for all pixels belonging to an image or only
for its area A, i.e. we assume that point coordinates (x, y) ∈ A. The
root-mean-square measure GT RMS of disparities d(x, y) in respect to the
ground-truth disparities dGT(x, y), can be defined as

GT RM SA = 1

N

√ ∑
(x,y)∈A

[d (x, y) − dGT (x, y)]2 (6.60)

where N denotes the number of points that belong to the area A.
In [370] the special areas A were divided into the following three groups.

1) Texturless areas (T-A) – regions in which, according to some
texture-content measure, there is no texture.
2) Occluded areas (O-A) – image regions which are only visible by one
camera.
3) Depth discontinuity areas (D-A) – disparity map regions for which their
gradient value is excessive, according to some function (or simple
threshold value, etc.).

Percentage of
incorrect
matches on the
ground-truth
GT BP

Similarly to the previous measure, the percentage of bad matched pixels
GT BP over an area A can be defined as

GT B PA = 1

N

∑
(x,y)∈A

[|d (x, y) − dGT (x, y)| > δd ] (6.61)

where, as before, N denotes the number of points that belong to the area A.
We see that GT BP sums up all those points for which their disparity value
is different from the ground-truth data of more than a threshold δd. Then
the sum is normalized by a total number of points.

Synthesized view
prediction errors

This comparison method is performed in two steps. At first a new view is
synthesized based on a base view and the computed disparity map. Then,
at the second step, this synthesized view is compared with another base
view. The authors of [370] distinguish two possibilities for this method:

1) The forward warp – here we take a reference view, then we warp it
based on the computed disparity map. Finally, the synthesized new view is
compared with the reference view taken at the beginning of this process.
This way we obtain the forward prediction error.
2) The inverse warp – a view is inversely warped by the disparity map,
then compared against the reference image. This way we obtain the inverse
prediction error.

For comparison of the views (i.e. the synthesized and the reference ones)
we can use one of the already presented matching measures (Table 6.1).
Further discussion on the two warping schemes can be found in [370].

(continued)



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

228 An Introduction to 3D Computer Vision Techniques and Algorithms

Table 6.10 (Continued)

Quality measure Description

Parameter-free
measures

Gong and Yang noticed a similarity between evaluation problems
encountered in image segmentation and stereovision [155]. In both, the areas
selected for comparison should be smooth and exhibit low colour errors
among compared pixels. Thanks to this observation Gong and Yang adopted
the parameter-free measure from the segmentation domain to be used in
stereo assessment, as follows [155]:

F (I ) =
√

#A

103 M N

#A∑
i=1

e2
i√
Ai

(6.62)

where Ai is the i-th area of consideration, ei is an error computed for Ai and
#A denotes the number of regions. Image size is M × N pixels. For each area
Ai, the error ei is computed as SSD (6.18) between corresponding colour
pixels of the original and the segmented images, respectively. F(I) was
extended in [155] to penalize regions characterized by large error. This
extension G(I) is as follows:

G (I ) =
√

#A

106 M N

#A∑
i=1

E2
i√
Ai

(6.63)

where the only difference compared to F(I), despite the larger constant in
denominator, is that errors Ei are squared Euclidean distances now.
Both measures, F(I) and G(I), were devised for segmentation but can be used
to assess stereo methods as well. The most cumbersome part however is
finding the proper regions Ai. Gong and Yang proposed classifying two pixels
into the same region if they have the same disparities, as well as there being a
four-connected path on which all the pixels have the same or higher
disparities. The parameter-free measures F(I) and G(I) are evaluated in
accordance with the following postulates [155].

• The measures should give the best results for the ground truth data.
• For disparity maps with similar number of regions Ai, the measures should
promote the one with higher rate of correct matches.
• For disparity maps with similar matching rate, the measure should promote
the one with lower noise, i.e. which has fewer number of regions Ai.

Number of pixels
rejected by the
left–right
consistency
check

If the ground-truth data is not available, which is the case for most stereo
images, some intuition on the matching quality can be gained by examining
the number of pixels rejected by the left–right consistency check (LRC; Table
6.9). As already alluded to, the main purpose of LRC is detection and
correction of the problem arising from the occlusions. In such a case, LRC
detects inconsistencies in the left–right and right–left matches. However,
LRC can also detect match inconsistencies due to poor behaviour of a
matching method. Thus, this feature of LRC has been used to assess the
quality of the matching methods [25, 90].
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heavily on the image contents since it sums up all match inconsistencies which are due to half
occlusions, but can also arise from poor match clarification abilities of a matching method.
Assuming that the number of half-occlusions for a given stereo-pair is constant we can use
this method to comparatively qualify different matching strategies applied to this stereo-pair
[25, 90].

6.5 Diversity of Stereo Matching Methods

The stereo matching process is a key method of recovering information on the 3D envi-
ronment based on two simultaneously acquired images of the same scene, taken however
from slightly different positions. Needless to say, the human visual system is doing the
same for full space orientation. Section 3.4 presents the mathematical background behind
this process. In this and subsequent sections we present some of the basic matching algo-
rithms, discuss their advantages and disadvantages, and provide information on computational
complexity, practical realizations and applications. Since stereo is one of the key topics of
computer vision there is ample literature on this subject as well. For a general overview the
paper by Brown et al. [57] or the report by Scharstein and Szeliski [370] are highly recom-
mended. The latter provides a taxonomy on the vast realm of dense two frame stereo match-
ing methods. The mentioned works were very influential to the synopsis presented in this
chapter.

The reason for presenting such a review of stereo methods is to give an insight into different
approaches to the same problem. Based on this, further improvements can be created. More
literature references are provided and are discussed at the end of this chapter (section 6.14.1).

The first and the simplest division of the stereo methods is based on the type of output
disparity map (Figure 6.15). The most desirable are dense disparity maps, in which all or
almost all pixels have determined disparity values. Such maps are very useful and can be
used, for instance, in image synthesis [369]. On the other hand, sparse disparity maps have
disparity values determined only for selected image points (usually these are features, such
as corners or edges). More often than not, they are faster in computation but have limited
applications since missing values have to be interpolated.

Stereo methods

Dense
methods

Sparse
methods

Figure 6.15 Diversity of stereo methods according to the output disparity map
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It is interesting to take a look at the format of the output data, i.e. the ways of representing
the resulting disparity maps. The most common way is to provide a 2D disparity map, which
has to be considered with respect to a certain reference image (left, right or ‘cyclopean’) [180,
246]. In the case of a rectified stereo setup, this disparity map contains only horizontal dis-
placements from the reference image. Otherwise the vertical displacements are also computed.
This way we come to the multivalued representation of disparities [412] which is common to
the stereo methods that are based on multiple views. Other representations come in the form
of 3D models such as deformation fields, level-sets or triangulated meshes.

In the multiple baseline stereo methods a reference image is matched against more than one
image. This way, many costs maps are obtained which are then summed up since there is a
common reference frame [335]. This concept can be further extended to the arbitrary camera
configurations with a plane sweep method [412]. The plane sweep algorithm transforms each
image on to a common plane with a projective transformation. This is done for each disparity
value. This way, disparity is defined as a 3D projective homography of an original camera
space. This nicely connects the geometry of the camera setup with the disparity space.

Another possible classification of the stereo methods is based on the format of the signal
taken for computation of match values (Figure 6.16). Many methods rely directly on the in-
tensity values, whereas others first transform intensity into other domains (section 6.3.7) or
compute some characteristic features which are then used for matching.

Figure 6.17 depicts a hierarchy of stereo matching methods divided into two groups: local
and global methods. Methods of the first group compute disparity values based solely on the
local information around certain positions of pixels. Local methods are discussed in sections
6.6–6.8.

Direct 
methods

Stereo methods

Indirect 
methods

Feature based

Transformed 
image space

Intensity based

Figure 6.16 Diversity of stereo methods – division into direct methods that are based on bare intensi-
ties and indirect ones which operate on transformed space
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Local  
methods 

Stereo methods 

Global  
methods 

Feature matching 

Area (block)  
matching 

Dynamic 
programming 

Graph cuts 

Hierarchical (scale- 
space) methods 

Belief propagation 

Nonlinear diffusion 

Tensor voting

Figure 6.17 Diversity of stereo methods – division into local and global methods

Global methods use all cost values in the optimization process to determine disparity and
occlusions. There are many different methods in this group, although the most characteristic
are depicted in Figure 6.17. We can briefly characterize them as follows.

� Belief propagation – in this approach the stereo problem is formulated in the probabilistic
way by means of Markov random fields. From this the maximum a posteriori estimation
is obtained by applying a Bayesian belief propagation (BP) algorithm. BP performs a kind
of message passing, where the message is meant as a probability that a receiver (a node in
MRF) should exhibit disparity which is congruent with all information already passed to
it by a sender. The nodes are divided into high-confidence and low-confidence ones. The
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entropy of a message from high-confidence nodes to low-confidence nodes is smaller than
in the opposite direction. A formulation with three MRFs was proposed by Sun et al. [405].
The first MRF is responsible for modelling of a smooth field for disparity, the second for line
process for depth discontinuity and the third for a binary process for occlusions. The model
is further extended to incorporate other visual cues which are not taken by the three MRFs.
Formulation of the stereo problem in terms of nonparametric belief propagation (NBP) was
done by Sudderth et al. [404]. They propose an algorithm which uses stochastic methods
to propagate kernel-based approximations to the true continuous messages. Each message
update in the nonparametric formulation of NBP is based on a sampling procedure which
allows other than Gaussians distributions.

� Dynamic programming – the main idea of the methods from this group lies in division of
the 2D search problem into a series of separate 1D search problems on each pair of epipolar
lines. Further discussion on this technique is provided in section 6.10.

� Graph cuts – methods from this group assume solution to the stereo problem, formulated
as an energy functional, as computation of a maximum flow in graphs (discussed in sec-
tion 6.11). Comparison of the belief propagation approach with the graph cuts method is
provided in a paper by Tappen and Freeman [416].

� Nonlinear diffusion – in this approach the nonlinear diffusion is employed in the aggregation
step of partial match values (this is in contrast to the fixed window encountered in local
methods, for instance). Such an approach was proposed by Scharstein and Szeliski [368],
and also discussed in the book by Scharstein [369]. The method derives from a version of
the diffusion equation, for instance in the formulation (4.85), called a membrane equation
with a local stopping policy. In this formulation a diffusion equation is endowed with a term
that controls the amount by which current energy values had diverged from the original
value. Thus, the diffusion can progress only to a certain degree. The second term which is
built upon a certainty measure ensures that the diffusion takes places only in locations of
ambiguous matches. Two certainty measures are proposed, the first called a winner margin,
the second based on entropy. Then, the Bayesian model for stereo matching is proposed
which incorporates MRF for aggregation step and robust non-Gaussian statistics to handle
outliers and discontinuities.

� Hierarchical (scale-space) – in this formulation the stereo problem is computed based on
the Gaussian scale-space, in which information on matches from the coarsest level controls
the matching process in the finer (detail) levels, and so on. Thus, in each level the search
space is greatly reduced to only local deformations in respect to a given matching level.
This, in turn, leads to improvements in quality and run time, although the matching process
is repeated at each level of the scale pyramid. A version of the hierarchical matching, called
elastic matching, is presented in section 6.7.

� Tensor voting – the method originally proposed by Mordohai and Medioni [319] relies on
a concept of perceptual organization postulated in the famous Gestalt theory. This is im-
plemented by the tensor voting method which constitutes a computational framework of
perceptual organization of salient local structures in images. This bears some resemblance
to the structural tensor (discussed in section 4.6). It appears that such a second-order sym-
metric nonnegative tensor can be factored out into the stick and ball components which
constitute tokens that are further used for image analysis. The tokens form a voting field in
which votes propagate, separately for stick and ball components. In this framework Mordo-
hai and Medioni propose an efficient stereo method which is composed of four steps: initial
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matching (using a local method), detection of the correct matches, surface grouping and re-
finement, and finally estimation of disparity values for unmatched pixels. Thus, the method
results in a dense disparity map. More details are provided in [320]. Some experimental
results can be found on the Middlebury web page [209].

As indicated in Figure 6.17 there is a link between global and local methods since there are
many variants in which some of the global methods utilize a local approach to the computation
of disparity maps. For instance some of the global methods are initialized with a disparity map
obtained by a local one, etc.

Usually local methods are more straightforward in implementation and exhibit faster run
time, although many new optimization algorithms allow sufficient execution time for global
realizations. The main benefit of the global methods is usually qualitatively better disparity
maps (i.e. fewer errors) which takes into account occlusions (i.e. discontinuities). This comes
from the fact that global methods usually perform better in areas with insufficient texture for
errorless matching. Further details and properties of the outlined methods are discussed in the
following subsections.

6.5.1 Structure of Stereo Matching Algorithms

In recent years dozens of algorithms for stereo correspondence have been developed, and,
although they differ in many aspects, for many of them it is possible to distinguish common
characteristic steps [369, 370] which are presented in Figure 6.18.

Computing the matching cost 
for pairs of pixels

Aggregation of the cost values

Computation of the disparity 
map (local or global 

optimization)

Disparity map post-processing

Figure 6.18 Basic processing steps for most of the stereo correlation methods



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

234 An Introduction to 3D Computer Vision Techniques and Algorithms

The first step in Figure 6.18, i.e. computation of the matching cost for pairs of pixels, is rel-
atively straightforward. It can be done with one of the matching measures, already discussed
in section 6.3. Other steps of computation are discussed below.

6.5.1.1 Aggregation of the Cost Values

Computation of the matching costs for pairs of pixels is the most basic step of stereo correla-
tion. It consists in computation of a fit measure for pairs of pixels, where each pixel in a pair
comes from a different image. The most common measures for this purpose are presented in
sections 6.3.1–6.3.5. However, taking only single intensity values has many limitations. The
first comes from the fact that in practice intensities are represented on a limited number of bits
(usually 8–10 bits per pixel). Therefore, their discriminative power is very limited. The next
problem is noise superimposed on the intensity signal. There are different types of noise (dis-
cussed in Chapter 11) which add additional error on match values. Also, we have to remember
that more often than not images are taken by different cameras, which can differ in some pa-
rameters of their image processing path. The most common are variations of the bias-gain
factor in cameras’ transmission channels. For these reasons image preprocessing steps or/and
fit measures that account for the mentioned problems can be of help. Usually such solutions
rely on some information gathered in a local neighbourhood of a pixel, rather than its single
intensity value. The most common preprocessing step is transformation from the intensity to
the nonparametric space (section 6.3.7), where each (single) pixel is augmented with some
information on its closest neighbours. Then matching costs can be done on pairs of single
pixel values. Log-polar transformation is another example of a nonlinear transformation of
the input local neighbourhoods which aims at more reliable matching (section 6.3.8). A sec-
ond possibility is to use a measure that accounts for some intensity variations in local image
areas. These are, for instance, measures that from each matched pixel subtract a mean value,
which is usually computed in small image areas (section 6.3.1). Such techniques also assume
information gathered from wider areas (local pixel neighbourhoods) than single pixels, even
if this is only computation of a mean etc.

Since comparison of only single pixels has a limited discriminative power it is necessary to
count on the cooperative influence of neighbouring pixels. This is called aggregation of single
cost values, while neighbouring pixels involved in this process are called a support region.
The support region can be either 2D (two spatial dimensions and a fixed disparity) or 3D (two
spatial dimensions and disparity as the third dimension). For the former, an observed scene is
assumed to be composed of frontoparallel surfaces.

The simplest aggregation scheme follows simple low-pass filtering in the support region.
This can be done by convolution with a uniform (box filters), binomial, Gaussian or other
fixed-size convolution kernel (section 4.3.1). It is also possible to adjust the support region
to fit image contents. The simplest way is for each location to use multiple supported regions
of different size [141, 195]. Its modification consists of many windows, placed however at
slightly different positions (also called shiftable windows) [47]. The other idea is to build a
variable size window which is adjusted to the image content [237, 281, 435, 452] or local
signal statistics [88].

A separate group constitutes methods that employ the iterative diffusion scheme for the
aggregation step [271, 368].
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6.5.1.2 Computation of the Disparity Map

This step can be organized either as a local or a global optimization. The basic equation that
governs matching of two images I1 and I2 can be written as

I1 (x, y) = I2 (� (x, y)) , (6.64)

where �(x, y) is a function that defines a local deformation model, i.e. a deformation of the
initial coordinate grid for which (6.64) holds. Thus, computational stereo is about computing
�(x, y). For the linear case of horizontal disparities, the above can be reduced to the following
simpler form:

I1(x, y) = I2(x + D(x, y), y), (6.65)

where D(x, y) denotes a disparity field.
Further, a similar equation can be superimposed on some functions of the intensity signals:


 {I1 (x, y)} = 
 {I2 (� (x, y))} , (6.66)

where 
(I) denotes a transformation of the intensity signal. The most common here is com-
putation of the gradient from intensity, i.e. 
(I)≡∇(I). However, (6.66) is very general, i.e. it
can comprise any combination of signals and their transformed (derived) versions. The major-
ity of the simple stereo correspondence methods rely on intensity matching. However, other
versions rely on intensity and/or other signal representations. For instance, different versions
of matching methods operating on the gradient fields are presented in section 6.9.

In local optimization, disparity values are computed locally, i.e. based on the aggregation
values constrained in certain local match regions. The local regions are shifted in a predefined
range to find the best match value. The shift value of the winning match becomes a disparity.
Therefore such a strategy is commonly known as a winner-takes-all (WTA) approach. The
limitation of this approach is that uniqueness of matches is achieved only for a reference
image whereas points in the matched images can be matched to multiple positions [369]. This
can be resolved by the cross-check procedure (section 6.6.6). Sometimes selection of the best
match is very problematic, since there is no unique strong extreme in the cost function. An
interesting idea to overcome this problem is proposed in the work by Mühlmann et al. [323]
which consists of analysing not a single minimum but at least three consecutive minimal
values. If they are close to a certain threshold, which in [323] is reported to be about 5–20%
between the best and next value, then such a match is rejected. This is a very useful technique
in many other computer vision methods that require selection of the best fit.

Global optimization is usually a more powerful technique than local matching since all local
cost values and other constraints can be taken simultaneously to find the disparity values that
fit best into this optimization task. Because all the cost values are involved in the optimization
task then the aggregation step is usually omitted. The common approach to formulate the
global optimization process is to design an energy functional involving the disparity function
that is to be evaluated during the energy optimization process. The energy functional for stereo
matching can be stated as

E(θ ) = Edata(θ ) + Esmooth(θ ), (6.67)
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where θ denotes a set parameters that affect the energy value. Edata(θ ) relates disparity values
with values of the matched pixels. This can be written for instance as a sum of the local cost
values [370]:

Edata(θ ) =
∑

(x,y)∈I1,2

S(x, y, D), (6.68)

where S(x, y, D) denotes a cost value. More generally, Edata(θ ) conveys a level of disagreement
between θ and the input (observed) data.

The term Esmooth(θ ) is introduced to enforce a smoothness of the solution, i.e. an additional
constraint on the resulting disparity map. Usually it is a function of disparities, sometimes
additionally related with a function of image intensity. For instance, this can be stated as

Esmooth(θ ) =
∑

(x,y)∈I1,2

� (x, y, |∇D|), (6.69)

where �(x, y, |∇D|) is a certain functional of the disparity gradient. The above can take on a
form proposed by Scharstein and Szelisky [368]:

Esmooth(θ ) =
∑

(x,y)∈I1,2

f (D(x, y) − D(x + 1, y)) + f (D(x, y) − D(x, y + 1)), (6.70)

where f ( ) denotes a monotonically increasing function on its argument [411]. Choice of f in-
fluences the quality of the output disparity map. For instance, if f is a quadratic function, then
disparity is smoothed across object boundaries in the input images. Therefore some robust f ( )
have been also proposed [368]. Additionally, the term of disparity gradient can be augmented
with a condition for intensity values:

Esmooth(θ )

=
∑

(x,y)∈I1,2

{ f (D (x, y) − D (x + 1, y)) · g (‖I (x, y) − I (x + 1, y)‖) (6.71)

+ f (D (x, y) − D (x, y + 1)) · g (‖I (x, y) − I (x, y + 1)‖)} ,

where the new function g is a monotonically decreasing function of its argument. It lowers
the smoothness costs for large intensity gradients. Choice of the smoothness penalty term �

in (6.69) is sometimes referred to as the Potts model [51, 252, 253].
Then, finding disparity map D is equivalent to solving the following optimization problem:

D = arg min
θ

{E(θ )}. (6.72)

Many algorithms exist that help approach this optimization problem [36, 37, 127, 184, 352].
Usually the scheme of this process is to change in some way θ i to θ i+1, then compute a new
energy value and if it is smaller than the previous one, that is

E (θi+1) < E (θi ) , (6.73)
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then θ i+1 is chosen as a new state. Finally, a state θo,

E (θo) ≤ E
(
θ j
)
, (6.74)

is a (local) minimum of energy E, if the above is fulfilled for all θ j.
Many optimization methods suffer from falling into local minima whereas we are mostly

interested in global minima values. However, finding a global minimum does not belong to
simple tasks and in general the problem is NP hard, i.e. it cannot be solved even in a poly-
nomial time.

Some examples for construction of the energy functional follow. For instance Robert and
Deriche propose the following continuous version of the energy functional for direct evalua-
tion of the depth map [359]:

E (θ ) =
∫ ∫

[I1 (x, y) − I2 (� (x, y, D (x, y)))]2dxdy + υ

∫ ∫
� (‖∇D‖) dxdy, (6.75)

where I1 and I2 are left and right views of a stereo-pair, respectively, D(x, y) is a disparity map
and �() denotes a local displacement model which is dependent on the extrinsic and intrinsic
parameters of the stereo setup. The minimum of the above E(θ ) is calculated by methods
pertinent to the Euler–Lagrange equations.

Another energy function which is then solved by the radial-based neural network was pro-
posed by Wei et al. [444]. We outline the principles of this method in section 6.9.

Gong and Yang propose using genetic optimization for stereo matching [155]. This is
known as a method which is able to find a global solution to an optimization problem. How-
ever, at first the problem needs to be encoded into the domain of genes. Then the iterative
gene processing mechanism starts. It consists of gene mutations, inversions and crossover. At
each step only the optimal solutions are left with all others being disposed of. The process is
governed by a chosen optimality condition; such as (6.67) for stereo problem. A drawback of
the method is computation time.

Finally, simulated annealing is an optimization method that, under certain conditions, can
attain global-extrema [184]. At each step an energy functional is assessed and a direction of
maximal energy decrease is chosen for the next step. However, with a certain probability a
direction different from maximally optimal at a moment can be also chosen. In this way traps
of local minima can be avoided.

6.5.1.3 Disparity Map Postprocessing

This stage is aimed at improving the quality of the output disparity map. The most common
methods are as follows.

1. Subpixel estimation of disparity values (section 6.4.2) – a process used to overcome the
problem of integral grid of input images. Often it is done by fitting a polynomial to the dis-
crete values of match values in a local neighbourhood. Then, the disparity with a subpixel
accuracy can be found by interpolation.

2. Disparity verification (section 6.4.1) – more often than not performed with the cross-
checking method.
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3. Filtering of the disparity values – the most popular here is application of the median filter
to get rid of spikes in disparity space.

4. Interpolation of missing disparity values – this is a process of filling up those places for
which the disparity could not be determined or the disparity value was rejected during the
verification stage.

6.6 Area-based Matching

Area-based matching consists of measuring the degree of correlation between pixels in
matched images. However, instead of comparing single pixels for best match evaluation,
groups of pixels – usually gathered in a fixed sized image patch, i.e. neighbourhood N –
are taken simultaneously for comparison (Figure 6.19). This comes from the small discrimi-
native power of comparison which would be based solely on a single pair of pixels. This is a
result of the very local information conveyed by a pixel, whose value in most cases is repre-
sented by a limited number of bits. The small dynamic range of values leads in consequence
to ambiguities when only single pixels are compared.

The situation is different if a group of pixels is compared with another group of pixels.
In this case, not only are their values important, but also their spatial positions can be taken
into consideration since pixels on corresponding positions in the two groups are now being
compared.

Area-based matching algorithms are generally designed to recover dense disparity fields
between pairs of corresponding images. This property in itself is useful for applications where
continuous disparity or surface measurement fields are required for scene synthesis [369] or
3D scanning applications, where we wish to reconstruct virtual models of the scene. If we
intend to match a stereo-pair of images, e.g. as shown in Figure 6.19, for each pixel in the left,
Il, image, the goal of the area-based algorithm is to find every corresponding location in the
right, Ir, image of the stereo-pair. We define a displacement field, or disparity map, Dxy(x, y),
such that the Dxy(x, y) field maps each pixel of Il to a single, i.e. unique, corresponding location

Figure 6.19 Basic 1D area-based search along a horizontal scanline. (Redrawn from [389], Emerald
Group Publishing Limited)
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in Ir. While the disparity map should ideally comprise such a bijective mapping, there are
circumstances in practice that may result in this not being the case, e.g. match failure or
surface features projecting to a singularity in one of the images to be matched (consider a
plane viewed edge-on in one camera but not the other)

Il(x, y) → Ir(x
′, y′). (6.76)

Usually the disparity field is structured as two maps Dx(x, y) and Dy(x, y) which store hori-
zontal and vertical displacements, respectively. In general these displacements are real-valued
and hence represent subpixel correspondences between matched images. In this case (6.64)
takes on the form

Ir(x
′, y′) = Il(x + Dx (x, y), y + Dy(x, y)), (6.77)

where Dx(x, y) and Dy(x, y) are horizontal and vertical disparity values, respectively.

6.6.1 Basic Search Approach

In order to recover dense disparity fields, i.e. recover a disparity value D(x, y) at every x, y
location in the reference image, we must find the corresponding locations of the compared
image patches referenced at these locations. We have met in section 6.3 a variety of metrics
that allow us to compare image patches in terms of their similarity. Using such a metric we
can place a local neighbourhood (reference patch) N over Il at pixel location x, y and search
about the corresponding x, y location in Ir using the same (test patch) neighbourhood. This
local search process is applied to find the local test neighbourhood in Ir that is most similar to
the reference neighbourhood placed in the left image. We simply repeat this process for every
pixel in Il to find the most similar corresponding neighbourhoods in Ir. Accordingly we can
obtain a disparity estimate at every location in Il. Figure 6.19 illustrates a simple 1D search
and Figure 6.20 illustrates a full 2D search.

Usually, for the sake of simplicity in implementation, matching areas are rectangles or even
squares of the same size, depicted in Figure 6.20. The task now is to find pairs of corre-
sponding areas in the two images which fit the best. However, even taking areas of pixels for
comparison it is not always guaranteed to find unique matches between these areas. This is a
result of the already mentioned nonuniqueness of the inverse projective problem (section 3.4).

In practice, when employing the area-based method the following questions have to be
answered.

1. What should be the shape and size of the matching area?
2. How does one measure the ‘goodness’ of a match?
3. How does one find the best match?

Increasing the size of a matching area increases its discriminative power. Thus, less am-
biguous matches are computed. However, when increasing the size of the matching window
we encounter much smearing in the disparity map. This is a result of the reduced influence
of local feature regions inside the matched areas. Examples of this effect are presented in the
next sections.
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Figure 6.20 General 2D search. A patch in the left-hand image is compared with a series of trial
patches in the right-hand image and the best position selected by interpolation of the matched values as
before. The figure illustrates a 2D search in the right image to find the relative displacement of the patch
located in the left image

Nevertheless, the area-based matching methods are very versatile and useful in practical
realizations. They can use diverse matching metrics (section 6.3), different image transforma-
tions (section 6.3.7) and they can be implemented in different ways depending on the appli-
cation (sections 6.6.3 and 6.6.4).

An interesting feature of these methods is that all pixels are treated in the same way and
all are taken for matching. This is different from the feature-based methods for instance, in
which only a selected group of characteristic pixels (features) are matched (section 6.8). Thus,
these methods are called sometimes ‘direct’ methods [220]. However, the pixel values can be
any values suitable for comparison, i.e. these are not necessarily image intensities but can be
any other information computed from intensities. For instance, prior to matching, the input
intensities can be low-pass filtered, processed to extract the statistical information parameters
(not necessarily section 6.3.4) or transformed into a nonparametric representation (section
6.3.7). At this stage it is also possible to change the dimensionality of the input data. For
instance colour images can be converted into a monochrome representation and then matched
[91]. On the other hand, the monochrome (or colour) input images can be transformed by
the structural tensor operator which results in 3D data. Then, the matching takes place in the
tensor space (section 6.6.7.3).

Figure 6.21 presents a block diagram of a typical area-based matching method. The acqui-
sition modules (1) supply a pair of images. Usually, these are RGB colour or monochrome
images and are of the same size. The input images are then optionally transformed, which is
done in stage (2). The actual area-based matching is performed in stage (3). There are differ-
ent ways of organising this module, which we will explore in more detail. Implementation of
(3) can follow the point-oriented or disparity-oriented strategy. In the former case, the local
matching method is obtained (section 6.5). The latter approach allows a global optimization
for computation of a disparity map. Both solutions have their advantages and drawbacks,
which are discussed in the next sections.
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Figure 6.21 Area-based matching algorithms for stereovision. Shaded modules are optional

The other important distinction of module (3) is that if the two cameras are in the canonical
stereo setup, then the matching can be done in a 1D fashion, alongside the scanlines (section
3.4.2). In other case, the images should be rectified (section 3.4.8) or the matching has to be
done in two dimensions.

The matching results in a dense disparity map. For an optional validation (section 6.4.1), the
matching process can be run again (or in parallel) with input images reversed, however. This
produces a second disparity map. If the two maps are available then they can be verified by the
left–right validation module (5). Finally we obtain the output disparity map (6), potentially
with a subpixel accuracy (section 6.4.2).

6.6.2 Interpreting Match Cost

In order to determine the relative displacement to achieve best match between the reference
and test images patches, Pr(i, j) and Pt(i, j), indexed by (i, j), we require a metric to deter-
mine their similarity, or correlation coefficient, crt and a selection of metrics were introduced
in section 6.3, discussed in section 6.3.1 and listed in Table 6.1. As suggested in Equation
(6.3) we could subtract the pixel values of each patch, take the square and add the values
together:

crt =
i∑
1

j∑
1

(Pr (i, j) − Pt (i, j))2. (6.78)

Notice that this formula is in effect treating Pr and Pt as vectors and computing the (square)
of the modulus of their vector difference:

crt = |Pr − Pt|2 . (6.79)

If we wanted to make the comparison measure independent of the size of the patches, we
could normalize this measure by the number of elements in the patch of dimensions I × J:

cnorm = 1

I × J
c. (6.80)
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While the above measure for comparing patches is simple, it suffers from a number of
limitations: If one signal has a much larger gain, or DC offset, than the other, it swamps the
correlation value. The correlation measures have arbitrary output values, consequently:

� it is difficult to tell if we are getting close to the best match without performing an exhaustive
search;

� it would be efficient to be able to halt the search when we passed through a correlation
valley, in the belief we had found an optimum match;

� it would also be useful to be able to use the score as a confidence measure to evaluate how
good our match is;

� confidence metrics computed using the above measures are dependent on the images being
matched;

� it would also be more useful if the measure increased with similarity.

The traditional solution to the above is the use of statistical correlation (Table 6.1). Equa-
tion (6.7) is now derived as follows. To afford a different basic similarity measure crt similar
to convolution, without loss of generality we can drop the 2D indexing notation for clarity,
where N = i × j, and treat the 2D patches as 1D matrices:

c f g = 1

N

n=N∑
n=1

Pr(n)Pt(n). (6.81)

We are now summing the product of the two signals (each of N elements) to find their best
match (Table 6.1; Equation (6.8)). It is possible to obtain invariance to DC offsets by subtract-
ing the mean µ (average value of each signal in the current correlation window) from each
signal:

c f g = 1

N

n=N∑
n=1

(Pr(n) − µr)(Pt(n) − µt) (6.82)

where crt is termed the covariance of Pr and Pt, and indicates if these signals change together,
i.e. are correlated. In practice, we remove the mean from each image patch by prefiltering
the input images prior to correlation. A zero-mean filter such as DoG or LoG filter is used
and the spatial scale of this filter is selected according to criteria set out in sections 4.5.3
and 4.5.4.

Recall that the standard deviation of a signal sample is equivalent to the RMS signal am-
plitude of the varying (AC) component. Therefore, we can normalize the correlation score in
terms of signal amplitude by dividing by the standard deviations of each patch, σ f and σ g, as
follows:

crt =
1
N

n=N∑
n=1

(Pr(n) − µr)(Pt(n) − µt)

σrσt
. (6.83)
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It is now possible to use the correlation score as a confidence measure since the above simi-
larity function gives output values in the range [−1. . .1]:

� 1.0 = maximum similarity and greatest confidence;
� 0.0 = neutral;
� −1.0 = maximum anti correlation, the correlated patches are inverses of each other.

It is also possible to consider the statistical correlation process in terms of vectors (see also
section 6.3.3). Let us consider our image signals (i.e. patches) Pr and Pt to be correlated,
having first been passed through the DoG or LoG filter such that they have zero mean to start
with:

P ′
r = Pr − µr, P ′

t = Pt − µt.

The correlation equation now simplifies to

crt =
1
N

n=N∑
n=1

P ′
r (n)P ′

t (n)

σ ′
r σ

′
t

. (6.84)

Treating patches Pr and Pt as vectors, the equation for standard deviation, σ ′, now becomes

vr = σ ′2
r =

[
1

N

∣∣P ′
r

∣∣2] , vt = σ ′2
t =

[
1

N

∣∣P ′
t

∣∣2] . (6.85)

σ ′
r = 1√

N

∣∣P ′
r

∣∣ , σ ′
t = 1√

N

∣∣P ′
t

∣∣
Furthermore correlation for signals P′

r and P′
t (for zero mean) is equivalent to their vector dot

product:

crt =
1
N

n=N∑
n=1

P ′
r (n)P ′

t (n)

σ ′
r σ

′
t

=
1
N

n=N∑
n=1

P ′
r (n)P ′

t (n)

1
N

∣∣P ′
r

∣∣ ∣∣P ′
t

∣∣ . (6.86)

Finally, substituting in the normalization terms and the correlation simplifies to

crt =
∣∣P ′

r

∣∣ ∣∣P ′
t

∣∣ cos(θ )∣∣P ′
r

∣∣ ∣∣P ′
t

∣∣ = cos(θ ). (6.87)

Since cos(θ ) takes up the range [−1. . .+1] depending on whether the vectors are in exact
opposition or exact alignment respectively, we once more have a similarity metric that can be
thought of as the cosine angle between our image patches expressed as vectors, as discussed
also in section 6.3.1. This property gives us a uniform metric for comparing two image patches
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(or vectors) independently of their gains or black levels as before. Hence, for zero-mean sig-
nals, statistical correlation and the normalized vector dot product are identical.

A potential flaw with the above statistical correlation metric is a lack of stability that can
arise if a strong signal appears at the edge of the correlation window to dominate the correla-
tion score. In other words, when searching for a similar patch it is desirable if the correlation
score rises and falls monotonically as the ‘best match’ position is reached and then passed. If
the match-window ‘just clips’ another high-contrast structure, then this match continuity will
be disturbed. To combat this boundary effect, Jin [229] describes how the correlation window
can be weighted with a Gaussian function as follows. The correlation coefficient, crt, between
a reference window situated at the left band-pass image and the test search window situated
at a trial match point in the right band-pass image is calculated as follows:

crt = ρrt√
σ 2

r σ 2
t

. (6.88)

The above formulation assumes that the input images IL and IR have been prefiltered with
a LoG filter of scale σ s (not to be confused with σ , standard deviation, of the image patch
signal) such that reference and test patches P′

r and P′
t with zero mean can be extracted for

comparison. The Gaussian windowed covariance is computed as

ρrt =
I
2∑

u=− I
2

J
2∑

v=− J
2

G(u, v) · P ′
r

(
I

2
+ u,

J

2
+ v

)
· P ′

t

(
I

2
+ u,

J

2
+ v

)
. (6.89)

The local Gaussian windowed standard deviations are similarly computed as

σ 2
r =

I
2∑

u=− I
2

J
2∑

v=− J
2

G(u, v) · P ′
r

(
I

2
+ u,

J

2
+ v

)
· P ′

r

(
I

2
+ u,

J

2
+ v

)
, (6.90)

σ 2
t =

I
2∑

u=− I
2

J
2∑

v=− J
2

G(u, v) · P ′
t

(
I

2
+ u,

J

2
+ v

)
· P ′

t

(
I

2
+ u,

J

2
+ v

)
. (6.91)

Note that to maintain stability the Gaussian window must have a scale factor σw ≥ σ s, i.e.
have a standard deviation (blur factor) equal to or greater than that of the LoG kernel used for
zero-mean filtering. A factor of 1.3 has been found to work well in practice [72, 229]. The size
of the correlation window can be set to I = 4σw rounded (up) to the nearest odd integer. The
Gaussian weight has the effect of enforcing a continuity constraint on the matching process,
i.e. the reference patch is correlated at intervals smaller than the Gaussian envelope on the
search image; the resulting match scores are themselves correlated since the image patches
being compared overlap within the Gaussian weighted support window. As will be discussed
(section 6.7.1.1) the resulting matching search continuity allows the search scale parameters
to be deduced such that we can determine the relations between the size of correlation window
required to ensure that a given magnitude of disparity can be matched.
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Despite the above refinements to the basic statistical correlation process, limitations re-
main when conducting matching search, including: lack of scale and rotation invariance, false
target problems and the ability to correlate only highly textured patterns. The statistical corre-
lation match metric is also comparatively computationally expensive, especially when applied
exhaustively. Section 6.7.1 investigates the matching range attainable at a single scale while
section 6.7.3 shows how the dynamic range of the matching algorithm can be extended by
matching over the multi-resolution pyramid data structure (section 6.7.4).

An interesting improvement to discrete pixel matching was proposed by Birchfield and
Tomasi [44]. Their idea consists of comparing each pixel in the reference frame with a linearly
interpolated value of a pixel, rather than an original discrete value, from the second image. By
this method, matching is more tolerant of different image sampling schemes, applied to the
original image signal.

6.6.3 Point-oriented Implementation

In this section we present a complete implementation of an area-based stereo matching
method. It follows the point-oriented organization of the inner loops (Algorithm 6.4). Its pur-
pose is to give an in-depth view of the inner structure of the algorithm. However, it must
be remembered that this is a very simple, nonoptimal and strictly procedural implementation
with a main didactical purpose.

Being point oriented, the external loops traverse each pixel position in the reference image.
The innermost loop traverses all possible disparity values and for each of them a match is
computed between an area in the reference and an area in the second image. This follows the
idea listed in Algorithm 6.4.

There are three functions that constitute the point-oriented matching algorithm. Their mu-
tual relation is presented in Figure 6.23. The external function ComputeDisparity Local takes
on six parameters which are the two input monochrome images, the output image which upon

match N

match 1

Image 1 Image 2

Reference 
matching 

area

Search 
region

Central pixel

Epipolar line

Figure 6.22 Local matching strategy in the point-oriented scheme and rectified stereo system. A ref-
erence matching area from the first image is matched against all possible areas on the epipolar line in
the second image. A position of the ‘best’ match is saved
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for(int i = 0; i < max_image_rows; i ++) 
{

for(int j = 0; j < max_image_cols; j ++) 
      { 

for(int d = 0; d < max_expected_disparity ; d ++) 
            { 
                “find the match value based on the chosen measure 
      in a w1×w2 window” 
            } 

            disparity(i, j) = “d for which the match value was 
the best”; 

      } 
}

Algorithm 6.4 Structure of the point-oriented method

exit contains the disparity map, the expected maximum disparity range and finally dimensions
of the rectangular search area. Their details are described in the function tag in Algorithm 6.5.

The matching process follows the scheme depicted in Figure 6.22. Size of a matching win-
dow is set by the two match area cols and match area rows parameters passed to the Com-
puteDisparity Local method. The loops which realize iteration through all pixels of the left
image are constrained inside the lines L[44–74] and L[47–73], respectively. Around each
pixel in the left image an area is created which is then matched with the max disp number of
areas in the right image. These iterations are organized by the innermost loop L[53,69] which
traverses all possible disparity values. However, the actual matching of the areas is delegated
in L[57] to the ComputeAreaMatch function.

The ComputeAreaMatch function has eight parameters, the details of which are described in
Algorithm 6.6. The first seven of them are used to define the size and position of the areas to be
matched in the two images. Let us observe that to define an area around a pixel at position (col,
row) we pass the symmetrical offsets from this point to the left and to the right by kColSwing
pixels, and to the top and to the bottom by kRowSwing number of pixels, respectively. In the
lines L[46,59] of ComputeAreaMatch the border variables for the two loops are organized.
Their purpose is also to ensure that all the accesses to pixels in the input images hit the valid
positions in these images. Then the two loops are set around the lines L[64,76] which iterate

ComputeDisparity_Local Compute_SADComputeAreaMatch

Figure 6.23 Mutual dependencies among functions for the point-oriented area matching



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

Image Matching Algorithms 247

/////////////////////////////////////////////////////////// 1  
// This function computes a disparity map from the two 2  
// monochrome input images. The point-oriented (local) 3  
// algorithm is used. It is assumed that the input pair 4  
// is already rectified, so only horizontal scanlines 5  
// are searched for the matches. 6  
/////////////////////////////////////////////////////////// 7  
// 8  
// INPUT: 9  

leftImage - a reference to the left image of a // 10 
stereo-pair // 11 

rightImage - a reference to the right image of a // 12 
stereo-pair // 13 

disparityMap - a reference to an image that // 14 
upon return contains the disparity map; // 15 
This image should be of the same size // 16 
as are both images of a stereo-pair // 17 

match_area_cols - a horizontal size of the // 18 
matching window // 19 

match_area_rows - a vertical size of the // 20 
matching window // 21 

max_disp - expected maximum horizontal // 22 
disparity value // 23 

// 24 
// OUTPUT: 25 

none // 26 
// 27 
void ComputeDisparity_Local( const MonochromeImage & leftImage, 28 

 const MonochromeImage & rightImage, 29 
 MonochromeImage & disparityMap, 30 
 const int match_area_cols, 31 
 const int match_area_rows, 32 
 const int max_disp ) 33 

{ 34  
const int kColSwing = match_area_cols / 2; 35  
const int kRowSwing = match_area_rows / 2; 36  

37 
const int kTotalCols = leftImage.GetCol(); 38  
const int kTotalRows = leftImage.GetRow(); 39  

40
register int col, row, disp; 41  

42 
// Traverse each row 43  

44 for( row = 0; row < kTotalRows; ++ row ) 
{ 45  

// Traverse each column 46  
47 for( col = 0; col < kTotalCols; ++ col ) 

{ 48 
// get a large value long prev_match = LONG_MAX; 49 

int best_disp = -1; 50 
51

// Traverse each possible disparity 52 
53 for( disp = 0; disp < max_disp; ++ disp ) 

{ 54 
long area_match_value; 55 
// Compute match value for a given area and disparity 56 

57 if( ComputeAreaMatch( leftImage, rightImage, col, row, 
kRowSwing, kColSwing, disp, 58 

area_match_value ) 
59 

== true ) 
{ 60  

// Compare this match to select the best one 61 
62 if( area_match_value < prev_match ) 

{ 63 
// save the best values 64 
prev_match = area_match_value; 65 
best_disp = disp; 66 

Algorithm 6.5 Listing of the ComputeDisparity Local function which implements area-based match-
ing with the point-oriented organization of the inner loops
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67      } 
68     } 
69    } 
70
71    // Store found the best disparity 
72    disparityMap.SetPixel( col, row, best_disp ); 
73   } 
74  } 
75 } 

Algorithm 6.5 (Continued)

/////////////////////////////////////////////////////////// 1   
// This function computes a 2   
// in a window which is set around a pixel at coordinates 3   
// (col,row) in the left image. 4   
/////////////////////////////////////////////////////////// 5   
// 6   
// INPUT: 7   

leftImage - a reference to the left image of a // 8   
stereo-pair // 9   

rightImage - a reference to the right image of a // 10  
stereo-pair // 11  

col - a horizontal coordinate of a reference // 12  
pixel in the left image // 13  

row - a vertical coordinate of a reference // 14  
pixel in the left image // 15  

disp - a disparity value between two images // 16  
kColSwing - a horizontal swing from the // 17  

col value; the search window is set // 18  
around a reference point +/- kColSwing // 19  

kRowSwing - a vertical swing from the // 20  
row value; the search window is set // 21  
around a reference point +/- kRowSwing // 22  

match_value - a reference to the variable // 23  
that upon successful return contains // 24  
the computed match value between two // 25  
matched areas // 26  

// 27  
// 28  
// OUTPUT: 29  

true - if success // 30  
false - otherwise // 31  

// 32  
bool ComputeAreaMatch( 33  const MonochromeImage & leftImage, 

const MonochromeImage & rightImage, 34  
const int col, 35  
const int row, 36  
const int disp, 27  
const int kColSwing, 38  
const int kRowSwing, 39  

long & match_value ) 40  
{ 41  
const int kTotalCols = leftImage.GetCol(); 42  
const int kTotalRows = leftImage.GetRow(); 43  

44 
// Find border values for column index 45  

// left int col_from = col - kColSwing; 46  
47 if( col_from < 0 ) 

col_from = 0; 48 
int col_to = col + kColSwing; // right 49  

50 if( col_to > kTotalCols ) 
col_to = kTotalCols; 51  

52 
// Find border values for row index 53  

Algorithm 6.6 Listing of the ComputeAreaMatch function which returns a match measure for a single
pair of the matched areas
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70    for( r = row_from; r < row_to; ++ r ) 
71    { 
72     // update match value for each pair of pixels 
73     match_value += Compute_SAD( leftImage.GetPixel( c, r ), 
74           rightImage.GetPixel( 

right_c, r ) ); 
75    } 
76   } 
77 
78   return true; // successful computation of a match value 
79  } 

54   int row_from = row - kRowSwing; // top 
55 if( row_from < 0 ) 
56    row_from = 0; 
57   int row_to = row + kRowSwing; // bottom 
58 if( row_to > kTotalRows ) 
59    row_to = kTotalRows; 
60 
61   match_value = 0.0; // starting match value 
62 
63   register int r, c; 
64 for( c = col_from; c < col_to; ++ c ) 
65   { 
66    int right_c = c - disp; // find column index 
67    if( right_c < 0 )  // for the right image 
68     return false;  // exit - cannot compute this match 
69     

Algorithm 6.6 (Continued)

through all the pixels in both matching areas. In L[73] the function Compute SAD is called to
compute a matching measure for a pair of pixels.

It is important to notice a scan order in the matched (right) image. A starting horizontal
coordinate for that image is taken to be the same as the current horizontal coordinate in the
reference image (left, in this case). Then, at each iteration step, from this value the current
disparity value is subtracted, L[66]. This way, the horizontal coordinate in the matched (right)
image progresses to the left from the corresponding horizontal position in the reference image.
This is in accordance with the relative coordinate order for the canonical stereo setups, already
discussed in section 3.4.2. If the order of images is changed, as for instance for the cross-
checking procedure, the order of progressing the horizontal coordinate in the matched images
also has to be changed. In our example in Algorithm 6.6, this can be achieved quite easily
substituting subtraction for addition in L[66].

The Compute SAD in Algorithm 6.7 computes an absolute value of a difference of pixels.
To change to another matching measure, for instance one of those presented in Table 6.1, it
suffices to change only this call. However, some measures require computation of the mean
value in the matched areas, which imposes additional iteration through the matched areas.

Although complete, Algorithms 6.5–6.7 present only an instructive implementation. They
assume certain type of images and have a minimum number of controlling parameters. Also,
they use only one comparison measure which is the sum of absolute differences DSAD. The
more advanced implementation would be realized with help of template classes which would
allow different pixel types. It would also have overloaded methods for comparison measures
which could be easily exchanged. This is left as an exercise.
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1   /////////////////////////////////////////////////////////// 
2   // This function computes an absolute value of a difference 
3   // of two pixels. 
4   /////////////////////////////////////////////////////////// 
5   //   
6   // INPUT: 
7   //   pixel_a - the first pixel 
8   //   pixel_b - the second pixel 
9   // OUTPUT: 
10  //   | pixel_a - pixel_b | 
11  //   
12  long Compute_SAD(  const unsigned char pixel_a, 
13      const unsigned char pixel_b ) 
14  { 
15   return abs( pixel_a - pixel_b ); 
16  } 

Algorithm 6.7 Function for computation of the match value for a single pair of two pixels. It returns
an absolute value of their difference

6.6.4 Disparity-oriented Implementation

Disparity-oriented implementation follows the flow chart presented in Algorithm 6.8. Its main
difference from the point-oriented version, aside from the different loop organization, comes
from the creation of the new data structure – a disparity space, depicted in Figure 6.24. Thus,
this version of the algorithm necessitates much more memory than the point-oriented version.
However, all match values for each compared pair of pixels are available when computing the
disparity map. While the former can cause some problems for larger resolutions and expected
disparity values, the latter feature of the algorithm opens qualitatively new possibilities. The
main advantage is that the whole space can be used to infer disparity values based on the
partial correlations among single pixels. Thus, the method can be used to perform a global
search for a solution to the stereo problem.

One method of distinguishing the order of computations in the dense disparity maps (usu-
ally direct methods) is to analyse the way pixels are traversed on the two images to find a
disparity map.

Figure 6.25 depicts the logical dependencies among functions and data structures for the
presented method. The main function ComputeDisparity Global (Algorithm 6.9) has the

1 for(int d = 0; d < max_expected_disparity; d ++) 
2 { 
3        for(int i = 0; i < max_image_rows; i ++) 
4        { 
5              for(int j = 0; j < max_image_cols; j ++) 
6              { 
7                    intermediate_value(i, j, d) = 
8                                     comp_measure(IL(i,j), IP(i,j,d));
9                } 
10         } 
11 
12  } 
13
14  „find disparity based on the accumulated comp_measure (and other parameters, such as 

image contents, etc.)”; 

Algorithm 6.8 Structure of the disparity-oriented method
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Figure 6.24 Disparity space built by disparity-oriented algorithms

same set of input parameters as the ComputeDisparity Local method for the point-oriented
algorithm.

In line L[43] of Algorithm 6.9 an array is created that stores pointers to each dispar-
ity plane in the disparity space. Each plane corresponds to a single disparity value. In this
implementation we rely on the vector<> class which belongs to the STL library [231, 401].
However, a dynamically created array, with the help of the C++ new operator, can be used

ComputeDisparity_Global Compute_SAD

DisparityFromDisparitySpace

”Match aggregation”

“Best match selection in
the disparity space” 

Disparity space

Figure 6.25 Logical dependencies among functions and data structures for disparity-oriented area
matching
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instead if STL is not available or not preferable. For instance this can be accomplished with
the following code:

 // Dynamically create an array of max_disp elements of 
 // type “LongImage *”: 
 LongImage * * disparitySpace = new LongImage * [ max_disp ]; 

 // ... 

delete [] disparitySpace;  // delete the disparity array 

The main disparity loop is organized in lines L[46–69]. The first action in each iteration
consists of the creation of a new disparity plane which stores the chosen cost measures for
each pair of compared pixels from the two input images.

The two loops in L[53–68] iterate trough all pixels in the input images and, for each pair
of pixels from the two images, a match value pixel match value is computed in L[62]. Once
again, this is done by invoking the Compute SAD function (see Algorithm 6.7). By changing
this function we can use different cost measures for single pixels. As alluded to previously in
the case of the point-oriented implementation, the horizontal match position in the matched
image is set at each iteration by subtracting a disparity value from the current horizontal posi-
tion in the reference image – see L[55] in Algorithm 6.9. This has to be reversed (by changing
subtraction into addition) if the order of input images is changed. It has to be remembered also
that such a simple search works fine but only in the canonical stereo setups (section 3.4.2).

After the disparity space is completed, in L[73] of Algorithm 6.9 the DisparityFromDis-
paritySpace function is invoked. Its purpose is further processing of the disparity space for
computation of the output disparity map (see Algorithm 6.10). DisparityFromDisparitySpace
has two stages of computations: the first is match value aggregation; the second is finding the
disparity map based on the best matches in the aggregated space.

14  // disparityMap - a reference to an image that 
15  //  upon return contains the disparity map; 
16  //  This image should be of the same size 
17  //  as are both images of a stereo-pair 
18  // match_area_cols - a horizontal size of the 
19  //  matching window 
20  // match_area_rows - a vertical size of the 
21  //  matching window 
22  // max_disp - expected maximum horizontal 
23  //  disparity value 
24 //

1   /////////////////////////////////////////////////////////// 
2   // This function computes a disparity map from the two 
3   // monochrome input images. The disparity-oriented 
4   // algorithm is used. It is assumed that the input pair 
5   // is already rectified, so only horizontal scanlines 
6   // are searched for the matches. 
7   /////////////////////////////////////////////////////////// 
8   //   
9   // INPUT: 
10  // leftImage - a reference to the left image of a 
11  //  stereo-pair 
12  // rightImage - a reference to the right image of a 
13  //  stereo-pair 

Algorithm 6.9 Listing of the ComputeDisparity Global function for a disparity-oriented computation
of the disparity map
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24  //   
25  // OUTPUT: 
26  //   none 
27  //   
28  // REMARKS: 
29  //   
30  //   
31  void ComputeDisparity_Global( const MonochromeImage & leftImage, 
32             const MonochromeImage & rightImage,
33      MonochromeImage & disparityMap,
34       const int match_area_cols, 
35       const int match_area_rows, 
36       const int max_disp ) 
37  { 
38   const int kTotalCols = leftImage.GetCol(); 
39   const int kTotalRows = leftImage.GetRow(); 
40 
41   register int col, row, disp; 
42 
43   vector< LongImage * > disparitySpace( max_disp ); 
44 
45   // Traverse each possible disparity 
46 for( disp = 0; disp < max_disp; ++ disp ) 
47   { 
48    // Create a single disparity "plane" for disp disparity 
49    disparitySpace[ disp ] = 
50       new LongImage( kTotalCols, kTotalRows, LONG_MAX ); 
51 
52    // Traverse each column 
53    for( col = 0; col < kTotalCols; ++ col ) 
54    { 
55      int right_col = col - disp; 
56      if( right_col < 0 ) 
57      continue; 
58 
59     // Traverse each row 
60     for( row = 0; row < kTotalRows; ++ row ) 
61     { 
62      long pixel_match_value = Compute_SAD( 
63        leftImage.GetPixel( col, row ), 
64        rightImage.GetPixel( right_col, row ) ); 
65      disparitySpace[ disp ]->SetPixel( col, row, 
66
         pixel_match_value ); 
67     } 
68    } 
69   } 
70
71   // At this point we have created the disparity space.
72   // In disparity space we can find a GLOBAL optimum 
73   DisparityFromDisparitySpace(  disparityMap, disparitySpace, 
74          
 match_area_cols, match_area_rows );
75
76   // Finally, get rid of the disparity space
77     for( disp = 0; disp < max_disp; ++ disp )
78    delete disparitySpace[ disp ]; 
79  }               

Algorithm 6.9 (Continued)
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19    //         none 
20  //     
21  void DisparityFromDisparitySpace( MonochromeImage & disparityMap, 
22      const vector< LongImage * > & disparitySpace,

23        const int match_area_cols, 
24        const int match_area_rows ) 
25  { 
26   const int kTotalCols = disparityMap.GetCol(); 
27   const int kTotalRows = disparityMap.GetRow(); 
28 
29   register int col, row, disp; 
30 
31   const int max_disp = disparitySpace.size(); 
32 
33   vector< long > theAggregMask_horz( match_area_cols, 1 ); 
34   vector< long > theAggregMask_vert( match_area_rows, 1 ); 
35 
36   LongImage tmpImage( kTotalCols, kTotalRows ); 
37   // Smooth the disparity space 
38 for( disp = 0; disp < max_disp; ++ disp ) 
39   { 
40    Horz1DConvolve( * disparitySpace[ disp ], 
41           

 theAggregMask_horz, tmpImage ); 
42    Vert1DConvolve( tmpImage, theAggregMask_vert, 
43            * 

disparitySpace[ disp ] ); 
44   } 
45 
46   // Traverse each row 
47 for( row = 0; row < kTotalRows; ++ row ) 
48   {
49    // Traverse each column
50    for( col = 0; col < kTotalCols; ++ col )
51    {
52     long prev_match = LONG_MAX;  // get a large value 
53     int best_disp = -1;
54     
55     // Traverse each possible disparity
56     for( disp = 0; disp < max_disp; ++ disp )  
57     { 
58      long area_match_value = 
59              disparitySpace[ disp ]->GetPixel( col, row ); 
60      if( area_match_value < prev_match ) 
61      { 
62      // save the best values 
63       prev_match = area_match_value;  
64       best_disp = disp;   
65      } 
66     } 
67 
68     // Save found disparity 
69     disparityMap.SetPixel( col, row, best_disp ); 
70    } 
71   } 
72  } 

1   /////////////////////////////////////////////////////////// 
2   // This function computes a disparity map from the disparity 
3   // space. 
4   /////////////////////////////////////////////////////////// 
5   //   
6   // INPUT: 
7   // disparityMap - a reference to an image that 
8   //  upon return contains the disparity map; 
9   // disparitySpace - a reference to the disparity 
10  //  space (a disparity vector); Number of 
11  //  elements in this vector is the same 
12  //  as the maximum horizontal disparity 
13  // match_area_cols - a horizontal size of the 
14  //  matching window 
15  // match_area_rows - a vertical size of the 
16  //  matching window 
17  //   
18  // OUTPUT: 

Algorithm 6.10 Computation of the disparity map from the disparity space
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In the implementation in Algorithm 6.10, the match aggregation in achieved simply by sep-
arated horizontal and vertical summations in the chosen window (section 6.5.1.1). For this
purpose the two linear convolution methods Horz1DConvolve and Vert1DConvolve are em-
ployed. They use the linear masks with all values set to one. In effect, we simply sum up all
elements in the match area cols×match area rows window. However, the size and values of
this mask can be changed quite easily, for instance the Gaussian mask can be used instead,
etc. We have to remember that in the presented solution integer arithmetic is utilized for com-
putation speed. So, if a mask with fractional values were to be used, its elements should be
scaled (multiplied) to take on integer values. This does not pose any problem since all local
areas will be scaled in the same fashion which does not change their mutual relations. How-
ever, we should be aware of a limit set in the accumulation trait of the convolution operator
(section 4.2.1).

The code in L[47–71] in Algorithm 6.10 contains three loops which once again traverse
all pixel values in the disparity planes. In these iterations we select the best matches from the
already aggregated values. This way we obtain the final disparity map.

In both implementations monochrome 8-bit input images were assumed. For the disparity
planes images with integer values were chosen (int or long C++ built-in types). The compu-
tations are also done entirely on integer arithmetic. However, in other realizations this might
need some modifications.

For speed improvement, the first place for inspection is the loops. Indeed, after profil-
ing we notice that the random access methods SetPixel and GetPixel, which belong to the
TImageFor<> class, require a significant number of arithmetic operations for computation
of random positions of pixels. If a sequential access to all pixels in an image can be envis-
aged, then a much faster pointer-based implementation can be applied (section 3.7.1.2). The
first candidates for such a change are the loops L[53–68] in the ComputeDisparity Global
function, as well as in L[47–71] of the DisparityFromDisparitySpace function.

To achieve subpixel accuracy of disparity values, discussed in section 6.4.2, it is sufficient
to paste the code listed in Algorithm 6.11 into L[67] of Algorithm 6.10.

Computations of subpixel disparity values follow Equation (6.58). To stay in the integer
domain, disparities are multiplied by a value of 100, in L[3] and L[12]. This is possible since
disparities usually have a very limited dynamic range, so we can easily scale the values to

1   ////////////////////////////////////////////////////////////////// 
2   // Sub-pixel estimation: 
3   long sub_pix_disparity = 100 * best_disp; 
4  if( best_disp > 0 && best_disp < max_disp - 1 ) 
5   { 
6    long m_im1 = disparitySpace[ best_disp - 1 ]->GetPixel(col,row); 
7    long m_i = disparitySpace[ best_disp ]->GetPixel(col,row); 
8    long m_ip1 = disparitySpace[ best_disp + 1 ]->GetPixel(col,row); 
9  
10   long denom = m_im1 - m_i - m_i + m_ip1; 
11 if( denom != 0.0 ) 
12     sub_pix_disparity += ( 100 * ( m_im1 - m_ip1 ) ) / 
13                  ( denom + denom ); 
14  } 
15  ////////////////////////////////////////////////////////////////// 

Algorithm 6.11 Disparity computation with subpixel accuracy
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use integers and, at the same time, speed up computations compared to using floating point
variables. Almost the same code can be used in point-oriented implementation as well.

6.6.5 Complexity of Area-based Matching

Analysing the point- and disparity-oriented algorithms for area-based matching we easily
conclude that the computational complexity of these methods is of order

O(NMDv Dh), (6.92)

where the input images are of size N × M pixels and Dv and Dh are expected vertical and hor-
izontal disparities. In the worst case Dv → N and Dh → M. However, for the stereo setups the
matching problem can be constrained to a 1D search, in which case Dv = 1 (the epipolar con-
straint; section 3.5). Further, in the canonical stereo setup, the positions of the epipolar lines
coincide with the image scanlines which simplifies greatly the whole procedure. Although
the computational complexity of area-based matching is given by (6.92), different versions of
the algorithm will differ significantly in their execution time. This is caused mainly by two
factors:

1. Organization of the iterations.
2. Additional time for match computations at each position of the output disparity map.

Regarding the organization of the iterations, we have already presented and discussed the
point- or disparity-oriented realizations. However, their implications are much deeper than
a mere setting of an order of iterations. In the point-based version we select the best match
locally, i.e. for the current pixel position in the reference image. Thus, a match is computed at
each step of the algorithm and then stored in the output disparity map.

In the disparity-oriented method, for each possible disparity value a separate data
structure – a disparity plane – is created that stores the match value for a single pair of pix-
els, for each pixel position in the input images. Only after the whole disparity space, which
consists of a number of disparity planes, is constructed is the output disparity map computed.
Obviously this requires a significant amount of additional memory for storing of the interme-
diate results. However, having all values of pixel differences (or other single pair matching
measures) creates new qualitative possibilities for best match selection, since the whole infor-
mation is available at this stage. Interestingly, the memory complexity is of the same order as
expressed in (6.92).

Moreover, in the disparity-oriented method we gain significantly in the execution time in
the match aggregation stage (L[39–44] in Algorithm 6.10) if using a separable mask for sum-
mations (section 4.2.2). For the point-oriented version it is not easy to directly implement
this technique at each step of an area correlation. Instead, some time improvement can be
achieved when trying to reuse some of the already computed matching values or applying a
smart match selection strategy (see section 6.3.6).

The additional time for match computation at each position depends mainly on the cho-
sen matching measure and data dimensionality. These issues are discussed in section 6.3.
However, some measures can be significantly slower, especially when they require prior



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

Image Matching Algorithms 257

computation of a mean value in each matched area or necessitate many multiplications, e.g.
DCV in (6.7). Some improvement can be achieved by means of the speed improving tech-
niques discussed in section 6.3.6. However, this is at a cost of implementation complexity,
which can be an issue for hardware realizations, etc.

Finally, there can also be some additional time necessary (which usually depends on a given
image size) for an optional input pair transformation (stage (2) in Figure 6.21) and/or output
disparity map postprocessing, such as cross-validation, filtering, etc.

6.6.6 Disparity Map Cross-checking

The cross-checking process has already been discussed in section 6.4.1. Algorithm 6.12 lists
the complete function for computation of a cross-checked disparity map, based on the supplied
left–right and right–left disparity maps. These are two versions of disparity maps, each with
a different reference image, however.

1 ///////////////////////////////////////////////////////////
2 // This function does cross checking of disparity maps. 
3 ///////////////////////////////////////////////////////////
4 //   
5 // INPUT: 
6 //   d1 - left-right disparity map 
7 //   d2 - right-left disparity map 
8 //   d_out - outcome disparity map 
9 //   disparitySimilarityThresh - threshold value 
10 //    of allowable dissimilarity between 
11 //    the pairs of disparities 
12 //   kRejectPtMarker – in the rejected_points image 
13 //    this value is used to mark a rejected point 
14 //    (all other points are set to 0) 
15 //   rejected_points - map of rejected points 
16 //   
17 // OUTPUT: 
18 //   Number of rejected points 
19 //   
20 // REMARKS: 
21 //   
22 //   
23 int DisparityMapCrossChecking(  const MonochromeImage & d1, 

24      const MonochromeImage & d2,
25       MonochromeImage & d_out, 
26 const int kDisparitySimilarityThresh = 0, 

27           const int kRejectPtMarker = 1,

28             MonochromeImage * rejected_points = 0 ) 

30 {
30  int pt_counter = 0; 
31
32  const int kCols = d1.GetCol(); 
33  const int kRows = d1.GetRow(); 
34
35  // Initialize d_out 
36  d_out.SetAll( 0 ); 

Algorithm 6.12 Listing of the DisparityMapCrossChecking function for cross-checking of disparity
maps
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54
55    right_disp = d2.GetPixel( j + left_disp, i ); 
56
57    if( abs(left_disp-right_disp)<=kDisparitySimilarityThresh ) 

58    { 
59     d_out.SetPixel( j, i, left_disp ); 
60    } 
61    else

62    { 
63     ++ pt_counter; 
64
65     if( rejected_points != 0 ) 
66      rejected_points->SetPixel( j, i, kRejectPtMarker ); 
67    } 
68
69   } 
70
71  } 
72
73  return pt_counter; 
74 }

37
38  // Prepare rejected points map 

39  if( rejected_points != 0 ) 

40   rejected_points->SetAll( 0 ); 
41
42  register int i, j; 
43
44  unsigned char left_disp, right_disp; 
45
46 for( i = 0; i < kRows; i ++ ) 

47  { 
48 for( j = 0; j < kCols; j ++ ) 

49   { 
50    left_disp = d1.GetPixel( j, i ); 
51
52 if( j + left_disp >= kCols || j + left_disp < 0 ) 

53     continue; 

Algorithm 6.12 (Continued)

The function DisparityMapCrossChecking accepts six parameters, from which three are
obligatory. These are two disparity maps and one output map. The other optional parameters
are a threshold for similarity of checked disparity values, as well as the image of rejected
points and the value used to indicate such points in this image. The latter can be used for visual
inspection of places in the matched images that have been rejected by the cross-checking
process. The similarity threshold by default is set to 0. However, we can accept a disparity
match if the values differ somehow, for example due to integer arithmetic. In such a case we
set the threshold to a value greater than 0.

In DisparityMapCrossChecking we start with some organization statements and declara-
tions. Then the two loops L[46–71] and L[48–69], which traverse each pixel in the two input
disparity maps, start. Then, in lines L[50–55], the two disparity values are acquired, checking
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however the allowable range of indices. Observe that the index of the second disparity value in
L[55] is computed from the first disparity value in L[50]. Finally, if the two disparities do not
differ by more than a predefined threshold in L[57], such disparity is set as valid. Otherwise,
we indicate a position as rejected and increase the counter of the total number of rejected
points.

Other details on cross-checking can be found in section 6.4.1 and Table 6.9.

6.6.7 Area-based Matching in Practice

First, let us analyse the areas of application of different versions of the area-based matching
method.

Area-based matching is a very simple but still powerful matching technique that can be
used to find correspondences among images whenever such comparison is necessary. This
extends its application area not only to stereovision but also to multi-view matching, motion
analysis and pattern detection.

Area-based matching can operate with a broad spectrum of input images with pixels which
are transformed or not transformed, scalars, vectors, tensors, etc. The only interface that
concerns the variety of pixel representations is the matching measure for a single pair of
pixels. These were already discussed in section 6.3. So, if we can only compare values of
pixels of a certain type, then we can easily use the area-based matching, overloading only the
pixel comparison interface.

The situation becomes more complicated if information in the input signal (pixels) is used
to control or modify in some way the behaviour of an algorithm. For instance, using tensor
representation one can exclude from matching those areas which are characterized by small
coherence value (section 4.6.2.1), i.e. which do not exhibit sufficient signal variations for
reliable matching. Similarly, shape and size of the matching area can be adaptively adjusted
to the image contents. In this way more powerful methods are created that can cope more
easily with some problems inherent to the matching task.

Area-based matching produces a dense disparity map. However, its quality depends heav-
ily on the contents of the input images and the chosen control parameters. Thus, area-based
matching can constitute a prematching module of a more advanced matching scheme. This is
a case of the hierarchical matching method, operating in scale-space (section 6.7.4). In this
example, area-based matching is employed at each stage of the scale pyramid for an initial
match. Then the disparity map found for a coarser level is refined at the next finer level, and
so on until the final disparity map is built.

Regarding implementation issues, for software realizations the disparity-oriented approach
can be recommended since it is much faster and provides global disparity space. However, for
hardware implementation the point-oriented version seems a better solution since it does not
require large memory blocks.

The following sections present area-based matching for different types of images as well
as different settings of the method. All of the presented experimental results come from the
software implementation, compiled with the Microsoft

R©
Visual C++ 6.0 compiler. It was

run on a PC computer with Intel
R©

Pentium 4, operating with 3.4 GHz clock, 2 GB RAM and
Windows XP Professional operating system.
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6.6.7.1 Intensity Matching

Figure 6.26 presents results of execution of the two ComputeDisparity Local and Com-
puteDisparity Global procedures for two monochrome 8-bit versions of the test stereo-pairs
‘Tsukuba’ and ‘Venus’ (Table 3.4). Pixel matching is achieved with the very simple DSAD

measure, listed in Algorithm 6.7. The matching areas are squares 3 × 3, 5 × 5 and 11 × 11,
from top to bottom in Figure 6.26. For small matching areas we notice many false matches,
since no cross-checking was applied in this simple example. On the other hand, larger match-
ing areas exhibit much smearing of disparity.

Figures 6.27 and 6.28 present execution times of the two matching procedures in relation to
the size of the matching area. It is very interesting to observe how much faster is the disparity-
oriented approach, implemented by the ComputeDisparity Global function. For size of the
matching window exceeding 11 × 11 it outperforms the simple point-oriented implementation
by an order of magnitude!

Figure 6.29 presents a comparison of the disparity maps with and without subpixel accu-
racy. We easily notice that the subpixel computations allow much smoother maps since their
disparity values are more adjusted to the matching measure.

Figures 6.30 and 6.31 present computation of the cross-checked disparity maps for the
‘Tsukuba’ and ‘Sawtooth’ images, respectively. First, the left–right and right–left disparity
maps need to be computed (Figures 6.30(a, b) and 6.31(a, b)). Then the cross-checking is
done which results in a cross-checked disparity map (Figures 6.30(c) and 6.31(c)) as well as
a number of rejected points (white in Figures 6.30(d) and 6.31(d)).

We can observe in the cross-checked disparity maps in Figures 6.30(c) and 6.31(c) that
most of the mismatched disparities occur at object boundaries.

6.6.7.2 Area-based Matching in Nonparametric Image Space

The matching examples presented in this section assume that the input images, prior to match-
ing, are transformed from intensity signals into nonparametric space. Such organization fol-
lows the scheme depicted in Figure 6.21. Properties of the nonparametric transformation are
discussed in section 6.3.7.

Figure 6.32 depicts results of the ‘Tsukuba’ image matching in the nonparametric 5 × 5
Census domain. Matching windows were 9 × 9 and 11 × 11 pixels, respectively. For compar-
ison the Hamming DH measure was used.

Figure 6.33 provides experimental results of the nonparametric matching of the ‘Venus’
stereo-pair in the 9 × 9 Census space. For matching the Tanimoto DT measure was used. The
disparity maps were cross-checked for validation. The disparity maps are obtained with 9 × 9
(Figure 6.33(a)) and 11 × 11 (Figure 6.33(c)) match areas. The ratio of cross-check rejected
points is about 5.5% in Figure 6.33(b) and 5.2% in Figure 6.33(d).

Table 6.11 contains an assessment of accuracy and computation time for different non-
parametric methods, test images and match settings; n × nC stands for the size of the
Census window W in (6.47), k × kM denotes the size of the matching block; time is in
seconds. Presented values concern the nonredundant Census coding, discussed in section
6.3.7.1.
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Figure 6.26 Examples of area-based stereovision accomplished with ComputeDisparity Local and
ComputeDisparity Global. Matching areas are squares 3 × 3, 5 × 5 and 11 × 11 (from top down).
Pixel matching with the DSAD measure; no cross-checking
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Figure 6.27 Execution times of the ComputeDisparity Local (circles) versus ComputeDispar-
ity Global (triangles) for the ‘Tsukuba’ test pair

6.6.7.3 Area-based Matching with the Structural Tensor

As alluded to previously, the structural tensor provides valuable information on structure of
local regions in the input image (section 4.6). However, in many applications it is desirable
to use intensity and structural tensor together. For instance, Luis-Garcı́a et al. propose such
an extension for image segmentation [285]. Their idea consists of creating mixed products of
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Figure 6.28 Execution times of the ComputeDisparity Local (circles) versus ComputeDispar-
ity Global (triangles) for the ‘Venus’ test pair



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

Image Matching Algorithms 263

Subpixel disparity map of ‘Tsukuba’Disparity map of ‘Tsukuba’

M
at

ch
 a

re
a:

 3
X

3
M

at
ch

 a
re

a:
 5

X
5

M
at

ch
 a

re
a:

 1
1X

11

Figure 6.29 Comparison of the subpixel (right column) computation of the disparity maps



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

264 An Introduction to 3D Computer Vision Techniques and Algorithms

Figure 6.30 Explanation of the cross-checking process for the ‘Tsukuba’ stereo-pair: (a) left–right
disparity map; (b) right–left disparity map; (c) cross-checked disparity map; (d) cross-checked rejected
points

Table 6.11 Accuracy and computation time for different nonparametric methods, images and settings
(n × nC stands for Census size; k × kM denotes matching block size; time in seconds). (From [90]
with kind permission of Springer Science and Business Media)

Method Tsukuba (384 × 288) Venus (434 × 383) Sawtooth (434 × 380)

Gr-T Mis Tme Gr-T Mis Tme Gr-T Mis Tme

5 × 5C, 5 × 5M DH 19.4 0.21 0.7 18.2 0.21 1.1 16 0.18 1
5 × 5C, 7 × 7M DH 17 0.17 1.2 17.4 0.13 1.8 15.8 0.19 1.8
5 × 5C, 11 × 11M DH 13.3 0.12 2.4 16.9 0.2 3.8 13.1 0.1 3.8
11 × 11C, 3 × 3M DWT 11.4 0.08 3.8 11.4 0.116 4.1 9.14 0.07 4
11 × 11C, 9 × 9M DWT 10.2 0.05 4.7 10.2 0.055 6.6 7.2 0.06 6.2
11 × 11C, 13 × 13 DWT 13.7 0.06 6.4 13.7 0.05 9.1 6.23 0.06 9.7
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Figure 6.31 Explanation of the cross-checking process for the ‘Sawtooth’ stereo-pair: (a) left–right
disparity map; (b) right–left disparity map; (c) cross-checked disparity map; (d) cross-checked rejected
points

gradients and intensity signal. This way the nonlinear extended structural tensor is obtained,
as follows:

T∗ =

 Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz


 , (6.93)

T∗ = A




 Ix

Iy

I


[ Ix Iy I

] = A
(
UsUT

s

)
, (6.94)

where A( ) denotes an averaging operator (section 4.3) and Ix and Iy denote x and y directional
derivatives of scalar intensity signal I (section 4.3). For colour images, Us in the above is
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Figure 6.32 Nonparametric (5 × 5 Census) matching of the ‘Tsukuba’ test images with the Hamming
DH measure. Matching areas are (a) 9 × 9 and (b) 11 × 11. (From [90] with kind permission of Springer
Science and Business Media)

further extended to Uc, as follows:

Us = [ I ′
x I ′

y IR IG IB
]T

, (6.95)

where

I ′ = 1

3
(IR + IG + IB) . (6.96)

A similar strategy was also proposed for stereo correlation [83, 85], the basic assumptions
of which we describe in this section.

The idea here is very simple: instead of matching bare intensity signals, the input images
are transformed into their structural tensor representation. It conveys much more intuitive in-
formation than the intensity signal alone. For instance, we have a direct knowledge of the type
of structure in each of the local neighbourhoods of pixels. We can also quite easily find corners
or straight lines in an image (section 4.6). This way we can tell textureless areas, which are
not easy for matching, from the ones with well-developed structures. It was observed that an
analysis of the coherence signal can help partitioning an image into areas which can be quite
reliably matched with comparatively small matching windows. When observing histograms
of some real test images, depicted in Figure 6.34, we see that we can define a certain level of
‘structure’ in a local neighbourhood which can lead to a reliable match. The other areas have
to be treated with relatively larger matching windows. By this method false matches can be
avoided.

Figure 6.35 depicts an architecture of the image correlation method that operates with the
structural tensor representation computed from the input images. This is a version of a simple
area-based matching (section 6.6), guided however by the coherence component of the struc-
tural tensor. Matching is also done for the augmented tensor signal, i.e. 4D data. However,
instead of (6.93), the equivalent but more intuitive representation (4.130), augmented with the
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Figure 6.33 Nonparametric matching of the ‘Venus’ stereo-pair in the nonparametric 9 × 9 Census
representation. For matching the Tanimoto DT comparison measure is used and cross-checking for map
validation. The disparity maps are obtained with (a) 9 × 9 and (c) 11 × 11 match areas. The cross-
checking rejected points are (b) 5.5% and (d) 5.2%. (From [90] with kind permission of Springer Science
and Business Media)

intensity signal, is used. It is given as

ŝ =




ŝ1

ŝ2

ŝ3

ŝ4


 =




Txx + Tyy

∠w
c
I


 , (6.97)

where the meaning of the components is explained in section 4.5.4.
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Figure 6.34 Histograms of the coherence component for some real test images. The horizontal axis
denotes the coherence value; the vertical axis denotes frequency of occurrence

The matching process is twofold (module 4 in Figure 6.35). The first stage consists of
image partitioning into regions with sufficient structure for reliable area-based matching. This
is done by analysis of the coherence component c in (6.97) alone. The second stage is an
area-based matching that uses all components of the augmented tensor ŝ given in (6.97). The
main assumption here is that ŝ has more discriminative power than bare intensity.

The other stages of computation are analogous to the ones already presented for the area-
based matching (section 6.6). Specifically, the two disparity maps are computed, one for each
input image held as a reference, and used then for cross-checking (section 6.4.1). The final
disparity map is filtered with the morphological filter to remove outliers. Since the method
at one run provides only disparity values at structural places, then for a fully dense disparity
map an additional run with much bigger matching window is necessary. Then the two disparity
maps have to be merged. An alternative here is interpolation of missing disparity values based
on existing ones. The linear interpolation method is described in Chapter 12. Other methods,
such as bicubic (section 12.4) or spline based can be found in the literature (e.g. [352, 449]).

As alluded to previously, the method starts with image partitioning into regions with strong
structure, which is given by the comparatively high coherence parameter c of ŝ. Based on
experiments it was found that binarization can be achieved with c thresholded around its
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Figure 6.35 Architecture of the simple stereo correlation with the structural tensor

median value, as follows:

c1 (I ) = B [c (I )] , (6.98)

where B denotes a thresholding operator around a median value of its argument. Next, c1(I)
is morphologically dilated (section 4.8.2) to extract more concise structural areas. Once again
we have to choose a structural element for dilation which is somehow arbitrary and can be
based on experiments [351]. In many cases a simple square 3 × 3 or 5 × 5 for the structural
element was a reasonable tradeoff. This way we obtain our map of structural places

c2 (I ) = DS [c1 (I )] , (6.99)

where DS denotes a morphological dilation operator with the structural element S. Good re-
sults were also obtained when DS was substituted by the median filter. Examples of this stage
are presented in Figures 6.36 and 6.37 with some test images from Table 3.5.

The mask of structural places can be computed in the reference image only, or in the two
images, and then joined together with the binary AND operation.

Now we are ready to design the evidence measure E for pixel matching, which will operate
in the space of the structural tensor. It is proposed by the following formula:

E =
[

4∑
i=1

wi

∥∥∥ŝ(L)
i − ŝ(R)

i

∥∥∥α

]1/α

, (6.100)
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Figure 6.36 Binarized coherence signal processed with the 3 × 3 median filter: (a) ‘Trees’, (b) ‘Pen-
tagon’, (c) ‘Park’, (d) ‘AGH Corridor’

which is based on the Minkowsky measure (6.18) computed over the tensor representation ŝ
(6.97); wi are weights which control the influence of the tensor components on the evidence
measure. Finally, the parameter α determines properties of the computed metric: for α = 1 this
is a SAD, for α = 2 SSD, and so on, as discussed in section 6.3.3. For instance, in a particular
case of w1 = w2 = w3 = 0 and w4 = 1, the above reduces to a simple scalar matching over
the intensity values. Similarly, matching based on the pure phases of the local structures can
be achieved setting w1 = 1 with all other wi simultaneously set to zero.

Assuming the canonical stereo setup, E at position (x, y) and disparity d can be written as
follows:

E(x, y, d) =
[

4∑
i=1

wi

∥∥∥ŝ(L)
i (x, y) − ŝ(R)

i (x + d, y)
∥∥∥α

]1/α

, (6.101)



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

Image Matching Algorithms 271

Figure 6.37 Binarized coherence signal processed with the 5 × 5 median filter: (a) ‘Trees’, (b) ‘Pen-
tagon’, (c) ‘Park’, (d) ‘AGH Corridor’

where ŝ(L)
i (x, y) denotes the i-th component of tensor ŝ at pixel position (x, y) in the left image

L; a similar notation is used in respect of the right image.
In practice α = 1 (SAD) or α = 2 (SSD); the former requires less computational effort. Let

us recall that the evidence measure E is computed only in the structural places, i.e. ones with
c2(I) > 0 (see (6.99)).

Computation of a disparity map can be done with the help of one of the already discussed
methods. In the simplest case, the point-oriented algorithm (section 6.6.3) can be employed
in which E is computed separately for each local window in the first window, then aggre-
gated and compared with potentially corresponding windows in the second image. The best
match determines a disparity value for a given position in the reference (first) image. In the
disparity-oriented approach, all values of E will form a disparity space (section 6.6.4). Then
the optimization process follows.
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(a) (b) (c)

Figure 6.38 Stereo matching with the structural tensor method. (a) A map with structural places, (b) a
disparity map, (c) disparity processed with a 3 × 3 median filter

An example of the method applied to the ‘Pentagon’ stereo pair is depicted in Figures 6.38
and 6.39. The structural places were computed as described, with the 3 × 3 square for the
structural element in the morphological dilation filter. The evidence measure was computed
in accordance with (6.101), for α = 2 and all wi = 0.25. The aggregation was done with a
simple 7 × 7 binomial filter (section 4.3.2). The maximum disparity search was set to 11
pixels. Run time is about a second on a PC laptop with a duo core processor and 2 GB RAM.

Figure 6.38(a) depicts the structural places (dark) computed from the coherence component
of ŝ. Figure 6.38(a, b) presents the disparity map computed with the left image kept as a refer-
ence. The latter is additionally filtered by the nonlinear median filter which removes outliers.
In effect we obtain a smoothed disparity map. However, this process is recommended after the
cross-checking verification the results of which are presented in Figure 6.39(b). For this pur-
pose a second disparity map was computed (Figure 6.39(a)) – this time with the right image
being a reference, however. The final smoothed disparity map is depicted in Figure 6.39(c).

Figure 6.40 depicts a 3D visualization of the ‘Pentagon’ scene. Height values are directly
provided from the disparity map in Figure 6.39(c).

Figure 6.39 (a) Disparity map with a reference set to the right image of ‘Pentagon’. (b) A cross-
checked disparity map. (c) The same map after the 3 × 3 median filter
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Figure 6.40 3D reconstruction of the test scene

A more advanced utilization of the structural tensor in stereo matching would be built with
disparity computation based on an optimization process guided by the local values of the
structural tensor. This way, the matching region is blocked on the sharp structure boundaries
in the images.

6.7 Area-based Elastic Matching

We have now met the basic ingredients required to construct a practical area-based elastic-
warp matching algorithm, including image metrics for comparing image patches and multi-
resolution image data structures. This section illustrates how to combine the basic ingredients
to produce a complete image-matching algorithm with the following properties.

� A wide dynamic range of pixel displacement search between images.
� Recovery of a dense disparity field.
� No requirement for prerectification of the input images, i.e. full 2D search as opposed to 1D

scanline search.
� Ability to cope with perspective projection differences between the stereo-pair of images to

be matched.
� Invariance to differences in gain and black-level in the stereo-pair of images to be matched.
� Subpixel disparity estimates.
� Immunity to false targets.
� Data confidence map.

6.7.1 Elastic Matching at a Single Scale

The stereo correspondence problem is essentially under constrained. In the context of an area-
based matcher there are often a number of ‘best matching’ positions that could be found when
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searching for a patch in the test image that is most similar to a corresponding patch in the
reference image. The reason for this is manyfold; image noise will ensure that projections of
even identical parts of the scene on to the camera image plane will not necessarily produce a
perfect correlation score when compared using area-based matching. Similarly occlusions and
repeating patterns can confuse and subvert the matching process from the desired ‘correct’
solution. However, the stereo correspondence problem can be solved if suitable constraints
can be applied to select plausible solutions. In this section we shall review the constraints
required to complete the matching algorithm for matching at a single scale and review the
range of disparities that such a process can recover.

We shall first deal with search range, feature stability and subpixel accuracy, and then con-
sider matching as an elastic warping process and the implication for differences in perspec-
tive between the two views to be matched. Finally we shall investigate what is termed the
match–warp–regularize cycle, an approach common to many matching schemes including
surface manifold matching in three dimensions.

6.7.1.1 Disparity Match Range

In general when performing matching, it is assumed that the image patches to be matched will
be filtered using a LoG filter prior to matching using the windowed correlation equation de-
fined in (6.89), as outlined in section 6.6.2. Prefiltering the input images with a LoG function
serves two purposes: the spatial scale of image structures that are compared in the matching
process will be determined by the size of the Gaussian component of the LoG (and the overall
band pass of the LoG in the spatial frequency domain); and the band pass nature of the LoG
blocks the DC (mean) image component as described in section 4.5.3, thereby simplifying
the correlation function itself. However, in order to simplify the analysis of certain matching
relations, the LoG filtering step has been omitted as explained below.

A fundamental question that must be considered is what the relationship is between the
spatial scale of the scale-defining Gaussian, σ s, and the disparity search range limit Dmax,
i.e. Panum’s fusional area. Marr and Poggio [299] estimated the Dmax–σ s relationship using
statistical techniques and discovered that when Dmax = σ s edge tokens based on detecting
zero crossings could be detected with 95% reliability. However, to achieve this degree of
reliability, a further constraint was imposed such that only those edge tokens whose respective
orientations matched to within 30◦ were considered.

Jin [229] considers the scale-disparity range issue from a purely signal matching perspec-
tive, examining the 1D cross-correlation of a pair of Dirac impulses convolved with Gaussian
envelopes and separated by disparity u. By making the simplification of not applying LoG
filtering prior to matching in his analysis he shows that the (Gaussian spread) impulse auto-
correlation function resembles a 1D LoG. It can be observed in Figure 6.41 that as we sweep
the cross-correlation, i.e. as represented by shift d, from −∞ to +∞ that only the central
portion of the cross-correlation function remains monotonically related to the spatial distance
between the impulses being matched, and this range is thereby termed [−Dmax. . .+Dmax]. The
correlation score peak arises at d − u = 0 when the search shift equals the disparity present.
Clearly, correlation scores within the region [−Dmax. . .+Dmax] are proportional to the spa-
tial distance between the compared impulses and can therefore be used to guide the search
process. The correlation scores returned outside of the range [−Dmax. . .+Dmax] are no longer
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Figure 6.41 Cross-correlation function of a pair of impulses as a function of d − u using Gaussian-
weighted windows and statistical correlation: d is search shift and u is the disparity between the im-
pulses. (Figure based on Jin [229])

monotonic with respect to the spatial distance between the compared impulses and therefore
correlations in this region cannot be used unambiguously to determine the correct direction in
which to search for potential match candidates.

Finally, as already presented, the correlation function itself is weighted by means of a Gaus-
sian window of spatial size σw and the fusional range [−Dmax. . .+Dmax] is a function of both
σ s and σw. Jin computes the range [−Dmax. . .+Dmax] numerically for various ratios of σw/σ s

and concludes from this empirical investigation the following:

σs ∝ Dmax

Dmax → ∞,
σw

σs
→ ∞. (6.102)

To paraphrase Jin: Panum’s fusional area is proportional to the scale factor of the spatial
frequency channel of the LoG filter, while any given magnitude of disparity can be matched
if the correlation window is sufficiently large. From Jin’s empirical data, Dmax = 2.96 when
σ s = 1.0 and σw/σ s = 1.0.

6.7.1.2 Search and Subpixel Disparity Estimation

Given the preceding discussion on search range and spatial scale, we now have the basis on
which to formulate search at a single scale. Knowing that we obtain a search range of

Dmax = λ · σs, when
σw

σs
= 1.0, λ = 2.96 (6.103)

we can adjust σ s to give any desired search range Dmax under the constraint

σw ≥ σs. (6.104)
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Figure 6.42 Basic 1D search by comparing a reference patch in the left image with three test patches
extracted from the right image

In effect this relation gives rise to the well-known continuity constraint, whereby the con-
tinuity of the surface estimated via matching is guaranteed since the rate at which the match
score can change is limited by the spatial Gaussian-weighted support of the correlation kernel.

Building on Jin’s analysis we can now devise a single scale search algorithm that compares
an image patch at (x, y) in the reference image at three locations in the test image, correspond-
ing to (x − Dmax, y), (x, y), (x + Dmax, y), as in Figure 6.42.

The actual intermediate location of the ‘true’ correspondence can be estimated by means of
interpolating between the correlation scores returned at the x − Dmax, x, x + Dmax locations.
Since we know that correlating pairs of impulses produces a correlation function comprising
a single peak within the above search range, it is possible to approximate this function by
means of a second-order polynomial as described in section 6.4.2. However, in our case we
may have sampled the image at potentially noninteger locations x − Dmax and x + Dmax

(achieved by shifting the centre of the Gaussian weight applied to the correlation window in
the test image). However, for computational efficiency, it is clearly desirable to arrange for
Dmax to be an integer value.

Note that the integrity of this method hinges on the fact that the (Gaussian-weighted) test
correlation windows overlap, and hence introduce continuity, i.e. spatial correlation, in their
estimates which in turn results in the single turning point in the cross-correlation function and
thereby leads to the possibility of interpolating the location of the correlation maximum by
means of a second-order polynomial.

Section 6.4.2 introduces a generalized polynomial fitting scheme for subpixel disparity
recovery. As described in section 6.4.2, we are going to shift to local coordinates centred on
the current search position, i.e. anchored at x = 0, and in addition fix our interpolation function
c(x) in the domain −Dmax, 0, +Dmax and now assume that the cross-correlation function takes
the form:

c(x) = ax2 + bx + c. (6.105)

In order to find an estimate of the ‘best’ correlation score, dx, we must locate the turning
point at 2ax + b = 0. Since we cannot guarantee that Dmax = 1, as opposed to using (6.57)
here we solve the set of three equations directly as follows, substituting the sample values at
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x = −Dmax, 0, +Dmax into (6.105):

c(0) = c

c(Dmax) = aD2
max + bDmax + c (6.106)

c(−Dmax) = aD2
max − bDmax + c.

Therefore from (6.106) we can deduce:

α = c(Dmax) − c(0) = aD2
max + bDmax

β = c(−Dmax) − c(0) = aD2
max − bDmax

a = α + β

2 · D2
max

(6.107)

b = α − β

2 · Dmax

.

Solving for dx yields the same result as before in (6.56):

dx = −b

2 · a
. (6.108)

We can now utilize the estimate of dx and the direction of the curvature of the fitted
parabola, given by the sign of the second derivative, i.e. the sign of a, within a search al-
gorithm as follows.

1. If a < 0, and dx is in the range ±1.5Dmax, then dx serves as the disparity estimate for the
current location.

2. If a < 0, and dx is outside the range ±1.5Dmax, then shift the current location in the test
image by ±1.5Dmax, and then continue to refine the search as in step 1.

3. If a > 0 implies that the search range contains a local minimum, then check which test patch
correlation at ±Dmax has the greater value (i.e. is closest to the correct match location), and
then shift the current location in the test image by ±1.5Dmax, and continue to refine the
search as in step 1.

4. If a = 0, the interpolation solution is a flat surface and no refinement is possible; therefore
return dx = 0, i.e. record zero disparity at this reference location.

Back-substituting dx into the polynomial gives c(dx) and this quantity can serve as a mea-
sure of the confidence of the retuned correlation score.

The above search and interpolation scheme can accommodate a 1D search within a stereo-
pair of images that have been scanline registered. The matching process can be extended to a
2D search by making additional search comparisons at locations y − Dmax and y + Dmax as in
Figure 6.43.

In order to estimate the subpixel x, y best match for the 2D search mentioned above, we
can now simply fit 1D polynomials in the x and y directions independently and solve these
as above to obtain correlation scores in x and y. A single confidence value C associated with
each disparity map x, y location is computed by taking the average of the correlation score
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Right Image Ir
Reference

Figure 6.43 2D search by testing patches in both vertical and horizontal directions

maxima calculated independently in the x and y directions. The search process is applied at
every pixel in the reference image to estimate the x and y disparity values that map to the
corresponding locations in the test image. Hence x and y disparity maps Dx and Dy are so
constructed along with the confidence map C that stores the value of the estimated correlation
score at the interpolated disparity location calculated in the x and y directions. These three
maps, Dx, Dy and C, are fundamental to developing a viable matching process as described in
the following sections.

6.7.2 Elastic Matching Concept

Imagine matching one image to another by stretching the test image as though it were a rubber
sheet such that it fits to (i.e. registers with) the reference image. Recall the fundamental prop-
erty of a (dense) disparity field is to represent the degree of offset required to map (shift) each
point on the reference image on to the corresponding point in the test image, with subpixel
accuracy (6.77):

Il(x
′, y′) = Ir(Dx (x, y) + x, Dy(x, y) + y).

By resampling the test image using the disparity map (using the above equation) generated
by matching with the reference image, we can warp the test image into the shape of the
reference image (see Chapter 12 also). This assumes some form of local interpolation as
the correspondences are specified with subpixel accuracy, using real-valued numbers. In this
case a backwards warp is sufficient since the disparity map points to subpixel locations in the
reference image that can be found using bilinear or bicubic interpolation and then mapped
to integer locations which are directly comparable with the reference image. This warping
process is the computational equivalent of stretching the test image into the same shape as the
reference image.

Having stretched the test image into the same shape as the reference image by matching
and warping, we can test how well these images now register. If the matching process were
‘perfect’ then we would expect that the root-mean-square difference ε between the reference
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D0(x,y) on each iteration of the match-warp loop
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Disparity
Accumulator

Match
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Figure 6.44 Match estimation via the basic match-warp process

(left) image and the warped test (right) would be zero:

ε =

√√√√√ X∑
x=1

Y∑
y=1

(Il(x, y)−(Ir (Dx (x, y) + x, Dy(x, y) + y))2

X · Y
. (6.109)

The above measure can be used to evaluate the global quality of the match; it will never
usually reach zero, but at least we can minimize ε. Indeed matching can be reapplied and
the test image progressively warped into registration with the reference image, the process
terminating when the global fitting error falls below some value ε. The loop shown in Figure
6.44 can therefore be established.

The matching process halts after the n-th iteration when the residual global disparity error,
ε, falls below some preset threshold. This iterative rematching process forces the test image
into correspondence with the reference image. This process is useful for reducing the effect of
differing perspectives in each image, as by means of the current disparity field and the warping
process, the test image is driven into the ‘shape’ of the reference image. Notice also that the
backwards warping process ensures that the iterative refinement process takes place using
kernels aligned to the image grid; this will be an important consideration when we investigate
coarse-to-fine search in the next section.

The smoothness constraint described in section 6.7.1.2 allows us to make the assumption
that we can use area-based operators to estimate local image (pixel) similarities and also
expect that the disparity estimate we obtain will be locally continuous. This fundamental as-
sumption is based on the observation that most of the world we see around us in 3D comprises
continuous surfaces, as opposed to clouds of point-like particles, ribbon-like material or spiky
barbed wire! While not entirely general, the smoothness constraint serves as a useful heuris-
tic to allow the recovery of locally well-behaved surfaces, such as human surface anatomy
or navigable terrain. Our matching loop can now be modified to include a filter to enforce
smoothness upon the disparity surface (Figure 6.45).

A low-pass smoothing filter such as a Gaussian centre-weighted averaging filter can serve
to smooth the disparity estimates. The smoothness constraint makes explicit the assumption
that the simplest, i.e. smoothest, disparity surface that fits to within the desired error ε is likely
to be the correct solution (the principle usually known as Occam’s Razor [108]).
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Figure 6.45 Match-warp estimation incorporating disparity filtering

The smoothness constraint is of course not valid at surface boundaries, i.e. depth edges.
A mechanism is required to suppress smoothing at edges to avoid blurring over these. Ap-
proaches include explicitly detecting edges and gating the blurring filter. Or implicitly, mea-
suring local image variance or gradient strength and weighting the filter accordingly:

Dout(x, y) = Dfiltered (x, y) · �(x, y) + Din(x, y) · (1 − �(x, y))

�(x, y) = σmax(x, y) − σmax(x, y)

σmax(x, y)
, (6.110)

where σmax(x, y) is the maximum local image standard deviation estimate found in the test
image and σ (x, y) is the current local image standard deviation estimate. There are potentially
many such filtering schemes, the best known of which incorporates the concept of anisotropic
diffusion [345] in order to preserve disparity surface edges.

6.7.3 Scale-based Search

The preceding sections describe how to match stereo-pairs of images by successive warp-
ing and filtering of the recovered disparity field. In order to be able to extend the range of
disparities, ±Dmax, that can be recovered beyond that of a single local Gaussian-weighted
correlation window, while achieving the highest stereo acuity in terms of recoverable dispar-
ities, the single-scale matching approach must be extended within a multiscale framework.
By constructing multi-resolution image pyramids, as described in Chapter 5, from the input
test and target images, it becomes possible to implement a coarse-to-fine matching algorithm.
Matching over a discretized multi-resolution scale-space confers a number of advantages.

� It is possible to match image structures at all scales using the same algorithmic machinery
applied to each scale.

� If correctly structured, coarse-to-fine search can avoid the false target problem.
� As mentioned, the dynamic range of recoverable disparities can be greatly extended.
� The process can be made algorithmically and computationally efficient.

In order to analyse search over scale, Jin [229] considers the scenario depicted in Figure
6.46 where the task is to match two impulses in the reference image to two impulses in the
test image.
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Figure 6.46 Matching a pair of impulses between reference and test images. Left: impulse position
prior to gross alignment. Right: following gross alignment. (Figure based on Jin [229])

In the proposed multi-resolution matching scheme, impulses x1– and x1+ must first be
brought into the intermediate position shown in Figure 6.46 such that x1– will be matched
to x0– and x1+ will be matched to x0+ by successive refinement over subsequent finer image
scales. The key means to analysing the limits of the matching process is to consider when x1–

and x1+ are now so close that they can be considered to have merged into a single impulse
(Figure 6.47). While successful matching cannot now be sustained, it does serve to illustrate
the limiting condition for successfully centring the merged impulses between the attracting
impulses. In a real situation, this limiting situation occurs at some arbitrarily coarse scale,
when a pair of impulses would coalesce. At subsequent finer scales the impulses would re-
solve into individually identifiable locations when the separation distance of the impulses
becomes significantly greater than the intrinsic blur of the current scale. This process is gen-
erally known as scale-space tracing.

The above discussion illustrates the effect of attempting to shift and correlate the double
impulse pair with the single impulse for three different separations S of the impulse pair,
namely large, small and intermediate critical separation distance. What the above discussion
shows is that for a given spatial scale of matching, i.e. intrinsic level of blur, when S is suf-
ficiently large, the intrinsic blur is not sufficient to coalesce these when making a correlation
comparison to a single impulse, hence a double peak emerges on the correlation score graph.
Consequently, it is not possible to register the impulse pair on the single impulse as the true
location lies between the peaks as opposed to on either peak.

When S is sufficiently small, the blur present in the current image scale is sufficient to
merge the impulses under the correlation operation, and hence a single peak in the correlation
score emerges and this corresponds to the location to which the impulses should be shifted in
order to register them with the single impulse.
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Figure 6.47 Matching competition between a single impulse and an impulse pair, as a function of the
separation between the impulse pair. Figure based on Jin [229]

The middle graph in Figure 6.47 shows the critical situation when the pulses are just suf-
ficiently close to merge under correlation and this maximum separation, Smax, corresponds to
the limit of scale-space tracing and can be used to determine the parameters relating to the
separation between scales and fusional limit when searching over scale.

Jin discovered empirically the following relation between the intrinsic scale σ s and the
maximum separation distance Smax, by plotting Smax against a range of values of σ s:

σs ∝ Smax. (6.111)

Jin also discovered that as the ratio of the correlation weighting Gaussian, σw, and the intrinsic
image scale, σ s, tends to infinity, Smax asymptotically approaches

√
2:

Smax →
√

2,
σw

σs
→ ∞. (6.112)

Similarly, Jin also plotted the maximum recoverable disparity, Dmax, between the single
impulse and the centre of the impulse pair for the critical case, i.e. the limits of scale-space
tracing, and this was found to correspond to σw/σ s = 4.08. Therefore as long as the above
relation for Smax holds, the relation for Dmax must also hold, as this is less stringent. Hence, in
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order to guarantee that correct match is made the following must hold:

σs

Dmax
≥

√
2, where σw ≥ σs. (6.113)

In order to apply the above result under LoG filtering as opposed to Gaussian filtering, Jin
applied the following corrections:

when σLoG = 1.0, Smax = 0.95, for
σw

σs
= 1.25. (6.114)

We can infer the interscale sampling distance as follows: if we consider the critical situation
where a single impulse (two fused impulses) has been brought into alignment, equidistantly
between two competing impulses in the reference image, then the maximum distance between
the competing impulse pair must be Smax ≈ σ LoG. At the next finer scale, where the previ-
ously fused impulses will now resolve into a pair of separate impulses, the distance between
each impulse in the test image and its corresponding impulse in the reference image must
be <σ LoG. When the conditions in (6.114) hold and LoG filtering is applied, the maximum
search range Dmax will resolve corresponding to just over two pixels of disparity. Therefore
a scale reduction factor of two, i.e. octave scale sampling, is (just) sufficient to continue to
allow the impulses to be matched correctly.

In practice, it has been found that a more conservative interscale sampling factor of
√

2
gives significantly superior results to those obtained under octave scale separation. This is
presumed to be due to a greater immunity to image noise when a smaller distance in scale-
space must be spanned. Indeed, in current algorithm formulations arbitrarily finer interscale
sampling is adopted as required to achieve successful image matching (section 6.7.5).

6.7.4 Coarse-to-fine Matching Over Scale

From the forgoing discussion on search over scale it is now possible to formulate a complete
algorithm for coarse-to-fine image matching through scale-space, as in Algorithm 6.13.

It is important to note that the same search algorithm and scale parameters are applied to
match each level of the image pyramids in Algorithm 6.13. Implicitly, the largest scale that
can be matched corresponds to the basic range of Dmaxρ

k, where k corresponds to the number
of levels in the pyramid and ρ is the interlevel reduction factor. The matching resolution limit
can be considered from different perspectives: the finest scale might simply be considered

1. Construct LoG or DOG image pyramids for the test and reference images 
2. At the coarsest level of each pyramid: 
a. Execute the single scale search algorithm in the x and y directions, for N match-
smooth-warp cycles. 
3. While there are unmatched pyramid levels do: 
a. Expand the x and y disparity maps and the match confidence by the same factor as the 
pyramid reduction ratio, , such that it is now equal in size to the images to be matched ρ
at the next finer level in the test and reference pyramids. 
b. Execute the single scale search algorithm in the x and y directions, for N match-
smooth-warp cycles. 

Algorithm 6.13 Coarse-to-fine matching over scale
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to be that at the highest resolution level of the pyramid, remembering that the pyramid can
comprise two full-resolution levels, corresponding to the Laplacian filtered input image; in
this case the intrinsic image blur defines the limiting scale. Alternatively, matching might be
terminated at the highest resolution level following the application of the initial blur required
to achieve a pyramid with the desired degree of blur at each level, as described in previous
sections.

From a different perspective, the intrinsic image blur will affect the matching resolution
limit. If a large degree of intrinsic blur is present, no extra information will be present in
pyramid levels that sample more finely than that required to satisfy the Nyquist limit set
by the intrinsic image blur. A further perspective is that of noise suppression: the degree
of blurring provided by each level in the pyramid helps to suppress introducing noise into
the disparity estimations. Therefore, matching may take place successfully until a scale is
reached where the magnitude of image noise present begins to make a significant contribution
to matching errors. However, match errors induced by image noise can also be mitigated by
increasing the number of smoothing cycles at or within each matching iteration. Given the
number of variables involved, certain parameters such as intrinsic image noise can be difficult
to determine accurately, particularly when a sensor performance specification is not available.
In practice, the usual recourse to obtaining acceptable results for any specific configuration is
by experimental determination of parameter settings.

6.7.5 Scale Subdivision

Algorithm 6.13 can be extended to incorporate matching over subdivided scales between pyra-
mid levels, to achieve arbitrary interscale sampling intervals. The process of scale subdivision
in pyramids was covered in Chapter 5. When matching in the subdivided scales, the match-
ing kernel parameters are no longer constant, as is the case when matching through a regular
pyramid, and no subsampling or expansion of course takes place. However, the remainder
of the matching process is essentially the same and the usual expansion process is applied
prior to inter-resolution matching at the next finer pyramid level. Consider Figure 6.48. If
we commence matching at the coarsest (undivided) pyramid, then upon completing a set of
‘standard’, i.e. as described previously, match–smooth–warp cycles at this level we must im-
mediately expand to the next (subdivided) pyramid level.

We can calculate the required subdivision blurring factors as follows. Equation (5.20) gives
the base scale blur factor in each level of a subdivided pyramid and this is essentially the N-th
root of the pyramid division factor raised to the n-th power of ρ, the current subdivision level:

σn = σ0
(

N
√

ρ
)n

, n ∈ 1 . . . N − 1. (6.115)

Equation (5.23) gives the incremental increase in blur for each subdivided layer:

σsub = σ0
[

N
2n+2

√
ρ − N

2n
√

ρ
]1/2

. (6.116)

We see that upon expansion, the blur scale will increase by a factor of ρ and the size of the
filter kernel support region must follow. Prior to matching the low-pass subdivided pyramid
level can be straightforwardly band pass filtered by computing the Laplacian, i.e. summing the
horizontal and vertical second-order partial derivatives (assuming that the intrinsic blur in the
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Figure 6.48 Scale subdivision by N within the layers of a regular pyramid subsampled at ρ pixels in
each dimension

pyramid has been adjusted accordingly to achieve the desired disparity fusion limits). The blur
in each subsequent subdivided layer will now reduce until the current base (nonsubdivided)
level in the pyramid is reached and a ‘standard’ match cycle can then again be invoked.

Not only will the blur change (and band pass) in each subdivided level, but those search
parameters that are directly linked to the scale blur, such as the search range Dmax, will also
vary proportionally to the current subdivision blur as given in (6.20). Hence, the relative po-
sitions of the locations where the test image is sampled and compared by correlation to the
reference image will change accordingly, i.e. the correlation kernels will be located in the test
image at ±ρDmax (about the zero disparity position) in the first level of subdivision and this
will reduce in factors of

(
N
√

ρ
)n

in each subsequent subdivision level n, until a factor of unity
is reached at the next nonsubdivided level.

While the various subdivision parameters are easily computed as described above, the prin-
cipal penalty of subdivision is the additional computation required to perform the additional
matching steps in the subdivided layers with over-sampled convolution kernels. However,
subdivision affords much greater matching continuity over scale and is often the only means
to obtain correct matching between stereo-pairs containing large disparity ranges and severe
disparity gradients/discontinuities.

6.7.6 Confidence Over Scale

Each matching iteration at each level in the pyramid generates a correlation score or confi-
dence value. It is useful to propagate this confidence value to the finest resolution level in
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the pyramid at which matching takes place in order to provide a ‘final’ confidence map that
indicates match quality of the computed disparity map on a per-pixel basis. A naive approach
would be simply to output the final confidence map; however, this only contains match confi-
dence values pertinent to the scale of structures matched at the finest level.

A satisfactory method for taking into account the match confidence at all levels of resolu-
tion is to expand and sum the final confidence values achieved at each level of the pyramid.
Rather than store a pyramid comprising a confidence image for each resolution level, the con-
fidence values cn–1(x, y) computed at the previous (n − 1)-th level are expanded to match the
spatial resolution of the current pyramid level n at which matching is being carried out and
the new confidence values ccurrent added to the prior values to generate an output confidence
cn via a weighted sum as follows:

cn(x, y) = ccurrent(x, y)α + cn−1(x, y)(1 − α), (6.117)

Parameter α sets the fraction of confidence propagated between pyramid layers; a value of 0.7
has been found to work well by experiment [230].

6.7.7 Final Multi-resolution Matcher

The components described in the previous sections can now be assembled into a complete
multi-resolution matcher that incorporates scale subdivision, illustrated in Figure 6.49. Fol-
lowing pyramidization of the input stereo-pair to be matched, the coarsest resolution level is
matched and then expanded in preparation for subdivision matching, until the next level of
resolution scale is reached. It is worth noting that initial disparity and confidence maps are
present in this scheme. Where no additional information is available, these maps would nor-
mally be initialized with zero disparity and confidence values. However, there are occasions
where initial disparity estimates are available from other processes, for example initial dis-
parity estimates could be provided via a coarse, but reliable, boostrap stereo matcher, such as
the Census algorithm described in section 6.3.7. Alternatively, it is possible to sum the en-
tire match process for multiple iterations from start to finish, by spatially reducing the final
disparity and confidence maps from an initial matching run and feeding these back into the
matcher to reattempt matching based on reasonable starting disparities. While this is a very
expensive approach computationally, it can yield satisfactory matches under difficult match-
ing situations.

Figure 6.49 describes a matcher algorithm at the core of a stereo-photogrammetry system
ultimately known as C3D that was originally implemented during the 1990s and continues to
be developed at the time of writing. While the image matching techniques used within C3D
were based primarily on Jin’s doctoral thesis [229] (supervised by Dr Peter Mowforth, Turing
Institute), Siebert [386], Urquhart [72, 433], van Hoff [198] and in particular Niblett [230]
(the principal architect of the C3D system) also contributed to C3D’s original development
at the Turing Institute, as detailed in [230]. Further information and overviews of the C3D
system are presented in [387, 389].

Figure 6.50 shows examples of a stereo-pair input to C3D, while Figure 6.51 shows the
horizontal and vertical disparity maps and confidence maps generated. The bottom right
image in Figure 6.51 also shows the range map that is generated from the disparity maps



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

Image Matching Algorithms 287

Match

Smooth

Warp

Expand

Input Stereo 
Pair

LoG Pyramid 
Generator

LN

LN-1

LN-2

Disparity map DN, Confidence map CN

DN

CN

Match

Smooth

Warp

Expand

Match

Smooth

Warp

Expand

DN-1

DN-2

CN-1

CN-2

Figure 6.49 Overview of a complete multi-resolution scale-space tracing matcher

by means of photogrammetry. Note the striking resemblance between the horizontal dispar-
ity map and the reconstructed range map, principally due to the horizontal disparity map
containing most of the displacement information in the horizontally aligned input stereo-pair.
In the figures shown here the input images were 4504 × 3000 pixels in dimensions (but
matched at approximately half resolution, 2250 × 1500 pixels), the image pyramids com-
prised 15 half-octave separated levels with 24 levels of interlevel subdivision and 5 smooth-
ing cycles within each subdivided level. Figure 6.52 shows examples of the photorealistic
3D models generated in VRML format by the complete photogrammetry process and in the
case of three of these models, photorealistically rendered by draping the left image of the
stereo-pair on to the model surface.

Further examples of stereo-pairs matched using C3D and 3D surface models generated
from these are presented in section 7.3, which discusses multiview integration of 2.5D surface
models. Chapter 8 presents a number of case studies based on the use of C3D, in the context
of face and body modelling in section 8.3, clinical veterinary applications in section 8.4 and
archive/historical cine footage restoration in section 8.5.
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Figure 6.50 Input stereo-pair for matching using C3D

Figure 6.51 Horizontal and vertical disparity maps and the confidence map generated by C3D, fol-
lowed by their photogrammetric conversion to a range map

6.8 Feature-based Image Matching

Features allow more reliable matching of images due to their discriminative properties. They
are usually preserved after an image is subjected to geometrical transformations or its inten-
sity signal is somehow modified, e.g. by noise. The most frequent features used in matching
are lines or corners but also values of the structural tensor in highly coherent areas (section
4.6). The main drawback of feature-based image matching is a sparse disparity map. That is,
disparity values are computed only for feature points. Thus, this group of methods is well
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Figure 6.52 3D surface models generated in VRML format. The top left model has been rendered from
the reconstructed surface using flat shading; the remaining models have the left image of the stereo-pair
rendered on top

suited if only sparse point correspondences are required, as in the case of computation of the
fundamental matrix or bifocal tensor.

In this section we discuss matching based on zero-crossings of the LoG operator and match-
ing based on corners obtained from the structural tensor.

6.8.1 Zero-crossing Matching

It was shown by Mayhew and Frisby [302] and by Marr and Poggio [298, 299] that the human
visual system (HVS) is endowed with the mechanism of edge detection which operates like
the Laplacian of Gaussian (LoG) operator, discussed in (section 4.5.3). It was shown that the
HVS uses this type of information in the perception of depth. That is, the stereo mechanism in
the HVS can be modelled by five channels of LoG-like filters with different scale properties.
The architecture of this matching scheme is presented in Figure 6.53.

The system consists of five matching channels, each operating at a different scale, i.e. with a
different set of LoG filters. Results of coarser channels (low-pass filtered) propagate towards
the finest channels. At each channel matching is done alongside epipolar lines [162]. The
process is depicted in Figure 6.54(a). However, only the zero-crossed points are taken into
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Figure 6.53 Architecture of the Marr–Poggio matching algorithm. Matching is done sequentially in
five channels at different scales. In each channel LoG zero-crossings are detected and matched based on
disparity values obtained in a previously processed channel

consideration. Additionally, the type of zero-crossing (i.e. positive-to-negative or vice versa)
is used to clarify a match. In the original proposition of Marr and Poggio the masks of the
LoG filter were 189, 105, 51, 27, 13, respectively.

For each matching candidate its disparity is checked to fulfil the validity conditions, as
follows [162]:

dmin = dav − w ≤ d ≤ dav + w = dmax, (6.118)

where d is checked disparity, dav denotes an average disparity, known either from the previous
coarsest channel or from some assumptions on the geometry of a scene, and w is the size of
the LoG filter mask.
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(b) (a) 

Left image Right image
Choose a zero-crossing
point in the left image

p=(xl,y)

A found point has the same sign
and orientation?

A match found No match

In the right image search alongside
the epipolar line, in a window W
centred around a point (xl+dav,y)

Zero-crossing points
after the LoG filter

Epipolar line

dmax dmax

Yes No

Figure 6.54 (a) Matching of zero-crossings alongside epipolar lines. (b) Flow chart of the algorithm
for a single point match

At each stage of processing dav has to be determined. This is done by the ‘control’ module
in Figure 6.53. To clarify a match, the stereo matching constraints are employed. These are
assumptions on disparity gradient, uniqueness and figural continuity constraints (section 3.5).

Figure 6.55 presents examples of two channels of matching based on the LoG zero-
crossings. The ‘Corridor’ image was processed with 39 × 39 and 25 × 25 LoG filters,
respectively. The plus-minus and minus-plus types of zero-crossings are denoted with dif-
ferent grey values (the middle column of Figure 6.55). Disparities found are visualized in the
third column of Figure 6.55.

LoG
Right LoG channel Left LoG channel 

Matched zero-
crossings

39
×3

9
25

×2
5

Figure 6.55 Two channels of matching of the ‘Corridor’ image, based on the LoG responses. Plus-
minus and minus-plus zero-crossings are denoted with different grey values
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6.8.2 Corner-based Matching

Corners convey very important information on characteristic points in images (section 4.7).
Corner points with surrounding image patches can serve as very distinctive features in images
which can be used for reliable point matching. This can be made stronger if before matching
the patches are converted into nonparametric Census (section 6.3.7) or log-polar (section
6.3.8) representations. In this section we describe a method for matching of the corner points.
These are detected by the structural tensor-based corner detector (section 4.7.2) and with
arbitrarily set number of tiles. Then areas around corners are transformed into the log-polar
domain which are finally matched in the extended log-polar search space (Figure 6.11) with
the DCV measure (6.7)).

Figure 6.56 presents stages of matching of corner points in the ‘Venus’ stereo-pair (see
Table 3.4). Corners are detected with the tensor detector after dividing the left image into

Figure 6.56 Matching corner points of the ‘Venus’ stereo-pair. (a) Left image with corner points.
(b) Matched corner points in the right image. Corners are detected after dividing the left image into
4 × 4 tiles. Corner points in the (c) left and (d) right images
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Table 6.12 Matched points and match values of ‘Venus’. Best match denotes the best value of DCV.
Scale and rotation denote mutual change of scale and rotation of log-polar patches

No. Left image corners Right image corners Best match value Scale, rotation

1 (193, 91) (188, 89) 0.994259 (0, 0)
2 (269, 85) (263, 85) 0.998351 (0, 0)
3 (396, 86) (389, 86) 0.998535 (0, 0)
4 (54, 163) (44, 163) 0.994094 (0, 0)
5 (183, 187) (177, 187) 0.997788 (0, 0)
6 (274, 171) (267, 171) 0.994378 (0, 0)
7 (407, 179) (395, 179) 0.934322 (0, 0)
8 (34, 223) (21, 223) 0.974746 (0, 0)
9 (147, 276) (135, 276) 0.988131 (0, 0)

10 (226, 215) (219, 215) 0.982537 (0, 0)
11 (384, 226) (372, 226) 0.95316 (0, 0)
12 (43, 345) (26, 345) 0.95633 (0, 0)
13 (327, 348) (314, 348) 0.95316 (0, 0)

4 × 4 tiles (Figure 6.56(c). After this, the log-polar representations of areas around corners in
the left image are computed which are then matched with each point in the right image. The
log-polar areas are 27 × 27 pixels. The best matches in the right image are depicted in Figure
6.56(b). Observe that some of the initial corner points were rejected before matching due to
insufficient surrounding area (e.g. the leftmost corner in Figure 6.56(c)). We see that all points
were matched correctly, although the process takes a few minutes on a standard PC machine.4

This depends on the number of points and the size of the log-polar patches. However, the size
of the chosen search space has a dominating influence on time consumption. The most general
is a full 2D space, i.e. for each corner in the left image the whole space of the right image is
searched. However, more often than not such wide space is barely justified. Thus knowledge
about a camera setup can help greatly in search space reduction. We know that this can be
done quite easily in the canonical stereo setup, since search space can be reduced to 1D search
alongside the scanlines (section 3.5.1). Nevertheless, the search space can be reduced for other
configurations as well, depending on the expected disparities. This in practice can be set to
a rectangle around a point in the right image which corresponds to a zero disparity (i.e. has
the same position as a test point from the left image). Depending on the camera configuration
we usually expect prevailing horizontal or vertical disparity. Thus, the reduced search region
should reflect this fact.

Quantitative results of the matching are contained in Table 6.12. Apart from coordinates of
the corresponding points, the best match values of DCV, as well as local change of scale and
rotation, are included. The latter are obtained from the extended log-polar search space. It is
interesting to observe that for nondistorted images (such as a stereo-pair) these two should
be around zero from correct matches. Thus, if other values are encountered then the points
should be checked for possible outliers.

4PC with Pentium Core Duo 2 GHz, 2 GB of RAM.
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Figure 6.57 Matching corner points of the ‘Street’ stereo-pair. (a) Left image with corner points.
(b) Matched corner points in the right image. Corners are detected after dividing the left image into
3 × 3 tiles. Corner points in the (c) left and (d) right images

Figure 6.57 shows matching of corner points in the ‘Street’ stereo-pair taken with a simple
digital camera (see Table 3.5). This time the image is divided into 3 × 3 tiles in which corners
are detected (see Figure 6.57(c)). The left and right images with matched points are depicted
in Figure 6.57(a) and (b), respectively. The matching patches were chosen to 17 × 17 pixels.
Table 6.13 contains coordinates of points found as well as match values and local scale and
rotation parameters. Once again, the latter two are zero which indicates no internal change of
scale or rotation in pairs of corresponding points.

Instead of DCV, other matching measures can be tried as well. For instance similar results
can be obtained with DH (6.12) operating in the Census representation.

If matching images between which we expect a high degree of deformation (e.g. in regis-
tration of medical images) the SIFT method can perform better than a simple corner detector.
SIFT is known to produce very discriminative features which are invariant to many even non-
linear transformations, considering also a change of scale [283].
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Table 6.13 Matched points and match values of ‘Street’. Best match denotes the obtained value of
DCV. Scale and rotation denote mutual change of scale and rotation of log-polar patches

No. Left image corners Right image corners Best match value Scale, rotation

1 (66, 32) (59, 30) 0.89668 (0, 0)
2 (193, 73) (185, 71) 0.814084 (0, 0)
3 (89, 135) (81, 133) 0.938967 (0, 0)
4 (129, 130) (125, 128) 0.919967 (0, 0)
5 (40, 184) (23, 182) 0.946919 (0, 0)
6 (183, 195) (161, 193) 0.858052 (0, 0)
7 (301, 215) (277, 213) 0.878956 (0, 0)

6.8.3 Edge-based Matching: The Shirai Method

An interesting combination of the feature- and area-based approaches was proposed by Shirai
[246, 385]. The idea is to apply area matching but only of regions built around some edge
points. These can be easily detected with the LoG operator (section 4.5.3) at a single scale (as
opposed to the famous MPG algorithm; see section 6.8.1), or a Canny edge detector [60, 342,
381]. In the case of LoG, the sign of an edge is not taken into consideration. What is important
in the Shirai method is that not only the edge points are matched. Instead, the regions around
them are taken into correlation. For this purpose the DSSD-N (Table 6.1) measure was proposed.
Moreover, the size of each region is adapted to the quality of the actual match.

The method starts with selection of the maximal search range R, and three threshold values,
say t1, t2 and t3. Then, a region of an initial size is selected in the reference image, around
one of its edge points. This region is matched against possibly corresponding regions in the
second image. For each match a decision is taken based on the following rules.

1. If the match is very good, say its value is below the first threshold t1, then such a match is
accepted.

2. Otherwise, if the match is very bad, say its value is above the second threshold t2, or a
maximal size of region has been reached, such a match is rejected.

3. Otherwise, the search area is reduced based on the third threshold t3, with simultaneous
increase of a size of a matching region. This corresponds to the case of a match with good
indications, i.e. there are big chances that such a match will be properly classified with
bigger matching region.

The pseudo-code of the above algorithm can be found in the book by Klette et al. [246].
Some examples of the Shirai method applied to the ‘Corridor’ stereo-pair are presented in
Figure 6.58.

The method is not free from problems, however. The most important arises from the fact
that more often than not matching regions around edge points correspond to occluded areas
(section 6.4.1). Moreover, the output disparity map is sparse. The choice of so many threshold
values is also troublesome.
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Figure 6.58 Results of the Shirai method for the ‘Corridor’ stereo-pair. The LoG edge detector is used
with different mask size (rows)

6.9 Gradient-based Matching

Let us start once again from the image matching equations (6.65) and (6.66) for the standard
stereo system, i.e. the one in which image scan and epipolar lines are collinear. For conve-
nience we cite it once again:

I1 (x, y) = I2 (x + D(x, y), y)
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In the gradient-based methods it is assumed that operator 
 in (6.66) denotes a gradient, i.e.

(I) = ∇(I). Such an approach was undertaken for instance by Wei et al. [444]. Differentiat-
ing5 the above equation side by side with respect to the variables x and y, we obtain

∂

∂x
I1(x, y) =

[
1 + ∂

∂x
D(x, y)

]
∂

∂ x̂
I2(x̂, y),

∂

∂y
I1(x, y) = ∂

∂y
D(x, y)

∂

∂ x̂
I2(x̂, y) + ∂

∂y
I2(x̂, y), (6.119)

where

x̂ = x + D(x, y). (6.120)

Observe that I2(x̂, y) can be thought of as a second image deformed by an unknown disparity
function D(x, y). Based on the above equation the following conclusions can be drawn.

1. In the corresponding places of the original and the deformed second images, the phase and
magnitude of their local gradient vectors are related by a linear equation.

2. There is a constraint on the allowable gradient of disparity.

A simple measure for gradient matching was proposed by Scharstein [369]. It is given as

E = 1

2
(‖∇ I1(x, y)‖ + ‖∇ I2(x̂, y)‖)

−c ‖∇ I1 (x, y) − ∇ I2(x̂, y)‖ , (6.121)

where c is a constant (Scharstein suggests setting c to 1.0), and

∇ Ii (x, y) =
[

∂ Ii (x, y)

∂x

∂ Ii (x, y)

∂y

]T

.

The first term in (6.121) accounts for a match of gradient modulus whereas the second one
concerns matching of gradient phase.

However, considering matching based solely on intensity gradients, a problem arises in
places with no significant signal variation, i.e. in which gradient vanishes. The solution to the
above was proposed for instance by Wei et al. [444]. They suggest splitting the image into
regions with and without visible features. Based on this idea, their energy function for image

5This can be done if we assume that I1,2 are differentiable functions. This can be assumed for discrete images, since
they can be, for example, linearly interpolated to obtain their continuous representations.
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matching based on gradients is given as

E =
∑

(x,y)∈P

[I1(x, y) − I2(x̂, y)]2 +
∑

(x,y)∈F

{[
∂ I1(x, y)

∂x
−
(

1 + ∂ D(x, y)

∂x

)
∂ I2(x̂, y)

∂ x̂

]2

+
[

∂ I1(x, y)

∂y
− ∂ D(x, y)

∂y

∂ I2(x̂, y)

∂ x̂
− ∂ I2(x̂, y)

∂y

]2
}

+c
∑

(x,y)∈F̄

[(
∂2 D(x, y)

∂x2

)2

+ 2

(
∂2 D(x, y)

∂x∂y

)2

+
(

∂2 D(x, y)

∂y2

)2
]
. (6.122)

where P denotes a certain common region of the matched images, F is a subregion of P with
visible features (gradient different from zero), F̄ is the complement to F and c denotes a
weight that controls smoothness of the solution. Observe that the last term involves second-
order derivatives on disparity. Equation (6.122) follows the structure of the energy functions
for image matching given by (6.67). The first term in (6.122) relates to the simple SSD-like
matching of the intensity signal. The second denotes matching of the gradient signal and
the last guarantees smoothness. When trying to solve (6.122) a problem arises due to image
partitioning into feature and featureless regions. The solution proposed by Wei et al. consists
of using neural networks with radial-based functions. More details can be found in [444].

Stereo matching with the gradient signal can be easily incorporated into the area-based
matching frameworks (section 6.6.7). Some examples of matching with the measure (6.121)
in the point-oriented fashion are presented in Figures 6.59 and 6.60. The bigger the matching
windows, the more the chances are that there will be signal variations and in consequence
nonzero gradient. Otherwise, the missing places are replaced by interpolated values.

6.10 Method of Dynamic Programming

Dynamic programming is an optimization method which is applicable to the multivariable
problems in which not all variables are interrelated at the same time [33]. This method relies
on problem decomposition into smaller ones and then assumes using partial results when
trying to reach a global solution. By this strategy the computational complexity can be greatly
reduced. For instance, the problem of matrix chain multiplication may be solved by dynamic
programming [74]. The task is to find a product of a chain of matrices, for example

M = M1M2M3, (6.123)

assuming that the matrices in the chain have dimensions which allow their multiplication, i.e.
if the dimensions of a matrix Mi are denoted as ri × ci (rows × columns), then for matrices
Mi and Mj to be multiplied it must hold that ci = rj. The overall cost of such a computation,
expressed in a number of multiplications, is of the order ricicj.

In general the matrix product is not commutative but it is associative, i.e. the order of the
multiplied matrices cannot be exchanged but the partial multiplications in a chain can be
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(a) (b)

(c) (d)

Figure 6.59 Results of the gradient matching of ‘Trees’. Point-based implementation, match windows
of size (a) 3 × 3, (b) 5 × 5, (c) 9 × 9 and (d) 11 × 11

(a) (b)

(c) (d)

Figure 6.60 Gradient matching of the ‘Pentagon’ stereo-pair. Point-based implementation, match win-
dows of size (a) 3 × 3, (b) 5 × 5, (c) 9 × 9 and (d) 11 × 11
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done in any order. A first solution to (6.123) would be to multiply the matrices in a linear
order, say from the left to the right, i.e. M1 and M2, then their product with M3. However, it is
easy to show that such a strategy may not be optimal since the order of multiplication plays a
role here. For example if the matrices in (6.123) have dimensions 10 × 10, 10 × 135 and 135
× 15, respectively, then the multiplication from the left to the right yields (10 × 10 × 135) +
(10 × 135 × 15) = 33 750 multiplications. However, if we first multiply M23 = M2M3 and
then M1 with M23 then the number of multiplications is greatly reduced to (10 × 135 × 15)
+ (10 × 10 × 15) = 21 750 multiplications. Thus, determining the optimal parenthesizations
allows multiplication of matrices with a minimal computational cost. This problem can be
solved efficiently by dynamic programming, as shown for example in the book by Cormen
et al. [74]. We briefly outline the method.

The first step consists of formulation of a cost of multiplication of the subproducts S(i,k) and
S(k+1,j) partitioning the chain of n matrices, as follows:

M1 . . . Mi Mi+1 . . . Mk︸ ︷︷ ︸
S(i,k)

Mk+1 . . . M j︸ ︷︷ ︸
S(k+1, j)

. . . Mn. (6.124)

Then the total cost q(i, j) of multiplication of the two partitions is equal to the minimum cost of
partial computations of the subproducts S(i,k) and S(k+1, j), augmented by a cost of multiplying
these products together, that is

q (i, j) = q (i, k) + q (k + 1, j) + ri ckc j , (6.125)

since the partitions S(i,k) and S(k+1, j) are of dimensions ri × ck and rk+1 × cj, respectively, and it
holds also that ck = rk+1. Certainly, if i = j then q(i, j) = 0 since this is a single matrix. Hence,
the total cost of the optimal partitioning can be stated as the following recursive formula [74]:

q (i, j) =
{

0 if i = j
min

i≤k< j

{
q (i, k) + q (k + 1, j) + ri ckc j

}
if i < j . (6.126)

The recursive algorithm built upon the above formula can compute each subproblem many
times. In such a case dynamic programming is of help. One of its paradigms is to compute
partial results which are then used in a bottom-up fashion to find a solution to the whole
problem. These partial computations are stored in a look-up table6 which for the chain mul-
tiplication problem is of size n × n (n denotes the number of matrices in the chain). The
algorithm requires additional storage of the same size for tracing whose index k achieved an
optimal cost when computing q(i, j). The full algorithm can be found in [74]. Its computa-
tional complexity is of the order O(n3), compared to the exponential time of a brute force
approach.7

6Just the use of tables to store partial results was a reason why the method uses the word ‘programming’.
7There are faster solutions which run in O(n log n) time.



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

Image Matching Algorithms 301

Dynamic programming can help solve problems of minimization of the energy functionals
E of many variables, which can be stated as follows [33, 276]:

min
θ

{E (θ)} = min
θ1,θ2,...,θn

{E (θ1, θ2, . . . , θn)} . (6.127)

If the energy functional in the above can be decomposed into a series of terms with indepen-
dent variables

E (θ ) = E (θ1, θ2, . . . , θn) = E1 (θ1, θ2) + E2 (θ2, θ3) + . . . + En−1 (θn−1, θn) . (6.128)

then the dynamic programming formulation leads to a series of functions with one variable:

F1 (θ2) = min
θ1

{E1 (θ1, θ2)} ,

F2 (θ3) = min
θ2

{F1 (θ2) + E2 (θ2, θ3)} ,

...

Fi (θi+1) = min
θi

{Fi−1 (θi ) + Ei (θi , θi+1)} ,

... (6.129)

Thus, solution to (6.127) with assumption (6.128) is

min
θ

{E (θ )} = min
θn

{Fn−1 (θn)} , (6.130)

where Fn–1(θn) is given in (6.129). The formulation (6.130) leads to global minimum of E
if E can be decomposed as in (6.128), i.e. into a series of terms with independent variables.
Otherwise the solution can be suboptimal.

Dynamic programming has been employed in many tasks of computer vision, such as
Markov random fields, curve detection, active contours and also in stereo correlation as will
be shown in the next section [135, 276].

6.10.1 Dynamic Programming Formulation of the Stereo Problem

The stereo problem can be expressed in terms of dynamic programming when formulated as
a problem of finding an optimal path through a set of nodes which represent possible matches
between the scanlines in the left and right images respectively. The global cost of this optimal
path represents a cumulative cost over the partial costs in each scanline. The local costs, in
turn, can be determined for each pixel or for certain features, such as edges.

Dynamic programming formulation of the stereo problem in the two stages of the intra- and
inter-scanline search was proposed by Ohta and Kanade [334]. This is a feature-based method
since only points that belong to the edge intervals are matched. A goal of each intrascan search
is to determine corresponding points alongside the scanlines which are also the epipolar lines
since the canonical stereo setup is assumed (section 3.4.2). This can be treated as finding
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Figure 6.61 3D search space of the stereo methods employing dynamic programming

an optimal path in a 2D search space whose axes are the corresponding scanlines from the
left and right images, respectively. However, taking each pair of scanlines separately does
not provide information on figural continuity of the vertical edges which are expected in the
observed scenes (section 3.5). Thus, to take advantage of this information Ohta and Kanade
propose using the inter-scanline search in a 3D space composed of stacked 2D search planes
already used in the intra-scanline process. The number of 2D planes equals vertical resolution
of the stereo images. Thus, the correspondence problem is translated into finding an optimal
matching surface in the 3D space. The cost of this matching equals the cost of the intra-
scanline matches on the 2D planes, penalized however for those intra-scanline matches which
violate the figural consistency assumption (details in [334]). Figure 6.61 illustrates a 3D search
space composed of a series of 2D search planes.

Dynamic programming is employed in the two search stages which run simultaneously. The
intra-scanline provides information on figural consistency, whereas the intra-scanline supplies
the matching score. The latter is based on a similarity measure for edge intervals. However,
application of dynamic programming requires strict ordering on computation of the partial
results. That is, before computing a new result, all the previous partial results have already
been processed. The second requirement is that computation of the current result does not
depend on the history of previous computations. In terms of edge matching these translate to
the requirement that if we are matching two edges from the left and right image respectively,
all edges to the left of these in the two images must have been already processed. To fulfil this
requirement edges are endowed with indexes in the left-to-right order on each scanline. In
other words, application of dynamic programming requires fulfilment of the uniqueness and
ordering constraints among the matches (section 3.5). A similar ordering constraint has to be
superimposed on the intra-scanline search as well.

A dynamic programming solution to the stereo problem which optimizes a maximum like-
lihood cost function was proposed by Cox [76, 77]. This assumes that corresponding features
in the matched images follow a Gaussian distribution with the mean being their true value.
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Figure 6.62 2D search space profile. (After [77])

If the features are matched then the cost function is represented as a weighted squared error
term. Otherwise, if a feature is suspected to be occluded, the cost function is constant. How-
ever, instead of specific features, pixel intensities are used for matching. Using this method,
one finds a dense disparity map, saving computations on feature extraction at the same time.
Cox showed that if properly used the bare intensities can provide fair matching results.

Figure 6.62 depicts an exemplary match profile in a 2D search space for chosen right and
left scanlines [77]. A point at index iL in the left image is matched to a point at index iR in
the right image. However, these points have to fulfil the uniqueness and ordering constraints.
Thus, it is only allowed that jL > iL can be matched to a point at index jR > iR. The horizontal
part of a profile represents left occlusion because many points in the left image are matched to
the same point in the right image. Similarly the vertical profile denotes occlusion in the right
image.

The cost function is formulated as the maximum likelihood (ML) problem which does not
require knowledge of the prior probability density function, necessary when using the Bayes
scheme [77, 237]. In this approach we are simply interested in direct maximization of the
probability p(z|X) of a likelihood of a measurement z if it originated in a point X in the scene.
To clarify correspondences Cox proposed using N views instead of only two. From a selected
pair of cameras the set of best correspondences is determined. From these the corresponding
3D points are reconstructed which are then back projected on to remaining N − 2 planes. The
projections are used to verify the initial matches. The advantage of this approach is modelling
of the occlusions.

Although dynamic programming helps in finding a global optimum with a polynomial com-
plexity, stereo methods that rely on it are not free from problems, however. The most severe
limitation is imposed by the requirements of the uniqueness and ordering constraints which
are not always fulfilled in real scenes (see Figure 3.22). As a consequence errors can occur
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(a) (b)

(c) (d)

Figure 6.63 Stereo matching with dynamic programming: ‘Tsukuba’ and ‘Venus’. (a, c) Method of
Scharstein and Szeliski [371]; (b, d) method by Wang et al. [443]. (From [209])

which, if propagated along the scanlines, manifest with visible erroneous horizontal ‘streaks’
in disparity maps. This is noticeable in the results of the method by Scharstein and Szeliski in
Figure 6.63(a, c).

Intille and Bobick propose a stereo method with dynamic programming that explicitly mod-
els occlusions and uses them to drive the matching [219]. The search for matches and occlu-
sions is done with the help of a data structure called the disparity-space image. Matches with
high confidence are used as ground control points to eliminate sensitivity to occlusion costs
(details in [219]).

There are many other methods which employ dynamic programming for the stereo problem.
For instance Meerbergen et al. propose a hierarchical stereo method that matches individual
pixels with different cost functions [307]. Because of this approach the method offers low
computational complexity which is independent of disparity range. The cost in each scanline
is computed incrementally, i.e. the results are reused by adding new matches to a sequence.
The optimal sequence is then found with dynamic programming.

Wang et al. [443] developed a stereo method that employs an adaptive aggregation step
in a dynamic programming framework. First, a 3D cost space is built with the simple DSAD

measure computed over single pixel pairs and assumed range of disparities up to dmax. The
energy function for the stereo problem follows a general functional (6.67) with the smoothness
term defined as

Esmooth (θ ) = λ
∑

x

|d (x) − d (x + 1)|, (6.131)
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x
c

d

M(x,d)dmax

Figure 6.64 2D search space used in the method of Wang et al. [443]

where d denotes disparity (in the range 0. . .dmax) and λ is a parameter that penalizes depth dis-
continuities. Then, dynamic programming is employed: the 2D search space M is constructed
which is a c × dmax matrix, where c is the number of columns in the input images (similar to
the method by Intille and Bobick [219] as depicted in Figure 6.64).

M is initialized from the computed DSAD costs among pairs of pixels. Then the matrix is
updated in the scanline direction, according to the formula [443]

M (x, d) = M (x, d) +
min

{
M (x − 1, d − 1) + λ,M (x − 1, d) ,M (x, d + 1) + λ

}
. (6.132)

The process ends when reaching the rightmost column, which corresponds to the last pixel
in the scanline. The best path, which reflects the disparity for this scanline, is found by back
tracking. This process is repeated for all scanlines, i.e. for the number of rows in the input
images. The aggregation is computed as a weighted sum of per-pixel costs taking into account
the colour and geometrical proximity. This feature allows effective processing on occlusion
boundaries. However, the aggregation is done solely in the vertical direction. Because of this,
the ‘streaking’ effect and also computation time are greatly reduced (see Figure 6.63(b, d)).

Dynamic programming on a tree for the stereo correspondence problem is proposed by
Veksler [436]. A modification comes from Deng and Lin who propose a line segment-based
stereo method that uses tree dynamic programming [97]. In their approach each epipolar line
is segmented and then a tree is built with the obtained segments. Dynamic programming
on this tree is used to find out correspondences of each line segment. Using line segments
instead of pixels allows preservation of connections of neighbouring pixels and improves
time performance of the method. For accurate labelling of occlusions Criminisi et al. propose
dynamic programming based on a four state matching graph [79]. Their dense stereo matching
is augmented with a view synthesis based on direct projection of the minimum cost surface.
The method greatly eliminates the artefacts characteristic of many other stereo methods that
rely on dynamic programming.
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6.11 Graph Cut Approach

As already discussed in section 6.5.1.2, the global stereo methods rely on minimization of a
certain energy functional. There are two major steps of this process: development of the en-
ergy functional and application of a proper minimization technique for the problem, as alluded
to in section 6.5.1.2. A very interesting method comprising the above two steps was proposed
by Kolmogorov and Zabih [252, 253]. Their proposition is formulated as a pixel labelling
problem which leads to two energy formulations of the stereo problem with occlusions. The
first is voxel labelling; the second is a pixel labelling algorithm.

Pixel labelling assumes association of a label θ i ∈ L to each pixel p in an image I. The
meaning of a label depends on the problem. Thus, it can indicate an object in object detection
tasks, it can be an index of a bin in thresholding or it can be a disparity value. However, in the
latter case to associate labels in an image more images are used (e.g. two or more views are
necessary to compute disparity, etc.). The pixel labelling task can be formulated in terms of
an energy minimization problem, in the form of a general functional (6.67), as follows:

E (θ ) =
∑
i∈I

Qi (θi ) +
∑

{i, j}∈A

V
(
θi , θ j

)
, (6.133)

where θ = (θ1, θ2,. . ., θ |I|) is a labelling to be found, Qi is a penalty term for assigning a
label to a pixel i from image I, V denotes a penalty term associated with a pair of labels to
adjacent pixels (i.e. of splitting a local neighbourhood by different labels) and A is a set of
adjacent (or, generally, interacting) pairs of pixels [51, 276]. In accordance with (6.67), the
first term in (6.133) corresponds to data costs for the labelling θ , which actually makes θ fulfil
the conditions of a modelled problem with input data. For the matching problem Qi can be any
matching measure discussed in section 6.3. However, due to computational properties usually
SSD is a first choice, as follows:

Qi (θi ) = [Il (pi1, pi2) − Ir (pi1 + θi , pi2)]2 , (6.134)

where pi = (pi1, pi2) is the i-th point in an image and label θ i denotes a disparity.
The second term in (6.133) forces the spatial smoothness. In matching tasks the penalty

term V depends on scene geometry. If V has a strong influence then the solution will tend
to oversmooth, the same effect as a large matching window in local area-based matching
(section 6.6). The smoothness term is sometimes called a Potts model [51, 252, 253]. For the
frontoparallel configurations it is usually proposed to define V as follows:

V
(
θi , θ j

) = λT
[
θi 
= θ j

]
, (6.135)

where λ is a penalty value and T is an indicator function which takes value 1 if its argument
is fulfilled and 0 otherwise.

6.11.1 Graph Cut Algorithm

As alluded to previously, development of an energy functional for a problem is a first step to
the solution of a problem. What is necessary now is an efficient minimization procedure that
solves a minimization problem encoded in the energy functional [127, 331, 352]. Although
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many methods exist, such as the already mentioned neural networks (back propagation, Hop-
field, RBF, etc.), genetic algorithms, simulated annealing, tabu search, dynamic programming
and many more, the graph cut offers many advantages.

However, before trying to solve (6.140) or (6.145) with the graph cut, these constrained
problems need to be converted into unconstrained ones. This can be accomplished by adding
an additional term Evalid into the energy functionals [253].

The graph cut algorithm is inspired by the combinatorial optimization methods for maxi-
mum flow [74]. In all ‘standard’ optimization methods at each step of computing new energy
value in accordance with (6.73) only a label of a single pixel can be changed. Contrary to this,
in the graph cut approach larger moves are proposed. These are:

� the α–β swap;
� the α expansion.

These are explained in Figure 6.65. The initial labelling assumes the existence of three labels
α, β and γ (Figure 6.65(a)). A standard move allows only change of a single pixel at a step.
In Figure 6.65(b) this is a single pixel previously labelled β, exchanged into γ . In α–β swap

β

α

γ

β

α

γ

γ

 (b)(a)

β

α

γ

β

α

γ

 (d) (c)

Figure 6.65 Explanation of possible moves in pixel labelling. (a) Starting labelling with three labels α,
β, γ . (b) A standard move allows change of a single pixel at a step – a single pixel labelled β exchanged
into γ . (c) In α–β swap some areas of α are exchanged with some areas of β and vice versa, with γ not
changed. (d) In α expansion move a large number of pixels labelled β and γ is changed into α
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Choose the initial labelling θ; 

flag = false;

Compute θ0=argminE(θ’) among all θ’ 
within one α−β swap of θ

Return θ 

flag = true;

flag == true ?

FOR EACH PAIR OF LABELS ( )

No

Yes
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Yes

No

(a)

θ = θ0;

α,β

E(θ0)<E(θ) ?

Choose the initial labelling θ; 

flag = false;

Compute θ0=argminE(θ’) among all θ’ 
within one α−β expansion of θ

Return θ 

flag = true;

flag == true ?

FOR EACH LABELS ( )

No

Yes

Start

Yes

No

(a)

θ = θ0;

α,β

E(θ0)<E(θ) ?

Algorithm 6.14 (a) The α–β swap and (b) α expansion algorithms

some areas of α are exchanged with some areas of β and vice versa, with γ not changed
(Figure 6.65(c)). In α expansion move a large number of pixels labelled β and/or γ is changed
into α. The last process is depicted in Figure 6.65(d).

Having defined α–β swaps and α expansions, Boykov et al. [51] propose two minimization
algorithms. These are efficient graph-based methods that find the optimal α–β swap and α

expansion for a given labelling θ . Algorithm 6.14 presents the two approaches. The two al-
gorithms are identical except for the inner loops, which for the α–β swap traverse all pairs of
(α, β) labels, whereas for the α expansion all labels are α.

Both algorithms overcome the NP-hardness of the optimization problem providing ap-
proximate solutions. Nevertheless in practice the method converges very rapidly [51], due
to the large number of pixels changing their labels simultaneously in the α–β swaps or α

expansions.
The algorithms are guaranteed to stop after the first unsuccessful run of the energy mini-

mization loops (see Algorithm 6.14). In the worst case this can be reached after checking all
(α, β) pairs for the α–β swap, or after α labels for the α expansion algorithm, respectively.
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Figure 6.66 Graph representation used to model computer vision tasks. Pixels are connected by
n-links. The terminal vertices are source ‘s’ and sink ‘t’. (a) They denote pixel labels and are connected
with pixels by the t-links. (b) A graph cut splits a graph into two subgraphs, each containing exactly one
terminal

6.11.1.1 Graphs in Computer Vision

A graph G is defined as a pair G = {V , E} where V denotes a set of vertices and E are edges
among them. Additionally it is assumed that there are two specific vertices called terminals.
These terminals are usually denoted as a source and a sink, and denoted by ‘s’ and ‘t’ respec-
tively. With each edge E(Vi, Vj) there is associated a weight wij = W(E(Vi, Vj)). Notice that in
the general case it can hold that wij 
= wji, however.

In the graph representation of computer vision tasks it is common to represent each pixel
as a separate vertex in the graph. The source and sink terminal vertices denote labels that
can be assigned to pixels (a labelling problem). In this case we are usually concerned with
two labels, since a problem with a higher number of labels can be divided into subproblems
with two labels. In this case there are also two types of edges: the ones that connect pixel
vertices and the ones that connect the terminals with pixels. These are called n-links and
t-links, respectively. A cost of an n-link represents a penalty associated with discontinuity
between adjacent pixels, i.e. it is denoted by the second term in (6.133). On the other hand, a
t-link corresponds to cost of a label assigned to that pixel. This is the first term in (6.133).

A cut C in a graph G is a smallest set of edges (C ⊂ E) that when removed from G induce
two subgraphs G1 and G2 such that each contains exactly one terminal node. A cost |C| of a
cut C is a sum of all weights of its edges, i.e. |C| = Åwi for all Ei ∈ C. Figure 6.66(a) depicts
a graph with two terminals. A cut in this graph is presented in Figure 6.66(b).

A minimum cut problem is to find a cheapest cut among all cuts that separate the terminal
nodes.

As shown by Boykov et al. [51], finding a minimal energy E(θ ′) in the two algorithms in
Algorithm 6.14 (first steps in shaded areas), is equivalent to solving the minimum cut problem
on a graph with two terminals. This is a well-known problem in computer science which can
be accomplished in polynomial time with the help of combinatorial algorithms [30, 74]. For
instance, a minimum cut can be computed as a maximum flow between the terminal vertices
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Figure 6.67 Possible swap cuts C on a graph Gαβ for two pixels pi and pj. The pixels are connected
to themselves by the nij link and to the terminals by t-links. Any allowable cut has to leave only one
terminal connected to a pixel. Possible cuts are depicted from (a) to (c)

following the well-known method by Ford and Fulkerson [134]. An improvement to this was
first proposed by Edmonds and Karp [112]. They noticed that choosing the shortest paths in
each step of the flow increase reduces computational complexity to the polynomial, compared
to the original formulation. Further improvement comes from Dinic who proposed to split the
problem into separate stages which actually divide a graph into a layered network [104]. A
suitable algorithm is also provided also in the work by Boykov and Kolmogorov [52].

6.11.1.2 Optimization on Graphs

Figure 6.67 presents possible cuts C for the swap moves on a graph G for the two neighbour
pixels pi and pj, connected by the nij link and by tiα , tiβ , tjα , tjβ to the terminals, respectively.

Any cut in a graph has to sever exactly one t-link since otherwise there will be connection
between terminals whereas it is assumed that any cut separates the terminals. As a conse-
quence each graph cut leaves each pixel with exactly one t-link, which in turn defines a la-
belling θC corresponding to that cut C. In the light of (6.133) the weights associated with the
edges are defined as follows [51]:

tα
i : Qi (α) +

∑
j∈N (i), j /∈Pαβ

V
(
α, θ j

)
,

tβ

i : Qi (β) +
∑

j∈N (i), j /∈Pαβ

V
(
β, θ j

)
,

ni j : V (α, β)|{i, j}∈N ,(i, j)∈Pαβ
,

where Pαβ denotes a union of pixels which are assigned the labels and N(i) denotes a neigh-
bourhood of pixels around a pixel indexed by i.

The key corollary stated in [51] says that the lowest energy labelling within a single α–β

swap move from θ is θC, where C denotes a minimum cut on Gαβ . The α–β swap allows V to
be a semimetric. However, as shown by Boykov et al. [51] it does not guarantee the optimality
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Figure 6.68 Stereo setup observing an object. A voxel v = (pl, pr) is active since it corresponds to a
real 3D point belonging to an observed object which is visible from the two cameras simultaneously

properties compared to the α expansion move. Description of the optimal expansion move as
well as further details of the method can be found in [51, 52, 254].

6.11.2 Stereo as a Voxel Labelling Problem

Now let us return to the stereo problem formulation based on voxels. A voxel v is an unordered
pair of pixels in the two images that correspond to a certain 3D point, i.e. v = (pl, pr) = (pr,
pl) (Figure 6.68).

In the canonical stereo setup it is characteristic of some disparity value Dx(pl, pr) = pr1

− pl1 (3.39), with pr2 = pl2 (3.42), as already discussed in section 3.4.2. In contrast to the
traditional pixel-based formulation the voxel-based representation of stereo tries to explicitly
model the whole 3D space of a scene and the cameras (each voxel belongs to the 3D space).
The energy functional in the voxel formulation takes the following form [252, 253]:

E (g) = Edata (g) + Eocclusion (g) + Esmooth (g) . (6.136)

The first data term is defined as

Edata (g) =
∑
v∈V

g(v)Q(v), (6.137)

where g: V → {0, 1} is a labelling which for a given voxel v = (pl,pr) assigns g(v) = 1 if that
voxel contains pixels which correspond to each other, i.e. they are images of a real 3D point;
g(v) = 0 for all other voxels. A voxel for which g(v) = 1 is called an active voxel, such as the
one in Figure 6.68. Q(v) is analogous to the formulation (6.134). The second term takes into
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account the existence of occlusions:

Eocclusion (g) = Cocc |Pocc (g)| , (6.138)

where Cocc is a penalty value for an occlusion and Pocc(g) denotes a set of occluded pixels in
configuration g. These are such pixels as pl which belong to such voxels v for which: g(v) =
0. Finally, the smoothness term requires that the neighbouring voxels have more or less the
same disparity. This can be formulated as

Esmooth (g) =
∑

{vi ,v j}∈Nv

λT
[
g (vi ) 
= g

(
v j
)]

, (6.139)

where λ and T are defined in (6.135).
Now the stereo problem is computed as the following constrained optimization problem:

g0 = arg min
g∈Cvalid

E (g) , (6.140)

where E(g) is given by (6.136) and Cvalid denotes a set of all valid configurations of voxels,
i.e. the ones that fulfil the uniqueness constraint (section 3.5). In other words, these are such
configurations g for which if there are two voxels v1 and v2 which contain the same first pixels
pl1 = pl2 and different second pixels p21 
= p22, then it holds that g(v1) = 0 or g(v2) = 0 or
both.

6.11.3 Stereo as a Pixel Labelling Problem

In pixel labelling formulation of the stereo problem we directly follow the general functional
(6.67):

E (h) = Edata (h) + Esmooth (h) . (6.141)

Its data term is defined as

Edata (h) =
∑
v∈V

[h (pl ) = h (pr ) = Dx (v)]Q′ (v) , (6.142)

where condition h(pl) = h(pr) = Dx(v) means that a disparity Dx(v) for a voxel v = (pl, pr) is
the same as a label h(pl) and h(pr); Q′(v) is defined as

Q′ (v) = min {0, Q (v) − C} , (6.143)

since for the graph cut method it should be nonpositive; C is a positive constant.
Now, the smoothing term is defined as

Esmooth (h) =
∑

{vi ,v j}∈Nv

λT
[
h (vi ) 
= h

(
v j
)]

, (6.144)

where again λ and T are defined in (6.135), assuming the Potts model.
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As in the previous case, the constrained minimization problem

h0 = arg min
h∈Cvalid

E (h) (6.145)

has to be solved for E(h) given by (6.141).
As pointed out in [253] the pixel labelling approach has some improvements over the voxel-

based approach. The first property of pixel labelling is prohibition of holes in a scene, since
it assumes that a layer with disparity 0 corresponding to the plane at infinity is totally filled.
The second property is that the pixel labelling method allows models other than the Potts one.
Nevertheless, both methods favour the frontoparallel surfaces in the observed scene.

Figure 6.69 presents results of stereo matching obtained by Kolmogorov and Zabih with
their graph cut method for the test images with ground truth [209]. RGB colour images are
used in the input. The Potts model is controlled by one parameter λ which also can depend
on the pair of pixels. Such a strategy has the advantage of discouraging discontinuities be-
tween neighbouring pixels with very similar intensities. In other words, if it holds that I(pl)
≈ I(pr) then most likely the pixels pl and pr will have the same disparity as well (i.e. reversed
situations are quite rare in real situations). This technique of adopting the contextual informa-
tion is known as ‘static cues’ [51]. Thus, instead of independent λ we assume λ(pi, pj) which
depends on a relation of values of the pixels pi and pj. In [253] it was proposed as

λ
(
pi , p j

) =
{

3K for
∣∣I (pi ) − I

(
p j
)∣∣ < 5

K otherwise
,

Figure 6.69 Stereo matching with graph cut method by Kolmogorov and Zabih [209]: (a) ‘Tsukuba’,
(b) ‘Venus’, (c) ‘Teddy’ and (d) ‘Cones’
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for the pixel labelling (K is a parameter of the Potts model), and

λ
(
vi , v j

) =
{

3K for max
{ ∣∣I (pi ) − I

(
p j
)∣∣ , ∣∣I (qi ) − I

(
q j
)∣∣ }

< 8

K otherwise
,

for the voxel labelling, where voxels are given as pairs vi = (pi, qi). vj = (pj, qj) and pi, pj are
pixels in the same image, and qi, qj in the other one.

The qualitative parameters of the graph cuts and other stereo matching methods can be
obtained from [209]. From Figure 6.69 we easily notice the sharp edges of the objects in the
output disparity maps which result from the formulation of the energy functionals.

The maximum flow formulation of the stereo problem was also formulated by Ishikawa and
Geiger [221]. Their proposed method computes a disparity map by solving a global optimiza-
tion task that models occlusions and discontinuities.

6.12 Optical Flow

Optical flow refers to the problem of estimating a vector field of local displacements in a
sequence of images (e.g. in a video stream). In the formulation of the optical flow problem
we assume that a certain point (x1, y1) in an image acquired at instant t1 will be matched by
a point (x2, y2) in an image at instant t2. The local displacement – which is assumed to be
relatively not very distant, at least in terms of the image size – gives an answer on movements
of objects observed in the subsequent images.

Thus, we see that the optical flow is an image matching problem, so we can start once again
from (6.64). Now, assuming a linear local deformation, we can write a version of (6.64) aimed
at solution of the optical flow problem [199]:

I1 (x, y) = I2 (x + �x, y + �y) , (6.146)

where I1 and I2 are two consecutive views from a sequence, acquired at time instants t1 and
t2, respectively. Since a sequence of images is assumed, we can drop the indices of images
adding a time stamp. Then, the above equation takes on the form

I (x(t) + �x, y(t) + �y, t + �t) − I (x(t), y(t), t) = 0. (6.147)

Relative displacements in the x and y directions are done with certain speeds, u and v, respec-
tively. They are defined as

u ≡ �x

�t
and v ≡ �y

�t
. (6.148)

With this notation we obtain

I (x(t) + u�t, y(t) + v�t, t + �t) − I (x(t), y(t), t) = 0. (6.149)

For the optical flow we assume small local displacements compared to image size, so it
is justified to substitute the discrete displacements �x, �y and �t with their infinitesimal
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counterparts dx, dy and dt. With this assumption the previous equation transforms to

I (x(t) + udt, y(t) + vdt, t + dt) − I (x(t), y(t), t) = 0. (6.150)

Now, assuming that I is a differentiable function, the first term in the above equation can be
expanded around a point (x, y, t) using the Taylor8 series. Taking only the first element of this
series we obtain

∂ I

∂x

dx

dt
+ ∂ I

∂y

dy

dt
+ ∂ I

∂t
= 0, (6.151)

or in a more compact form

Ix u + Iyv + It = 0, (6.152)

where Ix, Iy and It are partial derivatives of I with respect to x, y and t, respectively, while u
and v express horizontal and vertical velocities in a sequence and are infinitesimal versions of
(6.148). This equation is also called a brightness constancy constraint [199], since it expresses
the idea of ‘similar’ brightness for the same objects observed in a sequence. When we fix
our attention to a single point and measure velocities u and v flowing through that location
then the problem is called the optical flow. Thus, the velocity vector [u, v]T is called at a
single location in an initial image. Otherwise, when we ‘follow’ with a given location and
trace their position in consecutive images of a sequence, then the problem is called feature
tracking.

As shown by Slesareva et al. [393], the optical flow approach can be embedded into the
framework of stereo matching, so the two domains are also closely related.

Trying to solve a single equation, (6.152), for the two variables u and v denotes an un-
derconstraint problem. Thus, the optical flow cannot be unambiguously determined – this is
called an aperture problem. However, we can try to place a second constraint, such as the
velocity vector is constant within a small neighbourhood �, placed around a certain point (x0,
y0) in the input image – an idea originally proposed by Lucas and Kanade [284]. With this
assumption, the optical flow problem can be approached by the following minimization task:

arg min
u,v

E (u, v) , (6.153)

8Recall that the Taylor expansion for differentiable functions is given as follows:

f (x1 + dx1, x2 + dx2, . . . , xn + dxn) − f (x1, x2, . . . , xn)

= d f + 1

2!
d2 f + . . . + 1

(m − 1)!
dm−1 f + �m

where �m denotes a reminder and df is a total differential of an n-dimensional function f

d f = ∂ f

∂x1
dx1 + ∂ f

∂x2
dx2 + . . . + ∂ f

∂xn
dxn
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where the energy function is given as

E (u, v) =
∫

�(x0,y0)

(
Ix u + Iyv + It

)2
dxdy. (6.154)

A minimum of E(u, v) has to meet the following conditions:

∂ E (u, v)

∂u
= 0 and

∂ E (u, v)

∂v
= 0, (6.155)

which leads to the linear system of equations




∫
�(x0,y0)

[
2I 2

x u + 2Ix Iyv + 2Ix It
]

dxdy = 0∫
�(x0,y0)

[
2I 2

y v + 2Ix Iyu + 2Iy It
]

dxdy = 0
, (6.156)

which can be expressed in a more compact matrix form as




∫
�(x0,y0)

I 2
x dxdy

∫
�(x0,y0)

Ix Iydxdy∫
�(x0,y0)

Ix Iydxdy
∫

�(x0,y0)
I 2

y dxdy


[ u

v

]
= −




∫
�(x0,y0)

Ix It dxdy∫
�(x0,y0)

Iy It dxdy


 . (6.157)

However, let us compare now the above with the equations defining the structural tensor (sec-
tion 4.6.2). Thus, we can express the close form solution to the optical flow problem with a
local constancy constraint, in terms of the structural tensor [58]:

[
Txx Txy

Tyx Tyy

] [
u
v

]
= −

[
Txt

Tyt

]
. (6.158)

Thus, in places where the structural tensor is not singular, local velocities [u, v]T at a point
(x0, y0) can be found to be

u = Tyt Txy − Txt Tyy

Txx Tyy − T 2
xy

and v = Txt Txy − Tyt Txx

Txx Tyy − T 2
xy

. (6.159)
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An even better approach is to endow the energy functional (6.154) with a regularization
term �, as was already presented in the case of energy functions (6.67) designed for stereo
correspondence (section 6.5.1.2). Now (6.154) takes the form

E (u, v) =
∫

�(x0,y0)

[(
Ix u + Iyv + It

)2 + c� (�I, �u, �v)
]

dxdy. (6.160)

The regularization function � proposed by Nagel and Enkelmann [326] imposes smoothness
everywhere except across the edges. The TV based regularization that allows discontinuity
preserving smoothing was proposed by Cohen [71]. The high accuracy optic flow technique
which is based on the theory of warping was proposed by Brox et al. [59].

To facilitate comparison of different optical flow methods, very useful are common test
sequences with ground truth. In this respect a very good collection has been prepared by
Baker et al. [22] from Middlebury University [210].

Figure 6.70(a, b) presents two frames from the ‘Yosemite’ test sequence, originally created
by Lynn Quam (a version with clouds), and available from [203]. The vector fields of the
ground-truth [203] and computed velocities [u, v]T are depicted in Figure 6.70(c) and (d),
respectively. Estimated motion in this sequence starts from about 2 pixels per frame in the
upper right area up to about 5 pixels per frame in the lower left corner.

(a) (b)

(c) (d)

Figure 6.70 (a, b) Two frames from the ‘Yosemite’ test sequence. (c) Ground-truth velocities [u, v]T

vector field, (d) computed vector field. (From [210])
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TFeatureBased_StereoMatcher

TStereoMatcher

TAreaBased_StereoMatcher

+   virtual void operator () ( void ) = 0;

TDisparityOriented_AreaBased_Matcher
TPointOriented_AreaBased_Matcher

TPointOriented_ZeroMeanAreaBased_Matcher

TDisparityMap_CrossCheck_Matcher

Pixel_SAD_Metric

Pixel_SSD_Metric

Pixel_SCP_Metric

Figure 6.71 Basic template class hierarchy of the stereo matching software interface with the base
class TStereoMatcher

6.13 Practical Examples

6.13.1 Stereo Matching Hierarchy in C++
Figure 6.71 presents the template class hierarchy of the image matching interface. The pure
virtual base template class TStereoMatcher accepts two template parameters which are types
of pixels in the input images, as well as a type of output disparity values.

From the TStereoMatcher are derived the following classes.

1. TAreaBased StereoMatcher – this is the base class for all area-based stereo matching
methods.

2. TDisparityMap CrossCheck Matcher – the auxiliary class for disparity map cross-
checking.

3. TFeatureBased StereoMatcher – a branch of feature-based matching methods.

The base class TAreaBased StereoMatcher defines a common framework for image match-
ing. This is achieved by the overloaded function operator which is then defined in derived
classes.

The basic matching measures, such as SAD or SSD, have been designed as auxiliary
classes: Pixel SAD Metric, Pixel SSD Metric and Pixel SCP Metric. The main member is
the virtual functional operator. Other matching measures can be added in the same way. These
classes are used then as template parameters for the matching classes.
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The TAreaBased Matcher template class is a base for the group of point-oriented area-
based matching methods, such as TPointOriented AreaBased Matcher and TDisparityOri-
ented AreaBased Matcher.

Finally, the TFeatureBased StereoMatcher starts a branch of stereo matching methods that
rely on feature matching. These can be the ones discussed in section 6.8, but also new classes
can be easily added.

6.13.2 Log-polar Transformation

The log-polar transformation can be computed with the image warping modules described
in Chapter 12. The bilinear interpolation is usually sufficiently accurate. The only thing to
do is definition of the log-polar warp engines whose role is to convert coordinates from the
Cartesian system into the log-polar space. Examples of the two are listed in Algorithms 6.15
and 6.16.

//
// The log-polar coordinate transformation engine. 
//
class TLogPolar_TransformEngine : public TNonLinearTransformEngine 
{
 protected: 

  double fLogBase; // actually this is not a base but log( base ) 
  Real_2D_Point fCenterPoint;

 public: 

  // =================================================== 
  TLogPolar_TransformEngine( const Real_2D_Point & centerPoint, 

          double 
        logBase = 10.0 ) 
  { 
   REQUIRE( logBase != 0.0 && logBase != 1.0 );   
   fLogBase = log( logBase ); 
  } 

  // class virtual destructor 
  virtual ~TLogPolar_TransformEngine() {} 
  // =================================================== 

  /////////////////////////////////////////////////////////// 
  // This function converts a given point based to its 
  // log-polar representation. 
  /////////////////////////////////////////////////////////// 
  //   
  // INPUT: 
  //   in - the input point 
  //   
  // OUTPUT: 
  //   the output (converted) point 
  //   
  // REMARKS: 
  //   
  //   

Algorithm 6.15 Listing of the warp engine for the log-polar transformation of coordinates. (Repro-
duced with permission of Pandora Int. Inc., London)



P1: OTA/XYZ P2: ABC
c06 JWBK288-Cyganek December 5, 2008 1:42 Printer Name: Yet to Come

320 An Introduction to 3D Computer Vision Techniques and Algorithms

  virtual Real_2D_Point operator () ( const Real_2D_Point & in ) 
  { 
   double dx = in.x - fCenterPoint.x; 
   double dy = in.y - fCenterPoint.y; 

   double r = sqrt( dx * dx + dy * dy ); 
   r = r == 0.0 ? - DBL_MAX : log( r ) / fLogBase; 
   double phi = dx == 0.0 ? kPiHalf : atan( dy / dx ); 

   return Real_2D_Point( r, phi ); 
  } 

};

Algorithm 6.15 (Continued)

//
// The inverse log-polar coordinate transformation engine. 
//
class TInvLogPolar_TransformEngine : public TLogPolar_TransformEngine 
{
 public: 

  // =================================================== 
  TInvLogPolar_TransformEngine( const Real_2D_Point & centerPoint, 

        double logBase = 10.0 ) 
  { 
   REQUIRE( logBase != 0.0 && logBase != 1.0 ); //wrong input 

  // we need to copy it again since the base constructor 
   // have already changed it 
   fLogBase = logBase;   
  } 

  // class virtual destructor 
  virtual ~TInvLogPolar_TransformEngine() {}     
  // =================================================== 

  /////////////////////////////////////////////////////////// 
  // This function converts a given point based to its 
  // inverse log-polar representation. 
  /////////////////////////////////////////////////////////// 
  //   
  // INPUT: 
  //   in - the input point 
  //   
  // OUTPUT: 
  //   the output (converted) point 
  //   
  // REMARKS: 
  //   
  //   
  virtual Real_2D_Point operator () ( const Real_2D_Point & in ) 
  { 
   // The input "x" is "r", whereas "y" is "theta": 
   double _power = pow( fLogBase, in.x ); 
   return Real_2D_Point(  _power * cos( in.y ) + fCenterPoint.x, 
           _power 
            * sin( in.y ) + fCenterPoint.y ); 
  } 

};

Algorithm 6.16 Listing of the warp engine for the inverse log-polar transformation of coordinates.
(Reproduced with permission of Pandora Int. Inc., London)
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Algorithm 6.15 presents a definition of the simple TLogPolar TransformEngine class, de-
rived from the TNonLinearTransformEngine framework (see Figure 12.5). Its main method is
overloaded function operator whose role is to convert the input Cartesian coordinate into its
log-polar representation. There are two parameters, the base of the logarithm and the central
point. These are discussed in section 6.3.8.

Algorithm 6.16 lists the definition of the inverse log-polar transformation class TInvLog-
Polar TransformEngine. This is derived from the TLogPolar TransformEngine, presented in
Algorithm 6.15. It operates in accordance with (6.52). Since the backward warping scheme is
usually preferred, this class fits into the inverse transformation scheme required by this type
of warping.

The two classes can be made more optimal since if operating in an image patch the same
values are computed many times, they can be stored and reused to save on computations. For
instance, the value of Br can be processed this way. This nicely fits into the TGenericTrans-
formEngine, presented in Figure 12.5, which builds a transformation look-up table. This data
structure allows much faster processing than on-line computation of each value. However, it
is at the cost of memory consumption.

6.14 Closure

In this chapter the basic matching methods and techniques are discussed. These attract much
attention from the vision research community since they constitute the basic mechanisms of
depth perception, motion analysis and object detection in digital images. Therefore we try to
give an overview of the classic methods in this field, with special stress on the ones which find
direct practical applications.

We start with an outline of the most common groups of comparison measures, for image
regions, for bit streams, statistical, as well based on theory of information. Most of them find
applications in all computer tasks which necessitate comparisons of different types of data.
One such task is stereovision in which comparison measures are used in the search for point
correspondences. The computational aspects of stereo processing are discussed next. Among
many, these are problems of occlusions and subpixel depth estimation.

The rest of this chapter is devoted to provide basic information on the diversity of stereo
matching methods. We start with overall classification of the methods and describe the main
processing steps. Then the major groups of stereo methods are discussed, such as area-based
matching, area-based elastic matching and the feature-based and gradient-based methods. The
chapter ends with an introduction to the dynamic programming, graph cut and optical flow
methods.

Some C++ implementations of the basic methods are also discussed; their full implemen-
tations are available from the accompanying web page.

6.14.1 Further Reading

Additional information on matching measures can be found in many texts on image processing
and computer vision, such as the books by Gonzalez and Woods [157] or Pratt [351]. One of
the best textbooks on the theory of information is that by Cover and Thomas [75].
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There is a relatively large number of publications on stereo matching, though scattered in
many different scientific publications. An excellent source of up-to-date information on stereo
matching methods is the paper by Scharstein and Szeliski [370], as well as the web page of
Middlebury University devoted to comparison of stereo methods [209]. It is also an ample
source of further references and synthetic test data, which are also used in this book. A good
overview can also be found in the paper by Brown et al. [57]. Other sources of information on
some stereo matching techniques can be accessed in the books by Faugeras and Luong [119],
Hartley and Zissermann [180], as well as in Faugeras [122], Scharstein [369] and Klette et al.
[246].

A good overview of visual labelling, as well as local and global optimization methods
in the context of computer vision is provided in the book by Li [276]. Another source of
information on this subject is the already mentioned paper by Boykov et al. [51], which also
provides ample references to other works in this area. For linear programming and network
flows, very recommended is the book by Bazaraa et al. [30].

6.14.2 Problems and Exercises

1. Using the simple matching model for two images, design and implement an algorithm for
matching histograms computed in local regions of two images. As a histogram matching
measure assume the Kullback–Leibler measure DK given in (6.43). What can we tell about
this method? What matching measures other than DK can be used?

2. Prove Equation (6.10).
3. Starting from the code for area-based matching (see Algorithm 6.6), implement the Shirai

method (section 6.8.3).



P1: OTA/XYZ P2: ABC
c07 JWBK288-Cyganek December 5, 2008 1:44 Printer Name: Yet to Come

7
Space Reconstruction and
Multiview Integration

7.1 Abstract

Space reconstruction relates to the techniques of recovering information about the structure of
a 3D space based on direct measurements or depth computation from stereo matching. This
gives positions and dimensions of the sensed object surfaces and this information can, for
instance, be used for robot navigation or to guide surgery procedures.

In this chapter we deal with the basics of space reconstruction and multiview integration.
Depending on the available parameters of the acquisition system(s) different parameters of
the space can be determined. A basic triangulation gives rise to the so-called 2.5D depth
reconstruction. However, if full 3D surface manifold information is required, multiple view
integration techniques come into play in order to achieve volumetric integration of recovered
2.5D surfaces. Hence, in this chapter we also discuss 3D surface construction methods based
on implicit surfaces and marching cubes, as well as direct mesh integration.

7.2 General 3D Reconstruction

The essence of multiple view processing is to acquire some information about the 3D structure
of the observed scene. However, it need not always be in the form of absolute Euclidean
coordinates of visible objects in a predefined coordinate system attached to that scene. For
many applications either it is not necessary or it is not even possible to get such coordinates,
for example due to missing camera calibration data [122, 164, 188, 369]. It is an interesting
observation to recall here that the human visual system does not perform tedious camera
calibrations and numerical 3D reconstruction, and yet we are able to move and orient quite
easily, e.g. driving a car [302, 442]. Thus, the soft computing methods that mimic biological
behaviour in many aspects can come into play.

The accuracy of 3D reconstruction depends on availability and accuracy of data of the
camera setup. A detailed analysis of the 3D reconstruction with respect to the accuracy of
the camera calibration parameters was presented by Grimson [164]. He showed that the
reconstruction process based on available disparities extracted from stereo-pair images has

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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Table 7.1 Breakdown of 3D data reconstruction in respect of the available calibration parameters

Available calibration data Possible 3D space reconstruction

I The extrinsic and intrinsic parameters
of the camera setup

The 3D Euclidean coordinates. (Precise
reconstruction, called also triangulation)

II Only the intrinsic parameters available Reconstruction up to a certain scaling factor

III Extrinsic and intrinsic data not available Reconstruction up to a certain projective
transformation

a critical and nonlinear dependency on the accuracy of the camera calibration parameters.
Especially important is the precise computation of the camera central points (section 3.3.2,
Figure 3.60), as well as the deviation angle of the camera optical axes.

An important role in the task of object recognition is played by so-called image invariants,
especially those that do not require a precise 3D reconstruction. Pattern matching with the help
of image invariants can be made much simpler because they convey important information on
encountered image objects regardless of their scale, position, luminance, etc. One of the most
common invariants is the cross ratio (section 9.7) [63, 180, 322, 380].

As alluded to previously, depending on availability and accuracy of calibration data asso-
ciated with the camera setup used, there are different possible degrees of 3D reconstruction.
Generally three characteristic cases can be distinguished here [2, 122, 428, 430, 459].

1. Full reconstruction of the Euclidean 3D space.
2. Reconstruction up to a certain scaling factor.
3. Reconstruction up to a certain projective transformation.

Table 7.1 compares the three characteristic reconstruction possibilities given the available
calibration data. We shall present foundations of each in the next sections.

7.2.1 Triangulation

Triangulation is a process of finding coordinates of a 3D point (Figure 3.7) based on its cor-
responding image points pr and pl, lying on the camera planes, as well as knowledge of cal-
ibration data (section 3.4). In this sense it seems to be a straightforward technique since it is
assumed that the calibration was already done and thus the calibration parameters are assumed
to be known beforehand (section 3.6). In practice, however, due to discrete space and limited
accuracy of found positions of the points pr and pl, the two rays from these points through
camera centres Ol and Or do not intersect in a single point [171]. To overcome this problem
we can try to find an approximating crossing point PE, such that it lies a minimal distance
from the two rays simultaneously [2, 180, 430]. This situation is illustrated in Figure 7.1.

Our task is to determine a position of the approximating 3D point PE. This can be found
from the linear equations (7.1). Then a middle distance, on the segment parallel to the vector
J, and connecting the two rays crossing through the points pl and pr, has to be found. This is
given by the following equation [430]:

apl + cJ = T + bRTpr, (7.1)

where coordinates a, b, c ∈ �; apl is an equation of the ray crossing through the central point
Ol (for a = 0), as well as pl (for a = 1); and T + bRTpr is an equation of the ray crossing
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Figure 7.1 Triangulation with an approximated ray crossing point

through the central point Or (for b = 0) and pr (for b = 1), in respect of the coordinate system
of the left camera. J has to be a vector parallel to the two rays. Thus, it has to fulfil the
following

J = pl × RTpr, (7.2)

where R denotes the rotation matrix of the stereo setup (Equation (3.111)). Combining the
two equations we obtain

apl + c
(
pl × RTpr

) = T + bRTpr. (7.3)

The precise triangulation algorithm working with the presented scheme was given by Ahuja
[2] and by Trucco and Verri [430]. The input parameters are the corresponding pairs of points
(pli, pri), as well as the matrices R and T. Further, the method consists of solving (7.3) for the
end points of the segment S joining the two rays and parallel to J. The ends of the segment
are apli and T + bRTpri, respectively. Point PE is simply the midpoint of the segment S.

Notice that in the canonical stereo system (section 3.4.2) the procedure simplifies since
R = I, and T has only one nonzero value.

Rothwell et al. provided an analysis of the ray convergence entirely in the projective space
[363], which without any additional assumptions does not belong to the group of metric
spaces. In consequence it is not easy there to state any minimization task, such as the problem
just discussed of finding the smallest distance between two rays.

7.2.2 Reconstruction up to a Scale

In the case when only the intrinsic camera parameters are known then reconstruction is possi-
ble only up to a certain scaling factor. This also complies with intuition, since if the external
calibration parameters are not known then the position of cameras with respect to an external
‘world’ coordinate system is also not known – and thus can have arbitrary values. It is now
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evident that the reconstructed coordinates of 3D points cannot be unique since the positions
of cameras are not given.

Many reconstruction algorithms are proposed in the literature. In this respect we incorpo-
rate the approach given by Trucco and Verri [430]. The first step of their method consists of
building a normalized version of the essential matrix E (section 3.4.5), in the following form:

ETE = (RA)T (RA) = ATA. (7.4)

Taking into account A from Equation (3.18) with normalized translation vector T (3.4):

T̂ = T/‖T‖ = [
T̂1, T̂2, T̂3

]T
, (7.5)

after some multiplications we obtain

ÊTÊ =

1 − T̂ 2

1 −T̂1T̂2 −T̂1T̂3

−T̂1T̂2 1 − T̂ 2
2 −T̂2T̂3

−T̂1T̂3 −T̂2T̂3 1 − T̂ 2
3


 , (7.6)

that is Ê is a normalized version of the essential matrix E (3.22). Assuming now that we
know a sufficient number of point correspondences, as well as the intrinsic parameters, then
the essential matrix can also be determined. Then, parameters of the translation vector are
obtained from (7.6).

Coefficients of the matrix R can be obtained from (3.22) and (7.4):

Ri = wi + w j × wk, (7.7)

where

wi = Êi × T̂. (7.8)

From the above and based on Equation (3.2) we can determine the parameter Zl denoting
the depth of the point Pl [430]:

Z l = fl
( frR1 − xrR3)T T̂

( frR1 − xrR3)T pl
, (7.9)

where Zl is a third coordinate (denoting depth) of the point Pl, f l and f r are focus lengths of
left and right cameras, respectively, R1 and R3 are first and third rows of the matrix R, xr is
the first coordinate of the point pr and T̂ is a normalized translation vector.

One of the consequences of such an approach is ambiguity associated with the sign of
coordinates of the vector T̂, determined from (7.4), since these coordinates are in second-
degree polynomials. However, there is only one solution that gives positive values of Zl for
all matched points.

The unknown scaling factor can be determined quite simply, e.g. finding the image of an
object of known 3D dimensions [286].
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7.2.3 Reconstruction up to a Projective Transformation

When intrinsic and extrinsic parameters are not known then it is still possible to perform a
certain kind of reconstruction; however, only up to a projective transformation that usually is
not known [99, 358, 362, 430]. Only if this projective transformation is given explicitly is the
full reconstruction possible.

It was already shown that having at least eight pairs of matched points it is possible to
determine the fundamental matrix F as well as position of the epipoles, which are null spaces
of the transformation associated with this fundamental matrix. Then due to the properties of
the projective spaces it is possible to perform transformation of five points P1, . . . , P5 of the
3D space on to the standard 3D projective space ℘3, in such a way that none of their triples
is collinear and none of their quadruples is coplanar. Based on this feature it is possible to
determine projective matrices of cameras. In consequence, knowing the camera projective
matrices allows the determination of the 3D point positions based on their images and by
means of triangulation.

As alluded to previously, the five points are transformed on to the standard 3D projective
space ℘3 because of a projective transformation V (section 9.6.1):

P1 =




1
0
0
0


 , P2 =




0
1
0
0


 , P3 =




0
0
1
0


 , P4 =




0
0
0
1


 , P5 =




1
1
1
1


 . (7.10)

Now using Equation (3.7) for the left camera we obtain

MlPk = akplk, (7.11)

where Ml is the sought matrix of the projective transformation in respect of the coordinates
of the left camera, defined up to a certain multiplicative coefficient ak �= 0, Plk is one of the
points defined in (7.10), and plk is its image on the left camera plane.

To simplify further considerations, also the image points plk are transformed by means of
a certain projective transformation U, this time, however, on to the standard 2D projective
space ℘2:

pl1 =

1

0
0


 , pl2 =


0

1
0


 , pl3 =


0

0
1


 , pl4 =


1

1
1


 . (7.12)

This way we define the transformation U that is then used to transform all other image points.
Applying P1, . . . , P4 and pl1, . . . , pl4 into (7.11) we obtain an expression for the matrix Ml:

Ml =

a1 0 0 a4

0 a2 0 a4

0 0 a3 a4


 . (7.13)

Taking now a certain point pl5, expressed in standard coordinates of the ℘2 base, based on
(7.10) and removing a1, a2, a3 from the set of equations (7.11), the formula (7.13) can be put
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in the following form:

Ml =

apl51 − 1 0 0 1

0 apl52 − 1 0 1
0 0 apl53 − 1 1


 , where a = a5

a4
. (7.14)

The central point Ol constitutes a centre of the projective transformation, described by the
matrix Ml. Thus

MlOl = 0. (7.15)

The matrix Ml has rank three and therefore there exists a nontrivial solution of (7.15) in the
form

Ol =
[

1

1 − apl51

1

1 − apl52

1

1 − apl53
1
]T

. (7.16)

Similar considerations for the right camera lead to the analogous relation, as follows:

Or =
[

1

1 − bpr51

1

1 − bpr52

1

1 − bpr53
1
]T

. (7.17)

To determine parameters a, b in (7.16) and (7.17), we use the relation that the central point
Or of the right camera is transformed by the camera matrix into the left epipole el. Analogous
conditions hold for the left camera (Figure 3.7), and therefore

MlOr = slel, MrOl = srer, (7.18)

where sl and sr are certain multiplicative constants, pertaining to the characteristics of the
projective transformations (section 9.6).

Taking (7.16)–(7.18) it is possible to determine parameters a and b in the following form
[430]:

a = eT
r (pl5 × pr5)

vT
r (pl5 × pr5)

, vr = [
pl51er1 pl52er2 pl53er3

]
(7.19)

b = eT
l (pl5 × pr5)

vT
l (pl5 × pr5)

, vl = [
pr51el1 pr52el2 pr53el3

]
Thus to find the matrix Ml (and also Mr) it is necessary to know projective coordinates of

the points pl5 and pr5, as well as the epipoles el and er. However, it is important to remember
the assumptions that have been put forward.

1. The transformation V that transforms the points P1, . . . , P5 on to the standard projective
base ℘3; however, these points have been already transformed from the 3D Euclidean into
the projective space. Thus, only if their exact coordinates in the 3D Euclidean space are
known beforehand can the transformation V be unambiguously determined.
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2. The transformation U (in fact, there are two transformations, Ul and Ur, for the left and
right camera, respectively), that transforms from the projective spaces associated with the
camera planes on to the standard projective basis ℘2. This transformation can be deter-
mined relatively more simply than V since in this case only local point positions in the
camera planes are necessary.

Applying (7.14) and (7.19), after determination of the matrices Ml and Mr it is possible to
perform a reconstruction of any point from the ℘3 space based solely on its corresponding pair
of matched points in the left and right camera planes. However, further reconstruction to the
Euclidean space is possible only after determination of the transformation V . Ray equations
through the points Ol and pl as well as Or and pr are given by the equations of the projective
space [196, 314, 380]:

rl = glOl + hlpl

rr = grOr + hrpr
, (7.20)

where coordinates gl, hl, gr, hr ∈ �, while rl and rr are left and right rays, respectively.
To find conditions on rl = rr, the following set of equations has to be solved in respect of

unknown parameters a, b, c and d:




Ol1 pl1 −Or1 −pr1

Ol2 pl2 −Or2 −pr2

Ol3 pl3 −Or3 −pr3

1 0 −1 0







gl

hl

gr

hr


 = 0. (7.21)

This can be accomplished by the SVD decomposition (section 4.8.3) by taking a column of
the matrix D corresponding to the lowest singular value from the matrix V .

7.3 Multiview Integration

The techniques described in this book for recovering depth from matched stereo-pairs of im-
ages result in a set of points, the range map, being acquired that can be triangulated to describe
a single 2.5D manifold in 3-space. In many practical applications of 3D imaging, there is a
requirement to generate a complete and closed 3D surface manifold by fusing together, i.e.
integrating, multiple 2.5D range maps corresponding to multiple views captured of a single
object. In this case sufficient views of the object must be captured to ensure that a closed 3D
mesh can be formed.

Curless and Levoy [82] stipulate that, ideally, the above process should make use of all the
range data collected, take into account the quality or certainty of each local range measure-
ment, generate the same 3D mesh irrespective of the order in which range maps are processed
and allow incremental addition of range maps. In addition, the integration process should also
undertake steps to ameliorate defects in the captured data, for example by detecting and re-
moving range map outliers or filling holes in the constructed 3D mesh (to thereby construct
a watertight mesh). Finally, the process should not be restricted to objects of any specific
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topological configuration and should also be computationally efficient, as tens or even hun-
dreds of range maps might have to be integrated in real applications.

A very large body of work on range surface integration has been reported in the literature;
however, two techniques are most commonly adopted, volumetric integration and direct mesh
integration, as described in the following sections.

7.3.1 Implicit Surfaces and Marching Cubes

The basic idea behind volumetric integration, as described by Curless and Levoy [82], involves
decimating the 3D space in which the captured range surfaces lie by means of a voxel data
structure. Representation and integration of multiple range surfaces within individual voxel
elements rely on the concept of a signed distance function D(x) that records the distance in
space from an imaged surface to the centre of each voxel. This distance is recorded from each
voxel centre to the range surface, following the path of the sightline from the imaging sensor,
for positive distances. Negative distances occur where the sensor sightline penetrates the range
surface prior to reaching a specific voxel. Figure 7.2 illustrates this geometric configuration.

Accordingly, the zero-surface, i.e. when D(x) = 0, represents each range surface and
D(x) is therefore termed an implicit function. For each range surface to be integrated the
corresponding signed distance functions, di(x), are constructed and accumulated in voxel
space to provide a new zero-surface that in effect averages their relative displacements. This

Signed Distance +d

Range Surface

Sight Line

Voxel
Cube

Sensor

Figure 7.2 Signed distance range surface encoding of voxel space. Figure based on [82]
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accumulated zero-surface can then be extracted and triangulated using a technique such as
marching cubes [280], described briefly in section 7.3.1.4.

A further complication is that the quality of the physical sensing mechanism is also taken
into account when forming the implicit function for each range surface. When viewing a
surface from the reference camera (say) of a stereo-pair, assuming frontoparallel geometry
for simplicity, then the optimum surface reconstruction will take place when the observed
surface normal is collinear to this camera’s sightline. A cosine angle weighting function wi(x)
can therefore be formed by taking the dot product of the (dominant) camera sightline unit
vector and the observed surface normal. This function is used to weight each implicit function
sampled. It is then possible to sum the sampled implicit functions within each voxel (x) from
each range i map by taking the first-order moments as follows:

D(x) =
∑

wi (x)di (x)∑
wi (x)

. (7.22)

Furthermore, the above sum can be formed incrementally as follows to give the signed dis-
tance function Di(x) and weight function Wi(x) accumulated for the i-th range map:

Di+1(x) = Wi (x)Di (x) + wi+1(x)di+1(x)

Wi (x) + wi+1(x)
,

(7.23)
Wi+1(x) = Wi (x) + wi+1(x).

The distance x in voxel space over which signed distances are formed in front of and behind
the range map has to be restricted to avoid the surfaces of self-occluding manifolds from inter-
fering with each other. This places a limit on the minimum thickness of closed manifold that
can be constructed by this method. In the implementation of Curless and Levoy the implicit
function is formed for half the maximum uncertainty interval in the range measurements in
front of (and behind) the range map surface.

7.3.1.1 Range Map Pre-segmentation

Due to the characteristics of range maps captured by stereo-photogrammetry a number of
preprocessing steps are usually required to assist segmenting a cleanly closed volume from
multiple captured range maps of an object. Another reason for segmenting out only surfaces
of interest is due to the n3 memory cost of constructing a voxel space, where n is the sample
size of each dimension of the imaged volume, it is vital to reduce the imaged volume size to
encompass only valid data.

It is not uncommon to adopt ‘blue screen’ colour segmentation to isolate the object surface
of interest in the intensity images of the stereo-pairs and then use these as segmentation
masks to isolate the corresponding relevant area in the range maps for integration. Clearly this
imposes the limitation of capturing the desired object in front of an appropriately coloured
backdrop, typically blue, green or orange, that does not correspond to the colour of the
surface to be reconstructed. As this segmentation process may result in fragmentation of the
range map, usually a number of morphological operations are applied to smooth the resultant
binary segmentation mask, select the largest contiguous blob (assumed to correspond to the
surface of interest) and then fill any holes remaining in this blob.
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When colour segmentation is not possible or inappropriate (monochrome stereo-pairs might
only be available or it might not be possible to constrain the capture conditions) then it is
possible to threshold the confidence map produced by the stereo matching algorithm in order
to identify contiguous regions comprising viably matched surfaces.

7.3.1.2 Volumetric Integration Algorithm Overview

The principal basic algorithmic steps set out by Curless and Levoy [82] are as follows.

1. Initialize the voxel space with zeros.
2. Construct triangles on the nearest neighbour elements of the range maps such that triangles

are not formed over steep discontinuities by detecting triangles whose side lengths, when
taken as ratios of each other, exceed a threshold limit. In this manner the surface normal
for each triangle can be extracted and its dot product formed with the (dominant) camera
line of sight to produce a weight value for each observed element of each range surface.

3. The signed distance for each voxel for each range map is computed by casting a ray from
the principal point in the dominant camera through each element in the range map, and the
distance noted to each voxel within a distance of ±Dmax voxels as determined by the range
measurement uncertainty.

4. Each voxel element is updated by accumulating the weighted signed distances using
Equation (7.24).

5. Isolate a new isosurface for D(x) = 0.

7.3.1.3 Hole Filling

While the above algorithm will generate a good approximation to an isosurface, unseen areas
can result in holes when attempting to triangulate the isosurface. Since there are often situa-
tions where the presence of holes in a surface is unacceptable, e.g. when measuring volume
change due to surface displacement, a common clinical requirement when assessing the out-
come of certain therapies or surgery procedures on the body or face, a means of filling holes
is required to produce a watertight surface reconstruction.

The standard approach is to label the voxels according to one of the following states:
unseen, empty or surface (within ±Dmax of the accumulated surface). Figure 7.3 illustrates
this approach, and it can be seen that surface holes arise at the boundary of empty and unseen
voxels. Therefore, placing surfaces at these boundaries provides a simple means of generating
a watertight surface based on the minimum of assumptions.

The previously described algorithm is now modified as follows.

1. Assign all voxels to an initial unseen state.
2. Compute the weighted signed distance accumulation on those voxels within ±Dmax of the

accumulated surfaces as before, labelling these voxels as surface.
3. Reset all the voxels between those labelled as surface, following the dominant camera

viewing direction, back to the boundary of the voxel space closest to this camera with the
state empty.

4. Once more extract the isosurface for D(x) = 0 and also extract a surface at the interface
between those regions labelled unseen and those regions labelled empty.
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Signed 
Distance ±d
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Isosurface

Hole Fill 
Isosurface

Unseen

Empty

Sensor

Figure 7.3 Geometric configuration for hole filling. Figure based on [82]

Where hole filling is applied then surface discontinuities are likely to arise, thereby gen-
erating artefacts. This obvious effect of such hole filling can be reduced by applying local
filtering (averaging nearest neighbouring vertices) only to the hole regions themselves. In this
way it is possible to avoid blurring the remainder of the mesh while suppressing artefacts. The
support region of the filter weights is allowed to taper between the hole-filled region and the
observed data in order to smooth their transition [82].

7.3.1.4 Marching Cubes

The final step of the above volumetric integration method requires that the isosurface for
D(x) = 0 is constructed from the voxels containing the accumulated signed distance functions.
An algorithm called marching cubes, first reported by Lorensen and Cline [280], provides a
standard method for constructing a watertight polygon mesh from a volumetrically sampled
space. Marching cubes was originally developed to allow isodensity surfaces to be extracted
from CT (Computed Tomography) or MRI (Magnetic Resonance Imaging) voxel data; in the
case described here we are concerned only with extracting the zero isosurface.

Marching cubes comprises two principal steps: the intersection of the surface is detected
within a local cube generated by eight voxel samples; thereafter the surface within the cube is
represented by triangles and their vertex locations computed. Following these steps, we march
to the next cube and repeat the process until the entire voxel space has been triangulated.

The essential beauty and simplicity of the algorithm stems for the observation that there are
a finite number of possible intersections of a surface with a cube (as depicted in Figure 7.4).
Therefore, if we can determine which particular type of local surface intersection is taking
place, we can triangulate the cube accordingly, the particular form of local mesh being known
in advance as shown in Figure 7.4.

In order to determine the local intersection configuration, we must first determine how
each vertex of the cube is positioned with respect to the surface we are attempting to extract.
Each vertex can be in one of two states, inside the surface (including being on the surface) or
outside the surface. We assign either a one or a zero to each vertex depending on whether it is
in the inside or outside state respectively. Clearly, in order for the surface to intersect with a



P1: OTA/XYZ P2: ABC
c07 JWBK288-Cyganek December 5, 2008 1:44 Printer Name: Yet to Come

334 An Introduction to 3D Computer Vision Techniques and Algorithms

0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

Figure 7.4 The 15 unique possible intersections of a triangulated surface and a voxel cube. (Repro-
duced from [69])

cube, the cube must straddle the surface and therefore the inside–outside state of at least one
vertex must be different from the remainder of those neighbours in the cube being tested. By
considering the inside–outside states of the vertices of the cube, we can determine, i.e. index,
which local form of intersection is taking place. As Lorensen and Cline point out, each cube
has eight vertices and each vertex can be in one of two states, therefore there can only be 28

(256) possible intersections. When symmetries are taken into account, only 15 unique states
(including the empty state) remain.
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Figure 7.5 Cube numbering. (Reproduced from [280] (copyright ACM, Association for Computing
Machinery))

Having determined the local surface intersection, we must now determine exactly where
each vertex of the local triangulation intersects on the appropriate edges of our cube.
Cube edge numbering is defined in Figure 7.5 and given a particular intersection vector we
can estimate the (zero) position of each triangle vertex by simple first-order interpolation. For
example, given that two adjacent cube vertices, located at positions i and j, sample signed
distance values of vi and vj respectively, then the location of an interpolated edge eij offset
from j will be

ei j =
(
1 + v j

)
j − v j i

vi − v j
. (7.24)

Figures 7.6–7.9 show the results of an algorithm originally developed by the Turing
Institute, Glasgow, UK, based on the above techniques and implemented within the C3D
stereo-photogrammetry package [389]. In Figure 7.6 two views of a human head have like-
wise been integrated.

In a museum artefact scanner application, two stereo-pairs of cameras have been configured
to view objects set on a turntable. One stereo-pair views the object side-on, while the second
views the object from a raised perspective looking obliquely down. Figure 7.7 shows the
dominant camera view of each of the stereo-pairs of images have been captured, in this case
a total of eight stereo-pairs. This set of stereo-pair views has been matched to produce eight
depth maps which were then integrated to form a complete 3D model, by means of a version
of the volumetric integration techniques described in conjunction with marching cubes, in
Figure 7.8.

The integration process itself can be somewhat unpredictable as to surface selection during
merging as can be observed in Figure 7.9, showing the merged contributions from different
views; notice the ‘islands’ of range surface that can appear and the jagged intersection bound-
ary of the merged surfaces.
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Figure 7.6 Integration of two range surfaces based on marching cubes. (Copyright University of
Glasgow)

Figure 7.7 Eight dominant camera views of a skull (Plate 8)
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Figure 7.8 Five views (four of these have been texture-pasted) of a single complete 3D skull model
computed by marching cubes integration of eight range surfaces (Plate 9)

It should be mentioned that the volumetric integration approach based upon marching cubes
has a number of serious limitations beyond those mentioned at the start of section 7.3.1.
The dimensions of the voxel set the effective sampling density of the final model, therefore
an overly coarse voxel tessellation will produce aliasing artefacts in the form of stepping
contours on the reconstructed model surface. At the same time, fine surface detail captured in
the original range images and evident prior to integration may be lost. Typically corners and
thin surfaces can be destroyed. However, the severe memory requirements set by sampling the
range data using a voxel space usually dictates that the voxel size is considerably larger than
the underlying range sampling interval and consequent artefacts and loss of detail become
inevitable.

Figure 7.9 Two views of the integrated skull model showing the colour-coded contributions from
different range maps (Plate 10)
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7.3.1.5 Implementation Considerations

Due to the potentially very large quantities of data and large volume of space that must be
voxelized with potentially high precision, many mechanisms have been proposed to make
the computational cost of this approach more tractable. It is possible to improve greatly the
speed of updating the voxel space with a new range map by resampling this map such that
its scanlines align with the voxel grid when traversed [82]. The enormous memory cost of
voxelization can be mitigated by means of run-length encoding this data structure [82]. An
oct-tree decimation of voxel space can also be employed to reduce memory requirements.
This approach is particularly efficient as the signed distance voxels representing the input
manifolds usually occupy a comparatively small fraction of the total voxel space.

A large number of citations in the literature report extensions and improvements to the ba-
sic algorithm described above, some of the more significant publications including resolving
topological ambiguities inherent in the original marching cubes formulation [69, 193] and
also adaptive generation of surface meshes [324].

7.3.2 Direct Mesh Integration

As an alternative to volumetric approaches to range surface integration, direct mesh integra-
tion offers the possibility of retaining more of the original detail contained in the range maps at
greatly reduced memory requirements. The principal difficulty encountered when attempting
to merge range maps directly is the very large number of potential intersection cases between
the triangles representing the merge boundary between surfaces.

A recently proposed direct mesh integration approach [232, 233] circumvents mesh inter-
section issues by ensuring that the meshes to be integrated do not overlap. Each range map is
assumed, as before, to be referenced to a common coordinate system, established though prior
multiview camera calibration. As before, it is also assumed that it is possible to segment the
target surface from the dominant images of the matched stereo-pair from each view (the left
image in this case). In addition, this approach relies on the availability of the match confidence
maps associated with each range map. The basic idea of the approach is to label each pixel of
each range map as being in one of four states, visible, occluded, overlapping or unprocessed,
as defined in Table 7.2. Figure 7.10 illustrates the geometric relationships in a two range map
example.

Since the range maps A and B are in the same coordinate system, we can determine those
range pixels that are common to both maps and their classification state as in Table 7.2.

Having labelled each range map, each map is then grouped into patches comprising pix-
els of the same label. Furthermore, to resolve the ambiguity inherent in assigning visi-
ble or occluded labels, a confidence competition is run on entire groupings based on the
masked confidence images associated with each range image. Those groupings that lose the

Table 7.2 Criteria for labelling each range map as being in one of the
four states listed

visible if rB(m,n) > OBPA + ε

occluded if rB(m,n) < OBPA − ε

overlapping if | rB(m,n)−OBPA| ≤ ε

unprocessed if pB(m,n) /∈ B
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Figure 7.10 Geometric configuration of range maps to be merged. (Adapted from [233], © IEEE
Computer Society Press)

competition are removed by assigning their corresponding segmentation mask areas to zero
(i.e. deselected).

The confidence competition determines if the range pixels associated with a contiguous
grouping are on average of greater confidence than the corresponding range pixels of all other
range maps being integrated. Consider the correlation score CA at element pA(k, l) in range
image A and the score CB of the corresponding element pB(m, n) in range image B:{

w (k. l) = 1 if CA ≥ CB

0 otherwise
. (7.25)

We can then determine the winning patch by finding the average winning confidence
contribution:

w(k, l) =
∑

(k,l)∈S

w(k, l)

N
, (7.26)

where N is the number of elements in the grouped patch S. If W > 0.5 it is retained, otherwise
it is removed. Following patch deletion for all of the range images, the unmasked region of
each range image is then triangulated. Where meshes generated from different range maps
overlap, the overlapped region on each mesh is eroded until each region becomes disjointed
from any other region. The set of nonoverlapping meshes are then joined by triangulation,
which also fills any gaps that appear between meshes to produce a single continuous mesh.
In a further refinement, a cosine surface normal map is employed to cull all range pixels
pointing away from the reference camera by more than a preset angle, as is used in volumetric
merging. In this case an angle of approximately 80◦ to the viewing angle proved to be viable
for removing surface regions that point steeply away from the camera and are therefore likely
to be unreliable.
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(a)

(b)

(c)

Figure 7.11 Confidence, range and segmentation maps for top, side and rear views of a live pig:
(a) match confidence map; (b) range surface maps; (c) blue-screen segmentation masks. (Reproduced
from [234], Copyright (2007) Chinese Society of Theoretical and Applied Mechanics)

In Figure 7.11 example range images of a pig (Figure 7.11(a)), along with their as-
sociated match confidence images (Figure 7.11(b)) and foreground segmentation masks
(Figure 7.11(c)) are shown. The results of direct mesh integration as described above are
illustrated in Figure 7.12 (right) and the eroded surfaces’ preintegration are depicted in Fig-
ure 7.12 (left). Finally, examples of surface shaded pig models integrated using direct mesh
merging and marching cubes are presented in Figures 7.13 and 7.14, respectively. Notice the
artefacts present under marching cubes integration which do not appear on the direct mesh
integrated model.



P1: OTA/XYZ P2: ABC
c07 JWBK288-Cyganek December 5, 2008 1:44 Printer Name: Yet to Come

Space Reconstruction and Multiview Integration 341

Figure 7.12 Left: surface meshes after patch deletions and boundary erosion. Right: integrated mesh
with triangle insertions (i.e. surface join). (Reproduced from [234], copyright (2007) Chinese Society of
Theoretical and Applied Mechanics)

Figure 7.13 Range surface integration using direct mesh merging. (Reproduced from [232], © IEEE
Computer Society Press)

Figure 7.14 Range surface integration using marching cubes. (Reproduced from [232], © IEEE Com-
puter Society Press)
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7.4 Closure

In this chapter an overview of the space reconstruction methods is outlined. Depending on the
available camera parameters there are basically three types of reconstruction.

We have presented multiview integration methods that cater for the situation where the rela-
tive orientation relationship between captured 2.5D surface manifolds is known (i.e. 6 degrees
of freedom transformation between manifold coordinate frames), to illustrate how integrated
and complete 3D reconstructions can be achieved. In the context of close-range photogram-
metry, it is comparatively easy to obtain the required multiview coordinate transformations
via standard calibration protocols.

It should be noted that multiview integration is very much the subject of ongoing research,
particularly with regard to integrating multiple views of surfaces that self-occlude or contain
complex topologies, often in the context of capturing the human form (section 8.3), with
minimal pose restrictions. Other issues revolve around how best to combine fragments of the
same surface captured from different views and how to deal with ‘difficult’ objects comprising
semitransparent surfaces or filaments (e.g. hair). Human hands are perhaps a good example of
a form of surface that represents a particularly difficult 3D imaging and integration challenge.

7.4.1 Further Reading

The three types of reconstruction presented are based on the methods described in the books
by Ahuja [2] and Trucco and Verri [430].

Further information on reconstruction can be found in the books by Hartley and Zisserman
[180] and by Faugeras and Luong [119]. The proceedings of the International Conference
on Computer Vision and also the European Conference on Computer Vision are both good
sources of publications relevant to the discussion presented in this chapter and the other sec-
tions of this book dealing with image processing and computer vision.
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8
Case Examples

8.1 Abstract

This chapter provides several applications which make use of the techniques and methods
presented in previous chapters. These are rather short descriptions of top-level ideas rather
than detailed descriptions of implementations. However, they can be influential for further
developments in these and related areas. We begin with a description of a 3D system which
serves as a video aid for visually impaired persons and then present examples of face and
body modelling based on the data collected by 3D vision systems. This is followed by clinical
and veterinary applications. Finally, an application of image matching techniques used to
synthesise missing frames in archive cine footage is presented.

8.2 3D System for Vision-Impaired Persons

It appears that the techniques presented for inferring 3D information based on images pro-
vided by digital cameras could be of help to people with limited vision abilities. ‘Artificial
eyes’ may offer a practical means of guiding a person to avoid obstacles on his or her way.
There have been many attempts to build such systems – for an overview, refer to the work by
Molton [316]. A system that employs stereo processing for detection of obstacles was also
presented by Molton et al. [315]. Their method relies on a comparison of recovered dispar-
ity values with the expected position of the ground. A similar idea was proposed by Se and
Brady [375]. The same authors also developed systems for detecting zebra crossings [377]
and staircases [376] for blind people.

In this section we present a simple system that processes a stereo-pair of images to construct
a relative depth map (i.e. a disparity map) which is then transformed into some form of sound
sensations that can be perceived by a user. We will focus on the first task, i.e. 3D recovery
in quasi-real time and in a real, rather than laboratory, environment. However, development
of a proper sound coding scheme that can be learned by a blind person for navigation also
poses a challenge. This problem touches upon psychophysiology at least as regards the limits
of human perception to discriminate between potentially chaotic sound mixtures, as well as
construction of a code, or alphabet, to describe accoustic building blocks that represent 3D
structures in the environment.

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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Figure 8.1 Architecture of the vision-aid system for conversion of depth information into sound
sensations for blind people

The first block of the system (Figure 8.1) computes a dense disparity map from the
stereo-pair but only from subareas which correspond to the direction of the head. This
limitation in the input space speeds up the computations. Since we need only relative depth
information, a disparity map is sufficient and no calibration or scene reconstruction is neces-
sary. A simple block matching algorithm was used which operates on the Census transformed
images (section 6.3.7).

At each time step, the acquisition window is chosen at the virtual centres in the two input
images (i.e. a kind of a cyclopean eye [201, 235]) that correspond to the direction of sight
of a person. The cameras are configured in fronto-parallel stereo rig and head-mounted on
spectacles. Thus, disparity is computed only for the central window, as depicted in Figure
8.2. Further, this window is divided into vertical stripes and only one value is selected that
represents the global disparity in each stripe. The best results were obtained when the selected
value was the median of the values in a stripe, since this method rejected outlying disparities.
Then, the selected values were divided into two equal partitions that were finally encoded
into sound and fed into two channels R and L of the headphones (Figure 8.1). The encoding
transformation consists of uniform noise modulated with disparity values, as follows:

S[i, k] = D[k]N [i], (8.1)

g

R R
i

RL

D[i]

Figure 8.2 Sound coding scheme from the profiles drawn from the disparity map
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where D[k] denotes disparity at a point k of a scanning profile and N[i] denotes a synthesized
noise at a point i. This means that for far objects a person hears a quiet noise, whereas for
close objects the noise increases and depth gradient can then be distinguished by the stereo
sound effect.

The size of the acquisition window was chosen to be 10–50 pixels vertically by 30–180
horizontally, depending on scene type.

8.3 Face and Body Modelling

8.3.1 Development of Face and Body Capture Systems

3D capture systems based on processing stereo-pairs of images started to appear in the early
1980s. One of the earliest systems developed was the capture system by Nishihara [330]
which used the Marr–Poggio matcher [298, 299] to recover surfaces. By the mid-1980s,
in the UK a collaboration between University College London and Thorn EMI Ltd. pro-
duced a close-range photogrammetry system that was marketed by the British Technology
Group and eventually served as the basis for the system developed and marketed by Tricorder
Ltd. When Tricorder was liquidated, the technology was relaunched by 3DMD Inc. [202]
which currently markets devices based on the Tricorder technology in the USA. At the same
time, a stereo-photogrammetry system was developed in Scotland in a collaboration between
Bolt Beranek and Newman Ltd (BBN; Edinburgh) and the Turing Institute (Glasgow). Fig-
ure 8.3 shows a single-pod (stereo-pair) capture system marketed by the Turing Institute in
1997 [230]. When BBN closed in Edinburgh in the early 1990s, the technology was further

Figure 8.3 Example of a complete commercial stereo-based 3D imaging system marketed in 1997 by
the Turing Institute, Glasgow. Note the stereo-pair of TV cameras mounted over a computer-controlled
slide projector that illuminates the scene with a speckle textured light [386, 389]. (Copyright University
of Glasgow)



P1: OTA/XYZ P2: ABC
c08 JWBK288-Cyganek December 5, 2008 1:46 Printer Name: Yet to Come

346 An Introduction to 3D Computer Vision Techniques and Algorithms

Figure 8.4 Two-pod (four-camera) high-resolution 3D imaging system manufactured by Dimensional
Imaging Ltd complete with calibration target and blue-screen background. (The inset shows the rear pod
view.) (Copyright Dimensional Imaging Ltd.)

developed and marketed by the Turing Institute and is currently being sold within a foot scan-
ning device marketed by Precision 3D Ltd [211] (Figure 8.9). In a follow-up development, a
system using similar technology is now currently being developed and sold by Dimensional
Imaging Ltd [207] (Figure 8.4).

8.3.2 Imaging Resolution, 3D Resolution and Implications for Applications

A common feature of early video camera-based 3D photogrammetry systems of the 1980s
was the limited available imaging resolution (575 × 786 pixels in Europe and 640 × 480
pixels in North America and Japan) of the then current TV camera technology. Under such
image sensor resolution constraints, depth imaging resolutions of the order of 0.5 mm could
be achieved for working distances of the order of a few metres and working volumes of the
order of 220 × 280 × 150 mm. At the same time a reasonably small inter-camera separation
(stereo-baseline) could be maintained (of the order of 300 mm) while maintaining similar
resolutions in all three spatial measurement axes (X, Y and Z). While this level of resolution
is inadequate for most traditional metrology applications, such as surface inspection and parts
dimensioning, it is sufficient for measuring human face and body surfaces.

Anthropocentric applications such as clinical and veterinary assessment, clothes and
footwear fitting and virtual actor avatars for the creative media and computer gaming indus-
try then followed this 3D measurement capability. Applications involving human simulation
such as crash test dummies and human factors analysis (e.g. for scenarios such as operating
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Figure 8.5 Top: an experimental multiview all-round head capture system. Bottom: an imaging pod
comprising a stereo-pair of monochrome cameras (in black), a colour camera centre, and texture illumi-
nation flash units top and bottom

machinery or vehicles, or evacuating buildings) could now be supplied with virtual humans
based on real-world data via photogrammetry-based 3D imaging.

Faces tended to be the first human body surfaces to be imaged using single stereo-pairs of
cameras [18] and systems with greater surface coverage soon followed using multiple stereo-
pairs [19]. Thereafter, multiview systems were developed to image the complete body [389] or
specific parts such as the foot [211], breast [389] and back (scoliosis assessment) [418]. Figure
8.5 shows a prototype whole head scanner (this system could also be configured to image the
front or back of the body; Figure 8.8) developed by the Turing Institute for the CREATEC
unit at Ealing Studios, London (results from this scanner are shown in Figure 8.7). Figure 8.6
shows a prototype whole body scanner developed at Glasgow University based on the Turing
technology and Figure 8.8 gives examples of frontal and rear 3D body scans. Figure 8.9 shows
a multiview foot scanner developed by Precision 3D Ltd based on Turing’s C3D technology.
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Figure 8.6 Left: prototype whole body scanner. Right: an imaging pod comprising a stereo-pair of
monochrome cameras (top and bottom) and a colour camera (centre)

Figure 8.7 Four rendered views of a 3D model captured by an experimental five-pod head scanner
(Plate 11). (Subject: His Excellency The Honourable Richard Alston, Australian High Commissioner to
the United Kingdom, 2005–2008)
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Figure 8.8 Examples of front and rear 3D body scans

Figure 8.9 An example of a commercial 3D scanner that captures all-round the foot, including the sole
(Images copyright precision 3D Ltd.)
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Figure 8.10 Schematic of prototype real-time immersive 3D scanner. (Reproduced from [327] with
permission of the Institute of Electrical Engineers)

The systems described above share a common characteristic, namely in order to ensure that
good 3D models can be recovered, adequate surface texture (required for stereo-pair match-
ing) is guaranteed by projecting a speckle pattern on to imaged body surfaces [386]. A key
development in face and body capture was the realization of ‘texture projection free’ systems
that comprised only stereo-pairs of cameras and standard studio flash illumination. These lat-
ter systems adopted high-resolution digital still cameras (comprising imaging sensors of the
order of 6M pixels or greater, typically double this figure for human face imaging) that were
capable of resolving the indigenous surface texture, such as pores, present on human skin.

A further recent development in 3D human surface measurement resulting from the avail-
ability of high-resolution digital video cameras is the development of real-time 3D surface
capture, i.e. 3D cine. Figure 8.10 shows a prototype system developed at Glasgow University
[327, 466, 467] that was capable of capturing eight stereo-pairs of surface data at a rate of
25 frames per second. However, this system used low-resolution 640 × 480 pixel cameras
(Figure 8.11) and utilized texture projection in combination with strobe lighting. A more re-
cent offering from Dimensional Imaging is based on HDTV resolution cameras and does not
require texture projection [207].

8.3.3 3D Capture and Analysis Pipeline for Constructing Virtual Humans

The basic pipeline required to construct virtual humans starts with 3D model capture: mul-
tiview stereo-pair capture, image matching, space intersection (to recover depth values) and
integration of multiple depth maps to form a single polygonized 3D model. At this stage,
the interpretation of this data typically relies upon manual landmarking to delineate known
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Figure 8.11 Real-time capture pod comprising a stereo-pair of black-and-white cameras and a colour
camera mounted above. (Reproduced from [467])

anchor points on the model surface, from which it is possible to align a pre-annotated generic
3D model to the captured 3D data using nonrigid registration. Given that the semantics of
the generic model have been assigned in advance, it is then possible to automate subsequent
processes such as inserting a skeleton within the model and then animating this model us-
ing motion capture data (usually derived directly from human actors undertaking prescribed
(choreographed) actions such as dancing or any sequence of animation required by a script).
However, automatic means for generating human animation via kinematic modelling have also
been the subject of research activity in the field. Prior to animation, other cosmetic changes
can be made to the virtual human such as the application of virtual makeup, the attachment of
virtual hair (and hairstyle) and of course attachment of virtual clothing.

The above pipeline from 3D cloning to animation is illustrated in Figures 8.12 and 8.13. In
Figure 8.12 we see an example of an individual (Dr Gegang Tao) who has been scanned by

Figure 8.12 Left: a generic body model conformed to a 3D whole body scan. Right: a photorealisti-
cally rendered version of the generic body model. (Frames from a 3D animation sequence generated by
Dr J.C. Nebel and composited by George Barbour)
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Figure 8.13 Left: a kinematic skeleton instantiated by means of motion capture data. Middle: the
generic body mesh with a skeleton inserted. Right: a complete frame from a cine sequence showing
texture-pasted conformed and animated using the skeleton and motion capture data. (Frames from a 3D
animation sequence generated by Dr J.C. Nebel and composited by George Barbour)

means of a Wicks & Wilson [217] commercial whole body scanner (this particular scanner
utilizes Moiré fringing to achieve depth estimation). The same figure also shows Dr Tao’s
conformed generic model ‘skinned’ with virtual clothing. Figure 8.13 shows a skeleton in-
stantiated with motion capture data that is inserted into the generic model, and the result of
animating the unskinned and skinned body models is shown also.

8.4 Clinical and Veterinary Applications

8.4.1 Development of 3D Clinical Photography

As explained in section 8.3.2, the spatial resolution in x, y and z afforded by stereo-
photogrammetric capture using commercially available cameras lends itself to clinical ap-
plications involving 3D capture of human (and animal) surface anatomy. The clinical motiva-
tion for 3D surface anatomy capture flows from the need to make quantitative and objective
measurements of the surface of the body before and after surgery or some other clinical inter-
vention. Such measurements may be required to be made longitudinally to assess a patient’s
longer term postintervention progression. Simple 2D photographs require a considerable de-
gree of subjectivity to make an assessment or comparison longitudinally or between patients
or control subjects. The current trend in evidence-based medicine is that treatment and out-
come evaluation should be based on good-quality assessment protocols, in turn implying that
more quantitative and objective assessment techniques are required than can be afforded by
conventional photographs alone. Therefore, there has been considerable research effort ex-
pended in extending clinical photography into the third dimension and also in developing
appropriate tools to allow clinicians to make appropriate body surface measurements.
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Clinical applications for 3D facial assessment include cleft lip and palate repair, reduc-
tion/enlargement of the jaws, trauma surgery, cranial remodelling in babies and congenital
defect repairs. In addition, the link between development and facial appearance has recently
also been explored in order to detect the potential of certain syndromes and also schizophrenia.

8.4.2 Clinical Requirements for 3D Imaging

The first requirements for clinical photography concern capture speed and 3D accuracy. Nor-
mally better than 0.5 mm measurement error is required for maxillofacial applications and
better than 2.0 mm error is required for general body surface anatomy measurement. Since
the appearance of the skin is critical to clinical interpretation, a life-like 3D photorealistic
model of the surface anatomy under investigation is required; hence the natural photographic
appearance of the skin must be rendered on top of the constructed surface. Photorealistic sur-
face rendering provides the clinician with the means to locate critical landmarks and evaluate
skin appearance in addition to 3D anatomy shape. Capture time is also critical for many ap-
plications, particularly those involving children or even babies, and this is only really satisfied
when using studio flash illumination (of the order of 1.5 ms duration). Hence the need to be
able to process simple stereo-pairs of flash illuminated images to generate range surface from
which surface anatomy models can be computed and assessed. Finally, sufficient coverage of
the anatomy under investigation must be achieved to provide a useful 3D model. In the case of
the face, a maxillofacial surgeon requires the largest plausible face to be captured, occupying
a volume of approximately 220 mm wide by 280 mm in length and 150 mm in depth. It is
important that the entire face is captured from the hairline to the hyoid bone and also from the
tip of the nose to the back of each pinna (the flap of the ear that extends outside of the head).

8.4.3 Clinical Assessment Based on 3D Surface Anatomy

The types of question that a clinician wants to answer include: How ‘abnormal’ is this patient’s
face? To what degree has the appearance of this face improved (or deteriorated) following cor-
rection by surgery? Which surgery protocol works best for a given type of defect and under
what specific considerations regarding the patent, for example, which method of breast recon-
struction works best for a given size and particular shape of breast? Increasingly, questions
are asked such as: Is there any statistically significant difference between the shape of this
reconstructed/repaired face and the general face shape of the population to which this patient
belongs? What level of reconstruction quality is a particular surgeon, or surgery unit, capable
of achieving? Therefore, potentially both clinical and medicolegal issues are at stake when
undertaking surface anatomy assessment. To answer the above questions, clinicians are inter-
ested in establishing statistical models of shape, growth, longitudinal change and symmetry.

The overall approach to clinical assessment of surface anatomy, termed anthropometry,
involves the collection of surface measurements of a population of individuals (control group)
in order to establish population norms, i.e. the normal shape and shape variability [107] of
a particular area of surface anatomy must be determined in order to model this area in the
healthy individual. Where this area of surface anatomy has been compromised, either through
disease, birth defect or trauma, the measurements modelling this area of surface anatomy
in a healthy population can serve as a standard against which to compare measurements of
a specific individual or individuals exhibiting the same pathological condition. Thereby it
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becomes possible to evaluate the degree to which the individual or individuals deviate in the
shape of their pathological surface anatomy compared to a given control population. It also
becomes possible to evaluate if the shape variation of the pathological group is statistically
significant, i.e. is within acceptable variation given the population or could be expected within
the normal shape variation found within the healthy population.

Therefore the above approach aims to evaluate whether the shape of an area of anatomy
has been restored through surgical intervention such that no statistical difference between
an evaluated individual (or group of individuals) postsurgery and individuals within a con-
trol population can be determined to within a specific degree of confidence (i.e. confidence
interval). The measurement of surface anatomy shape and shape change over time serves the
role of determining outcome success in adults. In addition to shape measures, symmetry mea-
sures are also important, especially for evaluating the face. In children there is the additional
dimension of growth and growth variation over time that needs to be captured and decon-
volved from change variation in order to establish and monitor postoperative outcome success
objectively. By undertaking longitudinal 3D assessment of surface anatomy, there is also the
potential to discover information that would otherwise be difficult to capture, such as the tra-
jectories of growth centres and the evolution of surface shape over time, which may provide
insights into developmental processes.

8.4.4 Extraction of Basic 3D Anatomic Measurements

In order to evaluate 3D surface anatomy shape surgeons require basic tools to allow 3D
surface measurements to be collected and compared. The most fundamental traditional
anthropometric measurements are based on Euclidean distances between landmarks defined
on the surface anatomy. However, as outlined below, the availability of a metrically accurate
3D surface anatomy model opens the possibility for a far wider range of measurements that
can be afforded by the traditional calliper-based measurements of the anthropometrist. In
order to capture these measurements, the clinician requires a basic tool that allows him or her
to display and interact with captured 3D surface anatomy models on a computer workstation,
such that these can be landmarked by point placement on the displayed surface. There are
several instances of such tools having been developed and an example of the Facial Analysis
Tool (FAT) [293] is given in Figure 8.14 that provides facilities for facial surface anatomy
display and landmarking.

Based upon specific sets of landmarks, standard surface area measurements can be cap-
tured and compared longitudinally, while the enclosed volumetric differences between com-
pared surfaces can also be measured over time. In this latter case it is necessary to register
the compared 3D manifolds accurately and this is usually a three-stage process. Firstly, land-
marks are placed at corresponding anatomically defined locations on each of the surfaces to
be aligned. In order to obtain accurate results, two sets of landmarks will be required, one
set defining corresponding regions of the compared manifolds which are not expected to have
changed, e.g. the forehead. A second set of landmarks is then used to define the region of
interest which is expected to have changed by displacement, for example the jaw following
an ostiotomy procedure (jawbone shift) to extend or retract the jaw as required. Secondly, the
(unchanging) corresponding landmarks serve to anchor an initial alignment of the surfaces
by means of the Procrusthese algorithm [11], which finds the rigid body transformation that
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Figure 8.14 Left: anatomic landmarks placed on a 3D face model. Right: a screenshot of the Facial
Analysis Tool. Note the three orthographic views of the 3D model are displayed simultaneously to assist
clinicians place landmarks accurately and consistently. (Reproduced from [293])

minimizes the RMS error between these landmarks. However, this rigid body alignment over
the corresponding areas defined by these landmarks is further refined by means of a modified
version of the iterated closest points (ICP) algorithm [38], termed HICP, developed by Mao
et al. [293]. In basic form, ICP measures the distance between each vertex on one surface and
the closest triangle surface on the other. ICP attempts to find the 3D rigid body transformation
that minimizes the average of these distances. Since 3D scanned data may contain artefacts
such as holes, missing data and outliers, the HICP algorithm minimizes the median of the
intersurface distances (as opposed to the average intersurface distance) and thereby improves
the stability and robustness of the registration procedure under real-world 3D imaging condi-
tions. Finally, the two 3D surface patches (defined by the landmarks to contain the region over
which volume change is to be measured; Figure 8.15) are joined together to form a watertight
volume. It is then possible to measure this closed volume by projecting the mesh triangles
as extruded volumes on to an arbitrary plane for each surface and subtracting the overall
volumes to find the volume difference. In this approach longitudinal differences on the face
of 0.7 cm3 have been measured reliably [168], while considerably lower volume differences
(of the order of 0.1 cm3) have been measured on average over populations [106]. Figure 8.15
illustrates area measurement and landmark-based registration of compared surfaces and their
areal and volumetric differences within the FAT. Figure 8.16 shows the effect of registering
3D data collected from the same face pre-/postoperatively where an ostiotomy procedure has
been conducted to displace the jaw back into the face by removing sections of bone [468].

In addition to Euclidean distances, surface areas and volume change over time, geodesic
distances are also extracted in order to characterize surface shape. Surface geodesics are usu-
ally defined between standard landmarks and have the advantage of sampling the shape of the
surface to a greater degree than the landmarks alone. Rather than compute the true geodesic
distances between pairs of landmarks, often a pseudo geodesic is sufficient to capture the un-
derlying surface shape consistently. The pseudo geodesic developed by Mao and co-workers
[294, 295] is computed by finding the shortest path intersection of a plane that can rotate
about a line terminated by the two anchoring landmarks defining the start and end points of
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Figure 8.15 Triangulated region, defined by 6 landmarks, is shown on each face and the area of each
region is measured. The difference in area and volumetric difference between the triangulated regions
(following HICP registration) are also computed within the FAT. (Reproduced from [293])

the extracted trajectory. Figure 8.17 shows the initial plane anchored by the landmark pair,
the series of planes generated to sample possible surface intersection paths and the appear-
ance of the paths on the surface of a sampled model. While this pseudo geodesic path clearly
will not recover the shortest surface distance between the two landmarks, for many situa-
tions it will provide a good approximation and may also provide a measure that behaves more

Figure 8.16 Example of HICP registration on patient 3D face data collected before and after an
ostiotomy procedure to displace the jaw back into the face. (Reproduced from [468])
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Figure 8.17 Cutting planes. Left: the initial plane P0. Middle: the series of surface sampling planes
{Pi}. Right: the intersection of the triangulated surface and the series of planes {Pi}. (Reproduced from
[295])

intuitively to the clinician (Figure 8.17). Appropriate situations for the use of pseudo geodesic
measurement are given in [333].

8.4.5 Vector Field Surface Analysis by Means of Dense Correspondences

While geodesic measurements capture more 3D information from the manifold, they do not
fully exploit the potential of representing and comparing the entire 3D anatomy surface ge-
ometry. To this end techniques based on dense correspondences [233, 295, 296] have been de-
veloped that allow anatomic surfaces to be represented using a consistent set of measurements
that can then be compared between different individuals or the same individual longitudinally.
The basic idea requires the conformation of a generic 3D surface model that represents the
gross shape of the area of anatomy under investigation (as mentioned in the human modelling
section above), to a 3D surface model captured from an individual undergoing assessment.
Figure 8.18 illustrates this process showing a generic facial model prior to conformation, 3D
data captured from a real face and the final conformation of the generic mesh into the shape
of the real face (using Mao’s basic shape-similarity method [295].

Conformation for dense correspondence extraction comprises an iterated process [233].
Firstly the generic 3D mesh is brought into approximate rigid-body correspondence with
the captured 3D surface data by means of pairs of corresponding landmarks, one landmark
placed on each surface. These landmarks are then forced into correspondence and the mesh

Figure 8.18 Estimated shortest path using the pseudo geodesic. (Reproduced from [295])
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neighbouring each landmark is displaced according to the weight of a radial basis function
(RBF) centred at each landmark. Thereafter, the distance from each generic mesh vertex to
the closest surface point is calculated along the direction of the vertex average normal. An
optimization process is established to allow the positions of the generic mesh vertices to be
displaced such that the closest surface distance is reduced, by bringing the spring forces gen-
erated within mesh edges into equilibrium with the force required to produce the displacement
for each vertex. Therefore the mesh behaves as though it has elastic properties that tend to pre-
vent it becoming ‘crumpled’ if it were simply clipped on to the closest surface of the captured
data [233]. This match-smooth vertex displacement cycle is applied many times until the al-
gorithm converges on a stable solution exhibiting a low global surface geometric registration
error.

In order to improve the topological registration error between the generic mesh and the cap-
tured data Mao [295, 296] developed a surface compatibility function that takes into consider-
ation not only the local distance between the surfaces, but also the relative angle between their
respective surface normals and the difference in their respective principal surface curvatures.
Therefore, this method drives locally corresponding surfaces into registration using shape in-
formation as well as closest distances. In a further improvement, the topological compatibility
of the local destination and target surfaces is established by computing the local Gaussian and
mean curvatures which allows the type of local surface (peak, pit, ridge, valley, saddle ridge,
saddle valley, minimal, flat) to be classified and cross-checked.

If the generic mesh is sufficiently detailed to match the spatial resolution of the captured
data, it is possible to ‘clone’ the shape reasonably faithfully as can be observed in Figure
8.19. As a consequence, the shapes of captured anatomy can be compared directly since these

Figure 8.19 Result of the conformation process, using Mao’s basic method, reproduced from [296]:
(a) the scanned model with 5 landmarks placed for the global mapping; (b) the generic model; (c) the
conformed generic model; from [295]: (d) the scanned model aligned to the conformed generic model.
The (smaller) lighter mesh is the conformed generic model, the darker mesh (representing the whole
face) is the scanned model (Plate 13)
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Figure 8.20 Left: a generic mesh colour coded to label different anatomic regions of the face. Right:
the generic mesh conformed into the shape of a captured 3D face mesh (Plate 12). (Reproduced from
[295])

have been resampled on a topologically consistent basis. Following rigid body registration
as described above, the distance and direction between corresponding vertices of compared
conformed generic meshes can be computed directly. Accordingly the difference between the
compared anatomy samples forms a vector field that represents the residual displacements
between corresponding vertices. The magnitude of each vector represents the direction of
the local displacement between the compared surfaces and the angle of each vector gives
the direction of this displacement. While it is possible to utilize the vector field directly for
comparing surface shape and symmetry [295], a more powerful analysis in terms of statistical
shape variation can be performed as described in the next section.

A further consequence of being able to clone the shape of a surface onto a predefined
generic mesh is that semantic labelling attached to the generic mesh can be transferred to the
cloned anatomy. Figure 8.20 shows a generic mesh labelled in terms of the principal parts of
the face and this mesh and the associated labelling cloned to the 3D model of a real face.

8.4.6 Eigenspace Methods

Since the conformation of a generic mesh to captured data provides a consistently sampled
representation for specific regions of captured 3D surface anatomy, it becomes possible to
compute the modes of variation of the anatomy when sampled over a population [295, 296].
In her doctoral thesis [295], Mao shows the result of comparing the mean shape of a control
population of baby faces with a surgically managed group (postfacial cleft repair) (Figure
8.21). Figure 8.22 illustrates the first principal mode of variation of the control group using
principal components analysis (PCA) and Figure 8.23 shows the corresponding variation for
the surgically managed group [295]. Notice the distortion about the nostrils in the surgically
managed group.

Mao applies the same technique to the investigation of facial shape change over time by
PCA modelling the vector displacement fields captured between individuals longitudinally
[295] (Figure 8.24). In addition, Mao characterises facial asymmetry by computing the dis-
placement vector field between a conformed generic mesh and a bilaterally reflected version
of itself . Figure 8.25 shows corresponding points reflected about the facial midplane on a
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(a) (b) (c)

(f)(e)(d)

Figure 8.21 Mean shape of the control and surgically managed group: (a, b) the mean shape of the
control group; (c, d) the mean shape of the surgically managed group; (e, f) the mean shape of the
control group (white mesh) aligned to the mean shape of the surgically managed group (red mesh). The
top row shows the front view, the bottom row shows the bottom view. (Reproduced from [295])

generic face mesh [295]. The vector field then represents the displacements required to bring
the left-hand side of the mesh into correspondence with the right-hand side (assuming in this
case that a bilateral axis of symmetry is exhibited by the anatomy under assessment). Figure
8.26 shows the complete process required to produce a vector field representing displace-
ments between the left- and right-hand sides of the face. Again, it is possible to characterize
the normal modes of facial symmetry fluctuation within control (Figure 8.27) and surgically
managed (Figure 8.28) populations by means of PCA [295].

Figure 8.22 First principal component of the control group, between −3 (the first column) and +3
(the third column) standard deviations. (Reproduced from [295])
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Figure 8.23 First principal component of the surgically managed group, between −3 (the first column)
and +3 (the third column) standard deviations. (Reproduced from [295])

Figure 8.24 Comparison of corresponding vertices between the mean shapes for 3D face models of
1- and 2-year-old children in a surgically managed group (unilateral facial cleft): light points indicate
no statistically significant difference, while the dark points indicate a significant difference between the
models captured at the two different ages (0.05 significance) (Plate 14). (Reproduced from [295])

Figure 8.25 Corresponding points reflected about the facial midplane on a generic face mesh. (Repro-
duced from [295])
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Figure 8.26 Facial symmetry analysis of an individual model: (a) the original scanned model; (b)
the corresponding conformed model; (c) the original scanned model (the light mesh) aligned to the
conformed model (the dark mesh); (d) the calculated symmetry vector field (Plate 15). (Reproduced
from [295])

Having constructed PCA models of facial shape, growth/change and asymmetry for a spe-
cific control population, this can be used as a reference by which to test if the shape, facial
change or facial asymmetry of an individual or group of individuals when projected into PCA
space falls within the range exhibited by the control population or is statistically significant in
its deviation [295, 296] (Figure 8.29).

8.4.7 Clinical and Veterinary Examples

In this section several examples of clinical and veterinary applications are presented.
Figure 8.23 shows the variation of facial shape of cleft cases in babies that have been repaired
surgically. Comparing this result with that of Figure 8.22 for the corresponding control group
it can be seen that the surgically repaired group exhibits a significant residual deformation
about the area of the nostrils [295]. A similar result for facial asymmetry can be observed by
comparing the symmetry variation within the control and surgically managed groups shown
in Figures 8.27 and 8.28, respectively.
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Figure 8.27 Effect of the first principal component of the symmetry vector field for the control group
between −3 (the first column) and +3 (the last column) standard deviations: the top row shows the
constructed symmetry vector field; the middle and the bottom row show the front view and the bottom
view of the generic model modulated according to the symmetry vector field at the top row within the
same column. (Reproduced from [295])

The ability to align facial models over time has been used to evaluate the persistence over
time of collagen injections in facial creases. Although only a fraction of a cubic centimetre
is injected (typically 0.3 cm3), it is possible to detect this difference and track its persistence
over a number of months, when averaging over the entire group of samples taken at each time
step (in this case of the order of 15 subjects) [106].

More challenging assessment situations require capture facilities comprising three or
four stereo-pairs in order to capture complex areas of anatomy such as the breasts. Figure
8.30 shows a four stereo-pair breast capture rig (developed in a collaboration between the
Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, UK, and the University of
Glasgow, UK). A Breast Analysis Tool (BAT) has been implemented [333] to allow the im-
mediate area of the breast to be defined within an area bounded by four manually placed land-
marks. These landmarks define the corners of a Coons patch [128] which is used to model
the chest wall. The intersection of the Coons patch with the breast forms a closed volume
comprising a segmented breast whose volume and skin area can be measured in the BAT in
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Figure 8.28 Effect of the first principal component of the symmetry vector field for the surgically
managed group between −3 (the first column) and +3 (the last column) standard deviations. Layout as
per Figure 8.27. (Reproduced from [295])
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Figure 8.29 Projection of the models in the surgically managed group and in the control group, on to
the face shape space formed by the principal components of the control group: the second versus first
and fourth versus third principal components. (Reproduced from [296])
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Figure 8.30 Left: an experimental four imaging pod breast capture system. Right: the imaging pod
schematic configuration of this breast capture system. (Reproduced from [333])

order to inform a surgeon of the required tissue volume and skin area required to effect a
postmastectomy reconstruction (Figure 8.31).

In addition to human anatomy assessment tasks, there are many potential applications for
3D imaging in the field of veterinary medicine and food production. A three stereo-pair rig has
been developed (in a collaboration between the Silsoe Research Institute, UK, and Glasgow
University, UK) (Figure 8.32) [451] to allow live pigs to be 3D captured from side, top and
rump views. Having merged this data [233] (Figure 8.33), it was possible to correlate the shape
of the animal with final weight gain at the end of the growth period. In this case a 14-week trial
was conducted on two cohorts of 16 pigs to construct a statistical relationship between weight
gain, feed composition (high or low lysine) and 3D body shape. In this case body shape was
characterized by the cross-sectional shape of the pig as illustrated in Figure 8.34. Curvature
analysis based on differential geometry applied to the surface of the pig provided curvature

Figure 8.31 (A) 3D breast model with a segmentation region defined manually by means of four land-
marks. (B) The result of segmenting the breast by means of the Coons patch defined by the landmarks
to form a closed volume that can be measured by the BAT. (Reproduced from [333])
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Figure 8.32 Three-imaging pod rig for 3D capture of live pigs. (Reproduced from [417])

features on the otherwise bland surface of the animal. It was possible to extract the spine
as the line of minimum curvature along the back of the animal via parabolic point analysis.
Manually placed anatomic landmarks were used to define a plane that served to cross-section
the animal and thereby recover the intersection of the torso with the plane. Full details of this
analysis are given in [417].

Figure 8.33 Integrated 3D surface model [233] of a live pig captured using the rig shown in Figure
8.32. (Reproduced from [233])
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Figure 8.34 Two views of recovered pig spine and measurement of cross-sectional plane. (Reproduced
from [417])

8.4.8 Multimodal 3D Imaging

This section completes the overview of 3D imaging applications by presenting examples of 3D
models constructed by combining different imaging modalities. In a medical context, it is fre-
quently difficult for both the clinician and patients to interpret the rather bland and featureless
skin surface generated by segmenting the air–soft tissue boundary created when segmenting
the 3D voxel data set produced by MRI or CT imaging, e.g. of the human head. What is really
required is a photorealistically rendered surface 3D anatomy model combined with the under-
lying 3D voxel data. Such a model would allow clinicians and patients to visualize how their
internal organs relate in position to both their surface features, and also well-defined anatomic
landmarks used to guide surgery procedures.

Figure 8.35 illustrates such a model: we see three views of a skull voxel model combined
with a photogrammetrically generated 3D surface anatomy model. The skull, comprising
400 slices, was imaged using a Marconi spiral CT scanner, MX8000, Kv 120, MaS 200 (with
bone filter). The settings for this instrument comprised: 0.75 seconds rotation, 0.625 pitch

Figure 8.35 Three views of a 3D face surface model combined with a segmented and polygonised CT
voxel model. (Reproduced from [20] with permission of Elsevier Science)



P1: OTA/XYZ P2: ABC
c08 JWBK288-Cyganek December 5, 2008 1:46 Printer Name: Yet to Come

368 An Introduction to 3D Computer Vision Techniques and Algorithms

Figure 8.36 Pipeline for combining 3D surface and 3D voxel models. (Reproduced from [20] with
permission of Elsevier Science)

angle, to produce a slice thickness of 1.3 mm. A DI3D [207] stereo-photogrammetry system
was used to capture the 3D surface model of the face.

Following multimodal data acquisition, the key issue was how to combine the data gener-
ated by the photogrammetric and CT imaging modalities, since these have radically different
representations, namely 3D surface manifolds and 3D voxels. Integration was achieved by
adopting a common polygon representation. The skull slice images in DICOM format were
segmented in a commercial clinical package (Amera R©, TGS Europe) to reveal the air–soft
tissue boundary and then polygonized. Likewise it was possible to segment the soft
tissue–bone boundary to produce an internal polygon model of the bony structures, also in
the same coordinate system as the segmented facial surface model. At this point the seg-
mented polygon models were in VRML format that could be read into the Facial Analysis
Tool mentioned in section 8.4.4 along with the 3D facial surface anatomy model. The face
surface model generated by photogrammetry was initially registered to the polygonized seg-
mented voxel face model using Procrusthese-based alignment of corresponding landmarks on
each surface, followed by vernier registration using the HCIP algorithm. Figure 8.36 illus-
trates the complete processing pipeline as described in [20]. In Figure 8.37 we can observe
how the photorealistic facial model can be rendered with semitransparency to reveal under-
lying structures and their relative alignment with respect to features as can be seen on the
surface of the face.

In the second example of multimodal 3D imaging, we combine a 3D surface model captured
using conventional stereo-photogrammetry with a thermal image, by aligning and draping the
thermal image over the underlying surface model [5, 469]. Figure 8.38 shows two examples of
combined 3D thermal imaging produced at the University of Glasgow: in the upper images,
the thermal images draped on the human arm surface models clearly depict the underlying
areas of hot (light) and cold (dark) to reveal sub-skin structures such as blood vessels. The
lower images show the 3D face model of one of the authors and again the draped thermal
images reveal underlying areas of hot and cold to expose blood vessels and colder internal
cavities.
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Figure 8.37 Combined surface–voxel models rendered with partial transparency of the surface model.
(Reproduced from [20] with permission of Elsevier Science)

The thermal image was captured using a Merlin R© Indigo thermal camera having a Stirling
cooled InSb sensor operating in the 3–5 µm band (with cold filter) and better than 25 mK ther-
mal sensitivity, producing images of 320 × 256 pixels. It is a comparatively simple procedure
to produce a photorealistic 3D surface model (e.g. as depicted in Figure 8.31) by draping an
image whose camera geometry is known with respect to the stereo-pair used to capture the 3D

Figure 8.38 3D surface models draped with 3–5 µm band thermal images
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surface model. Typically one of the stereo-pairs themselves is used as the photorealistic drape.
When the stereo-pair of acquisition cameras are monochrome, a third colour camera is used
to capture the image that serves as the photorealistic surface drape and calibration images are
captured by this camera at the same time as calibrating the acquisition stereo-pair. Thereby
the intrinsic and extrinsic parameters become known for all three cameras. However, when
substituting a thermal camera for a colour camera, the problem arises that the calibration tar-
get must be observable in both the visible and thermal wavebands. Producing a calibration
target comprising patterns of both visible and thermal contrast is not always easy to arrange,
requiring special materials to generate the required thermal and visible contrasts and a means
of heating/thermally illuminating the target [5, 469]. However, although not without practical
challenges, the approach does have the potential to reveal otherwise invisible structures and
relate these in the context of 3D physical shape and position.

The preceding sections have listed only a few practical examples of human face and body
3D imaging. Every part of the human body surface can potentially be imaged, modelled and
interpreted in 3D for creative or clinical applications. Likewise animal forms may be similarly
captured and analysed, and arguably, in this case, an even greater range of potential applica-
tions can be envisaged. However, it should be remembered by researchers and developers that
when human 3D data is being captured, manipulated and potentially distributed, then ethical,
privacy and security issues become paramount considerations.

8.5 Movie Restoration

For over a hundred years the film industry has created thousands of movies. The majority
of them were stored on celluloid film which has a tendency to deteriorate over time. Thus,
film archives around the world contain great movies whose quality degrades each year. We
have to save that heritage, and one of the ways is to digitize and restore what is left today. It
happens sometimes that in the processed movie some frames are in such a bad a condition that
they cannot be recovered. However, under some assumptions the remaining frames either side
of the missing frame can be used to restore, i.e. synthesize, the missing data without visible
deterioration of the movie. This process is presented in Figure 8.39. Unfortunately the task of
film repair can be extremely difficult, especially due to the following factors.

1. The scene was captured with a single camera which additionally could change its position
and optical parameters during acquisition. More often than not these parameters are not
known.

2. There can be many different objects in the scene, possibly moving with different speed and
directions.

3. Signal quality is poor (noise, material scratches, spurious artefacts, etc.).
4. The exact number of missing or damaged frames may not be known.

Nevertheless, assuming that the scenes to be recovered are sufficiently static we can try to
build a disparity map between the two frames around a gap in a film and then synthesize the
missing frames to achieve visual continuity over the repaired gap.

Frame recovery is performed by means of view synthesis guided by disparity maps ob-
tained by image matching two views (frames). Usually the number of missing frames is also
unknown and has to be empirically chosen by the operator.
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Figure 8.39 Stream of frames with selected reference and missing frames

Figure 8.40 contains two abutting frames, nos. 201 and 202 used for initial matching. Figure
8.41 depicts horizontal disparity maps obtained from these frames. These disparities can be
used as initial values for iterative matching and should also be scaled in accordance with
expected number of missing frames in the gap. To some extent this has to be guided by an
operator.

The disparity maps are computed with the hierarchical matching algorithm presented in
section 6.7. Actually, two disparity maps were created: one with the left image being a refer-
ence, then in the reverse order, i.e. with the right image in a role of a reference. The purpose
of this strategy is twofold. First, it was possible to use the left–right checking procedure to re-
move occluded points (section 6.4.1). The second reason comes from the requirements of the
view synthesis algorithm. View synthesis was implemented by warping the existing frames

Figure 8.40 Inpainted reference frames (colour in original version) from the input data stream: (a)
frame no. 201; (b) frame no. 202. (Reproduced by permission of Arnold & Richter Cine Technik GmbH
& Co. Betriebs kg)
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Figure 8.41 Horizontal disparity maps from consecutive frames no. 201 and 202: (a) without itera-
tions; (b) after four iterations

guided by disparity values recovered at each pixel. Note that the hierarchical matching algo-
rithm provides 2D disparities (i.e. horizontal and vertical) at each run.

The idea behind view synthesis is very simple: recall that if a disparity map DLR (left is
taken as reference) is given between two images IL and IR then for corresponding points in
the matched images it holds that

IR (x, y) = IL
(
x + dx , y + dy

)
, (8.2)

where the 2D disparity for a point with local coordinates (x, y) in the left image is denoted as
DLR(x, y) = (dx, dy). A similar equation can be written when the right image is the reference.
Now, since we assume that the scene is sufficiently static and that the base frames were taken
in approximately the same conditions with only slight camera shift, we can approximate the
missing frames using a linear combination of (8.2). More specifically, half of the missing
frames are synthesized from the left base image, whereas the other half are synthesized from
the right base image. However, the disparity map has been already cross-checked to remove
occluded areas.

Synthesis is a twofold process. First we find new coordinates of a frame, as follows:

Ii (x, y) = Ir
(
x + αi dx , y + βi dy

)
, (8.3)

where 0 < αi <1, 0 < β i < 1 are scaling parameters for the horizontal and vertical disparities,
respectively. Ir denotes one of the base images, IL or IR. For instance, if we assume that
ten frames are missing and have to be synthesized then as a first attempt we can assume αi

= β i = 0.1i and half of the frames are synthesized from the left base image. Note that in
general the new coordinates in the i-th frame computed from (4.3) in general do not align
with the integer pixel coordinate grid of that image. Thus, the second step in the synthesis
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consists of pixel value interpolation. Usually this is done by bilinear or cubic interpolation
(section 12.4). Note also that the synthesized views are in colour, therefore after finding new
point position (which is the same for all channels) the interpolation is applied in three colour
channels independently.

Usually we do not know how many frames are missing. Moreover, if the scenes are dynamic
the problem is more complicated and recovery of the scene geometry and camera parameters
requires factorization methods (see section 3.6.3).

Figure 8.42 depicts six reconstructed frames based on the two reference frames in Figure
8.40 and computed disparity maps (see Figure 8.41). The first half length of the reconstructed
stream (Figure 8.42(a–c)) is based on the left reference image and left-to-right (i.e. forward)

Figure 8.42 Six reconstructed frames. (a–c) Three frames synthesized from the left reference frame;
(d–f) the next frames synthesized from the right reference image
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disparity maps, while the second half (Figure 8.42(d–f)) was created from the right image and
the right-to-left (i.e. reverse) disparity maps. The visible distortions in the reconstructed views
are a direct consequence of drawbacks encountered in the disparity maps. However, the gen-
eral quality of the reconstructed frames is sufficient for film restoration. Small locations with
distortions (mostly occlusions or dynamically changing areas) can be repaired with external
graphical tools normally used for visual special effects in the final production.

As alluded to previously, the process of film reconstruction is semiautomatic and should be
guided by an operator in accordance with image contents and artistic expectations (usually we
strive for a visually plausible effect). Image contents have to be assessed by an operator and
then the proper choice of control parameters can be made.

8.6 Closure

In this chapter we present examples of systems that utilize techniques discussed in previous
chapters of the book. Stereo matching systems find broad applications in many areas of in-
dustry and science. We show their usage in a system designed to assist the visually impaired
to navigate, in digital cinema for frame synthesis and in systems for face and body modelling
and analysis.

Stereo-photogrammetry is rapidly becoming the preferred means of digitizing human sur-
face anatomy in three dimensions. In turn, this development underpins the future of clinical
3D photography and the raft of objective assessment, diagnosis and planning applications that
are now in the early production/ongoing development stage. The entertainment industry is
also benefiting from the widening availability of human-form digitization and we have shown
here how it is now possible to construct animated 3D graphics models of complete individuals
from their face and body scans to serve games and cine production.

Although the examples presented in this chapter do not touch on other more traditional areas
of photogrammetry activity, such as quality control, parts inspection, DEM (digital elevation
model) construction from aerial/satellite images, surveying and active binocular robot vision,
these are all burgeoning areas of research and development underpinned by stereo matching
and digital photogrammetry. Perhaps the application with the greatest potential impact has
yet to be realized, namely high-definition immersive 3D TV based on multiview 3D capture,
compression, transmission and 3D reconstruction of a studio or outdoor space in real time.

8.6.1 Further Reading

Many developments in computer vision were driven by specific problems. These are, for in-
stance, food inspection, robot navigation, document analysis, traffic management, face recog-
nition and medical imaging, to name a few. Information on applications of 3D image pro-
cessing techniques can be found in large numbers of conference and journal publications.
These include Transactions on Pattern Analysis and Machine Intelligence, Transactions on
Image Processing and Transactions on Medical Imaging by IEEE, International Journal
of Computer Vision, Machine Vision & Application by Springer and Computer Vision &
Image Understanding by Elsevier Science, the SIGGRAPH proceedings and also the 3D Mod-
elling symposia held annually in Paris.
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9
Basics of the Projective Geometry

9.1 Abstract

The algebraic projective geometry constitutes a convenient mathematical tool for the descrip-
tion of such geometrical objects as a point, a line or a plane under a group of transformations.
Thus, knowledge of the basic concepts of the algebraic projective geometry is very helpful in
understanding 3D machine vision.

The intention of this chapter is to give the reader a very basic, very short and by no means
complete, but intuitive, overview of the most important concepts of the algebraic projective
geometry.

9.2 Homogeneous Coordinates

Let us analyse a projective transformation of a 3D point P = (X, Y , Z) on to a plane in the
Euclidean coordinate system. Let us assume also that the centre of this projection is in the
centre of the coordinate system, i.e. at a point O = (0, 0, 0) and that the projective plane is at
distance f from O. Under this assumption, an image of the point P lies on the projective plane
at a point1 p = (x, y) (see Figure 9.1). The coordinates of the two points are constrained by
the simple relations which follow from the triangle equation:2

x = f
X

Z
, y = f

Y

Z
. (9.1)

Let us observe that (9.1) describes a mapping of the Euclidean space �3 on to Euclidean space
�2, into which a camera plane is embedded. Unfortunately this equation is nonlinear in respect
of the Z coordinate. However, we can make it linear at the cost of additional coordinates (i.e.

1The third coordinate of this point is constant.
2These formulas have already been derived: see Equation (3.2).

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
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Figure 9.1 Image of a point P in a projection with a centre O

extending dimensions of the space), as follows:

[
x
y

]
⇔


 x̃

ỹ
z̃


 =


 f 0 0 0

0 f 0 0
0 0 1 0







X
Y
Z
1


 , (9.2)

where it is now assumed that

x = x̃

z̃
, y = ỹ

z̃
; z̃ �= 0. (9.3)

Coordinates x̃, ỹ, z̃ in (9.2) and (9.3) are called homogeneous coordinates of a point.

Definition 9.1. An affine space �n is transformed to a projective space ℘n by the following
mapping:

(x1, x2, . . . , xn)T �→ (x̃1, x̃2, . . . , x̃n, x̃n+1)T = (x1, x2, . . . , xn, 1)T . (9.4)

The inverse mapping, from the projective space ℘n to the affine space �n, is given as

(x̃1, x̃2, . . . , x̃n, x̃n+1)T �→ (x1, x2, . . . , xn)T =
(

x̃1

x̃n+1
,

x̃2

x̃n+1
, . . . ,

x̃n

x̃n+1

)T

, (9.5)

where in (9.5) we assume that x̃n+1 �= 0.

The special case constitutes a set of points of the projective space for which x̃n+1 = 0.
These points are called points in infinity or ideal points, and their set is called a set of ideal
points P∞.

We can easily observe (Figure 9.2) that the mapping from �n to ℘n is an injection but it is
not surjective (i.e. an image of �n does not cover the whole space ℘n). We notice also that for
a space ℘n induced from �n its points are described with n + 1 coordinates (9.4).

Another important observation follows directly from this: we see that a point with homoge-
neous coordinates (a, b, c)T as well as a point with coordinates s(a, b, c)T = (sa, sb, sc)T, where
s �= 0 is a scaling coefficient, describe the same point in the space �n. Thus, all
such points belong to the one equivalence class. This leads to the conclusion that all
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ℜn ℘n

℘∞

Figure 9.2 Mappings of the �n and ℘n spaces

projective transformations are defined up to a certain scaling factor. For example, the point
p is an image of the point P but also of all other points lying on the line OP (Figure 9.1).

9.3 Point, Line and the Rule of Duality

A point x = (x, y)T in the 2D Euclidean space belongs to a line l, represented by three values
a, b, c, so l = (a, b, c)T if the following condition holds:

ax + by + c = 0. (9.6)

Going from the Euclidean into the projective space we change coordinates of a point x into the
homogeneous representation, in accordance with (9.4). Thus (9.6) can be written as a scalar
product:

(x, y, 1) (a, b, c)T = x · l = xTl = 0. (9.7)

Observe that the above can be written as

xTl = lTx = 0, (9.8)

which comes directly from the definition of the scalar product. This means that because of the
homogeneous transformation of coordinates we obtained a nice symmetry in the formulas for
a point and for a line. Thus, it is possible to exchange the roles of x and l in (9.8), and keep
the whole formula untouched at the same time. This is the so-called duality principle.

We find a common point of two lines l1 = (a1, b1, c1)T and l2 = (a2, b2, c2)T by taking their
cross product:

x = l1 × l2. (9.9)

It is easy to verify that such a found point x lies on both lines, since we have

x · l1 = x · l2 = (l1 × l2) · l1 = (l1 × l2) · l2 = 0, (9.10)

which after (9.7) shows that x belongs to l1 and simultaneously to l2. The interesting property
of the projective space is that even the parallel lines have a common point – a point at infinity.
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Sometimes it is convenient to represent the cross product of two vectors as a multiplication
of a certain skew-symmetric matrix and a vector. More precisely for two vectors a = (a1, a2,
a3)T and b = (b1, b2, b3)T, we have

a × b = [a]× b = (
aT [b]×

)T
, (9.11)

where [a]× is given as

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


 . (9.12)

Based on the above we can rewrite (9.9) as

x = l1 × l2 =

 0 −c1 b1

c1 0 −a1

−b1 a1 0





a2

b2

c2


 . (9.13)

Using the duality principle we obtain a dual to (9.9) of a line crossing two points x1 and x2,
as follows:

l = x1 × x2. (9.14)

Finally, it is interesting to notice that having two different points x1 and x2 in the projective
space, the set Q of all points lying on the line passing through these points can be expressed
as

Q = αx1 + βx2, (9.15)

where α and β are certain scalar values. The above can be easily verified, since, taking (9.7)
and (9.14), for any point Q we obtain

Q · l = Q · (x1 × x2) = αx1 · (x1 × x2) + βx2 · (x1 × x2) = 0. (9.16)

In other words, a condition for a point xi to lie on the line joining two points x1 and x2 can be
stated as a condition of a zero mixed product of these points:∣∣x1 x2 xi

∣∣ = 0. (9.17)

9.4 Point and Line at Infinity

In (9.3) and (9.5) we assumed that the last coordinate is different from zero. However, such
points, which can be represented as (x1, x2, . . . , 0)T, exist in the projective space and are called
points at infinity or ideal points.

It is interesting to observe that all ideal points in the ℘2 space lie on the line l = (0, 0, l3)T

= l∞, since (x1, x2, 0)(0, 0, l3)T = 0, for all values of x1, x2 and l3. From this observation and
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Figure 9.3 Finding an ideal point p∞ from a crossing of lines which are parallel in the 3D Euclidean
space

from (9.9) we draw an important conclusion that in the projective space even parallel lines
cross and their crossing point is a point at infinity. This can be easily shown starting from
(9.13) which gives us coordinates of a crossing point for two lines

x =

 −c1b2 + b1c2

c1a2 − a1c2

−b1a2 + b2a1


 . (9.18)

If the two lines are parallel then from (9.6) it holds that

a1

b1
= a2

b2
, where b1 �= 0, b2 �= 0, (9.19)

but in such case the last coordinate of a point x in (9.18) is 0, which means that this is a point
at infinity.

Figure 9.3 shows how to find an ideal point in an image from a known set of lines which
we know are parallel in the Euclidean 3D space. After the projective transformation of the
camera’s optical system the lines on the camera’s image plane are no longer parallel. Instead
they have a common crossing point which is an ideal point p∞ (i.e. a point at infinity).

Figure 9.4 shows how to find an ideal line l∞ which constitutes a set of ideal points.
Having two different sets of lines which are parallel in the Euclidean 3D space we find their

ideal points. Two such points are sufficient to determine an ideal line l∞.

l∞

Figure 9.4 Line at infinity l∞ can be found from a set of lines which are parallel in the Euclidean space
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9.5 Basics on Conics

Conics are geometric objects the parameters of which allow determination of important fea-
tures of the spaces to which they belong. In this section we briefly outline the notion of a
conic in the ℘2 and ℘3 spaces, as well as the notion of a dual conic, circular points and finally
absolute and dual conics.

9.5.1 Conics in ℘2

The conic on a plane is a curve described by an equation of second degree. In the Euclidean
space it can be given as

ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + f = 0, (9.20)

where a, b, c, d, e, f are scalars from �.
Changing the coordinates in the above to the homogeneous space, in accordance with (9.5),

we obtain

a

(
x̃1

x̃3

)2

+ b
x̃1

x̃3

x̃2

x̃3
+ c

(
x̃2

x̃3

)2

+ d
x̃1

x̃3
+ e

x̃2

x̃3
+ f = 0, (9.21)

which after some arrangements and skipping the tilde in the names of the homogeneous coor-
dinates simplifies to

ax2
1 + bx1x2 + cx2

2 + dx1 + ex2 + f x2
3 = 0. (9.22)

This in turn can be expressed simply as

xTCx = 0, (9.23)

where the symmetrical matrix C is given as

C =




a
b

2

d

2
b

2
c

e

2
d

2

e

2
f


 . (9.24)

It can be shown that five points on a plane determine (up to a scale) a conic passing through
those points [180].

Finally, a line l tangent at a point x to a conic described by a matrix C is given as

l = Cx. (9.25)

This can be verified by comparing (9.8) and (9.23).
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Figure 9.5 Dual conic obtained from the tangent lines

9.5.1.1 The Dual Conic

Equation (9.23) holds for points that belong to a conic given by a matrix C. Therefore such
representation of a conic is called a point conic. However, once again we can call on the
duality rule and express a conic in terms of lines which are tangent to that conic (Figure 9.5).
This way we obtain a line conic, called also a dual conic, and denoted by a dual matrix C

∗
.

To find a relation between a conic and its dual, let us assume that the matrix C is invertible,
so from (9.25) we obtain that

x = C−1l.

Taking the above to (9.23) leads us to the following expression:(
C−1l

)T
C

(
C−1l

) = 0.

Because C is symmetric, then C−T = C−1, and the above equation transforms to

lTC−1l = 0. (9.26)

This is the dual conic representation. Finally, we notice that

C∗ = C−1. (9.27)

9.5.1.2 Circular Points

Setting a = c and b = 0 in (9.22), the conic is reduced to a circle, which is given as follows
(in the homogeneous coordinates):

ax2
1 + ax2

2 + dx1x3 + ex2x3 + f x2
3 = 0. (9.28)

Let us now find the cross points of the above and the line at infinity l∞ (section 9.4). Setting
x3 = 0 in (9.28) we obtain

x2
1 + x2

2 = 0, (9.29)
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the solution of which is given by the two circular points I and J with coordinates as follows:

I =

 1

i
0


 , J =


 1

−i
0


 . (9.30)

Since I·J = 0, then algebraically the circular points give two orthogonal directions in
the Euclidean space, given, however, by the conjugate complex numbers of the form
(1, 0, 0)T ± i(0, 1, 0)T [180]. Because of this property, knowledge of the circular points gives
us some metric properties of the space, such as orthogonality or an angle between lines.

9.5.2 Conics in ℘3

Positions of points lying on a plane at infinity π∞ allow determination of some metric prop-
erties of that space – for instance, the geometric objects are parallel if their intersection points
belong to π∞. The other properties can be deduced from the position of the so-called abso-
lute conic and its dual conic. Their parameters allow determination of angles in the observed
space. In this section we discuss these concepts.

9.5.2.1 The Absolute Conic

Definition 9.2 The absolute conic �∞ is a conic on the plane at infinity π∞ and such that the
following conditions hold:

{
x2

1 + x2
2 + x2

3 = 0
x4 = 0

, (9.31)

where xi are coordinates of a point in a projective space ℘3 and belonging to �∞.
�∞ has a very interesting properties – for instance it is invariant with respect to the figural

congruity. Moreover, all circles intersect with �∞ in two points, whereas intersection of all
spheres with π∞ is just �∞ [180]. However, probably most important is that knowledge of
a position of �∞ in the ℘3 space allows determination of the metric properties of that space,
such as angles between lines or distances between points.

It is well known that having two lines, determined by their directional vectors k1 and k2, an
angle α between them in the Euclidean space can be found from their dot product:

cos α = kT
1 k2√(

kT
1 k1

) (
kT

2 k2
) . (9.32)

In a projective space, however, we have the following property [180]:

cos α = kT
1 �∞k2√(

kT
1 �∞k1

) (
kT

2 �∞k2
) , (9.33)
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where k1 and k2 are respectively coordinates of points of intersection of the two lines with the
plane at infinity π∞, containing �∞. In the Euclidean space (9.33) reduces to (9.32), since
�∞ = I.

From the last equation if follows simply that two lines are orthogonal if the following holds:

kT
1 �∞k2 = 0. (9.34)

9.5.2.2 The Dual Absolute Conic

The absolute conic is given by the system of two equations (9.31). However, an easier repre-
sentation is given by the dual conic �∗

∞, which can be interpreted as a set of contact points of
the tangent planes with �∞.

The dual conic �∗
∞ can be defined as a uniform 4 × 4 matrix of rank three, which in a

metric space takes on the form

�∗
∞ =




1
1

1
0


 . (9.35)

Finally knowing �∗
∞, the angle α between two planes π1 and π2 is given as [180]

cos α = πT
1 �∗

∞π2√(
πT

1 �∗∞π1
) (

πT
2 �∗∞π2

) . (9.36)

9.6 Group of Projective Transformations

In this section we present a brief introduction to a group of projective transformations. We start
with a definition of a canonical projective base, then present hyperplanes which are general-
izations of concepts of points and lines, and finally we focus on the projective transformations.

9.6.1 Projective Base

A base of the projective space ℘n constitutes n + 2 points of that space, from which none of
the n + 1 points belongs to a hyperplane. This is equivalent to the statement that a (n + 1) ×
(n + 1) size matrix of those points is not singular [314].

It is easy to verify that the set of points Pi

P1 =




1
0
0

· · ·
0




(n+1)×1

, P2 =




0
1
0

· · ·
0


 , . . . , Pn =




0
· · ·
1

· · ·
0


 , Pn+1 =




0
0
0
· · ·
1


 , Pn+2 =




1
1
1

· · ·
1




(9.37)
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is a base of the ℘n space, which is called a canonical projective base. It is composed of n

ideal points (i.e. points at infinity), corresponding to the n axes of a coordinate system, as well
as of its middle point Pn+1 and a unit point Pn+2.

9.6.2 Hyperplanes

A hyperplane is a natural extension of a notion of a point and line in a projective space. In the
Euclidean space it is defined by the following equation:

a1x1 + · · · + anxn + an+1 = 0, x ∈ �n. (9.38)

After change to the homogeneous coordinates in accordance with (9.4) the above equation
transforms to (again, the tilde symbol is omitted)

a1x1 + · · · + anxn + an+1xn+1 = a · x = 0, x ∈ ℘n. (9.39)

It is interesting to observe that also in this case the duality rule holds. Specifically, we obtain
immediately that

xTπ = πTx = 0, (9.40)

where π = (π1, π2, π3, π4)T represents a plane in ℘3, while x is a point belonging to that
plane.

A plane given by the four coefficients (0, 0, 0, 1)T is called a plane at infinity and is denoted
as π∞. Based on the concept of a plane at infinity, two conclusions can be drawn.

1. Two planes are parallel if their common line belongs to π∞.
2. Similarly, a line is parallel to another line or to a plane if their crossing point belongs to

π∞.

9.6.3 Projective Homographies

Definition 9.3. For a projective space ℘n a projective homography is defined as a nonsingular
matrix H(n+1)×(n+1) with elements belonging to �, and defined up to a certain scalar value,
called a scaling coefficient. A point x is projectively transformed to x′ as follows:

x′ = Hx, x, x′ ∈ ℘n, (9.41)

where the matrix H denotes a projective transformation.

It can be shown that projective homographies constitute a group, since an inverse
transformation as well as a composition of such transformations are also projective
homographies.

In the special case of a projective space ℘2 a point xi is transformed into a point xi
′, in

accordance with (9.41). Two different points x1 and x2 unambiguously define a line l that
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passes through these points, i.e. it holds that

xT
1 l = xT

2 l = 0,(
xT

1 − xT
2

)
l = 0.

The points x1 and x2 are transformed by H into x1
′ and x2

′ respectively, which both lie on a
line l′, so it holds also that (

x′T
1 − x′T

2

)
l′ = 0.

Combining the two last equations we obtain that(
x′T

1 − x′T
2

)
l′ = (

xT
1 − xT

2

)
l. (9.42)

Now, inserting (9.41) into (9.42) we get that(
(Hx1)T − (Hx2)T

)
l′ = (

xT
1 − xT

2

)
l,(

xT
1 − xT

2

)
HTl′ = (

xT
1 − xT

2

)
l.

Now assuming that x1 �= x2 and considering the above equation, we see that the lines transform
as

l′ = H−Tl, (9.43)

where l and l′ are lines in ℘2, and under an assumption that H is invertible. Because of the
difference between (9.41) and (9.43) we say that points follow a contravariant, whereas lines
follow a covariant transformation.

9.7 Projective Invariants

Recognition of the relationships among points and lines that are unchanged regardless of a
projective transformation are called projective invariants. These are very useful in the object
recognition process [108]. More on such invariants and their applications can be found in a
classic text by Mundy and Zisserman [322].

Figure 9.6 depicts a projection with a centre O of four coplanar points X1, X2, X3 and X4,
on to a line l. The relation of the distances of their image points x1, x2, x3, x4 appears to be
invariant in respect to a position of the line l. This is called a cross-ratio which is defined as
follows.

Definition 9.4. Given four collinear points x1, x2, x3, x4, a cross-ratio d(x1, x2, x3, x4) is given
by the relation

d (x1, x2, x3, x4) = |x1x2| |x3x4|
|x1x3| |x2x4| . (9.44)
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O

x1 

x2 

x3 

x4 

l1 

l2 

l3 

l4 

l 

X2 

X1 

X3 

X4 

Figure 9.6 Four convergent lines define a cross-ratio on a plane which is invariant in respect to the
projective transformations

where |xp, xq| denotes a distance between the points xp, xq:

∣∣xpxq

∣∣ = det

[
xp1 xq1

xp2 xq2

]
. (9.45)

As already mentioned, d(x1, x2, x3, x4) is invariant with respect to the projective transfor-
mation of a line, i.e. if xi

′ = H2×2xi, where H2×2 is a matrix of such a transformation, then it
holds that d(x1

′, x2
′, x3

′, x4
′) = d(x1, x2, x3, x4).

Equation (9.44) holds even if one of the points is an ideal point, i.e. a point at infinity.

9.8 Closure

In this chapter we present a short introduction to the algebraic projective geometry. It consti-
tutes a very useful mathematical tool since it allows description of geometric objects under
perspective transformation in the language of algebra.
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9.8.1 Further Reading

Much more complete introductions to the area of projective geometry can be found, for ex-
ample, in the classic book by Semple and Kneebone [380] or in a recent book by Casse
[64]. Projective geometry in the light of computer vision is provided in the seminal works by
Hartley and Zisserman [180] or Faugeras and Luong [119]. There are also some short
overviews on the subject: the appendix in the book by Mundy and Zisserman [322] or in
the paper by Mohr and Triggs [314].
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10
Basics of Tensor Calculus
for Image Processing

10.1 Abstract

The tensor calculus has found many applications in computer vision and image processing. It
offers a more compact representation of many quantities, for instance relations among corre-
sponding points in many views of the same scene. Tensors are mostly used in physics, espe-
cially in mechanics and theory of relativity. In this section we give a very brief introduction
to this area, trying to explain this mathematical tool.

10.2 Basic Concepts

A characteristic feature of the tensor notation is lower and upper indices which in this case
do not mean a power of a variable. Number and position of indices indicate a type of tensor,
as will be discussed later on. The other specifics is the summation convention which simply
assumes that if in one equation different variables have the same index, then this means sum-
mation in respect to that index. Simultaneously the summation sign

∑
in this expression is

usually omitted. This is known also as the Einstein summation rule. For instance, instead of∑n
1=1 ai xi , we simply write ai xi . Notice that it is customary that the summation indices (i in

our example) are repeated, however at different positions – in the first factor it is an upper
index (contravariant), and lower (covariant) in the second, or vice versa. It means also that we
know the summation range (n in the above example).

Let us now consider a vector x in an n-dimensional vector space with given base bi. Such
a vector can be thought of as an ordered set of n real values, or a directed straight line con-
necting two points, say point O, the centre of the coordinate system, and a point P. It can be
represented with respect to the base bi as follows:

x =
n∑

i=1

xi bi , (10.1)

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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or in the Einstein notation:

x = xi bi . (10.2)

Thus, knowing the base, we can write x = (x1, x2, . . . , xn).
There are two basic mathematical concepts which are important prerequisites to understand

tensors. These are:

� linear operators;
� change of coordinate systems – Jacobians.

We will discuss them in the next sections.

10.2.1 Linear Operators

For a given vector x let us assign a vector y. This way we have defined a vector function f as
follows:

y = f (x). (10.3)

We say that f is linear if for any scalar values r, s and any vectors x, y the following is fulfilled:

f (rx + sy) = rf (x) + sf (y). (10.4)

Now, taking (10.1) into (10.4) we obtain

f (x) = f

(
n∑

i=1

xibi

)
=

n∑
i=1

xi f (bi ), (10.5)

or in a short form

f (x) = xi f (bi ). (10.6)

Thus, to find a value of a linear function f of any vector x it is sufficient to know only n values
of this function on the base vectors bi (which we can actually precompute once and then use
for any new vector x). This is all that we need to completely describe f . However, from (10.3)
we see that f (bi) is also a vector, and therefore it can be expressed in accordance with (10.1),
which holds for all vectors:

f (bi ) = T 1
i b1 + T 2

i b2 + · · · + T n
i bn = T k

i bk, (10.7)

where T k
i are scalars (compare with (10.2)), which constitute components of a tensor T.

The last thing is to substitute (10.7) into (10.6) to obtain

f (x) = xi
(
T k

i bk
)
. (10.8)
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This tells us that to find a vector, being the result of a linear operator f on a vector x, all we
need to do is sum up products of the components of the vector x, the base vectors bi and the
values of tensor T. Thus, to completely define f we need to know its associated tensor T, as
in (10.7). In the next sections we will see what happens if the base bi is changed into b′

i.
Finally, let us notice also that the notion of a linear function (10.3) can be extended into a

more general concept of a linear operator which maps a vector x into vector y:

f : x → y. (10.9)

This way we can generalize the space of linear functionals on to such mathematical operations
as differentiation or integration:

f ≡ d(·)
dx

, f ≡
∫

(·)dx, etc. (10.10)

However, because of the concept of a tensor, an application of the above linear operator can
be represented as a simple multiplication, so instead of (10.3) we write simply

y = Tx, (10.11)

where f and T are related by (10.7).

10.2.2 Change of Coordinate Systems: Jacobians

Equation (10.1) denotes a vector x with coordinates xi given in a certain coordinate system U
with base bi. Let us now connect xi with the curvilinear coordinates x′j of the system U′ by
the continuously differentiable and bijective functions, as follows:

xi = xi (x ′ j ), x = x(x ′ j ), (10.12)

x ′ j = x ′ j (xi ), x′ = x′(xi ), (10.13)

i.e. xi are functions of xj and xj are functions of xi. Figure 10.1 depicts two 3D coordinate
spaces. The first one has centre O; the second has centre in a point P which traverses a curve C.

Now it is possible to define new vectors, called the local basis:

b′
i = ∂x

∂x ′i = ∂(x j b j )

∂x ′i = ∂x j

∂x ′i b j = α
j
i b j . (10.14)

Thus for U → U′ we have

α
j
i = ∂x j

∂x ′i . (10.15)

The ordered table of α
j
i is called a coordinate systems transformation matrix, known also a

Jacobian matrix J = [αi
j]. Since the transformation functions are assumed to be continuously
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x2′
c

P
b1′

b2′ b3′

b3
b2

b1

x1

x1′

x3′x3

x2

U

U ′

O

Figure 10.1 Two coordinate systems U and U′ with base vectors

differentiable and bijective, then there is also an inverse matrix J−1 with elements

β
j
i = ∂x ′ j

∂xi
(10.16)

for the transformation U′ → U.

10.3 Change of a Base

Let us assume now that the basis vectors bi are transformed by a certain invertible matrix A
and let us check the corresponding change of components of the vector x. New basis vectors
can be represented as

b′
j = Ai

j bi , (10.17)

where Ai
j represents (i, j) elements of the matrix A transforming the base. The above can be

written in short as

b′ = Ab. (10.18)

Since A is invertible then the original base can be found as

b = A−1b′. (10.19)

From (10.19) and (10.2) we obtain vector representation in a new base as follows:

x′ = A−1x. (10.20)

This way we come to the important conclusion that although the base vectors transform in
accordance with the matrix A, coordinates of a vector x transform with an inverse matrix,
i.e. A−1.
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Let us assume that the vector x considered so far represents a point on a line l. Substituting
(10.20) into (9.8) we obtain

x′T(ATl) = 0. (10.21)

However, the above can be interpreted as a line l in a new base, given as follows:

l′ = ATl. (10.22)

In this case, however, a change of base vectors in accordance with (10.18) entails the same
change of the coordinates of l, i.e. in accordance with the matrix A.

Based on the above analysis we can express a change of the coordinates of x and l in respect
to the change of the basis given by a matrix A. These are as follows:

x ′i = (A−1)i
j x

j (10.23)

and

l ′i = A j
i l j . (10.24)

Notice that coordinates of a tensor can transform in accordance with A or A−1, where –
let us remember – A is an invertible matrix which transforms a base of the space under
consideration. This turns out to be a feature characteristic to all tensors. The former transfor-
mation corresponds to the covariant tensors (lower indices), whereas the latter corresponds
to the contravariant tensors (upper indices). There are also mixed tensors. The number of
indices of a tensor is called its valence.

An example of a tensor of a valence (1, 1) is a tensor which is obtained for a given matrix
H in a projective space, after simultaneous change of the base in input and output spaces in
accordance with matrices A and B, respectively. Thus, the new matrix H′ takes the form

H′ = B−1HA. (10.25)

Coordinates of H′ can be written now in the following form:

H ′i
j = (B−1)i

p Aq
j H p

q . (10.26)

An important conclusion is that the way of transformation of a certain value, caused by a
change of the base of the space, determines whether this value is, or is not, a tensor, and if it
is, then what the valence of that tensor is.

A scalar, a vector or a matrix are special cases of a more general m-th dimensional tensor
of an n-th order, which contains mn coordinates. In the 3D case, i.e. m = 3, scalars can be
treated as tensors of zero order, for which 30 values need to be provided. Vectors, however,
are tensors of first order and therefore they require 31 values, and so on [49].
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10.4 Laws of Tensor Transformations

One of the most important features of tensors is the way in which they transform on a change
of basis of a space. This is governed by a principle of tensor transformations, which in this
section is discussed for first- and second-order tensors. However, the rules can be analogously
generalized to tensors of higher rank. Let us note also that to check whether a given mathe-
matical object is a tensor it is sufficient to check whether it transforms in accordance with the
tensor transformation rule, discussed below.

In a change of a basis of a coordinate system U into U′ covariant components of a first-order
tensor T transform in accordance with the following rule:

T ′
i = αk

i ′ Tk, (10.27)

whereas the contravariant ones undergo the following transformation:

T
′i = αi ′

k T k, (10.28)

where αk
i ′ and αi ′

k are components of the direct and the inverse transformations of the basis
of this system (10.15), i.e. from U into U′, respectively. In the special case of linear systems,
these are elements of the already introduced system transformation matrix A, as well as its
inverse, respectively. In the case of orthogonal systems, αk

i ′ can be treated as a cosine value of
the angle between the i-th axis of the U′ system and k-th axis of the axis in U.

On the other hand, there is also a connection between the covariant and contravariant com-
ponents of a tensor (in one and the same coordinate system). These are given as follows:

Ti = gikT k, (10.29)

T i = gikTk, (10.30)

where

gik = bi · bk, gik = bi · bk . (10.31)

In the case of 2D tensors, apart from the pure covariant or contravariant components, the
mixed components are also allowed. In this case the transformation law is given as

T ′
ik = αl

i ′α
m
k ′ Tlm, (10.32)

T
′ik = αi ′

l αk ′
m T lm, (10.33)

T
′k
i = αl

i ′α
k ′
m T m

l . (10.34)

The relations (10.29) and (10.30) as well as (10.32)–(10.34) are used then to check whether
a given entity is a tensor or not.



P1: OTA/XYZ P2: ABC
c10 JWBK288-Cyganek December 5, 2008 2:8 Printer Name: Yet to Come

Basics of Tensor Calculus for Image Processing 397

10.5 The Metric Tensor

Let us now observe that in accordance with (10.31) the following holds:

g′
ik = b′

i · b′
k = αl

i ′bl · αm
k′b

′
m = αl

i ′α
m
k′bl · b′

m = αl
i ′α

m
k′glm, (10.35)

which stays in agreement with (10.32). This means that gik is a second-order tensor which is
called a metric tensor.

Due to the assumption of a bijective transformation of coordinates, the determinant of the
Jacobian matrix is always different from zero. Therefore it is straightforward to define the
inverse metric

gik = (gik)−1 , (10.36)

gikgk j = δi
j , (10.37)

where δi
j and δij are called Kronecker symbols, defined as follows:

δi
j =

{
1, i = j

0, i �= j
δi j =

{
1, i = j

0, i �= j
. (10.38)

From this it follows that the inverse metric can be expressed as

gik = β i
mβk

nδmn. (10.39)

With gik we can define the dual local basis bi as follows:

bi = gikbk . (10.40)

In the Euclidean space the base vectors bi = ei are orthonormal, therefore the following holds:

gik |E = ei · e j = δi j . (10.41)

10.5.1 Covariant and Contravariant Components in a Curvilinear
Coordinate System

Figure 10.2 depicts a 2D coordinate system with a vector �q. Its covariant coordinates and
contravariant coordinates are obtained by two different projections on to the base axes b1 and
b2. Namely, the contravariant coordinates q1 and q2 are obtained as a result of the parallel
projection, whereas the covariant coordinates q1 and q2 are obtained from the orthogonal pro-
jection. Notice that in the case of an orthogonal system, i.e. φ1 + φ2 = 1/2π , the corresponding
coordinates would be equal.

Let us find values of q1 and q2 and also of q1 and q2. Starting from (10.2) we can write

q = q ′i bi = q ′1b1 + q ′2b2. (10.42)
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Figure 10.2 Covariant q1, q2 and contravariant q1, q2 coordinates of a vector �q in the nonorthogonal
2D coordinate system

However, we have to remember that in general bi are not normalized, so the above can be
transformed as follows:

q = q ′1b1
‖b1‖
‖b1‖ + q ′2b2

‖b2‖
‖b2‖ = q ′1√b1 · b1

b1

‖b1‖ + q ′2√b2 · b2
b2

‖b2‖ , (10.43)

which after (10.31) takes the form

q = q ′1√g11
b1

‖b1‖ + q ′2√g22
b2

‖b2‖ . (10.44)

Thus

q1 = q ′1√g11 and q2 = q ′2√g22. (10.45)

To find q1 and q2, notice that

qi = ‖q‖ cos φi = ‖bi‖
‖bi‖ ‖q‖ cos φi = bi · q

‖bi‖ = bi · q√
bi · bi

= bi · q√
gii

, (10.46)

which after (10.31) and defining

q ′
i = bi · q, (10.47)

takes the following form:

q1 = q ′
1√
g11

and q2 = q ′
2√
g22

. (10.48)
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Finally, from (10.47) and (10.42) we obtain easily that

q ′
k = bk · q = bk · (

q ′i bi
)
. (10.49)

However, taking into consideration (10.31) we see that

q ′
k = gkiq

′i . (10.50)

10.5.2 The First Fundamental Form

Metric can be interpreted as a certain entity that describes basic geometrical properties of its
space with a coordinate system given by w1 and w2. Now, an expression on an infinitesimal
arc length in that space can be stated as follows:

(ds)2 = gikdwidwk . (10.51)

The quadratic equation above is also called the first fundamental form. Since gik in the above
denotes a metric tensor (10.35), which transforms in accordance with (10.32), then ds2 is
invariant with respect to any allowable transformation of coordinates.

The first fundamental form (10.51) can be interpreted as an infinitesimal element of an arc
of a curve, defined parametrically by w1(t) and w2(t), where t is a parameter [259, 263, 397].
It is a very important concept of differential geometry since it allows measurements of angles,
lengths of arcs or areas on a surface. Thus, it defines a metric on a surface. Moreover, a metric
defined by a quadratic differential form like (10.51) is called a Riemannian metric and the
corresponding geometry a Riemannian geometry.

10.6 Simple Tensor Algebra

In this section we summarize the most important facts on basic algebraic operations of tensors,
such as tensor summation or product, but also tensor contraction, inner product and finally re-
duction of a tensor to its principal axes. The definitions are provided for second-order tensors,
although they can easily be extended to other dimensions.

10.6.1 Tensor Summation

The sum of the second-order tensors A and B, with components Aij and Bij, respectively, is a
second-order tensor C with components given as follows:

Ci j = Ai j + Bi j . (10.52)

A required condition for this operation is that the added tensors have the same structure,
i.e. the same valence.
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10.6.2 Tensor Product

A product of the second-order tensors A and B, with components Aij and Bij, respectively, is
a fourth-order tensor C with components given as follows:

Ci jkl = Ai j Bkl . (10.53)

This is called an outer product of tensors. It is easy to verify that this product is not commu-
tative. However, contrary to addition (10.52), the outer product (10.53) can be computed for
tensors with different valence.

For higher order tensors this operation is defined analogously to (10.53). A result is a tensor
of a higher rank which is a sum of the ranks of tensors multiplied in this way.

10.6.3 Contraction and Tensor Inner Product

A contraction of a tensor N of rank n ≥ 2 is a summation operation with respect to its two
indexes. As a result, a tensor is obtained of rank n − 1. For instance, if n = 3, then there are
three ways of the tensor contraction, namely Niij, Niji and Nijj, where e.g. Niij = N11j + N22j +
N33j for j = 1, 2, 3, and so on.

A tensor multiplication connected with tensor contraction with respect of the indices be-
longing to different components is called an inner product of a tensor.

For the special case of second-order tensors, their inner product is given as follows:

N · M =
∑

kl

Nkl Mkl, (10.54)

where Nkl and Mkl are components of the tensors N and M, respectively.

10.6.4 Reduction to Principal Axes

Let us consider multiplication of a second-order tensor T with a first-order tensor N (i.e. a
vector). As a result a tensor M is obtained which is of first order with coordinates

Ti j N j = M j . (10.55)

The resulting tensor M is generally different from N. However, an important special case is
when the above operation does not lead to tensor (vector) rotation, and only to a change of its
modulus. Thus, we search for a solution to the following problem:

Ti j N j = λN j , (10.56)

where λ is a certain scalar value, called an eigenvalue.
Vectors that fulfil the above equation are called eigenvectors, whereas directions determined

by them are called principal directions or characteristics for the tensor T.
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10.6.5 Tensor Invariants

Tensor invariants are expressions composed of some tensor components, which do not change
when transforming the coordinate systems from U to U′.

One of the commonly known and extensively used invariants is the Frobenius norm. For a
second-order tensor N it is determined as follows:

‖N‖2 = N · N =
∑

kl

N 2
kl =

∑
i

λ2
i , (10.57)

where Nkl represents components of N.

10.7 Closure

In this chapter we present a very concise introduction to the tensor calculus. Tensors, which
can be seen as a generalization of the concept of linear operators, find application in computer
vision to capture multilinear relations among geometrical objects, such as points, lines, planes,
etc. It is interesting to observe that such commonly used concepts as scalars, vectors and
matrices are also examples of tensors, so even while not naming them explicitly we use tensors
in everyday life.

10.7.1 Further Reading

The tensor calculus has found many applications in computer vision and image processing
areas. It offers a more compact representation of many quantities, such as relations among
corresponding points in many views of the same scene. Tensors are mostly used in physics,
especially in mechanics and theory of relativity. In this chapter we give a very brief intro-
duction to this area. A very good (and inexpensive) introduction into the realm of tensors is
the book by Borisenko and Tarapov [49]. For more formal treatment of tensors on manifolds
one can refer to the classic book by Bishop and Goldberg [45]. A brief introduction with
many exercises and examples is provided in the textbook by Kay [241]. More recent books on
this subject are the seminal work by Penrose [344] and the monograph by Dimitrienko [103]
which provides a unified geometric representation of a tensor and tensor operations. Both are
excellent sources for self-study of the notions of manifolds, differential geometry and tensors.

Indirect sources of information on tensor calculus are books devoted to the differential
geometry. Recommended reading in this area are books by Kreyszig [263] and Guggen-
heimer [167], as well as the works by Spivak [397] and the recent book by Kühnel [264].
Although most of them are not the most recent publications in the field, they are very intuitive
and still can be obtained at very affordable prices from their publishers. A nice introduction
to differential geometry, especially suited for self-study, is the frequently cited book by do
Carmo [110].

Finally, tensors have found a profound place in works devoted to computer vision, such as
the ones by Triggs [428, 429] or the excellent book by Hartley and Zisserman [180].
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11
Distortions and Noise in Images

11.1 Abstract

Noise is an additional, usually unwanted, component that interferes with a pure signal. Its
source comes from certain physical phenomena encountered during signal acquisition and
transmission. There are many types of noise that can contaminate a ‘pure’ 2D signal of an
image. In this chapter we discuss various types of noise that can be encountered in digi-
tal images, as well as different models of noise. However, sometimes we wish to generate
an image with predefined type and level of noise. This is usually done for testing the tolerance
of noise in feature detectors or matching modules. In this chapter we also discuss some simple
algorithms for these tasks.

11.2 Types and Models of Noise

The presence of noise in a signal is usually modelled by either addition

f̂ (x) = f (x) + η (11.1)

or multiplication

f̂ (x) = η · f (x) (11.2)

of the original signal by a random variable. In the above formulas f̂ (x) stands for observ-
able signal, f (x) is a ‘pure’ signal and η is a random variable that models a noise which is
characterized by the distribution function.

Table 11.1 describes the most common types of noise encountered in digital images. We
do not provide information on many other types of noise, e.g. speckle noise and photographic
grain noise, etc. Further information on the subject can be found, for instance, in Chan and
Jianhong Shen [65] and Starck et al. [399, 400].

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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Table 11.1 Types of noise encountered in images.

Noise Description

Gaussian noise Gaussian-type noise is used to model such physical phenomena as thermal noise
and sometimes photon counting and film grain noise. For this type of noise we
use the additive model, in accordance with (11.1), in which the random variable
η has the Gaussian density function pη(x), in the following form:

pη (x) = 1√
2πσ

e− (x−µ)2

2σ2 , (11.3)

where µ is the mean and σ is the variance. If µ = 0, σ = 1 then we have a
normal Gaussian distribution.

When applying directly (11.1) we have to consider the limited precision of
the data representation used for pixels. Usually one has to fulfil the condition
that f (x) + η is positive and does not exceed the maximum range of a pixel.
It is interesting to note that values x which exceed ±3σ are ‘highly improbable’.

Salt and pepper
noise

The name of this type of noise comes from the visual effect which manifests as
white and black dots in images – the same as scattering salt and pepper over a
sheet of paper. One source of this phenomenon is transmitting lines of digital
images. Assuming that B bits are used to code a value I of a pixel x we have

I (x) =
B−1∑
k=0

bk2k . (11.4)

Assuming further that each bit transferred over the channel under consideration
can be flipped with probability α then the probability of the received value J(x)
fulfils the following condition:

P
(|I − J | = 2k

) = α, (11.5)

where k ∈ (0, . . . , B − 1). For the most significant bit (MSB) the mean square
error (I − J)2 follows α(2B−1)2. Usually salt and pepper noise is a result of a
random change of the MSB in pixel representation, so white pixel becomes
black or vice versa.

This type of noise can be modelled as follows [65]:

f̂ (x) = (1 − a) f (x) + ab, (11.6)

where a is a random variable (of some distribution) characteristic of the
probability p = Pr(a = 1) and b is a random variable characterized by Pr(b =
f MAX) = Pr(b = f MIN) = 0.5. So the process of generating salt and pepper noise
can be viewed as double drawing process: at first we generate a random variable
a with probability p of the event a = 1. Then, if it happened that a = 1 with 50%
probability, we draw for b to be f MAX or f MIN.
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Table 11.1 (Continued)

Quantization
noise

Quantization noise is a result of the change of a continuous signal into a digital
representation which, of course, is of finite precision. It arises also in a change
from one digital representation into another with smaller precision (fewer bits).
Thus, we can say that this type of noise is a result of an introduced error into the
data representation.

Quantization noise is usually modelled as a random variable with uniform
distribution [341]. An exception is the case for a small number of quantization
levels, in which the quantization noise is signal dependent and cannot be
modelled as uniform.

Photon counting
noise

Photon counting noise arises from the physical properties of image acquisition
systems that rely on photon counting. For instance, the speed of a shutter in a
camera influences the number of photons that can reach the sensor and as a
result adds to the photon counting noise.

This type of noise is best modelled as a discrete random variable with
Poisson distribution [341], as follows:

Pr (n = k) = e−λλk

k!
, (11.7)

where n denotes the number of counted photons in a certain (but constant) time
interval, k is the number of actually counted photons in a single experiment
(observation), thus k = 0, 1, 2, 3, and so on, and λ > 0 is a parameter. The
expected value and variance of (11.7) is the same and equal to λ. It is interesting
to note that the best estimation of the (usually unknown) parameter λ is given as
a mean value from the population X [341]:

λ ≈ X = 1

N

N∑
k=1

Xk, (11.8)

where N denotes number of elements in the population X. In our case

λ ≈ 1

N

N∑
k=1

knk, (11.9)

where nk is the number of observations which resulted in exactly k photons and
N denotes the total number of observations. One can conclude that the higher
the number of counted photons k then the higher the value of λ. Therefore the
brighter areas in an image have higher λ and therefore a higher noise variance
(which is also λ).

11.3 Generating Noisy Test Images

Usually noise is an unwanted signal that contaminates the ‘pure’ signal and we try to filter it
out. However, for some experiments it is useful to generate images with a priori given noise
of known parameters. Such images can be used to test the behaviour of image processing
algorithms, e.g. their resistance to noise. The most common practice is to add Gaussian or salt
and pepper noise to the original image.
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Gaussian noise can be modelled as an additive noise (11.1) in which η is a random variable
with Gaussian distribution N(µ, σ ) where µ is the mean and σ the variance. Usually how-
ever, a noise approximated by a random variable with normal Gaussian distribution N(0,1)
multiplied by a certain constant is added to the source image f , as follows:

f̂ (x) = f (x) + aη, (11.10)

where a is a constant value.
To measure the difference between two images it is common to compute the mean-square

error (MSE) between the two, as follows:

MSE
(

f̂ , f
) = E

[(
f̂ − f

)2
]
. (11.11)

From the MSE one can compute the peak signal-to-noise ratio (PSNR), as follows:

PSNR
(

f̂ , f
) = 10 log10

(
m2

MSE
(

f̂ , f
)
)

[dB] , (11.12)

where m is the maximum pixel value (e.g. m = 255 for 8-bit images).
Introducing (11.10) and (11.11) into (11.12) we obtain

PSNR
(

f̂ , f
) = 10 log10

(
m2

E
[
(( f + aη) − f )2

]
)

= 10 log10

(
m2

a2 E
[
η2

]
)

= 20 log10

( m

aσ

)
. (11.13)

For 8-bit scalar-valued images (i.e. m = 255) and normal distribution (i.e. σ = 1), the above
can be written in a simpler form:

PSNR
(

f̂ , f
) = 48.13 − 20 log10 (a) , (11.14)

where a is a constant that allows us to control the parameters of the added Gaussian noise in
the same way as changing σ but in a more convenient way, since for all the time we can use
the same random generator with the normal Gaussian distribution N(0,1). Observe also that in
this particular case if a = m then PSNR = 0 which stays in agreement with our intuition – if
noise has potentially the same amplitude as signal then we cannot distinguish them. Thus, we
can express a in relation to m and express it as a percentage. By this token 0% (i.e. the pure
signal) stands for a = 0, whereas 100% (i.e. PSNR = 0) stands for a = m.

Sometimes it is convenient to generate noise with a given PSNR value – for this case we
compute easily the value a as follows:

a = 10
48.13−PSNR( ˆf , f )

20 , (11.15)

where the PSNR value is given in dB.
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11.4 Generating Random Numbers with Normal Distributions

Generation of random numbers with a given distribution is a nontrivial task. Usually one starts
from the pseudo-random generators of the uniform distribution. Most of the common software
libraries for numerical computations are equipped with a version of such a generator. Then,
based on uniform distribution, it is possible to build up generators of pseudo-random numbers
which approximate other distributions [249].

To generate random variables with normal distribution based on a generator of uni-
form distribution, the method of the ratio-of-uniforms, proposed by Kinderman and
Monahan [244], can be used. Algorithm 11.1 presents the C++ procedure GenerateNormal-
Value( ) realizing this idea.

///////////////////////////////////////////////////////////
// This function returns a random variable featuring
// normal gaussian distribution.
///////////////////////////////////////////////////////////
//
// INPUT:
// none
//
// OUTPUT:
// random variable with a normal gaussian
// distribution
//
// REMARKS:
// The used method is based on uniform random
// values and the ratio-of-uniform theorem
//
// Remember to initialize the random generator
// before calling this function.
//
double GenerateNormalValue( void )
{

const double kSqrE = 0.85776388496070679648018964127877; // sqrt(2/e)

double U, V, X, XX;
bool accept = false;
const double d_RandMax = (double)RAND_MAX;

do
{

U = rand(); // generate a uniform random value

if( U == 0 )
U = 1e-10; // since we later divide by U

else
U /= d_RandMax; // Let’s normalize U, so U( 0, 1 )

V = rand();
V /= d_RandMax; // V( 0, 1 )
V = kSqrE * ( 2.0 * V - 1.0 ); // V(-sqrt(2/e), sqrt(2/e))

X = V / U;

XX = X * X;
if( XX <= 2.0 * ( 3.0 - U * ( 4.0 + U ) ) )

accept = true;
else

if( XX <= 2.0/U - 2.0*U && XX <= - 4.0*log( U ) )
accept = true;

} while( ! accept );

return X;
}

Algorithm 11.1 Procedure to generate random variables with normal distribution N(0, 1) based on the
random generators of uniform distributions
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11.5 Closure

This chapter presents a short overview on types and models of noise encountered in digital
images. Also discussed are methods of generating noise of certain parameters. These can then
be used in testing tolerance to noise of some other image algorithms.

11.5.1 Further Reading

In the literature on image processing, noise is usually discussed in terms of image restoration
or signal filtering. From this category are books by Jähne [224] and Gonzalez and Woods
[157]. Literature on filtering of digital signals is very ample. Recommended readings in this
area are the books by Haykin [183], Oppenheim and Shafer [336], Mitra [312] and Mitra and
Sicuranza [313], to name a few. For additional information on noise in digital images one can
refer to the books by Chan and Jianhong Shen [65] or Starck et al. [399, 400].
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12
Image Warping Procedures

12.1 Abstract

Image warping is a process of changing the appearance of an image as a result of changing
pixel positions of an original image. The simplest change is a horizontal shift, to the left or to
the right, by one, two or n pixel positions. Things change however if such a shift has to be done
by a fractional displacement rather than integer positions and in two directions simultaneously.
In such a case, the new pixel position will not fall into an integer grid of image samples. Thus,
its new value has to be interpolated somehow to accommodate an arbitrary new position. Such
situations arise usually when a geometrical transformation is applied to the coordinate system
of an input image, such as rotation, translation, scaling or the already discussed projective
transformation. Thus, the image warping system consists of the coordinate transformation and
pixel interpolation stages, augmented by the warp module which sets the forward or backward
(inverse) warping scheme. It is easy to imagine image warping employed in some artworks.
However, it has broad applications in computer vision as well, such as in the already discussed
log-polar transformation (section 6.3.8) or elastic area-based matching (section 6.7). This
chapter presents details of software modules for image warping.

12.2 Architecture of the Warping System

Figure 12.1 depicts the architecture of the image warping system. It consists of the basic warp
module, as well as the coordinate transformation and the pixel interpolation modules.

The coordinate transformation module is responsible for computation of the positions of
pixels in the destination coordinate system, based on positions they had in the source system.
For forward warping it converts coordinates from the input image to the output (warped)
image, and for inverse warping the process is just reversed.

The pixel interpolation block is responsible for the computation of a value of a pixel in
the new coordinate space. This process requires information on neighbouring pixels and their
values.

Each of the modules of the warping system is implemented as separate class hierarchies.
Thus, adding new coordinate transformations or pixel interpolation algorithms is straightfor-
ward and consists of deriving a new class for a particular task.

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
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Coordinate transformation module

Pixel interpolation module

Warp module

Input image Output image

Figure 12.1 Architecture of the image warping system. It consists of three modules: warp engine,
coordinate transformation and pixel interpolation modules

12.3 Coordinate Transformation Module

The coordinate transformation module is responsible for mapping of pixel coordinates be-
tween two spaces of the source and destination coordinate systems. Since in this solution
we prefer the inverse warping scheme, then the coordinate transformation always does an in-
verse coordinate mapping, i.e. from the output (warped) space to the input (original) one. This
means that we need to know parameters of an inverse transformation. However, usually the
forward mapping is provided. In such a case the inverse mapping has to be found.

In this section the three types of coordinate transformations are discussed. We start with the
projective and affine plane transformations, then present polynomial and generic approaches.
The latter can be used in elastic stereo matching in which the reference image is warped in
accordance with the current disparity map and then compared with the second image. This
proceeds iteratively in the scale-space (section 6.7).

12.3.1 Projective and Affine Transformations of a Plane

An affine space �n is isomorphically transformed into the projective space ℘n, as discussed
in section 9.2. In the following discussion the homogeneous coordinates are employed, if not
stated otherwise.

The projective homography is defined as a nonsingular matrix (9.41). In the case of planar
homography we can rewrite this expression as

Hx = x̂, (12.1)
 h11 h12 h13

h21 h22 h23

h31 h32 h33





 x1

x2

x3


 =


 x̂1

x̂2

x̂3


 , (12.2)
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where H is the coordinate transformation (warping) matrix, x denotes pixel coordinates in the
homogeneous coordinates and x̂ is a new position of a pixel in the wrapped output image. The
projective homography of a plane requires nine parameters.

In many applications the affine transformation which corresponds to rotation, translation
and scaling is used. It is defined by only six parameters. It can be written as

Ax = x̂,
a11 a12 a13

a21 a22 a23

0 0 1





 x1

x2

x3


 =


 x̂1

x̂2

1


 . (12.3)

A choice of the third coordinate in the homogeneous system is somehow arbitrary, since
the projective transformations are defined up to a scaling factor; therefore in the case of affine
transformation given by the above equation it is convenient to assume that x3 = x̂3 = 1. This
has an additional advantage of avoiding division when computing Cartesian coordinates of x̂:

[
x1

x2

]
=

[
x̂1/1
x̂2/1

]
=

[
x̂1

x̂2

]
. (12.4)

12.3.2 Polynomial Transformations

The polynomial transformation of the point coordinates belongs to the class of nonlinear map-
pings. Thus, it can approximate wider group of transformations than for example the affine
mappings.

A polynomial transformation can be defined as follows [351]:

y = W · P (x) , (12.5)

where x denotes the input vector (a point), y is an output vector, W is a transformation matrix
and P denotes a polynomial on x.

Further, we will focus on the second-order polynomial transformation for which W and P
in (12.5) can be stated as follows:

W =
[

w11 w12 w13 w14 w15 w16

w21 w22 w23 w24 w25 w26

]
2×6

(12.6)

and

P (x) =




1
x1

x2

x2
1

x1x2

x2
2




6×1

where x =
[

x1

x2

]
and y =

[
y1

y2

]
. (12.7)
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In contrast to the affine transformations – where elements of the transformation matrix can
easily be found from given intuitive parameters, such as a rotation angle or scale – there are
12 parameters wij in (12.6) that need to be determined for a mapping with usually unknown
analytical form. This can be achieved after manual (empirical) choice of the number of control
points (at least six, since each point gives two equations) and their corresponding positions
in the output image. Then (12.5) is solved for W. For the more general case of more than six
corresponding points this can be achieved by the least-squares method (section 12.8).

12.3.3 Generic Coordinates Mapping

The group of generic transformations of point coordinates can be described by the following
expression:

y = � (x) , (12.8)

where � is a general (usually nonlinear) transformation function. This group is a general-
ization to the previously mentioned affine (12.3) and polynomial (12.6) versions. However,
usually it requires determination of an unknown transformation function which can be in the
form of a closed formula, fuzzy rules or look-up tables (i.e. look-up images). In the case of
warping stereo images, � is just a disparity map.

It is easy to observe that the generic coordinate mapping � in the form of a look-up table
can also be created by a single run of a coordinate transformation engine, such as affine or
polynomial which were discussed in the previous sections. This is a very useful technique
since further access to the look-up table is usually much faster than repetitive computation
even of a linear transformation. Such an approach was undertaken when computing log-polar
transformations for the selected image points – matching is then performed in the log-polar
domain (section 6.3.8).

12.4 Interpolation of Pixel Values

Computed by the coordinate transformation module, positions of output pixels usually do
not fall into the regular sampling grid of the input image (in the case of the inverse warping
which is assumed further on). Therefore a value of each pixel has to be determined with some
accuracy based on its neighbouring pixels. This is called value interpolation and is discussed
in the next sections.

12.4.1 Bilinear Interpolation

Interpolation is a process of finding unknown values of data from some other, but known,
values. It is often assumed that it is possible to determine a continuous function (e.g. a poly-
nomial of certain order, etc.) that passes through the known data points (see also section 4.4.2).
Then, the unknown value is simply a value of the interpolating function at the point of interest.
However, there are many possible functions to be placed in this role and they require different
amounts of known data points. For image interpolation we need to operate with 2D (or higher)
interpolation functions.
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r 

s

P4(x4,y4,v4)

P3(x3,y3,v3)

P5(x5,y5,v5)

P1(x1,y1,v1)

P2(x2,y2,v2)

Figure 12.2 Scheme of bilinear interpolation. The points P1–P4 lie on a regular grid of an image
coordinate system. The value v5 of point P5 is unknown and has to be determined

The bilinear interpolation of pixels relies on four nearest neighbours of a pixel whose value
is unknown and has to be found. This scheme is depicted in Figure 12.2.

The four nearest neighbour points P1–P4 are acquired at a regular grid of the image
and their intensity values v1–v4 are given. The interpolated point P5 lies at some fractional
distance from its neighbours. However, its value v5 is unknown and has to be determined.
In bilinear interpolation v5 is linearly related to v1–v4 in terms of the local distances r and s
(Figure 12.2), given as follows:

r = x5 − x1

x2 − x1
and s = y5 − y3

y2 − y3
. (12.9)

For the neighbouring grid pixels, denominators in the above are equal to 1. The value v5 can
be computed as the linear combination of the values v1–v4 weighted by r and s, as follows:

v5 = (1 − r ) (1 − s) v4 + r (1 − s) v3 + (1 − r ) sv1 + rsv2. (12.10)

The fractionals (12.9), as well as the linear combination (12.10), can be easily and accu-
rately computed with fixed-point arithmetic or even simpler binary arithmetic. The latter can
be accomplished finding the nearest two fractionals for r and s in (12.9), then accordingly
shifting the values v1–v4.
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The bilinear interpolation method is very simple and therefore frequently used. It appears
that such an approach is sufficient in many practical applications – introduction of interpola-
tion functions of order higher than linear does not necessarily lead to better results since the
type of the local relation among pixel values is usually not known a priori.

12.4.2 Interpolation of Nonscalar-Valued Pixels

Colour images belong to the class of nonscalar-valued images. For such a group the interpo-
lation scheme (12.10) is applied to each colour component separately. In other words, each
colour channel is treated as a separate mono-valued image and interpolation takes place on
scalar values of that channel. However, the coordinate transformation (12.2) is computed only
once for a given pixel position, so for this stage there is exactly the same number of computa-
tions regardless of the number of channels in the input image.

12.5 The Warp Engine

There are two common methods of image warping [449].

1. Forward transform.
2. Backward transform.

In forward warping (depicted in Figure 12.3) the input image is scanned line by line and
the pixels are transformed to the output image. Their positions are given by the result of linear
transformation. However this technique is troublesome since it results in images with holes
due to nonoverlapping regions of the mapping.

It can happen for some transformations that different points from the input are mapped to
the same point in the output image. However, all of them can have different values. Therefore
for this method we need to store those values in accumulators for further interpolation stage.

Because of the aforementioned problems with forward warping, backward mapping is of
interest, which is shown in Figure 12.4. This time, however, the output image is scanned pixel

P’a=P’b

P’c 

Pc 

Input image

H

Output (warped) image

Pb 

Pa

Figure 12.3 Forward warping scheme. Two different points Pa and Pb from the input space are mapped
to the same point P′

a = P′
b in the output space. Pc is mapped to P′

c
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P’c

P’a=P’b H−1

Pb

Pc
Pa

Input image Output (warped) image

Figure 12.4 Backward (inverse) warping scheme. The points from the output space are mapped into
the input space. Then, based on the nearest neighbours of a mapped point, its value is determined by
pixel-value interpolation. Even if the two points are mapped to the same input position, it does not pose
a problem

by pixel and the corresponding pixel position in the input image is computed. Once again, the
new positions more often than not do not lie on the integer grid of the input image.

Thus to determine the value of a pixel we need to resample the original image. However,
this time it is usually easier to find the closest neighbouring pixels of the input image that are
necessary for interpolation.

The inverse warping scheme assumes knowledge of an inverse transformation H−1, i.e. the
method of pixel mapping when going from the output image space to the input which usually
does not pose much of a problem.

12.6 Software Model of the Warping Schemes

The presented warping modules were implemented in C++ in the form of class hierar-
chies: the coordinate transformation hierarchy, the interpolation hierarchy and the image warp
hierarchy, respectively. These are briefly presented in the next sections. Complete source code
can be accessed from the website of the book [216].

12.6.1 Coordinate Transformation Hierarchy

Figure 12.5 shows the TCoordTransformEngine class hierarchy for different groups of coor-
dinate transformations. There are three main branches of derived classes.

1. The linear transformations, implemented by TLinearTransformEngine.
2. The nonlinear transformations, implemented by TNonLinearTransformEngine.
3. The generic transformations, from TGenericTransformEngine.

They reflect the transformation methods described in section 12.3.
Algorithm 12.1 presents the interface of the base TCoordTransformEngine class. The key

method is a functional operator whose role is transformation of input coordinates passed by
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+ TCoordTransformEngine();
   virtual Real_2D_Point operator () (const Real_2D_point & in) = 0;

TCoordTransformEngine

TCoordScalingEngine

TNonLinearTransformEngine

TLinearTransformEngine

T_2ndOrder_Polynomial_TransformEngine

TCoordRotationEngine

TCoordTranslationEngine

TCompound_LinearTransformEngine

LinMatrix fLinMatrix:

TGenericTransformEngine

#

Figure 12.5 Class hierarchy of the TCoordTransformEngine for different groups of coordinate trans-
formations

reference to the Real 2D Point. Particular implementations are left to the derived classes,
however.

If such transformation is not possible for some reason, then the TCoordTransform
Engine::kImpossiblePoint is returned. This can happen if a transformation (or its inverse)
is not defined for a given point.

12.6.2 Interpolation Hierarchy

Figure 12.6 presents the class hierarchy for pixel interpolation with the TpixelInterpolation
base class.

Algorithm 12.2 contains the definition of the base TPixelInterpolation class. It provides a
pure virtual functional operator whose role is to define a common interface for value interpo-
lation. There are two input parameters, the reference to the input image and point coordinates,
and one output value which is an interpolated value of a pixel.

12.6.3 Image Warp Hierarchy

Figure 12.7 presents the TImageWarp class hierarchy for different warp algorithms.
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///////////////////////////////////////////////////////////
// This class implements the hierarchy of the coordinate 
// transformation classes. 
///////////////////////////////////////////////////////////
class TCoordTransformEngine
{

public:  

// use it as an output whenever it is not   
// possible to determine the transformation   
static const Real_2D_Point kImpossiblePoint;   

public:  

// ===================================================   
  TCoordTransformEngine( void ) {}   

// class virtual destructor   
    virtual ~TCoordTransformEngine() {}   

// ===================================================   

///////////////////////////////////////////////////////////   
// This function converts a given point based on some   
// external parameters (set in derived classes)   
///////////////////////////////////////////////////////////   

  //   
// INPUT:   

in - the input point   //   
  //   

// OUTPUT:   
the output (converted) point   //   

  //   
// REMARKS:   

  //   
  //   

virtual Real_2D_Point operator () ( const Real_2D_Point & in ) = 0;   

};

Algorithm 12.1 Interface of the base TCoordTransformEngine class

TPixelInterpolation

+   virtual bool operator()( const TRealImage & inImage, 
const Real_2D_Point & inCoord, 
double & theInterpolatedVal );

TBilinearInterpolation

Figure 12.6 Class hierarchy for pixel interpolation with the base TpixelInterpolation
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for interpolation    //   
pointCoords - a point to be interpolated (it   //   

can be further processed in derived classes    //   
e.g. for the inverse warping)    //   

theInterpolatedValue - the output interpolated   //   
value of a pixel    //   

  //   
// OUTPUT:   

true if operation successful,   //   
false otherwise   //   

  //   
// REMARKS:   

  //   
  //   

virtual bool operator()( const TRealImage & inImage,    
const Real_2D_Point & inCoord,         

) = 0;  double & theInterpolatedVal        

};

class TPixelInterpolation
{

public:  

TPixelInterpolation( void ) {}   
virtual ~TPixelInterpolation() {}   

public:  

///////////////////////////////////////////////////////////   
// This function interpolates a pixel value   
///////////////////////////////////////////////////////////   

  //   
// INPUT:   

inImage - the image that serves pixel values   //   

Algorithm 12.2 Interface of the base TPixelInterpolation class

TlmageWarp

TCoordTransformEngine

TPixellnterpolation

TSimpleImageBackwardWarp

+ TlmageWarp( ... );
virtual TReallmage * operator () ( void ) = 0;

Figure 12.7 Class hierarchy of the TImageWarp
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class TImageWarp
{

protected:  

const TRealImage & fInImage;   

TCoordTransformEngine & fCoordTransformEngine;   

TPixelInterpolation & fPixelInterpolation;   

public:  

// ===================================================   
const TRealImage & inImage,  TImageWarp(    
TCoordTransformEngine & coordTransformEngine,      
TPixelInterpolation & pixelInterpolation );       

// class virtual destructor     virtual ~TImageWarp() {}   

// =================================================== 
  

///////////////////////////////////////////////////////////   
// This function performs the image warping.   
///////////////////////////////////////////////////////////   

  //   
// INPUT:   

none   //   
  //   

// OUTPUT:   
none    //   

  //   
// REMARKS:   

  //   
  //   

virtual TRealImage * operator () ( void ) = 0;   
};

Algorithm 12.3 Interface of the base TImageWarp class

Algorithm 12.3 presents the interface of the base TImageWarp class. The pure virtual func-
tional operator defines a common interface for this class hierarchy. It does not take any input
parameters which are supplied to the constructors. This technique allows the same interface
which is required for the virtual functions. At the same time the necessary parameters can be
changed from class to class by definition of new constructors. The warped image is returned.

12.7 Warp Examples

In this section we present some experimental results obtained from the software model de-
scribed in the previous section.

Figure 12.8 presents the original test grey-valued image ‘Airplane’. Its version rotated by
−22◦ is depicted in Figure 12.8(b). It should be remembered that in the case of inverse (or
backward) warping the supplied warp parameters should reflect the inverse transformation,
i.e. from the output image space to the input space. It is also evident in Figure 12.8(b) that not
all pixels from the output image can be mapped with this transformation to the valid places in
the input image; thus they have to be filled with black.

Figure 12.9 presents another version of the affine transformations. The version is rotated
by 22◦ around the central pixel, rotated −11◦ around the centre and translated by vector
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(a) (b)

Figure 12.8 (a) ‘Airplane’ test image (Source: USC-SIPI Image Database) and (b) its affine trans-
formed version (rotated −22◦ around a point [33, 33])

[33, −17], rotated 11◦ and scaled by [0.77, 1.89] and a compound transformation consist-
ing of rotation, translation and scaling.

Figure 12.10 depicts the ‘Airplane’ image transformed by polynomial inverse warping.
The parameters in (12.5) are as follows: W = [0, 1, 0, 0.001, −0.001, 0.001] [0, 0, 1,
0.001,−0.001, 0.001] (Figure 12.10a), and W = [0,1, 0, 0, −0.001, 0] [0, 0, 1, 0.001,−0.005,
0.001] (Figure 12.10b).

Figure 12.11 presents the ‘Airplane’ image warped with the generic transformations. The
horizontal variable was sinus modulated (Figure 12.11a), and both the horizontal and vertical
variables were sinus modulated (Figure 12.11b).

The drawback of the generic transformations is the requirement of a look-up table of size
equal to the size of the input image. However, they allow easy tiling and combination of
all possible transformations. The other advantages come from easy implementation and fast
execution.

Figure 12.12 depicts ‘Kamil’ colour image in the RGB space (see Plate 7), and the output
image after the affine transformation consisting of a −43◦ rotation around a centre point,
scaling by [0.7, 0.8] and translation of the [155, 0] vector. The interpolation was applied in
each channel separately, as described in section 12.4.2.

12.8 Finding the Linear Transformation from Point Correspondences

In this section we discuss the problem of finding parameters of a coordinate transformation
from point correspondences. This method can be used to assess linear parameters of a trans-
formation, i.e. if the transformation can be written in the form of a set of linear equations. The
number of equations can be equal to or greater than the number of unknown parameters.

Let us start from the affine transformation (12.3). However, because we perform inverse
warping, instead of finding the matrix A we look for its inverse B = A−1, assuming it exists.
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a b 

c d 

(a) (b)

(c) (d)

Figure 12.9 Affine transformed versions of ‘Airplane’: (a) rotated 22◦ around the central pixel;
(Source: USC-SIPI Image Database) (b) rotated 11◦ around the centre and translated by [33, −17]; (c)
rotated 11◦ and scaled by [0.77, 1.89]; (d) rotated (88◦), translated (by [4, 5]) and scaled (by [0.2, 0.9])

B describes mapping from the output to the original (i.e. unwrapped) image space. Since
we have six unknown parameters and each 2D point adds two equations, then at least three
different points are necessary to determine the parameters of matrix B. Moreover the points
should not all lie on a single line, since otherwise we end up with dependent equations which
lead to a singularity. Such basic mapping can be written as follows:




P1 = BP̃1

P2 = BP̃2

P3 = BP̃3

, (12.11)

where P1 − P3 and P̃1 − P̃3 are points in the original and warped spaces, respectively. To find
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(a) (b)

Figure 12.10 ‘Airplane’ image after polynomial inverse warping: (a) W = [0, 1, 0, 0.001, −0.001,
0.001] [0, 0, 1, 0.001, −0.001, 0.001]; (b) W = [0, 1, 0, 0, −0.001, 0] [0, 0, 1, 0.001, −0.005, 0.001]

B, we rewrite the above equation into the following representation:




p̃11 p̃12 p̃13 0 0 0 0 0 0
0 0 0 p̃11 p̃12 p̃13 0 0 0
0 0 0 0 0 0 p̃11 p̃12 p̃13

p̃21 p̃22 p̃23 0 0 0 0 0 0
0 0 0 p̃21 p̃22 p̃23 0 0 0
0 0 0 0 0 0 p̃21 p̃22 p̃23

p̃31 p̃32 p̃33 0 0 0 0 0 0
0 0 0 p̃31 p̃32 p̃33 0 0 0
0 0 0 0 0 0 p̃31 p̃32 p̃33







b11
b12
b13
b21
b22
b23
b31
b32
b33




=




p11
p12
p13
p21
p22
p23
p31
p32
p33




, (12.12)

(a) (b)

Figure 12.11 ‘Airplane’ warped with the generic transformations: (a) sinus modulated horizontal vari-
able; (b) sinus modulated horizontal and vertical variables. (Source: USC-SIPI Image Database)
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(a) (b)

Figure 12.12 ‘Kamil’ image warped with affine transformations: (a) the original RGB image (colour
version in Plate 7); (b) the output image after the affine transformation consisting of a −43◦ rotation
around a centre point, scaling by [0.7, 0.8] and translation by the [155, 0] vector

where pij are components of points and bij are elements of B. This can be written also in a
shorter form:

P̃b = P, (12.13)

where b9×1 is a vector containing aligned elements of B, and P̃9×9 and P9×1 are given in
(12.12).

In this section we briefly recall how to solve a linear system of equations, especially if the
number of equations is greater than the number of unknowns, i.e. for the so-called overdeter-
mined system of linear equations [259, 352]. In image warping this happens, for example, for
the polynomial transformation with more control points specified than the number of polyno-
mial coefficients.

The linear system of equations is given as

Ax = B, (12.14)

where AM×N is a matrix of coefficients, xN×1 is a matrix (vector) of unknowns and BM×1 is
a matrix (vector) of coefficients. The system (12.14) can be uniquely solved if M = N and
A is not singular. In the case M > N (more equations than unknowns), the system (12.14) is
overdetermined, and, in general, it has no solution since B is an M size vector and as such
does not belong to the range(A), which is at most of N-th order. Therefore the above problem
has to be reformulated, and instead of (12.14) we seek a solution to the equation

R = B − Ax (12.15)
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that minimizes coefficients of RM×1. For the purpose of minimization we need to choose a
certain norm on the vector. The most natural (or intuitive) choice is the L2 norm (i.e. the
Euclidean distance), for which the minimization problem (12.15) is expressed as follows:

min
x

‖B − Ax‖L2
. (12.16)

A vector x which solves (12.16) under L2 is the closest vector in the range(A) to the vector B.
It can be proved that the solution to (12.16) is given by such a vector x0 for which the

residual R is orthogonal to the rank(A). To find x0 let us build the following functional E(x):

E(x) = ‖B − Ax‖L2
, (12.17)

which for the norm L2 can be expressed as

E(x) = (B − Ax)T (B − Ax) . (12.18)

Differentiating the above equation with respect to x we obtain the so-called normal
equation:

d

dx
E(x) = d

dx

(
BTB − xTATB − BTAx + xTATAx

)
= −ATB − ATB + 2AATx = −2AT (B − Ax) . (12.19)

Then equating to zero to find its extreme point x0, we obtain

AT (B − Ax0) = 0. (12.20)

Assuming that ATA is nonsingular, the unique solution to the above is given by

x0 = (
A∗A

)−1
A∗B, (12.21)

where A
∗

is a conjugate matrix to the matrix A, and A+ = (A
∗
A)−1A

∗
is called a pseudoinverse

of A.

12.8.1 Linear Algebra on Images

A simple image is represented in a computer memory as a 2D array of discrete values, pixels.
The same type of structure is used in mathematics to represent matrices, arrays of data. Thus,
having defined a structure type for image representation (see section 3.7.1.2) we are granted
a matrix representation as well, and vice versa. We have even more thanks to the recursive
properties added by the C++ templates mechanism which in the case of images are used
mostly to provide the type of pixel. With this technique, however, there is no obstacle to
provide any pixel type which will be stored in an image, even another image, which has
pixels of a certain type, and so on. This way we define multiply indexed structures which can
be used to represent tensors (Chapter 10).

The accompanying software package has been endowed with a set of template functions
for basic matrix operations such as multiplication, inverse and pseudo inverse, as well as a
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const TImageFor< T > & b);

/////////////////////////////////////////////////////////// 
// This function returns a new matrix which is the  
// result of multiplication of the operands a and b. 
/////////////////////////////////////////////////////////// 

  // 
// INPUT: 

a - reference to the first matrix   // 
b - reference to the second matrix   // 

  // 
// OUTPUT: 

a * b if possible   // 
0 otherwise   // 

  // 
// REMARKS: 

Template parameter T stands for pixel type;   // 
Template parameter D stands for intermediate   // 

results accumulator;    // 
//

The caller is responsible for disposing of   // 
the returned object!!!   // 

  // 
 template< typename T, typename D/* = double*/ > 

TImageFor< T > * Orphan_Mult_Matrix(        const TImageFor< T > & a,   

Algorithm 12.4 Orphan Mult Matrix template function for multiplication of a matrix a times b. The
matrices are represented as images with pixels of type T . All intermediate results are stored in variables
of type D which can be the same or different from T . (Reproduced by permission of Pandora Int. Inc.,
London)

solution of the set of linear equations. Their declarators are presented in Algorithms
12.4–12.8. The functions can be used for instance to find point transformation matrices given
by equations (12.14) and (12.21), discussed in the previous section.

The input and output parameters are in the form of image template classes TImageFor<T>

where T denotes the type of pixel, i.e. type of element of the matrix.

///////////////////////////////////////////////////////////
// This function returns a new matrix which is the
// inverted matrix of the input one (if possible). 
///////////////////////////////////////////////////////////

  // 
// INPUT: 

in_data - reference to the first matrix   // 
  // 

// OUTPUT: 
inverse matrix of in_data, if possible   // 
0 otherwise   // 

  // 
// REMARKS: 

Template parameter T stands for pixel type;   // 
Template parameter D stands for intermediate   // 

results accumulator;    // 
//

The caller is responsible for disposing of   // 
the returned object!!!   // 

  // 
template < class T, class D /*= double*/ > 
TImageFor< T > * Orphan_Inv_Matrix( const TImageFor< T > & in_data );  

Algorithm 12.5 Orphan Inv Matrix template function which returns an inverse of the input matrix if
such exists. The matrices are represented as images with pixels of type T . All intermediate results are
stored in variables of type D which can be the same as or different from T . (Reproduced by permission
of Pandora Int. Inc., London)
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///////////////////////////////////////////////////////////
// This function returns the conjugate (i.e. transposed) 
// matrix. 
///////////////////////////////////////////////////////////

  // 
// INPUT: 

in_matrix - the input matrix (= an image);   // 
its value is only read    // 

  // 
// OUTPUT: 

a pointer to the orphaned transposed matrix if possible,   // 
0 otherwise   // 

  // 
// REMARKS: 

The returned object is to be disposed of   // 
by a caller (i.e. it is orphaned)   // 

//
Actually it is not a proper conjugate, only transposed.   // 

  // 
template < class T, class D /*= double*/ > 
TImageFor<T> * Orphan_Conjugate_Matrix( const TImageFor< T > & in_data ); 

Algorithm 12.6 Orphan Conjugate Matrix template function which returns a conjugate of the input
matrix. The matrices are represented as images with pixels of type T . All intermediate results are stored
in variables of type D which can be the same as or different from T . (Reproduced by permission of
Pandora Int. Inc., London)

There is also a second template parameter D which defines a type used for all intermediate
results, such as summation of products, etc. This one should be chosen to allow desirable
precision of the computations. In practice, the simplest choice is a built-in type double or
float which represents numbers with the floating point format [258]. However, a fixed format
can also be employed. Unfortunately, most of the modern programming languages do not
provide a suitable type for such format. For this purpose the FixedFor<> template class has
been added. More often than not it allows compact representation (smaller memory usage) of

///////////////////////////////////////////////////////////
// This function returns the Penrose-Moore pseudo-inverse 
// matrix (a matrix is an image): 
//                   -1 

A~ = ( A* x A )   x A*  // 
//
///////////////////////////////////////////////////////////

  // 
// INPUT: 

in_matrix - the input matrix (= an image);   // 
its value is only read    // 

  // 
// OUTPUT: 

a pointer to the orphaned pseudo-inverse matrix if possible,   // 
0 otherwise   // 

  // 
// REMARKS: 

The returned object is to be disposed of   // 
by a caller (i.e. it is orphaned)   // 

  // 
template < class T, class D /*= double*/ > 
TImageFor<T> * Orphan_PseudoInv_Matrix( const TImageFor<T> & in_matrix ); 

Algorithm 12.7 Orphan PseudoInv Matrix template function which returns a Moore–Penrose pseudo
inverse if it exists. The matrices are represented as images with pixels of type T . All intermediate re-
sults are stored in variables of type D which can be the same as or different from T . (Reproduced by
permission of Pandora Int. Inc., London)
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///////////////////////////////////////////////////////////
// This function returns the solution to the linear 
// system of linear equations in the form: 
//

Ax=B    // 
//
// if such exists. 
///////////////////////////////////////////////////////////

  // 
// INPUT: 

A - the input matrix    // 
B - the input matrix (a vector)    // 

  // 
// OUTPUT: 

a pointer to the orphaned solution vector x,   // 
0 otherwise   // 

  // 
// REMARKS: 

The function implements partial pivoting.   // 
//

The returned object is to be disposed of   // 
by a caller (i.e. it is orphaned)   // 

  // 
template < class T, class D /*= double*/ > 
TImageFor< T > * Orphan_Linear_Solution( const TImageFor< T > & A, const  
TImageFor< T > & B );

Algorithm 12.8 Orphan Linear Solution template function which solves the set of linear equations
Ax = B, if solution exists. The matrices are represented as images with pixels of type T . All intermediate
results are stored in variables of type D which can be the same as or different from T . (Reproduced by
permission of Pandora Int. Inc., London)

pixels or intermediate results compared to the floating point representation. It also allows more
precise computations in a predefined dynamic range, however. Thus its application should be
preceded by an analysis of the required dynamics of data to avoid overflow problems.

The template functions in C++ do not allow default template parameters. Therefore D has
to be provided explicitly. An option is to put a template function into a template class which
does not possess such restrictions (e.g. see definitions of the TImageFor<> or Convolve<>

for convolution).
The result of a matrix computation is returned as a pointer to a separate image object or 0

if computations cannot be finished for some reason (for instance a matrix was singular when
trying to find its inverse, etc.). It should be remembered that this object is ‘orphaned’ which
means that a caller is responsible for its disposal when the object is not used any more. If
failing to do so, memory leaks will occur. A possible modification of this behaviour would be
to employ the std::auto ptr<> passed by value.

Complete implementations of the above are included in the accompanying software
library [216].

12.9 Closure

This chapter is devoted to the problem of changing image geometry, called image warping.
For this task, point mapping as well as image resampling are required. For the former, the
methods of finding an affine transformation from point correspondences are presented. For
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the latter, the interpolation scheme is discussed. Finally, the object-oriented implementation
of a simple warping software is also presented.

12.9.1 Further Reading

More information on the warping methods can be found in the book by Wolberg [449] or in
many scientific papers such as the one by Zokai and Wolberg [465].
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13
Programming Techniques for
Image Processing and Computer
Vision

13.1 Abstract

Image processing and vision by a computer are very demanding areas of computational sci-
ence. The obvious initial observation is the amount of data which has to be processed in a
limited time. But not only is the size of the input a problem here. Development of image
processing methods and algorithms as well as their efficient implementations are the real
challenges here.

When programming for engineering systems it can be useful to know the basic construc-
tions, idioms and design patterns, so in the design stage we can catch most of them emerging
in our project. It is the strength and beauty of the patterns that they appear to be ubiquitous
in almost every system, regardless of its particular destination and application. Knowing their
features we can make a more conscious choice. Such a strategy leads usually to more mod-
ular – or object aware – designs which are easier to comprehend and then to implement and
maintain.

In-depth understanding of the subject being implemented and then tracing the execution
steps in the run time is a must for proper building of any software system. Even educated
guesses, vague assumptions or clutter in the code almost always lead to faulty designs. Unfor-
tunately, the reverse does not unconditionally guarantee success. Nevertheless, it can move us
closer to a desired solution.

In this chapter we provide a number of programming concepts explained by simple
examples rather than by formal definitions. This learning-by-example method has been
shown to be very efficient in practice, since all we need to do is understand and remember
those examples, which is much easier. However, we assume a basic knowledge of C++ and
object-oriented concepts, such as classes, objects, relations “has-a” and “is-a”, basics behind
class templates, etc.

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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13.2 Useful Techniques and Methodology

In this section we discuss a number of useful programming tips and techniques that, if properly
used, can enhance the clarity of a design, as well as lead to improvement of the code quality
and help achieve a correct solution.

13.2.1 Design and Implementation

When developing software we have to remember that programs are written primarily for peo-
ple, then for computers. Computers do not need structural or object-oriented methods. For a
computer a series of numbers denoting machine operations and data is what it needs to run
a program. The better the quality of design and implementation, the better are the results of a
program and the more the possibilities of reuse of it as a whole or its parts.

In this section we briefly discuss some practical techniques for making design and code
more understandable to the creator and other programmers, such as commenting, naming
conventions, as well as modelling conventions for better expression of concepts.

13.2.1.1 Comments and Descriptions of ‘Ideas’

Each programming language is endowed with means of expressing some information which
are not commands for execution by a computer. Instead, their role is to facilitate description of
the ideas and concepts behind the code and they are intended for people. Interestingly enough,
even a person creating a code finds his or her comments placed along the code useful after a
week, a month or maybe a couple of years.

From a practical point of view, the most useful are brief descriptions of the main or basic
ideas behind part of a code, a function or a class. Writing what the code does in each of its
lines is sometimes useful, but most important are descriptions of the general ideas, algorithms
and concepts.

Each programmer should develop his or her own style of writing code and comments on it.
Algorithm 13.1 presents an example of a simple comment tag that can be placed at the begin-
ning of each function in the code. The same can be used for classes, namespaces, components,
etc.

//   
// INPUT: 
//    [put description of the input parameters]
//   
// OUTPUT: 
//    [put description of the output parameters]
//   
// REMARKS: 
//    [place additional information on the function 
//     or its calling conventions, etc. ]
//

///////////////////////////////////////////////////////////
// This function [put here main purpose of a function]
///////////////////////////////////////////////////////////

Algorithm 13.1 A way of commenting on a function
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Table 13.1 Naming conventions that increase code readability

Prefix Application Examples

A Template parameters ADoubleTrait
E enum data in classes EErrorCode
f Data members of a class (fields) fErrorCode
g Static data that are not constant gRegularizationSpan
k Constant data (also enum) kPolyMatrixCols
M Mixin classes MPointMarker
T Base and standard classes TPixelInterpolation
V Virtual base classes VInOut

13.2.1.2 Naming Conventions

After proper comments, naming conventions can greatly help to understand code. There are
a number of rules which regulate how different groups of commands, data types, etc., are
named. If used systematically, they allow understanding of the roles of particular identifiers
only from their names, not referring to their context. This speeds up code analysis and adds
to code readability.

Everybody can develop such naming conventions. However, it is a good idea to use some
which are used by other people or groups. By this we will understand each other better. In the
procedures presented in this book we adopt the notation conventions developed by Taligent

R©

[414]. The most useful are presented in Table 13.1.
A useful hint when developing names for identifiers (variables, constants, functions,

classes, etc.) is to put a concise but informative name. It can be composed of a number of
words connected by the underscore or each starting with a capital letter. Use abbreviations
sparingly, however. For instance, implementing a counter for rows in an image, instead of
writing

int tmp1;
place

int row counter;
or

int rowCounter;

Almost all classes contain a number of members to set or get its private or protected data.
These are commonly called setters and getters. Hence, it is common practice to start their
names with Set. . . and Get. . . prefix, respectively.

Another group constitute the methods that create, orphan, copy or adopt some objects. It
is recommended to start their names using these prefixes, i.e. Create. . ., Orphan. . ., Copy. . .
and Adopt. . ., respectively. Semantics of these functions is discussed in section 13.4.

13.2.1.3 Unified Modelling Language (UML)

Unified Modelling Language (UML) is a set of rules for visualization of different
facets of engineering design. These are described for instance in the book by Booch
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et al. [48] which has about 500 pages. In this section we briefly outline only the
very basic concepts of UML, especially in the context of design of computer vision
systems.

The basic concept of UML is a diagram. The main diagrams are named and briefly
explained in the following list. More information on the subject can be found in Booch
et al. [48].

1. Use case diagram – shows relationships between so-called actors and use cases in a system.
These are used to model the behaviour of a system, subsystem or a class. Each presents
use cases with actors, i.e. participating entities, as well as relations among them. More
frequently than not they are used to present:
� an environment of the system;
� requirements of the system.

The following depicts an exemplary case diagram of a vision system for face recognition.
It models the requirements of that system. There are two actors: administrator (ADMIN)
and user (USER). Use cases are placed in the adjacent rectangle. These are: system setup,
image acquisition, filtering, face detection and face recognition.

ADMIN 

Face recognition system

Image  
acquisition 

Filtering 

Face  
detection 

Face  
recognition 

USER 

System setup

2. Activity diagram – models a procedural flow (from an action to an action) with behaviour
in a system. Activity diagrams are used to model dynamics of a system. Usually it is a
flow chart of sequential, but sometimes also parallel, computational steps required to fulfil
a given task.

Below, an activity diagram is depicted of a simple system for road sign recognition.
The oval boxes denote single action steps. Synchronization or split of actions is depicted
with thick bars. There are two parallel recognition stages. The first one (left branch) does
figure detection followed by sign recognition. The second one (right branch) does template
matching in the log-polar space. Thus it can directly recognize a sign from an input image.
If the two branches give unanimous answers, then a recognized sign is reported to a user.
Otherwise the process is started again.
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Load next frame 

Colour segmentation 

Figure detection 

Sign 
found? 

Sign recognition 

Template based sign  
recognition 

Scale space 

Recognized? 

No 

No 

Report to the user

3. Interaction diagram – depicts patterns of interaction between objects in a time sequence. It
also models dynamic aspects of a system. The key factors are: participating actors (objects,
components, etc.), message sequence and time. Thus, this type of diagram should be used
to model time dependencies among messages sent by participating objects.

u: user

Object
detection

Action delegation:
filtering

Completed

Completed
Completed

Action delegation:
template matching

h: hardwares: software
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In the example there are three participants: user (u), software (s) and hardware (h). A mes-
sage sent from a user results in a series of messages passed from software to hardware and
vice versa. Upon completion of all of them, a final message is given back to the user.

4. State transition diagram – models states and transitions that show the response of a system
to some excitations. State diagram models dynamic aspects of a system with states and
transitions. These are elements of the state machines which can be of Mealy or Moore
type. In the former, each next action is governed by the current state and the values of
the current input. In the latter, actions depend only on the current state. There can be state
machines that mix the two approaches as well.

There are two specific states (shown below): a start (a single dot) and a stop (a double
dot). The next state is determined from the current state and transition.

5. Component diagram – catches relations between software and external components.
In the diagram below a relation among three components is visualized. The components

are encapsulated self-contained programming entities, such as classes, packages, small pro-
grams, etc. In the provided example these are: user application, system libraries and image
library. All have to be connected in some way on behalf of the user’s application.

User 
application 

Image 
library 

System 
libraries



P1: OTA/XYZ P2: ABC
c13 JWBK288-Cyganek December 5, 2008 1:56 Printer Name: Yet to Come

Programming Techniques for Image Processing and Computer Vision 435

6. Deployment diagram – shows deployment and/or set up of components on processors and
devices. Apart from visualizing components and their connections, the deployment dia-
gram takes into consideration devices, such as microprocessors, computers, etc., in which
components are installed. These devices are called nodes.

In the diagram below there are two nodes, each with its own components. The nodes in
this example are connected by the PCI Express connection.

User
application

Image
library

System
libraries

PCI Express

Node 1: Computer

Node 2: Hardware board

7. Class diagram – depicts the static structure, relationships and internal structure of objects.
These are the most frequently used diagrams in this book. Many examples of real class
hierarchies have been presented in previous chapters. The most basic is a concept of a
class with its components. A class can contain attributes (data members) and operations

Base class name 

Derived class name 

+ Public attribute 

# Protected attribute :  data type = val 

Template 
arguments 

– Private attribute : data type 

# Protected operation(  arg list ) :  result 

+ Public operation(  arg list ) :  result 

– Private operation( arg list ) :  result Class name 

Aggregation 
(unidirectional  
navigability) 

0..1 

1 

0..* 

0..* 

Composite  
aggregation 
(bi-directional  
navigability) 

Class name 

  Dependence
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(function members). Each of them can belong to the public, protected or private section
of a class. Public members are accessible to all users of an object of that class, whereas
usage of protected members is restricted exclusively to this class and all publicly or
protected derived classes from it. These restrictions are modelled by the +, # and − signs,
respectively. A small triangle depicts a class derived from its base. The empty diamond
denotes an aggregation which means that a class owns some other objects which are not
necessarily members of that class. The filled diamond means a composite aggregation
which indicates that an object of a class is actually composed of some other objects. There
can be also some loose dependencies among classes which are denoted by a dashed line
with an arrow.

13.2.2 Template Classes

Templates in C++ allow writing classes, for which some parameters are provided later, during
template instantialization. This is called generic programming, that is, writing universal code
for types which we might not even know. An example is the TImageFor< > class (Algorithm
13.8) which accepts pixel type as its template parameter. Pixels can be any objects which have
a default constructor. Apart from types, template arguments can convey constant values which
can be used in class instantialization, such as size of a static array or an initialization value for
a variable. It is not our purpose to discuss all aspects of writing template classes – for such a
discussion see [401, 434]. However, much can be learned from the examples provided in this
chapter and from analysis of the attached code.

However, there is one particular construction related to template classes which is of special
importance. This is template specialization which allows a kind of a break from a general
definition of a template class and its implementation for specific type which for some reason
should be treated differently. Algorithm 13.2 presents an example of a specialized template
class. It is a TImageFor< bool >, i.e. a definition of an image for which pixels are bit values.
Certainly, the general template TImageFor< > could be easily instantiated with the bool ar-
gument, but in this case we would sacrifice a whole byte for a single bit which in the case of
images means significant waste of space. However, to access single bits in a computer word
we need to change the implementation. Thus, TImageFor< bool > has different constructors
and other members from the general class TImageFor< >, e.g. SetPixel( ) and GetPixel( ).

////////////////////////////////////////////////////////////
// Specialization for binary images. 
// Its internal structures are organized in such a way as to
// save on space and access time. 
////////////////////////////////////////////////////////////
template<> class TImageFor< bool > 
{

// Definitions specific to images with bit pixels  
// …  

};

Algorithm 13.2 Specialization of the template class TImageFor<> for pixels being bit values ‘true’
or ‘false’
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13.2.2.1 Expression Templates

The expression template is a technique of expressions encoded into template arguments [434].
Evaluation of an expression is postponed until the whole expression is created in a form of a
compound template parameter. Such an approach allows for precise expression parsing and
more efficient execution. Instead of single operations at a time, the most efficient way can be
chosen. For example, if a and b are arrays of hundreds of real values (a double type), then for
an expression1

a = 11.3∗a + b∗a,

the naive solution would compute each component separately. This would result in

tmp 1 = 11.3∗a

tmp 2 = b∗a

tmp 3 = tmp 1 + tmp 2

Then the final assignment is performed:

a = tmp 3

However, a more efficient solution is to rewrite the above expression as follows:

a∗= (11.3 + b)

and then perform computations starting from this representation.
The expression templates allow efficient evaluation of expressions. This method has many

similarities to the other template technique, called mataprogramming. In the latter, some pa-
rameters are evaluated already at compilation time, during the template instantiation phase.

However, there are certain inherent limitations of this technique. For example it does not
work for matrix vector multiplications, such as the following:

b = a∗b,

where a2×2 and b2×1. The problem comes from the fact that a temporary object should be
created to store an intermediate result since the result which goes to b at the same time depends
on each element of the input parameter which happened also to be b. Such situations promote
creation of a run-time structure that represents the expression tree instead of encoding the tree
in the type of expression template.

1We assume an element-by-element multiplication here.
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13.2.3 Asserting Code Correctness

When designing programs one of the most important aspects is their correctness. This can be
breached by many types of errors, however. The most common are due to simple programming
bugs or code fragments unprotected against invalid input data. The situation gets even worse
if the problems result from wrong design or simple misunderstanding of the subject.

However, countermeasures can be undertaken from the beginning of the design process to
help write code which does its job, does not crash and does not cause memory leaks, at least.

The first thought is to analyse and understand the problem before we start writing a code. It
is recommended to use a top-down approach or, in other words, a divide and conquer strategy.
Each superior task should be divided into smaller tasks. Then work on each task separately
having the same divide and conquer rule in mind, and so on. However, do not forget about
common interaction among the modules.

13.2.3.1 Programming by Contract

To ensure the correctness of a program a good approach is to use the programming by contract
technique [305]. This means treating a software procedure as a kind of a business contract
which should have its pre- and post-conditions. Apart from this we have invariants, i.e. rules
which should be true at whatever step of execution a program is. Thus, each software module,
component, class, method or even code block can have its own pre- and post-conditions,
as well as invariants. In the simplest, but very useful, approach all of them are called code
correctness assertions or requirements. For proper operation of a software component all its
assertions should be met during execution, in their true state, before and after execution of
this component. Otherwise we say that an assertion was fired. What these are in a program are
simply fragments of code, usually active only in its debug version, which check consistency
of data or conditions which a programmer thinks should always be true. However, this is a
different mechanism from, for example, checking whether input data is correct, although the
two can be applied together.

A practical method to implement pre- and post-conditions with invariants is to implement a
kind of a preprocessor macro command which checks a Boolean condition and if it evaluates
to ‘false’ a message is displayed or other form of information issued to the programmer (e.g.
it can be an entry in a log file, etc.). Algorithm 13.3 presents an exemplary implementation
of the REQUIRE macro that accepts a Boolean expression. If the Boolean condition does not
evaluate to ‘true’ then a message is launched, an example of which is presented in Figure
13.1. The REQUIRE macro can be used to insert assertions in a debug version of the code. In
a ‘release’ version, REQUIRE is usually translated to an empty statement, however.

Finally, a version of the code is controlled by another flag, usually set by a tool used for
program development. In the Microsoft Visual R© C++ environment this is a DEBUG flag
which controls a multiplatform DEBUGGING flag (Algorithm 13.3).

Usually it is problematic as to what to do if REQUIRE fails. In Algorithm 13.3 a user is
given three options which are unconditionally abort execution, stop and allow debugging at
code fragment, or ignore and launch execution of further statements. Implementation pro-
vided in Algorithm 13.3 assumes the Windows R© operating system. However, it can be easily
changed to other platforms, by simply exchanging the MessageBox() function to its coun-
terpart in another system. In some critical applications and if assertions do not slow the
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// The _DEBUG flag is set by the Microsoft® Visual C++ 
// For other platforms change the flag to appropriate. 
#if _DEBUG 

#define DEBUGGING 1     
#else

#define DEBUGGING 0     
#endif

////////////////////////////////////////////////////////////////////////

DEBUGGING 
#if 

#define _QUOTE(x) #x  
#define QUOTE(x) _QUOTE(x)  

// on REQUIRE violation exit if not IGNORE from the user  
#define REQUIRE(expr) 

  

 

    { \ 
   

  

 

    
if( ! (expr) )  
  

\ 

     

  

 

      

{ 

  

\ 

        

  

 

     

int m;                                            \ 

   
      

  

 

  

if( (m = MessageBox(NULL,                         \

   
   

  

 

#expr "\n\n" "IN FILE: " __FILE__              \ 

    
 

  

 

"\n" "IN LINE: " QUOTE(__LINE__),              \  

    
 

  

 

"HIL\'s REQUIRE doesn\'t hold",                \   

    
  

MB_ICONSTOP | MB_ABORTRETRYIGNORE))==IDABORT ) \  

    

ExitProcess((UINT)-1);                      \

     
   

 

 

   
  

else                                              \  

    
      

  

 

  

if( m == IDRETRY )                             \  

    
    

  

 

  

DebugBreak();                              \

  

}                                                   \

       

 

 

} 

// DEBUGGING #else 

#define REQUIRE(expr)   ;  

  // DEBUGGING #endif 

Algorithm 13.3 Definition of the REQUIRE macro for assertions in debug mode. Code version for
Windows R©

Figure 13.1 Windows R© dialog launched after detecting false condition in a REQUIRE
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///////////////////////////////////////////////////////////  
  //  

// INPUT:  
col - number of columns   //  
row - number of rows   //  

  //  
// OUTPUT:  

none   //  
  //  

// REMARKS:  

Memory for data is allocated but    //  
 data is NOT initialized.   //  

  //  
void Create( Dimension col, Dimension row  )   
{  

REQUIRE( col > 0 ); // pre-condtions     

REQUIRE( row > 0 ); 

fRow = row;   

fCol = col;   

fElems = row * col;   

fData = (T*) new T[ fElems ];   

REQUIRE( fData != 0 );  // post-condition   
}  

///////////////////////////////////////////////////////////  
// This function initializes an image  

Algorithm 13.4 Example of assertions with REQUIRE to check for input parameters (pre-conditions)
and valid memory allocation (post-conditions) in a procedure creating a new image

computations too much, they can be left in the ‘release’ version of the program, however with
no user dialog and with unconditional execution–abort exchanged into throwing an exception
of proper type.

An even simpler solution would call a dummy function in which a breakpoint can be set.
Thus, any false requirement would result in a stopped execution by this breakpoint.

Algorithm 13.4 presents an example of the REQUIRE macro used in a method creating a
new image. It is placed at the beginning and at the end of the method, thus implementing
pre- and post-conditions. The first one checks whether the declared size of an image is greater
than 0, otherwise a logical error is encountered. The post-condition ensures that a memory has
been really allocated for an image. If there is not enough memory space, then this value might
result in a zero pointer for data allocation which means that an object has not been initialized
as we expected.

More information on defensive programming and many other techniques improving code
quality can be found, for instance, in the excellent books by McConnell [305] and by Strous-
trup [401].

13.2.4 Debugging Issues

When developing a system a good strategy is not to postpone debugging until all components
are finalized and connected together. Instead, their debugging should be performed parallel
with the development of different components. Then the whole system has also to be checked
when all its modules are assembled together. It is impossible to check all possible cases of ex-
ecution or input data. However, some simple rules can save us from the majority of simple but
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sometimes very dangerous software malfunctions. One such rule postulates code debugging
as soon as possible.

This concept can be facilitated by the object-oriented paradigm of a self-contained class
and class encapsulation. Each class should be designed in a way which results in a clear
implementation with a well-defined state and interface. Its dependence on the other objects
should also be well specified. This creates a kind of a ‘constraint space’ which can be checked
separately. Just after implementation a class should be debugged by its programmer. Such a
strategy has good practical reasons since if debugging is postponed then some details have
a tendency to become vague, which makes testing even more difficult. Then, if possible, a
software component should also be checked by another person.

When testing computer vision systems the main problem is the size of the input data. For
example, usually it is not possible to check processing of a procedure for each pixel in a video
stream. Instead, a test pattern can be created for which a result can easily be predicted from an
algorithm. Sometimes a very useful strategy is to create so-called ‘border patterns’, i.e. input
data examples for the specific start or stop conditions, such as all pixels black, white or a fine
grid, etc.

When dealing with iterative procedures it is also very important to check their stop condi-
tions. If it is not possible to check all possible cases then an additional counter with a preset
limit of iterations can be of help.

13.3 Design Patterns

Design patterns are specific engineering constructions which exhibit similar behaviour even
when operating in different applications. They were first observed in architecture, and then
were adopted to the realm of software development. There are many types of such software
design patterns which can be further classified into specific categories such as creational,
structural and behavioural patterns [144].

Design patterns are not a recipe for all problems encountered in software design. However,
if used properly they can help greatly in this process by discovering characteristic and com-
mon system constructions which can be thought of and implemented in a unified way. Such
a strategy usually leads to a more comprehensible design, reusable components and a more
readable code. The following sections provide basic information on design patterns frequently
encountered in computer vision software.

13.3.1 Template Function Objects

The function objects technique is a very powerful extension to the ‘ordinary’ functions con-
cepts encountered in all programming languages. There are many varieties of the ‘function
object’ (or functor) term, however [3, 401, 441]. Nevertheless, the main virtue of this tech-
nique comes from the fact that function objects can store a state. This is evident especially
when compared to the simple function pointers or member pointers [3, 401]. They can also
be easily extended in derived classes, as well as passed as arguments to other functors and
template parameters. The basic concept of the function object can be explained based on the
class in Algorithm 13.5.
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1 template < class T > 
2 class ExemplaryFunctor

3 {
4 protected:  
5 T fState;   
6 public:  
7 ExemplaryFunctor( T & state ) : fState( state ) {} 
8 public:  
9 virtual void operator() ( void );   // uses fState   

10 };

Algorithm 13.5 Exemplary functor class

The ExemplaryFunctor<> template class defines a family of classes that are differentiated
by a template parameter T . There are two distinctive phases of its run-time behaviour.

1. Creation time – the state variable is provided and stored in the created object (line 5 in
Algorithm 13.5). In such constructions it is always a question whether to store a copy of a
state or only a reference or pointer to it. All three solutions have their implications which
depend on their role and lifetime in a system. For ‘simple’ types, such as double the first
option is most natural. For all others, it has to be decided taking into consideration what
other parts of a program have access to state and what is its lifetime.

2. Call time – the operator( ) is invoked here, which can perform any implemented action, ha-
ving access to the already set ‘state’ (line 9 in Algorithm 13.5). More often than not, this is a
virtual function to allow polymorphic calls through references or pointers to the base class.

There are some limitations of this technique, however. The first is that if operators were
to be implemented as function objects then they should be able to build class hierarchies and
have a unified way of argument passing to the operator(). Moreover, this operator should be
declared ‘virtual’, so the derived classes can be accessed by base pointers and references,
and to allow for inheritance. This, in turn, poses a problem since different operations usually
require different sets of parameters with different call policies. However, passing parameters
can be solved by constructors which store necessary parameters in state members (variables)
until operator() is invoked.

Nevertheless, the already mentioned functor techniques are very powerful and with some
substantial modifications are used in many designs. The most important adjustment can be
summarized as follows.

1. The input parameters of an operation are template arguments. This way we can build oper-
ation for any type.

2. The operator() is declared virtual.
3. The operator() takes no parameters in run-time. All parameters are passed (e.g. by refer-

ence) during construction.

Similar patterns are presented in the book by Gamma et al. [144], in which it is called the
Command design pattern. Another approach, called generalized functors, is presented in the
book by Alexandrescu [3].

13.3.2 Handle-body or Bridge

Systems are composed of modules. The modules communicate through interfaces. Thus,
changing the specification of a single interface causes much variation in all affected
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cooperating parts of the system. Therefore interfaces should be well worked out before being
put into the system. They should be changed only if necessary. However, behind interfaces
are algorithms operating on some data structures. This part we call a body of a system. It
undergoes much variation, not only during implementation but also when the system grows
and changes through the years. Understanding the behaviour of these two realms is important
to design complex computer systems. Therefore a question arises as to how we can join these
two different parts.

An answer is to split a design into two separate lines of development. The first one is
concerned with design and implementation of interfaces, the second with the body. In terms
of design patterns the first is called a handle, the second a body. This is how a handle–body
design pattern was developed.

Figure 13.2 depicts the relationship between a handle and its body. A primary role of a
handle is to define an interface which is used to communicate with other components. The
real execution of an action is delegated to the associated body part, however. The coupling is
rather loose between the two, so the body can be easily changed. This leads naturally to the
strategy design pattern, discussed in section 13.3.4.

In the image library the handle–body pattern is applied to separate implementation of the
image operators from their representation (see Figure 3.29). This is the prime purpose of the
library to allow two different ways of implementation of basic image operations: in software
and in hardware. The latter allows much faster execution time at a cost of additional hard-
ware connected to the computer. Then, a change of the implementation should not affect the
application code which makes call to the library operators.

As an example let us analyse the code fragment presented in Algorithm 13.6. It lists a skele-
ton of the 2D Convolve OperationFor binary operator which is a handle, that is, it defines a
common interface for the 2D convolution. The implementation is in a separate hierarchy of
classes which tries to optimize this operation depending on such factors as mask separability
(section 4.2.1), etc. Thus, a real action is delegated to the objects responsible for computation
of the convolution with given parameters and on a given platform.

HANDLE 

BODY interface 

implementation 

action 
delegation

Figure 13.2 Handle–body design pattern
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the static kgThreadSecurity object is supplied   //   which does nothing    // 

  
opCompCallback - optional reference to the callback   // 

  
object which is called upon completion of operation;    // 

  
by default the static kgOperationCompletionCallback

   
// 

  

object is supplied which does nothing 

   

// 

  
  

// 

  
_2D_Convolve_OperationFor( RetType & retImage,  

  
const InType_1 const & inImage1, 

         

  
const InType_2 const & inTemplateImage, 

         

 
 

 

TOperationCompletionCallback & opCompCallback );   

      

 
  

/////////////////////////////////////////////////////////// 

 

 

// The function operator which 2D convolves an image with 

 

 

// the supplied mask (it is either a one row image or 

 

 

// a vector<>) and puts a result to the output image. 

 

 

/////////////////////////////////////////////////////////// 

 

 

  // 

 

 

// INPUT: 

 

 

none   // 

 

 

  // 

 

 

// OUTPUT: 

 

 

a pointer to the return image   // 

 

///////////////////////////////////////////////////////////
//
// This class implements binary template image operation: 
// the two dimensional (full) convolution of
// an image and template-image. 
//
///////////////////////////////////////////////////////////
template< typename RetIm_Type, typename InIm_Type1, typename InIm_Type2 > 
class _2D_Convolve_OperationFor TImageTemplateOperationFor< public : 
RetIm_Type,  InIm_Type1, InIm_Type2 > 
{

public:  

/////////////////////////////////////////////////////////// 
  

// Class constructor  
  

/////////////////////////////////////////////////////////// 
  

  // 
  

// INPUT: 
  

retImage - reference to the output image   // 
  

of type RetIm_Type (specified by the     // 
  

first template parameter)    // 
  

inImage1 - constant reference to the first constant   // 
  

input image of type InIm_Type1 (specified      // 
  

by the second template parameter)    // 
  

inTemplateImage - constant reference to the constant   // 
  

InIm_Type2 (specified type of template-image input    // 
  

by the third template parameter). This    //   is a 2D "mask" of the convolution.    //   resourceAccessPolicy - optional reference to   //   the thread security object (derivative    //   of the TThreadSecurity class); by default    //   

  // 

 

// REMARKS: 

 

TThreadSecurity & resourceAccessPolicy,

Algorithm 13.6 Example of the handle – a 2D convolution operator. It defines only an interface for
convolution. An action is delegated to the separate implementation in the form of Convolve() function.
A change to implementation does not affect the interface. (Reproduced by permission of Pandora Int.
Inc., London)
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It is required that the input image and the mask,   //   

are different from the output object.   //   

Otherwise data will be corrupted!   //   
  //   

virtual void * operator()( void )   
{   

MImageOperationRetinue theImageOperationRetinue( * this );     
Convolve( fInImage1, fImageTemplate, fRetImage ); // action  
return & fRetImage; 

   
}   

};

Algorithm 13.6 (Continued)

If the computation method is changed now, due, for instance, to faster implementation (e.g.
an optimized assembly code), or a computation platform is changed from software to hard-
ware, then only the implementation part will be changed. In our example the Convolve() helper
function will need to be implemented in a different way, depending on new circumstances.

As with most of the patterns there are some further questions on object behaviour and some
special situations. These (or rather answers to them) can help further understand the pattern.

� What module is responsible for allocating/deallocating the body object(s)?
� What is the relation among handles/bodies; is it possible to assign multiple bodies to a single

handle? A strategy pattern?
� What is the best way of developing hierarchies of handles and bodies?

Some hints on the above and further analysis of the handle/body pattern is provided for
instance in [175]. In [144] handle–body is called a bridge pattern.

13.3.3 Composite

Composite belongs to one of the most common and interesting structural patterns [144, 441].
It allows composition of objects into tree-like structures which represent part/whole hierar-
chies. Thus, from an external point of view, a single leaf as well as a composition of leaves
can be treated in the same way, i.e. they exhibit the same interface, although having different
internal structures.

Figure 13.3 depicts a class hierarchy of a simple composite pattern extracted from the more
complex hierarchy of the coordinate transformation engines in Figure 12.5. There are three
types of objects involved: a component, a composite and a leaf. The first one defines a common
interface and usually is implemented as a pure virtual class, i.e. one which does not serve to
instantiate objects of its type. The composite and the leaf are children of the same level.
However, the composite is able to aggregate one or more instances of such children, i.e. it can
aggregate leaves and/or another composites, and so on. By this virtue recursive-like structures
can be built. On the other hand, from a point of view of other modules, all children of the
component (i.e. the TLinearTransformEngine in our example) share the same properties, such
as a common interface (i.e. a set of public members) defined in the component.

In Figure 13.3 the TLinearTransformEngine is a base class and a component of the com-
posite design pattern (actually it is also derived from the base TCoordTransformEngine).
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TCoordTransformEngine

COMPONENT

COMPOSITE

TCompound_LinearTransformEngine

TCoordTranslationEngine

LEAF

LEAF

TCoordRotationEngine

TLinearTransformEngine

Figure 13.3 Example of a composite pattern. There are three types of objects: a component, a com-
posite and a leaf

It defines a common interface for a group of linear transformations of image coordinates,
such as rotation, translation and scaling. These are represented by the appropriate leaves, i.e.
the classes TCoordTranslationEngine and TCoordRotationEngine in Figure 13.3. However, a
compound linear transformation such as rotation and scaling can be represented by a com-
bination of the appropriate leaves. Thus, any linear transformation can be represented by the
TCompound LinearTransformEngine a listing of which is presented in Algorithm 13.7.

The composite class is usually endowed with methods to add, remove and access its compo-
nents, i.e. leaves. However, in the presented example only add was necessary. There are also
subtleties in implementation of data storage for the components in the composite, as well as
the iterators for their access. More often than not this is a vector or a set (STL is of great help
in this place). Nevertheless, everything depends on the particular problem. For instance, the
TCompound LinearTransformEngine class inherits a 3 × 3 matrix from its base, i.e. from the
TLinearTransformEngine, as all other children do. Then, each new component when added to
the composite modifies entries of that matrix.

Another example of the composite pattern can be found in the image operations class hi-
erarchy depicted in Figure 3.29. The base class TImageOperation defines a component. Then
the TComposedImageOperationFor<> class implements the composite which can be com-
posed of basic operations but also of other composed operations, and so on. The storage for
operations constitutes the vector class from STL. In consequence, there is a linear access to
the components of the composite object.
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// A composite of linear transformations 
class TCompound_LinearTransformEngine  : public TLinearTransformEngine
{

public:  

// ===================================================   
TCompound_LinearTransformEngine( void );   

    virtual ~TCompound_LinearTransformEngine() {}   
// ===================================================   

///////////////////////////////////////////////////////////   
// This function adds a new linear transformation to the   
// one common linear transformation.   
///////////////////////////////////////////////////////////   

  //   
// INPUT:   

t - ref to the new lin transformation   //   
  //   

// OUTPUT:   
none   //   

  //   
// REMARKS:   

  //   
  //   

  void AddNewTransformation( TLinearTransformEngine & t ) ;
};

Algorithm 13.7 Example of the composite class

The composite design pattern should be considered in the cases of the tree-like structures
characteristic of the uniform interface to the external world.

13.3.4 Strategy

Strategy denotes a pattern that allows control over variability of algorithms. Its integral part
constitutes an interface that allows uniform application of different algorithms. The algorithms
can be defined in many ways, for instance as function objects (section 13.3.1). A particular
algorithm is chosen based on some information on processed data.

Figure 13.4 depicts the structure of the strategy design pattern in the context of the im-
age warping module. The base TImageWarp constitutes a context (refer to Algorithm 12.3).
The strategy part starts in the TCoordTransformEngine (see also Figure 13.3). It actually
realizes the strategy pattern which consists of assignment of a concrete strategy which
in the present example can be one of the three subclasses TLinearTransformEngine,
TGenericTransformEngine and TNonLinearTransformEngine.

In the strategy design pattern a context class contains a reference to a strategy object. All
actions contained in the semantics of this strategy object are delegated from the context to
strategy (see also the handle/body pattern in section 13.3.2). Depending on the particular
transformation requested by an external module, actually one of the child concrete strategies
is chosen in the run time and passed as a reference to the context (in our implementation it is
passed directly to its constructor). Then, the chosen concrete strategy performs all actions on
behalf of the context.

In the example given the TImageWarp class contains a reference to the TCoordTrans-
formEngine base class. It is initialized to refer to the concrete object in the constructor of
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CONTEXT

TCoordTransformEngine

CONCRETE
STRATEGY

TLinearTransformEngine

TNonLinearTransformEngine

TGenericTransformEngine

STRATEGY

TImageWarp

TSimpleImageBackwardWarp

Figure 13.4 Structure of the strategy design pattern

TImageWarp. This concrete strategy object has to belong to the hierarchy of the TCoord-
TransformEngine. However, TImageWarp does not need to know which particular coordinate
transformation object is actually chosen – the whole communication is obtained by an inter-
face, common to the TCoordTransformEngine hierarchy (virtual members). Hence, any new
(or future) object in this hierarchy will work as well. This is the way in which the library
can be used and extended by users. Observe also that there is yet another strategy anchored
within TImageWarp. It is the hierarchy of strategies for interpolation of pixels, with a reference
TImageWarp::fPixelInterpolation (see Algorithm 12.3).

Strategy is a very ample behavioural pattern. It allows simple and uniform implementation
of the families of related algorithms, as well as elimination of conditional statements for
selection of different behaviours in run time. In the latter case it can speed up computations
by elimination of a continuous condition check. Strategy nicely connects to other patterns,
such as composite, functor or handle/body.

Finally, strategy can be implemented as a template parameter which is used to set up its
class. In such a case, however, it is customary to name strategy a policy or a trait [3] as will
be explained in the next section.

13.3.5 Class Policies and Traits

The strategy pattern allows choice and change of different behaviours in the run time, i.e.
during code execution. For instance, depending on the requested precision, the bilinear or
bicubic interpolation can be used in the warping module. However, a different behaviour can
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be obtained by adjusting an interface of a class before it is even compiled. This can be achieved
with templates. Let us consider a simple template class:

template < typename T > 
class TDerived : public T 
{

};

Depending on a type T supplied to the TDerived<> it gets derived from quite different base
class, i.e. from T . Deriving from a base means inheritance of its public and protected members.
This is a very powerful technique which allows change of a class behaviour depending on its
supplied template type. Depending on whether we wish to change behaviour or only some
types, this technique is known as a policy or a trait, respectively [3]. The class TDerived
is sometimes named a mixin. However, a policy or a trait should be used with caution. It
should encapsulate only specific aspects of a behaviour of a class which can be changed
in specific conditions rather than the whole interface (if this is the case, then a new class
should be considered). Let us analyse an example from the vision library. The problem is that
when defining the TImageFor<> class (see Algorithm 3.3 which lists a simplified version) for
representation of an image, behaviour of particular members should be trimmed depending
on the type of its pixels. For instance to access pixels, if these are modelled with built-in
C++ types, such as unsigned char or int, their values should probably be passed by value.
However, if the pixels are ‘fat’ objects or even other images, then these should be accessed
by reference. This can be accomplished by special trait class supplied as a template parameter
to the TImageFor<>. Thus, the fully fledged implementation of this class was endowed with
the PixelAccess Trait< T > in which T represents type of pixel of an image it is used in
(Algorithm 13.8).

template< typename T, typename PAT = PixelAccess_Trait< T > > class  

{
public:

  
     typedef typename T           PixelType;   

 
 

typedef typename PAT::PixelAccessType  PixelAccessType;   
ConstPixelAccessType; typedef typename PAT::ConstPixelAccessType  

// ...  

public:

void  SetPixel Dimension xPixPosition, Dimension yPixPosition,  (  
ConstPixelAccessType value ) const;        

PixelAccessType GetPixel ( Dimension xPixPosition,      

Dimension yPixPosition ) const;            

// ...  
};

TImageFor 

Algorithm 13.8 Definition of the TImageFor template class with pixel access traits defined by tem-
plate parameter class
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template < typename T > 
class PixelAccess_Trait
{

public:   
// For all undefined access pixels by value   
typedef    PixelAccessType;  T  

ConstPixelAccessType;  T typedef const   
};

// Specific traits are implemented as specializations. 
template <> class PixelAccess_Trait< double > 
{

public:   
// For double access pixels by reference   
typedef    double & PixelAccessType;   
typedef const  double & ConstPixelAccessType;     

};

template <> class PixelAccess_Trait< int > 
{

public:   
// For double access pixels by value   
typedef        int PixelAccessType;        

 typedef const  int ConstPixelAccessType;     
};

Algorithm 13.9 Suite of pixel access traits. The traits for specific types of pixels are defined as tem-
plate specializations for that type

The pixel access trait classes were designed with the help of the template and template
specialization technique [434], as in Algorithm 13.9. It lists three template classes. The first
one, PixelAccess Trait, is the main template class. The other two are specializations of this
class for the double and int types of pixels, respectively. We can see that the former are defined
to be passed by reference, and the latter by value.

13.3.6 Singleton

One of the simplest is the singleton pattern. Its role is to ensure that a given class has only
one instance (one object), but also to provide an access method to it [144]. More generally,
we request a certain strictly controlled number of objects of a given type. In practice they
represent some entities that should be unique or their number is restricted. For instance, the
pattern can be used to represent a mirror-like interface to some hardware resources. Frequently
objects responsible for management of other objects are implemented as singletons.

Although it is simple, its implementation is not trivial. It is difficult to ensure proper con-
struction and disposal of the singleton object. This is an especially crucial problem in a mul-
tithreading environment. These issues are discussed by Vlissides [441] and by Alexandrescu
[3], for instance. The latter, particularly, gives a thorough discussion and a policy-based tem-
plate for users’ singleton classes.

13.3.7 Proxy

The role of the proxy object is to become a placeholder or a surrogate in place of another
object. An external caller cannot tell a proxy from its counterpart. However, to be useful the
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TlmageFor<>

1

1
MOTHER
OBJECT

PROXY
OBJECT

TProxylmageFor<>

Figure 13.5 Structure of the proxy design pattern

proxy has to have some advantages over an object to which it is a surrogate. Usually, this is
its smaller size or deferred implementation, etc.

In image processing it is very common to define an operation on a rectangular subregion of
an original (mother) image. This subregion can be viewed as a separate image by itself, with
its local coordinate system related to that region (i.e. a kind of manifold). However, it would
be useful if the two concepts behaved analogously from an external caller point of view. If
so, then we do not need a separate treatment of the two. Thus calling convolution or warping
would be the same for a mother image and for its proxy. The idea of a proxy pattern in the
context of the image library is depicted in Figure 13.5.

The proxy TProxyImageFor<> derives from the base TImageFor<>, so in accordance
with the so-called Liskov substitution principle [401], it can be used in all places where its
base can be used. However, contrary to a ‘simple’ image, a proxy image does not allocate any
memory for its pixels. Instead it obtains a reference to its ‘mother’ object which contains all
the pixels and in which it defines a rectangular region in the space of allowable pixel indices
of the ‘mother’ object. Then, the proxy behaves as any other ‘simple’ image, although all
operations are done in a predefined rectangular region and on the pixels of its ‘mother’. The
advantage of using a proxy is that to perform an operation on a subimage we do not need to
create a separate image with its own storage to which a subregion would be copied. The main
methods affected are GetPixel() and SetPixel() which in the proxy image have to recompute
pixel positions from the local coordinates into the space of ‘mother’ coordinates.

13.3.8 Factory Method

In some situations we need an interface for creating objects of some hierarchy but a choice
of the particular one is left to some classes in another hierarchy. In such a situation a
factory method design pattern, also called a virtual constructor pattern, can be of help
[144]. To understand the main idea behind this pattern let us analyse an example depicted
in Figure 13.6. On the left we have a hierarchy of the Gaussian pyramids. It starts with the
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# fFilterFactory : TRealLinearFilter_Factory &

TGaussianlmagePyramids
TRealLinearFilter_Factory

CONCRETE
CREATOR

+ virtual RealLinFilter_AP operator()

+ virtual RealLinFilter_AP operator()

Returns new object of
Gaussian filter Returns new object of

Binomial filter

TBinomialFilter_Factory

TGaussianFilter_Factory

filter = fFilterFactory.operator();

TDOGlmagePyramids

+ virtual RealLinFilter_AP operator()

CONTEXT CREATOR

Figure 13.6 Structure of the factory method

TGaussianImagePyramids base class and contains one derived class, the TDOGImagePyra-
mids (for difference of Gaussians, discussed in section 4.5.4). The classes in this hierarchy
need to instantiate a concrete object representing one of the real filters, such as a Gaussian
or a binomial filter. However, when the TGaussianImagePyramids hierarchy is created
only the abstract framework for the hierarchy of filters is known. The latter is contained in
the TRealLinearFilter Factory base class which defines a functional operator returning an
autopointer to the filter object. What we wish to achieve is to let derived classes from the
pyramid hierarchy decide what type of filter to instantiate from the filter hierarchy. For this
purpose we can use the factory method from Figure 13.6.

The base TGaussianImagePyramids keeps a reference to an object of type TRealLinearFil-
ter Factory. This reference has to be initialized with a concrete object of the filter hierarchy
which can be done in the subclasses of TGaussianImagePyramids.

13.3.9 Prototype

Sometimes we are interested in creating a copy of an object accessed by a reference or pointer
to its base class, however. Hence, we cannot easily tell which particular derivative of a base we
have accessed. One of the ways to find out a real type of object is to use the C++ run-time-
type-information (RTTI) mechanism. However, this results in not very friendly switch-case
statements. The other way is to use a key mechanism of the prototype design pattern, namely
the virtual Clone() method, defined for each class in a hierarchy. This method is responsible
for creating and returning a new object of exactly the same type as its object and with exactly
the same state as its object. In each Clone() this is implemented simply by calling the new
operator and copy constructor of the class to which Clone() belongs (see Algorithm 13.10).

Figure 13.7 depicts the structure of the prototype design pattern. Central is the TCoord-
Transform Prototype hierarchy which defines the Clone() operation. Each derived class
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PROTOTYPE
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Figure 13.7 Structure of the prototype design pattern

implements its own version of this method. An exemplary implementation is listed in
Algorithm 13.10.

It is also possible to combine the prototype technique with the factory method. A fac-
tory can contain a collection of prototypes, and then, on request (e.g. providing a tag or
other means of object identification), it creates a new exemplar of a prototype from its
collection.

13.4 Object Lifetime and Memory Management

Ensuring proper lifetime of objects gets quite complicated, even in relatively small-sized
projects. In C++ there are three types of memory: automatic memory (stack allocations),
static memory and free store memory (heap allocations) [401]. There is no memory manage-
ment problem with the first two groups, although one should be aware of potential synchro-
nization problems in a multithreading environment when using static memory, since static
variables are shared by all software components. In the case of free store, allocations are done
with the new operator, deallocations with delete. Each new should be matched by one delete,
otherwise a program leaves allocated memory blocks until the next reboot of the system – a
phenomenon called memory leaks.

However, we can use automatic allocation and deallocation of automatic data to control the
lifetime of objects placed in the free store area. If an object is automatic, then when created
its constructor is invoked. Then, when the object is automatically destroyed, its destructor is

TCoordTransform_Prototype * TLinearTransform_Prototype::Clone( void ) 
{
 return new TLinearTransform_Prototype( * this ); // copy constructor
}

Algorithm 13.10 Exemplary implementation of the TLinearTransform Prototype::Clone method. It
returns a new object which is an exact copy of itself
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template< class T >  
class auto_ptr 

 {  
public:   

// ===================================================    
explicit auto_ptr( T * w = 0 ) : fPointer( w ) {}    

template< class U >    
auto_ptr( auto_ptr<U> & ps ) : fPointer( ps.release() ) {}     

~auto_ptr() { delete fPointer; }    

template< class U >    
auto_ptr<T> & operator = ( auto_ptr<U> & ps )    
{    

if( this != & ps ) reset( ps.release() );     
return *this;     

}    
// ===================================================    

T & operator    * () const { return * fPointer; } 
T * operator    -> () const { return fPointer; } 
T * get() const  { return fPointer; }    

T * release()    
{    

T * oldPointer = fPointer;     
fPointer = 0;     
return oldPointer;     

}    

void reset( T * w = 0 )    
{    

if( fPointer != w )     
{     

delete fPointer;      
fPointer = w;      

}     
}    

private:   

// Class inherent variables    
T * fPointer;    

};  

Algorithm 13.11 Exemplary implementation of the auto ptr class

called. If such an object contains a pointer to some area on the free store, then it can delete
this area in its destructor, which is called when the object is disposed of. The auto ptr<>

class embodies this idea. An exemplary implementation of the auto ptr<> template class is
presented in Algorithm 13.11.

The private member fPointer of type T holds a pointer to an object allocated on the heap.
The constructor of the class accepts this pointer. The most interesting is the destructor which
deletes fPointer thus releasing the memory. Apart from this, the auto ptr<> behaves as an or-
dinary pointer due to overload dereferencing and field access operators. Thus, when allocating
objects on the free store, a returned pointer should be controlled by auto ptr<>.

For arrays we need a slightly different implementation of autopointers. Finally, the std
namespace provides us with a more ample definition of the auto ptr<>. Thus, an auto ptr for
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monochrome images could look as follows:

 typedef std::auto_ptr< MonochromeImage >  MIAP;  

13.5 Image Processing Platforms

In this section we discuss some aspects of the software/hardware platforms for image process-
ing and computer vision. Each such realization depends heavily on computer resources. How-
ever, thanks to some programming techniques they can be made more or less easily portable
among evolving computer systems and development frameworks, which is a good feature in
terms of software maintenance. Moreover, a layered architecture allows seamless hardware
acceleration of some time-consuming operations, which is a desirable feature in terms of run-
time speed.

13.5.1 Image Processing Libraries

There are many image processing libraries. The most popular are the following.

� Matlab Image Processing Toolbox by MathWorks [208].
� Open Image Library by Intel.
� Vision SDK by Microsoft.
� CImg, INRIA (Tschumperle), France.

However, there are many more. A choice of a particular one is not easy, though. Probably
the most popular in the computer vision community is the OpenCV library by Intel.

13.5.2 Writing Software for Different Platforms

It is very desirable to write a code which works without a change on different computer plat-
forms. Alas, more often than not this is not the case, except maybe for the simplest functions.
Such a situation is caused by major differences among hardware and operating systems, as
well as by diversity of environmental and compiler details even in the domain of the same
programming language. What we can do is make the process of changing code when going
from one computer platform to the other less cumbersome by proper design and some sim-
ple rules for implementation. Here we briefly outline the most important issues of systems
development for multiple platforms.

� During design use object-oriented methods, design patterns, etc. They all help in code
reusability and support multiplatform operations.

� Prefer layered designs with well-specified interfaces. When a layer needs to be changed,
this can be done separately with a separate testing afterwards.

� When changing existing code try the methods of refactoring [243].
� Try to use pure language constructs, avoiding platform-specific settings, such as pragmas,

precompiled headers, particular data representation (size, alignment), etc.
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� If it is not possible to avoid specific features of a language or a system, then try to separate
such a construction, e.g. by the handle–body pattern and action delegation paradigm (section
13.3.2).

13.6 Closure

In this chapter we discuss the basic methods and techniques of design and implementation of
software systems. Their goal is to provide some methodology for creating modular, extensible
and, as much as possible, bug-free systems. Although our main focus is vision processing, the
methods can also be used in other areas of engineering.

13.6.1 Further Reading

The literature on the subject is extensive. A must in C++ is the book by Stroustrup [401].
It can be read from beginning to end, and then used as a reference. There are chapters on
software development and design as well. It contains ample information on all aspects of
C++, such as templates and STL. One of the best explanations and references on STL is the
book by Josuttis [231]. Good design and programming practices can be found in the excellent
book by McConnell [305]. In-depth treatment on C++ templates can be found in the book by
Vandervoode and Josuttis [434]. Finally, design patterns and programming methodology are
described in the books by Gamma et al. [144], Alexandrescu [3] and Vlissides [441], to name
a few.
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Image Processing Library

The main intention of the image processing library for hardware acceleration (HIL) was to
develop a kind of bridge between software residing on a computer and an external hardware
board accelerating some computations. Examples of procedures of the library, as well as the
main class hierarchies, have been given in many places in this book. The software layers of
the library are available for noncommercial applications from the web site of the book. The
site contains also further description of the library, examples of its usage in different contexts
and other interesting links [216].

An Introduction to 3D Computer Vision Techniques and Algorithms Bogusław Cyganek and J. Paul Siebert
C© 2009 John Wiley & Sons, Ltd.  ISBN: 978-0-470-01704-3
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