< o0
/J/y%gawﬂ%
ALGORITHMS

ROBERT SEDGEWICK

BROWN UNIVERSITY

A

vy

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts ¢ Menlo Park, California
London ¢ Amsterdam ¢ Don Mills, Ontario e Sydney

To Adam, Brett, Robbie
and especialy Linda

This book is in the
Addison-Wesley Series in Computer Science

Consulting Editor
Michael A. Harrison

Sponsoring Editor
James T. DeWolfe

Library of Congress Cataloging in Publication Data

Sedgewick, Robert, 1946-
Algorithms.

1. Algorithms. |. Title.
QA76.6.5435 1983 5194 82-11672
ISBN O-201 -06672-6

Reproduced by Addison-Wesley from camera-ready copy supplied by the author.

Reprinted with corrections, August 1984

Copyright © 1983 by AddisonWedey Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written per-
mission of the publisher. Printed in the United States of America,

ISBN 0-201-06672-6
FGHIJ-HA-8987654

Preface

This book is intended to survey the most important algorithms in use on
computers today and to teach fundamental techniques to the growing number
of people who are interested in becoming serious computer users. It is ap-
propriate for use as a textbook for a second, third or fourth course in computer
science: after students have acquired some programming skills and familiarity
with computer systems, but before they have specialized courses in advanced
areas of computer science or computer applications. Additionally, the book
may be useful as a reference for those who already have some familiarity with
the material, since it contains a number of computer implementations of useful
algorithms.

The book consists of forty chapters which are grouped into seven major
parts: mathematical algorithms, sorting, searching, string processing, geomet-
ric algorithms, graph algorithms and advanced topics. A major goa in the
development of this book has been to bring together the fundamental methods
from these diverse areas, in order to provide access to the best methods
that we know for solving problems by computer for as many people as pos-
sible. The treatment of sorting, searching and string processing (which may
not be covered in other courses) is somewhat more complete than the treat-
ment of mathematical algorithms (which may be covered in more depth in
applied mathematics or engineering courses), or geometric and graph ago-
rithms (which may be covered in more depth in advanced computer science
courses). Some of the chapters involve introductory treatment of advanced
material. It is hoped that the descriptions here can provide students with
some understanding of the basic properties of fundamental agorithms such
as the FFT or the simplex method, while at the same time preparing them
to better appreciate the methods when they learn them in advanced courses.

The orientation of the book is towards algorithms that are likely to be
of practical use. The emphasis is on teaching students the tools of their
trade to the point that they can confidently implement, run and debug useful
algorithms. Full implementations of the methods discussed (in an actual
programming language) are included in the text, along with descriptions of
the operations of these programs on a consistent set of examples. Though not
emphasized, connections to theoretical computer science and the analysis of
algorithms are not ignored. When appropriate, analytic results are discussed
to illustrate why certain algorithms are preferred. When interesting, the
relationship of the practical algorithms being discussed to purely theoretical
results is described. More information of the orientation and coverage of the
material in the book may be found in the Introduction which follows.

One or two previous courses in computer science are recommended for
students to be able to appreciate the material in this book: one course in

it

programming in a high-level language such as Pascal, and perhaps another
course which teaches fundamental concepts of programming systems. In short,
students should be conversant with a modern programming language and
have a comfortable understanding of the basic features of modern computer
systems. There is some mathematical material which requires knowledge of
calculus, but this is isolated within a few chapters and could be skipped.

There is a great deal of flexibility in the way that the material in the
book can be taught. To a large extent, the individual chapters in the book
can each be read independently of the others. The material can be adapted
for use for various courses by selecting perhaps thirty of the forty chapters.
An elementary course on “data structures and algorithms’ might omit some
of the mathematical algorithms and some of the advanced graph algorithms
and other advanced topics, then emphasize the ways in which various data
structures are used in the implementation. An intermediate course on “design
and analysis of algorithms’ might omit some of the more practically-oriented
sections, then emphasize the identification and study of the ways in which
good algorithms achieve good asymptotic performance. A course on “software
tools” might omit the mathematical and advanced algorithmic material, then
emphasize means by which the implementations given here can be integrated
for use into large programs or systems. Some supplementary material might be
required for each of these examples to reflect their particular orientation (on
elementary data structures for “data structures and algorithms,” on math-
ematical analysis for “design and analysis of agorithms,” and on software
engineering techniques for “software tools’); in this book, the emphasis is on
the algorithms themselves.

At Brown University, we've used preliminary versions of this book in our
third course in computer science, which is prerequisite to all later courses.
Typically, about one-hundred students take the course, perhaps half of whom
are majors. Our experience has been that the breadth of coverage of material
in this book provides an “introduction to computer science” for our majors
which can later be expanded upon in later courses on analysis of algorithms,
systems programming and theoretical computer science, while at the same
time providing al the students with a large set of techniques that they can
immediately put to good use.

The programming language used throughout the book is Pascal. The
advantage of using Pascal is that it is widely available and widely known;
the disadvantage is that it lacks many features needed by sophisticated algo-
rithms. The programs are easily translatable to other modern programming
languages, since relatively few Pascal constructs are used. Some of the pro-
grams can be simplified by using more advanced language features (some not
available in Pascal), but this is true less often than one might think. A goal of
this book is to present the algorithms in as simple and direct form as possible.

The programs are not intended to be read by themselves, but as part of the
surrounding text. This style was chosen as an alternative, for example, to
having inline comments. Consistency in style is used whenever possible, so
that programs which are similar, look similar. There are 400 exercises, ten
following each chapter, which generaly divide into one of two types. Most
of the exercises are intended to test students understanding of material in
the text, and ask students to work through an example or apply concepts
described in the text. A few of the exercises at the end of each chapter involve
implementing and putting together some of the algorithms, perhaps running
empirical studies to learn their properties.

Acknowledgments

Many people, too numerous to mention here, have provided me with helpful
feedback on earlier drafts of this book. In particular, students and teaching
assistants at Brown have suffered through preliminary versions of the material
in this book over the past three years. Thanks are due to Trina Avery, Tom
Freeman and Janet Incerpi, al of whom carefully read the last two drafts
of the book. Janet provided extensive detailed comments and suggestions
which helped me fix innumerable technical errors and omissions; Tom ran
and checked the programs; and Trina's copy editing helped me make the text
clearer and more nearly correct.

Much of what I've written in this book I've learned from the teaching and
writings of Don Knuth, my thesis advisor at Stanford. Though Don had no
direct influence at all on this work, his presence may be felt in the book, for
it was he who put the study of algorithms on a scientific footing that makes
a work such as this possible.

Specia thanks are due to Janet Incerpi who initially converted the book
into TEX format, added the thousands of changes | made after the “last draft,”
guided the files through various systems to produce printed pages and even
wrote the scan conversion routine for TEX that we used to produce draft
manuscripts, among many other things.

The text for the book was typeset at the American Mathematical Society;
the drawings were done with pen-and-ink by Linda Sedgewick; and the final
assembly and printing were done by Addison-Wesley under the guidance of
Jm DeWolf. The help of all the people involved is gratefully acknowledged.

Finally, 1 am very thankful for the support of Brown University and
INRIA where | did most of the work on the book, and the Institute for Defense
Analyses and the Xerox Palo Alto Research Center, where | did some work
on the book while visiting.

Robert Sedgewick
Marly-le-Roi, France
February, 1983

Contents

Introduction .
Algorithms, Outline of TOpICS
1. Preview.

Pascal, Euclid’s Algorlthm Recursion, Analyss of Algorlthms
Implementing Algorithms

MATHEMATICAL ALGORITHMS
2. Arithmetic .
Polynomials, Matrices, Data Structures

3. Random Numbers

Applications, Linear Congruential Method Addltlve
Congruential Method, Testing Randomness, Implementation Notes

4. Polynomials
Evaluation, Interpolation, Multiplication, Divide-and-conquer
Recurrences, Matriz Multiplication

5. Gaussian Elimination
A Simple Example, Outline of the Method, Variations and Extensions

6. Curve Fitting .

Polynomaal Interpolation, Spline Interpolanon Method of Least Squares

7. Integration

Symbohc Integration, Smple Quadrature Methods Compound Methods,
Adaptive Quadrature

SORTING

8. Elementary Sorting Methods

Rules of the Game, Selection Sort, Insertion Sort, Shellsort,
Bubble Sort, Distribution Counting, Non-Random Files

9. Quicksort v e

The Basic Algorithm, Removmg Recurson Small Subfiles,
Median-of- Three Partitioning

10. Radix Sorting C
Radiz Ezchange Sort, Stralght Radlx Sort A Linear Sort
11. Priority Queues

Elementary Implementations, Heap Data Structure, Algorlthms
on Hesaps, Heapsort, Indirect Heaps, Advanced Implementations

12. Selection and Merging
Selection, Merging, Recursion Revisited

13. External Sorting

Sort-Merge, Balanced Multzway Mergmg Replacement Selectwn
Practicdl Considerations, Polyphase Merging, An Easer Way

Vi

21

45

57

67

I

91

103

115

127

143

155

vii

SEARCHING

14. Elementary Searching Methods e

Sequential Searching, Sequential List Searchwg, Blnary Search,
Binary Tree Search, Indirect Binary Search Trees

15. Balanced Trees 187
Top-Down 2-8-4 Trees, Red-Black Trees Other Algorlthms

16. Hashing 201
Hash Functions, Separate Chammg Open Addressmg, Analyt|c Reﬁults

17. Radix Searching Ce 213
Digital Search Trees, Radiz Search Tnes Multzway Radn Searchlng,
Patricia

18. Externa Searching 225

Indexed Sequential Access, B- Trees E:ctendzble Hashlng Virtual Memory
STRING PROCESSING

19. String Searching 24

A Short History, Brute-Force Algorlthm Knuth-Morris-Pratt Algonthm
Boyer-Moore Algorithm, Rabin-Karp Algorithm, Multiple Searches

20. Pattern Matching 2 oY 4

Describing Patterns, Pattern Matchmg Machmes Representmg
the Machine, Simulating the Machine

21. Pasing , 269

Contezt-Free Grammars, Top Down Parsmg, Bottom- Up Parsmg,
Compilers, Compiler-Compilers

22. File Compresson v . . o ... 28
Run-Length Encoding, Variable-Length Encoding
23. Cryptology e e e 29

Rules of the Game, S|mp|e Methods, Encrypt"on/Decryptwn
Machines, Public-Key Cryptosystems

GEOMETRIC ALGORITHMS
24. Elementary Geometric Methods 307

Pomnts, Lines, and Polygons, Line Intersection, Simple
Closed Path, Inclusion in ¢ Polygon, Perspective

25. Finding the Convex Hull e 321

Rules Of the Game, Package Wrapping, The Graham Scan,
Hull Selection, Performance Issues
26. Range Searching R € 5]

Elementary Methods, Grid Method, 2D Trees,
Multidimensional Range Searching

27. Geometric Intersection . , 349
Horizontal and Vertical Lines, General Line Intersection
28. Closest Point Problems 361

Closest Pasr, Voronoi Diagrams

Vil

GRAPH ALGORITHMS

29.

30.

31

32.

33.

34

Elementary Graph Algorithms

Glossary, Representation, Depth-First Search, Mazes Perspectwe
Connectivity

Biconnectivity, Graph Traversal Algonthms, Umon Fmd Algorlthms
Weighted Graphs . C e e

Minimum Spanning Tree, Shortest Path Dense Graphs Geometric Problems
Directed Graphs

Depth-First Search, Transitive Closure Topologlcal Sortmg,
Strongly Connected Components

Network Flow

The Network Flow Problem, Ford Fulkerson Method Network Searchrng
Matching . .

Bipartite Graphs, Stable Marrlage Problem Advanced Algo'rzthms

ADVANCED TOPICS

35.

36.

37.

38.

39.

Algorithm Machines
Generd Approaches, Perfect Shuﬁies Systollc Arrays

The Fast Fourier Transform

Evaluate, Multiply, Interpolate, Complez Roots Of Unlty, Evaluatron
at the Roots of Unity, Interpolation a the Roots of Unity, Implementation

Dynamic Programming

Knapsack Problem, Matriz Chain Product Optrmal Bmary Seerch Trees
Shortest Paths, Time and Space Requirements

Linear Programming

Linear Programs, Geometric Interpretatlon The Srmplex Method,
Implementation

Exhaustive Search

Exhaustive Search in Graphs, Baclctmckmg, Permutatlon Generatlon
Approximation Algorithms

NP-complete Problems

Deterministic and Nondeterministic Polynomlal Time Algorzthms
NP-Completeness, Cook’s Theorem, Some NP-Complete Problems

373

389

407

421

433

443

457

471

483

497

513

527

I ntroduction

The objective of this book is to study a broad variety of important and
useful algorithms: methods for solving problems which are suited for
computer implementation. We'll deal with many different areas of applica
tion, always trying to concentrate on “fundamental” algorithms which are
important to know and interesting to study. Because of the large number of
areas and algorithms to be covered, we won't have room to study many of
the methods in great depth. However, we will try to spend enough time on
each algorithm to understand its essential characteristics and to respect its
subtleties. In short, our goal is to learn a large number of the most impor-
tant algorithms used on computers today, well enough to be able to use and
appreciate them.

To learn an agorithm well, one must implement it. Accordingly, the
best strategy for understanding the programs presented in this book is to
implement and test them, experiment with variants, and try them out on
real problems. We will use the Pascal programming language to discuss and
implement most of the algorithms; since, however, we use a relatively small
subset of the language, our programs are easily translatable to most modern
programming languages.

Readers of this book are expected to have at least a year's experience
in programming in high- and low-level languages. Also, they should have
some familiarity with elementary algorithms on simple data structures such
as arrays, stacks, queues, and trees. (We'll review some of this material but
within the context of their use to solve particular problems.) Some elementary
acquaintance with machine organization and computer architecture is also
assumed. A few of the applications areas that we'll deal with will require
knowledge of elementary calculus. We'll also be using some very basic material
involving linear algebra, geometry, and discrete mathematics, but previous
knowledge of these topics is not necessary.

4 INTRODUCTION

This book is divided into forty chapters which are organized into seven
major parts. The chapters are written so that they can be read independently,
to as great extent as possible. Generaly, the first chapter of each part
gives the basic definitions and the “ground rules’ for the chapters in that
part; otherwise specific references make it clear when material from an earlier
chapter is required.

Algorithms

When one writes a computer program, one is generally implementing a method
of solving a problem which has been previously devised. This method is often
independent of the particular computer to be used: it's likely to be equally
appropriate for many computers. In any case, it is the method, not the
computer program itself, which must be studied to learn how the problem
is being attacked. The term algorithm is universally used in computer science
to describe problem-solving methods suitable for implementation as computer
programs. Algorithms are the “stuff” of computer science: they are centra
objects of study in many, if not most, areas of the field.

Most algorithms of interest involve complicated methods of organizing
the data involved in the computation. Objects created in this way are called
data structures, and they are also central objects of study in computer science.
Thus agorithms and data structures go hand in hand: in this book we will
take the view that data structures exist as the byproducts or endproducts of
algorithms, and thus need to be studied in order to understand the algorithms.
Simple algorithms can give rise to complicated data structures and, conversely,
complicated algorithms can use simple data structures.

When a very large computer program is to be developed, a great deal
of effort must go into understanding and defining the problem to be solved,
managing its complexity, and decomposing it into smaller subtasks which can
be easily implemented. It is often true that many of the agorithms required
after the decomposition are trivial to implement. However, in most cases
there are a few algorithms the choice of which is critical since most of the
system resources will be spent running those algorithms. In this book, we will
study a variety of fundamental algorithms basic to large programs in many
applications areas.

The sharing of programs in computer systems is becoming more wide-
spread, so that while it is true that a serious computer user will use a large
fraction of the algorithms in this book, he may need to implement only a
somewhat smaller fraction of them. However, implementing simple versions
of basic algorithms helps us to understand them better and thus use advanced
versions more effectively in the future. Also, mechanisms for sharing software
on many computer systems often make it difficult to tailor standard programs

INTRODUCTION 5

to perform effectively on specific tasks, so that the opportunity to reimplement
basic algorithms frequently arises.

Computer programs are often overoptimized. It may be worthwhile to
take pains to ensure that an implementation is the most efficient possible only
if an agorithm is to be used for a very large task or is to be used many times.
In most situations, a careful, relatively simple implementation will suffice: the
programmer can have some confidence that it will work, and it is likely to
run only five or ten times slower than the best possible version, which means
that it may run for perhaps an extra fraction of a second. By contrast, the
proper choice of algorithm in the first place can make a difference of a factor
of a hundred or a thousand or more, which translates to minutes, hours, days
or more in running time. In this book, -we will concentrate on the simplest
reasonable implementations of the best agorithms.

Often severa different algorithms (or implementations) are available to
solve the same problem. The choice of the very best algorithm for a particular
task can be a very complicated process, often involving sophisticated mathe-
matical analysis. The branch of computer science where such questions are
studied is called analysis of agorithms. Many of the agorithms that we will
study have been shown to have very good performance through analysis, while
others are simply known to work well through experience. We will not dwell
on comparative performance issues. our goal is to learn some reasonable algo-
rithms for important tasks. But we will try to be aware of roughly how well
these algorithms might be expected to perform.

Outline of Topics

Below are brief descriptions of the major parts of the book, which give some of
the specific topics covered as well as some indication of the general orientation
towards the material described. This set of topics is intended to allow us
to cover as many fundamental algorithms as possible. Some of the areas
covered are “core” computer science areas which we'll study in some depth
to learn basic algorithms of wide applicability. We'll also touch on other
disciplines and advanced fields of study within computer science (such as
numerical analysis, operations research, compiler construction, and the theory
of algorithms): in these cases our treatment will serve as an introduction to
these fields of study through examination of some basic methods.

MATHEMATICAL ALGORITHMS include fundamental methods from
arithmetic and numerical analysis. We study methods for addition and mul-
tiplication of integers, polynomias, and matrices as well as agorithms for
solving a variety of mathematical problems which arise in many contexts:
random number generation, solution of simultaneous equations, data fitting,

6 INTRODUCTION

and integration. The emphasis is on algorithmic aspects of the methods, not
the mathematical basis. Of course we can't do justice to advanced topics
with this kind of treatment, but the simple methods given here may serve to
introduce the reader to some advanced fields of study.

SORTING methods for rearranging files into order are covered in some
depth, due to their fundamental importance. A variety of methods are devel-
oped, described, and compared. Algorithms for several related problems are
treated, including priority queues, selection, and merging. Some of these
algorithms are used as the basis for other algorithms later in the book.

SEARCHING methods for finding things in files are aso of fundamental
importance. We discuss basic and advanced methods for searching using trees
and digital key transformations, including binary search trees, balanced trees,
hashing, digital search trees and tries, and methods appropriate for very large
files. These methods are related to each other and similarities to sorting
methods are discussed.

STRING PROCESSING algorithms include a range of methods for deal-
ing with (long) sequences of characters. String searching leads to pattern
matching which leads to parsing. File compression techniques and cryptol-
ogy are also considered. Again, an introduction to advanced topics is given
through treatment of some elementary problems which are important in their
own right.

GEOMETRIC ALGORITHMS comprise a collection of methods for solv-
ing problems involving points and lines (and other simple geometric objects)
which have only recently come into use. We consider algorithms for finding
the convex hull of a set of points, for finding intersections among geometric
objects, for solving closest point problems, and for multidimensional search-
ing. Many of these methods nicely complement more elementary sorting and
searching methods.

GRAPH ALGORITHMS are useful for a variety of difficult and impor-
tant problems. A general strategy for searching in graphs is developed and
applied to fundamental connectivity problems, including shortest-path, min-
imal spanning tree, network flow, and matching. Again, this is merely an
introduction to quite an advanced field of study, but several useful and inter-
esting algorithms are considered.

ADVANCED TOPICS are discussed for the purpose of relating the materi-
al in the book to several other advanced fields of study. Special-purpose hard-
ware, dynamic programming, linear programming, exhaustive search, and NP-
completeness are surveyed from an elementary viewpoint to give the reader
some appreciation for the interesting advanced fields of study that are sug-
gested by the elementary problems confronted in this book.

| NTRODUCTI ON 7

The study of algorithms is interesting because it is a new field (almost
al of the algorithms we will study are less than twenty-five years old) with
a rich tradition (a few agorithms have been known for thousands of years).
New discoveries are constantly being made, and few algorithms are completely
understood. In this book we will consider intricate, complicated, and difficult
algorithms as well as elegant, simple, and easy algorithms. Our challenge is
to understand the former and appreciate the latter in the context of many
different potential application areas. In doing so, we will explore a variety of
useful tools and develop a way of “agorithmic thinking” that will serve us
well in computational challenges to come. ’_’

1. Preview

To introduce the general approach that we'll be taking to studying
algorithms, we'll examine a classic elementary problem: “Reduce a given
fraction to lowest terms.” We want to write 2/3, not 4/6, 200/300, or 178468/
267702. Solving this problem is equivalent to finding the greatest common
divisor (gcd) of the numerator and the denominator: the largest integer which
divides them both. A fraction is reduced to lowest terms by dividing both
numerator and denominator by their greatest common divisor.

Pascal

A concise description of the Pascal language is given in the Wirth and Jensen
Pascal User Manual and Report that serves as the definition for the language.
Our purpose here is not to repeat information from that book but rather to
examine the implementation of a few simple algorithms which illustrate some
of the basic features of the language and. the style that we'll be using.

Pascal has a rigorous high-level syntax which allows easy identification of
the main features of the program. The variables (var) and functions (function)
used by the program are declared first, followed by the body of the program.
(Other major program parts, not used in the program below which are declared
before the program body are constants and types.) Functions have the same
format as the main program except that they return a value, which is set by
assigning something to the function name within the body of the function.
(Functions that return no value are called procedures.)

The built-in function readln reads a. line from the input and assigns the
values found to the variables given as arguments; writeln is similar. A standard
built-in predicate, eof, is set to true when there is no more input. (Input and
output within a line are possible with read, write, and eoln.) The declaration
of input and output in the program statement indicates that the program is
using the “standard” input and output streams.

10 CHAPTER 1

To begin, we'll consider a Pascal program which is essentially a transla-
tion of the definition of the concept of the greatest common divisor into a
programming language.

program example(input, output);
var X, y: integer;
function ged(u, v: integer) : integer;
var t: integer;
begin
if u<v then t:=u else t:=v;
while (u mod t<>0) or (vmod t<>0) do t:=t—1;
ged:=t
end ;
begin
while not eof do
begin
readln (x,y) ;
writeln(x, v, ged(abs(x), abs(y)));
end
end.

The body of the program above is trivial: it reads two numbers from the
input, then writes them and their greatest common divisor on the output.
The gcd function implements a “brute-force” method: start at the smaller of
the two inputs and test every integer (decreasing by one until 1 is reached)
until an integer is found that divides both of the inputs. The built-in function
abs is used to ensure that gcd is called with positive arguments. (The mod
function is used to test whether two numbers divide: u mod v is the remainder
when u is divided by v, so a result of O indicates that v divides u.)

Many other similar examples are given in the Pascal User Manual and
Report. The reader is encouraged to scan the manual, implement and test
some simple programs and then read the manual carefully to become reason-
ably comfortable with most of the features of Pascal.

Euclid’s Algorithm

A much more efficient method for finding the greatest common divisor than
that above was discovered by Euclid over two thousand years ago. Euclid's
method is based on the fact that if v is greater than v then the greatest
common divisor of ¢ and v is the same as the greatest common divisor of v
and u - v. Applying this rule successively, we can continue to subtract off
multiples of v from u until we get a number less than v. But this number is

PREVIEW 11

exactly the same as the remainder left after dividing u by v, which is what
the mod function computes: the greatest common divisor of » and v is the
same as the greatest common divisor of v and ¥ mod v. If % mod v is 0, then v
divides u exactly and is itself their greatest common divisor, so we are done.

This mathematical description explains how to compute the greatest
common divisor of two numbers by computing the greatest common divisor
of two smaller numbers. We can implement this method directly in Pascal
simply by having the gcd function call itself with smaller arguments:

function ged(u, v:integer) : integer;
begin
if v=0 then gcd:= u
else ged:=ged(v, u mad V)
end;

(Note that if uis less than v, then u mod Vv is just u, and the recursive call
just exchanges u and v so things work as described the next time around.)
If the two inputs are 461952 and 116298, then the following table shows the
values of u and v each time gcd is invoked:

(461952,116298)
(116298,113058)
(113058, 3240)
(3240, 2898)
(2898,342)
(342,162)
(162,18)
(18,0)

It turns out that this algorithm always uses a relatively small number of
steps: we'll discuss that fact in some more detail below.

Recursion

A fundamental technique in the design of efficient algorithms is recursion:
solving a problem by solving smaller versions of the same problem, as in the
program above. We'll see this general approach used throughout this book,
and we will encounter recursion many tirnes. It is important, therefore, for us
to take a close look at the features of the above elementary recursive program.

An essential feature is that a recursive program must have a termination
condition. It can't aways call itself, there must be some way for it to do

12 CHAPTER 1

something else. This seems an obvious point when stated, but it’s probably
the most common mistake in recursive programming. For similar reasons, one
shouldn't make a recursive call for a larger problem, since that might lead to
a loop in which the program attempts to solve larger and larger problems.
Not al programming environments support a general-purpose recursion
facility because of intrinsic difficulties involved. Furthermore, when recursion
is provided and used, it can be a source of unacceptable inefficiency. For these
reasons, we often consider ways of removing recursion. This is quite easy to
do when there is only one recursive call involved, as in the function above. We
simply replace the recursive call with a goto to the beginning, after inserting
some assignment statements to reset the values of the parameters as directed
by the recursive call. After cleaning up the program left by these mechanical
transformations, we have the following implementation of Euclid’s algorithm:

function ged(u, v:integer):integer;
var t. integer;
begin
while v<>0 do
begin t:= u mod v; u:=v; v:=t end;
gcd:=u
end ;

Recursion remova is much more complicated when there is more than
one recursive call. The agorithm produced is sometimes not recognizable, and
indeed is very often useful as a different way of looking at a fundamenta al-
gorithm. Removing recursion almost aways gives a more efficient implemen-
tation. We'll see many examples of this later on in the book.

Analysis of Algorithms

In this short chapter we've already seen three different algorithms for the same
problem; for most problems there are many different available agorithms.
How is one to choose the best implementation from all those available?

This is actualy a well developed area of study in computer science.
Frequently, we'll have occasion to call on research results describing the per-
formance of fundamental algorithms. However, comparing algorithms can be
challenging indeed, and certain general guidelines will be useful.

Usually the problems that we solve have a natural “size” (usually the
amount of data to be processed; in the above example the magnitude of
the numbers) which we'll normally cal N. We would like to know the
resources used (most often the amount of time taken) as a function of N.
WEe're interested in the average case, the amount of time a program might be

PREVIEW 13

expected to take on “typical” input data, and in the worst case, the amount
of time a program would take on the worst possible input configuration.

Many of the algorithms in this book are very well understood, to the point
that accurate mathematical formulas are known for the average- and worst-
case running time. Such formulas are developed first by carefully studying
the program, to find the running time in terms of fundamental mathematical
quantities and then doing a mathematical analysis of the quantities involved.

For some algorithms, it is easy to figure out the running time. For ex-
ample, the brute-force agorithm above obviously requires min(u, v)—ged(u, v)
iterations of the while loop, and this quantity dominates the running time if
the inputs are not small, since all the other statements are executed either
0 or 1 times. For other algorithms, a substantial amount of analysis is in-
volved. For example, the running time of the recursive Euclidean algorithm
obviously depends on the “overhead” required for each recursive call (which
can be determined only through detailedl knowledge of the programming en-
vironment being used) as well as the number of such calls made (which can
be determined only through extremely sophisticated mathematical analysis).

Several important factors go into this analysis which are somewhat out-
side a given programmer’s domain of influence. First, Pascal programs are
translated into machine code for a given computer, and it can be a challenging
task to figure out exactly how long even one Pascal statement might take to
execute (especially in an environment where resources are being shared, so
that even the same program could have varying performance characteristics).
Second, many programs are extremely sensitive to their input data, and per-
formance might fluctuate wildly depending on the input. The average case
might be a mathematical fiction that is not representative of the actual data
on which the program is being used, and the worst case might be a bizarre
construction that would never occur in practice. Third, many programs of
interest are not well understood, and specific mathematical results may not
be available. Finally, it is often the case that programs are not comparable at
al: one runs much more efficiently on one particular kind of input, the other
runs efficiently under other circumstances.

With these caveats in mind, we'll use rough estimates for the running
time of our programs for purposes of classification, secure in the knowledge
that a fuller analysis can be done for important programs when necessary.
Such rough estimates are quite often easy to obtain via the old programming
saw “90% of the time is spent in 10% of the code.” (This has been quoted in
the past for many different values of “90%.”)

The first step in getting a rough estimate of the running time of a program
is to identify the inner loop. Which instructions in the program are executed
most often? Generally, it is only a few instructions, nested deep within the

14 CHAPTER 1

control structure of a program, that absorb all of the machine cycles. It is
always worthwhile for the programmer to be aware of the inner loop, just to
be sure that unnecessary expensive instructions are not put there.

Second, some analysis is necessary to estimate how many times the inner
loop is iterated. It would be beyond the scope of this book to describe the
mathematical mechanisms which are used in such analyses, but fortunately
the running times many programs fall into one of a few distinct classes. When
possible, we'll give a rough description of the analysis of the programs, but it
will often be necessary merely to refer to the literature. (Specific references
are given at the end of each major section of the book.) For example, the
results of a sophisticated mathematical argument show that the number of
recursive steps in Euclid’'s algorithm when 1 is chosen at random less than v is
approximately (12 In 2)/7%) 1n v. Often, the results of a mathematical analysis
are not exact, but approximate in a precise technical sense: the result might
be an expression consisting of a sequence of decreasing terms. Just as we are
most concerned with the inner loop of a program, we are most concerned with
the leading term (the largest term) of a mathematical expression.

As mentioned above, most algorithms have a primary parameter N,
usually the number of data items to be processed, which affects the running
time most significantly. The parameter N might be the degree of a polyno-
mial, the size of a file to be sorted or searched, the number of nodes in a
graph, etc. Virtually all of the algorithms in this book have running time
proportional to one of the following functions:;

1 Most instructions of most programs are executed once or at most
only a few times. If al the instructions of a program have this
property, we say that its running time is constant. This is obviously
the situation to strive for in algorithm design.

logN When the running time of a program is logarithmic, the program
gets slightly slower as N grows.This running time commonly occurs
in programs which solve a big problem by transforming it into a
smaller problem by cutting the size by some constant fraction. For
our range of interest, the running time can be considered to be less
than a “large” constant. The base of the logarithm changes the
constant, but not by much: when N is a thousand, log N is 3 if the
base is 10, 10 if the base is 2; when N is a million, log N is twice
as great. Whenever N doubles, log N increases by a constant, but
log N doesn’t double until N increases to NZ2.

N When the running time of a program is linear, it generally is the case
that a small amount of processing is done on each input element.
When N is a million, then so is the running time. Whenever N

PREVIEW 15

doubles, then so does the running time. This is the optimal situation
for an algorithm that must process N inputs (or produce N outputs).

Nlog N This running time arises in algorithms which solve a problem by
breaking it up into smaller subproblems, solving them independently,
and then combining the solutions. For lack of a better adjective
(linearithmic?), we'll say that the running time of such an algorithm
is“N log N.” When N is a million, N log N is perhaps twenty
million. When N doubles, the running time more than doubles (but
not much more).

N? When the running time of an algorithm is quadratic, it is practical
for use only on relatively small problems. Quadratic running times
typically arise in algorithms which process all pairs of data items
(perhaps in a double nested loop). When N is a thousand, the
running time is a million. Whenever N doubles, the running time
increases fourfold.

N3 Similarly, an agorithm which processes triples of data items (perhaps
in a triple-nested loop) has a cubic running time and is practical for
use only on small problems. When N is a hundred, the running
time is a million. Whenever N doubles, the running time increases
eightfold.

Few algorithms with exponential running time are likely to be ap-
propriate for practical use, though such algorithms arise naturally as
“brute-force” solutions to problems. When N is twenty, the running
time is a million. Whenever N doubles, the running time squares!

2N

The running time of a particular program is likely to be some constant
times one of these terms (the “leading term”) plus some smaller terms. The
values of the constant coefficient and the terms included depends on the results
of the analysis and on implementation details. Roughly, the coefficient of the
leading term has to do with the number of instructions in the inner loop:
at any level of agorithm design it's prudent to limit the number of such
instructions. For large N the effect of the leading term dominates; for small
N or for carefully engineered algorithms, more terms may contribute and
comparisions of algorithms are more difficult. In most cases, we'll simply refer
to the running time of programs as “linear,” “N log N, ” “cubie,” etc., with
the implicit understanding that more detailed analysis or empirical studies
must be done in cases where efficiency is very important.

A few other functions do arise. For example, an agorithm with N?
inputs that has a running time that is cubic in N is more properly classed
as an N3/2 agorithm. Also some algorithms have two stages of subproblem
decomposition, which leads to a running time proportional to N(log N)2. Both

16 CHAPTER 1

of these functions should be considered to be much closer to N log N than to
N2 for large N.

One further note on the “log” function. As mentioned above, the base
of the logarithm changes things only by a constant factor. Since we usually
deal with analytic results only to within a constant factor, it doesn’t matter
much what the base is, so we refer to “logN,” etc. On the other hand,
it is sometimes the case that concepts can be explained more clearly when
some specific base is used. In mathematics, the natural logarithm (base e =
2.718281828.. .) arises so frequently that a special abbreviation is commonly
used: log, N =In N. In computer science, the binary logarithm (base 2) arises
so frequently that the abbreviation log, N = Ig N is commonly used. For
example, Ig N rounded up to the nearest integer is the number of bits required
to represent N in binary.

Implementing Algorithms

The algorithms that we will discuss in this book are quite well understood,
but for the most part we'll avoid excessively detailed comparisons. Our goal
will be to try to identify those algorithms which are likely to perform best for
a given type of input in a given application.

The most common mistake made in the selection of an agorithm is to
ignore performance characteristics. Faster algorithms are often more compli-
cated, and implementors are often willing to accept a slower agorithm to
avoid having to deal with added complexity. But it is often the case that
a faster algorithm is really not much more complicated, and dealing with
slight added complexity is a small price to pay to avoid dealing with a slow
algorithm. Users of a surprising number of computer systems lose substantial
time waiting for simple quadratic algorithms to finish when only slightly more
complicated N log N algorithms are available which could run in a fraction
the time.

The second most common mistake made in the selection of an algorithm
is to pay too much attention to performance characteristics. An N log N
algorithm might be only slightly more complicated than a quadratic algorithm
for the same problem, but a better N log N algorithm might give rise to a
substantial increase in complexity (and might actually be faster only for very
large values of N). Also, many programs are really run only a few times:
the time required to implement and debug an optimized algorithm might be
substantially more than the time required simply to run a slightly slower one.

The programs in this book use only basic features of Pascal, rather than
taking advantage of more advanced capabilities that are available in Pascal
and other programming environments. Our purpose is to study algorithms,
not systems programming nor advanced features of programming languages.

PREVIEW 17

It is hoped that the essential features of the algorithms are best exposed
through simple direct implementations in a near-universal language. For the
same reason, the programming style is somewhat terse, using short variable
names and few comments, so that the control structures stand out. The
“documentation” of the algorithms is the accompanying text. It is expected
that readers who use these programs in actual applications will flesh them out
somewhat in adapting them for a particular use.

18

Exercises

1

10.

Solve our initial problem by writing a Pascal program to reduce a given
fraction z/y to lowest terms.

Check what values your Pascal system computes for u mod v when u and
v are not necessarily positive. Which versions of the gcd work properly
when one or both of the arugments are O?

Would our original gcd program ever be faster than the nonrecursive
version of Euclid’s algorithm?

Give the values of u and v each time the recursive gcd is invoked after
the initia call ged(12345, 56789).

Exactly how many Pascal statements are executed in each of the three
gcd implementations for the call in the previous exercise?

Would it be more efficient to test for yu>v in the recursive implementation
of Euclid's algorithm?

Write a recursive program to compute the largest integer less than log, N
based on the fact that the value of this function for N div 2 is one greater
than for N if N > 1.

Write an iterative program for the problem in the previous exercise. Also,
write a program that does the computation using Pascal library sub-
routines. If possible on your computer system, compare the performance
of these three programs.

Write a program to compute the greatest common divisor of three integers
u, v, and w.

For what values of N is 10N1gN > 2N?? (Thus a quadratic algorithm
is not necessarily slower than an Nlog N one.)

19

SOURCES for background material

A reader interested in learning more about Pascal will find a large number
of introductory textbooks available, for example, the ones by Clancy and
Cooper or Holt and Hune. Someone with experience programming in other
languages can learn Pascal effectively directly from the manual by Wirth and
Jensen. Of course, the most important thing to do to learn about the language
is to implement and debug as many programs as possible.

Many introductory Pascal textbooks contain some material on data struc-
tures. Though it doesn't use Pascal, an important reference for further infor-
mation on basic data structures is volume one of D.E. Knuth’'s series on The
Art of Computer Programming. Not only does this book provide encyclopedic
coverage, but also it and later books in the series are primary references for
much of the materia that we'll be covering in this book. For example, anyone
interested in learning more about Euclid's algorithm will find about fifty pages
devoted to it in Knuth’'s volume two.

Another reason to study Knuth’s volume one is that it covers in detail
the mathematical techniques needed for the analysis of algorithms. A reader
with little mathematical background should be warned that a substantial
amount of discrete mathematics is required to properly analyze many algo-
rithms;, a mathematically inclined reader will find much of this material ably
summarized in Knuth’'s first book and applied to many of the methods we'll
be studying in later books.

M. Clancy and D. Cooper, Oh! Pascal, W. W. Norton & Company, New York,
1982.

R. Holt and J. P.Hume, Programming Standard Pascal, Reston (Prentice-Hall),
Reston, Virginia, 1980.

D. E. Knuth, The Art of Computer Programming. Volume 1: Fundamental
Algorithms, Addison-Wesley, Reading, MA, 1968.

D. E. Knuth, The Art of Computer Programming. Volume 2: Seminumerical
Algorithms, Addison-Wesley, Reading, MA, Second edition, 1981.

K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-Verlag,
New York, 1974.

MATHEMATICAL ALGORITHMS

2. Arithmetic

Algorithms for doing elementary arithmetic operations such as addition,
multiplication, and division have a. very long history, dating back to
the origins of algorithm studies in the work of the Arabic mathematician
al-Khowdrizmi, with roots going even further back to the Greeks and the
Babylonians.

Though the situation is beginning to change, the raison d’étre of many
computer systems is their capability for doing fast, accurate numerical cal-
culations. Computers have built-in capabilities to perform arithmetic on in-
tegers and floating-point representations of real numbers; for example, Pascal
allows numbers to be of type integer or real, with all of the normal arithmetic
operations defined on both types. Algorithms come into play when the opera-
tions must be performed on more complicated mathematical objects, such as
polynomials or matrices.

In this section, we'll look at Pascal implementations of some simple
algorithms for addition and multiplication of polynomials and matrices. The
algorithms themselves are well-known and straightforward; we'll be examining
sophisticated algorithms for these problems in Chapter 4. Our main purpose
in this section is to get used to treating these mathematical objects as objects
for manipulation by Pascal programs. This translation from abstract data to
something which can be processed by a computer is fundamental in algorithm
design. We'll see many examples throughout this book in which a proper
representation can lead to an efficient algorithm and vice versa. In this
chapter, we'll use two fundamental ways of structuring data, the array and
the linked list. These data structures are used by many of the algorithms in
this book; in later sections we'll study some more advanced data structures.

Polynomials

Suppose that we wish to write a program that adds two polynomials: we would

23

24 CHAPTER 2

like it to perform calculations like
(14+2x-32%)+(2x)=3+x 3z°
In general, suppose we wish our program to be able to compute r(:x) = p(x) +

q(x), where p and g are polynomials with N coefficients. The following
program is a straightforward implementation of polynomial addition:

program polyadd(input, output);
const maxN=100;
var p, g, r:array [0..maxN]of real;

N, i: integer;
begin
readln (N);

for i:=O to N-I do read(p[i]);
for i:=O to N- do read(qli]);
for i:=O to N-J do rli] :=pli]+qli];
for i:=O to N-I do write(r[i]);
wri teln
end.

In this program, the polynomia p(z) = po + p1Z + +++ + py_1z™¥ s

represented by the array p[0..N—1]with p [j]= p;, etc. A polynomial of degree
N-I is defined by N coefficients. The input is assumed to be N, followed by
the p coefficients, followed by the q coefficients. In Pascal, we must decide
ahead of time how large N might get; this program will handle polynomials
up to degree 100. Obviously, maxN should be set to the maximum degree
anticipated. This is inconvenient if the program is to be used at different
times for various sizes from a wide range: many programming environments
alow “dynamic arrays’ which, in this case, could be set to the size N. We'll
see another technique for handling this situation below.

The program above shows that addition is quite trivial once this repre-
sentation for polynomials has been chosen; other operations are also easily
coded. For example, to multiply we can replace the third for loop by

for i:=Oto 2«(N—1) do rii] :=0;
for i:=0O to N-I do
for _i:=0 to N-I do
rli+j]:=rli+jl+plil*qlj];

ARITHMETIC 25

Also, the declaration of r has to be suitably changed to accomodate twice as
many coefficients for the product. Each of the N coefficients of p is multiplied
by each of the N coefficients of g, so this is clearly a quadratic algorithm.

An advantage of representing a polynomial by an array containing its
coefficients is that it's easy to reference any coefficient directly; a disadvantage
is that space may have to be saved for more numbers than necessary. For
example, the program above couldn’'t reasonably be used to multiply

(1 + :1:10000)(1 + 2110000) =14 31;10000 + 21.20000’

even though the input involves only four coefficients and the output only three.

An aternate way to represent a polynomial is to use a linked list. This
involves storing items in noncontiguous memory locations, with each item
containing the address of the next. The Pascal mechanisms for linked lists are
somewhat more complicated than for arrays. For example, the following pro-
gram computes the sum of two polynomials using a linked list representation
(the bodies of the readlist and add functions and the writelist procedure are
given in the text following):

program polyadd(input, output);
type link . = tnode;
node = record c: red; next: link end ;

var N: integer; a link;
function readlist(N: integer) : link;
procedure writelist(r: link);
function add(p, g: link) : link;
begin

readln(N); new(z);

writelist{add(readlist(IN), readlist(N)))
end.

The polynomials are represented by linked lists which are built by the
readlist procedure. The format of these is described in the type statement:
the lists are made up of nodes, each node containing a coefficient and a link
to the next node on the list. If we have a link to the first node on a list, then
we can examine the coefficients in order, by following links. The last node
on each list contains a link to a special dummy node called a if we reach z
when scanning through a list, we know we're at the end. (It is possible to get
by without such dummy nodes, but they do make certain manipulations on
the lists somewhat simpler.) The type statement only describes the formats
of the nodes; nodes can be created only when the builtin procedure new is
called. For example, the call new(z) creates a new node, putting a pointer to

26 CHAPTER 2

it in a. (The other nodes on the lists processed by this program are created
in the readlist and add routines.)
The procedure to write out what’s on a list is the simplest. It simply

steps through the list, writing out the value of the coefficient in each node
encountered, until z is found:

procedure writelist(r: 1ink);
begin
while r<>z do
begin write(rt.c); ri=rf.next end,
wri teln
end;

The output of this program will be indistinguishable from that of the
program above which uses the simple array representation.

Building a list involves first calling new to create a node, then filling in
the coefficient, and then linking the node to the end of the partia list built so
far. The following function reads in N coefficients, assuming the same format
as before, and constructs the linked list which represents the corresponding
polynomial:

function readlist (N: integer) : link;
var i: integer; t: link;
begin
t:=z;
for i:=O to N-l do
begin new(tt.next); t:=tt.next; read(tt.c) end;
t1.next:=z; readlist:=z1.next; 21.next:=z
end;

The dummy node z is used here to hold the link which points to the first node
on the list while the list is being constructed. After this list is built, z is set
to link to itself. This ensures that once we reach the end of a list, we stay
there. Another convention which is sometimes convenient, would be to leave z
pointing to the beginning, to provide a way to get from the back to the front.

Finally, the program which adds two polynomials constructs a new list
in a manner similar to readlist, caculating the coefficients for the result
by stepping through the argument lists and adding together corresponding
coefficients:

ARITHMETIC 27

function add(p, g: link): link;
var ¢ : link ;
begin
t:=3z;
repeat
new(t?.next); t:=t1.next;
t1.c:=pt.c+qf.c;
p:=pt.next; q:=ql.next
until (p=z) and (g=2z);
tT.next:=z; add:=z1.next
end ;

Employing linked lists in this way, we use only as many nodes as are
required by our program. As N gets larger, we simply make more calls on new.
By itself, this might not be reason enough. to use linked lists for this program,
because it does seem quite clumsy compared to the array implementation
above. For example, it uses twice as much space, since a link must be stored
along with each coefficient. However, as suggested by the example above, we
can take advantage of the possibility that many of the coefficients may be zero.
We can have list nodes represent only the nonzero terms of the polynomial by
also including the degree of the term represented within the list node, so that
each list node contains values of ¢ and j to represent cz’. It is then convenient
to separate out the function of creating a node and adding it to a list, as
follows:

type link = tnode;
node = record c: red; j: integer; next: link end,;

function listadd(t: link; c: real; j: integer): link;

begin

new(t].next); t:=tl.next;

tt.c:=c; t1.j:=j;

listadd:=t;

end

The listadd function creates a new node, gives it the specified fields, and links
it into a list after node t. Now the readlist routine can be changed either to
accept the same input format as above (a:nd create list nodes only for nonzero
coefficients) or to input the coefficient and exponent directly for terms with
nonzero coefficient. Of course, the writelist function also has to be changed
suitably. To make it possible to process the polynomials in an organized

28 CHAPTER 2

way, the list nodes might be kept in increasing order of degree of the term
represented.

Now the add function becomes more interesting, since it has to perform
an addition only for terms whose degrees match, and then make sure that no
term with coefficient 0 is output:

function add(p, g: link): link;

begin
t:=2; 2z1.j:=N+1;
repeat
if (pT.j=q1.j) and (p?.c+qt.c<>0.0) then
begin

t:=listadd(t, pt.c+qt.c, pt.j);
p:=pl.next; q:=qf.next
end
else if pt.j<ql.j then
begin t:=listadd(t, p1.c, p1.j); p:=p!.next end
else iIf qt.j<pt.j then
begin t:=listadd(t, qf.c, q1.j); q:=ql.next end
until (p=2) and (g=2);
tf.next:=z; add:=zt.next
end;

These complications are worthwhile for processing “sparse” polynomials
with many zero coefficients, but the array representation is better if there are
only a few terms with zero coefficients. Similar savings are available for other
operations on polynomials, for example multiplication.

Matrices

We can proceed in a similar manner to implement basic operations on two-
dimensional matrices, though the programs become more complicated. Sup-
pose that we want to compute the sum of the two matrices

1 3 —4 8 30 9 6 —4
(1 1 —2)+(3 10 2) =(4 11 0).
-1 -2 5 0 26 -1 0 1

This is term-by-term addition, just as for polynomials, so the addition pro-
gram is a straightforward extension of our program for polynomials:

ARITHMETIC 29

program matrixadd(input, output);
const maxN—= 10;
var p, g, I: array [0..maxN, O.maxN] of real;

N, i, j: integer;
begin
readln (N) ;

for i:=O to N-I dofor j;=O to N-I do read(p[i, j]);
for i:=O to N-I do for j:=O to N-I do read(q[i, j]);
for i:=O to N- do for j:=O to N- do r[i, jl:=pli, j]+qli, il;
for i:=O to N-I do for j:=O to N do
if j=N then writeln else Wn't,e(r[j’)%
end.

Matrix multiplication is a more complicated operation. For our example,

we have
1 3 —4\/8 3 0 17 25 —18
1 1 =-2}){3 10 2= 11 9 -10|.
-1 -2 5/\0 2 6 ~14 —13 26

Element rlj, j] is the dot product of the ith row of p with the jth column
of g. The dot product is simply the sum of the N term-by-term multiplica-
tions pli, 1]*q(1, j]+pli, 2]*q[2, j]+-- p[i, N—1]*q[N—-1, j] as in the following
program:

for i:=O to h-1 do
for j:=O to N-l do

begin

t:=0.0;

for k:=0 to N-l do t:=t+pli, k]*q[k, |];
r[i,j]:=t

end ;

Each of the N? elements in the result matrix is computed with N mul-
tiplications, so about N2 operations are required to multiply two N by N
matrices together. (As noted in the previous chapter, this is not realy a cubic
agorithm, since the number of data items in this case is about N2, not N.)

As with polynomials, sparse matrices (those with many zero elements) can
be processed in a much more efficient manner using a linked list representation.
To keep the two-dimensional structure intact, each nonzero matrix eement
is represented by a list node containing a value and two links: one pointing
to the next nonzero element in the same row and the other pointing to the
next nonzero element in the same column. Implementing addition for sparse

30 CHAPTER 2

matrices represented in this way is similar to our implementation for sparse
polynomials, but is complicated by the fact that each node appears on two
lists.

Data Structures

Even if there are no terms with zero coefficients in a polynomia or no zero

elements in a matrix, an advantage of the linked list representation is that we
don’t need to know in advance how big the objects that we'll be processing
are. This is a significant advantage that makes linked structures preferable
in many situations. On the other hand, the links themselves can consume a
significant part of the available space, a disadvantage in some situations. Also,
access to individual elements in linked structures is much more restricted than
in arrays.

We'll see examples of the use of these data structures in various algo-
rithms, and we'll see more complicated data structures that involve more
constraints on the elements in an array or more pointers in a linked repre-
sentation. For example, multidimensional arrays can be defined which use
multiple indices to access individual items. Similarly, we'll encounter many
“multidimensional” linked structures with more than one pointer per node.
The tradeoffs between competing structures are usually complicated, and
different structures turn out to be appropriate for different situations.

When possible it is wise to think of the data and the specific operations
to be performed on it as an abstract data structure which can be redlized in
several ways. For example, the abstract data structure for polynomials in the
examples above is the set of coefficients: a user providing input to one of the
programs above need not know whether a linked list or an array is being used.
Modern programming systems have sophisticated mechanisms which make
it possible to change representations easily, even in large, tightly integrated
systems.

ARITHMETIC 31

Exercises

1

10.

Another way to represent polynomials is to write them in the form ro(z—
ri)(= r2) ... (z ~ 7). How would you multiply two polynomials in this
representation?

How would you add two polynomials represented as in Exercise 17

Write a Pascal program that multiplies two polynomials, using a linked
list representation with a list node for each term.

Write a Pascal program that multiplies sparse polynomials, using a linked
list representation with no nodes for terms with O coefficients.

Write a Pascal function that returns the value of the element in the ith

row and jth column of a sparse matrix, assuming that the matrix is
represented using a linked list representation with no nodes for O entries.

Write a Pascal procedure that sets the value of the element in the ith
row and jth column of a sparse matrix to v, assuming that the matrix is
represented using a linked list representation with no nodes for O entries.

What is the running time of matrix multiplication in terms of the number
of data items?

Does the running time of the polynornial addition programs for nonsparse
input depend on the value of any of the coefficients?

Run an experiment to determine which of the polynomia addition pro
grams runs fastest on your computer system, for relatively large N.

Give a counterexample to the assertion that the user of an abstract data
structure need not know what representation is being used.

3. Random Numbers

Our next set of agorithms will be methods for using a computer to
generate random numbers. We will find many uses for random numbers
later on; let’s begin by trying to get a better idea of exactly what they are.

Often, in conversation, people use the term random when they really
mean arbitrary. When one asks for an arbitrary number, one is saying that
one doesn’'t really care what number one gets: almost any number will do.
By contrast, a random number is a precisely defined mathematical concept:
every number should be equally likely to occur. A random number will satisfy
someone who needs an arbitrary number, but not the other way around.

For “every number to be equally likely to occur” to make sense, we must
restrict the numbers to be used to some finite domain. You can't have a
random integer, only a random integer in some range; you can’'t have a random
real number, only a random fraction in some range to some fixed precision.

It is almost always the case that not just one random number, but a
sequence of random numbers is needed (otherwise an arbitrary number might
do). Here’'s where the mathematics comes in: it's possible to prove many facts
about properties of sequences of random numbers. For example, we can expect
to see each value about the same number of times in a very long sequence
of random numbers from a small domain. Random sequences model many
natural situations, and a great deal is known about their properties. To be
consistent with current usage, we'll refer to numbers from random sequences
as random numbers.

There's no way to produce true random numbers on a computer (or any
deterministic device). Once the program is written, the numbers that it will
produce can be deduced, so how could they be random? The best we can hope
to do is to write programs which produce sequences of numbers having many of
the same properties as random numbers. Such numbers are commonly called
pseudo-random numbers; they’re not really random, but they can be useful

33

34 CHAF'TER 3

as approximations to random numbers, in much the same way that floating-
point numbers are useful as approximations to real numbers. (Sometimes it's
convenient to make a further distinction: in some situations, a few properties
of random numbers are of crucia interest while others are irrelevant. In
such situations, one can generate quasi-random numbers, which are sure to
have the properties of interest but are unlikely to have other properties of
random numbers. For some applications, quasi-random numbers are provably
preferable to pseudo-random numbers.)

It's easy to see that approximating the property “each number is equally
likely to occur” in along sequence is not enough. For example, each number in
the range (1,100] appears once in the sequence (1,2,. . .,100), but that sequence
is unlikely to be useful as an approximation to a random sequence. In fact,
in a random sequence of length 100 of numbers in the range [1,100], it is
likely that a few numbers will appear more than once and a few will not
appear at al. If this doesn’'t happen in a sequence of pseudo-random numbers,
then there is something wrong with the random number generator. Many
sophisticated tests based on specific observations like this have been devised
for random number generators, testing whether a long sequence of pseudo
random numbers has some property that random numbers would. The random
number generators that we will study do very well in such tests.

We have been (and will be) talking exclusively about uniform random
numbers, with each value equally likely. It is also common to deal with random
numbers which obey some other distribution in which some values are more
likely than others. Pseudo-random numbers with non-uniform distributions
are usualy obtained by performing some operations on uniformly distributed
ones. Most of the applications that we will be studying use uniform random
numbers.

Applications

Later in the book we will meet many applications in which random numbers
will be useful. A few of them are outlined here. One obvious application is in
cryptography, where the major goal is to encode a message so that it can’t be
read by anyone but the intended recipient. As we will see in Chapter 23, one
way to do this is to make the message look random using a pseudo-random
sequence to encode the message, in such a way that the recipient can use the
same pseudorandom sequence to decode it.

Another area in which random numbers have been widely used is in
simulation. A typical simulation involves a large program which models some
aspect of the real world: random numbers are natural for the input to such
programs. Even if true random numbers are not needed, simulations typically
need many arbitrary numbers for input, and these are conveniently provided
by a random number generator.

RANDOM NUMBERS 35

When a very large amount of data is to be analyzed, it is sometimes
sufficient to process only a very small amount of the data, chosen according
to random sampling. Such applications are widespread, the most prominent
being nationa political opinion polls.

Often it is necessary to make a choice when all factors under consideration
seem to be equal. The national draft lottery of the 70’s or the mechanisms
used on college campuses to decide which students get the choice dormitory
rooms are examples of using random numbers for decision making. In this
way, the responsibility for the decision is given to “fate” (or the computer).

Readers of this book will find themselves using random numbers exten-
sively for simulation: to provide random or arbitrary inputs to programs.
Also, we will see examples of algorithms which gain efficiency by using random
numbers to do sampling or to aid in decision making.

Linear Congruential Method

The most well-known method for generating random numbers, which has been
used almost exclusively since it was introduced by D. Lehmer in 1951, is the
so-called linear congruential method. If a [1] contains some arbitrary number,
then the following statement fills up an array with N random numbers using
this method:

for i:=2to N do
ali]:=(a[i—1]*b $1) mod m

That is, to get a new random number, take the previous one, multiply
it by a constant b, add 1 and take the remainder when divided by a second
constant m. The result is always an integer between (and m-l. This is
attractive for use on computers because the mod function is usually trivial to
implement: if we ignore overflow on the arithmetic operations, then most com-
puter hardware will throw away the bits that overflowed and thus effectively
perform a mod operation with m equal to one more than the largest integer
that can be represented in the computer word.

Simple as it may seem, the linear congruential random number generator
has been the subject of volumes of detailed and difficult mathematical analysis.
This work gives us some guidance in choosing the constants b and m. Some
“common-sense” principles apply, but in this case common sense isn’t enough
to ensure good random numbers. First, m should be large: it can be the
computer word size, as mentioned above, but it needn’t be quite that large
if that's inconvenient (see the implementation below). It will normally be
convenient to make m a power of 10 or 2. Second, b shouldn’t be too large or
too small: a safe choice is to use a number with one digit less than m. Third,

36 CHAPTER 3

b should be an arbitrary constant with no particular pattern in its digits,
except that it should end with ---z21, with z even: this last requirement is
admittedly peculiar, but it prevents the occurrence of some bad cases that
have been uncovered by the mathematical analysis.

The rules described above were developed by D.E.Knuth, whose textbook
covers the subject in some detail. Knuth shows that these choices will make
the linear congruential method produce good random numbers which pass
several sophisticated statistical tests. The most serious potential problem,
which can become quickly apparent, is that the generator could get caught
in a cycle and produce numbers it has already produced much sooner than
it should. For example, the choice b=19, m=381, with g 1] =0, produces the
sequence 0,1,20,0,1,20 ,..., a not-very-random sequence of integers between 0
and 380.

Any initial value can be used to get the random number generator started
with no particular effect except of course that different initial values will give
rise to different random sequences. Often, it is not necessary to store the
whole sequence as in the program above. Rather, we simply maintain a global
variable a, initialized with some value, then updated by the computation
a:=(axb+1) mod m.

In Pascal (and many other programming languages) we're still one step
away from a working implementation because we're not allowed to ignore
overflow: it's defined to be an error condition that can lead to unpredictable
results. Suppose that we have a computer with a 32-bit word, and we choose
m =100000000, b=31 415821, and, initially, a=1234567. All of these values are
comfortably less than the largest integer that can be represented, but the first
a* b+1 operation causes overflow. The part of the product that causes the
overflow is not relevant to our computation, we're only interested in the last
eight digits. The trick is to avoid overflow by breaking the multiplication up
into pieces. To multiply p by g, we write p = 10%p;, + pg and ¢ = 10%g; + qq,
so the product is

Pq = (10*p1 + po)(10*g; + go)
= 1081’1‘11 + 104(1)1(10 + Poth) + Pogo-

Now, we're only interested in eight digits for the result, so we can ignore
the first term and the first four digits of the second term. This leads to the
following program:

RANDOM NUMBERS 37

program random (inpu t, output) ;
const m=100000000; mI1=10000; b=31415821;
var 1, a, N: integer;
function mult(p, o integer): integer;
var pl, p0, g1, q0: integer;
begin
pl:=p divm ; p0:=p mod ml ;
ql :=q div ml; g0:=q mod mi;
mult:=(((pOxql+plxg0) mod ml)xmi+p0*q0) mod m
end:

!
function random : integer ;

begin
a:=(mult(a, b)+1) mod m
random =g
end;
begin
read(N, a);
for j:=]to N do writeln(random)
end.

The function mult in this program computes pxq mod m, with no overflow
as long as m is less than half the largest integer that can be represented. The
technique obviously can be applied with m=mi1*m1 for other values of ml.

Here are the ten numbers produced by this program with the input N =
10 and a = 1234567:

35884508
80001069
63512650
43635651
1034472
87181513
6917174
209855
67115956
59939877

There is some obvious non-randomness in these numbers: for example,
the last digits cycle through the digits O-9. It is easy to prove from the
formula that this will happen. Generally speaking, the digits on the right are

38 CHAPTER 3

not particularly random. This leads to a common and serious mistake in the
use of linear congruential random number generators. the following is a bad
program for producing random numbers in the range [0, 7 — 1]:

function randombad(r: integer) : integer;
begin
a:=(mult(b, a)+1) mod m;
randombad:=a mod T;
end ;

The non-random digits on the right are the only digits that are used,
so the resulting sequence has few of the desired properties. This problem is
easily fixed by using the digits on the left. We want to compute a number
between 0 and r-l by computing a*r mod m, but, again, overflow must be
circumvented, as in the following implementation:

function randomint(r: integer): integer;
begin
a:=(mult(a, b)+1) mod m;
randomint:=((a div ml)*r) div ml
end ;

Another common technique is to generate random real numbers between
0 and 1 by treating the above numbers as fractions with the decimal point
to the left. This can be implemented by simply returning the real value aim
rather than the integer a Then a user could get an integer in the range [0,7)
by simply multiplying this value by r and truncating to the nearest integer.
Or, a random real number between 0 and 1 might be exactly what is needed.

Additive Congruential Method

Another method for generating random numbers is based on linear feedback
shift registers which were used for early cryptographic encryption machines.
The idea is to start with a register filled with some arbitrary pattern, then

shift it right (say) a step at a time, filling in vacated positions from the left

with a bit determined by the contents of the register. The diagram below
shows a simple 4-bit register, with the new bit taken as the “exclusive or” of
the two rightmost bits.

RANDOM NUMBERS 39

B

Below are listed the contents of the register for the first sixteen steps of
the process:

0 1 2 3 4 5 6 7
1011 0101 1010 1101 1110 1111 0111 0011
8 9 10 11 12 13 14 15
0001 1000 0100 0010 1001 1100 0110 1011

Notice that all possible nonzero bit patterns occur, the starting value
repeats after 15 steps. As with the linear congruential method, the mathe-
matics of the properties of these registers has been studied extensively. For
example, much is known about the choices of “tap” positions (the bits used
for feedback) which lead to the generation of all bit patterns for registers of
various sizes.

Another interesting fact is that the calculation can be done a word at a
time, rather than a bit at a time, according to the same recursion formula.
In our example, if we take the bitwise “exclusive or” of two successive words,
we get the word which appears three places later in the list. This leads
us to a random number generator suitable for easy implementation on a
general-purpose computer. Using a feedback register with bits b and ¢ tapped
corresponds to using the recursion: a[k]=(alk—b]+alk—c]) mod m. To keep
the correspondence with the shift register model, the “+” in this recursion
should be a bitwise “exclusive or.” However, it has been shown that good
random numbers are likely to be produced even if normal integer addition is
used. This is termed the additive congruential method.

To implement this method, we need to keep a table of size ¢ which always
has the ¢ most recently generated numbers. The computation proceeds by
replacing one of the numbers in the table by the sum of two of the other
numbers in the table. Initially, the table should be filled with numbers that
are not too small and not too large. (One easy way to get these numbers
is to use a simple linear congruential generator!) Knuth recommends the
choices b=31, ¢=55 will work well for most applications, which leads to the
implementation below.

40 CHAPTER 3

procedure randinit (s integer)

begin
al0] :=s; j:=0;
repeat j:=j+1; alj]:=(mult(b, a[j—1])+1) mod m until j=54;
end ;
function randomint(r: integer): integer;
begin

Jj:=(j+1) mod 5.5;

aljl:=(a[(j+23) mod 55]+a [(j+54) mod 55]) mod m;
randomint:=((a[j] div m1)+r) div ml

end;

The program maintains the 55 most recently generated numbers, with the last
generated pointed to by j. Thus, the global variable a has been replaced by

a full table plus a pointer (j) into it. This large amount of “global state” is a
disadvantage of this generator in some applications, but it is also an advantage

because it leads to an extremely long cycle even if the modulus m is small.

The function randomint returns a random integer between 0 and r-l. Of
course, it can easily be changed, just as above, to a function which returns a
random real number between 0 and 1 (a [j]/m).

Testing Randomness

One can easily detect numbers that are not random, but certifying that a
sequence of numbers is random is a difficult task indeed. As mentioned above,
no sequence produced by a computer can be random, but we want a sequence
that exhibits many of the properties of random numbers. Unfortunately, it is
often not possible to articulate exactly which properties of random numbers
are important for a particular application.

On the other hand, it is always a good idea to perform some kind of test
on a random number generator to be sure that no degenerate situations have
turned up. Random number generators can be very, very good, but when
they are bad they are horrid.

Many tests have been developed for determining whether a sequence
shares various properties with a truly random sequence. Most of these tests
have a substantial basis in mathematics, and it would definitely be beyond the
scope of this book to examine them in detail. However, one statistical test,
the X2 (chi-square) test, is fundamental in nature, quite easy to implement,
and useful in severa applications, so we'll examine it more carefully.

The idea of the x? test is to check whether or not the numbers produced
are spread out reasonably. If we generate N positive numbers less than r, then

RANDOM NUMBERS 41

we'd expect to get about N /r numbers o:f each value. (But the frequencies of
occurrence of all the values should not be exactly the same: that wouldn’'t be
random!) It turns out that calculating whether or not a sequence of numbers
is distributed as well as a random sequence is very simple, as in the following
program:

function chisquare(N, r, s: integer) : redl;
var i, t: integer;
f: array [0,,1‘max] of integer;
begin
randinit(s);
for i;=0 to rmax do f[i] :
for j;=1to Ndo
begin
t:=randomint(r);
f[t]:=1[t]+1;
end ;
t:=0; for i:=0 to r-| do t:=t+f[i]*f[i];
chisquare:= ((r¢t/N) = N);
end ;

0;

We simply calculate the sum of the squares of the frequencies of occur-
rence of each value, scaled by the expected frequency then subtract off the
size of the sequence. This number is called the “y? statistic,” which may be
expre#sed mathematicaly as

5 2o<icr(fi— N/r)?
X= N/T '

If the x? statistic is close to r, then the numbers are random; if it is too far
away, then they are not. The notions of “close” and “far away” can be more
precisely defined: tables exist which tell exactly how to relate the statistic to
properties of random sequences. For the simple test that we're performing,
the statistic should be within 2/r of 7. This is valid if N is bigger than about
10r, and to be sure, the test should be tried a few times, since it could be
wrong about one out of ten times.

This test is so simple to implement that it probably should be included
with every random number generator, just to ensure that nothing unexpected
can cause serious problems. All the “good generators’ that we have discussed
pass this test; the “bad ones’ do not. Using the above generators to generate
a thousand numbers less than 100, we get a x? statistic of 100.8 for the

42 CHAPTER 3

linear congruential method and 105.4 for the additive congruential method,
both certainly well within 20 of 100. But for the “bad” generator which uses
the right-hand bits from the linear congruential generator the statistic is O
(why?) and for a linear congruential method with a bad multiplier (101011)
the statistic is 77.8, which is significantly out of range.

Implementation Notes

There are a number of facilities commonly added to make a random number

generator useful for a variety of applications. Usually, it is desirable to set
up the generator as a function that is initialized and then called repeatedly,

returning a different random number each time. Another possibility is to call

the random number generator once, having it fill up an array with all the

random numbers that will be needed for a particular computation. In either
case, it is desirable that the generator produce the same sequence on successive
calls (for initial debugging or comparison of programs on the same inputs) and
produce an arbitrary sequence (for later debugging). These facilities all involve
manipulating the “state” retained by the random number generator between
calls. This can be very inconvenient in some programming environments. The
additive generator has the disadvantage that it has a relatively large state (the
array of recently produced words), but it has the advantage of having such a
long cycle that it is probably not necessary for each user to initialize it.

A conservative way to protect against eccentricities in a random number
generator is to combine two generators. (The use of a linear congruential
generator to initialize the table for an additive congruentia generator is
an elementary example of this) An easy way to implement a combination
generator is to have the first generator fill a table and the second choose
random table positions to fetch numbers to output (and store new numbers
from the first generator).

When debugging a program that uses a random number generator, it is
usually a good idea to use a trivial or degenerate generator at first, such as
one which always returns O or one which returns numbers in order.

As a rule, random number generators are fragile and need to be treated
with respect. It's difficult to be sure that a particular generator is good
without investing an enormous amount of effort in doing the various statistical
tests that have been devised. The moral is: do your best to use a good
generator, based on the mathematical analysis and the experience of others;
just to be sure, examine the numbers to make sure that they “look” random;
if anything goes wrong, blame the random number generator!

RANDOM NUMBERS 43

Exercises

1

N

9.

10.

Write a program to generate random four-letter words (collections of
letters). Estimate how many words your program will generate before
a word is repeated.

How would you simulate generating random numbers by throwing two
dice and taking their sum, with the added complication that the dice are
nonstandard (say, painted with the numbers 1,2,3,5,8, and 13)?

What is wrong with the following linear feedback shift register?

Why wouldn’t the “or” or “and” function (instead of the “exclusive or”
function) work for linear feedback shift registers?

Write a program to produce a randorn two dimensional image. (Example:
generate random bits, write a “*” when 1 is generated, “ ” when 0 is

generated. Another example: use random numbers as coordinates in a
two dimensional Cartesian system, write a “*” at addressed points.)

Use an additive congruential random number generator to generate 1000
positive integers less than 1000. Design a test to determine whether or
not they’re random and apply the test.

Use a linear congruential generator with parameters of your own choos-
ing to generate 1000 positive integers less than 1000. Design a test to
determine whether or not they’re random and apply the test.

Why would it be unwise to use, for example, b=3 and ¢=6 in the additive
congruential generator?

What is the value of the x? statistic for a degenerate generator which
always returns the same number?

Describe how you would generate random numbers with m bigger than
the computer word size.

4. Polynomias

The methods for doing arithmetic operations given in Chapter 2 are
simple and straightforward solutions to familiar problems. As such, they
provide an excellent basis for applying algorithmic thinking to produce more
sophisticated methods which are substantially more efficient. As we'll see, it
is one thing to write down a formula which implies a particular mathematical
calculation; it is quite another thing to write a computer program which
performs the calculation efficiently.

Operations on mathematical objects are far too diverse to be catalogued
here; we'll concentrate on a variety of algorithms for manipulating polyno-
mials. The principal method that we'll study in this section is a polyno-
mial multiplication scheme which is of no particular practical importance but
which illustrates a basic design paradigm called divide-and-conquer which is
pervasive in algorithm design. We'll see in this section how it applies to matrix
multiplication as well as polynomial multiplication; in later sections we'll see
it applied to most of the problems that we encounter in this book.

Evauation

A first problem which arises naturally is to compute the value of a given
polynomial at a given point. For example, to evaluate

pX) =+ 3z =622 + 2x + 1

for any given x, one could compute 74, then compute and add 3z3, etc. This
method requires recomputation of the powers of x; an aternate method, which
requires extra storage, would save the powers of x as they are computed.

A simple method which avoids recomputation and uses no extra space
is known as Homer’s rule: by alternating the multiplication and addition
operations appropriately, a degree-N polynomial can be evaluated using only

45

46 CHAPTER 4

N 1 multiplications and N additions. The parenthesization
p(z) = x(x(x(x +3) 6)+2) +1

makes the order of computation obvious:

y:=p[N]; _
for j:=N—1 downto 0 do y:=x*y+p[i];

This program (and the others in this section) assume the array representation
for polynomials that we discussed in Chapter 2.

A more complicated problem is to evaluate a given polynomia at many
different points. Different algorithms are appropriate depending on how many
evaluations are to be done and whether or not they are to be done simul-
taneously. If a very large number of evaluations is to be done, it may be
worthwhile to do some “precomputing” which can slightly reduce the cost
for later evaluations. Note that using Horner's method would require about
N2 multiplications to evaluate a degree-N polynomial at N different points.
Much more sophisticated methods have been designed which can solve the
problem in N(log N)? steps, and in Chapter 36 we'll see a method that uses
only N log N multiplications for a specific set of N points of interest.

If the given polynomia has only one term, then the polynomia evalua-
tion problem reduces to the exponentiation problem: compute zN, Horner's
rule in this case degenerates to the trivial agorithm which requires N = 1
multiplications. For an easy example of how we can do much better, consider
the following sequence for computing z32:

4’ 1.8’ fEl(: 132.

T, 1%
Each term is obtained by squaring the previous term, so only five multiplica-
tions are required (not 31).
The “successive squaring” method can easily be extended to general N
if computed values are saved. For example, z°5 can be computed from the
above values with four more multiplications:

1.55 — 2:321.16_,1:41.21;1‘

In general, the binary representation of N can be used to choose which
computed values to use. (In the example, since 55 = (110111),, al but 28

are used.) The successive squares can be computed and the bits of N tested
within the same loop. Two methods are available to implement this using only

POLYNOMIALS 47

one “accumulator,” like Horner's method. One algorithm involves scanning
the binary representation of N from left to right, starting with 1 in the
accumulator. At each step, square the accumulator and also multiply by z
when there is a 1 in the binary representation of N. The following sequence
of values is computed by this method for N = 55:

1,1, xz’ x3,‘x6,x12,z13,x26,x27 XB4 55
s / o8

Another well-known algdfithm whks similarly, bht, scans N from right to

left. This problem is a 'standard introductory programming exercise, but it is

hardly of practical interest.

Interpolation

The “inverse” problem to the problem of evaluating a polynomial of degree N
at N points simultaneously is the problem of polynomial interpolation: given
a set of N points z; ,zs,. . . ,zn and associated values yq,ys,. . . ,yn, find the
unique polynomial of degree N = 1 which has

p(z1) =y1, p(T2) = Y2, . . L D(ZN) = UN-

The interpolation problem is to find the polynomial, given a set of points and
values. The evaluation problem is to find the values, given the polynomial
and the points. (The problem of finding the points, given the polynomia and
the values, is root-finding.)

The classic solution to the interpolation problem is given by Lagrange's
interpolation formula, which is often used as a proof that a polynomial of
degree N = 1 is completely determined by N points:

pe)= 3 oy I Z=Z

1<;<N 1€ign Tj — T4
=7= it

This formula seems formidable at first but is actually quite simple. For
example, the polynomia of degree 2 which has p(l) = 3, p(2) = 7, and p(3) =
13 is given by

r—2z—3 z—1z-3 z—1x—2

- 7 1
Ple) =37 513t o1 Y 3501303

which simplifies to

?+z+ 1

For x from zy, zo, . . . , ZN, the formula is constructed so that p(zx) = v« for
1 < k € N, since the product evaluates to 0 unless j = k, when it evaluates

48 CHAPTER 4

to 1. In the example, the last two terms are O when ¢ = 1, the first and last
terms are O when x = 2, and the first two terms are O when x = 3.

To convert a polynomia from the form described by Lagrange’s formula
to our standard coefficient representation is not at all straightforward. At
least N2 operations seem to be required, since there are N terms in the sum,
each consisting of a product with N factors. Actually, it takes some cleverness
to achieve a quadratic algorithm, since the factors are not just numbers, but
polynomials of degree N. On the other hand, each term is very similar to
the previous one. The reader might be interested to discover how to take
advantage of this to achieve a quadratic algorithm. This exercise leaves one
with an appreciation for the non-trivial nature of writing an efficient program
to perform the calculation implied by a mathematical formula

As with polynomial evaluation, there are more sophisticated methods
which can solve the problem in N(log N)2 steps, and in Chapter 36 we'll see
a method that uses only N log N multiplications for a specific set of N points
of interest.

Multiplication

Our first sophisticated arithmetic algorithm is for the problem of polynomial
multiplication: given two polynomias p(x) and q(x), compute their product
p(z)g(z). As noted in Chapter 2, polynomials of degree N — 1 could have
N terms (including the constant) and the product has degree 2N — 2 and as
many as 2N — 1 terms. For example,

1 +7+32° 4L+ 2x =522 — 32%) = (L + 3z — 62> = 262 + 1125 + 1225).

The naive agorithm for this problem that we implemented in Chapter 2
requires N2 multiplications for polynomials of degree N - 1: each of the N
terms of p(x) must be multiplied by each of the N terms of q(x).

To improve on the naive algorithm, we'll use a powerful technique for
algorithm design called divide-and-conquer: split the problem into smaller
parts, solve them (recursively), then put the results back together in some
way. Many of our best algorithms are designed according to this principle.
In this section we'll see how divide-and-conquer applies in particular to the
polynomia multiplication problem. In the following section we'll look at some
analysis which gives a good estimate of how much is saved.

One way to split a polynomial in two is to divide the coefficients in half:
given a polynomial of degree N-I (with N coefficients) we can split it into two
polynomials with N/2 coefficients (assume that N is even): by using the N/2
low-order coefficients for one polynomial and the N/2 high-order coefficients

POLYNOMIALS 49

for the other. For p(z)= pg+ p1z + . ++ + py_12™V "1, define

p(z) =po+ P17+ "'+PN/2—1CEN/2_1

ph(g’l) = pN/2 + pN/2+1.'E -|- vy pN—lfL'N/z‘l.

Then, splitting q(x) in the same way, we have:

p(z) = pux) + TN/ Ppy(z),
9(z) = qz) + =N/ 2gn(2).

Now, in terms of the smaller polynomials;, the product is given by:

£N/2 N

p(z)q(z) = pz)qi(z) + (Pe(2)an(z) + @fz)pn()) + pu(z)qn(z)2

(We used this same split in the previous chapter to avoid overflow.) What's
interesting is that only three multiplications are necessary to compute these
products, because if we compute r,(z) = py(z)q(z), ra(z) = pn(z)gn(z), @and

rm(z) = (n(z) + Pa(2))(@i(2) + gn(z)),we can get the product p(z)g(z) by
computing

p(z)g(z) =n(z) + (rm(z) n(z) ra@)e/? +rp(z)e".

Polynomial addition requires a linear agorithm, and the straightforward poly-
nomial multiplication algorithm of Chapter 2 is quadratic, so it's worthwhile
to do a few (easy) additions to save one (difficult) multiplication. Below we'll
look more closely at the savings achieved by this method.

For the example given above, with p(z) =1 +z +3z? —4z% and q(x) =
1+2x =572~ 373, we have

r(z) = (14 z)(1 +2X) = 1 + X + 222,
h(z) = B -H)(5 = 3) = -15 + 11z + 127°,
Tm(T) = @ = (4 =x) = -16 +8 + 322,

Thus, 7,,(z) = 7;(z) —rp(z) = -2 = & = 11z%, and the product is computed as

p(z)g(z) = (@ + X + 2z + (2 -6x 1DAX + (15 + 1liz + 12K
=143 — 62° 26z* + 11z° + 1225,

This divide-and-conquer approach solves a polynomial multiplication problem
of size N by solving three subproblems of size N/2, using some polynomial

addition to set up the subproblems and to combine their solutions. Thus, this

procedure is easily described as a recursive program:

50 CHAPTER 4

function mult(p, q: array[0..N—1] of real;
N: integer) : array [0..2xN—2] of real;
var pl, gl, ph, gh, t1,t2: array [0..(N div 2)—1] of real;
rl, rm, rh: array [0..N—1] of red;
i, N2: integer;
begin
if N=1then mult[0]:=p[0]*q[0]
else
begin
N2:=N div 2;
for i:=O to N2—1 do
begin pl[i]:=pli]; ql[i]:=q[i] end;
for i:=N2 to N-I do
begin ph[i—N2]:=pl[i]; gh[i—N2}:=q([i] end;
for i:=0 to N2—1do t1[i}:=pl[i]+ph]i];
for i:=0 to N2—1do t2[i]:=ql[i]+gh[i];
rm:=mult(t1, t2, N2);
rl:=mult(pl, ql, N2);
rh:=mult(ph, gh, N2);
for i:=0to N-2 do mult [i] :=rli]
mult [N-] :=0;
for i:=0to N-2 do mult [N+i] :=rh [i]
for i:=0O to N-2 do
mult[N2+i]:=mult[N2+i]4rm i]—(rl[i]+rh]i]);
end;
end.

Although the above code is a succinct description of this method, it is (unfortu-

nately) not a legal Pascal program because functions can’t dynamically declare

arrays. This problem could be handled in Pascal by representing the polyno-

mials as linked lists, as we did in Chapter 2. This program assumes that N is a
power of two, though the details for general N can be worked out easily. The

main complications are to make sure that the recursion terminates properly

and that the polynomials are divided properly when N is odd.

The same method can be used for multiplying integers, though care must

be taken to treat “carries” properly during the subtractions after the recursive
calls.

As with polynomial evaluation and interpolation, there are sophisticated
methods for polynomial multiplication, and in Chapter 36 we'll see a method
that works in time proportional to N log N.

POLYNOMIALS 51

Divide-and-conquer Recurrences

Why is the divide-and-conquer method given above an improvement? In this
section, we'll look at a few simple recurrence formulas that can be used to
measure the savings achieved by a divide-and-conquer algorithm.

From the recursive program, it is clear that the number of integer multi-
plications required to multiply two polynomias of size N is the same as the
number of multiplications to multiply three pairs of polynomias of size N/2.
(Note that, for example, no multiplications are required to compute rj(z)z™,
just data movement.) If M(N) is the number of multiplications required to
multiply two polynomials of size N, we have

M(N) = 3M(N/2)

for N > 1 with M(1) = 1. Thus M(2) . = 3, M(4) = 9, M(8) = 27, €c. In
generd, if we take N = 27, then we can repeatedly apply the recurrence to
itself to find the solution:

MM =3M(@ Y =32M(2") =3M(2" %) =...=3"M(1)=3"

If N = 27, then 3" = 2U83)n = 2nlg3 = NI&3_ Although this solution is exact
only for N = 2", it works out in general that

M(N) ~ Nl&3 o N1'58,

which is a substantial savings over the N2 naive method. Note that if we were
to have used all four multiplications in the simple divide-and-conquer method,
thg recurrence would be M(N) = 4M(N/2) with the solution M(2") = 4" =
N-

The method described in the previous section nicely illustrates the divide-
and-conquer technique, but it is seldom used in practice because a much better
divide-and-conquer method is known, which we'll study in Chapter 36. This
method gets by with dividing the original into only two subproblems, with
a little extra processing. The recurrence describing the number of multiplica-
tions required is

M(N) = 2M(N/2) + N.
Though we don’'t want to dwell on the mathematics of solving such recur-
rences, formulas of this particular form arise so frequently that it will be

worthwhile to examine the development of an approximate solution. First, as
above, we write N = 27

M@2m) = 2M(2") + 2,

52 CHAPTER 4

The trick to making it simple to apply this same recursive formula to itself is
to divide both sides by 2™:

M(Qn) _M(2n—1)
an an—1

+1.

Now, applying this same formula to itself n times ends up simply giving n
copies of the “1,” from which it follows immediately that M(2™) = n2™. Again,
it turns out that this holds true (roughly) for all N, and we have the solution

M(N) ~ NigN.

We'll see several agorithms from different applications areas whose perfor-
mance characteristics are described by recurrences of this type. Fortunately,
many of the recurrences that come up are so similar to those above that the
same techniques can be used.

For another example, consider the situation when an algorithm divides
the problem to be solved in half, then is able to ignore one half and (recursively)
solve the other. The running time of such an algorithm might be described
by the recurrence

M(N) = M(N/2) + 1.

This is easier to solve than the one in the previous paragraph. We immediately
have M(2")= n and, again, it turns out that M(N) =~ IgN.

Of course, it's not always possible to get by with such trivial manipula-
tions. For a dightly more difficult example, consider an algorithm of the type
described in the previous paragraph which must somehow examine each ele-
ment before or after the recursive step. The running time of such an algorithm
is described by the recurrence

M(N) = M(N/2) + N.

Substituting N = 2™ and applying the same recurrence to itself n times now
gives
M(?n) — 2n + 2n—1 + 2n—2 et 1.

This must be evaluated to get the result M(2") = 2"*! — 1 which translates
to M(N) ~ 2N for genera N.

To summarize, many of the most interesting algorithms that we will
encounter are based on the divide-and-conquer technique of combining the
solutions of recursively solved smaller subproblems. The running time of such
algorithms can usually be described by recurrence relationships which are a
direct mathematical translation of the structure of the agorithm. Though

POLYNOMIALS 53

such relationships can be challenging to solve precisely, they are often easy to
solve for some particular values of N to get solutions which give reasonable
estimates for all values of N. Our purpose in this discussion is to gain some
intuitive feeling for how divide-and-conquer algorithms achieve efficiency, not
to do detailed analysis of the algorithms. Indeed, the particular recurrences
that we've just solved are sufficient to describe the performance of most of
the algorithms that we'll be studying, and we'll simply be referring back to
them.

Matrix Multiplication

The most famous application of the divide-and-conquer technique to an arith-
metic problem is Strassen’'s method for matrix multiplication. We won't go
into the details here, but we can sketch the method, since it is very similar to
the polynomial multiplication method that we have just studied.

The straightforward method for multiplying two N-by-N matrices re-
quires N3 scalar multiplications, since each of the N2 elements in the product
matrix is obtained by N multiplications.

Strassen’s method is to divide the size of the problem in half; this cor-
responds to dividing each of the matrices into quarters, each N/2 by N/2.
The remaining problem is equivalent to multiplying 2-by-2 matrices. Just as
we were able to reduce the number of multiplications required from four to
three by combining terms in the polynomial multiplication problem, Strassen
was able to find a way to combine terms to reduce the number of multiplica-
tions required for the 2-by-2 matrix multiplication problem from 8 to 7. The
rearrangement and the terms required are quite complicated.

The number of multiplications required for matrix multiplication using
Strassen’s method is therefore defined by the divide-and-conquer recurrence

M(N) = TM(N/2)

which has the solution
M(N) ~ N&7 » N28L

This result was quite surprising when it first appeared, since it had previously
been thought that N® multiplications were absolutely necessary for matrix
multiplication. The problem has been studied very intensively in recent years,
and slightly better methods than Strassen’s have been found. The “best”
algorithm for matrix multiplication has still not been found, and this is one
of the most famous outstanding problems of computer science.

It is important to note that we have been counting multiplications only.

Before choosing an algorithm for a practical application, the costs of the
extra additions and subtractions for combining terms and the costs of the

54 CHAPTER 4

recursive calls must be considered. These costs may depend heavily on the

particular implementation or computer used. But certainly, this overhead
makes Strassen's method less efficient than the standard method for small

matrices. Even for large matrices, in terms of the number of data items input,
Strassen’s method really represents an improvement only from N!-5to N141,

This improvement is hard to notice except for very large N. For example, N
would have to be more than a million for Strassen’s method to use four times

as few multiplications as the standard method, even though the overhead per
multiplication is likely to be four times as large. Thus the agorithm is a
theoretical, not practical, contribution.

This illustrates a general tradeoff which appears in al applications (though
the effect, is not aways so dramatic): simple algorithms work best for small
problems, but sophisticated algorithms can reap tremendous savings for large
problems.

-

POLYNOMIALS 55

Exercises

1

10.

Give a method for evaluating a polynomial with known roots 7y, rq, . . .
TN, and compare your method with Horner’s method.

Write a program to evaluate polynomials using Horner’'s method, where
a linked list representation is used for the polynomials. Be sure that your
program works efficiently for sparse polynomials.

Write an N2 program to do Lagrang:ian interpolation.

Suppose that we know that a polynomial to be interpolated is sparse (has
few non-zero coefficients). Describe how you would modify Lagrangian
interpolation to run in time proportional to N times the number of non-
zero coefficients.

Write out all of the polynomial multiplications performed when the divide-
and-conquer polynomial multiplication method described in the text is
used to square 1 + z + 2 + 23 + 2% + 25 + 26 + 27 + 8.

The polynomial multiplication routine mult could be made more efficient
for sparse polynomials by returning O if all coefficients of either input are
0. About how many multiplications (to within a constant factor) would
such a program use to square 1 + gN?

Can 232 be computed with less than five multiplications? If so, say which
ones; if not, say why not.

Can 55 be computed with less than nine multiplications? If so, say which
ones; if not, say why not.

Describe exactly how you would modify muit to multiply a polynomial of
degree N by another of degree M, withN > M.

Give the representation that you would use for programs to add and
multiply multivariate polynomials such as zy?z + 31wz3y3250 + w. Give
the single most important reason for choosing this representation.

5. Gaussan Elimination

Certainly one of the most fundamental scientific computations is the
solution of systems of simultaneous equations. The basic algorithm for
solving systems of equations, Gaussian elimination, is relatively simple and
has changed little in the 150 years since it was invented. This algorithm has
come to be well understood, especially in the past twenty years, so that it can
be used with some confidence that it will efficiently produce accurate results.

This is an example of an agorithm that will surely be available in most
computer installations; indeed, it is a primitive in several computer languages,
notably APL and Basic. However, the basic algorithm is easy to understand
and implement, and special situations do arise where it might be desirable
to implement a modified version of the algorithm rather than work with a
standard subroutine. Also, the method deserves to be learned as one of the
most important numeric methods in use today.

As with the other mathematical material that we have studied so far, our
treatment of the method will highlight only the basic principles and will be
self-contained. Familiarity with linear algebra is not required to understand
the basic method. We'll develop a simple Pascal implementation that might
be easier to use than a library subroutine for simple applications. However,
we'll aso see examples of problems which could arise. Certainly for a large or
important application, the use of an expertly tuned implementation is called
for, as well as some familiarity with the underlying mathematics.

A Smple Example

Suppose that we have three variables z,y and z and the following three
eguations:

x+3y =4z =8,
T+y—2z=2,
—zr—2y+52=-1.

57

58 CHAPTER 5

Our goa is to compute the values of the variables which simultaneously
satisfy the equations. Depending on the particular equations there may not
always be a solution to this problem (for example, if two of the equations are

contradictory, such asz+ y =1, £+ ¥ = 2) or there may be many solutions

(for example, if two equations are the same, or there are more variables than
equations). We'll assume that the number of equations and variables is the
same, and we'll look at an algorithm that will find a unique solution if one
exists.

To make it easier to extend the formulas to cover more than just three
points, we'll begin by renaming the variables, using subscripts:

1+ 3z —4x3 =38,
T1+T9—223=2,
—Iy - 212 + 5(1)3 =-1

To avoid writing down variables repeatedly, it is convenient to use matrix
notation to express the simultaneous equations. The above equations are
exactly equivalent to the matrix equation

I 3 4y/m 8
-1 -2 5/\73 -1

There are several operations which can be performed on such equations which
will not alter the solution:
Interchange equations: Clearly, the order in which the equations are
written down doesn’t affect the solution. In the matrix representation,
this operation corresponds to interchanging rows in the matrix (and
the vector on the right hand side).
Rename variables: This corresponds to interchanging columns in the
matrix representation. (If columns ¢ and 5 are switched, then variables
z; and z; must also be considered switched.)

Multiply equations by a constant: Again, in the matrix representation,
this corresponds to multiplying a row in the matrix (and the cor-
responding element in the vector on the right-hand side) by a constant.
Add two equations and replace one of them by the sum. (It takes a
little thought to convince oneself that this will not affect the solution.)

For example, we can get a system of equations equivalent to the one above
by replacing the second equation by the difference between the first two:

1 3 4/ 8
(o 2 2)(=)-()
-1 =2 5/\%3 -1

GAUSSIAN ELIMINATION 59

Notice that this eliminates z; from the second equation. In a similar manner,
we can eliminate xi from the third equation by replacing the third equation
by the sum of the first and third:

1 3 —4\/T1 8
(0 ; 2)() =(6).
01 1/\z3 7

Now the variable z, is eliminated from all but the first eguation. By sys-
tematically proceeding in this way, we can transform the original system of
equations into a system with the same solution that is much easier to solve.
For the example, this requires only one more step which combines two of the
operations above: replacing the third equation by the difference between the
second and twice the third. This makes all of the elements below the main
diagonal O: systems of equations of this form are particularly easy to solve.
The simultaneous equations which result in our example are:

1+ 31y —4x3 =28,

2z9 = 213 = 6,
—4123 = -8.
Now the third equation can be solved immediately: z; = 2. If we substitute
this value into the second equation, we can compute the value of zy:
223 —4 = 6,
Zq == 5.
Similarly, substituting these two values in the first equation allows the value
of xi to be computed:
T;+15=8=8,
=1

which completes the solution of the equations.

This example illustrates the two basic phases of Gaussian elimination.
The first is the forward elimination phase, where the original system is trans-
formed, by systematically eliminating variables from equations, into a system
with all zeros below the diagonal. This process is sometimes called triangula-
tion. The second phase is the backward substitution phase, where the values
of the variables are computed using the triangulated matrix produced by the
first phase.

Outline of the Method

In general, we want to solve a system of /N equations in N unknowns:
a1171 + @122 + — + aININ = by,
@21%1 + G22T2 + '+ + G2NIN = by,

GN1ZT1 +GN2T2 4+ v+ N NIN = b

60 CHAPTER 5

In matrix form, these equations are written as a single matrix equation:

ai; 612 ... OIN T1 b1
G21 Q22 ... 2N || Z2 b2
aN1aN2 ... GNN/\IN bn

or simply Az = b, where A represents the matrix, T represents the variables,
and b represents the right-hand sides of the equations. Since the rows of A
are manipulated along with the elements of b, it is convenient to regard b as

the (N + 1)st column of A and use an N-by-(N + 1) array to hold both.

Now the forward elimination phase can be summarized as follows:. first
eliminate the first variable in al but the first equation by adding the ap-
propriate multiple of the first equation to each of the other equations, then
eliminate the second variable in al but the first two equations by adding the
appropriate multiple of the second equation to each of the third through the
Nth equations, then eliminate the third variable in al but the first three
equations, etc. To eliminate the ith variable in the jth equation (for j be-
tweeni + 1 and N) we multiply the ith equation by a;;/a;; and subtract it
from the jth equation. This process is perhaps more succinctly described by
the following program, which reads in N followed by an N-by-(N + 1) matrix,
performs the forward elimination, and writes out the triangulated result. In
the input, and in the output the ith line contains the ith row of the matrix
followed by b;.

program gauss(input, output);
const maxN=>50;
var a array [1..maxN, 1..maxN)] of red;
i, j, k, N:integer;
begin
readln (N) ;
for j:==1to N do
begin for k:=] to N+1 do read(a[j, K]); readln end;
for i:==1to N do
for j:=i+1to N do
for k:=N+1 downto i do
a[j) k]:=a[j, k]_a[ja k]*a[j; 1]/3[1) 1]1
for j:==1to N do
begin for k:=1to N+1do write(a[j, kK); writeln end;
end.

GAUSSIAN ELIMINATION 61

(As we found with polynomials, if we wtint to have a program that takes N
as input, it is necessary in Pascal to first decide how large a value of N will
be “legal,” and declare the array suitably.) Note that the code consists of
three nested loops, so that the total running time is essentially proportional
to N3. The third loop goes backwards so as to avoid destroying aLj, i] before
it is needed to adjust the values of other #elements in the same row.

The program in the above paragraph is too simple to be quite right: ali, i]
might be zero, so division by zero could ‘occur. This is easily fixed, because
we can exchange any row (from i+1 to N) with the ith row to make ali, i]
non-zero in the outer loop. If no such row can be found, then the matrix is
singular: there is no unique solution.

In fact, it is advisable to do slightly more than just find a row with a
non-zero entry in the ith column. It's best to use the row (from j+1 to N)
whose entry in the ith column is the largest in absolute value. The reason for
this is that severe computational errors can arise if the ali, i] value which is
used to scale a row is very small. If a[i, i] is very small, then the scaling factor
alj, i]/ali, i] which is used to eliminate the ith variable from the jth equation
(for j from i+1to N) will be very large. In fact, it could get so large as to
dwarf the actual coefficients aj, k], to the point where the a[j, k] value gets
distorted by “round-off error.”

Put simply, numbers which differ greatly in magnitude can't be accurately
added or subtracted in the floating point number system commonly used to
represent real numbers, but using a small ali, i] value greatly increases the
likelihood that such operations will have to be performed. Using the largest
value in the ith column from rows j+1 to N will ensure that the scaling factor
is always less than 1, and will prevent the occurrence of this type of error. One
might contemplate looking beyond the ith column to find a large element, but
it has been shown that accurate answers can be obtained without resorting to
this extra complication.

The following code for the forward elimination phase of Gaussian elimina-
tion is a straightforward implementation of this process. For each i from 1 to
N, we scan down the ith column to find the largest element (in rows past the
ith). The row containing this element is exchanged with the ith , then the ith
variable is eliminated in the equations j+] to N exactly as before:

62 CHAPTER 5

procedure eliminate;
var i, j, k, max: integer;
t: real;
begin
for i:=l to Ndo
begin
max:=i;
for j:=i+l to N do
if abs(a[j, i])>abs(almax, i]) then max:=j:
for k:=i to N+1do
begin t:=gi, k]; a[i, k] :=gmax, k]; a[max, k] :=t end;
for j:=i+1to N do
for k:=N+1 downto i do
alj, k]:=alj, k]—ali, k]*a[j, i] /ali, i];
end
end ;

(A cdl to eliminate should replace the three nested for loops in the program
gauss given above.) There are some algorithms where it is required that the
pivot afi, i] be used to eliminate the ith variable from every equation but the
ith (not just the (i+1)st through the Nth). This process is called full pivoting;
for forward elimination we only do part of this work hence the process is called
partial pivoting .

After the forward elimination phase has completed, the array a has
al zeros below the diagonal, and the backward substitution phase can be
executed. The code for this is even more straightforward:

procedure substitute;
var |, k: integer;
t: red;

begin

for j:=N downto 1 do
begin
t:=0.0;
for k:=j+l to N do t:=t+a[j, k]*x[k];
x[j]:=(alj; N+1]-t)/alj,j]
end

end;

A cal to eliminate followed by a call to substitute computes the solution in
the N-element array x. Division by 0 could still occur for singular matrices.

GAUSSLAN ELIMINATION 63

Obviously a “library” routine would check for this explicitly.

An alternate way to proceed after forward elimination has created all
zeros below the diagonal is to use precisely the same method to produce al
zeros above the diagonal: first make the last column zero except for aN, N]
by adding the appropriate multiple of a[N, N], then do the same for the next~
to-last column, etc. That is, we do “partial pivoting” again, but on the other
“part” of each column, working backwards through the columns. After this
process, caled Gauss- Jordan reduction, is complete, only diagonal elements
are non-zero, which yields a trivial solution.

Computational errors are a prime source of concern in Gaussian elimina-
tion. As mentioned above, we should be wary of situations when the mag-
nitudes of the coefficients vastly differ. Using the largest available element
in the column for partial pivoting ensures that large coefficients won't be ar-
bitrarily created in the pivoting process, but it is not always possible to avoid
severe errors. For example, very small coefficients turn up when two different
equations have coefficients which are quite close to one another. It is actually
possible to determine in advance whether such problems will cause inaccurate
answers in the solution. Each matrix has an associated numerical quantity
called the condition number which can be used to estimate the accuracy of
the computed answer. A good library subroutine for Gaussian elimination
will compute the condition number of the matrix as well as the solution, so
that the accuracy of the solution can be |known. Full treatment of the issues
involved would be beyond the scope of this book.

Gaussian elimination with partial pivoting using the largest available
pivot is “guaranteed”’ to produce results with very small computational errors.
There are quite carefully worked out mathematical results which show that the
calculated answer is quite accurate, except for ill-conditioned matrices (which
might be more indicative of problems in the system of equations than in the
method of solution). The algorithm has been the subject of fairly detailed

theoretical studies, and can be recommended as a computational procedure
of very wide applicability.

Variations and Extensions

The method just described is most appropriate for N-by-N matrices with
most of the N2 elements non-zero. As we've seen for other problems, special
techniques are appropriate for sparse matrices where most of the elements are
0. This situation corresponds to systems of equations in which each equation
has only a few terms.

If the non-zero elements have no particular structure, then the linked

list representation discussed in Chapter 2 is appropriate, with one node for
each non-zero matrix element, linked together by both row and column. The

64 CHAPTER 5

standard method can be implemented for this representation, with the usual
extra complications due to the need to create and destroy non-zero elements.
This technique is not likely to be worthwhile if one can afford the memory to
hold the whole matrix, since it is much more complicated than the standard
method. Also, sparse matrices become substantially less sparse during the
Gaussian elimination process.

Some matrices not only have just a few non-zero elements but also have
a simple structure, so that linked lists are not necessary. The most common
example of this is a “band)) matrix, where the non-zero elements all fall very
close to the diagonal. In such cases, the inner loops of the Gaussian elimination
algorithms need only be iterated a few times, so that the total running time
(and storage requirement) is proportional to N, not N3,

An interesting special case of a band matrix is a “tridiagona” matrix,
where only elements directly on, directly above, or directly below the diagonal
are non-zero. For example, below is the general form of a tridiagonal matrix
for N = 5:
fa11 a9 0 0 0
arazp azy 0 0

0 a3z a3z ass 0
0 0 a43 044 045
v0 0 0 as4 055

For such matrices, forward elimination and backward substitution each reduce
to asingle for loop:

for i:=1 to N-l do
begin
ali+1, N+1]:=ali+1, N+1]—a[i, N+1]*a[i+1,i]/ali, i];
ali+1,i+1] :=ali+1, i+1]—ali, i+1]*a[i+1, i] /ali, 1]
end ;
for j:=== N downto 1 do

x|j]:=(alj, N+1]-alj, j+1]*x[j+1])/alj, I

For forward elimination, only the case j=i+1 and k=i+1 needs to be included,
since ali, k]=0 for k>i+1. (The case k =i can be skipped since it sets to 0
an array element which is never examined again -this same change could be
made to straight Gaussian elimination.) Of course, a two-dimensional array
of size N2 wouldn’'t be used for a tridiagonal matrix. The storage required for
the above program can be reduced to be linear in N by maintaining four arrays
instead of the a matrix: one for each of the three nonzero diagonals and one
for the (N + 1)st column. Note that this program doesn’'t necessarily pivot on
the largest available element, so there is no insurance against division by zero

GAUSSIAN ELIMINATION 65

or the accumulation of computational errors. For some types of tridiagonal
matrices which arise commonly, it can be proven that this is not a reason for
concern.

Gauss-Jordan reduction can be implemented with full pivoting to replace
a matrix by its inverse in one sweep through it. The inverse of a matrix
A, written A~! has the property that a system of equations Ax = b could
be solved just by performing the matrix multiplication z = A~!b. Sill, N3
operations are required to compute x given b. However, there is a way to
preprocess a matrix and “decompose’ it into component parts which make
it possible to solve the corresponding system of equations with any given
right-hand side in time proportional to N?, a savings of a factor of N over
using Gaussian elimination each time. Roughly, this involves remembering
the operations that are performed on the (N + 1)st column during the forward
elimination phase, so that the result of forward elimination on a new (N + 1)st
column can be computed efficiently and then back-substitution performed as
usual.

Solving systems of linear equations has been shown to be computationally
equivalent to multiplying matrices, so tlhere exist algorithms (for example,
Strassen’s matrix multiplication algorithm) which can solve systems of N
equations in N variables in time proportional to N2-81-. As with matrix
multiplication, it would not be worthwhile to use such a method unless very
large systems of equations were to be processed routinely. As before, the
actual running time of Gaussian elimination in terms of the number of inputs
is N3/2_ which is difficult to improve upon in practice.

66

Exercises

1

10.

Give the matrix produced by the forward elimination phase of Gaussian
elimination (gauss, with eliminate) when used to solve the equations x +
y+2z=62r+y+32=12,and 3z +y +3z=14.

Give a system of three equations in three unknowns for which gauss as is
(without eliminate) fails, even though there is a solution.

What is the storage requirement for Gaussian elimination on an N-by-N
matrix with only 3N nonzero elements?

Describe what happens when eliminate is used on a matrix with a row of
al (’s.

Describe what happens when eliminate then substitute are used on a
matrix with a column of al 0’s.

Which uses more arithmetic operations: Gauss-Jordan reduction or back
substitution?

If we interchange columns in a matrix, what is the effect on the cor-
responding simultaneous equations?

How would you test for contradictory or identical equations when using
eliminate.

Of what use would Gaussian elimination be if we were presented with a
system of M equations in N unknowns, with M < N? What if M > N?

Give an example showing the need for pivoting on the largest available
element, using a mythical primitive computer where numbers can be
represented with only two significant digits (all numbers must be of the
form z.y x 107 for single digit integers z, y, and z).

6. Curve Fitting

The term curve fitting (or data fitting) is used to describe the general
problem of finding a function which matches a set of observed values at
a set of given points. Specifically, given the points

L1,22,+++3 TN

and the corresponding values

Y, Y2,-- YN,
the goal is to find a function (perhaps of a specified type) such that

f(x1) = y1, f(z2)= y2,- .., flzN) = vN

and such that f(z) assumes “reasonable” values at other data points. It could
be that the z's and y’s are related by some unknown function, and our goal
is to find that function, but, in general, the definition of what is “reasonable”
depends upon the application. We'll see that it is often easy to identify
“unreasonable” functions.

Curve fitting has obvious application in the analysis of experimental data,
and it has many other uses. For example,, it can be used in computer graphics
to produce curves that “look nice” without the overhead of storing a large
number of points to be plotted. A related application is the use of curve fitting
to provide a fast algorithm for computing the value of a known function at
an arbitrary point: keep a short table of exact values, curve fit to find other
values.

Two principa methods are used to approach this problem. The first is
interpolation: a smooth function is to be found which exactly matches the
given values at the given points. The second method, least squares data fitting,
is used when the given values may not be exact, and a function is sought which
matches them as well as possible.

67

68 CHAPTER 6

Polynomial Interpolation

We've already seen one method for solving the data-fitting problem: if f is
known to be a polynomial of degree N - 1, then we have the polynomial inter-
polation problem of Chapter 4. Even if we have no particular knowledge about
f, we could solve the data-fitting problem by letting f(z) be the interpolating
polynomial of degree N — 1 for the given points and values. This could be
computed using methods outlined elsewhere in this book, but there are many
reasons not to use polynomial interpolation for data fitting. For one thing,
a fair amount of computation is involved (advanced N(log N)2 methods are
available, but elementary techniques are quadratic). Computing a polynomial
of degree 100 (for example) seems overkill for interpolating a curve through
100 points.

The main problem with polynomial interpolation is that high-degree
polynomials are relatively complicated functions which may have unexpected
properties not well suited to the function being fitted. A result from classical
mathematics (the Welerstrass approximation theorem) tells us that it is pos-
sible to approximate any reasonable function with a polynomia (of sufficiently
high degree). Unfortunately, polynomials of very high degree tend to fluctuate
wildly. It turns out that, even though most functions are closely approximated
almost everywhere on a closed interval by an interpolation polynomial, there
are adways some places where the approximation is terrible. Furthermore,
this theory assumes that the data values are exact values from some unknown
function when it is often the case that the given data values are only ap-
proximate. If the y's were approximate values from some unknown low-degree
polynomial, we would hope that the coefficients for the high-degree terms in
the interpolating polynomial would be 0. It doesn't usualy work out this
way; instead the interpolating polynomial tries to use the high-degree terms
to help achieve an exact fit. These effects make interpolating polynomials
inappropriate for many curve-fitting applications.

Spline Interpolation

Still, low-degree polynomials are simple curves which are easy to work with
analytically, and they are widely used for curve fitting. The trick is to abandon
the idea of trying to make one polynomial go through all the points and instead
use different polynomials to connect adjacent points, piecing them together
smoothly,, An elegant special case of this, which aso involves relatively
straightforward computation, is called spline interpolation.

A “spling” is a mechanical device used by draftsmen to draw aesthetically
pleasing curves; the draftsman fixes a set of points (knots) on his drawing, then
bends a flexible strip of plastic or wood (the spline) around them and traces
it to produce the curve. Spline interpolation is the mathematical equivalent
of this process and results in the same curve.

CURVE FITTING 69

It can be shown from elementary mechanics that the shape assumed by
the spline between two adjacent knots is a third-degree (cubic) polynomial.
Translated to our data-fitting problem, this means that we should consider
the curve to be N = 1 different cubic polynomials

siz) =i +brt ez +d;, =12 ,..., N-I,

with g;(x) defined to be the cubic polynomial to be used in the interval between
Z; and Z;41, as shown in the following diagram:

(XnYN)
Sy-1(X)

Xno -
(X1y1) .. (XN-1,YN-1)

The spline can be represented in the obvious way as four one-dimensional
arrays (or a 4-by-(N = 1) two-dimensional array). Creating a spline consists
of computing the necessary a, b, ¢, d coefficients from the given x points and
y values. The physical constraints on the spline correspond to simultaneous
equations which can be solved to yield the coefficients.

For example, we obviously must have s;(z;) = y; and s;(z;+1) = yi41 fOr
1=1,2,...,N = 1 because the spline must touch the knots. Not only does the
spline touch the knots, but also it curves smoothly around them with no sharp
bends or kinks. Mathematically, this means that the first derivatives of the
spline polynomials must be equal at the knots (s;_, (z:) = s;(z;) for i = 2,3,. . . ,
N = 1). In fact, it turns out that the second derivatives of the polynomials
must be equal at the knots. These conditions give a total of 4N — 6 equations
in the 4(N —1) unknown coefficients. Two more conditions need to be specified
to describe the situation at the endpoints of the spline. Several options are
available; we'll use the so-called “natural” spline which derives from sj(zq) =
0 and s _;(zn) = 0. These conditions give a full system of 4N — 4 equations
in 4N = 4 unknowns, which could be solved using Gaussian elimination to
calculate all the coefficients that describe the spline.

The same spline can be computed somewhat more efficiently because
there are actually only N — 2 “unknowns’: most of the spline conditions are
redundant. For example, suppose that p, is the value of the second derivative
of the spline at z;, so that s;_y(z:) = s/(z;)= psfori =2..., N = 1, with
p1 = pn = 0. If the values of pi1, ... ,pn are known, then al of thea, b, c, d
coefficients can be computed for the spline segments, since we have four

70 CHAPTER 6

equations in four unknowns for each spline segment: for 1 = 1,2,.. ., N =1,
we must have
8i(Zi) = s
8d(Tit1) = Yit1
5; () = ps

5:(Ziy1) = Pit1-
Thus, to fully determine the spline, we need only compute the values of
pa,...,PN—1- But this discussion hasn't even considered the conditions that
the first derivatives must match. These N -~ 2 conditions provide exactly

the N = 2 equations needed to solve for the N = 2 unknowns, the p; second
derivative values.

To expressthe a, b, ¢, and d coefficientsin terms of the p second derivative
values, then substitute those expressions into the four equations listed above
for each spline segment, leads to some unnecessarily complicated expressions.
Instead it is convenient to express the equations for the spline segments in a
certain canonical form that involves fewer unknown coefficients. If we change
variables to t = (z - ;)41 — ;) then the spline can be expressed in the
following way:

$i(t) = tirr + (L= t)y; + (Tir1 =) (B = Ohpiy1 = (A —1)° (1= t))my]

Now each spline is defined on the interval [0,1]. This equation is less formi-
dable than it looks because we're mainly interested in the endpoints 0 and 1,
and either t or (1 = ¢) is O at these points. It's trivial to check that the spline
interpolates and is continuous because s;_1(1) = s,(0) = y;for 1 =2, .., N,
and it's only slightly more difficult to verify that the second derivative is con-
tinuous because s(1) = s/, ,(0) = p;44. These are cubic polynomials which
satisfy the requisite conditions at the endpoints, so they are equivalent to the
spline segments described above. If we were to substitute for ¢ and find the
coefficient of z3, etc., then we would get the same expressions for the a's, b’s,
c's, and d's in terms of the x's, y’'s, and p’s as if we were to use the method
described in the previous paragraph. But there’s no reason to do so, because
we've checked that these spline segments satisfy the end conditions, and we
can evaluate each at any point in its interval by computing { and using the
above formula (once we know the p’s).

To solve for the p’s we need to set the first derivatives of the spline

segments equal at the endpoints. The first derivative (with respect to x) of
the above equation is

$ilt) = i + (©ip1 = 2)[(362 = 1)peyy + (3(1 - £+ 1)p,]

CURVE FITTING 1

where z = (y;41—%)/(Tiy1—2;). Now, setting s;_,(1) = s;(0)for 1 =2. .., N—
1 givesour system of N 2 equations to solve:

(T = 24 1)piz1 + 2Tip1 - Tic1)Pi + (Tid1 — To)Pit1= 2 — 2_1.

This system of equations is a simple “tridiagonal” form which is easily solved
with a degenerate version of Gaussian elimination as we saw in Chapter 5. If
we let u; = ¢,y = T4y di = 2(Ti41 — Ti—1), Ad w; = 2, 21, We have, for
example, the following simultaneous equations for N = 7:

doupa 0 0 0 /P2 Wa

ugdzuz 0 0 || ps3 w3
0 usdsug 0 || Pa|=] wa |
0 0usdsus || P5 Ws

000 U5d6 \p6 We

In fact, this is a symmetric tridiagonal system, with the diagonal below the
main diagona equa to the diagonal above the main diagonal. It turns out that
pivoting on the largest available element is not necessary to get an accurate
solution for this system of equations.

The method described in the above paragraph for computing a cubic
spline trandates very easily into Pascal:

procedure makespline,
var i: integer;
begin
readln (N) ;
for i:=1to N do readln(x[i], y[i]);
for i:=2 to N-l do d[i]:=2«(x[i+1]—x[i—1]);
for j:=1to N-I do u[i]:=x[i+1]—x][i];
for ;=2 to N-I do
wlil = (v [i+-1]~y (i) /uli)— (v]y i~ 11)/uli-1];
p[1] :=0.0; p[N]:=0.0;
for i:=2 to N-2 do
begin
wli+1]:=w(i+1]—wli]*u[i]/d[i];
d(i+1):=d[i+1]—u[i]*u[i] /d[i]
end ;
for i:=N—1 downto 2 do
pliJ:=(wlil—uli]*p[i+1])/dlil;
end;

12 CHAPTER 6

The arrays d and u are the representation of the tridiagonal matrix that is
solved using the program in Chapter 5. We use d[i] where &i, i]is used in
that program, u[i] where a[i+1, i] or a[i, i+1] is used, and z[i] where ali, N+1]
is usd.

For an example of the construction of a cubic spline, consider fitting a
spline to the five data points

(1.0,2.0), (2.0,1.5), (4.0,1.25), (5.0,1.2), (8.0,1.125), (10.0,1.1).

(These come from the function 1 + 1/z.) The spline parameters are found by
solving the system of equations

6 2 0 0\/P2 3750
2 6 1 0})ps]_1.0750
0 1 8 3)\prsa] |.0250
0 0 3 10/\Ps .0125

with the result p2 = 0.06590, p; = -0.01021, p4 = 0.00443, ps = -0.00008.
To evaluate the spline for any value of z intherange [z; , zy], we Smply

find the intervd [z;, z;44] containing z, then compute ¢ and use the formula

above for s;(x) (which, in turn, uses the computed values for p; and p; ,.1).

function eval(v: real): real;
var . red; i: integer;
function f(x: real): red;
begin f:=x*x*x—x end;
begin
i:=0; repeat j:=i+]1 until v<=x[i+1];
t:=(v—x[i])/uli];
eval:=t*y[i+1]4+(1—t)*y]i]
+ufixulil+ (£(t)*p(i+1]—f(1-t)*p[i])

end;

This program does not check for the error condition when v is not between
x[1) and x[N]. If there are a large number of spline segments (that is, if N
is large), then there are more efficient “searching” methods for finding the
interval containing v, which we'll study in Chapter 14.

There are many variations on the idea of curvefitting by piecing together
polynomials in a “smooth” way: the computation of splines is a quite well-
developed field of study. Other types of splines involve other types of smocth-
ness criteria as well as changes such as relaxing the condition that the spline
must exactly touch each data point. Computationaly, they involve exactly

CURVE FITTING 73

the same steps of determining the coefficients for each of the spline pieces by
solving the system of linear equations derived from imposing constraints on
how they are joined.

Method of Least Squares

A very common experimental situation is that, while the data values that we
have are not exact, we do have some idea of the form of the function which
is to fit the data. The function might depend on some parameters

flz)= f(cr,coy. - Ca1,2)

and the curve fitting procedure is to find the choice of parameters that “best”
matches the observed values at the given points. If the function were a poly-
nomial (with the parameters being the coefficients) and the values were exact,
then this would be interpolation. But now we are considering more general
functions and inaccurate data. To simplify the discussion, we'll concentrate
on fitting to functions which are expressed as a linear combination of simpler
functions, with the unknown parameters being the coefficients:

f(x) =c1fi(z)+cafa(z) +---+ cafuml(z).

This includes most of the functions that we'll be interested in. After studying
this case, we'll consider more general functions.

A common way of measuring how well a function fits is the least-squares
criterion: the error is calculated by adding up the squares of the errors at
each of the observation points:

E = Y (flz) -y
1€j<N
This is a very natural measure: the squaring is done to stop cancellations
among errors with different signs. Obviously, it is most desirable to find the
choice of parameters that minimizes E. It turns out that this choice can be
computed efficiently: this is the so-called method of least squares.

The method follows quite directly from the definition. To simplify the
derivation, we'll do the case M =2, N = 3, but the general method will follow
directly. Suppose that we have three points xi, T2, £3 and corresponding values
Y1, Y2, ys which are to be fitted to a function of the form f(x) = ¢ fi(z) +
¢ fa(z). Our job is to find the choice of the coefficients ¢1, ¢; which minimizes
the least-squares error

E =(e1 fi(z1) + cafa(2r) = 91)°
+ (lel(l'g) + cafa(z2) - y2)2
+ (e1f1(zs) + c2 fo(z3) = ys)?.

74 CHAPTER 6

To find the choices of ¢; and ¢, which minimize this error, we simply need to
set the derivatives dE/dc; and dE/de, to zero. For ¢; we have:

Z—i =2(c1 fi(z1) + cafolz1) w)filz1)

+2(c1 fi(z2) + cafa(z2) = y2) fi(x2)
+2(c1 f1(z3) + c2 fa(3) — ys) f1(z3).

Setting the derivative equal to zero leaves an equation which the variables ¢;
and ¢z must satisfy (fi(z;), etc. are all “constants” with known values):

clfilz)fi(z) o fi(z2)fi(z2) + fi(x3)f1(z3)]

+ea(folz)filz) + falza) fi(@2) + falza)fi(zs)]
= Y1 f1(z1) + y2 f1(z2) + 3 fi(za).

We get a similar equation when we set the derivative dE/dc; to zero.
These rather formidable-looking equations can be greatly simplified using
vector notation and the “dot product” operation that we encountered briefly
in Chapter 2. If we define the vectors x = (zy, z9,z3) and 'y = (yq, ve, y3) and
then the dot product of x and y is the real number defined by

XY = T1Y1 + T2y2 + T3y3

Now, if we define the vectors f1 = (fy(z;), f1(z2), fi(z3)) and f2 = (fo(zy),
fa(z2), falz3)) then our equations for the coefficients ¢; and ¢y can be very
simply expressed:
le1.f1+62f1Af2:y.f1
caify -y +eofy fy =y -fo.
These can be solved with Gaussian elimination to find the desired coefficients.
For example, suppose that we know that the data points

(1.0,2.05), (2.0,1.53), (4.0,1.26), (5.0,1.21), (8.0,1.13), (10.0,1.1).

should be fit by a function of the form ¢; + c2/z, (These data points are
dightly perturbed from the exact values for 1 + 1/z). In this case, we have
f1=(1.0,1.0,1.0,1.0,1.0, 1.0) and f> = (1.0,0.5,0.25,0.2,0.125,0.1) so we have
to solve the system of equations

(3175 1378)(es) = (reaa)

CURVE FITTING 75

with the result ¢; = 0.998 and ¢; = 1.054 (both close to 1, as expected).

The method outlined above easily generalizes to find more than two
coefficients. To find the constants ¢1,Cz,. . . ,Cps N

f(I) = lel(l') + Cgfg(l) oy CMfM(SC)
which minimize the least squares error for the point and observation vectors

x=(z1,Z2,...,ZN)
y:(yl’y27"':yN))

first compute the function component vectors

a = (filzr), fulz2), . filzn)),
f2 - (fa(z1), fo(za),. .-, fa(2N)),

fae = (Fm(z1), Fm(z2), -, fu(an)-
Then make up an M-by-M linear system of equations Ac = b with

Qg5 = f; f]',
b,=1f;.y.

The solution to this system of simultaneous equations yields the required
coefficients.

This method is easily implemented by maintaining a two dimensional
array for the f vectors, considering y as the (M + 1)st vector. Then an array
a[l..M, 1..M+1] can be filled as follows:

for j:=1 to Mdo
for j:=1to M+1 do

begin

t:= 00

for ki=1to N do t:=t+fTi, k]*fj, KI;
ali, j]:=t;

end;

and then solved using the Gaussian elimination procedure from Chapter 5.
The method of least squares can be extended to handle nonlinear func-
tions (for example a function such as f(z) = cje™***sinczz), and it is often

76 CHAPTER 6

used for this type of application. The idea is fundamentally the same; the
problem is that the derivatives may not be easy to compute. What is used
is an iterative method: use some estimate for the coefficients, then use these
within the method of least sguares to compute the derivatives, thus producing
a better estimate for the coefficients. This basic method, which is widely used
today, was outlined by Gauss in the 1820s.

CURVE FITTING

Exercises

1

10.

Approximate the function Igx with a degree 4 interpolating polynomial
at the points 1,2,3,4, and 5. Estimate the quality of the fit by computing
the sum of the sguares of the errors at 1.5, 2.5, 3.5, and 4.5.

Solve the previous problem for the function sinx. Plot the function and
the approximation, if that's possible on your computer system.

Solve the previous problems using a cubic spline instead of an interpolat-
ing polynomial.

Approximate the function Igx with a cubic spline with knots at 2V for
N between 1 and 10. Experiment with different placements of knots in
the same range to try to obtain a better fit.

What would happen in least squares data fitting if one of the functions
was the function f;(z) = 0 for some ¢?

What would happen in least squares data-fitting if all the observed values
were 0?

What values of a, b, c minimize the least-squares error in using the function
f(x) = az log x + bx + ¢ to approximate the observations f(1) = 0, f(4) =
13, 1(8) = 41?

Excluding the Gaussian elimination phase, how many multiplications are
involved in using the method of least squares to find M coefficients based
on N observations?

Under what circumstances would the matrix which arises in least-squares
curve fitting be singular?

Does the least-squares method work if two different observations are in-
cluded for the same point?

7. Integration

Computing the integral is a fundamental analytic operation often per-
formed on functions being processed on computers. One of two com-
pletely different approaches can be used, depending on the way the function is
represented. If an explicit representation of the function is available, then it
may be possible to do symbolic integration to compute a similar representation
for the integral. At the other extreme, the function may be defined by a table,
so that function values are known for only a few points. The most common
situation is between these: the function to be integrated is represented in such
a way that its value at any particular point can be computed. In this case,
the goal isto compute a reasonable approximation to the integral of the func-
tion, without performing an excessive number of function evaluations. This
computation is often called quadrature by numerical analysts.

Symbolic Integration

If full information is available about a function, then it may be worthwhile
to consider using a method which involves manipulating some representation
of the function rather than working with numeric values. The goal is to
transform a representation of the function into a representation of the integral,
in much the same way that indefinite integration is done by hand.

A simple example of this is the integration of polynomials. In Chapters 2
and 4 we examined methods for “symbolically” computing sums and products
of polynomials, with programs that worked on a particular representation for
the polynomials and produced the representation for the answers from the rep-
resentation for the inputs. The operation of integration (and differentiation)
of polynomials can aso be done in this way. If a polynomial

p(z)=po+p1z +paz’ 4+ +py_gz™V !

I

80 CHAPTER 7

is represented simply by keeping the values of the coefficients in an array p
then the integral can be easily computed as follows:

for i:=N downto I dop [i] :=p[i—1]/i;
p[0]:=0;

This is a direct implementation of the well-known symbolic integration
rule fy t*=tdt = zi/4 for i > 0.

Obviously a wider class of functions than just polynomials can be handled
by adding more symbolic rules. The addition of composite rules such as

integration by parts,
/udvzuv—/v du,

can greatly expand the set of functions which can be handled. (Integration
by parts requires a differentiation capability. Symbolic differentiation is some-
what easier than symbolic integration, since a reasonable set of elementary
rules plus the composite chain rule will suffice for most common functions.)

The large number of rules available to be applied to a particular function
makes symbolic integration a difficult task. Indeed, it has only recently been
shown that there is an algorithm for this task: a procedure which either
returns the integral of any given function or says that the answer cannot be
expressed in terms of elementary functions. A description of this algorithm
in its full generality would be beyond the scope of this book. However,
when the functions being processed are from a small restricted class, symbolic
integration can be a powerful tool.

Of course, symbolic techniques have the fundamental limitation that
there are a great many integrals (many of which occur in practice) which can’t
be evaluated symbolically. Next, we'll examine some techniques which have
been developed to compute approximations to the values of real integrals.

Simple Quadrature Methods

Perhaps the most obvious way to approximate the value of an integra is the
rectangle method: evaluating an integral is the same as computing the area
under a curve, and we can estimate the area under a curve by summing the
areas of small rectangles which nearly fit under the curve, as diagrammed
below.

INTEGRATION 8l

To be precise, suppose that we are to compute fab f(z)dz, and that the
interval [a, b] over which the integral is to be computed is divided into N
parts, delimited by the points 1, Z2,. .. ,Zn+1. Then we have N rectangles,
with the width of the ith rectangle (1 < i < N)) given by z;,1 = X,. For the
height of the ith rectangle, we could use f(z;)or f(z,41), but it would seem
that the result would be more accurate -if the value of f at the midpoint of
the interval (f((z; + ;4+1)/2)) is used, as in the above diagram. This leads to
the quadrature formula

Ti+ Tyt

r= 3 (Tit1—2)f(5

1<i<N

which estimates the value of the integral of f(x) over the interval from a = 7
to b = zn+1. In the common case where all the intervals are to be the same
size, say Tiy1 = I; = W, we have Z;41 + 2, = (2 + 1)w, so the approximation
r to the integral is easily computed.

function intrect(a, b: real; N: integer) : redl;
var i: integer; w, r: red;
begin
r:=0; w:=(b-a)/N;
for :=1to N do ri=r+wxf(a—w/2+4i*xw);
intrect :==r;
end ;

Of course, as N gets larger, the answer becomes more accurate, For
example, the following table shows the estimate produced by this function for
ff dz/z (which we know to be In 2 = 0.6931471805599.. .) when invoked with
the call intrect(1.0, 2.0,N) for N = 10,100, 1000:

82 CHAPTER 7

10 0.6928353604100
100 0.6931440556283
1000 0.6931471493100

When N = 1000, our answer is accurate to about seven decimal places.
More sophisticated quadrature methods can achieve better accuracy with
much less work.

It is not difficult to derive an analytic expression for the error made in
the rectangle method by expanding f(z) in a Taylor series about the midpoint
of each interval, integrating, then summing over al intervals. We won’t go
through the details of this calculation: our purpose is not to derive detailed
error bounds, but rather to show error estimates for simple methods and how
these estimates suggest more accurate methods. This can be appreciated even
by a reader not familiar with Taylor series. It turns out that

b
/ flz)dz =r+wdes + wies + -+
&

where w is the interval width ((b = a)/N) and es depends on the value of
the third derivative of f at the interval midpoints, etc. (Normally, this is
a good approximation because most “reasonable” functions have small high-
order derivatives, though this is not always true.) For example, if we choose
to make w = .01 (which would correspond to N = 200 in the example above),
this formula says the integra computed by the procedure above should be
accurate to about six places.

Another way to approximate the integral is to divide the area under the
curve into trapezoids, as diagrammed below.

This trapezoid method leads to the quadrature formula

to= 2 (@ '%)M

1<EN 2

INTEGRATION 83

(Recall that the area of a trapezoid is one-half the product of the height and
the sum of the lengths of the two bases.) The error for this method can be
derived in a similar way as for the rectangle method. It turns out that

(][S

Thus the rectangle method is twice as accurate as the trapezoid method.
This is borne out by our example. The following procedure implements the
trapezoid method in the common case where all the intervals are the same
width:

function inttrap(a, b: rea; N: integer): red;
var i integer; w, t. redl,;
begin
t:=0; w:=(b—a)/N;
for i:=1to N do t:=t+w*(f{a+(i—1)xw)+f(atixw))/2;
inttrap:=t;
end ;

This procedure produces the following estimates for ff dz/z:

10 0.6937714031754
100 0.6931534304818
1000 0.6931472430599

It may seem surprising at first that the rectangle method is more accurate
than the trapezoid method: the rectangles tend to fall partly under the curve,
partly over (so that the error can cancel out within an interval), while the
trapezoids tend to fall either completely under or completely over the curve.

Another perfectly reasonable method is spline quadrature: spline inter-
polation is performed using methods we have discussed and then the integral
is computed by piecewise application of the trivial symbolic polynomia in-
tegration technique described above. Below, we'll see how this relates to the
other methods.

Compound Methods

Examination of the formulas given above for the error of the rectangle and
trapezoid methods leads to a simple method with much greater accuracy,
called Simpson’s method. The idea is to eliminate the leading term in the error

84 CHAPTER 7

by combining the two methods. Multiplying the formula for the rectangle
method by 2, adding the formula for the trapezoid method then dividing by
3 gives the equation

b
/ f(z)dzz%(2r+t—2w565+...).

The w3 term has disappeared, so this formula tells us that we can get a method
that is accurate to within ® by combining the quadrature formulas in the
same way:

T+ Tiga

o= 3 I e 41T 4 S|

If an interval size of (1 is used for Simpson’'s rule, then the integral can
be computed to about ten-place accuracy. Again, this is borne out in our
example. The implementation of Simpson's method is only dightly more
complicated than the others (again, we consider the case where the intervals
are the same width):

function intsimp(a, b: rea; N: integer): red;
var i: integer; w, s red;
begin
s:=0; w:=(b—a)/N;
for i:=1 to Ndo
si=s+wx(f(a+(i—1)*w)+4xf(a—w/2+ixw)+f(a+ixw))/6;
intsimp:=s;
end ;

This program requires three “function evaluations’ (rather than two) in the
inner loop, but it produces far more accurate results than do the previous two
methods.

10 0.6931473746651
100 0.6931471805795
1000 0.6931471805599

More complicated quadrature methods have been devised which gain
accuracy by combining simpler methods with similar errors. The most well-
known is Romberg integration, which uses two different sets of subintervals
for its two “methods.”

INTEGRATION 85

It turns out that Simpson’s method is exactly equivalent to interpolating
the data to a piecewise quadratic function, then integrating. It is interesting
to note that the four methods we have discussed all can be cast as piecewise
interpolation methods: the rectangle rule interpolates to a constant (degree-O
polynomial); the trapezoid rule to a line (degree-l polynomial); Simpson’'s rule
to a quadratic polynomial; and spline quadrature to a cubic polynomial.

Adaptive Quadrature

A major flaw in the methods that we have discussed so far is that the errors

involved depend not, only upon the subinterval size used, but also upon the
value of the high-order derivatives of the function being integrated. This
implies that the methods will not work well at all for certain functions (those
with large high-order derivatives). But few functions have large high-order
derivatives everywhere. It is reasonable to use small intervals where the
derivatives are large and large intervals where the derivatives are small. A
method which does this in a systematic way is caled an adaptive quadrature
routine.

The general approach in adaptive quadrature is to use two different
guadrature methods for each subinterval, compare the results, and subdivide
the interval further if the difference is too great. Of course some care should
be exercised, since if two equally bad methods are used, they might agree quite
closely on a bad result. One way to avoid this is to ensure that one method
always overestimates the result and that the other always underestimates the
result,. Another way to avoid this is to ensure that one method is more accurate
than the other. A method of this type is described next.

There is significant overhead involved in recursively subdividing the in-
terval, so it pays to use a good method fo:r estimating the integrals, as in the
following implementation:

function adapt (a, b: real) : real;
begin
if abs(intsimp(a, b, 10)—intsimp(a, b, 5))<tolerance
then adapt:=intsimp(a, b, 10)
else adapt:=adapt(a, (a+b)/2) + adapt((a+b)/2, b);
end;

Both estimates for the integral are derived from Simpson’'s method, one
using twice as many subdivisions as the other. Essentialy, this amounts to
checking the accuracy of Simpson’s method over the interval in question and
then subdividing if it is not good enough.

86 CHAPTER 7

Unlike our other methods, where we decide how much work we want
to do and then take whatever accuracy results, in adaptive quadrature we do
however much work is necessary to achieve a degree of accuracy that we decide
upon ahead of time. This means that tolerance must be chosen carefully,
so that the routine doesn’t loop indefinitely to achieve an impossibly high
tolerance. The number of steps required depends very much on the nature of
the function being integrated. A function which fluctuates wildly will require
a large number of steps, but such a function would lead to a very inaccurate
answer for the “fixed interval” methods. A smooth function such as our
example can be handled with a reasonable number of steps. The following
table gives, for various values of t, the value produced and the number of

: . . 2
recursive calls required by the above routine to compute fl dz/z:

0.00001000000 0.6931473746651 1
0.00000010000 0.6931471829695 5
0.00000000100 0.6931471806413 13
0.00000000001 0.6931471805623 33

The above program can be improved in several ways. First, there's
certainly no need to call intsimp(a, b, 10) twice. In fact, the function values
for this call can be shared by intsimp(a, b, 5). Second, the tolerance bound
can be related to the accuracy of the answer more closely if the tolerance is
scaled by the ratio of the size of the current interval to the size of the full
interval. Also, a better routine can obviously be developed by using an even
better quadrature rule than Simpson’s (but it is a basic law of recursion that
another adaptive routine wouldn't be a good idea). A sophisticated adaptive
quadrature routine can provide very accurate results for problems which can’t
be handled any other way, but careful attention must be paid to the types of
functions to be processed.

We will be seeing several algorithms that have the same recursive struc-
ture as the adaptive quadrature method given above. The general technique
of adapting simple methods to work hard only on difficult parts of complex
problems can be a powerful one in agorithm design.

L

INTEGRATION 87

Exercises

1

10.

Write a program to symbolicaly integrate (and differentiate) polynomials
in x and Inx. Use a recursive implementation based on integration by
parts.

Which quadrature method is likely to produce the best answer for in-
tegrating the following functions: f(s) = 5z, f(x) = (8 = X)4 + z), f(s) =
sn(x)?

Give the result of using each of the four elementary quadrature methods
(rectangle, trapezoid, Simpson’s, spline) to integrate y = I/x in the inter-
val [.1,10].

Answer the previous question for the function y = sinx.

Discuss what happens if adaptive quadrature is used to integrate the
function y = I/x in the interval [-1,2].

Answer the previous question for the elementary quadrature methods.
Give the points of evaluation when adaptive quadrature is used to in-
tegrate the function y = I/s in the interval [.1,10] with a tolerance of
1.

Compare the accuracy of an adaptive quadrature based on Simpson’s
method to an adaptive quadrature based on the rectangle method for the
integral given in the previous problent.

Answer the previous question for the function y = sinx.

Give a specific example of a function for which adaptive quadrature would
be likely to give a drastically more accurate result than the other methods.

88

SOURCES for Mathematical Algorithms

Much of the material in this section falls within the domain of numeri-
cal analysis, and several excellent textbooks are available. One which pays
particular attention to computational issues is the 1977 book by Forsythe,
Malcomb and Moler. In particular, much of the material given here in Chapters
5, 6, and 7 is based on the presentation given in that book.

The second major reference for this section is the second volume of D. E.
Knuth’s comprehensive treatment of “The Art of Computer Programming.”
Knuth uses the term “seminumerical” to describe algorithms which lie at
the interface between numerical and symbolic computation, such as random
number generation and polynomia arithmetic. Among many other topics,
Knuths volume 2 covers in great depth the material given here in Chapters
1, 3, and 4. The 1975 book by Borodin and Munro is an additional reference
for Strassen’s matrix multiplication method and related topics. Many of
the algorithms that we've considered (and many others, principally symbolic
methods as mentioned in Chapter 7) are embodied in a computer system called
MACSYMA, which is regularly used for serious mathematical work.

Certainly, a reader seeking more information on mathematical algorithms
should expect to find the topics treated at a much more advanced mathemati-
cal level in the references than the material we've considered here.

Chapter 2 is concerned with elementary data structures, as well as poly-
nomials. Beyond the references mentioned in the previous part, a reader in-
terested in learning more about this subject might study how elementary data

structures are handled in modern programming languages such as Ada, which
have facilities for building abstract data structures.

A. Borodin and I. Munro, The Computational Complexity of Algebraic and
Numerical Problems, American Elsevier, New York, 1975.

G. E. Forsythe, M. A. Macomb, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

D. E. Knuth, The Art of Computer Programming. Volume 2: Seminumerical
Algorithms, Addison-Wesley, Reading, MA (second edition), 1981.

MIT Mathlab Group, MACSYMA Reference Manual, Laboratory for Comput-
er Science, Massachusetts Institute of Technology, 1977.

P. Wegner, Programming with ada: an introduction by means of graduated
examples, Prentice-Hall, Englewood Cliffs, NJ, 1980.

SORTING

8. Elementary Sorting Methods

As our first excursion into the area of sorting algorithms, we'll study
some “elementary” methods which are appropriate for small files or
files with some special structure. There are several reasons for studying these
simple sorting algorithms in some detail. First, they provide a relatively
painless way to learn terminology and basic mechanisms for sorting algorithms
so that we get an adequate background for studying the more sophisticated
algorithms. Second, there are a great many applications of sorting where it's
better to use these simple methods than the more powerful general-purpose
methods. Finaly, some of the simple methods extend to better general-
purpose methods or can be used to improve the efficiency of more powerful
methods. The most prominent example of this is seen in recursive sorts
which “divide and conquer” big files into many small ones. Obvioudly, it is
advantageous to know the best way to deal with small files in such situations.

As mentioned above, there are several sorting applications in which a
relatively simple algorithm may be the method of choice. Sorting programs
are often used only once (or only a few times). If the number of items to be
sorted is not too large (say, less than five hundred elements), it may well be
more efficient just to run a simple method than to implement and debug a
complicated method. Elementary methods are always suitable for small files
(say, less than fifty elements); it is unlikely that a sophisticated algorithm
would be justified for a small file, unless a very large number of such files are to
be sorted. Other types of files that are relatively easy to sort are ones that are
already almost sorted (or already sorted!') or ones that contain large numbers
of equal keys. Simple methods can do much better on such well-structured
files than general-purpose methods.

As a rule, the elementary methods that we'll be discussing take about
N? steps to sort N randomly arranged items. If N is small enough, this may
not be a problem, and if the items are not randomly arranged, some of the

91

92 CHAPTER 8

methods might run much faster than more sophisticated ones. However, it
must be emphasized that these methods (with one notable exception) should
not be used for large, randomly arranged files.

Rules of the Game

Before considering some specific algorithms, it will be useful to discuss some
general terminology and basic assumptions for sorting algorithms. We'll be
considering methods of sorting files of records containing keys. The keys,
which are only part of the records (often a small part), are used to control the
sort. The objective of the sorting method is to rearrange the records so that
their keys are in order according to some well-defined ordering rule (usualy
numerical or aphabetical order).

If the file to be sorted will fit into memory (or, in our context, if it will
fit into a Pascal array), then the sorting method is called internal. Sorting
files from tape or disk is caled external sorting. The main difference between
the two is that any record can easily be accessed in an internal sort, while
an external sort must access records sequentially, or at least in large blocks.
We'll look at a few external sorts in Chapter 13, but most of the algorithms
that we'll consider are internal sorts.

As usual, the main performance parameter that we'll be interested in is
the running time of our sorting algorithms. As mentioned above, the elemen-
tary methods that we'll examine in this chapter require time proportional
to N2 to sort N items, while more advanced methods can sort N items in
time proportional to N log N. It can be shown that no sorting algorithm
can use less than N log N comparisons between keys, but we'll see that there
are methods that use digital properties of keys to get a total running time
proportional to N.

The amount of extra memory used by a sorting algorithm is the second
important factor we'll be considering. Basically, the methods divide into three
types. those that sort in place and use no extra memory except perhaps for
a small stack or table; those that use a linked-list representation and so use
N extra words of memory for list pointers; and those that need enough extra
memory to hold another copy of the array to be sorted.

A characteristic of sorting methods which is sometimes important in
practice is stability: a sorting method is called stable if it preserves the relative
order of equal keys in the file. For example, if an aphabetized class list is
sorted by grade, then a stable method will produce a list in which students
with the same grade are still in aphabetical order, but a non-stable method is
likely to produce a list with no evidence of the original alphabetic order. Most
of the simple methods are stable, but most of the well-known sophisticated
algorithms are not. If stability is vital, it can be forced by appending a

ELEMENTARY SORTING METHODS 93

small index to each key before sorting or by lengthening the sort key in some
other way. It is easy to take stability for granted: people often react to the
unpleasant effects of instability with disbelief. Actualy there are few methods
which achieve stability without using significant extra time or space.

The following program, for sorting three records, is intended to illustrate
the general conventions that we'll be using. (In particular, the main program is
a peculiar way to exercise a program that is known to work only for N = 3: the
point is that most of the sorting programs we'll consider could be substituted
for sort3 in this “driver” program.)

program threesort(input, output);
const maxN==100;
var a array [1..maxN] of integer;
N, i: integer;
procedure sort3;
var t : integer;
begin
if a[1]>a[2] then
begin t:=a[l]; a[l1]:=a(2]; a[2]:=t end
if a[1]>a[3] then
begin t:=al1[; a[1]:=a[3]; a[3]:=t end;
if a[2]>a[3] then
begin t:=a[2]; a[2]:=a(3]; a[3]:=t end;
end;
begin
readin (N) ;
for i:=1 to N do read(di]);
if N=3 then sort3;
for i:=1 to N do write(ali]);
wri teln
end.

The three assignment statements following each if actually implement an
“exchange” operation. We'll write out the code for such exchanges rather than
use a procedure call because they’'re fundamental to many sorting programs
and often fall in the inner loop.

In order to concentrate on algorithmic issues, we'll work with algorithms
that simply sort arrays of integers into numerical order. It is generally straight-
forward to adapt such algorithms for use in a practical application involving
large keys or records. Basically, sorting programs access records in one of two
ways: either keys are accessed for comparison, or entire records are accessed

94 CHAPTER 8

to be moved. Most of the algorithms that we will study can be recast in terms
of performing these two operations on arbitrary records. If the records to be
sorted are large, it is normally wise to do an “indirect sort”: here the records
themselves are not necessarily rearranged, but rather an array of pointers (or
indices) is rearranged so that the first pointer points to the smallest record,
etc. The keys can be kept either with the records (if they are large) or with
the pointers (if they are small).

By using programs which simply operate on a global array, we're ignoring
“packaging problems’ that can be troublesome in some programming environ-
ments. Should the array be passed to the sorting routine as a parameter?
Can the same sorting routine be used to sort arrays of integers and arrays
of reals (and arrays of arbitrarily complex records)? Even with our simple
assumptions, we must (as usual) circumvent the lack of dynamic array sizes
in Pascal by predeclaring a maximum. Such concerns will be easier to dea
with in programming environments of the future than in those of the past
and present. For example, some modern languages have quite well-developed
facilities for packaging together programs into large systems. On the other
hand, such mechanisms are not truly required for many applications: small
programs which work directly on globa arrays have many uses; and some
operating systems make it quite easy to put together simple programs like
the one above, which serve as “filters” between their input and their output.
Obviously, these comments apply to many of the other algorithms that we'll
be examining, though their effects are perhaps most acutely felt for sorting
algorithms.

Some of the programs use a few other global variables. Declarations
which are not obvious will be included with the program code. Also, we'll
sometimes assume that the array bounds go to 0 or N+1, to hold specia keys
used by some of the algorithms. We'll frequently use letters from the alphabet
rather than numbers for examples. these are handled in the obvious way using
Pascal’s ord and chr “transfer functions” between integers and characters.

The sort3 program above uses an even more constrained access to the file:
it is three instructions of the form “compare two records and exchange them
if necessary to put the one with the smaller key first.” Programs which use
only this type of instruction are interesting because they are well suited for
hardware implementation. We'll study this issue in more detail in Chapter
35.

Selection Sort

One of the simplest sorting algorithms works as follows: first find the smallest
element in the array and exchange it with the element in the first position,
then find the second smallest element and exchange it with the element in

ELEMENTARY SORTING METHODS 95

the second position, continuing in this way until the entire array is sorted.
This method is called selection sort because it works by repeatedly “selecting”
the smallest remaining element. The following program sorts a [1..N] into
numerical order:

procedure selection;

var i, j, min, t: integer;

begin

for i:=1to N do
begin
min:=i;
for j:=i+1to N do

if a[j]<a|min] then min=j;

t:=a[min]; almin]:=a[i]; ali]:=t
end ;

end ;

This is among the simplest of sorting methods, and it will work very well for
small files. Its running time is proportional to N?2: the number of comparisons
between array elements is about N2 /2 since the outer loop (on i) is executed N
times and the inner loop (on j) is executed about N/2 times on the average. It
turns out that the statement min:=j is executed only on the order of N log N
times, so it is not part of the inner loop

Despite its simplicity, selection sort has a quite important application:
it is the method of choice for sorting files with very large records and small
keys. If the records are M words long (but the keys are only a few words long),
then the exchange takes time proportional to M, so the total running time
is proportional to N2 (for the comparisons) plus NM (for the exchanges). If
M is proportional to N then the running time is linear in the amount of data
input, which is difficult to beat even with an advanced method. Of course if
it is not absolutely required that the records be actually rearranged, then an
“indirect sort” can be used to avoid the NM term entirely, so a method which
uses less comparisons would be justified. Still selection sort is quite attractive
for sorting (say) a thousand 1000-word records on one-word keys.

Insertion Sort

An agorithm amost as simple as selection sort but perhaps more flexible is
insertion sort. This is the method often used by people to sort bridge hands:
consider the elements one at a time, inserting each in its proper place among
those already considered (keeping them sorted). The element being considered
is inserted merely by moving larger elements one position to the right, then

96 CHAPTER 8

inserting the element into the vacated position. The code for this algorithm
is straightforward:

procedure insertion;

var i, j, v integer;

begin

for i:=2 to N do
begin
vi=ali]; j:=i;
while a[j—1]>v do

begin alj] :=a[j—1]; j:=j—1 end;

alj]=v
end ;

end;

As is, this code doesn't work, because the while will run past the left end
of the array if ¢ is the smallest element in the array. One way to fix this is
to put a “sentinel” key in a[0], making it at least as small as the smallest
element in the array. Using sentinels in situations like this is common in
sorting programs to avoid including a test (in this case j>1) which amost
always succeeds within the inner loop. If for some reason it is inconvenient to
use a sentinel and the array really must have the bounds [1..N], then standard
Pascal does not allow a clean aternative, since it does not have a “conditional”
and instruction: the test while (j>1) and (a[j—1]>v) won't work because
even when j=1, the second part of the and will be evaluated and will cause
an out-of-bounds array access. A goto out of the loop seems to be required.
(Some programmers prefer to goto some lengths to avoid gote instructions,
for example by performing an action within the loop to ensure that the loop
terminates. In this case, such a solution seems hardly justified, since it makes
the program no clearer, and it adds extra overhead everytime through the
loop to guard against a rare event.)

On the average, the inner loop of insertion sort is executed about N2 /2
times: The “average” insertion goes about halfway into a subfile of size N/2.
This is inherent in the method. The point of insertion can be found more
efficiently using the searching techniques in Chapter 14, but N2 /2 moves (to
make room for each element being inserted) are still required; or the number
of moves can be lowered by using a linked list instead of an array, but then
the methods of Chapter 14 don't apply and N2 /2 comparisons are required
(to find each insertion point).

ELEMENTARY SORTING METHODS 97

Shellsort

Insertion sort is slow because it exchanges only adjacent elements. For ex-
ample, if the smallest element happens to be at the end of the array, it takes
N steps to get it where it belongs. Shellsort is a simple extension of insertion
sort which gets around this problem by allowing exchanges of elements that
are far apart.

If we replace every occurrence of “1” by “h” (and “2” by “h+1") in
insertion sort, the resulting program rearranges a file to give it the property
that taking every hth element (starting anywhere) yields a sorted file. Such a
file is said to be h-sorted. Put another way, an h-sorted file is h independent
sorted files, interleaved together. By h-sorting for some large values of h, we
can move elements in the array long distances and thus make it easier to h-sort
for smaller values of h. Using such a procedure for any sequence of values of
h which ends in 1 will produce a sorted file: this is Shellsort.

The following example shows how a sample file of fifteen elements is
sorted using the increments 13, 4, 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A S 0 R T |1 N G E X A M P L E
13

A E 0 R T | N G E X A M P L S
4

A E A G E | N M P L O R T X S
1

A A E E G | L M N O P R S T X

In the first pass, the A in position 1 is compared to the L in position 14, then
the S in position 2 is compared (and exchanged) with the E in position 15. In
the second pass, the A T E P in positions 1, 5, 9, and 13 are rearranged to
put A E P T in those positions, and similarly for positions 2, 6, 10, and 14,
etc. The last pass is just insertion sort, but no element has to move very far.
The above description of how Shellsort gains efficiency is necessarily
imprecise because no one has been able to analyze the algorithm. Some
sequences of values of h work better than others, but no explanation for this
has been discovered. A sequence which has been shown empirically to do well
is...,1093,364,121,40,13,4,1, as in the following program:

98 CHAPTER 8

procedure shellsort;
label 0;
var i, j, h, v: integer;
begin
h:=1; repeat h:=3%h+1 until h>N;,
repeat
h:=h div 3;
for i;=h+1 to N do
begin
v:=a[i]; j:=i;
while a[j—h]|>v do
begin
alj]:=alj—h]; i:=i-h;
if j<=hthen goto O
end;
0: alj]:=v
end ;
until h=1;
end ;

Note that sentinels are not used because there would have to be h of them,
for the largest value of h used.

The increment sequence in this program is easy to use and leads to an
efficient sort. There are many other increment sequences which lead to a
more efficient sort (the reader might be amused to try to discover one), but it
is difficult to beat the above program by more than 20% even for relatively
large N. (The possibility that much better increment sequences exist is still,
however, quite real.) On the other hand, there are some bad increment
sequences. Shellsort is sometimes implemented by starting at h=N (instead
of initializing so as to ensure the same sequence is always used as above). This
virtually ensures that a bad sequence will turn up for some N.

Comparing Shellsort with other methods analytically is difficult because
the functional form of the running time for Shellsort is not, even known (and
depends on the increment sequence). For the above program, two conjectures
are N(logN)? and N®. The running time is not particularly sensitive to
the initial ordering of the file, especially in contrast to, say, insertion sort,
which is linear for a file already in order but quadratic for a file in reverse
order.

Shellsort is the method of choice for many sorting applications because it
has acceptable running time even for moderately large files (say, five thousand
elements) and requires only a very srnall amount of code, which is easy to get

ELEMENTARY SORTING METHODS 99

working. We'll see methods that are more efficient in the next few chapters,
but they're perhaps only twice as fast (if that much) except for large N, and
they're significantly more complicated. In short, if you have a sorting problem,
use the above program, then determine vvhether the extra effort required to
replace it with a sophisticated method will be worthwhile. (On the other
hand, the Quicksort algorithm of the next chapter is not that much more
difficult to implement. . .)

Digression: Bubble Sort

An elementary sorting method that is often taught in introductory classes is
bubble sort: keep passing through the file, exchanging adjacent elements, if
necessary; when no exchanges are required on some pass, the file is sorted.
An implementation of this method is given below.

procedure bubblesort;

var j, t integer;
begin
repeat

t:=all];

for j:=2to N do

if a[j—1]>alj] then
begin t:=alj—1}; a[j—1]:=alj]; a[j]:=t end

until t=al1];
end ;

It takes a moment’s reflection to convince oneself first that this works at all,
second that the running time is quadratic. It is not clear why this method
is so often taught, since insertion sort seems simpler and more efficient by
amost any measure. The inner loop of bubble sort has about twice as many
instructions as either insertion sort or selection sort.

Distribution Counting

A very special situation for which there is a simple sorting agorithm is the
following: “sort a file of N records whose keys are distinct integers between 1
and N.” The agorithm for this problem is

for iz==1to N do t[a[i]]:=alil;
for i:=1to N do a[i]:=t[i];

100 CHAPTER 8

This algorithm uses a temporary array ¢. It is possible (but much more
complicated) to solve this problem without an auxiliary array.

A more redlistic problem solved by an agorithm in the same spirit is:
“sort afile of N records whose keys are integers betweenOand M 1.” If M
is not too large, an algorithm called distribution counting can be used to solve
this problem. The idea is to count the number of keys with each value, then
use the counts to move the records into position on a second pass through the
file, as in the following code:

for j:=0to M-l do count [j]:=0;
for i:=1 to Ndo
count|a[i]]:=count[ali]]+1;
for j:=1to M-l do
count [j]:=count[j—1]+count [j];
for i:=N downto 1 do

begin

t[count(a[i]]]:=ali];
count|(ali]]:=count[a[i]]-1
end ;

for i:=1to N do a[i]::t[i];

To see how this code works, consider the following sample file of integers:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 110 3 7 5 5 2 4 2 10 2 6 4

The first for loop initializes the counts to 0; the second produces the counts

0 1 2 3 4 5 6 7

2 3 3 2 2 2 1 1

This says that there are two O’s, three I's, etc. The third for loop adds these
numbers to produce

0O 1 2 3 4 5 6 7
2 5 8 10 12 14 15 16

That is, there are two numbers less than 1, five numbers less than 2, etc.
Now, these can be used as addresses to sort the array:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
o o m> 2 2 3 3 4 4 5 5 6 7

ELEMENTARY SORTING METHODS 101

For example, when the 4 at the end of the file is encountered, it's put into
location 12, since count[4] says that there are 12 keys less than or equal to
4. Then count(4] is decremented, since there’s now one less key less than or
equal to 4. The inner loop goes from N down to 1 so that the sort will be
stable. (The reader may wish to check this.)

This method will work very well for the type of files postulated. Further-
more, it can be extended to produce a much more powerful method that we'll
examine in Chapter 10.

Non-Random Files

We usually think of sorting files that are in some arbitrarily scrambled order.
However, it is quite often the case that we have a lot of information about a
file to be sorted. For example, one often wants to add a few elements to a
sorted file and thus produce a larger sorted file. One way to do so is to simply
append the new elements to the end of the file, then call a sorting algorithm.
General-purpose sorts are commonly misused for such applications; actually,
elementary methods can take advantage of the order present in the file.

For example, consider the operation of insertion sort on a file which is
aready sorted. Each element is immediately determined to be in its proper in
the file, and the total running time is linear. The same is true for bubble sort,
but selection sort is still quadratic. (The leading term in the running time of
selection sort does not depend on the order in the file to be sorted.)

Even if a file is not completely sorted, insertion sort can be quite useful
because the running time of insertion sort depends quite heavily on the order
present in the file. The running time depends on the number of inversions. for
each element count up the number of elements to its left which are greater.
This is the distance the elements have to move when inserted into the file
during insertion sort. A file which has some order in it will have fewer
inversions in it than one which is arbitrarily scrambled.

The example cited above of a file formed by tacking a few new elenients
onto a large sorted file is clearly a case where the number of the inversions
is low: a file which has only a constant number of elements out of place will
have only a linear number of inversions. Another example is a file where each
element is only a constant distance front its final position. Files like this can
be created in the initial stages of some advanced sorting methods: at a certain
point it is worthwhile to switch over to insertion sort.

In short, insertion sort is the method of choice for “almost sorted” files

with few inversions. for such files, it will outperform even the sophisticated
methods in the next few chapters.

102

Exercises

1. Give a sequence of “compare-exchange” operations for sorting four records.

2. Which of the three elementary methods runs fastest for a file which is
aready sorted?

3. Which of the three elementary methods runs fastest for a file in reverse
order?

4. Test the hypothesis that selection sort is the fastest of the three elemen-
tary methods, then insertion sort, then bubble sort.

5. Give a good reason why it might be inconvenient to use a sentinel key for
insertion sort (aside from the one that comes up in the implementation
of Shellsort).

6. How many comparisons are used by Shellsort to 7-sort, then S-sort the
keys EASYQUESTION?

7. Give an example to show why 8,4,2,1 would not be a good way to finish
off a Shellsort increment sequence.

8. Is selection sort stable? How about insertion sort and bubble sort?

9. Give a specialized version of distribution counting for sorting files where
elements have only one of two values (x or y).

10. Experiment with different increment sequences for Shellsort: find one that

runs faster than the one given for a random file of 1000 elements.

9. Quicksort

In this chapter, we'll study the sorting algorithm which is probably
more widely used than any other, Quicksort. The basic agorithm was
invented in 1960 by C. A. R. Hoare, and it has been studied by many people
since that time. Quicksort is popular because it's not difficult to implement,
it's a good “general-purpose” sort (works well in a variety of situations), and
it consumes less resources than any other sorting method in many situations.

The desirable features of the Quicksort algorithm are that it is in-place
(uses only a small auxiliary stack), requires only about Nlog N operations
on the average to sort N items, and has an extremely short inner loop.
The drawbacks of the algorithm are that it is recursive (implementation is
complicated if recursion is not available), has a worst case where it takes
about N? operations, and is fragile: a simple mistake in the implementation
might go unnoticed and could cause it t¢ perform badly for some files.

The performance of Quicksort is very well understood. It has been
subjected to a thorough mathematical analysis and very precise statements
can be made about performance issues. The analysis has been verified by
extensive empirical experience, and the agorithm has been refined to the
point where it is the method of choice in a broad variety of practical sorting
applications. This makes it worthwhile to look somewhat more carefully at
ways of efficiently implementing Quicksort than we have for other algorithms.
Similar implementation techniques are appropriate for other algorithms; with
Quicksort we can use them with confidence because the performance is so well
understood.

It is tempting to try to develop ways to improve Quicksort: a faster
sorting algorithm is computer science's “better mousetrap.” Almost from the
moment Hoare first published the algorithm, “improved” versions have been
appearing in the literature. Many ideas have been tried and analyzed, but
it is easy to be deceived, because the algorithm is so well balanced that the

103

104 CHAPTER 9

effects of improvements in one part of the program can be more than offset by
the effects of bad performance in another part of the program. We'll examine
in some detail three modifications which do improve Quicksort substantialy.

A carefully tuned version of Quicksort is likely to run significantly faster
than any other sorting method on most computers. However, it must be
cautioned that tuning any algorithm can make it more fragile, leading to
undesirable and unexpected effects for some inputs. Once a version has been
developed which seems free of such effects, this is likely to be the program to
use for a library sort utility or for a serious sorting application. But if one is
not willing to invest the effort to be sure that a Quicksort implementation is
not flawed, Shellsort is a much safer choice and will perform adequately for
significantly less implementation effort.

The Basic Algorithm

Quicksort is a “divide-and-conquer” method for sorting. It works by partition-
ing a file into two parts, then sorting the parts independently. As we will see,
the exact position of the partition depends on the file, so the algorithm has
the following recursive structure:

procedure quicksort(l, r: integer);
var i;
begin
if r>1then
begin
i:==partition(, r)
quicksort (1, i- 1);
quicksort(i+1,r);
end
end;

The parameters I and r delimit the subfile within the original file that is to
be sorted: the call quicksort(1, N) sorts the whole file.

The crux of the method is the partition procedure, which must rearrange
the array to make the following three conditions hold:

(i) the element di] is in its fina place in the array for some i,
(i) al the elements in a[l],. . .,a[i~1] are less than or equal to ai],
(iii) al the elements in afi+1}, . . .,ar] are greater than or equal to ali].

This can be simply and easily implemented through the following general
strategy. First, arbitrarily choose a[r] to be the element that will go into

QUICKSORT 105

its final position. Next, scan from the left end of the array until finding

an element greater than a[r] and scan from the right end of the array until
finding an element less than a[r]. The two elements which stopped the scans
are obviously out of place in the final partitioned array, so exchange them.

(Actually, it turns out, for reasons described below, to be best to also stop the

scans for elements equal to alr|, even though this might seem to involve some
unnecessary exhanges.) Continuing in this way ensures that all array elements
to the left of the left pointer are less than ar|, and array elements to the right
of the right pointer are greater than a [r] . When the scan pointers cross, the
partitioning process is nearly complete: al that remains is to exchange a[r]
with the leftmost element of the right subfile.

The following table shows how our sample file of keys is partitioned using
this method:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A §$ 0R T I NGZEJXAMTP L
A A S M P L |E
A A E O X 8§ M P L [E]
A A E T N G O X S M P L R

The rightmost element, E, is chosen as the partitioning element. First
the scan from the left stops at the S, then the scan from the right stops at the
A, then these two are exchanged, as shown on the second line of the table.
Next the scan from the left stops at the 0, then the scan from the right stops
at the E, then these two are exchanged, as shown on the third line of the
table. Next the pointers cross. The scan from the left stops at the R, and
the scan from the right stops at the E. The proper move at this point is to
exchange the E at the right with the R, leaving the partitioned file shown on
the last line of the table. The sort is finished by sorting the two subfiles on
either side of the partitioning element (recursively).

The following program gives a full implementation of the method.

106 CHAPTER 9

procedure quicksort(l, r: integer) ;
var v, t, i, j: integer;
begin
if r>1 then
begin
vi=a[r]; i:=I-1; ji=r;
repeat
repeat i:=i+1 until ai]>=v;
repeat j:=j—1until afjj<=v;
t:=ali]; ali]:=alj]; alj]:=t;
until j<=i;
aljl:=ali); ali]:=alr); alr]:=t;
quicksort(l, i-1);
quicksort(i+1,r)
end
end;

In this implementation, the variable v holds the current value of the “partition-
ing element” a|r], and i and j are the left and right scan pointers, respectively.
An extra exchange of d[i] with a [j] is done with j<i just after the pointers cross
but before the crossing is detected and the outer repeat loop exited. (This
could be avoided with a goto.) The three assignment statements following that
loop implement the exchanges a[i] with afj] (to undo the extra exchange) and
gi] with a[r] (to put the partitioning element into position).

As in insertion sort, a sentinel key is needed to stop the scan in the
case that the partitioning element is the smallest element in the file. In this
implementation, no sentinel is needed to stop the scan when the partitioning
element is the largest element in the file, because the partitioning element
itself is at the right end of the file to stop the scan. We'll shortly see an easy
way to avoid having either sentinel key.

The “inner loop” of Quicksort consists simply of incrementing a pointer
and comparing an array element against a fixed value. This is really what
makes Quicksort quick: it's hard to imagine a simpler inner loop.

Now the two subfiles are sorted recursively, finishing the sort. The
following table traces through these recursive calls. Each line depicts the result
of partitioning the displayed subfile, using the boxed partitioning element.

QUICKSORT 107

3 4 5 6 7 8 9 10 11 12 13 14 15
O R TI1 NGTENXAMP E
E T I N G O X S M P R

H> B> > [

[N] P O
o| P
[s] T x
T x)
LT}
AAEEG I L MNOTPTR ST X

Note that every element is (eventualy) put into place by being used as a
partitioning element.

The most disturbing feature of the program above is that it runs very
inefficiently on simple files. For example, if it is caled with afile that is aready
sorted, the partitions will be degenerate, and the program will call itself N
times, only knocking off one element for each call. This means not only
that the time required will be about N2/2, but also that the space required
to handle the recursion will be about N (see below), which is unacceptable.
Fortunately, there are relatively easy ways to ensure that this worst case
doesn’t occur in actual applications of the program.

When equal keys are present in the file, two subtleties become apparent.
First, there is the question of whether to have both pointers stop on keys

108 CHAPTER 9

equal to the partitioning element, or to have one pointer stop and the other
scan over them, or to have both pointers scan over them. This question has
actually been studied in some detail mathematically, with the result that
it's best to have both pointers stop. This tends to balance the partitions in
the presence of many equal keys. Second, there is the question of properly
handling the pointer crossing in the presence of equal keys. Actualy, the
program above can be slightly improved by terminating the scans when j<i,
then using quicksort(l, j) for the first recursive call. This is an improvement
because when j=i we can put two elements into position with the partitioning,
by letting the loop iterate one more time. (This case occurs, for example, if R
were E in the example above.) It is probably worth making this change because
the program given leaves a record with a key equal to the partitioning key in
a[r], which makes the first partition in the call quicksort(i+1, r) degenerate
because its rightmost key is its smallest. The implementation of partitioning
given above is abit easier to understand, so we'll leaveit asisin the discussions
below, with the understanding that this change should be made when large
numbers of equal keys are present.

The best thing that could happen would be for each partitioning stage to
divide the file exactly in half. This would make the number of comparisons
used by Quicksort satisfy the divide-and-conquer recurrence

C(N) = 2C(N/2) + N.

(The 2C(NN/2) covers the cost of doing the two subfiles; the N is the cost of
examining each element, using one partitioning pointer or the other.) From
Chapter 4, we know this recurrence has the solution

C(N) ~ N lg iv.

Though things don't always go this well, it is true that the partition falls
in the middle on the average. Taking the precise probability of each parti-
tion position into account makes the recurrence more complicated, and more
difficult to solve, but the final result is similar. It turns out that

C(N) ~ 2NInN,

which implies that the total running time of Quicksort is proportiona to
N log N (on the average).

Thus, the implementation above will perform very well for many applica-
tions and is a very reasonable general-purpose sort. However, if the sort is to
be used a great many times, or if it is to be used to sort a very large file, then
it might be worthwhile to implement several of the improvements discussed
below which can ensure that the worst case won't occur, reduce the average
running time by 20-30%, and easily eliminate the need for a sentinel key.

QUICKSORT 109

Removing Recursion

In Chapter 1 we saw that the recursive call could be removed from Euclid’'s
algorithm to yield a non-recursive program controlled by a simple loop. This
can be done for other programs with one recursive call, but the situation
is more complicated when two or more recursive calls are involved, as in
Quicksort. Before dealing with one recursive call, enough information must
be saved to allow processing of later recursive calls.

The Pascal programming environment uses a pushdown stack to manage
this. Each time a procedure call is made, the values of all the variables are
pushed onto the stack (saved). Each time a procedure returns, the stack is
popped: the information that was most recently put on it is removed.

A stack may be represented as a linked list, in which case a push is
implemented by linking a new node onto the front of the list and a pop
by removing the first node on the list, or as an array, in which case a
pointer is maintained which points to the top of the stack, so that a push
is implemented by storing the information and incrementing the pointer, and
a pop by decrementing the pointer and retrieving the information.

There is a companion data structure called a gueue, where items are
returned in the order they were added. In a linked list implementation of
a queue new items are added at the end, not the beginning. The array
implementation of queues is slightly more complicated. Later in this book
we'll see other examples of data structures which support the twin operations
of inserting new items and deleting items according to a prescribed rule (most
notably in Chapters 11 and 20).

When we use recursive calls, the values of all variables are saved on an
implicit stack by the programming environment; when we want an improved
program, we use an explicit stack and save only necessary information. It
is usualy possible to determine which variables must be saved by examining
the program carefully; another approach is to rework the algorithm based on
using an explicit stack rather than explicit recursion.

This second approach is particularly appropriate for Quicksort and many
similar algorithms. We think of the stack as containing “work to be done”
in the form of subfiles to be sorted. Any time we need a subfile to process,
we pop the stack. When we partition, we create two subfiles to be processed,
which can be pushed on the stack. This leads to the following non-recursive
implementation of Quicksort:

110 CHAPTER 9

procedure quicksort;
var t, i, I, r: integer;
stack: array [0..50] of integer; p: integer;
begin
I:i=1; r:=N; p:=2;
repeat
if r>1then
begin
ir=partition(l, 1);
if (i-h)> (r-i)
then begin stack(p] :=I; stack[p+1]:=i—1; I:=i+1 end
else begin stack|p] :=i+1; stack[p+1] :=r; r:=i—] end;
p:=p+2;
end
else
begin p:=p—2; l:=stack[p]; r:=stack[p+1] end;
until p=0
end;

This program differs from the description above in two important ways. First,,
rather than simply putting two subfiles on the stack in some arbitrary order,
their sizes are checked and the larger of the two is put on the stack first.
Second, the smaller of the two subfiles is not put on the stack at al; the values
of the parameters are simply reset,, just as we did for Euclid’s algorithm. This
technique, called “end-recursion removal” can be applied to any procedure
whose last action is a recursive call. For Quicksort, the combination of end-
recursion removal and a policy of processing the smaller of the two subfiles
first turns out to ensure that the stack need only contain room for about, Ig N

entries, since each entry on the stack after the top one must represent a subfile
less than half the size of the previous entry.

This is in sharp contrast to the size of the stack in the worst case in the
recursive implementation, which could be as large as N (for example, in the
case that the file is already sorted). This is a subtle but real difficulty with
a recursive implementation of Quicksort: there’s always an underlying stack,
and a degenerate case on a large file could cause the program to terminate
abnormally because of lack of memory. This behavior is obviously undesirable
for a library sorting routine. Below we'll see ways to make degenerate cases
extremely unlikely, but, there’'s no way to avoid this problem completely in
a recursive implementation (even switching the order in which subfiles are
processed doesn’t help, without end-recursion removal).

Of course the non-recursive method processes the same subfiles as the

QUICKSORT 111

recursive method for our example; it just does them in a different order, as
shown in the following table:

3 4 8 10 11 12 13 14 15
O R T | N G E X A M P L E
E

[E] I N G 0o X s M P L R

©

(@] -
-

0
P
P]
A A E E G I L M N O P R S T X

The simple use of an explicit stack above leads to a far more efficient
program than the direct recursive implementation, but there is still overhead
that could be removed. The problem is that, if both subfiles have only one
element, entries with r=] are put on the stack only to be immediately taken
off and discarded. It is straightforward to change the program to simply not
put any such files on the stack. This change is more important when the next
improvement is included, which involves ignoring small sybfiles in the same

way.

112 CHAPTER 9

Smdl Subfiles

The second improvement stems from the observation that a recursive program
is guaranteed to call itself for many small subfiles, so it should be changed to
use a better method when small subfiles are encountered. One obvious way to
do this is to change the test at the beginning of the recursive routine from “if
r>] then” to a call on insertion sort (modified to accept parameters defining

the subfile to be sorted), that is “if r-l <= M then insertion(l, r).” Here M
is some parameter whose exact value depends upon the implementation. The
value chosen for M need not be the best possible: the algorithm works about

the same for M in the range from about 5 to about 25. The reduction in the
running time is on the order of 20% for most applications.

A dlightly easier method, which is also slightly more efficient, is to just
change the test at the beginning to “if r-l > M then”: that is, simply ignore
smdl subfiles during partitioning. In the non-recursive implementation, this
would be done by not putting any files of less than M on the stack. After
partitioning, what is left is a file that is amost sorted. As mentioned in the
previous chapter, insertion sort is the method of choice for such files. That
is, insertion sort will work about as well for such a file as for the collection of
little files that it would get if it were being used directly. This method should
be used with caution, because the insertion sort is likely always to sort even
if the Quicksort has a bug which causes it not to work at al. The excessive
cost may be the only sign that something went wrong.

Median-of- Three Partitioning

The third improvement is to use a better partitioning element. There are
several possibilities here. The safest thing to do to avoid the worst case would
be to use a random element from the array for a partitioning element. Then
the worst case will happen with negligibly small probability. This is a simple
example of a “probabilistic algorithm,” which uses randomness to achieve
good performance almost always, regardliess of the arrangement of the input.
This can be a useful tool in algorithm design, especialy if some bias in the
input is suspected. However, for Quicksort it is probably overkill to put a full
random-number generator in just for this purpose: an arbitrary number will
do just as well.

A more useful improvement is to take three elements from the file, then
use the median of the three for the partitioning element. If the three elements
chosen are from the left,, middle, and right of the array, then the use of
sentinels can be avoided as follows: sort the three elements (using the three-
exchange method in the last chapter), then exchange the one in the middle
with afr—1], then run the partitioning agorithm on a[l+1, .. .,r—2]. This
improvement is called the median-of-three partitioning method.

QUICKSORT 113

The median-of-three method helps Quicksort in three ways. First, it
makes the worst case much more unlikely to occur in any actual sort. In order
for the sort to take N time, two out of the three elements examined must be
among the largest or among the smallest elements in the file, and this must
happen consistently through most of the partitions. Second, it eliminates the
need for a sentinel key for partitioning, since this function is served by the
three elements examined before partitioning. Third, it actually reduces the
total running time of the algorithm by about 5%.

The combination of a nonrecursive implementation of the median-of-
three method with a cutoff for small subfiles can improve the running time of
Quicksort from the naive recursive implementation by 25% to 30%. Further
algorithmic improvements are possible (for example the median of five or more
elements could be used), but the amount of time saved will be marginal. More
significant time savings can be realized (with less effort) by coding the inner
loops (or the whole program) in assembly or machine language. Neither path
is recommended except for experts with serious sorting applications.

L]

114

Exercises

1

10.

Implement a recursive Quicksort with a cutoff to insertion sort for subfiles
with less than M elements and empirically determine the value of M for
which it runs fastest on a random file of 1000 elements.

Solve the previous problem for a nonrecursive implementation.

Solve the previous problem aso incorporating the median-of-three im-
provement.

About how long will Quicksort take to sort a file of N equal elements?

What is the maximum number of times that the largest element could be
moved during the execution of Quicksort?

Show how the file ABABABA is partitioned, using the two methods
suggested in the text.

How many comparisons does Quicksort use to sort the keys EASY QUE
STION?

How many “sentinel” keys are needed if insertion sort is called directly
from within Quicksort?

Would it be reasonable to use a queue instead of a stack for a non-recursive
implementation of Quicksort? Why or why not?

Use a least squares curvefitter to find values of a and b that give the
best formula of the form aN In N + b for describing the total number
of instructions executed when Quicksort is run on a random file.

10. Radix Sorting

The “keys’ used to define the order of the records in files for many
sorting applications can be very complicated. (For example, consider
the ordering function used in the telephone book or a library catalogue.)
Because of this, it is reasonable to define sorting methods in terms of the
basic operations of “comparing” two keys and “exchanging” two records.
Most of the methods we have studied can be described in terms of these two
fundamental operations. For many applications, however, it is possible to
take advantage of the fact that the keys can be thought of as numbers from
some restricted range. Sorting methods which take advantage of the digital
properties of these numbers are called radix sorts. These methods do not just
compare keys: they process and compare pieces of keys.

Radix sorting algorithms treat the keys as numbers represented in a
base-M number system, for different values of M (the radix) and work with
individual digits of the numbers. For example, consider an imaginary problem
where a clerk must sort a pile of cards with three-digit numbers printed on
them. One reasonable way for him to proceed is to make ten piles. one for
the numbers less than 100, one for the numbers between 100 and 199, etc.,
place the cards in the piles, then deal with the piles individually, either by
using the same method on the next digit or by using some simpler method
if there are only a few cards. This is a simple example of a radix sort with
M = 10. We'll examine this and some other methods in detail in this chapter.
Of course, with most computers it's more convenient to work with M = 2 (or
some power of 2) rather than M = 10.

Anything that's represented inside a digital computer can be treated
as a binary number, so many sorting applications can be recast to make
feasible the use of radix sorts operating on keys which are binary numbers.
Unfortunately, Pascal and many other languages intentionaly make it difficult
to write a program that depends on the binary representation of numbers.

115

116 CHAPTER 10

(The reason is that Pascal is intended to be a language for expressing programs
in a machine-independent manner, and different computers may use different
representations for the same numbers.) This philosophy eliminates many types
of “bit-flicking” techniques in situations better handled by fundamental Pascal
constructs such as records and sets, but radix sorting seems to be a casualty of
this progressive philosophy. Fortunately, it's not too difficult to use arithmetic
operations to simulate the operations needed, and so we'll be able to write
(inefficient) Pascal programs to describe the algorithms that can be easily
translated to efficient programs in programming languages that support bit
operations on binary numbers.

Given a (key represented as a) binary number, the fundamental operation
needed for radix sorts is extracting a contiguous set of bits from the number.
Suppose we are to process keys which we know to be integers between 0 and
1000. We may assume that these are represented by ten-bit binary numbers.
In machine language, bits are extracted from binary numbers by using bitwise
“and” operations and shifts. For example, the leading two bits of a ten-bit
number are extracted by shifting right eight bit positions, then doing a bitwise
“and” with the mask 0000000011. In Pascal, these operations can be simulated
with div and mod. For example, the leading two bits of a ten-bit number x
are given by (x div 256)mod 4. In general, “shift z right & bit positions”
can be simulated by computing x div 2’°, and “zero al but the j rightmost
bits of z” can be simulated by computing x mod 27, In our description of
the radix sort agorithms, we'll assume the existence of a function bits(x, K, J:
integer): integer which combines these operations to return the 4 bits which
appear k£ bits from the right in z by computing (x div 2’“) mod 23. For
example, the rightmost bit of z is returned by the cal bits(x, 0,1). This
function can be made efficient by precomputing (or defining as constants)
the powers of 2. Note that a program which uses only this function will
do radix sorting whatever the representation of the numbers, though we can
hope for much improved efficiency if the representation is binary and the
compiler is clever enough to notice that the computation can actualy be
done with machine language “shift” and “and” instructions. Many Pascal
implementations have extensions to the language which alow these operations
to be specified somewhat more directly.

Armed with this basic tool, we'll consider two different types of radix
sorts which differ in the order in which they examine the bits of the keys. We
assume that the keys are not short, so that it is worthwhile to go to the effort
of extracting their bits. If the keys are short, then the distribution counting
method in Chapter 8 can be used. Recall that this method can sort N keys
known to be integers between 0 and M - 1 in linear time, using one auxiliary
table of size M for counts and another of size N for rearranging records.
Thus, if we can afford a table of size 2%, then b-bit keys can easily be sorted

RADIX SORTING 117

in linear time. Radix sorting comes into play if the keys are sufficiently long
(say b = 32) that this is not possible.

The first basic method for radix sorting that we'll consider examines the
bits in the keys from left to right. It is based on the fact that the outcome of
“comparisons’ between two keys depend: only on the value of the bits at the
first position at which they differ (reading from left to right). Thus, al keys
with leading bit O appear before all keys with leading bit 1 in the sorted file;
among the keys with leading bit 1, all keys with second bit O appear before
al keys with second bit 1, and so forth. The left-to-right radix sort, which
is called radix exchange sort, sorts by systematically dividing up the keys in
this way.

The second basic method that we'll consider, called straight radix sort,
examines the bits in the keys from right to left. It is based on an interesting
principle that reduces a sort on b-bit keys to b sorts on I-bit keys. We'll see
how this can be combined with distribution counting to produce a sort that
runs in linear time under quite generous assumptions.

The running times of both basic radix sorts for sorting N records with b
bit keys is essentially Nb. On the one hand, one can think of this running time
as being essentially the same as N log N, since if the numbers are all different,
b must be at least log N. On the other hand, both methods usually use
many fewer than Nb operations. the left-to-right method because it can stop
once differences between keys have been found; and the right-to-left method,
because it can process many bits at once.

Radix Exchange Sort

Suppose we can rearrange the records of a file so that all those whose keys
begin with a 0 bit come before all those whose keys begin with a 1 hit. This

immediately defines a recursive sorting method: if the two subfiles are sorted
independently, then the whole file is sorted. The rearrangement (of the file)
is done very much like the partitioning n Quicksort: scan from the left to
find a key which starts with a 1 bit, scan from the right to find a key which
starts with a 0 bit, exchange, and continue the process until the scanning
pointers cross. This leads to a recursive sorting procedure that is very similar
to Quicksort:

118 CHAPTER 10

procedure radixexchange(], I, b: integer);
var t, i,j: integer;
begin
if (r>1) and (b>=0) then
begin
ii=l; ji=r;
repeat
while (bits(ali], b, 1)=0)and (i<j) do i:=i+1;
while (bits(alj], b, 1)=1) and (i<j) do j:5j-1;
t:=ali]; ali]:=alj]; ali]:=¢t;
until j=i;
i bits(@r], b, 1)=0 then ji=j+1;
radixexchange(l, j-1, b-1);
radixexchange(j, 1, b-l) ;
end
end ;

For simplicity, assume that a [1..N] contains positive integers less than 232
(that is, they could be represented as 31-bit binary numbers). Then the call
radixexchange(1, N, 30) will sort the array. The variable b keeps track of
the bit being examined, ranging from 30 (leftmost) down to O (rightmost).
(It is normally possible to adapt the implementation of bits to the machine
representation of negative numbers so that negative numbers are handled in
a uniform way in the sort.)

This implementation is obviously quite similar to the recursive implemen-
tation of Quicksort in the previous chapter. Essentially, the partitioning in
radix exchange sort is like partitioning in Quicksort except that the number
2% is used instead of some number from the file as the partitioning element.
Since 2° may not be in the file, there can be no guarantee that an element
is put into its final place during partitioning. Also, since only one hit is be-
ing examined, we can't rely on sentinels to stop the pointer scans; therefore
the tests (i<j) are included in the scanning loops. As with Quicksort, an
extra exchange is done for the case j=i, but it is not necessary to undo this
exchange outside the loop because the “exchange’ is &[i] with itself. Also as
with Quicksort, some care is necessary in this algorithm to ensure that the
nothing ever “falls between the cracks’ when the recursive calls are made.
The partitioning stops with j=i and all elements to the right of gi] having 1
bits in the bth position and all elements to the left of &[i] having 0 bits in the
bth position. The element gi] itself will have a 1 bit unless all keys in the
file have a 0 in position b. The implementation above has an extra test just
after the partitioning loop to cover this case.

RADIX SORTING 119

The following table shows how our sample file of keys is partitioned and
sorted by this method. This table is can be compared with the table given in
Chapter 9 for Quicksort, though the operation of the partitioning method is
completely opaque without the binary representation of the keys.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A S ORTI N GEX A M P L E
A E OL M I N G E A X T P R S
A E A E G I N M L O
A A E E G
A A
A A
E G
E E
I N M L O
L M N O
L M
N O
S T P R X
S R P T
P R S
R S
A A E E G I L M N O P R S T X

The binary representation of the keys used for this example is a simple
five-bit code with the ith letter in the aphabet represented by the binary
representation of the number <. This is a simplified version of rea character
codes, which use more bits (seven or eight) and represent more characters
(upper/lower case letters, numbers, special symbols). By trandating the keys
in this table to this five-bit character code, compressing the table so that the
subfile partitioning is shown “in paralel” rather than one per line, and then

120 CHAPTER 10

transposing rows and columns, we can see how the leading bits of the keys
control partitioning:

A 00001 A A 1 A 0001 A 00001 A 00001
s 10011 E E 01 A 000pL A OOLdl A 00001
0 o111 o A 1 E o001 E 001%i E 00101
R 10010 L E oL E ool E oolji E 00101
T 10100 M G o1l G ool G oox

| 01001 | | 01p01 | 010Pp1 0

N 01110 N Q N 01110 N o110 L outlfo L 01100
G 00111 GOop1il M 01101 M o111 M oitllt ™ o1101
E 00101 E 0Op101 L 01100 L 0110 N 01110 N 01110
x 11000 A OpoO1 O Oif11 O 01111 O 01111 O 01111
A 00001 x 11000 s 10011 s 10001 P 100 O

M 01101 T 10100 T 10100 R 10000 R 10010 R 10010
P 10000 P 10000 P 10000 P I s 10011 s 10011
L 01100 R 10010 R 10010 T 10

E 00101 s 10011 x 11000

One serious potential problem for radix sort not brought out in this
example is that degenerate partitions (with all keys having the same value for
the bit being used) can happen frequently. For example, this arises commonly
in rea files when small numbers (with many leading zeros) are being sorted.
It also occurs for characters: for example suppose that 32-bit keys are made
up from four characters by encoding each in a standard eight-bit code then
putting them together. Then degenerate partitions are likely to happen at the
beginning of each character position, since, for example, lower case letters all
begin with the same bits in most character codes. Many other similar effects
are obviously of concern when sorting encoded data.

From the example, it can be seen that once a key is distinguished from
al the other keys by its left bits, no further bits are examined. This is a
distinct advantage in some situations, a disadvantage in others. When the
keys are truly random bits, each key should differ from the others after about
Ig N bits, which could be many fewer than the number of bits in the keys.
This is because, in a random situation, we expect each partition to divide the
subfile in haf. For example, sorting a file with 1000 records might involve
only examining about ten or eleven bits from each key (even if the keys
are, say, 32-bit keys). On the other hand, notice that all the bits of equal
keys are examined. Radix sorting simply does not work well on files which

RADIX SORTING 121

contain many equal keys. Radix exchange sort is actually slightly faster than
Quicksort if the keys to be sorted are comprised of truly random bits, but
Quicksort can adapt better to less randon situations.

Straight Radix Sort

An aternative radix sorting method is tc examine the bits from right to left.
This is the method used by old computer-card-sorting machines: a deck of
cards was run through the machine 80 times, once for each column, proceeding
from right to left. The following example shows how a right-to-left bit-by-bit
radix sort works on our file of sample kers,

A 00001 R T 101p0 X 11000 P 10000 A 00001
s 10011 T X 11000 I’ 10p00 A Q0001 A 00001
0 01111 N P 10000 A 00PpO1 A (0001 E 00101
R 10010 x L 011p0 = 01p01 R 10010 E 00101
T 10100 P A 000p1 A OOpO1I s 10011 G 00111
| 01001 L | 01001 R 10p10 T 10100 | 01001
N 01110 A E 001p1 & 10p11 E 00101 L 01100
G 00111 s A 000p1 "7 100100 E Q0101 M 01101
E 00101 O M 011p1 [, 01100 G Q0111 N 01110
X 11000 | E 00101 I 0001 x 11000 O 01111
A 00001 G R 10000 M O1f101 | Q1001 P 10000
M 01101 E N oﬁﬁo IE 0001 L (01100 R 10010
P 10000 A s 10011 1IN 01110 M (1101 s 10011
L 01100 M 0 01111 O 01111 N ¢1170 T 10100
E 00101 E G ooii1 (G ool O Ou111 x 11000

The ith column in this table is sorted on the trailing i bits of the keys.
The ith column is derived from the (i = 1st column by extracting all the keys
with a 0 in the ith bit, then all the keys with a 1 in the ith bit.

It's not easy to be convinced that the method works; in fact it doesn’t
work at all unless the one-bit partitioning process is stable. Once stability
has been identified as being important, a trivial proof that the method works
can be found: after putting keys with sth bit O before those with ith bit 1
(in a stable manner) we know that any {wo keys appear in proper order (on
the basis of the bits so far examined) in the file either because their ith bits
are different, in which case partitioning puts them in the proper order, or
because their ith bits are the same, in which case they’'re in proper order
because of stability. The requirement of stability means, for example, that

122 CHAPTER 10

the partitioning method used in the radix exchange sort can’t be used for this
right-to-left sort.

The partitioning is like sorting a file with only two values, and the dis-
tribution counting sort that we looked at in Chapter 8 is entirely appropriate
for this. If we assume that M = 2 in the distribution counting program and
replace a[i] by bits(ali], k, 1), then that program becomes a method for sorting
the elements of the array a on the bit k positions from the right and putting
the result in a temporary array t, But there’'s no reason to use A4 = 2; in
fact we should make M as large as possible, realizing that we need a table of
M counts. This corresponds to using m bits at a time during the sort, with
M = 2™, Thus, straight radix sort becomes little more than a generalization
of distribution counting sort, as in the following implementation for sorting
a[1..N] on the b rightmost bits:

procedure straightradix(b: integer) ;
var i, j, pass: integer;
begin
for pass:=0 to (b div m)-1 do
begin
for j:=O to M-I do count|j] :=0;
for ;=1 to N do
count[bits(a[i],pass*m, m)] :=count|bits(ali], passxm, m)]+1;
for j:=1to M-l do
count|(j] :=count|j—1]+count|j];
for i:=N downto 1 do
begin
t[count[bits(a[i], pass*m, m)]]:=ali];
count|bits(ali], pass*m, m)):=count|bits(a[i], passxm, m)|~1;
end ;
for 1:=1 to N do di]:=t[i];
end ;
end;

For clarity, this procedure uses two calls on bits to increment and decrement
count, when one would suffice. Also, the correspondence M = 2™ has been
preserved in the variable names, though some versions of “pascal” can't tell
the difference between m and M.

The procedure above works properly only if b isamultiple of m. Normally,
this is not a particularly restrictive assumption for radix sort: it simply cor-
responds to dividing the keys to be sorted into an integra number of equal
size pieces. When m=b we have distribution counting sort; when m=1 we

RADIX SORTING 123

have straight radix sort, the right-to-left bit-by-bit radix sort described in the
example above.

The implementation above moves the file from a to t during each dis-
tribution counting phase, then back to a in a simple loop. This “array copy”
loop could be eliminated if desired by making two copies of the distribution
counting code, one to sort from a into ¢, the other to sort from t into a

A Linear Sort

The straight radix sort implementation given in the previous section makes
b/m passes through the file. By making n: large, we get a very efficient sorting
method, as long as we have M = 2™ words of memory available. A reasonable
choice is to make m about one-fourth the word-size (b/4), so that the radix
sort is four distribution counting passes. The keys are treated as base-M
numbers, and each (base--M) digit of each key is examined, but there are
only four digits per key. (This directly corresponds with the architectural
organization of many computers. one typical organization is to have 32-bit
words, each consisting of four 8-bit bytes. The bits procedure then winds up
extracting particular bytes from words in this case, which obviously can be
done very efficiently on such computers.)) Now, each distribution counting
pass is linear, and since there are only four of them, the entire sort is linear,
certainly the best performance we could hope for in a sort.

In fact, it turns out that we can get by with only two distribution counting
passes. (Even a careful reader is likely 5o have difficulty telling right from
left by this time, so some caution is called for in trying to understand this
method.) This can be achieved by taking advantage of the fact that the file
will be almost sorted if only the leading b,'2 bits of the bbit keys are used. As
with Quicksort, the sort can be completed efficiently by using insertion sort
on the whole file afterwards. This method is obviously a trivial modification
to the implementation above: to do a right-to-left sort using the leading half
of the keys, we simply start the outer loop at pass=b div (2+m) rather than
pass=1. Then a conventional insertion sort can be used on the nearly-ordered
file that results. To become convinced that a file sorted on its leading bits
is quite well-ordered, the reader should examine the first few columns of the
table for radix exchange sort above. For example, insertion sort run on the
the file sorted on the first three bits would require only six exchanges.

Using two distribution counting passes (with m about one-fourth the word
size), then using insertion sort to finish :he job will yield a sorting method
that is likely to run faster than any of the others that we've seen for large files
whose keys are random bits. Its main disadvantage is that it requires an extra
array of the same size as the array being sorted. It is possible to eliminate
the extra array using linked-list techniques, but extra space proportional to
N (for the links) is still required.

124 CHAPTER 10

A linear sort is obviously desirable for many applications, but there are
reasons why it is not the panacea that it might seem. First, it really does
depend on the keys being random bits, randomly ordered. If this condition is
not satisfied, severely degraded performance is likely. Second, it reguires extra
space proportiona the size of the array being sorted. Third, the “inner loop”
of the program actually contains quite a few instructions, so even though it’'s
linear, it won't be as much faster than Quicksort (say) as one might expect,
except for quite large files (at which point the extra array becomes a rea
liability). The choice between Quicksort and radix sort is a difficult one
that is likely to depend not only on features of the application such as key,
record, and file size, but also on features of the programming and machine
environment that relate to the efficiency of access and use of individual bits.
Again, such tradeoffs need to be studied by an expert and this type of study
is likely to be worthwhile only for serious sorting applications.

RADIX SORTING 125

Exercises

1. Compare the number of exchanges used by radix exchange sort with

10.

the number of exchanges used by Quicksort for the file 001,011,101,110,
000,001,010,111,110,010.

Why is it not as important to remove the recursion from the radix ex-
change sort as it was for Quicksort?

Modify radix exchange sort to skip leading bits which are identical on al
keys. In what situations would this be worthwhile?

True or false: the running time of straight radix sort does not depend on
the order of the keys in the input file. Explain your answer.

Which method is likely to be faster for a file of al equal keys: radix
exchange sort or straight radix sort?

True or false: both radix exchange sort and straight radix sort examine
al the bits of all the keys in the file. Explain your answer.

Aside from the extra memory requirement, what is the major disad-
vantage to the strategy of doing straight radix sorting on the leading
bits of the keys, then cleaning up with insertion sort afterwards?

Exactly how much memory is requirad to do a 4-pass straight radix sort
of N b-bit keys?

What type of input file will make radix exchange sort run the most slowly
(for very large N)?

Empirically compare straight radix sort with radix exchange sort for a
random file of 1000 32-bit keys.

11. Priority Queues

In many applications, records with keys must be processed in order,
but not necessarily in full sorted order and not necessarily all at once.
Often a set of records must be collected, then the largest processed, then
perhaps more records collected, then the next largest processed, and so forth.
An appropriate data structure in such an environment is one which supports
the operations of inserting a new element and deleting the largest element.
This can be contrasted with queues (delete the oldest) and stacks (delete the
newest). Such a data structure is called a priority queue. In fact, the priority
queue might be thought of as a generalization of the stack and the queue (and
other simple data structures), since these data structures can be implemented
with priority queues, using appropriate priority assignments.

Applications of priority queues include simulation systems (where the
keys might correspond to “event times” which must be processed in order),
job scheduling in computer systems (where the keys might correspond to
“priorities” which indicate which users should be processed first), and numeri-
cal computations (where the keys might be computational errors, so the largest
can be worked on first).

Later on in this book, we'll see how to use priority queues as basic
building blocks for more advanced algorithms. In Chapter 22, we'll develop a
file compression algorithm using routines from this chapter, and in Chapters
31 and 33, we'll see how priority queues can serve as the basis for severa
fundamental graph searching algorithms. These are but a few examples of
the important role served by the priority queue as a basic tool in algorithm
design.

It is useful to be somewhat more precise about how a priority queue will
be manipulated, since there are several operations we may need to perform
on priority queues in order to maintain them and use them effectively for
applications such as those mentioned above. Indeed, the main reason that

127

128 CHAPTER 11

priority queues are so useful is their flexibility in allowing a variety of different
operations to be efficiently performed on set of records with keys. We want to
build and maintain a data structure containing records with numerical keys
(priorities), supporting some of the following operations:

Construct a priority queue from N given items.

Insert a new item.

Remove the largest item.

Replace the largest item with a new item (unless the new item is larger).
Change the priority of an item.

Delete an arbitrary specified item.

Join two priority queues into one large one.

(If records can have duplicate keys, we take “largest” to mean “any record
with the largest key value.*)

The replace operation is almost equivalent to an insert followed by a
remove (the difference being that the insert/remove requires the priority queue
to grow temporarily by one element). Note that this is quite different from
doing a remove followed by an insert. This is included as a separate capability
because, as we will see, some implementations of priority queues can do the
replace operation quite efficiently. Similarly, the change operation could be
implemented as a delete followed by an insert and the construct could be imple-
mented with repeated uses of the insert operation, but these operations can be
directly implemented more efficiently for some choices of data structure. The
join operation requires quite advanced data structures for efficient implemen-
tation; we'll concentrate instead on a “classical” data structure, called a heap,
which allows efficient implementations of the first five operations.

The priority queue as described above is an excellent example of an
abstract data structure: it is very well defined in terms of the operations
performed on it, independent of the way the data is organized and processed
in any particular implementation. The basic premise of an abstract data
structure is that nothing outside of the definitions of the data structure
and the algorithms operating on it should refer to anything inside, except
through function and procedure calls for the fundamental operations. The
main motivation for the development of abstract data structures has been
as a mechanism for organizing large programs. They provide a way to limit
the size and complexity of the interface between (potentially complicated)
algorithms gnd associated data structures and (a potentialy large number
of) programs which use the algorithms and data structures. This makes it
easier to understand the large program, and makes it more convenient to
change or improve the fundamental algorithms. For example, in the present

PRIORITY QUEUES 129

context, there are several methods for implementing the various operations
listed above that can have quite different performance characteristics. Defining
priority queues in terms of operations on an abstract data structure provides
the flexibility necessary to allow experimentation with various alternatives.

Different implementations of priority queues involve different performance
characteristics for the various operations to be performed, leading to cost
tradeoffs. Indeed, performance differences are really the only differences al-
lowed by the abstract data structure concept. First, we'll illustrate this point
by examining a few elementary data structures for implementing priority
queues. Next, we'll examine a more advanced data structure, and then show
how the various operations can be implemented efficiently using this data
structure. Also, we'll examine an important sorting algorithm that follows
naturally from these implementations.

Elementary Implementations

One way to organize a priority queue is as an unordered list, simply keeping
the items in an aray a[l..N] without paying attention to the keys. Thus
construct is a “no-op” for this organization. To insert simply increment N and
put the new item into a[N], a constant-time operation. But replace requires
scanning through the array to find the element with the largest key, which
takes linear time (all the elements in the array must be examined). Then
remove can be implemented by exchanging a[N] with the element with the
largest key and decrementing N.

Another organization is to use a sorted list, again using an array a [1..N]
but keeping the items in increasing order of their keys. Now remove simply
involves returning a[N] and decrementing N (constant time), but insert in-
volves moving larger elements in the array right one position, which could
take linear time.

Linked lists could also be used for the unordered list or the sorted list.
This wouldn’t change the fundamental performance characteristics for insert,
remove, or replace, but it would make it possible to do delete and join in
constant time.

Any priority queue agorithm can be turned into a sorting algorithm by
successively using insert to build a priority queue containing al the items to be
sorted, then successively using remove to empty the priority queue, receiving
the items in reverse order. Using a priority queue represented as an unordered
list in this way corresponds to selection sort; using the sorted list corresponds
to insertion sort.

As usual, it is wise to keep these simple implementations in mind because
they can outperform more complicated methods in many practical situations.
For example, the first method might be appropriate in an application where

130 CHAPTER 11

only a few “remove largest” operations are performed as opposed to a large
number of insertions, while the second method would be appropriate if the
items inserted always tended to be close to the largest element in the priority
queue. Implementations of methods similar to these for the searching problem
(find a record with a given key) are given in Chapter 14.

Heap Data Structure

The data structure that we'll use to support the priority queue operations
involves storing the records in an array in such a way that each key is
guaranteed to be larger than the keys at two other specific positions. In turn,
each of those keys must be larger than two more keys, and so forth. This
ordering is very easy to see if we draw the array in a two-dimensional “tree”

structure with lines down from each key to the two keys known to be smaller.

This structure is called a “complete binary tree”: place one node (called the
root), then, proceeding down the page and from left to right, connect two nodes
beneath each node on the previous level until N nodes have been placed. The
nodes below each node are called its sons; the node above each node is called

its father. (We'll see other kinds of “binary trees’ and “trees’ in Chapter 14
and later chapters of this book.) Now, we want the keys in the tree to satisfy

the heap condition: the key in each node should be larger than (or equal to)
the keys in its sons (if it has any). Note that this implies in particular that

the largest key is in the root.

We can represent complete binary trees sequentially within an array by
simply putting the root at position 1, its sons at positions 2 and 3, the nodes at
the next level in positions 4, 5, 6 and 7, etc., as numbered in the diagram above.
For example, the array representation for the tree above is the following:

1 2 3 4 5 6 7 8 9 10 1 12
X T O G S M N A E R A |

PRIORITY QUEUES 131

This natural representation is useful because it is very easy to get from a
node to its father and sons. The father of the node in position j is in position
J div 2, and, conversely, the two sons of the node in position j are in position
27 and 25 + 1. This makes traversal of such a tree even easier than if the tree
were implemented with a standard linked representation (with each element
containing a pointer to its father and sons). The rigid structure of complete
binary trees represented as arrays does limit their utility as data structures,
but there is just enough flexibility to allow the implementation of efficient
priority queue algorithms. A heap is a complete binary tree, represented as
an array, in which every node satisfies the heap condition. In particular, the
largest key is aways in the first position in the array.

All of the algorithms operate along some path from the root to the bottom
of the heap (just moving from father to son or from son to father). It is easy
to see that, in a heap of N nodes, all paths have about 1g N nodes on them.
(There are about N/2 nodes on the bottom, N/4 nodes with sons on the
bottom, N/8 nodes with grandsons on the bottom, etc. Each “generation”
has about half as many nodes as the next, which implies that there can be
at most Ilg N generations.) Thus all of the priority queue operations (except
join) can be done in logarithmic time using heaps.

Algorithms on Heaps

The priority queue algorithms on heaps all work by first making a simple
structural modification which could violate the heap condition, then traveling
through the heap modifying it to ensure that the heap condition is satisfied
everywhere. Some of the algorithms travel through the heap from bottom to
top, others from top to bottom. In all of the agorithms, we'll assume that
the records are one-word integer keys stored in an array a of some maximum
size, with the current size of the heap kept in an integer N. Note that N is as
much a part of the definition of the heap as the keys and records themselves.

To be able to build a heap, it is necessary first to implement the insert
operation. Since this operation will increase the size of the heap by one, N
must be incremented. Then the record to be inserted is put into a[N], but
this may violate the heap property. If the heap property is violated (the new
node is greater than its father), then the violation can be fixed by exchanging
the new node with its father. This may, in turn, cause a violation, and thus
can be fixed in the same way. For example, if P is to be inserted in the heap
above, it is first stored in a[N] as the right son of M. Then, since it is greater
than M, it is exchanged with M, and since it is greater than O, it is exchanged
with O, and the process terminates since it is less that X. The following heap
results:

132 CHAPTER 11

The code for this method is straightforward. In the following implementation,

insert adds a new item to a[N], then calls upheap(N) to fix the heap condition
violation at N:

procedure upheap(k: integer);
var V: integer;
begin
v:=a[k]; a[0]:=maxint;
while alk div 2| <=v do

begin dk]:=ak div 2]; ki=k div 2 end;

afk]:=v;
end,

procedure insert (v: integer) :
begin
N:=N+1; a[N] :=v;
upheap(N)
end;

As with insertion sort, it is not necessary to do a full exchange within the
loop, because v is aways involved in the exchanges. A sentinel key must be

put in a[0] to stop the loop for the case that v is greater than all the keys in
the heap.

The replace operation involves replacing the key at the root with a new
key, then moving down the heap from top to bottom to restore the heap
condition. For example, if the X in the heap above is to be replaced with
C, the first step is to store C at the root. This violates the heap condition,
but the violation can be fixed by exchanging C with T, the larger of the two
sons of the root. This creates a violation at the next level, which can be fixed

PRIORITY QUEUES 133

again by exchanging C with the larger of its two sons (in this case S). The
process continues until the heap condition is no longer violated at the node
occupied by C. In the example, C makes it al the way to the bottom of the
heap, leaving:

The “remove the largest” operation involves amost the same process.
Since the heap will be one element smaller after the operation, it is necessary
to decrement N, leaving no place for the element that was stored in the last
position. But the largest element is to be removed, so the remove operation
amounts to a replace, using the element that was in a[N]. For example, the
following heap results from removing the T from the heap above:

The implementation of these procedures is centered around the operation
of fixing up a heap which satisfies the heap condition everywhere except
possibly at the root. The same operation can be used to fix up the heap
after the value in any position is lowered. It may be implemented as follows:

134 CHAPTER 11

procedure downheap(k: integer) ;
label 0;
var i, j, V. integer;
begin
v:=alk];
while k<= N div 2 do
begin
ji=k+k;
if j<N then if a[j]<a[j+1] then j:=j+1;
if v>=a[j] then goto 0;
alk]:=alj]; k:=j;
end;
0:alk]:=v
end;

This procedure moves down the heap (starting from position k), exchanging
the node at position j with the larger of its two sons if necessary, stopping when
j is larger than both sons or the bottom is reached. As above, a full exchange
is not needed because v is always involved in the exchanges. The inner loop in
this program is an example of a loop which realy has two distinct exits: one
for the case that the bottom of the heap is hit (as in the first example above),

and another for the case that the heap condition is satisfied somewhere in the
interior of the heap.

Now the implementation of the remove operation is simple:

function remove: integer;
begin
remove:=a[l];
a[l]:=a[N]; N:=N-1;
downheap(1);
end ;

The return value is set from a[1], then the element from a [N] is put into a[1]

and the size of the heap decremented, leaving only a call to downheap to fix
up the heap condition everywhere.

The implementation of the replace operation is only dlightly more com-
plicated:

PRIORITY QUEUES 135

function replace(v: integer):integer;
begin
a[0] :=v;
downheap(0) ;
replace:=a|0];
end;

This code uses Q] in an artificial way: its sons are 0 (itself) and 1, so if v is
larger than the largest element in the heap, the heap is not touched; otherwise
v is put into the heap and a[1] returned..

The delete operation for an arbitrary element from the heap and the
change operation can also be implemented by using a simple combination of
the methods above. For example, if the priority of the element at position k
is raised, then upheap(k) can be called, and if it is lowered then downheap(k)
does the job. On the other hand, the join operation is far more difficult and
seems to require a much more sophisticated data structure.

All of the basic operations insert, remove, replace, (downheap and upheup),
delete, and change involve moving along a path between the root and the bot-
tom of the heap, which includes no more than about log N elements for a heap
of size N. Thus the running times of the above programs are logarithmic.

Heapsort

An elegant and efficient sorting method can be defined from the basic opera-
tions on heaps outlined above. This method, called Heapsort, uses no extra
memory and is guaranteed to sort M elements in about Mlog M steps no
matter what the input. Unfortunately, its inner loop is quite a bit longer
than the inner loop of Quicksort, and it is about twice as slow as Quicksort
on the average.

The idea is simply to build a heap containing the elements to be sorted
and then to remove them all in order. In this section, N will continue to be
the size of the heap, so we will use M for the number of elements to be sorted.
One way to sort is to implement the construct operation by doing M insert
operations, as in the first two lines of the following code, then do M remove
operations, putting the element removed into the place just vacated by the
shrinking heap:

N:=0;
for k:=1to M do insert(a[k]);
for k=M downto I do gk]:=remove;

136 CHAPTER 11

This code breaks all the rules of abstract data structures by assuming a par-
ticular representation for the priority queue (during each loop, the priority
queueresidesina(l], ..., a[k-1]), but it is reasonable to do this here because
we are implementing a sort, not a priority queue. The priority queue proce-
dures are being used only for descriptive purposes: in an actual implementa-
tion of the sort, we would simply use the code from the procedures to avoid
doing so many unnecessary procedure calls.

It is actually a little better to build the heap by going backwards through
it, making little heaps from the bottom up. Note that every position in the
array is the root of a smal heap, and downheap will work equally well for
such small heaps as for the big heap. Also, we've noted that remove can be
implemented by exchanging the first and last elements, decrementing N, and
calling downheap(1). This leads to the following implementation of Heapsort:

procedure heapsort;

var K, t: integer;

begin

N:=M;

for k=M div 2 downto 1 do downheap(

repeat
t:=a[l]; a[l]:=a[N]; a[N]:=t;
N:=N-1; downheap(1)

until N<=1;

end;

The first two lines of this code constitute an implementation of construct(M:
integer) to build a heap of M elements. (The keys in a[(M div 2)+1..M] each
form heaps of one element, so they trivialy satisfy the heap condition and
don't need to be checked.) It is interesting to note that, though the loops in
this program seem to do very different things, they can be built around the
same fundamental procedure.

The following table shows the contents of each heap operated on by
downheap for our sorting example, just after downheap has made the heap
condition hold everywhere.

PRIORITY QUEUES 137

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S O R T I N G E X A M P L E

'U
Py
o
Z
®
m
<
—
m

X R T G E S A
X T P R S O N G E A A M | L E
T S P R E ON G E A A M I L
S R P L E O N G E A A M I
R L P I E O N G E A A M
P L 0 I E M N G E A A
O L NI E M A G E A
N L M I E A A G E
M L E I E A A G
L I E G E A A
I G E A E A
G E E A A
E A E A
E A A
A A
A
A A E E G I L M N O P R S T X

As mentioned above, the primary reason that Heapsort is of practical
interest is that the number of steps required to sort M elements is guaranteed
to be proportional to M log M, no matter what the input. Unlike the other
methods that we’ve seen, there is no “worst-case” input that will make Heap-
sort run slower. The proof of this is simple: we make about 3M /2 calls to
downheap (about M /2 to construct the heap and M for the sort), each of
which examines less than log M heap elements, since the heap never has more
than M elements.

Actually, the above proof uses an overestimate. In fact, it can be proven
that the construction process takes linear time since so many small heaps are
processed. This is not of particular importance to Heapsort, since this time
is still dominated by the M log M time for sorting, but it is important for
other priority queue applications, where a linear time construct can lead to
a linear time algorithm. Note that constructing a heap with M successive
inserts requires M log M steps in the worst case (though it turns out to be
linear on the average).

138 CHAPTER 11

Indirect Heaps

For many applications of priority gqueues, we don't want the records moved
around at al. Instead, we want the priority queue routine to tell us which
of the records is the largest, etc., instead of returning values. This is akin
to the “indirect sort” or the “pointer sort” concept described at the begin-
ning of Chapter 8. Modification of the above programs to work in this way
is straightforward, though sometimes confusing. It will be worthwhile to ex-
amine this in more detail here because it is so convenient to use heaps in this
way.

Specificaly, instead of rearranging the keys in the array a the priority
queue routines will work with an array heap of indices into the array a, such
that a[heap[k]] is the key of the kth element of the heap, for k between 1 and
N. Moreover, we want to maintain another array inv which keeps the heap
position of the kth array element. Thus the inv entry for the largest element
in the array is], etc. For example, if we wished to change the value of a[K]
we could find its heap position in inv[k], for use by upheap or downheap. The
following table gives the values in these arrays for our sample heap:

k1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d’A S 0 R T I N G E X A M P L E
heap(k:10 5 13 4 2 3 7 8 9 1 11 12 6 14 15
dhesplk]: X T P R S O NGEAA AWM I L E
gk A SORT I N GE X A M P L E
invlk]:10 5 6 4 2 13 7 8 9 1 11 12 3 14 15

Note that heaplinv[k]]=inv|heap|k]]=k for al k from 1 to N.

We start with heap|k|=inv[k]=k for k from 1 to N, which indicates that
no rearrangement has been done. The code for heap construction looks much
the same as before:

procedure pgconstruct;
var k: integer;
begin
N:=M;
for k:=1to N do
begin heap[k] :=k; inv[k] :=k end;
for k:=M div 2 downto 1 do pgdownheap(k) ;
end;

PRIORITY QUEUES 139

We'll prefix implementations of priority queue routines based on indirect heaps
with “pq” for indentification when they are used in later chapters.

Now, to modify downheap to work indirectly, we need only examine the
places where it references a. Where it did a comparison before, it must now
access a indirectly through heap. Where it did a move before, it must now
make the move in heap, not a, and it must modify inv accordingly. This leads
to the following implementation:

procedure pgdownheap(k: integer);
label 0;
var j, v integer;
begin
v:=hesap[K];
while k<= N div 2 do
begin
ji=k+k;
if j<N then if alheap[j]]<alheap[j+1]] then j:=j+1;
if a[v]>=alheap[j]] then goto 0;
heap [K] :=heap[j]; inv[heaplj]] :=k; k:=];
end;
0:heap(k] :=v; inv[v] =k
end;

The other procedures given above can be modified in a similar fashion to
implement “pginsert,” “pgchange,” etc.

A similar indirect implementation can be developed based on maintaining
heap as an array of pointers to separately allocated records. In this case, a
little more work is required to implement the function of inv (find the heap
position, given the record).

Advanced Implementations

If the join operation must be done efficiently, then the implementations that
we have done so far are insufficient and more advanced techniques are needed.
Although we don’t have space here to go into the details of such methods, we
can discuss some of the considerations that go into their design.

By “efficiently,” we mean that a join should be done in about the same
time as the other operations. This immediately rules out the linkless repre-
sentation for heaps that we have been using, since two large heaps can be
joined only by moving al the elements in at least one of them to a large
array. It is easy to translate the algorithms we have been examining to use
linked representations; in fact, sometimes there are other reasons for doing

140 CHAPTER 11

so (for example, it might be inconvenient to have a large contiguous array).
In a direct linked representation, links would have to be kept in each node
pointing to the father and both sons.

It turns out that the heap condition itself seems to be too strong to allow
efficient implementation of the join operation. The advanced data structures
designed to solve this problem all weaken either the heap or the balance
condition in order to gain the flexibility needed for the join. These structures
allow all the operations be completed in logarithmic time.

PRIORITY QUEUES 141

Exercises

1

10.

Draw the heap that results when the following operations are performed
on an intitially empty heap: insert(10), insert(5), insert(2), replace(4),
insert(6), insert(8), remove, insert(7), insert(3).

Is a file in reverse sorted order a heap?

Give the heap constructed by successive application of insert on the keys
EASYQUESTION.

Which positions could be occupied by the 3rd largest key in a heap of
size 32?7 Which positions could not be occupied by the 3rd smallest key
in a heap of size 32?

Why not use a sentinel to avoid the j<N test in downheap?

Show how to obtain the functions of stacks and normal queues as special
cases of priority queues.

What is the minimum number of keys that must be moved during a
remove the largest operation in a heap? Draw a heap of size 15 for which
the minimum is achieved.

Write a program to delete the element at postion d in a heap.

Empirically compare the two methods of heap construction described in
the text, by building heaps with 1000 random keys.

Give the contents of inv after pgconstruct isused onthe keysE A SY Q
UESTION.

12. Sdection and Merging

Sorting programs are often used for applications in which a full sort is
not necessary. Two important operations which are similar to sorting
but can be done much more efficiently are selection, finding the kth smallest
element (or finding the k smallest elements) in a file, and merging, combining
two sorted files to make one larger sorted file. Selection and merging are
intimately related to sorting, as we'll see, and they have wide applicability in
their own right.

An example of selection is the process of finding the median of a set of
numbers, say student test scores. An example of a situation where merging
might be useful is to find such a statistic for a large class where the scores are
divided up into a number of individually sorted sections.

Selection and merging are complementary operations in the sense that
selection splits a file into two independent files and merging joins two inde-
pendent files to make one file. The relationship between these operations also
becomes evident if one tries to apply the “divide-and-conquer” paradigm to
create a sorting method. The file can either be rearranged so that when two
parts are sorted the whole file is sorted, or broken into two parts to be sorted
and then combined to make the sorted whole file. We've aready seen what
happens in the first instance: that’s Quicksort, which consists basically of a
selection procedure followed by two recursive calls. Below, we'll look at mer-
gesort, Quicksort’s complement in that it consists basically of two recursive
calls followed by a merging procedure.

Both selection and merging are easier than sorting in the sense that their
running time is essentially linear: the programs take time proportional to N
when operating on N items. But available methods are not perfect in either
case: the only known ways to merge in place (without using extra space)
are too complex to be reduced to practica programs, as are the only known
selection methods which are guaranteed to be linear even in the worst case.

143

144 CHAPTER 12

Selection

Selection has many applications in the processing of experimental and other
data. The most prominent use is the special case mentioned above of finding
the median element of a file: that item which is greater than half the items
in the file and smaller than half the items in the file. The use of the median
and other order statistics to divide a file up into smaller percentile groups is
very common. Often only a small part of a large file is to be saved for further
processing; in such cases, a program which can select, say, the top ten percent
of the elements of the file might be more appropriate than a full sort.

An algorithm for selection must find the kth smallest item out of a file of
N items. Since an agorithm cannot guarantee that a particular item is the
kth smallest without having examined and identified the k- 1 items which are
smaller and the N = k elements which are larger, most selection algorithms
can return all of the k smallest elements of a file without a great dea of extra
calculation.

We've aready seen two algorithms which are suitable for direct adapta-
tion to selection methods. If k is very small, then selection sort will work very
well, requiring time proportional to Nk: first find the smallest element, then
find the second smallest by finding the smallest among the remaining items,
etc. For dlightly larger k, priority queues provide a selection mechanism: first
insert k items, then replace the largest N k times using the remaining items,
leaving the k smallest items in the priority queue. If heaps are used to imple-
ment the priority queue, everything can be done in place, with an approximate
running time proportional to N log k.

An interesting method which will run much faster on the average can be
formulated from the partitioning procedure used in Quicksort. Recall that
Quicksort's partitioning method rearranges an array a[1..N] and returns an
integer i such that a[1],...,a[i—1] are less than or equal to &[i] and a[i+1],.. .,
a[N] are greater than or equal to afi]. If we're looking for the kth smallest
element in the file, and we're fortunate enough to have k=i, then we're done.
Otherwise, if k<i then we need to look for the kth smallest element in the
left subfile, and if k>i then we need to look for the (k-i)th smallest element
in the right subfile. This leads immediately to the recursive formulation:

SELECTION AND MERGING 145

procedure select(l, r, k: integer);

var |;

begin

if r>Jthen
begin
i:==partition(l, r);
if i>I+k—1 then select(l, i-l, k);
if i<l+k—1then select(i+1, r, k-i);
end

end;

This procedure rearranges the array so lhat a[]],, .. ,a[k~1} are less than or
equal to alk] and alk+1],...,a[r] are greater than or equal to alk]. For
example, the cal select(1, N, (N+1) div 2) partitions the array on its median
value. For the keys in our sorting example, this program uses only three
recursive calls to find the median, as shown in the following table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A'sS OR T I NGENXAMP L E

A A E|EfT N G O X S M P L R
L I NG O P M[R X T 8
L I G [M|orP N

The file is rearranged so that the median is in place with all smaler elements
to the left and al larger elements to the right (and equal elements on either
side), but it is not fully sorted.

Since the select procedure always end 3 with only one call on itself, it is not
really recursive in the sense that no stack. is needed to remove the recursion:
when the time comes for the recursive call, we can simply reset the parameters
and go back to the beginning, since there is nothing more to do.

146 CHAPTER 12

procedure select(k: integer) ;
var v t,ij,l r: integer;
begin
I:=1; r:=N;
while r>! do
begin
vi=alr]; I=I-1; ji=r;
repeat
repeat i:=i+1 until gi]>=v;
repeat j:=j—1 until afjl<=v;
t:=ali]; alil:=alj]; a[j]:=t;
until j<=i;
alj]:=ali]; ali]:=alr]; a[r]:=t;
if i>=k then r:=i—1,;
if i<=k then Ii=i+1;
end;
end;

We use the identical partitioning procedure to Quicksort: as with Quicksort,
this could be changed slightly if many equal keys are expected. Note that in
this non-recursive program, we've eliminated the simple calculations involving
k.

This method has about the same worst case as Quicksort: using it to
find the smallest element in an aready sorted file would result in a quadratic
running time. It is probably worthwhile to use an arbitrary or a random
partitioning element (but not the median-of-three: for example, if the smallest
element is sought, we probably don't want the file split near the middle). The
average running time is proportional to about N + klog(N/k), which is linear
for any allowed value of .

It is possible to modify this Quicksort-based selection procedure so that its
running time is guaranteed to be linear. These modifications, while important
from a theoretical standpoint, are extremely complex and not at all practical.

Merging

It is common in many data processing environments to maintain a large
(sorted) data file to which new entries are regularly added. Typically, a
number of new entries are “batched,” appended to the (much larger) main
file, and the whole thing resorted. This situation is tailor-made for merging: a
much better strategy is to sort the (small) batch of new entries, then merge it
with the large main file. Merging has many other similar applications which

SELECTION AND MERGING 147

make it worthwhile to study. Also, we'll examine a sorting method based on
merging.

In this chapter we'll concentrate on programs for two-way merging: pro-
grams which combine two sorted input files to make one sorted output file. In
the next chapter, we'll look in more detail at multiway merging, when more
than two files are involved. (The most important application of multiway
merging is external sorting, the subject cf that chapter.)

To begin, suppose that we have two sorted arrays a [1..M] and b [1..N] of
integers which we wish to merge into a third array ¢ [1. .M+N] . The following
is a direct implementation of the obvious method of successively choosing for
¢ the smallest remaining element from a and b:

1:=1; j:=1,;
a|M+1 |:=maxint; b|N+1) :=maxint;
for k:=1to M+N do
if a[ij<b[j]
then begin clk]:=ali]; i:=i+1 end
els: begin c[k]:=bl[j]; j:=j+1 end;

The implementation is simplified by making room in the a and b arrays for
sentinel keys with values larger than all the other keys. When the a(b) array
is exhausted, the loop simply moves the rest of the b(a) array into the c array.
The time taken by this method is obviously proportional to M+N.

The above implementation uses extra space proportional to the size of the
merge. It would be desirable to have an in-place method which uses ¢|[1..M]
for one input and ¢[M+1..M+N] for the other. While such methods exist,
they are so complicated that an (N + M)log(N + M) inplace sort would be
more efficient for practical values of N and M.

Since extra space appears to be required for a practical implementation,
we might as well consider a linked-list implementation. In fact, this method is
very well suited to linked lists. A full implementation which illustrates all the
conventions we'll use is given below; note that the code for the actual merge
is just about as simple as the code above:

148 CHAPTER 12

program listmerge(input, output);
type link=Tnode;
node=record K: integer; next: link end;
var N, M: integer; z: link;
function merge(a, b: link) : link;
var C. link;
begin
c=1;
repeat
if at.k<=bt.k
then begin cl.next:=a; c:=a; a:=af.next end
else begin ct.next:=b; c:=b; b:=bl.next end
until ¢t.k=maxint;
merge:=z1.next; 2z next:=z
end;
begin
readln (N, M) ;
new(z); z!.k:=maxint; z1.next:=z
writelist(merge(readlist(N), read& (M)))
end.

This program merges the list pointed to by a with the list pointed to by b,
with the help of an auxiliary pointer c. The lists are initially built with the
readlist routine from Chapter 2. All lists are defined to end with the dummy
node a, which normally points to itself, and also serves as a sentinel. During
the merge, z points to the beginning of the newly merged list (in a manner
similar to the implementation of readlist), and ¢ points to the end of the
newly merged list (the node whose link field must be changed to add a new
element to the list). After the merged list is built, the pointer to its first node
is retrieved from z and z is reset to point to itself.

The key comparison in merge includes equality so that the merge will be
stable, if the b list is considered to follow the a list. We'll see below how this
stability in the merge implies stability in the sorting programs which use this
merge.

Once we have a merging procedure, it's not difficult to use it as the basis
for a recursive sorting procedure. To sort a given file, divide it in half, sort the
two halves (recursively), then merge the two halves together. This involves
enough data movement that a linked list representation is probably the most
convenient. The following program is a direct recursive implementation of a
function which takes a pointer to an unsorted list as input and returns as its
value a pointer to the sorted version of the list. The program does this by
rearranging the nodes of the list: no temporary nodes or lists need be allocated.

SELECTION AND MERGING 149

(It is convenient to pass the list length as ¢ parameter to the recursive program:
alternatively, it could be stored with the list or the program could scan the
list to find its length.)

function sort(c: link; N: integer): link;
var a b: link;
i: integer;
begin
if cl.next=2zthen sort:=celse
begin
a:=c;
for ;=2 to N div 2 do c:=ct.next;
b:=c{.next; ct.next:=z;
sort:=merge(sort(a N div 2), sort(b, N-(N div 2)));
end ;
end ;

This program sorts by splitting the list po: nted to by c into two halves, pointed
to by a and b, sorting the two halves recursively, then using merge to produce
the final result. Again, this program adl.eres to the convention that all lists
end with z: the input list must end with z (and therefore so does the b list);
and the explicit instruction c¢f.next:=z puts z at the end of the a list. This

program is quite simple to understand in a recursive formulation even though
it actually is a rather sophisticated algorithm.

The running time of the program fits the standard “divide-and-conquer”
recurrence M(N) = 2M(N/2)+ N. The program is thus guaranteed to run
in time proportional to NlogN. (See Chapter 4).

Our file of sample sorting keys is processed as shown in the following
table. Each line in the table shows the result of a call on merge. First we
merge 0 and S to get 0 S, then we merge this with A to get A 0 S. Eventually
we merge R T with I N to get | N R T, then this is merged with A 0 S to
gt AINORST, etc:

150 CHAPTER 12

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
A S O T I N G E X A M P L E
0 s
A 0 S
R T
I N
I N R T
A I N O R S T
E G
A X
A E G X
M P
E L
E L M P
A E E G L M P X
A A E E G I L M N O P R S T X

Thus, this method recursively builds up small sorted files into larger ones.
Another version of mergesort processes the files in a slightly different order:
first scan through the list performing I-by-I merges to produce sorted sublists
of size 2, then scan through the list performing 2-by-2 merges to produce
sorted sublists of size 4, then do 4-by-4 merges to get sorted sublists of size
8, etc., until the whole list is sorted. Our sample file is sorted in four passes
using this “bottom-up” mergesort:

| 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A°S ORTINGEINXAMPLE
A 8|0 R|I T|G N|E X|A M L P|E
A OR SI|G I NTI|AEMXETLP
AGI NORSTIAEETLMP X
AAAEEGILMNOTPRST X

In general, log N passes are required to sort a file of N elements, since each
pass doubles the size of the sorted subfiles. A detailed implementation of this
idea is given below.

SELECTION AND MERGING 151

function mergesort(c: link): link;
var a, b, head, todo, t: link;
i, N: integer;
begin
N:=1; new(head); head!.next:=c;
repeat
todo:=.2eadl.next; c:=head,
repeat
t:=todo;
a:=t: for i:=1to N-l do t:=tf.next;
b:=t".next; t].next:=z;
t:=b for i:=1to N-l do t:=t].next;
todo:=t].next; tf.next:=z;
¢l.next:=merge(a, b);
for i =] to N+N do c:=cl.next
until to do=z;
N:=N+N;
until a=head?.next;
mergesort:=head].next
end;

This program uses a “list header” node (pointed to by head) whose link field
points to the file being sorted. Each iteration of the outer repeat loop passes
through the file, producing a linked list comprised of sorted subfiles twice as
long as for the previous pass. This is dore by maintaining two pointers, one
to the part of the list not yet seen (todoj and one to the end of the part of
the list for which the subfiles have already been merged (c). The inner repeat
loop merges the two subfiles of length N starting at the node pointed to by
todo producing a subfile of length N+ N vrhich is linked onto the c result list.
The actual merge is accomplished by saving a link to the first subfile to be
merged in a, then skipping N nodes (usiag the temporary link t), linking z
onto the end of a’s list, then doing the same to get another list of N nodes
pointed to by b (updating todo with the link of the last node visited), then
calling merge. (Then c is updated by simply chasing down to the end of the
list just merged. This is a simpler (but slightly less efficient) method than
various alternatives which are available, such as having merge return pointers

to both the beginning and the end, or maintaining multiple pointers in each
list node.)

Like Heapsort, mergesort has a guaranteed N log N running time; like
Quicksort, it has a short inner loop. Thus it combines the virtues of these
methods, and will perform well for dl irputs (though it won't be as quick

152 CHAPTER 12

as Quicksort for random files). The main advantage of mergesort over these
methods is that it is stable; the main disadvantage of mergesort over these
methods is that extra space proportional to N (for the links) is required. It
is also possible to develop a nonrecursive implementation of mergesort using
arrays, switching to a different array for each pass in the same way that we
discussed in Chapter 10 for straight radix sort.

Recursion Revisited

The programs of this chapter (together with Quicksort) are typical of im-
plementations of divide-and-conquer algorithms. We'll see several agorithms
with similar structure in later chapters, so it's worthwhile to take a more
detailed look at some basic characteristics of these implementations.

Quicksort is actually a “conquer-and-divide” algorithm: in a recursive
implementation, most of the work is done before the recursive calls. On the
other hand, the recursive mergesort is more in the spirit of divide-and-conquer:
first the file is divided into two parts, then each part is conquered individually.
The first problem for which mergesort does actual processing is a small one;
at the finish the largest subfile is processed. Quicksort starts with actual
processing on the largest subfile, finishes up with the small ones.

This difference manifests itself in the non-recursive implementations of
the two methods. Quicksort must maintain a stack, since it has to save large
subproblems which are divided up in a data-dependent manner. Mergesort
admits to a simple non-recursive version because the way in which it divides
the file is independent of the data, so the order in which it processes sub-
problems can be rearranged somewhat to give a simpler program.

Another practical difference which manifests itself is that mergesort is
stable (if properly implemented); Quicksort is not (without going to extra
trouble). For mergesort, if we assume (inductively) that the subfiles have been
sorted stably, then we need only be sure that the merge is done in a stable
manner, which is easily arranged. But for Quicksort, no easy way of doing
the partitioning in a stable manner suggests itself, so the possibility of being
stable is foreclosed even before the recursion comes into play.

Many agorithms are quite simply expressed in a recursive formulation.
In modern programming environments, recursive programs implementing such
algorithms can be quite useful. However, it is always worthwhile to study the
nature of the recursive structure of the program and the possibility of remov-
ing the recursion. If the result is not a simpler, more efficient implementation
of the algorithm, such study will at least lead to better understanding of the

method.
L

SELECTION AND MERGING 153

Exercises

1

SN

10.

For N = 1000, empiricelly determine the value of k for which the Quick-
sort-based partitioning procedure be zomes faster than using heaps to find
the k th smallest element in a randcm file

Describe how you would rearrange an array of 4N elements so that the
N smallest keys fall in the first N ypositions, the next N keys fall in the
next N positions, the next N in the next N positions, and the N largest
in the last N positions.

Show the recursive calls made when select is used to find the median of
the keys EASYQUESTION.

. Write a program to rearrange a file so that al the elements with keys

equal to the median are in place, with smaller elements to the left and
larger elements to the right.

What method would be best for an application that requires selection of
the kth largest element (for various arbitrary k) a large number of times
on the same file?

True or false: the running time of mergesort does not depend on the order
of the keys in the input file. Explair. your answer.

. What is the smallest number of steps mergesort could use (to within a

constant factor)?

Implement a bottom-up non-recursive mergesort that uses two arrays
instead of linked lists.

Show the contents of the linked lists yassed as arguments to each call when
the recursive mergesort is used to sort the keys EASY QUE ST IO N.

Show the contents of the linked list at each iteration when the non-
recursive mergesort is used to sort the keys EASY QUE S TIO N.

1 3. External Sorting

Many important sorting applications involve processing very large files,
much too large to fit into the primal y memory of any computer. Methods
appropriate for such applications are ca led external methods, since they in-
volve a large amount of processing external to the central processing unit (as
opposed to the internal methods that we’ve been studying).

There are two mgjor factors which make external algorithms quite differ-
ent from those we've seen until now. Ivirst, the cost of accessing an item
is orders of magnitude greater than any bookkeeping or calculating costs.
Second, even with this higher cost, there are severe restrictions on access,
depending on the external storage medium used: for example, items on a
magnetic tape can be accessed only in a sequential manner.

The wide variety of external storage device types and costs make the de-
velopment of external sorting methods very dependent on current technology.
The methods can be complicated, and many parameters affect their perfor-
mance: that a clever method might go unappreciated or unused because of a
simple change in the technology is a definite possibility in external sorting.
For this reason, we'll concentrate on general methods in this chapter rather
than on developing specific implementations.

In short, for external sorting, the “svstems” aspect of the problem is cer-
tainly as important as the “algorithms” .aspect. Both areas must be carefully
considered if an effective external sort is to be developed. The primary costs in
external sorting are for input-output. A good exercise for someone planning
to implement an efficient program to sort a very large file is first to implement
an efficient program to copy a large file, then (if that was too easy) implement
an efficient program to reverse the order of the elements in a large file. The
systems problems that arise in trying tc solve these problems efficiently are
similar to those that arise in externa sorts. Permuting a large externa file
in any non-trivial way is about as difficult as sorting it, even though no key

155

156 CHAPTER 13

comparisons, etc. are required. In external sorting, we are mainly concerned
with limiting the number of times each piece of data is moved between the
external storage medium and the primary memory, and being sure that such
transfers are done as efficiently as allowed by the available hardware.

External sorting methods have been developed which are suitable for the
punched cards and paper tape of the past, the magnetic tapes and disks of
the present, and the bubble memories and videodisks of the future. The es-
sential differences among the various devices are the relative size and speed
of available storage and the types of data access restrictions. We'll con-
centrate on basic methods for sorting on magnetic tape and disk because these
devices are likely to remain in widespread use and illustrate the two fundamen-
tally different modes of access that characterize many external storage sys
tems. Often, modern computer systems have a “storage hierarchy” of several
progressively slower, cheaper, and larger memories. Many of the algorithms
that we will consider can be adapted to run well in such an environment, but
we'll deal exclusively with “two-level” memory hierarchies consisting of main
memory and disk or tape.

Sort-Merge

Most external sorting methods use the following general strategy: make a first
pass through the file to be sorted, breaking it up into blocks about the size
of the internal memory, and sort these blocks. Then merge the sorted blocks
together, by making several passes through the file, making successively larger
sorted blocks until the whole file is sorted. The data is most often accessed in
a sequential manner, which makes this method appropriate for most external
devices. Algorithms for external sorting strive to reduce the number of passes
through the file and to reduce the cost of a single pass to be as close to the
cost of a copy as possible.

Since most of the cost of an external sorting method is for input-output,
we can get a rough measure of the cost of a sort-merge by counting the number
of times each word in the file is read or written, (the number of passes over al
the data). For many applications, the methods that we consider will involve
on the order of ten or less such passes. Note that this implies that we're
interested in methods that can eliminate even a single pass. Also, the running
time of the whole external sort can be easily estimated from the running time
of something like the “reverse file copy” exercise suggested above.

Balanced Multiway Merging

To begin, we'll trace through the various steps of the simplest sort-merge
procedure for an example file. Suppose that we have records with the keys A
SORTINGANDMERGINGEXAMPLEoOnaninputtape;these

EXTERNAL SORTING 157

are to be sorted and put onto an output tape. Using a “tape” simply means
that we're restricted to read the records sequentially: the second record can't

be read until the first has been, etc. Assume further that we have only enough
room for three records in our computer memory but that we have plenty of

tapes available.

The first step is to read in the file tiree records at a time, sort them to
make three-record blocks, and output the sorted blocks. Thus, first we read in
A S 0 and output the block A 0 S, next we read in R T | and output the block
I R T,and so forth. Now, in order for these blocks to be merged together,
they must be on different tapes. If we want to do a three-way merge, then we
would use three tapes, ending up with the following configuration after the
sorting pass:

Tape 1: A 0 S I M N A E X
Tape2: | R T BH G R L M P
Tape 3: A G N ¢ I N E

Now we're ready to merge the sorted blocks of size three together. We
read the first record off each input tape (there's just enough room in the
memory) and output the one with the smallest key. Then the next record
from the same tape as the record just output is read in and, again, the record
in memory with the smallest key is output. When the end of a three-word
block in the input is encountered, then that tape is ignored until the blocks
from the other two tapes have been processed, and nine records have been
output. Then the process is repeated to merge the second three-word block
on each tape into a nine-word block (whica is output on a different tape, to get
ready for the next merge). Continuing, we get three long blocks configured
asfollows:

Tape4: A A G I N O R S T
Tape 50 D E G G I M N N R
Tape 6: A E E . M P X

Now one more three-way merge completes the sort. If we had a much
longer file with many blocks of size 9 on each tape, then we would finish the
second pass with blocks of size 27 on tapes 1, 2, and 3, then a third pass
would produce blocks of size 81 on tapes 4, 5, and 6, and so forth. We need
six tapes to sort an arbitrarily large file: three for the input and three for the

158 CHAPTER 13

output of each three-way merge. Actually, we could get by with just four
tapes: the output could be put on just one tape, then the blocks from that
tape distributed to the three input tapes in between merging passes.

This method is called the balanced multiway merge: it is a reasonable al-
gorithm for external sorting and a good starting point for the implementation
of an external sort. The more sophisticated algorithms below could make the
sort run perhaps 50% faster, but not much more. (On the other hand, when
execution times are measured in hours, which is not uncommon in external
sorting, even a small percentage decrease in running time can be helpful and
50% can be quite significant.)

Suppose that we have N words to be manipulated by the sort and an
internal memory of size M. Then the “sort” pass produces about N/M sorted
blocks. (This estimate assumes |-word records: for larger records, the number
of sorted blocks is computed by multiplying further by the record size) If
we do P-way merges on each subsequent pass, then the number of subsequent
passes is about logp(N /M), since each pass reduces the number of sorted
blocks by a factor of P.

Though small examples can help one understand the details of the al-
gorithm, it is best to think in terms of very large files when working with
external sorts. For example, the formula above says that using a 4-way merge
to sort a 200-million-word file on a computer with 1 million words of memory
should take a total of about five passes. A very rough estimate of the running
time can be found by multiplying by five the running time for the reverse file
copy implementation suggested above.

Replacement Selection

It turns out that the details of the implementation can be developed in an
elegant and efficient way using priority queues. First, we'll see that priority
gueues provide a natural way to implement a multiway merge. More impor-
tant, it turns out that we can use priority queues for the initial sorting pass
in such a way that they can produce sorted blocks much longer than could fit
into interna memory.

The basic operation needed to do P-way merging is to repeatedly output
the smallest of the smallest elements not yet output from each of the P blocks
to be merged. That element should be replaced with the next element from
the block from which it came. The replace operation on a priority queue
of size P is exactly what is needed. (Actualy, the “indirect” verions of the
priority queue routines, as described in Chapter 11, are more appropriate for
this application.) Specifically, to do a P-way merge we begin by filling up a
priority queue of size P with the smallest element from each of the P inputs
using the pqinsert procedure from Chapter 11 (appropriately modified so that

EXTERNAL SORTING 159

the smallest element rather than the largest is at the top of the heap). Then,
using the pgreplace procedure from Chapter 11 (modified in the same way)
we output the smallest element and rep.ace it in the priority queue with the
next element from its block.

For example, the following table shows the result of merging A 0 S with
| RT and A G N (the first merge from yur example above):

O OO0 > |w

A pVOoZ2—0Q > > |
ANV zZz—=——|0

The lines in the table represent the contents of a heap of size three used
in the merging process. We begin with t} e first three keys in each block. (The
“heap condition” is that the first key must be smaller than the second and
third.) Then the first A is output and replaced with the O (the next key in its
block). This violates the heap condition, so the 0 is exchanged with the other
A. Then that A is output and replaced with the next key in its block, the G.
This does not violate the heap condition, so no further change is necessary.
Continuing in this way, we produce the sorted file (read down in the table
to see the keys in the order in which they appear in the first heap position
and are output). When a block is exhausted, a sentinel is put on the heap
and considered to be larger than all the other keys. When the heap consists
of all sentinels, the merge is completed. This way of using priority queues is
sometimes called replacement selection.

Thus to do a P-way merge, we can use replacement selection on a priority
queue of size P to find each element to be output in logP steps. This
performance difference is not of particular practical relevance, since a brute-
force implementation can find each elernent to output in P steps, and P is
normally so small that this cost is dwarfzd by the cost of actually outputting
the element. The real importance of replacement selection is the way that
it can be used in the first part of the scrt-merge process: to form the initial
sorted blocks which provide the basis fo- the merging passes.

160 CHAPTER 13

The idea is to pass the (unordered) input through a large priority queue,
always writing out the smallest element on the priority queue as above, and
aways replacing it with the next element from the input, with one additional
proviso: if the new element is smaller than the last one put out, then, since
it could not possibly become part of the current sorted block, it should be
marked as a member of the next block and treated as greater than all elements
in the current block. When a marked element makes it to the top of the
priority queue, the old block is ended and a new block started. Again, this
is easily implemented with pginsert and pgreplace from Chapter 11, again
appropriately modified so that the smallest element is at the top of the heap,
and with pgreplace changed to treat marked elements as always greater than
unmarked elements.

Our example file clearly demonstrates the value of replacement selection.
With an internal memory capable of holding only three records, we can
produce sorted blocks of size 5, 4, 9, 6, and 1, as illustrated in the following
table. Each step in the diagram below shows the next key to be input (boxed)
and the contents of the heap just before that key is input. (As before, the
order in which the keys occupy the first position in the heap is the order in
which they are output.) Asterisks are used to indicate which keys in the heap
belong to different blocks: an element marked the same way as the element at
the root belongs to the current sorted block, others belong to the next sorted
block. Always, the heap condition (first key less than the second and third) is
maintained, with elements in the next sorted block considered to be greater
than elements in the current sorted block.

Rf A s 0 [E]A ™M D MJA & Ef
'T] 0 s R R| D Mm E [P] B & M
T R S T E M R (Ll P WM
N s T G M R [E] L* P M
[G] T r N I M R [| M P E
[A] ¢* N MN R[] P E
IN| * A N* N & R | |E

Dl v A w X R & &

M| N* A D Al X & B

For example, when pgreplace is called for M, it returns N for output (A and
D are considered greater) and then sifts down M to make the heap A M D.

EXTERNAL SORTING 161

It can be shown that, if the keys ae random, the runs produced using
replacement selection are about twice the size of what could be produced using
an internal method. The practical effect of this is to save one merging pass:
rather than starting with sorted runs akout the size of the internal memory
and then taking a merging pass to produce runs about twice the size of the
internal memory, we can start right of® with runs about twice the size of
the internal memory, by using replacement selection with a priority queue of
size M. If there is some order in the keys, then the runs will be much, much
longer. For example, if no key has more than M larger keys before it in the
file, the file will be completely sorted by the replacement selection pass, and
no merging will be necessary! This is the most important practical reason to
use the method.

In summary, the replacement selection technique can be used for both
the “sort” and the “merge” steps of a balanced multiway merge. To sort N
I-word records using an internal memo y of size M and P + 1 tapes, first
use replacement selection with a priority queue of size M to produce initial
runs of size about 2M (in a random situation) or longer (if the file is partially
ordered) then use replacement selection with a priority queue of size P for
about logp(N/2M) (or fewer) merge passes.

Practical Considerations

To complete an implementation of the sorting method outlined above, it is
necessary to implement the input-output functions which actually transfer
data between the processor and the ex:ernal devices. These functions are
obviously the key to good performance for the external sort, and they just
as obviously require careful consideration of some systems (as opposed to
algorithm) issues. (Readers unfamiliar with computers at the “systems’ level
may wish to skim the next few paragraphs.)

A major goa in the implementation should be to overlap reading, writing,
and computing as much as possible. Most large computer systems have
independent processing units for controlling the large-scale input/output (1/O)
devices which make this overlapping postible. The efficiency achievable by an
external sorting method depends on the number of such devices available.

For each file being read or written, there is a standard systems program-
ming technique called double-buffering which can be used to maximize the
overlap of 1/0O with computing. The id=a is to maintain two “buffers,” one
for use by the main processor, one for us: by the 1/O device (or the processor
which controls the 1/O device). For input, the processor uses one buffer while
the input device is filling the other. When the processor has finished using
its buffer, it waits until the input device has filled its buffer, then the buffers
switch roles: the processor uses the new data in the just-filled buffer while

162 CHAPTER 13

the input device refills the buffer with the data already used by the processor.
The same technique works for output, with the roles of the processor and
the device reversed. Usually the 1/O time is far greater than the processing
time and so the effect of double-buffering is to overlap the computation time
entirely; thus the buffers should be as large as possible.

A difficulty with double-buffering is that it realy uses only about half
the available memory space. This can lead to inefficiency if a large number
of buffers are involved, as is the case in P-way merging when P is not small.
This problem can be dealt with using a technique called forecasting, which
requires the use of only one extra buffer (not P) during the merging process.
Forecasting works as follows. Certainly the best way to overlap input with
computation during the replacement selection process is to overlap the input
of the buffer that needs to be filled next with the processing part of the
algorithm. But it is easy to determine which buffer this is: the next input
buffer to be emptied is the one whose lust item is smallest. For example, when
merging A 0 Swith | RT and A G N we know that the third buffer will be
the first to empty, then the first. A simple way to overlap processing with
input for multiway merging is therefore to keep one extra buffer which is filled
by the input device according to this rule. When the processor encounters an
empty buffer, it waits until the input buffer is filled (if it hasn’t been filled
already), then switches to begin using that buffer and directs the input device
to begin filling the buffer just emptied according to the forecasting rule.

The most important decision to be made in the implementation of the
multiway merge is the choice of the value of P, the “order” of the merge. For
tape sorting, when only sequential access is allowed, this choice is easy: P
must be chosen to be one less than the number of tape units available: the
multiway merge uses P input tapes and one output tape. Obviously, there
should be at least two input tapes, so it doesn't make sense to try to do tape
sorting with less than three tapes.

For disk sorting, when access to arbitrary positions is alowed but is
somewhat more expensive than sequential access, it is also reasonable to
choose P to be one less than the number of disks available, to avoid the
higher cost of non-sequential access that would be involved, for example, if
two different input files were on the same disk. Another alternative commonly
used is to pick P large enough so that the sort will be complete in two merging
phases: it is usually unreasonable to try to do the sort in one pass, but a two-
pass sort can often be done with a reasonably small P. Since replacement
selection produces about N/2M runs and each merging pass divides the
number of runs by P, this means P should be chosen to be the smallest integer
with P? > N/2M. For our example of sorting a 200-million-word file on a
computer with a I-million-word memory, this implies that P = 11 would be a
safe choice to ensure a two-pass sort. (The right value of P could be computed

EXTERNAL SORTING 163

exactly after the sort phase is completed) The best choice between these two
alternatives of the lowest reasonable va ue of P and the highest reasonable
value of P is obviously very dependent on many systems parameters. both
alternatives (and some in between) should be considered.

Polyphase Merging

One problem with balanced multiway merging for tape sorting is that it
requires either an excessive number of tape units or excessive copying. For
P-way merging either we must use 2P t apes (P for input and P for output)
or we must copy almost all of the file from a single output tape to P input
tapes between merging passes, which effectively doubles the number of passes
to be about 2logp(N/2M). Several clever tape-sorting algorithms have been
invented which eliminate virtually all of this copying by changing the way in
which the small sorted blocks are merged together. The most prominent of
these methods is called polyphase mergir.g.

The basic idea behind polyphase merging is to distribute the sorted blocks
produced by replacement selection somewhat unevenly among the available
tape units (leaving one empty) and then to apply a “merge until empty”
strategy, at which point one of the output tapes and the input, tape switch
roles.

For example, suppose that we have just three tapes, and we start out
with the following initial configuration of sorted blocks on the tapes. (This
comes from applying replacement selection to our example file with an internal
memory that can only hold two records.:

Tape 1: AORST IN AGN DEMR GIN
Tape 22 EGXA M P E L
Tape §:

After three 2-way merges from tapes 1 and 2 to tape 3, the second tape
becomes empty and we are left with the configuration:

Tapel: DEMR G IN
Tape 2:
Tape : AEGOR STX AIMNP AEGLN

Then, after two 2-way merges from tapes 1 and 3 to tape 2, the first tape
becomes empty, leaving:

Tape 1:
Tape 22 ADEEGMORRSTXAGIIMNNP
Tape : AEGLN

164 CHAPTER 13

The sort is completed in two more steps. First, a two-way merge from
tapes 2 and 3 to tape 1 leaves one file on tape 2, one file on tape 1. Then a
two-way merge from tapes 1 and 2 to tape 3 leaves the entire sorted file on
tape 3.

This “merge until empty” strategy can be extended to work for an ar-
bitrary number of tapes. For example, if we have four tape units T1, T2,
T3, and T4 and we start out with T1 being the output tape, T2 having 13
initial runs, T3 having 11 initial runs, and T4 having 7 initial runs, then after
running a 3-way “merge until empty,” we have T4 empty, T1 with 7 (long)
runs, T2 with 6 runs, and T3 with 4 runs. At this point, we can rewind
T1 and make it an input tape, and rewind T4 and make it an output tape.
Continuing in this way, we eventually get the whole sorted file onto T]:

Tl T2 T3 T4

0 183 1 7
7 6 4 0
3 2 0 4
1 0 2 2
0 1 1 1
1 0 0 O

The merge is broken up into many phases which don't involve all the data,
but no direct copying is involved.

The main difficulty in implementing a polyphase merge is to determine
how to distribute the initial runs. It is not difficult to see how to build the
table above by working backwards. take the largest number on each line, make
it zero, and add it to each of the other numbers to get the previous line. This
corresponds to defining the highest-order merge for the previous line which
could give the present line. This technique works for any number of tapes
(at least three): the numbers which arise are “generalized Fibonacci numbers’
which have many interesting properties. Of course, the number of initial runs
may not be known in advance, and it probably won't be exactly a generalized
Fibonacci number. Thus a number of “dummy” runs must be added to make
the number of initial runs exactly what is needed for the table.

The analysis of polyphase merging is complicated, interesting, and yields
surprising results. For example, it turns out that the very best method for
distributing dummy runs among the tapes involves using extra phases and
more dummy runs than would seem to be needed. The reason for this is that
some runs are used in merges much more often than others.

EXTERNAL SORTING 165

There are many other factors to be taken into consideration in implement-
ing a most efficient tape-sorting method. For example, a major factor which
we have not considered at al is the time that it takes to rewind a tape. This
subject has been studied extensively, anc many fascinating methods have been
defined. However, as mentioned above, the savings achievable over the simple
multiway balanced merge are quite limited. Even polyphase merging is only
better than balanced merging for small P, and then not substantially. For
P > 8, balanced merging is likely to run {agter than polyphase, and for smaller
P the effect of polyphase is basically to save two tapes (a balanced merge with
two extra tapes will run faster).

An Easier Way

Many modern computer systems provide a large virtual memory capability
which should not be overlooked in imp ementing a method for sorting very
large files. In a good virtual memory system, the programmer has the ability
to address a very large amount of data, leaving to the system the responsibility
of making sure that addressed data is tiransferred from externa to internal
storage when needed. This strategy relies on the fact that many programs have
a relatively small “locality of reference” : each reference to memory is likely to
be to an area of memory that is relatively close to other recently referenced
areas. This implies that transfers from exzternal to internal storage are needed
infrequently. An internal sorting method with a small locality of reference can
work very well on a virtual memory system. (For example, Quicksort has two
“locdities’ : most references are near one of the two partitioning pointers.)
But check with your systems programmer before trying it on a very large file:
a method such as radix sorting, which hes no locality of reference whatsoever,
would be disastrous on a virtual memory system, and even Quicksort could
cause problems, depending on how well the available virtual memory system
is implemented. On the other hand, th2 strategy of using a simple internal
sorting method for sorting disk files des:rves serious consideration in a good
virtual memory environment.

166

Exercises

1

10.

Describe how you would do external selection: find the kth largest in a
file of N elements, where N is much too large for the file to fit in man
memory.

Implement the replacement selection algorithm, then use it to test the
claim that the runs produced are about twice the internal memory size.

What is the worst that can happen when replacement selection is used to
produce initial runs in a file of N records, using a priority queue of size
M, with M < N.

How would you sort the contents of a disk if no other storage (except
main memory) were available for use?

How would you sort the contents of a disk if only one tape (and main
memory) were available for use?

Compare the 4-tape and 6-tape multiway balanced merge to polyphase
merge with the same number of tapes, for 31 initial runs.

How many phases does 5-tape polyphase merge use when started up with
four tapes containing 26,15,22,28 runs?

Suppose the 31 initial runs in a 4-tape polyphase merge are each one
record long (distributed O, 13, 11, 7 initially). How many records are
there in each of the files involved in the last three-way merge?

. How should small files be handled in a Quicksort implementation to be

run on a very large file within a virtual memory environment?

How would you organize an externa priority queue? (Specifically, design
a way to support the insert and remove operations of Chapter 11, when
the number of elements in the priority queue could grow to be much to
large for the queue to fit in main memory.)

167

SOURCES for Sorting

The primary reference for this section is volume three of D. E. Knuth's
series on sorting and searching. Further information on virtually every topic
that we've touched upon can be found in that book. In particular, the results
that we've quoted on performance characteristics of the various agorithms
are backed up by complete mathematicil analyses in Knuth's book.

There is a vast amount of literature on sorting. Knuth and Rivest's
1973 bibliography contains hundreds of entries, and this doesn’t include the
treatment of sorting in countless books ind articles on other subjects (not to
mention work since 1973).

For Quicksort, the best reference is Hoare’s originad 1962 paper, which
suggests all the important variants, including the use for selection discussed
in Chapter 12. Many more details on the mathematical analysis and the
practical effects of many of the modifications and embellishments which have
been suggested over the years may be fot nd in this author’s 1975 Ph.D. thesis.

A good example of an advanced priority queue structure, as mentioned in
Chapter 11, is J. Vuillemin's “binomia cueues” as implemented and analyzed
by M. R. Brown. This data structure supports all of the priority queue
operations in an elegant and efficient manner.

To get an impression of the myrial details of reducing agorithms like
those we have discussed to general-purpose practical implementations, a reader
would be advised to study the reference material for his particular computer
system’'s sort utility. Such material neces sarily deals primarily with formats of
keys, records and files as well as many other details, and it is often interesting
to identify how the algorithms themselvzs are brought into play.

M. R. Brown, “Implementation and an¢lysis of binomial queue algorithms,”
SIAM Journal of Computing, 7, 3, (August, 1978).

C. A. R. Hoare, “Quicksort,” Computer Journal, 5, 1 (1962).

D. E. Knuth, The Art of Computer Pragramming. Volume §: Sorting and
Searching, Addison-Wesley, Reading, MA, second printing, 1975.

R. L. Rivest and D. E. Knuth, “Bibliogtaphy 26: Computing Sorting,” Com-
puting Reviews, 13, 6 (June, 1972).

R. Sedgewick, Quicksort, Garland, New York, 1978. (Also appeared as the
author’s Ph.D. dissertation, Stanford University, 1975).

SEARCHI NG

- FE =l M
IE= rhi B ek ey
HLljwmlﬂ&HWWHmHJIhﬁ
Corr EE T =
Sk Skl B Erh =
elES | e LR
- £ o A S O Ry
: SN B
S mie C O = S) 5 sl R
)| kel o
e P B BT e | B
HuﬁwmﬁuL%Hr H e
o T R T e !
el S e) T i
T T R e
Haoowlr e Bl

14. Elementary Searching Methods

A fundamental operation intrinsic .0 a great many computational tasks
is searching: retrieving some particilar information from a large amount
of previously stored information. Normaly we think of the information as
divided up into records, each record haling a key for use in searching. The
goal of the search is to find all records with keys matching a given search key.
The purpose of the search is usually to access information within the record
(not merely the key) for processing.

Two common terms often used to dzscribe data structures for searching
are dictionaries and symbol tables. For example, in an English language dic-
tionary, the “keys’ are the words and the “records’ the entries associated with
the words which contain the definition, pronunciation, and other associated in-
formation. (One can prepare for learning and appreciating searching methods
by thinking about how one would implenent a system alowing access to an
English language dictionary.) A symbol table is the dictionary for a program:
the “keys” are the symbolic names usef in the program, and the “records’
contain information describing the objec L named.

In searching (as in sorting) we have programs which are in widespread
use on a very frequent basis, so that it vrill be worthwhile to study a variety
of methods in some detail. As with sorting, we'll begin by looking at some
elementary methods which are very useful for small tables and in other special
situations and illustrate fundamental techniques exploited by more advanced
methods. We'll ook at methods which store records in arrays which are either
searched with key comparisons or index:d by key value, and we'll look at a
fundamental method which builds structures defined by the key values.

As with priority queues, it is best to think of search algorithms as belong-
ing to packages implementing a variety of generic operations which can be
separated from particular implementations, so that alternate implementations
could be substituted easily. The operations of interest include:

171

172 CHAPTER 14

Initialize the data structure.

Search for a record (or records) having a given key.

Insert a new record.

Delete a specified record.

Join two dictionaries to make a large one.

Sort the dictionary; output all the records in sorted order.
As with priority queues, it is sometimes convenient to combine some of these
operations. For example, a search and insert operation is often included for
efficiency in situations where records with duplicate keys are not to be kept
within the data structure. In many methods, once it has been determined
that a key does not appear in the data structure, then the internal state of
the search procedure contains precisely the information needed to insert a new
record with the given key.

Records with duplicate keys can be handled in one of several ways,
depending on the application. First, we could insist that the primary searching
data structure contain only records with distinct keys. Then each “record” in
this data structure might contain, for example, a link to a list of al records
having that key. This is the most convenient arrangement from the point
of view of the design of searching algorithms, and it is convenient in some
applications since al records with a given search key are returned with one
search. The second possibility is to leave records with equal keys in the
primary searching data structure and return any record with the given key
for a search. This is simpler for applications that process one record at a
time, where the order in which records with duplicate keys are processed is
not important. It is inconvenient from the algorithm design point of view
because some mechanism for retrieving all records with a given key must still
be provided. A third possibility is to assume that each record has a unique
identifier (apart from the key), and require that a search find the record with
a given identifier, given the key. Or, some more complicated mechanism could
be used to distinguish among records with equal keys.

Each of the fundamental operations listed above has important applica-
tions, and quite a large number of basic organizations have been suggested to
support efficient use of various combinations of the operations. In this and the
next few chapters, we'll concentrate on implementations of the fundamental
functions search and insert (and, of course, initialize), with some comment on
delete and sort when appropriate. As with priority queues, the join operation
normally requires advanced techniques which we won't be able to consider
here.

Sequential Searching

The simplest method for searching is simply to store the records in an array,

ELEMENTARY SEARCHING METHCDS 173

then look through the array sequentially each time a record is sought. The
following code shows an implementation of the basic functions using this
simple organization, and illustrates sorie of the conventions that we'll use
in implementing searching methods.

type node=record key, info: integer end;
var a array [0..maxN]of node;
N: integer;
procedure initiaize;
begin N:=(er d;
function segsearch(v: integer; x: integer): integer;
begin
a[N+1].key:=v;
if (x>=0) and (x<=N) then
repeat x:=x+1 until v=a[x].key;
seqsearch : =x
end
function seqinser t(v: integer): integer;
begin
N:=N+1; a[N].key:=v;
seqinsert:=N;
end;

The code above processes records that have integer keys (key) and “associated
information” (info). As with sorting, it will be necessary in many applications
to extend the programs to handle more complicated records and keys, but
this won't fundamentally change the algorithms. For example, info could be
made into a pointer to an arbitrarily complicated record structure. In such
a case, this field can serve as the unique identifier for the record for use in
distinguishing among records with equal keys.

The search procedure takes two arguments in this implementation: the
key value being sought and an index (x) into the array. The index is included
to handle the case where several records have the same key value: by succes-
sively executing t:= search(v, t) starting at t=0 we can successively set { to
the index of each record with key value v.

A sentinel record containing the key value being sought is used, which
ensures that the search will always terminate, and therefore involves only
one completion test within the inner locp. After the inner loop has finished,
testing whether the index returned is greater than N will tell whether the
search found the sentinel or a key from the table. This is analogous to our
use of a sentinel record containing the smallest or largest key value to simplify

174 CHAPTER 14

the coding of the inner loop of various sorting agorithms.

This method takes about N steps for an unsuccessful search (every record
must be examined to decide that a record with any particular key is absent)
and about N/2 steps, on the average, for a successful search (a “random’
search for a record in the table will require examining about half the entries,
on the average).

Sequential List Searching

The segsearch program above uses purely sequential access to the records,
and thus can be naturally adapted to use a linked list representation for the
records. One advantage of doing so is that it becomes easy to keep the list
sorted, as shown in the following implementation:;

type link=Tnode;
node=record key, info: integer; next: link end;
var head, t, z: link;

i: integer;
procedure initialize;
begin
new(z); zt.next:=z;
new(head); headl.next:=z;

end;

function listsearch(v: integer; t: link): link;
begin
71 .key:=v;

repeat ¢ : =t1.next until v< =t1 .key;
if v=1t7 .key then listsearch :=¢
else listsearch:=z

end ;
function listinsert (v: integer; t : link) : link;
var x. link;
begin
z1.key:=v;

while tt.next].key<v do t:=t7.next;
new(x); xt.next:=tt.next; t.next:=x;
x1.key:=v;

listinsert:=x;

end;

With a sorted list, a search can be terminated unsuccessfully when a record
with a key larger than the search key is found. Thus only about half the

ELEMENTARY SEARCHING METHODS 175

records (not all) need to be examined fo:: an unsuccessful search. The sorted
order is easy to maintain because a new record can simply be inserted into the
list at the point at which the unsuccessful search terminates. As usual with
linked lists, a dummy header node head and a tail node z allow the code to
be substantially simpler than without th:m. Thus, the cal Iistinsert(v, head)
will put a new node with key v into the]i st pointed to by the next field of the

head, and Iistsearch is similar. Repeated calls on listsearch using the links
returned will return records with duplicste keys. The tail node z is used as a
sentinel in the same way as above. If [ist;earch returns a, then the search was
unsuccessful.

If something is known about the relative frequency of access for various
records, then substantial savings can often be realized simply by ordering the
records intelligently. The “optimal” arrangement is to put the most frequently
accessed record at the beginning, the second most frequently accessed record
in the second position, etc. This technique can be very effective, especialy if
only a small set of records is frequently accessed.

If information is not available about the frequency of access, then an
approximation to the optimal arrangerient can be achieved with a “self-
organizing” search: each time a record is accessed, move it to the beginning
of the list. This method is more conveniently implemented when a linked-list
implementation is used. Of course the running time for the method depends
on the record access distributions, so it is difficult to predict how it will do in
general. However, it is well suited to the quite common situation when most
of the accesses to each record tend to happen close together.

Binary Search

If the set of records is large, then the total search time can be significantly
reduced by using a search procedure based on applying the “divide-and-
conquer” paradigm: divide the set of records into two parts, determine which
of the two parts the key being sought Lelongs to, then concentrate on that
part. A reasonable way to divide the sets of records into parts is to keep the
records sorted, then use indices into the sorted array to delimit the part of the
array being worked on. To find if a given key v is in the table, first compare
it with the element at the middle position of the table. If v is smaller, then
it must be in the first half of the table; if v is greater, then it must be in the
second half of the table. Then apply the method recursively. (Since only one
recursive cal is involved, it is simpler to express the method iteratively.) This
brings us directly to the following implementation, which assumes that the
array a is sorted.

176 CHAPTER 14

function binarysearch (v: integer) : integer;
var x, 1, r; integer;
begin
I:=1; r:=N;
repeat
x:=(l4r) div 2;
if v<a[x].key then r:=x—1 else L:i=x+1
until (v=a[x].key) or (I>r);
if v=a [x] .key then binarysearch :=x
else binarysearch := N+ 1
end;

Like Quicksort and radix exchange sort, this method uses the pointers | and
r to delimit the subfile currently being worked on. Each time through the
loop, the variable x is set to point to the midpoint of the current interval, and
the loop terminates successfully, or the left pointer is changed to x+1, or the
right pointer is changed to x-l, depending on whether the search value v is
equal to, less than, or greater than the key value of the record stored at a[x].

The following table shows the subfiles examined by this method when
searching for S in a table built by inserting the keys A SEARCHINGE
XAMPLE:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
AAA A CEEEGHI L MNUZPR S X
AAACEEEGE‘ILMNPRSX
I L M[NJP R § X

P@Sx

[8] x

The interval size is at least halved at each step, so the total number of
times through the loop is only about lgN. However, the time required to
insert new records is high: the array must be kept sorted, so records must be
moved to make room for new records. For example, if the new record has
a smaller key than any record in the table, then every entry must be moved
over one position. A random insertion requires that N/2 records be moved,
on the average. Thus, this method should not be used for applications which
involve many insertions.

ELEMENTARY SEARCHING METHODS 177

Some care must be exercised to prooerly handle records with equal keys
for this algorithm: the index returned could fall in the middle of a block of
records with key v, so loops which scan in both directions from that index
should be used to pick up all the records. Of course, in this case the running
time for the search is proportional to lg:NV plus the number of records found.

The sequence of comparisons made by the binary search algorithm is
predetermined: the specific sequence used is based on the value of the key
being sought and the value of N. The comparison structure can be simply
described by a binary tree structure. The following binary tree describes the
comparison structure for our example se, of keys:

In searching for the key S for instance, it is first compared to H. Since it is
greater, it is next compared to N; otherwise it would have been compared to
C), etc. Below we will see algorithms that use an explicitly constructed binary
tree structure to guide the search.

One improvement suggested for binary search is to try to guess more
precisely where the key being sought falls within the current interval of interest
(rather than blindly using the middlie element at each step). This mimics the
way one looks up a number in the telephone directory, for example: if the
name sought begins with B, one looks rear the beginning, but if it begins
with Y, one looks near the end. This method, called interpolation search,
requires only a simple modification to the program above. In the program
above, the new place to search (the midpoint of the interval) is computed
with the statement x:=(l4r) div 2. This is derived from the computation
=1+ %(7 — 1): the middle of the interval is computed by adding half the size
of the interval to the left endpoint. Inte-polation search simply amounts to
replacing % in this formula by an estima;e of where the key might be based
on the values available: % would be appropriate if v were in the middle of the
interval between a[l].key and a[r].key, but we might have better luck trying

178 CHAPTER 14

x:=I+(v—a[l].key)*(r—1) div (a[r|.key—a[l].key). Of course, this assumes
numerical key values. Suppose in our example that the ith letter in the
alphabet is represented by the number i. Then, in a search for S, the first
table position examined would be x =1+ (19 1)*(17 1)/(24 1) =13. The
search is completed in just three steps:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
AAACEEEGHTILMNPRSX

P S
B

Other search keys are found even more efficiently: for example X and A are
found in the first step.

Interpolation search manages to decrease the number of elements ex-
amined to about loglog N. This is a very slowly growing function which
can be thought of as a constant for practical purposes: if N is one billion,
Iglg N < 5. Thus, any record can be found using only a few accesses, a sub-
stantial improvement over the conventional binary search method. But this
assumes that the keys are rather well distributed over the interval, and it
does require some computation: for small N, the log N cost of straight binary
search is close enough to log log N that the cost of interpolating is not likely
to be worthwhile. But interpolation search certainly should be considered for
large files, for applications where comparisons are particularly expensive, or
for external methods where very high access costs are involved.

Binary Tree Search

Binary tree search is a simple, efficient dynamic searching method which
qualifies as one of the most fundamental algorithms in computer science. It's
classified here as an “elementary” method because it is so simple; but in fact
it is the method of choice in many situations.

The idea is to build up an explicit structure consisting of nodes, each
node consisting of a record containing a key and left and right links. The
left and right links are either null, or they point to nodes called the left son
and the right son. The sons are themselves the roots of trees, called the left
subtree and the right subtree respectively. For example, consider the following
diagram, where nodes are represented as encircled key values and the links by
lines connected to nodes:

ELEMENTARY SEARCHING METHODS 179

The links in this diagram al point down. Thus, for example, E's right link
points to R, but H’s left link is null.

The defining property of a tree is that every node is pointed to by only
one other node called its father. (We assume the existence of an imaginary
node which points to the root.) The defining property of a binary tree is that
each node has left and right links. For s2arching, each node also has a record
with a key value; in a binary search tree we insist that all records with smaller
keys are in the left subtree and that ¢ll records in the right subtree have
larger (or equal) key values. We'll soon see that it is quite simple to ensure
that binary search trees built by successively inserting new nodes satisfy this
defining property.

A search procedure like binarysearch immediately suggests itself for this
structure. To find a record with a give 1 key wv, first compare it against the
root. If it is smaller, go to the left st btree; if it is egual, stop; and if it
is greater, go to the right subtree. Apply the method recursively. At each
step, we're guaranteed that no parts of the tree other than the current subtree
could contain records with key v, and, just as the size of the interval in binary
search shrinks, the “current subtree” always gets smaller. The procedure stops
either when a record with key v is found or, if there is no such record, when
the “current subtree” becomes empty. (The words “binary,” “search,” and
“tree” are admittedly somewhat overuse at this point, and the reader should
be sure to understand the difference between the binarysearch function given
above and the binary search trees described here. Above, we used a binary
tree to describe the sequence of comparisons made by a function searching
in an array; here we actually construct ¢ data structure of records connected
with links which is used for the search.)

180 CHAPTER 14

type link=Tnode;

node=record key, info: integer; 1, r:link end;
var t, head, z: link;
function treesearch(v: integer; x: link): link;

begin
z1.key:=v;
repeat
if v<xt.key then x:=x1.lelse x:=xt.r
until v=x1 . key,
treesearch . =x
end;

As with sequential list searching, the coding in this program is simplified
by the use of a “tail” node z. Similarly, the insertion code given below is
simplified by the use of a tree header node head whose right link points to the
root. To search for a record with key v we set x:= treesearch(v, head).

If a node has no left (right) subtree then its left (right) link is set to
point to z. As in sequential search, we put the value sought in z to stop
an unsuccessful search. Thus, the “current subtree” pointed to by x never
becomes empty and all searches are “successful” : the calling program can
check whether the link returned points to z to determine whether the search
was successful. It is sometimes convenient to think of links which point to z as
pointing to imaginary external nodes with all unsuccessful searches ending at
external nodes. The normal nodes which contain our keys are called internal
nodes; by introducing external nodes we can say that every internal node
points to two other nodes in the tree, even though, in our implementation, all
of the external nodes are represented by the single node z.

For example, if D is sought in the tree above, first it is compared against
E, the key at the root. Since D is less, it is next compared against A, the key
in the left son of the node containing E. Continuing in this way, D is compared
next against the C to the right of that node. The links in the node containing
C are pointers to z so the search terminates with D being compared to itself
in z and the search is unsuccessful.

To insert a node into the tree, we just do an unsuccessful search for it,
then hook it on in place of z at the point where the search terminated, as in
the following code:

ELEMENTARY SEARCHING METHODS 181

function treeinsert(v: integer; x:link): link;

var f; link;
begin
repeat

f:=x;

if v<xt.key then x:=x1.lelse x:=x{.r
until x=z;
new(x); xf.key:=v; xt.li=2; x!.r:=z;
if v<f!.key then ft.I.=x else ft.ri=x;
treeinsert:=x
end;

To insert a new key in a tree with a tree header node pointed to by head, we
cal treeinsert(v, head). To be able to do the insertion, we must keep track of
the father f of x, as it proceeds down the tree. When the bottom of the tree
(x=3z) is reached, f points to the node whose link must be changed to point to
the new node inserted. The function returns a link to the newly created node
so that the calling routine can fill in the info field as appropriate.

When a new node whose key is equal to some key already in the tree
is inserted, it will be inserted to the right of the node aready in the tree.
All records with key equal to v can be processed by successively setting t to
search(v, t) as we did for sequential searching.

As mentioned above, it is convenient to use a tree header node head
whose right link points to the actual root node of the tree, and whose key is
smaller than all other key values (for simplicity, we use O assuming the keys
are al positive integers). The left link of head is not used. The empty tree is

represented by having the right link of head point to z, as constructed by the
following code:

procedure treeinitialize;
begin
new(z); new(head);
head?.key:=0; headl.r:=z;
end;

To see the need for head, consider what happens when the first node is inserted
into an empty tree constructed by treeinitialize.

The diagram below shows the tree constructed when our sample keys are
inserted into an initially empty tree.

182 CHAPTER 14

The nodes in this tree are numbered in the order in which they were inserted.
Since new nodes are added at the bottom of the tree, the construction process
can be traced out from this diagram: the tree as it was after k records had been
inserted is simply the part of the tree consisting only of nodes with numbers
less than k (and keys from the first k lettersof ASEARCHINGEXA
M PL E).

The sort function comes almost for free when binary search trees are

used, since a binary search tree represents a sorted file if you look at it the
right way. Consider the following recursive program:

procedure treeprint (X: link) ;

begin

if x<>athen
begin
treeprint (x1) ;
printnode(
treeprint(x?.r)
end

end;

ELEMENTARY SEARCHING METHODS 183

The call treeprint(head?.r) will print out the keys of the tree in order. This
defines a sorting method which is remarkably similar to Quicksort, with the
node at the root of the tree playing a role similar to that of the partitioning
element in Quicksort. A major difference is that the tree-sorting method must
use extra memory for the links, while Quicksort sorts with only a little extra
memory.

The running times of algorithms on binary search trees are quite depen-
dent on the shapes of the trees. In the best case, the tree could be shaped like
that given above for describing the comparison structure for binary search,
with about Ig N nodes between the root and each external node. We might,
roughly, expect logarithmic search times on the average because the first ele-
ment inserted becomes the root of the tree; if N keys are to be inserted at
random, then this element would divide the keys in half (on the average),
leading to logarithmic search times (using the same argument on the subtrees).
Indeed, were it not for the equal keys, it could happen that the tree given above
for describing the comparison structure for binary search would be built. This
would be the best case of the algorithm, with guaranteed logarithmic running
time for al searches. Actualy, the root is equally likely to be any key in a
truly random situation, so such a perfectly balanced tree would be extremely
rare. But if random keys are inserted, it turns out that the trees are nicely
balanced. The average number of steps for a treesearch in a tree built by
successive insertion of N random keys is proportional to 2 In N.

On the other hand, binary tree searching is susceptible to the same worst-
case problems as Quicksort. For example, when the keys are inserted in order
(or in reverse order) the hinary tree search method is no better than the
sequential search method that we saw at the beginning of this chapter. In the
next chapter, we'll examine a technique for eliminating this worst case and
making all trees look more like the best-case tree.

The implementations given above for the fundamental search, insert, and
sort functions using binary tree structures are quite straightforward. However,
binary trees also provide a good example of a recurrent theme in the study
of searching algorithms: the delete function is often quite cumbersome to
implement. To delete a node from a binary tree is easy if the node has no
sons, like L or P in the tree above (lop it off by making the appropriate link
in its father null); or if it has just one son, like G or R in the tree above
(move the link in the son to the appropriate father link); but what about
nodes with two sons, such as H or S in the tree above? Suppose that x is a
link to such a node. One way to delete the node pointed to by x is to first set
y to the node with the next highest key. By examining the treeprint routine,
one can become convinced that this node must have a null left link, and that
it can be found by y:=xt.r; while yt.I<>z do y:=y1.l. Now the deletion can
be accomplished by copying y1.key and yf.info into xT.key and xt.info, then

184 CHAPTER 14

deleting the node pointed to by y. Thus, we delete H in the example above
by copying | into H, then deleting I; and we delete the E at node 3 by copying

the E at node 11 into node 3, then deleting node 11. A full implementation

of a treedelete procedure according to this description involves a fair amount
of code to cover all the cases: we'll forego the details because we'll be doing
similar, but more complicated manipulations on trees in the next chapter. It is
quite typical for searching algorithms to require significantly more complicated
implementations for deletion: the keys themselves tend to be integral to the
structure, and removal of a key can involve complicated repairs.

Indirect Binary Search Trees

As we saw with heaps in Chapter 11, for many applications we want a search-
ing structure to simply help us find records, without moving them around.
For example, we might have an array a[l..N] of records with keys, and we
would like the search routine to give us the index into that array of the record
matching a certain key. Or we might want to remove the record with a given
index from the searching structure, but still keep it in the array for some
other use.

To adapt binary search trees to such a situation, we simply make the
info field of the nodes the array index. Then we could eliminate the key field
by having the search routines access the keys in the records directly, e.g. via
an ingtruction like if v<a|x? .info] then. . . . However, it is often better to
make a copy of the key, and use the code above just as it is given. We'll
use the function name bstinsert(v, info: integer; x: link) to refer to a function
just like treeinsert, except that it also sets the info field to the value given
in the argument. Similarly, a function bstdelete(v, info: integer;x: link) to
delete the node with key v and array index info from the binary search tree
rooted at x will refer to an implementation of the delete function as described
above. These functions use an extra copy of the keys (one in the array, one
in the tree), but this allows the same function to be used for more than one
array, or as we'll see in Chapter 27, for more than one key field in the same
array. (There are other ways to achieve this. for example, a procedure could
be associated with each tree which extracts keys from records.)

Another direct way to achieve “indirection” for binary search trees is to
simply do away with the linked implementation entirely. That is, al links just
become indices into an array a[1..N] of records which contain a key field and 1
and r index fields. Then link references such as if v<xt.key then x:=x%.] else

. become array references such as if v<a[x].key then x:=a[x].] élse.. . . No
calls to new are used, since the tree exists within the record array: new(head)
becomes head:=0, new(z) becomes z:=N+1, and to insert the Mth node, we
would pass M, not v, to treeinsert, and then simply refer to a[M].key instead
of v and replace the line containing new(x) in treeinsert with x:=M. This

ELEMENTARY SEARCHING METHODS 185

way of implementing binary search trees to aid in searching large arrays of
records is preferred for many applications, since it avoids the extra expense of
copying keys as in the previous paragraph, and it avoids the overhead of the
storage allocation mechanism implied by new. The disadvantage is that space
is reserved with the record array for links which may not be in use, which
could lead to problems with large arrays in a dynamic situation. ,_‘

186

Exercises

1

Implement a sequential searching algorithm which averages about N/2
steps for both successful and unsuccessful search, keeping the records in
a sorted array.

Give the order of the keys after records with thekeysEA SY QUE ST
I O N have been put into an intially empty table with search and insert
using the self-organizing search heuristic.

Give a recursive implementation of binary search.

Suppose ali]=2i for 1 <i < N. How many table positions are examined
by interpolation search during the unsuccessful search for 2k = 1?

Draw the binary search tree that results from inserting records with the
keysEA §Y QUE ST I 0N into an initially empty tree.

6. Write a recursive program to compute the height of a binary tree: the

10.

longest distance from the root to an external node.

Suppose that we have an estimate ahead of time of how often search keys
are to be accessed in a binary tree. Should the keys be inserted into the
tree in increasing or decreasing order of likely frequency of access? Why?

Give a way to modify binary tree search so that it would keep equal keys
together in the tree. (If there are any other nodes in the tree with the
same key as any given node, then either its father or one of its sons should
have an equal key.)

Write a nonrecursive program to print out the keys from a binary search
tree in order.

Use a least-sgquares curvefitter to find values of a and b that give the best
formula of the form aN In N + bN for describing the total number of
instructions executed when a binary search tree is built from N random
keys.

15. Baanced Trees

The binary tree agorithms of the previous section work very well for
a wide variety of applications, but they do have the problem of bad
worst-case performance. What's more, as with Quicksort, it's embarrassingly
true that the bad worst case is one that's likely to occur in practice if the
person using the algorithm is not watching for it. Files aready in order,
files in reverse order, files with aternating large and small keys, or files with
any large segment having a simple structure can cause the binary tree search
algorithm to perform very badly.

With Quicksort, our only recourse for improving the situation was to
resort to randomness: by choosing a random partitioning element, we could
rely on the laws of probability to save us from the worst case. Fortunately,
for binary tree searching, we can do much better: there is a general technique
that will enable us to guarantee that this worst case will not occur. This
technique, called balancing, has been used as the basis for several different
“balanced tree” algorithms. We'll look closely at one such algorithm and
discuss briefly how it relates to some of the other methods that are used.

As will become apparent below, the implementation of balanced tree
algorithms is certainly a case of “easier said than done.” Often, the general
concept behind an algorithm is easily described, but an implementation is a
morass of special and symmetric cases. Not only is the program developed in
this chapter an important searching method, but also it is a nice illustration
of the relationship between a “high-level” algorithm description and a “low-
level” Pascal program to implement the algorithm.

Top-Down 2-3-4 Trees

To eliminate the worst case for binary search trees, we'll need some flexibility
in the data structures that we use. To get this flexibility, let's assume that we
can have nodes in our trees that can hold more than one key. Specifically, we'll

187

188 CHAPTER 15

allow J-nodes and d-nodes, which can hold two and three keys respectively. A
3-node has three links coming out of it, one for all records with keys smaller
than both its keys, one for all records with keys in between its two keys, and
one for all records with keys larger than both its keys. Similarly, a 4-node
has four links coming out of it, one for each of the intervals defined by its
three keys. (The nodes in a standard binary search tree could thus be called
2-nodes: one key, two links.) We'll see below some efficient ways of defining
and implementing the basic operations on these extended nodes; for now, let's
assume we can manipulate them conveniently and see how they can be put
together to form trees.

For example, below is a 2-8-4 tree which contains some keys from our
searching example.

ER)
FAQ) HNE

It is easy to see how to search in such a tree. For example, to search for
0 in the tree above, we would follow the middle link from the root, since 0
is between E and R then terminate the unsuccessful search at the right link
from the node containing H and |.

To insert a new node in a 2-3-4 tree, we would like to do an unsuccessful
search and then hook the node on, as before. It is easy to see what to if the
node at which the search terminates is a 2-node: just turn it into a 3-node.
Similarly, a 3-node can easily be turned into a 4-node. But what should we
do if we need to insert our new node into a 4-node? The answer is that we
should first split the 4-node into two 2-nodes and pass one of its keys further
up in the tree. To see exactly how to do this, let's consider what happens
when the keysfrom A SEARCHINGE XA M PL E are inserted into
an initially empty tree. We start out with a a-node, then a 3-node, then a

C RAAR

Now we need to put a second A into the 4-node. But notice that as far as
the search procedure is concerned, the 4-node at the right above is exactly
equivalent to the binary tree:

BALANCED TREES 189

(B)
(A) (8)

If our agorithm “splits’ the 4-node to make this binary tree before trying to
insert the A, then there will be room for A at the bottom:

(E)
(AM) (S)

Now R, C, and the H can be inserted, but when it's time for | to be inserted,
there’s no room in the 4-node at the right:

N

Again, this 4-node must be split into two 2-nodes to make room for the I, but
this time the extra key needs to be inserted into the father, changing it from
a 2-node to a S-node. Then the N can be inserted with no splits, then the G
causes another split, turning the root into a 4-node:

(ER) (E1 R)
§AA02§HIN} (A A C) (G H) TN) TS)

But what if we were to need to split a 4-node whose father is also a 4-node?
One method would be to split the father also, but this could keep happening
all the way back up the tree. An easier way is to make sure that the father of
any node we see won't be a 4-node by splitting any 4-node we see on the way
down the tree. For example, when E is inserted, the tree above first becomes

190

This ensures that we could handle the situation at the bottom even if E were
to go into a 4-node (for example, if we were inserting another A instead).
Now, the insertion of E, X, A, M, P, L, and E finally leads to the tree:

The above example shows that we can easily insert new nodes into 2-3-
4 trees by doing a search and splitting 4-nodes on the way down the tree.
Specifically, every time we encounter a 2-node connected to a 4-node, we
should transform it into a 3-node connected to two 2-nodes:

R R

and every time we encounter a 3-node connected to a 4-node, we should
transform it into a 4-node connected to two 2-nodes:

it TR

BALANCED TREES 191

These transformations are purely “loca”: no part of the tree need be examined
or modified other than what is diagrammed. Each of the transformations
passes up one of the keys from a 4-node to its father in the tree, restructuring
links accordingly. Note that we don't have to worry explicitly about the father

being a 4-node since our transformations ensure that as we pass through each
node in the tree, we come out on a node that is not a 4-node. In particular,
when we come out the bottom of the tree, we are not on a 4-node, and we
can directly insert the new node either by transforming a 2-node to a 3-node

or a 3-node to a 4-node. Actually, it is convenient to treat the insertion as a
split of an imaginary 4-node at the bottom which passes up the new key to be
inserted. Whenever the root of the tree becomes a 4-node, we'll split it into
three 2-nodes, as we did for our first node split in the example above. This
(and only this) makes the tree grow one level “higher.”

The algorithm sketched in the previous paragraph gives a way to do
searches and insertions in 2-3-4 trees; since the 4-nodes are split up on the
way from the top down, the trees are called top-down 2-8-4 trees. What's
interesting is that, even though we haven’'t been worrying about balancing at
all, the resulting trees are perfectly balanced! The distance from the root to
every external node is the same, which implies that the time required by a
search or an insertion is aways proportiond to log N. The proof that the trees
are always perfectly balanced is simple: the transformations that we perform
have no effect on the distance from any node to the root, except when we split
the root, and in this case the distance from all nodes to the root is increased
by one.

The description given above is sufficient to define an agorithm for search-
ing using binary trees which has guaranteed worst-case performance. However,
we are only halfway towards an actual implementation. While it would be
possible to write agorithms which actually perform transformations on dis-
tinct data types representing 2-, 3-, and 4-nodes, most of the things that need
to be done are very inconvenient in this direct representation. (One can be-
come convinced of this by trying to implement even the simpler of the two
node transformations.) Furthermore, the overhead incurred in manipulating
the more complex node dtructures is likely to make the agorithms dower than
standard binary tree search. The primary purpose of balancing is to provide
“insurance” against a bad worst case, but it would be unfortunate to have
to pay the overhead cost for that insurance on every run of the algorithm.
Fortunately, as we'll see below, there is a relatively simple representation of
2-, 3-, and 4-nodes that allows the transformations to be done in a uniform
way with very little overhead beyond the costs incurred by standard binary
tree search.

192 CHAPTER 15

Red-Black Trees

Remarkably, it is possible to represent 2-3-4 trees as standard binary trees

(2-nodes only) by using only one extra bit per node. The idea is to represent

3-nodes and 4nodes as small binary trees bound together by “red” links
which contrast with the “black” links which bind the 2-3-4 tree together. The
representation is simple: 4-nodes are represented as three 2-nodes connected
by red links and 3-nodes are represented as two 2-nodes connected by a red

link (red links are drawn as double lines):

Rk R

(Either orientation for a 3-node is legal.) The binary tree drawn below is one
way to represent the final tree from the example above. If we eiminate the
red links and collapse the nodes they connect together, the result is the 2-3-4
tree from above. The extra bit per node is used to store the color of the link
pointing to that node: we'll refer to 2-3-4 trees represented in this way as
red-black trees.

BALANCED TREES 193

The “dant” of each 3-node is determined by the dynamics of the algorithm
to be described below. There are many red-black trees corresponding to each
2-3-4 tree. It would be possible to enforce a rule that 3-nodes al slant the
same way, but there is no reason to do so.

These trees have many structural properties that follow directly from the
way in which they are defined. For example, there are never two red links in
a row along any path from the root to an external node, and all such paths
have an equal number of black links. Note that it is possible that one path
(alternating black-red) be twice as long as another (all black), but that al
path lengths are still proportional to log N.

A striking feature of the tree above is the positioning of duplicate keys.
On reflection, it is clear that any balanced tree algorithm must alow records
with keys equal to a given node to fall on both sides of that node: otherwise,
severe imbalance could result from long strings of duplicate keys. This implies
that we can’t find all nodes with a given key by repeated calls to the searching
procedure, as in the previous chapter. However, this does not present a real
problem, because all nodes in the subtree rooted at a given node with the
same key as that node can be found with a simple recursive procedure like
the treeprint procedure of the previous chapter. Or, the option of requiring
distinct keys in the data structure (with linked lists of records with duplicate
keys) could be used.

One very nice property of red-black trees is that the treesearch procedure
for standard binary tree search works without modification (except for the
problem with duplicate keys discussed in the previous paragraph). We'll
implement the link colors by adding a boolean field red to each node which is
true if the link pointing to the node is red, false if it is black; the treesearch
procedure simply never examines that field. That is, no “overhead” is added
by the balancing mechanism to the time taken by the fundamental searching
procedure. Each key is inserted just once, but might be searched for many
times in a typical application, so the end result is that we get improved search
times (because the trees are balanced) at relatively little cost (because no work
for balancing is done during the searches).

Moreover, the overhead for insertion is very small: we have to do some-
thing different only when we see 4-nodes, and there aren't many 4-nodes in
the tree because we're always breaking them up. The inner loop needs only
one extra test (if a node has two red sons, it's a part of a 4-node), as shown
in the following implementation of the insert procedure:

194 CHAPTER 15

function rbtreeinsert(v: integer; x:Jnk) : link;
var gg, g, f: link;
begin
fi=x; g:=x;
repeat
99:=9; g:=f; fi=x;
if v<xt.key then x:=x1.] else x:=x1.r;
if xT.11.red and x1.rf.red then x:=split(v, 99, 9, £,);
until x=z;
new(x); x1.key:=v; x1.l:=2z; xt.ri=z,
if v<f1.key then f1.]:=x else ff.r:=x;
rbtreeinsert:=x;
x:=split(v, 99, 9, f, X);

end :

In this program, x moves down the tree as before, with gg, g, and f kept
pointing to x’s great-grandfather, grandfather, and father in the tree. To see
why all these links are needed, consider the addition of Y to the tree above.
When the external node at the right of the 3-node containing S and X is
reached, gg is R, g is S, and fis X. Now, Y must be added to make a 4-node
containing S, X, and Y, resulting in the following tree:

We need a pointer to R (gg) because R's right link must be changed to point
to X, not S. To see exactly how this comes about, we need to look at the

operation of the split procedure.

To understand how (o implement the split operation, let's consider the
red-black representation for the two transformations we must perform: if we
have a 2-node connected to a 4-node, then we should convert them into a

BALANCED TREES 195

3-node connected to two 2-nodes; if we have a S-node connected to a 4-node,
we should convert them into a 4-node connected to two 2-nodes. When a
new node is added at the bottom, it is considered to be the middle node of
an imaginary 4-node (that is, think of z as being red, though this never gets
explicitly tested).

The transformation required when we encounter a 2-node connected to a
4-node is easy:

(e

This same transformation works if we have a 3-node connected to a 4-node in
the “right” way:

T i A B

Thus, split will begin by marking x to be red and the sons of x to be black.
This leaves the two other situations that can arise if we encounter a S-node
connected to a 4-node:

196 CHAPTER 15

g g

(Actually, there are four situations, since the mirror images of these two can
also occur for S-nodes of the other orientation.) In these cases, the split-up of
the 4-node has left two red links in a row, an illegal situation which must be
corrected. This is easily tested for in the code: we just marked x red; if xX's
father f is also red, we must take further action. The situation is not too bad
because we do have three nodes connected by red links: all we need to do is
transform the tree so that the red links point down from the same node.

Fortunately, there is a simple operation which achieves the desired effect.
Let's begin with the easier of the two, the third case, where the red links
are oriented the same way. The problem is that the 3-node was oriented the
wrong way: accordingly, we restructure the tree to switch the orientation of
the 3-node, thus reducing this case to be the same as the second, where the
color flip of x and its sons was sufficient. Restructuring the tree to reorient a
S-node involves changing three links, as shown in the example below:

BALANCED TREES 197

In this diagram, T; represents the tree containing all the records with keys
less than A, T, contains all the records with keys between A and B, and so
forth. The transformation switches the orientation of the S-node containing
A and B without disturbing the rest of the tree. Thus none of the keys in
Ty, Ty, T3, and Ty are touched. In this case, the transformation is effected by
the link changes st.l:=gst.r; gs.r:=s; yt.l:=gs. Also, note carefully that the
colors of A and B are switched. There are three analogous cases. the 3-node
could be oriented the other way, or it could be on the right side of y (oriented
either way).

Disregarding the colors, this single rotation operation is defined on any
binary search tree and is the basis for several balanced tree algorithms. It is
important to note, however, that doing a single rotation doesn’t necessarily
improve the balance of the tree. In the diagram above, the rotation brings
al the nodes in T; one step closer to the root, but all the nodes in T3 are
lowered one step. If T3 were to have more nodes than Tj, then the tree after
the rotation would become less balanced, not more balanced. Top-down 2-3-4
trees may be viewed as simply a convenient way to identify single rotations
which are likely to improve the balance.

Doing a single rotation involves structurally modifying the tree, some-
thing that should be done with caution. A convenient way to handle the four
different cases outlined above is to use the search key v to “rediscover” the
relevant son (s) and grandson (gs) of the node y. (We know that we'll only be
reorienting a 3-node if the search took us to its bottom node.) This leads to
somewhat simpler code that the alternative of remembering during the search
not only the two links corresponding to s and gs but also whether they are
right or left links. We have the following function for reorienting a 3-node
along the search path for v whose father is y:

function rotate(v: integer; y: link): link;

var s,gs: link;

begin

if v<y1.key then s:=y7.1else s:=yt.r;

if v<st . key
then begin gs:=s1.1; s1.1:=gs].r; gsf.r:=s end
else begin gs:=s!.r; st.r:=gs!.l; gst.l:=s end;

if v<yt.key then yt.l:.=gs else y1.r:=gs;

rotate:=gs

end;

If 5isthe left link of y and gs is the left link of s, this makes exactly the link
transformations for the diagram above. The reader may wish to check the

198 CHAPTER 15

other cases. This function returns the link to the top of the S-node, but does
not do the color switch itself.

Thus, to handle the third case for split, we can make g red, then set x to
rotate(v, gg), then make x black. This reorients the 3-node consisting of the
two nodes pointed to by g and ¥ and reduces this case to be the same as the
second case, when the 3-node was oriented the right way.

Finally, to handle the case when the two red links are oriented in different
directions, we simply set f to rotate(v, g). This reorients the “illegal” S-node
consisting of the two nodes pointed to by f and x. These nodes are the same
color, so no color change is necessary, and we are immediately reduced to
the third case. Combining this and the rotation for the third case is called a
double rotation for obvious reasons.

This completes the description of the operations which must be performed
by split. It must switch the colors of x and its sons, do the bottom part of a
double rotation if necessary, then do the single rotation if necessary:

function split(v: integer; gg, g, f, x: link): link;
begin
x1.red:=true; x1.1{.red:=false; x1.r1.red:=false;
if f{.red then
begin
gl.red:= true;
if (v<gfkey)<> (v<ft.key) then f:=rotate(v, g);
x:=rotate(v, gg);
xt.red:=false
end:
head?.r].red:=false;
split:=x
end;

This procedure takes care of fixing the colors after a rotation and also restarts
X high enough in the tree to ensure that the search doesn’t get lost due
to al the link changes. The long argument list is included for clarity; this
procedure should more properly be declared local to rbtreeinsert, with access
to its variables.

If the root is a 4-node then the split procedure will make the root red,
corresponding to transforming it, along with the dummy node above it into a
3-node. Of course, there is no reason to do this, so a statement is included at
the end of split to keep iue root black.

Assembling the code fragments above gives a very efficient, relatively
simple algorithm for insertion using a binary tree structure that is guaranteed

BALANCED TREES 199

to take a logarithmic number of steps for all searches and insertions. This
is one of the few searching algorithms with that property, and its use is

justified whenever bad worst-case performance simply cannot be tolerated.
Furthermore, this is achieved at very little cost. Searching is done just as
quickly asif the balanced tree were constructed by the elementary algorithm,
and insertion involves only one extra bit test and an occasiona split. For
random keys the height of the tree seems to be quite close to 1g N (and only

one or two splits are done for the average insertion) but no one has been able
to analyze this statistic for any balanced tree algorithm. Thus a key in afile
of, say, haf a million records can be found by comparing it against only about
twenty other keys.

Other Algorithms

The “top-down 2-3-4 tree” implementation using the “red-black” framework
given in the previous section is one of severa similar strategies than have
been proposed for implementing balanced binary trees. As we saw above, it
is actually the “rotate” operations that balance the trees. we've been looking
at a particular view of the trees that makes it easy to decide when to rotate.
Other views of the trees lead to other dgorithms, a few of which well mention
briefly in this section.

The oldest and most well-known data structure for balanced trees is the
AVL tree. These trees have the property that the heights of the two subtrees
of each node differ by at most one. If this condition is violated because of
an insertion, it turns out that it can be reinstated using rotations. But this
requires an extra loop: the basic algorithm is to search for the value being
inserted, then proceed up the tree along the path just travelled adjusting the
heights of nodes using rotations. Also, it is necessary to know whether each
node has a height that is one less than, the same, or one greater than the
height of its brother. This requires two bits if encoded in a straightforward
way, though there is a way to get by with just one bit per node.

A second well-known balanced tree structure is the 2-8 tree, where only
2-nodes and 3-nodes are allowed. It is possible to implement insert using an
“extra loop” involving rotations as with AVL trees, but there is not quite
enough flexibility to give a convenient top-down version.

In Chapter 18, we'll study the most important type of balanced tree, an
extension of 2-3-4 trees called B-trees. These allow up to M keys per node for
large M, and are widely used for searching applications involving very large
files.

200

Exe

1

rcises

Draw the top-down 2-3-4 tree that is built when the keysE A SY Q U
E ST 1 0N are inserted into an initially empty tree (in that order).

Draw a red-black representation of the tree from the previous question.

Exactly what links are modified by split and rotate when 7 is inserted
(after Y) into the example tree for this chapter?

Draw the red-black tree that results when the letters A to K are inserted
in order, and describe what happens in general when keys are inserted
into the trees in ascending order.

How many tree links actually must be changed for a double rotation, and
how many are actually changed in the given implementation?

Generate two random 32-node red-black trees, draw them (either by hand

or with a program), and compare them with the unbalanced binary search
trees built with the same keys.

Generate ten random 1000-node red-black trees. Compute the number of
rotations required to build the trees and the average distance from the
root to an external node for the trees that you generate. Discuss the
results.

8. With 1 bit per node for “color,” we can represent 2-, 3-, and 4-nodes.

10.

How many different types of nodes could we represent if we used 2 bits
per node for “color”?

Rotations are required in red-black trees when S-nodes are made into 4-
nodes in an “unbalanced” way. Why not eliminate rotations by allowing
4-nodes to be represented as any three nodes connected by two red links
(perfectly balanced or not)?

Use a least-squares curvefitter to find values of a and b that give the
best formula of the form aN IgN + bN for describing the total number
of instructions executed when a red-black tree is built from N random
keys.

16. Hashing

A completely different approach to searching from the comparison-
based tree structures of the last section is provided by hashing: directly
referencing records in a table by doing arithmetic transformations on keys
into table addresses. If we were to know that the keys are distinct integers
from 1 to N, then we could store the record with key i in table position i,
ready for immediate access with the key value. Hashing is a generalization
of this trivial method for typical searching applications when we don’'t have
such specialized knowledge about the key values.

The first step in a search using hashing is to compute a hush function
which transforms the search key into a table address. No hash function is
perfect, and two or more different keys might hash to the same table address:
the second part of a hashing search is a collision resolution process which
deals with such keys. One of the collision resolution methods that we'll study
uses linked lists, and is appropriate in a highly dynamic situation where the
number of search keys can not be predicted in advance. The other two collision
resolution methods that we'll examine achieve fast search times on records
stored within a fixed array.

Hashing is a good example of a “time-space tradeoff.” If there were no
memory limitation, then we could do any search with only one memory access
by simply using the key as a memory address. If there were no time limitation,
then we could get by with only a minimum amount of memory by using a
sequential search method. Hashing provides a way to use a reasonable amount
of memory and time to strike a balance between these two extremes. Efficient
use of available memory and fast access to the memory are prime concerns of
any hashing method.

Hashing is a “classical” computer science problem in the sense that the
various algorithms have been studied in some depth and are very widely used.
There is a great deal of empirical and analytic evidence to support the utility

201

202 CHAPTER 16

of hashing for a broad variety of applications.

Hash Functions

The first problem we must address is the computation of the hash function
which transforms keys into table addresses. This is an arithmetic computation
with properties similar to the random number generators that we have studied.
What is needed is a function which transforms keys (usually integers or short
character strings) into integers in the range [0..M —1], where A4 is the amount
of memory available. An ideal hash function is one which is easy to compute
and approximates a “random” function: for each input, every output should
be “equaly likely.”

Since the methods that we will use are arithmetic, the first step is to
transform keys into numbers which can be operated on (and are as large as
possible). For example, this could involve removing bits from character strings
and packing them together in a machine word. From now on, we'll assume
that such an operation has been performed and that our keys are integers
which fit into a machine word.

One commonly used method is to take A4 to be prime and, for any key
k, compute h(k) = k mod M. This is a straightforward method which is easy
to compute in many environments and spreads the key values out well.

A second commonly used method is similar to the linear congruential
random number generator: take M = 2™ and h(k) to be the leading m bits of
(bkmod w), where w is the word size of the computer and b is chosen as for
the random number generator. This can be more efficiently computed than
the method above on some computers, and it has the advantage that it can
spread out key values which are close to one another (e. g., templ, tempZ2,
temp3). As we've noted before, languages like Pascal are not well-suited to
such operations.

Separate Chaining

The hash functions above will convert keys into table addresses: we still need
to decide how to handle the case when two keys hash to the same address. The
most straightforward method is to simply build a linked list, for each table
address, of the records whose keys hash to that address. Since the keys which
hash to the same table position are kept in a linked list, they might as well

be kept in order. This leads directly to a generalization of the elementary list
searching method that we discussed in Chapter 14. Rather than maintaining
asingle list with a single list header node head as discussed there, we maintain

M lists with M list header nodes, initialized as follows:

HASHING 203

type link=1node;
node=record key, info: integer; next: link end;
var heads: array [0..M] of link;

t, 2. link;
procedure initialize;
var i: integer;

begin

new(z); zt1.next:=z;
for i:=0 to M-I do

begin new(headd[i]); heads|i]1.next:=z end,;
end ;

Now the procedures from Chapter 14 can be used as is, with a hash function

used to choose among the lists. For example, Ijstjnsert(v, heads[lv mod M])
can be used to add something to the table, t:=11'stsearch(v, heads[v mod M])
to find the first record with key v, and successively set t:=listsearch(v, t) until

t=z to find subsequent records with key v.

For example if the ith letter in the alphabet is represented with the
number i and we use the hash function h(k) = kmod M, then we get the
following hash values for our sample set of keys with M = 11:

Key: A SEARC
Hash: 1 8 5 1 7 3

oo T

I NGEXAMPLE
9375212515

if these keys are successively inserted into an initially empty table, the follow-
ing set of lists would result:

X Z [
Z 0|
Tmmm|o;
PYROREN

Obviously, the amount of time required for a search depends on the length
of the lists (and the relative positions of the keys in them). The lists could be
left unordered: maintaining sorted lists is not as important for this application
as it was for the elementary sequential search because the lists are quite short.

For an “unsuccessful search” (for a record with a key not in the table) we
can assume that the hash function scrambles things enough so that each of

204 CHAPTER 16

the M lists is equally likely to be searched and, as in sequential list searching,
that the list searched is only traversed halfway (on the average). The average
length of the list examined (not counting z) in this example for unsuccessful
search is (0+4+2+2+0+4+0+2+2+1+0)/11 ~ 1.545. This would be the
average time for an unsuccessful search were the lists unordered; by keeping
them ordered we cut the time in half. For a “successful search” (for one of the
records in the table), we assume that each record is equally likely to be sought:

seven of the keys would be found as the first list item examined, six would be
found as the second item examined, etc., so the average is (7-14+ 6.2+ 2.3 +
2-4)/17) ~ 1.941. (This count assumes that equal keys are distinguished with
a unique identifier or some other mechanism, and the search routine modified
appropriately to be able to search for each individual key.)

If N, the number of keys in the table, is much larger than M then a good
approximation to the average length of the lists is N/M. As in Chapter 14,
unsuccessful and successful searches would be expected to go about halfway
down some list. Thus, hashing provides an easy way to cut down the time
required for sequential search by a factor of M, on the average.

In a separate chaining implementation, M is typically chosen to be rela-
tively small so as not to use up a large area of contiguous memory. But it's
probably best to choose M sufficiently large that the lists are short enough to
make sequential search the most efficient method for them: “hybrid” methods
(such as using binary trees instead of linked lists) are probably not worth the
trouble.

The implementation given above uses a hash table of links to headers
of the lists containing the actual keys. Maintaining M list header nodes is
somewhat wasteful of space; it is probably worthwhile to eliminate them and
make heads be a table of links to the first keys in the lists. This leads to
some complication in the algorithm. For example, adding a new record to the
beginning of a list becomes a different operation than adding a new record
anywhere else in a list, because it involves modifying an entry in the table of
links, not a field of a record. An alternate implementation is to put the first
key within the table. If space is at a premium, it is necessary to carefully
analyze the tradeoff between wasting space for a table of links and wasting
space for a key and alink for each empty list. If N is much bigger than M then
the alternate method is probably better, though M is usualy small enough
that the extra convenience of using list header nodes is probably justified.

Open Addressing

If the number of elements to be put in the hash table can be estimated in
advance, then it is probably not worthwhile to use any links at all in the hash
table. Several methods have been devised which store N records in a table

HASHING 205

of size A4 > N, relying on empty places in the table to help with collision
resolution. Such methods are called open-addressing hashing methods.

The simplest open-addressing method is called linear probing: when there
is a collision (when we hash to a place in the table which is already occupied
and whose key is not the same as the search key), then just probe the next
position in the table: that is, compare the key in the record there against
the search key. There are three possible outcomes of the probe: if the keys
match, then the search terminates successfully; if there’s no record there,
then the search terminates unsuccessfully; otherwise probe the next position,
continuing until either the search key or an empty table position is found. If
a record containing the search key is to be inserted following an unsuccessful
search, then it can simply be put into the empty table space which terminated
the search. This method is easily implemented as follows:

type node=record key, info: integer end;
var a array [0..M] of node;
function h(k: integer): integer;
begin h:=k mod Mend,;
procedure hashinitialize;

var i. integer;

begin

for i:=0 to M do di].key:=maxint;
end:

function hashinsert (v: integer) : integer;
var X: integer;
begin
x:=h(v);
while gx] key<>maxint do x:=(x+1) mod M;
a[x .key:=v;
hashinsert :=x;
end;

Linear probing requires a special key value to signal an empty spot in the
table: this program uses maxint for that purpose. The computation x:=(x+1)
mod M corresponds to examining the next position (wrapping back to the
beginning when the end of the table is reached). Note that this program does
not check for the table being filled to capacity. (What would happen in this
case?)

The implementation of hashsearch is similar to hashinsert: simply add
the condition “a [x] .key< >v” to the while loop, and delete the following
instruction which stores v. This leaves the calling routine with the task

206 CHAPTER 16

of checking if the search was unsuccessful, by testing whether the table
position returned actually contains v (successful) or maxint (unsuccessful).
Other conventions could be used, for example hashsearch could return M
for unsuccessful search. For reasons that will become obvious below, open
addressing is not appropriate if large numbers of records with duplicate keys
are to be processed, but hashsearch can easily be adapted to handle equal
keys in the case where each record has a unique identifier.

For our example set of keys with A4 = 19, we might get the hash values:

K. ASEARCHINGEXAMPLE
Hash: 1 0 5 1 18 3 8 9 14 7 5 5 1 131612 5

The following table shows the steps of successively inserting these into an
initially empty hash table:

0 ! 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A

[s]a
S A
s [A][A] E
S A A E @
s A A[C] E R
S A A C E R
S A A C E H[I] R
S A A C E HoI R
s AAC E [G]HI N R
S A A CNE|E|G H I R
s [A][Al[c][A]E E ¢ H T X N R
SAACATETEGTH. X [M] N R
SAACATETETGH.I X MmN [P] R
SAACATETEGH X L|M N P R
s A A c A[E[E|lc)H1X][E]lt M N P R

HASHING 207

The table size is greater than before, since we must have M > N, but the
total amount of memory space used is less, since no links are used. The
average number of items that must be examined for a successful search for
this example is: 33/17 ~ 1.941.

Linear probing (indeed, any hashing method) works because it guarantees
that, when searching for a particular key, we look at every key that hashes
to the same table address (in particular, the key itself if it's in the table).
Unfortunately, in linear probing, other keys are also examined, especialy
when the table begins to fill up: in the example above, the search for X
involved looking at G, H, and | which did not have the same hash value.
What's worse, insertion of a key with one hash value can drastically increase
the search times for keys with other hash values: in the example, an insertion
at position 17 would cause greatly increased search times for position 16. This
phenomenon, called clustering, can make linear probing run very slowly for
nearly full tables.

Fortunately, there is an easy way to virtually eliminate the clustering
problem: double hashing. The basic strategy is the same; the only difference is
that, instead of examining each successive entry following a collided position,
we use a second hash function to get a fixed increment to use for the “probe’
sequence. This is easily implemented by inserting u:=h2(v) at the beginning
of the procedure and changing x:=(x+1) mod M to x:=(x+u) mod M within
the while loop. The second hash function h2 must be chosen with some care,
otherwise the program might not work at all.

First, we obviously don’'t want to have u=0, since that would lead to an
infinite loop on collision. Second, it is important that M and u be relatively
prime here, since otherwise some of the probe sequences could be very short
(for example, consider the case M=2u). This is easily enforced by making
M prime and u<M. Third, the second hash function should be “different”
from the first, otherwise a dlightly more complicated clustering could occur.
A function such as ha(k) =M —2 —k mod (M = 2) will produce a good range
of “second” hash values.

For our sample keys, we get the following hash values:

Key ASEARCHINGEXAMPLE
Hash 1: 1 0 5 1 18 3 8 9 14 7 5 5 1 1316125
Hash 2: 16 15 12 16 16 14 9 8 3 10 1210 16 4 1 5 12

The following table is produced by successively inserting our sample keys
into an initially empty table using double hashing with these values.

208 CHAPTER 16

O23456789101112131415161718
A

<

S A |E|

s [A] E
s A E A [R]
S A E A R
S A C E |H| A R
S A C E H|I A R
S A C E H o A R
sA ¢ E [G]HI N A R
S A c [E] & H 1[E] N [A] R
S A C G H I E N [x]A R
s[A] ¢ E GH I E[A] [A]JaR
S A c E GHIEA M N X A R
S A C E G HIEA M N X[P]A R
SA cC E GHIEA[LIMNXPAR

This technique uses the same amount of space as linear probing but the
average number of items examined for successful search is dlightly smaller:

32/17 ~ 1.882. still, such a full table is to be avoided as shown by the 9
probes used to insert the last E in this example.

Open addressing methods can be inconvenient in a dynamic situation,
when an unpredictable number of insertions and deletions might have to be
processed. First, how big should the table be? Some estimate must be made
of how many insertions are expected but performance degrades drastically as
the table starts to get full. A common solution to this problem is to rehash
everything into a larger table on a (very) infrequent basis. Second, a word of
caution is necessary about deletion: a record can’t simply be removed from
a table built with linear probing or double hashing. The reason is that later
insertions into the table might have skipped over that record, and searches
for those records will terminate at the hole left by the deleted record. A
way to solve this problem is to have another special key which can serve
as a placeholder for searches but can be identified and remembered as an

HASHING 209

empty position for insertions. Note that neither table size nor deletion are a
particular problem with separate chaining.

Analytic Results

The methods discussed above have been analyzed completely and it is pos-
sible to compare their performance in some detail. The following formulas,
summarized from detailed analyses described by D. E. Knuth in his book on
sorting and searching, give the average number of items examined (probes) for
unsuccessful and successful searching using the methods we've studied. The
formulas are most conveniently expressed in terms of the “load factor” of the
hash table, « = N/M. Note that for separate chaining we can have « > 1,
but for the other methods we must have o < 1.

Unsuccessful Successful
Separate Chaining: 1+ /2 (a+1)/2
Linear Probing: 1/24+1/2(1—a)® 1/2+1/2(1-a)
Double Hashing: 1/(1=a) ~In(l—a)/c

For smdl «, it turns out that all the formulas reduce to the basic result that
unsuccessful search takes about 1 + N/M probes and successful search takes
about 1 + N/2M probes. (Except, as we've noted, the cost of an unsuccessful
search for separate chaining is reduced by about half by ordering the lists.)
The formulas indicate how badly performance degrades for open addressing
as o gets close to 1. For large M and N, with a table about 90% full, linear
probing will take about 50 probes for an unsuccessful search, compared to
10 for double hashing. Comparing linear probing and double hashing against
separate chaining is more complicated, because there is more memory available
in the open addressing methods (since there are no links). The value of « used
should be modified to take this into account, based on the relative size of keys
and links. This means that it is not normally justified to choose separate
chaining over double hashing on the basis of performance.

The choice of the very best hashing method for a particular applica-
tion can be very difficult. However, the very best method is rarely needed
for a given situation, and the various methods do have similar performance
characteristics as long as the memory resource is not being severely strained.
Generally, the best course of action is to use the simple separate chaining
method to reduce search times drastically when the number of records to be
processed is not known in advance (and a good storage allocator is available)
and to use double hashing to search among a set of keys whose size can be
roughly predicted ahead of time.

Many other hashing methods have been developed which have application
in some special situations. Although we can't go into details, we'll briefly

210 CHAPTER 16

consider two examples to illustrate the nature of specially adapted hashing
methods. These and many other methods are fully described in Knuth's book.

The first, called ordered hashing, is a method for making use of ordering
within an open addressing table: in standard linear probing, we stop the
search when we find an empty table position or a record with a key equal
to the search key; in ordered hashing, we stop the search when we find a
record with a key greater than or equal to the search key (the table must be
cleverly constructed to make this work). This method turns out to reduce
the time for unsuccessful search to approximately that for successful search.
(This is the same kind of improvement that comes in separate chaining.) This
method is useful for applications where unsuccessful searching is frequently
used. For example, a text processing system might have an algorithm for
hyphenating words that works well for most words, but not for bizarre cases
(such as “bizarre”). The situation could be handled by looking up al words
in a relatively small exception dictionary of words which must be handled in
a special way, with most searches likely to be unsuccessful.

Similarly, there are methods for moving some records around during
unsuccessful search to make successful searching more efficient. In fact, R. P.
Brent developed a method for which the average time for a successful search
can be bounded by a constant, giving a very useful method for applications
with frequent successful searching in very large tables such as dictionaries.

These are only two examples of a large number of algorithmic improve-
ments which have been suggested for hashing. Many of these improvements
are interesting and have important applications. However, our usua cautions
must be raised against premature use of advanced methods except by experts
with serious searching applications, because separate chaining and double
hashing are simple, efficient, and quite acceptable for most applications.

Hashing is preferred to the binary tree structures of the previous two
chapters for many applications because it is somewhat simpler and it can
provide very fast (constant) searching times, if space is available for a large
enough table. Binary tree structures have the advantages that they are
dynamic (no advance information on the number of insertions is needed), they
can provide guaranteed worst-case performance (everything could hash to the
same place even in the best hashing method), and they support a wider range
of operations (most important, the sort function). When these factors are not
important, hashing is certainly the searching method of choice.

HASHING 211

Exercises

1

Describe how you might implement a hash function by making use of a
good random number generator. Would it make sense to implement a
random number generator by making use of a hash function?

How long could it take in the worst case to insert N keys into an initially
empty table, using separate chaining with unordered lists? Answer the
same question for sorted lists.

Give the contents of the hash table that results when the keysE A SY Q
UESTI ON are inserted in that order into an initially empty table of
size 13 using linear probing. (Use h;(k) = kmod 13 for the hash function
for the kth letter of the alphabet.)

Give the contents of the hash table that results when the keys E A S'Y
QUESTI 0N are inserted in that order into an initially empty table
of size 13 using double hashing. (Use hi(k) from the previous question,
ha(k) =1+ (k mod 11) for the second hash function.)

5. About how many probes are involved when double hashing is used to

10.

build a table consisting of N equal keys?

Which hashing method would you use for an application in which many
equal keys are likely to be present?

Suppose that the number of items to be put into a hash table is known
in advance. Under what condition will separate chaining be preferable to
double hashing?

Suppose a programmer has a bug in his double hashing code so that one
of the hash functions always returns the same value (not 0). Describe
what happens in each situation (when the first one is wrong and when
the second one is wrong).

What hash function should be used if it is known in advance that the key
values fall into a relatively small range?

Criticize the following algorithm for deletion from a hash table built with
linear probing. Scan right from the element to be deleted (wrapping as
necessary) to find an empty position, then scan left to find an element
with the same hash value. Then replace the element to be deleted with
that element, leaving its table position empty.

17. Radix Searching

Several searching methods proceed by examining the search keys one
bit at a time (rather than using full comparisons between keys at each
step). These methods, called radix searching methods, work with the bits of
the keys themselves, as opposed to the transformed version of the keys used
in hashing. As with radix sorting methods, these methods can be useful when
the bits of the search keys are easily accessible and the values of the search
keys are well distributed.

The principal advantages of radix searching methods are that they provide
reasonable worst-case performance without the complication of balanced trees;
they provide an easy way to handle variable-length keys; some allow some sav-
ings in space by storing part of the key within the search structure; and they
can provide very fast access to data, competitive with both binary search trees
and hashing. The disadvantages are that biased data can lead to degenerate
trees with bad performance (and data comprised of characters is biased) and
that some of the methods can make very inefficient use of space. Also, as
with radix sorting, these methods are designed to take advantage of particular
characteristics of the computer’s architecture: since they use digital properties
of the keys, it's difficult or impossible to do efficient implementations in lan-
guages such as Pascal.

WEe'll examine a series of methods, each one correcting a problem inherent
in the previous one, culminating in an important method which is quite useful
for searching applications where very long keys are involved. In addition, we'll
see the analogue to the “linear-time sort” of Chapter 10, a “constant-time”
search which is based on the same principle.

Digital Search Trees

The simplest radix search method is digital tree searching: the agorithm is
precisely the same as that for binary tree searching, except that rather than

213

214 CHAPTER 17

branching in the tree based on the result of the comparison between the keys,
we branch according to the key's bits. At the first level the leading bit is
used, at the second level the second leading bit, and so on until an external
node is encountered. The code for this is virtually the same as the code
for binary tree search. The only difference is that the key comparisons are
replaced by calls on the bits function that we used in radix sorting. (Recall
from Chapter 10 that bits(x, k, j) is the j bits which appear k from the right
and can be efficiently implemented in machine language by shifting right k
bits then setting to O all but the rightmost j hits.)

function digitalsearch(v: integer; x: link) : link;
var b: integer;

begin

z1.key:=v; b:=maxb;

repeat
if bits(v, b, 1)=0then x:=x1.1else x:=x1.r;
b:=b—1;

until v=xt1 .key;
digitalsearch:=x
end ;

The data structures for this program are the same as those that we used for
elementary binary search trees. The constant maxb is the number of bits in

the keys to be sorted. The program assumes that the first bit in each key
(the (maxb+1)st from the right) is O (perhaps the key is the result of a call to
bits with a third argument of maxb), so that searching is done by setting x:=

digitalsearch(v, head), where head is a link to a tree header node with 0 key

and a left link pointing to the search tree. Thus the initialization procedure
for this program is the same as for binary tree search, except that we begin

with headl.l:=z instead of head].r:=z.

We saw in Chapter 10 that equal keys are anathema in radix sorting; the
same is true in radix searching, not in this particular algorithm, but in the
ones that we'll be examining later. Thus we'll assume in this chapter that all
the keys to appear in the data structure are distinct: if necessary, a linked list
could be maintained for each key value of the records whose keys have that
value. As in previous chapters, we'll assume that the ith letter of the aphabet
is represented by the five-bit binary representation of 7. That is, we'll use the
following sample keys in this chapter:

RADIX SEARCHING 215

00001
10011
00101
10010
00011
01000
01001
01110
00111
11000
01101
10000
01100

mFrOZIXOZ—ITOXO Mo >

To be consistent with hits, we consider the bits to be numbered O-4, from
right to left. Thus bit 0 is A’s only nonzero bit and bit 4 is P's only nonzero
bit.

The insert procedure for digital search trees also derives directly from the
corresponding procedure for binary search trees:

function digitadinsert(v: integer; x: link): link;
var f: link; b: integer;
begin
b:=maxb;
repeat
f:=x;
if bits(v, b, 1)=0then x:=x1.I else x:=x1.r;
b:=b—1,
until x=z;
new(x); xt.key:=v; xt.li=z; xt.r:=z;
if bits(v, b+1, 1)=0 then f1.I:=x else ft.r:=x;
digitalinsert: =x
end;

To see how the algorithm works, consider what happens when a new key Z=
11010 is added to the tree below. We go right twice because the leading two
bits of Z are 1, then we go left, where we hit the external node at the left of
X, where Z would be inserted.

216 CHAPTER 17

The worst case for trees built with digital searching will be much better
than for binary search trees. The length of the longest path in a digital
search tree is the length of the longest match in the leading bits between
any two keys in the tree, and this is likely to be relatively short. And it is
obvious that no path will ever be any longer than the number of bits in the
keys: for example, a digital search tree built from eight-character keys with,
say, six bits per character will have no path longer than 48, even if there
are hundreds of thousands of keys. For random keys, digital search trees
are nearly perfectly balanced (the height is about lg N). Thus, they provide
an attractive alternative to standard binary search trees, provided that bit
extraction can be done as easily as key comparison (which is not really the
case in Pascal).

Radix Search Tries

It is quite often the case that search keys are very long, perhaps consisting of
twenty characters or more. In such a situation, the cost of comparing a search
key for equality with a key from the data structure can be a dominant cost
which cannot be neglected. Digital tree searching uses such a comparison at
each tree node: in this section we'll see that it is possible to get by with only
one comparison per search in most cases.

The idea is to not store keys in tree nodes at all, but rather to put all
the keys in external nodes of the tree. That is, instead of using z for externa
nodes of the structure, we put nodes which contain the search keys. Thus,
we have two types of nodes: internal nodes, which just contain links to other
nodes, and external nodes, which contain keys and no links. (E. Fredkin

RADIX SEARCHING 217

named this method “trie” because it is useful for retrieval; in conversation it's
usually pronounced “try-ee” or just “try” for obvious reasons.) To search for
a key in such a structure, we just branch according to its bits, as above, but
we don’t compare it to anything until we get to an external node. Each key
in the tree is stored in an external node on the path described by the leading
bit pattern of the key and each search key winds up at one external node, so
one full key comparison completes the search.

After an unsuccessful search, we can insert the key sought by replacing
the external node which terminated the search by an internal node which
will have the key sought and the key which terminated the search in external
nodes below it. Unfortunately, if these keys agree in more bit positions, it is
necessary to add some external nodes which do not correspond to any keys
in the tree (or put another way, some internal nodes which have an empty
external node as a son). The following is the (binary) radix search trie for our
sample keys:

Now inserting Z=11010 into this tree involves replacing X with a new internal
node whose left son is another new internal node whose sons are X and Z.

The implementation of this method in Pascal is actualy relatively com-
plicated because of the necessity to maintain two types of nodes, both of
which could be pointed to by links in internal nodes. This is an example of
an agorithm for which a low-level implementation might be simpler than a
high-level implementation. We'll omit the code for this because we'll see an
improvement below which avoids this problem.

The left subtree of a binary radix search trie has all the keys which have
0 for the leading bit; the right subtree has al the keys which have 1 for the

218 CHAPTER 17

leading bit. This leads to an immediate correspondence with radix sorting:
binary trie searching partitions the file in exactly the same way as radix
exchange sorting. (Compare the trie above with the partitioning diagram we
examined for radix exchange sorting, after noting that the keys are dlightly
different.) This correspondence is analogous to that between binary tree
searching and Quicksort.

An annoying feature of radix tries is the “one-way” branching required for
keys with a large number of bits in common, For example, keys which differ
only in the last bit require a path whose length is equal to the key length, no
matter how many keys there are in the tree. The number of internal nodes can
be somewhat larger than the number of keys. The height of such trees is still
limited by the number of bits in the keys, but we would like to consider the
possibility of processing records with very long keys (say 1000 bits or more)
which perhaps have some uniformity, as might occur in character encoded
data. One way to shorten the paths in the trees is to use many more than
two links per node (though this exacerbates the “space” problem of using too
many nodes); another way is to “collapse” paths containing one-way branches
into single links. We'll discuss these methods in the next two sections.

Multiway Radix Searching

For radix sorting, we found that we could get a significant improvement in
speed by considering more than one bit at a time. The same is true for radix
searching: by examining m bits at a time, we can speed up the search by a
factor of 2™, However, there's a catch which makes it necessary to be more
careful applying this idea than was necessary for radix sorting. The problem
is that considering m bits at a time corresponds to using tree nodes with
M = 2™ links, which can lead to a considerable amount of wasted space for
unused links. For example, if M = 4 the following tree is formed for our
sample keys:

RADIX SEARCHING 219

Note that there is some wasted space in this tree because of the large number
of unused external links. As M gets larger, this effect gets worse: it turns out

that the number of links used is about M N/In M for random keys. On the
other hand this provides a very efficient searching method: the running time

is about log, N. A reasonable compromise can be struck between the time

efficiency of multiway tries and the space efficiency of other methods by using

a “hybrid” method with a large value of M at the top (say the first two levels)
and a small value of M (or some elementary method) at the bottom. Again,

efficient implementations of such methods can be quite complicated because
of multiple node types.

For example, a two-level 32-way tree will divide the keys into 1024 cate-
gories, each accessible in two steps down the tree. This would be quite useful
for files of thousands of keys, because there are likely to be (only) a few keys
per category. On the other hand, a smaller M would be appropriate for files
of hundreds of keys, because otherwise most categories would be empty and
too much space would be wasted, and a larger M would be appropriate for
files with millions of keys, because otherwise most categories would have too
many keys and too much time would be wasted.

It is amusing to note that “hybrid” searching corresponds quite closely
to the way humans search for things, for example, names in a telephone
book. The first step is a multiway decision (“Let’'s see, it starts with ‘A”),
followed perhaps by some two way decisions (“It's before ‘Andrews', but after
‘Aitken”") followed by sequential search (“ ‘Algonquin’ . . . ‘Algren’ . . . No,
‘Algorithms’ isn't listed!"). Of course computers are likely to be somewhat
better than humans at multiway search, so two levels are appropriate. Also,
26-way branching (with even more levels) is a quite reasonable alternative
to consider for keys which are composed simply of letters (for example, in a
dictionary).

In the next chapter, we'll see a systematic way to adapt the structure to
take advantage of multiway radix searching for arbitrary file sizes.

Patricia

The radix trie searching method as outlined above has two annoying flaws:
there is “one-way branching” which leads to the creation of extra nodes in the
tree, and there are two different types of nodes in the tree, which complicates
the code somewhat (especially the insertion code). D. R. Morrison discovered
a way to avoid both of these problems in a method which he named Patricia
(“Practical Algorithm To Retrieve Information Coded In Alphanumeric”).
The algorithm given below is not in precisely the same form as presented
by Morrison, because he was interested in “string searching” applications of
the type that we'll see in Chapter 19. In the present context, Patricia allows

220 CHAPTER 17

searching for N arbitrarily long keys in a tree with just N nodes, but requires
only one full key comparison per search.

One-way branching is avoided by a simple device: each node contains
the index of the bit to be tested to decide which path to take out of that
node. External nodes are avoided by replacing links to external nodes with
links that point upwards in the tree, back to our normal type of tree node
with a key and two links. But in Patricia, the keys in the nodes are not
used on the way down the tree to control the search; they are merely stored
there for reference when the bottom of the tree is reached. To see how Patrica
works, we'll first look at the search algorithm operating on a typica tree, then
we'll examine how the tree is constructed in the first place. For our example
keys, the following Patricia tree is constructed when the keys are successively
inserted.

To search in this tree, we start at the root and proceed down the tree, using
the bit index in each node to tell us which bit to examine in the search key,
going right if that bit is 1, left if it is 0. The keys in the nodes are not
examined at all on the way down the tree. Eventually, an upwards link is
encountered: each upward link points to the unique key in the tree that has
the bits that would cause a search to take that link. For example, S is the
only key in the tree that matches the bit pattern 10x11. Thus if the key at
the node pointed to by the first upward link encountered is equal to the search
key, then the search is successful, otherwise it is unsuccessful. For tries, all
searches terminate at external nodes, whereupon one full key comparison is
done to determine whether the search was successful or not; for Patricia all
searches terminate at upwards links, whereupon one full key comparison is
done to determine whether the search was successful or not. Futhermore, it’'s
easy to test whether a link points up, because the bit indices in the nodes (by

RADIX SEARCHING 221

definition) decrease as we travel down the tree. This leads to the following
search code for Patricia, which is as simple as the code for radix tree or trie
searching:

type link=Tnode;
node=record key, info, b: integer; 1, r: link end;
var head: link;
function patriciasearch(v: integer; x: link): link;
var f: link;
begin
repeat
fi=x;
if bits(v, x1.b, 1)=0then x:=xt.l else x:=x1.r;
until ft.b<=x1.b;
patriciasearch :=x
end ;

This function returns a link to the unique node which could contain the record
with key v. The calling routine then can t 2st whether the search was successful
or not. Thus to search for Z=11010 in tt e above tree we go right, then up at
the right link of X. The key there is not Z so the search is unsuccessful.

The following diagram shows the ;ransformations made on the right
subtree of the tree above if Z, then T art added.

The search for Z=11010 ends at the node containing X=11000. By the defining
property of the tree, X is the only key i) the tree for which a search would
terminate at that node. If Z is inserted, there would be two such nodes, so
the upward link that was followed into the node containing X should be made
to point to a new node containing Z, with a bit index corresponding to the
leftmost point where X and Z differ, and with two upward links: one pointing
to X and the other pointing to Z. This corresponds precisely to replacing the

222 CHAPTER 17

external node containing X with a new internal node with X and Z as sons in
radix trie insertion, with one-way branching eliminated by including the bit
index.

The insertion of T=10100 illustrates a more complicated case. The search
for T ends at P=10000, indicating that P is the only key in the tree with the
pattern 10x0x. Now, T and P differ at bit 2, a position that was skipped
during the search. The requirement that the bit indices decrease as we go
down the tree dictates that T be inserted between X and P, with an upward
self pointer corresponding to its own bit 2. Note carefully that the fact that
bit 2 was skipped before the insertion of T implies that P and R have the
same bit 2 value.

The examples above illustrate the only two cases that arise in insertion
for Patricia. The following implementation gives the details:

function patriciainsert(v: integer; x: link): link;
var t,f:link; i: integer;

begin
t :==patriciasearch (v, X)
i:=maxb;
while bits(v, i, 1)=bits(t1.key, i, 1) do i:=i—1;
repeat
fi=x;

if bits(v, xt.b, 1)=0 then x:=x1.l else x:=x1.r;
until (x?.b<=i) or (f1.b<=x1.b);
new(t); tt.key:=v; t1.b:=i;
if bits(v, t1.b, 1)=0

then begin tf.I:=t; tI.r:=x end

else begin t1.r:=t; t7.I:'=x end;
if bits(v, f1.b, 1)=0then f{.I:=t else f.r:=t;
patriciainsert := ¢
end ;

(This code assumes that head is initialized with key field of O, a bit index of
maxb and both links upward self pointers.) First, we do a search to find the
key which must be distinguished from v, then we determine the leftmost bit
position at which they differ, travel down the tree to that point, and insert a
new node containing v at that point.

Patricia is the quintessential radix searching method: it manages to
identify the bits which distinguish the search keys and build them into a
data structure (with no surplus nodes) that quickly leads from any search
key to the only key in the data structure that could be equal. Clearly, the

RADIX SEARCHING 223

same technique as used in Patricia can te used in binary radix trie searching
to eliminate one-way branching, but this only exacerbates the multiple node
type problem.

Unlike standard binary tree search, the radix methods are insensitive to
the order in which keys are inserted; they depend only upon the structure of
the keys themselves. For Patricia the plicement of the upwards links depend
on the order of insertion, but the tree structure depends only on the bits in
the keys, as for the other methods. This, even Patricia would have trouble
with a set of keys like 001, 0001, 00001, 300001, etc., but for normal key sets,
the tree should be relatively well-balanced so the number of bit inspections,
even for very long keys, will be roughly proportional to lg N when there are
N nodes in the tree.

The most useful feature of radix trie searching is that it can be done
efficiently with keys of varying length. In all of the other searching methods
we have seen the length of the key is “built into” the searching procedure in
some way, so that the running time is iependent on the length of the keys
as well as the number of keys. The specific savings available depends on the
method of bit access used. For example, suppose we have a computer which
can efficiently access 8-bit “bytes’ of tlata, and we have to search among
hundreds of 1000-bit keys. Then Patricia would require access of only about
9 or 10 bytes of the search key for the search, plus one 125-byte equality
comparison while hashing requires acces: of all 125-bytes of the search key for
computing the hash function plus a few equality comparisons, and comparison-
based methods require several long comparisons. This effect makes Patricia
(or radix trie searching with one-way branching removed) the search method
of choice when very long keys are involved.

224

Exercises

1

10.

Draw the digital search tree that results when the keygsEA SY QU E
ST 1 0N are inserted into an initially empty tree (in that order).

Generate a 1000 node digital search tree and compare its height and the
number of nodes at each level against a standard binary search tree and
a red-black tree (Chapter 15) built from the same keys.

Find a set of 12 keys that make a particulary badly balanced digital
search trie.

Draw the radix search trie that results when the keys EA SY QU E S
T 1 0N are inserted into an initially empty tree (in that order).

A problem with 26-way multiway radix search tries is that some letters
of the aphabet are very infrequently used. Suggest a way to fix this
problem.

Describe how you would delete an element from a multiway radix search
tree.

Draw the Patricia tree that results when the keysEA SY QU E ST |
0 N are inserted into an initially empty tree (in that order).

Find a set of 12 keys that make a particulary badly balanced Patricia
tree.

Write a program that prints out all keys in a Patricia tree having the
same initial ¢ bits as a given search key.

Use a least-squares curvefitter to find values of a and b that give the best
formula of the form aN lg N + bN for describing the total number of
instructions executed when a Patricia tree is built from N random keys.

18. Externa Searching

Searching algorithms appropriate for accessing items from very large
files are of immense practical impcrtance. Searching is the fundamental
operation on large data files, and certainly consumes a very significant fraction
of the resources used in many computer installations.

WEe'll be concerned mainly with met hods for searching on large disk files,
since disk searching is of the most practical interest. With sequential devices
such as tapes, searching quickly degenerates to the trivialy slow method: to
search a tape for an item, one can't do much better than to mount the tape
and read until the item is found. Remarkably, the methods that we'll study
can find an item from a disk as large as . billion words with only two or three
disk accesses.

As with external sorting, the “systems’ aspect of using complex /O
hardware is a primary factor in the perfo-mance of external searching methods
that we won't be able to study in detai. However, unlike sorting, where the
external methods are really quite differert from the internal methods, we'll see
that external searching methods are logical extensions of the internal methods
that we've studied.

Searching is a fundamental operaticn for disk devices. Files are typicaly
organized to take advantage of particular device characteristics to make access
of information as efficient as possible. A3 we did with sorting, we'll work with
a rather simple and imprecise model of ‘disk” devices in order to explain the
principal characteristics of the fundamental methods. Determining the best
external searching method for a particular application is extremely compli-
cated and very dependent on characteristics of the hardware (and systems
software), and so it is quite beyond the scope of this book. However, we can
suggest some general approaches to use.

For many applications we would like to frequently change, add, delete
or (most important) quickly access small bits of information inside very, very

225

226 CHAPTER 18

large files. In this chapter, we'll examine some methods for such dynamic
situations which offer the same kinds of advantages over the straightforward
methods that binary search trees and hashing offer over binary search and
sequential search.

A very large collection of information to be processed using a computer
is called a database. A great deal of study has gone into methods of building,
maintaining and using databases. However, large databases have very high
inertiac once a very large database has been built around a particular searching
strategy, it can be very expensive to rebuild it around another. For this reason,
the older, static methods are in widespread use and likely to remain so, though
the newer, dynamic methods are beginning to be used for new databases.

Database applications systems typically support much more complicated
operations than a simple search for an item based on a single key. Searches
are often based on criteria involving more than one key and are expected to
return a large number of records. In later chapters we'll see some examples
of agorithms which are appropriate for some search requests of this type,
but general search requests are sufficiently complicated that it is typical to do
a sequential search over the entire database, testing each record to see if it
meets the criteria.

The methods that we will discuss are of practical importance in the im-
plementation of large file systems in which every file has a unique identifier
and the purpose of the file system is to support efficient access, insertion and
deletion based on that identifier. Our model will consider the disk storage
to be divided up into pages, contiguous blocks of information that can be
efficiently accessed by the disk hardware. Each page will hold many records;
our task is to organize the records within the pages in such a way that any
record can be accessed by reading only a few pages. We assume that the
I/O time required to read a page completely dominates the processing time
required to do any computing involving that page. As mentioned above, this
is an oversimplified model for many reasons, but it retains enough charac-
teristics of actual external storage devices to allow us to consider some of the
fundamental methods which are used.

Indexed Sequential Access

Sequential disk searching is the natural extension of the elementary sequential
searching methods that we considered in Chapter 14: the records are stored
in increasing order of their keys, and searches are done by simply reading
in the records one after the other until one containing a key greater than or
equal to the search key is found. For example, if our search keys come from
EXTERNALSEARCHINGEXAMPL E and we have disks

capable of holding three pages of four records each, then we would have the

configuration:

EXTERNAL SEARCHING 227

Disk1: A A

G
Disk 2: L L T

A C E E E E E H |
M N N PRR STXX

As with externa sorting, we must consider very small examples to under-
stand the algorithms but think about ve y large examples to appreciate their
performance. Obviously, pure sequenticl searching is unattractive because,
for example, searching for W in the exainple above would require reading all
the pages.

To vastly improve the speed of a search, we can keep, for each disk, an
“index” of which keys belong to which pages on that disk, as in the following
example:

Disk1: *1c2e A A
Disk 2: e1i2n E G
Disk8: nlr2x N P

>

C
I
R

nrm
—Hrm
xZm
X Z m

The first page of each disk is its index: lower case letters indicate that
only the key value is stored, not the full record; numbers are page indices.
In the index, each page number is followed by the value of its last key and
preceded by the value of the last key on the previous page. (The “*” is a
sentinel key, smaller than all the others.) Thus, for example, the index for
disk 2 says that its first page contains records with keys between E and |
inclusive and its second page contains records with keys between | and N
inclusive. Normally, it should be possible to fit many more keys and page
indices on an index page than records on a “data’ page; in fact, the index for
a whole disk should require only a few pages. These indices are coupled with
a “master index” which tells which keys are on which disk. For our example,
the master index would be “* 1 e2 n 3 x,” where boldface integers are disk
numbers. The master index is likely to be small enough that it can be kept
in memory, so that most records can be found with only two pages accessed,
one for the index on the appropriate dist: and one for the page containing the
approriate record. For example, a search for W would involve first reading
the index page from disk 3, then reading the second page (from disk 3) which
is the only one that could contain W. Secarches for keys which appear in the
index require reading three pages the irdex plus the two pages flanking the
key value in the index. If no duplicate keys are in the file, then the extra page
access can be avoided. On the other hand, if there are many equal keys in the

228 CHAPTER 18

file, several page accesses might be called for (records with equal keys might
fill several pages).

Because it combines a sequential key organization with indexed access,
this organization is called indexed sequential. It is the method of choice for
applications where changes to the database are likely to be made infrequently.
The disadvantage of using indexed sequential access is that it is very inflexible.
For example, adding B to the configuration above requires that virtually the
whole database be rebuilt, with new positions for many of the keys and new
values for the indices.

B-Trees

A better way to handle searching in a dynamic situation is to use balanced
trees. In order to reduce the number of (relatively expensive) disk accesses, it
is reasonable to allow a large number of keys per node so that the nodes have
a large branching factor. Such trees were named B-trees by R. Bayer and
E. McCreight, who were the first to consider the use of multiway balanced
trees for external searching. (Many people reserve the term “B-treg€” to
describe the exact data structure built by the algorithm suggested by Bayer
and McCreight; we'll use it as a generic term to mean “external balanced
trees.”)

The top-down algorithm that we used for 2-3-4 trees extends readily to
handle more keys per node: assume that there are anywhere from 1 to M = 1
keys per node (and so anywhere from 2 to M links per node). Searching
proceeds in a way analogous to 2-3-4 trees. to move from one node to the
next, first find the proper interval for the search key in the current node and
then exit through the corresponding link to get to the next node. Continue
in this way until an external node is reached, then insert the new key into
the last internal node reached. As with top-down 2-3-4 trees, it is necessary
to “split” nodes that are “full” on the way down the tree: any time we see
a k-node attached to an M node, we replace it by a (k + 1)-node attached
to two M/2 nodes. This guarantees that when the bottom is reached there
is room to insert the new node. The B-tree constructed for M = 4 and our
sample keys is diagrammed below:

EXTERNAL SEARCHING 229

This tree has 13 nodes, each corresponding to a disk page. Each node must
contain links as well as records. The choice M = 4 (even though it leaves us

with familiar 2-3-4 trees) is meant to emphasize this point: before we could
fit four records per page, now only three will fit, to leave room for the links.
The actual amount of space used up depends on the relative size of records
and links. We'll see a method below wh ch avoids this mixing of records and

links.

For example, the root node might be stored as “10 E 11 N 12", indicating
that the root of the subtree containing records with keys less than or equal
to E is on page O of disk 1, etc. Just as we kept the master index for indexed
sequential search in memory, it's reasonable to keep the root node of the B-
tree in memory. The other nodes for ou: example might be stored as follows:

Disk 1: 20A21 22 E30OH31L 32 40RA41T42
Disk2: O A O OAOCOEO OEO

Disk 3: 0 E 0 GO oOl10 oOLOMDO
Disk 4 ONOPORO 0SS0 0X0X0

The assignment of nodes to disk pages in this example is simply to proceed
down the tree, working from right to 1=ft at each level, assigning nodes to
disk 1, then disk 2, etc. In an actual &pplication, other assignments might
be indicated. For example, it might be better to avoid having all searches
going through disk 1 by assigning first to page 0 of al the disks, etc. In
truth, more sophisticated strategies are needed because of the dynamics of
the tree construction (consider the difficulty of implementing a split routine
that respects either of the above strategies).

The nodes at the bottom level in tt e B-trees described above all contain
many O links which can be eliminated iy marking such nodes in some way.
Furthermore, a much larger value of M can be used at the higher levels of the
tree if we store just keys (not full records) in the interior nodes as in indexed
sequential access. To see how to take advantage of these observations in our
example, suppose that we can fit up to seven keys and eight links on a page, so
that we can use M = 8 for the interior rodes and M = 5 for the bottom-level
nodes (not M = 4 because no space for 1 nks need be reserved at the bottom).
A bottom node splits when a fifth record is added to it; the split involves
“inserting” the key of the middle record into the tree above, which operates
as a norma B-tree from M = 8 (on stored keys, not records). This leads to
the following tree:

230 CHAPTER 18

The effect for a typical application is likely to be much more dramatic since
the branching factor of the tree is increased by roughly the ratio of the record
size to key size, which is likely to be large. Also, with this type of organization,

the “index” (which contains keys and links) can be separated from the actual
records, as in indexed sequential search:

Disk 1: 11 112 20a2le22e30h3l 32n40r14ls42
Disk 20 A A A C E E E

Disk 33 E E G H ! L L M
Diskj: N N P R R s T X X

As before, the root node is kept in memory. Also the same issues as discussed
above regarding node placement on the disks arise.

Now we have two values of M, one for the interior nodes which determines
the branching factor of the tree (M1) and one for the bottom-level nodes which
determines the allocation of records to pages (MB). To minimize the number
of disk accesses, we want to make both M; and Mg as large as possible, even
at the expense of some extra computation. On the other hand, we don’t want
to make M; huge, because then most tree nodes would be largely empty and
space would be wasted and we don't want to make Mpg huge because this
would reduce to sequential search of the bottom-level nodes. Usualy, it is
best to relate both M; and Mg to the page size. The obvious choice for Mg
is the number of records that can fit on a page: the goal of the search is to
find the page containing the record sought. If Mi is taken to be the number
of keys that can fit on two to four pages, then the B-tree is likely to be only be
three levels deep, even for very large files (a three-level tree with Af; = 1024
can handle up to 10243, or over a billion, entries). But recall that the root
node of the tree, which is accessed for every operation on the tree, is kept in
memory, so that only two disk accesses are required to find any element in
the file.

As discussed in Chapter 15, a more complicated “bottom-up” insertion
method is commonly used for B-trees, though the distinction between top-

EXTERNAL. SEARCHING 231

down and bottom up methods loses importance for three level trees. Other
variations of balanced trees are more iriportant for external searching. For
example, when a node becomes full, sp itting (and the resultant half-empty
nodes) can be forestalled by dumping some of the contents of the node into
its “brother” node (if it's not too full). This leads to better space utilization
within the nodes, which is likely to be o ' central concern in a large-scale disk
searching application.

Extendible Hashing

An aternative to B-trees which extends digital searching algorithms to apply
to external searching was developed in 1978 by R. Fagin, J. Nievergelt, N.
Pippenger, and R. Strong. This method, called extendible hashing, guarantees
that no more than two disk accesses will be used for any search. As with B-
trees, our records are stored on pages which are split into two pieces when
they fill up; as with indexed sequential access, we maintain an index which
we access to find the page containing the records which match our search key.

Extendible hashing combines these appioaches by using digital properties of
the search keys.

To see how extendible hashing worlcs, we'll consider how it handles suc-
cessive insertions of keysfromnEX TERNALSEARCHINGEXA
M P L E, using pages with a capacity o ' up to four records.

We start with an “index” with just one entry, a pointer to the page
which is to hold the records. The first four records fit on the page, leaving
the following trivial structure:

0101 E

0101 E Disk 1::0

10100 T Disk2: <« ETX
11000 X

The directory on disk 1 says that all records are on page O of disk 2, where
they are kept in sorted order of their keys. For reference, we also give the
binary value of the keys, using our standard encoding of the five-bit binary
representation of i for the ith letter of the aphabet. Now the page is full,
and must be split in order to add the k:y R=10010. The strategy is simple:
put records with keys that begin with () on one page and records with keys
that begin with 1 on another page. This necessitates doubling the size of the
directory, and moving half the keys from page O of disk 2 to a new page,
leaving the following structure:

232 CHAPTER 18

0- ob101 E
1 .

L 13(1)(1)8 %wm Disk 1: 20 21
10100 T Disk 2: E E RTX
111000 X

Now N=01110 and A=00001 can be added, but another split is needed
before L=01100 can be added:

0. 8[0001 A
0101 E
00101 E
01110 N
1: 10010 R
10100 T

11000 x

Disk 1: 20 21
Disk22 AEENR T X

Recall our basic assumption that we do disk 1/O in page units, and that
processing time is negligible compared to the time to input or output a page.
Thus, keeping the records in sorted order of their keys is not a real expense:
to add a record to a page, we must read the page into memory, modify it,
and write it back out. The extra time required to insert the new record to
maintain sorted order is not likely to be noticable in the typical case when
the pages are small.

Proceeding in the same way, as for the first split, we make room for L=
01100 by splitting the first page into two pieces, one for keys that begin with 00
and one for keys that begin with 01. What’'s not immediately clear is what to
do with the directory. One alternative would be to simply add another entry,
one pointer to each page. This is unattractive because it essentially reduces
to indexed sequential search (albeit a radix version): the directory has to be
scanned sequentially to find the proper page during a search. Alternatively,
we can just double the size of the directory again, giving the structure:

Disk 1:2021 2222
Disk,!”: A E E L N RTX

Now we can access any record by using the first two bits of its key to access
directly the directory entry that contains the address of the page containing

EXTERNAL SEARCHING 233

the record.

Continuing a little further, we can add S=10011 and E=00101 before
another split is necessary to add A=00001. This split also requires doubling
the directory, leaving the structure:

000: 00001 A
00001 A
001: 00101 E
00101 E
00101 E Diusk 1. 2021222230303030
010: 01100 L Disk 2: A A EEE LN
011: OI1110 N Disk3: R ST X
100: 10010 R
101: 10011 S
110: 10100 T
111: 11000 X

In general, the structure built by ext endible hashing consists of a directory
of 24 words (one for each d-bit pattern) and a set of leaf pages which contain
al records with keys beginning with a specific bit pattern (of less than or
equal to d bits). A search entails using ;he leading d bits of the key to index
into the directory, which contains pointers to leaf pages. Then the referenced
leaf page is accessed and searched (usin;; any strategy) for the proper record.
A leaf page can be pointed to by more than one directory entry: to be precise,
if aleaf page contains all the records uith keys that begin with a specific k
bits (those marked with a vertical line in the pages on the diagram above),
then it will have 2¢=* directory entries pointing to it. In the example above,
we have d = 3, and page 0 of disk 3 contains all the records with keys that
begin with a 1 bit, so there are four dir:etory entries pointing to it.

The directory contains only pointers to pages. These are likely to be
smaller than keys or records, so more directory entries will fit on each page.
For our example, we'll assume that we can fit twice as many directory entries
as records per page, though this ratio is likely to be much higher in practice.
When the directory spans more than one page, we keep a “root node’ in
memory which tells where the director” pages are, using the same indexing
scheme. For example, if the directory spans two pages, the root node might
contain the two entries “10 11,” indicatir g that the directory for al the records
with keys beginning with O are on page 0 of disk 1, and the directory for all
keys beginning with 1 are on page 1 o’ disk 1. For our example, this split
occurs when the E is inserted. Continuing up until the last E (see below), we
get the following disk storage structure:

234 CHAPTER 18

Disk 1:20 20 21 22 30 30 31 32 40 4041 41 42 42 42 42
Disk 2 AAAC EEEE G

Disk 8: H | LLM N N

Disky2P RRS T X X

As illustrated in the above example, insertion into an extendible hashing
structure can involve one of three operations, after the leaf page which could
contain the search key is accessed. If there’s room in the leaf page, the new
record is simply inserted there; otherwise the leaf page is split in two (half the
records are moved to a new page). If the directory has more than one entry
pointing to that leaf page, then the directory entries can be split as the page
is. If not, the size of the directory must be doubled.

As described so far, this algorithm is very susceptible to a bad input
key distribution: the value of d is the largest number of bits required to
separate the keys into sets small enough to fit on leaf pages, and thus if
a large number of keys agree in a large number of leading bits, then the
directory could get unacceptably large. For actual large-scale applications,
this problem can be headed off by hashing the keys to make the leading
bits (pseudo-)random. To search for a record, we hash its key to get a bit
sequence which we use to access the directory, which tells us which page to
search for a record with the same key. From a hashing standpoint, we can
think of the algorithm as splitting nodes to take care of hash value collisions:
hence the name “extendible hashing.” This method presents a very attractive
aternative to B-trees and indexed sequential access because it aways uses
exactly two disk accesses for each search (like indexed sequential), while still
retaining the capability for efficient insertion (like B-trees).

Even with hashing, extraordinary steps must be taken if large numbers
of equal keys are present. They can make the directory artificialy large; and
the agorithm breaks down entirely if there are more equal keys than fit in
one leaf page. (This actually occurs in our example, since we have five E's.) If
many equal keys are present then we could (for example) assume distinct keys
in the data structure and put pointers to linked lists of records containing
equal keys in the leaf pages. To see the complication involved, consider the
insertion of the last E into the structure above.

Virtual Memory

The “easier way” discussed at the end of Chapter 13 for external sorting
applies directly and trivially to the searching problem. A virtual memory
is actually nothing more than a general-purpose external searching method:
given an address (key), return the information associated with that address.

EXTERNAL. SEARCHING 235

However, direct use of the virtual men ory is not recommended as an easy
searching application. As mentioned in Chapter 13, virtual memories perform
best when most accesses are relatively close to previous accesses. Sorting
algorithms can be adapted to this, but the very nature of searching is that
requests are for information from arbitr iry parts of the database.

236

Exercises

1

Give the contents of the B-tree that results when the keysE A SY QU
ESTI1 0N areinserted in that order into an initially empty tree, with
M =5.

Give the contents of the B-tree that results when the keysE A SY QU
EST1 0N are inserted in that order into an initially empty tree, with
M = 6, using the variant of the method where all the records are kept in
external nodes.

Draw the B-tree that is built when sixteen equal keys are inserted into an
initially empty tree, with M = 5.

Suppose that one page from the database is destroyed. Describe how you
would handle this event for each of the B-tree structures described in the
text.

Give the contents of the extendible hashing table that results when the
keysEASY QUESTI ON areinserted in that order into an initialy

empty table, with a page capacity of four records. (Following the example
in the text, don’t hash, but use the five-bit binary representation of i as
the key for the ith letter.)

Give a sequence of as few distinct keys as possible which make an exten-
dible hashing directory grow to size 16, from an initially empty table,
with a page capacity of three records.

Outline a method for deleting an item from an extendible hashing table.

Why are “top-down” B-trees better than “bottom-up” B-trees for concur-
rent access to data? (For example, suppose two programs are trying to
insert a new node at the same time.)

. Implement search and insert for internal searching using the extendible

hashing method.

Discuss how the program of the previous exercise compares with double
hashing and radix trie searching for internal searching applications.

237

SOURCES for Searching

Again, the primary reference for this section is Knuth’'s volume three.
Most of the algorithms that we've st 1died are treated in great detail in
that book, including mathematical analyses and suggestions for practical
applications.

The materiad in Chapter 15 come: from Guibas and Sedgewick's 1978
paper, which shows how to fit many classical balanced tree algorithms into
the “red-black” framework, and which gives several other implementations.
There is actually quite a large literature on balanced trees. Comer’'s 1979
survey gives many references on the subject of Btrees.

The extendible hashing algorithm presented in Chapter 18 comes from
Fagin, Nievergelt, Pippenger and Stronz’s 1979 paper. This paper is a must
for anyone wishing further information »n external searching methods: it ties
together material from our Chapters 16 and 17 to bring out the algorithm in
Chapter 18.

Trees and binary trees as purely mathematical objects have been studied
extensively, quite apart from computer science. A great deal is known about
the combinatorial properties of these objects. A reader interested in studying
this type of material might begin with I{nuth’s volume 1.

Many practical applications of ths methods discussed here, especialy
Chapter 18, arise within the context of latabase systems. An introduction to
this field is given in Ullman’s 1980 book.

D. Comer, “The ubquitous B-tree,” Computing Surveys, 11 (1979).

R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong, “Extendible Hashing
- a fast access method for dynamic fies,” ACM transactions on Database
Systems, 4, 3 (September, 1979).

L. Guibas and R. Sedgewick, “A dichromatic framework for balanced trees,”
in 19th Annual Symposium on Foundations of Computer Science, |EEE, 1978.
Also in A Decade of Progress 1970-198(, Xerox PARC, Palo Alto, CA.

D. E. Knuth, The Art of Computer Pr »gramming. Volume 1. Fundamental
Algorithms, Addison-Wesley, Reading, 1A, 1968.

D. E. Knuth, The Art of Computer Programming. Volume 3: Sorting and
Searching, Addison-Wesley, Reading, MA, second printing, 1975.

J. D. Ullman, Principles of Database Sy: terns, Computer Science Press, Rock-
ville, MD, 1982.

RN NN perereer '
e , o .ll'lllllll:'

Yoo o

LI T T I o T A O R P B B

N

FEO u b b eesbed VOEREY bE L
“ e T LI 1y
[.

Wi

P
[N

DONISSHO0Ud DNIILS

19. String Searching

Data to be processed often does not decompose logically into indepen-
dent records with small identifiable pieces. This type of data is charac-
terized only by the fact that it can be written down as a string: a linear
(typically very long) sequence of characters.

Strings are obviously central in “word processing” systems, which provide
a variety of capabilities for the manipulation of text. Such systems process text
strings, which might be loosely defined as sequences of letters, numbers, and
special characters. These objects can be quite large (for example, this book
contains over a million characters), and efficient algorithms play an important
role in manipulating them.

Another type of string is the binary string, a simple sequence of 0 and 1
values. This is in a sense merely a special type of text string, but it is worth
making the distinction not only because different algorithms are appropriate
but also binary strings arise naturally in many applications. For example,
some computer graphics systems represent pictures as binary strings. (This
book was printed on such a system: the present page was represented at one
time as a binary string consisting of millions of bhits.)

In one sense, text strings are quite different objects than binary strings,
since they are made up of characters from a large aphabet. In another, the two
types of strings are equivalent, since each text character can be represented
by (say) eight binary bits and a binary string can be viewed as a text string by
treating eight-bit chunks as characters. We'll see that the size of the alphabet
from which the characters are taken to form a string is an important factor
in the design of string processing algorithms.

A fundamental operation on strings is pattern matching: given a text
string of length N and a pattern of length M, find an occurrence of the
pattern within the text. (We will use the term “text” even when referring to
a sequence of O-l values or some other special type of string.) Most algorithms

241

242 CHAPTER 19

for this problem can easily be extended to find all occurrences of the pattern
in the text, since they scan sequentially through the text and can be restarted
at the point directly after the beginning of a match to find the next match.
The pattern-matching problem can be characterized as a searching prob-
lem with the pattern as the key, but the searching algorithms that we have
studied do not apply directly because the pattern can be long and because
it “lines up” with the text in an unknown way. It is an interesting problem
to study because several very different (and surprising) algorithms have only
recently been discovered which not only provide a spectrum of useful practical
methods but also illustrate some fundamental algorithm design techniques.

A Short History

The development of the algorithms that we'll be examining has an interesting
history: we'll summarize it here to place the various methods into perspective.
There is an obvious brute-force algorithm for string processing which isin
widespread use. While it has a worst-case running time proportional to MN,
the strings which arise in many applications lead to a running time which
is virtually always proportional to M + N. Furthermore, it is well suited to
good architectural features on most computer systems, so an optimized version
provides a “standard” which is difficult to beat with a clever agorithm.

In 1970, S. A. Cook proved a theoretical result about a particular type of
abstract machine implying that an algorithm exists which solves the pattern-
matching problem in time proportional to M + N in the worst case. D. E.
Knuth and V. R. Pratt laboriously followed through the construction Cook
used to prove his theorem (which was not intended at all to be practical)
to get an algorithm which they were then able to refine to be a relatively
simple practical agorithm. This seemed a rare and satisfying example of a
theoretical result having immediate (and unexpected) practical applicability.
But it turned out that J. H. Morris had discovered virtually the same algorithm
as a solution to an annoying practical problem that confronted him when
implementing a text editor (he didn't want to ever “back up” in the text
string). However, the fact that the same algorithm arose from two such
different approaches lends it credibility as a fundamental solution to the
problem.

Knuth, Morris, and Pratt didn’t get around to publishing their algorithm
until 1976, and in the meantime R. S. Boyer and J. S. Moore (and, indepen-
dently, R. W. Gosper) discovered an algorithm which is much faster in many
applications, since it often examines only a fraction of the characters in the
text string. Many text editors use this algorithm to achieve a noticeable
decrease in response time for string searches.

Both the Knuth-Morris-Pratt and the Boyer-Moore algorithms reguire
some complicated preprocessing on the pattern that is difficult to understand

STRING SEARCHING 243

and has limited the extent, to which they are used. (In fact, the story goes
that an unknown systems programmer found Morris' agorithm too difficult
to understand and replaced it with a brute-force implementation.)

In 1980, R. M. Karp and M. 0. Rabin observed that the problem is not
as different from the standard searching problem as it had seemed, and came
up with an algorithm amost as simple as the brute-force algorithm which
virtually always runs in time proportional to M + N. Furthermore, their
algorithm extends easily to two-dimensional patterns and text, which makes
it more useful than the others for picture processing.

This story illustrates that the search for a “better algorithm” is still very
often justified: one suspects that there are still more developments on the
horizon even for this problem.

Brute-Force Algorithm

The obvious method for pattern matching that immediately comes to mind is
just to check, for each possible position in the text at which the pattern could
match, whether it does in fact match. The following program searches in this
way for the first occurrence of apattern p [1. .M] inatext stringa 1..N] :

function brutesearch: integer;

var i, j. integer;
begin
i:=1; j:=I,;
repeat

it alil=plj]

then begin i:=it+1; j:=j+1 end

else begin i:=i—j+2; j:=1 end,
until (j>M) or (i>N);
if j>M then brutesearch:=i—M else brutesearch:=i
end;

The program keeps one pointer (i) into the text, and another pointer (j) into
the pattern. As long as they point to matching characters, both pointers are
incremented. If the end of the pattern is reached (j>M), then a match has
been found. If i and j point to mismatching characters, then j is reset to point
to the beginning of the pattern and i is reset to correspond to moving the
pattern to the right one position for matching against the text. If the end
of the text is reached (i>N), then there is no match. If the pattern does not
occur in the text, the value N+1 is returned.

In a text-editing application, the inner loop of this program is seldom
iterated, and the running time is very nearly proportional to the number of

244 CHAPTER 19

text characters examined. For example, suppose that we are looking for the
pattern STING in the text string

A STRING SEARCHING EXAMPLE CONSISTING OF SIMPLE TEXT

Then the statement j:=j+1 is executed only four times (once for each S,
but twice for the first ST) before the actual match is encountered. On the
other hand, this program can be very slow for some patterns. For example, if
the pattern is 00000001 and the text string is:

00000000000000000000O00000000000000000000000000000001

then j is incremented 7*45 (315) times before the match is encountered. Such
degenerate strings are not likely in English (or Pascal) text, but the algorithm
does run more slowly when used on binary (two-character) text, as might occur
in picture processing and systems programming applications. The following
table shows what happens when the algorithm is used to search for 10010111

in the following binary string:

100111010010010010010111000111
1001

1
10
10010
10010
10010
10010111

There is one line in this table for each time the body of the repeat loop
is entered, and one character for each time j is incremented. These are the
“false starts’ that occur when trying to find the pattern: an obvious goal is
to try to limit the number and length of these.

Knuth-Morris-Pratt Algorithm

The basic idea behind the algorithm discovered by Knuth, Morris, and Pratt
is this: when a mismatch is detected, our “false start” consists of characters
that we know in advance (since they’re in the pattern). Somehow we should be
able to take advantage of this information instead of backing up the i pointer
over al those known characters.

STRING SEARCHING 245

For a simple example of this, suppose that the first character in the
pattern doesn’'t appear again in the pattern (say the pattern is 10000000).
Then, suppose we have a false start j characters long at some position in
the text. When the mismatch is detected, we know, by dint of the fact
that j characters have matched, that we don't have to “back up” the text
pointer i, since none of the previous j-I characters in the text can match
the first character in the pattern. This change could be implemented by
replacing i:=i—j+2 in the program above by i:=j+1. The practica effect of
this change is limited because such a specialized pattern is not particularly
likely to occur, but the idea is worth thinking about because the Knuth-
Morris-Pratt agorithm is a generalization. Surprisingly, it is always possible
to arrange things so that the i pointer is never decremented.

Fully skipping past the pattern on detecting a mismatch as described
in the previous paragraph won't work when the pattern could match itself
at the point of the mismatch. For example, when searching for 10100111 in
1010100111 we first detect the mismatch at the fifth character, but we had
better back up to the third character to continue the search, since otherwise
we would miss the match. But we can figure out ahead of time exactly what
to do, because it depends only on the pattern, as shown by the following table:

j pll.j—1] next]j]
2 1
3 19 1
4 1 2
5 10[L0 3
6 1010 1
7 10100}t 2
8 101001t 2

The array next [1..M] will be used to determine how far to back up when a
mismatch is detected. In the table, imagine that we slide a copy of the first
j-1 characters of the pattern over itself, from left to right starting with the
first character of the copy over the second character of the pattern, stopping
when all overlapping characters match (or there are none). These overlapping
characters define the next possible place that the pattern could match, if a
mismatch is detected at p[j]. The distance to back up (next [j]) is exactly
one plus the number of the overlapping characters. Specificaly, for j>I, the
value of next[j] is the maximum k<j for which the first k-l characters of
the pattern match the last k-l characters of the first j-I characters of the
pattern. A vertical line is drawn just after p|j—next|j] | on each line of the

246 CHAPTER 19

table. As we'll soon see, it is convenient to define next[1] to be 0.

This next array immediately gives a way to limit (in fact, as we'll see,
eliminate) the “backup” of the text pointer j; a generalization of the method
above. When | and j point to mismatching characters (testing for a pattern
match beginning at position i—j+1 in the text string), then the next possible
position for a pattern match is beginning at position i—next[j]+1. But by
definition of the next table, the first next[j]—1 characters at that position
match the first next[j]—1 characters of the pattern, so there’s no need to
back up the i pointer that far: we can simply leave the i pointer unchanged
and set the j pointer to next [j], as in the following program:

function kmpsearch : integer ;

var i, j: integer;
begin

i:=1; ji=I;
repeat

if (j=0) or (ali]=plj])
then begin i:=1+1; j:=j+1 end
else begin j:=next[j] end;
until (j>M) or (i>N);
if j> M then kmpsearch : =i-M else kmpsearch : =i;
end ;

When j=1and a[i] does not match the pattern, there is no overlap, so we want

to increment i and set j to the beginning of the pattern. This is achieved by
defining next [1] to be O, which results in j being set to 0, then i is incremented

and j set to 1 next time through the loop. (For this trick to work, the pattern

array must be declared to start at 0, otherwise standard Pascal will complain
about subscript out of range when j=O even though it doesn't really have to

access p|0] to determine the truth of the or.) Functionally, this program is
the same as brutesearch, but it is likely to run faster for patterns which are

highly self-repetitive.

It remains to compute the next table. The program for this is short but
tricky: it is basically the same program as above, except that it is used to
match the pattern against itself.

STRING SEARCHING 247

procedure initnext ;
var i, j. integer;
begin
i:r=1; j:=0; next[1]:=0;
repeat
it (j=0) or (p[i]=p[j})
then begin i:=i+1; j:=j+1; next[i]:=j end
else begin j:=next|j| end;
until i>M;
end;

Just after i and j are incremented, it has been determined that the first j-I

characters of the pattern match the characters in positions p [i-j- 1. .i-1], the
last j-I characters in the first i-l characters of the pattern. And this is the
largest j with this property, since otherwise a “possible match” of the pattern

with itself would have been missed. Thus, j is exactly the value to be assigned
to next [i].

An interesting way to view this algorithm is to consider the pattern as
fixed, so that the next table can be “wired in” to the program. For example,
the following program is exactly eguivalent to the program above for the
pattern that we've been considering, but it’s likely to be much more efficient.

i:=0;

0: I:=i+1;

1: if aij<>’1’ then goto O; i:=i+1;
2. if a[i]<>’0’ then goto 1; i:=i+]1;
3:if a[i]<>'I’ then goto 1; i:=i+1;
4:if a[i]<>’0’" then goto 2; i:=i+1;
5. if a[i]<>’0’ then goto 3; i:=i+1;
6: if a[i]<>’1"then goto 1, i:=i+1;
7. if ali]<>’I’ then goto 2; i:=i+1;
8 if a[i]<>’1" then goto 2, i:=i+1;

sach @ =i—8§;

The goto labels in this program correspond precisely to the next table. In
fact, the initnext program above which computes the next table could easily
be modified to output this program’ To avoid checking whether i>N each
time i is incremented, we assume that the pattern itself is stored at the end
of the text as a sentinel, in a[N+1 ..N+M]. (This optimization could also
be applied to the standard implementation.) This is a simple example of a
“string-searching compiler” : given a pattern, we can produce a very efficient

248 CHAPTER 19

program which can scan for that pattern in an arbitrarily long text string.
WEe'll see generalizations of this concept in the next two chapters.

The program above uses just a few very basic operations to solve the
string searching problem. This means that it can easily be described in terms
of a very simple machine model, called a finite-state machine. The following
diagram shows the finite-state machine for the program above:

o —
- - -

N
/

CF—o—@—@—0—0—0—0—

N
\
N /

-—— -

- e -

The machine consists of states (indicated by circled letters) and transi-
tions (indicated by arrows). Each state has two transitions leaving it: a match
transition (solid line) and a non-match transition (dotted line). The states
are where the machine executes instructions; the transitions are the goto in-
structions. When in the state labeled “z,” the machine can perform just
one instruction: “if the current character is x then scan past it and take the
match transition, otherwise take the non-match transition.” To “scan past”
a character means to take the next character in the string as the “current
character”; the machine scans past characters as it matches them. There
is one exception to this: the non-match transition in the first state (marked
with a double line) also requires that the machine scan to the next charac-
ter. (Essentially this corresponds to scanning for the first occurrence of the
first character in the pattern.) In the next chapter we'll see how to use a
similar (but more powerful) machine to help develop a much more powerful
pattern-matching algorithm.

The alert reader may have noticed that there's still some room for im-
provement in this algorithm, because it doesn’t take into account the character
which caused the mismatch. For example, suppose that we encounter 1011
when searching for our sample pattern 10100111. After matching 101, we
find a mismatch on the fourth character, at which point the next table says
to check the second character, since we aready matched the 1 in the third
character. However, we could not have a match here: from the mismatch, we
know that the next character in the text is not O, as required by the pattern.

STRING SEARCHING 249

Another way to see this is to look at the version of the program with the next
table “wired in": at label 4 we go to 2 if afi] is not O, but at label 2 we go
to 1 if &i] is not 0. Why not just go to 1 directly? Fortunately, it is easy

to put this change into the algorithm. We need only replace the statement
nextli] :=j in the initnext program by

if p[j]<>pl[i] then next[i]:=j else next|[i]:=next[j];

With this change, we either increment j ¢r reset it from the next table at most
once for each value of i, so the algorithm is clearly linear.

The Knuth-Morris-Pratt algorithm s not likely to be significantly faster
than the brute-force method in most actual applications, because few ap-
plications involve searching for highly self-repetitive patterns in highly self-
repetitive text. However, the method does have a mgjor virtue from a practi-
cal point of view: it proceeds sequentially through the input and never “backs
up” in the input. This makes the method convenient for use on a large file
being read in from some external device. (Algorithms which require backup
require some complicated buffering in this situation.)

Boyer-Moore Algorithm

If “backing up” is not a problem, then & significantly faster string searching
method can be developed by scanning the pattern from right to left when
trying to match it against the text. When searching for our sample pattern
10100111, if we find matches on the eighth, seventh, and sixth character but
not on the fifth, then we can immediately slide the pattern seven positions to
the right, and check the fifteenth character next, because our partial match
found 111, which might appear elsewhs=re in the pattern. Of course, the
pattern at the end does appear elsewhere in general, so we need a next table
as above. For example, the following is a right-to-left version of the next table
for the pattern 10110101:

i p[M=j+2.M] p[M—next[j]+1..M] next|j]
2 1101 4
3 010110101 7
4 10101 2
5 010110101 5
6 1010110101 5
7 11010110101 5
8 011010130101 5

250 CHAPTER 19

The number at the right on the jth line of the table gives the maximum
number of character positions that the pattern can be shifted to the right
given that a mismatch in a right-to-left scan occurred on the jth character
from the right in the pattern. This is found in a similar manner as before, by
dliding a copy of the pattern over the last j-I characters of itself from left
to right starting with the next-to-last character of the copy lined up with the
last character of the pattern, stopping when al overlapping characters match
(also taking into account the character which caused the mismatch).

This leads directly to a program which is quite similar to the above
implementation of the Knuth-Morris-Pratt method. We won't go into this
in more detail because there is a quite different way to skip over characters
with right-to-left pattern scanning which is much better in many cases.

The idea is to decide what to do next based on the character that caused
the mismatch in the tezt as well as the pattern. The simplest realization of
this leads immediately to a quite useful program. Consider the first example
that we studied, searching for the pattern STING in the text string

A STRING SEARCHING EXAMPLE CONSISTING OF SIMPLE TEXT

Proceeding from right to left to match the pattern, we first check the G
in the pattern against the R (the fifth character) in the text. Not only do
these not match, but also we can notice that R does not appear anywhere
in the pattern, so we might as well dlide it al the way past the R. The next
comparison is of the G in the pattern against the fifth character following the
R (the S in SEARCHING). This time, we can dide the pattern to the right
until its § matches the S in the text. Then the G in the pattern is compared
against the C in SEARCHING, which doesn’'t appear in the pattern, so it can
be dlid five more places to the right. After three more five-character skips,
we arrive a the T in CONSISTING, a which point we align the pattern
so that the its T matches the T in the text and find the full match. This
method brings us right to the match position at a cost of examining only seven
characters in the text (and five more to verify the match)! If the aphabet
is not small and the pattern is not long, then this “mismatched character
algorithm” will find a pattern of length M in a text string of length N in
about N/M steps.

The mismatched character algorithm is quite easy to implement. It
simply improves a brute-force right-to-left pattern scan by using an array
skip which tells, for each character in the aphabet, how far to skip if that
character appears in the text and causes a mismatch:

STRING SEARCHING 251

function mischarsearch: integer;
var i, j: integer;
begin
1:=M; j:==M;
repeat
italij=plyl
then begin i:=i—1; j:=j—1 end
else
begin
p=i+M—j+1; j:=M,;
if skip[index(a[i])]>M-j+1 then
i:=i+skip[index(ali])]—(M—j+1);
end;
until (j<1) or (i>N);
mischarsearch:=i+1
end;

The statement i:=i+M—j+1 resets i to the next position in the text string (as
the pattern moves from left-to-right across it); then j:=M resets the pattern
pointer to prepare for a right-to-left character-by-character match. The next
statement moves the pattern even further across the text, if warranted. For
simplicity, we assume that we have a function index(c: char): integer; that
returns O for blanks and ; for the ¢th letter of the alphabet, and a procedure
initskip which initializes the skip array to M for characters not in the pattern
and then for j from 1 to M sets skip[index(p[j])] to M-j. For example, for
the pattern STING, the skip entry for G would be 0, the entry for N would be
1, the entry for | would be 2, the entry for T would be 3, the entry for S would
be 4, and the entries for all other letters ‘would be 5. Thus, for example, when
an S is encountered during a right-to-lefi, search, the i pointer is incremented
by 4 so that the end of the pattern is aligned four positions to the right of the
S (and consequently the S in the pattern lines up with the S in the text). If
there were more than one S in the pattern, we would want to use the rightmost
one for this calculation: hence the skip array is built by scanning from left to
right.

Boyer and Moore suggested combiniag the two methods we have outlined

for right-to-left pattern scanning, choosing the larger of the two skips called
for.

The mismatched character algorithm obviously won't help much for bi-
nary strings, because there are only two possibilities for characters which cause
the mismatch (and these are both likely to be in the pattern). However, the
bits can be grouped together to make “characters” which can be used exactly

252 CHAPTER 19

as above. If we take b bits at a time, then we need a skip table with 2° entries.
The value of b should be chosen small enough so that this table is not too
large, but large enough that most b-bit sections of the text are not likely to
be in the pattern. Specifically, there are M b + 1 different b-bit sections in
the pattern (one starting at each bit position from 1 through M-b+ 1) so we
want M = b + 1 to be significantly less than 2°. For example, if we take b to
be about lg(4M), then the skip table will be more than three-quarters filled
with M entries. Also b must be less than M/2, otherwise we could miss the
pattern entirely if it were split between two b-bit text sections.

Rabin-Karp Algorithm

A brute-force approach to string searching which we didn’'t examine above
would be to use a large memory to advantage by treating each possible M-
character section of the text as a key in a standard hash table. But it is
not necessary to keep a whole hash table, since the problem is set up so that
only one key is being sought: all that we need to do is to compute the hash
function for each of the possible M-character sections of the text and check if
it is equal to the hash function of the pattern. The problem with this method
is that it seems at first to be just as hard to compute the hash function for M
characters from the text as it is merely to check to see if they’re equal to the
pattern. Rabin and Karp found an easy way to get around this problem for the
hash function h(k) = kmodg where ¢ (the table size) is a large prime. Their
method is based on computing the hash function for position i in the text
given its value for position i 1. The method follows quite directly from the
mathematical formulation. Let's assume that we translate our M characters
to numbers by packing them together in a computer word, which we then
treat as an integer. This corresponds to writing the characters as numbers in
a base-d number system, where d is the number of possible characters. The
number corresponding to a[i..i + M —1] is thus

z=aff)dM ! fafi + 1]dM 2+ o+ ai + M =1

and we can assume that we know the value of h(z) = xmodg. But shifting
one position right in the text simply corresponds to replacing x by

(x = afi]d™~Y)d + ali + M].

A fundamental property of the mod operation is that we can perform it at any
time during these operations and still get the same answer. Put another way,
if we take the remainder when divided by ¢ after each arithmetic operation
(to keep the numbers that we're dealing with small) then we get the same
answer that we would if we were to perform al of the arithmetic operations,
then take the remainder when divided by q.

STRING SEARCHING 253

This leads to the very simple pattern-matching agorithm implemented
below. The program assumes the same i1dex function as above, but d=32 is
used for efficiency (the multiplications might be implemented as shifts).

function rksearch : integer;
const q=33554393; d=32;
var hl,h2, dM, i: integer:
begin
dM:=1; for i:=1 to M-1 do dM:=(d*dM) mod ¢
h1:=0; for i:=1 to M do h1:=(h1*d+index(p[i])) mod q;
h2:=0; for i:=1 to M do h2:=(h2xd+index(a[i])) mad q;
=1,
while (h1<>h2) and (ix=N—M) do
begin
h2:=(h2+d*q—index(a[i])*dM) mad q;
h2:=(h2xd+index(ali--M])) mod g;
ir=i+1,;
end;
rksearch :=i;
end ;

The program first computes a hash valie hil for the pattern, then a hash
value h2 for the first M characters of the text. (Also it computes the value
of d™~! modq in the variable dM.) Then it proceeds through the text string,
using the technique above to compute the hash function for the M characters
starting at position i for each i, comparing each new hash value to hl. The
prime q is chosen to be as large as possible, but small enough that (d+1)*q
doesn’'t cause overflow: this requires less mod operations then if we used the
largest repesentable prime. (An extra d*q is added during the h2 calculation
to make sure that everything stays positive so that the mod operation works
as it should.)

This algorithm obviously takes time proportional to N + M. Note that
it really only finds a position in the text which has the same hash value as the
pattern, so, to be sure, we really should do a direct comparison of that text
with the pattern. However, the use of suca alarge value of g, made possible by
the mod computations and by the fact that we don’t have to keep the actual
hash table around, make8 it extremely unlikely that a collision will occur.
Theoretically, this algorithm could still take NM steps in the (unbelievably)
worst case, but in practice the algorithm can be relied upon to take about
N + M steps.

254 CHAPTER 19

Multiple Searches

The agorithms that we've been discussing are all oriented towards a specific
string searching problem: find an occurrence of a given pattern in a given
text string. If the same text string is to be the object of many pattern
searches, then it will be worthwhile to do some processing on the string to
make subsequent searches efficient.

If there are a large number of searches, the string searching problem can
be viewed as a specia case of the general searching problem that we studied
in the previous section. We simply treat the text string as N overlapping
“keys,” the ith key defined to be a[l1..N], the entire text string starting at
position i. Of course, we don't manipulate the keys themselves, but pointers
to them: when we need to compare keys i and j we do character-by-character
compares starting at positions i and j of the text string. (If we use a “sentinel”
character larger than all other characters at the end, then one of the keys
will always be greater than the other.) Then the hashing, binary tree, and
other algorithms of the previous section can be used directly. First, an entire
structure is built up from the text string, and then efficient searches can be
performed for particular patterns.

There are many details which need to be worked out in applying searching
algorithms to string searching in this way; our intent is to point this out as
a viable option for some string searching applications. Different methods will
be appropriate in different situations. For example, if the searches will aways
be for patterns of the same length, a hash table constructed with a single scan
as in the Rabin-Karp method will yield constant search times on the average.
On the other hand, if the patterns are to be of varying length, then one of the
tree-based methods might be appropriate. (Patricia is especially adaptable to
such an application.)

Other variations in the problem can make it significantly more difficult
and lead to drasticaly different methods, as we'll discover in the next two

chapters.
[]

STRING SEARCHING 255

Exercises

1

=

10.

Implement a brute-force pattern metching algorithm that scans the pat-
tern from right to left.

Give the next table for the Knuth-Morris-Pratt algorithm for the pattern
AAAAAAAA.

Give the next table for the Knuth-Morris-Pratt algorithm for the pattern
ABRACADABRA.

Draw a finite state machine which can search for the pattern ABRACAD
ABRA.

How would you search a text file for a string of 50 consecutive blanks?

Give the right-to-left skip table for the right-left scan for the pattern
ABRACADABRA.

Construct an example for which the right-to-left pattern scan with only
the mismatch heuristic performs badly.

How would you modify the Rabin-Karp algorithm to search for a given
pattern with the additional proviso that the middle character is a “‘wild
card” (any text character at all can match it)?

Implement a version of the Rabin-Karp algorithm that can find a given
two-dimensional pattern in a given two-dimensional text. Assume both
pattern and text are rectangles of characters.

Write programs to generate a random 1000-bit text string, then find all
occurrences of the last k bits elsewhere in the string, for k = 5,10, 15.
(Different methods might be appropriate for different values of k.)

20. Pattern Matching

It is often desirable to do string searching with somewhat less than
complete information about the pattern to be found. For example, the
user of a text editor may wish to specify only part of his pattern, or he may
wish to specify a pattern which could match a few different words, or he might
wish to specify that any number of occurrences of some specific characters
should be ignored. In this chapter we'll consider how pattern matching of this
type can be done efficiently.

The algorithms in the previous chapter have a rather fundamental depen-
dence on complete specification of the pattern, so we have to consider different
methods. The basic mechanisms that we will consider make possible a very
powerful string searching facility which can match complicated M-character
patterns in N-character text strings in time proportional to MN.

First, we have to develop a way to describe the patterns: a “language”
that can be used to specify, in a rigorous way, the kinds of partial string
searching problems suggested above. Th s language will involve more powerful
primitive operations than the simple “check if the ith character of the text
string matches the jth character of the pattern” operation used in the previous
chapter. In this chapter, we consider three basic operations in terms of an
imaginary type of machine that has the capability for searching for patterns
in a text string. Our pattern-matching algorithm will be a way to simulate
the operation of this type of machine. [n the next chapter, we'll see how to
translate from the pattern specification (which the user employs to describe
his string searching task) to the machine specification (which the algorithm
employs to actually carry out the search).

As we'll see, this solution to the pattern matching problem is intimately
related to fundamental processes in computer science. For example, the
method that we will use in our program to perform the string searching task
implied by a given pattern description is akin to the method used by the

257

258 CHAPTER 20

Pascal system to perform the computational task implied by a given Pascal
program.

Describing Patterns

WEe'll consider pattern descriptions made up of symbols tied together with the
following three fundamental operations.

(i) Concatenation. This is the operation used in the last chapter. If two
characters are adjacent in the pattern, then there is a match if and only
if the same two characters are adjacent in the text. For example, AB
means A followed by B.

(i) Or. This is the operation that allows us to specify aternatives in the
pattern. If we have an “or” between two characters, then there is a
match if and only if either of the characters occurs in the text. We'll
denote this operation by using the symbol + and use parentheses to
alow it to be combined with concatenation in arbitrarily complicated
ways. For example, A+B means “either A or B”; C(AC+B)D means
“either CACD or CBD”; and (A+C)((B+C)D) means “either ABD or
CBD or ACD or CCD."

(iii) Closure. This operation alows parts of the pattern to be repeated
arbitrarily. If we have the closure of a symbol, then there is a match if
and only if the symbol occurs any number of times (including 0). Closure
will be denoted by placing a* after the character or parenthesized group
to be repeated. For example, AB* matches strings consisting of an A
followed by any number of B’s, while {AB)* matches strings consisting
of alternating A’s and B’s.

A string of symbols built up using these three operations is called a regular
expression. Each regular expression describes many specific text patterns.
Our goal is to develop an algorithm which will determine if any of the patterns
described by a given regular expression occur in a given text string.

WEe'll concentrate on concatenation, or, and closure in order to show
the basic principles in developing a regular-expression pattern matching al-
gorithm. Various additions are commonly made in actual systems for con-
venience. For example, -A might mean “match any character except A.”
This not operation is the same as an or involving al the characters except
A but is much easier to use. Similarly, “?” might mean “match any letter.”
Again, this is obviously much more compact than a large or. Other examples
of additional symbols which might make specification of large patterns easier
are symbols which match the beginning or end of a line, any letter or any
number, etc.

These operations can be remarkably descriptive. For example, the pattern
description ?*(ie + eg)?* matches all words which have ie or e in them (and so

PATTERN MATCHING 259

are likely to be misspelled!); and (1 + 01)* (O + 1) describes all strings of O's and
I’s which do not have two consecutive ()’s. Obviously there are many different
pattern descriptions which describe the same strings: we must try to specify
succinct pattern descriptions just as we ry to write efficient algorithms.

The pattern matching algorithm that we'll examine may be viewed as
a generalization of the brute force left-to-right string searching method (the
first method that we looked at in Chapter 19). The algorithm looks for the
leftmost substring in the text string which matches the pattern description by
scanning the text string from left to rigat, testing, at each position whether
there is a substring beginning at that position which matches the pattern
description.

Pattern Matching Machines

Recall that we can view the Knuth-Morris-Pratt agorithm as a finite-state
machine constructed from the search pattern which scans the text. The
method we will use for regular-expressior pattern matching is a generalization
of this.

The finite-state machine for the Knuth-Morris-Pratt algorithm changes
from state to state by looking at a character from the text string and then
changing to one state if there’s a match, to another state if not. A mismatch
at any point means that the pattern couldn’t occur in the text starting at that
point. The algorithm itself can be thought of as a simulation of the machine.
The characteristic of the machine that makes it easy to simulate is that it
is deterministic: each state transition is completely determined by the next
input character.

To handle regular expressions, it will be necessary to consider a more
powerful abstract machine. Because of the or operation, the machine can't
determine whether or not the pattern could occur at a given point by examin-
ing just one character; in fact, because o closure, it can't even determine how
many characters might need to be exam:ned before a mismatch is discovered.
The most natural way to overcome these problems is to endow the machine
with the power of nondeterminism: when faced with more than one way to
try to match the pattern, the machine should “guess’ the right one! This
operation seems impossible to allow, but, we will see that it is easy to write a
program to simulate the actions of such a machine.

For example, the following diagram shows a nondeterministic finite-state
machine that could be used to search for the pattern description (A*B+AC)D
in a text string.

260 CHAPTER 20

As in the deterministic machine of the previous chapter, the machine can
travel from a state labeled with a character to the state “pointed to” by that
state by matching (and scanning past) that character in the text string. What
makes the machine nondeterministic is that there are some states (called null
states) which not only are not labeled, but also can “point to” two different
successor states. (Some null states, such as state 4 in the diagram, are “no-
op” states with one exit, which don’t affect the operation of the machine,
but which make easier the implementation of the program which constructs
the machine, as we'll see. State 9 is a null state with no exits, which stops
the machine.) When in such a state, the machine can go to either successor
state regardless of what’s in the input (without scanning past anything). The
machine has the power to guess which transition will lead to a match for the
given text string (if any will). Note that there are no “non-match” transitions
as in the previous chapter: the machine fails no find a match only if there is
no way even to guess a sequence of transitions that leads to a match.

The machine has a unique initial state (which is pointed to by a “free”
arrow) and a unique final state (which has no arrows going out). When started
out in the initial state, the machine should be able to “recognize” any string
described by the pattern by reading characters and changing state according
to its rules, ending up in the “final state.” Because it has the power of
nondeterminism, the machine can guess the sequence of state changes that
can lead to the solution. (But when we try to simulate the machine on a
standard computer, we'll have to try all the possibilities.) For example, to
determine if its pattern description (A*B+AC)D can occur in the text string

CDAABCAAABDDACDAAC

the machine would immediately report failure if started on the first or second
character; it would work some to report failure on the next two characters; it
would immediately report failure on the fifth or sixth characters; and it would
guess the sequence of state transitions

PATTERN MATCHING 261

52 2 1 21234829

to recognize AAABD if started on the seventh character.

We can construct the machine for a given regular expression by building
partial machines for parts of the expression and defining the ways in which
two partial machines can be composed into a larger machine for each of the
three operations: concatenation, or, and closure.

We start with the trivial machine to recognize a particular character. It's
convenient to write this as a two-state machine, with one initial state (which
also recognizes the character) and one fina state, as below:

—®—0

Now to build the machine for the concatenation of two expressions from the
machines for the individual expressions, we simply merge the fina state of
the first with the initial state of the second:

S

2O
b*O:: O ¢

Similarly, the machine for the or operation is built by adding a new null state
pointing to the two initial states, and making one final state point to the
other, which becomes the final state of she combined machine.

»

o }o

Finally, the machine for the closure operation is built by making the final
state the initial state and making it point back to the old initial state and a
new final state.

262 CHAPTER 20

»

A machine can be built which corresponds to any regular expression by
successively applying these rules. The numbers of the states for the example
machine above are in order of creation as the machine is built by scanning
the pattern from left to right, so the construction of the machine from the
rules above can be easily traced. Note that we have a 2-state trivial machine
for each letter in the regular expression, and each + and * causes one state to
be created (concatenation causes one to be deleted) so the number of states is
certainly less than twice the number of characters in the regular expression.

Representing the Machine

Our nondeterministic machines will all be constructed using only the three
composition rules outlined above, and we can take advantage of their simple
structure to manipulate them in a straightforward way. For example, no state
has more than two arrows leaving it. In fact, there are only two types of states:

those labeled by a character from the input alphabet (with one arrow |leaving)
and unlabeled (null) states (with two or fewer arrows leaving). This means
that the machine can be represented with only a few pieces of information
per node. For example, the machine above might be represented as follows:

State Character Next I Next 2

0 5 -
1 A 2

2 3 1
3 B 4 -
4 8 8
5 6 2
6 A 7 -
7 C 8 -
8 D 9

9 0 0

The rows in this table may be interpreted as instructions to the nondeter-
ministic machine of the iorm “If you are in State and you see Character then
scan the character and go to state Next 1 (or Next 2).” State 9 is the final
state in this example, and State 0 is a pseudo-initial state whose Next 1 entry

PATTERN MATCHING 263

is the number of the actual initial state. (Note the special representation used
for null states with 0 or 1 exits.)

Since we often will want to access states just by number, the most suitable
organization for the machine is to use the array representation. We'll use the
three arrays

ch: array [0.Mmax] of char;
nextl, next?2: array [0..Mmax] of integer;

Here Mmax is the maximum number of states (twice the maximum pattern
length). It would be possible to get by with two-thirds this amount of space,
since each state really uses only two meaningful pieces of information, but
we'll forsake this improvement for the sake of clarity and also because pattern
descriptions are not likely to be particularly long.

We've seen how to build up machnes from regular expression pattern
descriptions and how such machines might be represented as arrays. However,
to write a program to do the translation from a regular expression to the
corresponding nondeterministic machine representation automatically is quite
another matter. In fact, even writing a program to determine if a given regular
expression is legal is challenging for the uninitiated. In the next chapter, we'll
study this operation, called parsing, in much more detail. For the moment,
we'll assume that this translation has been done, so that we have available
the ch, nextl, and next2 arrays representing a particular nondeterministic
machine which corresponds to the regular expression pattern description of
interest.

Simulating the Machine

The last step in the development of a. general regular-expression pattern-
matching algorithm is to write a program which somehow simulates the opera-
tion of a nondeterministic pattern-matching machine. The idea of writing a
program which can “guess’ the right answer seems ridiculous. However, in
this case it turns out that we can keep track of all possible matches in a
systematic way, so that we do eventually encounter the correct one.

One possibility would be to develop a recursive program which mimics
the nondeterministic machine (but tries all possibilities rather than guessing
the right one). Instead of using this approach, we'll look at a nonrecursive
implementation which exposes the basic operating principles of the method
by keeping the states under consideration in a rather peculiar data structure
called a deque, described in some detail below.

The idea is to keep track of all states that could possibly be encountered
while the machine is “looking at” the current input character. Each of these

264 CHAPTER 20

states are processed in turn: null states lead to two (or fewer) states, states for
characters which do not match the current input are eliminated, and states
for characters which do match the current input lead to new states for use
when the machine is looking at the next input character. Thus, we maintain
a list of all the states that the nondeterministic machine could possibly be in
at a particular point in the text: the problem is to design an appropriate data
structure for this list.

Processing null states seems to require a stack, since we are essentially
postponing one of two things to be done, just as when we removed the
recursion from Quicksort (so the new state should be put at the beginning
of the current list, lest it get postponed indefinitely). Processing the other
states seems to require a queue, since we don’'t want to examine states for the
next input character until we've finished with the current character (so the
new state should be put at the end of the current list). Rather than choosing
between these two data structures, we'll use both! Deques (“double-ended
gueues’) combine the features of stacks and queues: a deque is a list to which
items can be added at either end. (Actually, we use an “output-restricted
deque,” since we always remove items from the beginning, not the end: that
would be “dealing from the bottom of the deck.”)

A crucial property of the machine is that there are no “loops’ consisting of
just null states: otherwise it could decide nondeterministically to loop forever.
It turns out that this implies that the number of states on the deque at any
time is less than the number of characters in the pattern description.

The program given below uses a deque to simulate the actions of a non-
deterministic pattern-matching machine as described above. While examin-
ing a particular character in the input, the nondeterministic machine can be
in any one of several possible states: the program keeps track of these in
a degue dg. One pointer (head) to the head of the deque is maintained so
that items can be inserted or removed at the beginning, and another pointer
(tail) to the tail of the degue is maintained so that items can be inserted
at the end. If the pattern description has M characters the degue can be
implemented in a “circula” manner in an array of M integers. The con-
tents of the deque are the elements “between” head and tail (inclusive): if
head<=tail, the meaning is obvious; if head>tail we take the elements that
would fall between head and tail if the elements of dq were arranged in a
circle dq[head], dg[head+1]},...,dq[M—1],dq[0],dq[1], . . .,dq[tail]. This is
quite simply implemented by using head:= head+1 mod M to increment head
and similarly for tail. Similarly, head:= head+M—1 mod M refers to the ele-
ment before head in the array: this is the position at which an element should
be added to the beginning of the degue.

The main loop of the program removes a state from the deque (by

PATTERN MATCHING 265

incrementing head mod M and then referring to dglhead]) and performs the
action required. If a character is to be matched, the input is checked for the
required character: if it is found, the s:ate transition is effected by putting
the new state at the end of the deque (so that all states involving the current

character are processed before those involving the next one). If the state is

null, the two possible states to be simulated are put at the beginning of the
deque. The states involving the curren’ input character are kept separated
from those involving the next by a marker scan=—1 in the degue: when
scan is encountered, the pointer into the input string is advanced. The loop
terminates when the end of the input is reached (no match found), state O is
reached (legal match found), or only one item, the scan marker is left on the
degue (no match found). This leads directly to the following implementation:

function match(j: intege-): integer;
const scan=- 1;
var head, tail, nl, n2: integer;
dg: array [0..Mmax] of integer;
procedure addhead(x: integer);
begin dg[head] :=x; head:=(head+M—1) mod A4 end;
procedure addtail(x: integer);
begin tail:=(tail+1) mod M; dq|tail]:=x end;
begin
head:=1; tail:=0;
addtail(next1 [O]); addtail(scan);
match:=j—1;
repeat
if dg [head] =scan th2n
begin j:=j+1; addtail(scan) end
elseif ch [dq[head]]==a[j] then
addtail(next1|dq[head]])
else if ch[dq[head]]==" ‘then
begin
nl :=nextl [dq[heed]] ; n2:=next2{dq[head|];
addhead(nl); if 1:1<>n2 then addhead(n2)
ed ;
head:=(head+l) mod M
until (j>N) or (dg[head]=0) or (head=tail);
if dq[head]=0 then match:=j—1I;
end ;

This function takes as its argument the osition j in the text string a at which

266 CHAPTER 20

it should start trying to match. It returns the index of the last character in
the match found (if any, otherwise it returns j-1).

The following table shows the contents of the deque each time a state is
removed when our sample machine is run with the text string AABD. (For
clarity, the details involving head, tail, and the maintenance of the circular
deque are suppressed in this table: each line shows those elements in the deque
between the head and tail pointers.) The characters appear in the lefthand

column in the table at the point when the program has finished scanning
them.

5 scan
2 6 scan
1 3 6 scan
3 6 scan 2
6 scan 2
A scan 2 7
2 7 scan
1 3 7 scan
3 7 scan 2
7 scan 2
A scan 2
2 scan
1 3 scan
3 scan
B scan 4
4 scan
8 scan
D scan 9
9 scan
0 scan

Thus, we start with State 5 while scanning the first character. First State 5
leads to States 2 and 6, then State 2 leads to States 1 and 3, all of which need
to scan the same character and are on the beginning of the deque. Then State
1 leads to State 2, but at the end of the deque (for the next input character).
State 3 only leads to another state while scanning a B, so it is ignored while
an A is being scanned. When the “scan” sentinel finally reaches the front of
the deque, we see that the machine could be either in State 2 or State 7 after
scanning an A. Continuing, the program eventually ends up the final state,
after considering all transitions consistent with the text string.

PATTERN MATCHING 267

The running time of this program obviously depends very heavily on
the pattern being matched. However, for each of the N input characters, it
processes at most M states of the machiine, SO the worst case running time
is proportional to MN. For sure, not al nondeterministic machines can be
simulated so efficiently, as discussed in more detail in Chapter 40, but the use
of a simple hypothetical pattern-matching machine in this application leads
to a quite reasonable algorithm for a quite difficult problem. However, to
complete the algorithm, we need a program which translates arbitrary regular
expressions into “machines’ for interpretation by the above code. In the next
chapter, we'll look at the implementation of such a program in the context of
a more general discussion of compilers and parsing techniques.

r-|

268

Exercises

1

10.

Give a regular expression for recognizing all occurrences of four or fewer
consecutive I’s in a binary string.

Draw the nondeterministic pattern matching machine for the pattern
description (A+B)* +C.

Give the state transitions your machine from the previous exercise would
make to recognize ABBAC.

Explain how you would modify the nondeterministic machine to handle
the “not” function.

Explain how you would modify the nondeterministic machine to handle
“don’'t-care” characters.

What would happen if match were to try to simulate the following ma
chine?

Modify match to handle regular expressions with the “not” function and
“don’'t-care” characters.

Show how to construct a pattern description of length M and a text
string of length N for which the running time of match is as large as
possible.

Why must the deque in match have only one “scan” sentinel in it?
Show the contents of the deque each time a state is removed when match

is used to simulate the example machine in the text with the text string
ACD.

21. Parsing

Several fundamental algorithms have been developed to recognize legal
computer programs and to decomrpose their structure into a form suitable
for further processing. This operation, called parsing, has application beyond
computer science, since it is directly related to the study of the structure
of language in general. For example, parsing plays an important role in sys-
tems which try to “understand” natural (human) languages and in systems
for translating from one language to another. One particular case of inter-
est is translating from a “high-level” computer language like Pascal (suitable
for human use) to a “low-level” assemtly or machine language (suitable for
machine execution). A program for doing such a translation is called a com-
piler.

Two general approaches are used for parsing. Top-down methods ook
for a legal program by first looking for parts of a legal program, then looking
for parts of parts, etc. until the pieces are small enough to match the input
directly. Bottom-up methods put pieces of the input together in a structured
way making bigger and bigger pieces until a legal program is constructed.
In general, top-down methods are recursive, bottom-up methods are iterative;
top-down methods are thought to be easier to implement, bottom-up methods
are thought to be more efficient.

A full treatment of the issues involved in parser and compiler construction
would clearly be beyond the scope of this. book. However, by building a smple
“compiler” to complete the pattern-mat:hing algorithm of the previous chap-
ter, we will be able to consider some of’ the fundamental concepts involved.
First we'll construct a top-down parser for a simple language for describing
regular expressions. Then we'll modify the parser to make a program which
translates regular expressions into pattern-matching machines for use by the
match procedure of the previous chapter.

Our intent in this chapter is to give some feeling for the basic principles

269

270 CHAPTER 21

of parsing and compiling while at the same time developing a useful pattern
matching algorithm. Certainly we cannot treat the issues involved at the
level of depth that they deserve. The reader should be warned that subtle
difficulties are likely to arise in applying the same approach to similar prob-
lems, and advised that compiler construction is a quite well-developed field
with a variety of advanced methods available for serious applications.

Context-Free Grammars

Before we can write a program to determine whether a program written in
a given language is legal, we need a description of exactly what constitutes
a legal program. This description is called a grammar: to appreciate the ter-
minology, think of the language as English and read “sentence” for “program”
in the previous sentence (except for the first occurrence!). Programming lan-
guages are often described by a particular type of grammar called a contezt-
free grammar. For example, the context-free grammar which defines the set
of all legal regular expressions (as described in the previous chapter) is given
below.

(expression) : : = (term) (term) + (expression)
(term) = (factor) (factor){term)
(factor) ::= ((expression)) v (factor)*

This grammar describes regular expressions like those that we used in the last
chapter, such as (1401)*(0+1) or (A*B+AC)D. Each line in the grammar is
caled a production or replacement rule. The productions consist of terminal
symbols (,), + and * which are the symbols used in the language being
described (“v,” a special symbol, stands for any letter or digit); nonterminal
symbols (expression), (term), and (factor) which are internal to the grammar;
and metasymbols ::= and which are used to describe the meaning of the
productions. The ::= symbol, which may be read “;s a” defines the left-hand
side of the production in terms of the right-hand side; and the symbol, which
may be read as “or” indicates alternative choices. The various productions,
though expressed in this concise symbolic notation, correspond in a simple
way to an intuitive description of the grammar. For example, the second
production in the example grammar might be read “a (term) is a (factor)
or a (factor) followed by a (term).” One nonterminal symbol, in this case
(expression), is distinguished in the sense that a string of terminal symbols is
in the language described by the grammar if and only if there is some way to
use the productions to derive that string from the distinguished nonterminal
by replacing (in any number of steps) a nontermina symbol by any of the “or”
clauses on the right-hand side of a production for that nonterminal symbol.

PARSING 271

One natural way to describe the result of this derivation process is called
a purse tree: a diagram of the complete grammatical structure of the string
being parsed. For example, the following parse tree shows that the string
(A*B+AC)D is in the language described by the above grammar.

The circled internal nodes labeled E, F, and T represent (expression), (factor),
and (term), respectively. Parse trees like this are sometimes used for English,
to break down a “sentence” into “subject,” “verb,” “object,” etc.

The main function of a parser is to accept strings which can be so derived
and reject those that cannot, by attempting to construct a parse tree for
any given string. That is, the parser can recognize whether a string is in
the language described by the grammar by determining whether or not there
exists a parse tree for the string. Top-down parsers do so by building the
tree starting with the distinguished nonterminal at the top, working down
towards the string to be recognized at the bottom; bottom-up parsers do this
by starting with the string at the bottom, working backwards up towards the
distinguished nonterminal at the top.

As we'll see, if the strings being recognized also have meanings implying
further processing, then the parser can convert them into an internal repre-
sentation which can facilitate such processing.

Another example of a context-free grammar may be found in the appen-
dix of the Pascal User Manual and Report: it describes legal Pascal programs.
The principles considered in this section for recognizing and using legal ex-
pressions apply directly to the complex job of compiling and executing Pascal

272 CHAPTER 21

programs. For example, the following grammar describes a very small subset
of Pascal, arithmetic expressions involving addition and multiplication.

(expression) = (term) (term) + (expression)
(term) = (factor) (factor)* (term)
(factor) ::= ((expression)) v

Again, v is a special symbol which stands for any letter, but in this grammar
the letters are likely to represent variables with numeric values. Examples of
legal strings for this grammar are A+(B*C) and (A+B*C)*D*(A+(B+C)).

As we have defined things, some strings are perfectly legal both as arith-
metic expressions and as regular expressions. For example, A*(B+C) might
mean “add B to C and multiply the result by A” or “take any number of A’s
followed by either B or C.” This points out the obvious fact that checking
whether a string is legally formed is one thing, but understanding what it
means is quite another. We'll return to this issue after we've seen how to
parse a string to check whether or not it is described by some grammar.

Each regular expression is itself an example of a context-free grammar:
any language which can be described by a regular expression can also be
described by a context-free grammar. The converse is not true: for example,
the concept of “balancing” parentheses can't be captured with regular ex-
pressions. Other types of grammars can describe languages which can’'t be
described by context-free grammars. For example, context-sensitive grammars
are the same as those above except that the left-hand sides of productions
need not be single nonterminals. The differences between classes of languages
and a hierarchy of grammars for describing them have been very carefully
worked out and form a beautiful theory which lies at the heart of computer
science.

Top-Down Parsing

One parsing method uses recursion to recognize strings from the language
described exactly as specified by the grammar. Put simply, the grammar is
such a complete specification of the language that it can be turned directly
into a program!

Each production corresponds to a procedure with the name of the non-
terminal on the left-hand side. Nonterminals on the right-hand side of the
input correspond to (possibly recursive) procedure calls; terminals correspond
to scanning the input string. For example, the following procedure is part of
a top-down parser for our regular expression grammar:

PARSING 273

procedure expression;

begin
term ;
if p[j]="+" then
begin j:=j+ 1, expression end
end:

An array p contains the regular expression being parsed, with an index j
pointing to the character currently begin examined. To parse a given regular
expression, we put it in p[1..M], (with a sentinel character in p[M+1] which
is not used in the grammar) set j to 1, and call expression. If this results in
j being set to M+1, then the regular ex oression is in the language described
by the grammar. Otherwise, we'll see below how various error conditions are
handled.

The first thing that expression does is call term, which has a slightly more
complicated implementation:

procedure term ;
begin
fact or;
if (£ [j]=’(") or letter(p{j]) then term;
end

A direct trandation from the grammar would simply have term call factor
and then term. This obviously won’'t work because it leaves no way to
exit from term: this program would go into an infinite recursive loop if
called. (Such loops have particularly unpleasant effects in many systems.)
The implementation above gets around this by first checking the input to
decide whether term should be called. The first thing that term does is call
factor, which is the only one of the proc:dures that could detect a mismatch
in the input. From the grammar, we know that when factor is called, the
current input character must be either & “(” or an input letter (represented
by v). This process of checking the nes t character (without incrementing j
to decide what to do is called lookahead. For some grammars, this is not
necessary; for others even more lookahead is required.

Now, the implementation of factor fallows directly from the grammar. If
the input character being scanned is not a “(” or an input letter, a procedure
error is called to handle the error condit on:

274 CHAPTER 21

procedure factor;
begin
if p[j]="(’ then
begin
Ji=j+;
expression ;
if p[j]=")"then j: =j+1else error
end
else if letter(p[j]) then j:=j+1 else error;
if p[j]="*"then j=j+1;
end;

Another error condition occurs when a “)” is missing.

These procedures are obviously recursive; in fact they are so intertwined
that they can't be compiled in Pascal without using the forward construct
to get around the rule that a procedure can't be used without first being
declared.

The parse tree for a given string gives the recursive cal! structure during
parsing. The reader may wish to refer to the tree above and trace through
the operation of the above three procedures when p contains (A*B+AC)D and
expression is called with j=1. This makes the origin of the “top-down” name
obvious. Such parsers are also often called recursive descent parsers because
they move down the parse tree recursively.

The top-down approach won't work for all possible context-free gram-
mars. For example, if we had the production (expression) ::= v (expression)
+ (term) then we would have

procedure badexpression

begin

if letter(p(j]) then j:=j+1 else
begin
badexpression ;
if p [j] < >+ then error else

begin j:=j+1;term end

end

end ;

If this procedure were called with pl[j] a nonletter (as in our example, for
Jj=1) then it would go into an infinite recursive loop. Avoiding such loops is
a principal difficulty in the implementation of recursive descent parsers. For

PARSING 275

term, we used lookahead to avoid such aloop; in this case the proper way to
get around the problem is to switch the grammar to say (term)+(expression).
The occurrence of a nonterminal as the first thing on the right hand side of
a replacement rule for itself is called left recursion. Actualy, the problem
is more subtle, because the left recursion can arise indirectly: for example
if we were to have the productions (expression) ::= (term) and (term) :=
v (expression) + (term). Recursive descent parsers won't work for such
grammars. they have to be transformed to equivalent grammars without |eft
recursion, or some other parsing method has to be used. In genera, there
is an intimate and very widely studied connection between parsers and the
grammars they recognize. The choice of a parsing technique is often dictated
by the characteristics of the grammar to be parsed.

Bottom- Up Parsing

Though there are several recursive calls in the programs above, it is an in-
structive exercise to remove the recursion systematically. Recall from Chapter
9 (where we removed the recursion from Quicksort) that each procedure call
can be replaced by a stack push and each procedure return by a stack pop,
mimicking what the Pascal system does to implement recursion. A reason
for doing this is that many of the calls which seem recursive are not truly
recursive. When a procedure call is the last action of a procedure, then a
smple goto can be used. This turns expression and term into simple loops,
which can be incorporated together and combined with factor to produce a
single procedure with one true recursive cal (the call to expression within
factor).

This view leads directly to a quite simple way to check whether regular
expressions are legal. Once all the procedure calls are removed, we see that
each terminal symbol is simply scanned as it is encountered. The only real
processing done is to check whether there is a right parenthesis to match each
left parenthesis and whether each “4” is followed by either a letter or a “(”.
That is, checking whether a regular expression is legal is essentially equivalent
to checking for balanced parentheses. This can be simply implemented by
keeping a counter, initialized to 0, which is incremented when a left paren-
thesis is encountered, decremented when a right parenthesis is encountered.
If the counter is zero when the end of the expression is reached, and each “+”
of the expression is followed by either a letter or a “(”, then the expression
was legal.

Of course, there is more to parsing than simply checking whether the
input string is legal: the main goal is to build the parse tree (even if in an
implicit way, as in the top-down parser) for other processing. It turns out to
be possible to do this with programs with the same essential structure as the
parenthesis checker described in the previous paragraph. One type of parser

276 CHAPTER 21

which works in this way is the ‘so-called shift-reduce parser. The idea is to
maintain a pushdown stack which holds terminal and nonterminal symbols.
Each step in the parse is either a shift step, in which the next input character
is simply pushed onto the stack, or a reduce step, in which the top characters
on the stack are matched to the right-hand side of some production in the
grammar and “reduced to” (replaced by) the nonterminal on the left side
of that production. Eventually all the input characters get shifted onto the
stack, and eventually the stack gets reduced to a single nonterminal symbol.

The main difficulty in building a shift-reduce parser is deciding when to
shift and when to reduce. This can be a complicated decision, depending
on the grammar. Various types of shift-reduce parsers have been studied in
great detail, an extensive literature has been developed on them, and they are
quite often preferred over recursive descent parsers because they tend to be
slightly more efficient and significantly more flexible. Certainly we don't have
space here to do justice to this field, and we'll forgo even the details of an
implementation for our example.

Compilers

A compiler may be thought of as a program which translates from one lan-

guage to another. For example, a Pascal compiler translates programs from
the Pascal language into the machine language of some particular computer.

We'll illustrate one way that this might be done by continuing with our
regular-expression pattern-matching example, where we wish to transate
from the language of regular expressions to a “language” for pattern-matching

machines, the ch, nextl, and next2 arrays of the match program of the pre-

vious chapter.

Essentially, the translation process is “one-to-one”: for each character in
the pattern (with the exception of parentheses) we want to produce a state
for the pattern-matching machine (an entry in each of the arrays). The trick
is to keep track of the information necessary to fill in the nextl and next2
arrays. To do so, we'll convert each of the procedures in our recursive descent
parser into functions which create pattern-matching machines. Each function
will add new states as necessary onto the end of the ch, nextl, and next2
arrays, and return the index of the initial state of the machine created (the
final state will always be the last entry in the arrays).

For example, the function given below for the (expression) production
creates the “or” states for the pattern matching machine.

PARSING 277

function expression : integer;

var t1, t2: integer;

begin

tl:=term; expression:=tl;

if p[j]="+’ then
begin
Jji=j+1; state:=state+1;
t2:=state; expression:=t2; state:=state+1;
setstate(t2, ' ’, expresson, tl1) ;
setstate(t2—1, ', state, state);
end ;

end;

This function uses a procedure setstate which simply sets the ch, nextl, and
next2 array entries indexed by the first argument to the values given in the
second, third, and fourth arguments, respectively. The index state keeps track
of the “current” state in the machine being built. Each time a new state is
created, state is simply incremented. Thus, the state indices for the machine
corresponding to a particular procedure call range between the value of state
on entry and the value of state on exit. The final state index is the value
of state on exit. (We don't actually “create” the final state by incrementing
state before exiting, since this makes it easy to “merge” the final state with
later initial states, as we'll see below.)

With this convention, it is easy to check (beware of the recursive cal!)
that the above program implements the rule for composing two machines with
the “or” operation as diagramed in the previous chapter. First the machine
for the first part of the expression is built (recursively), then two new null
states are added and the second part of the expression built. The first null
state (with index t2—1) is the final state of the machine of the first part of
the expression which is made into a “no-op” state to skip to the final state for
the machine for the second part of the expression, as required. The second
null state (with index t2) is the initial state, so its index is the return value
for expression and its nextl and next2 entries are made to point to the initial
states of the two expressions. Note carefully that these are constructed in the
opposite order than one might expect, because the value of state for the no-op
state is not known until the recursive call to expression has been made.

The function for (term) first builds the machine for a (factor) then, if
necessary, merges the final state of that machine with the initial state of the
machine for another (term). This is easier done than said, since state is the
final state index of the call to factor. A call to term without incrementing
state does the trick:

278 CHAPTER 21

function term ;
var t: integer;
begin
term :=factor;
if (p[j]="(") or letter(p[j]) then t:=term
end;

!

(We have no use for the initial state index returned by the second call to

term, but Pascal requires us to put it, somewhere, so we throw it away in a
temporary variable t.)

The function for (factor) uses similar techniques to handle its three cases:
a parenthesis calls for a recursive call on expression; a vy cals for simple
concatenation of a new state; and a x calls for operations similar to those in
expression, according to the closure diagram from the previous section:

function factor;

var t1, t2: integer;

begin

tl .=state;

if p[j]="(’ then
begin
Jji=j+1; t2:=expression;
if p[jl=")"thenj:=j+ 1else error
end

elseif letter(p|j]) then
begin
setstate(state, p[j], state+1, O);
t2:=state; j:=j+1; state:=state+1
end

else eror;

if p[j]<>’*’ then factor:=t2 else
begin
setstate(state, '’, state+1, t2);
factor:=state; pextl [t1—1] :=state;
ji=j+1; state:=state+1;
end;

end ;

The reader may find it instructive to trace through the construction of
the machine for the pattern (A*B+AC)D given in the previous chapter.

PARSING 279

The fina step in the development >f a general regular expression pat-

tern matching agorithm is to put these procedures together with the match
procedure, as follows:

Ji==1; state:=1;
ne xt1 [0] :=expression;
setstate(state, ', 0, 0);
for i:=1 to N-I do
if match(i)>=i then writeln(i);

This program will print out all character positions in a text string a[l.. . N]
where a pattern p(1.. . M] leads to a match.

Compiler-Compilers

The program for general regular expression pattern matching that we have
developed in this and the previous chapter is efficient and quite useful. A
version of this program with a few added capabilities (for handling “don’t-
care’ characters and other amenities) is likely to be among the most heavily
used utilities on many computer systems.

It is interesting (some might say confusing) to reflect on this algorithm
from a more philosophical point of view. In this chapter, we have considered
parsers for unraveling the structure of regular expressions, based on a formal
description of regular expressions using a context-free grammar. Put another
way, we used the context-free grammar to specify a particular “pattern”:
sequences of characters with legally balznced parentheses. The parser then
checks to see if the pattern occurs in the input (but only considers a match
legal if it covers the entire input string). Thus parsers, which check that an
input string is in the set of strings defined by some context-free grammar,
and pattern matchers, which check that an input string is in the set of
strings defined by some regular expression, are essentially performing the same
function! The principal difference is that context-free grammars are capable
of describing a much wider class of strings. For example, the set of all regular
expressions can’'t be described with regular expressions.

Another difference in the way we've implemented the programs is that the
context-free grammar is “built in” to the parser, while the match procedure
is “table-driven”: the same program works for all regular expressions, once
they have been translated into the proper format. It turns out to be possible
to build parsers which are table-driven n the same way, so that the same
program can be used to parse all language ; which can be described by context-
free grammars. A parser generator is a program which takes a grammar as
input and produces a parser for the language described by that grammar as

280 CHAPTER 21

output. This can be carried one step further: it is possible to build compilers
which are table-driven in terms of both the input and the output languages. A
compiler-compiler is a program which takes two grammars (and some formal
specification of the relationships between them) as input and produces a
compiler which translates strings from one language to the other as output.

Parser generators and compiler-compilers are available for general use in
many computing environments, and are quite useful tools which can be used
to produce efficient and reliable parsers and compilers with a relatively small
amount of effort. On the other hand, top-down recursive descent parsers of the
type considered here are quite serviceable for simple grammars which arise in
many applications. Thus, as with many of the algorithms we have considered,
we have a straightforward method which can be used for applications where
a great deal of implementation effort might not be justified, and several ad-
vanced methods which can lead to significant performance improvements for
large-scale applications. Of course, in this case, this is significantly understat-
ing the point: we've only scratched the surface of this extensively researched

field.
[]

PARSING 281

Exercises

1. How does the recursive descent parser find an error in a regular expression
such as (A+B)*BC+ which is incomplete?

2. Give the parse tree for the regular expression ((A+B)+(C+-D)*)*.

3. Extend the arithmetic expression grammar to include exponentiation, div
and mod.

4. Give a context-free grammar to dascribe al strings with no more than

10.

two consecutive 1’s,

How many procedure calls are used by the recursive descent parser to
recognize a regular expression in terms of the number of concatenation,
or, and closure operations and the number of parentheses?

Give the ch, nextl and next2 arrays that result from building the pattern
matching machine for the pattern ((A+B)+(C+D)*)*.

Modify the regular expression grammar to handle the “not” function and
“don’'t-care” characters.

Build a general regular expression pattern matcher based on the improved
grammar in your answer to the previous question.

Remove the recursion from the recursive descent compiler, and simplify
the resulting code as much as possible. Compare the running time of the
nonrecursive and recursive methods.

Write a compiler for simple arithmetic expressions described by the gram-

mar in the text. It should produce a list of ‘*instructions” for a machine
capable of three operations. pusk the value of a variable onto a stack;
add the top two values on the stack, removing them from the stack, then
putting the result there; and ma ltiply the top two values on the stack, in

the same way.

22. File Compression

For the most part, the algorithms that we have studied have been de-
signed primarily to use as little time as possible and only secondarily to
conserve space. In this section, we'll examine some algorithms with the op-
posite orientation: methods designed primarily to reduce space consumption
without using up too much time. Ironically, the techniques that we'll examine
to save space are “coding” methods from information theory which were de-
veloped to minimize the amount of information necessary in communications
systems and therefore originally intended to save time (not space).

In general, most files stored on computer systems have a great deal of
redundancy. The methods we will examine save space by taking advantage
of the fact that most files have a relatively low “information content.” File
compression techniques are often used for text files (in which certain charac-
ters appear much more often than others), “raster” files for encoding pictures
(which can have large homogeneous areas), and files for the digital repre-
sentation of sound and other analog signals (which can have large repeated
patterns).

WEe'll look at an elementary algorithm for the problem (which is still quite
useful) and an advanced “optimal” method. The amount of space saved by
these methods will vary depending on characteristics of the file. Savings of
20% to 50% are typical for text files, and savings of 50% to 90% might be
achieved for binary files. For some types of files, for example files consisting
of random bits, little can be gained. In fact, it is interesting to note that any
general-purpose compression method must make some files longer (otherwise
we could continually apply the method to produce an arbitrarily small file).

On one hand, one might argue that file compression techniques are less
important than they once were because the cost of computer storage devices
has dropped dramatically and far more storage is available to the typical user
than in the past. On the other hand, it can be argued that file compression

283

284 CHAPTER 22

technigues are more important than ever because, since so much storage is in

use, the savings they make possible are greater. Compression techniques are
also appropriate for storage devices which allow extremely high-speed access
and are by nature relatively expensive (and therefore small).

Run-Length Encoding

The simplest type of redundancy in a file is long runs of repeated characters.
For example, consider the following string:

AAAABBBAABBBBBCCCCCCCCDABCBAAABBBBCCCD

This string can be encoded more compactly by replacing each repeated
string of characters by a single instance of the repeated character along with
a count of the number of times it was repeated. We would like to say that this
string consists of 4 A’s followed by 3 B’s followed by 2 A’s followed by 5 B’s,
etc. Compressing a string in this way is called run-length encoding. There
are several ways to proceed with this idea, depending on characteristics of the
application. (Do the runs tend to be relatively long? How many bits are used
to encode the characters being encoded?) We'll ook at one particular method,
then discuss other options.

If we know that our string contains just letters, then we can encode
counts simply by interspersing digits with the letters, thus our string might
be encoded as follows:

4A3BAA5SBSCDABCB3A4B3CD

Here “4A” means “four A’'s” and so forth. Note that is is not worthwhile
to encode runs of length one or two, since two characters are needed for the
encoding.

For binary files (containing solely O’s and I's), a refined version of this
method is typically used to yield dramatic savings. The idea is simply to store
the run lengths, taking advantage of the fact that the runs alternate between
0 and 1 to avoid storing the O’s and |'s themselves. (This assumes that there
are few short runs, but no run-length encoding method will work very well
unless most of the runs are long.) For example, at the left in the figure
below is a “raster” representation of the letter “q" lying on its side, which is
representative of the type of information that might have to be processed by a
text formatting system (such as the one used to print this book); at the right
is a list of numbers which might be used to store the letter in a compressed
form.

FILE COMPRESSION 285

000000000000000000000000000011111111111111000000000 28 14 9
000000000000000000000000001111111111111111110000000 26 18 7
000000000000000000000001111111111111111111111110000 23 24 4
000000000000000000000011111111111111111111111111000 22 26 3
000000000000000000001111111111111111111111111111110 20301
0000000000000000000111111100000000000000~0001111111 197187
000000000000000000011111000000000000000000000011111 195225
000000000000000000011100000000000000000000000000111 193263
000000000000000000011100000000000000000000000000111 19 3263
000000000000000000011100000000000000000000000000111 193263
000000000000000000011100000000000000000000000000111 193263
000000000000000000001111000000000000000000000001110 2042331
000000000000000000000011100000000000000000000111000 2232033
011 1 50

011 1 50
011 1 50
011 1 50
011 150
0110011 1 2462

That is, the first line consists of 28 O's followed by 14 I's followed by 9 more
O’s, etc. The 63 counts in this table plus the number of bits per line (51)
contain sufficient information to reconstruct the bit array (in particular, note
that no “end of line” indicator is needed). If six bits are used to represent each
count, then the entire file is represented with 384 bits, a substantial savings
over the 975 bits required to store it explicitly.

Run-length encoding requires a separate representation for the file to be
encoded and the encoded version of the file, so that it can't work for all files.
This can be quite inconvenient: for example, the character file compression
method suggested above won't work for character strings that contain digits.
If other characters are used to encode the counts, it won't work for strings
that contain those characters. To illustrate a way to encode any string from
a fixed alphabet of characters using only characters from that alphabet, we'll
assume that we only have the 26 letters of the alphabet (and spaces) to work
with.

How can we make some letters represent digits and others represent
parts of the string to be encoded? One solution is to use some character
which is likely to appear rarely in the text as a so-called escape character.
Each appearance of that character signals that the next two letters form a
(count,character) pair, with counts represented by having the ith letter of
the alphabet represent the number i. Thus our example string would be
represented as follows with Q as the escape character:

286 CHAPTER 22

QDABBBAAQEBQHCDABCBAAAQDBCCCD

The combination of the escape character, the count, and the one copy
of the repeated character is called an escape sequence. Note that it's not
worthwhile to encode runs less than four characters long since at least three
characters are required to encode any run.

But what if the escape character itself happens to occur in the input?
We can’'t afford to simply ignore this possibility, because it might be difficult
to ensure that any particular character can't occur. (For example, someone
might try to encode a string that has already been encoded.) One solution to
this problem is to use an escape sequence with a count of zero to represent the
escape character. Thus, in our example, the space character could represent
zero, and the escape sequence “Q(space)” would be used to represent any
occurrence of Q in the input. It is interesting to note that files which contain
Q are the only files which are made longer by this compression method. If a
file which has aready been compressed is compressed again, it grows by at
least the number of characters equal to the number of escape sequences used.

Very long runs can be encoded with multiple escape sequences. For
example, arun of 51 A’s would be encoded as QZAQY A using the conventions
above. If many very long runs are expected, it would be worthwhile to reserve
more than one character to encode the counts.

In practice, it is advisable to make both the compression and expansion
programs somewhat sensitive to errors. This can be done by including a small
amount of redundancy in the compressed file so that the expansion program
can be tolerant of an accidental minor change to the file between compression
and expansion. For example, it probably is worthwhile to put “end-of-ling”
characters in the compressed version of the letter “q” above, so that the
expansion program can resynchronize itself in case of an error.

Run-length encoding is not particularly effective for text files because the
only character likely to be repeated is the blank, and there are simpler ways to
encode repeated blanks. (It was used to great advantage in the past to com-
press text files created by reading in punched-card decks, which necessarily
contained many blanks.) In modern systems, repeated strings of blanks are
never entered, never stored: repeated strings of blanks at the beginning of
lines are encoded as “tabs,” blanks at the ends of lines are obviated by the
use of “end-of-line” indicators. A run-length encoding implementation like
the one above (but modified to handle all representable characters) saves only
about 4% when used on the text file for this chapter (and this savings all

(1Pl

comes from the letter “q” example!).

Variable-Length Encoding
In this section we'll examine a file compression technique called Huffman

FILE COMPRESSION 287

encoding which can save a substantial amount of space on text files (and
many other kinds of files). The idea is to abandon the way that text files are
usually stored: instead of using the usual seven or eight bits for each character,
Huffman’s method uses only a few bits for characters which are used often,
more bits for those which are rarely used.

It will be convenient to examine how the code is used before considering
how it is created. Suppose that we wish to encode the string “A SIMPLE
STRING TO BE ENCODED USING A MINIMAL NUMBER OF BITS”
Encoding it in our standard compact binary code with the five-bit binary
representation of ¢ representing the ith letter of the alphabet (0 for blank)
gives the following bit sequence:

(000010000010011010010110110000011000010100000
100111010010010010010111000111000001010001111
(000000001000101000000010101110000110111100100
001010010000000101011001101001011100011100000
000010000001101010010111001001011010000101100
000000111010101011010001000101100100000001111
001100000000010010011010010011

To “decode” this message, simply read off five bits at a time and convert
according to the binary encoding defined above. In this standard code, the
C, which appears only once, requires the same number of bits as the |, which
appears six times. The Huffman code achieves economy in space by encoding
frequently used characters with as few bits as possible so that the total number
of bits used for the message is minimized.

The first step is to count the frequency of each character within the
message to be encoded. The following code fills an array count|0..26] with the
frequency counts for a message in a character array a[l..M]. (This program
uses the index procedure described in Chapter 19 to keep the frequency count
for the ith letter of the alphabet in count[i], with count[0] used for blanks.)

for i:=0 to 26 do count [i] :=0;
for i:=1to M do
count[index(a[i])] :=count[index(ali])]+1;

For our example string, the count table produced is

01234567891011 12 13 1415 1617 18 19 20 21 22 23 24 25 26
11331251206 0 0 2 45 3 10243200000

288 CHAPTER 22

which indicates that there are eleven blanks, three A’s, three B’s, etc.

The next step is to build a “coding tree” from the bottom up according
to the frequencies. First we create a tree node for each nonzero frequency
from the table above:

MEROEEMNREEREE R OERE B[R
A B CDETFGI1LMNGOTPRSTU

Now we pick the two nodes with the smallest frequencies and create a new
node with those two nodes as sons and with frequency value the sum of the
values of the sons:

M EB6E0NEE BEREEREMBEAE

(It doesn’t matter which nodes are used if there are more than two with the
smallest frequency.) Continuing in this way, we build up larger and larger
subtrees. The forest of trees after all nodes with frequency 2 have been put
inis as follows:

[ﬁ] (5) @m@@m
qzozE @ ©
ERE

Next, the nodes with frequency 3 are put together, creating two new nodes
of frequency 6, etc. Ultimately, all the nodes are combined together into a

single tree:

FILE COMPRESSION 289

Note that nodes with low frequencies end up far down in the tree and nodes

with high frequencies end up near the root of the tree. The numbers labeling
the external (square) nodes in this tree are the frequency counts, while the
number labeling each internal (round) node is the sum of the labels of its
two sons. The small number above each node in this tree is the index into

the count array where the label is stored, for reference when examining the
program which constructs the tree below. (The labels for the internal nodes
will be stored in count[27..51] in an order determined by the dynamics of the

construction.) Thus, for example, the 5 in the leftmost external node (the
frequency count for N) is stored in count [14], the 6 in the next external node

(the frequency count for 1) is stored in count [9], and the 11 in the father of
these two is stored in count[33], etc.

It turns out that this structural description of the frequencies in the form
of a tree is exactly what is needed to create an efficient encoding. Before
looking at this encoding, let's look at the code for constructing the tree.
The general process involves removing the smallest from a set of unordered
elements, so we'll use the pgdownheap procedure from Chapter 11 to build and
maintain an indirect heap on the frequency values. Since we're interested in
small values first, we'll assume that the sense of the inequalities in pgdownheap
has been reversed. One advantage of using indirection is that it is easy to
ignore zero frequency counts. The following table shows the heap constructed
for our example:

290 CHAPTER 22

K 1 2 3456 7 8 91011 12 13 14 15 16 17 18
heaplk] 3 716211215 620 9 41314 5 21819 1 0
countfheap(k]] 1 2 1 2 2 3 1 3 6 2 45 5 3 2 4 311

Specificaly, this heap is built by first initializing the heap array to point to
the non-zero frequency counts, then using the pgdownheap procedure from
Chapter 11, as follows:

N:=0;
for i:=0O to 26 do
if count [i] <>0then
begin N:=N+1; heap[N] :=i end;
for k:=N downto 1 do pgdownheap(k);

As mentioned above, this assumes that the sense of the inequalities in the
pgdownheap code has been reversed.

Now, the use of this procedure to construct the tree as above is straightfor-
ward: we take the two smallest elements off the heap, add them and put the
result back into the heap. At each step we create one new count, and decrease
the size of the heap by one. This process creates N-I new counts, one for
each of the internal nodes of the tree being created, as in the following code:

repeat
t:=heap(1]; heap|[1]:=heap|[N]; N:=N-1;
pqdownheap(1);

count|26+ N|:=count [heap[1]]+count|[t];
dad(t]:=26+N; dad[heap[l]]:=-26-N;
heap[1]:=26+N; pgdownheap(1);

until N= 1;

dad|26+N|:=0;

The first two lines of this loop are actually pgremove; the size of the heap is
decreased by one. Then a new internal node is “created” with index 26+N and
given a value equal to the sum of the value at the root and value just removed.
Then this node is put at the root, which raises its priority, necessitating
another call on pgdownheap to restore order in the heap. The tree itself is
represented with an array of “father” links: dad[t] is the index of the father
of the node whose weight is in count [t]. The sign of dad[t] indicates whether
the node is a left or right son of its father. For example, in the tree above
we might have dad[O]=-30, count[30]=21, dad|[30]=—28, and count[28]=37

FILE COMPRESSION 291

(indicating that the node of weight 21 has index 30 and its father has index
28 and weight 37).

The Huffman code is derived from this coding tree simply by replacing the
frequencies at the bottom nodes with the associated letters and then viewing
the tree as a radix search trie:

Now the code can be read directly from this tree. The code for N is 000,
the code for | is 001, the code for C is 110100, etc. The following program
fragment reconstructs this information from the representation of the coding
tree computed during the sifting process. The code is represented by two
arrays: codek] gives the binary representation of the kth letter and len [K]
gives the number of bits from code[k] to use in the code. For example, | is
the 9th letter and has code 001, so code [9]=1and len [9]=3.

292 CHAPTER 22

for k:=0to 26 do
if count[k]=0 then
begin code[k] :=0; len[k] :=0 end
else
begin
i:=0; j:=1; t:=dad[k]; x:=0;
repeat
if t<0 then begin x;=x+j; t:=—t end;
t:=dad[t]; j:=]+]; =i+l
until t=0;
codelK] :=x; len[k] :=i;
end ;

Finally, we can use these computed representations of the code to encode the
message:

for j:=1to M do
for i:=lenlindex(a[j])] downto 1 do
write(bits(code|index(alj])],i—1,1):1);

This program uses the bits procedure from Chapters 10 and 17 to access single

bits. Our sample message is encoded in only 236 bits versus the 300 used for
the straightforward encoding, a 21% savings:

011011110010011010110101100011100111100111011
101110010000111111111011010011101011100111110
000011010001001011011001011011110000100100100
001111111011011110100010000011010011010001111
000100001010010111001011111101000111011101010
01110111001

An interesting feature of the Huffman code that the reader undoubtedly
has noticed is that delimiters between characters are not stored, even though
different characters may be coded with different numbers of bits. How can
we determine when one character stops and the next begins to decode the
message? The answer is to use the radix search trie representation of the
code. Starting at the root, proceed down the tree according to the bits in the
message: each time an external node is encountered, output the character at
that node and restart at the root. But the tree is built at the time we encode

FILE COMPRESSON 293

the message: this means that we need to save the tree along with the message
in order to decode it. Fortunately, this does not present any real difficulty.
It is actually necessary only to store the code array, because the radix search
trie which results from inserting the entries from that array into an initialy
empty tree is the decoding tree.

Thus, the storage savings quoted above is not entirely accurate, because
the message can’'t be decoded without the trie and we must take into account
the cost of storing the trie (i.e., the code array) along with the message.
Huffman encoding is therefore only effective for long files where the savings in
the message is enough to offset the cost, or in situations where the coding trie
can be precomputed and used for a large number of messages. For example, a
trie based on the frequencies of occurrence of letters in the English language
could be used for text documents. For that matter, a trie based on the
frequency of occurrence of characters in Pascal programs could be used for
encoding programs (for example, “;” is likely to be near the top of such a
trie). A Huffman encoding algorithm saves about 23% when run on the text
for this chapter.

As before, for truly random files, even this clever encoding scheme won't
work because each character will occur approximately the same number of
times, which will lead to a fully balanced coding tree and an equal number of
bits per letter in the code.

Exercises

1

10.

Implement compression and expansion procedures for the run-length en-
coding method for a fixed alphabet described in the text, using Q as the
escape character.

Could “QQ” occur somewhere in a file compressed using the method
described in the text? Could “QQQ” occur?

Implement compression and expansion procedures for the binary file en-
coding method described in the text.

The letter “q” given in the text can be processed as a sequence of five-
bit characters. Discuss the pros and cons of doing so in order to use a
character-based run-length encoding method.

Draw a Huffman coding tree for the string “ABRACADABRA.” How
m