
Haralambos Marmanis
Dmitry Babenko

M A N N I N G

Algorithms of the Intelligent Web

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

Algorithms of the
Intelligent Web

HARALAMBOS MARMANIS
DMITRY BABENKO

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Deborah Christiansen <pedbro@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2009 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Jeff Bleiel
Manning Publications Co. Copyeditor: Benjamin Berg
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-66-5
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.manning.com

brief contents
1 ■ What is the intelligent web? 1

2 ■ Searching 21

3 ■ Creating suggestions and recommendations 69

4 ■ Clustering: grouping things together 121

5 ■ Classification: placing things where they belong 164

6 ■ Combining classifiers 232

7 ■ Putting it all together: an intelligent news portal 278

Appendix A Introduction to BeanShell 317

B Web crawling 319

C Mathematical refresher 323

D Natural language processing 327

E Neural networks 330
v

Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

contents
preface xiii
acknowledgments xvi
about this book xviii

1 What is the intelligent web? 1
1.1 Examples of intelligent web applications 3
1.2 Basic elements of intelligent applications 4
1.3 What applications can benefit from intelligence? 6

Social networking sites 6 ■ Mashups 7 ■ Portals 8 ■ Wikis 9
Media-sharing sites 9 ■ Online gaming 10

1.4 How can I build intelligence in my own application? 11
Examine your functionality and your data 11 ■ Get more data from
the web 12

1.5 Machine learning, data mining, and all that 15
1.6 Eight fallacies of intelligent applications 16

Fallacy #1: Your data is reliable 17 ■ Fallacy #2: Inference happens
instantaneously 18 ■ Fallacy #3: The size of data doesn’t matter 18
Fallacy #4: Scalability of the solution isn’t an issue 18 ■ Fallacy #5:
Apply the same good library everywhere 18 ■ Fallacy #6: The
computation time is known 19 ■ Fallacy #7: Complicated models are
better 19 ■ Fallacy #8: There are models without bias 19
vii

Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTSviii
1.7 Summary 19
1.8 References 20

2 Searching 21
2.1 Searching with Lucene 22

Understanding the Lucene code 24 ■ Understanding the basic stages
of search 29

2.2 Why search beyond indexing? 32
2.3 Improving search results based on link analysis 33

An introduction to PageRank 34 ■ Calculating the PageRank vector 35
alpha: The effect of teleportation between web pages 38 ■ Understanding
the power method 38 ■ Combining the index scores and the PageRank
scores 43

2.4 Improving search results based on user clicks 45
A first look at user clicks 46 ■ Using the NaiveBayes classifier 48
Combining Lucene indexing, PageRank, and user clicks 51

2.5 Ranking Word, PDF, and other documents without links 55
An introduction to DocRank 55 ■ The inner workings of DocRank 57

2.6 Large-scale implementation issues 61
2.7 Is what you got what you want? Precision and recall 64
2.8 Summary 65
2.9 To do 66

2.10 References 68

3 Creating suggestions and recommendations 69
3.1 An online music store: the basic concepts 70

The concepts of distance and similarity 71 ■ A closer look at the
calculation of similarity 76 ■ Which is the best similarity formula? 79

3.2 How do recommendation engines work? 80
Recommendations based on similar users 80 ■ Recommendations
based on similar items 89 ■ Recommendations based on content 92

3.3 Recommending friends, articles, and news stories 99
Introducing MyDiggSpace.com 99 ■ Finding friends 100 ■ The
inner workings of DiggDelphi 102

3.4 Recommending movies on a site such as Netflix.com 107
An introduction of movie datasets and recommenders 107 ■ Data
normalization and correlation coefficients 110

3.5 Large-scale implementation and evaluation issues 115
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTS ix
3.6 Summary 117
3.7 To Do 117
3.8 References 119

4 Clustering: grouping things together 121
4.1 The need for clustering 122

User groups on a website: a case study 123 ■ Finding groups with a
SQL order by clause 124 ■ Finding groups with array sorting 125

4.2 An overview of clustering algorithms 128
Clustering algorithms based on cluster structure 129 ■ Clustering
algorithms based on data type and structure 130 ■ Clustering
algorithms based on data size 131

4.3 Link-based algorithms 132
The dendrogram: a basic clustering data structure 132 ■ A first look
at link-based algorithms 134 ■ The single-link algorithm 135 ■ The
average-link algorithm 137 ■ The minimum-spanning-tree
algorithm 139

4.4 The k-means algorithm 142
A first look at the k-means algorithm 142 ■ The inner workings of k-
means 143

4.5 Robust Clustering Using Links (ROCK) 146
Introducing ROCK 146 ■ Why does ROCK rock? 147

4.6 DBSCAN 151
A first look at density-based algorithms 151 ■ The inner workings of
DBSCAN 153

4.7 Clustering issues in very large datasets 157
Computational complexity 157 ■ High dimensionality 158

4.8 Summary 160
4.9 To Do 161

4.10 References 162

5 Classification: placing things where they belong 164
5.1 The need for classification 165
5.2 An overview of classifiers 169

Structural classification algorithms 170 ■ Statistical classification
algorithms 172 ■ The lifecycle of a classifier 173

5.3 Automatic categorization of emails and spam filtering 174
NaïveBayes classification 175 ■ Rule-based classification 188
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTSx
5.4 Fraud detection with neural networks 199
A use case of fraud detection in transactional data 199 ■ Neural
networks overview 201 ■ A neural network fraud detector at work 203
The anatomy of the fraud detector neural network 208 ■ A base class for
building general neural networks 214

5.5 Are your results credible? 219
5.6 Classification with very large datasets 223
5.7 Summary 225
5.8 To do 226
5.9 References 230

Classification schemes 230 ■ Books and articles 230

6 Combining classifiers 232
6.1 Credit worthiness: a case study for combining classifiers 234

A brief description of the data 235 ■ Generating artificial data for
real problems 239

6.2 Credit evaluation with a single classifier 243
The naïve Bayes baseline 243 ■ The decision tree baseline 245 ■ The
neural network baseline 247

6.3 Comparing multiple classifiers on the same data 250
McNemar’s test 251 ■ The difference of proportions test 253
Cochran’s Q test and the F test 255

6.4 Bagging: bootstrap aggregating 257
The bagging classifier at work 258 ■ A look under the hood of the
bagging classifier 260 ■ Classifier ensembles 263

6.5 Boosting: an iterative improvement approach 265
The boosting classifier at work 266 ■ A look under the hood of the
boosting classifier 268

6.6 Summary 272
6.7 To Do 273
6.8 References 277

7 Putting it all together: an intelligent news portal 278
7.1 An overview of the functionality 280
7.2 Getting and cleansing content 281

Get set. Get ready. Crawl the Web! 281 ■ Review of the search prerequi-
sites 282 ■ A default set of retrieved and processed news stories 284
Licensed to Deborah Christiansen <pedbro@gmail.com>

CONTENTS xi
7.3 Searching for news stories 286
7.4 Assigning news categories 288

Order matters! 289 ■ Classifying with the NewsProcessor class 294
Meet the classifier 295 ■ Classification strategy: going beyond low-
level assignments 297

7.5 Building news groups with the NewsProcessor class 300
Clustering general news stories 301 ■ Clustering news stories within
a news category 305

7.6 Dynamic content based on the user’s ratings 308
7.7 Summary 311
7.8 To do 312
7.9 References 316

appendix A Introduction to BeanShell 317
appendix B Web crawling 319
appendix C Mathematical refresher 323
appendix D Natural language processing 327
appendix E Neural networks 330

index 333
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

preface
During my graduate school years I became acquainted with the field of machine learn-
ing, and in particular the field of pattern recognition. The focus of my work was on
mathematical modeling and numerical simulations, but the ability to recognize pat-
terns in a large volume of data had obvious applications in many fields. The years that
followed brought me closer to the subject of machine learning than I ever imagined.

 In 1999 I left academia and started working in industry. In one of my consulting
projects, we were trying to identify the risk of heart failure for patients based (pri-
marily) on their EKGs. In problems of that nature, an exact mathematical formula-
tion is either unavailable or impractical to implement. Modeling work (our software)
had to rely on methods that could adopt their predictive capability based on a given
number of patient records, whose risk of heart failure was already diagnosed by a
cardiologist. In other words, we were looking for methods that could “learn” from
their input.

 Meanwhile, during the ’90s, a confluence of events had driven the rapid growth
of a new industry. The web became ubiquitous! Abiding by Moore’s law, CPUs kept
getting faster and cheaper. RAM modules, hard disks, and other computer compo-
nents followed the same trends of capability improvement and cost reduction. In
tandem, the bandwidth of a typical network connection kept increasing at the same
time that it became more affordable. Moreover, robust technologies for developing
web applications were coming to life and the proliferation of open source projects
on every aspect of software engineering was accentuating that growth. All these fac-
tors contributed to building the vast digital ecosystem that we today call the web.
xiii

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.manning.com/AlgorithmsoftheIntelligentWeb
http://www.manning.com/AlgorithmsoftheIntelligentWeb

PREFACExiv
 Naturally, the first task for our profession—the software engineers and web devel-
opers of the world—was to establish the technologies that would allow us to build
robust, scalable, and aesthetically appealing web applications. Thus, in the last decade
a large effort was made to achieve these goals, and significant progress has been made.
Of course, perfection is a destination not a state, so we still have room for improvement.
Nevertheless, it seems that we’re cruising along the plateau of productivity with respect
to robustness, scalability, and aesthetic appeal. The era of internet application “plumb-
ing” is more or less over. Mere data aggregation and simple user request/response
models based on predetermined logic have reached a state of maturity.

 Today, another wave of innovation can be found in certain applications and is pass-
ing through the slope of enlightenment fairly quickly. These applications are what we
refer to in this book as intelligent applications. Unlike traditional applications, intelli-
gent applications adjust their behavior according to their input, much like my model-
ing software had to predict the risk of heart failure based on the EKG.

 Over the last five years, it became clear to me that a lot of the techniques that are
used in intelligent applications aren’t easily accessible to the vast majority of software
professionals. In my opinion, there are primarily two reasons for that. The first is that
the commercial potential of innovation in these areas can have huge financial
rewards. It makes (financial) sense to protect the proprietary parts of specific applica-
tions and hide the critical details of the implementations. The second reason why the
underlying techniques remained in obscurity for so long is that nearly all of them orig-
inated as scientific research and therefore relied on significant mathematical jargon.
There’s little that anyone can do about the first reason. But the amount of publicly
available knowledge is so large that it raises the question: Is the second reason neces-
sary? My short answer is a loud and emphatic “No!” For the long answer, you’ll have to
read the book!

 I decided to write this book to demonstrate that a number of these techniques can
be presented in the form of algorithms, without presuming much about the mathe-
matical background of the reader. The goal of this book is to equip you with a number
of techniques that will help you build intelligent behavior in your application, while
assuming as little as possible with regard to mathematics. The code contains all the
necessary mathematics in algorithmic form.

 Initially, I was thinking of using a number of open source libraries for presenting
the techniques. But most of these libraries are developed opportunistically and, quite
often, without any intention to teach the underlying techniques. Thus, the code tends
to become obscure and tedious to read, let alone understand! It was clear that the
intended audience of my book would benefit the most from a clean, well-documented
code base. At that juncture, Dmitry joined me and he wrote most of the code that
you’ll find in this book.

 Slowly but surely, the number of books that cover this new and exciting area will
grow. This book is only an introduction to a field that’s already large and keeps grow-
ing rapidly. Naturally, the number of algorithms covered had to be limited and the
Licensed to Deborah Christiansen <pedbro@gmail.com>

PREFACE xv
explanations had to be concise. My objective was to select a number of topics and
explain them well, rather than attempt to cover as much as possible with the risk of
confusing you or simply creating a cookbook.

 I hope that we have made a contribution to that end by doing the following four
things:

■ Staying focused and working on clear examples
■ Using high-level scripts that capture the usage of the algorithms, as if you were

inserting them in your own application
■ Helping you experiment with, and think about, the code through a large num-

ber of To Do items
■ Writing top-notch and legible code

So, grab your favorite hot beverage, sit back, and test drive some smart apps; they’re
here to stay!

 HARALAMBOS MARMANIS
Licensed to Deborah Christiansen <pedbro@gmail.com>

acknowledgments
We’d like to acknowledge the people at Manning who gave us the opportunity to publish
this work. Aside from their contribution in bringing the manuscript to its final form,
they patiently waited for its completion, which took much longer than we’d originally
planned. In particular, we’d like to thank Marjan Bace, Jeff Bleiel, Karen Tegtmeyer,
Megan Yockey, Mary Piergies, Maureen Spencer, Steven Hong, Ron Tomich, Benjamin
Berg, Elizabeth Martin, and everyone else on the Manning team who worked on the
book but whose names we do not know. Thanks for your hard work.

 We’d also like to recognize the time, effort, and valuable feedback that we received
from our reviewers and our visitors in the Author Online forum. Your feedback
helped make this book better in many ways. We understand how limited and precious
“free” time is for every professional so please know that your contributions were
greatly appreciated.

 We especially thank the following reviewers for reading our manuscript a number
of times at various stages during its development and for sharing their comments with
us: Robert Hanson, Sumit Pal, Carlton Gibson, David Hanson, Eric Swanson, Frank
Wang, Bob Hutchison, Craig Walls, Nicholas C. Heinle, Vlad Gorsky, Alessandro
Gallo, Craig Lancaster, Jason Kolter, Martyn Fletcher, and Scott Dawson. Last but not
least, thanks to Ajay Bhandari who was the technical proofreader and who read the
chapters and checked the code one last time before the book went to press.

H. Marmanis

I’d like to thank my parents, Eva and Alexander. They’ve instilled in me the appropri-
ate level of curiosity and passion for learning that keeps me writing and researching
late into the night. The debt is too large to pay in one lifetime.
xvi

Licensed to Deborah Christiansen <pedbro@gmail.com>

ACKNOWLEDGMENTS xvii
 I wholeheartedly thank my cherished wife, Aurora, and our three sons: Nikos,
Lukas, and Albert—the greatest pride and joy of my life. I’ll always be grateful for their
love, patience, and understanding. The incessant curiosity of my children has been a
continuous inspiration for my studies on learning. A huge acknowledgment is due to
my parents-in-law, Cuchi and Jose; my sisters, Maria and Katerina; and my best friends
Michael and Antonio for their continuous encouragement and unconditional support.

 I’d be remiss if I didn’t acknowledge the manifold support of Drs. Amilcar Avenda-
ño and Maria Balerdi, who taught me a lot about cardiology and funded my early work
on learning. My thanks also are due to Professor Leon Cooper, and many other amaz-
ing people at Brown University, whose zeal for studying the way that our brain works
trickled down to folks like me and instigated my work on intelligent applications.

 To my past and present colleagues, Ajay Bhandari, Kavita Kanetkar, Alexander
Petrov, Kishore Kirdat, and many others, who encouraged and supported all the intel-
ligence related initiatives at work: there are only a few lines that I can write here but
my gratitude is much larger than that.

D. Babenko

First and foremost, I want to thank my beloved wife Elena. This book took longer than
a year to complete and she had to put up with a husband who was spending all his
time at work or working on a book. Her support and encouragement created a perfect
environment for me to get this book done.

 I’d like to thank all of my past and present colleagues who influenced my profes-
sional life and served as an inspiration: Konstantin Bobovich, Paul A. Dennis, Keith
Lawless, and Kevin Bedell.

 Finally, I’d also like to thank my co-author Dr. Marmanis for including me in this
project.
Licensed to Deborah Christiansen <pedbro@gmail.com>

about this book
Modern web application hype revolves around a rich UI experience. A lesser-known
aspect of modern applications is the use of techniques that enable the intelligent pro-
cessing of information and add value that can’t be delivered by other means. Exam-
ples of success stories based on these techniques abound, and include household
names such as Google, Netflix, and Amazon. This book describes how to build the
algorithms that form the core of intelligence in these applications.

 The book covers five important categories of algorithms: search, recommenda-
tions, groupings, classification, and the combination of classifiers. A separate book
could be written on each of these topics, and clearly exhaustive coverage isn’t a goal of
this book. This book is an introduction to the fundamentals of these five topics. It’s an
attempt to present the basic algorithms of intelligent applications rather than an
attempt to cover completely all algorithms of computational intelligence. The book is
written for the widest audience possible and relies on a minimum of prerequi-
site knowledge.

 A characteristic of this book is a special section at the end of each chapter. We call
it the To Do section and its purpose isn’t merely to present additional material. Each
of these sections guides you deeper into the subject of the respective chapter. It also
aims to implant the seed of curiosity that’ll make you think of new possibilities, as well
as the associated challenges that surface in real-world applications.

 The book makes extensive use of the BeanShell scripting library. This choice serves
two purposes. The first purpose is to present the algorithms at a level that’s easier to
grasp, before diving into the gory details. The second purpose is to delineate the steps
that you’d take to incorporate the algorithms in your application. In most cases, you
xviii

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/p/yooreeka/
http://code.google.com/p/yooreeka/
http://code.google.com/p/yooreeka/

ABOUT THIS BOOK xix
can use the library that comes with this book by writing only a few lines of code! More-
over, in order to ensure the longevity and maintenance of the source code, we’ve cre-
ated a new project dedicated to it, on the Google code site: http://code.google.com/
p/yooreeka/.

Roadmap

The book consists of seven chapters. The first chapter is introductory. Chapters 2
through 6 cover search, recommendations, groupings, classification, and the combi-
nation of classifiers, respectively. Chapter 7 brings together the material from the pre-
vious chapters, but it covers new ground in the context of a single application.

 While you can find references from one chapter to the next, the material was writ-
ten in such a way that you can read chapters 1 through 5 on their own. Chapter 6
builds on chapter 5, so it would be hard to read it by itself. Chapter 7 also has depen-
dencies because it touches upon the material of the entire book.

 Chapter 1 provides an overview of intelligent applications as well as several exam-
ples of their value. It provides a practical definition of intelligent web applications and
a number of design principles. It presents six broad categories of web applications
that can leverage the intelligent algorithms of this book. It also provides background
on the origins of the algorithms that we’ll present, and their relation with the fields of
artificial intelligence, machine learning, data mining, and soft computing. The chap-
ter concludes with a list of eight design pitfalls that occur frequently in practice.

 Chapter 2 begins with a description of searching that relies on traditional informa-
tion retrieval techniques. It summarizes the traditional approach and paves the way
for searching beyond indexing, which includes the most celebrated link analysis algo-
rithm—PageRank. It also includes a section on improving the search results by
employing user click analysis. This technique learns the preferences of a user toward a
particular site or topic, and can be greatly enhanced and extended to include addi-
tional features.

 Chapter 2 also covers the searching of documents that aren’t web pages by employing
a new algorithm, which we call DocRank. This algorithm has shown some promise, but
more importantly it demonstrates that the underlying mathematical theory of link anal-
ysis can be readily extended and studied in other contexts by careful modifications. This
chapter also covers some of the challenges that may arise in dealing with very large net-
works. Lastly, chapter 2 covers the issue of credibility and validation for search results.

 Chapter 3 introduces the vital concepts of distance and similarity. It presents two
broad categories of techniques for creating recommendations—collaborative filtering
and the content-based approach. The chapter uses a virtual online music store as its
context for developing recommendations. It also presents two more general exam-
ples. The first is a hypothetical website that uses the Digg API and retrieves the content
of our users, in order to recommend unseen articles to them. The second example
deals with movie recommendations and introduces the concept of data normaliza-
tion. In this chapter we also evaluate the accuracy of our recommendations based on
the root mean squared error.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/p/yooreeka/
http://code.google.com/p/yooreeka/

ABOUT THIS BOOKxx
 Clustering algorithms are presented in chapter 4. There are many application
areas for which clustering can be applied. In theory, any dataset that consists of
objects that can be defined in terms of attribute values is eligible for clustering. In this
chapter, we cover the grouping of forum postings and identifying similar website
users. This chapter also offers a general overview of clustering types and full imple-
mentations for six algorithms: single link, average link, minimum spanning tree single
link, k-means, ROCK, and DBSCAN.

 Chapter 5 presents classification algorithms, which are essential components of
intelligent applications. The chapter starts with a description of ontologies, which are
introduced by employing three fundamental building blocks—concepts, instances,
and attributes. Classification is presented as the problem of assigning the “best” con-
cept to a given instance. Classifiers differ from each other in the way that they repre-
sent and measure that optimal assignment. The chapter provides an overview of
classification that covers binary and multiclass classification, statistical algorithms, and
structural algorithms. It also presents the three stages in the lifecycle of a classifier: the
training, the validation, and the production stage.

 Chapter 5 continues with a high-level presentation of regression algorithms, Bayesian
algorithms, rule-based algorithms, functional algorithms, nearest-neighbor algorithms,
and neural networks. Three techniques of classification are discussed in detail. The first
technique is based on the naïve Bayes algorithm as applied to a single string attribute.
The second technique deals with the Drools rule engine, an object-oriented implemen-
tation of the Rete algorithm, which allows us to declare and apply rules for the purpose
of classification. The third technique introduces and employs computational neural net-
works; a basic but robust implementation is provided for building general neural net-
works. Chapter 5 also alerts you to issues that are related to the credibility and
computational requirements of classification, before we introduce it in our applications.

 Chapter 6 covers the combination of classifiers—advanced techniques that can
improve the classification accuracy of a single classifier. The main example of this
chapter is the evaluation of the credit worthiness for a mortgage application. Bagging
and boosting are presented in detail. This chapter also presents an implementation of
Breiman’s arc-x4 boosting algorithm.

 Chapter 7 demonstrates the use of the intelligent algorithms in the context of a
news portal. We discuss technical issues as well as the new business value that intelli-
gent algorithms can add to an application. For example, a clustering algorithm might
be used for grouping similar news stories together, but it can also be used for enhanc-
ing the visibility of relevant news stories by cross-referencing. In this chapter, we sketch
out the adoption of intelligent algorithms and the combination of different intelli-
gent algorithms for a given purpose.
THE SPECIAL TO DO SECTION

The last section of every chapter, beginning with chapter 2, contains a number of to-
do items that will guide you in the exploration of various topics. As software engi-
neers, we find the term to do quite appealing; it has an imperative flavor to it and is less
formal than other terms, such as exercises.
Licensed to Deborah Christiansen <pedbro@gmail.com>

ABOUT THIS BOOK xxi
 Some of these to-do items aim at providing greater depth on a topic that has been
covered in the main chapter, while other items present a starting point for exploration
on topics that are peripheral to what we’ve already discussed. The completion of these
tasks will provide you with greater depth and breadth on intelligent algorithms.

 Whenever appropriate, our code has been annotated with “TODO” tags that you
should be able to view in many IDEs; for example, in the Eclipse IDE, click the Tasks
panel. By clicking on any of the tasks, the task link will show the portion of the code
that’s associated with it.

Who should read this book

Algorithms of the Intelligent Web was written for software engineers and web developers
who’d like to learn more about this new breed of algorithms that empowers a host of
commercially successful applications with intelligence. Since the source code is based
on the Java programming language, those who use Java might find it more attractive
than those who don’t. Nevertheless, people who work with other programming lan-
guages should be able to learn from the book, and perhaps transliterate the code into
the language of their choice.

 The book is full of examples and ideas that can be used broadly, so it may also be
of some value to technical managers, product managers, and executive-level people
who want a better understanding of the related technologies and the possibilities that
they offer from a business perspective.

 Finally, despite the term Web in the title, the material of the book is equally appli-
cable to many other software applications, ranging from utilities running on mobile
telephones to traditional desktop applications such as text editors and spread-
sheet applications.

Code Conventions

All source code in the book is in a monospace font, which sets it off from the surround-
ing text. For most listings, the code is annotated to point out key concepts, and num-
bered bullets are sometimes used in the text to provide additional information about
the code. Sometimes very long lines will include line-continuation markers.

 The source code of the book can be obtained from the following link: http://
code.google.com/p/yooreeka/downloads/list or by following a link provided on the
publisher’s website at www.manning.com/AlgorithmsoftheIntelligentWeb.

 You should unzip the distribution file directly under the C:\ drive. We assume that
you’re using Microsoft Windows; if not then you should modify our scripts to make
them work for your system. The top directory of the compressed file is named iWeb2;
all directory references in the book are with respect to that root folder. For example, a
reference to the data/ch02 directory, according to our convention, means the abso-
lute directory C:\iWeb2\data\ch02.

 If you unzipped the file, you’re ready to run the Ant build script. Simply go into
the build directory and run ant. Note that the Ant script will work regardless of the
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/p/yooreeka/downloads/list
http://code.google.com/p/yooreeka/downloads/list
www.manning.com/AlgorithmsoftheIntelligentWeb

ABOUT THIS BOOKxxii
location that you unzipped the file. You’re now ready to run the BeanShell script as
described in appendix A.

Author Online

Purchase of Algorithms of the Intelligent Web includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
AlgorithmsoftheIntelligentWeb. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of conduct
on the forum. It also provides links to the source code for the examples in the book,
errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the authors can take place. It
is not a commitment to any specific amount of participation on the part of the authors,
whose contribution to the Author Online remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration

The illustration on the cover of Algorithms of the Intelligent Web is taken from a French
book of dress customs, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796.
Travel for pleasure was a relatively new phenomenon at the time and illustrated
guides such as this one were popular, introducing both the tourist as well as the arm-
chair traveler to the inhabitants of other far-off regions of the world, as well as to the
more familiar regional costumes of France and Europe.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and peoples just 200 years ago.
This was a time when the dress codes of two regions separated by a few dozen miles
identified people uniquely as belonging to one or the other, and when members of a
social class or a trade or a tribe could be easily distinguished by what they were wear-
ing. This was also a time when people were fascinated by foreign lands and faraway
places, even though they could not travel to these exotic destinations themselves.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a world of cultural
and visual diversity for a more varied personal life. Or a more varied and interesting
intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on native and tribal costumes from two centu-
ries ago brought back to life by the pictures from this travel guide.
Licensed to Deborah Christiansen <pedbro@gmail.com>

www.manning.com/AlgorithmsoftheIntelligentWeb
www.manning.com/AlgorithmsoftheIntelligentWeb

What is
 the intelligent web?
So, what’s this book about? First, let’s say what it’s not. This book isn’t about build-
ing a sleek UI, or about using JSON or XPath, or even about RESTful architectures.
There are several good books for Web 2.0 applications that describe how to deliver
AJAX-based designs and an overall rich UI experience. There are also many books
about other web-enabling technologies such as XSL Transformations (XSLT) and
XML Path Language (XPath), Scalable Vector Graphics (SVG), XForms, XML User
Interface Language (XUL), and JSON (JavaScript Object Notation).

 The starting point of this book is the observation that most traditional web
applications are obtuse, in the sense that the response of the system doesn’t take
into account the user’s prior input and behavior. We refer not to issues related to
bad UI but rather to a fixed response of the system to a given input. Our main inter-
est is building web applications that do take into account the input and behavior of

This chapter covers:
■ Leveraging intelligent web applications
■ Using web applications in the real world
■ Building intelligence in your web
1

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/apis/opensocial/
http://code.google.com/apis/opensocial/
http://preview.xignite.com/Default.aspx

2 CHAPTER 1 What is the intelligent web?
every user in the system, over time, as well as any other potentially useful information
that may be available.

 Let’s say that you start using a web application to order food, and every Wednesday
you order fish. You’d have a much better experience if, on Wednesdays, the applica-
tion asked you “Would you like fish today?” instead of “What would you like to order
today?” In the first case, the application somehow realized that you like fish on Wednes-
days. In the second case, the application remains oblivious to this fact. Thus, the data
created by your interaction with the site doesn’t affect how the application chooses
the content of a page or how it’s presented. Asking a question that’s based on the
user’s prior selections introduces a new kind of interactivity between the website and
its users. So, we could say that websites with that property have a learning capacity.

 To take this one step further, the interaction of an intelligent web application with
a user may adjust due to the input of other users that are somehow related to each
other. If your dietary habits match closely those of John, the application may recom-
mend a few menu selections that are common for John but that you never tried; build-
ing recommendations is covered in chapter 3.

 Another example would be a social networking site, such as Facebook, which
could offer a fact-checking chat room or electronic forum. By fact checking, we mean
that as you type your message, there’s a background check on what you write to
ensure that your statements are factually accurate and even consistent with your pre-
vious messages. This functionality is similar to spell-checking, which may be already
familiar to you, but rather than check grammar rules, it checks a set of facts that
could be general truths (“the Japanese invasion of Manchuria occurred in 1931”),
your own beliefs about a particular subject (“less taxes are good for the economy”),
or simple personal facts (“doctor’s appointment on 11/11/2008”). Websites with
such functional behavior are inference capable; we describe the design of such func-
tionality in chapter 5.

 We can argue that the era of intelligent web applications began in earnest with the
advent of web search engines such as Google. You may legitimately wonder: why
Google? People knew how to perform information retrieval (search) tasks long before
Google appeared on the world scene. But search engines such as Google take advan-
tage of the fact that the content on the web is interconnected, and this is extremely
important. Google’s thesis was that the hyperlinks within web pages form an underly-
ing structure that can be mined to determine the importance of the various pages. In
chapter 2, we describe in detail the PageRank algorithm that makes this possible.

 By extending our discussion, we can say that intelligent web applications are
designed from the outset with a collaborative and interconnected world in mind.
They’re designed to automatically train so that they can understand the user’s input,
the user’s behavior, or both, and adjust their response accordingly. The sharing of the
user profiles among colleagues, friends, and family on social networking sites such as
MySpace or Facebook, as well as the sharing of content and opinions on newsgroups
and online forums, create new levels of connectivity that are central to intelligent web
applications and go beyond plain hyperlinks.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.rapidshare.com
http://www.megaupload.com/
http://www.megaupload.com/
http://www.clearspring.com/
http://www.scanscout.com/
http://www.scanscout.com/

3Examples of intelligent web applications
1.1 Examples of intelligent web applications
Let’s review applications that have been leveraging this kind of intelligence over the last
decade. As already mentioned, a turning point in the history of the web was the advent
of search engines. A lot of what the web had to offer remained untapped until 1998
when link analysis (see chapter 2) emerged in the context of search and took the market
by storm. Google Inc. has grown, in less than 10 years, from a startup to a dominant
player in the technology sector due primarily to the success of its link-based search and
secondarily to a number of other services such as Google News and Google Finance.

 Nevertheless, the realm of intelligent web applications extends well beyond search
engines. The online retailer Amazon was one of the first online stores that offered rec-
ommendations to its users based on their shopping patterns. You may be familiar with
that feature. Let’s say that you purchase a book on JavaServer Faces and a book on
Python. As soon as you add your items to the shopping cart, Amazon will recommend
additional items that are somehow related to the ones you’ve just selected; it could
recommend books that involve AJAX or Ruby on Rails. In addition, during your next
visit to the Amazon website, the same or other related items may be recommended.

 Another intelligent web application is Netflix,1 which is the world’s largest online
movie rental service, offering more than 7 million subscribers access to 90,000 DVD
titles plus a growing library of more than 5,000 full-length movies and television epi-
sodes that are available for instant watching on their PCs. Netflix has been the top-
rated website for customer satisfaction for five consecutive periods from 2005 to 2007,
according to a semiannual survey by ForeSee Results and FGI Research.

 Part of its online success is due to its ability to provide users with an easy way to
choose movies, from an expansive selection of movie titles. At the core of that ability is
a recommendation system called Cinematch. Its job is to predict whether someone
will enjoy a movie based on how much he liked or disliked other movies. This is
another great example of an intelligent web application. The predictive power of Cin-
ematch is of such great value to Netflix that, in October 2006, it led to the announce-
ment of a million-dollar prize2 for improving its capabilities. By October 2007, there
have been 28,845 contestants from 165 countries. In chapter 3, we offer extensive cov-
erage of the algorithms that are required for building a recommendation system such
as Cinematch.

 Leveraging the opinions of the collective in order to provide intelligent predic-
tions isn’t limited to book or movie recommendations. The company PredictWall-
Street collects the predictions of its users for a particular stock or index in order to
spot trends in the opinions of the traders and predict the value of the underlying
asset. We don’t suggest that you should withdraw your savings and start trading based
on their predictions, but they’re yet another example of creatively applying the tech-
niques of this book in a real-world scenario.

1 Source: Netflix, Inc. website at http://www.netflix.com/MediaCenter?id=5379
2 Source: http://www.netflixprize.com//rules
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.netflix.com/MediaCenter?id=5379
http://www.netflixprize.com//rules

4 CHAPTER 1 What is the intelligent web?
1.2 Basic elements of intelligent applications
Let’s take a closer look at what distinguishes the applications that we referred to in the
previous section as intelligent and, in particular, let’s emphasize the distinction
between collaboration and intelligence. Consider the case of a website where users
can collaboratively write a document. Such a website could well qualify as an advanced
web application under a number of definitions for the term advanced. It would cer-
tainly facilitate the collaboration of many users online, and it could offer a rich and
easy-to-use UI, a frictionless workflow, and so on. But should that application be con-
sidered an intelligent web application?

 A document created in that website will be larger in volume, greater in depth, and
perhaps more accurate than other documents written by each participant individually.
In that respect, the document captures not just the knowledge of each individual con-
tributor but also the effect that the interaction between the users has on the end prod-
uct. Thus, a document created in this manner captures the collective knowledge of
the contributors.

 This is not a new notion. The process of defining a standard, in any field of science
or engineering, is almost always conducted by a technical committee. The committee
creates a first draft of the document that brings together the knowledge of experts
and the opinions of many interest groups, and addresses the needs of a collective
rather than the needs of a particular individual or vendor. Subsequently, the first draft
becomes available to the public and a request for comments is initiated. The purpose
of this process is that the final document is going to represent the total body of knowl-
edge in the community and will express guidelines that meet several requirements
found in the community.

 Let’s return to our application. As defined so far, it allows us to capture collective
knowledge and is the result of a collective effect, but it’s not yet intelligent. Collective
intelligence—a term that’s quite popular but often misunderstood—requires collec-
tive knowledge and is built by collective effects, but these conditions, although neces-
sary, aren’t sufficient for characterizing the underlying software system as intelligent.

 In order to understand the essential ingredients of what we mean by intelligence,
let’s further assume that our imaginary website is empowered with the following fea-
tures: As a user types her contribution, the system identifies other documents that may
be relevant to the typed content and retrieves excerpts of them in a sidebar. These
documents could be from the user’s own collection of documents, documents that are
shared among the contributors of the work-in-progress, or simply public, freely avail-
able, documents.

 A user can mark a piece of the work-in-progress and ask the system to be notified
when documents pertaining to the content of that excerpt are found on the internet
or, perhaps more interestingly, when the consensus of the community about that con-
tent has changed according to certain criteria that the user specifies.

 Creating an application with these capabilities requires much more than a pretty UI
and a collaborative platform. It requires the understanding of freely typed text. It
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.housingmaps.com
http://www.craigslist.com
http://www.craigslist.com
http://www.craigslist.com
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/maps/index.html
http://www.housingmaps.com

5Basic elements of intelligent applications
requires the ability to discern the meaning of things within a context. It requires the
ability to automatically process and group together documents, or parts of documents,
that contain free text in natural (human) language on the basis of whether they’re “sim-
ilar.” It requires some structured knowledge about the world or, at least, about the
domain of discourse that the document refers to. It requires the ability to focus on cer-
tain documents that satisfies certain rules (user’s criteria) and do so quickly.

 Thus, we arrive at the conclusion that applications such as Wikipedia or other pub-
lic portals are different from applications such as Google search, Google Ads, Netflix
Cinematch, and so on. Applications of the first kind are collaborative platforms that
facilitate the aggregation and maintenance of collective knowledge. Applications of
the second kind generate abstractions of patterns from a body of collective knowledge
and therefore generate a new layer of opportunity and value.

 We conclude this section by summarizing the elements that are required in order
to build an intelligent web application:

■ Aggregated content—In other words, a large amount of data pertinent to a spe-
cific application. The aggregated content is dynamic rather than static, and its
origins as well as its storage locations could be geographically dispersed. Each
piece of information is typically associated with, or linked to, many other pieces
of information.

■ Reference structures—These structures provide one or more structural and seman-
tic interpretations of the content. For example, this is related to what people
call folksonomy—the use of tags for annotating content in a dynamic way and
continuously updating the representation of the collective knowledge to the
users. Reference structures about the world or a specific domain of knowledge
come in three big flavors: dictionaries, knowledge bases, and ontologies (see
the related references at the end).

■ Algorithms—This refers to a layer of modules that allows the application to har-
ness the information, which is hidden in the data, and use it for the purpose of
abstraction (generalization), prediction, and (eventually) improved interaction
with its users. The algorithms are applied on the aggregated content, and some-
times require the presence of reference structures.

These ingredients, summarized in figure 1.1,
are essential for characterizing an application
as an intelligent web application, and we’ll
refer to them throughout the book as the tri-
angle of intelligence.

 It’s prudent to keep these three compo-
nents separate and build a model of their
interaction that best fits your needs. We’ll dis-
cuss more about architecture design in the
rest of the chapters, especially in chapter 7.

Content
(Raw Data)

Reference
(Knowledge)

Algorithms
(Thinking)

Figure 1.1 The triangle of intelligence:
the three essential ingredients of intelligent
applications.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.foodiebytes.com
http://www.boorah.com
http://www.boorah.com
http://web.resource.org/rss/1.0/
http://web.resource.org/rss/1.0/
http://developer.yahoo.com/rss
http://developer.yahoo.com/rss
http://developer.yahoo.com/rss

6 CHAPTER 1 What is the intelligent web?
1.3 What applications can benefit from intelligence?
The ingredients of intelligence, as described in the previous section, can be found
across a wide spectrum of applications, from social networking sites to specialized
counterterrorism applications. In this section, we’ll describe examples from each cate-
gory. Our list is certainly not complete, but it’ll demonstrate that the techniques of
this book can be widely useful, if not irreplaceable in certain cases.

1.3.1 Social networking sites

The websites that have marked the internet most prominently in the last few years are
the social networking sites. These are web applications that provide their users with
the ability to establish an online presence using nothing more than a browser and an
internet connection. The users can share files (presentations, video files, audio files)
with each other, comment on current events or other people’s pages, build their own
social network, or join an existing one based on their interests. The two most-visited3

social networking sites are MySpace and Facebook, with hundreds of millions and tens
of millions of registered users, respectively.

 These sites are content aggregators by construction, so the first ingredient for
building intelligence is readily available. The second ingredient is also present in
those sites. For example, on MySpace, the content is categorized using top labels such
as “Books,” “Movies,” “Schools,” “Jobs,” and so on that are clearly visible on the site
(see figure 1.2).

 In addition, these top-level categories are further refined by lower-level structures
that differentiate content related to “Classifieds” from content related to “Polls” or

3 Based on traffic data captured by Alexa.com on December 2007.

Figure 1.2 This snapshot shows the categories on the MySpace websites.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://cyber.law.harvard.edu/rss
http://cyber.law.harvard.edu/rss
http://cyber.law.harvard.edu/rss
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287
http://www.ibm.com/developerworks/xml/standards/x-atomspec.html
http://www.ibm.com/developerworks/xml/standards/x-atomspec.html
http://apidoc.digg.com/
http://apidoc.digg.com/
http://java.sys-con.com/read/38665.htm

7What applications can benefit from intelligence?
“Weather.” Finally, most social networking sites are able to recommend to their users
new friends and new postings that may be of interest. In order to do that, they rely on
advanced algorithms for making predictions and abstractions of the collected data,
and therefore contain all three ingredients of intelligence.

1.3.2 Mashups

The IBM DeveloperWorks site (http://www.ibm.com/developerworks/spaces/mash-
ups) has a whole section dedicated to mashups, and the definition is particularly apt:
“Mashups are an exciting genre of interactive web applications that draw upon con-
tent retrieved from external data sources to create entirely new and innovative ser-
vices.” In other words, you’re building a site by using content and UI elements
“borrowed” from others. Another interesting site, in the context of mashups, is Pro-
grammableWeb (http://www.programmableweb.com). It’s a convenient place for
starting your exploration of the mashups world (see figure 1.3).

 In our context, mashups are important because they’re based on aggregated con-
tent, but unlike social networking sites, they don’t own the content that they dis-
play—at least, a big part of it. The content is physically stored in geographically
dispersed locations and is pulled together from its various sources to create a unique
presentation based on your interaction with the application.

 But not all mashups are intelligent. In order to build intelligent mashups, we need
the ability to reconcile differences or identify similarities of the content that we try to
collage. In turn, the reconciliation and classification of the content require one or

Figure 1.3 To learn more about mashups, visit sites like ProgrammableWeb.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.programmableweb.com
http://www.ibm.com/developerworks/spaces/mashups
http://www.ibm.com/developerworks/spaces/mashups
http://www.programmableweb.com

8 CHAPTER 1 What is the intelligent web?
more reference structures for interpreting the meaning of the content, as well as a
number of algorithms that can identify what elements of the reference structures are
contained within the various pieces or how content that has been retrieved from dif-
ferent sites should be categorized for viewing purposes.

1.3.3 Portals

Portals and in particular news portals are another class of web applications where the
techniques of this book can have a large impact. By definition, these applications are
gateways to content that’s distributed throughout the internet or, in the case of a cor-
porate network, throughout an intranet. This is another case in which the aggregated
content is dispersed but accessible.

 The best example in this category is Google News (http://news.google.com). This
site gathers news stories from thousands of sources and automatically groups similar
news stories under a common heading. Moreover, each group of news stories is
assigned to one of the news categories that are available by default, such as Business,
Health, World, Sci/Tech, and so on (see figure 1.4).

 You can even define your own categories and determine what kind of stories are of
interest to you. Once again, we see that the underlying theme is aggregated content
coupled with a reference structure and a number of algorithms that can perform the
required tasks automatically or, at least, semiautomatically.

 A promising project for building intelligence in your portal—especially for social ap-
plication kinds of portals—is OpenSocial (http://code.google.com/apis/opensocial/)

Figure 1.4 The Google News website is an intelligent portal application.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://news.google.com
http://news.google.com
http://code.google.com/apis/opensocial/

9What applications can benefit from intelligence?
and a number of projects that are developed around it such as the Apache project Shin-
dig. The premise of OpenSocial is to build a common API base that will allow the devel-
opment of applications that interact with a large, and continuously growing, number of
websites such as Engage , Friendster, hi5, Hyves, imeem, LinkedIn, MySpace, Ning, Ora-
cle, orkut, Plaxo, Salesforce , Six Apart, Tianji, Viadeo, and XING.

1.3.4 Wikis

Wikipedia shouldn’t require much introduction; you’ve probably visited that website
already, or at least heard of it. It’s a wiki site that has been consistently in the top 10
most visited websites. A wiki is a repository of knowledge that’s accessible online. Wikis
are used by social communities on the internet and by corporations internally for
knowledge-sharing purposes.

 These sites are clearly content aggregators. In addition, a lot of these sites, due to
the page creation workflow, have a built-in structure that annotates the content. In
Wikipedia, you can assign an article to a category and link articles that refer to the
same subject. Wikis are a promising area for applying the techniques of this book.
For example, you could build or modify your wiki site so that it automatically catego-
rizes the pages that you write. The wiki pages could have an inlet, or another panel,
of recommended terms that you can link to—pages on a wiki are supposed to be
linked to each other whenever the link provides an explanation or additional infor-
mation on a term or topic. Finally, the natural linkage of the pages provides fertile
ground for advanced search (chapter 2), clustering (chapter 4), and other analyti-
cal techniques.

1.3.5 Media-sharing sites

YouTube is the hallmark of the internet media-sharing sites, but other websites such as
RapidShare (http://www.rapidshare.com) and MegaUpload (http://www.megau-
pload.com/) enjoy a high percentage of visitors. The unique feature of these sites is
that most of their content is in binary format—video or audio files. In most cases, the
size of the smallest unit of information is larger on these sites than on text-based site
aggregators; the sheer volume of data to be processed, at the unit level, poses some of
the greatest challenges in the context of gathering intelligence.

 In addition, two of the most difficult problems of intelligent applications (and also
most interesting from a business perspective) are intimately related to the processing
of binary information. These two problems are voice and pattern recognition. Compa-
nies such as Clearspring (http://www.clearspring.com/) and ScanScout (http://
www.scanscout.com/), working together, enable advertisers to enhance the distribu-
tion of their brand and message to a broader audience. ScanScout provides advertis-
ers with intelligence about the distribution of, and engagement with, their widgets
across more than 25 sites, including MySpace, Facebook, Google, and Yahoo!

 The same pattern we described in the earlier sections can be found in these sites as
well. We have aggregated content; we typically want to have the content categorized;
and we want to have algorithms that can help us extract value from that content. We’d
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.rapidshare.com
http://www.megaupload.com/
http://www.megaupload.com/
http://www.clearspring.com/
http://www.scanscout.com/
http://www.scanscout.com/

10 CHAPTER 1 What is the intelligent web?
like to have our binary files categorized in terms of the themes that we define—“Autos
& Vehicles,” “Education,” “Entertainment,” “Politics,” and so on (see figure 1.5).

 Similarly to other cases of intelligent applications, these categories may be struc-
tured as a hierarchy. For example, the category of “Autos & Vehicles” may be further
divided into subcategories such as “Sedan,” “Trucks,” “Luxury,” “SUV,” and so on.

1.3.6 Online gaming

Massive multiplayer online games have all the ingredients required to create intelli-
gence in the game. They have ample aggregated content and reference structures that
reflect the rules, and they can certainly use the algorithms that we describe in this
book to introduce new levels of sophistication in the game. Characters that are played
by the computer can assimilate the input of the human players so that the experience
of the game as perceived by the humans becomes more entertaining.

 Online gaming is an exciting area for applying intelligent techniques, and it can
become a key differentiator among competitors, as the computational power that’s
available for playing games and the expectations of the human players with respect
to game complexity and innovation increase. Techniques that we describe in chap-
ters 4, 5, and 6, as well as a lot of the material in the appendices, are directly applica-
ble in online games.

Figure 1.5 The YouTube categories for videos. The reference schema for the categorization of content
is shown on the left panel.
Licensed to Deborah Christiansen <pedbro@gmail.com>

11How can I build intelligence in my own application?
1.4 How can I build intelligence in my own application?
We’ve provided many reasons for embedding intelligence in your application. We’ve also
described a number of areas where the intelligent behavior of your software can dras-
tically improve the experience and value that your users get from your application. At
this point, the natural question is “How can I build intelligence in my own application?”

 This entire book is an introduction to the design and implementation of intelli-
gent components, but to make the best use of it, you should also address two prerequi-
sites of building an intelligent application.

 The first prerequisite is a review of your functionality. What are your users doing
with your application? How does your application add consumer or business value?
We provide a few specific questions that are primarily related to the algorithms that
we’ll develop in the rest of the book. The importance of these questions will vary
depending on what your application does. Nevertheless, these specific questions
should help you identify the areas where an intelligent component would add most
value to your application.

 The second prerequisite is about data. For every application, data is either internal
to an application (immediately available within the application) or external. First
examine your internal data. You may have everything that you need, in which case
you’re ready to go. Conversely, you may need to insert a workflow or other means of
collecting some additional data from your users. You may want, for example, to add a
“five star” rating UI element to your pages, so that you can build a recommendation
engine based on user ratings.

 Alternatively, you might want or need to obtain more data from external sources. A
plethora of options is available for that purpose. We can’t review them all here, but we
present four large categories that are fairly robust from a technology perspective, and
are widely used. You should look into the literature for the specifics of your preferred
method for collecting the addition data that you want to obtain.

1.4.1 Examine your functionality and your data

You should start by identifying a number of use cases that would benefit from intelli-
gent behavior. This will obviously differ from application to application, but you can
identify these cases by asking some very simple questions, such as:

■ Does my application serve content that’s collected from various sources?
■ Does it have wizard-based workflows?
■ Does it deal with free text?
■ Does it involve reporting of any kind?
■ Does it deal with geographic locations such as maps?
■ Does our application provide search functionality?
■ Do our users share content with each other?
■ Is fraud detection important for our application?
■ Is identity verification important for our application?
■ Does our application make automated decisions based on rules?
Licensed to Deborah Christiansen <pedbro@gmail.com>

12 CHAPTER 1 What is the intelligent web?
This list is, of course, incomplete but it’s indicative of the possibilities. If the answer to
any of these questions is yes, your application can benefit greatly from the techniques
that we’ll describe in the rest of the book.

 Let’s consider the common use case of searching through the data of an imaginary
application. Nearly all applications allow their users to search their site. Let’s say that
our imaginary application allows its users to purchase different kinds of items based
on a catalog list. Users can search for the items that they want to purchase. Typically,
this functionality is implemented by a direct SQL query, which will retrieve all the
product items that match the item description. That’s nice, but our database server
doesn’t take into account the fact that the query was executed by a specific user, for
whom we probably know a great deal within the context of his search. We can proba-
bly improve the user experience by implementing the ranking methods described in
chapter 2 or the recommendation methods described in chapter 3.

1.4.2 Get more data from the web

In many cases, your own data will be sufficient for building intelligence that’s relevant
and valuable to your application. But in some cases, providing intelligence in your
application may require access to external information. Figure 1.6 shows a snapshot
from the mashup site HousingMaps (http:www.housingmaps.com), which allows the

Figure 1.6 A screenshot that shows the list of available houses on craigslist combined with maps
from the Google maps service (source: http://www.housingmaps.com).
Licensed to Deborah Christiansen <pedbro@gmail.com>

http:www.housingmaps.com
http://www.housingmaps.com

13How can I build intelligence in my own application?
user to browse the houses available in a geographic location by obtaining the list of
houses from craigslist (http://www.craigslist.com) and maps from the Google maps
service (http://code.google.com/apis/maps/index.html).

 Similarly, a news site could associate a news story with the map of the area that the
story refers to. The ability to obtain a map for a location is already an improvement
for any application. Of course, that doesn’t make your application intelligent unless
you do something intelligent with the information that you get from the map.

 Maps are a good example of obtaining external information, but more information
is available on the web that’s unrelated to maps. Let’s look at the enabling
technologies.
CRAWLING AND SCREEN SCRAPING

Crawlers, also known as spiders, are software programs that can roam the internet and
download content that’s publicly available. Typically, a crawler would visit a list of URLs
and attempt to follow the links at each destination. This process can repeat for a num-
ber of times, usually referred to as the depth of crawling. Once the crawler has visited a
page, it stores its content locally for further processing. You can collect a lot of data in
this manner, but you can quickly run into storage or copyright-related issues. Be care-
ful and responsible with crawling. In chapter 2, we present our own implementation
of a web crawler. We also include an appendix that provides a general overview of web
crawling, a summary of our own web crawler, as well as a brief description of a few
open source implementations.

 Screen scraping refers to extracting the information that’s contained in HTML pages.
This is a straightforward but tedious exercise. Let’s say that you want to build a search
engine exclusively for eating out (such as http://www.foodiebytes.com). Extracting
the menu information from the web page of each restaurant would be one of your
first tasks. Screen scraping itself can benefit from the techniques that we describe in
this book. In the case of a restaurant search engine, you want to assess how good a res-
taurant is based on reviews from people who ate there. In some cases, ratings may be
available, but most of the time these reviews are plain, natural language, text. Reading
the reviews one-by-one and ranking the restaurants accordingly is clearly not a scal-
able business solution. Intelligent techniques can be employed during screen scraping
and help you automatically categorize the reviews and assess the ranking of the restau-
rants. An example is Boorah (http://www.boorah.com).
RSS FEEDS

Website syndication is another way to obtain external data and it eliminates the bur-
den of revisiting websites with your crawler. Usually, syndicated content is more
machine-friendly than regular web pages because the information is well structured.
There are three common feed formats: RSS 1.0, RSS 2.0, and Atom.

 RDF Site Summary (RSS) 1.0, as the name suggests, was born out of the Resource
Description Framework4 (RDF) and is based on the idea that information on the web
can be harnessed by humans and machines. However, humans can usually infer the

4 http://www.w3.org/RDF
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.craigslist.com
http://code.google.com/apis/maps/index.html
http://www.foodiebytes.com
http://www.boorah.com
http://www.w3.org/RDF

14 CHAPTER 1 What is the intelligent web?
semantics of the content (the meaning of a word or phrase within a context) whereas
machines can’t do that easily. RDF was introduced to facilitate the semantic interpreta-
tion of the web. You can use it to extract useful data and metadata for your own pur-
poses. The RSS 1.0 specification can be found at http://web.resource.org/rss/1.0/.

 Really Simple Syndication (RSS 2.0 is based on Netscape’s Rich Site Summary
0.91—there’s significant overloading of the acronym RSS, to say the least—and its pri-
mary purpose was to alleviate the complexity of the RDF-based formats. It employs a syn-
dication-specific language that’s expressed in plain XML format, without the need for
XML namespaces or direct RDF referencing. Nearly all major sites provide RSS 2.0 feeds
today; these are typically free for individuals and nonprofit organizations for noncom-
mercial use. Yahoo!’s RSS feeds site (http://developer.yahoo.com/rss) has plenty of
resources for a smooth introduction in the subject. You can access the RSS 2.0 specifi-
cation and other related information at http://cyber.law.harvard.edu/rss.

 Finally, you can use Atom-based syndication. A number of issues with RSS 2.0 led to
the development of an Internet Engineering Task Force (IETF) standard expressed in
RFC 4287 (http://tools.ietf.org/html/rfc4287). Atom is not RDF-based; it’s neither as
flexible as RSS 1.0 nor as easy as RSS 2.0. It was in essence a compromise between the fea-
tures of the existing standards under the constraint of maximum backward compatibility
with the other syndication formats. Nevertheless, Atom enjoys widespread adoption like
RSS 2.0. Most big web aggregators (such as Yahoo! and Google) offer news feeds in these
two formats. Read more about the Atom syndication format at the IBM Developer Works
website: http://www.ibm.com/developerworks/xml/standards/x-atomspec.html.
RESTFUL SERVICES

Representational State Transfer (REST) was introduced in the doctoral dissertation of Roy
T. Fielding.5 It’s a software architecture style for building applications on distributed,
hyperlinked, media. REST is a stateless client/server architecture that maps every ser-
vice onto a URL. If your nonfunctional requirements aren’t complex and a formal
contract between you and the service provider isn’t necessary, REST may be a conve-
nient way for obtaining access to various services across the web. For more informa-
tion on this important technology, you can consult RESTful Web Services by Leonard
Richardson and Sam Ruby.

 Many websites offer RESTful services that you can use in your own application.
Digg offers an API (http://apidoc.digg.com/) that accepts REST requests and offers
several response types such as XML, JSON, JavaScript, and serialized PHP. Functionally,
the API allows you to obtain a list of stories that match various criteria, a list of users,
friends, or fans of users, and so on.

 The Facebook API is also a REST-like interface. This makes it possible to communicate
with that incredible platform using virtually any language you like. All you have to do
is send an HTTP GET or POST request to the Facebook API REST server. The Facebook
API is well documented, and we’ll make use of it later in the book. You can read more
about it at http://wiki.developers.facebook.com/index.php/API.

5 http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://web.resource.org/rss/1.0/
http://developer.yahoo.com/rss
http://cyber.law.harvard.edu/rss
http://tools.ietf.org/html/rfc4287
http://www.ibm.com/developerworks/xml/standards/x-atomspec.html
http://apidoc.digg.com/
http://wiki.developers.facebook.com/index.php/API
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

15Machine learning, data mining, and all that
WEB SERVICES

Web services are APIs that facilitate the communication between applications. A large
number of web services frameworks are available and many of them are open source.
Apache Axis (http://ws.apache.org/axis/) is an open source implementation of the
Simple Access Object Protocol (SOAP), which “can be used for exchanging structured
and typed information between peers in a decentralized, distributed environment.”6

Apache Axis is a popular framework and it was completely redesigned in version 2.
Apache Axis2 supports SOAP 1.1 and SOAP 1.2 as well as the widely popular REST style
of web services, and contains a staggering number of features.

 Another Apache project worth mentioning is Apache CXF (http://incubator.
apache.org/cxf/), the result of the merger of Celtix by IONA and Codehaus XFire.
Apache CXF supports the following standards: JAX-WS 2.0, JAX-WSA, JSR-181,
SAAJ, SOAP 1.1, 1.2, WS-I Basic Profile, WS-Security, WS-Addressing, WS-RM, WS-Policy,
WSDL 1.1 and 2.0. It also supports multiple transport mechanisms, bindings, and for-
mats. If you’re considering using web services, you should have a look at this project.

 Aside from the many frameworks available for web services, there are even more
web service providers. Nearly every company uses web services for integrating applica-
tions that are quite different, in terms of their functionality or their technology stack.
That situation could be the result of companies merging or uncoordinated parallel
development efforts in a single, typically large, company. In the vertical space, nearly
all big financial and investment institutions use web services for seamless integration.
Xignite (http://preview.xignite.com/Default.aspx) offers a variety of financial web
services. Software giants (such as SAP, Oracle, and Microsoft) also offer support for
web services. In summary, web services-based integration is ubiquitous and, as one of
the major integration enablers, it’s an important infrastructure element in the design
of intelligent applications.

 At this point, you must have thought of the possible enhancements in your existing
applications or you got a new idea for the next smashing startup! You checked that
you have all the required data or that, at least, you can access the data. Now, let’s look
at the kind of intelligence that we plan to inject in our applications and its relation-
ship to some terms that may be already familiar to you.

1.5 Machine learning, data mining, and all that
We talk about “intelligence” throughout this book, but what exactly do we mean? Are
we talking about the field of artificial intelligence? How about machine learning? Is it
about data mining and soft computing? Academics of the respective fields may argue
for years about the precise definition of what we’re about to present. From a practical
perspective, most distinctions are benign and mainly a matter of context rather than
substance. This book is a distillation of techniques that belong to all these areas. So,
let’s discuss them.

6 http://www.w3.org/TR/soap12-part0/ - L1153
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://ws.apache.org/axis/
http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/
http://preview.xignite.com/Default.aspx
http://www.w3.org/TR/soap12-part0/ - L1153

16 CHAPTER 1 What is the intelligent web?
 Artificial intelligence, widely known by its acronym AI, began as a computational field
around 1950. Initially, the goals of AI were quite ambitious and aimed at developing
machines that can think like humans (Russell and Norvig, 2002; Buchanan, 2005).
Over time, the goals became more practical and concrete. Megalomania yielded to
pragmatism and that, in turn, gave birth to many of the other fields that we men-
tioned, such as machine learning, data mining, soft computing, and so on.

 Today, the most advanced system of computational intelligence can’t comprehend
simple stories that a four-year-old can easily understand. So, if we can’t make comput-
ers “think,” can we make them “learn”? Can we teach a computer to distinguish an
animal based on its characteristics? How about a bad subprime mortgage application?
How about something more complicated, such as recognizing your voice and replying
in your native language—can a computer do that? The answer to these questions is a
resounding yes. Nevertheless, you may wonder, “What’s all the fuss about?” After all,
you can always build a huge lookup table and get answers to your questions based on
the data that you have in your database.

 You can certainly follow the lookup table approach, but there are a few problems
with it. First, for any problem of consequence in a real production system, your
lookup table would be enormous; so, based on efficiency considerations, this isn’t an
optimal solution. Second, if the question that you form is based on data that doesn’t
exist in your database, you’d get no answer at all. If a person behaved in that manner,
you’d be quick to adorn him with adjectives that censorship wouldn’t allow us to print
on these pages. Last, someone would have to build and maintain your lookup table,
and the number of these people would grow with the size of your table: a feature that
may not sit well with the financial department of your organization. So we need some-
thing better than a lookup table.

 Machine learning refers to the capability of a software system to generalize based
on past experience, and use these generalizations to provide answers to questions that
relate to data that it has encountered in the past as well as new data that the system has
never encountered before. Some learning algorithms are transparent to humans—a
human can follow the reasoning behind the generalization. Examples of transparent
learning algorithms are decision trees and, more generally, any rule-based learning
method. Other algorithms, though, aren’t transparent to humans—neural networks
and support vector machines (SVM) fall in this category.

 Always remember that machine intelligence, like human intelligence, isn’t infalli-
ble. In the world of intelligent applications, you’ll learn to deal with uncertainty
and fuzziness; just like in the real world, any answer given to you is valid with a certain
degree of confidence but not with certainty. In our everyday life, we simply assume
that certain things will happen for sure. For that reason, we’ll address the issues of
credibility, validity, and the cost of being wrong when we use intelligent applications.

1.6 Eight fallacies of intelligent applications
We’ve covered all the introductory material. By now, you should have a fairly good,
although only high-level, idea of what intelligent applications are and how you’re
Licensed to Deborah Christiansen <pedbro@gmail.com>

17Eight fallacies of intelligent applications
going to use them. You’re probably sufficiently motivated and anxious to dive into the
code. We won’t disappoint you. Every chapter other than the introduction is loaded
with new and valuable code.

 But before we embark on our journey into the exciting and financially rewarding
(for the more cynical among us) world of intelligent applications, we’ll present a
number of mistakes, or fallacies, that are common in projects that embed intelligence
in their functionality. You may be familiar with the eight fallacies of distributed com-
puting (if not, see the industry commentary by Van den Hoogen); it’s a set of com-
mon but flawed assumptions made by programmers when first developing distributed
applications. Similarly, we’ll present a number of fallacies, and consistent with the tra-
dition, we’ll present eight of them.

1.6.1 Fallacy #1: Your data is reliable

There are many reasons your data may be unreliable. That’s why you should always
examine whether the data that you’ll work with can be trusted before you start consid-
ering specific intelligent algorithmic solutions to your problem. Even intelligent peo-
ple that use very bad data will typically arrive at erroneous conclusions.

 The following is an indicative, but incomplete, list of the things that can go wrong
with your data:

■ The data that you have available during development may not be representative
of the data that corresponds to a production environment. For example, you
may want to categorize the users of a social network as “tall,” “average,” and
“short” based on their height. If the shortest person in your development data
is six feet tall (about 184 cm), you’re running the risk of calling someone short
because they’re “just” six feet tall.

■ Your data may contain missing values. In fact, unless your data is artificial, it’s
almost certain that it’ll contain missing values. Handling missing values is a
tricky business. Typically, you either leave the missing values as missing or you
fill them in with some default or calculated value. Both conditions can lead to
unstable implementations.

■ Your data may change. The database schema may change or the semantics of
the data in the database may change.

■ Your data may not be normalized. Let’s say that we’re looking at the weight of a
set of individuals. In order to draw any meaningful conclusions based on the
value of the weight, the unit of measurement should be the same for all individ-
uals—in pounds or kilograms for every person, not a mix of measurements in
pounds and kilograms.

■ Your data may be inappropriate for the algorithmic approach that you have in
mind. Data comes in various shapes and forms, known as data types. Some data-
sets are numeric and some aren’t. Some datasets can be ordered and some
can’t. Some numeric datasets are discrete (such as the number of people in a
room) and some are continuous (the temperature of the atmosphere).
Licensed to Deborah Christiansen <pedbro@gmail.com>

18 CHAPTER 1 What is the intelligent web?
1.6.2 Fallacy #2: Inference happens instantaneously

Computing a solution takes time, and the responsiveness of your application may be
crucial for the financial success of your business. You shouldn’t assume that all
algorithms, on all datasets, will run within the response time limits of your applica-
tion. You should test the performance of your algorithm within the range of your
operating characteristics.

1.6.3 Fallacy #3: The size of data doesn’t matter

When we talk about intelligent applications, size does matter! The size of your data
comes into the picture in two ways. The first is related to the responsiveness of the
application as mentioned in fallacy #2. The second is related to your ability to obtain
meaningful results on a large dataset. You may be able to provide excellent movie or
music recommendations for a set of users when the number of users is around 100,
but the same algorithm may result in poor recommendations when the number of
users involved is around 100,000.

 Conversely, in some cases, the more data you have, the more intelligent your appli-
cation can be. Thus, the size of the data matters in more than one way and you should
always ask: Do I have enough data? What’s the impact to the quality of my intelligent
application if I must handle 10 times more data?

1.6.4 Fallacy #4: Scalability of the solution isn’t an issue

Another fallacy that’s related to, but distinct from, fallacies #2 and #3 is the assump-
tion that an intelligent application solution can scale by simply adding more
machines. Don’t assume that your solution is scalable. Some algorithms are scalable
and others aren’t. Let’s say that we’re trying to find groups of similar headline news
among billions of titles. Not all clustering algorithms (see chapter 4) can run in paral-
lel. You should consider scalability during the design phase of your application. In
some cases, you may be able to split the data and apply your intelligent algorithm on
smaller datasets in parallel. The algorithms that you select in your design may have
parallel (concurrent) versions, but you should investigate this from the outset,
because typically, you’ll build a lot of infrastructure and business logic around your
algorithms.

1.6.5 Fallacy #5: Apply the same good library everywhere

It’s tempting to use the same successful technique many times over to solve diverse
problems related to the intelligent behavior of your application. Resist that tempta-
tion at all costs! I’ve encountered people who were trying to solve every problem
under the sun using the Lucene search engine. If you catch yourself doing something
like that, remember the expression: When you’re holding a hammer, everything looks
like a nail.

 Intelligent application software is like every other piece of software—it has a cer-
tain area of applicability and certain limitations. Make sure that you test thoroughly
Licensed to Deborah Christiansen <pedbro@gmail.com>

19Summary
your favorite solution in new areas of application. In addition, it’s recommended that
you examine every problem with a fresh perspective; a different problem may be
solved more efficiently or more expediently by a different algorithm.

1.6.6 Fallacy #6: The computation time is known

Classic examples in this category can be found in problems that involve optimization.
In certain applications, it’s possible to have a large variance in solution times for a rel-
atively small variation of the parameters involved. Typically, people expect that, when
we change the parameters of a problem, the problem can be solved consistently with
respect to response time. If you have a method that returns the distance between any
two geographic locations on Earth, you expect that the solution time will be indepen-
dent of any two specific geographic locations. But this isn’t true for all problems. A
seemingly innocuous change in the data can lead to significantly different solution
times; sometimes the difference can be hours instead of seconds!

1.6.7 Fallacy #7: Complicated models are better

Nothing could be further from the truth. Always start with the simplest model that you
can think of. Then gradually try to improve your results by combining additional
elements of intelligence in your solution. KISS is your friend and a software engineer-
ing invariant.

1.6.8 Fallacy #8: There are models without bias

There are two reasons why you’d ever say that—either ignorance or bias! The choice
of the models that you make and the data that you use to train your learning algo-
rithms introduce a bias. We won’t enter here into a detailed scientific description of
bias in learning systems. But we’ll note that bias balances generalization in the sense
that our solution will gravitate toward our model description and our data (by con-
struction). In other words, bias constrains our solution inside the set of things that we
do know about the world (the facts) and sometimes how we came to know about it,
whereas generalization attempts to capture what we don’t know (factually) but it’s rea-
sonable to presume true given what we do know.

1.7 Summary
In this chapter, we gave a broad overview of intelligent web applications with a number
of specific examples based on real websites, and we provided a practical definition of
intelligent web applications, which can act as a design principle. The definition calls for
three different components: (1) data aggregation, (2) reference structures, and (3)
algorithms that offer learning capabilities and allow the manipulation of uncertainty.

 We provided a reality check by presenting six broad categories of web applications
for which our definition can be readily applied. Subsequently, we presented the
enabling technologies that allow us to aggregate data or get access to data aggregation
platforms. We also provided background on the origins of the techniques that we will
Licensed to Deborah Christiansen <pedbro@gmail.com>

20 CHAPTER 1 What is the intelligent web?
present in the next chapters and, in particular, their relation with the fields of artifi-
cial intelligence, machine learning, data mining, and soft computing.

 Finally, we presented a list of eight design pitfalls that occur frequently in practice.
These are given as broad empirical guidelines rather than as rigorously established
facts. We believe that knowing these eight guidelines can save you a lot of time and
reduce your caffeine consumption. In the rest of the book we will examine, one by
one, a number of techniques that can add intelligent behavior in your own applica-
tion. Additional material for each of these techniques is provided in the end of each
chapter in a “To Do” section.

1.8 References
 Buchanan, B.G. “A (Very) Brief History of Artificial Intelligence.” AI Magazine. Volume 26.

issue 4, 2005.
 Gómez-Pérez, A., M. Fernández-López, O. Corcho. Ontological Engineering: With Examples from

the Areas of Knowledge Management, E-commerce and the Semantic Web. Springer, 2005.
 Hart, P.E., N.J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic Determination

of Minimum Cost Paths.” IEEE Transactions on Systems Science and Cybernetics. Volume 4,
issue 2, 1968.

 Hart, P.E., N.J. Nilsson, and B. Raphael. Correction to “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths.” SIGART Newsletter 37, 1972.

 Richardson, L. and S. Ruby. RESTful Web Services. O’Reilly Media, 2007.
 Russell, S. and P. Norvig. Artificial Intelligence: A Modern Approach (2nd Edition). Prentice

Hall, 2002.
 Van Den Hoogen, I. “Deutsch’s fallacies, 10 Years After.” Java Developer’s Journal, 2004.

http://java.sys-con.com/read/38665.htm.

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://java.sys-con.com/read/38665.htm

Searching
Let’s say that you have a list of documents and you’re interested in reading about
those that are related to the phrase “Armageddon is near”—or perhaps something
less macabre. How would you implement a solution to that problem? A brute force,
and naïve, solution would be to read each document and keep only those in which
you can find the term “Armageddon is near.” You could even count how many
times you found each of the words in your search term within each of the docu-
ments and sort them according to that count in descending order. That exercise is
called information retrieval (IR) or simply searching. Searching isn’t new functional-
ity; nearly every application has some implementation of search, but intelligent
searching goes beyond plain old searching.

 Experimentation can convince you that the naïve IR solution is full of problems.
For example, as soon as you increase the number of documents, or their size, its per-
formance will become unacceptable for most purposes. Fortunately, there’s an enor-
mous amount of knowledge about IR and fairly sophisticated and robust libraries are

This chapter covers:
■ Searching with Lucene
■ Calculating the PageRank vector
■ Large-scale computing constraints
21

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://poi.apache.org/
http://poi.apache.org/
http://poi.apache.org/
http://www.textmining.org/
http://www.textmining.org/

22 CHAPTER 2 Searching
available that offer scalability and high performance. The most successful IR library in
the Java programming language is Lucene, a project created by Doug Cutting almost 10
years ago. Lucene can help you solve the IR problem by indexing all your documents
and letting you search through them at lightning speeds! Lucene in Action by Otis
Gospodnetić and Erik Hatcher, published by Manning, is a must-read, especially if you
want to know how to index data and introduces search, sorting, filtering and highlight-
ing search results.

 State-of-the-art searching goes well beyond indexing. The fiercest competition
among search engine companies doesn’t involve the technology around indexing but
rather subjects such as link analysis, user click analysis, and natural-language process-
ing. These techniques strengthen the searching functionality, sometimes to the tune
of billions of dollars, as was the case with Google.

 In this chapter, we’ll summarize the features of the Lucene library and demon-
strate its use. We’ll present the PageRank algorithm, which has been the most suc-
cessful link analysis algorithm so far, and we’ll present a probabilistic technique for
conducting user click analysis. We’ll combine all these techniques to demonstrate
the improvement in the search results due to the synergies among them. The mate-
rial is presented in a successive manner, so you can learn as much as you want about
searching and come back to it later if you don’t have enough time now. Without fur-
ther ado, let’s collect a number of documents and search for various terms in them
by using Lucene.

2.1 Searching with Lucene
Searching with Lucene will be our baseline for the rest of the chapter. So, before we
embark on advanced intelligent algorithms, we need to learn the traditional IR steps.
On our journey, we’ll show you how to use Lucene to search a set of collected docu-
ments, we’ll present some of the inner workings of Lucene, and we’ll provide an over-
view of the basic stages for building a search engine.

 The data that you want to search could be in your database, on the internet, or on
any other network that’s accessible to your application. You can collect data from the
internet by using a crawler. A number of crawlers are freely available, but we’ll use a
crawler that we wrote for the purposes of this book. We’ll use a number of pages that
we collected on November 6, 2006, so we can modify them in a controlled fashion and
observe the effect of these changes in the results of the algorithms.

 These pages have been cleaned up and changed to form a tiny representation of
the internet. You can find these pages under the data/ch02/ directory. It’s important
to know the content of these documents, so that you can appreciate what the algo-
rithms do and understand how they work. Our 15 documents are (the choice of con-
tent was random):
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://jflex.de/
http://code.google.com/p/text-mining/source/checkout
http://code.google.com/p/text-mining/source/checkout

23Searching with Lucene
■ Seven documents related to business news; three are related to Google’s expan-
sion into newspaper advertisement, another three discuss primarily about the
NVidia stock, and one about stock price and index movements.

■ Three documents related to Lance Armstrong’s attempt to run the marathon in
New York.

■ Four documents related to U.S. politics and, in particular, the congressional
elections (circa 2006).

■ Five documents related to world news; four about Ortega winning the elections
in Nicaragua and one about global warming.

Lucene can help us analyze, index, and search these and any other document that can
be converted into text, so it’s not limited to web pages. The class that we’ll use to
quickly read the stored web pages is called FetchAndProcessCrawler; this class can
also retrieve data from the internet. Its constructor takes three arguments:

■ The base directory for storing the retrieved data.
■ The depth of the link structure that should be traversed.
■ The maximum number of total documents that should be retrieved.

Listing 2.1 shows how you can use it from the BeanShell.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setDefaultUrls();

crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();

MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());

oracle.search("armstrong",5);

The crawling and preprocessing stage should take only a few seconds, and when it fin-
ishes you should have a new directory under the base directory. In our example, the
base directory was C:/iWeb2/data/ch02. The new directory’s name will start with the
string crawl- and be followed by the numeric value of the crawl’s timestamp in milli-
seconds—for example, crawl-1200697910111.

 You can change the content of the documents, or add more documents, and rerun
the preprocessing and indexing of the files in order to observe the differences in your
search results. Figure 2.1 is a snapshot of executing the code from listing 2.1 in the
BeanShell, and it includes the results of the search for the term “armstrong.”

Listing 2.1 Reading, indexing, and searching the default list of web pages

Load files

Gather and
process content

Index content in directory

Search based on index just created
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://jakarta.apache.org/

24 CHAPTER 2 Searching
Those are the high-level mechanics: load, index, search. It doesn’t get any simpler
than that! But how does it really work? What are the essential elements that partici-
pate in each stage?

2.1.1 Understanding the Lucene code

Let’s examine the sequence of events that allowed us to perform our search. The job
of the FetchAndProcessCrawler class is to retrieve the data and parse it. The result of
that processing is stored in the subdirectory called processed. Take a minute to look
in that folder. For every group of documents that are processed, there are four subdi-
rectories—fetched, knownurls, pagelinks, and processed. Note we’ve dissected the
web pages by separating metadata from the core content and by extracting the links
from one page to another—the so-called outlinks. The FetchAndProcessCrawler class
doesn’t use any code from the Lucene API.

bsh % FetchAndProcessCrawler c =

new FetchAndProcessCrawler("c:/iWeb2/data/ch02",5,200);

bsh % c.setDefaultUrls();

bsh % c.run();

There are no unprocessed urls.

--> 5.5Timer (s): [Crawler fetched data]

Timer (s): [Crawler processed data] --> 0.485

bsh %

bsh % LuceneIndexer lidx = new LuceneIndexer(c.getRootDir());

bsh % lidx.run();

Starting the indexing ... Indexing completed!

bsh % MySearcher oracle = new MySearcher(lidx.getLuceneDir());

bsh % oracle.search("armstrong",5);

Search results using Lucene index scores:

Query: armstrong

Document Title: Lance Armstrong meets goal in painful marathon

debut
-Document URL: file:/c:/iWeb2/data/ch02/sport 01.html -->

Relevance Score: 0.397706508636475

Document Title: New York 'tour' Lance's toughest

Document URL: file:/c:/iWeb2/data/ch02/sport-03.html -->

Relevance Score: 0.312822639942169

Document Title: New York City Marathon

-Document URL: file:/c:/iWeb2/data/ch02/sport-02.html ->

Relevance Score: 0.226110160350800

Figure 2.1 An example of retrieving, parsing, analyzing, indexing, and searching a set of web pages
with a few lines of code
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/

25Searching with Lucene
 The next thing that we did was create an instance of the LuceneIndexer class and
call its run() method. This is where we use Lucene to index our processed content.
The Lucene index files will be stored in a separate directory called lucene-index. The
LuceneIndexer class is a convenience wrapper that helps us invoke the LuceneIndex-
Builder class from the Bean shell. The LuceneIndexBuilder class is where the
Lucene API is used. Figure 2.2 shows the complete UML diagram of the main classes
involved in retrieving and indexing the documents.

Listing 2.2 shows the entire code from the LuceneIndexBuilder class.

public class LuceneIndexBuilder implements CrawlDataProcessor {

 private File indexDir;

 public LuceneIndexBuilder(File indexDir) {

 this.indexDir = indexDir;

 try {
 IndexWriter indexWriter =

➥ new IndexWriter(indexDir, new StandardAnalyzer(), true);

 indexWriter.close();

Listing 2.2 The LuceneIndexBuilder creates a Lucene index

Figure 2.2 A UML diagram of the classes that we used to crawl, index, and search a set of web pages

Create Lucene index
Licensed to Deborah Christiansen <pedbro@gmail.com>

26 CHAPTER 2 Searching
} catch(IOException ioX) {
 throw new RuntimeException("Error: ", ioX);
 }
 }
 public void run(CrawlData crawlData) {

 List<String> allGroups =
 crawlData.getProcessedDocsDB().getAllGroupIds();

 for(String groupId : allGroups) {
 buildLuceneIndex(groupId, crawlData.getProcessedDocsDB());
 }
 }

 private void buildLuceneIndex(String groupId,

➥ ProcessedDocsDB parsedDocsService) {

 try {

 List<String> docIdList =
parsedDocsService.getDocumentIds(groupId);

 IndexWriter indexWriter =

new IndexWriter(indexDir, new StandardAnalyzer(), false);

 for(String docId : docIdList) {

 indexDocument(indexWriter,

➥ parsedDocsService.loadDocument(docId));
 }

 indexWriter.close();

 } catch(IOException ioX) {
 throw new RuntimeException("Error: ", ioX);
 }
 }

 private void indexDocument(IndexWriter iw,

➥ ProcessedDocument parsedDoc) throws IOException {

 org.apache.lucene.document.Document doc =

➥ new org.apache.lucene.document.Document();

 doc.add(new Field("content", parsedDoc.getText(),

➥ Field.Store.NO, Field.Index.TOKENIZED));

 doc.add(new Field("url",

➥ parsedDoc.getDocumentURL().toExternalForm(),
➥ Field.Store.YES, Field.Index.NO));

 doc.add(new Field("docid", parsedDoc.getDocumentId(),

➥ Field.Store.YES, Field.Index.NO));

 doc.add(new Field("title", parsedDoc.getDocumentTitle(),

➥ Field.Store.YES, Field.Index.NO));

 doc.add(new Field("doctype", parsedDoc.getDocumentType(),

➥ Field.Store.YES,Field.Index.NO));
 iw.addDocument(doc);
 }
}

Get all document
groups

Get all documents
for group

Index all
documents
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://labs.google.com/papers/mapreduce-osdi04.pdf

27Searching with Lucene
The IndexWriter class is what Lucene uses to create an index. It comes with a large
number of constructors, which you can peruse in the Javadocs. The specific construc-
tor that we use in our code takes three arguments:

■ The directory where we want to store the index.
■ The analyzer that we want to use—we’ll talk about analyzers later in this

section.
■ A Boolean variable that determines whether we need to override the existing

directory.

As you can see in listing 2.2, we iterate over the groups of documents that our crawler
has accumulated. The first group corresponds to the content of the initial URL list.
The second group contains the documents that we found while reading the content
of the initial URL list. The third group will contain the documents that are reachable
from the second group, and so on. Note that the structure of these directories
changes if you vary the parameter maxBatchSize of the BasicWebCrawler class. To
keep the described structure intact, make sure that the value of that parameter is set
to a sufficiently large number; for the purposes of this book, it’s set to 50.

 This directory structure will be useful when you use our crawler to retrieve a much
larger dataset from the internet. For the simple web page structure that we’ll use in
the book, you can see the effect of grouping if you add only a few URLs—by using the
addUrl method of the FetchAndProcessCrawler class—and let the crawler discover
the rest of the files.

 For each document within a group, we index its content. This takes place inside
the indexDocument method, which is shown at the bottom of listing 2.2. The Lucene
Document class encapsulates the documents that we’ve retrieved so that we can add
them in the index; that same class can be used to encapsulate not only web pages but
also emails, PDF files, and anything else that you can parse and transform into plain
text. Every instance of the Document class is a virtual document that represents a col-
lection of fields. Note that we’re using our dissection of the retrieved documents to
create various Field instances for each document:

■ The content field, which corresponds to the text representation of each docu-
ment, stripped of all the formatting tags and other annotations. You can find
these documents under the subdirectory processed/1/txt.

■ The url field represents the URL that was used to retrieve this document.
■ The docid field, which uniquely identifies each document.
■ The title field, which stores the title of each document.
■ The doctype field, which stores the document type of each document, such as

HTML or Microsoft Word.

The field content of every document is indexed but isn’t stored with the index files;
the other fields are stored with the index files but they aren’t indexed. The reason
being we want to be able to query against the content but we want to retrieve from the
index files the URL, the ID, and the title of each retrieved document.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-pagerank-tkde.pdf
http://www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-pagerank-tkde.pdf
http://infolab.stanford.edu/~glenj/spws.pdf
http://www.kamvar.org/code/paper-server.php?filename=extrapolation.pdf
http://www.kamvar.org/code/paper-server.php?filename=extrapolation.pdf
http://research.microsoft.com/users/mattri/papers/nips2002/qd-pagerank.pdf.
http://research.microsoft.com/users/mattri/papers/nips2002/qd-pagerank.pdf.
http://research.microsoft.com/users/mattri/papers/nips2002/qd-pagerank.pdf.
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf

28 CHAPTER 2 Searching
 This practice is common. You typically store a few pointers that allow you to iden-
tify what you’ve found in the index, but you don’t include the content inside the
index files unless you have good reasons for doing so (you may need part of the con-
tent immediately and the original source isn’t directly accessible). In that case, pay
attention to the size of the files that you’re creating during the indexing stage.

 We use the MySearcher class to search through our newly created index. Listing 2.3
shows all the code in that class. It requires a single argument to construct it—the direc-
tory where we stored the Lucene index—and then it allows us to search through the
search method, which uses two arguments:

■ A string that contains the query that we want to execute against the index
■ The maximum number of documents that we want to retrieve

public class MySearcher {

 private static final Logger log =

➥ Logger.getLogger(MySearcher.class);

 private String indexDir;

 public MySearcher(String indexDir) {
 this.indexDir = indexDir;
 }

 public SearchResult[] search(String query, int numberOfMatches) {

 SearchResult[] docResults = new SearchResult[0];
 IndexSearcher is = null;

 try {

 is = new IndexSearcher(FSDirectory.getDirectory(indexDir));

 } catch (IOException ioX) {
 log.error(ioX.getMessage());
 }

QueryParser qp = new QueryParser("content",
 new StandardAnalyzer());
 Query q = null;
 try {

 q = qp.parse(query);

 } catch (ParseException pX) {
 log.error(pX.getMessage());
 }

 Hits hits = null;
 try {

 hits = is.search(q);

 int n = Math.min(hits.length(), numberOfMatches);
 docResults = new SearchResult[n];

Listing 2.3 MySearcher: retrieving search results based on Lucene indexing

Open
Lucene
index

Create query
parser

Transform text query
into Lucene query

Search index
Licensed to Deborah Christiansen <pedbro@gmail.com>

29Searching with Lucene
 for (int i = 0; i < n; i++) {

 docResults[i] = new SearchResult(hits.doc(i).get("docid"),
 hits.doc(i).get("doctype"),
 hits.doc(i).get("title"),
 hits.doc(i).get("url"),
 hits.score(i));

 // report the results
 System.out.println(docResults[i].print());
 }
 is.close();

 } catch (IOException ioX) {
 log.error(ioX.getMessage());
 }
 return docResults;
 }
}

Let’s review the steps in listing 2.3:

1 We use an instance of the Lucene IndexSearcher class to open our index for
searching.

2 We create an instance of the Lucene QueryParser class by providing the name
of the field that we query against and the analyzer that must be used for token-
izing the query text.

3 We use the parse method of the QueryParser to transform the human-readable
query into a Query instance that Lucene can understand.

4 We search the index and obtain the results in the form of a Lucene Hits object.
5 We loop over the first n results and collect them in the form of our own

SearchResult objects. Note that Lucene’s Hits object contains only references
to the underlying documents. We use these references to collect the required
fields; for example, the call hits.doc(i).get("url") will return the URL that
we stored in the index.

6 The relevance score for each retrieved document is recorded. This score is a num-
ber between 0 and 1.

Those elements constitute the mechanics of our specific implementation. Let’s take a
step back and view the bigger picture of conducting searches based on indexing. This
will help us understand the individual contributions of index-based search engines,
and will prepare us for a discussion about more advanced search features.

2.1.2 Understanding the basic stages of search

If we could travel back in time (let’s say to 1998), what would be the basic stages of
work we’d need to perform to build a search engine? These stages are the same today
as they were in 1998 but we’ve improved their effectiveness and computational perfor-
mance. Figure 2.3 depicts the basic stages in conventional searching:

Collect first
N search
results

Score for i-th
document
Licensed to Deborah Christiansen <pedbro@gmail.com>

30 CHAPTER 2 Searching
■ Crawling
■ Parsing
■ Analyzing
■ Indexing
■ Searching

Crawling refers to the process of gathering
the documents on which we want to enable
the search functionality. It may not be nec-
essary if the documents exist or have been
collected already. Parsing is necessary for
transforming the documents (XML, HTML,
Word, PDF) into a common structure that
will represent the fields of indexing in a
purely textual form. For our examples,
we’re using the code from the NekoHTML
project. NekoHTML contains a simple
HTML parser that can scan HTML files and
“fix” many common mistakes that occur in
HTML documents, adding missing parent
elements, automatically closing elements
with optional end tags, and handling mismatched inline element tags. NekoHTML is
fairly robust and sufficiently fast, but if you’re crawling special sites, you may want to
write your own parser.

 If you plan to index PDF documents, you can use the code from the PDFBox project
(http://www.pdfbox.org/); it’s released under the BSD license and has plenty of docu-
mentation. PDFBox includes the class LucenePDFDocument, which can be used to obtain
a Lucene Document object immediately with a single line of code such as the following:

Document doc = LucenePDFDocument.convertDocument(File file)

Look at the Javadocs for additional information. Similar to PDF documents, there are
also parsers for Word documents. For example, the Apache POI project (http://
poi.apache.org/) provides APIs for manipulating file formats based on Microsoft’s
OLE 2 Compound Document format using pure Java. In addition, the TextMining
code, available at http://www.textmining.org/, provides a Java library for extracting
text from Microsoft Word 97, 2000, XP, and 2003 documents.

 The stage of analyzing the documents is very important. In listing 2.2 and listing
2.3, the Lucene class StandardAnalyzer was used in two crucial places in the code,
but we didn’t discuss it before now. As figure 2.3 indicates, our parsers will be used to
extract text from their respective documents, but before the textual content is
indexed, it’s processed by a Lucene analyzer. The work of an analyzer is crucial
because analyzers are responsible for tokenizing the text that’s to be indexed. This
means that they’ll keep some words from the text that they consider to be important

HTML
Parser

Lucene
Analyzer

PDF
Parser

Word
Parser

RTF
Parser

XML
Parser

Lucene
Index

Lucene
Analyzer

Lucene
Queries

User
Query

HTML PDF Word RTF XML

Crawler

Figure 2.3 An overview of searching for a set
of documents with different formats
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.pdfbox.org/
http://poi.apache.org/
http://poi.apache.org/
http://www.textmining.org/

31Searching with Lucene
while they ignore everything else. If you ignore something that’s of interest to you dur-
ing the analysis stage then you’ll never find it during your search, no matter how
sophisticated your indexing algorithm is.

 Of course, analyzers can’t select the appropriate fields for you. As an example, in
listing 2.2, we’ve explicitly defined the four fields that we’re interested in. The Stan-
dardAnalyzer will process the content field, which is the only field indexed. This
default analyzer is the most general purpose built-in analyzer for Lucene. It intelli-
gently tokenizes alphanumerics, acronyms, company names, email addresses, com-
puter host names, and even CJK (Chinese, Japanese, and Korean) characters, among
other things.

 The latest version of Lucene (2.3 at the time of this writing) uses a lexical ana-
lyzer that’s written in Java and called JFlex (http://jflex.de/). The Lucene Standard-
Tokenizer is a grammar-based tokenizer that’s constructed with JFlex, and it’s used in
the StandardAnalyzer. To convince you of the analyzer’s importance, replace the
StandardAnalyzer with the WhitespaceAnalyzer and observe the difference in the
resulting scores. Lucene analyzers provide a wealth of capabilities, such as the ability
to add synonyms, modify stop words (words that are explicitly removed from the text
before indexing), and deal with non-English languages. We’ll use Lucene analyzers
throughout the book, even in chapters that don’t deal with search. The general idea
of identifying the unique characteristics of a text description is crucial when we deal
with documents. Thus, analyzers become very relevant in areas such as the develop-
ment of spam filters, recommendations that are based on text, enterprise, or tax com-
pliance applications, and so on.

 The Lucene indexing stage is completely transparent to the end user but it’s also
powerful. In a single index, you can have Lucene Documents that correspond to dif-
ferent entities (such as emails, memos, legal documents) and therefore are charac-
terized by different fields. You can also remove or update Documents from an index.
Another interesting feature of Lucene’s indexing is boosting. Boosting allows you to
mark certain documents as more or less important than other documents. In the
method indexDocument described in the listing 2.2, you could add a statement such
as the following:

if (parsedDoc.getDocumentId().equals("g1-d14")) {
 doc.setBoost(2);
}

You can find this statement in the code, commented out and marked as “To Do.” If
you remove the comments, compile the code, and run again the script of listing 2.1,
you’ll notice that the last document is now first. Boosting has increased—in fact, it has
doubled—the score of every Field for this document. You can also boost individual
Fields in order to achieve more granular results from your boosting.

 Searching with Lucene can’t be easier. As you’ve seen, using our MySearcher wrap-
per, it’s a matter of two lines of code. Although we used a simple word in our example
of listing 2.1, Lucene provides sophisticated query expression parsing through the
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://jflex.de/

32 CHAPTER 2 Searching
QueryParser class. Sometimes you may have to use different means for creating the
Lucene Query. To search for the term “nasdaq index” and allow for the possibility of
results that refer to “nasdaq composite index,” you’d use the class PhraseQuery. In
this case, the term “index” can be a term apart from the term “nasdaq”. The maxi-
mum number of terms that can separate “nasdaq” and “index” is set by a parameter
called slope. By setting the slope equal to 1, we can achieve the desired result. For this
and more powerful features of searching with Lucene, we encourage you to explore
the Lucene APIs and documentation.

2.2 Why search beyond indexing?
Now that we’ve showed you how to quickly index your documents with Lucene and
execute queries against those indices, you’re probably convinced that using Lucene is
easy and wonderful. You may wonder: “If Lucene is so sophisticated and efficient, why
bother with anything else?” In this section we’ll demonstrate why searching beyond
indexing is necessary. We mentioned the reasons in passing in chapter 1, but in this
section we’ll discuss the issue in more depth. Let’s add a new document to our list of
seeding URLs. Listing 2.4 is similar to listing 2.1, but it now includes a URL that con-
tains spam.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setDefaultUrls();

crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-01.html");

crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();

MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());

oracle.search("armstrong",5);

Figure 2.4 shows the results of the search for “Armstrong.” You can see that the care-
fully crafted spam web page catapulted to first place in our ranking. You can create
three or more similar spam pages and add them to your URL list to convince yourself
that pretty soon the truly relevant content will be lost in a sea of spam pages!

 Unlike a set of documents in a database or on your hard drive, the content of the
Web isn’t regulated. Hence, the deliberate creation of deceptive web pages can render
traditional IR techniques practically useless. If search engines relied solely on tradi-
tional IR techniques then web surfing for learning or entertainment—our national
online sport—wouldn’t be possible. Enter a new brave world: link analysis! Link analy-
sis was the first (and a significant) contribution toward fast and accurate searching on
a set of documents that are linked to each other explicitly, such as internet web pages.

Listing 2.4 Reading, indexing, and searching web pages that contain spam

Add web page
with spam

Build Lucene
index Build

plain
search
engine
Licensed to Deborah Christiansen <pedbro@gmail.com>

33Improving search results based on link analysis
It propelled Google from anonymity to world domination in that space and advanced
many other areas of research and development.

 Link analysis is a structural characteristic of the internet. Another characteristic of
the internet is user click analysis, which is behavioral. In short, user click analysis refers
to the recording of the user’s clicks as she navigates the search pages, and the subse-
quent processing of these recordings for the purpose of improving the ranking of the
results for this particular user. It’s based on the premise that if you search for a term
and find a page that’s relevant (based on your criteria) you’ll most likely click on that
page. Conversely, you wouldn’t click pages that are irrelevant to your search term and
your search intention. We emphasize the term because this is a deviation from tradi-
tional applications, where the response of the system was based on the user’s direct
input alone. If the application can detect your intentions then it has achieved a major
milestone toward intelligence, which is the ability to learn about the user without the
programmer entering the answer from a “back door.”

2.3 Improving search results based on link analysis
In our effort to search beyond indexing, we’ll present the link analysis algorithm that
makes Google special—PageRank. The PageRank algorithm was introduced in 1998, at
the seventh international World Wide Web conference (WWW98), by Sergey Brin and

bsh % oracle.search("armstrong",5);

Search results using Lucene index scores:

Query: armstrong

Document Title: Cheap medicine -- low interest loans

Document URL: file:/c:/iWeb2/data/ch02/spam-01.html --> Relevance

Score: 0.591894507408142

__

Document Title: Lance Armstrong meets goal in painful marathon

debut

Document URL: file:/c:/iWeb2/data/ch02/sport-01.html -->

Relevance Score: 0.370989531278610

__

Document Title: New York 'tour' Lance's toughest

Document URL: file:/c:/iWeb2/data/ch02/sport-03.html -->

Relevance Score: 0.291807949542999
__

Document Title: New York City Marathon

Document URL: file:/c:/iWeb2/data/ch02/sport-02.html -->

Relevance Score: 0.210920616984367

__

bsh %

Figure 2.4 A single deceptive web page significantly altered the ranking of the results for the query
“Armstrong.”
Licensed to Deborah Christiansen <pedbro@gmail.com>

34 CHAPTER 2 Searching
Larry Page in a paper titled “The anatomy of a large-scale hypertextual Web search
engine.” Around the same time, Jon Kleinberg at IBM Almaden had discovered the
Hypertext Induced Topic Search (HITS) algorithm. Both algorithms are link analysis models,
although HITS didn’t have the degree of commercial success that PageRank did.

 In this section, we’ll introduce the basic concepts behind the PageRank algorithm
and the mechanics of calculating ranking values. We’ll also examine the so-called tele-
portation mechanism and the inner workings of the power method, which is at the heart of
the PageRank algorithm. Lastly, we’ll demonstrate the combination of index scores
and PageRank scores for improving our search results.

2.3.1 An introduction to PageRank

The key idea of PageRank is to consider hyper-
links from one page to another as recommen-
dations or endorsements. So, the more en-
dorsements a page has the higher its impor-
tance should be. In other words, if a web page
is pointed to by other, important pages, then
it’s also an important page. Hold on a second!
If you need to know what pages are important
in order to determine the important pages,
how does it work? Let’s take a specific example
and work out the details.

 Figure 2.5 shows the directed graph for all
our sample web pages that start with the pre-
fix biz. The titles of these articles and their file
names are given in table 2.1.

 If web page A has a link to web page B, there’s an arrow pointing from A to B. Based
on this figure, we’ll introduce the hyperlink matrix H and a row vector p (the PageRank
vector). Think of a matrix as nothing more than a table (a 2D array) and a vector as a

Title File name Links to

Google Expands into Newspaper Ads biz-01.html biz-02, biz-03

Google’s Sales Pitch to Newspapers biz-02.html (No outlink; dangling node)

Google Sells Newspaper Ads biz-03.html biz-01, biz-02, biz-05

NVidia Now a Supplier for MP3 Players biz-04.html biz-05, biz-06

Nvidia Shares Up on PortalPlayer Buy biz-05.html biz-04, biz-06

Chips Snap: Nvidia, Altera Shares Jump biz-06.html biz-04

Economic Stimulus Plan Helps Stock Prices biz-07.html biz-02, biz-04

Biz-01 Biz-02

Biz-03 Biz-06Biz-04

Biz-07

Biz-05

Figure 2.5 A directed graph that
represents the linkage between the
“biz” web pages.
Licensed to Deborah Christiansen <pedbro@gmail.com>

35Improving search results based on link analysis
single array in Java. Each row in the matrix H is constructed by counting the number of
all the outlinks from page Pi , say N(i) and assigning to column j the value 1/N(i) if
there’s an outlink from page Pi to page Pj, or assigning the value 0 otherwise. Thus, for
the graph in Figure 2.5, our H matrix would look like table 2.2.

A couple of things stand out:

■ There are a lot of zeros in that matrix—we call these matrices sparse. That’s not
a curse; it’s actually a good thing. It’s the result of the fact that a web page typi-
cally links to only a small number of other web pages—small with respect to the
total number of web pages on the internet. Sparse matrices are desirable
because their careful implementation can save a lot of storage space and com-
putational time.

■ All values in the matrix are less than or equal to 1. This turns out to be very
important. There’s a connection between the “random” surfer that Brin and
Page envisioned (see section 2.3.2) and the theory of transition probability
matrices, also known as Markov chain theory. That connection guarantees certain
desirable properties for the algorithm.

2.3.2 Calculating the PageRank vector

The PageRank algorithm calculates the vector p using the following iterative formula:

p (k+1) = p (k) * H

The values of p are the PageRank values for every page in the graph. You start with a
set of initial values such as p(0) = 1/n, where n is the number of pages in the graph,
and use the formula to obtain p(1), then p(2), and so on, until the difference between
two successive PageRank vectors is small enough; that arbitrary smallness is also
known as the convergence criterion or threshold. This iterative method is the power method
as applied to H. That, in a nutshell, is the PageRank algorithm.

 For technical reasons—the convergence of the iterations to a unique PageRank vec-
tor—the matrix H is replaced by another matrix, usually denoted by G (the Google
matrix), which has better mathematical properties. We won’t review the mathematical
details of the PageRank algorithm here, but let’s describe the rationale behind Page-

0 1/2 1/2 0 0 0 0

0 0 0 0 0 0 0

1/3 1/3 0 0 1/3 0 0

0 0 0 0 1/2 1/2 0

0 0 0 1/2 0 1/2 0

0 0 0 1 0 0 0

0 1/2 0 1/2 0 0 0
Licensed to Deborah Christiansen <pedbro@gmail.com>

36 CHAPTER 2 Searching
Rank and the problems that lead us to alter the matrix so that you have a better idea
of what’s going on.

 The PageRank algorithm begins by envisioning a user who “randomly” surfs the
Web. Our surfer can start from any given web page with outlinks. From there, by fol-
lowing one of the provided outlinks, he lands on another page. Then, he selects a new
outlink to follow, and so on. After several clicks and trips through the graph, the pro-
portion of time that our surfer spends on a given page is a measure of the relative
importance that the page has with respect to the other pages on the graph. If the surf-
ing is truly random—without an explicit bias—our surfer will visit pages that are
pointed to by other pages, thus rendering those pages more important. That’s all
good and straightforward, but there are two problems.

 The first problem is that on the internet there are some pages that don’t point to
any other pages; in our example, such a web page is biz-02 in figure 2.5. We call these
pages of the graph dangling nodes. These nodes are a problem because they trap our
surfer; without outlinks, there’s nowhere to go! They correspond to rows that have
value equal to zero for all their cells in the H matrix. To fix this problem, we introduce
a random jump, which means that once our surfer reaches a dangling node, he may go
to the address bar of his browser and type the URL of any one of the graph’s pages. In
terms of the H matrix, this corresponds to setting all the zeros (of a dangling node
row) equal to 1/n, where n is the number of pages in the graph. Technically, this cor-
rection of the H matrix is referred to as the stochasticity adjustment.

 The second problem is that sometimes our surfer may get bored, or interrupted,
and may jump to another page without following the linked structure of the web
pages; the equivalent of Star Trek’s teleportation beam. To account for these arbitrary
jumps, we introduce a new parameter that, in our code, we call alpha. This parameter
determines the amount of time that our surfer will surf by following the links versus
jumping arbitrarily from one page to another page; this parameter is sometimes
referred to as the damping factor. Technically, this correction of the H matrix is
referred to as the primitivity adjustment.

 In the code, you’ll find explicit annotations for these two problems. You don’t
need to worry about the mathematical details, but if you do, Google’s PageRank and
Beyond: The Science of Search Engine Rankings by Amy Langville and Carl Meyer is an
excellent reference. So, let’s get into action and get the H matrix by running some
code. Listing 2.5 shows how to load just the web pages that belong to the business
news and calculate the PageRank that corresponds to them.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setUrls("biz");
crawler.run();

PageRank pageRank = new PageRank(crawler.getCrawlData());

Listing 2.5 Calculating the PageRank vector

Load business web pages

Build PageRank
instance
Licensed to Deborah Christiansen <pedbro@gmail.com>

37Improving search results based on link analysis
pageRank.setAlpha(0.8);

pageRank.setEpsilon(0.0001);

pageRank.build();

Figure 2.6 shows a screenshot of the results. The page with the lowest relevance is
biz-07.html; the most important page, according to PageRank, is biz-04.html. We’ve
calculated a measure of relevance for each page that doesn’t depend on the search
term! We’ve calculated the PageRank values for our network.

Find PageRank values

Iteration: 8, PageRank convergence error:

1.4462733376210263E-4

Index: 0 --> PageRank: 0.03944811976367004

Index: 1 --> PageRank: 0.09409188129468615

Index: 2 --> PageRank: 0.32404719855854225

Index: 3 --> PageRank: 0.24328037107628753

Index: 4 --> PageRank: 0.18555028886849476

Index: 5 --> PageRank: 0.05593157626783124

Index: 6 --> PageRank: 0.061816733771795335

 Iteration: 9, PageRank convergence error:

5.2102415715682415E-5

Index: 0 --> PageRank: 0.039443819850858625

Index: 1 --> PageRank: 0.09407831778282823

Index: 2 --> PageRank: 0.3240636997004271

Index: 3 --> PageRank: 0.24328782624042117

Index: 4 --> PageRank: 0.18555238603685822

Index: 5 --> PageRank: 0.0559269660757835

Index: 6 --> PageRank: 0.06181315844717868

______________ Calculation Results _______________

Page U RL: file:/c:/iWeb2/data/ch02/biz-04.html --> Rank:

0.324063699700427

Page URL: file:/c:/iWeb2/data/ch02/biz-06.html --> Rank:

0.243287826240421

Page URL: file:/c:/iWeb2/data/ch02/biz-05.html --> Rank:

0.185552386036858

Page URL: file:/c:/iWeb2/data/ch02/biz-02.html --> Rank:

0.094078317782828

Page URL: file:/c:/iWeb2/data/ch02/biz-03.html --> Rank:

0.061813158447179

Page URL: file:/c:/iWeb2/data/ch02/biz-01.html --> Rank:

0.055926966075784

Page URL: file:/c:/iWeb2/data/ch02/biz-07.html --> Rank:

0.039443819850859

__

Figure 2.6 The calculation of the PageRank vector for the small network of the business news web pages
Licensed to Deborah Christiansen <pedbro@gmail.com>

38 CHAPTER 2 Searching
2.3.3 alpha: The effect of teleportation between web pages

Let’s vary the value of alpha from 0.8 to some other value between 0 and 1, in order
to observe the effect of the teleportation between web pages on the PageRank values.
As alpha approaches zero, the PageRank values for all pages tends to the value 1/7
(approximately equal to the decimal value 0.142857), which is exactly what you’d
expect because our surfer is choosing his next destination at random, not on the
basis of the links. On the other hand, as alpha approaches one, the PageRank values
will converge to the PageRank vector that corresponds to a surfer who closely follows
the links.

 Another effect you should observe as the value of alpha approaches one is the num-
ber of iterations, which are required for convergence, increases. In fact, for our small
web page network, we have table 2.3 (we keep the error tolerance equal to 10 -10).

As you can see, the number of iterations grows rapidly as the value of alpha increases.
For seven web pages, the effect is practically insignificant, but for 8 billion pages
(roughly the number of pages that Google uses), a careful selection of alpha is cru-
cial. In essence, the selection of alpha is a trade-off between adherence to the struc-
ture of the Web and computational efficiency. The value that Google is allegedly using
for alpha is equal to 0.85. A value between 0.7 and 0.9 should provide you with a good
trade-off between effectiveness and efficiency in your application, depending on the
nature of your graph and user browsing habits.

 There are techniques that can accelerate the convergence of the power method as
well as methods that don’t rely on the power method at all, the so-called direct methods.
The latter are more appropriate for smaller networks (such as a typical intranet) and
high values of alpha (for example, 0.99). We’ll provide references at the end of this
chapter, if you’re interested in learning more about these methods.

2.3.4 Understanding the power method

Let’s examine the code that calculates the PageRank values in more detail. Listing 2.6
shows an excerpt of the code responsible for evaluating the matrix H based on the
link information; it’s from the class iweb2.ch2.ranking.PageRankMatrixH.

Alpha Number of iterations

0.50 13

0.60 15

0.75 19

0.85 23

0.95 29

0.99 32 Table 2.3 Effect of increasing alpha values on the
number of iterations for the biz set of web pages
Licensed to Deborah Christiansen <pedbro@gmail.com>

39Improving search results based on link analysis
public void addLink(String pageUrl) {
 indexMapping.getIndex(pageUrl);
}

public void addLink(String fromPageUrl,

➥ String toPageUrl, double weight) {

 int i = indexMapping.getIndex(fromPageUrl);
 int j = indexMapping.getIndex(toPageUrl);

 try {

 matrix[i][j] = weight;

 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("fromPageUrl:" + fromPageUrl

➥ + ", toPageUrl: " + toPageUrl);
 }
 }

public void addLink(String fromPageUrl, String toPageUrl) {
 addLink(fromPageUrl, toPageUrl, 1);
 }

public void calculate() {

 for(int i = 0, n = matrix.length; i < n; i++) {

 double rowSum = 0;

 for(int j = 0, k = matrix.length; j < k; j++) {

 rowSum += matrix[i][j];
 }

 if(rowSum > 0) {

 for(int j = 0, k = matrix.length; j < k; j++) {

 if(matrix[i][j] > 0) {

 matrix[i][j] =

➥ (double)matrix[i][j] / (double) rowSum;
 }
 }
 } else {

 numberOfPagesWithNoLinks++;
 }
 }
}

/**
 * A dangling node corresponds to a web page that has no outlinks.
 * These nodes result in an H row that has all its values equal to 0.
 */
public int[] getDangling() {

 int n = getSize();
 int[] d = new int[n];

Listing 2.6 Evaluating the matrix H based on the links between web pages

Assign initial
values

B

C
Calculate substochastic
version of matrix

Handle dangling node entriesD
Licensed to Deborah Christiansen <pedbro@gmail.com>

40 CHAPTER 2 Searching
 boolean foundOne = false;

 for (int i=0; i < n; i++) {

 for (int j=0; j < n; j++) {

 if (matrix[i][j] > 0) {

 foundOne = true;
 break;
 }
 }

 if (foundOne) {
 d[i] = 0;
 } else {
 d[i] = 1;
 }

 foundOne = false;
 }
 return d;
}

The addLink methods allow us to assign initial values to the matrix variable, based on
the links that exist between the pages.

The calculate method sums up the total number of weights across a row (outlinks)
and replaces the existing values with their weighted counterparts. Once that’s done, if
we add up all the entries in a row, the result should be equal to 1 for every nondan-
gling node. This is the substochastic version of the original matrix.

The dangling nodes are treated separately, since they have no outlinks. The get-
Dangling() method will evaluate what rows correspond to the dangling nodes and
will return the dangling vector.

Recall that we’ve separated the final matrix composition into three parts: the basic
link contribution, the dangling node contribution, and the teleportation contribu-
tion. Let’s see how we combine them to get the final matrix values that we’ll use for
the evaluation of the PageRank. Listing 2.7 shows the code that’s responsible for
assembling the various contributions and executing the power method. This code can
be found in the iweb2.ch2.ranking.Rank class.

public void findPageRank(double alpha, double epsilon) {

 // A counter for our iterations
 int k = 0;

 // auxiliary variable
 PageRankMatrixH matrixH = getH();

 // The H matrix has size nxn and the PageRank vector has size n
 int n = matrixH.getSize();

 //auxiliary variable – inverse of n
 double inv_n = (double)1/n;

Listing 2.7 Applying the power method for the calculation of PageRank

B

C

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

41Improving search results based on link analysis
 // This is the actual nxn matrix of double values
 double[][] H = matrixH.getMatrix();

 // A dummy variable that holds our error, arbitrarily set to a value of 1
 double error = 1;

 // This holds the values of the PageRank vector
 pR = new double[n];

 // PageRank copy from the previous iteration
 // The only reason that we need this is for evaluating the error
 double[] tmpPR = new double[n];

 // Set the initial values (ad hoc)
 for (int i=0; i < n; i++) {
 pR[i] = inv_n;
 }

 // Book Section 2.3 -- Altering the H matrix: Dangling nodes

 double[][] dNodes= getDanglingNodeMatrix();

 // Book Section 2.3 -- Altering the H matrix: Teleportation

 double tNodes=(1 - alpha) * inv_n;

 //Replace the H matrix with the G matrix
 for (int i=0; i < n; i++) {
 for (int j=0; j < n; j++) {

 H[i][j] = alpha*H[i][j] + dNodes[i][j] + tNodes;
 }
 }

 // Iterate until convergence!
 // If error is smaller than epsilon then we've found the PageRank values
 while (error >= epsilon) {

 // Make a copy of the PageRank vector before we update it
 for (int i=0; i < n; i++) {
 tmpPR[i] = pR[i];
 }

 double dummy =0;

 // Now we get the next point in the iteration
 for (int i=0; i < n; i++) {

 dummy =0;

 for (int j=0; j < n; j++) {

 dummy += pR[j]*H[j][i];
 }

 pR[i] = dummy;
 }

 // Get the error, so that we can check convergence
 error = norm(pR,tmpPR);

 //increase the value of the counter by one
 k++;
Licensed to Deborah Christiansen <pedbro@gmail.com>

42 CHAPTER 2 Searching
 }

 // Report the final values
 System.out.println(

➥ "\n______________ Calculation Results _______________\n");
 for (int i=0; i < n; i++) {
 System.out.println("Page URL: "+

➥ matrixH.getIndexMapping().getValue(i)+" --> Rank: "+pR[i]);
 }
}

Given the importance of this method, we’ve gone to great lengths to make this as easy
to read as possible. We’ve removed some Javadoc associated with a to-do topic, but
otherwise this snippet is intact. So, we start by getting the values of the matrix H based
on the links and then initialize the PageRank vector. Subsequently, we obtain the dan-
gling node contribution and the teleportation contribution. Note that the dangling
nodes require a full 2D array, whereas our teleportation contribution requires only a
single double variable. Once we have all three components, we add them together.
This is the most efficient way to prepare the data for the power method, but instead of
full 2D arrays, you should use sparse matrices; we describe this enhancement in one of
the to-do topics at the end of the chapter.

 Once the new H matrix has been computed, we begin the power method—the
code inside the while loop. We know that we’ve attained the PageRank values if our
error is smaller than the arbitrarily small value epsilon. Of course, that makes you
wonder: What if I change epsilon? Will the PageRank values change? If so, what
should the value of epsilon be? Let’s take these questions one by one. First, let’s say
that the error is calculated as the absolute value of the term by term difference
between the new and the old PageRank vectors. Listing 2.8 shows the method norm,
from the iweb2.ch2.ranking.Rank class, which evaluates the error.

private double norm(double[] a, double[] b) {

 double norm = 0;

 int n = a.length;

 for (int i=0; i < n; i++) {
 norm += Math.abs(a[i]-b[i]);
 }

 return norm;
}

If you run the code a few times, or observe figure 2.6 closely, you’ll realize that the values
of the PageRank at the time of convergence change at the digit that corresponds to the
smallness of epsilon. So, the value of epsilon ought to be small enough to allow us to
separate all web pages according to the PageRank values. If we have 100 pages then a
value of epsilon equal to 0.001 should be sufficient. If we have the entire internet, about
1010 web pages, then we need a value of epsilon that is about 10-10 small.

Listing 2.8 Evaluation of the error between two consecutive PageRank vectors
Licensed to Deborah Christiansen <pedbro@gmail.com>

43Improving search results based on link analysis
2.3.5 Combining the index scores and the PageRank scores

Now that we’ve showed you how to implement the PageRank algorithm, we’re ready to
show you how to combine the Lucene search scores with the relevance of the pages as
given by the PageRank algorithm. We’ll use the same seven web pages that refer to busi-
ness news, but this time we’ll introduce three spam pages (called spam-biz-0x.html,
where x stands for a numeral). The spam pages will fool the index-based search, but they
won’t fool PageRank.

 Let’s run this scenario and see what happens. Listing 2.9 shows you how to

■ Load the business web pages, as we did before.
■ Add the three spam pages, one for each subject.
■ Index all the pages.
■ Build the PageRank.
■ Compute a hybrid ranking score that incorporates both the index relevance

score (from Lucene) and the PageRank score.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setUrls("biz");

crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-01.html");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-02.html");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-03.html");
crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();

PageRank pageRank = new PageRank(crawler.getCrawlData());
pageRank.setAlpha(0.99);
pageRank.setEpsilon(0.00000001);
pageRank.build();

MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());

oracle.search("nvidia",5, pageRank);

The results of our search for “nvidia” are shown in figure 2.7. First, we print the result
set that’s based on Lucene alone, then we print the resorted results where we took
into account the PageRank values. As you can see, we have a talent for spamming! The
deceptive page comes first in our result set when we use Lucene alone. But when we
apply the hybrid ranking, the most relevant pages come up first. The spam page went
down in the abyss of irrelevance where it belongs! You’ve just written your first
Google-like search engine. Congratulations!

 The code that combines the two scores can be found in the class MySearcher
inside the overloaded method search that uses the PageRank class as an argument.

Listing 2.9 Combining the Lucene and PageRank scores for ranking web pages

Add spam
pages

Index all
pages

Build PageRank

Search using combined score
Licensed to Deborah Christiansen <pedbro@gmail.com>

44 CHAPTER 2 Searching
The snippet of code in listing 2.10 is from that method and captures the combination
of the two scores.

bsh % oracle.search("nvidia",5,pr);

Search results using Lucene index scores:

Query: nvidia

Document Title: NVIDIA shares plummet into cheap medicine for

you!

Document URL: file:/c:/iWeb2/data/ch02/spam-biz-02.html -->

Relevance Score: 0.519243955612183

Document Title: Nvidia shares up on PortalPlayer buy

Document URL: file:/c:/iWeb2/data/ch02/biz 05.html

Relevance Score: 0.254376530647278

Document Title: NVidia Now a Supplier for MP3 Players

Document URL: file:/c:/iWeb2/data/ch02/biz 04.html -->

Relevance Score: 0.190782397985458

Document Title: Chips Snap: Nvidia, Altera Shares Jump

Document URL: file:/c:/iWeb2/data/ch02/biz 06.html -->

Relevance Score: 0.181735381484032

Document Title: Economic stimulus plan helps stock prices

Document URL: file:/c:/iWeb2/data/ch02/biz 07.html -->

Relevance Score: 0.084792181849480

Search results using combined Lucene scores and page rank scores:

Query: nvidia

Document URL: file:/c:/iWeb2/data/ch02/biz 04.html -->

Relevance Score: 0.087211910261991

Document URL: file:/c:/iWeb2/data/ch02/biz 06.html -->

Document URL: file:/c:/iWeb2/data/ch02/biz 05.html -->

Relevance Score: 0.062737066556678

Document URL: file:/c:/iWeb2/data/ch02/spam -biz- 02.html -->

Document URL: file:/c:/iWeb2/data/ch02/biz 07.html -->

Relevance Score: 0.000359708275446

__ __________________

-

-

-

-

-

-

-

-

-

Figure 2.7 Combining the Lucene scores and the PageRank scores allows you to eliminate spam.
Licensed to Deborah Christiansen <pedbro@gmail.com>

45Improving search results based on user clicks
double m = 1 - (double) 1/pR.getH().getSize();

for (int i = 0; i < numberOfMatches; i++) {

 url = docResults[i].getUrl();

 double hScore =

➥ docResults[i].getScore() *Math.pow(pR.getPageRank(url),m);

 docResults[i].setScore(hScore);

 urlScores.put(hScore, url);
}

Now, a number of reasonable questions may come to your mind. Why did we intro-
duce the variable m? Why didn’t we take the average of the two scores? Why didn’t we
use a more complicated formula for combining the indexing score and the PageRank
score? These are good questions to ask, and the answers may surprise you. Apart from
the fact that our formula retains the value of the score between 0 and 1, our selections
have been arbitrary. We may as well have taken the product of the two scores in order
to combine them.

 The rationale for raising the PageRank value to power m is that the small number
of pages that we’ve indexed may cause the relevance score of indexing to be too high
for the spam pages, thus artificially diluting the effectiveness of the PageRank. As the
number of pages increases, the value of the scaled PageRank (the second term of the
hybrid score) tends to the original PageRank value, because m quickly becomes
approximately equal to 1. We believe that in small networks, such a power-law scaling
can help you increase the importance of the link structure over that of the index. This
formula should work well for small as well as large sets of documents. There’s a deep
mathematical connection between power laws and graphs similar to the internet, but
we won’t discuss it here (see Adamic et al.). The corollary is that when you deal with a
small number of pages, and if the search term appears in the document a large num-
ber of times (as it happens with spam pages), the index page score (the number that
Lucene returns as the score of a search result) will be close to 1; therefore a rescaling
is required to balance that effect.

2.4 Improving search results based on user clicks
In the previous section, we showed that link analysis allows us to take advantage of the
structural aspects of the internet. In this section, we’ll talk about a different way of
leveraging the nature of the internet: user clicks. As you know, every time a user exe-
cutes a query, he’ll either click one of the results or click the link that shows the next
page of results, if applicable. In the first case, the user has identified something of
interest and clicks the link either because that’s what he was looking for or because
the result is interesting and he wants to explore the related information, in order to
decide if it is indeed what he was looking for. In the second case, the best results
weren’t what the user wanted to see and he wants to look at the next page just in case
the search engine is worth a dime!

Listing 2.10 Combining the Lucene scores and the PageRank scores

Calculate scaling factor

Calculate
hybrid score

Create map between scores and URLs
Licensed to Deborah Christiansen <pedbro@gmail.com>

46 CHAPTER 2 Searching
 Kidding aside, one reason why evaluating relevance is a difficult task is because rel-
evance is subjective. If you and I are looking results for the query “elections,” you may
be interested in the U.S. elections, while I may be interested in the UK elections, or
even in my own town’s elections. It’s impossible for a search engine to know the inten-
tion (or the context) of your search without further information. So, the most rele-
vant results for one person can be, and quite often are, different from the most
relevant results for another person, even though the query terms may be identical!

 We’re going to introduce user clicks as a way of improving the search results for
each user. This improvement is possible due to an algorithm that we’ll study in great
detail later in the book—the NaiveBayes classifier. We’ll demonstrate the combina-
tion of index scores, PageRank scores, and the scores from the user clicks for improv-
ing our search results.

2.4.1 A first look at user clicks

User clicks allow us to take as input the interaction of each user with the search
engine. Aristotle said, “We are what we repeatedly do,” and that’s the premise of user
clicks analysis: your interaction with the search engine defines your own areas of inter-
est and your own subjectivity. This is the first time that we describe an intelligent tech-
nique responsible for the personalization of a web application. Of course, a necessary
condition for this is that the search engine can identify which queries come from a
particular user. In other words, the user must be logged in to your application or must
have otherwise established a session with the application. It should be clear that our
approach for user-click analysis is applicable to every application that can record the
user’s clicks, and it’s not specific to search applications.

 Now, let’s assume that you’ve collected the clicks of the users as indicated in the
file user-clicks.csv, which you can find in the data/ch02 directory together with the
rest of the files that we’ve been using in this chapter. Our goal is to write code that can
help us leverage that information, much like the PageRank algorithm helped us to
leverage the information about our network. That is, we want to use this data to person-
alize the results of the search by appropriately modifying the ranking, depending on
who submits the query. The comma separated file contains values in three fields:

■ A string that identifies the user
■ A string that represents the search query
■ A string that contains the URL that the user has selected in the past, after

reviewing the results for that query

If you don’t know the user (no login/no session of any kind), you can use some
default value such as “anonymous”—of course, you should ensure that anonymous
isn’t actually a valid username in your application! If your data has some other format,
it’s okay. You shouldn’t have any problems adopting our code for your specific data. In
order to personalize our results, we need to know the user, her question, and her past
selections of links for that question. If you have that information available then you
should be ready to get in action!
Licensed to Deborah Christiansen <pedbro@gmail.com>

47Improving search results based on user clicks
 You may notice that, in our data, for the same user and the same query there is
more than one entry. That’s normal and you should notice it in your data as well. The
number of times that a click appears in that file makes its URL a better or worse candi-
date for our search results. Typically, the same user will click a number of different
links for the same query because his interest at the time may be different or because
he may be looking for additional information on a topic. An interesting attribute that
you should consider is a timestamp. Time-related information can help you identify
temporal structure in your data. Some user clicks follow periodic patterns; some are
event-driven; others are completely random. A timestamp can help you identify the
patterns or the correlations with other events.

 First let’s see how we can obtain personalized results for our queries. Listing 2.11
shows our script, which is similar to listing 2.9, but this time we load the information
about the user clicks and we run the same query “google ads” twice, once for user
dmitry and once for user babis.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setUrls("biz");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-01.html");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-02.html");
crawler.addUrl("file:///c:/iWeb2/data/ch02/spam-biz-03.html");
crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();
MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());

PageRank pageRank = new PageRank(crawler.getCrawlData());
pageRank.setAlpha(0.9);
pageRank.setEpsilon(0.00000001);
pageRank.build();

UserClick aux = new UserClick();
UserClick[] clicks =aux.load("C:/iWeb2/data/ch02/user-clicks.csv");

TrainingSet tSet = new TrainingSet(clicks);

NaiveBayes naiveBayes = new NaiveBayes("Naïve Bayes", tSet);

naiveBayes.trainOnAttribute("UserName");
naiveBayes.trainOnAttribute("QueryTerm_1");
naiveBayes.trainOnAttribute("QueryTerm_2");

naiveBayes.train();

oracle.setUserLearner(naiveBayes);

UserQuery dmitryQuery = new UserQuery("dmitry","google ads");
oracle.search(dmitryQuery,5, pageRank);

UserQuery babisQuery = new UserQuery("babis","google ads");
oracle.search(babisQuery,5, pageRank);

Listing 2.11 Accounting for user clicks in the search results

Load user clicks

Create training set

Define
classifier

Select
attributes

Train classifier
Licensed to Deborah Christiansen <pedbro@gmail.com>

48 CHAPTER 2 Searching
You’ve seen the first part of this script in listing 2.9. First, we load the pages that we
want to search. After that, we index them with Lucene and build the PageRank that
corresponds to their structure. The part that involves new code comes with the class
UserClick, which represents the click of a specific user on a particular URL. We also
defined the class TrainingSet, which holds all the user clicks. Of course, you may
wonder, what’s wrong with the array of UserClicks? Why can’t we just use these
objects? The answer lies in the following: in order to determine the links that are
more likely to be desirable for a particular user and query, we’re going to load the
user clicks onto a classifier—in particular, the NaiveBayes classifier.

2.4.2 Using the NaiveBayes classifier

We’ll address classification extensively in chapters 5 and 6, but we’ll describe funda-
mentals here for clarity. Classification relies on reference structures that divide the
space of all possible data points into a set of classes (also known as categories or con-
cepts) that are (usually) non-overlapping. We encounter classification on a daily basis.
From our everyday experience, we know that we can list food items according to a res-
taurant’s menu, for example salads, appetizers, specialties, pastas, seafood, and so on.
Similarly, the articles in a newspaper, or in a newsgroup on the internet, are classified
based on their subject—politics, sports, business, world, entertainment, and so on. In
short, we can say that classification algorithms allow us to automatically identify
objects as part of this or that class.

 In this section, we’ll use a probabilistic classifier that implements what’s known as the
naïve Bayes algorithm; our implementation is provided by the NaiveBayes class. Classifiers
are agnostic to UserClicks, they’re only concerned with Concepts, Instances, and
Attributes. Think of Concepts, Instances, and Attributes as the analogues of direc-
tories, files, and file attributes on your filesystem.

 A classifier’s job is to assign a Concept to an Instance; that’s all a classifier does. In
order to know what Concept should be assigned to a particular Instance, a classifier
reads a TrainingSet—a set of Instances that already have a Concept assigned to them.
Upon loading those Instances, the classifier trains itself, or learns, how to map a Concept
to an Instance based on the assignments in the TrainingSet. The way that each clas-
sifier trains depends on the classifier.

 Our intention is to use the NaiveBayes classifier as a means of obtaining a relevance
score for a particular URL based on the user and submitted query. The good thing about
the NaiveBayes classifier is that it provides something called the conditional probability of
X given Y—a probability that tells us how likely is it to observe event X provided that
we’ve already observed event Y. In particular, this classifier uses as input the following:

■ The probability of observing concept X, in general, also known as the prior
probability and denoted by p(X).

■ The probability of observing instance Y if we randomly select an instance from
concept X, also known as the likelihood and denoted by p(Y|X).

■ The probability of observing instance Y in general, also known as the evidence
and denoted by p(Y).
Licensed to Deborah Christiansen <pedbro@gmail.com>

49Improving search results based on user clicks
The essential part of the classifier is the calculation of the probability that an observed
instance Y belongs in concept X, which is also known as the posterior probability and
denoted by p(X|Y). The calculation is performed based on the following formula
(known as Bayes theorem):

p(X|Y) = p(Y|X) p(X) / p(Y)

The NaiveBayes classifier can provide a measure of how likely it is that user A wants to
see URL X provided that she submitted query Q; in our case, Y = A + Q. In other words,
we won’t use the NaiveBayes classifier to classify anything. We’ll only use its capacity to
produce a measure of relevance, which exactly fits our purposes. Listing 2.12 shows the
relevant code from the class NaiveBayes; for a complete description, see section 5.3.

public class NaiveBayes implements Classifier {
 private String name;
 private TrainingSet tSet;

 private HashMap<Concept,Double> conceptPriors;

 protected Map<Concept,Map<Attribute, AttributeValue>> p;

 private ArrayList<String> attributeList;

 public double getProbability(Concept c, Instance i) {
 double cP=0;
 if (tSet.getConceptSet().contains(c)) {

 cP = (getProbability(i,c)*getProbability(c))/getProbability(i);
 } else {

 cP = 1/(tSet.getNumberOfConcepts()+1);
 }
 return cP;
 }

 public double getProbability(Instance i) {
 double cP=0;

 for (Concept c : getTset().getConceptSet()) {

 cP += getProbability(i,c)*getProbability(c);
 }
 return (cP == 0) ? (double)1/tSet.getSize() : cP;
 }

 public double getProbability(Concept c) {
 Double trInstanceCount = conceptPriors.get(c);
 if(trInstanceCount == null) {
 trInstanceCount = 0.0;
 }
 return trInstanceCount/tSet.getSize();
 }

 public double getProbability(Instance i, Concept c) {
 double cP=1;
 for (Attribute a : i.getAtrributes()) {

Listing 2.12 Evaluating the relevance of a URL with the NaiveBayes classifier

B
C

D

E

F

G

H

I

J

Licensed to Deborah Christiansen <pedbro@gmail.com>

50 CHAPTER 2 Searching
 if (a != null && attributeList.contains(a.getName())) {

 Map<Attribute, AttributeValue> aMap = p.get(c);
 AttributeValue aV = aMap.get(a);
 if (aV == null) {
 cP *= ((double) 1 / (tSet.getSize()+1));
 } else {
 cP *= (double)(aV.getCount()/conceptPriors.get(c));
 }
 }
 }
 return (cP == 1) ? (double)1/tSet.getNumberOfConcepts() : cP;
 }
}

First, let’s examine the main points of the listing:

This is a name for this instance of the NaiveBayes classifier.

Every classifier needs a training set. The name of the classifier and its training set are
intentionally set during the Construction phase. Once you’ve created an instance of
the NaiveBayes classifier, you can’t set its TrainingSet, but you can always get the ref-
erence to it and add instances.

The conceptPriors map stores the counts for each of the concepts that we have in
our training set. We could’ve used it to store the prior probabilities, not just the counts.
But we want to reuse these counts, so in the name of computational efficiency, we
store the counts; the priors can be obtained by a simple division.

The variable p stores the conditional probabilities—the probability of observing con-
cept X given that we observed instance Y, or in the case of the user clicks, the probabil-
ity that a user A wants to see URL X provided that he submitted query Q.

This is the list of attributes that should be considered by the classifier for training. The
instances of a training set may have many attributes and it’s possible that only a few of
these attributes are relevant (see chapter 5), so we keep track of what attributes
should be used.

If we’ve encountered the concept in our training set, use the formula that we men-
tioned earlier and calculate the posterior probability.

It’s possible that we haven’t encountered a particular instance before, so the get-
Probability(i) method call wouldn’t be meaningful. In that case, we assign some-
thing reasonable as a posterior probability. Setting that value equal to one over the
number of all known concepts is reasonable, in the absence of information for assign-
ing higher probability to any one concept. We’ve also added unity to that number.
That’s an arbitrary modification, intended to lower the probability assigned to each
concept, especially for a small number of observed concepts. Think about why, and
under what conditions, this can be useful.

This method of the NaiveBayes class isn’t essential for the pure classification problem
because its value is the same for all concepts. In the context of this example, we
decided to keep it. Feel free to modify the code so that you get back only the numera-
tor of the Bayes theorem; what do your results look like?

1)

B

C

D

E

F

G

H

I

Licensed to Deborah Christiansen <pedbro@gmail.com>

51Improving search results based on user clicks
The prior probability for a given concept c is evaluated based on the number of times
that we encountered this concept in the training set. Note that we arbitrarily assign
probability zero to unseen concepts. This can be good and bad. If you’re pretty confi-
dent that you have all related concepts in your training set then this ad hoc choice helps
you eliminate flukes in your data. In a more general case, where you might not have
seen a lot of concepts, you should replace the zero value with something more reason-
able—one over the total number of known concepts. What other choices do you think
are reasonable? Is it important to have a sharp estimate of that quantity? Regardless of
your answer, try to rationalize your decision and justify it as best as you can.

We arrive at the heart of the NaiveBayes class. The “naïve” part of the Bayes theorem
is the fact that we evaluate the likelihood of observing Instance i, as the product of
the probabilities of observing each of the attribute values. That assumption implies
that the attributes are statistically independent. We used quotes around the word naïve
because the naïve Bayes algorithm is very robust and widely applicable, even in prob-
lems where the attribute independence assumption is clearly violated. It can be shown
that the naïve Bayes algorithm is optimal in the exact opposite case—cases in which
there’s a completely deterministic dependency among the attributes (see Rish).

If you recall the script in listing 2.11, we’ve created a training set and an instance of
the classifier with that training set, and before we assign the classifier to the
MySearcher instance, we do the following two things:

■ We tell the classifier what attributes should be taken into account for training
purposes.

■ We tell the classifier to train itself on the set of user clicks that we just loaded
and for the attributes that we specified.

The attribute with label UserName corresponds to the user. The attributes
QueryTerm_1 and QueryTerm_2 correspond to the first and second term of the query,
respectively. These terms are obtained by using Lucene’s StandardAnalyzer class.
During training, we’re assigning probabilities based on the frequency of occurrence
for each instance. The important method, in our context, is getProbability(Con-
cept c, Instance i), which we’ll use to obtain the relevance of a particular URL (Con-
cept) when a specific user executes a specific query (Instance).

2.4.3 Combining Lucene indexing, PageRank, and user clicks

Armed with the probability of a user preferring a particular URL for a given query, we
can proceed and combine all three techniques to obtain our enhanced search results.
The relevant code is shown in listing 2.13.

public SearchResult[] search(UserQuery uQuery,

➥ int numberOfMatches, Rank pR) {

 SearchResult[] docResults =

➥ search(uQuery.getQuery(), numberOfMatches);

Listing 2.13 Lucene indexing, PageRank values, and user click probabilities

J

1)

Results based on index
Licensed to Deborah Christiansen <pedbro@gmail.com>

52 CHAPTER 2 Searching
 String url;

 StringBuilder strB = new StringBuilder();

 int docN = docResults.length;

 if (docN > 0) {

 int loop = (docN<numberOfMatches) ? docN : numberOfMatches;

 for (int i = 0; i < loop; i++) {

 url = docResults[i].getUrl();

 UserClick uClick = new UserClick(uQuery,url);

 double indexScore = docResults[i].getScore();

 double pageRankScore = pR.getPageRank(url);

 BaseConcept bC = new BaseConcept(url);

 double userClickScore = learner.getProbability(bC, uClick);

 double hScore;

 if (userClickScore == 0) {

 hScore = indexScore * pageRankScore * EPSILON;

 } else {

 hScore = indexScore * pageRankScore * userClickScore;
 }

 docResults[i].setScore(hScore);

 strB.append("Document URL : ")

➥ .append(docResults[i].getUrl()).append(" --> ");
 strB.append("Relevance Score: ")

➥ .append(docResults[i].getScore()).append("\n");
 }
 }
 strB.append(PRETTY_LINE);
 System.out.println(strB.toString());

 return docResults;
}

Figure 2.8 shows the results for user dmitry. As you can see, due to the fact that dmitry
clicked several times on the page biz-03.html in the past, the relevance score for that
page is the highest. The second best hit is page biz-01.html, which is also in the user
clicks file. The spam page appears third, but that’s a side effect of the small number of
pages; we intentionally didn’t include our scaling m factor to demonstrate its impact
on the results.

 In figure 2.9, we execute the same query—“google ads”—but this time we do it as
user babis. We’ve reversed the order of dmitry’s clicks to create the clicks for the user
babis. The results show that the first hit is page biz-01.html; page biz-03.html is sec-
ond. Everything else is the same. The only difference in the result set comes from the
fact that the query was executed by different users, and that difference reflects exactly
what the application learned from the file user-clicks.csv.

Collect at most
numberOfMatches documents

Collect all user
click scores

Evaluate final
(hybrid) score
Licensed to Deborah Christiansen <pedbro@gmail.com>

53Improving search results based on user clicks
bsh % UserQuery dQ = new UserQuery("dmitry", "google ads");

bsh % oracle.search(dQ,5,pr);

Search results using Lucene index scores:

Query: google ads

Document Title: Google Ads and the best drugs

Document URL: file:/c:/iWeb2/data/ch02/spam -biz-01.html -->

Relevance Score: 0.788674294948578

Document Title: Google Expands into Newspaper Ads

Document URL: file:/c:/iWeb2/data/ch02/biz-01.html -->

Relevance Score: 0.382

Document Title: Google sells newspaper ads

Document URL: file:/c:/iWeb2/data/ch02/biz-03.html -->

Relevance Score: 0.317

Document Title: Google's sales pitch to newspapers

Document URL: file:/c:/iWeb2/data/ch02/biz-02.html -->

Relevance Score: 0.291

Document Title: Economic stimulus plan helps stock prices

Document URL: file:/c:/iWeb2/data/ch02/biz-07.html -->

Relevance Score: 0.031

Search results using combined Lucene scores, page rank scores and

user clicks:

Query: user=dmitry, query text=google ads

Document URL: file:/c:/iWeb2/data/ch02/biz-03.html -->

Relevance Score: 0.0057

Document URL: file:/c:/iWeb2/data/ch02/biz-01.html -->

Relevance Score: 0.0044

Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 01.html -->

Relevance Score: 0.0040

Document URL: file:/c:/iWeb2/data/ch02/biz-02.html -->

Relevance Score: 0.0012

Document URL: file:/c:/iWeb2/data/ch02/biz-07.html -->

Relevance Score: 0.0002
__

-

Figure 2.8 Combining Lucene, PageRank, and user clicks to produce high-relevance search results
for dmitry.
Licensed to Deborah Christiansen <pedbro@gmail.com>

54 CHAPTER 2 Searching
bsh % UserQuery bQ = new UserQuery("babis", "google ads");

bsh % oracle.search(bQ,5,pr);

Search results using Lucene index scores:

Query: google ads

Document Title: Google Ads and the best drugs

Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 01.html -->

Relevance Score: 0.788674294948578

Document Title: Google Expands into Newspaper Ads

Document URL: file:/c:/iWeb2/data/ch02/biz-01.html -->

Relevance Score: 0.382

Documen t Title: Google sells newspaper ads

Document URL: file:/c:/iWeb2/data/ch02/biz-03.html -->

Relevance Score: 0.317

Document Title: Google's sales pitch to newspapers

Document URL: file:/c:/iWeb2/data/ch02/biz-02.html -->

Relevance Score: 0.291

Document Title: Economic stimulus plan helps stock prices

Document URL: file:/c:/iWeb2/data/ch02/biz-07.html -->

Relevance Score: 0.0314

Search results using combined Lucene scores, page rank scores

and user clicks:

Query: user=babis, query text=google ads

 Document URL: file:/c:/iWeb2/data/ch02/biz-01.html -->

Relevance Score: 0.00616

 Document URL: file:/c:/iWeb2/data/ch02/biz-03.html -->

Relevance Score: 0.00407

 Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 01.html -->

Relevance Score: 0.00393

Document URL: file:/c:/iWeb2/data/ch02/biz-02.html -->

Re levance Score: 0.00117

-

-

Figure 2.9 Lucene, PageRank, and user clicks together produce high-relevance search results
for Babis.
Licensed to Deborah Christiansen <pedbro@gmail.com>

55Ranking Word, PDF, and other documents without links
That’s great! We now have a powerful improvement over the pure index-based search
that accounts for the structure of the hyperlinked documents and the preferences of the
users based on their clicks. But a large number of applications must search among doc-
uments that aren’t explicitly linked to each other. Is there anything that we can do to
improve our search results in that case? Let’s examine exactly that case in what follows.

2.5 Ranking Word, PDF, and other documents
without links
Let’s say that you have hundreds of thousands of Word or PDF documents, or any
other type of document that you want to search through. At first, it may seem that
indexing is your only option and, at best, you may be able to do some user-click analy-
sis too. But we’ll show you that it’s possible to extend the same ideas of link analysis
that we applied to the Web. Hopefully, we’ll get you thinking and develop an even bet-
ter method. By the way, to the best of our knowledge, the technique that we describe
here has never been published before.

 To demonstrate that it’s possible to introduce ranking in documents without links,
we’ll take the HTML documents and create Word documents with identical content.
This willl allow us to compare our results with those in section 2.3 and identify any
similarities or differences in the two approaches. Parsing Word documents can be
done easily using the open source library TextMining; note that the name has changed
to tm-extractor. The license of this library starting with the 1.0 version is LGPL, which
makes it business friendly. You can obtain the source code from http://
code.google.com/p/text-mining/source/checkout. We’ve written a class called
MSWordDocumentParser that encapsulates the parsing of a Word document in that way.

2.5.1 An introduction to DocRank

In listing 2.14 we use the same classes to read the Word documents as we did to read
the HTML documents (the FetchAndProcessCrawler class) and we use Lucene to
index the content of these documents.

FetchAndProcessCrawler crawler =

➥ new FetchAndProcessCrawler("C:/iWeb2/data/ch02",5,200);

crawler.setUrls("biz-docs");

crawler.addDocSpam();
crawler.run();

LuceneIndexer luceneIndexer =

➥ new LuceneIndexer(crawler.getRootDir());

luceneIndexer.run();

MySearcher oracle = new MySearcher(luceneIndexer.getLuceneDir());
oracle.search("nvidia",5);

DocRank docRank = new DocRank(luceneIndexer.getLuceneDir(),7);

Listing 2.14 Ranking documents based on content

Load business
Word documents

Build Lucene
index Create

plain
search
engine
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://code.google.com/p/text-mining/source/checkout
http://code.google.com/p/text-mining/source/checkout

56 CHAPTER 2 Searching
docRank.setAlpha(0.9);
docRank.setEpsilon(0.00000001);
docRank.build();

oracle.search("nvidia",5, docRank);

Figure 2.10 shows that a search for “nvidia” returns as the highest ranked result the
undesirable spam-biz-02.doc file—a result similar to the case of the HTML documents.
Of course, in the case of Word, PDF, and other text documents, the chance of having
spam documents is fairly low, but you could have documents with unimportant repeti-
tions of terms in them.

 So far, everything has been the same as in listing 2.9. The new code is invoked by
the class DocRank. That class is responsible for creating a measure of relevance
between documents that’s equivalent to the relevance which PageRank assigns
between web pages. Unlike the PageRank class, it takes an additional argument whose
role we’ll explain later on. Similar to the previous sections, we want to have a matrix
that represents the importance of page Y based on page X. Our problem is that,
unlike with web pages, we don’t have an explicit linkage between our documents.
Those web links were only used to create a matrix whose values told us how important
page Y is according to page X. If we could find a way to assign a measure of impor-
tance for document Y according to document X we could use the same mathematical
theory that underpins the PageRank algorithm. Our code provides such a matrix.

Create DocRank
engine

bsh % oracle.search("nvidia", 5);

Search results using Lucene index scores:

Query: nvidia

Document Title: NVIDIA shares plummet into cheap medicine for

you!

Document URL: file:/c:/iWeb2/data/ch02/spam -biz- 02.doc -->

Relevance Score: 0.458221405744553

Document Title: Nvidia shares up on PortalPlayer buy

Document URL: file:/c:/iWeb2/data/ch02/biz-05.doc -->

Relevance Score: 0.324011474847794

Document Title: NVidia Now a Supplier for MP3 Players

Document URL: file:/c:/iWeb2/data/ch02/biz-04.doc -->

Relevance Score: 0.194406896829605

Document Title: Nov. 6, 2006, 2:38PM?Chips Snap: Nvidia, Altera

Shares Jump

Document URL: file:/c:/iWeb2/data/ch02/biz 06.doc -->

Relevance Score: 0.185187965631485

-

Figure 2.10 Index based searching for “nvidia” in the Word documents that contain business news
and spam
Licensed to Deborah Christiansen <pedbro@gmail.com>

57Ranking Word, PDF, and other documents without links
2.5.2 The inner workings of DocRank

Our measure of importance is to a large degree arbitrary, and its viability depends cru-
cially on two properties that are related to the elements of our new H matrix. The ele-
ments of that matrix should be such that:

■ They are all positive numbers.
■ The sum of the values in any row is equal to 1.

Whether our measure will be successful depends on the kind of documents that we’re
processing. Listing 2.15 shows the code from class DocRankMatrixBuilder that builds
matrix H in the case of our Word documents.

public class DocRankMatrixBuilder implements CrawlDataProcessor {
 private final int TERMS_TO_KEEP = 3;

 private int termsToKeep=0;
 private String indexDir;
 private PageRankMatrixH matrixH;

 public void run() {
 try {
 IndexReader idxR =

➥ IndexReader.open(FSDirectory.getDirectory(indexDir));
 matrixH = buildMatrixH(idxR);
 }
 catch(Exception e) {
 throw new RuntimeException("Error: ", e);
 }
 }

 // Collects doc ids from the index for documents with matching doc type
 private List<Integer> getProcessedDocs(IndexReader idxR)
 throws IOException {
 List<Integer> docs = new ArrayList<Integer>();
 for(int i = 0, n = idxR.maxDoc(); i < n; i++) {
 if(idxR.isDeleted(i) == false) {
 Document doc = idxR.document(i);
 if(eligibleForDocRank(doc.get("doctype"))) {
 docs.add(i);
 }
 }
 }
 return docs;
 }

// Is the index entry eligible?

 private boolean eligibleForDocRank(String doctype) {
 return ProcessedDocument.DOCUMENT_TYPE_MSWORD

➥ .equalsIgnoreCase(doctype);
 }

 private PageRankMatrixH buildMatrixH(IndexReader idxR)

Listing 2.15 DocRankMatrixBuilder: Ranking text documents based on content
Licensed to Deborah Christiansen <pedbro@gmail.com>

58 CHAPTER 2 Searching
 throws IOException {

 // consider only URLs with fetched and parsed content
 List<Integer> allDocs = getProcessedDocs(idxR);

 PageRankMatrixH docMatrix =

➥ new PageRankMatrixH(allDocs.size());

 for(int i = 0, n = allDocs.size(); i < n; i++) {

 for(int j = 0, k = allDocs.size(); j < k; j++) {

 double similarity = 0.0d;

 Document docX = idxR.document(i);
 String xURL= docX.get("url");

 if (i == j) {

 // Avoid shameless self-promotion ;-)
 docMatrix.addLink(xURL, xURL, similarity);

 } else {

 TermFreqVector x =

➥ idxR.getTermFreqVector(i, "content");
 TermFreqVector y =

➥ idxR.getTermFreqVector(j, "content");

 similarity = getImportance(x.getTerms(),

➥ x.getTermFrequencies(), y.getTerms(), y.getTermFrequencies());

 // add link from docX to docY
 Document docY = idxR.document(j);
 String yURL = docY.get("url");

 docMatrix.addLink(xURL, yURL, similarity);
 }
 }
 }
 docMatrix.calculate();

 return docMatrix;
 }

 // Calculates importance of document Y in the context of document X
 private double getImportance(String[] xTerms, int[] xTermFreq,
 String[] yTerms, int[] yTermFreq){

 // xTerms is an array of the most frequent terms for first document
 Map<String, Integer> xFreqMap =

➥ buildFreqMap(xTerms, xTermFreq);

 // yTerms is an array of the most frequent terms for second document
 Map<String, Integer> yFreqMap =

➥ buildFreqMap(yTerms, yTermFreq);

 // sharedTerms is the intersection of the two sets
 Set<String> sharedTerms =

➥ new HashSet<String>(xFreqMap.keySet());
 sharedTerms.retainAll(yFreqMap.keySet());
Licensed to Deborah Christiansen <pedbro@gmail.com>

59Ranking Word, PDF, and other documents without links
 double sharedTermsSum = 0.0;

 // Note that this isn't symmetrical.
 // If you swap X with Y then you get a different value;
 // unless the frequencies are equal, of course!

 double xF, yF;
 for(String term : sharedTerms) {

 xF = xFreqMap.get(term).doubleValue();
 yF = yFreqMap.get(term).doubleValue();

 sharedTermsSum += Math.round(Math.tanh(yF/xF));
 }

 return sharedTermsSum;
 }

 private Map<String, Integer> buildFreqMap(String[] terms, int[] freq) {

int topNTermsToKeep = (termsToKeep == 0)? TERMS_TO_KEEP: termsToKeep;

Map<String, Integer> freqMap =

➥ TermFreqMapUtils.getTopNTermFreqMap(terms, freq, topNTermsToKeep);

 return freqMap;
 }
}

There are two essential ingredients in our solution. First, note that we use the Lucene
term vectors, which are pairs of terms and their frequencies. If you recall our discussion
about indexing documents with Lucene, we mentioned that the text of a document is
first parsed, then analyzed before it’s indexed. During the analysis phase, the text is
dissected into tokens (terms); the way that the text is tokenized depends on the ana-
lyzer that’s used. The beautiful thing with Lucene is that we can retrieve that informa-
tion later on and use it. In addition to the terms of the text, Lucene also provides us
with the number of times that each term appears in a document. That’s all we need
from Lucene: a set of terms and their frequency of occurrence in each document.

 The second ingredient of our solution is the choice of assigning importance to
each document. The method getImportance in listing 2.15 shows that, for each docu-
ment X, we calculate the importance of document Y by following two steps: (1) we
find the intersection between the most frequent terms of document X and the most
frequent terms of document Y and (2) for each term in the set of shared terms (inter-
section), we calculate the ratio of the number of times the term appears in document
Y (Y-frequency of occurrence) over the number of times the term appears in docu-
ment X (X-frequency of occurrence). The importance of document Y in the context
of document X is given as the sum of all these ratios and filtered by the hyperbolic tan-
gent function (Math.tanh) as well as the rounding function (Math.round). The end
result of these operations will be the entry in the H matrix for row X and column Y.

 We use the hyperbolic tangent function because we want to gauge whether a par-
ticular term between the two documents should be considered a good indicator for
assigning importance. We aren’t interested in the exact value; we’re interested only in
Licensed to Deborah Christiansen <pedbro@gmail.com>

60 CHAPTER 2 Searching
keeping the importance factor within reasonable limits. The hyperbolic tangent takes
values between 0 and 1, so the final rounding will ensure that each term can either be
neglected or count for one unit of importance. That’s the rationale behind building
the formula by using these functions.

 Figure 2.11 shows that a search for “nvidia” returns the file biz-05.doc as the high-
est-ranked result; that’s a legitimate file (not spam) and related to nvidia! The spam

bsh % oracle.search("nvidia",5,dr);

Search results using Lucene index scores:

Query: nvidia

Document Title: NVIDIA shares plummet into cheap medicine for

you!

Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 02.doc -->

Relevance Score: 0.4582

Document Title: Nvidia shares up on PortalPlayer buy

Document URL: file:/c:/iWeb2/data/ch02/biz-05.doc -->

Relevance Score: 0.3240

Document Title: NVidia Now a Supplier for MP3 Players

Document URL: file:/c:/iWeb2/data/ch02/biz-04.doc -->

Relevance Score: 0.1944

Document Title: Chips Snap: Nvidia, Altera Shares Jump

Document URL: file:/c:/iWeb2/data/ch02/biz-06.doc -->

Relevance Score: 0.1852

Search results using combined Lucene scores and page rank scores:

Query: nvidia

Document URL: file:/c:/iWeb2/data/ch02/biz-05.doc -->

Relevance Score: 0.03858

Document URL: file:/c:/iWeb2/data/ch02/spam- biz- 02.doc -->

Relevance Score: 0.03515

Document URL: file:/c:/iWeb2/data/ch02/biz-04.doc -->

Relevance Score: 0.02925

Document URL: file:/c:/iWeb2/data/ch02/biz- 06.doc -->

Relevance Score: 0.02233

-

-

-

Figure 2.11 Index and ranking based search for “nvidia” on the Word documents
Licensed to Deborah Christiansen <pedbro@gmail.com>

61Large-scale implementation issues
page survived because the number of our documents is small, but we did get addi-
tional value. The Lucene index had the exact same information all along, but its met-
ric of relevance has been skewed by the ersatz news document. DocRank helped us to
increase the relevance of the biz-05.doc document, and in more realistic situations it
can help you identify the most pertinent documents in a collection. The DocRank val-
ues, like the PageRank values, need to be calculated only once, but can be reused for
all queries.

 There are other means of enhancing the search of plain documents, and we pro-
vide the related references at the end of this chapter. DocRank is a more powerful
algorithm when applied to data from a relational database. To see this, let’s say that we
have two tables—table A and table B—that are related to each other through table C;
this is a common case. For example, you may have a table that stores users, another
table that stores groups, and another that stores the relationship between users and
groups by relating the IDs of each entry. In effect, you have one graph that connects
the users based on their groups and another graph that connects the groups based on
their users. Every time you have a linked representation of entities, it’s worthwhile to
try the DocRank algorithm or a similar variant. Don’t be afraid to experiment! There’s
no single answer to this kind of problem, and sometimes the answer may surprise you.

2.6 Large-scale implementation issues
Everything that we’ve discussed so far can be used across the functional areas and the
various domains of web applications. But if you’re planning to process vast amounts of
data, and you have the computational resources to do it, you’re going to face issues
that fall largely into two categories. The first category is related to the mathematical
properties of the algorithms; the second is related to the software engineering aspects
of manipulating data on the scale of terabytes or even petabytes!

 The first symptom of large-scale computing constraints is the lack of addressable
memory. In other words, your data is so large that the data structures don’t fit in mem-
ory anymore; that would be particularly true for an interpreted language, like Java,
because even if you manage to fit the data, you’d probably have to worry about gar-
bage collection. In large-scale computing, there are two basic strategies for dealing
with that problem. The first is the construction of more efficient data structures, so
that the data does fit in memory; the second is the construction of efficient, distrib-
uted, I/O infrastructure for accessing and manipulating the data in situ. For very large
datasets, with sizes similar to what Google handles, you should implement both strate-
gies because you want to squeeze every bit of efficiency out of your system.

 In terms of representing data more efficiently, consider the structures that we used
for storing the H matrix. The part of the original link structure required a dou-
ble[n][n] and the part of the dangling node matrix required another double[n][n],
where n is the number of pages (or documents for DocRank). If you think about it,
that’s a huge waste of resources when n is very large, because most of these double val-
ues are zero. A more efficient way to store that information would be by means of an
Licensed to Deborah Christiansen <pedbro@gmail.com>

62 CHAPTER 2 Searching
adjacency list. In Java, you can easily implement an adjacency list using a Hashtable
that will contain HashSets. So, the definition of the variable matrix in the class Page-
RankMatrixH would look as follows:

Hashtable<Integer, HashSet<Integer,Double>> matrix;

One of the exercises that we propose is to rewrite our algorithmic implementation
using these efficient structures. You could even compress the data in the adjacency list
by reference encoding or other techniques (see Boldi and Vigna). Reference encoding
relies on the similarity of web pages and sacrifices simplicity of implementation for
memory efficiency.

 Another implementation aspect for large-scale searching is the accuracy that you’re
going to have for the PageRank values (or any other implementation of the Rank base
class). To differentiate between values of the PageRank for any two web pages among
N, you’ll need a minimum of 1/N accuracy in your numerical calculation. So, if you
deal with N = 1000 pages then even 10-4 accuracy should suffice. If you want to get the
rankings of billions of pages, the accuracy should be on the order of 10-10 for the Page-
Rank values.

 Consider a situation where the dangling nodes make up a large portion of your
fetched web pages. This could happen if you want to build a dedicated search engine
for a central site such as the Apache set of projects, or something less ambitious such as
the Jakarta project alone. Brin and Page realized that handling a large number of
nodes that are, in essence, artificial—because their entries in the H matrix don’t reflect
the link structure of the web but rather help the matrix to conform with certain nice
mathematical properties—isn’t going to be very efficient. They suggested you could
remove the dangling nodes during the computation of the PageRank, and add them
back after the values of the remaining PageRanks have converged sufficiently.

 We don’t know, of course, the actual implementation of the Google search
engine—such secrets are closely guarded—but we can say with certainty that an equi-
table treatment of all pages will require inclusion of the dangling nodes from the
beginning to the end of the calculation of PageRank. In an effort to be both fair and
efficient, we can use methods that rely on the symmetric reordering of the H matrix.
These techniques appear to converge at the same rate as the original PageRank algo-
rithm while acting on a smaller problem, which means that you can have significant
gains in computational time; for more details see Google’s PageRank and Beyond: The Sci-
ence of Search Engine Rankings.

 Implicit in all discussions with respect to large-scale computations of search are con-
cerns about memory and speed. One speed factor is the number of iterations for the
power method, which as we’ve seen depends on the value of alpha as well as the number
of the linked pages. Unfortunately, in practitioner’s books similar to ours, we found
statements asserting that the initial value of the PageRank vector doesn’t matter and that
you could set all the values equal to 1. Strictly speaking, that’s not true and it can have
dramatic implications when you work with large datasets whose composition changes
periodically. The closer the initial vector is to the unique PageRank values, the fewer the
Licensed to Deborah Christiansen <pedbro@gmail.com>

63Large-scale implementation issues
number of iterations required. A number of techniques, known collectively as approxi-
mate aggregation techniques, to compute the PageRank vector of a smaller matrix in order
to generate an estimate of the true updated distribution of the PageRank vector. That
estimate, in turn, will be used as the initial vector for the final computation. The math-
ematical underpinnings of these methods won’t be covered in this book. For more infor-
mation on these techniques, see the references at the end of this chapter.

 While we’re discussing acceleration techniques for the computation of the Page-
Rank vector, we should mention the Aitken extrapolation, a quadratic extrapolation
technique by Kamvar et al., as well as more advanced techniques such as the applica-
tion of spectral methods (such as Chebyshev polynomial spectral methods). These
techniques aim at obtaining a better approximation of the PageRank vector between
iterations. They may be applicable in the calculation of your ranking, and it may be
desirable to implement them; see the references for more details.

 With regard to the software aspects of an implementation for large-scale computa-
tions, we should mention Hadoop (http://hadoop.apache.org/). Hadoop is a full-
blown, top-level project of the Apache Software Foundation and it offers an open
source software platform that’s scalable, economical, efficient, and reliable. Hadoop
implements MapReduce (see Dean and Ghemawat), by using its own distributed file-
system (HDFS). MapReduce divides applications into many small blocks of work. HDFS
creates multiple copies of data blocks for reliability, and places them on computational
nodes around a computational cluster (see figure 2.12). MapReduce can then process
the data where it’s located. Hadoop has been demonstrated on clusters with 2,000
nodes. The current design target for the Hadoop platform is 10,000 node clusters.

 The ability to handle large datasets is certainly of great importance in real-world
production systems. We gave you a glimpse of the issues that can arise and pointed you
to some appropriate projects and the relevant literature on that subject. When you
design a search engine, you need to consider not just your ability to scale and handle
a larger volume of data, but the quality of your search results. At the end of the day,
your users want your results to be fast and accurate. So, let’s see a few quantitative ways
of measuring whether what we have is what we want.

Figure 2.12
The MapReduce
implementation
of Hadoop using
a distributed file
system
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://hadoop.apache.org/

64 CHAPTER 2 Searching
2.7 Is what you got what you want? Precision and recall
Google and Yahoo! spend a considerable amount of time studying the quality of their
search engines. Similar to the process of validation and verification (QA) of software
systems, search quality is crucial to the success of a search engine. If you submit a
query to a search engine, you may or may not find what you want. There are various
metrics that quantify the degree of success for a search engine. The two most common
metrics—precision and recall—are easy to implement and understand qualitatively.

 Figure 2.13 shows the possibilities of results from a typical query. That is, provided
a set of documents, a subset of these documents will be relevant to your query and
another subset will be retrieved. Clearly the goal is to retrieve all the relevant docu-
ments, but that’s rarely the case. So, our atten-
tion turns quickly to the intersection between
these two sets, as indicated in figure 2.13.

 In information retrieval, precision is the
ratio of the number of relevant documents
that are retrieved (RR) divided by the total
number of retrieved documents (Rd)—preci-
sion = RR/Rd. In figure 2.13, precision would
be about 1/5 or 0.2. That’s measured with the
“eye norm”; it’s not exact, we’re engineers
after all! On the other hand, recall is the ratio
of the number of relevant documents that are
retrieved divided by the total number of rele-
vant documents (Rt)—recall = RR/Rt.

 Qualitatively, these two measures answer different questions. Precision answers, “To
what extent do I get what I want?” Recall answers, “Does what I got include everything
that I can get?” Clearly it’s easier to find precision than it is to find recall, because find-
ing recall implies that we already know the set of all relevant documents for a given
query. In reality, that’s hardly ever the case. We plot these two measures together so that
we can assess to what extent the good results blend with bad results. If what I get is the
truth, the whole truth, and nothing but the truth, then the precision and recall values
for my queries will both be close to one.

 During the evaluation of the algorithms and
tweaks involved in tuning a search engine, you
should employ plots of these two quantities for rep-
resentative queries that span the range of questions
that your users are trying to answer. Figure 2.14
shows a typical plot of these quantities. For each
query, we enter a point that corresponds to the pre-
cision and recall values of that query. If you execute
many queries and plot these points, you’ll get a line
that looks like the one shown in figure 2.14. Be

Retrieved Relevant

All documents

Figure 2.13 This diagram shows the set of
relevant documents and the set of retrieved
documents; their intersection is used to define
the search metrics precision and recall.

Figure 2.14 A typical precision/
recall plot for a search engine
Licensed to Deborah Christiansen <pedbro@gmail.com>

65Summary
aware that interpolating the values, if you have a small number of queries, may not be
a good idea. It would be better to leave the values as points without connecting them.

 Good precision-recall points are located in the upper-right corner of the graph
because we want to have high precision and high recall. These plots can help you
establish, objectively, the need for a particular tweak in an algorithm or the superiority
of one approach versus another. It could help you convince your ever-skeptical upper
management team to use the algorithms of this book! You can practice by using the
three approaches that we presented in this chapter (search with Lucene; Lucene and
PageRank; Lucene, PageRank, and user clicks). You can apply them on the dataset
that we provided you or another dataset that you can create yourself, and you can cre-
ate a precision/recall plot that includes the results of 10–20 queries.

 In section 5.5, we’ll discuss many aspects of credibility that can be evaluated for a
particular algorithm and how to compare two algorithms. We’ll also talk about the way
that the validation experiments must be carried out in order to enhance the confi-
dence that we have in our results. Precision and recall are the tip of the iceberg when
we consider the quality of our search results. We’ll postpone a more detailed analysis
of credibility until after we cover all the basic intelligent algorithms that we want to
present. This approach will allow us to use a general framework for assessing the qual-
ity of intelligence.

2.8 Summary
Since early 2000, a lot of online news article have proclaimed: “Search is king!” This
kind of statement could’ve been insightful, and perhaps prophetic, in the last millen-
nium, but it’s a globally accepted truth today. If you don’t believe us, Google it!

 This chapter has shown that intelligently answering user queries on content-rich
material that’s spread across the globe deserves attention and effort beyond indexing.
We’ve demonstrated a searching strategy that starts with building on traditional infor-
mation retrieval techniques provided by the Lucene library. We talked about collect-
ing content from the Web (web crawling) and provided our own crawler
implementation. We used a number of document parsers such as NekoHTML and the
TextMining library (tm-extractor), and passed the content to the Lucene analyzers.
The standard Lucene analyzers are powerful and flexible, and should be adequate for
most purposes. If they’re not suitable for you, we’ve discussed a number of potential
extensions and modifications that are possible. We also hinted at the power of the
Lucene querying framework and its own extensibility and flexibility.

 More importantly, we’ve described in great detail the most celebrated link analysis
algorithm—PageRank. We provided a full implementation that doesn’t have any
dependencies and adopts the formulation of the G(oogle) matrix that’s amenable to
the large-scale implementation of sparse matrices. We also provided hints that’ll allow
you to complete this step and feel the pride of that great accomplishment yourself!
We’ve touched upon a number of intricacies of that algorithm and explained its key
characteristics, such as the teleportation component and the power method, in detail.
Licensed to Deborah Christiansen <pedbro@gmail.com>

66 CHAPTER 2 Searching
 We also presented user-click analysis, which introduced you to intelligent probabi-
listic techniques such as our NaiveBayes classifier implementation. We’ve provided
wrapper classes that expose all the important steps involved, but we’ve also analyzed
the code under the hood to a great extent. This kind of technique allows us to learn
the preferences of a user toward a particular site or topic, and it can be greatly
enhanced and extended to include additional features.

 Since one size doesn’t fit all, we’ve provided material that’ll help you deal with doc-
uments that aren’t web pages, by employing a new algorithm that we called DocRank.
This algorithm has shown some promise, but more importantly it demonstrates that
the underlying mathematical theory of PageRank can be readily extended and studied
in other contexts by careful modifications. Lastly, we talked about some of the chal-
lenges that may arise in dealing with very large networks, and we provided a simple yet
robust way of qualifying your search results and add credibility to your search engine.

 The statement “search is king” might be true, but recommendation systems also
have royal blood! The next chapter covers exclusively the creation of suggestions and
recommendations. Adding both to your application can make a big difference in the
user experience of your application. But before you move on, make sure that you read
the To do items for search, if you haven’t done so already. They’re full of interesting
and valuable information.

2.9 To do
The last section of every chapter in the rest of this book will contain a number of to-do
items that will guide you in the exploration of various topics. Whenever appropriate,
our code has been annotated with “TODO” tags that you should be able to view in the
Eclipse IDE in the Tasks panel. By clicking on any of the tasks, the task link will show
the portion of the code associated with it. If you don’t use Eclipse then simply search
the code for the term “TODO”.

 Some of these to-do items aim at providing greater depth on a topic that’s been
covered in the main chapter, while others present a starting point for exploration on
topics that are peripheral to what we’ve already discussed. The completion of these
tasks will provide you with greater depth and breadth on intelligent algorithms. We
highly encourage you to peruse them.

 With that in mind, here is our to do list for chapter 2.

1 Build your own web search engine. Use the crawler of your choice and crawl your
favorite site, such as http://jakarta.apache.org/, then use our crawler to pro-
cess the retrieved data, build an index for it, and search through its pages.

How do the results vary if you add PageRank to them?
How about user clicks?
You could write your own small web search engine by applying the material

of this chapter. Try it and let us know!

2 Experiment with boosting. Uncomment the code between lines 83 to 85 in the
class LuceneIndexBuilder and see how the results of the Lucene ranking
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://jakarta.apache.org/

67To do
change. Depending on your application, you can devise a unique strategy of
boosting your documents that depends on factors that are specific to the
domain of your application.

3 Scaling the PageRank values. In our example of a combined Lucene (index)
and PageRank (ranking) search, we use a scaling factor that boosted the value
of the PageRank. Our choice of function for the exponent had only one param-
eter—m = (1 – 1/n), where n is the size of the H matrix—and its behavior was
such that for large networks our scaling factor is approaching the value 1, while
for small networks the value is between 0 and 1. In reality, you get zero only in
the degenerate case where you have a single page, but that’s not a very interest-
ing network anyway!

Experiment with such scaling factors and observe the impact on the rank-
ings. You may want to change that value to a higher power of n—another valid
formula would be m = (1 – 1 / Math.pow(n,k)), because as k takes on values
greater than 1, the PageRank value approaches its calculated value faster.

4 Altering the G matrix: Dangling nodes. We’ve assigned a value of 1/n to all the
nodes for each entry in a dangling node row. In the absence of additional infor-
mation about the browsing habits of our users, or under the assumption that
there’s a sufficient number of users that covers all browsing habits, that’s a rea-
sonable assignment. But what if we make different kind of assumptions that are
equally reasonable would the whole mechanism work?

Let’s assume that a user encounters a dangling node. Upon arriving at the
dangling node, it seems natural to assume that the user is more likely to select a
search engine as his next destination, or a website similar to the dangling node,
rather than a website that’s dissimilar to the content of the dangling node. That
kind of assumption would result in an adjustment of the dangling node values:
higher values for search engines and similar content pages, and lower values for
everybody else. How does that change affect the PageRank values? How about
the results of the queries? Did your precision recall graph change in that case?

5 Altering the G matrix: Teleportation. In our original implementation, the telepor-
tation contribution has been assigned in an egalitarian manner—all pages are
assigned a contribution equal to (1-alpha)/n, where n is the number of the
pages. But the potential of that component is enormous. If chosen appropri-
ately, it can create an online bourgeois, and if it’s chosen at a user level, it can
target the preferences of each user much like the technique of user clicks
allowed us to do. The latter reason is why the teleportation contribution is also
known as the personalization vector.

Try to modify it so that certain pages get more weight than others. Does it
work? Are your PageRank values higher for these pages? What issues do you see
with such an implementation? If we assume that we assign a personalization vec-
tor to each user, what does this imply in terms of computational effort? Is it
worth it? Is it feasible? The papers by Haveliwala, Jeh & Widom, and Richardson
Licensed to Deborah Christiansen <pedbro@gmail.com>

68 CHAPTER 2 Searching
& Domingos are related to this and can provide you with more information and
insight on this important topic.

6 Combining different scores. In section 2.4.3, we showed one way to combine the
three different scores, in order to provide the final ranking for the results of a
particular query. That’s not the only way. This is a case where you can devise a
balancing of these three terms in a way that best fits your needs. Here’s an idea:
introduce weighing terms for each of the three scores and experiment with dif-
ferent allocations of weight to each one of them.

Provided that you consider a fixed network of pages or documents, how do
the results change based on different values of these weight coefficients? Plot 20
precision/recall values that correspond to 20 different queries, and do that for
three different weight combinations, for example (0.6, 0.2, 0.2), (0.2, 0.6, 0.2),
(0.2, 0.2, 0.6). What do you see? How do these points compare to the equal
weight distribution (1,1,1)? Can you come up with different formulas for bal-
ancing the various contributions?

2.10 References
 Adamic, L.A., R.M. Lukose, A.R. Puniyani, and B.A. Huberman. “Search in power-law net-

works.” Physical Review E, vol. 64, 046135. 2001.
 Boldi, P., and S. Vigna. “The WebGraph Framework I: Compression Techniques.” WWW 2004,

New York.
 Dean, J. and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters.” Sixth

Symposium on Operating System Design and Implementation, San Francisco, CA, 2004. http://
labs.google.com/papers/mapreduce-osdi04.pdf.

 Haveliwala, T.H. “Topic-sensitive PageRank: A context-sensitive ranking algorithm for web
search.” IEEE transactions on Knowledge and Data Engineering, 15 (4): 784. 2004. http://
www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-pagerank-tkde.pdf.

 Jeh, G. and J. Widom. “Scaling personalized web search.” Technical report, Stanford University,
2002. http://infolab.stanford.edu/~glenj/spws.pdf.

 Kamvar, S.D., T.H. Haveliwala, Christopher D. Manning, and Gene H. Golub. Extrapolation
Methods for Accelerating PageRank Computations. WWW 2003. http://www.
kamvar.org/code/paper-server.php?filename=extrapolation.pdf.

 Langville, A.N. and C.D. Meyer. Google’s PageRank and Beyond: The Science of Search Engine Rank-
ings. Princeton University Press, 2006.

 Richardson, M. and P. Domingos. The intelligent surfer: Probabilistic combination of link and
content information in PageRank. Advances in Neural Information Processing Systems,
14:1441, 2002. http://research.microsoft.com/users/mattri/papers/nips2002/
qd-pagerank.pdf.

 Rish, I. An empirical study of the naïve Bayes classifier.” IBM Research Report, RC22230 (W0111-
014), 2001. http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://labs.google.com/papers/mapreduce-osdi04.pdf
http://labs.google.com/papers/mapreduce-osdi04.pdf
http://www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-pagerank-tkde.pdf
http://www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-pagerank-tkde.pdf
http://infolab.stanford.edu/~glenj/spws.pdf
http://www.kamvar.org/code/paper-server.php?filename=extrapolation.pdf
http://www.kamvar.org/code/paper-server.php?filename=extrapolation.pdf
http://research.microsoft.com/users/mattri/papers/nips2002/qd-pagerank.pdf
http://research.microsoft.com/users/mattri/papers/nips2002/qd-pagerank.pdf
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf

Creating suggestions
 and recommendations
In today’s world, we’re overwhelmed with choices; a plethora of options are avail-
able for nearly every aspect of our lives. We need to make choices on a daily basis,
from automobiles to home theatre systems, from finding Mr. or Ms. “Perfect” to
selecting attorneys or accountants, from books and newspapers to wikis and blogs,
from movies to songs, and so on. In addition, we’re constantly being bombarded by
information—and occasionally misinformation! Under these conditions, the ability
to recommend a choice is valuable, even more so if that choice doesn’t deviate sig-
nificantly from the preferences of the person who receives the recommendation.

This chapter covers:
■ Finding the distance and similarity between objects
■ Understanding recommendation engines based on

users, items, and content
■ Finding recommendations about friends, articles, and

news stories
■ Creating recommendations for sites similar to Netflix
69

Licensed to Deborah Christiansen <pedbro@gmail.com>

70 CHAPTER 3 Creating suggestions and recommendations
 In the business of influencing your choice, no one is interested in good results
more than advertising companies. The raison d’être of these entities is to convince you
that you really need product X or service Y. If you have no interest in products like X or
services like Y, they’ll be wasting their time and you’ll be annoyed! The “broadcasting”
approach of traditional advertising methods (such as billboards, TV ads, radio ads)
suffers from that problem. The goal of broadcasting is to alter your preferences by
incessantly repeating the same message. An alternative, more pleasant, and more
effective approach would be targeting to your preferences. It would entice you to
select a product based on its relevance to your personal wants and desires. That’s
where the online world and the intelligent advertisement business on the internet dis-
tinguish themselves. It may be the searching functionality that made Google famous,
but advertisements are what make Google rich!

 In this chapter, we’ll tell you everything you need to know about building a recom-
mendation engine. You’ll learn about collaborative filtering and content-based recom-
mendation engines. You’ll also learn how to optimize the classical algorithms and how
to extend them in more realistic applications. We’ll start by describing the problem of
recommending songs in an online music store, and we’ll generalize it so that our pro-
posed solutions are applicable to a variety of circumstances. The online music store is
a simple example, but it’s concrete and detailed, making it easy to understand all the
basic concepts involved in the process of writing a recommendation engine.

 Once we cover all the basic concepts in our online music store, we’ll make things a
lot more interesting by presenting more complicated cases. We’ll adhere to the impor-
tant principle of commercial proselytism and we’ll cover recommendation engines
that are crucial in online movie rentals (see our coverage of Netflix in the introduc-
tion), online bookstores, and general online stores.

3.1 An online music store: the basic concepts
Let’s say that you have an online store that sells music downloads. Registered users log
in to your application and can play samples of the available songs. If a user likes a par-
ticular song, she can add it to her shopping cart and purchase it later when she’s ready
to check out from your store. Naturally, when users complete their purchase, or when
they land on the pages of our hypothetical application, we want to suggest more songs
to them. There are millions of songs available, myriad artists, and dozens of music
styles of broad interest to choose from—classical, ecclesiastical, pop, heavy metal,
country, and many others more or less refined! In addition, many people are quite
sensitive to the kind of music that they don’t like. You’d be better off throwing me in
the middle of the Arctic Ocean than showing me anything related to rap! Someone
else could be allergic to classical music, and so on.

 The moral of the story is that, when you display content for a user, you want to tar-
get the areas of music that the user likes and avoid the areas of music that the user
doesn’t like. If that sounds difficult, fear not! Recommendation engines are here to
help you deliver the right content to your users!
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://digg.com/
http://digg.com/
http://digg.com/
http://www.movielens.org/quickpick
http://www.movielens.org/quickpick

71An online music store: the basic concepts
 A recommendation engine examines the selections that a user has made in
the past, and can identify the degree to which he would like a certain item that he
hasn’t seen yet. It can be used to determine what types of music your user prefers,
and the extent to which he does so, by comparing the similarity of his preferences
with the characteristics of music types. In a more creative twist, we could help
people establish a social network on that site based on the similarity of their musi-
cal taste. So, it quickly becomes apparent that the crucial functional element of rec-
ommendation engines is the ability to define how similar to each other two (or
more) users or two (or more) items are. That similarity can later be leveraged to
provide recommendations.

3.1.1 The concepts of distance and similarity

Let’s take some data and start exploring these concepts in detail. The basic concepts
that we’ll work with are Items, Users, and Ratings. In the context of recommendation
engines, similarity is a measure that allows us to compare the proximity of two items in
much the same way that the proximity between two cities tells us how close they are to
each other geographically. For two cities, we’d use their longitude and latitude coordi-
nates to calculate their geographical proximity. Think of the Ratings as the “coordi-
nates” in the space of Items or Users. Let’s demonstrate these concepts in action.
We’ll select three users from a list of MusicUsers and will associate a list of songs
(items) and their hypothetical rankings with each user.

 As it is typically the case on the internet, ratings will range between 1 and 5 (inclu-
sive). The assignments for the first two users (Frank and Constantine) involve ratings
that are either 4 or 5—these people really like all the songs that we selected! But the
third user’s ratings (Catherine) are between 1 and 3. So clearly, we expect the first two
users to be similar to each other and be dissimilar to the third user. When we load our
example data in the script (the second line in the script of listing 3.1), we have avail-
able the users, songs, and ratings shown in table 3.1.

Table 3.1 The ratings for the users show that Frank and Constantine agreemore
 than Frank and Catherine (see also figure 3.2).

User Song Rating

Frank

Tears In Heaven 5

La Bamba 4

Mrs. Robinson 5

Yesterday 4

Wizard of Oz 5

Mozart: Symphony #41 (Jupiter) 4

Beethoven: Symphony No. 9 in D 5
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.amazon.com
http://www.amazon.com
http://www.amazon.com
http://www.netflix.com
http://www.netflix.com
http://www.netflix.com

72 CHAPTER 3 Creating suggestions and recommendations
We can execute all these steps in the shell using the script shown in listing 3.1.

MusicUser[] mu = MusicData.loadExample();

mu[0].getSimilarity(mu[1],0);

mu[0].getSimilarity(mu[1],1);

mu[0].getSimilarity(mu[2],0);

mu[1].getSimilarity(mu[2],0);
mu[2].getSimilarity(mu[1],0);

mu[0].getSimilarity(mu[0],0);
mu[0].getSimilarity(mu[0],1);

We’ve provided two definitions of similarity, which are invoked by providing a differ-
ent value in the second argument of the getSimilarity method of the MusicUser
class. We’ll describe the detailed implementation of that code shortly, but first look
at figure 3.1, which shows the results that we get for the comparisons between the
three users.

 According to our calculations, shown in figure 3.1, Frank’s preferences in songs
are more similar to Constantine’s than they are to Catherine’s. The similarity between

Constantine

Tears in Heaven 5

Fiddler on the Roof 5

Mrs. Robinson 5

What a Wonderful World 4

Wizard of Oz 4

Let It Be 5

Mozart: Symphony #41 (Jupiter) 5

Catherine

Tears in Heaven 1

Mrs. Robinson 2

Yesterday 2

Beethoven: Symphony No. 9 in D 3

Sunday, Bloody Sunday 1

Yesterday 1

Let It Be 2

Listing 3.1 A small list of MusicUsers and their Ratings on MusicItems

Table 3.1 The ratings for the users show that Frank and Constantine agreemore
 than Frank and Catherine (see also figure 3.2). (continued)

User Song Rating

Similarity is symmetrical

Similarity of a user with itself
Licensed to Deborah Christiansen <pedbro@gmail.com>

73An online music store: the basic concepts
two users doesn’t depend on the order in which we pass the arguments in the get-
Similarity method. The similarity of Frank with himself is equal to 1.0, which we
take to be the maximum value of similarity between any two entities. These properties
stem from the fact that many similarity measures are based on distances, like the geo-
metric distance between two points on a plane that we learned in high school.

 In general, mathematical distances have the following four important properties:

■ All distances are greater than or equal to zero. In most cases, as with the Music-
User, we constrain the similarities to be nonnegative like distances. In fact, we
constrain the similarities within the interval [0,1].

bsh % MusicUser[] mu = MusicData.loadExample();

bsh % mu[0].getSimilarity(mu[1],0);

 User Similarity between Frank and Constantine is equal to

0.3911406349860862

bsh % mu[0].getSimilarity(mu[1],1);

 User Similarity between Frank and Constantine is equal to

0.22350893427776353

bsh % mu[0].getSimilarity(mu[2],0);

 User Similarity between Frank and Catherine is equal to 0.

004197074413470947

bsh % mu[1].getSimilarity(mu[2],0);

 User Similarity between Constantine and Catherine is equal to

0.0023790682635077554

bsh % mu[2].getSimilarity(mu[1],0);

 User Similarity between Catherine and Constantine is equal to

0.0023790682635077554

bsh % mu[0].getSimilarity(mu[0],0);

 User Similarity between Frank and Frank is equal to 1.0

bsh % mu[0].getSimilarity(mu[0],1);

 User Similarity between Frank and Frank is equal to 1.0

Figure 3.1 Calculating the similarity of users for the data that are shown in table 3.1. It’s clear that
Frank and Constantine agree more than Frank and Catherine (see also table 3.1).
Licensed to Deborah Christiansen <pedbro@gmail.com>

74 CHAPTER 3 Creating suggestions and recommendations
■ The distance between any two points, say A and B, is zero if and only if A is the
same point as B. In our example, and based on our implementation of similar-
ity, this property is reflected in the fact that when two users have exactly the
same ratings, the similarity between them will be equal to 1.0. That’s true in fig-
ure 3.1, where we used the same user twice to show that the similarity is 1.0. Of
course, you can create a fourth user and prove that the similarity will be equal
to 1, provided that the users have listened to the same songs.

■ The third property of distances is symmetry—the distance between A and B is
exactly the same as the distance between B and A. This means that if Catherine’s
musical taste is similar to the musical taste of Constantine, the reverse will also be
true by exactly the same amount. So, quite often we want the measure of similarity
to preserve the symmetric property of distances, with respect to its arguments.

■ The fourth property of mathematical distances is the triangle inequality because
it relates the distances between three points. In mathematical terms, if d(A,B)
denotes the distance between points A and B, then the triangle inequality states
that d(A,B) <= d(A,C) + d(C,B), for any third point C. In figure 3.1, Frank is simi-
lar to Constantine by 0.391 and Constantine is similar to Catherine by 0.002,
while Frank is similar to Catherine by 0.004, which is less than the sum of the
first two similarities. Nevertheless, that property doesn’t hold, in general, for
our similarities.

Relaxing the fourth fundamental property of distances when we pass on to similarities
is fine; there’s no imperative to carry over the properties of distances to similarities.
We should always be cautious to ensure that the mathematics involved is in agreement
with what we consider to be reasonable. There’s a century-old counterexample to the
triangle inequality, when it comes to similarities, that’s attributed to William James:1

“A flame is similar to the moon because they are both luminous, and the moon is sim-
ilar to a ball because they are both round, but in contradiction to the triangle inequal-
ity, a flame is not similar to a ball.” For an interesting account of similarities in relation
to cognition, we recommend Classification and Cognition by W.K. Estes.

 At the top of figure 3.2, we show a visual representation of the similarity between
Frank and Constantine by plotting their ratings for the songs they both rated. The
closer the lines of the ratings, the more similar the users are; the further apart the
lines, the less the similarity. On the bottom plot of figure 3.2, where we show the rat-
ings of Frank versus those of Catherine, the lines diverge and are far apart, which is in
accordance with the low similarity value that we got during our calculation.

 The lines for Frank and Constantine are close, depicting the similarity between
them. If you look at the code in the plot method of MusicUser, you’ll see that we
sort these ratings in order of increasing difference. If you have a lot of these ratings,
you’ll see the difference between the two lines increase as you look at the plot from
left to right.

1 Source: ScholarPedia (http://www.scholarpedia.org/article/Similarity_measures)
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.scholarpedia.org/article/Similarity_measures

75An online music store: the basic concepts
The plots of the ratings in figure 3.2 clearly display the somewhat reciprocal nature of
distance and similarity. The greater the distance between the two curves, the smaller the
similarity between the two users; the smaller the distance between the two curves, the
greater the similarity between the two users. As we’ll see in the next section, the evalu-
ation of similarity often involves the evaluation of some kind of distance; although

Figure 3.2 The similarity between two users can be measured by evaluating the extent of overlap
between the two lines in plots like this. Thus, Frank and Constantine (top) are more similar than Frank
and Catherine (bottom).
Licensed to Deborah Christiansen <pedbro@gmail.com>

76 CHAPTER 3 Creating suggestions and recommendations
that’s not necessary. The concept of distance is more familiar. The concept of distance
and the concept of similarity are special cases of the general concept of a metric.

3.1.2 A closer look at the calculation of similarity

Now, let’s examine the code that helped us find the similarity between the users and
look closely at how we can calculate similarity. The code in listing 3.2 shows the details
of the getSimilarity method, which accepts two arguments. The first provides a ref-
erence to another user, the second specifies the kind of similarity that we want to use.

public double getSimilarity(MusicUser u, int simType) {

 double sim=0.0d;
 int commonItems=0;

 switch(simType) {

 case 0:
 for (Rating r : this.ratingsByItemId.values()) {

 for (Rating r2 : u.ratingsByItemId.values()) {

 //Find the same item
 if (r.getItemId() == r2.getItemId()) {
 commonItems++;
 sim += Math.pow((r.getRating()-r2.getRating()),2);
 }
 }
 }

// If there are no common items, we cannot tell whether
// the users are similar or not. So, we let it return 0.
if (commonItems > 0) {

 sim = Math.sqrt(sim/(double)commonItems);

 // Similarity should be between 0 and 1
 // For the value 0, the two users are as dissimilar as they come
 // For the value 1, their preferences are identical.
 //
 sim = 1.0d - Math.tanh(sim);
}

break;

case 1:
 for (Rating r : this.ratingsByItemId.values()) {
 for (Rating r2 : u.ratingsByItemId.values()) {

 //Find the same item
 if (r.getItemId() == r2.getItemId()) {
 commonItems++;
 sim += Math.pow((r.getRating()-r2.getRating()),2);
 }
 }
 }

Listing 3.2 Two similarity measures in getSimilarity of MusicUser

Identify all
common items

Square
differences of
ratings and
sum them

Identify all
common items

Square
differences of
ratings and
sum them
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.orkut.com
http://www.research.att.com/~yehuda/pubs/BellKorIcdm07.pdf
http://citeseer.ist.psu.edu/dietterich00ensemble.html
http://web.engr.oregonstate.edu/~herlock/papers/eval_tois.pdf

77An online music store: the basic concepts
// If there are no common items, we cannot tell whether
// or not the users are similar. So, we let it return 0.
if (commonItems > 0) {

 sim = Math.sqrt(sim/(double)commonItems);

 // Similarity should be between 0 and 1
 // For the value 0, the two users are as dissimilar as they come
 // For the value 1, their preferences are identical.
 //
 sim = 1.0d - Math.tanh(sim);

 // Find the max number of items that the two users can have in common
 int maxCommonItems =

➥ Math.min(this.ratingsByItemId.size(), u.ratingsByItemId.size());

 // Adjust similarity to account for the importance of common terms
 // through the ratio of common items over all possible common items

 sim = sim * ((double)commonItems/(double)maxCommonItems);
}
break;

} //switch block ends

//Let us know what it is
System.out.print("\n"); //Just for pretty printing in the Shell
System.out.print(" User Similarity between");
System.out.print(" "+this.getName());
System.out.print(" and "+u.getName());
System.out.println(" is equal to "+sim);
System.out.print("\n"); //Just for pretty printing in the Shell

return sim;
}

We included two similarity formulas in the code to show that the notion of similarity is
fairly flexible and extensible. Let’s examine the basic steps in the calculation of these
similarity formulas. First we take the differences between all the ratings of songs that
the users have in common, square them, and add them together. The square root of
that value is called the Euclidean distance and, as it stands, it’s not sufficient to provide a
measure of similarity. As we mentioned earlier, the concept of distance and similarity
are somewhat reciprocal, in the sense that the smaller the value of the Euclidean dis-
tance, the more similar the two users. We can argue that the ordering incompatibility
with the concept of similarity is easy to rectify. For instance, we could say that we’ll add
the value 1 to the Euclidean score and invert it.

 At first sight, it appears that inverting the distance (after adding the constant
value 1) might work. But this seemingly innocuous modification suffers from short-
comings. If two users have listened to only one song and one of them rated the song
with 1 and the other rated the song with 4, the sum of their differences squared is 9.
In that case, the naïve similarity, based on the Euclidean distance, would result in a
similarity value of 0.25. The same similarity value can be obtained in other cases. If
the two users listened to three songs and among these three songs, their ratings dif-
fered by 1 (for each song), their similarity would also be 0.25, according to the naïve
Licensed to Deborah Christiansen <pedbro@gmail.com>

78 CHAPTER 3 Creating suggestions and recommendations
similarity metric. Intuitively we expect these two users to be more similar than those
who listened to a single song and their opinions differed by 3 units (out of 5!).

 The naïve similarity “squeezes” the similarity values for small distances (because we
add 1) while leaving large distances (values of the distance much larger than 1) unaf-
fected. What if we add another value? The general form of the naïve similarity is y =
beta / (beta + x), where beta is our free parameter and x is the Euclidean distance. Fig-
ure 3.3 shows what the naïve similarity would look like for various values, between 1
and 2, of the parameter beta.

 Keeping in mind the shortcomings of the naïve similarity, let’s look at the first sim-
ilarity definition between two users as shown in listing 3.2, in the case 0 block. If the
users have some songs in common we divide the sum of their squared differences by
the number of common songs, take the positive square root, and pass on that value to
a special function. We’ve seen that function before: it’s the hyperbolic tangent func-
tion. We subtract the value of the hyperbolic tangent from 1, so that our final value of
similarity ranges between 0 and 1, with zero implying dissimilarity and 1 implying the
highest similarity. Voilà! We’ve arrived at our first definition of similarity of users
based on their ratings.

 The second similarity definition that we present in listing 3.2, in the case 1 block,
improves on the first similarity by taking into account the ratio of the common items ver-
sus the number of all possible common items. That’s a heuristic that intuitively makes
sense. If I’ve listened to 30 songs and you’ve listened to 20, we could have up to 20 com-
mon songs. Let’s say that we have only 5 songs in common and we agree fairly well on

Figure 3.3 NaÏve similarity curves as functions of the Euclidean distance
Licensed to Deborah Christiansen <pedbro@gmail.com>

79An online music store: the basic concepts
these songs, which is nice, but why don’t we have more songs in common? Shouldn’t that
somehow be reflected in our similarity? This is exactly the aspect of the problem that
we’re trying to capture in the second similarity formula. In other words, the extent to
which we listen to the same songs should somehow affect the degree of our similarity as
music listeners.

3.1.3 Which is the best similarity formula?

It may be clear by now that there are many formulas you can use to establish the simi-
larity between two users, or between two items for that matter. In addition to the two
similarities that we introduced in the MusicUser class, we could’ve used a metric for-
mula known as the Jaccard similarity between users, which is defined by the ratio of the
intersection over the union of their item sets—or, in the case of item similarity, the
ratio of the intersection over the union of the user sets. In other words, the Jaccard
similarity between two sets, A and B, is defined by the following pseudocode: Jaccard =
intersection(A,B) / union(A,B). We’ll use the Jaccard similarity in the next sections and
will also present a few more similarity formulas in our “To do” section at the end of
this chapter.

 Of course, you may naturally wonder: “which similarity formula is more appropri-
ate?” The answer, as always, is it depends. In this case, it depends on your data. In one
of the few large-scale comparisons of similarity metrics (conducted by Spertus,
Sahami, and Buyukkokten), the simple Euclidean distance-based similarity showed
the best empirical results among seven similarity metrics, despite the fact that other
formulas were more elaborate and intuitively expected to perform better. Their mea-
surements were based on 1,279,266 clicks on related community recommendations
from September 22, 2004, through October 21, 2004, on the social networking web-
site Orkut (http://www.orkut.com); for more details, see the related reference.

 We don’t advise that you choose randomly your similarity metric, but if you’re in a
hurry, use a formula similar to the two that we included in the MusicUser class—the
Euclidean or the Jaccard similarity. It should give you decent results. You should try to
understand the nature of your data and what it means for two users or two items to be
similar. If you don’t understand the reasons why a particular similarity metric (for-
mula) is good or bad, you’re setting yourself up for trouble. To stress this point, think
of the common misconception that “the shortest path between two points is a straight
line that joins them.” That statement is true only for what we call “flat” geometries,
such as the area of a football field. To convince yourself, compare the distance of
going over a tall but not wide hill versus going around the hill’s base. The “straight”
line will not be the shortest path for a wide range of hill sizes.

 In summary, one of the cornerstones of recommendations is the ability to measure
the similarity between any two users and the similarity between any two items. We’ve
provided a number of similarity measures that you can use off-the-shelf, and the music
store exemplified the typical structure of the data that you’d deal with in order to cre-
ate recommendations. We’ll now pass on to examine the types of recommendation
engines and how they work.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.orkut.com

80 CHAPTER 3 Creating suggestions and recommendations
3.2 How do recommendation engines work?
Armed with a good understanding of what similarity between two users or two items
means, we can proceed with our description of recommendation engines. Generally
speaking, there are two categories of recommendation engines. The first goes under
the label collaborative filtering (CF). The first incarnation of CF appeared in an experi-
mental mail system (circa 1992) developed at the Xerox Palo Alto Research Center
(PARC) by Goldberg et al. CF relies on the breadcrumbs that a user leaves behind
through the interaction with a software system. Typically, these breadcrumbs are the
user’s ratings, such as the song ratings that we described in the previous section. Col-
laborative filtering isn’t limited to one-dimensional or only discrete variables; its main
characteristic is that it depends on the user’s past behavior rather than the content of
each item in the collection of interest. CF requires neither domain knowledge nor
preliminary gathering and analysis work to produce recommendations.

 The second broad category of recommendation engines is based on the analysis of
the content—associated with the items or the users, or both. The main characteristic
of this content-based approach is the accumulation and analysis of information
related to both users and items. That information may be provided either by the soft-
ware system or through external sources. The system can collect information about
the users explicitly through their response to solicited questionnaires or implicitly
through the mining of the user’s profile or news reading habits, emails, blogs, and
so on.

 In the category of CF, we’ll describe recommendations based on the similarity of
users and of items. We’ll also describe the category of content-based recommenda-
tions, thus covering all known recommendation engine systems.

3.2.1 Recommendations based on similar users

There’s an ancient Greek proverb (with similar variants in nearly every culture of the
world) that states: “Show me your friends and I’ll tell you who you are.” Collaborative
filtering based on neighborhoods of similar users is more or less an algorithmic incar-
nation of that proverb. In order to evaluate the rating of a particular user for a given
item, we look for the ratings of similar users (neighbors or friends, if you prefer) on
the same item. Then, we multiply the rating of each friend by a weight and add them
up. Yes, it’s that simple, in principle!

 Listing 3.3 shows a series of steps that demonstrate the creation and usage of a rec-
ommendation engine, which we called Delphi. First, we need to build data to work
with. We create a sample of data by assigning ratings to songs for all users. For each
user, we randomly pick a set of songs that corresponds to 80% of all the songs in our
online music store. For each song assigned to a user, we assign a random rating that’s
either 4 or 5 if the username starts with the letters A through D (inclusive), and 1, 2,
or 3 otherwise.

 Thus, we establish two large groups of users with similar preferences; this allows us
to quickly assess the results of our engine.
Licensed to Deborah Christiansen <pedbro@gmail.com>

81How do recommendation engines work?
BaseDataset ds = MusicData.createDataset();

ds.save("C:/iWeb2/deploy/data/ch3_2_dataset.ser");

Delphi delphi = new Delphi(ds,RecommendationType.USER_BASED);
delphi.setVerbose(true);

MusicUser mu1 = ds.pickUser("Babis");
delphi.findSimilarUsers(mu1);

MusicUser mu2 = ds.pickUser("Lukas");
delphi.findSimilarUsers(mu2);

delphi.recommend(mu1);

The first line creates the dataset of our users and the ratings for the songs, in the way
we described earlier. The code is straightforward and you can modify the data in the
MusicData class as you see fit. In the second line, we store the dataset that we use in
our example so we can refer to it later on. The third line creates an instance of our
Delphi recommendation engine, and the fourth line sets it to verbose mode so that
we can see the details of the results. Note that the constructors of Delphi use the inter-
face Dataset rather than our example classes. You can use it with your own implemen-
tation straight out of the box—or more precisely out of the Java Archive (JAR).

 Figure 3.4 shows the results of our script for the findSimilarUsers method. In the
first case, the username starts with the letter B, and all the friends that are selected
have names that start with the letters A through D. In the second case, the username
starts with the letter J, and all the friends that are selected have names that start with
the letters E through Z. In both cases, we obtain results that are in agreement with
what we expected.

 So, it seems that our recommendation engine is working well! Note also that the
similarities between the friends of the first case are higher than the similarities of the
group that corresponds to the second case because the ratings were distributed
between only two values (4 and 5) in the first case, but in the second case were distrib-
uted among three values (1, 2, and 3). These kinds of sanity checks are useful, and
you should always be alert of what an intelligent algorithm returns; it wouldn’t be very
intelligent if it didn’t meet common sense criteria, would it?

 In addition, figure 3.4 shows the results of the song recommendations for one of
the users, as well as the predicted ratings for each recommendation. Note that
although the ratings of the users are integers, the recommendation engine uses a
double for its prediction. That’s because the prediction expresses only a degree of
belief about the rating rather than an actual rating. You may wonder why websites
don’t allow you to give a rating that’s not an integer, or equally liberating, offer a rat-
ing between larger ranges of values, such as between 1 and 10 or even 1 and 100. We’ll
revisit this point in one of our to-do items at the end of the chapter.

 Observe that the recommendation engine is correctly assigning values between 4
and 5, since the users whose letters start with the letters A through D have all given rat-
ings that are either 4 or 5.

Listing 3.3 Creating recommendations based on similar users

Create music dataset

Save it for later

Create
recommendation

engine
Find similar
users

Recommend a few songs
Licensed to Deborah Christiansen <pedbro@gmail.com>

82 CHAPTER 3 Creating suggestions and recommendations
How did the Delphi class arrive at these conclusions? How can it find the similar
users (friends) for any given user? How can it recommend songs from the list of
songs that a user never listened to? Let’s go through the basic steps to understand
what happens. Recommendation engines that are based on collaborative filtering
proceed in two steps. First, they calculate the similarity between either users or items.
Then, they use a weighted average to calculate the rating that a user would give to a
yet-unseen item.
CALCULATING THE USER SIMILARITIES

Since we’re dealing with recommendations that are based on user similarity, the first
thing that Delphi does for us is to calculate the similarity between the users. This is
shown in listing 3.4, where we show the code from the method calculate of the class
UserBasedSimilarity, an auxiliary class that’s used in Delphi. Note that the double
loop has been optimized to account for the symmetry of the similarity matrix; we dis-
cuss this and one more optimization after the code listing.

bsh % MusicUser mu1 = ds.pickUser("Bob");
bsh % delphi.findSimilarUsers(mu1);

Top Friends for user Bob:

name: Babis , similarity: 0.692308
name: Alexandra , similarity: 0.666667
name: Bill , similarity: 0.636364
name: Aurora , similarity: 0.583333
name: Charlie , similarity: 0.583333

bsh % MusicUser mu2 = ds.pickUser("John");
bsh % delphi.findSimilarUsers(mu2);

Top Friends for user John:

name: George , similarity: 0.545455
name: Jack , similarity: 0.500000
name: Elena , similarity: 0.461538
name: Lukas , similarity: 0.454545
name: Frank , similarity: 0.416667

bsh % delphi.recommend(mu1);

Recommendations for user Bob:

Item: I Love Rock And Roll , predicted rating: 4.922400
Item: La Bamba , predicted rating: 4.758600
Item: Wind Beneath My Wings , predicted rating: 4.540900
Item: Sunday, Bloody Sunday , predicted rating: 4.526800

Figure 3.4 Discovering friends and providing recommendations with Delphi based on user similarity
Licensed to Deborah Christiansen <pedbro@gmail.com>

83How do recommendation engines work?
protected void calculate(Dataset dataSet) {

 int nUsers = dataSet.getUserCount();

 int nRatingValues = 5;

 similarityValues = new double[nUsers][nUsers];

 if(keepRatingCountMatrix) {
 ratingCountMatrix = new RatingCountMatrix[nUsers][nUsers];
 }

 // if mapping from userId to index then generate index for every userId
 if(useObjIdToIndexMapping) {

 for(User u : dataSet.getUsers()) {
 idMapping.getIndex(String.valueOf(u.getId()));
 }
 }

 for (int u = 0; u < nUsers; u++) {

 int userAId = getObjIdFromIndex(u);
 User userA = dataSet.getUser(userAId);

 for (int v = u + 1; v < nUsers; v++) {

 int userBId = getObjIdFromIndex(v);
 User userB = dataSet.getUser(userBId);

 RatingCountMatrix rcm =

➥ new RatingCountMatrix(userA, userB, nRatingValues);

 int totalCount = rcm.getTotalCount();
 int agreementCount = rcm.getAgreementCount();

 if (agreementCount > 0) {

 similarityValues[u][v] =

➥ (double) agreementCount / (double) totalCount;

 } else {
 similarityValues[u][v] = 0.0;
 }

 // For large datasets
 if(keepRatingCountMatrix) {
 ratingCountMatrix[u][v] = rcm;
 }
 }

 // for u == v assign 1.
 // RatingCountMatrix wasn't created for this case
 similarityValues[u][u] = 1.0;
 }
}

Here is the optimization that we mentioned earlier. You’d expect the first loop to
select the first user and the second loop to select all other users. But in the listing, the

Listing 3.4 UserBasedSimilarity: calculating the user similarity

Defines size of similarity matrix

Defines size of
rating count matrix

Similarity matrixB

Agreement of
ratings between
two users

Calculate
similarity or
set it to zero

Similarity matrixB

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

84 CHAPTER 3 Creating suggestions and recommendations
second loop uses the fact that the similarity matrix is symmetrical. This simply means
that if user A is similar to user B with a similarity value X then user B will be similar to
user A with a similarity value equal to X. The code avoids evaluating the similarity of a
user object with itself, because that should always be equal to 1. These two code opti-
mizations are simply a reflection of the fundamental properties that every similarity
measure should obey, as stated in section 3.1.1.

 As you can see, the definition of similarity is given by the Jaccard metric, where the
agreement on the ratings represents the intersection between the two sets of ratings,
and the total count of ratings represents the union of the two sets of ratings. Similarity
values are held in a two-dimensional array of type double. But similarity is a symmetri-
cal property, which simply means that if I’m similar to you then you’re similar to me,
regardless of how similarity was defined. So clearly, we can use the similarity values
much more efficiently by either using sparse matrices or by using some other struc-
ture that’s designed to store only half the number of values; the latter structure is tech-
nically known as the upper triangular form of the matrix. From a computational
perspective, we’re already leveraging that fact in the code of listing 3.4. Once again,
note that the second loop doesn’t run over all users, but starts with the user that fol-
lows the outer loop user in our list.

 The calculation of similarity for each pair of users relies on an auxiliary class that
we called RatingCountMatrix. The purpose of the class is to store the rating of one
user with respect to another in a nice tabular format and allow us to calculate the final
similarity value easily and transparently. Listing 3.5 contains the code for Rating-
CountMatrix.

public class RatingCountMatrix implements Serializable {

 private int matrix[][] = null;

 public RatingCountMatrix(Item itemA, Item itemB,

➥ int nRatingValues) {

 init(nRatingValues);

 calculate(itemA, itemB);
 }

 public RatingCountMatrix(User userA, User userB,

➥ int nRatingValues) {

 init(nRatingValues);

 calculate(userA, userB);
 }

 private void init(int nSize) {
 // starting point - all elements are zero
 matrix = new int[nSize][nSize];
 }

Listing 3.5 Storing the agreement distribution of two users in a tabular form

Initialize rating
count matrix

Calculate item-
based similarity

Calculate user-
based similarity
Licensed to Deborah Christiansen <pedbro@gmail.com>

85How do recommendation engines work?
 private void calculate(Item itemA, Item itemB) {

 for (Rating ratingForA : itemA.getAllRatings()) {

 // check if the same user rated itemB
 Rating ratingForB =

➥ itemB.getUserRating(ratingForA.getUserId());

 if (ratingForB != null) {

 int i = ratingForA.getRating() - 1;
 int j = ratingForB.getRating() - 1;

 matrix[i][j]++;
 }
 }
 }

 private void calculate(User userA, User userB) {

 for (Rating ratingByA : userA.getAllRatings()) {

 Rating ratingByB =

➥ userB.getItemRating(ratingByA.getItemId());

 if (ratingByB != null) {

 int i = ratingByA.getRating() - 1;
 int j = ratingByB.getRating() - 1;

 matrix[i][j]++;
 }
 }
 }

 public int getTotalCount() {

 int ratingCount = 0;
 int n = matrix.length;

 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 ratingCount += matrix[i][j];
 }
 }

 return ratingCount;
 }

 public int getAgreementCount() {

 int ratingCount = 0;
 for (int i = 0, n = matrix.length; i < n; i++) {
 ratingCount += matrix[i][i];
 }

 return ratingCount;
 }

 public int getBandCount(int bandId) {
 int bandCount = 0;
 for (int i = 0, n = matrix.length; (i + bandId) < n; i++) {
 bandCount += matrix[i][i + bandId];

Calculate item-
based similarity

Calculate user-
based similarity

Auxiliary
methods
for various
counters
Licensed to Deborah Christiansen <pedbro@gmail.com>

86 CHAPTER 3 Creating suggestions and recommendations
 bandCount += matrix[i + bandId][i];
 }
 return bandCount;
 }
}

The heart of that class is the two-dimensional int array (5-by-5, in this case) that stores
the agreement rate of two users based on their ratings. Let’s say that user A and user B
both listened to 10 songs, and agreed on 6 and disagreed on the rest. The matrix is
initialized to zero for all its elements; for every agreement, we add the value 1 in the
row and column that corresponds to the rating. So, if three of the agreements were
for a rating with value 4, and another three were for the rating 5, then the
matrix[3][3] and the matrix[4][4] elements will both be equal to 3. In general, if
you add the diagonal elements of the matrix array, you’ll find the number of times
that the two users agreed on their ratings.

 This way of storing the ratings of your users has several advantages. First, you can
treat ratings that are from 1 to 10 (or 100 for that matter) in exactly the same way that
you treat ratings that are from 1 to 5. Second, as we’ll see later, it gives you the oppor-
tunity to derive more elaborate similarity measures that account not only for the num-
ber of times that two users agreed on their ratings but also for the number of times
and the extent to which they disagreed. Third, it’s possible to generalize this matrix
form into a more general object that may not be a simple two-dimensional array but a
more complicated structure; this may be desirable in a situation where your assess-
ment relies on more than a simple rating.
THE INNER WORKINGS OF DELPHI

Now, the code in listing 3.4 has been fully explained. The similarity value between
user A and user B, in this case, is simply the ratio of the number of times that user A
agreed with number B divided by the total number of times that both users rated a
particular item. Thus, we’re one step away from creating our recommendations.

public List<PredictedItemRating> recommend(User user, int topN) {

 List<PredictedItemRating> recommendations =

➥ new ArrayList<PredictedItemRating>();

 for (Item item : dataSet.getItems()) {

 // only consider items that the user hasn't rated yet
 if (user.getItemRating(item.getId()) == null) {

 double predictedRating = predictRating(user, item);

 if (!Double.isNaN(predictedRating)) {
 recommendations.add(new PredictedItemRating(user.getId(),
 item.getId(), predictedRating));
 }
 }
 }

Listing 3.6 Delphi: creating recommendations based on user similarity

Loop through all items

Predict ratings
for this user

Add prediction as
candidate recommendation
Licensed to Deborah Christiansen <pedbro@gmail.com>

87How do recommendation engines work?
 Collections.sort(recommendations);

 Collections.reverse(recommendations);

 List<PredictedItemRating> topRecommendations =

➥ new ArrayList<PredictedItemRating>();

 for(PredictedItemRating r : recommendations) {
 if(topRecommendations.size() >= topN) {
 // had enough recommendations.
 break;
 }
 topRecommendations.add(r);
 }

 return recommendations;
 }

Listing 3.6 shows the high-level method recommend of Delphi, which is invoked for
providing recommendations, as we’ve seen in listing 3.3. This method omits from con-
sideration the items that a user has already rated. This may or may not be desirable;
consider your own requirements before using the code as-is. If you had to change it,
you could change the behavior in this method; for example, you could provide an
else clause in the first if statement.

 The recommend method delegates the rating prediction of a user (the first argu-
ment) to the method predictRating(user, item) for each item, which in turn dele-
gates the calculation of the weighted average to the method estimateUser-
BasedRating. Listing 3.7 presents the method predictRating(user, item). The pur-
pose of that method is to create a façade that hides all the possible implementations
of evaluating similarity, such as user-based similarity, item-based similarity and so on.
Some cases are suggested but not implemented, so that you can work on them!

public double predictRating(User user, Item item) {

 switch (type) {

 case USER_BASED:
 return estimateUserBasedRating(user, item);

 case ITEM_BASED:
 return estimateItemBasedRating(user, item);

 case USER_CONTENT_BASED:
 throw new IllegalStateException(

➥ "Not implemented similarity type:" + type);

 case ITEM_CONTENT_BASED:
 throw new IllegalStateException(

➥ "Not implemented similarity type:" + type);

 case USER_ITEM_CONTENT_BASED:
 return MAX_RATING * similarityMatrix

➥ .getValue(user.getId(), item.getId());

Listing 3.7 Predicting the rating of an item for a user

Sort candidate
recommendations

Select top N
recommendations
Licensed to Deborah Christiansen <pedbro@gmail.com>

88 CHAPTER 3 Creating suggestions and recommendations
 }

 throw new RuntimeException("Unknown type:" + type);
 }

The method estimateUserBasedRating is the user-based implementation for predict-
ing the rating of a user. If we know the rating of a user there’s no reason for any calcu-
lation. This isn’t possible in the execution flow that we described in listing 3.6 because
we invoke the method call only for those items that the user hasn’t yet rated. But the
code was written in a way that handles independent calls to this method as well.

private double estimateUserBasedRating(User user, Item item) {

 double estimatedRating = Double.NaN;

 int itemId = item.getId();
 int userId = user.getId();

 double similaritySum = 0.0;

 double weightedRatingSum = 0.0;

 // check if user has already rated this item
 Rating existingRatingByUser = user.getItemRating(item.getId());

 if (existingRatingByUser != null) {

 estimatedRating = existingRatingByUser.getRating();

 } else {

 for (User anotherUser : dataSet.getUsers()) {

 Rating itemRating = anotherUser.getItemRating(itemId);

 // only consider users that rated this book
 if (itemRating != null) {

 double similarityBetweenUsers =

 similarityMatrix.getValue(userId, anotherUser.getId());

 double ratingByNeighbor = itemRating.getRating();

 double weightedRating =

➥ similarityBetweenUsers * ratingByNeighbor;

 weightedRatingSum += weightedRating;

 similaritySum += similarityBetweenUsers;
 }
 }

 if (similaritySum > 0.0) {
 estimatedRating = weightedRatingSum / similaritySum;
 }
 }

 return estimatedRating;
}

Listing 3.8 Evaluating user-based similarities

Loop over all
other users

Get rating for
same item

Get similarity
between two users

Scale rating according
to similarity

Estimate rating as ratio of
direct and scaled sum
Licensed to Deborah Christiansen <pedbro@gmail.com>

89How do recommendation engines work?
In the more interesting case where the user hasn’t yet rated a specific item, we loop
over all users and identify those who’ve rated the specific item. Each one of these
users contributes to the weighted average rating in direct proportion to his similarity
with our reference user. The similaritySum variable is introduced for normalization
purposes—the weights must add up to 1.

 As you can see in listings 3.4 through 3.6, this way of creating recommendations
can become extremely difficult if the number of users in your system becomes large,
which is often the case in large online stores. Opportunities for optimizing this code
abound. We already mentioned storage optimization, but we can also implement
another structural change that will result in both space and time efficiency during
runtime. While calculating the similarity between users, we can store the top N similar
users and create our weighted rating (prediction) based on the ratings of these users
alone rather than taking into account the ratings of all users that have rated a given
item; that’s the version known as kNN, where NN stands for nearest neighbors and k
denotes how many of them we should consider. Creating recommendations based on
user similarity is a reliable technique, but it may not be efficient for large number of
users; in this case, the use of item-based similarity is preferred.

3.2.2 Recommendations based on similar items

Collaborative filtering based on similar items works in much the same way as CF based
on similar users, except that the similarity between users is replaced by the similarity
between items. Let’s configure Delphi to work based on the similarity between the
items (music songs) and see what we get. Listing 3.9 shows the script that we use for
that purpose. We load the data that we saved in listing 3.3 and request recommenda-
tions for the same user in order to compare the results. We also request the list of sim-
ilar items for the song “La Bamba,” which appears on both lists.

BaseDataset ds = BaseDataset

➥ .load("C:/iWeb2/deploy/data/ch3_2_dataset.ser");

Delphi delphi = new Delphi(ds,RecommendationType.ITEM_BASED);
delphi.setVerbose(true);

MusicUser mu1 = ds.pickUser("Bob");
delphi.recommend(mu1);

MusicItem mi = ds.pickItem("La Bamba");
delphi.findSimilarItems(mi);

Figure 3.5 shows the results of execution for listing 3.9. If you compare these results
with the results shown in figure 3.4, you’ll see that the recommendations are the same
but the order has changed. There’s no guarantee that the recommendations based on
user similarity will be identical to those based on item similarity. In addition, the scores
will almost certainly be different. The interesting part in the specific example of our
artificially generated data is that the ordering of the recommendations has been

Listing 3.9 Creating recommendations based on similar items

Load same data
as in listing 3.3

Create item-based
recommendation

engine
Recommend a
few items to Bob

Find items similar
to La Bamba
Licensed to Deborah Christiansen <pedbro@gmail.com>

90 CHAPTER 3 Creating suggestions and recommendations
inverted. That’s not a general result; it just happened in this case. In other cases, and
particularly in real datasets, the results can have any other ordering; run the scripts a
few times to see how the results vary each time you generate a different dataset.

 The code for creating recommendations based on item similarity is much the
same, with the exception that we use items instead of users, of course. The calculation
takes place in the method calculate of the class ItemBasedSimilarity.

protected void calculate(Dataset dataSet) {

 int nItems = dataSet.getItemCount();

 int nRatingValues = 5;

 similarityValues = new double[nItems][nItems];

 if(keepRatingCountMatrix) {
 ratingCountMatrix = new RatingCountMatrix[nItems][nItems];
 }

 // if mapping from itemId to index then generate index for every itemId
 if(useObjIdToIndexMapping) {
 for(Item item : dataSet.getItems()) {
 idMapping.getIndex(String.valueOf(item.getId()));
 }
 }

 for (int u = 0; u < nItems; u++) {

 int itemAId = getObjIdFromIndex(u);

Listing 3.10 Calculating the item-based similarity

bsh % MusicUser mu1 = ds.pickUser("Bob");
bsh % delphi.recommend(mu1);

Recommendations for user Bob:

 Item: Sunday, Bloody Sunday , predicted rating: 4.483900
 Item: La Bamba , predicted rating: 4.396600
 Item: I Love Rock And Roll , predicted rating: 4.000000
 Item: Wind Beneath My Wings , predicted rating: 4.000000

bsh % MusicItem mi = ds.pickItem("La Bamba");
bsh % delphi.findSimilarItems(mi);

Items like item La Bamba:

 name: Yesterday , similarity: 0.615385
name: Fiddler On The Roof , similarity: 0.588235
name: Vivaldi: Four Seasons , similarity: 0.555556
name: Singing In The Rain , similarity: 0.529412
name: You've Lost That Lovin' Feelin' , similarity: 0.529412

Figure 3.5 Discovering similar items and providing recommendations with Delphi based on item
similarity

Defines size of
similarity matrix

Defines size of rating
count matrix
Licensed to Deborah Christiansen <pedbro@gmail.com>

91How do recommendation engines work?
 Item itemA = dataSet.getItem(itemAId);

 // we only need to calculate elements above the main diagonal.
 for (int v = u + 1; v < nItems; v++) {

 int itemBId = getObjIdFromIndex(v);
 Item itemB = dataSet.getItem(itemBId);

 RatingCountMatrix rcm =

➥ new RatingCountMatrix(itemA, itemB, nRatingValues);

 int totalCount = rcm.getTotalCount();
 int agreementCount = rcm.getAgreementCount();

 if (agreementCount > 0) {

 similarityValues[u][v] =

➥ (double) agreementCount / (double) totalCount;

 } else {

 similarityValues[u][v] = 0.0;
 }

 if(keepRatingCountMatrix) {
 ratingCountMatrix[u][v] = rcm;
 }
 }

 // for u == v assign 1
 similarityValues[u][u] = 1.0;
 }
}

This is the same code optimization B that we’ve seen for the user-based similarity
evaluation in listing 3.4.

 The RatingCountMatrix class is used once again to keep track of the agreement ver-
sus disagreement in the ratings, although now, the agreement/disagreement is
between the ratings of two different items rather than two different users. The code iter-
ates through all the possible pairs of items and assigns similarity values based on the Jac-
card metric. The code in the Delphi class for item-based recommendations closely
follows the corresponding code for user-based recommendations. In listing 3.11, we
show the evaluation of the similarity for item-based recommendations; compare it with
the code in listing 3.8. The code in listings 3.6 and 3.7 is identical for all types of simi-
larity evaluation.

private double estimateItemBasedRating(User user, Item item) {

 double estimatedRating = Double.NaN;

 int itemId = item.getId();
 int userId = user.getId();

 double similaritySum = 0.0;
 double weightedRatingSum = 0.0;

Listing 3.11 Delphi: creating recommendations based on item similarity

B

Agreement of
ratings between
two items

Calculate similarity
or set to zero

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

92 CHAPTER 3 Creating suggestions and recommendations
 // check if the user has already rated the item
 Rating existingRatingByUser = user.getItemRating(item.getId());

 if (existingRatingByUser != null) {

 estimatedRating = existingRatingByUser.getRating();

 } else {

 double similarityBetweenItems = 0;
 double weightedRating = 0;

 for (Item anotherItem : dataSet.getItems()) {

 // only consider items that were rated by the user
 Rating anotherItemRating = anotherItem.getUserRating(userId);

 if (anotherItemRating != null) {

 similarityBetweenItems =

➥ similarityMatrix.getValue(itemId, anotherItem.getId());

 if (similarityBetweenItems > similarityThreshold) {

 weightedRating =

➥ similarityBetweenItems * anotherItemRating.getRating();

 weightedRatingSum += weightedRating;

 similaritySum += similarityBetweenItems;
 }
 }
 }

 if (similaritySum > 0.0) {

 estimatedRating = weightedRatingSum / similaritySum;
 }
 }
 return estimatedRating;
}

These listings complete our initial coverage of collaborative filtering, or creating rec-
ommendations based on users and items. Typically, CF based on item similarity is pre-
ferred because the number of customers is large (millions or even tens of millions),
but sometimes in the pursuit of better recommendations, the two CF methods are
combined. In the following sections, we’ll present the examples of customizing a site
like Amazon.com (http://www.amazon.com), which employs an item-to-item collab-
orative approach, and providing recommendations on a site like Netflix.com (http://
www.netflix.com), which will demonstrate the combination of the two methods.

3.2.3 Recommendations based on content

Creating recommendations based on content relies on the similarity of content
between users, between items, or between users and items. Instead of ratings, we now
have a measure of how “close” two documents are. The notion of distance between doc-
uments is a generalization of the relevance score between a query and a document,
something that we discussed in chapter 2. You can always think of one document as the

Loop over all
other items

Get rating for
same user

Get similarity
between two
items

Scale rating
according to
similarity

Estimate rating
as ratio of direct
and scaled sum
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.amazon.com
http://www.netflix.com
http://www.netflix.com

93How do recommendation engines work?
query and the other document as reference. Of course, you’d have to compare only the
significant parts of each document; otherwise the information that each document car-
ries may be lost by obfuscation.
CASE STUDY SETUP

We’ll use the documents from chapter 2 as sources of content and assign a number of
these web pages to each user, in a way that resembles the assignment of songs to users
in our earlier example. For each user, we’ll randomly pick a set of pages that corre-
sponds to 80% of all the eligible pages from our collection. Eligible documents for
each user are introduced with a strong bias as follows:

■ If the username starts with the letters A through D (inclusive), we assign 80% of
the documents that belong to either the Business or the Sports category.

■ Otherwise, we assign 80% of the documents that belong to either the USA or
the World category

Thus, we establish two large groups of users with similar (although somewhat artificial)
preferences, which will allow us to quickly assess our results. Let’s see the steps of cre-
ating content-based instances of our Delphi recommender. Listing 3.12 shows the code
that prepares the data and then identifies similar users and similar items. We also pro-
vide the recommendation of items based on a hybrid user-item content-based similarity.

BaseDataset ds = NewsData.createDataset();

Delphi delphiUC = new Delphi(ds,RecommendationType.USER_CONTENT_BASED);
delphiUC.setVerbose(true);

NewsUser nu1 = ds.pickUser("Bob");
delphiUC.findSimilarUsers(nu1);

NewsUser nu2 = ds.pickUser("John");
delphiUC.findSimilarUsers(nu2);

Delphi delphiIC = new Delphi(ds,RecommendationType.ITEM_CONTENT_BASED);
delphiIC.setVerbose(true);

ContentItem i = ds.pickContentItem("biz-05.html");
delphiIC.findSimilarItems(i);

Delphi delphiUIC =
 new Delphi(ds,RecommendationType.USER_ITEM_CONTENT_BASED);
delphiUIC.setVerbose(true);

delphiUIC.recommend(nu1);

The first line of the script creates the dataset in the way that we described earlier.
Once we get the dataset, we create a Delphi instance that’s based on a user-to-user
similarity matrix that we calculate in the class UserContentBasedSimilarity. Since
each user has more than one document, we must compare each document of each
user with each document of every other user. There are many ways to do this. In our
code, as shown in listing 3.13, for each user-pair combination—user A and user B—we

Listing 3.12 Creating recommendations based on content similarities

Create user-content-
based engine

Create item-content-
based engine

Create user-item-
content-based engine
Licensed to Deborah Christiansen <pedbro@gmail.com>

94 CHAPTER 3 Creating suggestions and recommendations
loop over each document of A and find the document of B with the highest similarity.
Then we average the best similarities for each document of A and assign the average
value as the similarity between A and B.

protected void calculate(Dataset dataSet) {

 int nUsers = dataSet.getUserCount();

 similarityValues = new double[nUsers][nUsers];

 // if mapping from userId to index then generate index for every userId
 if(useObjIdToIndexMapping) {
 for(User u : dataSet.getUsers()) {
 idMapping.getIndex(String.valueOf(u.getId()));
 }
 }

 CosineSimilarityMeasure cosineMeasure =

➥ new CosineSimilarityMeasure();

 for (int u = 0; u < nUsers; u++) {

 int userAId = getObjIdFromIndex(u);
 User userA = dataSet.getUser(userAId);

 for (int v = u + 1; v < nUsers; v++) {

 int userBId = getObjIdFromIndex(v);
 User userB = dataSet.getUser(userBId);

 double similarity = 0.0;

 for(Content userAContent : userA.getUserContent()) {

 double bestCosineSimValue = 0.0;

 for(Content userBContent : userB.getUserContent()) {

 double cosineSimValue = cosineMeasure

➥ .calculate(userAContent.getTFMap(), userBContent.getTFMap());

 bestCosineSimValue =

➥ Math.max(bestCosineSimValue, cosineSimValue);
 }

 similarity += bestCosineSimValue;
 }

 similarityValues[u][v] = similarity /

➥ userA.getUserContent().size();
 }

 // for u == v assign 1.
 similarityValues[u][u] = 1.0;
 }
}

This is the same code optimization B that we’ve seen for the user-based similarity
evaluation in listing 3.4.

Listing 3.13 Calculating the similarity of users based on their content

Create cosine
similarity measure

B

Iterate over
all rated items
of user A

Iterate over
all rated items
of user B

Aggregate best similarities
from all documents

Calculate similarity
as simple average

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

95How do recommendation engines work?
THE KEY IDEAS BEHIND CONTENT-BASED SIMILARITIES

The key element to all content-based methods is representing the textual information
as a numerical quantity. An easy way to achieve this is to identify the N most frequent
terms in each document and use the set of most frequent terms across all documents
as a coordinate space. We can take advantage of Lucene’s StandardAnalyzer class to
eliminate stop words and stem the terms to their roots, thus amplifying the impor-
tance of the meaningful terms while reducing the noise significantly. For that pur-
pose, we’ve created a CustomAnalyzer class, which extends the StandardAnalyzer, in
order to remove some words that are common and, if present, would add a significant
level of noise to our vectors.

 Let’s digress for awhile here to make these important ideas more concrete. For
argument’s sake, let’s say that N = 4 and that you have three documents and the fol-
lowing (high frequency) terms:

■ D1 = {Google, shares, advertisement, president}
■ D2 = {Google, advertisement, stock, expansion}
■ D3 = {NVidia, stock, semiconductor, graphics}

Each of these documents can be represented mathematically by a nine-dimensional
vector that reflects whether a specific document contains one of the nine unique
terms—{Google, shares, advertisement, president, stock, expansion, Nvidia, semicon-
ductor, graphics}. So, these three documents would be represented by the following
three vectors:

■ D1 = {1,1,1,1,0,0,0,0,0}
■ D2 = {1,0,1,0,1,1,0,0,0}
■ D3 = {0,0,0,0,1,0,1,1,1}

Voilà! We constructed three purely mathematical quantities that we can use to com-
pare our documents quantitatively. The similarity that we’re going to use is called the
cosine similarity. We’ve seen many similarity formulas so far, and this isn’t much differ-
ent. Instead of bothering you with a mathematical formula, we’ll list the class that
encapsulates its definition. Listing 3.14 shows the code from the CosineSimilarity-
Measure class.

public class CosineSimilarityMeasure {

 public double calculate(double[] v1, double[] v2) {

 double a = getDotProduct(v1, v2);

 double b = getNorm(v1) * getNorm(v2);

 return a / b;
 }

 private double getDotProduct(double[] v1, double[] v2) {

Listing 3.14 Calculating the cosine similarity between term vectors

Find dot
product

Normalize two
vectors and
calculate product

Get cosine similarity
Licensed to Deborah Christiansen <pedbro@gmail.com>

96 CHAPTER 3 Creating suggestions and recommendations
 double sum = 0.0;

 for(int i = 0, n = v1.length; i < n; i++) {
 sum += v1[i] * v2[i];
 }

 return sum;
 }

 private double getNorm(double[] v) {

 double sum = 0.0;

 for(int i = 0, n = v.length; i < n; i++) {
 sum += v[i] * v[i];
 }

 return Math.sqrt(sum);
 }
}

As you can see, first we form what’s called the dot (inner) product between the two vec-
tors—the double variable a. Then we calculate the norm (magnitude) of each vector
and store their product in the double variable b. The cosine similarity is simply the
ratio a/b. If we denote the cosine similarity between document X and document Y as
CosSim(X,Y), for our simple example, we have the following similarities:

■ CosSim(D1,D2) = 2 / (2*2) = 0.5
■ CosSim(D1,D3) = 0 / (2*2) = 0
■ CosSim(D2,D3) = 1 / (2*2) = 0.25

The technique of representing documents based on their terms is fundamental in
information retrieval. We should point out that identifying the terms is a crucial step,
and it’s difficult to get it right for a general corpus of documents. For example, modify
our code to use the StandardAnalyzer instead of our own CustomAnalyzer. What do
you observe? The results can be altered significantly, even though at first sight, there’s
not much in our custom class. This small experiment should convince you that the
content-based approach is very sensitive to the lexical analysis stage.
THREE TYPES OF CONTENT-BASED RECOMMENDATIONS

Coming back to our example, let’s have a look at the results. Figure 3.6 shows a part of
the results from executing the code in listing 3.12, which is responsible for finding
similar users.

 The algorithm is successful because it correctly identifies the two distinct groups
as similar—users whose names start with A through D and users whose names start
with E through Z. Note that the values of similarity don’t vary much. The content-
based approach doesn’t seem to produce a good separation between the users when
they’re compared with each other. Figure 3.7 shows the execution of the code that’s
responsible for finding similar items. As you can see, a number of relevant items
have been identified, but so were a number of items that a human user wouldn’t
find very similar.

Calculate Euclidean
norm of a vector
Licensed to Deborah Christiansen <pedbro@gmail.com>

97How do recommendation engines work?
Once again, you can see that the similarity values don’t vary much; it would be diffi-
cult for the algorithm to provide excellent recommendations. The reason for that lack
of disambiguation lies in the paucity of our lexical analysis. Natural language processing
(NLP)) is a rich and difficult field. Nevertheless, much progress has been made in the
last two decades; although we won’t go in-depth on that fascinating subject in this
book, we’ll summarize the various components of a NLP system in appendix D.

 In figure 3.8 we present recommendations based on user-item similarity. Although
CF usually deals with user-user or item-item similarities, a content-based approach is
advantageous for building recommendations on user-item similarities. Nevertheless,
the problems of lexical analysis remain, and without tedious and specific work based
on NLP, the results won’t be satisfactory. If you enlarge the dataset and run the script
several times for different users, a large number of the recommendations will have
identical ratings and the predicted ratings won’t vary significantly.

 In summary, recommendation systems are built around user-user, item-item, and
content-based similarities. Creating recommendations based on user similarity is a
reliable technique but may not be efficient for a large number of users. In the latter
case, collaborative filtering based on item similarity is preferred because the number
of customers (millions or even tens of millions) is orders of magnitude larger than the

bsh % BaseDataset ds = NewsData.createDataset();
bsh % Delphi delphiUC =
new Delphi(ds,RecommendationType.USER_CONTENT_BASED);

bsh % delphiUC.setVerbose(true);
bsh % NewsUser nu1 = ds.pickUser("Bob");
bsh % delphiUC.findSimilarUsers(nu1);

Top Friends for user Bob:

 name: Albert , similarity: 0.950000
 name: Catherine , similarity: 0.937500
 name: Carl , similarity: 0.937500
 name: Alexandra , similarity: 0.925000
 name: Constantine , similarity: 0.925000

bsh % NewsUser nu2 = ds.pickUser("John");
bsh % delphiUC.findSimilarUsers(nu2);

Top Friends for user John:

 name: George , similarity: 0.928571
 name: Lukas , similarity: 0.914286
 name: Eric , similarity: 0.900000
 name: Nick , similarity: 0.900000
 name: Frank , similarity: 0.900000

Figure 3.6 Users who are similar to Bob have names that start with the letters A through D.
The algorithm identified the two groups of similar users successfully!
Licensed to Deborah Christiansen <pedbro@gmail.com>

98 CHAPTER 3 Creating suggestions and recommendations
number of items. The content-based approach isn’t widely used, but it does have cer-
tain advantages and can be used in combination with collaborative filtering to

bsh % Delphi delphiIC =
new Delphi(ds,RecommendationType.ITEM_CONTENT_BASED);

bsh % delphiIC.setVerbose(true);
bsh % ContentItem biz1 = ds.pickContentItem("biz-01.html");
bsh % delphiIC.findSimilarItems(biz1);

Items like item biz-01.html:

 name: biz-03.html , similarity: 0.600000
 name: biz-02.html , similarity: 0.600000
 name: biz-04.html , similarity: 0.100000
 name: biz-07.html , similarity: 0.100000

bsh % ContentItem usa1 = ds.pickContentItem("usa-01.html");
bsh % delphiIC.findSimilarItems(usa1);

Items like item usa-01.html:

 name: usa-02.html , similarity: 0.300000
 name: usa-03.html , similarity: 0.300000
 name: world-03.html , similarity: 0.100000
 name: world-05.html , similarity: 0.100000
 name: usa-04.html , similarity: 0.100000

bsh % ContentItem sport1 = ds.pickContentItem("sport-01.html");
bsh % delphiIC.findSimilarItems(sport1);

Items like item sport-01.html:

 name: sport-03.html , similarity: 0.400000
 name: sport-02.html , similarity: 0.300000

Figure 3.7 Items that belong in the same category as the query item are correctly identified as similar.

bsh % Delphi delphiUIC = new Delphi(
 ds,RecommendationType.USER_ITEM_CONTENT_BASED);
bsh % delphiUIC.setVerbose(true);
bsh % delphiUIC.recommend(nu1);

Recommendations for user Bob:

 Item: biz-06.html , predicted rating: 2.500000
 Item: biz-04.html , predicted rating: 1.500000
 Item: usa-02.html , predicted rating: 0.500000
 Item: world-03.html , predicted rating: 0.500000
 Item: world-05.html , predicted rating: 0.500000

➥

Figure 3.8 We obtain item recommendations based on the content that’s associated with the user Bob.
Licensed to Deborah Christiansen <pedbro@gmail.com>

99Recommending friends, articles, and news stories
improve the quality of the recommendations. Usually, production systems employ a
combination of these techniques. Let’s look at the concept of combining recommen-
dation engines.

3.3 Recommending friends, articles, and news stories
In this section, we present a more realistic example that’ll help us illustrate combining
the techniques that we’ve discussed so far. We’ll work with a hypothetical website
whose purpose is to identify individuals with similar opinions, articles with similar
comments, and news stories with similar content. Let’s call our website
MyDiggSpace.com. As the name suggests, the site would use the Digg API to retrieve
the articles that you submitted through your Digg account (information about your
Digg account could be provided upon registration). Then it would identify and pres-
ent to you stories similar to the ones that you “dug.” In addition, it would allow you to
rate the stories that you read, so that in the future the system can sharpen its selection
of recommended stories based on your feedback. As if that weren’t enough, the site
would present you with groups of common interest that you can join if you’d like, thus
facilitating social interaction with similar minded individuals.

3.3.1 Introducing MyDiggSpace.com

Let’s take the steps of building such a site one by one. True to our promise in the
introduction, we won’t address issues such as the design of the UI, persistence, and
other important engineering components. To keep things interesting, we’ll use the
Digg API to retrieve data and make our example more realistic. First, we need to
explain that Digg is a website (http://digg.com/) where users share content that
they’ve discovered anywhere on the Web. The idea is that content isn’t aggregated by
editors who know what’s best for you (or not), but from the users themselves. Whether
the item that you want to talk about comes from a high-profile commercial news out-
let or an obscure blog, Digg will let you post your selections and let the best content
be revealed through the votes of the participating users.

 The Digg API allows third parties to interact programmatically with Digg. Most of the
data that lives in the Digg website is available through the API. You can get lists of stories
based on popularity, time, or category (topic of discussion). We’ve written a set of wrap-
per classes that use the Digg API, and you can later extend them for your own purposes.

 We’ll build the dataset of MyDiggSpace.com by executing several simple steps.
First, we’ll collect the top stories from each category in Digg. This will create a list of
users and a list of stories (items) for each user.

 For each story of each user, we’ll identify 10 stories that were submitted by other users,
based on the content similarity between the stories. In other words, we’ll create a con-
tent-based item-item recommendation engine and we’ll find the top 10 similar stories.

 To complete our dataset, we pretend that the users provide ratings for these stories
and therefore we assign a random rating for each story. The assigned rating follows
the same convention that we used in our earlier examples—the users whose names
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://digg.com/

100 CHAPTER 3 Creating suggestions and recommendations
start with the letters A through D assign ratings that are equal to either 4 or 5; the rest
of the users assign ratings that are equal to 1, 2, or 3.

 The purpose of this example is to introduce you to the concept of combining the
results of different recommendation engines in order to get better results than any
one engine alone could give you. This appears to be a wise practice across an area of
applications that’s much wider than recommendation engines. Later in the book,
we’ll talk about combining the results of classification engines. This example is the
prelude to a broad and promising field. It also contains a bigger message that we want
to convey in this book—the importance of the synergy of various elements of intelli-
gence in delivering high-quality results for real applications.

3.3.2 Finding friends

Let’s run our script, as shown in listing 3.15, and get in action with the hypothetical
MyDiggSpace.com data.2

BaseDataset ds = DiggData

➥ .loadDataFromDigg("C:/iWeb2/data/ch03/digg_stories.csv");

// BaseDataset ds = DiggData
[CA].loadData("C:/iWeb2/data/ch03/digg_stories.csv");

iweb2.ch3.collaborative.model.User user = ds.getUser(1);

DiggDelphi delphi = new DiggDelphi(ds);

delphi.findSimilarUsers(user);

delphi.recommend(user);

Similar users could be presented on a side panel, for example, as the user is reviewing
her stories. The recommended stories could also be presented in a special panel and,
in order to improve our recommendations for each user, we could use a click-based
approach similar to the one described in chapter 2. We could also offer the ability to
rate each recommended story in order to achieve an even higher level of confidence
in the user’s preferences. We’ll discuss these improvements in a bit, but first, let’s look
at the results that our script produced while we were writing the book.

 We collected 146 items (stories) from 7 categories, for 33 users; you can control the
number and the content of categories in the class iweb2.ch3.content.digg.Digg-
Category. For these users, we’ve assigned 811 item ratings. For each user, the selection
of items and the ratings are random, except that we follow the same convention that
we used before in terms of clustering the ratings based on the initial letter of the user-
name. The minimum number of ratings that a user has made on that set is 7, the max-
imum is 31, and the median is 26.

Listing 3.15 MyDiggSpace.com: an example of combining recommendation engines

2 Disclaimer: The data that the script enables you to collect is publicly available. Obviously, we can’t be respon-
sible for the content that may be retrieved when you run our example. Our goal is to provide a working exam-
ple of using the Digg API and demonstrate how you can do something useful with it.

Save data
from Digg

Or load local data

Pick user

Create instance of recommender

Find similar users

Recommend stories
Licensed to Deborah Christiansen <pedbro@gmail.com>

101Recommending friends, articles, and news stories
THE TRIANGULATION EFFECT

Figure 3.9 presents the set of similar users for the first user (adamfishercox) on our
list, then the similar users for his most similar user (adrian67), then the similar users
for a user who’s similar to adrian67 (although not the most similar), whose username
is DetroitThang1. An interesting observation can be made about the data in fig-
ure 3.9, which may or may not be obvious. User amipress is in the top five similar
users of adamfishercox but isn’t in the top five similar users of adrian67. And yet,
amipress is in the top five similar users of DetroitThang1 with a similarity score 0.7,
which is almost equal to the similarity score that we found between amipress and
adamfishercox. Interesting, isn’t it? We call this the triangulation effect and it shows us
that there are second-order effects that can be leveraged and improve the accuracy—and
thereby effectiveness—of our recommendations.

 Let’s further clarify this point by using the data from figure 3.9. The user adamfish-
ercox is related to adrian67 by rank 1 and a similarity score equal to 1; the user ami-
press is related to adamfishercox by rank 2 and a similarity score (approximately)

bsh % delphi.findSimilarUsers(user);
Top Friends for user adamfishercox:

 name: adrian67 , similarity: 1.000000
 name: amipress , similarity: 0.666667
 name: dvallone , similarity: 0.500000
 name: cosmikdebris , similarity: 0.500000
 name: cruelsommer , similarity: 0.500000

bsh % iweb2.ch3.collaborative.model.User u2 =
ds.findUserByName("adrian67");

bsh % delphi.findSimilarUsers(u2);

Top Friends for user adrian67:

 name: adamfishercox , similarity: 1.000000
 name: dvallone , similarity: 1.000000
 name: ambermacbook , similarity: 1.000000
 name: DetroitThang1 , similarity: 0.800000
 name: cruelsommer , similarity: 0.750000

bsh % iweb2.ch3.collaborative.model.User u3 =
ds.findUserByName("DetroitThang1");

bsh % delphi.findSimilarUsers(u3);

Top Friends for user DetroitThang1:

 name: adrian67 , similarity: 0.800000
 name: cosmikdebris , similarity: 0.750000
 name: amipress , similarity: 0.700000

Figure 3.9 Finding similar users and the triangulation effect on a random Digg dataset
Licensed to Deborah Christiansen <pedbro@gmail.com>

102 CHAPTER 3 Creating suggestions and recommendations
equal to 0.67. The rank of user amipress in rela-
tion to adrian67 is 7 and their similarity is equal
to 0.57. We show these relationships graphically
in figure 3.10, where adamfishercox is User 1,
amipress is User 2, and adrian67 is User 3.

 The number inside the parentheses is the
relative ranking, and the number inside the
brackets is our similarity score; the base of the
arrow refers to the user for whom we seek to
find similar users. The arrow that connects User 3 with User 2 has a dotted line to
depict the relationship that we can improve based on the information of the other
relationships (arrows drawn with solid lines).

3.3.3 The inner workings of DiggDelphi

Now, let’s look at the code that created these recommendations. Listing 3.16 presents
the code from the class DiggDelphi.

public class DiggDelphi {

 private Dataset ds;

 private Delphi delphiUC;
 private Delphi delphiUIC;
 private Delphi delphiUR;
 private Delphi delphiIR;

 private boolean verbose = true;

 public DiggDelphi(Dataset ds) {
 this.ds = ds;

 delphiUC =

➥ new Delphi(ds,RecommendationType.USER_CONTENT_BASED);

 delphiUIC =

➥ new Delphi(ds,RecommendationType.USER_ITEM_CONTENT_BASED);

 delphiUR = new Delphi(ds,RecommendationType.USER_BASED);

 delphiIR = new Delphi(ds,RecommendationType.ITEM_BASED);
 }

public SimilarUser[] findSimilarUsers(User user, int topN) {

 List<SimilarUser> similarUsers =

➥ new ArrayList<SimilarUser>();

 similarUsers.addAll(

➥ Arrays.asList(delphiUC.findSimilarUsers(user, topN)));

 similarUsers.addAll(

➥ Arrays.asList(delphiUR.findSimilarUsers(user, topN)));

Listing 3.16 Combining recommendation systems for the MyDiggSpace.com site

Initialize various
recommendation engines

B

User 1 User 2

User 3

(1) [1.00] (7) [0.57]

(2) [0.67]

Figure 3.10 The triangulation effect and
the opportunity for improvement of the
relative ranking
Licensed to Deborah Christiansen <pedbro@gmail.com>

103Recommending friends, articles, and news stories
 return SimilarUser.getTopNFriends(similarUsers, topN);
 }

 public List<PredictedItemRating> recommend(User user, int topN) {

 List<PredictedItemRating> recommendations =

➥ new ArrayList<PredictedItemRating>();

 recommendations.addAll(delphiUIC.recommend(user, topN));
 recommendations.addAll(delphiUR.recommend(user, topN));
 recommendations.addAll(delphiIR.recommend(user, topN));

 return PredictedItemRating

➥ .getTopNRecommendations(recommendations, topN);
 }
}

We want to find similar users based on user-based and user-content-based similari-
ties B and recommend stories based on user-item-content-based, user-based, and
item-based similarities C.

 As you can see, in the method findSimilarUsers, we take the simplest approach
of combining the lists of similar users—we add all the results in a list and sort the
entries based on their similarity score (that happens inside the getTopNFriends
method). We use the content-based approach, through the delphiUC instance, and
the user-to-user similarity based on rankings approach (collaborative filtering),
through the delphiUR instance. Note that the similarities between these two recom-
mendation engines aren’t in any way normalized. This means that the results will be a
bit mixed up, even though we ordered them.

 To understand this point better, think of a list that’s made up of 20 bank accounts.
If 10 of the accounts are in U.S. dollars and the other 10 are in euros, sorting a list that
contains both of them based on their total amount won’t make perfect sense unless
we express them all in U.S. dollars or in euros. Nevertheless, the accounts that contain
little money would still be at the bottom of the list, while the accounts that contain a
lot of money would be at the top; the ordering just won’t be exact.

 Our analogy with the currencies, although illuminating, oversimplifies a major dif-
ference between the two cases. The normalization between currencies is well under-
stood and straightforward. If I want to convert 100 U.S. dollars into 100 euros then I’d
use the exchange rate between these two currencies to get the nominal value of 100
U.S. dollars into euros. In reality, if you want to get euros in your hands (or in your
bank account), you have to pay the bank a commission fee, but your normalization
formula is still extremely easy. Unfortunately, user similarities and recommendation
scores aren’t as easily susceptible to normalization. Combining recommendation
engine scores is as much an art as it is a science. Ingenious heuristics are often used,
and machine learning algorithms play an important role in creating an information
processing layer on top of the initial recommendations.

 Figure 3.11 shows the results of naïvely combining the recommendations from three
different approaches, for the three users that we’ve examined so far. As shown in the
method recommend of listing 3.16, we create a list that contains recommendations that

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

104 CHAPTER 3 Creating suggestions and recommendations
stem from a user-item content-based recommender, a user-user collaborative filtering
recommender, and an item-item collaborative filtering recommender.

 These are good results, in the sense that the recommended ratings are all fives as
we’d expect due to our artificial bias on the ratings—the users whose names start with
letters A through D always give a rating of 5 or 4. Remember that we said it’s possible
that the lack of normalization among the similarities is favoring one recommender
over the others. We need a mechanism that will allow us to consider the recommenda-
tions of the various engines on an equal footing.

 Look at the implementation of the recommend method shown in listing 3.17, which
takes these concerns into consideration. The first step is to normalize all the pre-
dicted ratings, taking as reference the maximum predicted rating for the user across
all recommendation engines. We also introduce an ad hoc threshold that eliminates

bsh % delphi.recommend(user);

Recommendations for user adamfishercox:

Item: Lumeneo Smera: French Concept of Car and MotorCycle,
predicted rating: 5.0
Item: Bill Gates to Congress: Let us hire more foreigners -
CNET N, predicted rating: 5.0
Item: The Best Tools for Visualization, predicted rating: 5.0
Item: Coolest Cubicle Contest, Part Three, predicted rating: 5.0
Item: Bush: Telecoms Should Be Thanked For Their Patriotic
Service, predicted rating: 5.0

bsh % delphi.recommend(u2);

Recommendations for user adrian67:

Item: Can women parallel park on Mars?, predicted rating: 5.0
Item: Coast Guard loses a few flares and ..., predicted rating:
5.0
Item: 10.5.2 released, predicted rating: 5.0
Item: They are all hot!, predicted rating: 5.0
Item: 11 Greatest Basketball Commercials Ever Made, predicted
rating: 5.0

bsh % delphi.recommend(u3);

Recommendations for user DetroitThang1:

Item: The Best Tools for Visualization, predicted rating: 5.0
Item: Coolest Cubicle Contest, Part Three, predicted rating:
5.000000
Item: Stink Films comes correct with 3 Adidas Original Films,
predicted rating: 5.0
Item: The Power Rangers Meet The Teenage Mutant Ninja Turtles,
predicted rating: 5.0

Figure 3.11 A sample of the results from the combination of three different recommendation engines
Licensed to Deborah Christiansen <pedbro@gmail.com>

105Recommending friends, articles, and news stories
recommendations whose predicted ratings are below a certain value. Let this be your
first exposure to the interesting subject of accounting for the cost of bad recommen-
dations. In other words, our threshold value (however artificial) sets a barrier for the
predicted ratings that our recommendations must exceed before they’re seriously
taken into consideration.

 The last part of that implementation consists of averaging all the predicted ratings
for a particular item in order to get a single predicted rating. This is a valid approach
because we’ve normalized the ratings; without normalization, the averaging wouldn’t
make much sense. If a particular recommendation engine doesn’t rate a particular
item then the value of the rating would be zero, and therefore the particular item
would be pushed further down in the list of recommendations. In other words, our
approach combines averaging and voting between the predicted ratings of the recom-
menders. Once the combined score has been computed, the recommendations are
added in a list and the results are sorted on the basis of the new predicted rating.

public List<PredictedItemRating> recommend(User user, int topN) {

 List<PredictedItemRating> recommendations =

➥ new ArrayList<PredictedItemRating>();

 double maxR=-1.0d;

 double maxRatingDelphiUIC =

➥ delphiUIC.getMaxPredictedRating(user.getId());

 double maxRatingDelphiUR =

➥ delphiUR.getMaxPredictedRating(user.getId());

 double maxRatingDelphiIR =

➥ delphiIR.getMaxPredictedRating(user.getId());

 double[] sortedMaxR =

➥ {maxRatingDelphiUIC, maxRatingDelphiUR, maxRatingDelphiIR};

 Arrays.sort(sortedMaxR);

 maxR = sortedMaxR[2];

 // auxiliary variable
 double scaledRating = 1.0d;

 // Recommender 1 -- User-to-Item content based
 double scaling = maxR/maxRatingDelphiUIC;

 //Set an ad hoc threshold and scale it
 double scaledThreshold = 0.5 * scaling;

 List<PredictedItemRating> uicList =

➥ new ArrayList<PredictedItemRating>(topN);

 uicList = delphiUIC.recommend(user, topN);

 for (PredictedItemRating pR : uicList) {

 scaledRating = pR.getRating(6) * scaling;

Listing 3.17 Improved implementation of recommending by combining recommenders

Max predicted
ratings by
recommender

Max predicted rating
across recommenders

maxR is max
predicted rating

Create scaling factor
for each engine

Get recommendations
from each engine
Licensed to Deborah Christiansen <pedbro@gmail.com>

106 CHAPTER 3 Creating suggestions and recommendations
 if (scaledRating < scaledThreshold) {
 uicList.remove(pR);
 } else {
 pR.setRating(scaledRating);
 }
 }

 // Recommender 2 -- User based collaborative filtering
 scaling = maxR/maxRatingDelphiUR;

 scaledThreshold = 0.5 * scaling;

 List<PredictedItemRating> urList =

➥ new ArrayList<PredictedItemRating>(topN);

urList = delphiUR.recommend(user, topN);

 for (PredictedItemRating pR : urList) {

 scaledRating = pR.getRating(6) * scaling;

 if (scaledRating < scaledThreshold) {
 urList.remove(pR);
 } else {
 pR.setRating(scaledRating);
 }
 }

 // Recommender 3 -- Item based collaborative filtering
 scaling = maxR/maxRatingDelphiIR;

 scaledThreshold = 0.5 * scaling;

 List<PredictedItemRating> irList =

➥ new ArrayList<PredictedItemRating>(topN);

 irList = delphiIR.recommend(user, topN);

 for (PredictedItemRating pR : irList) {

 scaledRating = pR.getRating(6) * scaling;

 if (scaledRating < scaledThreshold) {
 irList.remove(pR);
 } else {
 pR.setRating(scaledRating);
 }
 }

 double urRating=0;
 double irRating=0;
 double vote=0;

 for (PredictedItemRating uic : uicList) {

 //Initialize
 urRating=0; irRating=0; vote=0;

 for (PredictedItemRating ur : urList) {
 if (uic.getItemId() == ur.getItemId()) {
 urRating = ur.getRating(6);
 }

Get recom-
mendations

from each
engine

Create scaling
factor for each

engine

Scaled rating should
be above threshold

Get average value
and scale properly
Licensed to Deborah Christiansen <pedbro@gmail.com>

107Recommending movies on a site such as Netflix.com
 }

 for (PredictedItemRating ir : irList) {
 if (uic.getItemId() == ir.getItemId()) {
 irRating = ir.getRating(6);
 }
 }

 vote = (uic.getRating(6)+urRating+irRating)/3.0d;

 recommendations.add(

➥ new PredictedItemRating(user.getId(), uic.getItemId(), vote));
 }

 rescale(recommendations,maxR);

 return PredictedItemRating

➥ .getTopNRecommendations(recommendations, topN);
}

You can further improve your recommendations by targeting the preferences of each
individual user on MyDiggSpace.com by combining the results obtained in the Digg-
Delphi class and the NaiveBayes classifier that we encountered in chapter 2. For more
details on this approach, see the to-do list at the end of this chapter. Any learning mech-
anism (a number of them are presented in chapter 5) as well as optimization tech-
niques can be employed to enhance the results of the base recommenders. This
approach of combining techniques with an encapsulating learning layer is gaining pop-
ularity and support from both industry leaders and academics (see also chapter 6).

 You should, by now, have a good idea about combining recommendation systems
and the interplay of their capabilities in identifying friends and interesting articles for
the users of your web application. The next section will focus on a different example:
the recommendation of movies on a site such as Netflix. The main characteristic of
such examples is the large size of their datasets.

3.4 Recommending movies on a site such as Netflix.com
In the introduction, we talked about Netflix, Inc., the world’s largest online movie
rental service, offering more than 7 million subscribers access to 90,000 DVD titles
plus a growing library of more than 5,000 full-length movies and television episodes
available for instant watching on their PCs. If you recall, part of Netflix’s online suc-
cess is its ability to provide users with an easy way to choose movies from an expansive
selection of titles. At the core of that ability is a recommendation system called Cine-
match. Its job is to predict whether someone will enjoy a movie based on how much
he liked or disliked other movies.

3.4.1 An introduction of movie datasets and recommenders

In this section, we’ll describe a recommendation system whose goal is the same as that
of Cinematch. We’ll work with publicly available data from the MovieLens project. The
MovieLens project is a free service provided by the GroupLens research lab at the Uni-
versity of Minnesota. The project hosts a website that offers movie recommendations.
Licensed to Deborah Christiansen <pedbro@gmail.com>

108 CHAPTER 3 Creating suggestions and recommendations
You can try it out at http://www.movielens.org/quickpick. There are two MovieLens
datasets available on the website of the GroupLens lab.

 The first dataset3 consists of 100,000 ratings by 943 users for 1,682 movies. The sec-
ond dataset4 has one million ratings by 6,040 users for 3,900 movies. The first dataset
is provided with the distribution of this book; please make sure that you read the
license and terms of use. The format of the data is different between the two datasets.
We find the format of the second (1M ratings) dataset more appropriate and conve-
nient; it contains just three files, movies.dat, ratings.dat, and users.dat. However, we
want to use the smaller dataset for efficiency. So, we’ve transformed the original for-
mat of the small dataset (100K ratings) into the format of the larger dataset, for conve-
nience. The original data and the large dataset can be retrieved from the GroupLens
website. You should extract the data inside the C:/iWeb2/data/ch03/MovieLens/
directory; if you don’t then, in listing 3.18, you should alter the createDataset
method so that it takes the path of the data directory as an argument.

 Large recommendation systems such as those of Netflix and Amazon.com rely heav-
ily on item-based collaborative filtering (see Linden, Smith, and York). This approach,
which we described in sections 3.2.1 and 3.2.2, is improved by three major components.

 The first is data normalization. This is a fancy term for something that’s intuitively
easy to grasp. If a user tends to rate all movies with a high score (a rating pattern that
we adopted for our artificial rating of items in the earlier sections) it makes sense to
consider the relative ratings of the user as opposed to their absolute values.

 The second major component is the neighbor selection. In collaborative filtering, we
identify a set of items (or users) whose ratings we’ll use to infer the rating of nonrated
items. So naturally, two questions arise from this mandate: how many neighbors do we
need? How do we choose the “best” neighbors—the neighbors that will provide the
most accurate prediction of a rating?

 The third major component of collaborative filtering is determining the neighbor
weights—how important is the rating of each neighbor? Bell and Koren showed that
data normalization and neighbor weight selection are the two most important compo-
nents in improving the accuracy of the collaborative filtering approach.

 Let’s begin by describing our Bean Shell script for this example. Listing 3.18 dem-
onstrates how to load the data, create an instance of our recommender (called Movie-
LensDelphi), pick users, and get recommendations for each one of them.

MovieLensDataset ds = MovieLensData.createDataset();

MovieLensDelphi delphi = new MovieLensDelphi(ds);

iweb2.ch3.collaborative.model.User u1 = ds.getUser(1);
delphi.recommend(u1);

3 The URL for the original data is http://www.grouplens.org/system/files/ml-data.tar__0.gz
4 The URL for the original data is http://www.grouplens.org/system/files/million-ml-data.tar__0.gz

Listing 3.18 MovieLensDelphi: Recommendations for the MovieLens datasets

Load MovieLens dataset

Create recommender

Pick users and create
recommendations
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.movielens.org/quickpick
http://www.grouplens.org/system/files/ml-data.tar__0.gz
http://www.grouplens.org/system/files/million-ml-data.tar__0.gz

109Recommending movies on a site such as Netflix.com
iweb2.ch3.collaborative.model.User u155 = ds.getUser(155);
delphi.recommend(u155);

iweb2.ch3.collaborative.model.User u876 = ds.getUser(876);
delphi.recommend(u876);

The first user could’ve been any user, so we picked the user whose ID is equal to 1. The
other two users were identified by executing the command Delphi.findSimilarUs-
ers(u1);. We did this so that we can quickly check whether our recommendations
make sense. It’s reasonable to expect that if two users are similar and neither has seen
a movie, then if a movie is recommended to one of them, there’s a good chance that
it’ll be recommended to the other user too. Figure 3.12 shows the results that we get
when we run the script and corroborates this sanity check.

 These datasets aren’t as large as the ones that can be found in the Amazon.com or
the Netflix applications, but they’re certainly much larger than everything else that

bsh % iweb2.ch3.collaborative.model.User u1 = ds.getUser(1);
bsh % delphi.recommend(u1);

Recommendations for user 1:

Item: Yojimbo (1961) , predicted rating: 5.000000
Item: Loves of Carmen, The (1948) , predicted rating: 4.303400
Item: Voyage to
the Beginning of the World (1997) , predicted rating: 4.303400
Item: Baby, The (1973) , predicted rating: 4.303400
Item: Cat from Outer Space,
The (1978) , predicted rating: 4.123200

bsh % iweb2.ch3.collaborative.model.User u155 = ds.getUser(155);
bsh % delphi.recommend(u155);

Recommendations for user 155:

Item: Persuasion (1995) , predicted rating: 5.000000
Item: Close Shave, A (1995) , predicted rating: 4.373000
Item: Notorious (1946) , predicted rating: 4.181900
Item: Shadow of a Doubt (1943) , predicted rating: 4.101800
Item: Crimes and Misdemeanors (1989) , predicted rating: 4.061700

bsh % iweb2.ch3.collaborative.model.User u876 = ds.getUser(876);
bsh % delphi.recommend(u876);

Recommendations for user 876:

Item: Third Man, The (1949) , predicted rating: 5.000000
Item: Bicycle Thief,
The (Ladri di biciclette)(1948) , predicted rating: 4.841200
Item: Thin Blue Line, The (1988) , predicted rating: 4.685600
Item: Loves of Carmen, The (1948), predicted rating: 4.600200
Item: Heaven's Burning (1997) , predicted rating: 4.600200

Figure 3.12 Recommendations from the MovieLensDelphi recommender based on the MovieLens dataset
Licensed to Deborah Christiansen <pedbro@gmail.com>

110 CHAPTER 3 Creating suggestions and recommendations
we’ve presented so far, and large enough to be realistic. Running the script for the
small MovieLens dataset (100K ratings) will take anywhere between 30 seconds to a
minute simply to create the recommender. During that time, the recommender does
a lot of processing, as we’ll see. The recommendations themselves are relatively fast,
typically under one second.

3.4.2 Data normalization and correlation coefficients

As promised, in the example for this section, we enriched our collaborative filtering
approach by introducing two new tools. The first is data normalization and the second
a new similarity measure for capturing the correlation between items. The new simi-
larity measure is called the linear correlation coefficient (also known as the product-moment
correlation coefficient, or Pearson’s r). Calculating that coefficient for two arrays x and y is
fairly straightforward. Listing 3.19 shows the three methods responsible for that calcu-
lation.

public double calculate() {

 if(n == 0) {
 return 0.0;
 }
 double rho=0.0d;
 double avgX = getAverage(x);
 double avgY = getAverage(y);

 double sX = getStdDev(avgX,x);
 double sY = getStdDev(avgY,y);

 double xy=0;

 for (int i=0; i < n; i++) {

 xy += (x[i]-avgX)*(y[i]-avgY);
 }

 if(sX == ZERO || sY == ZERO) {

 double indX = ZERO;
 double indY = ZERO;

 for (int i=1; i < n; i++) {

 indX += (x[0]-x[i]);
 indY += (y[0]-y[i]);
 }

 if (indX == ZERO && indY == ZERO) {
 // All points refer to the same value
 // This is a degenerate case of correlation
 return 1.0;
 } else {
 //Either the values of the X vary or the values of Y
 if (sX == ZERO) {
 sX = sY;

Listing 3.19 The calculation of the linear correlation coefficient (Pearson’s r)

Calculate average
values for each vector

Calculate standard
deviations for each vector

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

111Recommending movies on a site such as Netflix.com
 } else {
 sY = sX;
 }
 }
 }

 rho = xy / ((double)n*(sX*sY));
 return rho;
}

private double getAverage(double[] v) {
 double avg=0;

 for (double xi : v) {
 avg += xi;
 }
 return (avg/(double)v.length);
}

private double getStdDev(double m, double[] v) {
 double sigma=0;

 for (double xi : v) {
 sigma += (xi - m)*(xi - m);
 }

 return Math.sqrt(sigma / (double)v.length);
}

B is the cross product calculation of the pointwise deviations from the mean value. C
is a special (singular) case, where all the points have the exact same values for either X
or Y, or both. This case must be treated separately because it leads to division by zero.

 The method getAverage is self-explanatory; it calculates the average of the vector
that’s provided as an argument. The getStdDev method calculates the standard devia-
tion for the data of the vector that’s passed as the second argument; the first argument
of the method ought to be the average. There’s a smarter way to do this that avoids a
plague of numerical calculations called the roundoff error; read the article on the cor-
rected two-pass algorithm by Chan, Golub, and LeVeque.

 Calculating similarity based on Pearson’s correlation is a widely used metric that
has the following properties:

■ Whenever it’s equal to zero, the two items are (statistically) uncorrelated.
■ Whenever it’s equal to 1, the ratings of the two items fit exactly onto a straight

line with positive slope; for example, (1,2), (3,4), (4,5), (4,5), where the first
number in parentheses denotes the rating of the first item while the second
number denotes the rating of the second item. This is called complete positive cor-
relation. In other words, if we know the ratings of one item, we can infer the rat-
ings of the other with high probability.

■ Whenever it’s equal to -1, the ratings of the two items fit exactly onto a straight
line but with negative slope; for example (1,5), (2,4), (3,3), (4,2). This is called
complete negative correlation. In this case too, we can infer the ratings of one item
based on those of the other item, but now whenever the ratings for the first
item increase, the ratings for the second item will decrease.

The value of
Pearson’s r
Licensed to Deborah Christiansen <pedbro@gmail.com>

112 CHAPTER 3 Creating suggestions and recommendations
If the items are correlated linearly, the linear correlation coefficient is a good measure
for the strength of that correlation. In fact, if you fit a straight line to your dataset then
the linear correlation coefficient reflects the extent to which your ratings lie away
from that line. But not everything fits that rosy picture. Unfortunately, this metric is a
rather poor measure of correlation if no correlation exists! Say what? Yes, that’s right.

 A celebrated counterexample is known as the Anscombe’s quartet. Figure 3.13
depicts Anscombe’s quartet for four different pairs of values; this plot is available on
Wikipedia, in SVG format, at http://en.wikipedia.org/wiki/Image:Anscombe.svg.

 In plain terms, if you plot the ratings between two items against each other, and the
plot is similar to the upper-left graph of figure 3.13, the linear correlation coefficient is
a meaningful metric. In the other graphs, Pearson’s correlation has the same value but
its significance is questionable; the datasets are carefully crafted so that they also have
the same mean, the same standard deviation, and the same linear fit (y = 3 + 0.5*x). This
inability to determine the significance of the linear (Pearson) correlation coefficient led
people to a different kind of similarity metric called nonparametric correlation. There are
two popular nonparametric correlation coefficients: the Spearman rank-order correla-
tion coefficient (rs) and the Kendall’s tau (�). These metrics trade some loss of infor-
mation for the assurance that a detected correlation is truly present in the data when
the values of the metrics indicate so. We discuss nonparametric correlation in the to-do

Figure 3.13 Anscombe’s quartet: Four datasets that have the same Pearson’s correlation but
different distributions
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://en.wikipedia.org/wiki/Image:Anscombe.svg

113Recommending movies on a site such as Netflix.com
section because in many cases the distribution of ratings will look like the graph in the
lower-right corner. Nevertheless, from now on, we’ll assume that whenever the item rat-
ings are correlated, they’re linearly correlated and we can safely use Pearson’s correla-
tion. You can find more information about the nonparametric correlations in the
references section.

 Having discussed the new possibilities that the linear coefficient (Pearson’s r) and
the nonparametric correlations offer for evaluating similarities, we’ll proceed by show-
ing you one way of achieving data normalization. Listing 3.20 shows code that does
just that; it’s one of the constructors for the class PearsonCorrelation. The first argu-
ment provides a reference to the original dataset, and the other two are references to
the items whose correlation we want to calculate. As you can see, the arrays that are
constructed for calculating the Pearson correlation don’t refer to the ratings of each
user, as they were recorded, but rather to a new set of data in which we’ve subtracted
the average rating of an item from the user’s ratings. Clearly, this isn’t the only way of
achieving data normalization. Bell and Koren describe sophisticated data normaliza-
tion techniques as applied to the Netflix prize dataset.

public PearsonCorrelation(Dataset ds, Item iA, Item iB) {

 double aAvgR = iA.getAverageRating();
 double bAvgR = iB.getAverageRating();

 Integer[] uid = Item.getSharedUserIds(iA, iB);

 n = uid.length;

 x = new double[n];
 y = new double[n];

 User u;

 double urA=0;
 double urB=0;

 for (int i=0; i<n; i++) {

 u = ds.getUser(uid[i]);

 urA = (double) u.getItemRating(iA.getId()).getRating();
 urB = (double) u.getItemRating(iB.getId()).getRating();

 x[i] = urA - aAvgR;
 y[i] = urB - bAvgR;
 }
}

Data normalization and the use of Pearson’s correlation are incorporated in the
PearsonCorrelation class, and their use is encapsulated by the MovieLensItemSimi-
larity class. For that reason, the MovieLensDelphi class is slightly different from the
other Delphi-type classes. The code in listing 3.21 highlights these differences.

Listing 3.20 Data normalization around the average rating of items
Licensed to Deborah Christiansen <pedbro@gmail.com>

114 CHAPTER 3 Creating suggestions and recommendations
private double estimateItemBasedRating(User user, Item item) {

 double itemRating = item.getAverageRating();

 int itemId = item.getId();
 int userId = user.getId();

 double itemAvgRating = item.getAverageRating();
 double weightedDeltaSum = 0.0;

 int sumN=0;

 // check if the user has already rated the item
 Rating existingRatingByUser = user.getItemRating(item.getId());

 if (existingRatingByUser != null) {

 itemRating = existingRatingByUser.getRating();

 } else {

 double similarityBetweenItems = 0;

 double weightedDelta = 0;
 double delta = 0;

 for (Item anotherItem : dataSet.getItems()) {

 // only consider items that were rated by the user
 Rating anotherItemRating =

➥ anotherItem.getUserRating(userId);

 if (anotherItemRating != null) {

 delta = itemAvgRating - anotherItemRating.getRating();

 similarityBetweenItems =

➥ itemSimilarityMatrix.getValue(itemId, anotherItem.getId());

 if (Math.abs(similarityBetweenItems) >

➥ similarityThreshold) {

 weightedDelta = similarityBetweenItems * delta;

 weightedDeltaSum += weightedDelta;

 sumN++;
 }
 }
 }

 if (sumN > 0) {
 itemRating = itemAvgRating –

➥ (weightedDeltaSum/(double) sumN)
 }
 }

 return itemRating;
}

public List<PredictedItemRating> getTopNRecommendations(

➥ List<PredictedItemRating> recommendations, int topN) {

Listing 3.21 Calculation of a rating involves data renormalization and rescaling

Iterate through
all items

Get similarity
between two

items

Perform data
renormalization

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

115Large-scale implementation and evaluation issues
 PredictedItemRating.sort(recommendations);

 double maxR = recommendations.get(0).getRating();
 double scaledR;

 List<PredictedItemRating> topRecommendations =

➥ new ArrayList<PredictedItemRating>();

 for(PredictedItemRating r : recommendations) {

 if(topRecommendations.size() >= topN) {
 // have enough recommendations.
 break;
 }

 scaledR = r.getRating() * (5/maxR);
 r.setRating(scaledR);

 topRecommendations.add(r);
 }

 return topRecommendations;
}

We weigh the deviation B from the mean value based on the similarity of the two
items and assign C a rating based on the item’s mean value and the sum of weighted
deviations.

 Data renormalization refers to the fact that our similarities were built around the
item’s average rating, so in order to calculate the predicted item rating, we need to
renormalize from differences (delta) to actual ratings. One drawback of this kind of
data normalization is that the maximum value of the predicted rating can fall outside
the range of the acceptable values. Thus, a rescaling of the predicted ratings is
required, as shown inside the method getTopNRecommendations.

3.5 Large-scale implementation and evaluation issues
Commercial recommendation systems operate under demanding conditions. The
number of users is typically on the order of millions, and the number of items on the
order of hundreds of thousands. An additional requirement is the capability to pro-
vide recommendations in real-time (typically, subsecond response times) without sac-
rificing the quality of the recommendations. As we’ve seen, by accumulating ratings
from each user, it’s possible to enhance the accuracy of our predictions over time. But
in real life, it’s imperative that we give excellent recommendations to new users for
which, by definition, we don’t have a lot of ratings. Another stringent requirement for
state-of-the-art recommendation systems is the ability to update their predictions
based on incoming ratings. In large commercial sites, there may be thousands of rat-
ings and purchases that take place in a few hours, and perhaps tens of thousands in
the course of a single day. The ability to update the recommendation system with that
additional information is important and must happen online—without downtime.

 Let’s say that you wrote a recommender and you’re satisfied with its speed and the
amount of data that it can handle. Is this a good recommender? It’s not useful to
Licensed to Deborah Christiansen <pedbro@gmail.com>

116 CHAPTER 3 Creating suggestions and recommendations
have a fast and scalable recommender that produces bad recommendations! So, let’s
talk about evaluating the accuracy of a recommendation system. If you search the
related literature, you’ll find that there are dozens of quantitative metrics and several
qualitative methods for evaluating the results of recommendation systems. The pleth-
ora of metrics and methods reflects the challenges of conducting a meaningful, fair,
and accurate evaluation for recommendations. The review article by Herlocker,
Konstan, Terveen, and Riedl contains a wealth of information if you’re interested in
this topic.

 We’ve written a class that evaluates our recommendations on the MovieLens data
by calculating the root mean square error (RMSE) of the predicted ratings. The RMSE is a
simple but robust technique of evaluating the accuracy of your recommendations.
This metric has two main features: (1) it always increases (you don’t get kudos for pre-
dicting a rating accurately) and (2) by taking the square of the differences, the large
differences (>1) are amplified, and it doesn’t matter if you undershoot or you over-
shoot the rating.

 We can argue that the RMSE is probably too naïve. Let’s consider two cases. In the
first case, we recommend to a user a movie with four stars and he really doesn’t like it
(he’d rate it two stars); in the second case, we recommend a movie with three stars but
the user loves it (he’d rate it five stars). In both cases, the contribution to the RMSE is
the same, but it’s likely that the user’s dissatisfaction would probably be larger in the
first case than in the second case; we know that our dissatisfaction would be!

 You can find the code that calculates the RMSE in the class RMSEEstimator. List-
ing 3.22 shows you how you can evaluate the accuracy of our MovieLensDelphi
recommender.

MovieLensDataset ds = MovieLensData.createDataset(100000);

MovieLensDelphi delphi = new MovieLensDelphi(ds);

RMSEEstimator rmseEstimator = new RMSEEstimator();

rmseEstimator.calculateRMSE(delphi);

We create a dataset that excludes 100K ratings from the one million ratings that are
available in the large MovieLens dataset B. The recommender will train on the
remaining 900K ratings and be evaluated on the 100K ratings; the rest of the script is
self-explanatory. If you run this with the code that we’ve described in this section then
your RMSE should be equal to 1.0256. This isn’t a bad RMSE but it’s not very good
either. We highly recommend that you improve on that result and set as your goal an
RMSE that’s below 1. As a relative measure of success, we should mention that the best
teams that compete for the Netflix prize have an RMSE that is between 0.86 and 0.88.
So, even though the dataset is different, don’t be disappointed if your improvements
bring your RMSE to be approximately equal to 0.9—it would be a great success for you
and for us!

Listing 3.22 Calculating the root mean squared error for a recommender

B

Create the
dataset but
reserve
100,000
ratings for
testing
Licensed to Deborah Christiansen <pedbro@gmail.com>

117To Do
3.6 Summary
In this chapter, you’ve learned about the concepts of distance and similarity between
users and items. We’ve seen that one size doesn’t fit all, and we need to be careful in
our selection of a similarity metric. Throughout the chapter we encountered several
metrics: the Jaccard metric, the Pearson correlation, and variants of these metrics that
we introduced. Similarity formulas must produce results that are consistent with a few
basic rules, but otherwise we’re free to choose the ones that produce the best results
for our purposes.

 We discussed the two broad categories of techniques for creating recommenda-
tions—collaborative filtering and the content-based approach. We walked through the
construction of an online music store that demonstrated the underlying principles, in
detail but with clarity. In the process of building these examples, we’ve created the
infrastructure that you need for writing a general recommendation system for your
own application.

 Finally, we tackled two more general examples. The first example was a hypotheti-
cal website that used the Digg API and retrieved the content of our users for further
analysis of similarity between them, and in order to provide unseen article recommen-
dations to them. In this example, we pointed out the existence of second-order
effects, and by extension of higher-order effects, and we suggested a way to leverage them
in order to improve the accuracy of our recommendations. Our second example dealt
with movie recommendations and introduced the concept of data normalization, as
well as the popular linear (Pearson) correlation coefficient. In the latter context, we
also introduced a class that evaluates the accuracy of our recommendations based on
the root mean squared error.

 In both examples, we demonstrated that as the complexity and the size of the
problem increase, it becomes imperative to leverage the combination of techniques
for improving the efficiency and quality of our recommendations. Thus, we discussed
the possibility of reusing what you learning from user clicks in the example of
MyDiggSpace.com. This is a theme that we’ll encounter throughout this book—the
combination of techniques that capture different aspects of our problem can, and
often does, result in recommendations of higher accuracy.

 In the next chapter, we’ll encounter another family of intelligent algorithms: clus-
tering algorithms. Nevertheless, if you haven’t worked on the to-do topics yet then you
might want to have a look at them now, while all the recommendation related mate-
rial still reverberates in your mind.

3.7 To Do
1 Similarity metrics. Implement the Jaccard similarity for the MusicUsers. What

differences do you observe? A variation of the Jaccard metric is the Tanimoto met-
ric, which is more appropriate for continuous values. The Tanimoto metric is
equal to the ratio of the intersection of two sets (Ni = |X∩Y|) over the union
(Nu = |X| + |Y|) minus the intersection—T = Ni/(Nu-Ni).
Licensed to Deborah Christiansen <pedbro@gmail.com>

118 CHAPTER 3 Creating suggestions and recommendations
For example, if X = {baseball, basketball, volleyball, tennis, golf} and Y =
{baseball, basketball, cricket, running} then the Tanimoto metric has a value
equal to 2/((5+4)–2), which is approximately equal to 0.2857. Work out the for-
mula in the case of vectors (Java arrays double[] x and double[] y). Hint: the
intersection corresponds to the inner product of the two vectors and the union
to the sum of their magnitudes.

Another interesting similarity measure is the city block metric. Its name stems
from the fact that the values of the vectors, X and Y, are assumed to be coordi-
nates on a multidimensional orthogonal grid. When the vectors are two-dimen-
sional, it resembles the way that a taxi driver would give you instructions in a
city: “the Empire State Building is two blocks south and three blocks east from
here.” If you like that metric or want to study the cases where it’s most applica-
ble, Taxicab Geometry: An Adventure in Non-Euclidean Geometry by Eugene F.
Krause provides a detailed exposition.

2 Varying the range of prediction. Did you ever wonder why various websites want
you to rate movies, songs, and other products by assigning one integer value
between 1 and 5 (inclusive)? Why not pick a value between 1 and 10? Or even
between 1 and 100? Wouldn’t that give you more flexibility to express the
degree of your satisfaction with the product? To take this one step further, why
not rate different aspects about a product? In the case of a movie, we could rate
the plot, the performance of the actors, the soundtrack, and the visual effects.
You can extend the code that we presented in this chapter and experiment
along these lines. Can you identify any potential issues?

3 Improving recommendations through ensemble methods. A technique that’s becom-
ing increasingly popular consists of combining independent techniques in
order to improve the combined recommendation accuracy. There are many
good theoretical reasons for pursuing ensemble methods; if you’re interested
in that topic, you could read the article by Dietterich. In addition to theory,
there’s empirical evidence that ensemble methods may produce better results
than individual techniques. Bell and Korren are leading the Netflix prize com-
petition (at the time of this writing), and their assessment was the following:
“We found no perfect model. Instead, our best results came from combining
predictions of models that complemented each other.”

How about combining some of the recommenders that we’ve given you in
this chapter, as well as those that you may invent, and comparing their results to
the results of each individual recommender? If the results are better, your
“soup” worked! If not, investigate what recommenders you used and to what
extent they capture a different aspect of the problem.

4 Minimizing the roundoff error. As you may know, the typical numerical types in
Java and most other languages store the values with finite precision. The repre-
sentation of an integer or long number is exact, even though the range of their
values is finite and determined by the number of bits associated with each type.
Licensed to Deborah Christiansen <pedbro@gmail.com>

119References
But enter floating-point arithmetic (float and double) and a number of issues
crop up due to the inexactness of the numerical representations. At best, you
don’t have to worry about them, and at worst, you can use double throughout.

Nevertheless, in intelligent applications, the heavy use of numerical calcula-
tions requires that you be aware of the implications that the finite precision of
real numbers has on the result of computations, especially the results that are
produced as a result of accumulations or multiplications with very small or
large numbers. Let’s consider the roundoff error mentioned in the evaluation
of the standard deviation of the class PearsonCorrelation. The smallest float-
ing-point number that gives a result other than 1.0, when added to 1.0, is called
the machine accuracy (�). Nearly every arithmetic operation between floating
numbers introduces a fractional error on the order of magnitude of ε. That
error is called the roundoff error.

Read the article on the corrected two-pass algorithm of Chan, Golub, and
LeVeque, and implement the computation of the standard deviation accord-
ingly. You can also find a brief description of this algorithm in the monumental
Numerical Recipes: The Art of Scientific Computing. Do you see a perceptible differ-
ence in the outcome? What do you think will happen if you use sets that are
even larger than the ones considered in this book? Note that the main points of
the algorithm apply equally well in the computation of the RMSE that we con-
ducted for evaluating the accuracy of our recommendations.

5 Nonparametric or rank correlation. Correlations that belong in this category are
useful if you have reason to question the validity of the linearity assumption
underlying the Pearson correlation metric. You can create new similarity classes
based on this type of metric, which trade off some information about the data
for an assurance about the presence of a true correlation between two sets of
data—in our case, two sets of ratings. The main idea behind nonparametric cor-
relation is substituting the values of a variable with the rank of that value in the
dataset. The best-known nonparametric correlation coefficients are the Spear-
man rank-order correlation coefficient (rs) and the Kendall’s tau (�). You can read all
about these coefficients in the masterly written book Numerical Recipes: The Art of
Scientific Computing.

In the case of movie ratings from 1 to 5, you’ll get a lot of conflicts in the
rank of values; for example, there will be a lot of movies whose value will be
exactly 4. But this presents an opportunity to be creative about using these cor-
relations. What if you use the time of the rating to break the tie of the values?
Implement such an approach and compare with the results that you get from
using the plain vanilla Pearson’s correlation.

3.8 References
 Bell, R.M., and Y. Koren. “Scalable Collaborative Filtering with Jointly Derived Neighborhood

Interpolation Weights.” IEEE International Conference on Data Mining (ICDM’07),
2007. http://www.research.att.com/~yehuda/pubs/BellKorIcdm07.pdf.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.research.att.com/~yehuda/pubs/BellKorIcdm07.pdf

120 CHAPTER 3 Creating suggestions and recommendations
 Chan, T.F., G.H. Golub, and R.J. LeVeque. “Algorithms for computing the sample variance:
Algorithms and recommendations.” American Statistician, vol. 37, pp. 242-247, 1983.

 Dietterich, T.G., “Ensemble methods in machine learning.” Multiple Classifier Systems, (Editors:
J. Kittler and F.Roli) volume 1857 of Lecture Notes in Computer Science, Cagliari, Italy.
Springer, pp.1-15, 2000. http://citeseer.ist.psu.edu/dietterich00ensemble.html.

 Estes, W.K. Classification and Cognition. Oxford University Press, 1996.
 Herlocker, J.L., J.A. Konstan, L.G. Terveen, and J.T. Riedl (2004). “Evaluating Collaborative Fil-

tering Recommender Systems.” ACM Transactions on Information Systems, Vol 22, 5-53. ACM
Press, 2004. http://web.engr.oregonstate.edu/~herlock/papers/eval_tois.pdf.

 James, W. The Principles of Psychology. Henry Holt and Company, 1918.
 Krause, E.F. Taxicab Geometry: An Adventure in Non-Euclidean Geometry. Dover Publications, Inc.

1986.
 Linden, G., B. Smith, and J. York. “Amazon.com recommendations: Item-to-item collaborative

filtering.” IEEE Internet Computing, January-February 2003, pp.76-80.
 Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes: The Art of Scien-

tific Computing (3rd Edition). Cambridge University Press, 1997.

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://citeseer.ist.psu.edu/dietterich00ensemble.html
http://web.engr.oregonstate.edu/~herlock/papers/eval_tois.pdf

Clustering:
 grouping things together
Our ability as humans to accumulate and retain information relies greatly on our
ability to structure the abundance of information that we receive through means,
such as sensory perception, reason, language, and emotion. The profusion of avail-
able information would be overwhelming without some reference structures. Men-
tal constructs that put order to all the data that we receive help us retain the
essence of the data and understand the world around us.

 Typically, we organize our perceptions into groups or categories. Intelligent
applications follow the same principles and achieve the same results by means of
two broad categories of algorithms—clustering and classification. This chapter is
devoted to clustering algorithms; the next chapter is devoted to classification.

This chapter covers:
■ Understanding the need and value of clustering
■ Discovering user groups in a typical website

and finding groups of similar news stories, blog
reports, or documents.

■ Link-based clustering algorithms and the
blazing fast k-means
121

Licensed to Deborah Christiansen <pedbro@gmail.com>

122 CHAPTER 4 Clustering: grouping things together
 Broadly speaking, the term clustering refers to the process of grouping similar
things together. Let’s say that you have a set of records in a database that contains
book information. In particular, let’s say that you have an identity (ID) for each book,
a title, an ISBN, a foreign key to the author’s table (say, author_ID), and other perti-
nent fields. If you execute a SQL SELECT query with an ORDER BY author_ID clause,
you’ll retrieve the list of books ordered by the author’s ID. If you navigate through the
list, you’ll start with books by the first author, followed by the second author, and so
on. In effect, the books have been grouped on the basis of authorship. In the context
of clustering, the groups of books are called book clusters, and what we just described is
a straightforward, but limited, clustering algorithm for your books.

 Clustering is useful in many situations, but it’s not always possible to achieve a
desired objective by issuing simple SQL queries. In many cases, the elements that we
need to use for identifying the desired groups aren’t unique identifiers, so we need to
develop techniques that work well with arbitrary data.

 In the preceding chapters, we saw that it’s possible to define the notion of distance
and the related notion of similarity for a large variety of objects. Our ability to define
the distance between two arbitrary objects will come in handy again in this chapter,
since any two objects will belong to the same cluster only if they’re sufficiently “close”
to each other and sufficiently “apart” from members of other clusters.

 We’ll begin with an example that illustrates some reasons for using clustering.
Since the subject of clustering is vast, and we can’t cover it in its entirety, we offer an
overview of clustering algorithms according to cluster structure, cluster data type, and
data size. The rest of the chapter will deal with a number of specific algorithms in
great detail. We’ll also devote one section on advanced clustering topics such as their
computational complexity and the issue of high dimensionality.

4.1 The need for clustering
This section demonstrates the identification of user groups in a web application—a
common use case. You could use it to perform targeted advertisement, enhance the user
experience by displaying posts by like-minded individuals to each user, facilitate the cre-
ation of social networks in your site, and so on. The problem of identifying groups of
users lends itself naturally to the use of clustering methods.

 Our goal is to show that if you didn’t know what clustering is, you’d have to invent
it in order to solve this and similar problems in a satisfactory manner. In other words,
we want to present a series of simple approaches that you may have taken to solve this
kind of problem, had you never before read about clustering. We present clustering as
a generalization of sorting in the case of records with many attributes, as well as arbi-
trary metrics of ordering based on these attributes.

 To begin, we show that a straightforward approach based on SQL statements is limited
to a few cases and explain why, in general, a solution based on plain SQL queries is de-
ficient and impractical. We resort to sorting and show that although we do gain flexibility
in terms of using arbitrary metrics of ordering, we’re still unable to handle cases with
many attributes effectively. Thus, we arrive at general-purpose clustering techniques.
Licensed to Deborah Christiansen <pedbro@gmail.com>

123The need for clustering
4.1.1 User groups on a website: a case study

We’ll now introduce a simple case study that we’ll use throughout this section to illus-
trate clustering. Let’s assume that we work for a large open source community soft-
ware platform, such as SourceForge.net, and we want to know why people participate
in open source projects. We could identify groups of users on the basis of their pro-
files by performing a cluster analysis. For argument’s sake, let us take the following
attributes into consideration:

■ The age of the users, which we’ll measure in years.
■ Their income, which we’ll measure with brackets or ranges; for example, an

income of $65,000–$80,000 corresponds to income range 0, the range
$80,000–$95,000 corresponds to income range 1, and so on. You can find all
the details about the ranges and their values in the README file located in the
data/ch04 directory.

■ Their education level; high school, college, graduate school, and so on.
■ The degree to which they consider their participation to be a good way of hon-

ing their professional skills; say, on a scale from 1 to 5.
■ The degree to which they consider their participation to be a good way of build-

ing social relationships with people who have the same interests as they do; once
again, we could measure that on a scale from 1 to 5.

■ An indicator of paid participation, by which we mean whether an individual is
getting paid to participate in the project. We could use a Boolean variable or we
could create a finer-grained representation of paid participation by capturing
the percentage of contribution time that’s paid by a third party.

You can extend this example to any web application that involves a social networking
structure by introducing the attributes that are most appropriate to your case. In order
to make our example more concrete, we’ve created the artificial data in table 4.1. In the
headers, you can see the six attributes that we just described. In each row, you’ll find the
values of these attributes for each of the 20 users that we’ll consider.

Table 4.1 Artificial data for cluster analysis of users that participate in an online community

Username Age Income range Education Skills Social Paid work

Albert 23 0 0 3 3 0

Alexandra 25 1 2 4 2 0

Athena 24 0 1 3 4 0

Aurora 23 1 2 5 2 0

Babis 21 0 0 3 4 0

Bill 31 1 2 4 2 0

Bob 32 1 1 3 1 1
Licensed to Deborah Christiansen <pedbro@gmail.com>

124 CHAPTER 4 Clustering: grouping things together
Our objective is straightforward: identify, if possible, groups of individuals that partici-
pate in open source projects based on the values of these attributes. In the next two
sections, we’ll present two naïve approaches that can help us achieve our objective in
order of increasing complexity and effectiveness.

4.1.2 Finding groups with a SQL order by clause

The simplest approach to achieving our objective would be to load our data in a
table—if it isn’t already in a database table—and write a SQL query to find possible
user groups (clusters) of interest. We loaded the data in MySQL, but you can use the
database of your choice to reproduce our results; the README.txt file in the folder
data/ch04 contains the SQL statements for loading the data in MySQL.

 Figure 4.1 shows the results of executing the following query: select * from
sf_users order by IncomeRange, Education;. As you can see, the plain SQL works great
for a single attribute. We can easily identify five groups based on the attribute Income-
Range; the clusters are (Albert, Babis, Athena, Bill, Carl), (Elena, Constantine, Cathe-
rine, Bob, Charlie, Aurora, Alexandra), (Maria, Dmitry, Eric, George), and so on. We
can obtain similar results for any other attribute. But note that as we add more attributes
to the order by clause, we can’t easily identify other groups. The first attribute domi-
nates the results of the query, and additional attributes result in further segmentation
of the clusters that were discovered based on previous attributes in the SQL clause.

 If we assume that we can identify useful clusters merely by visual examination we
need to answer the following question: what’s the most appropriate attribute ordering

Carl 30 0 2 4 2 0

Catherine 31 1 1 3 3 0

Charlie 30 1 2 3 2 0

Constantine 37 1 1 3 2 0

Dmitry 35 2 2 1 1 1

Elena 38 1 1 3 2 0

Eric 37 2 2 2 2 0

Frank 39 3 1 3 1 1

George 42 2 2 2 1 1

Jack 43 3 1 1 1 1

John 45 4 2 1 1 1

Maria 43 2 1 3 1 0

Lukas 45 3 2 1 1 1

Table 4.1 Artificial data for cluster analysis of users that participate in an online community (continued)

Username Age Income range Education Skills Social Paid work
Licensed to Deborah Christiansen <pedbro@gmail.com>

125The need for clustering
that’ll allow us to identify useful clusters? There’s no simple answer. What if the data
contains thousands of records? And what happens if we need to consider a dozen or
more attributes, not just two or three? In these cases, unless we have a priori knowl-
edge about the data, our task will become arduous, if not impossible. If you think
about it, it should become clear that using SQL queries can’t take us very far.

 The fundamental problem with the SQL approach is that discovering the clusters is
difficult to automate and impractical to implement for more than a couple of attri-
butes. Identifying clusters is easier with enumerated data, but it becomes more com-
plicated with continuous variables and almost impossible for text data that hasn’t
been cleansed. More importantly, it’s not easy to identify groups using more than one
attribute, because the results will vary greatly depending on the ordering of the attri-
butes in the query. The plain SQL approach is quite limited for clustering.

 Nonetheless, the combination of SQL with more advanced algorithms can lead to
viable implementations of clustering, because a number of operations can be done
efficiently in SQL for large datasets. See the description and the references about the
SQLEM algorithm in our “To do” section.

4.1.3 Finding groups with array sorting

You might be thinking that the problems of the SQL approach may go away if we load
the data in our Java code and use a custom comparator to create a meaningful ordering

mysql> select * from sf_users order by IncomeRange, Education;
+-------------+-----+--------+-----+--------+--------+--------+
| Name | Age | Income | Edu | Skills | Social | isPaid |
| | | Range | | | | |
+-------------+-----+--------+-----+--------+--------+--------+
Albert	23	0	0	3	3	0
Babis	21	0	0	3	4	0
Athena	24	0	1	3	4	0
Carl	30	0	2	4	2	0
Elena	38	1	1	3	2	0
Constantine	37	1	1	3	2	0
Catherine	31	1	1	3	3	0
Bob	32	1	1	3	1	1
Bill	31	1	2	4	2	0
Charlie	30	1	2	3	2	0
Aurora	23	1	2	5	2	0
Alexandra	25	1	2	4	2	0
Maria	43	2	1	3	1	0
Dmitry	35	2	2	1	1	1
George	42	2	2	2	1	1
Eric	37	2	2	2	2	0
Frank	39	3	1	3	1	1
Jack	43	3	1	1	1	1
Lukas	45	3	2	1	1	1
John	45	4	2	1	1	1
+-------------+-----+--------+-----+--------+--------+--------+
20 rows in set (0.03 sec)

Figure 4.1 Using SQL queries to identify clusters
Licensed to Deborah Christiansen <pedbro@gmail.com>

126 CHAPTER 4 Clustering: grouping things together
of the raw multidimensional data. If our data is in some kind of an array equipped with
our custom comparator, then we should be able to sort it and reveal any clusters that may
be present, right? Let’s do that and see what happens. Figure 4.2 shows the results that
we get from an array with custom sorting.

 These results look great, but defining the boundaries between the clusters remains
an exercise for the user of the algorithm. We could have added a few lines of code that
create one cluster for every four names, but that could be deceiving. People who
belong to the same age group tend to be similar to each other, but it would be pre-
sumptuous to think that these results are reflective of what will happen in the general
case. Listing 4.1 shows the two lines of code that create the output shown in figure 4.2.
The first command loads the data from table 4.1. The second command uses the class
SortedArrayClustering for identifying clusters in our data.

SFDataset ds = SFData.createDataset();

SortedArrayClustering.cluster(ds.getData());

Listing 4.2 shows the content of the class SortedArrayClustering. In principle, this is
similar to the SQL statement approach, because all we do is sort the data and print it
on the screen. But we’ve transferred the responsibility of ordering the set of points
from the SQL order by statement to our custom Comparator definition. So, there’s
something fundamental that these two approaches don’t capture.

 Sorting is an efficient and appropriate technique for clustering when we deal with
a single dimension. The multidimensional nature of our data was suppressed in the

Listing 4.1 Identifying clusters by sorting an array of DataPoints

bsh % SortedArrayClustering.cluster(ds.getData());
John ([45.0, 4.0, 2.0, 1.0, 1.0, 1.0])
Lukas ([45.0, 3.0, 2.0, 1.0, 1.0, 1.0])
Maria ([43.0, 2.0, 1.0, 3.0, 1.0, 0.0])
Jack ([43.0, 3.0, 1.0, 1.0, 1.0, 1.0])
George ([42.0, 2.0, 2.0, 2.0, 1.0, 1.0])
Frank ([39.0, 3.0, 1.0, 3.0, 1.0, 1.0])
Elena ([38.0, 1.0, 1.0, 3.0, 2.0, 0.0])
Eric ([37.0, 2.0, 2.0, 2.0, 2.0, 0.0])
Constantine([37.0, 1.0, 1.0, 3.0, 2.0, 0.0])
Dmitry ([35.0, 2.0, 2.0, 1.0, 1.0, 1.0])
Bob ([32.0, 1.0, 1.0, 3.0, 1.0, 1.0])
Bill ([31.0, 1.0, 2.0, 4.0, 2.0, 0.0])
Catherine ([31.0, 1.0, 1.0, 3.0, 3.0, 0.0])
Carl ([30.0, 0.0, 2.0, 4.0, 2.0, 0.0])
Charlie ([30.0, 1.0, 2.0, 3.0, 2.0, 0.0])
Alexandra ([25.0, 1.0, 2.0, 4.0, 2.0, 0.0])
Athena ([24.0, 0.0, 1.0, 3.0, 4.0, 0.0])
Aurora ([23.0, 1.0, 2.0, 5.0, 2.0, 0.0])
Albert ([23.0, 0.0, 0.0, 3.0, 3.0, 0.0])
Babis ([21.0, 0.0, 0.0, 3.0, 4.0, 0.0])

Figure 4.2 Clustering data by sorting the elements of an array with a custom Comparator class
Licensed to Deborah Christiansen <pedbro@gmail.com>

127The need for clustering
method call getR(). This method calculates the distance of every element from the
origin of all the attribute values. Think of it as an arrow from the center of our coordi-
nates (whose attribute values are all zero) to each data point. The actual value is
obtained by using the class EuclideanDistance, which, as the name suggests, imple-
ments the Euclidean distance that we introduced in chapter 3.

public class SortedArrayClustering {

 public static void cluster(DataPoint[] points) {

 Arrays.sort(points, new Comparator<DataPoint>() {

 public int compare(DataPoint p1, DataPoint p2) {

 int result = 0;
 // sort based on score value
 if (p1.getR() < p2.getR()) {
 result = 1;
 } else if (p1.getR() > p2.getR()) {
 result = -1;
 } else {
 result = 0;
 }
 return result;
 }
 });

 for (int i=0; i < points.length; i++) {
 System.out.println(points[i].toString());
 }
 }
}

Since our attributes evaporated and we’re left with all the elements on a line, we must
deal with two main issues. First, we still have to decide how many clusters exist and
what they are. Second, the lack of normalization of the data causes the value of age to
dominate over all the other values in the calculation of the Euclidean distance. This
undesirable effect can be ameliorated by normalizing the value of the attributes in the
dataset, but it would be hard to do this well for an arbitrary dataset.

 We’re looking for clustering algorithms that could be characterized as intelligent.
Assuming that humans are intelligent, what would a human think after looking at that
dataset? What clusters would a human identify in it? In particular, let’s focus on
the group of people over 40. George, Jack, John, Maria, and Lukas are all in their
early 40s and most of their attribute values are identical or very similar. But, everybody
except Maria is paid to contribute in their open source projects and Maria’s main
motivation for participating in open source projects seems to be a desire to improve
her skills, and thereby increase her income. Maria should probably not be included in
the same cluster as George, Jack, John, and Lukas, but that’s impossible based on our
sorting results!

Listing 4.2 SortedArrayClustering : sort an array of data points and print them

Sort in
descending order
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://citeseer.ist.psu.edu/aggarwal02towards.html.
http://citeseer.ist.psu.edu/aggarwal02towards.html.
http://citeseer.ist.psu.edu/aggarwal02towards.html.
http://www.stanford.edu/~darthur/kMeansPlusPlus.pdf.
http://www.stanford.edu/~darthur/kMeansPlusPlus.pdf.
http://citeseer.ist.psu.edu/eisner97stateart.html
http://citeseer.ist.psu.edu/eisner97stateart.html
http://citeseer.ist.psu.edu/eisner97stateart.html

128 CHAPTER 4 Clustering: grouping things together
 You could go back and manipulate the distance that we used so that you achieve
the desirable effect of excluding Maria from that cluster. If you did that, you’d destroy
the simplicity of the approach, and in all likelihood, you wouldn’t be able to use the
algorithm successfully in a different set.

 Deciding what are the “right” clusters for a given set of data is a difficult problem
to solve and is an area of active research. The two naïve approaches—SQL and array
sorting—as well as all the algorithms that we’ll present in the following sections have
certain advantages and disadvantages. In the end, it’s the nature of the data that deter-
mines the success of the algorithms.

 This isn’t a conclusion that applies specifically to clustering, and you should always
keep it in mind when designing intelligent applications. Clustering is the hardest case,
because there’s no direct measure of success that the machine can use. Clusters aren’t
known a priori; if they were you wouldn’t need a clustering algorithm to begin with!
This is why clustering belongs in the category of machine learning known as unsuper-
vised learning.

 The next section will provide an overview of clustering and a categorization of the
algorithms based on a number of criteria, such as the resulting structure of the
clusters, the structure and type of data considered, and the size of the data that need
to be clustered.

4.2 An overview of clustering algorithms
We presented the SQL approach and sorted arrays as a prelude to clustering so you
can consider clustering to be a generalization of sorting. Yes, that’s right! When we
sort a list of objects, in effect, we line up all the objects and use the comparator to pick
the first object on the line, the second, and so on. As a result of that process, we iden-
tify the immediate neighbors of every object on that line.

 When we cluster a set of objects, we also identify the immediate neighborhood of
an object, but our objects can retain their multidimensional nature. They could be
points on a plane or in 3D space, or they could be points in a more general geometric
construct depending on the number of attributes that we want to consider and the
notion of distance that we want to adopt.

 The goal of clustering algorithms is identifying groups in a way that doesn’t suffer
from the drawbacks of the SQL approach or the simple array-sorting approach, and
can thus extend to many dimensions and arbitrary object spaces. Members of a cluster
should be very similar to each other (their neighbors) and very dissimilar to the mem-
bers of any other cluster in the entire set. Clustering is applicable in a wide range of
problems, ranging from biology and medicine to finance and marketing.

 Clustering algorithms come in a lot of shapes and forms, and it’s difficult to cre-
ate a categorization for them on the basis of a single criterion. For that reason we’ll
provide an overview of clustering algorithms before we proceed to specific imple-
mentations and lose track of the big picture. The first categorization of clustering
algorithms that we present is based on the nature of the cluster structure. Is the
Licensed to Deborah Christiansen <pedbro@gmail.com>

129An overview of clustering algorithms
algorithm looking for hierarchical relations between the points or simply dividing
regions of space into different groups? The second categorization of clustering algo-
rithms is based on the type and structure of the data. Some clustering algorithms
perform best on numerical data and others specialize on categorical data. The third
categorization is based on whether the algorithm was built to deal with large data-
sets from the outset. So, let’s now give an overview of clustering algorithms from
these perspectives.

4.2.1 Clustering algorithms based on cluster structure

Figure 4.3 shows the categorization of the
various clustering algorithms based on
the resulting structure of the clusters.

 Hierarchical algorithms result in the
identification of clusters within clusters.
A hierarchical algorithm for news arti-
cles could come up with four large
groups that represent broad topics, such
as politics, sports, business, and technology, and have within each group subgroups;
for example, inside sports news, you could have basketball news, baseball news, and so
on. In our example for this section, a hierarchical algorithm could divide users of
open source projects into two large groups: those who get paid to participate and
those who don’t. It could further break down these two major groups on the basis of
age or income range.

 Most hierarchical clustering algorithms admit a threshold parameter that indicates at
what depth the algorithm should stop seeking smaller subgroups. Aside from being a
reasonable thing to do with respect to the final structure of the data clusters, these
parameters eliminate a certain amount of unnecessary computational effort. Of
course, the final number of clusters isn’t known a priori but depends on the configu-
ration parameters of the algorithm that determine the termination criteria for the
hierarchy of clusters.

 The category of agglomerative hierarchical algorithms follows a bottom-up
approach—starting with individual elements and forming clusters by associating them
with other elements from the bottom up toward the global (super) cluster. The cate-
gory of divisive hierarchical algorithms follows a top-down approach—it starts with the
global (super) cluster and proceeds by dividing the data into smaller clusters.

 Partitional algorithms create a fixed number of clusters. The so-called k-means
clustering algorithm belongs in this category; we’ll use this algorithm later in the
chapter. The minimum spanning tree (MST) and the nearest neighbor algorithms also have
partitional versions. There are two basic approaches within this category: the concep-
tual modeling approach and the iterative optimization approach. Typical representatives
of the first approach are based on probabilistic models; a typical representative of the
second approach is the k-means algorithm.

Figure 4.3 Categorizing clustering algorithms
based on cluster structure
Licensed to Deborah Christiansen <pedbro@gmail.com>

130 CHAPTER 4 Clustering: grouping things together
Figure 4.4 Categorizing the
clustering algorithms based on
data type and data structure

4.2.2 Clustering algorithms based on data type and structure

In figure 4.4, we show the categorization of clustering
algorithms based on data types and the data struc-
ture. If you deal exclusively with numerical data—for
example, the geographic coordinates on a map or
the historic data of stock prices—grid-based algo-
rithms may be more appropriate for your work. In
this category, algorithms that are based on spectral
and wavelet methods can provide significant advan-
tages. The algorithm WaveCluster by Gholamhosein
Sheikholeslami et al. results in high-quality of clus-
ters with minimum computational complexity.

 Another category of clustering algorithms specializes in handling categorical
data. The main characteristic of these algorithms is that they use metrics based on
set membership, such as the Jaccard coefficient. Typically, categorical data lacks
ordering, and it’s often hard to find a numerical representation that would be
appropriate. How do you numerically represent a list of names? Whatever way you
come up with will depend on your context rather than a magic algorithm that’ll
work well in all cases. In the case of people’s names, lexicographic ordering may be
good enough, but for the names for corporate entities, lexicographic ordering may
mix up companies that aren’t related in any way. As a result, a lot of clustering algo-
rithms that work great with data that is inherently numeric fail to perform well with
categorical data.

 To further clarify this point, let’s revisit the approach we used in section 2.5. There,
we ranked a number of news articles by using a set of words that characterized the arti-
cles rather than the hyperlinks between them. The natural representation of our data
was categorical (not numeric), and we took the number of shared terms as a measure
of the strength by which any two documents can be linked. One of the clustering algo-
rithms that we’ll present in this chapter is similar to the technique of section 2.5, and
works well with categorical data. It’s called ROCK and it’s a hierarchical agglomerative
algorithm that employs the Jaccard similarity measure (see section 3.1.3) in order to
define the notion of neighborhood among news articles.

 Constrained clustering algorithms are used when clusters must satisfy certain con-
straints. The typical case here is clustering points on a two-dimensional surface, in the
presence of obstacles. Clearly, the clusters that we form should avoid the obstacles. In
these cases, the typical Euclidean distance won’t work well, and more meaningful met-
rics are needed for measuring the distance between two points. One good candidate is
the length of the shortest path between two points; the shortest path calculation
incorporates the avoidance of the obstacles. Tung et al. present an algorithm that
deals with that problem satisfactorily. We won’t cover constrained clustering algo-
rithms in this book.
Licensed to Deborah Christiansen <pedbro@gmail.com>

131An overview of clustering algorithms
4.2.3 Clustering algorithms based on data size

Figure 4.5 depicts the categorization of
clustering algorithms that are designed
for large datasets. We treat this cate-
gory of clustering algorithms in some-
what special ways. The space and time
complexity of many clustering algo-
rithms increases as the square of the
number of data points that you want to
cluster. If you aren’t careful, you may
run out of memory quickly or wait for-
ever for your clustering to complete!

 For that reason, Paul S. Bradley, Usama M. Fayyad, and Cory A. Reina proposed a
framework that required the following properties from algorithms that deal with large
databases for online applications:

■ If possible, you should scan the database only once.
■ You should allow for online behavior—a good answer is available at any time.
■ The algorithm should be able to suspend, stop, and resume its activity.
■ You should support incremental updates to account for new data.
■ You should respect RAM limitations, if any.
■ You should utilize various scan modes, such as sequential, index-based, and

sampling, if they’re available.
■ You should prefer algorithms that can work with the forward-only cursor over a

view of the database, because these views are typically the result of computation-
ally expensive joins.

These requirements result in different kinds of algorithms that tend to mix the concep-
tually cleaner versions of basic algorithms with heuristics and other techniques (such as
compression and sampling), thus trading complexity for efficiency and performance.

 As you can imagine, an algorithm could satisfy more than one criterion; a single
algorithm can belong in more than one category. For example, the BIRCH algorithm
(balanced iterative reducing and clustering using hierarchies) can be categorized as both a
clustering algorithm for very large databases (VLDB) and a hierarchical cluster-
ing algorithm.

 This was a lengthy overview, but it turns out that what seemed to be a fairly straight-
forward problem—identifying groups of similar objects—is a fascinating subject of
great depth. We have many clustering algorithms to choose from and our choices
depend on many factors, such as the nature of our data, the type of desired output,
and computational limitations. In the following sections, we’ll present a number of
clustering algorithms that cover a good portion of what we discussed here and we’ll
also address, in more detail, clustering very large datasets. So, let’s roll up our sleeves
and get to work!

Figure 4.5 The categorization of clustering
algorithms based on the size of the data
Licensed to Deborah Christiansen <pedbro@gmail.com>

132 CHAPTER 4 Clustering: grouping things together
4.3 Link-based algorithms
In this section, we’ll continue using the data that we described in section 4.1 and try to
find what kind of user groups can be identified on that fictitious open source reposi-
tory. We’ll start with the description of the dendrogram data structure, which is helpful
when it comes to clustering and is used throughout the code of this chapter. We’ll
describe the core ideas behind link-based algorithms and will present three of them in
detail. In particular, we’ll cover the single link, the average link, and the minimum
spanning tree algorithms.

4.3.1 The dendrogram: a basic clustering data structure

The basic structure that we will use throughout clustering is encapsulated by the class
Dendrogram. The structure of a dendrogram is shown in figure 4.6. It’s a tree data
structure1 that helps us capture the hierarchical formation of clusters. You can think
of it as a set of ordered triples—[d, k, {…}], where the first element is the proximity
threshold (d), the second element is the number of clusters (k), and the third ele-
ment is the set of clusters.

 Figure 4.6 gives a visual representa-
tion of a dendrogram that has four lev-
els; as an ordered set it could be
represented by the following set: {[0,5,{
{A},{B},{C},{D},{E}}], [1, 3, {{A,B},{C},
{D,E}}], [2, 2, {{A,B,C}, {D,E}}], [3,1,{A,
B,C,D,E}]}. Thus, the dendrogram is
equipped to capture a set of clusters, not
just one cluster. In turn, this allows us to
capture the formation of the clusters, as
they emerge from the single elements,
in a single structure. All hierarchi-
cal agglomerative algorithms would do
the following:

1 Define an initial dendrogram for which all elements are single element clusters.
2 Increase the distance threshold by a notch and decide what elements should

form new clusters.
3 Take all the new clusters and add a level to the dendrogram.
4 Continue the execution of steps 2 and 3 until all elements belong to one big

cluster.

From an implementation perspective, we capture the structure of the dendrogram
with two linked hash maps, as shown in listing 4.3; we omitted two auxiliary printing
methods from this listing.

1 Dendro means “tree” in Greek.

Figure 4.6 Visualizing hierarchical clusters: A
simple dendrogram.
Licensed to Deborah Christiansen <pedbro@gmail.com>

133Link-based algorithms
public class Dendrogram {

 private Map<Integer, ClusterSet> entryMap;
 private Map<Integer, String> levelLabels;
 private Integer nextLevel;
 private String levelLabelName;

 public Dendrogram(String levelLabelName) {
 entryMap = new LinkedHashMap<Integer, ClusterSet>();
 levelLabels = new LinkedHashMap<Integer, String>();
 nextLevel = 1;
 this.levelLabelName = levelLabelName;
 }

 public int addLevel(String label, Cluster cluster) {
 List<Cluster> values = new ArrayList<Cluster>();
 values.add(cluster);
 return addLevel(label, values);
 }

 public int addLevel(String label, Collection<Cluster> clusters) {

 ClusterSet clusterSet = new ClusterSet();

 for(Cluster c : clusters) {
 // copy cluster before adding – over time cluster elements may change
 // but for dendrogram we want to keep current state.
 clusterSet.add(c.copy());
 }

 int level = nextLevel;

 entryMap.put(level, clusterSet);
 levelLabels.put(level, label);

 nextLevel++;
 return level;
 }

public void setLevel(int level, String label,

➥ Collection<Cluster> clusters) {

 ClusterSet clusterSet = new ClusterSet();

 for(Cluster c : clusters) {
 clusterSet.add(c.copy());
 }

 System.out.println("Setting cluster level: "+level);

 entryMap.put(level, clusterSet);
 levelLabels.put(level, label);

 if(level >= nextLevel) {
 nextLevel = level + 1;
 }
}

In summary, the dendrogram data structure can capture all possible cluster configu-
rations of a dataset, whether or not hierarchical. It’s the data structure of choice for

Listing 4.3 Dendrogram: an essential class for encapsulating hierarchical clusters
Licensed to Deborah Christiansen <pedbro@gmail.com>

134 CHAPTER 4 Clustering: grouping things together
representing the clustering results. Let’s proceed and look at the family of link-
based algorithms.

4.3.2 A first look at link-based algorithms

In listing 4.4, we show the script for loading the SourceForge-like data and invoking
the algorithms successively.

SFDataset ds = SFData.createDataset();

DataPoint[] dps = ds.getData();

double[][] adjMatrix = ds.getAdjacencyMatrix();

SingleLinkAlgorithm sla = new SingleLinkAlgorithm(dps,adjMatrix);

Dendrogram dendroSLA = sla.cluster();

dendroSLA.print(4);

MSTSingleLinkAlgorithm sla2 =

➥ new MSTSingleLinkAlgorithm(dps,adjMatrix);

Dendrogram dendroSLA2 = sla2.cluster();

dendroSLA2.print(4);

AverageLinkAlgorithm ala = new AverageLinkAlgorithm(dps,adjMatrix);

Dendrogram dendroALA = ala.cluster();

dendroALA.print(4);

The class SFDataset represents our dataset from section 4.1. The three classes that
contain the respective algorithms, in order of appearance, are SingleLinkAlgorithm,
MSTSingleLinkAlgorithm, and AverageLinkAlgorithm. In order to remove effects
related to the representation of the data and the lack of normalization, all the algo-
rithms use the same information as a starting point—the raw data of table 4.1 (in the
form of the array Datapoint[] dps) and the adjacency matrix (in the form of the
double[][] adjMatrix) that captures the relative proximity of each user with every
other user in the dataset.

 All our link-based algorithms initialize their dendrogram by assigning the triplet
[0, N, {{X1}, {X2}, …, {XN}}]. When the proximity threshold (the first element of the
triplet) is set to 0, the only element that can be close to any other element is the ele-
ment itself, and therefore all elements are loaded as individual clusters.

 As we mentioned, all algorithms use a two-dimensional array of doubles to repre-
sent the adjacency matrix. This matrix contains the distance between any two elements
of the set; you can think of it as being analogous to the similarity matrix that we saw
for users and items in chapter 3. The values of the adjacency matrix allow us to use a
threshold of proximity and determine whether two elements should merge and form
a new cluster or remain in disjoined individual clusters. These comparisons take place

Listing 4.4 Hierarchical agglomerative clustering algorithms

Load data

Single link
clustering

Single link
clustering with MST

Average
link
clustering
Licensed to Deborah Christiansen <pedbro@gmail.com>

135Link-based algorithms
iteratively by increasing the threshold value
of proximity. After a finite number of steps,
all elements will belong in a single cluster
and the algorithm stops.

 Figure 4.7 depicts this process by showing
three of these iterations; for illustration pur-
poses, we restrict ourselves to two dimensions.
The principle is identical in higher dimen-
sions; it’s just harder to visualize high-dimen-
sional spaces. The black circles are data points
that we want to cluster; the circles with dashed
lines are the proximity thresholds for each
data point and iteration level.

 In the first iteration, every data point belongs to its own cluster and we have a total
of seven clusters. In the second iteration, two clusters formed at the top and we have
five clusters. In the third iteration, the three data points in the bottom of the figure
merged and we have three clusters in total. As the iterations succeed one another, the
circles become larger and larger until the first proximity circle drawn with the first
data point at the center has such a large radius that it includes the entire dataset. At
that point, the iterations stop.

 The agglomerative algorithms differ with respect to two things:

■ The approach that they use for merging clusters at each step of the iteration
■ The definition of the adjacency matrix

The single link, average link, and minimum spanning tree algorithms are three well-
known versions of agglomerative hierarchical clustering that are based on graph theo-
retic concepts. We’ll examine each one of them in the following three subsections.

4.3.3 The single-link algorithm

The single-link algorithm (depicted in figure 4.5) tries to find the largest number of
connected components in a graph. This algorithm merges two clusters if at least one
edge connects the two clusters; hence the name single link. In other words, if the mini-
mum distance between any two points is less than or equal to the proximity threshold,
which means that the data points are inside the circle with the dashed line, then the
clusters are merged. Algorithmically, this is shown in the methods cluster and
buildClusters of listing 4.5.

public Dendrogram cluster() {
 Dendrogram dnd = new Dendrogram("Distance");
 double d = 0;

 List<Cluster> initialClusters = new ArrayList<Cluster>();
 for(DataPoint e : elements) {

Listing 4.5 Merge clusters even with a single link between them

B

Figure 4.7 A depiction of the single-link
algorithm in action (three iterations)
Licensed to Deborah Christiansen <pedbro@gmail.com>

136 CHAPTER 4 Clustering: grouping things together
 Cluster c = new Cluster(e);
 initialClusters.add(c);
 }

 dnd.addLevel(String.valueOf(d), initialClusters);
 d = 1.0;
 int k = initialClusters.size();

 while(k > 1) {
 int oldK = k;
 List<Cluster> clusters = buildClusters(d);
 k = clusters.size();
 if(oldK != k) {
 dnd.addLevel(String.valueOf(d), clusters);
 }
 d = d + 1;
 }
 return dnd;
}

private List<Cluster> buildClusters(double distanceThreshold) {

 boolean[] usedElementFlags = new boolean[elements.length];

 List<Cluster> clusters = new ArrayList<Cluster>();

 for(int i = 0, n = a.length; i < n; i++) {

 List<DataPoint> clusterPoints = new ArrayList<DataPoint>();

 for(int j = i, k = a.length; j < k; j++) {

 if(a[i][j] <= distanceThreshold && usedElementFlags[j] == false) {
 clusterPoints.add(elements[j]);
 usedElementFlags[j] = true;
 }
 }

 if(clusterPoints.size() > 0) {
 Cluster c = new Cluster(clusterPoints);
 clusters.add(c);
 }
 }
 return clusters;
}

Initially, we load every data point to its own cluster B. We iterate until there’s only
one cluster that contains all data points C. At every iteration, the clustering is hap-
pening inside the buildClusters method, and the distance threshold increases by
one unit.

 Note that even though we leverage the symmetry of the adjacency matrix (the sec-
ond loop starts from the index i, rather than zero) D, the algorithm requires a number
of operations that grow as the square of the number of elements that we want to cluster.
We say that the computational complexity of the algorithm, in space and time, is O (N 2).
This isn’t important for small datasets, but it’s vital when we cluster real-world datasets.
We’ll talk more about these real-world aspects of clustering in section 4.4. Figure 4.8

C

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

137Link-based algorithms
shows the results that we obtain from the single-
link algorithm when we use the sample dataset
from table 4.1; the output is set to print the
clusters for the value level that’s equal to 4.

4.3.4 The average-link algorithm

The average-link algorithm, shown in list-
ing 4.6, is similar to the single-link algorithm,
but it merges two clusters on a different condi-
tion. In particular, it checks whether the average distance between any two points in the
two target clusters is below the proximity threshold. Note that in this algorithm, we
increase the threshold proximity by half a point (0.5) rather than a whole point. This
is an arbitrary increment; you can vary its value and observe the effect that this has on
the results.

public Dendrogram cluster() {

 Dendrogram dnd = new Dendrogram("Distance");
 double d = 0.0;

 for(DataPoint e : elements) {
 Cluster c = new Cluster(e);
 allClusters.add(c);
 }

 dnd.addLevel(String.valueOf(d), allClusters.getAllClusters());
 d = 1.0;

 while(allClusters.size() > 1) {

 int K = allClusters.size();

 mergeClusters(d);

 // it's possible that there were no clusters to merge for current d.

 if(K > allClusters.size()) {
 dnd.addLevel(String.valueOf(d),

➥ allClusters.getAllClusters());
 K = allClusters.size();
 }
 d = d + 0.5;
 }
 return dnd;
}

private void mergeClusters(double distanceThreshold) {

 int nClusters = allClusters.size();

 ObjectToIndexMapping<Cluster> idxMapping =

➥ new ObjectToIndexMapping<Cluster>();

 double[][] clusterDistances = new double[nClusters][nClusters];

Listing 4.6 Merge clusters based on the average distance

Initialization

Top-level loop for
building hierarchy

Figure 4.8 Clustering results based on the
single link algorithm for level 4
Licensed to Deborah Christiansen <pedbro@gmail.com>

138 CHAPTER 4 Clustering: grouping things together
 for(int i = 0, n = a.length; i < n; i++) {

 for(int j = i + 1, k = a.length; j < k; j++) {

 double d = a[i][j];

 if(d > 0) {
 DataPoint e1 = elements[i];
 DataPoint e2 = elements[j];

 Cluster c1 = allClusters.findClusterByElement(e1);
 Cluster c2 = allClusters.findClusterByElement(e2);

 if(!c1.equals(c2)) {
 int ci = idxMapping.getIndex(c1);
 int cj = idxMapping.getIndex(c2);

 clusterDistances[ci][cj] += d;
 clusterDistances[cj][ci] += d;
 }
 }
 }
 }

 boolean[] merged = new boolean[clusterDistances.length];

 for(int i = 0, n = clusterDistances.length; i < n; i++) {

 for(int j = i+1, k = clusterDistances.length; j < k; j++) {

 Cluster ci = idxMapping.getObject(i);
 Cluster cj = idxMapping.getObject(j);
 int ni = ci.size();
 int nj = cj.size();

 clusterDistances[i][j] =

➥ clusterDistances[i][j] / (ni * nj);

 clusterDistances[j][i] = clusterDistances[i][j];

 // merge clusters if distance is below the threshold
 if(merged[i] == false && merged[j] == false) {
 if(clusterDistances[i][j] <= distanceThreshold) {
 allClusters.remove(ci);
 allClusters.remove(cj);
 Cluster mergedCluster = new Cluster(ci, cj);
 allClusters.add(mergedCluster);
 merged[i] = true;
 merged[j] = true;
 }
 }
 }
 }
 }

As before, the dendrogram is initialized by setting every element of the set in its own
cluster, and new clusters are formed until all elements belong to a single cluster.
Unlike with the single-link algorithm, we need to find the distance of all the links
between two clusters. The average-link algorithm requires more computations. The

Adding distances of all
links for all clusters

Average distance
between clusters
Licensed to Deborah Christiansen <pedbro@gmail.com>

139Link-based algorithms
first loop of the method mergeClusters in listing 4.6 adds the distance between any
two elements of the set to the total distance of the clusters that they happen to belong
to. The second loop, from the same method, divides the total sum by the number of
links and compares the average distance to the threshold. If the average distance is
below the threshold value, the clusters are merged. Upon completion of all mergers
and acquisitions for the given level, the algorithm proceeds with the next level of the
dendrogram just as the single-link algorithm did.

 Figure 4.9 shows the results that we obtain from the average-link algorithm when we
use the sample dataset from table 4.1; the output is set to print the clusters for the value
level equal to 4, as we did in figure 4.8. Note that there are fewer clusters now. What do
you think happened? Why is there such a clear difference in the results? Even though
we kept the level constant, the way that each algorithm proceeds to calculate the dis-
tance is different. Thus, the proximity thresh-
old is different at the same level. In other
words, after four iterations, the single-link
algorithm has expanded its proximity circles
(see figure 4.5) far more than the average-
link algorithm did. So naturally, the results of
clustering for the average-link algorithm
show fewer clusters. The moral of the story is
that you should compare algorithms of that
kind by the size of the proximity circles,
rather than the level of iteration.

4.3.5 The minimum-spanning-tree algorithm

In order to understand our third agglomerative algorithm, we’ll need to talk about
the concept of a minimum spanning tree. In general, given a set of elements, we can con-
struct a tree by connecting any two vertices with exactly one edge (link). A spanning
tree would connect all vertices of the given set, and clearly there are many ways to do
this. But the MST connects the vertices in such a way as to minimize the sum of the adja-
cency values for the connected vertices. Given the adjacency matrix, our implementa-
tion employs the Prim-Jarník algorithm for identifying the minimum spanning tree,
and this involves O (N 2) operations. There are other algorithms with nearly linear per-
formance—O (N log(N)). If you’d like to read more on graph theoretic algorithms
related to the minimum spanning tree and more advanced topics, consult the “To do”
section and the references section.

 The MST single-link algorithm, as the name suggests, is a variant of the single-link
algorithm that’s based on the minimum spanning tree. The latter is derived from the
adjacency matrix, and it produces a natural ordering between the elements of the set.
If the adjacency matrix is a 5x5 array, the MST is also represented by a two-dimensional
array that’s 5x5, and it must also be symmetrical. For both matrices, we set the diago-
nal elements equal to –1 to indicate that we’re not interested in self-links. This is the

Figure 4.9 Clustering results based on the
average-link algorithm
Licensed to Deborah Christiansen <pedbro@gmail.com>

140 CHAPTER 4 Clustering: grouping things together
only part that differs from the other two agglomerative clustering algorithms that
we’ve seen. The algorithm uses the information in the MST to merge the clusters
based on the increasing order of their elements in the tree.

 Let’s look at the results that we get when we run the script of listing 4.4. The single-
link algorithm, at level four, produces the clusters that were shown in figure 4.5. Fig-
ure 4.10 shows the results that we obtain from the MST single-link algorithm when we
use the example dataset from table 4.1. The output is set to print the clusters for the
value level equal to 4, like we did before in figures 4.8 and 4.9 for the single- and
average-link algorithms, respectively.

 The MST single-link algorithm results in fewer clusters than the single-link algorithm
because, similar to the case of the average-link algorithm, the proximity circles at level
four haven’t expanded as much as they did for
the single-link algorithm. If you increase the
level progressively you can observe the merg-
ing of the various singletons and clusters into
bigger cluster formations. As before, the algo-
rithm terminates when all elements of the
dataset belong to one cluster. So, let’s look at
the code. Listing 4.7 shows the auxiliary class
MST, which is used to create the minimum
spanning tree for a given adjacency matrix.

public class MST {

 public double[][] buildMST(double[][] adjM) {

 boolean[] allV = new boolean[a.length];
 allV[0] = true;

 double[][] mst = new double[adjM.length][adjM.length];
 for(int i = 0, n = mst.length; i < n; i++) {
 for(int j = 0; j < n; j++) {
 mst[i][j] = -1;
 }
 }

 Edge e = null;
 while((e = findMinimumEdge(allV, adjM)) != null) {
 allV[e.getJ()] = true;
 mst[e.getI()][e.getJ()] = e.getW();
 mst[e.getJ()][e.getI()] = e.getW();
 }
 return mst;
 }

 private Edge findMinimumEdge(boolean[] mstV, double[][] a) {
 Edge e = null;
 double minW = Double.POSITIVE_INFINITY;
 int minI = -1;

Listing 4.7 Creating the minimum spanning tree based on the adjacency matrix

Initialize vector to
hold MST nodes

Initialize
MST matrix

Iterate until you
find minimum

Figure 4.10 Clustering results based on the
MST link algorithm
Licensed to Deborah Christiansen <pedbro@gmail.com>

141Link-based algorithms
 int minJ = -1;

 for(int i = 0, n = a.length; i < n; i++) {

 if(mstV[i] == true) {

 for(int j = 0, k = a.length; j < k; j++) {

 if(mstV[j] == false) {

 if(minW > a[i][j]) {

 minW = a[i][j];
 minI = i;
 minJ = j;
 }
 }
 }
 }
 }

 if(minI > -1) {
 e = new Edge(minI, minJ, minW);
 }
 return e;
 }
}

To shorten the listing, we didn’t include an inner class called Edge, which is a rudi-
mentary class that encapsulates the edges of the graph and their weight; see the com-
plete source code for the details. As you can see, this is a simple algorithm for finding
the minimum spanning tree and it’s known as the Prim-Jarník algorithm. The algo-
rithm can be summarized in the following steps:

1 Initialize a vector that indicates whether an element belongs to the MST (allV).
2 Initialize the MST matrix (variable mst) to some default negative value (such as

–1).
3 Start from any node and find the edge that emanates from that node and has

the minimum length compared to all other edges that emanate from that node.
4 The node that’s on the other end of the edge with minimum length is added to

the MST nodes.
5 Repeat steps 3 and 4 until all nodes have been included; the tree must span the

graph.

In other words, Prim’s algorithm augments a spanning tree from an arbitrary starting
node, iteratively adding an edge of least weight between a node that’s already part of
the MST and a node that’s not yet part of the MST, and it finishes when all nodes are
part of the MST. The MST resulting from one execution of Prim’s algorithm may vary
from the MST resulting from another execution. There is a way to consistently obtain
the same MST regardless of what node you considered to be first. Can you figure out
under what conditions that’s possible? Of course, this isn’t the only algorithm avail-
able for identifying a minimum spanning tree. Two more algorithms are well-
known—Kruskal’s algorithm and Borůvka’s algorithm.
Licensed to Deborah Christiansen <pedbro@gmail.com>

142 CHAPTER 4 Clustering: grouping things together
 The time complexity of the MST link algorithm is O (N 2) because that’s the order of
magnitude of computations that we need to make to get the MST. To convince your-
self, look at the method findMinimumEdge and note the double loop of size N. This
number of operations dominates the rest of the algorithm. This can be improved by
using a hash table and storing the smallest edge for each one of the nodes that we’ve
already examined.

 Finally, we should mention that all the single-link algorithms are notorious due to
the so-called chain effect, which can result in two clusters merging just because they
happened to have two points close to each other while most of their other points are
far apart. Single-link algorithms have no cure for this problem, but the rest of the
algorithms that we’ll discuss don’t suffer from this shortcoming.

4.4 The k-means algorithm
The three link-based algorithms of the previous section were all hierarchical agglom-
erative clustering algorithms. The k-means algorithm is the first partitional algorithm
that we’ll examine, and we should mention that it’s the most widely used in practice
due to its excellent performance characteristics.

4.4.1 A first look at the k-means algorithm

Let’s begin by running the k-means algorithm to obtain some clusters. Listing 4.8
shows the steps needed to load the data from table 4.1 and execute the k-means
implementation that we provide. In order to compare the results of the k-means algo-
rithm with those of the single-link algorithm, where we identified eight clusters at
level four, we chose k = 8.

SFDataset ds = SFData.createDataset();

DataPoint[] dps = ds.getData();

KMeansAlgorithm kMeans = new KMeansAlgorithm(8, dps);

kMeans.cluster();

kMeans.print();

Figure 4.11 illustrates candidate clusters
based on the k-means algorithm; com-
pare these clusters with the clusters that
were identified by the other (hierarchi-
cal) algorithms, and especially the clus-
ters in figure 4.8, where the number of
clusters is again equal to eight. Central to
the idea of the k-means algorithm is the
idea of the cluster’s centroid, which is also
called the center or mean value. Think of

Listing 4.8 The k-means algorithm in action

Load data
Initialize k-means
algorithm

Begin clustering

Figure 4.11 Clustering results based on the k-
means algorithm, with k = 8
Licensed to Deborah Christiansen <pedbro@gmail.com>

143The k-means algorithm
the elements that make up a cluster as bodies with mass: the cluster’s centroid would
be the equivalent of the center of mass for that system of bodies.

 Figure 4.12 illustrates the idea of the centroid for a cluster whose points (shown as
black circles) lie on the vertices of a hexagon. The centroid of that cluster (due to
symmetry) is located at the center of the hexagon, and is shown as a dashed circle.
The centroid itself doesn’t have to be one of the data points that we want to cluster. In
fact, as illustrated in figure 4.12, most of
the time it won’t be. Its role is to create a
representative point of reference for the
set of points that form the cluster.

 It’s possible that the candidate clusters
that you’ll get when you execute the
script from listing 4.8 may differ from
what’s shown in figure 4.11. The reason
for any differences lies in the initializa-
tion of the locations of the centroids; this
will become clear in the next section.

4.4.2 The inner workings of k-means

To better understand the inner workings of the k-means algorithm, let’s look at its
implementation, which is provided in the listing 4.9.

public void cluster() {

 boolean centroidsChanged = true;

 while (centroidsChanged == true) {
 List<Set<DataPoint>> clusters =

➥ new ArrayList<Set<DataPoint>>(k);

 for (int i = 0; i < k; i++) {
 clusters.add(new HashSet<DataPoint>());
 }

 for (DataPoint p : allDataPoints) {
 int i = findClosestCentroid(allCentroids, p);
 clusters.get(i).add(p);
 }

 for (int i = 0; i < k; i++) {
 allClusters[i] = new Cluster(clusters.get(i));
 }

 centroidsChanged = false;

 for (int i = 0; i < allClusters.length; i++) {

 if (clusters.get(i).size() > 0) {

Listing 4.9 KMeansAlgorithm: the core method of the k-means algorithm

Create set of points
for each cluster

Assign points
based on distance

Create
clusters

Calculate new
centroids

Figure 4.12 The centroids (dashed circles) for a
triangular and hexagonal cluster of points (black
circles)
Licensed to Deborah Christiansen <pedbro@gmail.com>

144 CHAPTER 4 Clustering: grouping things together
 double[] newCentroidValues = findCentroid(allClusters[i]);

 double[] oldCentroidValues =

➥ allCentroids[i].getNumericAttrValues();

 if (!Arrays.equals(oldCentroidValues, newCentroidValues)) {

 allCentroids[i] =

➥ new DataPoint(allCentroids[i].getLabel(), newCentroidValues);

 centroidsChanged = true;
 }

 } else {
 // keep centroid unchanged if cluster has no elements.
 }
 }
 }
}

public static DataPoint[] pickInitialCentroids(int k,

➥ DataPoint[] data) {

 Random randGen = new Random();

 DataPoint[] centroids = new DataPoint[k];

 Set<Integer> previouslyUsedIds = new HashSet<Integer>();

 for (int i = 0; i < k; i++) {

 // pick point index that we haven't used yet
 int centroidId;
 do {
 centroidId = randGen.nextInt(data.length);
 }
 while(previouslyUsedIds.add(centroidId) == false);

 String label = "Mean-"+i+"("+data[centroidId].getLabel()+")";

 double[] values = data[centroidId].getNumericAttrValues();

 String[] attrNames = data[centroidId].getAttributeNames();

 centroids[i] = new DataPoint(label,

➥ Attributes.createAttributes(attrNames, values));
 }
 return centroids;
}

The k-means algorithm randomly picks (see method pickInitialMeanValues) k
points that represent the initial centroids of the candidate clusters. Subsequently the
distances between these centroids and each point of the set are calculated, and each
point is assigned to the cluster with the minimum distance between the cluster cen-
troid and the point. As a result of these assignments, the locations of the centroids for
each cluster have now changed, so we reevaluate the new centroids until their loca-
tions stop changing. This particular algorithm for k-means is attributed to E.W. Forgy
and to S.P. Lloyd, and has the following advantages:
Licensed to Deborah Christiansen <pedbro@gmail.com>

145The k-means algorithm
■ It works well with many metrics.
■ It’s easy to derive versions of the algorithm that are executed in parallel—when

the data are divided into, say, N sets and each separate data set is clustered, in
parallel, on N different computational units.

■ It’s insensitive with respect to data ordering.

At this point you may wonder, what happens if the algorithm doesn’t stop? Don’t worry!
It’s guaranteed that the iterations will stop in a finite number of steps. In practice, the
algorithm converges quickly (that’s the mathematical jargon). Of course, we should
always be careful with variations of the algorithm. If your metric isn’t the Euclidean dis-
tance, you may run into problems; see, for example, the article on clustering very large
document collections by Inderjit S. Dhillon, James Fan, and Yuqiang Guan, where the
use of cosine similarity is inferior to the Euclidean distance. In a different case, some of
the same authors reported some advantage in using Kullback-Leibler divergences
(these things aren’t even distances!) instead of squared Euclidean distances.

 The k-means algorithm is fast, especially compared to other clustering algorithms.
Its computational complexity is typically O (N), where N is the number of data points
that we want to cluster. It suffices to say that the name of the procedure for k-means,
in the commercial package SAS, is FASTCLUS (for fast clustering).

 Note that, unlike with agglomerative algorithms, the k-means algorithm requires
the number of clusters that must be formed as an input. The question that arises natu-
rally is: what should be the value of k? The answer depends on your data (again): you
should run k-means with different values of k and examine the resulting clusters.
Sometimes, as with very large data or when hierarchical clustering is required, it’s use-
ful to first run the k-means algorithm with a low value and subsequently run a hierar-
chical clustering algorithm inside the large partitions that were formed by k-means.
This approach lends itself naturally to parallelization, and you can take advantage of
additional computational bandwidth if you have it!

 Note also that the k-means algorithm is appropriate for data points whose attri-
butes are numeric. The challenge for using the k-means algorithm in the case of cate-
gorical data (such as string values) is reduced to finding an appropriate numerical
representation for the nonnumeric attribute values. In the latter case, the choice of
metric is also important.

 You should know that the selection of the initial centroids is crucial for quickly ter-
minating the iterations as well as producing good quality clusters. From a mathematical
perspective, the k-means algorithm tries to minimize the average squared distance
between points in the same cluster. So, if you select your initial centroids in regions with
a high concentration of data points, it seems reasonable that you may get your results
faster and achieve high-quality clusters. That’s exactly what David Arthur and Sergei
Vassilvitskii proposed in a recent article that describes what they called k-means++.

 In summary, the previous sections provided a number of algorithms that allow you
to identify groups of users on a website. Of course, by being creative, you can apply the
same algorithms in different circumstances. Combining algorithms is also possible, and
Licensed to Deborah Christiansen <pedbro@gmail.com>

146 CHAPTER 4 Clustering: grouping things together
sometimes it’s recommended. The algorithm of choice in the industry is k-means and
its variants. The k-means algorithm is preferred due to its simplicity (in implementa-
tion), its speed, and its ability to run on a parallel computational platform.

4.5 Robust Clustering Using Links (ROCK)
In this section, we continue our coverage of clustering with an algorithm that differs
from what we’ve seen so far in two ways. First, the algorithm is particularly well-suited
for categorical data, such as keywords, Boolean attributes, enumerations, and so forth.
Second, this algorithm is designed to work well on very large datasets. Our example
will be a collection of data from Digg.com.

 For illustration purposes, we’ll use a fixed dataset that you can find in the directory
data/ch4 called ch4_digg_stories.csv. The data was collected using the Digg API, from
chapter 3. The data contains 49 Digg stories, with several attributes, submitted by 10
random users. In the data, we’ve fabricated 8 clusters that are easily identifiable by a
human; you can open the file with your favorite text editor and have a look. Is it possi-
ble to identify these clusters with our algorithms rather than our eyes? Let’s see!

4.5.1 Introducing ROCK

Listing 4.10 loads the data, initializes ROCKAlgorithm, and uses the by-now familiar
Dendrogram class to capture the structure of the clusters.

MyDiggSpaceDataset ds = MyDiggSpaceData.createDataset(15);

DataPoint[] dps = ds.getData();

ROCKAlgorithm rock = new ROCKAlgorithm(dps, 5, 0.2);

Dendrogram dnd = rock.cluster();

dnd.print(21);

In the print method of the Dendrogram class, we’ve restricted the output to clusters
that have more than one element. In other words, we don’t show the single elements,
also known as singletons in the industry, in order to improve the visual quality of the
groupings. Figure 4.13 shows the results of the execution for listing 4.10.

 Note that the text used by the algorithm for identifying similar stories from our
forum isn’t just the titles, but rather the titles and the descriptions. The descriptions can
be significantly different from a syntax point of view (see for example the stories related
to blood donors and Facebook), which would rule out a direct string comparison
between their content. The key is that the Jaccard coefficient doesn’t depend on the syn-
tax of the words in the text, but it rather compares the number of common terms
between the descriptions. As you can see, at level 21, six out of the eight clusters have
been correctly identified. You can use your own data and see what kind of clusters you’d
get with your documents, stories, articles, and so on—the list is long! As long as you place
your data in an array of the DataPoint class, you should be good to go.

Listing 4.10 Clustering large collections of web stories with ROCK

Load Digg stories,
use only top 15
terms

Initialize ROCK to seek
5 desired clusters
Licensed to Deborah Christiansen <pedbro@gmail.com>

147Robust Clustering Using Links (ROCK)
4.5.2 Why does ROCK rock?

Let’s have a closer look at the inner workings of the ROCK algorithm. Listing 4.11
shows the constructor and the core method cluster of the ROCKAlgorithm class. The
key idea of ROCK is to use links as a similarity measure, rather than a measure that’s
based only on distances. Of course, in order to determine the points that “link” to any
given point, we’ll still have to use our familiar distance metrics. The objective will be
to cluster together points that have many common links.

public ROCKAlgorithm(DataPoint[] points, int k, double th) {

 this.points = points;

 this.k = k;

Listing 4.11 ROCKAlgorithm: the cluster method of Robust clustering using links

bsh % dnd.print(21);
Clusters for: level=21, Goodness=1.044451296741812
__
{5619782:Lack Of Democracy on Digg and Wikipedia?,
 5611165:Lack Of Democracy on Digg and Wikipedia?}
__
{5571841:Lack Of Democracy on Digg and Wikipedia?,
 5543643:Lack Of Democracy on Digg and Wikipedia?}
__
{5142233:The Confederacy's Special Agent,
 5620839:The Confederacy's Special Agent,
 5586183:The Confederacy's Special Agent,
 5610584:The Confederacy's Special Agent,
 5598008:The Confederacy's Special Agent,
 5613383:The Confederacy's Special Agent,
 5613380:The Confederacy's Special Agent}

{5585930:Microsoft, The Jekyll And Hyde Of Companies,
 5524441:Microsoft, The Jekyll And Hyde Of Companies,
 5609070:Microsoft, The Jekyll And Hyde Of Companies,
 5618201:Microsoft, The Jekyll And Hyde Of Companies,
 5620878:Microsoft, The Jekyll And Hyde Of Companies,
 5609797:Microsoft, The Jekyll And Hyde Of Companies}
__ ________
{5607788:Recycle or go to Hell, warns Vatican -- part I,
 5592940:Recycle or go to Hell, warns Vatican -- part II,
 5618262:Recycle or go to Hell, warns Vatican -- part III,
 5595841:Recycle or go to Hell, warns Vatican --- part IV}
__
{5608052:Contract Free on AT&T,
 5620493:Contract Free on AT&T,
 5621623:Contract Free on AT&T,
 4955184:Contract Free on AT&T,
 5594161:Contract Free on AT&T}

Figure 4.13 The clustering results of listing 4.10

Data points to cluster

Minimum number of clusters
Licensed to Deborah Christiansen <pedbro@gmail.com>

148 CHAPTER 4 Clustering: grouping things together
 this.th = th;

 this.similarityMeasure = new JaccardCoefficient();

 this.linkMatrix =

➥ new LinkMatrix(points, similarityMeasure, th);
}

public Dendrogram cluster() {

 List<Cluster> initialClusters = new ArrayList<Cluster>();
 for(int i = 0, n = points.length; i < n; i++) {
 Cluster cluster = new Cluster(points[i]);
 initialClusters.add(cluster);
 }

 double g = Double.POSITIVE_INFINITY;

 Dendrogram dnd = new Dendrogram("Goodness");

 dnd.addLevel(String.valueOf(g), initialClusters);

 MergeGoodnessMeasure goodnessMeasure =

➥ new MergeGoodnessMeasure(th);

 ROCKClusters allClusters = new ROCKClusters(initialClusters,

➥ linkMatrix, goodnessMeasure);

 int nClusters = allClusters.size();

while(nClusters > k) {

 int nClustersBeforeMerge = nClusters;

 g = allClusters.mergeBestCandidates();

 nClusters = allClusters.size();

 if(nClusters == nClustersBeforeMerge) {
 // there are no linked clusters to merge
 break;
 }
 dnd.addLevel(String.valueOf(g),

➥ allClusters.getAllClusters());
 }
 return dnd;
}

The arguments of the constructor are the following:

■ The data points that we want to cluster.
■ The minimum number of clusters that we want to have; ROCK is a bottom-up

hierarchical agglomerative algorithm—we start with every point on its own clus-
ter and keep merging until all points belong to a single cluster. This parameter
allows us to stop before all points are grouped into a single cluster by providing
a minimum number of clusters that we want to have.

■ A parameter that determines the proximity that’s required between two points
in order to form a link between them.

Link creation threshold

Similarity matrix

Link matrix

B

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

149Robust Clustering Using Links (ROCK)
In the constructor, we create an instance of the Jaccard similarity (Jaccard-
Coefficient) and an instance of a new class (LinkMatrix) whose purpose is to
encapsulate the structure of the links between the data points. You can use a differ-
ent distance measure, such as the CosineSimilarity, and examine whether you get
better, worse, or about the same clusters. Can you explain the similarities and the
differences in the results? Through experimentation, you’ll soon realize that the
value of the threshold will be different for each distance measure, but in the end,
your results will agree to a large extent; that’s why we call this algorithm “robust.”

 Of course, this class can’t do all the heavy lifting for ROCK. It delegates to various
other classes that we’ll examine shortly. The following are the steps involved in the
method cluster in listing 4.11:

This is the initialization stage, where we create a new cluster for every data point.

This step creates a “goodness measure” that will be used to evaluate whether or not we
should merge two clusters. In every clustering algorithm, an essential question to
answer is: “What are the best clusters?” If we can define the “best” clusters, we can
devise algorithms that aim to produce them. ROCK adopts the position that the best
clusters are those that maximize the value of the goodness measure.

The ROCKClusters class encapsulates all the relevant data and algorithms that are re-
quired to identify the best clusters that must be formed, based on the goodness measure.

This step iterates the process of identifying best clusters and enforces two termination
criteria. First, if the number of clusters already formed is equal to the desired mini-
mum number of clusters the algorithm stops. Recall that if we let the algorithm run
without such a criterion, we’ll end up with all the data points inside a single cluster,
which isn’t very informative. Second, if the number of clusters doesn’t change
between two iterations there’s no reason to proceed and the algorithm terminates.

Let’s more closely examine the class MergeGoodnessMeasure. As we already men-
tioned, this class encapsulates our criterion for evaluating how good a cluster is. Algo-
rithms that are based on similarity distance alone can’t easily distinguish between two
clusters that aren’t “well separated” because it’s possible for data points that belong in
different clusters to be near neighbors. Thus, other algorithms may merge two clus-
ters because two of their elements (one on each side) are close to each other, even
though these two points may not have a large number of common neighbors.

 So, the first thing that we want to do is make sure that our criterion for good clusters
can help us deal effectively with these cases. To accomplish that goal, the ROCK algo-
rithm uses links, as its name suggests. What’s a link? We say that there’s a link between
two data points if a common neighbor between these two data points exists. When we
consider whether to merge cluster X and Y, our interest is in the number of links between
all pairs of points between X and Y, one point of the pair taken from cluster X, and the
other point of the pair taken from cluster Y. A large number of links should indicate a
higher probability that two points belong in the same cluster, and should give us the best
clusters. Let’s look at the mechanics; listing 4.12 shows the relevant code.

B

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

150 CHAPTER 4 Clustering: grouping things together
public class MergeGoodnessMeasure {

 private double th;

 private double p;

 public MergeGoodnessMeasure(double th) {
 this.th = th;
 this.p = 1.0 + 2.0 * f(th);
 }

 public double g(int nLinks, int nX, int nY) {
 double a = Math.pow(nX + nY, p);
 double b = Math.pow(nX, p);
 double c = Math.pow(nY, p);

 return (double)nLinks / (a - b - c);
 }

 private double f(double th) {

 return (1.0 - th) / (1.0 + th);
 }
}

The essential method call is g(int nLinks, int nX, int nY), where nLinks is the
number of links between the cluster X and the cluster Y. You should’ve expected
(based on what we said about common neighbors and links) that the value of the g
method will depend on the number of links between any two points from two clusters.
But what do the other arguments stand for? Why is the formula so complicated? Let’s
answer the first question. The parameters nX and nY are the number of data points
contained in clusters X and Y, respectively. The answer to the second question is a bit
more elaborate but far more interesting.

 You may think that maximizing the number of links for all pairs of points between
two clusters should be a sufficiently good criterion for deciding whether to merge the
clusters. Remember, though, that our objective in clustering is twofold. We need to
group together points that belong in the same cluster and separate those that don’t.
Even though the maximization of the number of links would ensure that points with a
large number of links are assigned to the same cluster, it doesn’t prohibit the algorithm
from assigning all points to a single cluster. In other words, using only the number of
links won’t help points with few links between them to separate into different clusters.

 The ROCK formula estimates the total number of links in cluster X with the variable
b, and the total number of links in cluster Y with the variable c. The method f repre-
sents a simple function with the following important property: each point that belongs
in cluster X has approximately Math.pow(nX,f(th)) neighbors in X. Hence, the calcu-
lation of this goodness measure divides the number of links between each pair of points
with the expected number of links, which is represented as (a – b - c). This property of
the goodness measure prohibits the data points that have few links between them from
being assigned to the same cluster. The variable th is specific to this choice of imple-
mentation for f, and its value is larger or equal to zero and smaller or equal to one. If

Listing 4.12 MergeGoodnessMeasure: a criterion for identifying the best clusters
Licensed to Deborah Christiansen <pedbro@gmail.com>

151DBSCAN
it’s zero then the value of f is equal to one and all data points are neighbors. If it’s equal
to one then the value of f is equal to zero and the only neighbor of a point is itself. This
implementation of f has been found to work well with market basket data, but may not
be appropriate in other cases. The conditions that can lead to such a choice would be
attribute values that are more or less uniform across the data points. You should exper-
iment with the implementation of the f method on our data or your own data. You can
find out more details on this in the “To do” section.

4.6 DBSCAN
This section describes an advanced clustering algorithm, Density-Based Spatial Clus-
tering of Applications with Noise, (DBSCAN) that’s not based on the notion of links or
the direct distance of the points from each other, but rather on the newly introduced
idea of point density. To illustrate the idea, let’s say that you have a shallow dish of water
and you let a few drops of ink fall into the initially clear water dish. You wouldn’t have
any problem identifying the region that contains the ink immediately after the impact
of the drops. That’s because light reflects differently for ink than it does for water due
to their different densities. What does this have to do with clustering?

4.6.1 A first look at density-based algorithms

There’s an entire class of clustering algorithms that attempts to take advantage of that
simple, everyday experience. In particular, density-based algorithms stem from the intuitive
idea that visual pattern recognition is based on the density gradients for identifying the
boundaries of objects. Thus, by extending the same principle to arbitrary two-, three-,
or even multidimensional spaces, we may be able to identify clusters (objects) based on
the notion of density of points within a certain region of space. Most people who look
at the left side of figure 4.14 will visually identify the three clusters that are shown on the
right side of figure 4.14. We’d typically consider the points that don’t belong in the clus-
ters (seven white circles) to be noise.

 The DBSCAN algorithm, proposed by
Martin Ester and others, is designed to dis-
cover the clusters and the noise in a data-
set. Before we dive into the details, let’s
run the script in listing 4.13 to obtain clus-
tering results for the same data that we
used in the previous section with ROCK.

MyDiggSpaceDataset ds = MyDiggSpaceData.createDataset(15);

DataPoint[] dps = ds.getData();

CosineDistance cosD = new CosineDistance();

DBSCANAlgorithm dbscan = new DBSCANAlgorithm(dps,cosD,0.8,2,true);

dbscan.cluster();

Listing 4.13 Using the DBSCAN algorithm

Load Digg
stories and
use only top 15

Initialize DBSCAN algorithm

Figure 4.14 Density-based clustering is inspired
by our ability to visually recognize shapes and forms.
Licensed to Deborah Christiansen <pedbro@gmail.com>

152 CHAPTER 4 Clustering: grouping things together
As you can see, using the DBSCAN algorithm is as easy as using any of the other algo-
rithms that we’ve presented. The only step that precedes the instantiation of the class
DBSCANAlgorithm, aside from loading our data, is the definition of an appropriate dis-
tance metric. In this case, we used the CosineDistance, but any class that implements
the distance interface would do.

 Of course, we could’ve integrated the distance metric into the implementation of
the algorithm, but the choice of the distance metric turns out to be important. So, it’s
better to define it explicitly as an argument in the constructor. The choice of the dis-
tance metric defines the shape (surface or volume) of a “neighborhood” and, in turn,
the neighborhood defines various density-related parameters, which we’ll examine
shortly. But, first, let’s look at the results. Executing the script from listing 4.13 will
produce the output shown in figures 4.15(a) and 4.15(b).

 These are fairly good results! Note that the algorithm correctly identified the obvious
clusters, but it has also discovered a not-so-obvious cluster of articles (cluster 8). The
algorithm has also identified the data points that don’t belong to any given cluster as

bsh % dbscan.cluster();
DBSCAN Clustering with NeighborThreshold=0.8 minPoints=2
Clusters:
1:
{5605887:A Facebook Application To Find Blood Donors Fast,
5611687:A Facebook Application To Find Blood Donors Fast,
5608576:A Facebook Application To Find Blood Donors Fast}
__
2:
{5142233:The Confederacy's Special Agent,
5613383:The Confederacy's Special Agent,
5620839:The Confederacy's Special Agent,
5598008:The Confederacy's Special Agent,
5586183:The Confederacy's Special Agent,
5610584:The Confederacy's Special Agent,
5613380:The Confederacy's Special Agent}
__
3:
{5620878:Microsoft, The Jekyll And Hyde Of Companies,
5618201:Microsoft, The Jekyll And Hyde Of Companies,
5585930:Microsoft, The Jekyll And Hyde Of Companies,
5609797:Microsoft, The Jekyll And Hyde Of Companies,
5609070:Microsoft, The Jekyll And Hyde Of Companies,
5524441:Microsoft, The Jekyll And Hyde Of Companies}
__
4:
{5594161:Contract Free on AT&T,
4955184:Contract Free on AT&T,
5608052:Contract Free on AT&T,
5621623:Contract Free on AT&T,
5579109:Contract Free on AT&T,
5620493:Contract Free on AT&T}
__

Figure 4.15 (a) The clustering results from the execution of listing 4.13
Licensed to Deborah Christiansen <pedbro@gmail.com>

153DBSCAN
noise. But note also that there’s one more cluster that could be extracted from the noise
elements, and that the story with ID=5619818 could be assigned to the first cluster.

4.6.2 The inner workings of DBSCAN

Now, the details! First, we need to define the arguments that construct the DBSCANAl-
gorithm class. The signature of the constructor is:

public DBSCANAlgorithm(DataPoint[] points,
 Distance distance,
 double eps,
 int minPoints,
 boolean useTermFrequencies)

5:
{5607863:Lack Of Democracy on Digg and Wikipedia?,
 5571841:Lack Of Democracy on Digg and Wikipedia?,
 5619782:Lack Of Democracy on Digg and Wikipedia?,
 5611165:Lack Of Democracy on Digg and Wikipedia?,
 5543643:Lack Of Democracy on Digg and Wikipedia?}
__
6:
{5481876:How Traffic Jams Occur : Simulation,
 5613023:How Traffic Jams Occur : Simulation}
__
7:
{5617459:Robotic drumstick keeps novices on the beat,
 5619693:Robotic drumstick keeps novices on the beat}
__
8:
{5617998:Obama: ""I Am NOT Running for Vice President"",
 5625315:Obama Accuses Clinton of Using ""Republican Tactics""}
__
9:
{5607788:Recycle or go to Hell, warns Vatican -- part I,
 5595841:Recycle or go to Hell, warns Vatican --- part IV,
 5618262:Recycle or go to Hell, warns Vatican -- part III,
 5592940:Recycle or go to Hell, warns Vatican -- part II}
__

Noise Elements:
 {5610213:Senate panel critiques prewar claims by White House,
 5619818:A Facebook Application To Find Blood Donors Fast,
 5612810:Super Mario Bros Inspired Wii with USB base [Pics],
 5522983:Smoking Monkey[flash],
 5609833:NSA's Domestic Spying Grows As Agency Sweeps Up Data,
 5625339:Lawmaker's Attempt to Criminalize Anonymous Posting
Doomed,
 5610081:Digg's Algo Change Cut Promotions by 38%,
 5604438:Archaeologists Unveil Finds in Rome Digs,
 5614085:House Files Contempt Lawsuit Against Bush Officials,
 5592473:Maryland police officers refuse to pay speeding
tickets,
 5622802:House Democrats Defy White House on Spying Program}

Figure 4.15 (b) The clustering results from the execution of listing 4.13 (continued)
Licensed to Deborah Christiansen <pedbro@gmail.com>

154 CHAPTER 4 Clustering: grouping things together
You must be familiar with the DataPoint array by now; that’s where we store the data.
The Distance interface allows us to pass whatever distance we think is more appropri-
ate for our data. The fun begins with the eps variable, which probably stands for epsi-
lon, the Greek letter that usually denotes a small positive number. The epsilon value
helps us define an epsilon neighborhood for any given DataPoint p as the set of Data-
Points (q) whose distance from p is less than or equal to epsilon. So, the definition of
an epsilon neighborhood is quite straightforward and exactly what you’d expect.
Things get more complicated for the next few definitions, so let’s resort to figure 4.16,
which is similar to the figure in the original paper by Ester et al.

 The large circles in figure 4.16 are the epsilon neighborhoods for the data points p
and q; one circle has its center at p and the other at q. The radius of the circle is equal
to epsilon (eps) and the minPoints vari-
able designates the minimum number of
points that must be inside the circle for a
data point to be considered a core point.
The points that belong in a cluster but
aren’t core points are called border points.
According to that nomenclature, the data
point p is a core point, and the data point
q is a border point. We say that a data
point p is directly density-reachable from a
data point q, with respect to eps and min-
Points, if the following two conditions
are met:

■ p is inside the epsilon neighborhood of q.
■ There are more than minPoints data points inside the epsilon neighborhood of q.

In figure 4.16, q is directly density reachable from p, but p isn’t directly density reach-
able from q. These are the basic concepts that you need in order to understand the
code in the DBSCANAlgorithm, whose core methods are shown in listing 4.14.

public List<Cluster> cluster() {
 int clusterId = getNextClusterId();

 for(DataPoint p : points) {
 if(isUnclassified(p)) {

 boolean isClusterCreated = createCluster(p, clusterId);

 if(isClusterCreated) {
 clusterId = getNextClusterId();
 }
 }
 }

 List<Cluster> allClusters = new ArrayList<Cluster>();

Listing 4.14 DBSCANAlgorithm: the two core methods of the our implementation

B

Figure 4.16 Core points and border points in
DBSCAN
Licensed to Deborah Christiansen <pedbro@gmail.com>

155DBSCAN
 for(Map.Entry<Integer, Set<DataPoint>> e : clusters.entrySet()) {
 String label = String.valueOf(e.getKey());
 Set<DataPoint> points = e.getValue();
 if(points != null && !points.isEmpty()) {
 Cluster cluster = new Cluster(label, e.getValue());
 allClusters.add(cluster);
 }
 }

 return allClusters;
}

private boolean createCluster(DataPoint p, Integer clusterId) {

 boolean isClusterCreated = false;

 Set<DataPoint> nPoints = findNeighbors(p, eps);

 if(nPoints.size() < minPoints) {
 assignPointToCluster(p, CLUSTER_ID_NOISE);
 isClusterCreated = false;
 } else {

 assignPointToCluster(nPoints, clusterId);

 nPoints.remove(p);

 while(nPoints.size() > 0) {

 DataPoint nPoint = nPoints.iterator().next();

 Set<DataPoint> nnPoints = findNeighbors(nPoint, eps);

 if(nnPoints.size() >= minPoints) {

 for(DataPoint nnPoint : nnPoints) {

 if(isNoise(nnPoint)) {

 assignPointToCluster(nnPoint, clusterId);

 } else if(isUnclassified(nnPoint)){

 nPoints.add(nnPoint);

 assignPointToCluster(nnPoint, clusterId);
 }
 }
 }

 nPoints.remove(nPoint);
 }

 isClusterCreated = true;
 }

 return isClusterCreated;
}

For each point in the dataset that hasn’t been clustered, create a cluster that contains
it; everything else in the cluster method is mere mechanics.

Find the epsilon neighborhood of the data point p, given the parameter eps.

C

D

E

F

G

H

I

J

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

156 CHAPTER 4 Clustering: grouping things together
If there aren’t enough data points in the epsilon neighborhood of p then it’s either
noise or a border point. Treat it temporarily as noise and if it’s a border point we’ll
change its label later. At this stage, no cluster has been created for p.

If the number of data points in the epsilon neighborhood is greater than or equal to
the minimum number of data points minPoints, we can proceed. But first, we need to
remove the given data point (p) from its own set of cluster points.

Iterate through all the data points other than p.

Find its epsilon neighborhood and determine whether it’s directly density reachable.

If it’s a border point, we should assign it to the cluster.

This point isn’t noise but we must examine whether it’s a core point, so we add it to
the original list to find its epsilon neighborhood, and we assign it to the cluster that we
examine

Before we continue with the next data point from the neighborhood of p, we remove
the data point that we just examined

As you might expect from this description, the choice of eps and minPoints is impor-
tant. The best way to identify good values for these two parameters is to experiment
with your data for some known cluster formations. If you deal with a two-dimensional
dataset (the data points have two attributes), a reasonable choice for minPoints is 4.
You can use that value as your starting point and then take a few more values to exam-
ine whether the results of the clustering are improving. The case of multidimensional
datasets is harder because the properties of multidimensional spaces are quite differ-
ent from those of the lower-dimensional spaces; we’ll discuss that in appendix C. The
choice of eps will be easier if you can leverage the following factors:

■ Data normalization. You should use normalized data whenever possible, espe-
cially for more than two dimensions.

■ Availability of statistics about the intrapoint distances.
■ Dataset dimensionality—how many attributes do your data points have?

Provide an initial value for eps such that you’d consider the distance between two
points in the set to be “close.” Then create a few increments in geometric progression,
say, factors of 2 and cluster again. How do the results change as the eps value changes?
If the results don’t change significantly then you’re done; select the average value as
your eps. If the results do change, there are two possibilities:

■ The results get better, or worse, as the value increases.
■ The results don’t show a consistent behavior—for example, you double the

value of eps and the results get worse; you double it again and the results get
better!

The first case is easy. If the clustering results are better as the value increases then
select the maximum value, or keep increasing the value—provided that you have time
and resources—until you don’t get good results.

D

E

F

G

H

I

J

Licensed to Deborah Christiansen <pedbro@gmail.com>

157Clustering issues in very large datasets
 The second case is rare; it typically arises in high-dimensional clustering and is usu-
ally associated with a bad distance metric. So, the first thing that you want to do is to
examine whether you really need all the attributes. The second solution that you can
try is to use a different distance metric that may be more appropriate for your data.
These are the core ideas and the basic steps of an actual implementation for DBSCAN.
The original article by Ester et al. provides a lot more details of the algorithm, and it
should be easier to understand after reading this section.

 All the algorithms that we described so far will work well with most datasets. Some
will perform better than others depending on the nature of your data, as we discussed.
Nevertheless, the quality of the results isn’t the single factor that we need to worry
about, and it’s certainly not the only one. In the next section, we’ll take a closer look
at some clustering issues that are ubiquitous when we deal with very large datasets.

4.7 Clustering issues in very large datasets
There are two broad categories of issues that appear in very large datasets. The first
issue is the number of data points that we want to cluster. This leads us to consider the
computational complexity of the clustering algorithms and its effect on their perfor-
mance. In other words, we want to know the number of computations that we need to
make as a function of the number of data points that we need to cluster. The second
issue is the number of attributes (dimensions) that may be significant for our cluster-
ing. The world that we’re familiar with has three dimensions, so our intuition is devel-
oped for three or fewer dimensions. In higher dimensions, the nature of geometrical
objects and the notion of proximity are different. The implications of that fact are
twofold. First, with more dimensions, you need to do more computations and that, in
turn, will slow you down. Second, there are a number of issues that appear and are
related with the special nature of high-dimensional spaces, which are summarily
referred to as the curse of dimensionality. Let’s look at each of these topics separately.

4.7.1 Computational complexity

It’s important to know the performance characteristics of a clustering algorithm as a
function of the number of data points that we want to cluster. There’s a huge differ-
ence between trying to find clusters of users in MySpace (with O (108) registered
users) versus clusters in the database of some local newspaper (with a few hundred
registered users) or a community college (with a few thousand students). If we want to
quantify the impact of the number of data points (n), then it’s important to under-
stand the computational complexity of the algorithms in space and time. This means the
size of memory and the number of operations that are required, respectively, in order
to execute a particular clustering algorithm. Table 4.2 shows both of these metrics for
the algorithms that we’ve implemented in this chapter; here k denotes the number of
clusters and t the number of iterations (in the case of k-means).

 Notice the prominence of the n2 factor. It’s exactly that quadratic dependency on
the number of data points that causes a problem with many clustering algorithms.
Licensed to Deborah Christiansen <pedbro@gmail.com>

158 CHAPTER 4 Clustering: grouping things together
Data Mining by Margaret Dunham (see references) offers a more detailed comparison
of clustering algorithms in that form. From an efficiency perspective, the k-means
algorithm is a clear winner, and in practice, it’s used widely, probably due to its effi-
ciency. But remember that it doesn’t handle categorical data. The time complexity of
DBSCAN can be improved, as indicated, by using spatial indices on the data points;
since we’re dealing with density on metric spaces, it’s natural to view the values of the
attributes as coordinates for the data points. Typically, R-trees are used for the spatial
indices, and most commercial databases offer R-tree implementations for spatial data.
Nevertheless, you should be aware of the difficulties involved in indexing spatial data
in high dimensions. That’s an active area of research and although many good ideas
have been published, the last word on this problem (efficiently indexing high-dimen-
sional data) hasn’t been said.

 Of course, a wealth of other clustering algorithms has been devised to address
these efficiency issues. BIRCH is a well-studied and quite popular clustering algorithm
that’s designed specifically for large data sets. Its space and time complexity are both
linear—O (n)—and it requires only one scan of the database. This algorithm belongs
in a category of algorithms that are based on data squashing. That is, they create data
structures that store compressed information about the data. A description of such
algorithms would lead us outside the scope of this book. If you want to learn more
about data squashing algorithms, please consult the references.

4.7.2 High dimensionality

The second broad category of issues for very large datasets is the high dimensionality
of the data. In very large datasets, it’s possible that our data points have many attri-
butes, and unless we neglect a number of them from the outset, our metric space can
span several dimensions—sometimes even hundreds of dimensions! We alerted you
about high dimensionality earlier, but we didn’t specify what “high” means. Typically,
high dimensionality implies that we’re dealing with more than 16 attributes—we favor

Table 4.2 The space and time complexity of our clustering algorithms

Algorithm name Space complexity Time complexity

Single link O (n2) O (k n2)

Average link O (n2) O (k n2)

MST single link O (n2) O (n2)

k-means O (n) O (t k n)

ROCK O (n2)
O (n2 log(n)) or

O (n log(n)) with spatial indices

DBSCAN O (n2) O (n2)
Licensed to Deborah Christiansen <pedbro@gmail.com>

159Clustering issues in very large datasets
base 2 here—so, for our problem to be affected by high dimensionality, the number
of dimensions required is O (10). You may wonder, though, why is this such a big deal?
The formulae that we’ve seen so far didn’t restrict us to low-dimensional spaces. So,
what’s going on?

 There are two fundamental problems with high dimensions that are particularly
important for clustering—although most of what we’ll discuss will be pertinent for
classification algorithms as well. The first problem is that the large number of dimen-
sions increases the amount of space that’s available for “spreading” our data points.
That is, if you keep the number of your data points fixed and you increase the number
of attributes that you want to use to describe them, the density of the points in your
space decreases exponentially! So, you can wander around for a long time without
being able to identify a formation (cluster) that’s preferable to another one.

 The second fundamental problem has a frightening name. It’s called the curse of
dimensionality. In simple terms, it means that if you have any set of points in high
dimensions and you use any metric to measure the distance between these points,
they’ll all come out to be roughly the same distance apart! In order to illustrate this
important effect of dimensionality, let’s consider the following simple case, which is
illustrated in figure 4.17.

 If you look at figure 4.17 from left to right, the dimensionality increases by 1 for
each drawing. We start with eight points in one dimension (x axis) distributed in a
uniform fashion, say, between 0 and 1. It follows that the minimum distance that we
need to traverse from any given point until we meet another point is min(D) = 0.125,
whereas the maximum distance is max(D) = 1. Thus, the ratio of min(D) over
max(D) is equal to 0.125. In two dimensions, the eight data points are again distrib-
uted uniformly, but now we have min(D) = 0.5 and max(D) = 1.414 (along the main
diagonal); thus, the ratio of min(D) over max(D) is equal to 0.354. In three dimen-
sions, we have min(D) = 1 and max (D) = 1.732; thus, the ratio of min(D) over

Figure 4.17 The curse of dimensionality: every point tends to have the same distance with any
other point.
Licensed to Deborah Christiansen <pedbro@gmail.com>

160 CHAPTER 4 Clustering: grouping things together
max(D) is equal to 0.577. In other words, as the dimensionality increases, the ratio
of the minimum distance over the maximum distance approaches the value of 1.
This means that no matter which direction you look at, and what distance you mea-
sure, it all looks the same!

 As a result, all the algorithms that rely on distance calculations will run into trou-
ble rather quickly as the number of dimensions increases. In this example, we used
the standard Euclidean distance, but you can use whatever (proper) distance metric
you like and convince yourself that the problem persists. Some people (Kevin Beyer et
al.) have even questioned whether it’s meaningful to talk about the concept of nearest
neighbors in high-dimensional data. For an interesting approach to tackling this prob-
lem, refer to the paper by C.C. Aggarwal.

4.8 Summary
Clustering algorithms are valuable as a data exploration tool. We can construct a hier-
archical structure that contains many levels of clusters or we can build a predeter-
mined number of clusters for our data. There are many application areas for which
clustering can be applied. In theory, any dataset that consists of objects that can be
defined in terms of attribute values is eligible for clustering. But attention is required
in the choice of measuring distances between our objects and the selection of an
appropriate algorithm.

 In this chapter, we covered grouping forum postings and identifying similar web-
site users. The complexity of these algorithms varies from simple SQL statements to
fairly advanced mathematical techniques. We presented a general overview of cluster-
ing types and full implementations for six algorithms: single link, average link, MST
single link, k-means, ROCK, and DBSCAN.

 The single-link, average-link, and MST single-link algorithms are agglomerative
hierarchical algorithms and assume that all data is present at the time of computation.
The computational complexity, in both space and time, isn’t very good because it var-
ies as the square of the number of data points. Thus, although they’re easily imple-
mented, these algorithms won’t perform well on large data sets. One caveat here is the
MST-based single-link algorithm. We can improve the time complexity of the MST sin-
gle-link algorithm and make it almost proportional to the number of data objects.

 The k-means algorithm is an iterative partitional algorithm that’s very efficient and
often results in good results. But it doesn’t handle categorical data well because it
relies on the geometric notion of a centroid, which may not be readily applicable
when we deal with categorical data. Another disadvantage is its inability to handle out-
liers—points that are far away from the main clusters.

 The ROCK algorithm is particularly well-suited for Boolean and categorical data
because it relies on the number of links rather than a distance. It’s a hierarchical
agglomerative algorithm whose space complexity isn’t good—O (n2)—and its time
complexity is even worse—O (log(n) n2).

 The DBSCAN algorithm introduced the notion of density, and implicitly distin-
guishes between core points and border points in a cluster. It handles outliers well,
Licensed to Deborah Christiansen <pedbro@gmail.com>

161To Do
and although its space and time complexity are O (n2), it can be used in combination
with the k-means algorithm to provide a good and fast clustering approach; see the
corresponding to-do item in the next section.

 Our coverage is neither exhaustive nor complete. There are many more algorithms
in the literature and many variations of the algorithms that we already discussed. It
would be impossible to fit them all in a single section of this book. But you’ve now
learned all the fundamentals, and you have solid implementations for a number of clus-
tering algorithms that you can experiment with and extend to fit your purpose.

4.9 To Do
1 The SQLEM algorithm This is a SQL-based version of the Expectation-Maximiza-

tion (EM) algorithm. This is a well-known algorithm in statistics that uses two
steps, an E-step and an M-step. The theory behind the algorithm involves advanced
mathematical knowledge, which we don’t assume that you have. But without
complicating things, you can think of the k-means clustering (described in sec-
tion 4.4) as an EM algorithm; the E-step is the assignment, whereas the M-step is
the update of the centroid values.

Since the vast majority of applications rely, one way or another, on a rela-
tional database, you can implement this algorithm and compare its results with
what we presented in this chapter. A detailed description of the algorithm can
be found in the original paper by Carlos Ordonez and Paul Cereghini.

2 Minimum spanning tree (MST) algorithms We’ve provided an implementation of
the Prim-Jarník algorithm. Minimum spanning trees aren’t relevant only for clus-
tering; they also apply to network organization and touring problems. In 1926,
Otakar Borůvka presented the first known algorithm for calculating the MST, in
the context of evaluating efficient electrical coverage of Moravia!

In a tutorial that’s freely available on the internet (see the references sec-
tion), Jason Eisner explains the classical algorithms and also presents the
improved approach of Harold Gabow, Zvi Galil, and Thomas H. Spencer, as
well as the randomized algorithm of David R. Karger, Philip N. Klein, and Rob-
ert E. Tarjan. The last one performs only O (m) computations, where (m) is the
number of the edges. Read the tutorial discussion by Eisner and extend the
MST class to support the more efficient algorithms that he presents.

3 ROCK: Evaluating the expected number of links As we mentioned earlier, the ROCK
algorithm is particularly good at dealing with categorical and Boolean attribute
values by using the notion of links instead of direct distance comparisons. It
finds the “best” clusters by maximizing the value of the goodness measure. The
goodness measure is arbitrary; the main idea is that we use the links for our
comparison of best clusters, but the specific choice of implementation can vary.
The heuristic that’s used in our implementation is the one that was originally
proposed by Ramanathan V. Guha et al. It calculates the goodness measure as
the ratio of the number of cross links between two clusters divided by the
expected number of cross links between those clusters.
Licensed to Deborah Christiansen <pedbro@gmail.com>

162 CHAPTER 4 Clustering: grouping things together
What do you think is the rationale behind that choice? What other estimates
can we construct for the expected number of links between two clusters? Inves-
tigate various ideas and compare the results. What happens if we simply con-
sider the goodness measure to be proportional to the number of cross links
between two clusters?

4 Large dataset clustering In the case of large datasets, it’s often desirable to com-
bine the methods that we discussed in this section in order to balance efficiency
with good clustering quality. One possible hybrid scheme would be combining
the k-means algorithm with either the ROCK algorithm (if your data is domi-
nated by categorical or Boolean attributes), or the DBSCAN algorithm (if your
data refer to spatial or other metric coordinates where metric distance is mean-
ingful and effective).

How would you go about it? Recall that k-means has the best performance in
terms of space and time. So, if you have a lot of processing power available, you
could take a parallelization approach. That is, you could use the k-means for a
few iterations and for a small number of high-level clusters, which would then
be processed by the ROCK or the DBSCAN algorithms. Write an implementation
for that purpose and use a large dataset (hundreds of thousands of data points)
to test your results. You could use the documents on your personal computer or
a copy of a large database from work.

Consider the alternative of sampling the large dataset and clustering the
sample with a powerful algorithm such as ROCK or DBSCAN. Subsequently, use
the number of clusters identified as the value of k, and select the centroids of
the sample clusters to seed the iterations of the k-means algorithm. Compare
the two approaches: which one gives you better clusters (judged empirically by
you looking at the data)? Which approach is more efficient? Can you analyti-
cally justify your findings?

4.10 References
 Aggarwal, C.C. “Towards Meaningful High-Dimensional Nearest Neighbor Search by Human-

Computer Interaction.” ICDE, 2002. http://citeseer.ist.psu.edu/aggarwal02towards.html.
 Arthur, D. and S. Vassilvitskii. “k-Means++: The advantages of careful seeding.” Symposium on

Discrete Algorithms (SODA), 2007. http://www.stanford.edu/~darthur/kMeansPlus-
Plus.pdf.

 Beyer, K., R. Ramakrishnan, U. Shaft, J. Goldstein. “When is nearest neighbor meaningful?”
ICDT Conference 1999.

 Bradley, P.S., U. Fayyad, and C. Reina. “Scaling clustering algorithms to large databases.” Proc.
4th International Conference on Knowledge Discovery and Data Mining (KDD-98). AAAI
Press, pp. 9 – 15.

 Dhillon, I.S., J. Fan, and Y. Guan. “Efficient clustering of very large document collections.” Data
Mining for Scientific and Engineering Applications, 2001. Kluwer Academic Publishers.

 Dhillon, I.S., S. Mallela, and R. Kumar. “A Divisive Information-Theoretic Feature Clustering
Algorithm for Text Classification.” Journal of Machine Learning Research 3 (March 2003).

 Eisner, J. “State-of-the-art algorithms for minimum spanning trees – A tutorial discussion.”
1997. http://citeseer.ist.psu.edu/eisner97stateart.html.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://citeseer.ist.psu.edu/aggarwal02towards.html
http://www.stanford.edu/~darthur/kMeansPlusPlus.pdf
http://www.stanford.edu/~darthur/kMeansPlusPlus.pdf
http://citeseer.ist.psu.edu/eisner97stateart.html

163References
 Kruskal, J.B. “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Prob-
lem.” Proceedings of the American Mathematical Society, Vol 7 (1), pp. 48–50. 1956.

 Ordonez, C. and Cereghini, P. “SQLEM: Fast clustering in SQL using the EM algorithm.” ACM
SIGMOD Rec. 29 (2), pp.559 – 570. 2000.

 Prim, R.C. “Shortest connection networks and some generalizations.” Bell System Tech. J. 1957.
 Sheikholeslami, G., S. Chatterjee, and A. Zhang. “WaveCluster: A Multi-Resolution Clustering

Approach for Very Large Spatial Databases.” Proceedings of the 24th VLDB Conference. 1998.
 Tung, A.K.H., J. Hou, and J. Han. “Spatial clustering in the presence of obstacles.” In Proceedings

of the 17th ICDE, 359-367, Heidelberg, Germany. 2001.

Licensed to Deborah Christiansen <pedbro@gmail.com>

Classification: placing
 things where they belong
“What is this?” is the question children perhaps ask most frequently. The popularity
of that question among children—whose inquisitive nature is as wonderful as it is
persistent—shouldn’t be surprising. In order to understand the world around us, we
organize our perceptions into groups and categories (labeled groups, possibly struc-
tured). In the previous chapter, we presented a number of clustering algorithms that
can help us group data points together. In this chapter, we’ll present a number of
classification algorithms that’ll help us assign each data point to an appropriate cate-
gory, also referred to as a class (hence the term classification). The act of classification
would answer a child’s question by providing a statement in the form “This is a boat,”
“This is a tree,” “This is a house,” and so on. Classification relies on a priori reference
structures that divide the space of all possible data points into a set of classes that are

This chapter covers:
■ Understanding classification techniques based

on probabilities and rules
■ Automatically categorizing email messages
■ Detecting fraudulent financial transactions

with neural networks
164

Licensed to Deborah Christiansen <pedbro@gmail.com>

165The need for classification
usually, but not necessarily, nonoverlapping. Contrast this with the arbitrary nature of
the clusters that we described in the previous chapter.

 We could argue that, as part of our mental processing, clustering precedes classifi-
cation because the reference structures that we need for classification are much richer
representations of knowledge than a statement of the sort “X belongs in the same
group as Y.” The term ontology is typically used for a reference structure that consti-
tutes a knowledge representation of the world or a part of the world that’s of interest
in our application. A practical aspect of classification that’s usually not discussed is the
maintenance of an ontology. There are many books that exclusively address aspects of
ontology engineering and ontology management (see Staab and Studer; Gómez-Pérez,
Fernández-López, and Corcho).

 In section 5.1, we provide a number of real-world examples where classification is
important. We also provide the definition of an abstract ontology structure and pres-
ent an analogy between ontology structures and the structure of Java code! Suffi-
ciently motivated, we proceed to section 5.2, where we present an overview of
classifiers. We clearly can’t cover all known classifiers in this book, so the overview
should help you orient yourself in the related literature.

 In section 5.3, you’ll learn the naïve Bayes classification algorithm, one of the most
celebrated and well-known classification algorithms of all time. We’ll discuss both the
specific case of filtering spam messages and a more general case of placing email mes-
sages in several appropriate folders. This is a good example of classifying freeform
text with a statistical classification algorithm.

 But the most common classification algorithms for email messages are based on
rules. Section 5.3.2 covers email classification from the perspective of a rules engine. We
introduce all the relevant concepts and demonstrate the use of rules by employing the
Drools (JBoss) rules engine. In section 5.4, we tackle fraud detection as a classification
problem. In that context, we introduce another broadly used classification
approach—classification through neural networks.

 How can we tell whether we assigned the most appropriate class to a data point?
How can we tell whether classifier A is better than classifier B? If you ever read bro-
chures of business intelligence tools you may be familiar with statements such as “our
classifier is 75% accurate.” What’s the meaning of such a statement? Is it useful? These
questions will be addressed in section 5.5. We’ll discuss classifying large volumes of
data points, classifying with respect to very large ontology structures, and doing effi-
cient online classification. Each of these three mutually nonexclusive categories
requires special attention, and is common in real-world applications.

 Let’s now begin by discussing the potential applications of classification and pres-
ent of technical terms that we’ll encounter repeatedly along the way. So, what’s classi-
fication good for? What practical problems can it solve for us?

5.1 The need for classification
Whether we realize it or not, we encounter classification on a daily basis. In our every-
day experiences, we can list the food items on a restaurant’s menu, which are classified
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.jboss.org/drools/
http://www.antlr.org/
http://www.janino.net/
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html#d0e766.
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html#d0e766.

166 CHAPTER 5 Classification: placing things where they belong
according to menu categories—salads, appetizers, specialties, pastas, seafood, and so
on. The articles in a newspaper or a newsgroup on the internet are classified based on
their subject—politics, sports, business, world, entertainment, and so on.

 The books in a library carry a call number, which consists of two numbers: the Dewey
classification number and the Cutter number. The top categories of that system are things
such as generalities, religion, natural science and mathematics, and so forth. The
Library of Congress in the United States has its own classification system that was first
developed in the late nineteenth and early twentieth centuries to organize and
arrange its book collections.

 Over the course of the twentieth century, the Library of Congress system was
adopted for use by other libraries as well, especially large academic libraries in the
United States. We mention two systems of classifying books because the Library of
Congress classification system isn’t strictly hierarchical as the Dewey classification sys-
tem is, where the hierarchical relationships between the topics are reflected in the
numbers of the classification. As we’ll see, it’s important to distinguish between refer-
ence structures that are hierarchical and those that aren’t.

 In medicine, a plethora of classification systems are used to diagnose injuries or
diseases. For example, the Schatzker classification system is used by radiologists and
orthopedic surgeons to classify tibial plateau fractures (a complex knee injury). Simi-
larly, there are classification systems for spinal cord injuries; for coma, concussion,
and traumatic brain injuries; and so on.

 The Occupational Injury and Illness Classification (OIIC) manual provides a classi-
fication system for coding the characteristics of injuries, illnesses, and fatalities in the
Survey of Occupational Injuries and Illnesses (SOII) and the Census of Fatal Occupa-
tional Injuries (CFOI), according to the U.S. government. The ICD-10, by the World
Health Organization (WHO), was endorsed by the 43rd World Health Assembly in
May 1990, and came into use in member states as of 1994. It’s used to classify diseases
and other health problems recorded on many types of health and vital records includ-
ing death certificates and hospital records. After your visit to the doctor’s office, that’s
what your insurance company consults to determine the amount of coverage. Top-
level categories include certain infectious and parasitic diseases; neoplasms; endo-
crine, nutritional, and metabolic diseases; and so on. In biological sciences, the Lin-
naean classification system uses two attributes for classifying all living things—genus
and species. You must have heard of the term Homo sapiens, of which Homo is our genus
and sapiens is our species. This classification can, and typically is, extended to include
other attributes such as family, order, class, phylum, and so forth.

 Let’s digress to alarm you about the number of attributes. Generally speaking, the
more attributes you use, the finer the degree of classification is going to be. A “large”
number of attributes is usually a good thing, but there are caveats to this general prin-
ciple. One notorious symptom of dealing with many attributes is the curse of dimension-
ality, which was discussed in section 4.6.2. Typically, a large number of attributes
means that we’re dealing with more than sixteen.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html#d0e766.

167The need for classification
 As you may recall, the curse of dimensionality refers to the fact that our space
becomes more and more homogenous as the number of attributes increases. In other
words, the distance between any two points will be roughly the same no matter which
points you select and what metric you apply to measure the distances. If that’s the
case, it becomes increasingly difficult to distinguish which category is “closer” to a
given data point, since no matter where you “stand” in our space, everything seems to
be the same distance apart! You can always add attributes to your ontology, so that you
can have all your domain knowledge in one place and later select the attributes that
should be used for classification.

 It should be clear from these examples that flat reference structures aren’t as “rich” as
hierarchical reference structures. In turn, the hierarchical reference structures are less rich
than those that are hierarchical and semantically enriched. This observation falls
again under our discussion of ontologies. We didn’t provide a clear definition of the
term ontology because it doesn’t seem that there’s consensus on that matter.

 For the purposes of this book, an ontology consists of three things: concepts,
instances, and attributes.

 In figure 5.1, we depict a minute segment of a (rudimentary) general ontology by
focusing on the concepts of “vehicle.” Concepts are depicted as ellipses, instances are
depicted as rectangles, and attributes are depicted as rounded rectangles. Note the
hereditary property of attribute assignment. If attribute 1 is assigned to the root of the
concept tree then it cascades to the concept leaf nodes. Thus, values for attribute 1 can
be assigned to instances of a boat and an automobile. Only an automobile instance can
have values for attribute 2. Attribute 1 could be the attribute Name, which for practical
reasons you always want to have, whereas attribute 2 could be the attribute Number of
wheels. Attributes are defined at the level of the concepts, but only instances have con-
crete and unique values because only instances represent real “things.”

 Think of concepts as analogous to Java classes, instances as analogous to instances
of Java classes, and attributes as variables of Java classes. Clearly, a source code base
that uses packages to group together classes by functionality or component, that uses
inheritance to abstract common structure and behavior, and that properly uses
encapsulation, is superior to a source code base that doesn’t have these qualities. Sim-
ilar to attributes, in our definition of an ontology, when you define a class, you define
the data type of the variables but you don’t assign a value to a variable (unless it’s a
constant). This is a good working definition that’ll serve you well 80% to 90% of the
time. If you’re ever in doubt, you can consult this analogy to obtain some insight into
your structure.

 We could obviously go on with more classification systems; they’re everywhere. The
point is that classifying data is equivalent to structuring or organizing it. Classification
systems improve communication by reducing errors due to ambiguities. They also
help us organize our thoughts and plan our actions. The reference structure, which is
used for organizing our data, can be as simple as a set of labels or as advanced as a
semantic ontology. Have you heard of the semantic Web? At the heart of the semantic Web
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.oclc.org/dewey/
http://www.oclc.org/dewey/
http://www.oclc.org/dewey/
http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/
http://www.loc.gov/cds/
http://www.loc.gov/cds/
http://www.loc.gov/cds/
http://uwmsk.org/schatzker/
http://uwmsk.org/schatzker/
http://www.bls.gov/iif/oshoiics.htm
http://www.bls.gov/iif/oshoiics.htm
http://home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf

168 CHAPTER 5 Classification: placing things where they belong
(see Antoniou and van Harmelen) lie a number of technologies and formal specifica-
tions related to creating, using, and maintaining semantic ontologies. Ontologies are
also useful in model-driven architectures (see Gasevic, Djuric, and Devedzic), which is
a software design initiative of the Object Management Group (OMG) (http://
www.omg.org/).

 Look at your database. Your application could be an online store, an intranet
document management system, an internet mashup, or any other kind of web applica-
tion. When you think about your data and the ways it could be organized, you’ll realize
the value of a classification system for your application. Starting with section 5.3 and

Figure 5.1 An example that depicts the basic elements of a reference structure (a rudimentary ontology)
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.omg.org/
http://www.omg.org/

169An overview of classifiers
continuing through most of chapter 6, we’ll introduce classification mechanisms in
some fictitious web applications in order to demonstrate the use of classification algo-
rithms and the issues that may arise. But first, let’s give an overview of classification sys-
tems. If you want to jump into action quickly, you can skip the next section.

5.2 An overview of classifiers
One way that we could view the set of all classification systems is with respect to the ref-
erence structure that they use. At the top level of such a perspective, we can divide all
classification systems into two broad categories—binary and multiclass. Binary classifica-
tion systems, as the name suggests, provide a yes/no answer to the question: Does this
data point belong to class X? A medical diagnosis system could answer the question of
whether a patient has cancer. Or an immigration classification system could answer
whether a person is a terrorist. Multiclass classification systems assign a data point to a
specific class, out of many, such as the assignment of a news article in a news category.

 Within the set of multiclass classification systems, we can further group classifica-
tion systems on the basis of two criteria: whether the multiple classes are discrete or
continuous, and whether the multiple classes are “flat” (just a list of labels) or have a
hierarchical structure. The Dewey classification scheme and the ICD-10 catalogue
from the previous section are examples of a classification system that has multiple dis-
crete and finite classes. The result of classification may be a continuous variable such
as when classification is used for predictions, also known as forecasting. If you provide
the value of a stock on Monday, Tuesday, Wednesday, and Thursday as input, and want
to find the value of a stock on Friday, you can cast that problem as a multiclass classifi-
cation that’s discrete or continuous. The discrete version could predict whether the
stock price will increase, remain unchanged, or decrease on Friday. The continuous
version could provide a prediction for the actual stock price.

 Categorization of classification systems, with respect to the underlying technique,
isn’t quite as clear or widely accepted. But we could say that there are two broad cate-
gories that have gained a significant level of adoption in the industry. The first cate-
gory includes statistical algorithms and the second structural algorithms, as shown in
figure 5.2.

 Statistical algorithms come in three flavors. Regression algorithms are particularly
good at forecasting—predicting the value of a continuous variable. Regression algo-
rithms are based on the assumption that it’s sufficient to fit our data to a particular
model; quite often that model is a linear function of the variables at hand. Another
kind of statistical classification algorithms stems from the Bayes theorem, which we
encountered briefly in chapter 2. A fairly successful and modern statistical approach
combines Bayes theorem with a probabilistic network structure that depicts the
dependency between the various attributes of the classification problem.

 Structural algorithms have three main branches: rule-based algorithms, which
include if-then rules and decision trees; distance-based algorithms, which are generally
separated into functional and nearest neighbor schemes; and neural networks (NN).
Neural networks form a category on their own—although we should mention that
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://spamassassin.apache.org/
http://spamassassin.apache.org/
http://spamassassin.apache.org/
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf

170 CHAPTER 5 Classification: placing things where they belong
equivalency between certain neural networks and some advanced statistical algo-
rithms (Gaussian processes) has been established and studied extensively. In the fol-
lowing subsections, we’ll give a brief summary of each of these classifier categories.

5.2.1 Structural classification algorithms

As shown in figure 5.2, the branch of rule-based structural algorithms consists of pro-
duction rules (if-then clauses) and decision tree (DT)–based algorithms. The production
rules can be collected manually by human experts or deduced by decision trees. Rule-
based algorithms are typically implemented as forward-chaining production systems—a
frightening term, if you ask me! The best algorithm in this category is called Rete (see
Russell and Norvig); rete means “network” in Latin. It’s the basis for well-known librar-
ies such as CLIPS, Jess, and Soar.

 In this book, we’ll be using an object-oriented implementation of Rete, which is
offered by the JBoss project. It’s the JBoss Rules library, also known as Drools (the origi-
nal project name for this rule engine). This project is stable, it has ample documenta-
tion, and the code base is appropriate for study and development alike. Incidentally,
we should mention that we enjoy working with the Drools APIs as much as we enjoy
working with the Lucene APIs, which we encountered in chapter 2. These two projects
are truly production-ready.

 The decision tree-based algorithms are based on a simple but powerful idea. Did
you ever read Charles Dickens’s A Christmas Carol? In that book, Dickens describes a

Figure 5.2 An overview of the classification algorithms based on their design
Licensed to Deborah Christiansen <pedbro@gmail.com>

171An overview of classifiers
game (Yes and No) in which Scrooge’s nephew had to think of something and the rest
had to figure out what it was, while he would answer only yes or no, depending on
their question. Versions of this game exist in many cultures—it’s fairly popular in
Spanish-speaking countries among children, where it’s known as veo, veo. Similar to
these familiar games, the idea behind most DT algorithms is to ask questions whose
answers will eliminate as many candidates as possible based on the provided informa-
tion. Decision-tree algorithms have several advantages, such as ease of use and compu-
tational efficiency. Their disadvantages are usually prominent when we deal with
continuous variables, because we’re forced to perform a discretization—the contin-
uum of the values must be divided into a finite number of bins in order to construct
the tree. In general, decision-tree algorithms don’t have good generalization proper-
ties, and as a result, they don’t perform well with unseen data. A commonly used algo-
rithm in this category is C5.0 (on Unix machines) or See5 (on Microsoft Windows
machines). It can be found in a number of commercial products, such as Clementine
(http://www.spss.com/clementine/) and RuleQuest (http://www.rulequest.com/).

 The second branch of structural algorithms is composed of distance-based algo-
rithms. In the previous chapters, we introduced and extensively used the notions of
similarity measure and generalized distance. These algorithms are fairly intuitive, but
it’s easy to misuse them and end up with bad classification results because a lot of the
data point attributes aren’t directly related to each other. A single similarity measure
can’t expediently capture the differences in the way that the attributes should be
measured; careful normalization and analysis of the attribute space is crucial to the
success of distance-based algorithms. Nevertheless, in many low-dimensional cases,
with low complexity, these algorithms perform well and are fairly simple to imple-
ment. We can further divide distance-based algorithms into functional and nearest
neighbor-type algorithms.

 Functional classifiers approximate the data by function, as the name suggests. This
is similar to regression, but we differentiate between them on the basis of the rationale
behind the use of the function. In regression, we use a function as a model of the
probability distribution (Dunham); in the case of functional classifiers, we’re merely
interested in the numerical approximation of the data. In practice, it’s hard (and per-
haps pointless) to distinguish between linear regression and linear approximation
through the minimization of the squared error.

 Nearest-neighbor algorithms attempt to find the nearest class for each data point.
By using the same formulas that we’ve seen earlier about generalized distances, we
can calculate the distance of each data point from each available class. The class that’s
closest to the object is assigned to that object. Perhaps the most common classification
algorithm of that type is K nearest neighbors (kNN), although another algorithm
known as learning vector quantization (LVQ) is also well studied and broadly adopted.

 Neural network (NN) algorithms belong in a subcategory of structural algorithms by
themselves. These algorithms require a good deal of mathematical background to be
presented properly. We’ll do our best to present them from a computational perspective
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.spss.com/clementine/
http://www.rulequest.com/

172 CHAPTER 5 Classification: placing things where they belong
without resorting to mathematics. The main idea behind this family of classification
algorithms is the construction of an artificial network of computational nodes that’s
analogous to the biological structure of the human brain, which is basically made of neu-
rons and synapses that connect them.

 Neural network algorithms have been shown to perform well on a variety of prob-
lems. There are two major disadvantages of neural networks: we don’t have a design
methodology that would be applicable in a large number of problems, and it’s difficult
to interpret the results of neural network classification; the classifier may commit few
errors but we’re unable to understand why. This is why we consider neural networks to
be a “black box” technique, as opposed to a decision tree or a rule-based algo-
rithm—where the result of a classification for a particular data point can be easily inter-
preted.

5.2.2 Statistical classification algorithms

Regression algorithms are based on the idea of finding the best fit of the data to a for-
mula; the most common formula is a linear function of the input values (see Hastie,
Tibshirani, and Friedman). Regression algorithms are usually employed when the
data points are inherently numerical variables (such as the dimensions of an object,
the weight of a person, or the temperature in the atmosphere) but, unlike Bayesian
algorithms, they’re not very good for categorical data (such as employee status or
credit score description). In addition, if the model about the data is linear then it’s
not easy to justify the adjective “statistical”; in essence, linear regression isn’t different
from the good old high school exercise of fitting a line to a bunch of x-y points.

 Things get more interesting and obtain the flavor of a statistical approach in the
case of so-called logistic regression. In this case, the model (the logistic function) takes
values between 0 and 1, which can be interpreted as the probability of class member-
ship and works well in the case of binary classification (see Dunham).

 Most of the techniques in the statistical algorithms category use a probability theo-
rem known as the Bayes rule or Bayes theorem (see Papoulis and Pillai). We encountered
the Bayes rule in chapter 2, in the context of learning from user clicks. In this kind of
statistical classification algorithms, the least common denominator is the assumption
that the attributes of the problem are independent of each other, in a fairly quantita-
tively explicit form. The fascinating aspect of Bayesian algorithms is that they seem to
work well even when that independence assumption is clearly violated! In section 5.3,
we’ll study the most celebrated algorithm of this approach—the naïve Bayes classifica-
tion algorithm.

 Bayesian networks are a relatively modern approach to machine learning that
attempts to combine the power of the Bayes theorem with the advantages of structural
approaches, such as decision trees. Naïve Bayes classifiers and their siblings can repre-
sent simple probability distributions, but fall short in capturing the probabilistic struc-
ture of the data, if there is one. By leveraging the powerful representation of directed
acyclic graphs (DAG), the probabilistic relations of the attributes can be depicted graph-
ically. We won’t cover Bayesian networks in this book; if you’re interested in learning
Licensed to Deborah Christiansen <pedbro@gmail.com>

173An overview of classifiers
more about this subject then you should look at Learning Bayesian Networks by Richard
E. Neapolitan.

5.2.3 The lifecycle of a classifier

No matter what type of classifier you choose for your application, the lifecycle of your
classifier will fit in the general diagram of figure 5.3. There are three stages in the life-
cycle of a classifier: training, testing, and production.

 In the training stage, we provide the classifier with data points for which we’ve
already assigned an appropriate class. Every classifier contains a number of parame-
ters that must be determined before it’s used. The purpose of that stage is to deter-
mine the various parameters; we used a question mark inside a star to indicate that the
primary goal is determining these parameters. In the validation stage, we want to vali-
date the classifier and ensure that before we roll it out to a production system, we’ve
achieved a certain level of credibility for our results. We’ve used an E in a circle to
indicate that the primary goal is determining the classification error, but the quality
standard can and should be measured by various metrics (see section 5.6 for a discus-
sion on the credibility and cost of classification). The data that we use in the validation
stage (test data) must be different than the data that we used in the training stage
(training data).

 The training and validation stages may be repeated many times before the classi-
fier transitions into the production stage, because there may be configuration param-
eters that aren’t identified by the training process but are given as input during the
design of a classifier. This important point means that we can write software that wraps
the classifier and its configuration parameters for the purpose of automatically testing
and validating a large number of classifier designs. Even classifiers that are fundamen-
tally different in nature, such as naïve Bayes, neural network, and decision trees, could
participate in the testing. We can either pick the best classifier, as determined by the
quality metrics of the validation stages, or combine all the classifiers into what could

Figure 5.3 The lifecycle of a
classifier: training, testing, use
in production
Licensed to Deborah Christiansen <pedbro@gmail.com>

174 CHAPTER 5 Classification: placing things where they belong
be called a metaclassifier scheme. This approach is gaining ground in the industry and
has provided consistently better results in a wide range of applications. We’ll discuss
combining classifiers in chapter 6.

 In the production stage we’re using our classifier in a live system to produce classi-
fications on-the-fly. Typically, the parameters of the classifier don’t change during the
production stage. But it’s possible to enhance the results of the classifier by embed-
ding (into the production stage) a short-lived training stage that’s based on human-in-
the-loop feedback. These three steps are repeated as we get more data from our pro-
duction system and as we come up with better ideas for our classifier.

 We’ve now seen the big picture about classification algorithms. In the literature,
you can find many different overviews of classification algorithms (such as Holmström
et al.). In the following section, we’ll introduce one of the most celebrated statistical
classification algorithms: the naïve Bayes classifier. In particular, we’ll demonstrate the
use of classification for categorizing legitimate email messages and filtering out spam.

5.3 Automatic categorization of emails and spam filtering
In this section, we want to achieve two objectives. Our first objective is coarse in its
scope—we want to be able to distinguish between legitimate email messages and
spam, which is an example of binary classification. Our second objective is to achieve a
finer granularity of sorting email messages. we want to refine our classification results
and be able to categorize nonspam email messages into one of the following catego-
ries: business, world, usa, and sports. This is an example of a multiclass classification.

 Email doesn’t require special introduction. It was one of the first applications that
became available with the advent of the internet, and it’s perhaps the most common
application in use today. For most users, all messages go straight to the inbox.
Wouldn’t it be nice if you could define your own folders and have your emails (auto-
matically) distributed in the appropriate folders? You could have a folder with an icon
that depicts hell and send all your spam email (also known as unsolicited bulk email)
straight to that folder!

 Your email client probably already does that. Most email clients today implement at
least some form of a rule-based classification. Due to this, most of these clients aren’t
very good at learning, in the sense that they don’t generalize from previously “seen”
and manually categorized email messages. Web email clients offer unprecedented
opportunities in that respect, because algorithms that can generalize can quickly cover
a much broader range of emails messages such as brand new spam messages.

 The algorithms that we’ll discuss here are applicable for an arbitrary collection of
documents. You could use them in an application that allows users to upload their
Word or PDF files and offers automatic categorization (another marketing term for
classification) of the documents into a list of user-provided categories.

 In our example for this section, the email collection is generated from the same
files that we used in chapter 2 for searching through web pages. For each web page
from chapter 2, we’ve created an email that corresponds to it. If you read that chapter
Licensed to Deborah Christiansen <pedbro@gmail.com>

175Automatic categorization of emails and spam filtering
then you’re already familiar with the content. If you didn’t read it yet, we should tell
you that our emails include the following (the choice of content was random and the
temporal context was November 2006):

■ Seven emails that are related to business news. Three are related to Google’s
expansion into newspaper advertisement, another three primarily discuss NVidia
stock, and one talks more generally about stock price and index movements.

■ Three emails that are related to Lance Armstrong’s attempt to run the mara-
thon in New York.

■ Four emails that are related to U.S. politics and, in particular, the congressional
elections.

■ Five emails that are related to world news; four of them are about Ortega win-
ning the elections in Nicaragua and one about global warming.

■ Four emails that are spam.

Email classification is interesting in many respects. One peculiarity is there’s “some-
one out there” trying to beat your classifier. In fact, the spammers may use the same
techniques that we describe here to beat your email classification scheme, so keep an
eye on the competition! We use the term scheme intentionally. You’d hardly ever use
only a classifier to write an email-filtering application or an email organizer. Here’s a
list of things that complement the classifiers:

■ Header tests
■ Automatic email address white- and blacklists
■ Manual email address white- and blacklists
■ Collaborative spam identification databases
■ Real-time blackhole lists (RBLs)
■ Character set and locale identification

Our focus is on the intelligent aspects of email classification systems, so we won’t
cover the other techniques that we mentioned. For an example of a useful module,
look at the Apache project Spam Assassin (http://spamassassin.apache.org/). We’ll
present two classification methods that you’d use to create such systems. The first
classification method will be based on the naïve Bayes classifier that we introduced in
chapter 2. The second classification method will be based on rules and we’ll use the
Drools rules engine.

5.3.1 NaïveBayes classification

In this section, we’ll use a statistical classifier that’s encapsulated in the EmailClassi-
fier class. As we mentioned earlier, it employs what’s known as the naïve Bayes algo-
rithm by extending the NaiveBayes class, which is a general-purpose implementation
of the naïve Bayes algorithm. In general, classifiers are agnostic with respect to the
objects of classification; they’re only concerned with Concepts, Instances, and Attri-
butes. A classifier’s job is to assign a Concept to an Instance; that’s all it does. In order
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://spamassassin.apache.org/

176 CHAPTER 5 Classification: placing things where they belong
to know what Concept should be assigned to a particular Instance, a classifier reads a
TrainingSet—a set of Instances that already have Concepts assigned to them. Upon
loading those Instances, the classifier trains itself; put another way it learns how to
map a Concept to an Instance based on the assignments in the TrainingSet. The way
that each classifier trains depends on the classifier. In this chapter, we’ll use the terms
concept, class, and category interchangeably.
SAMPLING EMAIL MESSAGES AND TRAINING THE CLASSIFIER

Let’s start by demonstrating how to load the emails and train our email classifier. List-
ing 5.1 shows the BeanShell script that you can run to accomplish the loading of the
emails and the training of the classifier.

EmailDataset trainEmailDS = EmailData.createTrainingDataset();

trainEmailDS.printEmail("biz-04.html");
trainEmailDS.printEmail("spam-biz-03.html");

EmailClassifier emailFilter = new EmailClassifier(trainEmailDS, 10);

emailFilter.train();

The class EmailData is responsible for loading the HTML files that we used in chap-
ter 2 and translating them into instances of the Email class, which is a simple class that
encapsulates an email message based on the attributes from, to, subject, and text-
Body. The method createTrainingDataset() loads the list of documents that we
want to use for training our classifier. That list is given by the two-dimensional String
array TRAINING_DATA; the testing dataset is determined by the two-dimensional String
array TEST_DATA. You can change the content of these lists and observe the effect on
the results of classification. An honest evaluation should use different sets of files for
training and testing.

This step prints the content of two emails—one legitimate and one spam—just to
make sure that our data loaded properly before we proceed, and gauge the kind of
content that we’re working with.

We instantiate EmailClassifier by passing the EmailDataset reference and the num-
ber of terms that should be taken into consideration in the analysis of the emails. For
each email, we analyze the content and retain the top 10 (in this example) most fre-
quent terms.

We train the classifier. This is a sanity check to ensure that we have instances to train
on; it sets the attributes on which we want to train the classifier, calls the train()
method of the NaiveBayes parent class, and sets an ad hoc level of probability for
attribute values that we haven’t seen before.
THE EMAIL CLASSIFIER IN ACTION

Once we have our classifier trained we’re ready to test it. Listing 5.2 is the continua-
tion of listing 5.1; so, you need to execute it within the same shell. Note how easy it is
to use the classifier at this level. It’s literally two lines of code!

Listing 5.1 Loading the email training set and training the NaiveBayes classifier

B

C

D

E

B

C

D

e

Licensed to Deborah Christiansen <pedbro@gmail.com>

177Automatic categorization of emails and spam filtering
EmailDataset testEmailDS = EmailData.createTestDataset();

email = testEmailDS.findEmailById("biz-01.html");
emailFilter.classify(email);

email = testEmailDS.findEmailById("sport-01.html");
emailFilter.classify(email);

email = testEmailDS.findEmailById("usa-01.html");
emailFilter.classify(email);

email = testEmailDS.findEmailById("world-01.html");
emailFilter.classify(email);

email = testEmailDS.findEmailById("spam-biz-01.html");
emailFilter.classify(email);

The results are shown in figure 5.4. Note that all emails are classified properly. This
provides a baseline for experimenting with the settings. It also allows you to compare
the change in the accuracy of the classifier as you augment or reduce the training set.

 Note that it’s not hard to be successful in classifying our emails if all the unseen emails
are similar to the ones that we have in our training set. In general, if our training set is

Listing 5.2 Using the naïve Bayes classifier for detecting spam emails

Retrieve
email by
filename

Load
emails
from
testing
dataset

Classify
legitimate
email

*** Classifying instance: biz-01.html
P(NOT SPAM|biz-01.html) = 0.944444444444445
P(SPAM|biz-01.html) = 0.055555555555556

Classified biz-01.html as NOT SPAM

*** Classifying instance: sport-01.html
P(NOT SPAM|sport-01.html) = 0.894736842105263
P(SPAM|sport-01.html) = 0.105263157894737

Classified sport-01.html as NOT SPAM

*** Classifying instance: usa-01.html
P(NOT SPAM|usa-01.html) = 0.882352941176471
P(SPAM|usa-01.html) = 0.117647058823529

Classified usa-01.html as NOT SPAM

*** Classifying instance: world-01.html
P(NOT SPAM|world-01.html) = 0.962264150943396
P(SPAM|world-01.html) = 0.037735849056604

Classified world-01.html as NOT SPAM

*** Classifying instance: spam-biz-01.html
P(NOT SPAM|spam-biz-01.html) = 0.468750000000000
P(SPAM|spam-biz-01.html) = 0.531250000000000

Classified spam-biz-01.html as SPAM

Figure 5.4 Email spam filtering results (binary classification) for the classifier that’s based on the
naïve Bayes algorithm
Licensed to Deborah Christiansen <pedbro@gmail.com>

178 CHAPTER 5 Classification: placing things where they belong
very similar to our testing set, it’s not difficult to achieve high levels of accuracy. That’s
typically due to overfitting; see to-do item 3 for more details on the tradeoff between spe-
cialization and generalization.

 At this point, it may be helpful to repeat these steps by changing the number of
frequent terms (listing 5.1, step 3), retrain the classifier, and observe the impact that
this change has on the results of the classification. You could execute the classification
steps of listing 5.2 at once, by calling the method sample() of the EmailClassifier.

 As we mentioned, a classifier’s job is to assign a Concept to an Instance; for the
EmailClassifier, the concepts are SPAM and NOT SPAM in the case of email filtering
(binary classification), and the names of the email categories in the case of email cate-
gorization (multiclass classification). The email instances are encapsulated by the
class EmailInstance, which extends the BaseInstance class. This example demon-
strates the specialization of the general base classes that we provide in order to meet
specific needs (emails).

 The EmailClassifier obtains its TrainingSet through the method getTraining-
Set of the EmailDataset instance. Upon loading those Instances, the classifier trains
itself (learns how) to map a Concept to an Instance based on the assignments in the
TrainingSet. The EmailClassifier doesn’t use all the email information for its train-
ing. It uses a single attribute whose value is evaluated during the construction of an
EmailInstance as shown in listing 5.3.

public EmailInstance(String emailCategory, Email email, int topNTerms) {
 super();
 this.id = email.getId();
 this.setConcept(new BaseConcept(emailCategory));

 String text = email.getSubject()+" "+email.getTextBody();
 Content content = new Content(email.getId(), text, topNTerms);

 Map<String, Integer> tfMap = content.getTFMap();

 attributes = new StringAttribute[1];
 String attrName = "Email_Text_Attribute";
 String attrValue = "";

 for(Map.Entry<String, Integer> tfEntry : tfMap.entrySet()) {
 attrValue = attrValue + " " + tfEntry.getKey();
 }

 attributes[0] = new StringAttribute(attrName, attrValue);
}

First, we concatenate the text of the subject line and the email’s body. Then we use the
Content class (which we encountered in chapter 3) to analyze the result of the text
concatenation and create the list of the top N frequent terms. The textual analysis is
based on a custom analyzer that extends Lucene’s StandardAnalyzer class and uses
the PorterStemFilter class for tokenizing strings. Both Lucene classes can be found
in the package org.apache.lucene.analysis.

Listing 5.3 Creating an EmailInstance
Licensed to Deborah Christiansen <pedbro@gmail.com>

179Automatic categorization of emails and spam filtering
 As you can see, the only attribute of our instance (Email_Text_Attribute) takes as
a value the concatenation of the top N frequent terms. This is a simplifying modeling
assumption, of course. Despite its simplicity, this approach can provide good results in
many cases. Remember that when you design (or select) an intelligent algorithm for a
real application, you should always start with the simplest possible design that can
work. This is equivalent to the maxim of avoiding premature code optimization, if you
like to think in those terms.

 Even though the simple solution may not be the one that you’ll end up using, it’ll
allow you to understand the nature of your data and the difficulties related to your
problem, without complicating matters from the outset. Other choices abound. You
could select two attributes, one attribute value for the subject and one attribute value
for body of the email. You could also include the from attribute. If your email had a
timestamp, you could include whether the email was sent during normal business hours
or late at night. In the “To do” section, we invite you to explore these and other alter-
natives (feel free to be creative) and compare the results, and the complexity involved,
as you consider more information from your emails for the training of the classifier.
A CLOSER LOOK AT THE NAÏVE BAYES CLASSIFIER

Now, it’s time to have a closer look at the implementation of the naïve Bayes algo-
rithm. Listing 5.4 shows the NaiveBayes class deprived of its straightforward construc-
tor, its Javadoc comments, some logging output, and a couple of trivial getters. Other
than that, it’s all here, in just two pages of code: one of the most robust, successful,
and widely used classification algorithms of all time!

 Recall that a classifier learns the association between instances and classes from the
training instances, and it provides the class that a given instance is associated with.
Naturally, the interface of a Classifier demands that every classifier implement the
method boolean train() and the method Concept classify(Instance instance).
Of course, every classifier implements these methods in their own way, so let’s see how
it works for NaiveBayes.

public class NaiveBayes implements Classifier {

 private String name;

 protected TrainingSet tSet;

 protected Map<Concept,Double> conceptPriors;

 protected Map<Concept, Map<Attribute, AttributeValue>> p;

 protected ArrayList<String> attributeList;

 public boolean train() {
 boolean hasTrained = false;

 if (attributeList == null || attributeList.size() == 0) {
 System.out.print("Can't train the classifier

➥ without attributes for training!");

Listing 5.4 NaiveBayes: a general Bayesian classifier

B

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

180 CHAPTER 5 Classification: placing things where they belong
 System.out.print("Use the method -->

➥ trainOnAttribute(Attribute a)");
 } else {
 calculateConceptPriors();

 calculateConditionalProbabilities();

 hasTrained = true;
 }
 return hasTrained;
 }

 public void trainOnAttribute(String aName) {

 if (attributeList ==null) {
 attributeList = new ArrayList<String>();
 }
 attributeList.add(aName);
 }

 private void calculateConceptPriors() {

 for (Concept c : tSet.getConceptSet()) {

 int totalConceptCount=0;

 for (Instance i : tSet.getInstances().values()) {

 if (i.getConcept().equals(c)) {
 totalConceptCount++;
 }
 }
 conceptPriors.put(c, new Double(totalConceptCount));
 }
 }

 protected void calculateConditionalProbabilities() {
 p = new HashMap<Concept, Map<Attribute, AttributeValue>>();

 for (Instance i : tSet.getInstances().values()) {

 for (Attribute a: i.getAtrributes()) {

 if (a != null && attributeList.contains(a.getName())) {

 if (p.get(i.getConcept())== null) {

 p.put(i.getConcept(), new HashMap<Attribute,

➥ AttributeValue>());
 }
 Map<Attribute, AttributeValue> aMap = p.get(i.getConcept());
 AttributeValue aV = aMap.get(a);
 if (aV == null) {

 aV = new AttributeValue(a.getValue());
 aMap.put(a, aV);
 } else {
 aV.count();
 }
 }
 }

F

G

Licensed to Deborah Christiansen <pedbro@gmail.com>

181Automatic categorization of emails and spam filtering
 }
 }

 public double getProbability(Instance i, Concept c) {
 double cP=1;

 for (Attribute a : i.getAtrributes()) {

 if (a != null && attributeList.contains(a.getName())) {

 Map<Attribute, AttributeValue> aMap = p.get(c);
 AttributeValue aV = aMap.get(a);
 if (aV == null) {
 cP *= ((double) 1 / (tSet.getSize()+1));
 } else {
 cP *= (double)(aV.getCount()/conceptPriors.get(c));
 }
 }
 }
 return (cP == 1) ? (double)1/tSet.getNumberOfConcepts() : cP;
 }

 public double getProbability(Concept c, Instance i) {
 double cP=0;

 if (tSet.getConceptSet().contains(c)) {

 cP = (getProbability(i,c)*getProbability(c))/getProbability(i);

 } else {
 cP = 1/(tSet.getNumberOfConcepts()+1.0);
 }
 return cP;
 }

 public double getProbability(Instance i) {
 double cP=0;

 for (Concept c : getTset().getConceptSet()) {

 cP += getProbability(i,c)*getProbability(c);
 }
 return (cP == 0) ? (double)1/tSet.getSize() : cP;
 }

 public double getProbability(Concept c) {
 Double trInstanceCount = conceptPriors.get(c);
 if(trInstanceCount == null) {
 trInstanceCount = 0.0;
 }
 return trInstanceCount/tSet.getSize();
 }

 public Concept classify(Instance instance) {
 Concept bestConcept = null;
 double bestP = 0.0;

 for (Concept c : tSet.getConceptSet()) {
 double p = getProbability(c, instance);
 if(p >= bestP) {
 bestConcept = c;

H

I

J

1)
Licensed to Deborah Christiansen <pedbro@gmail.com>

182 CHAPTER 5 Classification: placing things where they belong
 bestP = p;
 }
 }
 return bestConcept;
 }
}

This is a long listing. So, before we go into its details, let’s recap what we’ve seen in
chapter 2. The naïve Bayes algorithm evaluates what’s called the conditional probability
of X given Y. That is, the probability that tells us how likely it is to observe Concept X
provided that we already observed Instance Y. In particular, this classifier uses as
input the following:

■ The probability of observing Concept X in general, also known as the prior prob-
ability and denoted by p(X).

■ The probability of observing Instance Y provided that we randomly select an
Instance from Concept X, also known as the likelihood and denoted by p(Y|X).

■ The probability of observing Instance Y in general, also known as the evidence
and denoted by p(Y).

The output of the classifier is the calculation of the probability that an observed
Instance Y belongs in Concept X, which is also known as the posterior probability and
denoted by p(X|Y). The calculation is performed based on the following formula
(known as Bayes theorem):

Until now we’ve systematically avoided presenting explicit mathematical formulas. But
despite its simple appearance, this formula is very powerful and is the basis of a large
number of classifiers, ranging from implementations that use the naïve Bayes algo-
rithm to implementations based on Gaussian processes and Bayesian belief networks
(see McKay). If you’re going to remember one formula, learn this one well!

 As far as we’re concerned with the classification per se, the evaluation of the evi-
dence p(Y) isn’t required because its value doesn’t change for the various classes. The
classifier works by calculating the posterior probabilities p(X|Y) for all classes and
selecting the class with the highest posterior probability. Whether or not we divide by
p(Y), the ordering won’t be affected. Since it’s computationally cheaper not to per-
form the division, the implementation can avoid the division by p(Y).

 Now, let’s examine one-by-one the main points of listing 5.4. First we set a name for
this instance of the NaiveBayes classifier. If you use a single classifier this is redun-
dant. But as you’ll see in chapter 6, quite often we want to create ensembles of classifi-
ers and combine them in order to improve our results. Keeping an identifier for the
classifier will be useful later on. Of course, every classifier needs a training set. The
name of the classifier and its training set are intentionally set during the construction
phase. Once you’ve created an instance of the NaiveBayes classifier, you can’t reset its
TrainingSet, but you can always get the reference to it and add instances.

p X Y() p X Y()p X()
p Y()

------------------------------=
Licensed to Deborah Christiansen <pedbro@gmail.com>

183Automatic categorization of emails and spam filtering
The conceptPriors map stores the counts for each of the concepts in our training set.
We could have used it to store the prior probabilities, not just the counts. But we want
to reuse these counts, so in the name of computational efficiency, we store the counts;
the priors can be obtained by a simple division.

The variable p stores the conditional probabilities—the probability of observing con-
cept X given that we observed instance Y, or in the case of the user clicks, the probabil-
ity that user A wants to see URL X provided that he submitted query Q.

This is the list of attributes that should be considered by the classifier for training. The
instances of a training set may have many attributes, and it’s possible that only a few
are relevant, so we keep track of what attributes should be used. The method train-
OnAttribute(String) is used to populate this list.

The train() method is responsible for training the classifier. After a quick check that
we have at least one attribute to train on, this method calculates the concept priors
and the conditional probabilities as dictated by the formula of the Bayes theorem. If
all goes well, it’ll return a true value; otherwise it’ll return false.

This is the first part of the training, where we calculate the prior probabilities p(X).
For all the instances in the training set, we calculate how many times we’ve seen each
concept. We keep track of the count in this implementation. The real concept priors
are the counts divided by the total number of instances in the training set.

This is the second part of the training, where we count the number of times that a spe-
cific attribute value appears in a concept. This number is needed for the calculation
of the conditional probabilities p(Y|X), which occurs in getProbability(Instance I,
Concept c). For each instance in the training set and for each attribute that belongs in
the training attributes list, we count the number of times we’ve encountered a particu-
lar value for a given concept.

This is the calculation of the conditional probabilities p(Y|X). The term naïve has its
origin in this method. Note that we’re seeking the probability of occurrence for a par-
ticular instance, given a particular concept. But each instance is uniquely determined
by the unique values of its attributes. The conditional probability of the instance is, in
essence, the joint probability of all the attribute value conditional probabilities. Each
attribute value conditional probability is given by the term (aV.getCount()/concept-
Priors.get(c)). In the preceding implementation, it’s assumed that all these attri-
bute values are statistically independent, so the joint probability is simply the product
of the individual probabilities for each attribute value. That’s the “naïve” part. In gen-
eral, without the statistical independence of the attributes, the joint probability
wouldn’t be equal to that product.

 We use quotes around the word naïve because it turns out that the naïve Bayes
algorithm is very robust and widely applicable, even in problems where the attribute
independence assumption is clearly violated. In fact, it can be shown that the naïve
Bayes algorithm is optimal in the exact opposite case—when there’s a completely
deterministic dependency among the attributes (see Rish).

B

C

D

E

F

G

H

Licensed to Deborah Christiansen <pedbro@gmail.com>

184 CHAPTER 5 Classification: placing things where they belong
 In the case of attribute values that haven’t been encountered before, we assign an
arbitrary conditional probability that’s equal to the inverse of the number of instances
in the training set plus one. This is an arbitrary approximation; you could add the
value of two or three, or calculate the missing attribute value probability in some
entirely different manner. Don’t underestimate the impact of this approximation in
the classification results, especially when the training set isn’t large. What do you think
should that value be for a small training set?

This method calculates the posterior probability of a class. This is the output of the
Bayes theorem formula. The classification of a given instance is based on calling this
method repeatedly, once for each class. A possible optimization here is to avoid the
method call getProbability(i) and the subsequent division, since as we already
mentioned, the evaluation of the evidence (the term p(Y) in the Bayes theorem for-
mula) isn’t required for classification. The method itself—getProbabil-

ity(Instance)—could be ignored; we included it here for completeness.
 In the method getProbability(Concept, Instance) we check whether we’ve

seen the particular concept. If we used the NaiveBayes class for classifying with
respect to a fixed set of concepts, this step wouldn’t be necessary. But recall that we
used the same class in chapter 2 in the context of learning from the user’s clicks,
where it was possible to pass a concept that wasn’t included in the training set.

This method calculates the prior probability p(X) of class X, as the ratio of instances
that correspond in that class over the total number of instances in the training set.

The classify(Instance) method classifies the given instance by returning the class
with the highest probability of occurrence. You could use an array to store the values
of the probability for each class. Then you could sort them and return the best three
(or five) classes in the case of multiclass classification. In a real-world system, this
would be preferable, because the probabilities may be very close to each other and the
application may show the end-user a range of choices for selection, rather than assign
automatically one.
A GENERAL-PURPOSE EMAIL CLASSIFIER

Now, let’s take a closer look at the EmailClassifier class itself. Listing 5.5 shows the
code, except for the definition of instance variables, the constructor, and the classify
methods, which are trivial. Since we’ve just explained the NaiveBayes classifier in
detail, we’ll focus on the overriding methods of that class.

public class EmailClassifier extends NaiveBayes {

 public boolean train() {
 if(emailDataset.getSize() == 0) {
 System.out.println("Can't train classifier –

➥ training dataset is empty.");
 return false;
 }
 for(String attrName : getTset().getAttributeNameSet()) {

Listing 5.5 An email classifier based on the general-purpose NaiveBayes class

I

J

1)

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

185Automatic categorization of emails and spam filtering
 trainOnAttribute(attrName);
 }
 super.train();

 return true;
 }

 protected void calculateConditionalProbabilities() {

 p = new HashMap<Concept, Map<Attribute, AttributeValue>>();

 for (Instance i : tSet.getInstances().values()) {

 Attribute a = i.getAtrributes()[0];

 Map<Attribute, AttributeValue> aMap = p.get(i.getConcept());
 if (aMap == null) {
 aMap = new HashMap<Attribute, AttributeValue>();
 p.put(i.getConcept(), aMap);
 }

 AttributeValue bestAttributeValue =

➥ findBestAttributeValue(aMap, a)

 if (bestAttributeValue != null) {
 bestAttributeValue.count();
 } else {
 AttributeValue aV = new AttributeValue(a.getValue());
 aMap.put(a, aV);
 }
 }
 }

 public double getProbability(Instance i, Concept c) {
 double cP=1;
 for (Attribute a : i.getAtrributes()) {

 if (a != null && attributeList.contains(a.getName())) {

 Map<Attribute, AttributeValue> aMap = p.get(c);
 Attribute bestAttributeValue = findBestAttributeValue (aMap, a);
 if (bestAttributeValue == null) {
 cP *= ((double) 1 / (tSet.getSize()+1));
 } else {
 cP *= (double)(bestAttributeValue.getCount()/conceptPriors.get(c));
 }
 }
 }
 return (cP == 1) ? (double)1/tSet.getNumberOfConcepts() : cP;
 }

 private Attribute findBestAttributeValue(Map<Attribute,

➥ AttributeValue> aMap, Attribute a) {

 JaccardCoefficient jaccardCoeff = new JaccardCoefficient();

 String aValue = (String)a.getValue();
 String[] aTerms = aValue.split(" ");
 Attribute bestMatch = null;
 double bestSim = 0.0;

C

D

E

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

186 CHAPTER 5 Classification: placing things where they belong
 for(Attribute attr : aMap.keySet()) {
 String attrValue = (String)attr.getValue();
 String[] attrTerms = attrValue.split(" ");
 double sim = jaccardCoeff.similarity(aTerms, attrTerms);
 if(sim > jaccardThreshold && sim > bestSim) {
 bestSim = sim;
 bestMatch = attr;
 }
 }
 return bestMatch;
 }
 }

The purpose of this method is to make sure that we loaded some training data, to set
the appropriate training attributes from the training dataset, and to invoke the
train() method of the NaiveBayes class for the actual training of the classifier.

This statement is true only for this specific implementation. In general, you’d have
more than one attribute. One of the to-do items asks you to explore the email classifi-
cation case by introducing more attributes. If you work on that, you must revisit this
part of the implementation.

This step is needed because we’re using a pure-text representation for our emails. It’s
a general technique that you can employ when you deal with text. In our implementa-
tion, the only attribute that we use takes its value from the string concatenation of the
email’s subject and body; don’t forget that this was processed by our custom analyzer
in order to reduce the noise and extract as much information as possible. If we con-
sider strict string equality between attribute values, every email from our sample
dataset will have its own attribute value. Instead, we consider two attribute values to
be equivalent if they match according to the algorithm of the findBestAttribute-
Value method

Our estimate, in the case of attribute values that haven’t been encountered before, is
the same as in the NaiveBayes class. We assign an arbitrary conditional probability
that’s equal to the inverse of the number of instances in the training set plus one.
Don’t underestimate the impact of this approximation in the classification results,
especially when the training set isn’t large. Remember that this is the conditional
probability of encountering a particular attribute value. In certain cases, these values
are provided by human domain experts who use their experience to create an esti-
mate that can be larger (or smaller) than the estimate that’s produced based on the
size of the training set. You could substitute this estimate with a small, constant num-
ber (typically a small number such as 10-4 or 10-5 would serve you well) and observe its
impact on the results of the classification.

You may recall the Jaccard coefficient from chapter 3 (the “To do” section) or chap-
ter 4 (it’s used in the ROCK implementation). It’s a similarity metric based on the ratio
of the size of the intersection over the size of the union between two sets. In this case,
the two sets are the tokens that result from splitting the attribute values into individual
terms. You could use one of the many other similarity metrics that we’ve encountered

G

B

C

D

E

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

187Automatic categorization of emails and spam filtering
so far. It would be instructive to use the CosineSimilarity class instead of the
JaccardCoefficient class and compare the results of classification.

The jaccardThreshold is an instance variable, and it has associated get and set meth-
ods. Its default value is set to 0.25, but you can change it to whatever value you like on
the fly. To set it equal to 0.3 from the BeanShell environment, you can execute the fol-
lowing command: emailFilter.setJaccardCoefficient(0.3);. This is the mini-
mum value of similarity that we want the two attribute values to have before we
consider them equivalent.

That’s it! We’ve covered the implementation of a probabilistic email classifier. We’ve
demonstrated the capabilities of our classifier only for filtering spam email. So, let’s
present its use for the general (multiclass) case. Listing 5.6 shows the necessary steps.
The only difference is the invocation of the method setBinary(false) of the Email-
Dataset class. That’s because the different classes (or email categories, if you prefer)
are assigned during the construction of our dataset. The classifier doesn’t treat the
binary and the multiclass cases differently.

EmailDataset trainEmailDS = EmailData.createTrainingDataset();

trainEmailDS.setBinary(false);

EmailClassifier emailFilter = new EmailClassifier(trainEmailDS, 10);

emailFilter.train();

emailFilter.sample();

The results are shown in figure 5.5, where you can see that only one of the emails
(usa-01) has been misclassified. You can interpret the probabilities as a measure of
confidence that the email belongs in a particular class. In a real application of multi-
class classification, if the confidence level is below a certain level (say, 0.7) the sys-
tem would select the top three or five classes and present them as candidates to the
end user. These kinds of human-in-the-loop workflow designs are common in intelli-
gent applications, and are actually required in order to continuously improve the
performance of the classifier.

 As we mentioned, a real email filter involves much more than a probabilistic classi-
fier. The next section will provide a rule engine implementation, which is a good com-
plementary technique to a probabilistic classifier. Many features of good spam filters
rely on rules, such as whitelists, blacklists, collaborative spam identification databases,
and so forth.

 In summary, the NaiveBayes classifier can be used to filter out spam emails from
your legitimate emails, and it can also be used to categorize your emails into several
categories of your choice. Of course, everything that we said about emails can be
applied to any other document from which you can obtain its textual representa-
tion—Microsoft Word documents, XML documents, HTML documents from websites,
PDF documents, and so on.

Listing 5.6 Loading the email training set and classifying the emails

G

Use all email categories

Test by classifying
a few emails
Licensed to Deborah Christiansen <pedbro@gmail.com>

188 CHAPTER 5 Classification: placing things where they belong
5.3.2 Rule-based classification

In this section, we’ll examine a different approach to classification: rule-based classifica-
tion. So what are rules? And how are they different from a Bayesian classifier? To
answer these two questions, let’s look at the larger picture of programming para-
digms. There are many programming paradigms in use today. A typical Java/J2EE
application is characterized by elements of imperative programming, object-oriented
programming, and perhaps aspect-oriented programming. In particular, imperative
programming means that we tell the computer what to do and how to do it. This is the
predominant paradigm that we use to write our software. But there’s another pro-
gramming paradigm called declarative programming that puts more emphasis on what
to do and delegates the “how” to a runtime engine.

*** Classifying instance: biz-01.html
P(WORLD|biz-01.html) = 0.085106382978723
P(BIZ|biz-01.html) = 0.765957446808511
P(USA|biz-01.html) = 0.063829787234043
P(SPAM|biz-01.html) = 0.042553191489362
P(SPORT|biz-01.html) = 0.042553191489362
Classified biz-01.html as BIZ

*** Classifying instance: sport-01.html
P(WORLD|sport-01.html) = 0.121212121212121
P(BIZ|sport-01.html) = 0.181818181818182
P(USA|sport-01.html) = 0.090909090909091
P(SPAM|sport-01.html) = 0.060606060606061
P(SPORT|sport-01.html) = 0.545454545454546
Classified sport-01.html as SPORT

*** Classifying instance: usa-01.html
P(WORLD|usa-01.html) = 0.235294117647059
P(BIZ|usa-01.html) = 0.352941176470588
P(USA|usa-01.html) = 0.176470588235294
P(SPAM|usa-01.html) = 0.117647058823529
P(SPORT|usa-01.html) = 0.117647058823529
Classified usa-01.html as BIZ

*** Classifying instance: world-01.html
P(WORLD|world-01.html) = 0.805970149253731
P(BIZ|world-01.html) = 0.089552238805970
P(USA|world-01.html) = 0.044776119402985
P(SPAM|world-01.html) = 0.029850746268657
P(SPORT|world-01.html) = 0.029850746268657
Classified world-01.html as WORLD

*** Classifying instance: spam-biz-01.html
P(WORLD|spam-biz-01.html) = 0.121212121212121
P(BIZ|spam-biz-01.html) = 0.181818181818182
P(USA|spam-biz-01.html) = 0.090909090909091

Figure 5.5 Using the EmailClassifier for multiclass classification of emails
Licensed to Deborah Christiansen <pedbro@gmail.com>

189Automatic categorization of emails and spam filtering
 Rule-based reasoning is an example of declarative programming. A rule-based sys-
tem consists of facts, a rule engine, and (of course) rules. The facts are merely data about
the world. The rules are conditional statements that tell us what to do when the data
satisfies certain conditions; in other words they’re equivalent to if-then programming
clauses. The rule engine is responsible for executing the rules according to the facts.
A rule engine, when compared to probabilistic classifiers, differs significantly in the
way that it captures and represents knowledge. In the case of a probabilistic classifier,
such as the naïve Bayes classifier that we examined in the previous section, knowledge
is represented in terms of the prior probabilities of the concepts and the conditional
probabilities of occurrence that we obtain from the training set. There’s no manual
intervention for accumulating that knowledge (the probabilities); given an arbitrary,
well-formed training set, the classifier will extract the information content that it
needs (knowledge) in order to perform its classification tasks. A rule-based classifier
captures the knowledge in the form of the rules, so the rules are the knowledge of the
system, which begets the question of how do we get these rules? The rules are entered
into the system manually or semiannually by providing convenient workflow screens
that human experts can use to capture rules.

 There are two basic modes of operation for a rule-based system. The first is forward
chaining and is data-driven, in the sense that we’re given the data and want to find
what rules we should apply to them. The second is backward chaining and is goal-
driven, in the sense that we start with a goal that the engine tries to satisfy (if possible).
We won’t cover backward chaining in this book; we’ll only say that programming lan-
guages such as Prolog and ECLiPSe support backward chaining (for details see Russell
and Norvig).
THE DROOLS RULE ENGINE

There are two Java-based rule engine implementations that are production ready. The
first is called Jess and was written in the Sandia National Laboratories. At the time of
this writing (Spring 2008), it’s in its seventh release (7.1) so it’s fairly stable. It’s free
for academic use but not free for commercial use. (For details on the Jess rule engine
see Friedman-Hill.) The second rule engine implementation is called Drools (http://
www.jboss.org/drools/) but you may also hear people referring to it as JBoss Rules.
JBoss is a well-known middleware open source project, now under the auspices of Red
Hat. Drools is a robust rule engine with ample documentation and a fairly liberal
open source license (Apache 2.0), which means that you can use it in your application
for free. We’ve used Drools with great success over the past four years. In our opinion,
in the Java world, Drools is the rule engine of choice.

 The Drools rule engine consists of two main modules: a pattern-matching module
and an agenda module. The pattern-matching module is responsible for identifying
what rules are matched by the facts. Once these rules have been identified, they’re
placed in the agenda module. Figure 5.6 shows the basic elements of the Drools engine.
In order to perform the pattern matching, Drools implements and extends the Rete
algorithm—the word rete means “network” in Latin and is pronounced “re-tay” in
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.jboss.org/drools/
http://www.jboss.org/drools/

190 CHAPTER 5 Classification: placing things where they belong
Europe and “ree-tee” in the USA. The
Rete algorithm was designed by Charles
Forgy in 1974; it was and remains, in its
many incarnations, one of the most effi-
cient and successful pattern-matching
algorithms. The Drools implementa-
tion of Rete is called ReteOO, to indicate
that Drools has an improved implemen-
tation of the Rete algorithm that’s most
suitable for object-oriented software.
The Rete algorithm exchanges memory consumption for processing speed; its theoret-
ical performance is independent of the number of rules in the system. But in practice,
as the number of rules increases, we’re bound to encounter a well-known problem of
AI systems, the so-called utility problem. We’ll discuss more about this in section 5.7. We
won’t go into the details of the Rete algorithm itself; if you’re interested in its imple-
mentation then the Drools source code and documentation, along with the references
at the end of this chapter, should suffice for a thorough understanding of its inner work-
ings. In addition, Jess in Action by Dr. Ernest J. Friedman-Hill and published by Manning
Publications provides a detailed explanation of how the Rete algorithm works (in par-
ticular, see chapter 8).

 After this brief introduction to rule engines, we’re ready to describe the use of the
Drools library in our task of filtering the emails that are spam. In particular, let’s see
how we can write rules. The Drools engine comes with a scripting (non-XML) lan-
guage that’s easy to learn; it’s so easy to learn that you could expose it directly to the
end users of your application! Let’s take a look.

package demo;
import iweb2.ch5.classification.data.Email;
import iweb2.ch5.classification.rules.ClassificationResult;

global ClassificationResult classificationResult;

rule "Tests for viagra in subject"
when
 Email($s : subject)
 eval(classificationResult.isSimilar($s, "viagra"))
then
 classificationResult.setSpamEmail(true);
end

rule "Tests for 'drugs' in subject"
when
 Email($s : subject)
 eval(classificationResult.isSimilar($s, "drugs"))
then
 classificationResult.setSpamEmail(true);
end

Listing 5.7 A simple set of rules for email spam filtering

Rule for identifying
“Viagra” in email
subject

Rule for identifying
“drugs” in email
subject

Figure 5.6 The basic elements of the Drools rule
engine system (source: Drools online)
Licensed to Deborah Christiansen <pedbro@gmail.com>

191Automatic categorization of emails and spam filtering
Listing 5.7 shows the content of spamRules.drl, which contains two simple rules. The
content is almost self-explanatory; you can find this file in the subdirectory
C:\iWeb2\data\ch05. As we’ll see shortly, rules are provided to Drools in packages,
so the first thing we do is give the name of the package that these rules belong
to—demo. The import statements inform the rule execution engine about the class
definitions of the objects that we’re going to use in our rules—the classes Email and
ClassificationResult. The global statement allows us to access the object identi-
fied by classificationResult. This is equivalent to declaring the classification-
Result as a global variable within our rules. So what do the rules mean?

 Our first rule is called Tests for “viagra” in subject. As promised, it checks whether
the variable subject of an Email object contains the word viagra. If that condition is
met it sets the isSpamEmail variable of the ClassificationResult to true. Similarly
our second rule, which is called Tests for ‘drugs’ in subject, checks whether the vari-
able subject of an Email object contains the word drugs. If that condition is met it sets
the isSpamEmail variable of the ClassificationResult to true.

 We don’t insinuate that these conditions are totally appropriate to characterize an
email as spam; we’re merely using them to illustrate the structure of the Drools file. As
you can see, the general structure of defining a rule in Drools is straightforward:

rule "Put the name of your rule here"
when
 <Put here your conditions>
then
 <Put here the actions that must be taken

➥ when the above conditions are satisfied>
end

You can include more than one condition, and you can include more than one action.
We don’t think it can get simpler than that! Notwithstanding the simplicity, and ensu-
ing beauty, of the Drools rule language, we believe that the real strength of the engine
is its support for objects. Note that the real evaluation of the condition in both rules
happens inside the method isSimilar of the class ClassificationResult. We can
invoke quite complicated evaluations in an objected-oriented fashion.

 Now, let’s see these rules in action. The first line of listing 5.8 loads the emails from
the testing dataset; we used it before in listing 5.2. So, let’s look at each one of the
other steps in this listing.

EmailDataset ds = EmailData.createTestDataset();

EmailRuleClassifier classifier =
 new EmailRuleClassifier("c:/iWeb2/data/ch05/spamRules.drl");

classifier.train();

classifier.run(ds,"Expecting one spam email. :-(");

Listing 5.8 Employing the email spam rules on a set of data

B

C

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

192 CHAPTER 5 Classification: placing things where they belong
We construct an email classifier that uses rules and is aptly encapsulated in the Email-
RuleClassifier class. Note that the only argument in the constructor of that class is
the Drools file that we described in listing 5.7.

We ask the classifier to “train” itself. Unlike the script in listing 5.1, where we trained
our probabilistic classifier, here we didn’t create a training dataset. We never passed
the reference of the dataset in the constructor of the classifier; we only passed the
name of the Drools file. Why? In the probabilistic approach, we’re trying to infer the
knowledge that’s contained in the training set. In the case of rule-based systems, the
rules are the knowledge. The “training” part for the rule-based system involves merely
loading the rules from the file.

We “apply” the rules on the test dataset by passing the dataset information and a
descriptive message. Although the prevailing expression among business people and
end users of rule-based systems is “applying the rules,” in reality, the execution of the
Rete algorithm more resembles the filtering of data (the facts) through a funnel. That
funnel is made of a net (hence the term rete) of nodes. As each fact trickles down this
funnel, it passes a number of tests (the conditions of the rules), and when it reaches
the bottom, we know exactly what rule should be triggered by that fact. For a detailed
description of the Rete structure, see Doorenbos.

 The results of executing listing 5.8 are shown in figure 5.7. The spam email entry
that corresponds to the spam-biz-01.html file triggered the classifier because its sub-
ject contains the word “drugs” as the spam rule in listing 5.7 required. The rule is fired
because its conditions have been met.

B

C

D

bsh % classifier.run(ds,"Expecting one spam email. :-(");

Expecting one spam email. :-(
__

Classifying email: world-01.html ...
Rules classified email: world-01.html as: NOT-SPAM

Classifying email: spam-biz-01.html ...
Invoked ClassificationResult.setSpamEmail(true)
Rules classified email: spam-biz-01.html as: SPAM

Classifying email: sport-01.html ...
Rules classified email: sport-01.html as: NOT-SPAM

Classifying email: usa-01.html ...
Rules classified email: usa-01.html as: NOT-SPAM

Classifying email: biz-01.html ...
Rules classified email: biz-01.html as: NOT-SPAM
__

Figure 5.7 Identifying spam email spam-biz-01 based on the rules of listing 5.7
Licensed to Deborah Christiansen <pedbro@gmail.com>

193Automatic categorization of emails and spam filtering
A CLOSER LOOK AT THE IMPLEMENTATION

Now that you’re familiar with the use of the Drools engine, let’s take a closer look at
the wrapper classes we used in listings 5.7 (the rule definition file) and 5.8. If you
think about it, we were able to pack an enormous amount of functional capability in
just a few lines of code. Let’s see what code allowed us to abstract the use of a rules
engine into just three simple steps. We’ll start from the centerpiece of that implemen-
tation, the class RuleEngine, shown in listing 5.9.

public class RuleEngine {

 private RuleBase rules;

 public RuleEngine(String rulesFile) throws RuleEngineException {
 try {
 Reader source = new InputStreamReader(
 new BufferedInputStream(new FileInputStream(rulesFile)));

 Properties properties = new Properties();
 properties.setProperty("drools.dialect.java.compiler", "JANINO");

 PackageBuilderConfiguration cfg =

➥ new PackageBuilderConfiguration(properties);

 PackageBuilder builder = new PackageBuilder(cfg);

 builder.addPackageFromDrl(source);

 Package pkg = builder.getPackage();

 rules = RuleBaseFactory.newRuleBase();

 rules.addPackage(pkg);

 } catch (Exception e) {
 throw new RuleEngineException(e);
 }
 }
 public void executeRules(ClassificationResult classificationResult,

➥ Email email) {

 WorkingMemory workingMemory = rules.newStatefulSession();

 workingMemory.setGlobal("classificationResult",

➥ classificationResult);

 workingMemory.insert(email);

 workingMemory.fireAllRules();
 }
}

The creation of a Drools rule engine has two parts: authoring and runtime. The
authoring part begins with the parsing of the Drools file—the file with the .drl exten-
sion. The parser checks the grammatical consistency of the Drools file and creates
an intermediate abstract syntax tree (AST). For this, Drools uses the lexical parser pro-
vided by the open source project ANTLR—Another Tool for Language Recognition

Listing 5.9 RuleEngine: building a rule engine based on the Drools library

Determine
runtime

compiler

B

Contains
our rules

C

D
Runtime container
for rules

E

Stateful
Working-
Memory

Insert fact in
working memory

F

G
Execute
all rules
Licensed to Deborah Christiansen <pedbro@gmail.com>

194 CHAPTER 5 Classification: placing things where they belong
(http://www.antlr.org/). Valid rules are loaded in serialized objects of the class
Package; a Package instance is a self-contained deployable unit that contains one or
more rules. The runtime part of a Drools engine is based on the class RuleBase.
Package instances can be added to or removed from a RuleBase instance at any time.

 Let’s examine each step to create and use a Drools rule engine, as shown in listing 5.9:

After creating a reference to the file that contains the rules, we create a Properties
instance and give a value to the property drools.dialect.java.compiler. What’s this
property? And what does the value JANINO mean? You can incorporate Java code
straight into the Drools rule files. This property determines the runtime compiler that
we want Drools to use in order to compile Java code. Janino is the name of an embed-
ded Java compiler that’s included in the Drools distribution under the BSD license
(http://www.janino.net/).

 To complete the authoring part, we need to create an instance of the Package-
Builder class, which in turn will create instances of the class Package. We use the aux-
iliary PackageBuilderConfiguration class for the configuration of our package
builder. This class has default values, which you can change through the appropriate set
methods or, as we do here, on first use via property settings. In this case, we pass only a
single property, but we could’ve provided much more information. At the heart of the
settings is the ChainedProperties class, which searches a number of locations looking
for drools.packagebuilder.conf files. In order of precedence, those locations are sys-
tem properties, a user-defined file in system properties, the user’s home directory, the
working directory, and various META-INF locations. The PackageBuilderConfigura-
tion handles the registry of AccumulateFunctions, registry of Dialects, and the main
ClassLoader. For more details, consult the Drools online documentation at http://
downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html - d0e766.

With the PackageBuilder in our disposal, we can build packages that contain the
rules. We pass the reference of the file to the addPackageFromDrl method and imme-
diately call the getPackage method of our builder. Our rules are ready to use now!

This is our first step in building the runtime part of the engine. A RuleBase can have
one or more Packages. A RuleBase can instantiate one or more WorkingMemory
instances at any time; a weak reference is maintained unless configured otherwise.
The WorkingMemory class consists of a number of subcomponents; for details, consult
the Drools online documentation.

The class StatefulSession extends the WorkingMemory class. It adds asynchronous
methods for inserting, updating, and firing rules, as well as a dispose() method. The
RuleBase retains a reference to each StatefulSession instance that it creates, in
order to update them when new rules are added. The dispose() method is needed
to release the StatefulSession reference from the RuleBase in order to avoid mem-
ory leaks.

 In the Drools file, shown in listing 5.7, we used the global statement in order to
access the object identified by classificationResult. This is equivalent to declaring
the classificationResult as a global variable within our rules. But that won’t work

B

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.antlr.org/
http://www.janino.net/
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html - d0e766
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_single/index.html - d0e766

195Automatic categorization of emails and spam filtering
unless we also call the setGlobal method on the WorkingMemory instance. The argu-
ment of this method must match exactly the entry in the Drools rules file.

We use the insert method to add facts into the WorkingMemory instance. When we
insert a fact, the Drools engine will match it against all the rules. This means that all
the work is done during insertion, but no rules are executed until you call fireAll-
Rules(), which we do in the next step.

This invokes the rule execution. You shouldn’t call fireAllRules() before you’ve fin-
ished inserting all your facts. The crucial matching phase happens during the inser-
tion of the facts, as mentioned previously. So, you don’t want to execute the rules
without matching all the facts against the rules first.

That’s pretty much everything that you need to do in order to build a rule engine with
Drools. Now let’s see how the EmailRuleClassifier class delegates its actions to the
RuleEngine in order to classify the emails. Our implementation of the RuleEngine is
specific to emails; we invite you to create a generalization that uses the Instance inter-
face in one of our to-do items for this chapter. Listing 5.10 shows the code from the
EmailRuleClassifier class, except for the main method, which contains more or less
the same code as listing 5.8.

public class EmailRuleClassifier {

 private String ruleFilename;
 private RuleEngine re;
 private Concept spam;
 private Concept notSpam;

 public EmailRuleClassifier(String ruleFilename) {
 this.ruleFilename = ruleFilename;
 }

 public void train() {
 re = new RuleEngine(ruleFilename);

 spam = new BaseConcept("SPAM");
 notSpam = new BaseConcept("NOT-SPAM");
 }

 public Concept classify(Email email) {
 ClassificationResult result = new ClassificationResult();

 re.executeRules(result, email);

 if(result.isSpamEmail()) {
 return spam;
 } else {
 return notSpam;
 }
 }

 public void run(EmailDataset ds, String msg) {
 System.out.println("\n");
 System.out.println(msg);

Listing 5.10 A Drools-based rule engine that detects spam email

F

G

B

C

D

E

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

196 CHAPTER 5 Classification: placing things where they belong
 System.out.println("__");
 for(Email email : ds.getEmails()) {

 Concept c = classify(email);

 System.out.println("Email: "+

➥ email.getId()+" classified as: "+c.getName());
 }

 System.out.println("__");
 }
}

First we need to create a RuleEngine instance, so that we can delegate the application
of the rules. We pass the name of the file that contains the rules and let the Rule-
Engine do the heavy lifting.

These are two auxiliary variables used by the classify method. Since they’re constant
in our case, no matter what the rules or the emails are, we treat them as instance vari-
ables. It’s possible that your implementation of the ClassificationResult class is
responsible for identifying the right concept from a more elaborate data structure of
concepts (for example, an ontology).

This class encapsulates two important things. It includes the tests of the rule condi-
tions (through the isSimilar method) as well as the actions of the rules (through the
setSpamEmail method). We could have created different objects to encapsulate the
conditions and the actions. If your conditions or actions involve algorithmically diffi-
cult implementations, it’s better to separate the implementations and create a clean
separation of these two parts.

This is where we delegate the application of the rules to the RuleEngine. We reviewed
this method in listing 5.9.

We again use the ClassificationResult instance to obtain the information that was
created as a result of the (fired) rules actions. That information could have been
recorded in a persistent medium (such as a database record or a file); in our simple
case, we use the ClassificationResult class as the carrier of all related activity.

This method helps us classify all the emails in our dataset at once. Note that we could
have passed the dataset itself to the classify method and overridden the executeRule
method in the RuleEngine class, so that we load into the working memory all the
emails at once. But note that, in the context of a rule-based system, the classification
of an email as spam doesn’t depend on whether other emails are spam.
CONFLICT RESOLUTION

The last point is related to (but distinct from) another interesting subject. What hap-
pens if the action of rule A modifies fact X, which activates rule B, which then modi-
fies fact Y and triggers rule A again? You can fall into infinite loops unless there’s a way
to stop recursion. What if you have a rule that classifies an email as spam and another
one that classifies the same email as not spam? In other words, what happens when
there is conflict between two or more rules? In the end of the executeRule method,
we must have an answer, so what’s it going to be?

G

B

c

D

E

F

G

Licensed to Deborah Christiansen <pedbro@gmail.com>

197Automatic categorization of emails and spam filtering
 Fortunately for us, Drools provides answers to these problems, as well as many oth-
ers, through rule attributes. The solution to the first problem is provided by the rule
attribute no-loop; the solution to the second problem is provided by the rule attribute
salience. Rule attributes allow us to influence the behavior of the rules in a declarative
way—in the Drools rule file. Some are quite simple, such as salience, while others are
rather elaborate, such as ruleflow-group. Consult the official Drools documentation, as
well as the source code, to obtain a thorough understanding of each attribute.

 Let’s see now how we can employ salience to provide conflict resolution. Listing 5.11
shows a Drools rule file that contains three rules. This time there’s going to be a con-
flict between the rules for certain emails, because the conditions of more than one
rule will be satisfied simultaneously. The file looks much the same as the first Drools
rule file that we showed in listing 5.7, but now we’ve introduced the attribute salience,
with an integer value, for each rule.

package demo;

import iweb2.ch5.classification.data.Email;
import iweb2.ch5.classification.rules.ClassificationResult;

global ClassificationResult classificationResult;

rule "Rule 1: Tests for viagra in subject"
salience 100
when
 email: Email($s : subject)
 eval(classificationResult.isSimilar($s, "viagra"))
then
 email.setRuleFired(1);
 classificationResult.setSpamEmail(true);
end

rule "Rule 2: Tests for 'drugs' in subject"
salience 100
when
 email: Email($s : subject)
 eval(classificationResult.isSimilar($s, "drugs"))
then
 email.setRuleFired(2);
 classificationResult.setSpamEmail(true);
end

rule "Rule 3: Tests for known sender address"
salience 10
when
 email: Email($sender : from)
 eval(classificationResult.isSimilar($sender, "friend@senderhost"))
then
 email.setRuleFired(3);
 classificationResult.setSpamEmail(false);
end

Listing 5.11 A simple set of email spam rules for filtering (with conflicts)

Rule for identifying
“Viagra” in email subject

Rule for identifying
“drugs” in email subject

Could conflict
with A or B
Licensed to Deborah Christiansen <pedbro@gmail.com>

198 CHAPTER 5 Classification: placing things where they belong
The email that we’re going to create from the document spam-biz-01.html contains
the word “drugs” in its subject, so it fires rule 2. At the same time, it was sent by user
friend@senderhost, so we must fire rule 3. According to rule 2, this is a spam email;
according to rule 3, this is a legitimate email. In other words, rule 2 and rule 3 are in
conflict for that specific email (our fact) and we need a conflict resolution. The attri-
bute salience comes to our rescue!

 The term salience in the context of the rule-based systems originated probably from
semiotics, which is the study of signs—the Greek word �������� means a sign, a sym-
bol, or a note depending on the context. In semiotics, salience refers to the relative
importance of a sign with respect to the plethora of signs that a person receives at any
given moment. Similarly, in the context of our rules, the salience attribute refers to
the prominence of a rule over other rules, when all rules apply on a particular fact or
set of facts. The lower the salience of a rule is, the higher the prominence of the rule.
In essence, the prominence of a rule is reflected in the order of execution. If rule X
has lower salience than rule Y, rule Y will execute first and rule X last. Wherever and
whenever there’s a conflict between the actions of Y and X, the actions of X will over-
ride the actions of Y.

 Let’s see all this in action. Listing 5.12 shows a script that’s almost identical to the
one in listing 5.8, except that we now use the rules with the conflicts.

EmailDataset ds = EmailData.createTestDataset();

EmailRuleClassifier classifier = new EmailRuleClassifier(

➥ "c:/iWeb2/data/ch05/spamRulesWithConflict.drl");

classifier.train();

classifier.run(ds," Hurray! No spam emails here.");

Figure 5.8 present the results of the execution. As you can see, both rule 2 and rule 3
fired for the email spam-biz-01.html. But rule 2 (salience=100) fired first and rule 3
(salience=10) fired second and reset the email’s flag to NOT-SPAM.

 This is a simple example that allows you to see every step and understand the exact
effect of introducing the salience rule attribute. The real value of rule-based systems is
that they can do this efficiently with thousands of complicated rules and millions of
facts, while allowing you to experiment with various conditions in a declarative man-
ner rather than having to change your code. The mere idea of having to go through
thousands of possibly nested if-then statements makes me shiver!

 Now, we’ve completed our coverage of email classification. So far, you’ve learned
how to classify a general text document using the probabilistic naïve Bayes algorithm
and the Drools rule engine, the rule-based system of choice for Java. In the next sec-
tion, we’ll present additional classification algorithms, and to keep things interesting,
we’ll work in the context of a new example: fraud detection.

Listing 5.12 Resolving a conflict of email rules using attribute salience
Licensed to Deborah Christiansen <pedbro@gmail.com>

199Fraud detection with neural networks
5.4 Fraud detection with neural networks
Fraud is prevalent in our electronic world. It ranges from insurance fraud to internet
auction fraud and from fraudulent benefit application forms to telecommunications
fraud. If you do anything over the internet that engages more than one person or
legal entity, the ability to identify when someone didn’t play by the rules is valuable. In
this section, we’ll consider the use case of fraudulent purchasing transactions. We’ll
see that we can employ classification algorithms to distinguish the fraudulent transac-
tions from the legitimate purchases.

5.4.1 A use case of fraud detection in transactional data

Our sample data will be artificial—you wouldn’t want to see your transactions printed
in a technical book, would you? Nonetheless, we provide facilities to make the data
somewhat realistic and we do account for effects that you’d see on real data. The sce-
nario should be familiar to everyone. You work for a large bank that issues credit cards
and you want to ensure that your system will be able to detect fraudulent behavior

bsh % EmailDataset ds = EmailData.createTestDataset();
bsh % EmailRuleClassifier classifier = new EmailRuleClassifier(
å "c:/iWeb2/data/ch05/spamRulesWithConflict.drl");

bsh % classifier.train();
bsh % classifier.run(ds," Hurray! No spam emails here.");

Hurray! No spam emails here.
__

Classifying email: world-01.html ...
Rules classified email: world-01.html as: NOT-SPAM

Classifying email: spam-biz-01.html ...
Invoked Email.setRuleFired(2), current value ruleFired=0,
emailId: spam-biz-01.html
Invoked ClassificationResult.setSpamEmail(true)
Invoked Email.setRuleFired(3), current value ruleFired=2,
emailId: spam-biz-01.html
Invoked ClassificationResult.setSpamEmail(false)
Rules classified email: spam-biz-01.html as: NOT-SPAM

Classifying email: sport-01.html ...
Rules classified email: sport-01.html as: NOT-SPAM

Classifying email: usa-01.html ...
Rules classified email: usa-01.html as: NOT-SPAM

Classifying email: biz-01.html ...
Rules classified email: biz-01.html as: NOT-SPAM
__

Figure 5.8 Resolving rule conflicts by using the salience rule attributes
Licensed to Deborah Christiansen <pedbro@gmail.com>

200 CHAPTER 5 Classification: placing things where they belong
quickly, if not in real-time, so that the proper mechanisms of protecting your client
can be activated. We’ll consider the following typical attributes that can be associated
with a transaction:

■ The description of the transaction
■ The amount of transaction
■ The location of the transaction

We’ve created a set of legitimate transaction descriptions, which we included in a file
called descriptions.txt, and a set of what we’ll consider to be fraudulent transaction
descriptions, which we included in a file called fraud-descriptions.txt. You can find
both files in the directory data\ch05\fraud. We have five different profiles of users,
because spending habits vary on the basis of many factors; a transaction of 3,000 USD
in one account can be suspect of fraud but it could be legitimate for another account.
Five profiles are sufficient to make the point, but of course, in the real world there are
many more spending profiles. The transaction amount is drawn from a Gaussian dis-
tribution and it’s determined on the basis of the average value of transaction amounts
for that profile and its standard deviation. If you don’t know what Gaussian distribu-
tion is or the standard deviations are, see appendix A.

 Now is a good time to let you know about an intriguing property of large aggregates
of transactional data. If you aggregate transactional data from various sources and look
at how frequently the first significant digit of these numbers will be equal to 1, you’ll
realize that it’s much higher than you would’ve anticipated. Every normal person (that
means not a mathematician) will tell you that since I have nine digits, the likelihood of
seeing the digit 1 is 11.1%, the digit 2 is 11.1%, and so on. Right? Wrong! Benford’s law
tells us that the probability should be logarithmic rather than uniform. It turns out that
the probability for the first significant digit to be equal to 1 is about 30%. There’s an
interesting story behind this powerful statistical fact, which in 1995 was successfully
employed by the district attorney’s office in Brooklyn to detect fraud in seven New York
companies (see Hill).

 Back to the description of our transactional data: we simplify the location of a
transaction by providing Euclidean (x,y) coordinates. A real system would probably
use GPS data to precisely describe the locations of the transactions. In our case, plain
(x,y) coordinates will serve us equally well without complicating the use case unneces-
sarily. The (x,y) coordinates of a transaction are drawn from a uniform distribution
between a minimum and a maximum value. In other words, for each profile, we set a
minimum and a maximum value for both X and Y, and a given transaction is assigned
a random location that falls anywhere between these ranges of (x,y) coordinates with
equal probability.

 You can experiment with the code and generate your own data; you could add
more profiles or more users and more transactions per user. The class TenUsers-
Sample is the right place to start for that; you can find it in the package
iweb2.ch5.usecase.fraud.util together with other auxiliary classes. The execution
Licensed to Deborah Christiansen <pedbro@gmail.com>

201Fraud detection with neural networks
of the main method in that class generates two files; the first is called generated-
training-txns.txt and the other is called generated-test-txns.txt. These files contain the
training and the testing data, respectively, as you may have guessed. In the folder
data\ch05\fraud you’ll find the data that we used to write this section; we called the
files training-txns.txt and test-txns.txt. There are about 10,000 transactions available
for training and about 1,000 transactions available for testing. Each transaction is
specified by the following attribute values (in the listed order):

■ The ID of the user
■ The ID of the transaction
■ The description of the transaction
■ The amount of the transaction
■ The x coordinate of the transaction
■ The y coordinate of the transaction
■ A Boolean variable that determines whether the transaction is fraudulent (true)

or not (false)

Our goal is fairly straightforward. We want to build a classifier that can learn how to
identify a fraudulent transaction based on the transactions in the training dataset.
Once we’ve built (trained) our classifier, we want to test it against the testing data,
which was drawn from the same statistical distributions. In the following sections,
we’re going to achieve our goal by utilizing two different classification systems. The
first will be based on a neural network algorithm; the second will be based on a deci-
sion tree. We briefly discussed both of these classification approaches in our introduc-
tory overview of section 5.2, and it’s time to have a closer look at them.

5.4.2 Neural networks overview

In this section, we’ll present the central ideas behind neural networks in a nutshell.
The subject of neural networks is vast. We’ll present what’s known as computational neu-
ral networks—we avoid the term artificial intentionally since there’ve been implementa-
tions of neural networks that are hardware-based (such as Maier et al.). Our focus will
be on software implementations of neural networks.

 Generally speaking, a neural network consists of neuron nodes, or simply neurons,
and links between neurons that are called synapses or links. Some nodes are responsi-
ble for simply transmitting the data into and out of the network, while others are
responsible for processing the data. The former nodes provide the I/O capabilities of
the network. They’re aptly called the input and output layers depending on whether
they insert data into the network or export the processed data out of the network,
respectively. All other nodes are called hidden nodes and don’t interact with the “out-
side” world.

 A typical neural network is shown in figure 5.9. For a given input, denoted here with
the vector {x1, x2, x3}, a neural network produces output that’s a function of the input
and the network parameters. The output of the network in the figure is denoted as y;
Licensed to Deborah Christiansen <pedbro@gmail.com>

202 CHAPTER 5 Classification: placing things where they belong
in general, the output could be a vector itself, not just a single value. You can think of
the initial values {x1, x2, x3} propagating from left to right. Each node collects its input
values and calculates its output values. The final value (y) depends on the initial values
{x1, x2, x3} and the way that these values propagate through the network.

 The synapses connect the nodes, in the sense that information can be exchanged
between any two nodes that are shown as linked with a synapse. The exchange of
information is regulated by a parameter called the weight of the synapse, which,
roughly speaking, indicates the importance of the connection between the two nodes.
During the training phase of a neural network, the weights of the synapses are contin-
uously evaluated and modified according the values of the training dataset.

 The graphical representation of a neural network is common. A lot can be said
about a neural network by looking at such a graphical representation.

 First, note that we’ve placed an arrow only in the links that place the variables in
the input nodes and the one that provides us with the “answer”—the y value. If the
nodes and the synapses form a directed acyclic graph (DAG)—a rule of thumb for this
condition would be to check whether all the arrows point from left to right—then we
say that we have a feedforward neural network. Otherwise, we say that we have a feedback
neural network.

 Second, note that we’ve arranged the nodes as vertical stacks, going from left to
right. That’s not necessary but is customary. We say that the nodes that belong to a
given vertical stack belong to a given layer. Following this customary convention, we
denoted the nodes of the first hidden layer as L1 nodes and the nodes of the second
hidden layer as L2 nodes. The input layer nodes are denoted by I while the single
node in the output layer is denoted by O.

 Third, note that the input nodes don’t connect to all the nodes of the first hidden
layer. But every node in the first hidden layer connects to every node in the second
hidden layer. When all the nodes of one layer connect to every node of the next layer,
we say that the layers are fully connected.

 These observations are a psychological preparation for the following mantra: We
can fully define a neural network by identifying three essential elements (see McKay):

Figure 5.9 A typical neural network with three
input nodes, two hidden layers of nodes, and one
output node
Licensed to Deborah Christiansen <pedbro@gmail.com>

203Fraud detection with neural networks
■ The neural network architecture, which dictates the number of nodes in the
network, the number of input and output nodes, and the synapses and their
directionality

■ The activation rule, which dictates the laws of direct interaction between the
nodes

■ The learning rule, which dictates the laws of indirect interaction between the
nodes and the information that propagates through the network

All this flexibility in defining a neural network provides enormous potential, but at
the same time renders the identification of the ideal neural network difficult in prac-
tice. We don’t intend to provide a comprehensive introduction to neural networks in
a few pages; it would be presumptuous on our part. In appendix E, you can find more
references to the neural networks literature.

5.4.3 A neural network fraud detector at work

Let’s now take the first steps toward using a neural network that can help us identify
fraudulent transactions. Listing 5.13 shows you how to:

■ Load a transaction dataset and calculate user statistics from it.
■ Build the NNFraudClassifier, train it, and store it on the disk.
■ Load an instance of the NNFraudClassifier from the disk and use it to classify

transactions.
■ Load a set of new transactions for testing our classifier with an instance of the

class FraudErrorEstimator.

TransactionDataset ds = TransactionLoader.loadTrainingDataset();

ds.calculateUserStats();

NNFraudClassifier nnFraudClassifier = new NNFraudClassifier(ds);

nnFraudClassifier.setName("MyNeuralClassifier");

nnFraudClassifier.useDefaultAttributes();

nnFraudClassifier.setNTrainingIterations(10);

nnFraudClassifier.train();

nnFraudClassifier.save();

NNFraudClassifier nnClone = NNFraudClassifier

➥ .load(nnFraudClassifier.getName());

nnClone.classify("1");

nnClone.classify("305");

TransactionDataset testDS = TransactionLoader.loadTestDataset();

FraudErrorEstimator auditor = new FraudErrorEstimator(testDS, nnClone);

auditor.run();

Listing 5.13 NNFraudClassifier: a neural network classifier for fraud detection

B

C

D

E

F

G

H

I

J

1)

1!
Licensed to Deborah Christiansen <pedbro@gmail.com>

204 CHAPTER 5 Classification: placing things where they belong
As you can see, by using our code, building and using a neural network based classifier
is simple. Everything can be written down in a few steps. Let’s examine the steps one
by one:

The transaction dataset from the file training-txns.txt is encapsulated by the class
TransactionDataset. The code in the packages iweb2.ch5.usecase.fraud.* allows
you to build your own dataset. We could have presented the transaction file itself and
left the rest of the details out. But this is a practical book and going through the pro-
cess of building your own dataset (and possibly extending what we give you) is what
will help you model the data of your own application. Using the right data and using
data properly is extremely important in intelligent applications.

Once we obtain the raw transactions we collect statistical information about the spend-
ing habits of each user. Remember that in the real world you’ll be collecting the data
from some back-end or data warehouse system. We need to mine the data for informa-
tion that’ll help us set a baseline for each user. If user A limits her spending within the
range of $20 to $200, while user B within the range of $100 to $5,000, a transaction of
$2,000 means something completely different for these two users. This process belongs
in the general category of data preprocessing that goes by the name data normalization.

 Look at the class UserStatistics, which encapsulates the baseline of spending for
each user. Three things are worth noticing. The first, which we already mentioned, is
the bracketing of the spending. We identify the minimum and maximum amount for
the legitimate transactions that we get from the training set. Second, pay attention to
the collection of terms found in the descriptions of legitimate transactions. Third,
notice that aside from the minimum and maximum coordinate locations, we also cal-
culate the centroid of locations. The argument here is that most transactions take
place around the area of residence, so if a new transaction comes in and its location is
far away from the baseline—the location centroid that we have for that user—we
should take that into account, although its contribution shouldn’t be dominant since
people do travel occasionally.

The NNFraudClassifier is the main class for classifying transactions. This class isn’t
itself a neural network; it delegates the learning aspects of its function to the class
TransactionNN. We’ll examine both of these classes later in this section. We give a
name to our classifier, so that we can refer to it later on. This name will be used for the
construction of its file name (during serialization), so you should give a name that’s
descriptive of what you are doing.

If you recall from our earlier examples (specifically the user clicks example in chapter
2), we need to identify which attributes of the transactions should be used for the clas-
sification. This is important in the real world because you typically have dozens of
attributes in your transactions, if not hundreds. A certain amount of careful consider-
ation is required in selecting the attributes that will be used for training. Irrelevant
attributes can overwhelm the classifier and significantly hinder its ability to identify
fraudulent transactions. This method automatically selects the three attributes of the
transactions that we discussed: the amount, the location, and the description.

B

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

205Fraud detection with neural networks
This step determines how many times the data will propagate through the network.
How large should the value be? It depends on your data and your network. As you’ll
see, 10 times works great in our example.

Once we set up all the parameters of our neural network, we’re ready to start the
training process. At the end of this method call, our classifier is ready to be used and it
has learned everything that it could learn from the given training dataset.

We save our instance of the trained classifier on the disk. This is important because
you may want to distribute the classifier to several systems or because the system that
builds the classifier is different from the system that uses it. In addition, it’s a safe-
guard against system failures. Imagine that you spent two hours training your classifier
on 10 attributes and over a set of several million transactions, but all of a sudden, for
whatever reason, the system goes down! What do you do? Trained classifiers should be
treated like every other electronic document whose content can change—when addi-
tional training occurs over the period of its usage, copies of the classifier should be
persisted; for example, they could be stored on the disk.

This is how you can load a trained classifier. All you need to know is the filename of
the classifier. Our implementation saves all serialized classifiers in the same location
on the disk, which is determined by the constant NNFraudClassifier.

SERIALIZATION_PATH. If that isn’t convenient you can change that variable or change
the related code and add more flexibility in your classifier storage capabilities.

Here we go! We’re ready to classify a couple of instances. The first transaction ID (1)
corresponds to a legitimate transaction, the second transaction ID (305) corresponds
to a fraudulent transaction. This is a sanity check, not a thorough evaluation of our
classifier, because we selected transactions that the classifier has already encountered
during its training.

Let’s create a dataset that contains transactions never before seen by the classifier. We
call this the testing dataset and denote it as testDS.

FraudErrorEstimator is an auxiliary class that can help us assess the accuracy of our
classifier. The assessment begins by invoking the method run(). At the end, it summa-
rizes the number of transactions that were correctly classified and the number of
transactions that were misclassified. In particular, it reports separately the number of
valid transactions that the classifier thought were fraud, and the number of fraudulent
transactions that the classifier thought were legitimate. There’s a difference between
these two types of misclassification, which we’ll discuss in the next section.

Now, let’s look at the results before we look deeper into the neural network code. Fig-
ure 5.10 shows the outcome from the execution of listing 5.13. Wow! How about that?
The classifier seems to be perfect! Is it possible? Let’s say that it’s very unlikely. This is
a classic trap for people who use black box libraries and don’t grasp the inner working
of classification algorithms. To understand this, open the test-txns.txt file with the text
editor of your choice and replace every occurrence of the entry BLACK DIAMOND COF-
FEE with SOME DUDE.

F

G

H

I

J

1)

1!
Licensed to Deborah Christiansen <pedbro@gmail.com>

206 CHAPTER 5 Classification: placing things where they belong
If you rerun the last three steps of listing 5.13 you should see the results shown in fig-
ure 5.11; your results will also include the normalized values of the transactions, which
we ignored here to improve legibility. The only transactions associated with the
replaced description were legitimate—their value for the last attribute was false. The
output indicates that there were four legitimate transactions (VALID_TXN) that were
misclassified as fraud. Our impeccable score has been marred because the replace-
ment has introduced noise in our data. In other words, we’re now dealing with data
that we never before encountered.

 The first set of test transactions (used in the results of figure 5.10) didn’t include
even one transaction from the training set. But in that case, all the test transactions
were created from the same statistical distributions. In particular, the transactional
descriptions were introduced from a fixed set of descriptions without any variations.
Even though each test transaction had never before been encountered,1 they all
belonged in exactly the same data space. Nearly all classification algorithms can do
well in that case, but they all generate errors on data that’s significantly different than
the training dataset. The ability of a classifier to gracefully handle data that it hasn’t
encountered before is a measure of its generalization capability.

1 In the sense that if we were to compare all the attribute values, one by one, between a test transaction and all
training transactions, we wouldn’t have found a single training transaction that was identical to the test trans-
action.

bsh % nnClone.classify("1");
Transaction:
 >> 1:1:EXPEDIA TRAVEL:63.29:856.0:717.0:false

Assessment:
 >> This is a VALID_TXN
bsh % nnClone.classify("305");
Transaction:
 >> 1:305:CANADIAN PHARMACY:3978.57:52.0:70.0:true

Assessment:
 >> This is a FRAUD_TXN
bsh % TransactionDataset testDS =
å TransactionLoader.loadTestDataset();

bsh % FraudErrorEstimator auditor =
å new FraudErrorEstimator(testDS, nnClone);

bsh % auditor.run();
Total test dataset txns: 1100, Number of fraud txns:100
Classified correctly: 1100,
Misclassified valid txns: 0,
Misclassified fraud txns: 0

Figure 5.10 Results of classification from the neural network classifier NNFraudClassifier
(listing 5.12)
Licensed to Deborah Christiansen <pedbro@gmail.com>

207Fraud detection with neural networks
The moral of the story is that a good understanding of the data is extremely impor-
tant. In particular, it’s important to know the degree to which your data is representa-
tive of all possible data for your application. Typically, collecting a lot of data helps us
obtain a lot of relevant data.

 In practice, this isn’t as easy as it sounds because the same data can mean different
things in different contexts. Moreover, a small number of attributes result in greater
ambiguity about the meaning of the data but a large number of attributes can obfus-
cate the essential classification features with unimportant information. There’s a fine
balance between making our classifier accurate on what we already know and concom-
itantly endowing the classifier with the power of generalization.

 It’s important to know the sensitivity that your classifier shows when you introduce
noise. In the preceding example, we changed the description of 39 transactions in a total
set of 1,100 test transactions, and our neural network classifier was inaccurate in 4 out
of the 39 “polluted” transactions. What would happen if you change the substitution
string to something else? How many of the polluted transactions become misclassified
as the number of polluted transactions increases? Use your own name as the substitution
string and study the results.

bsh % TransactionDataset testDS =
å TransactionLoader.loadTestDataset();

bsh % FraudErrorEstimator auditor =
å new FraudErrorEstimator(testDS, nnClone);

bsh % auditor.run();

userid = 25.0 - txnid = 500523 – txnamt = 63.79 –
å location_x = 533.0 - location_y = 503.0 -
å description = SOME DUDE --> VALID_TXN

userid = 26.0 - txnid = 500574 - txnamt = 127.97 –
å location_x = 734.0 - location_y = 507.0 -
å description = SOME DUDE --> VALID_TXN

userid = 23.0 - txnid = 500273 - txnamt = 47.76 –
location_x = 966.0 - location_y = 991.0 -
description = SOME DUDE --> VALID_TXN

userid = 21.0 - txnid = 500025 - txnamt = 50.47 –
location_x = 980.0 - location_y = 996.0 -
description = SOME DUDE --> VALID_TXN

Total test dataset txns: 1100, Number of fraud txns:100
Classified correctly: 1096,
Misclassified valid txns: 4,
Misclassified fraud txns: 0

Figure 5.11 Introducing noise in the data by replacing the description of valid transactions
Licensed to Deborah Christiansen <pedbro@gmail.com>

208 CHAPTER 5 Classification: placing things where they belong
5.4.4 The anatomy of the fraud detector neural network

Now, it’s time to take a close look at the NNFraudClassifier class, shown in listing 5.14.
At its core lies the class TransactionNN, which is a neural network specifically built to
meet the needs of our fraud detection use case. In turn, TransactionNN extends a gen-
eral neural network class called BaseNN, which you can use as the basis for writing your
own neural network; we’ll examine the BaseNN class in listing 5.16.

public class NNFraudClassifier
 implements Classifier, java.io.Serializable {

private String name;
private TransactionNN nn;
private TransactionDataset ds;
private transient TrainingSet ts;
private TransactionInstanceBuilder instanceBuilder;
private List<String> availableAttributeNames;

public NNFraudClassifier(TransactionDataset ds) {
 this.ds = ds;
 this.ts = ds.createTrainingDataset();
 this.instanceBuilder = ds.getInstanceBuilder();
 this.availableAttributeNames = new ArrayList<String>();

 nn = createNeuralNetwork();
}

public Concept classify(String transactionId) {
 setVerbose(true);
 Transaction t = ds.findTransactionById(transactionId);
 return classify(t);
}

public Concept classify(Transaction t) {
 return classify(instanceBuilder.createInstance(t));
}

public Concept classify(Instance instance) {

 double[] x = createNNInputs(instance);

 double[] y = nn.classify(x);

 Concept c = createConceptFromNNOutput(y);

 return c;
}

public boolean train() {

 if(ts == null) {
 throw new RuntimeException("Can't train classifier –

➥ training dataset is NULL.");
 }
 if(nn == null) {
 throw new RuntimeException("No Neural Network found.");
 }

Listing 5.14 A classifier for fraud detection based on a special neural network

B

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

209Fraud detection with neural networks
 if(nn.getInputNodeCount() != availableAttributeNames.size()) {
 throw new RuntimeException("Number of attributes doesn't match");
 }
 if(nn.getOutputNodeCount() != 1) {
 throw new RuntimeException("Classifier expects network

➥ with only one output node.");
 }

 trainNeuralNetwork(nTrainingIterations);

 return true;
}

private void trainNeuralNetwork(int nIterations) {

 for(int i = 1; i <= nIterations; i++) {

 for(Instance instance : ts.getInstances().values()) {

 double[] nnInput = createNNInputs(instance);

 double[] nnExpectedOutput = createNNOutputs(instance);

 nn.train(nnInput, nnExpectedOutput);
 }
 }
}

public double[] createNNInputs(Instance instance) {

 int nInputNodes = nn.getInputNodeCount();

 double[] x = new double[nInputNodes];

 for(int i = 0; i < nInputNodes; i++) {

 String attrName = this.availableAttributeNames.get(i);
 Attribute a = instance.getAttributeByName(attrName);

 if(a instanceof DoubleAttribute) {

 x[i] = (Double)a.getValue();

 } else {

 if(a == null) {
 throw new RuntimeException("Failed to find attribute with name:

➥ '"+attrName);
 } else {
 throw new RuntimeException("Invalid attribute type.");
 }
 }
 }
 return x;
}

public double[] createNNOutputs(Instance i) {

 int nOutputNodes = nn.getOutputNodeCount();

 double[] y = new double[nOutputNodes];

 if(TransactionConcept.CONCEPT_LABEL_FRAUD.equals(i.getConcept().getName())) {

F

G

H

Licensed to Deborah Christiansen <pedbro@gmail.com>

210 CHAPTER 5 Classification: placing things where they belong
 y[0] = 1;

 } else {
 y[0] = 0;
 }
 return y;
}

private Concept createConceptFromNNOutput(double[] y) {

 double threshold = 0.5;

 Concept c = null;

 if(y[0] >= threshold) {

 c = new TransactionConcept(TransactionConcept.CONCEPT_LABEL_FRAUD);

 } else {

 c = new TransactionConcept(TransactionConcept.CONCEPT_LABEL_VALID);
 }

 return c;
}

public void useDefaultAttributes() {
 trainOnAttribute(TransactionInstance.ATTR_NAME_N_TXN_AMT);
 trainOnAttribute(TransactionInstance.ATTR_NAME_N_LOCATION);
 trainOnAttribute(TransactionInstance.ATTR_NAME_N_DESCRIPTION);
 }
}

Listing 5.13 shows the essential methods of the NNFraudClassifier class; for brevity
we’ve eliminated Javadoc, getters and setters, and so forth. As you can see, the classi-
fier is a wrapper around more elementary classes that allow us to map the use case of
transaction fraud onto the standard “instance to concept” framework. Let’s comment
on these methods in order of appearance:

Our constructor takes a reference to the transaction dataset and constructs the objects
that will be needed for classification. Recall that our data is transactions, so we need to
create instances from them in order to use the classification algorithms. That’s the role
of the TransactionInstanceBuilder class. The invocation of the method create-
NeuralNetwork() creates an instance of the TransactionNN class, which we describe in
listing 5.14.

The method classify is overloaded for the specific usage of this classifier. According
to our iweb2.ch5.classification.core.intf.Classifier interface, a classifier is
obligated to provide an implementation that takes an Instance as its single argument
and returns a Concept. We facilitate the use of our classifier by providing additional
classify methods, which eventually delegate to the main classify method.

This is the essential method of the classifier and its implementation involves three
steps. Our neural networks accept an array of double values as input, and provide an
array of double values as output. The first step is to translate the data of a transaction
instance into an array of double values. The second step loads the input values into

I

J

B

C

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

211Fraud detection with neural networks
the network and obtains the result of the neural network’s classification (a single dou-
ble value). Since we aren’t interested in the precise double value that the neural net-
work returns, but want the classifier to tell us whether that instance is fraudulent, we
need to translate that double value into one of the two Concepts—either
CONCEPT_LABEL_FRAUD or CONCEPT_LABEL_VALID. That’s what the method create-
ConceptFromNNOutput does.

This is the training method that you need to call for the NNFraudClassifier and it
results in the training of the neural network. First, this method performs a number of
checks before it delegates to the main training method. In particular, it tests for the
following conditions:

■ The existence of a training set
■ The existence of a TransactionNN instance
■ The conformity of the input to the specifications of the TransactionNN

instance
■ The conformity of the output to the specifications of the TransactionNN

instance

This is the main training method. It requires a single argument that specifies the num-
ber of times that the instances of the training set should propagate through the neural
network. Each instance results in changing the weights of the synapses of the neural
network in order to optimize the classification of the neural network for all the
instances that have been seen so far. In other words, you keep telling the neural network
what the answer for a given input should be and it tries to adjust itself so that it can
“remember” the answer without forgetting all the other answers that it’s seen so far.

This is the auxiliary method that takes as argument an Instance and creates the input
values for the neural network.

This is the auxiliary method that takes an Instance as argument and creates the out-
put values of the neural network. This is used only in the training phase.

This is the auxiliary method that takes the output value of the neural network as argu-
ment and translates it into one of the two Concepts—either CONCEPT_LABEL_FRAUD or
CONCEPT_LABEL_VALID.

This is the auxiliary method that defines the attributes of the transaction instance that
we want to use in the classification. In our case, we don’t have many attributes, but this
wrapper simplifies our scripts. In general, it’s convenient and prudent to define the
list of training attributes in a single place in the code. You could also add a getter for
the availableAttributeNames variable.

At this point, you probably have a good understanding of the high-level definition of
our fraud classifier based on a neural network. But, how do we define a neural net-
work? What steps should you take if you want to write your own fraud detection classi-
fier with a different neural network? Listing 5.15 shows the code from the class
TransactionNN. This is the neural network that we use in the fraud classifier, but as

E

F

G

H

I

J

Licensed to Deborah Christiansen <pedbro@gmail.com>

212 CHAPTER 5 Classification: placing things where they belong
you can see, there’s nothing special about fraud or transactions in the definition of
that class. It only carries the signature of how we decided to cast our fraud detection
problem in our neural network framework.

public class TransactionNN extends BaseNN {

 public TransactionNN(String name) {
 super(name);

 createNN351();
 }

 private void createNN351() {

 Layer inputLayer = createInputLayer(
 0, // layer id
 3 // number of nodes
);

 Layer hiddenLayer = createHiddenLayer(
 1, // layer id
 5, // number of nodes
 new double[] {1, 1.5, 1, 0.5, 1} // node biases
);

 Layer outputLayer = createOutputLayer(
 2, // layer id
 1, // number of nodes
 new double[] {1.5} // node biases
);

 setInputLayer(inputLayer);
 setOutputLayer(outputLayer);
 addHiddenLayer(hiddenLayer);

 setLink("0:0", "1:0", 0.25);
 setLink("0:0", "1:1", -0.5);
 setLink("0:0", "1:2", 0.25);
 setLink("0:0", "1:3", 0.25);
 setLink("0:0", "1:4", -0.5);

 setLink("0:1", "1:0", 0.25);
 setLink("0:1", "1:1", -0.5);
 setLink("0:1", "1:2", 0.25);
 setLink("0:1", "1:3", 0.25);
 setLink("0:1", "1:4", -0.5);

 setLink("0:2", "1:0", 0.25);
 setLink("0:2", "1:1", -0.5);
 setLink("0:2", "1:2", 0.25);
 setLink("0:2", "1:3", 0.25);
 setLink("0:2", "1:4", -0.5);

 setLink("1:0", "2:0", -0.5);
 setLink("1:1", "2:0", 0.5);
 setLink("1:2", "2:0", -0.5);

Listing 5.15 A special neural network for the fraud detection use case

B

c

D

E

F

G

H

Licensed to Deborah Christiansen <pedbro@gmail.com>

213Fraud detection with neural networks
 setLink("1:3", "2:0", -0.5);
 setLink("1:4", "2:0", 0.5);

 System.out.println("NN created");
 }
 }

Based on the listing, the steps involved in the definition of our fraud detection neural
network are the following:

The TransactionNN class is an extension of the BaseNN class, which we’ll describe in
greater depth later. You can build general neural networks by extending the BaseNN
class. In the code that comes with this book, you can also find a neural network that
replicates an XOR gate, which means that it takes two double values as input and cre-
ates one double value as output. If both values are approximately equally to one or
zero, the output is zero. If one value is approximately equal to one and the other is
approximately equal to zero, the output is equal to one. The class is called XORNet-
work, and it’s even simpler than the TransactionNN class. Read it and run it to rein-
force your understanding of how you can build a neural network.

The constructor delegates to the BaseNN constructor for all basic initialization steps
and creates the specific network topology with three input nodes, five hidden layer
nodes, and one output layer node. Wait a second! Three input nodes? Our transac-
tional data that we described earlier had a lot more attribute values. In particular, we
included the user ID, the transaction amount, the transaction location in terms of two
coordinates, and a transaction description string. The description string isn’t numeric
and can be translated into a number in many ways, but it’s reasonable to expect that it
would contribute in the input data in at least one node. That adds up to five input
data (minimum), so why do we use only three?

 The data values that we pass as input to the neural network are all normalized val-
ues; to convince yourself, look at the method createInstance(Transaction t) of the
class TransactionInstanceBuilder. The transaction amount is normalized, based on
the minimum and maximum value of the legitimate transactions, so that it’s always a
value within the interval 0 and 1. We use the JaccardCoefficient in order to achieve
the same result for the description of a transaction. For the transaction locations, we
do something more elaborate. We normalize both the location of the user’s centroid
and the location of the transactions (based on the minimum and maximum values of
the x and y coordinates), and subsequently calculate the distance between these two
normalized locations. That distance is one of our three input values in the neural net-
work TransactionNN. That’s why we have only three input nodes. This is clearly a
design choice, and as is often the case in neural network design, it’s more or less an
arbitrary choice. But it’s not a bad choice and it can be justified; in fact, we ask you to
do that in one of to-do items.

 The overall network topology (3/5/1 nodes, only one hidden layer, full connectiv-
ity) is also a design decision that isn’t set in stone but can be optimized based on exper-
imentation. You could try different topologies that would result in different classifiers.

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

214 CHAPTER 5 Classification: placing things where they belong
In the same to-do item as the data normalization, we urge you to implement your own
network topology and compare the results of the resulting classifiers. The best network
topology depends on the nature of the input data and the nature of your problem. The
fraud detection use case and the TransactionNN base implementation provide a base-
line that can help you investigate this dependency.

We create the input layer by providing an ID and specifying that the input layer should
have three nodes.

We create the hidden layer of the network. Note that now we’ve introduced an array
of new parameters (each value in the array corresponds to one node in the layer)
called biases. We talked about the weights of the synapse earlier. For now, consider
these to be additional constant weights that denote a bias that should be added to the
output value from a node.

 Note also that the method uses the prefix add instead of set. That’s intentional
because we want to indicate that you can have more than one hidden layer. We recom-
mend that you study the effect of the number of hidden layers as one aspect of design-
ing your neural networks.

This is the last of our three layers. We define a bias value for the output layer as well,
but you can opt not to have a bias in the output node. In the latter case, simply set the
bias equal to zero.

We assign the references of the three layers to the network. At this point, we have all
our nodes ready. The only thing that we have left to do is create the connectivity (the
edges) of our network.

We build all the links (synapses) between the nodes one by one. The first argument
determines the origin of the link in the form LayerID:NodeID. The second argument
determines the destination of the link in the form LayerID:NodeID. The third argu-
ment determines the weight of the link upon initialization. As we discussed, the values
of the weights change continuously during the training phase.

5.4.5 A base class for building general neural networks

The material that we presented in the previous sections was tied to the specific use case
of fraud detection. In order to create the neural network, as well as every time that we
needed to access the inner workings of the neural network, we delegated the calls to the
general implementation that we provided—the class BaseNN. Due to its importance and
general applicability, this section will provide a dissection of that class.

 For better exposition, we’ll present this class in two listings. Listing 5.16 will
address the structural aspects of the class (setting up the neural network), listing 5.17
will present the operational aspects (the training and classification related code).

 public Layer createInputLayer(int layerId, int nNodes) {

 BaseLayer baseLayer = new BaseLayer(layerId);

Listing 5.16 BaseNN (structural aspects): excerpt from the base class of a general NN

D

E

F

G

H

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

215Fraud detection with neural networks
 for(int i = 0; i < nNodes; i++) {
 Node node = createInputNode(layerId + ":" + i);
 Link inlink = new BaseLink();
 inlink.setFromNode(node);
 inlink.setWeight(1.0);
 node.addInlink(inlink);
 baseLayer.addNode(node);
 }

 return baseLayer;
 }

 public Layer createHiddenLayer(int layerId,

➥ int nNodes, double[] bias) {

 if(bias.length != nNodes) {
 throw new RuntimeException("Each node should have bias.");
 }
 BaseLayer baseLayer = new BaseLayer(layerId);
 for(int i = 0; i < nNodes; i++) {
 Node node = createHiddenNode(layerId + ":" + i);
 node.setBias(bias[i]);
 baseLayer.addNode(node);
 }
 return baseLayer;
 }

 public Layer createOutputLayer(int layerId,

➥ int nNodes, double[] bias) {

 if(bias.length != nNodes) {
 throw new RuntimeException("Each node should have bias.");
 }

 BaseLayer baseLayer = new BaseLayer(layerId);
 for(int i = 0; i < nNodes; i++) {
 Node node = createOutputNode(layerId + ":" + i);
 node.setBias(bias[i]);
 baseLayer.addNode(node);
 }
 return baseLayer;
 }

 public void setLink(String fromNodeId, String toNodeId, double w) {
 Link link = new BaseLink();
 Node fromNode = allNodes.get(fromNodeId);
 if(fromNode == null) {
 throw new RuntimeException("Unknown node id: " + fromNodeId);
 }
 Node toNode = allNodes.get(toNodeId);
 if(toNode == null) {
 throw new RuntimeException("Unknown node id: " + toNodeId);
 }

 link.setFromNode(fromNode);
 link.setToNode(toNode);
 link.setWeight(w);

 fromNode.addOutlink(link);

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

216 CHAPTER 5 Classification: placing things where they belong
 toNode.addInlink(link);
 }

 protected Node createInputNode(String nodeId) {
 Node node = new LinearNode(nodeId);
 node.setLearningRate(learningRate);
 return node;
 }

 protected Node createHiddenNode(String nodeId) {
 Node node = new SigmoidNode(nodeId);
 node.setLearningRate(learningRate);
 return node;
 }

 protected Node createOutputNode(String nodeId) {
 Node node = new LinearNode(nodeId);
 node.setLearningRate(learningRate);
 return node;
 }

 public abstract double fireNeuron();

 public abstract double fireNeuronDerivative();
}

Let’s start with the structural aspects as shown in listing 5.16. This is not the entire
implementation. We’ve kept the minimum methods required to describe the struc-
ture of a neural network.

This method creates the input layer of the network; it takes as arguments the layer ID
and the number of nodes that this layer should have. It instantiates a BaseLayer, which
is the base neural network layer implementation in our framework. This class consists
of a layer ID and a list of nodes. The loop iterates nNodes times in order to create all the
nodes of the input layer. Each node of the input layer is assigned a link (synapse),
which we call inlink to indicate that it’s responsible for transferring the data into the
network. The weight of that link is set equal to one and doesn’t change during training
because we don’t want to distort the original values of the data. For that reason, many
authors don’t consider the input layer to be part of the neural network per se.

This method creates the hidden layer of the network; it takes as arguments the layer
ID, the number of nodes that this layer should have, and the bias that each one of
these nodes should have. After validating that there are as many bias values as there
are nodes, it instantiates a BaseLayer. The loop iterates nNodes times, in order to cre-
ate all the nodes of the hidden layer. Each node of the input layer is assigned the bias
that corresponds to the enumeration of the loop; since this is the creation stage, we
assume that this is the intended ordering. Unlike the case of input layer nodes, a link
(synapse) isn’t created at this stage and therefore a weight isn’t provided either. This is
done separately, via the method setLink, as we’ll see shortly.

We conclude the creation of the neural network’s layers by constructing the output layer.
This is similar to the construction of the hidden layer. But there’s implicitly a difference
related to the fact that the nodes of the output layer are instances of the LinearNode
class, while the hidden layer nodes are instances of the SigmoidNode class.

F

B

C

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

217Fraud detection with neural networks
The previous methods were responsible for creating neural network nodes. This
method is responsible for creating the neural network links (synapses). The only layer
nodes for which we created a link were the input layer nodes. The rest of the nodes
are connected using this method. Its arguments are the IDs of the two nodes that the
link should connect and the weight that should be attributed to the link. You can also
define other methods such as connectFully(Layer x, Layer y), which would create a
link for all the possible combinations of nodes between these two layers. You can
experiment and explore the possibilities according to your needs.

The remainder of the methods in listing 5.16 are responsible for creating the
instances of the specific implementations of neural network nodes. We’ve written two
specific implementations of a BaseNode; the BaseNode is an abstract class. The first
implementation is given by the class LinearNode and is used by the input and output
layers. The second implementation is given by the class SigmoidNode and is used by
the hidden layer nodes. Once the nodes have been created, we set the learning rate.

Nearly all the functionality of a node is provided by the base class. The LinearNode and
the SigmoidNode offer implementations for only two methods—the fireNeuron() and
the fireNeuronDerivative(). If you recall our design mantra in section 5.4.2, we can
fully determine a neural network by defining the network architecture, the activation
rule, and the learning rule. Creating the layers of the network, their nodes, and their
connections establishes the network architecture, but doesn’t tell us how the nodes will
respond to a given input (activation rule) or how the network will learn. The fire-
Neuron() method defines the response of a neuron node to the given input, which is
the crux of the activation rule, while the fireNeuronDerivative() (which must provide
the numerical derivative of the fireNeuron() method) is directly related to the learning
rule. The parameter learningRate doesn’t depend on the specific implementation of
the node and is typically a value between 0 and 1.

 The preceding methods adequately define the neural network as a structure. So,
let’s move on to listing 5.17, which describes the operational aspects of our network.

public void train(double[] tX, double[] tY) {
 double lastError = 0.0;
 int i = 0;

 while(true) {
 i++;
 double[] y = classify(tX);

 double err = error(tY, y);

 if(Double.isInfinite(err) || Double.isNaN(err)) {
 throw new RuntimeException("Training failed.");
 }

 double convergence = Math.abs(err - lastError);

 if(err <= ERROR_THRESHOLD) {
 lastError = err;

Listing 5.17 BaseNN (operational aspects): excerpt from the base class of a general NN

E

F

B

C

D

Licensed to Deborah Christiansen <pedbro@gmail.com>

218 CHAPTER 5 Classification: placing things where they belong
 break;
 }

 if(convergence <= CONVERGENCE_THRESHOLD) {
 break;
 }
 lastError = err;

 outputLayer.setExpectedOutputValues(tY);

 outputLayer.calculateWeightAdjustments();

 for(Layer hLayer : hiddenLayers) {
 hLayer.calculateWeightAdjustments();
 }

 outputLayer.updateWeights();

 for(Layer hLayer : hiddenLayers) {
 hLayer.updateWeights();
 }
 }
 }

public double[] classify(double[] x) {

 inputLayer.setInputValues(x);

 inputLayer.calculate();
 inputLayer.propagate();

 for(Layer hLayer : hiddenLayers) {
 hLayer.calculate();
 hLayer.propagate();
 }

 outputLayer.calculate();
 double[] y = outputLayer.getValues();

 return y;
}

Every neural network has two main operational characteristics. It should be able to
train itself, and it should be able to classify its input—create the expected output val-
ues. The algorithm that we adopt in our implementation is called the back propagation
algorithm; it’s an online gradient-descent learning algorithm. In practical terms, this
algorithm examines each training instance and adjusts the weights of its links (syn-
apses) so that the difference of the output value from the expected value is mini-
mized. Minimization relies on examining the slope of the error. For each instance we
enter an infinite loop, which breaks under three conditions.

Enter an open loop, during which we try to improve the accuracy of the classifier. The
termination conditions are described in points 2–4.

The first termination condition is that we’re able to calculate the error. If we can’t there’s
no point in iterating. This is simply a sanity check. If that condition happens to be true
then it usually indicates a bad neural network design or some other error in the way that
you’re trying to cast your problem as a classification task for neural networks.

E

F

G

H

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

219Are your results credible?
The second termination condition is related to the magnitude of the error. If the
error of classifying this instance is less than a predefined threshold we can stop.

The third termination condition checks whether the difference that we get in the
errors improves significantly over time. We’re trying to reduce the error, so we keep
varying the weights and try to get a better value for our output value. It is possible that
we may not achieve the error threshold that we’ve set. In other words, we may have set
the bar too high for our classifier. Look at the way that we implemented that condi-
tion. Can you come up with a better convergence criterion?

At this point, we haven’t yet met any of our termination criteria. So, we set the value of
the output node to the expected value and begin our reevaluation of the network’s
weights. This is done by calling calculateWeightAdjustments() for all the nodes
starting with the nodes of the output layer.

In the previous step we evaluated the adjustments of the weights but we didn’t take
any action. In this step, upon completion of the weight adjustment calculations for all
the nodes, we update the values of the weights by calling the method update-
Weights(). That’s it! Our cycle completed and we’re ready to repeat it until one of
our three termination conditions is met.

This method is the top-level wrapper of the classification process. As we stated earlier,
when the neural network operates, think of the information traveling through the
nodes from the input nodes to the output nodes. This is captured succinctly in this
method. We begin with the nodes of the input layer, we move on to the hidden layers,
and we close by calculating the output value of the network. Each node makes its own
calculations, based on the weights and the biases that it has; this is taken care of by the
calculate() method. The node will pass on its output to the nodes that it connects to
by using the method propagate(). Once the neural network has been trained, operat-
ing it is quite straightforward.

A lot of this material relies on mathematical prerequisites that aren’t a requirement
for the general audience of this book. We’ve focused on the mechanics of neural net-
work classifiers rather than their fundamentals. If you’re interested in learning more
about the inner workings of neural networks, there’s a vast amount of literature that
you can consult. In appendix E, we list many good books from the literature of neural
networks that can help you expand your knowledge in this field.

 The previous section focused on the definition and description of the classification
algorithms that are needed in order to build a classifier. From the perspective of a
product, there’s a set of important issues such as the credibility of classification, the
consistency of the results on large datasets, as well as the computational requirements
of classification that must be taken into account. We’ll tackle some of these issues in
the following sections.

5.5 Are your results credible?
Let’s say that you’ve built your classifier based on Bayes theorem or neural networks,
or something else. How do you know whether you did a good job? How do you know

D

E

F

G

H

Licensed to Deborah Christiansen <pedbro@gmail.com>

220 CHAPTER 5 Classification: placing things where they belong
that you’re ready to use your intelligent module in production and reap the awe of
your colleagues and the accolades of your boss? Evaluating your classifier is as impor-
tant as building it. On the “street” (also known as “sales meetings”), you’re going to
hear things that range from exaggerations to outright nonsense. The goal of this sec-
tion is to help you evaluate your own classifier, if you’re a developer, and help you
understand the legitimacy (or otherwise) of third-party products, whether you’re a
developer or a product manager.

 Let’s start by stating that there’s not a single classifier that will perform classifica-
tion well on every problem and every dataset. Think of it as the computational version
of “nobody knows everything” and “everybody makes mistakes.” The learning tech-
niques that we discussed in the context of classification belong to the category of
supervised learning (for an example of an unsupervised learning algorithm, see the
related to-do item). The learning is “supervised” because the classifier undergoes a
process of training, based on known classifications, and through supervision it
attempts to learn the information contained in the training dataset. As you can imag-
ine, the relation of the training data to the actual data in your deployment will be cru-
cial for the success of classification.

 For the purpose of clarity, let’s introduce a few terms. To make things simple, we’ll
consider a standard binary classification problem such as identifying email spam or
fraud. For example, let’s pretend that we’re trying to discern whether a particular
email message should be characterized as spam. A basic tool in assessing the credibil-
ity of a classifier, and typically the starting point of such an investigation, is the confu-
sion matrix. It’s a simple matrix, where the rows refer to the category that the classifier
assigns a particular instance, and the columns refer to the category that an instance of
a description belongs to. In the case of binary classification, there are only four cells in
that matrix. The general case (multiclass classification) doesn’t differ conceptually
from the binary case, but it results in more complicated analysis.

 Table 5.1 presents the confusion matrix for a binary classification such as email spam
filtering or fraud detection. The table captures the possible outcomes of binary classi-
fication. If the classification assigns a particular email message to the spam category
then we say that the classification is positive. Otherwise, we say that the classification is
negative. Of course, the classification itself could be correct (true) or incorrect (false).
Thus, the matrix contains four possible outcomes—the possible combinations between
positive/negative and true/false. This also leads to the realization that there are two
types of error. The first type of error consists of false positive classifications; an error of
this type is called a type I error. The other type of error consists of false negative classifi-
cations; an error otf this type is called type II error. In plain terms, when you commit a

Positive Negative

True True Positive (TP) True Negative (TN)

False False Positive (FP) False Negative (FN)
Table 5.1 A typical confusion matrix for a
simple binary classification problem
Licensed to Deborah Christiansen <pedbro@gmail.com>

221Are your results credible?
type I error, you convict the innocent, and when you commit a type II error, you free the
guilty! This analogy is particularly good in pointing out the importance of classification
cost. Voltaire would prefer to release 100 guilty people than convict one innocent per-
son; that sensitivity remains in the European courts. The moral of this anecdote is that
decisions have consequences, and the degree of the consequences isn’t uniform. This
is particularly true in the case of multiclass classification. We’ll revisit this point.

 Based on the values of table 5.1, let’s introduce the following definitions:

■ FP rate = FP / N, where N = TN + FP
■ Specificity = 1 – FP rate = TN / N
■ Recall = TP / P, where P = TP + FN
■ Precision = TP / (TP + FP)
■ Accuracy = (TP + TN) / (P + N)
■ F-score = Precision * Recall

Suppose that we find out about a classifier whose accuracy, as defined earlier, is 75%.
How close to the true accuracy of the classifier is our estimate? In other words, if you
repeat the classification task with different data, how likely is it that your accuracy will
be 75%? To answer that question, we’ll resort to something that’s known in statistics as
a Bernoulli process. This is described as a sequence of independent events whose out-
come is considered either as success or as failure. That’s an excellent example for our
email spam filtering use case or our fraud detection use case, and in general for any
binary classification. If we denote the true accuracy as A*, and the measured accuracy
as A, then we want to know if A is a good estimate of A*.

 You may recall from your statistics courses the notion of a confidence interval. That’s
a measure for the certainty that we assign to a specific statement. If our accuracy is 75%,
in a set of 100 email messages, our confidence may not be very high. But if our accuracy
is 75%, in a set of 100,000 email messages, our confidence will probably be much higher.
Intuitively, we understand that, as the size of the set increases, the confidence interval
must become smaller and we feel more certain about our results. In particular, it can be
shown that, for a Bernoulli process with 100 samples, the true accuracy is located
between 69.1% and 80.1%, with 80% confidence (see Witten & Frank). If we increase
the size of the set that we use to measure the accuracy of the classifier 10 times then the
new interval ranges from 73.2% to 76.7%, for the same confidence level (80%). Every
good statistics textbook has formulas for calculating these intervals. In theory, these
results are valid when your sample size is greater than 30 instances. In practice, you
should use as many instances as you can.

 Unfortunately, in practice, you may not have as many instances as you would have
liked. To face that challenge, machine learning folks have devised a number of tech-
niques that can help us evaluate the credibility of classification results when data are
scarce. The standard method of evaluation is called 10-fold cross-validation. This is a
simple procedure that’s best illustrated by an example. Let’s say that we have 1,000
emails that we’ve already classified manually. In order to evaluate our classifier, we
Licensed to Deborah Christiansen <pedbro@gmail.com>

222 CHAPTER 5 Classification: placing things where they belong
need to use some of them as a training set and some as the testing set. The 10-fold
cross-validation tells us to divide the 1,000 emails into 10 groups of 100 emails; each
batch of 100 emails should contain roughly the same proportion of legitimate to spam
emails as the 1,000 emails set does. Subsequently, we take 9 of these groups of emails
and we train the classifier. Once the training is completed, we test the classifier against
the group of 100 emails that we didn’t include in our training. We can measure met-
rics, some of which we mentioned earlier, and typically people will measure the accu-
racy of the classifier. This is repeated 10 times, and each time we leave out a different
group of 100 emails. In the end of these trials, we have 10 values of accuracy that we
can now use to obtain an average value of accuracy.

 You may wonder whether your accuracy will change if you divide your original set
into 8 or 12 parts. Yes, of course, it’s unlikely that you’ll obtain an identical answer.
Nevertheless, the new averaged value of accuracy should be close enough to what you
obtained before. Results from a large number of tests, on various datasets and with
many different classifiers, suggest that the 10-fold cross-validation will produce fairly
representative measurements for your classifier.

 Taking the 10-fold cross-validation to its extreme case, you can always use as a train-
ing set all the email instances except for one, and use the one that you left out for test-
ing. Naturally, this technique is called leave-one-out. It has certain theoretical
advantages, but on real datasets (with hundreds of thousands, if not millions, of
instances) the computational cost is often prohibitive. You could opt to leave one
instance out but not do it for all instances in your dataset. This leads to a technique
called bootstrap. The basic idea of bootstrap is that we can create a training set by sam-
pling the original dataset with replacements. In other words, we can use an instance
from the original dataset more than once and create a training set of 1,000 emails in
which a particular email instance may appear more than once. If you do that then
you’ll end up with a testing set of about 368 email instances that weren’t used in the
training set. The size of your training set remains equal to 1,000 email instances
because some of the remaining 632 email instances are repeated in the training set;
for more mathematical explanation of these numbers, see Witten & Frank.

 It’s been found that plotting the TP rate (TPR) versus the FP rate (FPR) can be use-
ful in analyzing the credibility of a classifier. These plots are called ROC curves and
originated in signal detection theory in the ’70s. In recent years, there’s been a large
amount of work in machine learning that utilizes ROC graphs for analyzing the perfor-
mance of one or more classifiers. The basic idea is that the ROC curve should be as far
away from the diagonal of a TPR/FPR plot as possible. We’ll defer the analysis of ROC
graphs to the excellent technical report by Tom Fawcett, which includes pseudoalgo-
rithms and many tips about issues that appear in practice.

 In the real world, classification systems are used often as decision support systems;
mistakes of classification can lead to wrong decisions. In some cases, making wrong
decisions, although undesirable, can be relatively harmless. But in other cases, it may
be the difference between life and death; think of a physician who misses a cancer
Licensed to Deborah Christiansen <pedbro@gmail.com>

223Classification with very large datasets
diagnosis or an emergency situation for an astronaut in deep space relying on the
result of your classifier. The evaluation of classification systems should examine both
the degree of credibility and the associated cost of making classifications. In the case
of binary classification, the idea is to assign a cost function that’s a function of the FP
and FN rates. For assigning cost in the multiclass classification cases, see the related to-
do item.

 In summary, one of the most important aspects of a classifier is the credibility of its
results. In this section, we described a number of metrics that can help us evaluate the
credibility of classifiers such as the precision, the accuracy, the recall, and the specificity.
Combinations of these metrics can yield new metrics, such as the F-score. We also dis-
cussed the idea of crossvalidating the results by splitting the training set in different
ways and looking at the variation of these classifier metrics as the datasets change. We
discussed the concept of a ROC curve, which is a simple plot between TPR and FPR. In
the following section, we’ll discuss a number of issues that are related to large datasets.

5.6 Classification with very large datasets
Many datasets used for academic and research purposes are quite small when com-
pared to real-world implementations. Transactional datasets of large corporations are
anywhere between 10 million to 100 million records, if not larger; insurance claims,
telecommunications log files, recordings of stock prices, click trace logs, audit logs,
and so on (the list is long) are on the same order of magnitude. So, dealing with large
datasets is the rule rather than the exception in production applications, whether or
not they are web-based. The classification of very large datasets deserves special atten-
tion for (at least) three reasons: (1) the proper representation of the dataset in the
training set; (2) the computational complexity of the training phase; (3) the runtime
performance of the classifier on a very large dataset.

 Regardless of the specific domain of your application and the functionality that
your classifier supports, you must ensure that your training data is representative of
the data that will be seen in production. You shouldn’t expect that a classifier will per-
form as well as the validation stage measurements suggest, unless your training data is
very representative of your production data. We repeat ourselves to stress that point!
In many cases, early excitement quickly turns to disappointment simply because this
condition isn’t met. So, you wonder, in that case, how can I ensure that my training
data is representative?

 The case of binary classification is easier to address because there are only two
classes—an email message is either spam or it isn’t, a transaction is fraudulent or it
isn’t, and so on. In that case, assuming that you have a reasonable number of training
instances from both classes, our focus should be on the coverage of the attribute val-
ues among the training instances. Your assessment can be purely empirical (“Yeah,
that’s good enough. We have enough values; let’s roll it to production!”), utterly scien-
tific (sampling your data over time and testing whether the samples come from the
same statistical distribution as the training data), or somewhere in between these
Licensed to Deborah Christiansen <pedbro@gmail.com>

224 CHAPTER 5 Classification: placing things where they belong
extremes. In practice, the latter scenario is more likely; we could call it the semiempir-
ical approach to supervised learning. The empirical aspect of it is that, along the way
to assessing the completeness of your training set, you make a number of reasonable
assumptions that reflect your understanding and experience of the data that your
application is using. The scientific aspect of it is that you should collect some basic sta-
tistical information about your data, such as minimum and maximum values, mean
values, median values, valid outliers, percentage of missing data in attribute values,
and so on. You can use that information to sample previously unseen data from your
application and include it in your training set.

 The case of multiclass classification is similar in principle to the case of binary clas-
sification. But in addition to the guidelines that we mentioned previously, we’re now
faced with an additional complexity . Our new challenge is that we need to select our
training instances so that all classes are represented equivalently in the training set.
Discriminating between 1,000 different classes is a much harder problem to solve
compared to binary selection. The case of multidimensional (many attributes) multi-
class classification has the additional drawbacks that result from the curse of dimen-
sionality (see chapter 4).

 If your database contains 100 million records you’d naturally want to take advan-
tage of all the data and leverage the information contained there. In the design phase
of your classifier, you should consider the scaling characteristics of the training and
validation stages for your classifier. If you double the size of your training data then
ask yourself:

■ How much longer does it take me to train the classifier?
■ What’s the accuracy of my classifier on the new (larger) set?

You probably want to include more quality metrics than just accuracy, and you proba-
bly want to take a few more data sizes (four times the original size, eight times the
original, and so on) but you get the idea. It’s possible that your classifier works great
(it’s trained quickly and provides good accuracy) in a small sample dataset but its per-
formance degrades significantly when it’s trained over a substantially larger dataset.
This is important because time to market is always important, and the “intelligent”
modules of your application should obey the same production rules as the other parts
of your software.

 The same principle holds for the runtime performance of the classifier during the
third stage of its lifecycle—in production. It’s possible that your classifier was trained
quickly and provides good accuracy, but it’s all for naught if it doesn’t scale well in
production! In the validation stage of the classifier, you should measure its perfor-
mance and its dependency on the size of the data. Let’s say that you use a classifier
whose dependence on the size of the data is quadratic—if the data doubles in size
then the time that it takes to process the data is four times larger. Let’s further assume
that your intelligent module will use the classifier in the background to detect fraudu-
lent transactions. If you used 10,000 records for your validation and all records were
Licensed to Deborah Christiansen <pedbro@gmail.com>

225Summary
classified in 10 minutes, then you’d process 10 million records in about 10 million
minutes! You probably wouldn’t have that much time available, so you should either
pick a different classifier or improve the performance of the one that you have. Fre-
quently, in production systems, people have to trade classifier accuracy for speed; if a
classifier is extremely accurate and extremely slow, it’s most likely useless!

 Pay attention to the idiosyncrasies of your classification system. If you use a rule-
based system, you may encounter what’s known as the utility problem. The learning pro-
cess—the accumulation of rules—can result in the overall slowdown of the system in
production. There are ways to avoid or at least mitigate the utility problem (see
Doorenbos) but you need to be aware of them and ensure that your implementation
is compatible with these techniques. Of course, the degradation of performance isn’t
the only problem in that case. You’d also need to provide ways to manage and orga-
nize these rules, which is an engineering problem with a solution that’ll depend
strongly on the specific domain of your application. In general, the more complicated
the classifier implementation, the more careful you should be to understand the per-
formance characteristics (both speed and quality) of your classifier.

5.7 Summary
Classification is one of the essential components of intelligent applications. We started
this chapter by presenting a number of cases in which some form of classification is
used. We discussed reference schemes that are relevant in diverse application areas,
from library catalogs to medical insurance manuals, and thereby established that clas-
sification is ubiquitous and valuable. We also introduced the three building blocks of
classification—concepts, instances, and attributes. These three blocks define an ontol-
ogy—a complete description of a particular area of expertise. If semantic information
is also available then we speak of a semantic ontology. Classification can always be cast
as the problem of assigning the “best” concept to a given instance. Classifiers differ
from each other in the way that they represent and measure that optimal assignment.
Nevertheless, they all share a similar lifecycle that consists of three stages: training, val-
idation, and the production stage.

 You’ve learned that, broadly speaking, all classifiers fall into two categories—binary
and multiclass—depending on whether the decision that the classifier has to make is
between two or multiple choices, respectively. You also learned that, with respect to the
underlying technique, classifiers are either statistical or structural. We provided what
seems to be the greatest common denominator in the literature, and proceeded with a
high-level presentation of regression algorithms, Bayesian algorithms, rule-based algo-
rithms, functional algorithms, nearest neighbor algorithms, and neural networks.

 You’ve also learned two powerful algorithms for performing text classification.
The first algorithm was the naïve Bayes algorithm as applied to a single string attri-
bute. The second was the Drools rule engine, an object-oriented implementation of
the Rete algorithm, which allows us to declare and apply rules for the purpose of clas-
sification. It’s likely that your email client already contains some form of a rule engine;
Licensed to Deborah Christiansen <pedbro@gmail.com>

226 CHAPTER 5 Classification: placing things where they belong
when you declare that an email with a particular word in its subject sent from the
domain *.foo.com should be considered spam, in essence, you’re defining a rule.
Now, you should be ready to apply our algorithms to many other freeform or semi-
structured text classification tasks.

 In addition, we introduced the construction of computational neural networks and
presented a basic but robust implementation that can be used to build general neural
networks. We provided designing guidelines as well as observations about the struc-
ture of the data and the importance of using training and validation data sets that are
representative of the production data.

 Although the benefits of classification are numerous, we pointed out that it’s also
important to investigate known issues related to the credibility and computational
requirements of classification, before we introduce it in our application.

 In conclusion, we can say that:

■ Classification algorithms are important for building an intelligent application
because they help us leverage (automatically) and augment (systematically) our
knowledge about the world.

■ We classify always with respect to a reference structure, which could be as sim-
ple as a binary set (true and false classes) or a large ontology.

■ At the highest level, classifiers can be viewed as statistical versus structural.
■ The choice of the classifier depends strongly on your data and the nature of the

classification problem.
■ Special attention is required with regard to the credibility and cost of

classification.
■ Very large datasets, very large ontologies, online requirements, or any combina-

tion of these three may cause trouble.
■ Each one of the classification algorithms that we described will do its job well.

But no single classifier can provide infallible decision-making capability. In fact,
if you’re looking for infallibility, you’re out of luck!

In the next chapter, we’re going to look at several techniques of combining classifiers
in order to improve the results of any one of the single classifiers that we described so far.

5.8 To do
1 The tradeoff between specialization and generalization Every classification algo-

rithm that you can think of uses a number of variables as input and produces a
number of variables as output. The input consists of two kinds of variables. The
first kind are variables associated with the attribute values of our instances; the
second kind are associated with a number of model variables that are specific to
the classifier at hand. During the training stage, we estimate the model variables
based on the input and output variables of the training set. In other words, we
calibrate these arbitrary model parameters in such a way that, provided the
input of the training set, the output variables take on the desired values.
Licensed to Deborah Christiansen <pedbro@gmail.com>

227To do
Clearly, you can “cheat” and introduce as many model parameters as your
data points, thus achieving very high, if not perfect, accuracy of classification
for your training set. That is called overfitting and makes your classifier a special-
ist on your training set but probably a poor performer on a dataset that’s quite
different from your training set. In general, overfitting (we could also call it spe-
cialization) isn’t good and should be avoided. Conversely, you may have too few
model parameters and be unable to capture the information content of your train-
ing set. That is called underfitting. Using fewer parameters, but still enough of
them to represent the information content of the training set, might increase
your accuracy for unseen data—data points that weren’t included in your train-
ing set. The ability to do so is generally referred to as generalization.

It becomes clear that a good classifier should aim to reach a fine balance
between specialization and generalization. Experiment with the datasets that we
provided in this chapter and introduce new testing instances in your data. Plot
the error of your classifier as a function of the number of instances in the train-
ing set. Plot two curves. The first should plot the error for instances that belong
in the training set, and the second should plot the error for instances that
weren’t included in the training set. Do you see the tradeoff between specializa-
tion and generalization for a given classifier? You could also introduce a third
dimension that captures the model’s complexity. Expressing the model com-
plexity for rules and decision trees may be straightforward (for example, num-
ber of rules), but how would you express the model complexity in the case of a
classifier based on Bayes theorem such as our own NaiveBayes class? How
about the case of a neural network?

2 Occam’s razor and the number of training attributes In the same spirit as item 1, we
can argue that the more training attributes we include in our model, the better
results we’ll get. There are two problems with that approach. First, from a real-
world implementation perspective, we typically have a finite amount of
resources and a small amount of time available for classification. Thus, our clas-
sification schemes should be easy to maintain, easy to test, and they should pro-
duce results rather quickly; you don’t want to wait five minutes for your email to
be classified as spam or not. Of course, there are cases that call for long-running
calculations, such as discovering a location that may be rich in petroleum or cre-
ating reports that help your users make critical (strategic) business decisions.

The second problem with using as many training attributes as possible is
related to the fact that “more data” doesn’t necessarily mean more information
content. There are many metrics that we can use to define information content,
but let’s bypass the mathematical jargon and think of it in the following way.
We’re typically interested in the value of some variables that are relevant in our
application; it could be the value of one or more stocks in NASDAQ, the appro-
priate category of an email message, a Boolean variable describing whether we
should purchase an item on eBay, and so on. We usually assume that there’s an
Licensed to Deborah Christiansen <pedbro@gmail.com>

228 CHAPTER 5 Classification: placing things where they belong
underlying model that describes the problem at hand and whose solution con-
sists of the variables that we want to evaluate. By providing a set of data and a
classifier, we’re attempting to approximate that physical model as best we can. If
we use data that isn’t relevant to the physical model or if we overwhelm the clas-
sifier with redundant information, we might end up with a distorted representa-
tion of that physical model. By referring to information content, we mean data
that can help us improve the representation of the underlying physical model.
If we add a training attribute that has no effect in the accuracy of the classifier
we can safely say that the new training attribute didn’t carry significant informa-
tion content in it.

Of course, we need to be careful in our selection of training attributes
because different classifiers might be able to exploit more or less the data of a
particular training attribute. In general, we can use the principle of Occam’s
razor: if two approaches produce the same results, the simplest approach is
preferable. So, consider the email filtering example of section 5.3 and add
more training attributes to your classifier. You could start by splitting the single
attribute that we used in 5.3.1 into two attributes, one for the subject of the
email and one for the main body. Are the results of your classification substan-
tially different? In the context of information content, how do you interpret the
applicability of rules in classifying email messages?

3 A general-purpose RuleEngine class Our implementation of the RuleEngine class
is using the Email class as an argument in the executeRules method. That’s
okay for classifying a single email message but isn’t sufficient for a general
implementation. In the general case, you’d insert all the facts into your working
memory before you fire the rules. Modify the existing RuleEngine class so that
it can be used under more general conditions.

Moreover, build a use case for a rule engine that deals with more compli-
cated rules, conditions, and actions. The ClassificationResult class can
guide you in customizing your conditions and your actions. Note that due to
the objected-oriented nature of the Drools engine, you can build complicated
rules with involved conditions and quite elaborate actions. It’s a good practice
to use auxiliary classes such as the ClassificationResult and put all your Java
code in them; avoid writing code inside the Drools rule file itself.

How would you proceed to build a general-purpose classification system
based on rules? Imagine a system that can classify an arbitrary text into many
classes; it could be an email, a Word document, a PDF document, and so on.
What rules do you need? What conditions do you need? And how would you
express them in code?

4 The importance of data normalization and effects of the neural network topology Note
that the data values that we pass as input to the neural network are all normal-
ized values. The transaction amount is normalized, based on the minimum and
maximum value of the legitimate transactions, so that it’s always a value within
Licensed to Deborah Christiansen <pedbro@gmail.com>

229To do
the interval 0 and 1. We also use the JaccardCoefficient in order to achieve
the same result for the description of a transaction. For the transaction loca-
tions we do something a bit more elaborate. We normalize the location of the
user’s centroid and the location of the transactions, and subsequently calculate
the distance between these two locations. That distance is one of our three
input values in the neural network TransactionNN. Why do we do that? Does it
matter? Experiment by using the same code but switching to input that’s not
normalized. Use identical training and test data, so that you can compare the
effect of the algorithms only. You probably want to change one thing at a time
so you can relate the effect of your changes to their cause.

A second type of experiment that can be fairly instructive is the effect of the
network topology on the results of your classifier. The best network topology
depends on the nature of the input data and the nature of your problem. The
fraud detection use case and the TransactionNN base implementation provide
a baseline that can help you investigate this dependency. Implement your own
network topology and compare the results of the resulting classifiers. For exam-
ple, you could try to explicitly provide the x and y coordinates as input to the
network, rather than provide only the distance of each location from the user’s
location centroid. You could also provide the description in more than one
node. One way to do this would be to tokenize the description and use the sim-
ilarity of each token with the top five description tokens, which would result in
five input nodes related to the description; or more generally, the similarity of
each token with the top N description tokens, which would result in N input
nodes related to the description. How do your results vary as you increase N?
How do the results of these neural networks compare with respect to the base
TransactionNN implementation?

5 Unsupervised learning: Hebbian learning and self-organizing maps (SOM) In this
chapter, we covered only supervised learning techniques, which are very com-
mon as well as useful. But unsupervised learning techniques are also useful and
deserve your attention. In supervised learning, you always have that feeling that
you entered the answer from the “back door”— mathematicians call that interpo-
lation, which is a less conspicuous and more honorable term. In any case, the
fact is that we tell the classifier what it should know and it tries to assimilate that
knowledge by modifying its parameters, whether by calculating prior and condi-
tional probabilities, in the case of Bayesian methods, or by adjusting the various
weights, in the case of neural networks, or by shamelessly “writing down” every-
thing, in the case of a rule-based systems. The amazing thing with unsupervised
learning is that it can “remember” what it saw without feedback from a human.

In 1949, in his book The Organization of Behavior, Donald Hebb introduced a
simple model that nicely illustrates the ability to learn without supervision. If you
don’t tell the classifier what’s correct, how does it work? Consider a neural net-
work whose nodes are fully connected through symmetrical bidirectional links
Licensed to Deborah Christiansen <pedbro@gmail.com>

230 CHAPTER 5 Classification: placing things where they belong
(synapses); symmetrical here means that the weight of the link from node i to node
j is equal to the weight of the link from node j to node i. What kind of activation
rules and learning rules can help us build an unsupervised neural network?

6 Counting the cost of classification errors In the real world, classification systems
are used often as decision support systems, hence the mistakes of classification
can lead to wrong decisions. In some cases, making wrong decisions, although
undesirable, can be relatively harmless. But in other cases, it may be the differ-
ence between life and death; think of a physician who misses a cancer diagnosis
or an emergency situation for an astronaut in deep space relying on the result
of your classifier. So, the evaluation of classification systems should examine
both the degree of credibility and the associated cost of making classifications.
In the case of binary classification, the idea is to assign a cost function that’s a
function of the FP and FN rates. How would you generalize that idea in the case
of multiclass classification?

In the case of multiclass classification, if you have N classes and you make
an error, there are N-1 possibilities. So, we need a way to assign the cost for N x
(N-1) cases. Naturally, a matrix would be the most appropriate tool to achieve
this goal. In multiclass classification, the confusion matrix is an N x N matrix,
and we can also define a cost matrix that’s also N x N but has the value 0 along
its diagonal (you shouldn’t penalize the classifier for the right answers). Work
out the details and evaluate, for example, the NaiveBayes classifier with differ-
ent cost matrices.

5.9 References

Classification schemes

 The dewey Decimal classification (DDC) system. http://www.oclc.org/dewey/
 International Classification of Diseases (ICD). World Health Organization (WHO).

http://www.who.int/classifications/icd/en/.
 The Library of Congress: Cataloging Distribution Service. http://www.loc.gov/cds/
 Myhre, A.P., and M. L. Richardson, “A Web-based Tutorial for Teaching the Schatzker Classifi-

cation for Tibial Plateau Fractures.” http://uwmsk.org/schatzker/.
 Occupational Injury and Illness Classification Manual. Bureau of Labor Statistics, U.S. Depart-

ment of Labor. http://www.bls.gov/iif/oshoiics.htm.

Books and articles

 Antoniou, G., and F. van Harmelen. A Semantic Web Primer. The MIT Press, 2004.
 Doorenbos, R.B. Production Matching for Large Learning Systems. Ph.D. Thesis, Carnegie Mellon

University, 1995.
 Dunham, M.H. Data Mining: Introductory and Advanced Topics. Prentice Hall, Pearson Education

Inc. 2003.
 Fawcett, T. “ROC Graphs: Notes and practical considerations for researchers.” 2004.

http://home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf.
 Friedman-Hill, E. Jess in Action. Manning Publications, 2003.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.oclc.org/dewey/
http://www.who.int/classifications/icd/en/
http://www.loc.gov/cds/
http://uwmsk.org/schatzker/
http://www.bls.gov/iif/oshoiics.htm
http://home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf

231References
 Gasevic, D., D. Djuric, V. Devedzic. Model Driven Architecture and Ontology Development. Springer,
2006.

 Gómez-Pérez, A., M. Fernández-López, and O. Corcho. Ontological Engineering: with examples
from the areas of Knowledge Management, e-Commerce and the Semantic Web. Springer, 2004.

 Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction. Springer, 2001.

 Hill, T. (1996). “A note on distributions of true versus fabricated data.” Perceptual and Motor
Skills. Vol 83, pp.776-778. http://www.math.gatech.edu/~hill/publications/cv.dir/
truvsfab.pdf.

 Holmström, L., P. Koistinen, J. Laaksonen, and E. Oja. “Neural and statistical classifiers—taxon-
omy and two case studies.” IEEE Transactions on Neural Networks, Vol 8 (1), pp. 5-17, 1997.

 Maier, K.D., C. Beckstein, R. Blickhan, W. Erhard, and D. Fey. “A multi-layer-perceptron neural
network hardware based on 3D massively parallel optoelectronic circuits.” Proceedings of
the 6th International Conference on Parallel Interconnects, pp. 73-80, 1999.

 MacKay, D.J.C.. Information Theory, Inference, & Learning Algorithms. Cambridge University Press,
2003.

 Neapolitan, R.E. Learning Bayesian Networks. Prentice Hall, 2003.
 Papoulis, A., and S.U. Pillai. Probability, Random Variables, and Stochastic Processes, Fourth Edition.

McGraw-Hill, 2002.
 Rish, I. “An empirical study of the naïve Bayes classifier.” IBM Research Report, RC22230 (W0111-

014). http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf.
 Russell, S., and P. Norvig. Artificial Intelligence: A Modern Approach (Second Edition). Prentice

Hall, 2002.
 Staab, S., and R. Studer. Handbook on Ontologies. Springer, 2004.

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.math.gatech.edu/~hill/publications/cv.dir/truvsfab.pdf
http://www.math.gatech.edu/~hill/publications/cv.dir/truvsfab.pdf
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf

Combining classifiers
Epictetus, an ancient Greek philosopher, proclaimed “One must neither tie a ship
to a single anchor, nor life to a single hope.” Similarly, we don’t have to rely on a
single classifier. No single classifier can provide infallible decision-making capabil-
ity. In fact, there are plenty of examples that demonstrate the great potential of
combining classifiers, and this chapter will provide an introduction to that fascinat-
ing subject. In the context of recommendation systems (see chapter 3), Bell,
Koren, and Volinsky have recently employed similar ideas with great success.

 The main idea behind combining classifiers is achieving better classification
results at the expense of computational complexity and higher computational cost
(for example, longer computational times or additional computational resources).
The combination of classifiers is divided into two general categories—classifier fusion
and classifier selection. In the category of classifier fusion, all classifiers contribute to
a given classification; so, every classifier must cover the entire domain of possible

This chapter covers:
■ Evaluating baselines for classifiers
■ Comparing classifiers and understanding

complex datasets
■ The nuts and bolts of bootstrap aggregating
■ Basics of boosting
232

Licensed to Deborah Christiansen <pedbro@gmail.com>

233Combining classifiers
data points. In classifier selection, each classifier is responsible for a particular domain
of data points and is supposed to perform well only within its region of influence.

 This distinction between the types of classifier combination is helpful for orienting
ourselves in the field but isn’t absolute. We’ll see (in to-do item #5) that the concepts
of fusion and selection can’t always be easily distinguished.

 If you’d like to read the theoretical justifications about combining classifiers, look
at Dietterich’s report. He basically divides the reasons for combining classifiers into
three types.

 The first type is based on statistical considerations and its main argument is the
combination of classifiers might not outperform the single best classifier of a collec-
tion of classifiers, but it’ll significantly reduce the risk of using a classifier that will be
inadequate on unseen data.

 The second type is based on computational considerations, which point out that
classifiers are often sensitive to training. Thus, Dietterich argues, combining classifiers
may provide better results by smoothing out the sensitivities of each classifier in the
collection during training.

 The third type is representational. In order to understand this, let’s say that we
need to classify some brief textual descriptions that are written in French (for exam-
ple, porte, fenêtre, and guerre). The catch is that we don’t have a classifier that can under-
stand French; we only have a classifier that understands English and Spanish. The
idea of representational motivation is that the combination of English and Spanish
will better represent the French language, even though neither of them alone can
ever do a decent job. The English translation of guerre is “war” while the Spanish word
is guerra; conversely, you can also find French words that are closer to the lexico-
graphic string of their English counterpart than they are to their Spanish counterpart.
You’ll be able to identify these types of motivation throughout our discussion.

 We’ll start this chapter by introducing the case study of evaluating the credit wor-
thiness of mortgage applicants. This is a hot topic, due to its connection with the eco-
nomic downturn that we experience today (circa 2008). In particular, we’ll consider
the use case of evaluating the credit worthiness of an applicant for a mortgage; con-
versely, one could consider the credit risk. The use case data will be artificial—credit
risk assessment data and models are proprietary—but realistic. Naturally, the first
point to address is the application of single classifier for our use case. So, we build
three classifiers to classify the applicants into five categories of credit worthiness. Spe-
cifically, we present a classifier that’s based on the naïve Bayes algorithm, a neural net-
work–based classifier, and a newly introduced decision tree classifier.

 Our next step is to examine whether one classifier is better than another. To do
that, we’ll demonstrate how to compare two or more classifiers by using four statistical
techniques. For comparing only two classifiers, we introduce McNemar’s test and the
difference of proportions test. For comparing more than two classifiers, we introduce
Cochran’s Q test and the F test. Don’t worry about the somewhat intimidating names;
we’ve reduced their practical use to a few method calls.

Combining classifiers
Licensed to Deborah Christiansen <pedbro@gmail.com>

javascript: void CreateWindow('/freng.exe?p1=278528&p2=11&p3=134184&p4=68', 'engfrentry')
http://www.itl.nist.gov/div898/handbook/

234 CHAPTER 6 Combining classifiers
 We present two categories of techniques for combining classifiers. First, we show how
to implement the category of combinations referred to as bagging, which stands for
“bootstrap aggregating.” We’ll use bagging to improve the accuracy of the decision tree
classifier and study the results of classification as the number of classifiers that are com-
bined is increased. The second approach of combining classifiers that we’ll study is
called boosting. We’ll present an algorithm that goes under the rather cryptic name arc-
x4 and discuss its predecessor, which is called AdaBoost. Naturally, we’ll use these com-
bination techniques in the context of our credit worthiness identification problem.

6.1 Credit worthiness: a case study for combining classifiers
We start this section by introducing our case study: evaluating a user’s credit worthi-
ness for a mortgage application. We examine the application of three different classifi-
ers, specifically designed for our problem. In particular, we present a classifier based
on the naïve Bayes algorithm, a neural network–based classifier, and a newly intro-
duced decision tree classifier. So, what’s credit worthiness and why’s it important to
evaluate it? Here’s some background that will provide some context and underline
the (perhaps unexpected) impact that good intelligent applications can have on the
global economy!

 In 2007, a mortgage mess of historic proportions and global impact was revealed in
the United States. People were allowed, if not encouraged, to buy homes they
couldn’t afford, with credit lines that they didn’t deserve. When housing prices began
to fall and the market cash flow tightened, the loans of people who didn’t have the
assumed buying power started to default. It’s not clear how many foreclosures and
forced sales this situation has created; at the time of this writing the crisis continues.

 In order to avoid further economic woes and social unrest, U.S. government agen-
cies scrambled and tried to find ways to keep many of the buyers in their homes. It’s
estimated that there are about 2 million homeowners with adjustable mortgages,
many of whom had low initial “teaser” rates. Unless these people get direct pecuniary
aid from somebody, they’ll face higher payments no matter what the Federal Reserve
funds rate is.1 Inevitably, the foreclosures and the forced sales tend to depress overall
housing prices and decrease the wealth and consumption for most households.

 This issue can have global implications for two reasons. Experts believe that the
same financial turbulence may erupt in Europe’s mortgage markets as well and large
exporting nations, especially developing countries such as China whose wares stock
shelves of American stores, will need to find new customers, as cash-strapped Ameri-
cans can no longer buy their products.

 What, you might wonder, does this have to do with intelligent software applica-
tions? As it turns out, quite a lot! The whole financial problem is complicated and may
be ongoing. Nevertheless, so far, one thing is clear: barring fraud and spurious
schemes of mortgage financing that affect the input data, the ability to assess the

1 The Federal Reserve funds rate is the interest rate at which depository institutions lend balances, at the Fed-
eral Reserve, to other depository institutions overnight.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://stat-computing.org/newsletter/v182.pdf
http://stat-computing.org/newsletter/v182.pdf
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=743935

235Credit worthiness: a case study for combining classifiers
credit worthiness (or credit risk) associated with a particular transaction played a cata-
lytic role in the propagation speed of the crisis’s consequences, and the breadth of the
social fabric that was affected by it.

 In this chapter, we’ll study the assessment of credit worthiness for a particular indi-
vidual based on a number of criteria. In other words, we’ll look at the values of a num-
ber of attributes that describe the financial standing, social status, and credit history of
an individual in order to place him in one of the five categories of credit worthi-
ness—excellent, very good, good, bad, and dangerous.

 We’ll consider credit worthiness as a function of eleven attributes. The choice of
attributes is arbitrary. We provided a sufficient number of attributes to make things
interesting and realistic, but you shouldn’t consider this to be the most sophisticated
model of credit worthiness. It would be instructive to examine which of these attri-
butes you can exclude or what other attributes you can add. Our first item in this
chapter’s To do section will provide motivation and additional guidance about the
important subject of attribute selection.

6.1.1 A brief description of the data

Let’s examine the eleven attributes one-by-one, in alphabetic order. The first attribute
is the chronological age of an individual (as opposed to the mental age, which is typically
not available in official records). The age is clearly a continuous variable because time
is a continuous variable. So, our first assumption is that we measure age in years. Our
values will be integers between 0 and 100; if you look at the implementation you’ll
realize that the exact value for the end of the age range isn’t significant per se. We
divide the range of ages between 18 and 100 into 10 intervals as indicated in table 6.1.

 The second attribute that we consider is whether an individual has declared bank-
ruptcy. The significance of bankruptcy varies from country to country; declaring bank-
ruptcy in the United States is completely different from declaring bankruptcy in

Attribute ID From To

1 18 25

2 26 30

3 31 35

4 36 40

5 41 50

6 51 60

7 61 70

8 71 75

9 76 80

10 81 100

Table 6.1 Ten ranges for the attribute Age. This
partition is neither too fine nor too coarse; the
objective is to adequately represent the various
stages of financial developments and risks in a
person’s life.
Licensed to Deborah Christiansen <pedbro@gmail.com>

236 CHAPTER 6 Combining classifiers
Germany. In the former case, it could be considered a badge of entrepreneurial curi-
osity that you can proudly refer to. In the latter case, it might be a financial and social
stigma that will mark you to the end of your life! Moreover, there are many kinds of
bankruptcy. In making an assessment of credit worthiness, it’s important to under-
stand whether a bankruptcy was due to medical reasons or to an extravagant personal
life. In our example, the bankruptcy attribute will be Boolean.

 The third attribute is ownership of a car. Owning a Lamborghini is worlds apart from
owning a car from KIA. Nevertheless, we’ll consider car ownership as a Boolean attri-
bute. Since we’re concerned with credit worthiness, the mere fact that an individual
owns a car is the strongest and simplest discriminating factor. When do you think it
would be useful to assign an integer value to car ownership, such as specific ranges of
the car’s monetary worth? Consider, for example, the case where you need a finer clas-
sification of credit worthiness that entails assignment to one of 20 classes instead of 5.
In addition, you should consider the case of outliers—people who don’t own a car
because they’re unable to drive (they have a physical disability) or they don’t need or
want to own a car even though they could afford it.

 The fourth attribute is an individual’s credit score. There are three major companies
that accumulate information related to credit card activity, mortgages, home equity
lines of credit, and so on. These companies assign each individual a credit score, whose
range varies based on the company but is generally a number between 0 and 800. We’ll
use eight different brackets for the credit score, as indicated in table 6.2.

 The fifth attribute is an indicator as to whether an individual has a criminal record. A
misdemeanor or a simple complaint against an individual is fundamentally different
from armed robbery. But the use of a Boolean attribute value isn’t as restrictive as it
may seem initially; it’s simply a matter of setting the threshold of “criminality” at an
appropriate level. Felonies or some other detailed list of crimes would set the Boolean
variable to true while “softer” crimes wouldn’t alter the default value (false) for the
criminal record variable.

Attribute ID From To

1 0 500

2 501 550

3 551 600

4 601 650

5 651 700

6 701 750

7 751 800

8 801 ---
Table 6.2
The range of values for the credit score attribute
Licensed to Deborah Christiansen <pedbro@gmail.com>

237Credit worthiness: a case study for combining classifiers
The sixth attribute is the percentage of down payment that the applicant is willing to pay
at the time of closing. In table 6.3 we show four ranges for the value of down payment.
If the applicant is able to pay more than 25% of the loan amount, it doesn’t matter
how much she can pay. The interesting discriminating area is between 0% and 25%.

The seventh attribute is the amount of income. Like the down payment attribute, when
we consider the income values, we don’t care if someone has $5 million or $100 mil-
lion. We’re more interested in the stratification of the income values at the low end of
the spectrum. Moreover, the spread of income values can be any number between 0
and several billion. We’ll use a larger number of income ranges to discriminate
among the applicants. Table 6.4 shows the 10 values for this attribute and the associ-
ated ranges; the values are presented in thousands of dollars.

The eighth attribute is determined by the kind of work that an individual performs. For
the purpose of this example, we came up with five “job classes” but a finer division is
possible. Table 6.5 shows the five possible values of the job class attribute.

 The ninth attribute is related to the ownership of a motorcycle and it’s a Boolean attri-
bute. In certain countries, owning a motorcycle is a luxury, while in other countries
it’s the prevailing means of transportation (if not the only one). This attribute

Attribute ID From To

1 0 5

2 6 10

3 11 20

4 21 --

Attribute ID From To

 1 0 25

 2 26 35

 3 36 45

 4 46 60

 5 61 80

 6 81 100

 7 101 125

 8 126 150

 9 151 200

10 201 ---

Table 6.3 The range of values for the down
payment attribute (as percentage of the total
loan amount)

Table 6.4
The range of values for the income attribute
Licensed to Deborah Christiansen <pedbro@gmail.com>

238 CHAPTER 6 Combining classifiers
shouldn’t have much influence on the results, because when we generate our data, we
assign motorcycle ownership to every class (except the dangerous class) with the same
probability. Later on, we’ll discuss the definition of each class of individuals based on
the values of these attributes and elaborate further on this point.

 The tenth attribute is related to the ownership of property—land property—and it’s
also a Boolean attribute. A natural extension would be a monetary representation of
the land’s value, but for our example we’ll treat this attribute as a Boolean variable.

 The eleventh attribute is related to the amount of financial assets that are associated
with retirement accounts. It’s, of course, a continuous variable that we discretize into spe-
cific ranges. Table 6.6 shows the eight values for this attribute and the associated
ranges; the values are presented in thousands of dollars.

 At this point, we should iterate that there’s nothing magic about the number 11 or
these specific attributes. In reality, you’ll have many attributes to choose from and
your attribute selections are part of formulating and solving the classification prob-
lem; see the first item in our To do section. The main point is the importance of
understanding the nature of your data. You can learn all the algorithms known to
man, but if you don’t understand the nature of your data it will be difficult to provide
a satisfactory solution to your problem.

Attribute ID Job Class Name

1 C-level executive

2 Professional

3 Employee

4 Business owner

5 Contractor

Attribute ID From To

1 0 25

2 26 75

3 76 150

4 151 300

5 301 500

6 501 1000

7 1001 2000

8 2001 ----

Table 6.5
The range of values for the income attribute

Table 6.6 The range of values for the retirement
accounts attribute
Licensed to Deborah Christiansen <pedbro@gmail.com>

239Credit worthiness: a case study for combining classifiers
6.1.2 Generating artificial data for real problems

Let’s examine a number of decisions that must be made to define our data, so that
you get an idea of what we mean by the nature of the data. As we discussed, each user
will be represented by 11 attribute values. In order to define a class of users, we assign
a set of eligible attribute values for each one of our classes. In other words, we “draw”
five regions in the 11-dimensional space and give it one of the five class labels. If we
want to create a user of a particular class then we select randomly one of the eligible
tuples—for each attribute, we pick a value from the region of that class.

 You can find the eligible attribute values for each class in the Java classes
ExcellentUserType, VeryGoodUserType, GoodUserType, BadUserType, Dangerous-
UserType—all of which extend the abstract class UserType, which contains the com-
mon functionality. Listing 6.1 shows the content of the GoodUserType, which is the
majority class of credit worthiness. As you can see, according to this definition, users
with good credit could be of any age, they shouldn’t have declared bankruptcy, they
should own a car, and so on.

public class GoodUserType extends UserType {

 {
 setAge(new int[] { 2, 3, 4, 5, 6, 7, 8 });
 setBancruptcy(new int[] { 0 });
 setCarOwnership(new int[] { 1 });
 setCreditScore(new int[] { 3, 4, 5, 6 });
 setCriminalRecord(new int[] { 0 });
 setDownPayment(new int[] { 2, 3 });
 setIncome(new int[] { 5, 6, 7, 8 });
 setJobClass(new int[] {2, 3, 4, 5});
 setMotorcycleOwnership(new int[] { 0, 1});
 setPropertyOwnership(new int[] { 0, 1 });
 setRetirementAccounts(new int[] { 1, 2, 3, 4 });
 }

 @Override
 public String getUserType() {
 return UserType.GOOD;
 }
}

Look at the other UserType classes. What do you observe? There’s a slight overlap
between neighboring classes, as you’d expect. This fuzzy boundary makes the data
more realistic. You may wonder, isn’t it possible that a user who belongs to the “bad”
class has attribute values that fall entirely within the domain that defines the “good”
class? In real-life data, it would not only be possible but likely. That’s exactly the prob-
lem that we’re trying to solve! Provided a set of attribute values, we want an automated
way to tell the credit worth of a user. If real-world data could fit some preconceived
models then “learning” wouldn’t be very useful; all the intelligence could be fed into

Listing 6.1 GoodUserType: definition of the “good” class through attribute values
Licensed to Deborah Christiansen <pedbro@gmail.com>

240 CHAPTER 6 Combining classifiers
an a priori model and put into action. In order to emulate that characteristic of real-
world data, we introduce noise levels.

 Noise levels define the likelihood that a user with attribute values from the domain
of class X will truly belong to class Y. Noise levels allow us to mix the definition
of classes to an arbitrary extent. Listing 6.2 shows the crucial steps found in the
class DataGenerator.

public List<User> generateUsers(List<UserType> userTypes) {

 List<User> allUsers = new ArrayList<User>();

 for(UserType userType : userTypes) {
 allUsers.addAll(

➥ generateUsers(userType, userType.getNUsers()));
 }
 return allUsers;
}

public List<User> generateUsers(UserType userType, int n) {

 List<User> users = new ArrayList<User>();

 userTypeDistributions.put(userType, n);

 for(int i = 0; i < n; i++) {
 User u = generateUser(userType);
 users.add(u);
 }
 return users;
}

public User generateUser(UserType userType) {

 User user = new User();

 long userId = generateNextUniqueUserId();

 String username;

 if (isNoiseOn) {
 username = userType.getNoisyType();
 } else {
 username = userType.getUserType();
 }

 username = username + String.valueOf(userId);

 user.setUsername(username);
 user.setAge(userType.pickAge());
 user.setCarOwnership(userType.pickCarOwnership());
 user.setCreditScore(userType.pickCreditScore());
 user.setIncome(userType.pickIncome());
 user.setJobClass(userType.pickJobClass());
 user.setDownPayment(userType.pickDownPayment());
 user.setBicycleOwnership(userType.pickMotorcycleOwnership());
 user.setPropertyOwnership(userType.pickPropertyOwnership());
 user.setCriminalRecord(userType.pickCriminalRecord());

Listing 6.2 DataGenerator: creating the sets of users for all classes

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

241Credit worthiness: a case study for combining classifiers
 user.setBankruptcy(userType.pickBancruptcy());
 user.setRetirementAccount(userType.pickRetirementAccounts());

 return user;
}

For each user type, create a number of users according to the predefined distribution
for that user type.

If noise is present, mix up the user types as defined in the getNoisyType method. Oth-
erwise, use only the predefined distributions of each user type.

Since the data for our example is artificial, the proportion of users in the various
classes of credit worthiness is fully controlled. The default distribution of users per
class is shown in table 6.7.

Obviously, you could change the proportion of users for each class. You can do that by
changing the implementation of the method createUserTypes in the class UseCase-
Data. The important thing to note is that the distribution is hardly uniform. Most
users belong to the good class, but for those users whose credit worthiness isn’t good,
it’s more likely that their credit will be worse than good by the ratio 3 to 2. The two
extreme classes are equally likely according to this distribution.

 You can create your own artificial data by executing the commands shown in list-
ing 6.3.

UseCaseData useCaseData = new UseCaseData(40000,20000);

UserType.addNoiseLevel("EX",

➥ new Double[] {1.0d, 5.0d, 8.0d, 10.0d});
UserType.addNoiseLevel("VG",

➥ new Double[] {1.0d, 2.5d, 6.0d, 10.0d});
UserType.addNoiseLevel("GD",

➥ new Double[] {1.0d, 3.0d, 4.0d, 8.0d});
UserType.addNoiseLevel("BD",

➥ new Double[] {1.0d, 3.0d, 7.5d, 10.0d});
UserType.addNoiseLevel("DN",

➥ new Double[] {1.0d, 6.0d, 10.0d, 14.0d});

useCaseData.create(false);

Class Number of users (%)

Excellent 5

Very Good 15

Good 50

Bad 25

Dangerous 5

Listing 6.3 Creating artificial data for the credit worthiness use case

B

C

Define new
dataset

Define noise levels
of each class

InitializTrue value will override existing filesation

Table 6.7 The distribution of users, as a
percentage of the total number of users,
for each class of credit worthiness
Licensed to Deborah Christiansen <pedbro@gmail.com>

242 CHAPTER 6 Combining classifiers
If you want to use the default noise levels you can skip the UserType.addNoiseLevel
calls. Beware of the last method call. If you assign a true value to the Boolean argu-
ment, it will override the existing dataset and the results from the execution of the list-
ings will be different from what you see in the book. You can always recover the
original files by extracting them from the file clean_40k_20k.7z, which can be found
in the data/ch06/samples/clean directory of the distribution.

 Before we move on, let’s take a closer look at the definition of noise levels. In list-
ing 6.2, a crucial step was the call to the getNoisyType method. Listing 6.4 shows the
related code for the “excellent” user type and it should help you interpret the seman-
tics of the UserType.addNoiseLevel calls.

public String getNoisyType() {

 double gaussian = rnd.nextGaussian();

 String noisyType=null;

 String userType= getUserType();

 Double[] nLevels = noiseLevels.get(userType);

 if (getUserType().equals(EXCELLENT)) {

 if (gaussian <= nLevels[0]) {

 noisyType = EXCELLENT;

 } else if (gaussian > nLevels[0] &&
 gaussian <= nLevels[1]) {

 noisyType = VERY_GOOD;

 } else if (gaussian > nLevels[1] &&
 gaussian <= nLevels[2]) {

 noisyType = GOOD;

 } else if (gaussian > nLevels[2] &&
 gaussian <= nLevels[3]) {

 noisyType = BAD;

 } else {

 noisyType = DANGEROUS;
 }

 }

The class Random from the java.util package is used to draw a double number
according to a standard normal distribution. This means that the values drawn are
centered around zero and about 68.2% of them are within the values –1 and 1, 95% of
them are within the values –2 and 2, and 99.7% of them are within –3 and 3. When we
create a dataset with noise levels as indicated in listing 6.3, the code in listing 6.4 tells
us that a user from the excellent class of user types may end up being a user from the

Listing 6.4 UserType.getNoisyType: adding noise to the user type “excellent”
Licensed to Deborah Christiansen <pedbro@gmail.com>

243Credit evaluation with a single classifier
very good class of user types with probability about 16%. It also tells us that the proba-
bility that such a user will belong in the bad or dangerous classes of user types is prac-
tically equal to zero. The lower the noise level of your datasets, the higher the
accuracy that a classifier can achieve.

6.2 Credit evaluation with a single classifier
Let’s now apply each of our classifiers to the data of our case study and evaluate their
accuracy. In subsection 6.2.1, we’ll use a naïve Bayes classifier. In subsection 6.2.2,
we’ll introduce a new classifier based on a decision tree. In subsection 6.2.3, we’ll use
a classifier based on a neural network implementation. Here, the objective is to estab-
lish a baseline, so that we can evaluate whether we’ve achieved improvement by com-
bining the classifiers.

6.2.1 The naïve Bayes baseline

In listing 6.5, we show the steps that you can follow to quickly load, train, and evaluate
the naïve Bayes classifier. By default, these commands will load the training dataset from
a file called c:/iWeb2/data/ch06/training-users.txt. If you want to load a different file
then you can use the desired filename as an argument. For the testing dataset, these
commands will load the dataset from a file called c:/iWeb2/data/ch06/test-users.txt.

UserDataset ds = UserLoader.loadTrainingDataset();

NBCreditClassifier naiveBayes = new NBCreditClassifier(ds);

naiveBayes.useDefaultAttributes();

naiveBayes.train();

UserDataset testDS = UserLoader.loadTestDataset();

CreditErrorEstimator nb_err =

➥ new CreditErrorEstimator(testDS, naiveBayes);

nb_err.run();

In figure 6.1, we show the results of executing the commands of listing 6.5, for a test
set of 20,000 transactions. As you can see, the naïve Bayes classifier produces decent
results with an accuracy of 0.826 on this specific dataset. Of the 20,000 credit worthi-
ness evaluations performed; 16,520 were classified correctly while 3,480 were wrong.
The confusion matrix helps us visualize how bad our misclassifications were. The num-
bers along the main diagonal of this matrix are the correct classifications. The num-
bers away from the main diagonal are the erroneous classifications. If a classification is
attributed to the left of the diagonal (as you look at the matrix) the credit worthiness
was inflated due to the misclassification. For an entry on the right side of the diagonal,
the classifier underestimates the credit worthiness of a user.

 The visualization of the confusion matrix for classification results is important
because, as we discussed in chapter 5, the cost of misclassifications isn’t uniform in

Listing 6.5 Assessing credit worthiness with a naïve Bayes classifier

Create
classifier
based on
Naïve Bayes

Create
classifier
based on
naïve BayesTrain classifier

Estimate error
Licensed to Deborah Christiansen <pedbro@gmail.com>

244 CHAPTER 6 Combining classifiers
real-world problems. We can also build metrics that are based on the confusion matri-
ces of two different classifiers in order to compare them; we’ll say more on this subject
in section 6.3. The CreditErrorEstimator keeps track of the classification results and
is responsible for producing the output shown in figure 6.1

 Listing 6.6 shows the code from the class NBCreditClassifier, without some aux-
iliary methods that are unimportant. The essence of this class is captured from the
code present in the listing. Once again, we see that creating a custom classifier as an
extension of the NaiveBayes class is a breeze; there’s little code that you have to write.
Let’s have a closer look.

public class NBCreditClassifier extends NaiveBayes {

 private UserInstanceBuilder instanceBuilder;

 public NBCreditClassifier(String name, TrainingSet ts,
 UserInstanceBuilder instanceBuilder) {

 super(name, ts);
 this.instanceBuilder = instanceBuilder;
 }

 public Concept classify(Instance instance) {
 return super.classify(instance);
 }

 public Concept classify(User user) {
 return classify(instanceBuilder.createInstance(user));
 }

 public void useDefaultAttributes() {
 trainOnAttribute(CreditInstance.ATTR_NAME_JOB_CLASS);
 trainOnAttribute(CreditInstance.ATTR_NAME_INCOME_TYPE);

Listing 6.6 The NaiveBayes classifier for evaluating credit worthiness

Classification completed in 1.575 seconds.

 Total test dataset txns: 20000
 Classified correctly: 16520, Misclassified: 3480
 Accuracy: 0.826

 CONFUSION MATRIX

 EX VG GD BD DN
 EX 828 24 18 0 0
 VG 161 2149 1900 4 0
 GD 1 418 8482 800 0
 BD 0 0 0 4208 147
 DN 0 0 0 7 853

Figure 6.1 The results of credit worthiness classification for the naïve Bayes classifier

B

C

D

E

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

245Credit evaluation with a single classifier
 trainOnAttribute(CreditInstance.ATTR_NAME_AGE);
 trainOnAttribute(CreditInstance.ATTR_NAME_CAR_OWNERSHIP);
 trainOnAttribute(CreditInstance.ATTR_NAME_CREDIT_SCORE);
 trainOnAttribute(

➥ CreditInstance.ATTR_NAME_MORTGAGE_DOWN_PAYMENT);
 trainOnAttribute(

➥ CreditInstance.ATTR_NAME_MOTOR_BICYCLE_OWNERSHIP);
 trainOnAttribute(

➥ CreditInstance.ATTR_NAME_OTHER_PROPERTY_OWNERSHIP);
 trainOnAttribute(CreditInstance.ATTR_NAME_CRIMINAL_RECORD);
 trainOnAttribute(CreditInstance.ATTR_NAME_BANKRUPTCY);
 trainOnAttribute(

➥ CreditInstance.ATTR_NAME_RETIREMENT_ACCOUNT);
 }
}

The class UserInstanceBuilder is responsible for translating a User into an
Instance. If you were working on a different problem, say evaluating cars, your cus-
tom classifier would have a similar auxiliary class that would translate a Car into an
Instance. That’s because we extend the NaiveBayes classifier, which is unaware of
general objects—it only deals with Concepts and Instances. The critical step of
deciding whether to treat the various attributes as numerical or categorical variables is
done by the UserInstanceBuilder class.

The constructor requires a name, a training set, and an instance of the User-
InstanceBuilder.

We point out that eventually all implementations will delegate the classification to the
base method of the NaiveBayes classifier.

The value of the UserInstanceBuilder class. The overloaded classify method lever-
ages that class to create an Instance, which it passes on to the base classification
method.

You can customize this method by commenting out some of the lines. By default, we
use all 11 attributes for our classification purposes. If you comment out some of these
lines the corresponding attributes won’t be used during the classification.

You can trust the naïve Bayes classifier to give you reasonable results in many cases. It’s
also very stable, which means that if some instances of your training set aren’t typical,
or if some instances enter in your data erroneously, the results won’t be significantly
affected. But as we’ll see, this isn’t a desirable property when we combine classifiers.
On the contrary, for the combination methods that we’ll present, we want the base
classifiers to be unstable (see section 6.4). We can build an unstable classifier by using
a decision tree. So, let’s move on and see how to build and use a decision tree for
our problem.

6.2.2 The decision tree baseline

In listing 6.7, we show the steps to create, train, and evaluate a classifier based on a
decision tree. We didn’t present decision trees in chapter 5, but we include a brief

B

C

D

E

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

246 CHAPTER 6 Combining classifiers
description in our second to-do item in this chapter. For the purposes of this chapter,
the specific algorithmic implementation doesn’t really matter; we could have a classi-
fier based on any classification algorithm. The important part is that the classification
algorithms are different.

 The steps in listing 6.7 are similar to those of listing 6.5. If you execute listing 6.7
within the same shell as you executed listing 6.5, you can ignore the loading of the
training dataset and the loading of the testing dataset.

UserDataset ds = UserLoader.loadTrainingDataset();

DTCreditClassifier decisionTree = new DTCreditClassifier(ds);

decisionTree.useDefaultAttributes();

decisionTree.train();

UserDataset testDS = UserLoader.loadTestDataset();

CreditErrorEstimator dt_err =

➥ new CreditErrorEstimator(testDS, decisionTree);

dt_err.run();

In figure 6.2, we show the results of executing the commands of listing 6.7. As you can
see, the decision tree classifier is fast—faster than the naïve Bayes implementation by
an order of magnitude. It produces results with an accuracy of 0.8262, which is nomi-
nally better than the accuracy that we got from the naïve Bayes implementation on the
same dataset. In particular, a total of 20,000 credit worthiness evaluations were per-
formed; 16,524 of those were classified correctly while 3,476 were wrong. As we’ll see
in the later sections, the difference between the results of the naïve Bayes classifier
and the decision tree-based classifier isn’t statistically significant.

Listing 6.7 Assessing credit worthiness with a decision tree–based classifier

Create
classifier
based on
decision
tree

Train classifier

Estimate error

Classification completed in 0.132 seconds.

Total test dataset txns: 20000
 Classified correctly: 16524, Misclassified: 3476
 Accuracy: 0.8262

 CONFUSION MATRIX

 EX VG GD BD DN
 EX 831 24 15 0 0
 VG 164 2321 1725 4 0
 GD 0 585 8319 797 0
 BD 0 0 8 4200 147
 DN 0 0 0 7 853

Figure 6.2 The results of credit worthiness classification for the classifier based on a decision tree
Licensed to Deborah Christiansen <pedbro@gmail.com>

247Credit evaluation with a single classifier
If you execute the command decisionTree.printTree() in your shell, you’ll see
what the decision tree looks like. In figure 6.3, we show the first few lines from the out-
put of printTree(). Make sure that the height of the screen buffer size for your shell
is a few thousand lines long. Also note that, due to the format limitations of the book,
the tree-like structure is suppressed in the figure. The first attribute that the classifier
looks at is the prior criminal record attribute. According to the decision tree, you can
forget about getting a mortgage if you’ve been identified as having a criminal record!
If the instance refers to a user without a criminal record then the tree will look into
whether this instance refers to a user who has declared bankruptcy in the past. If
bankruptcy has been declared then the credit worthiness of that user will be classified
as bad. Otherwise, the analysis continues as indicated by the output on your screen.

 The simple interpretation of the classification with a decision tree is one of the
main reasons why decision trees are popular. But the value of a direct interpretation is
questionable when we deal with the combination of 10 or 100 classifiers. In that con-
text, we’re primarily interested in the fact that decision trees are inherently unstable.
Of course, decision trees aren’t the only classification algorithms that are unstable.
Other typically unstable classifiers are those based on neural networks.

6.2.3 The neural network baseline

Let’s add one more classifier to our collection, a classifier based on a neural network
implementation. Listing 6.8 shows how to assess the credit worthiness of users by using
our neural network-based credit classifier. If you execute listing 6.8 within the same
shell as you executed listing 6.5 or listing 6.7, you can ignore the loading of the train-
ing dataset and the loading of the testing dataset.

Node:attrName=priorCriminalRecord,isLeaf=false,concept=null
-> Branch: [priorCriminalRecord=1]
 Node:attrName=null,isLeaf=true,concept=DN
-> Branch: [priorCriminalRecord=0]
Node:attrName=priorDeclaredBankruptcy,isLeaf=false,concept=null
 -> Branch: [priorDeclaredBankruptcy=1]
 Node:attrName=null,isLeaf=true,concept=BD
-> Branch: [priorDeclaredBankruptcy=0]
 Node:attrName=carOwnership,isLeaf=false,concept=null
-> Branch: [carOwnership=1]
 Node:attrName=mortgageDownPayment,isLeaf=false,concept=null
-> Branch: [mortgageDownPayment=3]
 Node:attrName=otherPropertyOwnership,isLeaf=false,concept=null
-> Branch: [otherPropertyOwnership=1]
 Node:attrName=retirementAccount,isLeaf=false,concept=null
-> Branch: [retirementAccount=3]
 Node:attrName=creditScore,isLeaf=false,concept=null
-> Branch: [creditScore=3]
 Node:attrName=null,isLeaf=true,concept=GD

Figure 6.3 The top-level nodes of the decision tree for the credit worthiness data
Licensed to Deborah Christiansen <pedbro@gmail.com>

248 CHAPTER 6 Combining classifiers
UserDataset ds = UserLoader.loadTrainingDataset();

NNCreditClassifier neuralNet = new NNCreditClassifier(ds);

neuralNet.setLearningRate(0.025);

neuralNet.useDefaultAttributes();

neuralNet.train();

UserDataset testDS = UserLoader.loadTestDataset();

CreditErrorEstimator nn_err =

➥ new CreditErrorEstimator(testDS, neuralNet);

nn_err.run();

As you can see, the only difference between these listings is the setup of the classifier.
That repetitiveness is both intentional and important. In the context of comparing
classifiers (or anything else), you should strive to be as methodical and systematic as
possible. As the number of classifiers increases, it may become difficult to ensure that
you’re comparing apples to apples. In figure 6.4, we show the results from the execu-
tion of listing 6.8.

The class iweb2.ch6.usecase.credit.NNCreditClassifier encapsulates the custom
neural network classifier for our credit worthiness use case. The neural network itself
is located in the class iweb2.ch6.usecase.credit.UserCreditNN and is shown in list-
ing 6.9. Let’s examine it; we don’t show the definition of all the links or nonessen-
tial methods.

public class UserCreditNN extends BaseNN {

 public UserCreditNN(String name) {

Listing 6.8 Assessing credit worthiness with a neural network–based classifier

Listing 6.9 A custom neural network for the mortgage credit risk assessment

Create
classifier
based on
neural
network

Set learning rate for
back propagation

Train classifier

Estimate error

Classification completed in 0.266 seconds.

 Total test dataset txns: 20000
 Classified correctly: 14330, Misclassified: 5670
 Accuracy: 0.7165

 CONFUSION MATRIX

 EX VG GD BD DN
 EX 498 0 372 0 0
 VG 91 0 4100 23 0
 GD 0 0 8804 897 0
 BD 0 0 33 4175 147
 DN 0 0 0 7 853

Figure 6.4 The results of credit worthiness classification for the classifier based on a neural network
Licensed to Deborah Christiansen <pedbro@gmail.com>

249Credit evaluation with a single classifier
 super(name);
 create();
 }

 public void create() {
 createNN_11_7_5();
 }

 private void createNN_11_7_5() {

 Layer inputLayer = createInputLayer(0, 11);

 Layer hiddenLayer = createHiddenLayer(1, 7,

➥ new double[] { 0.5, -1, 1.5, 0.5, 1, -0.2, 0.1 });

 Layer outputLayer = createOutputLayer(2, 5,
 new double[] {-1.5, 0.5, -1, 0.5, 1});

 setInputLayer(inputLayer);
 setOutputLayer(outputLayer);
 addHiddenLayer(hiddenLayer);

 setLink("0:0", "1:0", 0.25);
 setLink("0:0", "1:1", -0.7);
 setLink("0:0", "1:2", 0.25);
 setLink("0:0", "1:3", 0.25);
 setLink("0:0", "1:4", -0.3);
 setLink("0:0", "1:5", 0.25);
 setLink("0:0", "1:6", -0.5);

 setLink("0:1", "1:0", 0.25);
 setLink("0:1", "1:1", -0.5);
 setLink("0:1", "1:2", 0.25);
 setLink("0:1", "1:3", 0.25);
 setLink("0:1", "1:4", 0.50);
 setLink("0:1", "1:5", 0.25);
 setLink("0:1", "1:6", 0.50);

 [... Snip ...]

 }
}

The choice of an 11-node input layer is dictated by our decision to use 11 attributes,
but the choice of 7 nodes for the hidden layer and 5 nodes for the output layer is arbi-
trary. In fact, we could have two or more hidden layers in our network. Let this be a
reminder of our discussion from chapter 5 about the overwhelming complexity
involved in modeling a neural network. The enormous flexibility comes at the price of
complexity. Although rules of thumb exist, following design principles for neural net-
works should be treated with caution, and its neural network should be validated
within the context of its use. In one of the to-do items, we invite you to create your
own neural network by defining your own architecture in the UserCreditNN class.
Then you can use the methods of this chapter to compare the two or more neural net-
works and see the effect of your design decisions in action.

 This subsection concludes the presentation of the three classifiers that we’ll
employ in the rest of the chapter. One last observation we want to make is based on

Define input layer
with 11 nodes

Define hidden layer
with 7 nodes

Define output
layer with 5 nodes

Define links
between nodes
Licensed to Deborah Christiansen <pedbro@gmail.com>

250 CHAPTER 6 Combining classifiers
the training time of the neural network. Aside from the quality assurance characteris-
tics of a classifier, you should always consider two essential performance characteris-
tics—the training time and the runtime. The training times are printed in the shell
after the execution of the train() method call, which is invoked for all classifiers (see
listings 6.5–6.8). For the naïve Bayes, decision tree, and neural network classifiers,
they’re 0.5, 5.6, and 265.6 seconds, respectively. Training time is usually not an issue;
the runtime for classification is typically more precious. Nevertheless, several orders of
magnitude in training time between two classifiers can practically eliminate the slower
(in training) classifier from consideration, especially if training data growth is antici-
pated for a production system.

 As we mentioned earlier, the classification with the decision tree classifier produces
results with an accuracy of 0.8262, which is better than the accuracy that we got from the
naïve Bayes implementation on the same dataset. Both the decision tree and the naïve
Bayes classifiers appear to be better than the neural network classifier, but are they? Are
the differences in these accuracies statistically significant? These are important ques-
tions that we need to answer before we move on to combining versions of any of the clas-
sifiers. In the next section, we develop tools that can help us answer these questions.

6.3 Comparing multiple classifiers on the same data
We’ll present four tests that allow us to compare classifiers. McNemar’s test and the dif-
ference of proportions test can be used to compare two classifiers. Cochran’s Q test and the F
test can be used to compare three or more classifiers. These are statistical tests and
require an understanding of statistics that isn’t required for this book; nevertheless, the
general idea is easy to follow. All statistical tests have an initial premise (null hypothesis
is the technical name) that’s proved or disproved based on a numerical comparison
between the value of a statistic and a threshold value that can be looked up in tables or be
calculated from a known formula. So, in all the tests that we’ll present, you’ll see that
we follow two steps. First, we evaluate a value for the relevant statistic. Second, we com-
pare it with a hardcoded value—the threshold value. If you’re interested in the math-
ematical details, Combining Pattern Classifiers: Methods and Algorithms by Ludmila Ilieva
Kuncheva is a great place to start; in this section, we follow the layout of her presentation.

 Whether we want to select a single classifier out of many or design a classifier based
on many other classifiers, it’s possible to use only pair-wise comparisons. There’s a prac-
tical reason why we discuss tests that apply to three or more classifiers: the number of
possible pairs grows quickly with the number of classifiers. In fact, it’s equal to N*(N-1)/
2 where N is the number of classifiers. So, we need a way to quickly tell whether a bunch
of classifiers is different in a statistically significant manner. Eventually, we’d need to do
pair-wise comparisons in order to find out which of the classifiers are the culprits!

 The justification for these tests is beyond the scope of this book; the interested
reader will find plenty of references to the literature at the end of this chapter and in
appendix C. The important knowledge that you need, from a practical perspective,
consists of three things:
Licensed to Deborah Christiansen <pedbro@gmail.com>

251Comparing multiple classifiers on the same data
■ You need to understand that differences in accuracy between classifiers aren’t
always significant, and that there are tests for pair-wise comparisons, as well as
tests for multiclassifier comparisons.

■ You need to know how to calculate the appropriate statistic for each test; our
code provides the implementation for the four tests that we consider, as well as
a generic abstract class that you can extend to write your own test.

■ You need to know how to look up the appropriate threshold value for each test.
Typically, these can be found in publicly available tables for given level of signif-
icance and degrees of freedom (whenever applicable). You can also write your
own classes that evaluate these values based on their mathematical definitions.

6.3.1 McNemar’s test

Assuming that you’ve executed listings 6.5, 6.7, and 6.8 in the same shell, go ahead
and run the script that’s shown in listing 6.10 to compare the three possible pairs of
classifiers. As you’d expect, McNemar’s test is encapsulated in the class McNemarTest,
which requires two arguments in its constructor—the ClassifierResults instance
from each classifier.

McNemarTest mnTest1 = new McNemarTest(nb_err.getResults(),

➥ nn_err.getResults());

McNemarTest mnTest2 = new McNemarTest(nb_err.getResults(),

➥ dt_err.getResults());

McNemarTest mnTest3 = new McNemarTest(dt_err.getResults(),

➥ nn_err.getResults());

mnTest1.evaluate();

mnTest2.evaluate();

mnTest3.evaluate();

The results are shown in figure 6.5 and are what you would’ve thought instinctively by
looking at the test classification reports of each classifier. The neural network pro-
duces results of lower accuracy that are statistically significant according to this test.
The variable Chi2 that you see in the output is called the 	2 (chi-square) statistic) and
its probability distribution can be defined for n degrees of freedom; in our case, we
take n=1. For details on the 	2 statistic, see the fourth to-do item in this chapter and
the references mentioned in appendix C.

 The 	2 statistic can be used in many different ways. In our implementation, we
followed Dietterich and Kuncheva, and calculated the 	2 as shown in listing 6.11.
The variable n01 stands for the number of times that the first classifier has per-
formed a classification erroneously while the second classifier performed the same
classification correctly, and the variable n10 stands for the number of times that the
reverse is true.

Listing 6.10 McNemar’s test for comparing two classifiers

One test for
each pair of
classifiers

Evaluating each test
Licensed to Deborah Christiansen <pedbro@gmail.com>

252 CHAPTER 6 Combining classifiers
protected void calculate() {
 int n = c1.getN();

 for(int i = 0; i < n; i++) {

 if(c1.getResult(i) && c2.getResult(i)) {

 n11++;

Listing 6.11 The evaluation of the 	2 statistic in the McNemar test

bsh % mnTest1.evaluate();
 Evaluating classifiers
 NBCreditClassifier and NNCreditClassifier:

 NBCreditClassifier accuracy: 0.826
 NNCreditClassifier accuracy: 0.7165
 N = 20000, n00=3050, n10=2620, n01=430, n11=13900

 Confidence Interval : 0.05
 Degrees of Freedom : 1
 Statistic threshold (Chi-square): 3.841

 Chi2 = 1571.0560655737704 > 3.841
 The two classifiers are different: TRUE

bsh % mnTest2.evaluate();
 Evaluating classifiers
 NBCreditClassifier and DTCreditClassifier:

 NBCreditClassifier accuracy: 0.826
 DTCreditClassifier accuracy: 0.8262
 N = 20000, n00=3252, n10=224, n01=228, n11=16296

 Confidence Interval : 0.05
 Degrees of Freedom : 1
 Statistic threshold (Chi-square): 3.841

 Chi2 = 0.01991150442477876 <= 3.841
 The two classifiers are different: FALSE

bsh % mnTest3.evaluate();
 Evaluating classifiers
 DTCreditClassifier and NNCreditClassifier:

 DTCreditClassifier accuracy: 0.8262
 NNCreditClassifier accuracy: 0.7165
 N = 20000, n00=2872, n10=2798, n01=604, n11=13726

 Confidence Interval : 0.05
 Degrees of Freedom : 1
 Statistic threshold (Chi-square): 3.841

 Chi2 = 1413.6534391534392 > 3.841
 The two classifiers are different: TRUE

Figure 6.5 The results of applying the McNemar test to the three pairs of classifiers

Both classifiers
were correct
Licensed to Deborah Christiansen <pedbro@gmail.com>

253Comparing multiple classifiers on the same data
 } else if(c1.getResult(i) && !c2.getResult(i)) {

 n10++;

 } else if(!c1.getResult(i) && c2.getResult(i)) {

 n01++;

 } else {
 n00++;
 }
 }

 double a = Math.abs(n01 - n10) - 1;
 chi2 = a * a / (n01 + n10);
}

Note that the absolute value ensures that the result of the difference between n01 and
n10 is symmetrical. In addition, taking the square of the numerator ensures that the
final result is symmetrical. In other words, the order that you pass the classifier results
in the constructor of the McNemar class doesn’t matter. Once the value of the statistic has
been calculated, we compare it with the threshold value of 3.841, which is the value of
the 	2 probability distribution for level of significance 0.05; if you don’t know what that
means, see the references in appendix C for the definition of the level of significance
of a statistical test. In other words, if the value of the 	2 statistic is greater than 3.841 then
we’re fairly confident that the two classifiers are different in a statistically significant way.

 In one of our to-do items, we invite you to apply the 	2 statistic in a somewhat dif-
ferent manner. The basic idea is to interrogate whether the classification results that
we get from two different classifiers are drawn from the same probability distribution.
In problems similar to the one that we study here—credit worthiness of applicants dis-
tributed across five classes—our proposed approach may be a better comparison met-
ric than the McNemar test. Read the to-do item to learn more!

6.3.2 The difference of proportions test

Once again, we assume that you’ve executed listings 6.5, 6.7, and 6.8 in the same shell.
If you did then go ahead and run the script shown in listing 6.12 to compare the three
possible pairs of classifiers based on the difference of proportions test. The difference
of proportions test is encapsulated in the class Diff2PropTest, which requires two
arguments in its constructor—just as the McNemarTest did.

Diff2PropTest d2pTest1 = new Diff2PropTest(nb_err.getResults(),

➥ nn_err.getResults());
Diff2PropTest d2pTest2 = new Diff2PropTest(nb_err.getResults(),

➥ dt_err.getResults());
Diff2PropTest d2pTest3 = new Diff2PropTest(dt_err.getResults(),

➥ nn_err.getResults());

d2pTest1.evaluate();
d2pTest2.evaluate();
d2pTest3.evaluate();

Listing 6.12 The difference of proportions test for comparing two classifiers

The first was correct,
the second wrong

The first was wrong,
the second correct

Both classifiers
were wrong

Value of 	2 statistic

One test for
each pair of
classifiers

Evaluating each test
Licensed to Deborah Christiansen <pedbro@gmail.com>

254 CHAPTER 6 Combining classifiers
The results are shown in figure 6.6 and corroborate the results we got from McNemar’s
test. The neural network produces results of lower accuracy that are statistically signif-
icant according to this test as well. The variable z that you see in the output is a statistic
whose probability distribution is supposed to be a standard normal distribution; so, its
mean value is zero and its variance is one. For details on the standard normal distribu-
tion, see the references mentioned in appendix C.

 Listing 6.13 shows the calculation of the z statistic, whose distribution is supposed
to follow the standard normal distribution. This statistic is commonly used in machine
learning literature, but the assumption of independence is questionable. Can you fig-
ure out why? (Hint: see Dietterich.)

bsh % d2pTest1.evaluate();
 Evaluating classifiers
 NBCreditClassifier and NNCreditClassifier:

 NBCreditClassifier accuracy: 0.826
 NNCreditClassifier accuracy: 0.7165

 Confidence Interval : 0.05
 Statistic threshold (Std Normal): 1.96

 |z| = 26.069696745398772 > 1.96
 The classifiers are different: TRUE

bsh % d2pTest2.evaluate();
 Evaluating classifiers
 NBCreditClassifier and DTCreditClassifier:

 NBCreditClassifier accuracy: 0.826
 DTCreditClassifier accuracy: 0.8262

 Confidence Interval : 0.05
 Statistic threshold (Std Normal): 1.96

 |z| = -0.05276718103090302 <= 1.96
 The classifiers are different: FALSE

bsh % d2pTest3.evaluate();
 Evaluating classifiers
 DTCreditClassifier and NNCreditClassifier:

 DTCreditClassifier accuracy: 0.8262
 NNCreditClassifier accuracy: 0.7165

 Confidence Interval : 0.05
 Statistic threshold (Std Normal): 1.96

 |z| = 26.12132981820125 > 1.96
 The classifiers are different: TRUE

Figure 6.6 The results of applying the difference of proportions test to the three pairs of classifiers
Licensed to Deborah Christiansen <pedbro@gmail.com>

255Comparing multiple classifiers on the same data
double diff = c1.getAccuracy() - c2.getAccuracy();

double mean = 0.5 * (c1.getAccuracy() + c2.getAccuracy());

double b = (2.0 * mean * (1 - mean)) / n;

z = diff / Math.sqrt(b);

In listing 6.13, the variable n refers to the number of instances in the testing set,
which is the same for both classifiers. Once the z statistic has been calculated, its
absolute value is compared with the value of 1.96, which corresponds to a two-sided
test (it shouldn’t matter which classifier you used first) with a level of significance
of 0.05.

6.3.3 Cochran’s Q test and the F test

We now move on to the case of comparing three or more classifiers. As you’d expect,
these tests are more complicated than the tests that compared two classifiers. But the
general idea remains the same—we evaluate an appropriate statistic and compare it
with the appropriate threshold value, which is obtained by the probability distribu-
tion of the statistic itself. Our statistic in these cases will involve the data of all classi-
fiers, of course. Listing 6.14 shows the single-line commands that you need to
execute at this point to compare the three classifiers based on Cochran’s Q test and
the F test—the F stands for Fisher because Ronald A. Fisher introduced this statistic
in the 1920s. Once again, we assume that you’ve executed listings 6.5, 6.7, and 6.8 in
the same shell.

CochransQTest cqTest = new CochransQTest(

➥ nb_err.getResults(),dt_err.getResults(), nn_err.getResults());

cqTest.evaluate();

FTest fTest = new FTest(nb_err.getResults(),

➥ dt_err.getResults(), nn_err.getResults());
fTest.evaluate();

Cochran’s test is based on the premise that if there’s no difference between the classi-
fiers then the statistic q, calculated as shown in listing 6.15, should be distributed as an
	2 distribution with two degrees of freedom; in general, for N classifiers, the degrees
of freedom would be N-1.

protected void calculate() {

 int n = c1.getN();

 double T = calculateT();
 double T2 = 0.0;

Listing 6.13 The evaluation of the z statistic in the difference of proportions test

Listing 6.14 Cochran’s Q and F tests for comparing three or more classifiers

Listing 6.15 Evaluating Cochran’s Q statistic

Evaluate
difference
between
accuraciesEvaluate

average
accuracyDefine z statistic

Total correct
classifications
Licensed to Deborah Christiansen <pedbro@gmail.com>

256 CHAPTER 6 Combining classifiers
 for(int i = 0; i < n; i++) {

 double x = 0.0;

 if(c1.getResult(i)) {
 x++;
 }
 if(c2.getResult(i)) {
 x++;
 }
 if(c3.getResult(i)) {
 x++;
 }
 T2 += (x * x);
 }
 double sum = 0.0;
 sum = (double)c1.getNCorrect() * c1.getNCorrect() +
 (double)c2.getNCorrect() * c2.getNCorrect() +
 (double)c3.getNCorrect() * c3.getNCorrect() ;

 double a = L * sum;

 q = (L - 1) * (a - T * T) / (L * T - T2);
}

In the context of comparing classifiers, the F test has been proposed by Looney. The
calculation of the F statistic is elaborate. You can peruse it in the method calculate()
of the class FTest; we defer to Looney for its mathematical explanation. From a practi-
cal perspective, it’s important to know that the F statistic is compared with the value of
the Fisher-Snedecor distribution. For our purposes, the latter can be considered the
ratio of two 	2 distributions, where each 	2 distribution is first divided by its degrees of
freedom. One 	2 distribution has (N-1) degrees of freedom, and the other 	2 distribu-
tion has (N-1) x (M-1), where N is the number of classifiers and M is the number of
instances in the testing set. The threshold values for the Fisher-Snedecor distribution,
or simply called the F distribution, can be found online at the Engineering Statistics
Handbook for various levels of statistical significance and pairs of degrees of freedom
(http://www.itl.nist.gov/div898/handbook/).

 The results for Cochran’s Q test and the F test are shown in figure 6.7. The tests
fail—the classifiers are different—because the value of each statistic is greater than
the value of the respective threshold value. This was expected, since we found
earlier that the differences between the accuracy of the neural network classifier
and the accuracies of the naïve Bayes and decision tree classifiers were statistical-
ly significant.

 You’ve now learned how to compare any number of classifiers with each other, so
it’s time to learn how to combine them. The next sections will cover the fusion of clas-
sifiers; this is the case where all classifiers contribute to a given classification. Classifier
selection, where each classifier is responsible for a particular domain of data points
and is supposed to perform well only within its region of influence, won’t be covered.
But look at the to-do item that refers to the mixture of experts—a technique that falls
into the category of classifier selection.

Number of classifiers that
correctly classified given entry
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.itl.nist.gov/div898/handbook/

257Bagging: bootstrap aggregating
6.4 Bagging: bootstrap aggregating
The term bagging, as we said earlier, is short for bootstrap aggregating and was intro-
duced by Breiman. In statistics, the term bootstrap refers to a nonparametric method
for estimating the sampling distribution of a statistic. What does that mean? Let’s say
that we have a dataset that contains numbers and we want to evaluate the average
value of the distribution from which it was sampled. Note that if you add up all the
numbers and divide by the size of the set you get an estimate of the “true” average
value of the distribution. The intention of bootstrapping is to improve the estimate of
the average value by creating several datasets that are partial replicas of the original
dataset by sampling with replacement.

 In the context of classification, the sample dataset is the labeled data that we have
for training and testing. So, the main idea of bootstrap aggregating is straightforward.
First, take random samples from your labeled dataset and train one classifier for each
sample that you take. Let each one of the classifiers classify a given instance and retain
the dominant classification result (majority vote). Once again, random samples aren’t
created by obtaining new training and testing sets from our system, but through sam-
pling with replacement from our existing dataset.

bsh % cqTest.evaluate();
 Evaluating classifiers NBCreditClassifier,DTCreditClassifier,NNCreditC

 NBCreditClassifier accuracy: 0.826
 DTCreditClassifier accuracy: 0.8262
 NNCreditClassifier accuracy: 0.7165

 Confidence Interval : 0.05
 Degrees of Freedom : 2
 Statistic threshold (chi-square): 5.991

 Q = 2783.821552723059 > 5.991
 The classifiers are different: TRUE

bsh % fTest.evaluate();
 Evaluating classifiers NBCreditClassifier,DTCreditClassifier,NNCreditC

 NBCreditClassifier accuracy: 0.826
 DTCreditClassifier accuracy: 0.8262
 NNCreditClassifier accuracy: 0.7165

 Confidence Interval : 0.05
 Degrees of Freedom (1st): 2
 Degrees of Freedom (2nd): 39998
 Statistic threshold : 3.08

 F = 264.49439710228575 > 3.08
 The classifiers are different: TRUE

Figure 6.7 The results for Cochran’s Q test and the F test applied to all three classifiers simultaneously
Licensed to Deborah Christiansen <pedbro@gmail.com>

258 CHAPTER 6 Combining classifiers
 Notwithstanding the theoretical motivation, be alert: there’s a catch. The premise
of bagging is that the different classifiers that you get from resampling the same data
are going to produce different results. If they don’t there’s no point in resampling!
Classifiers that produce different output when the input is perturbed a bit are called
unstable. So, we should expect bagging to work well with unstable classifiers, such as
neural networks and decision trees. This is related to our earlier observation about
the importance of understanding and exploring the nature of our data. It’s also
related to the danger of overfitting that we discussed in chapter 5.

 Bagging attempts to explore the diversity in the data. By sampling a different dataset
for training the classifiers, we create classifiers that emphasize different aspects of the
data. So, if our data is rich in information then bagging ensures that many aspects of the
data will be captured by the classifiers. Bagging will be most appropriate in cases where
we have a small training set but we want to classify a much larger dataset. To illustrate
this property, we’ll use a dataset that has 100 training instances and 10,000 testing
instances. Listing 6.16 shows the script that we used to create the data; it’s almost iden-
tical to listing 6.3, but note the difference in the training size and the noise levels.

UseCaseData useCaseData = new UseCaseData(100,10000);

UserType.addNoiseLevel("EX",new Double[] {0.5d, 1.5d, 3.0d, 4.0d});
UserType.addNoiseLevel("VG",new Double[] {0.5d, 1.5d, 3.0d, 4.0d});
UserType.addNoiseLevel("GD",new Double[] {0.5d, 1.5d, 3.0d, 4.0d});
UserType.addNoiseLevel("BD",new Double[] {0.5d, 1.5d, 3.0d, 4.0d});
UserType.addNoiseLevel("DN",new Double[] {0.5d, 1.5d, 3.0d, 4.0d});

useCaseData.create(false);

The first argument of UseCaseData is the size of the training set. The second argu-
ment is the size of the testing set.

This method kicks off the creation of the data. A true value for the argument will over-
ride any existing files. A false value will create data only if there are not existing files.

We include the datasets that were produced by listing 6.16 in the distribution that
comes with the book. You can create different sets; even better, you can apply the algo-
rithm to your own data. The results will vary based on the diversity that can be created
and exploited. In general, as the size of the training set increases, the improvement in
the accuracy of classification becomes statistically insignificant. The most significant
improvements in bagging have been recorded by intelligently selecting the training
sets that are used during the bootstrap process, because when we do that, we maxi-
mize the impact on diversity. On a related note, read the work by Friedman et al. on
boosting; their main ideas pertain to bagging as well.

6.4.1 The bagging classifier at work

Now, it’s time to use the bagging algorithm and examine the results that it produces
on our dataset. Listing 6.17 shows the steps required to build and execute the class
that implements the bagging algorithm—the BaggingCreditClassifier.

Listing 6.16 Creating artificial data with a small training set and a lot of noise

B
Define
noise
levels
of each
class

C

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

259Bagging: bootstrap aggregating
UserDataset ds = UserLoader.loadTrainingDataset();

BaggingCreditClassifier bagClassifier =

➥ new BaggingCreditClassifier(ds);

bagClassifier.setVerbose(false);

TrainingSet ts1 = bagClassifier.getBootstrapSet();
DTCreditClassifier dt1 = new DTCreditClassifier(ts1);
dt1.useDefaultAttributes();
dt1.setPruneAfterTraining(true);
bagClassifier.addMember(dt1);
bagClassifier.train();

UserDataset testDS = UserLoader.loadTestDataset();
CreditErrorEstimator bagee1 =

➥ new CreditErrorEstimator(testDS, bagClassifier);
bagee1.run();

TrainingSet ts2 = bagClassifier.getBootstrapSet();
DTCreditClassifier dt2 = new DTCreditClassifier(ts2);
dt2.useDefaultAttributes();
dt2.setPruneAfterTraining(true);
bagClassifier.addMember(dt2);
bagClassifier.train();

CreditErrorEstimator bagee2 =

➥ new CreditErrorEstimator(testDS, bagClassifier);
bagee2.run();

Create instance of bagging classifier and point to original training set.

Create the first decision tree, add it as a member of the ensemble, and train the classifier.

You can use any of the three classifiers that we presented in section 6.2. We used the
DTCreditClassifier, which is a decision tree-based algorithm, due to the fact that
decision trees are unstable. You can also use the NNCreditClassifier, which is a neu-
ral network–based classifier and is also unstable. You can use the NBCreditClassi-
fier, which is based on the naïve Bayes algorithm, or you could create a
BaggingCreditClassifier that contains a mix of all these individual classifiers. We
provide more scripts in the code distribution, so you can peruse them to validate that
the main steps remain identical.

 The output is lengthy, since it contains the confusion matrices. In table 6.8, we’ve
summarized the results in terms of the accuracy and execution time (in milliseconds).
It takes about 5 to 10 milliseconds to train each decision tree classifier. As far as the
time measurements are concerned, the important thing to note is that both training
and runtime are extremely fast; 100,000 instances with 11 attribute values are classi-
fied in a couple of seconds.

 The data that we created is fairly noisy, hence the low accuracy. But note the
improvement as the number of classifiers in the ensemble grows. Note also that the
improvement isn’t necessarily monotonous. In other words, the accuracy of the

Listing 6.17 Evaluating the BaggingCreditClassifier

B Set to true to
see results

C

Create CreditErrorEstimator
for evaluation

Repeat steps for
all members

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

260 CHAPTER 6 Combining classifiers

ped
ensemble fluctuates as a function of the number of members in the ensemble grows,
even though overall the accuracy improves. This means that when you adopt bagging
as your strategy for improving the results of your classifier, you’ll want to monitor the
results and possibly remove members from the ensemble if they don’t improve your
overall accuracy. One of our to-do items refers to such an exercise as well as a few
more tweaks for bagging.

 The results that you’ll get aren’t going to be exactly the same as those of table 6.8
because the samples will be different each time you run the script from listing 6.17.
Nevertheless, the order of magnitude for the times and the trend of improvement
should be clear and consistent with these results; we ran the script several times and
obtained consistent results.

6.4.2 A look under the hood of the bagging classifier

Our main class is the BaggingCreditClassifier and is derived from the class
ClassifierEnsemble, which is an abstract class that you can extend yourself and cre-
ate different ensemble classifiers based on the same ideas as bagging. The code from
the BaggingCreditClassifier class is shown in listing 6.18.

public class BaggingCreditClassifier extends ClassifierEnsemble {

 private UserInstanceBuilder instanceBuilder;
 private BootstrapTrainingSetBuilder bootstrapTSetBuilder;

 public BaggingCreditClassifier(UserDataset ds) {

 super(BaggingCreditClassifier.class.getSimpleName());

Classifier members Accuracy Execution time (ms)

 1 0.60517 752

 2 0.62158 968

 3 0.63714 1173

 4 0.62955 1327

 5 0.646 1540

 6 0.63719 1741

 7 0.64258 1945

 8 0.63536 2194

 9 0.64129 2435

10 0.63625 2662

11 0.64305 2870

Listing 6.18 Bagging as a ClassifierEnsemble extension

Generates
instances based
on user data

Generates bootstrap
training datasets

Table 6.8 The accuracy and
execution time, as a function
of the number of classifiers,
for the BaggingCredit-
Classifier used in list-
ing 6.17
Licensed to Deborah Christiansen <pedbro@gmail.com>

261Bagging: bootstrap aggregating
 instanceBuilder = new UserInstanceBuilder(false);

 TrainingSet originalTSet =

➥ instanceBuilder.createTrainingSet(ds);

 bootstrapTSetBuilder =

➥ new BootstrapTrainingSetBuilder(originalTSet);
 }

 public TrainingSet getBootstrapSet() {

 return bootstrapTSetBuilder.buildBootstrapSet();
 }

 public UserInstanceBuilder getInstanceBuilder() {

 return instanceBuilder;
 }

 public Concept classify(User user) {

 return classify(instanceBuilder.createInstance(user));
 }
}

Note that there’s nothing special in that class as far as algorithms are concerned. The
classifier should be able to deal with the credit worthiness data, so it’s endowed with a
UserInstanceBuilder class that can translate our data into the appropriate form that
the generic Classifier interface requires. In addition, we provide a Bootstrap-
TrainingSetBuilder for the purpose of creating bootstrapped training sets as
described previously. In essence, this is a convenience wrapper class. The real value
comes from the BootstrapTrainingSetBuilder class and the abstract Classifier-
Ensemble class. Listing 6.19 shows the source code from the BootstrapTrainingSet-
Builder, without the Javadoc and the import statements.

public class BootstrapTrainingSetBuilder {

 private TrainingSet originalTrainingSet;

 public BootstrapTrainingSetBuilder(

➥ TrainingSet originalTrainingSet) {

 this.originalTrainingSet = originalTrainingSet;
 }

 public TrainingSet buildBootstrapSet() {

 int N = originalTrainingSet.getSize();

 Map<Integer, Instance> instances =

➥ originalTrainingSet.getInstances();

 Instance[] selectedInstances = new Instance[N];

 Random rnd = new Random();

 int center = rnd.nextInt(N);

 int countN =0;

Listing 6.19 Auxiliary class for bootstrapping the original training set

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

262 CHAPTER 6 Combining classifiers
 while (countN < N) {

 if (countN % (N/5) == 0) {
 center = rnd.nextInt(N);
 }

 int selectedInstanceId = pickInstanceId(N,center);

 Instance selectedInstance = instances.get(selectedInstanceId);
 selectedInstances[countN] = selectedInstance;
 countN++;
 }

 TrainingSet tS = new TrainingSet(selectedInstances);

 return tS;
 }

 private int pickInstanceId(int N) {

 Random rnd = new Random();
 boolean loop = true;
 int selectedInstanceId=-1;

 double scale = (double) (N/2) / 4.0d;

 while (loop) {

 selectedInstanceId = new Double(center +

➥ rnd.nextGaussian()*scale).intValue();

 if (selectedInstanceId >=0 && selectedInstanceId < N) {
 loop=false;
 }
 }
 return selectedInstanceId;
 }
}

Every sample training set will have the same number of instances as the original set.

For better diversity select a few points (centers) around which we will draw instances
for each training set.

This condition determines the number of instances that will be drawn around each
center.

Step 3 and the method of pickInstanceId are crucial because together they define a
strategy for selecting the bootstrapped training set. In particular, the two steps consist
of identifying a center from the range of possible instances, then drawing an instance
from the neighborhood of that center N/5 times using a Gaussian distribution. The
likelihood (probability) of drawing an instance that’s within a certain distance from
the center, as a function of N, is controlled by the scale variable.

You could overwrite these methods or write your own, but you should remember that
the selection of the training sets is crucial in making bagging work well. In fact, one of
the best ways to improve the results of bagging is to use sophisticated training set
selection techniques. What kind of sophistication do you think is required? Feel free

D

E

E

B

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

263Bagging: bootstrap aggregating
to experiment with various mechanisms of selection and study the results. You have all
the plumbing code ready; this should be fun!

 The essential idea behind bagging is that of an ensemble of classifiers. Of course,
bagging is just one method of aggregating classifiers; you may have reason to believe
that a different way of aggregating classifiers can give you a significant advantage in
terms of accuracy. So, instead of providing a bagging-specific implementation, we cre-
ated an abstract class to illustrate the general ideas that can be amplified and explored
further. In fact, we’ll use that same abstraction for both bagging and boosting.

6.4.3 Classifier ensembles

The abstract class ClassifierEnsemble, whose code is shown in listing 6.20, encapsu-
lates the basic elements and methods that you’d need to combine a number of differ-
ent classifiers, much like bagging does. It doesn’t really matter whether the classifiers
in the ensemble are different versions of the same classifier or different versions of
various classifier types; all that’s required is adherence to the Classifier interface.

public abstract class ClassifierEnsemble implements Classifier {

 private String name;

 private List<Classifier> baseClassifiers =

➥ new ArrayList<Classifier>();

 public ClassifierEnsemble(String name) {
 this.name = name;
 }

 public Concept classify(Instance instance) {

 ConceptMajorityVoter voter =
new ConceptMajorityVoter(instance);

 for(Classifier baseClassifier : baseClassifiers) {

 Concept c = baseClassifier.classify(instance);

 voter.addVote(c);
 }

 return voter.getWinner();
 }

 public boolean train() {
 for(Classifier c : baseClassifiers) {
 c.train();
 }

 return true;
 }

 public void addMember(Classifier baseClassifier) {
 baseClassifiers.add(baseClassifier);

Listing 6.20 An abstract class for constructing ensemble based classifiers

Classifiers in
ensemble

Classification determined
by majority vote

Each classification
represents a vote

Winner selected
from ballot

Ensemble is trained when
all members are trained
Licensed to Deborah Christiansen <pedbro@gmail.com>

264 CHAPTER 6 Combining classifiers
 }

 public void removeMember(Classifier c) {
 baseClassifiers.remove(c);
 }
}

The class ConceptMajorityVoter is fairly straightforward: it encapsulates the collec-
tion of the votes that each classifier casts for a given instance. This implementation
declares a winner according to the simple majority rule. But you can have more com-
plicated selection strategies for determining the classification by the ensemble classi-
fier. Another strategy could account for the specific classifier type by assigning a
specific weight to each vote. Another strategy could be assigning a weight that’s a func-
tion of the (probabilistic) confidence associated with each classification. For com-
pleteness, we list the source code of the ConceptMajorityVoter in listing 6.21.

public class ConceptMajorityVoter {

 private Map<Concept, Integer> votes =

➥ new HashMap<Concept, Integer>();

 private Instance i;

 public ConceptMajorityVoter(Instance i) {
 this.i = i;
 }

 public void addVote(Concept c) {

 Integer conceptVoteCount = votes.get(c);

 if(conceptVoteCount == null) {
 conceptVoteCount = new Integer(1);
 } else {
 conceptVoteCount = conceptVoteCount + 1;
 }

 votes.put(c, conceptVoteCount);
 }

 public Concept getWinner() {

 int winnerVoteCount = 0;
 Concept winnerConcept = null;

 for(Map.Entry<Concept, Integer> e : votes.entrySet()) {
 if(e.getValue() > winnerVoteCount) {
 winnerConcept = e.getKey();
 winnerVoteCount = e.getValue();
 }
 }

 return winnerConcept;
 }

 public int getWinnerVoteCount() {

Listing 6.21 A simple selection strategy for an ensemble classifier

Keep track of
votes in HashMap

Adding vote increases
number of votes

Implementation
of majority rule

Margin of
victory
Licensed to Deborah Christiansen <pedbro@gmail.com>

265Boosting: an iterative improvement approach
 Concept winner = getWinner();
 return votes.get(winner);
 }
}

Finally, we want to mention that there’s a sweet spot of training data size for which the
diversity, induced by the input variation, is most effective. That sweet spot will depend
on the kind of constituent classifiers and the training methodology. If the dataset is
small, the gains achieved via a bagged ensemble can’t compensate for the decrease in
accuracy of individual models, each of which now sees an even smaller training set.
On the other end of the spectrum, if the dataset is extremely large and computation
time isn’t an issue, even a single flexible classifier can be quite adequate.

 In summary, bagging harvests its benefits by leveraging the diversity of the training
data. If we draw training sets that are representative of that diversity our classifier will
be able to “understand” most, if not all, the aspects of our diverse data. If you also read
and worked on the related to-do item you’re psychologically prepared for boosting!

6.5 Boosting: an iterative improvement approach
The main idea behind boosting is the incremental growth of the classifier ensemble in
such a way that the new classifiers improve the results of classification on the same data
that their successors were failing. In bagging, we were creating classifiers of the ensem-
ble independently of each other, in the hope that new members would improve the
accuracy of our classifications. As a result, the success of bagging relied on the careful
choice of the training set, but it wasn’t possible to know a priori if it would work.

 In boosting, we iteratively grow the ensemble of classifiers so that the results of our
classification improve. Instead of relying on randomly selecting what could be appro-
priate training datasets, we aim to improve the results of classification by carefully
picking training sets biased toward those instances that were previously misclassified
by the ensemble.

 We can draw a parallel between boosting and real-life consulting experience. Let’s
say we have a committee that’s supposed to consult on some corporate financial prob-
lem. The problem may be complicated and its solution could depend on a number of
subjects. For some of these subjects, say subject X, the members of the committee
don’t feel comfortable offering advice. In that case, it would make sense to bring in an
expert whose specialty is subject X. As soon as we do that, our committee has all the
required knowledge to make educated decisions and valuable recommendations
about the financial problem under investigation. That’s the essence of boosting,
which can be summarized as follows: find out what you don’t know and bring in some-
one who does to cover for it!

 We’ll describe a boosting algorithm introduced by Leo Breiman and called arc-x4.
Breiman coined the term arcing to the class of classifiers that perform adaptive resam-
pling and combining. It’s similar to another boosting algorithm called AdaBoost—a con-
catenation of the terms adaptive and boosting. AdaBoost is a well-known and widely used
boosting algorithm that’s described in the original paper by Freund and Schapire. You
Licensed to Deborah Christiansen <pedbro@gmail.com>

266 CHAPTER 6 Combining classifiers
could easily make appropriate modifications to arc-x4 and obtain an implementation of
AdaBoost as well. AdaBoost is based on solid theoretical ground and is the result of a
rigorous derivation, whereas arc-x4 is an ad hoc algorithm. There are two key differ-
ences from an algorithmic point of view and we’ll discuss them later.

6.5.1 The boosting classifier at work

Now, let’s use the arc-x4 algorithm to boost the performance of the decision tree clas-
sifier. The script for this purpose is shown in listing 6.22. The layout is similar to the
one that you saw for bagging in listing 6.17.

UserDataset ds = UserLoader.loadTrainingDataset();

BoostingCreditClassifier arcx4 = new BoostingCreditClassifier(ds);

arcx4.setClassifierType("decision tree");

arcx4.setClassifierPopulation(1);

arcx4.setVerbose(false);

arcx4.train();

UserDataset testDS = UserLoader.loadTestDataset();

CreditErrorEstimator arcx4ee =

➥ new CreditErrorEstimator(testDS, arcx4);

arcx4ee.run();

arcx4.setClassifierPopulation(3);
arcx4.train();
CreditErrorEstimator arcx4ee =

➥ new CreditErrorEstimator(testDS, arcx4);
arcx4ee.run();

Create an instance of the classifier that will use boosting and pass it the reference to
the training dataset.

Select the decision tree algorithm as the base classifier of the ensemble.

Define the population of the ensemble; in this case the ensemble has only one member.

Create an instance of the CreditErrorEstimator to evaluate the results of the classifier.

Add new members in the ensemble and re-evaluate the classification results.

You can use any one of the classifiers that we presented in section 6.2. In listing 6.22,
we used the DTCreditClassifier by calling setClassifierType with the argument
decision tree. It makes sense to use the same base classifier as in listing 6.17, in order
to compare the results of boosting with those that we obtained from bagging. The
rationale of the choice is the same as before—decision trees are unstable. In addition,
decision trees have the fastest execution time, which is convenient when you work in
the interactive shell. But you can equally well use the NNCreditClassifier, by specify-
ing the string neural network (case doesn’t matter), or you can use the NBCredit-
Classifier by specifying the string naive bayes (again case doesn’t matter).

Listing 6.22 Evaluating the BoostingCreditClassifier

B

C

D

E

F

B

C

D

E

F

Licensed to Deborah Christiansen <pedbro@gmail.com>

267Boosting: an iterative improvement approach
 Let’s digress and note that you can create a “hybrid” BoostCreditClassifier,
which contains a mix of all these base classifiers rather than using just a single base
classifier. That’s not a standard variation of AdaBoost or arc-x4, but it makes sense. It’s
possible that for a certain set of instances, one type of classifier will outperform
another, and if you can leverage that fact there’s no reason to miss the opportunity for
an incremental improvement. Boosting is adaptive, and in principle, you should be
able to adapt not only the selection of the training set but also the selection of the
classifier type. We suggest that you implement such a generalization in one of our to-
do items for this chapter.

 Let’s now examine the output from the execution of listing 6.22. We’ve summa-
rized the results in table 6.9 where we show the accuracy and execution time (in milli-
seconds) of the script in listing 6.22; this table is similar to table 6.8.

As you can see, boosting gives us classification results that are slightly better than bag-
ging (table 6.8). In terms of computational performance, we should mention that if we
use the naïve Bayes classifier as the base classifier then the training times are still small,
and without a perceptible difference from the training times with a decision tree. The
accuracy based on the ensemble of the naïve Bayes classifiers was much better than the
ensemble with the decision trees, with just 11 members in the ensemble. But the exe-
cution times differ significantly. For just 11 classifier members in the ensemble, the exe-
cution time for the decision tree-based boosting is about 63 times faster than the
execution time of boosting the ensemble that consists of naïve Bayes classifiers.

 At this point, you may wonder whether the differences in the accuracy are statistically
significant. You can use McNemar’s test (see section 6.3.1) and perform a direct com-
parison between bagging and boosting. Regardless of your choice for the base classifier
or any other parameters, you can always compare two classifiers in that way. From an
engineering perspective, you want to know the tradeoffs between code complexity, clas-
sification accuracy, training and execution time. You should consider the cost of your
specific problem as a function of these parameters. In general, the accuracy alone isn’t
sufficient to make an engineering decision with regard to the choice of algorithm.

Classifier members Accuracy Execution time (ms)

 1 0.57314 1108

 3 0.63862 1638

 5 0.64203 2153

 7 0.65317 2792

11 0.64668 3947

31 0.65572 9828

41 0.65676 12870

61 0.66044 19032

Table 6.9 The accuracy and
execution time, as a function
of the number of classifiers,
for the BoostingCredit-
Classifier used in list-
ing 6.22
Licensed to Deborah Christiansen <pedbro@gmail.com>

268 CHAPTER 6 Combining classifiers
6.5.2 A look under the hood of the boosting classifier

Our main class is the BoostingCreditClassifier, which is an extension of the class
BoostingARCX4Classifier. In turn, the latter is an extension of the Classifier
Ensemble class much like the BaggingCreditClassifier was. This shouldn’t surprise
you since boosting, like bagging, combines different classifiers in the hope of producing
better results. The code from the BoostingCreditClassifier is shown in listing 6.23.

public class BoostingCreditClassifier extends BoostingARCX4Classifier {

 private UserInstanceBuilder instanceBuilder;

 private ClassifierMemberType classifierType;

 public BoostingCreditClassifier(UserDataset ds) {

 this(BoostingCreditClassifier.class.getSimpleName(), ds,
 ➥ new UserInstanceBuilder(false));

 }

 public BoostingCreditClassifier(String name, UserDataset ds,

➥ UserInstanceBuilder instanceBuilder) {

 this(name, instanceBuilder,

➥ instanceBuilder.createTrainingSet(ds));
 }

 public BoostingCreditClassifier(String name,

➥ UserInstanceBuilder instanceBuilder, TrainingSet tSet) {

 super(name, tSet);

 this.instanceBuilder = instanceBuilder;
 }

 public UserInstanceBuilder getInstanceBuilder() {
 return instanceBuilder;
 }

 public Concept classify(User user) {

 return classify(instanceBuilder.createInstance(user));
 }

 @Override
 public Classifier getClassifierForTraining(TrainingSet set) {

 Classifier baseClassifier = null;

 switch(classifierType) {

 case NEURAL_NETWORK:
 NNCreditClassifier nnClassifier =

➥ new NNCreditClassifier(set);
 nnClassifier.setLearningRate(0.01);
 nnClassifier.useDefaultAttributes();
 baseClassifier = nnClassifier;
 break;

Listing 6.23 An implementation that relies on the arc-x4 algorithm

Generates
instances
based on
user data

Generates
bootstrapped
training
datasets

Creates
new classifier
according to
classifierType
Licensed to Deborah Christiansen <pedbro@gmail.com>

269Boosting: an iterative improvement approach
 case DECISION_TREE:
 DTCreditClassifier dtClassifier =

➥ new DTCreditClassifier(set);
 dtClassifier.useDefaultAttributes();
 dtClassifier.setPruneAfterTraining(true);
 baseClassifier = dtClassifier;
 break;
 case NAIVE_BAYES:
 NBCreditClassifier nbClassifier =

➥ new NBCreditClassifier(set);
 nbClassifier.useDefaultAttributes();
 baseClassifier = nbClassifier;
 break;
 default:
 throw new RuntimeException("Invalid type!");
 }

 return baseClassifier;
 }

 public ClassifierMemberType getClassifierType() {
 return classifierType;
 }

 public void setClassifierType(String type) {

 if (type.equalsIgnoreCase("decision tree")) {
 this.classifierType = ClassifierMemberType.DECISION_TREE;

 } else if (type.equalsIgnoreCase("neural network")) {
 this.classifierType = ClassifierMemberType.NEURAL_NETWORK;

 } else if (type.equalsIgnoreCase("naive bayes")) {
 this.classifierType = ClassifierMemberType.NAIVE_BAYES;
 }
 }
}

Once again, the role of this class is to encapsulate all the parts of the problem. Note
that we provide the means to set the type of the base classifier and let the code create
the new instances automatically. The arc-x4 algorithm itself can be found in the
abstract class BoostingARCX4Classifier, which is shown in listing 6.24 without some
auxiliary methods, the Javadoc, and the import statements.

public abstract class BoostingARCX4Classifier

➥ extends ClassifierEnsemble {

 private TrainingSet originalTSet;

 private int classifierPopulation = 2;

 public BoostingARCX4Classifier(String name, TrainingSet tSet) {
 super(name);
 this.originalTSet = tSet;
 }

Listing 6.24 An implementation of Breiman’s arc-x4 algorithm

Ensemble
classifier
Licensed to Deborah Christiansen <pedbro@gmail.com>

270 CHAPTER 6 Combining classifiers
 public Concept classify(Instance instance) {

 ConceptMajorityVoter voter =

➥ new ConceptMajorityVoter(instance);

 for(Classifier baseClassifier : baseClassifiers) {

 Concept c = baseClassifier.classify(instance);

 voter.addVote(c);
 }

 return voter.getWinner();
 }

 public abstract Classifier

➥ getClassifierForTraining(TrainingSet set);

 public boolean train() {

 baseClassifiers = new ArrayList<Classifier>();

 int size = originalTSet.getSize();

 double[] w = new double[size];

 int[] m = new int[size];

 double w0 = 1.0 / size;

 Arrays.fill(w, w0);
 Arrays.fill(m, 0);

 for(int i = 0; i < classifierPopulation; i++) {

 TrainingSet tSet = buildTSet(originalTSet, w);

 Classifier baseClassifier =

➥ getClassifierForTraining(tSet);

 baseClassifier.train();

 updateWeights(originalTSet, w, m, baseClassifier);

 baseClassifiers.add(baseClassifier);
 }

 return true;
 }

 public TrainingSet buildTSet(TrainingSet tSet, double[] w) {

 WeightBasedRandom wRnd = new WeightBasedRandom(w);

 int n = w.length;

 Instance[] sample = new Instance[n];

 Map<Integer, Instance> instances = tSet.getInstances();

 for(int i = 0; i < n; i++) {

 int instanceIndex = wRnd.nextInt();

 sample[i] = instances.get(instanceIndex);
 }

Classification determined
by majority vote

Create any
classifier type

Weights define
selection of samples

Number of times instance
has been misclassified

Specifies how
to build new
training set
Licensed to Deborah Christiansen <pedbro@gmail.com>

271Boosting: an iterative improvement approach
 return new TrainingSet(sample);
 }

 public void updateWeights(TrainingSet tSet, double[] w,

➥ int[] m, Classifier baseClassifier) {

 int n = w.length;

 for(int i = 0; i < n; i++) {

 Instance instance = tSet.getInstance(i);

 Concept actualConcept =

➥ baseClassifier.classify(instance);

 Concept expectedConcept = instance.getConcept();

 if(actualConcept == null ||
 !(actualConcept.getName()

➥ .equals(expectedConcept.getName()))) {
 m[i]++;
 }
 }

 double sum = 0.0;

 for(int i = 0; i < n; i++) {
 sum += (1.0 + Math.pow(m[i], 4));
 }

 for(int i = 0; i < n; i++) {
 w[i] = (1.0 + Math.pow(m[i], 4)) / sum;
 }
 }
}

Our implementation is another instance of a ClassifierEnsemble, where the classifi-
cation is based on the majority vote of the classifier members. The crux of the arc-x4
algorithm is found in its train() method, where we introduce a weight for each
instance in the training set. These weights are used in the selection of new training
sets during sampling. Initially, all weights are equal to 1/N, where N is the number of
instances in the training set. But as soon as the first classifier has been added in the
ensemble and is trained, we proceed with an update of the weights through the
updateWeights method.

 Note that the selection of the new training set, each time that we want to add a new
classifier in the ensemble, isn’t uniform across the instances but is determined by the
newly introduced weights. The class that makes that possible is called WeightBased-
Random and its goal is to favor those instances that have a large weight while avoiding
the selection of those instances that have small weight.

 Every classifier adds its own misclassification in the array m, and in turn, that affects
the weights w in the specific way that the method indicates. The number 4 in the name
of the algorithm stems from the fourth power of the misclassifications for normalizing
and obtaining the value of the weights in the updateWeights method. You can experi-
ment with a different value for the exponent, say 5, and call that the arc-x5 algorithm.

Specifies how to
update weights

Fourth power is
arbitrary choice
Licensed to Deborah Christiansen <pedbro@gmail.com>

272 CHAPTER 6 Combining classifiers
It may produce better or worse results; the outcome will most likely depend on your
data. The arbitrary choice of that exponent is why we consider this algorithm ad hoc.

 What do you think will happen in the case of the credit classifier? Is it possible to
obtain better results by tweaking that value? What other functions can you think of
that would relate the number of misclassifications with the weights, in such a way as to
improve our sampling for a new training set?

6.6 Summary
This chapter introduced the subject of combining classifiers in the context of evaluat-
ing the credit worthiness for a mortgage application. Our use case referred to data
instances that contained 11 attributes, a fact that brings up the question of how many
attributes we really need. During the presentation of these attributes, we had the
opportunity to emphasize the importance of understanding your data and the impact
of your choices with regard to how the information from the real world is represented
in your data. The combination of classifiers may produce significantly better results in
some cases, but in other cases a single classifier may be preferable. With a powerful
data generator at your disposal, you can further explore the data conditions that favor
the use of one or more classifiers.

 Of course, in order to assess whether one or more classifiers are better than others,
we need the ability to tell whether two or more classifiers have statistically significant
differences in their accuracy. We presented four tests that allow you to compare classi-
fiers. The ability to compare classifiers is important because the number of classifiers
in an ensemble should be as small as possible while the exploitation of the available
information should be maximized. The ability to keep only the best classifiers in an
ensemble is crucial. To this end, we presented McNemar’s test and the difference of
proportions test that can be used to compare two classifiers. We also presented
Cochran’s Q test and the F test for comparing three or more classifiers.

 We’ve seen that our comparisons rely on statistical tests whose initial premise
(null hypothesis) is either proved or disproved based on a numerical comparison
between the value of a statistic and a threshold value that’s readily available. All the tests
we presented followed the same pattern that involves two steps. First, we evaluated a
value for the relevant statistic. Second, we compared the value of the statistic with the
threshold value.

 Our first ensemble classifier was based on bagging, a technique that aims to
improve the accuracy of classification by creating classifiers that are trained on differ-
ent subsets of the original training set. By doing so, we hope that each time that we
sample (with replacement) from the original data, we emphasize different aspects of
the data, and therefore are able to increase the total amount of knowledge in the
ensemble. Bagging, or bootstrap aggregating, is the tip of the iceberg for what’s possi-
ble in that area. For that reason, we introduced an abstract class called Classifier-
Ensemble, which you can use for experimenting, and hopefully, incorporating in your
special projects!
Licensed to Deborah Christiansen <pedbro@gmail.com>

273To Do
 A somewhat different approach to ensemble classification is boosting. Instead of
selecting randomly new training sets, or even injecting a priori knowledge about the
data in the process of selecting new training sets, boosting attempts to drive iteratively
toward better results by selecting misclassified instances at a higher rate than correctly
classified instances. We presented the implementation of Breiman’s arc-x4 boosting
algorithm and examined its accuracy and execution time on our test dataset. We
broke down the essential parts of the algorithm into three classes—BoostingCredit-

Classifier, BoostingARCX4Classifier, and WeightBasedRandom. You can now iden-
tify the areas where you can improve the results for our own artificial data, but more
importantly for your own real-world data!

 This chapter concludes the list of intelligent application tools that we’ll cover in
this book. In practice, these tools are simply components of a larger picture. In the
next chapter, we’ll discuss the injection of these elements of intelligence into a news
portal application.

6.7 To Do
1 Attribute selection. We’ve chosen 11 attributes for characterizing the credit wor-

thiness of an individual. Why not 10 or 17? Instinctively, you may think that the
more attributes we use, the better results we’re going to obtain. That’s not nec-
essarily the case. The right choice of attributes becomes especially important as
the number of available attributes increases. Some algorithms, such as decision
trees, are able to identify the information rich attributes by design. Other algo-
rithms aren’t as transparent as decision trees, and direct experimentation with
different sets of attributes may be required.

How would you go about selecting your attributes? By modifying the defining
attributes of the UserType classes, some attributes may become irrelevant and
others may become dominant. Which classifiers are affected the most from
these changes? Can you explain why? You could define your own attributes and
expand the attribute space even further. In practice, it’s important to under-
stand the nature of the data and the way that the algorithms behave in different
regions of the configuration space, in terms of accuracy but also in terms of
memory efficiency and computational time.

2 Decision trees. Decision trees are used in classification problems due to their sim-
plicity in interpreting the results of the classification. Think of a tree structure
where each node is associated with an attribute and every link out of that node
corresponds to a particular value of that attribute; strictly speaking, every link is
associated with a predicate on that attribute. Every leaf node in that tree is asso-
ciated with a specific class of our classification problem. That’s a decision tree.

To understand how it works, think of the tree’s root node situated at the top
and all other nodes beneath it. For every instance we want to classify, we start
from the root node and examine the value associated with the root attribute.
That value will lead us to the next node; by following the appropriate edge, we
Licensed to Deborah Christiansen <pedbro@gmail.com>

274 CHAPTER 6 Combining classifiers
look at the value of the attribute associated with the first-level node, and so on,
until we reach the leaf nodes. Since every leaf node is associated with a class,
our classification has been completed. That’s pretty straightforward, isn’t it?

Of course, in order to use a decision tree for your classification, first you
must build the tree! That’s not as trivial as using the tree. We invite you to study
our implementation and read more about decision trees in the books by Witten
and Frank, and Dunham.

3 Compare two or more neural networks. The design of neural network architectures
is a fairly complex exercise that requires a good understanding of neural net-
works and the problem that you’re trying to solve. In section 6.2.3, we intro-
duced the UserCreditNN class, a custom neural network specifically designed
for our credit worthiness use case.

It’s instructive to experiment with other neural network architectures and
compare the results of the associated classifiers by using the techniques of this
chapter. For example, you could create a network that has 11 nodes in the input
layer, 5 nodes in the hidden layer, and just 1 node in the output layer. You could
experiment with adding one more hidden layer in any one of your existing net-
works. Even in the context of a single node-wise neural network architecture,
different webs of synapses and different biases will lead to different results. Fear
nothing and explore as many possibilities as you can.

Is the increased complexity worth the trouble? Given the large number of
parameters at your disposal, where would you start to optimize your design and
how would you judge its optimality or lack thereof?

Incidentally, we should tell you that we picked this as the “bad” classifier.
Since our job was to compare classifiers, we needed a classifier whose results
would be quite different from (worse than) the other two. The easiest way to
achieve this is to use a neural network that’s not optimized—given the plethora
of choices in the network design, picking one at random will turn out to be a
suboptimal choice with probability close to one!

4 The 	2 (chi-square) test between two distributions. In section 6.3.1, we introduced
the 	2 statistic for conducting the McNemar test. We can employ the same prob-
ability distribution in a different manner. To do this, we need to pose the com-
parison problem somewhat differently than the McNemar test does. The context
of the comparison remains the same—we have two classifiers, a common training
set, and a common testing set. If we train the classifiers and test them, can we tell
if the results are different in a way that’s statistically significant?

Let’s consider casting the problem as follows. Recall the confusion matrix we
introduced in chapter 5—for each classifier, this matrix was printed in the shell
output when we ran the CreditErrorEstimator. Let the confusion matrix be
denoted by a two-dimensional array, say int[][] confusion. If the two classifi-
ers are statistically equivalent it’s reasonable to expect that the values of the
confusion matrix will be “similar.” So, let’s calculate the following statistic:
Licensed to Deborah Christiansen <pedbro@gmail.com>

275To Do
 double chi2=0;

 for(int i = 0; i < n; i++) {
 for(int j = 0; j < n; j++) {

 int diff = confusion1[i][j]-confusion2[i][j];
 int sum = confusion1[i][j]+confusion2[i][j];

 chi2 = chi2 + (diff*diff)/sum;
 }
 }

where n is the number of classes (in our case n=5), confusion1 is the confusion
matrix of the first classifier, and confusion2 is the confusion matrix of the sec-
ond classifier. Write a new test class that extends Test, as the McNemarTest class
does, but evaluates the preceding 	2 statistic. How would you calculate the
threshold value for this statistic? How many degrees of freedom do we have? If
the statistic includes only the diagonal elements of the matrix, will it be more
valuable? Why?

[Hints: Consult the references in appendix C for the evaluation of chi-square
values through incomplete gamma functions. The answer for the degrees of
freedom is n-1.]

5 Mixture of experts—a classifier selection technique. As we mentioned in the introduc-
tion of this chapter, the topic of combining classifiers falls largely into two gen-
eral directions. One direction is the classifier selection approach, and the other
is classifier fusion, such as bagging (section 6.4) and boosting (section 6.5). As
software engineers, we can appreciate the beauty and effectiveness of the divide-
and-conquer principle that underlies the classifier selection approach.

A particularly interesting and well studied version of classifier selection is
the mixture of (local) experts (see Jacobs et al.; and Jordan and Jacobs), which
originated as a modular version of a multilayer (supervised) neural network.
This technique suggests that we can improve the learning rate and our capacity
for generalization (correctly classifying instances that we haven’t seen before)
by using a number of local experts and a gating network (generally speaking,
another classifier). The gating network decides which of the experts should be
used for each training case, hence at the end of training, each classifier is the
expert of a particular domain of the input (of the instances in the training
set). For the details of the approach, consult the papers by Jacobs and
his coworkers.

Create three neural network classifiers appropriate for the credit worthiness
use case and combine them with a fourth network, in the role of the gating net-
work, to build a mixture of experts. In doing so, a number of questions arise.
What training method should you use? Are the results from the mixture of
experts better than those that we obtained from the single neural network? Is it
worth the trouble? What are the advantages and the disadvantages compared to
the fusion approaches of bagging and boosting?
Licensed to Deborah Christiansen <pedbro@gmail.com>

276 CHAPTER 6 Combining classifiers
6 Tweaks and tips for bagging. In section 6.4, you learned about bagging as a
method of improving your classification results. Although simple in principle,
the optimization of the improvement that you can get from bagging requires
some work. The most critical aspect in the bagging algorithm is the selection of
the bootstrapped training sets used by the member classifiers of the ensemble.

Another critical decision is the number of classifiers in the ensemble. In
other words, how many classifiers should we use? 10? 20? 50? 100? Start in a
straightforward manner and write a class whose purpose is to investigate the
improvement obtained by adding a new classifier in the ensemble. The first test
you’d have to do is to use one of the techniques that we described in section 6.3
in order to discern whether a difference in the classification results between two
or more classifiers is statistically significant. If it is, you can perform a second
test that would check whether the improvement of accuracy is greater than an
accuracy improvement threshold, whose value you can configure. If both tests
pass, keep the new classifier in the ensemble; otherwise discard it and pick a
new one.

Try the various classifiers and examine the results. What are the differences
and the similarities between the choices that you make? What happens if you
mix the type of classifiers? Does bagging still work? Do you get better results or
worse? Examine that in the context of the class that you just wrote for optimiz-
ing the accuracy.

Write your own implementation for the pickInstanceId method in the class
BootstrapTrainingSetBuilder. One of the best ways to improve the results of
bagging is the use of sophisticated training set selection techniques. What kind
of sophistication do you think is required? Feel free to experiment with various
mechanisms of selection and study the results. You have all the plumbing code
ready; this should be fun!

7 Generalizing boosting through classifier type adaptation. In section 6.5, we intro-
duced boosting and explained how the arc-x4 algorithm works. Breiman states
that he introduced the arc-x4 algorithm to “demonstrate that arcing works not
because of the specific form of the arc-fs algorithm, but because of the adaptive
resampling.” (Breiman uses the term arc-fs when he refers to what’s widely
known as AdaBoost.)

If Breiman is right we could create a BoostCreditClassifier that contains a
mix of base classifiers rather than using a single base classifier. That’s not a stan-
dard variation of AdaBoost or arc-x4, but it makes sense; besides, as we already
mentioned, arc-x4 is itself an ad hoc algorithm. It’s possible that for a certain set
of instances, one type of classifier will outperform another, and if you can lever-
age that fact there’s no reason to miss the opportunity for an incremental
improvement. Boosting is adaptive, and in principle, you should be able to
adapt not only the selection of the training set but also the selection of the clas-
sifier type.
Licensed to Deborah Christiansen <pedbro@gmail.com>

277References
We suggest that you implement such a generalization. There are a couple of
variations that you can do. You could opt to include a representative of each
type every time we want to add a member in the ensemble. Alternatively, you
may want to create the ensemble based on some predefined proportions of
classifier types—for example, 50% decision trees, 30% naïve Bayes, and 20%
neural networks.

Think about the tradeoffs and devise a strategy for obtaining maximum ben-
efits in accuracy without making the training or runtime computation times
unrealistic. Are the improvements in accuracy sufficiently large to justify the
increased complexity and computational effort? How could we further improve
the sophistication of the algorithm? In section 6.3 we learned how to compare
two or more classifiers. In this case, we’re interested in identifying classifiers
that are different, so the comparison methods can come handy within the classi-
fication algorithm itself!

6.8 References
 Bell, R., Y. Koren, and C. Volinsky. “Chasing $1,000,000: How we won the Netflix progress

prize.” ASA Statistical and Computing Graphics Newsletter, Vol 18 (2), pp. 4-12, 2007. http://
stat-computing.org/newsletter/v182.pdf.

 Breiman, L. “Bagging predictors.” Machine Learning. Vol 24 (2), pp. 123-140, 1996.
 Breiman, L. “Arcing classifiers. ”The Annals of Statistics. Vol 26 (3), pp. 801-849, 1998.
 Dietterich, T.G. “Ensemble methods in machine learning.” Multiple Classifier Systems, (Editors: J.

Kittler and F.Roli) volume 1857 of Lecture Notes in Computer Science, pp.1-15. Cagliari, Italy.
Springer, 2000. http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=743935.

 Freund, Y., and R. E. Schapire. “A decision-theoretic generalization of on-line learning and an
application to boosting.” Journal of Computer and System Sciences. Vol 55 (1), pp. 119-139,
1997.

 Friedman, J., T. Hastie, and R. Tibshirani. “Additive logistic regression: A statistical view of
boosting.” Annals of Statistics, Vol 28 (2), pp. 337-407, 2000.

 Jacobs, R.A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton. “Adaptive mixtures of local experts.”
Neural Computation. Vol 3, pp. 79-87, 1991.

 Jordan, M.I., and R. A. Jacobs. “Hierarchical mixtures of experts and the EM algorithm.” Neural
Computation, Vol 6, pp. 181-214, 1994.

 Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, 2004.
 Looney, S.W. (1988). “A statistical technique for comparing the accuracies of several classifi-

ers.” Pattern Recognition Letters. Vol 8, pp.5-9, 1988.

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://stat-computing.org/newsletter/v182.pdf
http://stat-computing.org/newsletter/v182.pdf
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=743935

Putting it all together:
 an intelligent news portal
Each of the earlier chapters described a particular group of algorithms. We studied
search algorithms, recommendation algorithms, clustering algorithms, and classifi-
cation algorithms. We examined each of these in their own context and their own
particular use case. The same algorithms can be used in many other cases, and it’s
possible to employ all of them to enhance an existing application.

 The purpose of this chapter is to show how each algorithm can be leveraged in
the setting of a single application. Where can we use a clustering algorithm? How
are the results of classification affected by clustering? Can PageRank and DocRank
be used for features other than search? How can I write a recommendation engine
for my own application by using what I learned in this book? We’ll provide answers
in this chapter.

This chapter covers:
■ Getting and cleansing content from the internet
■ Searching for news stories
■ Assigning news categories
■ Building news groups
278

Licensed to Deborah Christiansen <pedbro@gmail.com>

279An overview of the functionality
 We won’t write an entire web application; we’ll simply place ourselves in the con-
text of such an application and discuss the adoption of intelligent algorithms in it. In
other words, we’ll discuss the adoption of our algorithms in the context of a hypothet-
ical web application. In particular, our example refers to a news portal, which is
inspired by the Google News website.

 As we introduce intelligent algorithms in our application, we’ll encounter a number
of practical issues that you should be aware of. For many intelligent algorithms, the
order of operation on the data may be important. Thus, the need for a meta-algo-
rithm—an algorithm whose job is to control or combine other1 algorithms—may be cru-
cial to the success of putting everything together.

 This chapter will also give us an opportunity to review all the material we covered
in earlier chapters. We’ll start by describing the use case of crawling and aggregating
the news stories from the Web. We encountered this in chapter 2 but now we can sug-
gest a number of ways that these processes can be improved by leveraging classifica-
tion. In order to make our results repeatable and establish a data reference frame for
our discussion, we’ll present and use an extended set of the news stories that we used
in chapter 2.

 We’ll naturally follow up with a section on searching our news stories for various
queries. This brings up a lot of interesting questions. In this case (a news portal web
application), we aren’t searching for results across the entire Web. We’re looking for
results from a body of documents that has special properties (news stories). We can
take advantage of that knowledge and improve the quality of the retrieved results.
This is a lesson of general applicability. Nobody knows your data better than you!

 In the context of finding what news stories should be grouped together and what
news category they should be assigned to (section 7.4), we’ll describe a number of top-
ics that arise from the fact that we’re using more than one intelligent algorithm to
accomplish our goal. If we apply a clustering algorithm to our news stories and subse-
quently classify the clusters, we’ll obtain results that are different from those obtained
by first classifying the news stories and later clustering the news stories within each
news category. These differences raise a lot of questions that we discuss at length in
sections 7.4 and 7.5.

 In the last section of this chapter, we bring recommendations into the picture. In
particular, we explore the case where our users have the ability to rate the news stories.
The entire machinery of recommendation algorithms, developed in chapter 3, is
applicable in this case. We’ll apply and present the item-based approach and suggest
many more extensions.

 We’ve written a large number of to-do action items that should help you explore
many more aspects of intelligent algorithms within the context of a news portal; these
directions should also be valuable for many other applications. Enjoy!

An overview of the functionality

1 The combination of classifiers that we covered in chapter 6 was a special case of how meta-algorithms emerge
and are used in practice.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html

280 CHAPTER 7 Putting it all together: an intelligent news portal
7.1 An overview of the functionality
If you haven’t seen the Google News website, point your browser to http://
news.google.com/ for a live reference of what we’re going to discuss. Once you land
on the site, it appears that you’ve visited yet another portal, but appearances can be
deceiving. As we’ll see, there are some important differences between the Google
News portal and other news portals. We should note from the outset that we’re not
affiliated in any way with Google and we don’t know how and where intelligent tech-
niques are used on the Google News site. We only know the functionality that’s pub-
licly available to the end user. Our goal is to present our material from the perspective
of a bigger theme, and not to help you replicate a specific website.

 What are the differences? Why is the Google News site special? To begin with, it is
computer-generated based on content that’s collected from thousands of news
sources worldwide. The stories are grouped and assigned to categories such as World,
U.S., Business, Sci/Tech, and so on. The key is that the grouping and the assignment
are performed automatically, without human intervention. After reading chapters 4
and 5, it should be clear that the grouping of news articles can be achieved by cluster-
ing and the assignment by classification, hence the relevance of that website for our
subject. There are more features of interest to us.

 There’s a section called Top stories, apparently based on relevance (ranking) met-
rics similar to what we described in chapter 2. Based on what we’ve already seen in this
book, such a group of stories could be identified by using the PageRank rankings or a
content-based ranking method similar to what we described as DocRank. The user
rankings on individual articles could be used to determine, or at least affect, these
rankings and offer a better personal experience.

 Personalization can also be direct and explicit. The Personalize this page link
allows you to rearrange the order in which each topic appears on the landing page. It
also allows you to introduce custom sections that may reflect your interest in a special
category of news. This kind of personalization offers a great mining opportunity for
websites with many users. By clustering the customized news content, we can identify
groups of users with similar interests. We can also use recommendations by employing
the notion of similarity between the articles that users read and how much they like
each article. In other words, we can build a recommendation system based on both
user ratings and news article content, similar to what we’ve seen in chapter 3.

 Another interesting feature of the Google News site is the section labeled In the
News. That’s a list of individuals, nonprofit organizations, corporations, governments,
and so on that are of “importance” in the news today. Sure, we can build this function-
ality based merely on basic statistical information, but when you think about it, the
importance of a particular name is influenced by several factors, not merely frequency
of appearance in the news articles. This is especially true when the content is retrieved
from numerous heterogeneous sources, as is the case for a site such as Google News.
In these cases, we can greatly benefit from the methods that we encountered in chap-
ter 2—relevance metrics such as PageRank and DocRank.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://news.google.com/
http://news.google.com/

281Getting and cleansing content
 The News Alerts feature allows you to receive content, via email, based on your
own search terms and type of media (for example, news articles, video, blogs, group
lists). Alerts should be issued only when the content can be considered “high-value”
information by the user, a criterion that’s clearly variable from user to user. Intelligent
algorithms can come to the rescue once again.

 The site designers would’ve been remiss to ignore localization capabilities, so, nat-
urally, the site is full of customization based on the language used in the news and the
geographic location of the user. In our context, these capabilities are important only
from the perspective of NLP. For an excellent review of NLP, see the book by Jurafsky
and Martin.

 Let’s get started by describing the process of crawling the news websites and aggre-
gating the news stories on our system for further processing.

7.2 Getting and cleansing content
The starting point of a news portal such as Google News is, of course, gathering the
news. The articles are collected from various sources on the internet using a crawler.
There are several freely available crawlers, but in the interest of convenience and com-
pleteness, we’ll use a crawler that we wrote for this book; this crawler is a variant of the
crawler that we used in chapter 2.

 We’ll also provide a review of the search prerequisites because now—having gone
through six chapters of describing intelligent algorithms—we can look at each stage
from a new perspective. Even though you can obtain your own news stories (or any
other content) by crawling the Web, our examples must use a fixed set of data in
order to be repeatable. At the end of this section, we’ll describe the default set of news
stories that we’ll use for the rest of the book.

7.2.1 Get set. Get ready. Crawl the Web!

As you might expect, our news crawler is called NewsCrawler and its constructor takes
three arguments:

■ The base directory for storing the retrieved data
■ The depth of the link structure that should be traversed
■ The maximum number of total documents that should be retrieved

Let’s use it from the BeanShell and crawl the Manning website.2 Listing 7.1 shows the
few steps that we need to take in order to configure the crawler.

String rootDir = Ch7Constants.CRAWL_DATA_ROOT_DIR;

NewsCrawler crawler = new NewsCrawler(rootDir, 2, 100);

2 Please, be a conscious internet citizen when you crawl. All our internet crawling examples are configured with
a small depth and a (relatively) small number of documents to be retrieved.

Listing 7.1 Crawling the Manning website

Determine root
directory
Licensed to Deborah Christiansen <pedbro@gmail.com>

282 CHAPTER 7 Putting it all together: an intelligent news portal
crawler.addSeedUrl("http://www.manning.com");

crawler.run();

The first thing we do is to determine the location where the retrieved documents will
be stored. By default, we use the location C:/iWeb2/data/ch07/news-crawls, but you
can store the content anywhere you like by modifying the value of CRAWL_DATA_
ROOT_DIR. When the crawler starts retrieving the content from the visited URLs, it’ll
store them in a subdirectory of the root directory. The new subdirectory’s name will
start with the string crawl- and be followed by the numeric value of the crawl’s time-
stamp in milliseconds, for example crawl-1200697910111. The NewsCrawler delegates
its work to the BasicWebCrawler, much like the FetchAndProcessCrawler did in
chapter 2.

 Let’s recall the outcome of the crawler’s work. The job of the BasicWebCrawler
class is to retrieve the data and parse it. The result of that processing is stored in the
subdirectory called processed. For every group of documents that are processed,
there are four subdirectories—fetched, knownurls, pagelinks, and processed. The
fetched directory contains the raw HTML pages. The knownurls directory contains a
single file with all the URL addresses identified during crawling. The pagelinks direc-
tory contains a single file with all the links between the visited URL addresses. The
structure of the processed directory looks similar to the structure of the fetched direc-
tory, but now the content of the web pages has been dissected. Certain web page prop-
erties, such as the title of the web page and its URL, are stored separately from the
core content. The outlinks from each page have also been extracted and stored sepa-
rately. If you compare the files from the fetched subdirectories and the files in the
processed/content subdirectories, you’ll see that the difference lies in removing most
of the HTML structure, such as headers, tables, divs, and so on. On an average laptop
or desktop with a moderately fast internet connection, the crawler will complete its
job in a couple of minutes.

 We won’t go into an in-depth discussion about the crawler because, as it stands, it
does nothing intelligent! But the purpose of giving you a basic crawler with the source
code of this book is to entice you into applying intelligent algorithms during crawling.
See our first to-do item on that challenge.

7.2.2 Review of the search prerequisites

In chapter 2, we examined the basic stages of searching:

■ Crawling
■ Parsing
■ Analyzing
■ Indexing
■ Searching

For completeness, let’s review what’s involved during each stage. Parsing and analyz-
ing the retrieved documents is what we call collectively as cleansing. The document
Licensed to Deborah Christiansen <pedbro@gmail.com>

283Getting and cleansing content
parsers that we described in chapter 2 are necessary for the transformation of the var-
ious documents (such as XML, HTML, Word, PDF) into a common, purely textual,
form. For HTML parsing, we’re using the code from the NekoHTML project (http://
nekohtml.sourceforge.net/). NekoHTML contains a simple HTML parser that can
scan HTML files and fix many common mistakes that occur in HTML documents. Its
features include adding missing parent elements, automatically closing elements with
optional end tags, and handling mismatched inline element tags. NekoHTML is fairly
robust and sufficiently fast, but if you’re crawling special sites, you may want to write
your own parser.

 If you plan to crawl PDF documents, you can use the code from the PDFBox project
(http://www.pdfbox.org/). It’s released under the BSD license and it has plenty of
documentation. PDFBox includes the class LucenePDFDocument that can be used
to obtain a Lucene Document object immediately with a single line of code such as
the following:

Document doc = LucenePDFDocument.convertDocument(File file)

Look at the Javadocs for additional information. Similar to the case of PDF docu-
ments, there are parsers for Word documents. The Apache POI project (http://
poi.apache.org/) provides APIs for manipulating file formats based on Microsoft’s
OLE 2 Compound Document format by using pure Java. In addition, the TextMining
code, available at http://www.textmining.org/, provides a Java library for extracting
text from Microsoft Word 97, 2000, XP, and 2003 documents.

 The stage of analyzing the documents is also important. Throughout the book, we
use the Lucene class StandardAnalyzer, which helps us extract the “meaning” of the
text from the respective documents. Clearly, NLP is crucial in the successful analysis of
the documents. You can find a brief introduction to NLP, and numerous references, in
appendix D. The purpose of NLP is to help us retain those words that are most rele-
vant and important in describing the content of the document, while ignoring every-
thing else. If you ignore something that’s of interest to you during the analysis stage
you’ll never be able to leverage that piece of information downstream in your data
processing. Conversely, if you include a lot of irrelevant or unimportant words, your
processing quality may be jeopardized by the high level of noise in your data. In the
case of clustering or classifying news stories, you may not be able to create meaningful
story groups or you may end up placing business articles into the sports categories!

 Basically, the algorithms for clustering or classification will fail to operate prop-
erly if your data is dirty. To put it in terms of an analogy, think of a car that won’t run
due to an impurity in the fuel mix. No matter how good the car is, it won’t run
unless its fuel mix is clean and contains the right ratio of gasoline and air necessary
for combustion. Cleansing removes the impurities and achieves the proper fuel mix
for your algorithms!

 The amount of cleansing required for a particular website depends on the com-
plexity of its design. Today’s modern websites have a lot of graphics, or media-rich ele-
ments, whose content is more difficult to retrieve and process compared to the
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://nekohtml.sourceforge.net/
http://nekohtml.sourceforge.net/
http://www.pdfbox.org/
http://poi.apache.org/
http://poi.apache.org/
http://www.textmining.org/

284 CHAPTER 7 Putting it all together: an intelligent news portal
retrieval of a pure HTML page or a PDF document. For the most part, our code and
the tools that we referenced should do a decent job on a general corpus of data col-
lected from the internet.

 A professional-grade crawler should be able to detect the language, if not the exact
locale, of a website and apply the most appropriate cleansing tools for the job. Once
you start crawling, you can land anywhere. You can start from a list of URLs that point
to locations in the United States and end up half around the globe in Bangalore
(India) or Beijing (China). The crawler should be able to identify how to “read” the
content properly.

 Although there are standard techniques for identifying the geographic location of
a server, it’s quite possible to get mixed content or get English postings in India and
Chinese content on websites that are located in the United States. Here’s where our
classifiers can shine once again. For example, the naïve Bayes algorithm is agnostic
with respect to languages, so it could be used to identify the language associated with
a particular document or part of a document. This would be a different naïve Bayes
classifier than the one that you’d use to classify a news story; the same algorithm but a
different classifier (for example, NBLanguageDetector). The training dataset for that
classifier would involve simple parsing of text without analysis, while the classification
concepts would be locales or languages. We won’t pursue this example here, but you
should keep it in mind if you deal with multilingual text. Think about the possible
issues with the various encodings that exist worldwide and what effect that would have
on detecting the right language.

7.2.3 A default set of retrieved and processed news stories

For the rest of this chapter, we’ll use a set of web pages that includes the pages that
we’ve seen in chapter 2. This is necessary in order to make the examples concrete and
the exercises repeatable. You can find these pages under the data/ch07/ directory. All
the pages can be found under the subdirectory all, and include the following (the
choice of content was random):

■ Twenty documents related to business news
■ Twenty-four documents related to sports
■ Twenty-three documents related to health issues and medicine
■ Twenty-six documents related to technology news
■ Sixteen documents related to U.S. politics
■ Twenty documents related to world news

This indicates that our news portal will focus on these six categories by default; we’ll dis-
cuss how to add custom categories later. For now, let’s load our default dataset and look
at the news stories. Listing 7.2 shows how to load a set of documents similar to the ones
that we used in chapter 2. We’re providing two implementations of the NewsDataset
interface. The first is CrawlResultsNewsDataset, which can be used for arbitrary (well,
almost) documents retrieved from the Web by means of the NewsCrawler class that we
Licensed to Deborah Christiansen <pedbro@gmail.com>

285Getting and cleansing content
saw in listing 7.1. The second implementation is the FileListNewsDataset class shown
in listing 7.2. The main difference between the two is that, for the FileListNewsData-
set, the news category is implied by the name of the document; for CrawlResultsNews-
Dataset, the news category that each document belongs in is unknown.

NewsDataset dataset = new FileListNewsDataset("DefaultDS");

dataset.setDocumentDir("C:/iWeb2/data/ch07/all");

dataset.setTopTerms(15);

dataset.loadTopics();

dataset.loadStories();

NewsUI ui = new NewsUI(dataset);

NewsUI.createAndShowUI(ui);

The basic UI, shown in figure 7.1, provides quick access to the content of the news sto-
ries and can help us examine the results of our work as we incrementally add intelligent
capabilities. In the left panel, you can see the six news categories and their associated
news stories; the number of the stories for each topic is shown inside the parentheses.
If you click on a particular news story, the content is shown in the right panel.

 In summary, the process of collecting and cleansing news stories may seem superfi-
cially mundane, but it’s truly challenging work. It’s difficult to achieve effectiveness and

Listing 7.2 Loading the default news stories and invoking a custom news browser

Set document
directory

Number of terms that
must be retained

Figure 7.1 A custom user interface for browsing the default news stories
Licensed to Deborah Christiansen <pedbro@gmail.com>

286 CHAPTER 7 Putting it all together: an intelligent news portal
efficiency for large-scale crawling and cleansing of documents from a variety of web-
sites. In these cases, crawling and cleansing can be a fertile ground for applying intelli-
gent algorithms. Let’s move on now to the indexing and searching of our news stories.

7.3 Searching for news stories
As usual, we’ll use Lucene to index and search these documents. But we’ll consolidate
all the processing functionality for our news portal into a class called NewsProcessor.
Listing 7.3 creates an instance of the NewsProcessor, creates the index for our default
dataset, and performs a couple of queries; it’s implied that you already executed list-
ing 7.2.

NewsProcessor newsProcessor = new NewsProcessor(dataset);

newsProcessor.buildIndexDir();

newsProcessor.runIndexing();

newsProcessor.search("cell",5);

newsProcessor.search("football",5);

We discussed indexing and search in chapter 2, so let’s now focus on the preceding
results and analyze the various elements that can make our news portal a better place
for its users! The search for “cell” returns the results shown in figure 7.2.

 The document title is the label for a news story as shown on the left panel of the
news browser. The document terms are the top 15 terms of each document based on
our analysis. The relevance score is the Lucene score for each document. The window
of your news browser should be open right now. So, let’s click on each of the docu-
ment titles in the left panel to examine the full content of the articles. The first two
results are news about the effect of cellular telephones on our health. The third
search result is related to technology news—the use of cellular telephones for locating
misplaced objects. The fourth and fifth search result aren’t about cellular telephones
at all. They’re articles about the potential of depressing cancer growth through a high
dose of vitamin C.

 These results are typical; you can search on Google News itself and a number of
articles will appear that refer to different topics. These results bring up a number of
important questions. First, when a user searches the news portal for the word “cell,”
what exactly does she have in mind? Is it stem cell research? Is it some technology gad-
get? Is it the effect of electromagnetic radiation from cellular telephones on people?
It’s clear that answering these questions out of context is futile.

 Can’t we use the PageRank or DocRank algorithms that we studied in chapter 2?
Yes, certainly. Our ranking algorithms can help us improve the search results, but only
marginally. The greatest benefit of ranking algorithms is to identify the importance of
a site with respect to all the other sites that are part of our crawled (hyperlinked)
graph. But most of the outlinks in news outlets are self-references or they don’t point

Listing 7.3 Indexing and searching the default news stories
Licensed to Deborah Christiansen <pedbro@gmail.com>

287Searching for news stories
to anything else (for example, news reports in PDF format, short news announce-
ments, and so forth), which is what we referred to as dangling nodes in chapter 2.

 Don’t feel disheartened! We can do a lot more to improve the user’s experience.
Another technique that we studied in chapter 2 referred to user clicks, and it seems
that user clicks may be more pertinent to our quest for improving the search results,
in the case of a news portal. Evidently, this isn’t something that pays dividends for new
users, but it can have a large payoff in the long run. As we mentioned earlier, rele-
vance is subjective, and that’s one of the main reasons why its evaluation is a difficult
task. If you and I are looking results for the query “cell,” you may be interested in stem
cell research while I may be interested in the Android platform or Nokia’s latest gad-
get. Thus, the most relevant results for one person can be, and quite often are, differ-
ent from the most relevant results for another person, even though the query terms
may be identical!

bsh % newsProcessor.search("cell",5);

Search results using Lucene index scores:
Query: cell

Document Title: health-21.html
Document Terms: warn, limit, phone, cell, children, us, risk,
herberman, ronald, becaus, especi, institut, brain, cancer, dr
Document URL: file:/C:/iWeb2/data/ch07/all/health-21.html -->
Relevance Score: 0.610166192054749
__
Document Title: health-23.html
Document Terms: phone,concern,cell,us,tumor,research,risk
herberman,pittsburgh,dont,publish,studi,brain,institut,cancer
Document URL: file:/C:/iWeb2/data/ch07/all/health-23.html -->
Relevance Score: 0.537154197692871
__
Document Title: tech-15.html
Document Terms: control, home, phone, can, your, cell, starner,
you, us, technolog, what, could, kientz, gestur, we
Document URL: file:/C:/iWeb2/data/ch07/all/tech-15.html -->
Relevance Score: 0.341093242168427
__
Document Title: health-02.html
Document Terms: work, c, tumour, treatment, cell, inject, suggest
research, dose, bbc, human, mice, becaus, vitamin, cancer,
Document URL: file:/C:/iWeb2/data/ch07/all/health-02.html -->
Relevance Score: 0.337665110826492

Document Title: health-09.html
Document Terms: telomeras, have, chemic, structur, cell, block
most, activ, bbc, help, new, could, immort, cancer, drug,
Document URL: file:/C:/iWeb2/data/ch07/all/health-09.html -->
Relevance Score: 0.334201782941818

Figure 7.2 Search results for the word “cell” based on indexing alone
Licensed to Deborah Christiansen <pedbro@gmail.com>

288 CHAPTER 7 Putting it all together: an intelligent news portal
 Note that for our news portal, we can leverage user clicks at two levels. First is the
level of the individual news stories that the user clicks on, which is similar to the use
case of chapter 2. The second level of information is based on the topic that each
news article belongs to. Moreover, we can possibly improve our search results by
retaining both the query terms and the document terms in the list of attributes for
training. That’s the subject of the second to-do item for this chapter.

 These examples also remind us of the importance of NLP in search. In particular,
we’d like to mention three high-level natural language elements that aren’t directly
accessible from the low-level grammatical or syntactical structure. These are semantics,
pragmatics and discourse. Semantics—the knowledge of meaning—is used to leverage
our knowledge about the world. Pragmatics refers to our knowledge of the relation-
ship between the meaning of words and the goals or intentions of the user. Discourse
refers to knowledge that captures lexical structures larger than single utterances or
sentences. The latter notion is particularly important for search results, and its gener-
ality goes beyond language processing. It’s what we’d call the “big picture” or a “gen-
eral context” (see also appendix D and its references).

 The value of intelligent searching can’t be easily overstated. But retrieving relevant
news stories through search isn’t the only way to present the news of the day to our
users. In fact, the standard layout of a news portal reflects the underlying classification
scheme—the organization of the page into its various news categories. So, let’s move
on to examine the assignment of news stories into news categories.

7.4 Assigning news categories
The assignment of a news category can be done for an individual news story or for a
group (cluster) of news stories. This section will cover both cases. We discussed classi-
fying items in chapter 5 and we’ll naturally rely on the algorithms that were presented
there for classifying news stories into news categories. But when we examine classifica-
tion in the broader context of an application that involves additional capabilities such
as search, clustering, and recommendations, there are a lot of questions that aren’t
apparent or relevant if you consider classification as an isolated operation.

 The first topic of this section discusses the effect of ordering in the application of
our algorithms. As soon as the crawler finishes its job, the news stories have been
retrieved but there’s no order or structure in them. One possible course of action is to
take the entire list of the newly collected stories and form groups out of it. Another
possibility would be to first classify each news story into one of the six topics and then
group similar stories within each topic. Do you think these two options are equivalent?
For a general corpus of news stories they are, most likely, not equivalent. In technical
terms we’d say that the two operations don’t commute.

 The next two sections (7.4.2 and 7.4.3) present the custom news story classifier in
detail. You’ll see that, once again, the naïve Bayes algorithm proves its versatility and
value as a general purpose classifier. Perhaps the most interesting part of this custom
classifier is the introduction of a classification strategy. Thus, in the last part of this
Licensed to Deborah Christiansen <pedbro@gmail.com>

289Assigning news categories
section, we explain what a classification strategy is, why we need it, and how we can
use it effectively.

 So, let’s start assigning news categories to news stories. The two combinations that
we’ll examine are the classification of the results from clustering and the application
of clustering within the classified news stories.

7.4.1 Order matters!

We already hinted that by changing the order of operations, we’ll obtain different
results. But, how different will the results be, and which order is better? The answer to
these two questions will depend on both the nature of the data and the algorithms
involved. Nevertheless, the general argument in favor of the second approach (first
general classification and then clustering) is that the noise of the data after classifica-
tion is reduced significantly so the job of the clustering algorithm becomes easier.

 Let’s look at figure 7.3, which shows the results of the combined operations (classi-
fication and clustering) for our default news dataset when clustering occurs before clas-
sification takes place.

 The selected article (tech-05) in figure 7.3 is a news story about a research project
that Microsoft initiated to replace its legacy family of Windows operating systems.
Clearly, this is a technology news story, but it was placed into the general category of

Figure 7.3 Clustering the news stories before classifying them into topics
Licensed to Deborah Christiansen <pedbro@gmail.com>

290 CHAPTER 7 Putting it all together: an intelligent news portal
world news. In particular, it was grouped with a world news story about the resurgence
of Russia as a political and economic power, so the two subjects are as remote concep-
tually as they could possibly be—unless, you have a vivid imagination!

 In the same group, under the heading of the article about Russia’s resurgence, we
find a large number of articles that don’t refer to Russia at all and, like article tech-05,
don’t even belong in the world news category. A total of 34 news stories are in that group,
while the total number of news stories in our default dataset is 129. The breakdown of
the stories by category is as follows: 20 stories belong in the business category, 23 stories
belong in the health category, 24 stories belong in the sports category, 26 stories belong
in the technology category, 16 stories belong in the U.S. category, and 20 stories belong
to the world category. So, a group of 34 news stories is clearly unbalanced, and unless
our clustering algorithm is highly tuned, this is likely to happen.

 Listing 7.4 demonstrates how you can create these news groups and display them
in our custom viewer. You can execute the script now and peruse the grouping struc-
ture and the placement of the news stories into their respective topics.

NewsDataset trainingDS = new FileListNewsDataset("TrainingDS");
trainingDS.setDocumentDir("C:/iWeb2/data/ch07/training");
trainingDS.init();

NewsDataset ds1 = new FileListNewsDataset("Cluster-Classify-DS");
ds1.setDocumentDir("C:/iWeb2/data/ch07/all");
ds1.init();

NewsProcessor newsProcessor = new NewsProcessor(trainingDS);

newsProcessor.trainClassifier();

newsProcessor.createClusters(ds1);

newsProcessor.classifyClusters(ds1);

NewsUI ui1 = new NewsUI(ds1);
NewsUI.createAndShowUI(ui1);

We’ll return to figure 7.3 and discuss more details of the structure that has been cre-
ated based on listing 7.4. But let’s now look at the structure that would be created by
inverting the order of operations—the order in which clustering takes place after clas-
sification. Figure 7.4 displays the news groups for the same dataset as figure 7.3 but
with clustering following classification.

 A few things are immediately clear from comparing figures 7.3 and 7.4. In figure 7.4,
the technology news stories are now grouped together and have been (correctly)
assigned to the technology category. All the news stories that are grouped with the story
world-20 are related and refer to Russia’s resurgence. Moreover, the business- and
health-related articles are now absent from that group. This is certainly a better arrange-
ment of our news stories than what we had before, but a few quirks still exist. The tech-
nology articles tech-16, tech-17, and tech-18 all refer to email spam and are rightfully in
the same group. But the Microsoft-related news story in tech-05 isn’t directly related to
them and shouldn’t be in the same group.

Listing 7.4 Creating news groups by clustering before classifying the stories

Create training/
testing datasets

Cluster news
stories

Classify grouped
news stories
Licensed to Deborah Christiansen <pedbro@gmail.com>

291Assigning news categories
Listing 7.5 demonstrates how you can create these news groups and display them in
our custom viewer. It’s identical to listing 7.4 for the most part. There is one impor-
tant difference. As promised, we’ve added code that swaps the order of operation for
clustering and classification. Naturally, the name of the methods that we invoke has
also changed, since classification now applies to all the stories individually (rather

Figure 7.4 Clustering the news stories after classifying them into topics
Licensed to Deborah Christiansen <pedbro@gmail.com>

292 CHAPTER 7 Putting it all together: an intelligent news portal
than to the clusters as a whole) and clustering happens only within each topic. We use
a new instance of the FileListNewsDataset class, called ds2, so that we can operate
on an identical copy of the data but display them separately. If you use the same
instance (ds1), you won’t be able to compare the two approaches! If you didn’t exit
from the shell that you executed listing 7.4, you can start typing in the shell from the
line that creates the NewsDataset ds2.

NewsDataset trainingDS = new FileListNewsDataset("TrainingDS");
trainingDS.setDocumentDir("C:/iWeb2/data/ch07/training");
trainingDS.init();

NewsDataset ds1 = new FileListNewsDataset("Cluster-Classify-DS");
ds1.setDocumentDir("C:/iWeb2/data/ch07/all");
ds1.init();

NewsProcessor newsProcessor = new NewsProcessor(trainingDS);

newsProcessor.trainClassifier();

newsProcessor.createClusters(ds1);

newsProcessor.classifyClusters(ds1);

NewsUI ui1 = new NewsUI(ds1);
NewsUI.createAndShowUI(ui1);

NewsDataset ds2 = new FileListNewsDataset("Classify-Cluster-DS");
ds2.setDocumentDir("C:/iWeb2/data/ch07/all");
ds2.init();

newsProcessor.classifyStories(ds2);

newsProcessor.createClustersWithinTopics(ds2);

NewsUI ui2 = new NewsUI(ds2);
NewsUI.createAndShowUI(ui2);

Now, both Swing clients—ui1 and ui2—should still be visible. Resize the window of
figure 7.3 (Cluster-Classify-DS) and the window of figure 7.4 (Classify-Cluster-DS) and
put them side-by-side to examine the structure of the groups and the way that each
method allocated the news stories. In figure 7.5, we show only the first level of the
node hierarchy, with the browser area minimized; on your screen, you can expand
that view so that half of the screen shows the left window and the other half shows the
right window.

 In both cases, the data that was clustered and classified was the same, but the two
different orderings of the clustering and classification operations created the two dif-
ferent structures shown in figure 7.5. It becomes clear, through the juxtaposition of
the structures, that the cluster-classify ordering results in fewer and larger clusters,
while the classify-cluster ordering results in a larger number of clusters that are fairly
narrow and clean in their content.

 Let’s look inside the world category where we find the largest discrepancy in the
number of groups; six groups were formed during the cluster-classify approach and

Listing 7.5 Creating news groups by clustering after classifying the stories

Classify all
news stories

Cluster news stories
within each topic
Licensed to Deborah Christiansen <pedbro@gmail.com>

293Assigning news categories
nine groups were formed during the classify-cluster approach. The news story usa-10
has been misclassified by both methods, and is contained in a “clean” group without
other news stories.

 Now, note that we applied both methods on a superset of the training dataset. This
indicates that the textual content of that news story isn’t close to any other news story
in our collection. It tells us also that its content is much closer to the training documents
that refer to the world news category than any other document from the rest of the news
categories. This implies that we should include this instance (news story usa-10) into our
training set! It’s exactly this kind of analysis, or quality assurance if you prefer, that aug-
ments the body of knowledge in our system.

 The usa-16 group of news stories was also misclassified during the classify-cluster
approach, but that group wasn’t even formed during the cluster-classify approach. If
you look inside the group labeled world-20, you’ll find the news story usa-16 grouped
there with another 33 stories. What happened? During the cluster-classify approach,
we start clustering with a list of news stories whose content is very diverse. As a result,
large groups such as world-20 appear to be robust and the clustering algorithm can’t
break them into smaller pieces; of course, by fine-tuning the parameters, you can
influence the level of granularity, but the main problem isn’t resolved. During the
classify-cluster approach, the initial classification results in a compartmentalization of
the documents that made the job of clustering much easier. Thus, with a lot of the
noise reduced between documents that landed in the world news category, the cluster-
ing algorithm was able to detect that the news story usa-16 doesn’t belong in any of the

Figure 7.5 Juxtaposition of the two different tree structures shown in figures 7.3 and 7.4
Licensed to Deborah Christiansen <pedbro@gmail.com>

294 CHAPTER 7 Putting it all together: an intelligent news portal
other clusters and, like story usa-10, should go in its own group. Incidentally, we
should mention that often people will refer to clusters that consist of a single member
as singletons, a term that must be familiar to you, a software professional, from the
famous singleton pattern.

7.4.2 Classifying with the NewsProcessor class

Now, let’s take a closer look into the inner workings of classification with the News-
Processor class. We’ll break down the description of each important step into its own
set of listings. Let’s start with the training phase for the NewsProcessor, shown in list-
ing 7.6. This consists of training the classifier, since there’s no training involved for
the clustering operation, but note that there’s more than defining the classifier and
calling the train method.

public void trainClassifier() {

 if(topicSelector == null) {

 NBStoryClassifier storyClassifier =
 new NBStoryClassifier("NewsStoryClassifier",trainingDataset);

 storyClassifier.train();

 ClassificationStrategyImpl defaultTopicSelector =
 new ClassificationStrategyImpl();

 defaultTopicSelector.setStoryClassifier(storyClassifier);

 topicSelector = defaultTopicSelector;
 }
 }

The name of the class NBStoryClassifier indicates something that you probably
expected. We’re going to leverage the powerful naïve Bayes classifier that we encoun-
tered in chapter 2 and revisited in chapter 5. The NBStoryClassifier class imple-
ments the core Classifier interface, like all classifiers ought to do, and contains the
mechanics that’ll translate the specific news story data into the “language” that the
NaiveBayes classifier uses—the Concept and Instance classes.

 We’ll look at the NBStoryClassifier class shortly, but first, let’s discuss the selection
of classification strategy that takes place in listing 7.6. What’s this Classification-
StrategyImpl class doing? It’s a class that we didn’t encounter before. Why do we need
it? Because all the classification examples that we worked on earlier in the book were
concerned with classifying a list of instances into their respective concepts, that’s why.
Here, in our news portal example, we must deal with the classification of groups of
instances (news groups) into their respective concepts (news categories). There’s more
than one way to do this, so we need a strategy of deciding what to do.

 One strategy would be to select the most “representative” story of the group and
classify it, then wherever the representative is assigned, the group is assigned; that’s
similar to how the Electoral College (in the U.S.) works. Another strategy would be

Listing 7.6 Training a naïve Bayes classifier and selecting a classification strategy

Select classification
strategy

Assign classifier
to strategy
Licensed to Deborah Christiansen <pedbro@gmail.com>

295Assigning news categories
classifying all stories combined with a majority vote rule. Before you look at the code,
try to think of other possible strategies and ponder the differences that each can
impart in the final news structure.

 In summary, the process of classification for our NewsProcessor class is more
involved than what we’ve seen so far. It relies on two classes—the NBStoryClassifier
and the ClassificationStrategyImpl. The first enables the use of our naïve Bayes
classifier, while the second is responsible for encapsulating the decision strategy that
we want to follow when we classify a news group.

7.4.3 Meet the classifier

To go one level deeper in the code, let’s look closer at each one of these two classes.
The code from the NBStoryClassifier is shown in listing 7.7. As usual we’ve removed
some methods, Javadoc comments, and so on. Apart from the essential train and
classify methods that every Classifier must implement, there are a number of
auxiliary methods that are responsible for creating an Instance for a news story and a
Concept for a news Category.

public class NBStoryClassifier implements Classifier {

 private List<ClassificationResult> conceptScores;
 private NaiveBayes nbClassifier;
 private boolean verbose = true;

 public NBStoryClassifier(String name, NewsDataset ds) {

 TrainingSet tSet = createTrainingSet(ds);

 nbClassifier = new NaiveBayes(name, tSet);
 }

 public TrainingSet createTrainingSet(NewsDataset ds) {

 int nStories = ds.getSize();
 List<Instance> allTrainingInstances =
 new ArrayList<Instance>(nStories);

 Iterator<NewsStory> iter = ds.getIteratorOverStories();

 while(iter.hasNext()) {
 NewsStory newsStory = iter.next();

 Instance instance = toInstance(newsStory);
 allTrainingInstances.add(instance);
 }

 Instance[] instances =
 allTrainingInstances.toArray(new Instance[nStories]);

 return new TrainingSet(instances);
 }

 public boolean train() {
 TrainingSet tSet = nbClassifier.getTset();

Listing 7.7 A news story classifier that uses the Naïve Bayes algorithm

B

C

Licensed to Deborah Christiansen <pedbro@gmail.com>

296 CHAPTER 7 Putting it all together: an intelligent news portal
 for(String attributeName : tSet.getAttributeNameSet()) {
 nbClassifier.trainOnAttribute(attributeName);
 }
 return nbClassifier.train();
 }

 public Instance toInstance(NewsStory newsStory) {

 Concept concept = toConcept(newsStory.getTopic());
 String[] terms = newsStory.getTopNTerms();
 StringAttribute[] attributes = new StringAttribute[terms.length];

 for(int i = 0; i < terms.length; i++) {
 String name = terms[i];
 String value = "Y";
 attributes[i]= new StringAttribute(name, value);
 }
 return new BaseInstance(concept, attributes);
 }

 private Map<String, NewsCategory> allTopics =
 new HashMap<String, NewsCategory>();

 private Map<String, Concept> allConcepts =
 new HashMap<String, Concept>();

 public Concept toConcept(NewsCategory t) {

 if(t == null) return null;

 String topicName = t.getName();
 Concept c = allConcepts.get(topicName);
 if(c == null) {
 c = new BaseConcept(t.getName());
 allConcepts.put(topicName, c);
 }
 return c;
 }

 public Concept classify(Instance instance) {

 conceptScores = new ArrayList<ClassificationResult>();
 Concept bestConcept = null;
 double bestP = 0.0;
 TrainingSet tSet = nbClassifier.getTset();

 for (Concept c : tSet.getConceptSet()) {
 double p = nbClassifier.getProbability(c, instance);

 ClassificationResult cR = new ClassificationResult(c, p);
 conceptScores.add(cR);

 if(p >= bestP) {
 bestConcept = c;
 bestP = p;
 }
 }
 return bestConcept;
 }
}

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

297Assigning news categories
The createTrainingSet method is the primary responsibility of the NBStory-
Classifier. We intend to delegate the task of classification to our standard Naive-
Bayes implementation, but to do that we need a TrainingSet object.

The toInstance method takes a NewsStory object as its input and creates a Base-
Instance object. In order to create a BaseInstance object, we need two things. We
need a Concept object to which the Instance belongs and we need a list of attributes
and their values. The number of attributes depends on the number of “top” terms
that a news story has. The default value (set equal to 25) is determined in the class
FileListNewsDataset. We used that value implicitly in listing 7.5, when we created
the training dataset and the two testing datasets (ds1 and ds2). Altering the number
of top terms will change the results of classification. To change that value, use the
method setTopTerms, immediately before you call the init method on the dataset,
and observe the differences in the results compared with what you obtained earlier.

 Alternatively, you could change the implementation of the toInstance method, so
that it doesn’t train the classifier on all top terms. This exercise is also described in the
third to-do item of this chapter.

The toConcept method is the second important auxiliary method for building our
training set, and the toInstance method relies on it. Its implementation is straightfor-
ward and there’s little room for variation here. We take the name of the NewsCategory
and create an object of the BaseConcept class, while keeping track of all the concepts
that we’ve encountered so far.

If you compare this classify method implementation with the implementation of
the classify method in the NaiveBayes class, you’ll realize that they’re almost iden-
tical. The difference is that here, we collect the classification scores for all concepts
and store it in the conceptScores variable, which will be available until the next
time the classify method is invoked. This will give us more options later, when we
use the ClassificationStrategyImpl to assign a news category to each news story
or news group.

The purpose of the ClassificationStrategyImpl class is to capture the definition of
the two possible approaches in classifying news stories. The first is the classification of
a news group to a news category. The second is the classification of a news story to a
news category. Let’s examine how the class works.

7.4.4 Classification strategy: going beyond low-level assignments

The ClassificationStrategyImpl class implements the interface Classification-
Strategy, which reflects the two possible approaches to classifying news stories. In
particular, the assignTopicToCluster and assignTopicToStory methods, respec-
tively, are responsible for encapsulating these approaches—the term topic as used here
is equivalent to a news category. Without further ado, let’s see exactly what this class
does by looking at its code in listing 7.8; the listing doesn’t contain the complete
source code of the class.

B

C

D

E

Licensed to Deborah Christiansen <pedbro@gmail.com>

298 CHAPTER 7 Putting it all together: an intelligent news portal
public class ClassificationStrategyImpl implements ClassificationStrategy {

 private NBStoryClassifier storyClassifier;

 public void assignTopicToCluster(NewsStoryGroup cluster) {

 List<NewsStory> newsStories = cluster.getStories();
 NewsStory rpStory = selectRepresentativeStory(newsStories);

 NewsCategory bestTopic = selectBestMatchingTopic(rpStory);

 cluster.setTopic(bestTopic);
 cluster.setRepresentativeStory(rpStory);
 }

 public void assignTopicToStory(NewsStory newsStory) {

 Instance instance = storyClassifier.toInstance(newsStory);
 Concept concept = storyClassifier.classify(instance);

 NewsCategory bestTopic = storyClassifier.toTopic(concept);
 newsStory.setTopic(bestTopic);
 }

 private NewsStory selectRepresentativeStory(List<NewsStory> newsStories) {

 return selectLongestStory(newsStories);
 }

 private NewsStory selectLongestStory(List<NewsStory> newsStories) {

 NewsStory representativeStory = null;
 int maxContentLength = 0;

 for(NewsStory newsStory : newsStories) {

 int storyContentLength = newsStory.getContent().getText().length();

 if(storyContentLength > maxContentLength) {

 maxContentLength = storyContentLength;

 representativeStory = newsStory;
 }
 }

 return representativeStory;
 }

 private NewsCategory selectBestMatchingTopic(NewsStory newsStory) {

 Instance instance = storyClassifier.toInstance(newsStory);
 Concept concept = storyClassifier.classify(instance);

 return storyClassifier.toTopic(concept);
 }
}

The assignTopicToCluster method encapsulates the steps that we need to take to
decide what news category should be assigned to a given news group. This particular
implementation is simple. It identifies one news story from the group as the represen-
tative of the group, classifies the representative story, and keeps track of both the news

Listing 7.8 ClassificationStrategyImpl: defining a classification strategy

B

C

D

E

F

G

D

B

Licensed to Deborah Christiansen <pedbro@gmail.com>

299Assigning news categories
category (topic) and the representative for the cluster. The fourth to-do item of this
chapter invites you to explore more advanced strategies for assigning a news category
to a group.

The selection of the representative story relies exclusively on the method select-
LongestStory, but this can also be more sophisticated; once again, see the fourth to-
do item.

You may wonder whether we should’ve used the assignTopicToStory method here
rather than the selectBestMatchingTopic method. After all, the latter simply invokes
the classifier and is no different from the former. But the two methods don’t have to
be the same, and that’s why we explicitly call a different method.

This step records the assignments of the representative story and the corresponding
news category.

As noted earlier, this implementation is equivalent to the implementation of the
selectBestMatchingTopic method. It’s the job of the NBStoryClassifier class to
classify a news story into a news category. This method isn’t particularly useful when it
simply delegates the classification to the NBStoryClassifier; we could’ve used the
classifier to begin with. The value of this method becomes clear when the result of
classification is postprocessed or when the news story itself is preprocessed before we
pass it on to the classifier.

The selectLongestStory method provides a simple heuristic of identifying a repre-
sentative story for a list of news stories. The idea behind this choice is that the larger
the size of the news story, the more overlap it’ll have with every other news story. This
isn’t very sophisticated and we could improve significantly on it based on our discus-
sion in the previous chapters, especially chapter 4. Some ideas that you can explore
are provided in the fourth to-do item.

We conclude that the ClassificationStrategyImpl class plays the role of a meta-algo-
rithm. In other words, it’s a construction where we can inject business logic or sophis-
ticated combination techniques to help us make the best choice possible based on what
we know (data) and what we can do (low-level or base algorithms). In chapter 6, we
examined a number of techniques that can help us combine classifiers. These tech-
niques, which are also meta-algorithms, could be applied here along with other heuris-
tics or business rules to optimize the allocation of the news stories into news categories.

 Let’s return to the NewsProcessor itself. Listing 7.9 shows us how the
ClassificationStrategyImpl class is used in its two classification
methods—classifyClusters and classifyStories. There’s no direct involvement of
the NBStoryClassifier class; the ClassificationStrategyImpl class is the façade for
all the classification-related work. Within the NewsProcessor itself, classification for
both news clusters and news stories is reduced to a single line of code.

public void classifyClusters(NewsDataset ds) {

 List<NewsStoryGroup> clusters = ds.getStoryGroups();

Listing 7.9 Assigning news categories to news groups and news stories

C

D

E

F

G

Classify all groups
in given dataset
Licensed to Deborah Christiansen <pedbro@gmail.com>

300 CHAPTER 7 Putting it all together: an intelligent news portal
 for(NewsStoryGroup cluster : clusters) {

 topicSelector.assignTopicToCluster(cluster);
 }
}

public void classifyStories(NewsDataset ds) {

 Iterator<NewsStory> iter = ds.getIteratorOverStories();

 while(iter.hasNext()) {

 NewsStory newsStory = iter.next();

 topicSelector.assignTopicToStory(newsStory)

 }
}

This section concludes our review of the details about classifying news clusters and
news stories. We showed that order matters in the results of classification. We also
described how the broader context of classification—the possibility of classifying indi-
vidual news stories or groups of news stories—enlarges the set of options that are avail-
able to us for designing an effective solution. In particular, the notion of classification
strategy emerged naturally to deal with the fact that higher-level classification deci-
sions might need to be made when we classify news groups. Now, we need to describe
in more detail how we formed these news groups to begin with.

7.5 Building news groups with the NewsProcessor class
We described clustering in chapter 4, so you won’t be surprised to find out that we
relied on those algorithms for grouping news stories. In listing 7.5, we encountered
two main methods for grouping news stories. The first was the createClusters
method and the second was the createClustersWithinTopics method. When you
first look at the code in listing 7.10, these two methods seem to rely on different
classes for performing the clustering operations. But both methods rely on the ROCK
algorithm that we saw in section 4.5.1.

public void createClusters(NewsDataset ds) {

 NewsClusterBuilder clusterBuilder = new NewsClusterBuilder();

 clusterBuilder.setNewsDataset(ds);

 clusterBuilder.cluster();
 }

 public void createClustersWithinTopics(NewsDataset ds) {

 TopicalNewsClusterBuilder clusterBuilder =

➥ new TopicalNewsClusterBuilder();

 clusterBuilder.setNewsDataset(ds);

 clusterBuilder.cluster();
 }

Listing 7.10 The two clustering methods of the NewsProcessor

Delegate to
ClassificationStrategyImpl

Classify all stories
in given dataset

Delegate to
ClassificationStrategyImpl

Use
NewsClusterBuilder

Use
TopicalNewsCluster
Licensed to Deborah Christiansen <pedbro@gmail.com>

301Building news groups with the NewsProcessor class
If both methods eventually rely on the ROCK algorithm, why did we create two separate
classes? The main difference between the current implementation of these two classes
is that the first one clusters all the stories in a NewsDataset, the other clusters all the sto-
ries inside each NewsCategory of the NewsDataset. Similar to the discussion that we
had in the previous section about classification, it’s possible to improve the results of
clustering if the implementation of these two cases is handled differently. The distinc-
tion between the two will become clearer as our exposition progresses. Let’s start by
looking into the creation of clusters without taking into account the news categories.

7.5.1 Clustering general news stories

The createClusters method, applied on our default news story dataset, produces the
clusters that are shown in figure 7.6. There are 55 clusters in total—you can’t see them
all in the figure but you’ll be able to see them all in the Swing client. In particular,
there are 42 clusters that are singletons, 2 clusters with two stories, 5 clusters with
three stories, 1 cluster with four stories, 2 clusters with five stories, 1 cluster with six
stories, 1 cluster with 14 stories, and a single cluster with 34 stories!

 These numbers are of relative importance. On a general set of news stories, you’d
expect that the clusters would be of roughly equal size and that most stories would be
clustered rather than not (the number of singletons would be a small percentage of
the overall number of clusters). If the cluster distribution is known then we can evalu-

Figure 7.6 The results of clustering the default news dataset before classifying the news stories
Licensed to Deborah Christiansen <pedbro@gmail.com>

302 CHAPTER 7 Putting it all together: an intelligent news portal
ate the performance of our clustering algorithm. Identifying an “ideal” cluster is
somewhat subjective and depends on what we want a cluster to be. For example, take a
look at our default news dataset: how would you cluster the news stories? In order to
be more specific and narrow down the number of stories, take a look at all the news
stories whose filename begins with biz-. What stories would you group together? Why?
See the fifth to-do item about this important point.

 Now, let’s examine the results that are shown in figure 7.6. You can create the Swing
client that contains the results from figure 7.6 by executing the script in listing 7.11. The
first problem with clustering the news stories is the big cluster that contains 34 stories.
This is problematic because we know that there are 129 news stories divided more or less
equally among six big subjects. So, this cluster’s size is 26% of the entire news dataset and
is larger than the largest possible group given the division of the news stories by subject.
These are two good reasons for considering this cluster as being too large. This quan-
titative, back-of-the-envelope assessment can be corroborated by the qualitative assess-
ment that we can perform by perusing the 34 news stories in the Swing client. Similarly,
we can argue that Cluster-17, with 14 stories, is also large. Look at these news stories and
review section 4.5.1 to refresh your memory with regard to the inner workings of the
ROCK algorithm.

NewsDataset ds = new FileListNewsDataset("Cluster-DS");
ds.setDocumentDir("C:/iWeb2/data/ch07/all");
ds.init();

NewsProcessor newsProcessor = new NewsProcessor();
newsProcessor.createClusters(ds);

NewsUI ui = new NewsUI(ds);
ui.showClustersOnly(true);
NewsUI.createAndShowUI(ui);

It seems that the default values for the number of clusters and the threshold value for
creating a link between two data points (news stories) allow the creation of a superclus-
ter. Naturally, the first thing we need to look into is setting these two parameters,
which takes place in the cluster method of the NewsClusterBuilder, as shown in list-
ing 7.12.

public void cluster() {

 DataPoint[] dataPoints = createDataPoints(ds);

 int k = dataPoints.length / 3;

 double linkThreshold = 0.15;

 ROCKAlgorithm rock = new ROCKAlgorithm(dataPoints, k, linkThreshold);

 Dendrogram dnd = rock.cluster();

 List<NewsStoryGroup> storyGroups = createStoryGroups(dnd);

Listing 7.11 Clustering news stories without reference to the news categories

Listing 7.12 The clustering method of the NewsClusterBuilder

Load default
news dataset

Cluster news
stories

Show only
clusters

Desired number
of clusters

Threshold for forming link
Licensed to Deborah Christiansen <pedbro@gmail.com>

303Building news groups with the NewsProcessor class
 for(NewsStoryGroup cluster : storyGroups) {
 ds.addStoryGroup(cluster);
 }
}

As you can see, in this method the number of desired clusters is set equal to one third
of the dataset’s size. We ask from the algorithm to construct approximately 43 clus-
ters. There’s nothing special about that choice. Experiment with the value of k and
observe the effect this has on the largest cluster that’s formed. To do this, you can
replace the method cluster() with the overriding method cluster(int k, double
linkThreshold), which can also be found in the NewsClusterBuilder. Changing the
variable linkThreshold will also affect your results, so you shouldn’t change them
simultaneously. Vary one parameter while keeping everything else the same.

 The second problem with the clustering distribution of figure 7.6 is the large num-
ber of singletons (clusters that contain a single element). We know that this number
can’t be that large because we constructed the news stories by hand! What part of the
ROCK algorithm do you think will have the largest impact on the number of single-
tons? Don’t focus only on the number of desired clusters of the link threshold param-
eter. If you didn’t review section 4.5.1 yet, please do so now. What if we write a
different implementation of the ROCKAlgorithm? What would you change? See the
sixth to-do item for more hints and analysis in that direction.

 To go deeper into the results, let’s focus on the news stories whose filename starts
with the prefix biz-. Figure 7.7 shows three clusters that contain business news. The

Figure 7.7 Inspecting the three business news story clusters that are shown expanded (left panel)
Licensed to Deborah Christiansen <pedbro@gmail.com>

304 CHAPTER 7 Putting it all together: an intelligent news portal
figure shows that a story from the category U.S. (news stories whose filename starts
with the prefix usa-) has been included in the third cluster, where we have two busi-
ness news stories. It turns out that including this story is correct; click on each article
to convince yourself that the stories are related. This type of cluster would be harder
to create if the news stories had first been assigned to news categories. In that case,
the news story usa-01 might have been separated from the biz-01 and biz-05 news sto-
ries during the classification phase.

 This brings up an interesting point about intelligent algorithms and the possible
effects that emerge from combining them. It is not necessary to think of the two clus-
tering approaches as mutually exclusive. It’s possible to apply both and reap the bene-
fits of each.

 If it turns out that clustering news stories after classification generates clusters of
higher quality, this doesn’t imply that the reverse order is valueless. The value of clus-
tering before classification might be found in cross-referencing. By cross-referencing, we
mean that we can have a separate panel on our website that indicates related stories from
other news categories. This feature isn’t the same as recommendations, even though it
may be presented in a similar way to the end user: for example, “If you liked this story,
you may be interested in the following stories.” Cross-referencing is about building an
underlying semantic web across your dataset. I hope that this gives you a glimpse of the
possibilities that emerge by using a combination of intelligent algorithms. By merely
examining their order, we arrived naturally at an interesting new functionality!

 Our inspection of Cluster-7 and Cluster-10 brings up another interesting point.
The structure of our clusters has only one level—there are no clusters within clusters.
This was partly by construction, because the Google News portal presents the stories
in such a layout. Nevertheless, it’s possible to add value by creating hierarchical rela-
tionships and creating groups of news groups.

 Let’s identify that value, first from a practical perspective. In Cluster-7, we have five
stories that are indeed related. But the strength of that relevance isn’t the same for all
news stories. The biz-17 and biz-20 news stories are two different accounts of the same
event—the constraint on network throughput on some users by Comcast. The biz-18
and biz-19 news stories, similarly, are two different reports on a Time Warner Cable
experiment regarding internet usage. The last news story of Cluster-7, biz-16, is of a
more general nature but still directly related to both of the events reported by the rest
of the news stories.

 A human might have distributed these news stories differently. It makes sense to have
these stories under the same “roof” but group together biz-17 and biz-20, as well as biz-
18 and biz-19, while leaving as a single entry the news story biz-16 due to its more general
description. Such a structure would be more compelling and user friendly. One possible
way to achieve this is to apply the clustering algorithm more than once, successively.

 In fact, it doesn’t even have to be the same algorithm, and typically it isn’t. It is
common practice to apply first the k-means algorithm and then the ROCK algorithm
within the individual k-clusters. This approach is commonly used in order to improve
the quality of the clusters as well as the performance characteristics of clustering itself.
Licensed to Deborah Christiansen <pedbro@gmail.com>

305Building news groups with the NewsProcessor class
We invite you to experiment with this approach, as applied to our present example, in
the seventh to-do item of this chapter.

7.5.2 Clustering news stories within a news category

The createClustersWithinTopics method, applied on our default news story data-
set, produces the clusters that are shown in figure 7.8. Note that there are now 64 clus-
ters. In particular, there are 45 clusters that are singletons, 4 clusters with 2 stories, 6
clusters with 3 stories, 2 clusters with 4 stories, 3 clusters with 5 stories, 1 cluster with 6
stories, 1 cluster with 7 stories, 1 cluster with 8 stories, and 1 cluster with 14 stories, as
in the previous section.

The names of the clusters now indicate the news category (topic) within which each
cluster was formed. This distribution of clusters seems to be better than before; com-
pare it with the results shown in figure 7.6. We got rid of the supercluster while the
number of clusters with two, three, and four news stories increased. Unfortunately,
the number of singletons has also increased. Listing 7.13 shows the BeanShell script
that creates the results of figure 7.8. Execute that script now, so that you have a handy
reference to the structure as we discuss these results. The steps in that listing are
straightforward and are similar to those in listing 7.5.

NewsDataset trainingDS = new FileListNewsDataset("TrainingDS");
trainingDS.setDocumentDir("C:/iWeb2/data/ch07/training");

Listing 7.13 Clustering news stories that have been assigned to news categories

Figure 7.8 The results of clustering the default news dataset after classifying the news stories
Licensed to Deborah Christiansen <pedbro@gmail.com>

306 CHAPTER 7 Putting it all together: an intelligent news portal
trainingDS.init();

NewsDataset ds = new FileListNewsDataset("Classify-Cluster-DS");
ds.setDocumentDir("C:/iWeb2/data/ch07/all");
ds.init();

NewsProcessor newsProcessor = new NewsProcessor(trainingDS);

newsProcessor.trainClassifier();

newsProcessor.classifyStories(ds);

newsProcessor.createClustersWithinTopics(ds);

NewsUI ui = new NewsUI(ds);
ui.showClustersOnly(true);
NewsUI.createAndShowUI(ui);

If you expand the largest cluster—Cluster-health-23—you’ll realize that its content is
identical to the content of Cluster-17, which we identified in figure 7.6. Not only is the
number of news stories identical, the actual new stories that belong to the two clusters
are identical, as shown in figure 7.9. As far as this cluster is concerned, the order of
operations didn’t make a difference.

 The invariance of this cluster is important and can be explained as follows. Neither
the story tech-04 nor the story tech-15 belongs in the training set of the classifier, so
it’s not easy for the classifier to assign them to the proper news category. The news

Figure 7.9 The invariance of a large cluster after swapping the order of clustering and classification.
The leftmost panel shows the results of clustering when clustering comes first. The middle panel
shows the results of clustering when classification comes first.
Licensed to Deborah Christiansen <pedbro@gmail.com>

307Building news groups with the NewsProcessor class
story health-16 is included in the training set, and its content is related to the usage of
mobile phones, which overlaps with the content of the two technical stories. It seems
that this overlap is more significant than the overlap of the news stories that belong in
the training set and are assigned in the technology category. Once these two technical
news stories are misplaced, our best chance would be that they remain as singletons or
that they cluster together—within the wrong news category, of course.

 At any rate, the content of the 14 news stories appears similar to both the clustering
and the classification algorithms. From a practical perspective, in the case of clustering
after classification, this situation can be remedied by enriching our training set. When
we do have misclassified elements, we want the clustering to be finer within the topics.

 A deeper look into the results reveals that many of the clusters, formed within each
news category, are identical to the clusters that we found in the case of clustering
before classification. This means that the greatest gain was breaking up the superclus-
ter. We should certainly be cautious not to generalize this finding for an arbitrary
news dataset, but we expect it to be true when the training set provides sufficient cov-
erage of the news categories.

 Let’s look into setting the default values for the number of clusters and the thresh-
old value for creating a link between two data points (news stories), which takes place
in the cluster method of the TopicalNewsClusterBuilder, as shown in listing 7.14.
These parameters can change the number of singletons that we obtain in the final
results. This is true regardless of the order of clustering and classification. But chang-
ing these parameters should have a greater impact when clustering after classification
because the sets of data points that are passed as input to the clustering algorithm
have reduced noise level.

public void cluster() {

 for(NewsCategory topic : ds.getTopics()) {

 List<NewsStory> stories = ds.getStories(topic);
 DataPoint[] dataPoints = createDataPoints(stories);

 int k = dataPoints.length / 3;

 double linkThreshold = 0.15;

 ROCKAlgorithm rock = new ROCKAlgorithm(dataPoints, k, linkThreshold);

 Dendrogram dnd = rock.cluster();

 List<NewsStoryGroup> storyGroups = createStoryGroups(topic, dnd);

 for(NewsStoryGroup cluster : storyGroups) {
 ds.addStoryGroup(cluster);
 }
 }
}

Listing 7.14 is similar to listing 7.12. The main difference is the outer loop that defines
a new scope for each news category. Does this difference in implementation merit the

Listing 7.14 The clustering method of the TopicalNewsClusterBuilder

Desired number of clusters

Threshold for forming a link
Licensed to Deborah Christiansen <pedbro@gmail.com>

308 CHAPTER 7 Putting it all together: an intelligent news portal
existence of two separate classes for handling the clustering of news stories? As we’ve
seen, the current implementation does avoid the formation of superclusters, but more
importantly, it paves the way for an implementation where the number of clusters and
the threshold value for creating a link between two data points can become a function
of the news category. You can begin exploring the possibilities that open with such an
approach by reading the eighth to-do item.

 We’ve now covered the two most important ways of clustering our news sto-
ries—clustering individual news stories and clustering news stories within a news cat-
egory. We’ve completed the introduction of every intelligent algorithm that we
described in this book, except the recommendation algorithms. The subject of the
next section introduces an item-based recommendation algorithm in our news por-
tal. In particular, we’ll explore the case where our users have the ability to rate the
news stories and we want to use these ratings to dynamically arrange the content of
the portal for each user.

7.6 Dynamic content based on the user’s ratings
If we have ratings of the news stories then we can recommend news stories that a user
hasn’t viewed yet. In chapter 3, we discussed the two broad categories of techniques that
allow us to create recommendations—collaborative filtering and the content-based
approach. We pointed out that, in the process of building our online music store exam-
ple, we’ve created the infrastructure that you need for writing a general recommenda-
tion system for your own application. It’s time to test that claim. Let’s create a
recommendation engine for our news stories based on the code from chapter 3. If you
need to review chapter 3, or haven’t read it yet, now is a good time to do so.

 We’ll start by creating a file that contains the ratings of the users. As you might
recall, the basic concepts of a recommendation engine are the Items, Users, and Rat-
ings. In this chapter, our news stories correspond to items. The file ratings.txt, which
you can find inside the C:\iWeb2\data\ch07\ratings directory, contains the data
that are shown in table 7.1.

User News story Rating

A

Usa-04

Usa-05

Biz-05

Biz-01

World-16

4

3

5

4

5

B

Usa-01

Sport-04

Sport-03

Biz-05

Tech-06

5

3

4

5

2
Table 7.1 Fifteen ratings from
three users of the news portal
Licensed to Deborah Christiansen <pedbro@gmail.com>

309Dynamic content based on the user’s ratings
In table 7.1, there are 15 ratings provided by three users (A, B, and C). In section 7.5,
we repeatedly encountered a cluster that contained the articles biz-01, biz-05, and
usa-01. We devised the ratings so that the news stories biz-01 and biz-05 are shared
between user A and C, and between user A and B, respectively. By mere inspection,
we expect that the news story usa-01 should be among the recommended stories for
user A. Let’s execute the script shown in listing 7.15 and see what happens!

NewsDataset ds = new FileListNewsDataset("NewsDataset");
ds.setDocumentDir("C:/iWeb2/data/ch07/all");
ds.setTopTerms(25);
ds.setUserAndRatingsFilename("c:/iWeb2/data/ch07/ratings/ratings.txt");
ds.init();

StoryRecommender delphi = new StoryRecommender(ds);
delphi.calculateRecommendations();

delphi.recommendStories("1");

The results are shown in figure 7.10, and the news story usa-01 is indeed one of the
recommended stories. This may not be impressive for the small number of news sto-
ries, users, and ratings that we use in this example, but the same code can be used for
much larger datasets with satisfactory results. Note that our recommender skips the
news stories that user A has already rated.

C

World-15

World-16

Usa-04

Biz-01

Usa-01

3

5

4

4

5

Listing 7.15 Recommending news stories based on ratings

User News story Rating

Create recommendation
engine

bsh % delphi.recommendStories("1");
Skipping item:biz-01.html
Skipping item:biz-05.html
Skipping item:usa-05.html
Skipping item:usa-04.html
Skipping item:world-16.html

Recommendations for user UserA:
Item: usa-01.html , predicted rating: 5.000000
Item: sport-03.html , predicted rating: 4.000000
Item: world-15.html , predicted rating: 3.000000
Item: sport-04.html , predicted rating: 3.000000
Item: health-16.html , predicted rating: 2.500000
bsh %

Figure 7.10 Recommendations for user A based on the ratings of table 7.1

Table 7.1 Fifteen ratings from
three users of the news portal
(continued)
Licensed to Deborah Christiansen <pedbro@gmail.com>

310 CHAPTER 7 Putting it all together: an intelligent news portal
Let’s take a look into the StoryRecommender class, which made these recommenda-
tions possible. Listing 7.16 shows its complete source code. By leveraging the recom-
mendation engine Delphi, we’ve created a custom news story recommendation
engine with only a few lines of code. This is the same Delphi class that we encoun-
tered in chapter 3.

public class StoryRecommender {

 private DatasetAdapter rDs;
 private Recommender delphi;

 public StoryRecommender(NewsDataset ds) {
 this.rDs = new DatasetAdapter(ds);
 }

 public void calculateRecommendations() {

 Delphi d = new Delphi(rDs,

➥ RecommendationType.ITEM_PENALTY_BASED, false);
 d.setVerbose(true);

 this.delphi = d;
 }

 public List<PredictedNewsStoryRating>

➥ recommendStories(String newsUserId) {

 if(delphi == null) {
 String msg = "Recommender not initialized.";
 throw new RuntimeException(msg);
 }

 User user = rDs.getUserForNewsUserId(newsUserId);

 List<PredictedItemRating> predictedRatings = delphi.recommend(user);

 List<PredictedNewsStoryRating> ratings =

➥ new ArrayList<PredictedNewsStoryRating>();

 for(PredictedItemRating iR : predictedRatings) {

 PredictedNewsStoryRating r = new PredictedNewsStoryRating();
 r.setUserId(newsUserId);
 r.setRating(iR.getRating());

 NewsStory newsStory =

➥ rDs.getNewsStoryForItemId(iR.getItemId());
 r.setStoryId(newsStory.getId());

 ratings.add(r);
 }

 return ratings;
 }
}

Apart from the necessary translations between the specific news story terminology and
the general purpose dataset interface of chapter 3, which are taken care of by the

Listing 7.16 StoryRecommender: producing user recommendations for news stories

Create recommendation
engine
Licensed to Deborah Christiansen <pedbro@gmail.com>

311Summary
DatasetAdapter class, we’ve used nothing else. The Delphi recommendation engine
is based on item-based similarities with penalties (its type is Recommendation-
Type.ITEM_PENALTY_BASED). You can experiment with the other types that are avail-
able for our recommendation engine.

 The StoryRecommender class, and its auxiliary classes such as DatasetAdapter and
PredictedNewsStoryRating, can act as a template for your own application. The gen-
eral idea is simple: transform your data so that it can map onto Items, Users, and Rat-
ings. Then delegate recommendations to the Delphi recommendation engine; you
can tinker with the available recommendation types to find the one that best suits
your goal. Your data may be persisted and structured in a somewhat different way, but
it shouldn’t be hard to transform it into our general-purpose classes.

7.7 Summary
The chapter demonstrated the use of the intelligent algorithms that we examined so
far, in the setting of a web application; more specifically, in the context of a news por-
tal such as Google News. We’ve seen that the value of using intelligent algorithms
starts from the beginning, with the possibility of intelligent crawling. Naturally, the
material from our second chapter was also applicable in the news portal example for
enabling searching based on indices and beyond!

 Initially, the place of intelligent algorithms and their value in any given application
might be hard to recognize. Nevertheless, as we start asking questions, it becomes evi-
dent that these algorithms can improve the level of service that the users of the appli-
cation get in quite unexpected ways. We’ve seen that a clustering algorithm might be
used not just for grouping similar news stories but also for enhancing the visibility of
relevant news stories by cross-referencing.

 We’ve seen also that we can use a single algorithm multiple times or different algo-
rithms in sequence. But it turns out that the order of the sequence matters. We dem-
onstrated that property by explicitly inverting the order of clustering and classification
on our news stories. The results of clustering news stories after the classification stage
were better than the results of clustering the news stories before classification. This
observation is quite general and likely to happen with your data too, whether or not
news stories.

 Another interesting fact was revealed from using the clustering and classification
algorithms in sequence. We showed how to deal with the classification of groups them-
selves. Up to now, we’d seen only classification of simple objects such as emails or
credit card transactions. Here, we described how to classify a single news story as well
as a group of news stories. There are many ways that this can be done, so the construc-
tion of a meta-algorithm can be expedient in these cases.

 It’s practically impossible to answer all questions related to applying intelligent algo-
rithms in a way that would be applicable to all applications. Nevertheless, we hope that
we’ve sketched out how you should approach the introduction of intelligent algorithms.
We also think that, after reading this chapter, it should be clear that you can construct
components that combine several intelligent algorithms for a given purpose. Review the
Licensed to Deborah Christiansen <pedbro@gmail.com>

312 CHAPTER 7 Putting it all together: an intelligent news portal
questions raised in the text and explore the many suggestions that we provide in the to-
do action items. We’re certain that you’ll find them useful in your own work.

7.8 To do
1 Add intelligent features to the NewsCrawler. Our NewsCrawler is good for getting

started with a small code base. But if you simply want to retrieve the content from
a list of base URLs, many other crawlers are available that are probably much bet-
ter than ours. The reason for writing this small crawler is we want to point out a
number of areas where intelligent algorithms can make crawling much more effi-
cient and effective. In this to-do item, we’d like to discuss these potential
improvements and hopefully motivate you enough to implement them!

Let’s consider the case of websites with spam or inappropriate material—you
can define as inappropriate whatever you like, or rather you don’t like! These
are websites that you probably don’t have an interest in crawling. Even though
you might not target these sites intentionally, your crawler may end up in one of
them by accident. So, it would be nice if the crawler could identify these sites
and avoid them. How would you do that?

In the email spam use case that we worked on in chapter 5, we used the naïve
Bayes classifier and rules-based classifier to filter out the spam email. We could
do the same here. Our crawler could sample the pages and classify them as
legitimate for retrieval or not. For the naïve Bayes classifier, you’d need to have
some sample web pages from both categories; that would be your training set.
For the rule-based classifier, you’ll need some rules. For example, if the page
contains the word xyz then skip it.

The same algorithms can be used for a slightly different use case. If you want
to target (rather than filter out) certain web pages, you can create a crawler
whose focus is on Java-related articles, or even more specifically on Java open
source projects. In that case, you’d start from a list of known URLs, or the link
results of a Google search, but you’d download a website only if the classifiers
tell you that its content is relevant to your subject.

You could build intelligence on top of these results. If a link from site A takes
me to site B and site B is deemed inappropriate, it might be expedient to count
the number of links that emanate from site A and lead to such sites. We could
use that percentage directly as a threshold to build a link graph that we’d ana-
lyze with a method similar to the one used by PageRank. These are only a few
ideas for you to work on. If you implement them and you like the results and
the capability, try to come up with similar ideas for embedding intelligent algo-
rithms in crawling. It should be rewarding as a learning experience and it might
turn out to be useful in your work.

2 Improve the search results of the news portal by leveraging user clicks. In chapter 2, we
saw that the interaction of a user with a search engine defines his or her own
areas of interest and own subjectivity. We introduced a naïve Bayes classifier to
Licensed to Deborah Christiansen <pedbro@gmail.com>

313To do
leverage the user’s clicks and improve the search results. As you may recall, we
assumed that you’ve collected the clicks of the users as indicated in the file user-
clicks.csv, located in the data/ch02 directory. That comma-separated file con-
tained three fields: the user ID, the terms of the search query, and a string that
contained the URL.

Similarly, you can create a file that captures user clicks in order to improve
the search results of the news portal. What should the training attributes be
now? Try the following recipe. Select as training attributes:

■ The user ID
■ The terms of the search query
■ The terms of the document that was selected
■ The topic of the document that was selected

Can you justify these choices? Why did we replace the URL with the topic? Why
did we introduce the terms of the document? How would you proceed in cor-
recting the ranking score? Write down your ideas and implement them.

For the same user and the same query terms, you should have more than one
entry in the user clicks file. In the example from chapter 2, the number of times
that a click appeared in that file made its URL a better candidate for our search
results. The same will be true for the various topics in the case of a news portal.
Typically, the same user will read a number of different topic stories for the
same query because his interest may vary over time or because he may be look-
ing for additional information on a particular topic.

In the case of the portal, an interesting problem to solve is the following. If I
have a number of stories under the same category and my classifier is trained to
identify the topic, how will that help me boost the most interesting stories for a
given user? Is it possible? If not, what can we do to address that problem?

3 Evaluate the effect of the attribute selection on the results of our news portal. Our choice
of attributes for a news story was based on the top terms that can be extracted from
it. It’s clear from the code in listing 7.7 that each top term becomes a training attri-
bute for the classifier. There are clearly many more choices than that!

The obvious modification of the toInstance method in listing 7.7 is to cre-
ate a single string attribute that contains the entire set of top terms, perhaps
separated by space when we concatenate them, to make it legible for us. Do you
think that this will result in better or worse classifications? Whatever your opin-
ion might be, try to justify it conceptually and then implement the change to
see what happens!

Note the way that we construct the StringAttribute instances inside the
toInstance method. In effect, the string attributes are becoming Boolean vari-
ables! Another modification to the code would be geared toward a fixed set of
top terms and assign as attribute values the actual string values of the top terms.
You can do this by executing the following steps:
Licensed to Deborah Christiansen <pedbro@gmail.com>

314 CHAPTER 7 Putting it all together: an intelligent news portal
– Create a parameter that will determine the number of training attributes
– Create a name for each of these attributes by adopting a simple convention;

for example, use a fixed term and enumerate them—attr-1, attr-2, and so on.
– Assign the value that corresponds to each attribute based on the order of the

top terms. That means, the attribute attr-1 takes its value based on the first
top term, the attribute attr-2 takes its value based on the second top term,
and so on.

With such a construction, rerun our examples and observe the results. What do
you think is going to happen? Do you think that this approach will provide us
with better results? If so, why do you think that?

What issues, if any, do you anticipate? Let’s say that you want to use 32 attributes
and, for whatever reason, certain stories don’t have 32 top terms, which means
that the last attributes (in the enumeration from 1 to 32) won’t have a corre-
sponding top term. What should the value of these attributes be? Does it matter?

4 Create a sophisticated implementation of the ClassificationStrategyImpl class. In
listing 7.8, we described a basic implementation for the ClassificationStrat-
egy of our news processor. In that implementation, the assignTopicToStory
method is rudimentary. So, let’s examine whether other implementations are
possible and whether they’d would be beneficial.

Let’s consider the case where we apply two classifiers to obtain our classifica-
tion results. Unlike the methods of combining classifiers that we discussed in
chapter 6, here we simply want to use one classifier after the other. You may
think that this is odd, but consider the following scenario. We train our naïve
Bayes classifier based on the content of each web page, but this doesn’t involve
any contextual knowledge or metainformation about the content.

If your web page was pulled from ESPN the likelihood that it refers to sports
is fairly high. We can build rules based on such metatags that web pages have
and enforce the rules once the naïve Bayes classifier finishes its job. In other
words, we let the probabilistic classifier take a first sweep at classifying the news
stories and subsequently enforce a number of rules that we presume to be true
regardless of the content itself. Go ahead and implement such a classification
strategy in the assignTopicToStory method and compare it with the results of
the original implementation.

This approach should give you a significant improvement in the accuracy of
automated classification! Of course, you could devise other strategies that
might be even better. We encourage you to do so and compare the results. Note
that the serial application of classifiers isn’t as straightforward when we want to
classify a cluster because the news stories of a given news group almost certainly
originate from different sources. For a news group, this approach might be
more difficult. So, let’s turn our attention to the second important method of
the ClassificationStrategyImpl class.
Licensed to Deborah Christiansen <pedbro@gmail.com>

315To do
The particular implementation of assignTopicToCluster is fairly simple. It
identifies one news story from the group as the representative of the group,
classifies the representative story, and keeps track of both the news category
(topic) and the representative for the cluster. The selection of the representa-
tive story relies exclusively on the method selectLongestStory, which provides
a simple heuristic of identifying a representative story for a list of news stories.
The idea behind this choice is that the larger the size of the news story, the
more overlap it’ll have with every other news story.

This isn’t very sophisticated and we can improve on it significantly. In chap-
ter 4, when we were describing the k-means algorithm, we introduced the
notion of a centroid. Implement a selectRepresentativeStory method that
identifies as a representative story the news story that’s closest to the centroid.
How would you approach this? Think about the fact that you’re comparing doc-
uments and experiment with different distance metrics.

Finally, implement an assignTopicToCluster method that doesn’t rely on a
single representative story but rather implements a majority vote among the
members of the news group. Should all members be considered? If not, how
can we decide who should vote?

5 Is there a best clustering distribution? Identifying an ideal cluster is somewhat sub-
jective and certainly depends on what we want a cluster to be. Look at our
default news dataset: how would you cluster the news stories? In order to be
more specific and narrow the number of stories, look at all the news stories
whose filename begins with biz-. What stories would you group together? Why?

To answer such questions systematically, you must define a measure that
defines the “goodness” of a cluster formation. This will lead you naturally to the
following question: what should the cluster be measured with? In comparison
to what is a cluster better or worse? In the case of classification, there’s a struc-
ture (typically hierarchical) and a training set that establish a frame of refer-
ence with respect to which we measure the quality of our classification. In
clustering, we must devise other means of measuring the quality of a cluster
because there’s no reference frame. So, the measure must dependent on inter-
nal information. What attributes of the cluster’s structure would you choose for
your metric?

6 Tweaking the ROCK. The second problem with the clustering distribution of fig-
ure 7.6 is the large number of singletons (clusters that contain a single ele-
ment). We know that this number can’t be that large because we constructed
the news stories by hand.

What part of the ROCK algorithm do you think will have the largest impact
on the number of singletons? What would the effect of the number of desired
clusters be? How about the link threshold parameter?

What if we write a different implementation of the ROCKAlgorithm? There
are several parameters of the algorithm that are implied. Perhaps, the most
Licensed to Deborah Christiansen <pedbro@gmail.com>

316 CHAPTER 7 Putting it all together: an intelligent news portal
fundamental is the choice of similarity measure for constructing the link
matrix. What other similarity measure would be appropriate? Is it possible to
create a completely custom approach for our news portal? Consider the possi-
bility of using our naïve Bayes classifier for assigning a probability of linkage
rather than a similarity measure.

7 Hierarchical clustering of news stories. Presenting information in a hierarchical
structure is a much more effective way of organizing information that will be
consumed by humans. The use of hierarchical structures abounds. The fold-
ers and files on your computer are presented in hierarchical (tree) format.
The catalogs of online stores are also organized as hierarchies. These struc-
tures are more compelling and user friendly compared to a flat list or a sim-
ple one-level grouping.

We can create hierarchical cluster structures by applying a clustering algo-
rithm more than once. In fact, it doesn’t even have to be the same algorithm.
Consider for example the clustering of our news stories by first applying the k-
means algorithm and subsequently the ROCK algorithm on each cluster identi-
fied by the k-means. Swapping the execution order between the two algorithms
and using a single algorithm are two viable alternatives.

What advantages do you see in each case? How would you proceed with such
an implementation? Look at the problem not only from the perspective of clus-
ter quality but also from the performance (computational cost) point of view.

8 Fine tuning clustering for each news category. In listing 7.14, we described the
cluster method of the TopicalNewsClusterBuilder. Upon closer examina-
tion, you’ll be convinced that there’s nothing topical about the code, other
than the fact that, for each news category, we cluster only the news stories
within it. Of course, the name of the class would be a misnomer if we leave it
like that. So, let’s investigate some options.

What about the use of an array of integers and an array of doubles, say int
k[] and double linkThreshold[], for representing the number of desired
clusters and the link threshold values, respectively. Now, you can use different
values for these two parameters for each news category, but what should these
values be? How would you choose the best value for each parameter?

Given that each news category will have its own representative topics, what
other modifications can you make to improve the clustering within each news cat-
egory? Brainstorm and experiment with your ideas; there’s not only one answer!

7.9 References
 Jurafsky, D., and J. H. Martin (2008). Speech and Language Processing: An Introduction to Natural

Language Processing, Computational Linguistics and Speech Recognition, Second Edition. Pren-
tice Hall (Series in Artificial Intelligence), 2008, pp 1024. http://www.cs.colorado.edu/
~martin/slp.html.

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.cs.colorado.edu/~martin/slp.html
http://www.cs.colorado.edu/~martin/slp.html

appendix A:
Introduction to BeanShell

We use BeanShell throughout this book to remove the fine-grained details and
focus on the high-level steps of an algorithm. The BeanShell scripts that we provide
throughout the book present an overview of the algorithms. In addition, they facil-
itate quick experimentation and interactive learning. We found a lot of value, and
had a lot of fun, while using the BeanShell scripts. We tested many ideas involving
the topics that we developed in the course of writing the book, so we believe that
you’ll also appreciate the value of BeanShell once you become accustomed to it. So
what’s this BeanShell thing anyway?

A.1 What is BeanShell?
BeanShell is a lightweight scripting language that’s compatible with the Java lan-
guage. In fact, BeanShell dynamically executes standard Java syntax and extends it
with common scripting conveniences such as loose types, commands, and method
closures like those in Perl and JavaScript. It was written by Pat Niemeyer, and you
can find its implementation in the open source project aptly called BeanShell
(http://www.beanshell.org).

 There’s been an effort to standardize the scripting language and incorporate it
in a future JDK. As the Java Specification Request 274 states:

BeanShell is a VM hosted language, supporting dynamic execution of the full
Java grammar and semantics as well as transparent access to Java objects and
APIs. Additional scripting and convenience features are brought into the
language as a strict superset of the Java language syntax. In this way BeanShell
attempts to minimize both the syntactic and runtime barriers between Java
application code and scripts, easing development and facilitating migration
between scripts and static Java.

You may wonder at this point: if it’s more or less Java, what’s the point of using
BeanShell? Let’s try to answer that question.
317

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.beanshell.org

318 APPENDIX A Introduction to BeanShell
A.2 Why use BeanShell?
For the purposes of this book, BeanShell is an environment that helps you learn about
and experiment with intelligent algorithms. From a learning perspective, you can start
with the APIs that we’ve defined and the scripts that we’ve written, but as you gain
more and more experience, you can choose to expose more of the details of an algo-
rithm as part of the BeanShell scripts.

 From a research and development perspective, you may want to use BeanShell to
quickly check the results of some tweaks in your algorithm. Alternatively, you might want
to interact with algorithms through the command line of the interpreter for examining
individual responses. For example, you may have just trained a classifier and want to use
it as an oracle to find out about the classes of specific instances. If you don’t know what
instances these should be then it’s convenient and valuable to interactively interrogate
the classifier. We hope that these justifications provide you with the necessary and suf-
ficient motivation. So, let’s see how we can quickly get BeanShell up and running.

A.3 Running BeanShell
You can run BeanShell and execute the scripts of this book as long as you have a Java
runtime available and the BeanShell JAR file (bsh.jar) in your classpath. Our source
code distribution contains version 2.0b4 of BeanShell. We also include Windows and
*nix script files that can load the BeanShell interpreter in a console window; these can
be found in the deploy\bin directory of our distribution.

 In what follows, we’ll assume that your working environment is Microsoft Windows;
you should be able to adjust the scripts in a similar manner in any other environment
where the Java runtime is available. We should also mention our assumption that the
book source code is located in the directory C:\iWeb2. That location is referenced by
the %IWEB2_HOME% environment variable and all relative references are with respect to
that root directory. If you want to place the source code elsewhere in your system, you
should change the scripts accordingly. Open a command prompt: go to Start, click on
Run …, and type cmd in the text box. Change the directory to c:\iweb2\deploy\bin.
You should be able to see the Windows script file called bsc.bat.

 Aside from the location of the source code, the script also assumes that the envi-
ronment variable %JAVA_HOME% has been set and is visible in the environment of the
command prompt. If that’s not the case you should at least have the Java executable of
your choice in your PATH environment variable. Note that we haven’t tested any code
with versions of Java prior to 1.5. We recommend that you install the latest JDK (ver-
sion 6) from Sun.

 Finally, since you’re executing (or better yet interpreting) a Java program, you can
adjust the options of the JVM from the command line according to your needs and the
specifications of your system. Our recommended settings for the heap of the JVM are
-Xms256M -Xmx1280M, but these values may be too large for your system. Be aware of
that fact and adjust your values accordingly, if you encounter any issues.

A.4 References
 The BeanShell open source project. http://www.beanshell.org/home.html.
 JSR 274: The BeanShell Scripting Language. Java Specification Requests. http://jcp.org/en/

jsr/detail?id=274.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.beanshell.org/home.html
http://jcp.org/en/jsr/detail?id=274
http://jcp.org/en/jsr/detail?id=274

appendix B:
Web crawling

This appendix provides an overview of web crawling components, a brief descrip-
tion of the implementation details for the crawler provided with the book, and a
few open-source crawlers written in Java.

B.1 An overview of crawler components
Web crawlers are used to discover, download, and store content from the Web. As
we’ve seen in chapter 2, a web crawler is just a part of a larger application such as a
search engine.

 A typical web crawler has the following components:

■ A repository module to keep track of all URLs known to the crawler.
■ A document download module that retrieves documents from the Web using

provided set of URLs.
■ A document parsing module that’s responsible for extracting the raw con-

tent out of a variety of document formats, such as HTML, PDF, Microsoft
Word. The parsers are also responsible for extracting URLs contained in the
document and other data that can be useful during indexing phase—in par-
ticular, metadata information.

■ A repository module that stores retrieved document metadata and content
extracted from the raw documents during the crawling process.

■ A URL normalization module that transforms URLs into standard form, so
that they can be compared, evaluated, and so on.

■ A URL filtering module, so that the crawler can skip undesirable URLs.

Design and implementation of individual components depend on what you’re
planning to crawl and the scale that the crawler is required to handle. In the sim-
plest cases when you want to collect a couple of pages from a known website, com-
plete crawler implementation can fit on one page of code. For intranet websites,
319

Licensed to Deborah Christiansen <pedbro@gmail.com>

320 APPENDIX B Web crawling
you can get away with a fairly simple implementation as well. But in an implementa-
tion capable of handling large-scale document collection from the Web, the crawler
will be implemented as a set of applications distributed across a network of hardware
nodes. These nodes can even be geographically distributed to be closer to the source
of data. We’ve included a set of references at the end of this section that describe
implementation concerns for large-scale crawling.

B.1.1 The stages of crawling

The operation of a typical crawler involves the following two stages:

1 The URL repository of the crawler is initialized with a list of URLs (commonly
known as seed URLs) and starts web crawling.

2 The crawler loads the seed of the URLs that haven’t been visited, in order to
identify the scope of its work.

For every eligible URL, the web crawler has to:

1 Fetch the URL content.
2 Parse the fetched documents in order to extract the outgoing URLs and the

document content.
3 Persist the information that we want to retain.
4 Normalize the newly discovered URLs.
5 Filter out the URLs that the crawler should ignore.
6 Update the URL repository with the list of new URLs to crawl.
7 Repeat step 2 until the desired depth of discovery has been reached.

There are two broad categories of crawlers: general-purpose and focused. General-
purpose crawlers collect all documents they can get their hands on. They can rely on
URL-filtering techniques to restrict URLs that will be crawled. Focused crawlers are
used to discover content related to a specific topic of interest. All crawlers can employ
the techniques that were covered in this book to their advantage.

B.1.2 Our simple crawler

Our simple web crawler can download pages from the Web or a local filesystem. In
addition to HTML documents, it can handle Microsoft Word documents. As we men-
tioned earlier, this is a demo crawler whose purpose is to facilitate your experimenta-
tion with the intelligent techniques that were presented in this book. The code has
been kept clean and simple so that you can easily review what’s happening at every
step of the processing. Each document is stored in a separate file and the crawler uses
plain text file format, so that you can review the content easily. You can find all the
source code related to the crawler under the iweb2.ch2.webcrawler package.

 We demonstrate how the web crawler works in our listings. Every time the crawler
runs, it’ll create a new crawl-<timestamp> directory to store all the relevant data.
Within the crawl directory, the following set of subdirectories and files will be created:
Licensed to Deborah Christiansen <pedbro@gmail.com>

321An overview of crawler components
■ <crawl-dir>/knownurls/knownurlsdb.dat—This file contains the list of URLs
that are known to the crawler.

■ <crawl-dir>/fetched/—This directory contains the raw documents that are
downloaded by the crawler. Documents are downloaded and processed in
batches; the default batch size is 10.

■ <crawl-dir>/fetched/<batch-number>/<doc-id>.fetched—Each file stores
the raw content of a particular document.

■ <crawl-dir>/fetched/<batch-number>/<doc-id>.meta—Each file contains
the metadata of a document’s content; the metadata information is specific to
the transport protocol.

■ <crawl-dir>/processed/—This directory contains the documents in pro-
cessed form. It contains a separate directory for each processed batch of URLs.

■ <crawl-dir>/processed/<batch-number>/content/<doc-id>.con-

tent—Each document contains the content after parsing. If you change the
parser the content of these documents may change.

■ <crawl-dir>/processed/<batch-number>/outlinks/<doc-id>.out-

links—Each file contains all the links that were detected by the document
parser, in the respective parent document.

■ <crawl-dir>/processed/<batch-number>/properties/<doc-id>.proper-

ties—Each file contains document properties such as the document type, the
title, the URL, and so on.

■ <crawl-dir>/processed/<batch-number>/txt/<doc-id>.txt—Each file con-
tains only the textual content of the retrieved document, as extracted by the
parser.

■ <crawl-dir>/pagelinks/pagelinkdb.dat—This file contains the data about
the outlinks for all the processed URLs. It contains only data about the outlink
URLs that passed through the URL filter.

B.1.3 Open source web crawlers

There are two major Java-based projects—Nutch and Heritrix—that offer a web
crawler implementation. Nutch is an Apache Lucene subproject that you can visit at:
http://lucene.apache.org/nutch/. The project web site contains a step-by-step tuto-
rial on how to install and run the application, which of course includes the web
crawler. Unlike our own crawler, Nutch stores multiple pages per data file. This
makes it difficult to review results of small crawls, but for large crawls, this has better
I/O performance.

 Heritrix is the Internet Archive’s open source web crawler. It’s used to archive
large portions of the Web. The project’s web site is http://crawler.archive.org/. The
Heritrix project is focused on large-scale crawling and is released under the liberal
LGPL license.

 Another open source library that might be of interest to you is provided by the
Apache Tika project, which you can visit at http://lucene.apache.org/tika/. Tika is a
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://lucene.apache.org/nutch/
http://crawler.archive.org/
http://lucene.apache.org/tika/

322 APPENDIX B Web crawling
toolkit for detecting and extracting metadata and structured text content from vari-
ous documents using existing parser libraries.

 You can find more details on various aspects of crawler design in Heydon and
Najork, and in Gomes and Silva. An overview of issues that must be considered when
designing high-performance scalable web crawlers is provided in Boswell, as well as
Shkapenyuk and Suel. For more details on focused crawling, consult the paper by
Chakrabarti et al.

B.2 References
 Boswell, D. “Distributed High-performance Web Crawlers: A Survey of the State of the Art.”

2003. http://www.cs.ucsd.edu/~dboswell/PastWork/WebCrawlingSurvey.pdf.
 Gomes, D. and M. Silva. “The Viuva Negra crawler: An experience report.” Software—Practice &

Experience, Volume 38 (2), pp. 161-188, 2006.
 Heydon, A. and M. Najork. “Mercator: A Scalable, Extensible Web Crawler.” Compaq Systems

Research Center, 1999.
 Chakrabarti, S., M. Berg, and B. Dom. “Focused crawling: a new approach to topic-specific Web

resource discovery.” WWW8 International World Wide Web Conference, vol. 31, pp. 1623-
1640. Toronto, 1999. http://www8.org/w8-papers/5a-search-query/crawling/
index.html.

 Shkapenyuk, V. and T. Suel. “Design and Implementation of a High-Performance Distributed
Web Crawler.” Polytechnic University: Brooklyn, NY, 2001. http://cis.poly.edu/suel/
papers/crawl.pdf.

Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.cs.ucsd.edu/~dboswell/PastWork/WebCrawlingSurvey.pdf
http://www8.org/w8-papers/5a-search-query/crawling/index.html
http://www8.org/w8-papers/5a-search-query/crawling/index.html
http://cis.poly.edu/suel/papers/crawl.pdf
http://cis.poly.edu/suel/papers/crawl.pdf

appendix C:
Mathematical refresher

Throughout this book, we assumed little about the mathematical background of
our audience. This appendix presents some of the mathematical formulas that we
used in our algorithms, but never wrote explicitly in their standard form. The clas-
sic book that combines a solid mathematical description together with numerical
algorithms is Numerical Recipes: The Art of Scientific Computing by William H. Pres et
al. That book is a must-have reference for a large number of topics related to the
development of intelligent algorithms.

C.1 Vectors and matrices
In the context of elementary mathematics and physics, a vector is the mathematical
representation of an arrow. The most common and intuitive example is an arrow
that connects two points, say A and B on a plane. In the formulas that we used, a
vector is represented by a one-dimensional array. In other words, it’s an ordered set
of numbers. We typically denote vectors with a bold Latin letter, such as x. A 10-
dimensional vector would be an ordered set of numbers xi, where the index i takes
values between 1 and 10 (inclusive)—or 0 and 9 (inclusive), if you start counting
from 0.

 Think of a two-dimensional matrix as a table with rows and columns. Each
matrix element corresponds to a cell in the table. In the formulas that we used, a
matrix is represented by a two-dimensional array. We typically denote matrices with
capital Latin letters that are formatted as bold and italic, such as A. Like vectors,
matrices can be denoted by their individual ordered elements. In other words, the
matrix A can also be written as Aij, where the two indices can have different ranges.
The matrix that’s formed by swapping the order of the indices is called the transpose
of the original matrix. So, Aji is the transpose matrix of Aij; clearly, the reverse is
also true!
323

Licensed to Deborah Christiansen <pedbro@gmail.com>

324 APPENDIX C Mathematical refresher
 Matrices don’t have to be two-dimensional; they can be n-dimensional, where n is an
arbitrary integer. A n-dimensional matrix will have n indices, of course. Vectors can be
thought of as a special case of one-dimensional matrices. Matrices have many interest-
ing properties and can be used symbolically to perform manipulations, just like we use
x and y variables to denote some unknown in elementary algebra. As far as symbolic
manipulations are concerned, you can think of matrices as numbers! But unlike ordi-
nary numbers, two matrices don’t necessarily commute when they multiply each other.
So, in general, when we deal with two matrices A and B, it’s possible that A B
 B A.

 In summary, for most practical purposes, think of a vector as a one-dimensional
Java array and a matrix as a two- or (more generally) n-dimensional Java array. The lit-
erature on vectors and matrices is vast. You can find numerous textbooks that cover
the subject in-depth and at various levels of sophistication; we cite some of the classic
textbooks in the references.

C.2 Measuring distances
We’ve seen in chapter 3 that there are many ways to measure the distance between two
points, say A and B. Let’s see how all these different ways of measuring translate into
formulas in terms of vectors. If each point is represented by a vector (a and b for A
and B, respectively) then the difference between these two vectors is another vector,
say x, whose magnitude provides a measure of the distance between the two points.

 The most common distance is the Euclidean distance, also known as the L2 distance
or L2 norm. As you can imagine, the Euclidean distance is a special case of a general
distance formula called the Lp norm, where p can be any real number greater or equal
to 1. The formula for the Lp norm is the following:

The Euclidean distance is obtained by setting p=2. The “city block” or “taxi cab” dis-
tance—discussed in the first to-do item of chapter 3—is obtained by setting p=1. Of
course, in the preceding formula, the vector x is the difference between the two vec-
tors whose distance we want to measure—x = b - a.

 Another distance formula that we used extensively is related to the cosine similarity
metric. In order to define the formula that we used for the cosine similarity, we need
to define the inner product of two vectors (often called the dot product). The inner
product of two vectors measures the projection of one vector onto another. In figure
C.1, we show two (two-dimensional) vectors on a plane. When the two vectors are per-
pendicular to each other, the projection of one vector onto the other is minimum
(equal to zero). When the two vectors are aligned, the projection is maximum.

 We used a freely available applet to capture these images. You can experiment with
this and other applets online at http://www.cs.brown.edu/exploratories/freeSoftware/
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/linear_algebra.html

325Measuring distances
catalogs/linear_algebra.html. The formula for the inner product of two (n-dimen-
sional) vectors a and b is the following:

Based on the inner product, we defined our cosine similarity through the formula:

where � is the angle between the two vectors, a and b. The code for this formula is
given in the class iweb2.ch3.collaborative.similarity.CosineSimilarityMea-
sure. Some people use the value of the angle itself by applying the arc cosine function
on the right of the equation (Math.acos). But that’s a matter of convention if you
stick with similarities. It becomes important if the quantity involved must satisfy the
requirements of a mathematical norm, as does the Lp norm, for example.

 If you want to build your own norms and measure distances in a way that fits your
problem’s needs, you should read a book on functional analysis. We recommend Ele-
ments of the Theory of Functions and Functional Analysis by A.N. Kolmogorov and S.V.
Fomin. The measurement of distances, from a mathematical perspective, is related to
the study of metric spaces. Some knowledge of set theory is required in order to properly
understand the convergence of sequences, hence the concepts of limit points, open and
closed sets, and so on. There are myriad books on functional analysis; we recommend
Kolmogorov’s book because it’s concise, complete, and inexpensive to purchase.

Figure C.1 The inner product of two vectors that are perpendicular (orthogonal) to each other (left)
and aligned (right)
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/linear_algebra.html

326 APPENDIX C Mathematical refresher
C.3 Advanced matrix methods
If your problem has already been “translated” into the matrix language, you have a
tremendous arsenal of methods and techniques at your disposal. You have the oppor-
tunity to study the properties of your system in detail, and with the rigor that only
mathematics can offer. Of course, this might not be as straightforward as it sounds. It’s
possible that only some of these methods are applicable in your case, plus, the mental
correspondence of matrix concepts to the characteristics of your problem is as much
an art as it is a science. Nevertheless, if you’re mathematically inclined and intellectu-
ally adventurous, we highly recommend books that apply advanced matrix methods in
data mining.

 One such recent book by Lars Eldén covers intelligent algorithms, just like our
book, and is titled Matrix Methods in Data Mining and Pattern Recognition. This book cov-
ers the fundamentals of vectors and matrices, linear systems of equations and least
squares methods, orthogonality of vectors and matrices, various decompositions of
matrices (QR and SVD), and nonnegative matrix factorization. Of particular interest
to the readers of our book might be section 9.1, which presents the k-means algo-
rithm. The rest of the book uses the tools of matrix calculus to address problems such
as the classification of handwritten digits, text mining, the PageRank algorithm (that
we saw in chapter 2), automatic keyword and key sentence extraction, and face recog-
nition using tensor SVD. References to the scientific computing literature abound, so
we highly recommend that book for delving deeper into some of the algorithms that
we presented in this book.

C.4 References
 Eldén, L. Matrix Methods in Data Mining and Pattern Recognition. (Series: Fundamentals of Algo-

rithms). SIAM: Society for Industrial and Applied Mathematics, 2007.
 Kolmogorov, A.N., and S.V. Fomin. Elements of the Theory of Functions and Functional Analysis.

Dover Publications, Inc. New York, 1961.
 Lay, D.C. Linear Algebra and Its Applications (Third Edition). Addison Wesley, 2005.
 Press, W.H., S. A. Teukolsky, W.T. Vetterling, and B.P. Flannery (2007). Numerical Recipes: The Art

of Scientific Computing (Third Edition). Cambridge University Press, 2007.
 Trefethen, L.N., and D. Bau. Numerical Linear Algebra. SIAM: Society for Industrial and Applied

Mathematics, 1997.
Licensed to Deborah Christiansen <pedbro@gmail.com>

appendix D:
Natural

 language processing

We’ve used NLP throughout the book. NLP refers to a set of techniques and meth-
ods for processing written and spoken (usually human) languages. In practical
terms, it helps us deal with text and audio records for the purpose of analyzing
their content. As you can imagine, the field is as vast as it is interesting.

 Work on NLP dates back to the early years of AI. In fact, the famous Turing test
was cast in terms of a computer’s ability to communicate with a human over a cable
line, without the human being able to distinguish whether or not the entity on the
other side of the cable is human; for a nice review of the Turing test, see Saygin et
al. In a field that old, you can find several branches that tackle the same problem
from different angles. Thus, terms such as computational linguistics and speech synthe-
sis refer to research areas that address the same (or closely related) kind of prob-
lems as NLP.

 An excellent reference on NLP is Speech and Language Processing by Daniel Juraf-
sky and James Martin. The authors break down the engineering of natural lan-
guage into the following components:

■ Phonetics and phonology —The study of word pronunciation and word recogni-
tion based on the human voice.

■ Language morphology —The study of the patterns of word forms that carry
meaning in a human language; for example, recognizing that phone is to pho-
nology what hydro is to hydrology.

■ Language syntax —The study of constructing sentences in natural languages.
There’s a well known prophecy—given by the oracle of Delphi to a soldier
before he headed for war—that reveals nicely the paramount importance of
syntax. The (ancient Greek) words are as follows: “���� ������� ������.”
327

Licensed to Deborah Christiansen <pedbro@gmail.com>

328 APPENDIX D Natural language processing
The same words can be interpreted in two ways. In the first (optimistic) interpre-
tation, the oracle says, “You’ll go, you’ll come back, you won’t die in war.” In the
second interpretation, the oracle says, “You’ll go, you won’t come back, you’ll die
in war.” Knowing the correct syntax for interpreting Apollo’s message was vital!

■ Semantics —The study of what words mean within a specific context. For exam-
ple, cool in U.S. English can be interpreted as “neither warm nor very cold” but
also as “confident and worry free” or as “marked by indifference or disdain,”
depending on the context.

■ Pragmatics —The study of the relationship between the meaning of the words
and the intentions or goals of the communication.

■ Discourse —The study of linguistic units that are larger than a single utterance.

Jurafsky and Martin provide a delightful exposition of all these. In addition, they offer
a comprehensive review of the subject that includes speech synthesis and speech rec-
ognition, statistical parsing, temporal expression analysis, and even conversational
agents and machine translation.

 On a more practical note, there are many open source projects whose work is
related to NLP and are well worth your time if you’re interested in working with tex-
tual or other linguistic representations. A project called UIMA was initiated at IBM
more than a decade ago and is now standardized by OASIS (http://www.oasis-
open.org/). UIMA stands for Unstructured Information Management Applications
and refers to software systems that analyze large volumes of unstructured information
(such as the freeform text of business reports, analyses, and contracts). The project is
now maintained in the Apache incubator at http://incubator.apache.org/uima/. Due
to its longevity, the project is stable and quite active.

 Another stable project is GATE (General Architecture for Text Engineering),
which has been in development at the University of Sheffield since 1995 and has
excellent supporting documentation. It’s the best place to start if you’re looking for
hands-on examples of language processing that touch on a wide spectrum of topics
from Jurafsky and Martin’s list. According to the project’s documentation, it consists
of three elements:

■ An architecture that describes how to build language processing systems that
are made up of individual components.

■ A framework that’s written in Java and provides the underlying APIs.
■ A graphical development environment. The project can be found at http://

gate.ac.uk/.

You might also be interested in the MinorThird project written (primarily) by William
Cohen, a professor at Carnegie Mellon University in the machine learning department.
The project is described by its founders as follows: “MinorThird is a collection of Java
classes for storing text, annotating text, and learning to extract entities and categorize
text.” It’s hosted on http://sourceforge.net and is distributed under the BSD license, but
you should read the notes on third-party libraries before you embed it in production
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://www.oasis-open.org/
http://www.oasis-open.org/
http://incubator.apache.org/uima/
http://gate.ac.uk/
http://gate.ac.uk/
http://sourceforge.net

329References
code. Notwithstanding the legal notes, the library contains a rich set of NLP methods to
help you analyze text. Other notable open source NLP libraries include a precursor of
MinorThird called SecondString, and an umbrella project called openNLP; both of
these projects can be found on http://sourceforge.net as well.

D.1 References
 Cohen, W.W. “Minorthird: Methods for Identifying Names and Ontological Relations in Text

using Heuristics for Inducing Regularities from Data.” http://minorthird.source-
forge.net, 2004.

 Jurafsky, D. and J. Martin. Speech and Language Processing, Second Edition. Prentice Hall (Series
in Artificial Intelligence), 2008.

 Saygin, A.P., I. Cicekli, and V. Akman. “Turing Test: 50 Years Later.” Minds and Machines 10 (4)
pp. 463-518, 2000.

 Turing, A. “Computing Machinery and Intelligence.” Mind, 59 (236), pp. 433-460, 1950.
Licensed to Deborah Christiansen <pedbro@gmail.com>

http://sourceforge.net
http://minorthird.sourceforge.net
http://minorthird.sourceforge.net

appendix E:
Neural networks

In chapter 5, we introduced the central ideas of neural networks. We also demon-
strated how to build a simple neural network, train it, and use it in a practical sce-
nario. The general subject of neural networks is vast; we only touched on the tip of
the iceberg. It’s difficult to discuss the fundamentals of neural networks without
using mathematical terminology. We hope that we did a good job explaining the
basic concepts, but a deeper understanding of the inner workings requires a dive
into the specialized literature.

 To ease the transition from Algorithms of the Intelligent Web to the highly special-
ized ones on neural networks, we’d like to recommend two books that provide eas-
ily accessible introductions to the mathematical description of neural networks.
Machine Learning by Tom Mitchell is an excellent introductory book in machine
learning and we highly recommend it as a general reference. In particular, the
chapter on artificial neural networks includes the back-propagation algorithm, and
its mathematical derivation; a detailed example on face recognition; alternative
error functions; alternative error minimization procedures; and dynamic modifica-
tion of the network structure.

 As a first step in the general literature we recommend Information Theory, Inference,
and Learning Algorithms by David MacKay. It has more sophisticated (and more
recent) introductory coverage of artificial neural networks. It begins with an over-
view of neural networks and a detailed exposition of the single neuron as a classifier.
It thoroughly examines the capacity of a single neuron and offers a probabilistic
interpretation of the neural network learning process. MacKay provides an introduc-
tion to the so-called Boltzmann machines (a fascinating topic for those with a physics
background) as a stochastic Hopfield network. Bayesian neural networks are also
used as a springboard for introducing Gaussian processes, which are well-established
statistical models. We should mention that the algorithms in MacKay’s book are
implemented in a free, open source, mathematical programming language called
330

Licensed to Deborah Christiansen <pedbro@gmail.com>

331References
Octave. The execution platform for this language is available for all major operating sys-
tems, so it’s easy to experiment with the code.

 In the category of books that focus on the study of neural networks, a must read on
the subject is Self-Organizing Maps by Tuevo Kohonen, one of the grand masters of neu-
ral networks. Aside from masterfully covering the subject of unsupervised learning with
neural networks, the book offers a clear and concise chapter on mathematical prelim-
inaries as well as one of the best presentations of the learning vector quantization tech-
nique. This dense, graduate-level book is as much a delight to read as it is original.

 Neural Networks in Finance: Gaining Predictive Edge in the Market by Paul D. McNelis
focuses, as the title implies, on the application of neural networks in finance. After a
few introductory chapters, it covers the modeling of several financial problems such as
the Black-Sholes option pricing model, the modeling of corporate bonds, time series
forecasting, credit card default and bank failures, as well as the modeling of inflation
and deflation.

 We also want to mention the book Complex-valued Neural Networks by Akira Hirose.
This book provides a systematic exposition of the new and expanding field of complex-
valued neural networks. These networks can be valuable in areas such as adaptive radar
systems, the processing of digital elevation maps, and speech synthesis. In general, any
area whose problem domain is naturally represented by complex-valued quantities may
benefit from the inherent representation of these networks in terms of complex num-
bers. Clearly, this isn’t an introductory book, but it can offer you new ideas and expose
you to the possibilities in generalizing neural network design. It will also reveal the
challenges involved in generalizing the design of neural networks. For a larger list of
books that are related to the study of neural networks, check out the references.

E.1 References
 Arbib, M.A., S. Amari, NetLibrary, Inc., and P. H. Arbib. The Handbook of Brain Theory and Neural

Networks. MIT Press, 2003.
 Bishop, C.M., Neural Networks for Pattern Recognition. Oxford University Press, 1996.
 Dreyfus, G. Neural Networks. Springer, 2005.
 Haykin, S. Neural Networks: A Comprehensive Foundation, Second Edition. Prentice Hall, 1998.
 Kohonen, T. Self-Organizing Maps, Third Edition. Springer, 2000.
 MacKay, D.J.C. Information Theory, Inference, & Learning Algorithms. Cambridge University Press,

2003.
 Maier, K.D., C. Beckstein, R. Blickhan, W. Erhard, and D. Fey. “A multi-layer-perceptron neural

network hardware based on 3D massively parallel optoelectronic circuits.” Proceedings of
the 6th International Conference on Parallel Interconnects, pp. 73-80, 1999.

 Mandic, D.P., and J. A. Chambers. Recurrent Neural Networks for Prediction: Learnning algorithms,
architecture, and stability. John Wiley & Sons, Inc., 2001.

 Mitchell, T. Machine Learning. McGraw Hill Higher Education, 1997.
 Neapolitan, R.E.. Learning Bayesian Networks. Prentice Hall, 2003.
 Ripley, B.D. Pattern Recognition and Neural Networks. Cambridge University Press, 2008.
Licensed to Deborah Christiansen <pedbro@gmail.com>

Licensed to Deborah Christiansen <pedbro@gmail.com>

index
Numerics

10-fold cross-validation 221
2 distribution 255–256
2 statistic 251, 274–275

A

abstract syntax tree. See AST
Accuracy 221
accuracy differences 251
activation rule 203
AdaBoost 234, 265, 267, 276
adaptive resampling 265, 276
adjacency

list 62
matrix 134

adjustable mortgages 234
adjustment

primitivity 36
stochasticity 36

Aggarwal, C.C. 160
agglomerative hierarchical

algorithms 129
aggregated content 5
aggregating classifiers 263
AI 16

utility problem 190
Aitken extrapolation 63
algorithms 5

agglomerative
hierarchical 129

applicability limitations 18
application context 278
arc-x4 269

average-length 137
average-link 138
BIRCH 131
Borvka_fs 141
classification 164
clustering 302
computational time

estimation 19
constrained clustering 130
density-based 151
divisive hierarchical 129
Expectation-

Maximization 161
gradient-descent learning 218
graph theoretic 139
KISS 19
k-means 142
Kruskal_fs 141
link-based 132
NaiveBayes 172
nearest neighbor 129
parallelization 18
partitional 129, 142
ranking 286
regression 172
Rete 192
ROCK 147, 300
scalability 18
single-link 135
SQLEM 161
structural 171

alpha 62
Amazon.com 108–109

among first with
recommendations 3

item to item approach 92

analysis
link 22
user click 22, 33

analyzer
lexical 31

analyzing 30, 282
and 227
Android 287
Anscombe’s quartet 112
ANTLR 193
Apache Axis 15
Apache CXF

supports numerous
standards 15

Apache POI project 30, 283
Apache Shindig 9
application intelligence 279
arc-fs 276
arcing 265
arc-x4 234, 265, 267, 276
arc-x4 algorithms 269

crux 271
fourth power 271

Armstrong, Lance 23, 175
arrays

sorting 125
Arthur, David 145
artificial data 241

generation 239
artificial intelligence. See AI
assignTopicToCluster 297–298
assignTopicToStory 297, 299
assumption of

independence 254
AST 193
333

Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX334
Atom 13
not RFD-based 14
syndication format 14

Attribute 175
attribute selection 273

news portal 313
automatic categorization 174
average distance 137
average-link algorithm 137–138
AverageLinkAlgorithm 134

B

back propagation algorithms
termination conditions 218

backward chaining 189
BadUserType 239
bagging 257, 263

algorithm 258
data diversity 258
independent classifiers 265
premise of 258
tweaks 260
tweaks and tips 276

BaggingCreditClassifier
258–260

accuracy and execution
time 259

bankruptcy
significance 235

base recommenders
enhancement 107

BaseConcept 297
BaseInstance 178, 297
BaseLayer 216
BaseNN 208, 213–214
basic search

load, index, search 24
BasicWebCrawler 27, 282
Bayes theorem 49, 172, 182, 227

attribute independence
assumption 183

conditional probability 182
evidence 182
likelihood 182
naïve assumption 51
posterior probability 182
prior probability 182

Bayes theorem formula
output 184

Bayes theorem input probability
evidence 48
likelihood 48
prior probability 48

Bayes theorem output
probability

posterior probability 49
Bayesian

belief networks 182
networks 172
neural networks 330

BeanShell 317
Bernoulli process 221
Beyer, Kevin 160
bias vs. generalization 19
binary classification 174, 178
binary information

difficulty in processing 9
BIRCH

algorithm 131
clustering algorithm 158

black box trap 205
Black-Sholes

option pricing model 331
Boltzmann machines 330
Boorah 13
BoostCreditClassifier 267
boosting 234, 265

computational
performance 267

main idea 265
strategy 67

BoostingARCX4Classifier
268–269

BoostingCreditClassifier 268
bootstrap 222, 257

aggregating 234, 257
process 258

BootstrapTrainingSetBuilder
261, 276

Borvka_fs algorithm 141
Borvka, Otaker 161
Bradley, Paul S. 131
Breiman, Leo 265
Brin, Sergey 33
BSD

license 30
building intelligence 12
business news 284

C

C5.0 171
calculation of similarity 84
car ownership 236
categorical data 130
categories 164

internet newsgroups 166

newspaper articles 166
restaurant menu 166

categorization
automatic 174
email 187

Celtix by IONA. See Apache CXF
centroid 142

initial selection 145
role 143

Cereghini, Paul 161
CF 80

item based 89
requirements 80

CFOI 166
chain effect 142
Chebyshev polynomial 63
Chi2 251
chi-square 251, 274
chronological age 235
Cinematch 3, 107
city block metric 118
CJK

tokenizing 31
classification 48, 289

algorithms 164–165
binary 169, 174, 178
content noise reduction 293
continuous values 169
correct 243
cost 221
cross-referencing 304
data noise effects 206
discrete values 169
distance-based

algorithms 169
email 228
erroneous 243
flat class structure 169
forecasting 169
generalization vs.

specialization 178
groups of instances 294
hierarchical class

structure 169
majority vote rule 295
multiclass 169, 174, 178
neural networks 165, 169
news categories 294
news groups 294
order effect 288
overview 169
performance

characteristics 250
region of influence 233
regression algorithms 169
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 335
classification (continued)
representative news story 299
rule-based 188
rule-based algorithms 169
runtime 250
runtime performance 224
specialization vs.

generalization 178
statistical algorithms 169, 172
strategy 288
structural algorithms 169–170
training time 250
utility problem 225
wrong decision impact 222

classification accuracy
statistically insignificant 258

classification attributes
large number effect 166

classification system
CFOI 166
ICD-10 166
Library of Congress 166
Linnaean 166
OIIC 166
Schatzker 166
SOII 166

classification training
attribute value coverage 223
representative data 223
scaling characteristics 224
statistical assessment 224

ClassificationStrategy 297, 314
ClassificationStrategyImpl

294–295, 297, 299, 314
classifier ensemble

incremental growth 265
classifier training

user clicks 48
ClassifierEnsemble 260–261,

263, 268, 271
ClassifierResults 251
classifiers 48

aggregating 263
combination 232
comparison 233
decision tree 266
ensembles 263
fusion 232
lifecycle stages 173
metaclasser scheme 173
pair-wise comparisons 250
selection 232, 256, 275
sensitivity 207
stable 245
training stage 173

unstable 245, 258
validation stage 173

classify-cluster approach 293
Classify-Cluster-DS 292
classifyClusters 299
classifyStories 299
cleansing news stories 285
Clearspring 9
Clementine 171
CLIPS 170
cluster

discovery 125
formations 140
invariance 306
structure 128

cluster centroid
center of mass analogy 143

cluster formation
goodness 315

cluster-classify approach 293
Cluster-Classify-DS 292
clustering 289

by age 127
agglomerative hierarchical

algorithms 129
algorithm 302
arbitrary objects 128
array sorting 125
average distance 137
average-link algorithm 137
BIRCH algorithm 131
book example 122
by cluster structure 129
categorical data 130
categorization 128
centroid 142
computational

complexity 157
conceptual modeling 129
constrained algorithms 130
curse of dimensionality 159
data normalization 127
by data size 131
data squashing 158
by data structure 130
by data type 129–130
DBSCAN 151
dendrograms 132
density-based algorithms 151
divisive hierarchical

algorithms 129
epsilon neighborhood 154
Euclidian distance 127
fine tuning 316
goodness measure 150

hierarchical 316
hierarchical algorithms 129
high dimensionality 158
human expert 127
in high dimensions 157
iterative optimization 129
k-means algorithm 129, 142
lack of normalization 134
large databases 131
link-based algorithms 134
many dimensions 128
mean value 142
MST 139
news articles 129
objective 150
and ordering 124
overview 128
partitional algorithms 129
performance

characteristics 157
point density 151
proximity threshold 135
ROCK 147
R-trees 158
single-link algorithm 135
singletons 140
Sourceforge-like case

study 123
spectral methods 130
SQL limitations 125
SQLEM algorithm 125
threshold parameter 129
very large datasets 157
visual identification 124
VLDB 131
wavelet methods 130
with SQL 124

clustering algorithm
BIRCH 158
combinations 162

clustering applications
creation of social

networks 122
like-minded individuals 122
targeted advertisement 122

clustering attribute
age 123
education level 123
income range 123
paid participation 123
professional skills 123
social relationship rating 123

clustering distribution
optimality 315
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX336
Cochran’s Q test 233, 250,
255–256

Codehaus XFire. See Apache
CXF

collaboration
as opposed to intelligence 4

collaborative filtering. See CF
collaborative platforms 5
collective intelligence 4
collective knowledge

capture 4
combination of classifiers 232

computational
robustness 233

representational
advantage 233

risk reduction 233
combining classifiers

bagging 234
boosting 234

comparator 126
complexity

multiclass clasification 224
computational

cluster 63
complexity 157
cost 316
linguistics 327
nodes 63

Concept 175, 182
CONCEPT_LABEL_FRAUD

211
CONCEPT_LABEL_VALID 211
ConceptMajorityVoter 264
conceptPriors 50

map 183
conditional probabilities

50, 183
user clicks 48

confidence interval 221
conflict resolution 196–198
confusion matrix 220, 243,

259, 274
constrained clustering

algorithms 130
content 13

aggregator 6, 9
annotation 9
cleansing 283
field 27, 31
impurities 283
reconciliation 7

content aggregation
digg.com 99

content similarity
case study 93
normalization 103
text analysis sensitivity 96

content-based
accumulation and analysis 80
recommendation 70

Corcho, Oscar 165
correlation

complete negative 111
complete positive 111

cosine similarity 95, 324
CosineDistance 152
CosineSimilarity 149, 187
CosineSimilarityMeasure 95
cost

function 223, 230
matrix 230

craigslist 13
crawler 13

collecting data 22
custom 281
fetched documents 24
known URLs 24
page links 24
processed documents 24

crawling 23, 30, 281–282
Apache Tika 321
custom web crawler 320
depth of 13
Heritrix 321
Nutch 321
retrieved content

structure 282
stages of 320

CrawlResultsNewsDataset 284
createClusters 300–301
createClustersWithinTopics

300, 305
credibility of classification 219
credit

risk 233
score 236

credit card activity 236
credit worthiness

attributes 235
case study 233
overview 234

CreditErrorEstimator
244, 266, 274

criminal record 236
cross product calculation 111
cross-referencing 304
curse of dimensionality 159, 166

CustomAnalyzer 95
Cutting, Doug 22

D

DAG 172, 202
damping factor 36
DangerousUserType 239
dangling node 62

heuristic 67
data

diversity 265
incongruent 17
missing values 17
noisy 259
normalization 17, 156, 204
preprocessing 204
reliability 17
renormalization 115
representation

inaccuracies 17
size issues 18
squashing 158
understanding 207
understanding

importance 279
variability 17

data normalization 110
PearsonCorrelation 113

DataGenerator 240
DataPoint 146, 154
Datapoint 134
dataset

dimensionality 156
DatasetAdapter 311
DBSCAN 151

algorithm 162
border point 154
core point 154
directly density reachable 154
eps variable 154
ink drops analogy 151
minPoints variable 154

DBSCANAlgorithm 152–154
decision tree 170, 245, 258, 273

accuracy 246
algorithms 171
classifier 234, 266–267

decision tree classification
instability 247
interpretation 247

decisionTree
printTree 247

declarative programming 188
default analyzer 31
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 337
degree
of belief 81
of credibility 223
of freedom 251, 255–256

Delphi 310–311
Dataset interface 81
inner workings 86
recommend 87
recommendation

engine 80–81
similarity between users 82

DelphiUC 103
delphiUC 103
DelphiUR 103
Dendrogram 132
dendrogram

data structure 132–133
initialized 138
two linked hash maps 132
visual representation of 132

density-based
algorithms 151
spatial clustering of applica-

tions with noise. See
DBSCAN

dez 165
Dhillon, Inderjit S. 145
diagnosis

of diseases 166
of injuries 166

Diff2PropTest 253
difference of proportions

test 233, 250, 253
Digg

API 99, 146
RESTful services 14

Digg stories
blood donors 146
CSV file 146
Facebook 146

DiggCategory 100
DiggDelphi

findSimilarUsers 103
getTopNFriends 103
inner workings 102
recommend 103–104

dimensionality
curse of 157

directed acyclic graphs. See DAG
directed graph 34
discourse 288, 328
Distance 154
distance

city block 324
Euclidean 324

L2 324
properties 73
symmetry 74
taxi cab 324
triangle inequality 74

distributed computing
fallacies 17–19

distribution of clusters 305
divisive hierarchical

algorithms 129
docid field 27
DocRank 55–56, 280, 286

inner workings 57
matrix builder 57
relational tables 61
values reused 61

doctype field 27
document

distance 92
heuristic importance 59
terms 286, 288

document collection
business news 23
Lance Armstrong 23
U.S. politics 23
world news 23

domain of discourse 5
dot (inner) product 96
Drools 165, 170, 189, 193

ReteOO 190
Drools attribute

no-loop 197
ruleflow-group 197
salience 197

DTCreditClassifier 246, 259,
266

Dunham, Margaret 158

E

ECLiPSe 189
Eisner, Jason 161
elements of intelligence

synergy 100
EM algorithm

E-step 161
M-step 161

email categorization
174, 178, 187

email classification
blacklists 175
header tests 175
idiosyncracies 175
real-time blackhole lists 175
whitelists 175

email concept
NOT SPAM 178
SPAM 178

email content
congressional elections 175
global warming 175
Lance Armstrong 175
marathon 175
newspaper advertisement 175
Nicaragua elections 175
NVidia stock 175
Ortega 175
spam 175
U.S. politics 175
world news 175

email messages
sorting 174

EmailClassifier 175–176,
178, 184

EmailData 176
EmailDataset 176

getTrainingSet 178
setBinary(false) 187

EmailInstance 178
EmailRuleClassifier 192
embedding intelligence 11
Engage 9
ensembles

accuracy 260
of classifiers 263

Epictetus 232
epsilon neighborhood 154

selecting value 156
error

type I 220
type II 220

ESPN 314
Ester, Martin 151
estimateUserBasedRating 88
Euclidean distance 77, 127, 130,

145, 160, 324
EuclideanDistance 127
evaluation

10-fold cross-validation 221
evaluation for

recommendations 116
ExcellentUserType 239
Expectation-Maximization

algorithm 161

F

F distribution 256
F statistic 256
F test 233, 250, 255
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX338
Facebook 2, 6
RESTful API 14

fact checking 2
fallacies

intelligent applications 17
Fan, James 145
FASTCLUS 145
Fawcett, Tom 222
Fayyad, Usama M. 131
feed formats

Atom 13
RSS 13

FetchAndProcessCrawler
23, 282

addUrl 27
purpose of class 24

fetched 282
field content

indexed 27
stored 28
unstored 27

Fielding, Roy T. 14
FileListNewsDataset

285, 292, 297
filesystem analogy

Attributes 48
Concepts 48
Instances 48

financial
assets 238
turbulence 234

findSimilarUsers 81
fine tuning clustering 316
Fisher, Ronald A. 255
Fisher-Snedecor

distribution 256
flat reference structures 167
floating-point arithmetic 119
FN rate 230
folksonomy 5
FoodieBytes 13
forecasting

example 169
foreclosures 234
Forgy, Charles 190
Forgy, E.W. 144
forward chaining 170, 189
FP rate 221, 230
fraud

benefit application forms 199
detection 229
internet auction 199
purchasing transactions 199
telecommunications 199

TenUsersSample 200
transactional data 200

fraud detection 199
biases 214
hidden layer 214
use case 199

FraudErrorEstimator 203, 205
fraudulent transactions

identify 204
frequency

of occurrence 59
of terms 95

Friedman, Jerome 172
Friendster 9
F-score 221
FTest 256
functional analysis 325

G

Gabow, Harold 161
Galil, Zvi 161
games

online 10
garbage collection 61
GATE 328
gating network 275
Gaussian

distribution 200, 262
processes 182, 330

generalization 227
generated-test-txns.txt 201
geometries

flat vs. curved 79
getNoisyType 241
goodness measure 150
GoodUserType 239
Google 33

began it all 2
Finance 3
maps 13
matrix 35
News 3, 8, 279–280, 286

Google PageRank. See PageRank
Gospodnetić, Otis 22
gradient-descent learning

algorithm 218
grammar-based tokenizer 31
graph

directed 34
theoretic algorithms 139

group classification
representative news story 294

grouping
discrepancy 292

GroupLens 107
groups of news groups 304
Guan, Yuqiang 145
Guha, Ramanathan V. 161

H

Hadoop 63
Hadoop distributed filesystem.

See HDFS
Hastie, Trevor 172
Hatcher, Erik 22
HDFS 63
health news 284
Hebbian learning 229
hexagon 143
hi5 9
hierarchical

agglomerative algorithm 130
clustering 129
reference structures 167

hierarchical clustering 129
news stories 316

high dimensionality
specifics 158

high-dimensional clustering 157
HITS 34
Hits object 29
hm 141
home equity

lines of credit 236
HousingMaps 12
HTML 30, 283

parser 30
hyperbolic tangent function

59, 78
Hypertext Induced Topic

Search. See HITS
Hyves 9

I

IBM DeveloperWorks 7
IETF 14
if-then clauses 170
imeem 9
income 237
indexDocument 27
indexing 22, 30, 282

searching beyond 32
stage 31

IndexSearcher 29
IndexWriter 27
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 339
inference 2
response time limits 18

information content 227
information retrieval. See IR
inner product 324

applet 324
Instance 175, 182
intelligence

building 12
collective 4
embedding 11
milestone 33
as opposed to collaboration 4
triangle of 5

intelligent
combination potential 304
crawling 312
document system 4
sanity check note 81
searching 288

intelligent application
elements 5
fallacies 17
prerequisites 11

internet
behavioral characteristic 33
structural characteristic 33

Internet Engineering Task
Force. See IETF

intrapoint distance statistics 156
IR 21, 64

traditional steps 22
Item 71
item similarity 89

efficiency 97
large size data 92

ItemBasedSimilarity
calculate 90

Items 308
ithm 161

J

Jaccard
coefficient 130, 146, 186
metric 84, 91
similarity 79, 117, 149
similarity measure 130

JaccardCoefficient 149, 187,
213, 229

jaccardThreshold 187
JANINO 194
Janino

embedded Java compiler 194
JAR 81

Java
embedded compiler

Janino 194
Java Archive. See JAR
JavaScript 14
JavaScript Object Notation. See

JSON
JAX-WS 2.0 15
JAX-WSA 15
JBoss

Drools 165
Rules 170, 189

Jess 170, 189
JFlex 31
job classes 237
JSON 1, 14
JSR-181 15

K

K nearest neighbors. See kNN
Karger, David R. 161
Kendall’s tau 112, 119
Klein, Philip N. 161
Kleinberg, Jon 34
k-means algorithm 129, 142,

162, 304
centroids 144
core algorithm 143
pickInitialMeanValues 144

k-means clustering 129
k-means++ 145
kNN 171
knowledge representation 165
knownurls 282
Kruskal_fs algorithm 141
Kullback-Leibler

divergences 145

L

L2 norm 324
labels

top-level 6
land property 238
language

morphology 327
syndication-specific 14
syntax 327

language detection 284
Langville, Amy 36
large databases

algorithm properties 131

large-scale cleansing
effectiveness 286

large-scale crawling
efficiency 286

large-scale searching
computing constraints 61
data structures 62
PageRank accuracy 62

learning rule 203
learning vector quantization. See

LVQ
leave-one-out 222
legitimate transactions 204
level of significance

statistical test 251, 253, 255
lexical analyzer 31
lexicographic ordering 130
LGPL 55
library

call number 166
linear

correlation coefficient 110
regression 171

link algorithms
comparison 139
visualization 135

link analysis 3, 34
documents 55

link-based algorithms 132, 134
LinkedIn 9
LinkMatrix 149
links 201
linkThreshold 303
Linnaean classification 166
Lloyd, S.P. 144
loan defaults 234
logistic

function 172
regression 172

lookup table
problems with approach 16

Lp norm 324
Lucene 22, 283, 286

boosting 31
Document class 27
Document object 30
document score 286
Field class 27
index files 25
Query 32
query expression 31
QueryParser class 29
searching 28
searching with 22–32
StandardAnalyzer class 31
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX340
Lucene analyzers 30
non-English languages 31
stop words 31
synonyms 31
text 30

Lucene and PageRank
combining scores 43–45

Lucene Documents
removal and update 31
variety 31

Lucene text
analyzers 31

Lucene, PageRank, and naïve
Bayes

combining scores 46, 51
LuceneIndexBuilder 25, 66
LucenePDFDocument 30, 283
LVQ 171

M

machine accuracy 119
MapReduce 63
Markov chain theory 35
mashups

aggregated content 7
defined 7

mathematical formulas 323
matrices 323

sparse 35
matrix

adjacency 134
confusion 220, 243, 274
cost 230
similarity 134
transition probability 35

matrix H
basic link contribution 40
dangling node

contribution 40
substochastic version 40
symmetric reordering 62
teleportation contribution 40
Word documents 57

maxBatchSize 27
McNemar 253

test 233, 250, 274
McNemar test

bagging vs. boosting 267
McNemarTest 251
mean value. See centroid
media-sharing sites

binary format 9
MegaUpload 9
mergeClusters 139

MergeGoodnessMeasure 149
meta-algorithm 279
metaclassifier scheme 174
metadata

web page 24
metric 76

spaces 325
Meyer, Carl 36
Microsoft 15
Microsoft OLE 2 Compound

Document 30
Microsoft Word 30

97, 2000, XP, and 2003 283
documents 55
documents parsing 55
parser 30

Microsoft Word 2000 30
Microsoft Word 2003 30
Microsoft Word 97 30
Microsoft Word XP 30
minimum spanning tree. See

MST
mining opportunity 280
MinorThird 328
misclassification

cost 243
misclassified

news stories 293
missing attribute value 184
mixture of experts 256, 275
module

pattern-matching 189
mortgage 236

application 234
down payment 237
financing 234

mortgage mess
United States 234

mortgage rates
teaser 234

motorcycle ownership 237
MovieLens 107
MovieLens dataset 108

large 116
RMSE 116
small 110

MovieLensData
createDataset 108

MovieLensDelphi 108, 113, 116
MovieLensItemSimilarity 113
MST 129, 139

algorithms 161
Borvka_fs algorithm 141
chain effect 142
findMinimumEdge 142

Kruskal_fs algorithm 141
randomized algorithm 161

MST class 140
Edge 141

MST link algorithm
time complexity 142

MSTSingleLinkAlgorithm 134
MSWordDocumentParser 55
multiclass classification 174, 178

complexity 224
multidimensional data

ordering 126
multilingual text 284
MusicData 81
MusicUser 71, 73

getSimilarity 72, 76
plot 74

MyDiggSpace.com 99
case study 99
data statistics 100
Find friends 100

MyDiggSpaceDataset 146
MySearcher 28, 31, 43, 51
MySpace 2, 6, 9
MySQL 124

N

naïve Bayes algorithms 284, 288
robustness 51

naïve Bayes classifier
243, 267, 294

naïve similarity 78
beta 78

NaiveBayes 48, 50, 175–176,
179, 227, 244, 294, 297

classification 172
classifier 46, 48
TrainingSet 182

natural language elements
high-level 288

natural language processing. See
NLP

NBCreditClassifier 244, 259,
266

NBLanguageDetector 284
NBStoryClassifier 294–295,

297, 299
Neapolitan, Richard E. 173
nearest neighbor

algorithms 129
NekoHTML 30, 283
NetFlix

Cinematch 3
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 341
Netflix 3, 108–109
movies selection 107

Netflix prize
competition 118
RMSE 116

Netflix.com 92
Netscape

Rich Site Summary 14
network

topology 213
neural network 169, 171,

234, 258
architecture 203
BaseNode 217
calculateWeightAdjustments

219
connectFully 217
credit classifier 247
design complexity 249
disadvantages 172
essential elements 202
feedback 202
feedforward 202
fireNeuron 217
fireNeuronDerivative 217
fully connected 202
layers 202
learning rate 217
learningRate 217
LinearNode 216
links 217
overview 201
SigmoidNode 216
structure 216
training phase 202
updateWeights 219

neural network classifiers
accuracy 248

neural networks 330
complex valued 331

neurons 201
news

content 280
portal 279–280
topic 297

News Alerts 281
news browser

create and display 291
window 286

news categories 297, 305
assignment 288

news clustering
analysis 302

news group
clustering robustness 293

groups of 304
juxtaposition 292

news stories 279
arrangement 290
misclassified 293
searching 279

NewsCategory 297
NewsClusterBuilder 302–303
NewsCrawler 281–282, 312
NewsDataset 284, 292, 301
NewsProcessor 286, 295, 299

training phase 294
NewsStory 297
Niemeyer, Pat 317
Ning 9
NLP 97, 281, 283
NNCreditClassifier

248, 259, 266
NNFraudClassifier 203–204,

208, 210
nodes

dangling 36, 62
hidden 201

noise
elements 153
levels 240, 242–243

noisy data 259
nonparametric

correlation 112, 119
method 257

normal distribution 242
null hypothesis 250
numerical representation 130

O

OASIS 328
Object Management Group. See

OMG
Octave 331
OIIC 166
OLE 2 283
OMG 168
online games 10
ontology 165, 167

analogy with OOD 167
attributes 167
concepts 167
engineering 165
example 167
instances 167
management 165
semantic 167

OpenSocial
premise 8

Oracle 9, 15
order of operations 289
ordering

and clustering 124
food 2

Ordonez, Carlos 161
Orkut 79
orkut 9
outlinks 24, 35
overfitting 178, 227

P

Package 194
Page, Larry 34
pagelinks 282
PageRank 33–45, 280, 286

acceleration techniques 63
Aitken extrapolation 63
alpha 36
alpha coefficient 38
alpha effect on

convergence 38
alpha selection 38
approximate aggregation

technique 63
calculation 36
convergeness and

uniqueness 35
damping factor 36
dangling nodes 36, 67
direct methods (solvers) 38
epsilon effects 42
hyperlink matrix 34
key idea 34
power method 34–35, 38
primitivity adjustment 36
quadratic extrapolation

technique 63
random surfer 36
scaling 67
score scaling 45
stochasticity adjustment 36
teleportation effect 36, 38, 67
vector 34

PageRankMatrixH 38
pair-wise classifier

comparisons 250
parsing 30, 282
partitional algorithm 142
pattern recognition 9
PDF 30, 283

documents 55
indexing 30

PDFBox 30, 283
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX342
Pearson’s r 110
counterexample 112

Pearson’s r calculation
singular case 111

PearsonCorrelation 113
roundoff error 119

pecuniary aid 234
perceptions 164
personalization 46, 280

temporal effects 47
vector 67

phonetics 327
phonology 327
PhraseQuery 32

slope 32
Plaxo 9
point density 151
pointwise deviations 111
politics news 284
portal feature

In the News 280
portals

aggregated content
dispersed 8

PorterStemFilter 178
posterior probability 184

heuristics 50
power laws 45
power method

acceleration 38
number of iterations 62

pragmatics 288, 328
Precision 221
precision 64–65
PredictedNewsStoryRating 311
prediction

degree of belief 81
PredictWallStreet 3
preprocessing stage 23
prerequisites

for intelligent applications 11
prior probability

heuristics 51
probabilities

conditional 50, 182–183
posterior 50
prior 50, 182–183

probability 182
distribution 251
of linkage 316

processed 282
processing

natural-language 22
production rules 170

product-moment correlation
coefficient 110

ProgrammableWeb 7
programming

declarative 188
imperative 188

Prolog 189
proximity

relative 134
threshold 134–135

Q

quality assurance 293
query

context 286
“google ads” 47
terms 288

QueryParser 32

R

Random 242
random

samples 257
surfer 35

Rank 40
error evaluation 42

rank correlation 119
ranking algorithms 286
RapidShare 9
Rating 71
rating

value range note 81
rating storage

advantages 86
RatingCountMatrix 84, 91
Ratings 308
ratings

artificial bias 104
range 71

RDF 13
Site Summary 13

Recall 221
recall 64–65
recommendation engine 70–71

based on CF 82
basic concepts 308
code optimizations 89
combinations 99–100
content based item-item 99
data normalization 108
ensemble methods 118
neighbor selection 108

score normalization 103
similarity 71
types 79
user based 80

recommendation example
music song online store 70
online music store 80

recommendation heuristics 103
recommendation ratings

value range 118
recommendation system

news stories 308
size issues 115

recommendations 3
accuracy evaluation 116
ancient proverb 80
based on content 92
cost evaluation 105
evaluation for 116
large systems 108
live update 115
quality 115
real-time 115
response time 110
roundoff-error

minimization 118
RecommendationType

ITEM_PENALTY_BASED 311
recommender combination

based on averaging 105
based on voting 105

reference encoding 62
reference structures 5, 165

dictionaries 5
knowledge bases 5
ontologies 5

regression algorithms 172
Reina, Cory A. 131
relative

proximity 134
ranking 102

relevance
subjectivity 46

relevance score 29, 286
combination 68
generalization 92

repository of knowledge 9
representational motivation 233
Representational State Transfer.

See REST
representations of

knowledge 165
Resource Description Frame-

work. See RDF
REST 14
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 343
Rete 170
algorithm 189, 192

ReteOO 190
retirement 238
RFC 4287 14
Richardson, Leonard 14
RMSE 116
RMSEEstimator 116
Robust Clustering Using Links.

See ROCK
ROC

curves 222
graphs 222

ROCK 130, 146
algorithm 161–162, 300, 304
algorithm details 148
algorithms tweaks 315
formula explanation 150
goodness measure 149
initialization stage 149
key idea 147
link structure 149
termination criteria 149

ROCKAlgorithm 146–147,
303, 315

ROCKClusters class 149
root mean square error. See

RMSE
roundoff error 111

magnitude of 119
minimize 118

RSS 13
RSS 2.0 14
R-trees 158
Ruby, Sam 14
rule engine 189

authoring 193
runtime 193

rule-based classification 188
RuleEngine 228
RuleQuest 171
rules

AccumulateFunction 194
attribute salience 197
ChainedProperties 194
ClassificationResult 191
Dialect 194
Email 191
engine 165
global statement 191
isSpamEmail 191
Package instance 194
PackageBuilder 194
PackageBuilderConfiguration

 194

RuleBase 194
RuleEngine 193
StatefulSession 194
WorkingMemory 194

S

SAAJ 15
Salesforce 9
salience 198
sampling

distribution estimation 257
with replacement 257

SAP 15
SAS 145
Scalable Vector Graphics. See

SVG
ScanScout 9
Schatzker

classification system 166
score

relevance 29
scoring

index page 45
screen scraping 13
scripting 317
search engines

tuning 64
turning point in web history 3

search personalization
user clicks 45

search quality 64
metrics 64

search validation
precision 64
precision/recall plot 65
recall 64

searching 21, 30, 282
analysis stage 31
basic stages 29
beyond indexing 32
credibility 65
efficient data structures 61
intention 33
large-scale issues 61
link analysis 32
Lucene and PageRank

scores 43
PageRank 34
reference encoding 62
relevance 46
relevance score 29

SearchResult 29
second order effects 101
See5 171

selectBestMatchingTopic 299
selection strategies 264
selectLongestStory 299, 315
selectRepresentativeStory 315
self-organizing maps 229
semantic ontology 167
semantics 288, 328
semiotics 198
serialized PHP 14
setTopTerms 297
SFDataset 134
Sheikholeslami,

Gholamhosein 130
shortest path metric 130
similarity 71

ad hoc threshold 104
best empirical results 79
between friends 81
calculation of 76, 84
code optimization 82
common misconception 79
compares proximity 71
cosine 95
evaluation façade 87
formula selection 79
formulas 77
heuristic 78
hybrid models 99
item 89
Jaccard metric 84
large scale comparisons of 79
linear correlation

coefficient 110
measures 73
metrics 117
music songs 89
naïve 78
normalization 89, 104
of content 92
plotting 74
ratio of the common items 78
related to cognition 74
shortcomings 77
symmetric matrix 84
symmetrical property 84
visual representation 74

similarity matrix 134
sparsity 84
upper triangular form 84

Simple Access Object Protocol.
See SOAP

single-link algorithms 135
chain effect 142
computational

complexity 136
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX344
single-link algorithms (continued)
MST 139
proximity threshold 135

SingleLinkAlgorithm 134
singletons 140, 146, 294,

301, 305
large number 303

Six Apart 9
SOAP 15
SOAP 1.1 15
SOAP 1.2 15
Soar 170
social networking sites

two most visited 6
SOII 166
SortedArrayClustering 126–127
SourceForge.net 123
SourceForge-like data 134
spam

documents 56
filtering 174
pages 32

Spam Assassin 175
spamRules.drl 191
spamRulesWithConflict.drl 198
spanning tree 139
sparse matrices 35
Spearman rank-order

correlation 112
coefficient 119

specialization 227
Specificity 221
spectral

clustering 130
methods 63

speech synthesis 327
Spencer, Thomas H. 161
spiders 13
sports news 284
SQL

clustering with 124
statements 124

SQL query
ORDER BY 124

SQLEM algorithm 161
Staab, Steffan 165
standard

deviation 111
normal distribution 254

StandardAnalyzer 30–31, 95,
178, 283

StandardTokenizer 31
statistic choice 251
statistic q 255

statistically significant 250
stochasticity adjustment 36
stock

forecasting 3
StoryRecommender 310–311
structural algorithms 171

functional 171
numerical approximation 171

structures
flat reference 167
hierarchical reference 167

Studer, Rudi 165
supercluster 302, 305

avoidance 308
breakup 307

supervised learning 220
semiempirical approach 224

support vector machines. See
SVM

surfer
random 35

SVG 1
SVM 16
Swing 292

client 301–302
synapse 201–202

weight 202
syndicated content 13
syndication-specific language 14

T

Tanimoto metric 117
Tarjan, Robert E. 161
Taxicab Geometry 118
teaser rates 234
technology articles

email spam 290
technology news 284
teleportation mechanism 34
tells 200
term vectors 59
termination criteria 129, 149
test

difference of
proportions 233, 250

test-users.txt 243
text

multilingual 284
tokenizing 30
understanding freely typed 4

text analysis 59
noise reduction 95
stemming 95

stop words 95
word disambiguation 97

TextMining 30, 55, 283
See also tm-extractor

textual analysis 178
textual information

representation 95
threshold parameter 129
threshold value

statistical test 250
Tianji 9
Tibshirani, Robert 172
timestamp 47
title field 27
tm-extractor 55
token

frequency of occurrence 59
tokenizer

grammar-based 31
tokenizing

acronyms 31
alphanumerics 31
Chinese, Japanese, and

Korean 31
computer host names 31
email addresses 31
text 30

top N frequent terms 178
Top stories 280
TopicalNewsClusterBuilder

307, 316
top-level labels 6
training

bootstrap 222
leave-one-out 222

TrainingSet 48, 50, 176,
178, 297

training-txns.txt 204
training-users.txt 243
trainOnAttribute 183
TransactionDataset 204
TransactionInstanceBuilder

210, 213
TransactionNN 204, 208,

210–211, 213–214, 229
transactions

identify fraudulent 204
legitimate 204

transition probability
matrices 35

transparent learning
algorithms 16

trap
black box 205

triangle of intelligence 5
Licensed to Deborah Christiansen <pedbro@gmail.com>

INDEX 345
triangulation effect 101
type I error 220
type II error 220

U

UIMA 328
uncorrelated items 111
underfitting 227
unsolicited bulk email. See spam
unstable classifiers 258
unsupervised learning 128
url field 27
UseCaseData 258

createUserTypes 241
User 71
user click analysis 33
user clicks 287

news portal 312
user similarity

reliability 97
UserBasedSimilarity 82
UserClick 48
user-clicks.csv 46, 313
user-content similarities 103
UserContentBasedSimilarity 93
UserCreditNN 248–249, 274
UserInstanceBuilder 245, 261
user-item similarities

content-based 97
user-item-content similarity 103
Users 308
UserStatistics 204
UserType

addNoiseLevel 242
utility problem 225

V

Vassilvitskii, Sergei 145
vector

personalization 67
vectors 323
very large database. See VLDB
VeryGoodUserType 239
Viadeo 9
visual pattern recognition 151
visualization 243
VLDB 131
voice recognition 9

W

WaveCluster 130
wavelet clustering 130
web

semantic interpretation 14
web crawler

categories 320
components 319
custom 66

web crawling 13, 319
web services

providers 15
websites

inference 2
learning capacity 2
syndication 13

WhitespaceAnalyzer 31
WHO 166
wiki

defined 9
Wikipedia 9
world news 284

WS-Addressing 15
WS-I Basic Profile 15
WS-Policy 15
WS-RM 15
WS-Security 15

X

Xerox
Palo Alto Research Center 80

XForms 1
Xignite

financial web services 15
XING 9
XML 14, 30, 283
XML Path Language. See XPath
XML User Interface Language.

See XUL
XOR gate 213
XORNetwork 213
XPath 1
XSL Transformations. See XSLT
XSLT 1
XUL 1

Y

Yahoo!
RSS feeds 14

YouTube
media sharing 9

Z

z statistic 254–255
Licensed to Deborah Christiansen <pedbro@gmail.com>

ISBN 13: 978-1-933988-66-5
ISBN 10: 1-933988-66-5

9 7 8 1 9 3 3 9 8 8 6 6 5

99445

A
n algorithm is a sequence of steps that solves a problem.
Algorithms of the Intelligent Web provides exactly that—
explicit, clearly organized patterns to implement valuable

web application features like recommendation engines, smart
searching, content organizers, and much more. With these
techniques you’ll capture vital raw information about your users
and profi tably transform it into action.

Algorithms of the Intelligent Web is a handbook for web devel-
opers who want to exploit relationships in user data that can’t be
discovered manually. Th e book presents crystal-clear explanations
of techniques you can apply immediately. It is based on the authors’
practical experience as web developers and their deep expertise
in the science of machine learning. With a wealth of detailed,
Java-based examples this book shows you how to build applications
that behave intelligently and learn from your users’ actions.

What’s Inside
Create recommendations like Netfl ix or Amazon
Implement Google’s PageRank algorithm
Discover matches on social-networking sites
Organize your news group discussions
Select topics of interest from shared bookmarks
Filter spam and categorize emails based on content

Dr. Haralambos (Babis) Marmanis is a pioneer in the adoption of
machine learning techniques for industrial solutions, and also a
world expert in supply management. Dmitry Babenko has
designed applications and infrastructure for banking, insurance,
supply-chain management, and business intelligence companies.

For online access to the authors, code samples, and a free ebook for owners
of this book, go to www.manning.com/AlgorithmsoftheIntelligentWeb

$44.99 / Can $56.99 [INCLUDING eBOOK]

Algorithms of the Intelligent Web

JAVA/WEB

Haralambos Marmanis Dmitry Babenko

“Unequivocally outstanding—
 this is the best technical book
 I have read all year.”
 —Robert Hanson
 Quality Technology Services

“You don’t need a PhD to build
 an intelligent website—pick up
 this book instead.”
 —Ajay Bhandari, FoodieBytes.com

“Very useful ... will bring
 you up to speed quickly.”
 —Sumit Pal, LeapFrogrx

“Excellent ... a perfect blend of
 theory and practice.”
 —Carlton Gibson
 Noumenal Soft ware

“Unlock the future of the web
 by analyzing what we know
 today!”
 —Eric Swanson, AAA

M A N N I N G

123

SEE INSERT

	Front Cover
	brief contents
	contents
	preface
	acknowledgments
	H. Marmanis
	D. Babenko

	about this book
	Roadmap
	Who should read this book
	Code Conventions
	Author Online
	About the cover illustration

	What is the intelligent web?
	1.1 Examples of intelligent web applications
	1.2 Basic elements of intelligent applications
	1.3 What applications can benefit from intelligence?
	1.3.1 Social networking sites
	1.3.2 Mashups
	1.3.3 Portals
	1.3.4 Wikis
	1.3.5 Media-sharing sites
	1.3.6 Online gaming

	1.4 How can I build intelligence in my own application?
	1.4.1 Examine your functionality and your data
	1.4.2 Get more data from the web

	1.5 Machine learning, data mining, and all that
	1.6 Eight fallacies of intelligent applications
	1.6.1 Fallacy #1: Your data is reliable
	1.6.2 Fallacy #2: Inference happens instantaneously
	1.6.3 Fallacy #3: The size of data doesn’t matter
	1.6.4 Fallacy #4: Scalability of the solution isn’t an issue
	1.6.5 Fallacy #5: Apply the same good library everywhere
	1.6.6 Fallacy #6: The computation time is known
	1.6.7 Fallacy #7: Complicated models are better
	1.6.8 Fallacy #8: There are models without bias

	1.7 Summary
	1.8 References

	Searching
	2.1 Searching with Lucene
	2.1.1 Understanding the Lucene code
	2.1.2 Understanding the basic stages of search

	2.2 Why search beyond indexing?
	2.3 Improving search results based on link analysis
	2.3.1 An introduction to PageRank
	2.3.2 Calculating the PageRank vector
	2.3.3 alpha: The effect of teleportation between web pages
	2.3.4 Understanding the power method
	2.3.5 Combining the index scores and the PageRank scores

	2.4 Improving search results based on user clicks
	2.4.1 A first look at user clicks
	2.4.2 Using the NaiveBayes classifier
	2.4.3 Combining Lucene indexing, PageRank, and user clicks

	2.5 Ranking Word, PDF, and other documents without links
	2.5.1 An introduction to DocRank
	2.5.2 The inner workings of DocRank

	2.6 Large-scale implementation issues
	2.7 Is what you got what you want? Precision and recall
	2.8 Summary
	2.9 To do
	2.10 References

	Creating suggestions and recommendations
	3.1 An online music store: the basic concepts
	3.1.1 The concepts of distance and similarity
	3.1.2 A closer look at the calculation of similarity
	3.1.3 Which is the best similarity formula?

	3.2 How do recommendation engines work?
	3.2.1 Recommendations based on similar users
	3.2.2 Recommendations based on similar items
	3.2.3 Recommendations based on content

	3.3 Recommending friends, articles, and news stories
	3.3.1 Introducing MyDiggSpace.com
	3.3.2 Finding friends
	3.3.3 The inner workings of DiggDelphi

	3.4 Recommending movies on a site such as Netflix.com
	3.4.1 An introduction of movie datasets and recommenders
	3.4.2 Data normalization and correlation coefficients

	3.5 Large-scale implementation and evaluation issues
	3.6 Summary
	3.7 To Do
	3.8 References

	Clustering: grouping things together
	4.1 The need for clustering
	4.1.1 User groups on a website: a case study
	4.1.2 Finding groups with a SQL order by clause
	4.1.3 Finding groups with array sorting

	4.2 An overview of clustering algorithms
	4.2.1 Clustering algorithms based on cluster structure
	4.2.2 Clustering algorithms based on data type and structure
	4.2.3 Clustering algorithms based on data size

	4.3 Link-based algorithms
	4.3.1 The dendrogram: a basic clustering data structure
	4.3.2 A first look at link-based algorithms
	4.3.3 The single-link algorithm
	4.3.4 The average-link algorithm
	4.3.5 The minimum-spanning-tree algorithm

	4.4 The k-means algorithm
	4.4.1 A first look at the k-means algorithm
	4.4.2 The inner workings of k-means

	4.5 Robust Clustering Using Links (ROCK)
	4.5.1 Introducing ROCK
	4.5.2 Why does ROCK rock?

	4.6 DBSCAN
	4.6.1 A first look at density-based algorithms
	4.6.2 The inner workings of DBSCAN

	4.7 Clustering issues in very large datasets
	4.7.1 Computational complexity
	4.7.2 High dimensionality

	4.8 Summary
	4.9 To Do
	4.10 References

	Classification: placing things where they belong
	5.1 The need for classification
	5.2 An overview of classifiers
	5.2.1 Structural classification algorithms
	5.2.2 Statistical classification algorithms
	5.2.3 The lifecycle of a classifier

	5.3 Automatic categorization of emails and spam filtering
	5.3.1 NaïveBayes classification
	5.3.2 Rule-based classification

	5.4 Fraud detection with neural networks
	5.4.1 A use case of fraud detection in transactional data
	5.4.2 Neural networks overview
	5.4.3 A neural network fraud detector at work
	5.4.4 The anatomy of the fraud detector neural network
	5.4.5 A base class for building general neural networks

	5.5 Are your results credible?
	5.6 Classification with very large datasets
	5.7 Summary
	5.8 To do
	5.9 References
	Classification schemes
	Books and articles

	Combining classifiers
	6.1 Credit worthiness: a case study for combining classifiers
	6.1.1 A brief description of the data
	6.1.2 Generating artificial data for real problems

	6.2 Credit evaluation with a single classifier
	6.2.1 The naïve Bayes baseline
	6.2.2 The decision tree baseline
	6.2.3 The neural network baseline

	6.3 Comparing multiple classifiers on the same data
	6.3.1 McNemar’s test
	6.3.2 The difference of proportions test
	6.3.3 Cochran’s Q test and the F test

	6.4 Bagging: bootstrap aggregating
	6.4.1 The bagging classifier at work
	6.4.2 A look under the hood of the bagging classifier
	6.4.3 Classifier ensembles

	6.5 Boosting: an iterative improvement approach
	6.5.1 The boosting classifier at work
	6.5.2 A look under the hood of the boosting classifier

	6.6 Summary
	6.7 To Do
	6.8 References

	Putting it all together: an intelligent news portal
	7.1 An overview of the functionality
	7.2 Getting and cleansing content
	7.2.1 Get set. Get ready. Crawl the Web!
	7.2.2 Review of the search prerequisites
	7.2.3 A default set of retrieved and processed news stories

	7.3 Searching for news stories
	7.4 Assigning news categories
	7.4.1 Order matters!
	7.4.2 Classifying with the NewsProcessor class
	7.4.3 Meet the classifier
	7.4.4 Classification strategy: going beyond low-level assignments

	7.5 Building news groups with the NewsProcessor class
	7.5.1 Clustering general news stories
	7.5.2 Clustering news stories within a news category

	7.6 Dynamic content based on the user’s ratings
	7.7 Summary
	7.8 To do
	7.9 References

	appendix A: Introduction to BeanShell
	A.1 What is BeanShell?
	A.2 Why use BeanShell?
	A.3 Running BeanShell
	A.4 References

	appendix B: Web crawling
	B.1 An overview of crawler components
	B.1.1 The stages of crawling
	B.1.2 Our simple crawler
	B.1.3 Open source web crawlers

	B.2 References

	appendix C: Mathematical refresher
	C.1 Vectors and matrices
	C.2 Measuring distances
	C.3 Advanced matrix methods
	C.4 References

	appendix D: Natural language processing
	D.1 References

	appendix E: Neural networks
	E.1 References

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back Cover

