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Preface

The aim of this monograph is to provide an introduction to some fundamental
problems, results and algorithms of invariant theory. The focus will be on the
three following aspects:

(i) Algebraic algorithms in invariant theory, in particular algorithms arising
from the theory of Gröbner bases;

(ii) Combinatorial algorithms in invariant theory, such as the straightening al-
gorithm, which relate to representation theory of the general linear group;

(iii) Applications to projective geometry.

Part of this material was covered in a graduate course which I taught at RISC-
Linz in the spring of 1989 and at Cornell University in the fall of 1989. The
specific selection of topics has been determined by my personal taste and my
belief that many interesting connections between invariant theory and symbolic
computation are yet to be explored.

In order to get started with her/his own explorations, the reader will find
exercises at the end of each section. The exercises vary in difficulty. Some of
them are easy and straightforward, while others are more difficult, and might in
fact lead to research projects. Exercises which I consider “more difficult” are
marked with a star.

This book is intended for a diverse audience: graduate students who wish
to learn the subject from scratch, researchers in the various fields of application
who want to concentrate on certain aspects of the theory, specialists who need
a reference on the algorithmic side of their field, and all others between these
extremes. The overwhelming majority of the results in this book are well known,
with many theorems dating back to the 19th century. Some of the algorithms,
however, are new and not published elsewhere.

I am grateful to B. Buchberger, D. Eisenbud, L. Grove, D. Kapur, Y. Laksh-
man, A. Logar, B. Mourrain, V. Reiner, S. Sundaram, R. Stanley, A. Zelevinsky,
G. Ziegler and numerous others who supplied comments on various versions of
the manuscript. Special thanks go to N. White for introducing me to the beau-
tiful subject of invariant theory, and for collaborating with me on the topics in
Chapters 2 and 3. I am grateful to the following institutions for their support: the
Austrian Science Foundation (FWF), the U.S. Army Research Office (through
MSI Cornell), the National Science Foundation, the Alfred P. Sloan Foundation,
and the Mittag-Leffler Institute (Stockholm).

Ithaca, June 1993 Bernd Sturmfels



Preface to the second edition

Computational Invariant Theory has seen a lot of progress since this book was
first published 14 years ago. Many new theorems have been proved, many new
algorithms have been developed, and many new applications have been explored.
Among the numerous interesting research developments, particularly noteworthy
from our perspective are the methods developed by Gregor Kemper for finite
groups and by Harm Derksen on reductive groups. The relevant references in-
clude

Harm Derksen, Computation of reductive group invariants, Advances in Mathe-
matics 141, 366–384, 1999;
Gregor Kemper, Computing invariants of reductive groups in positive character-
istic, Transformation Groups 8, 159–176, 2003.

These two authors also co-authored the following excellent book which centers
around the questions raised in my chapters 2 and 4, but which goes much further
and deeper than what I had done:

Harm Derksen and Gregor Kemper, Computational invariant theory (Encyclopae-
dia of mathematical sciences, vol. 130), Springer, Berlin, 2002.

In a sense, the present new edition of “Algorithms in Invariant Theory” may now
serve the role of a first introductory text which can be read prior to the book
by Derksen and Kemper. In addition, I wish to recommend three other terrific
books on invariant theory which deal with computational aspects and applications
outside of pure mathematics:

Karin Gatermann, Computer algebra methods for equivariant dynamical systems
(Lecture notes in mathematics, vol. 1728), Springer, Berlin, 2000;
Mara Neusel, Invariant theory, American Mathematical Society, Providence, R.I.,
2007;
Peter Olver, Classical invariant theory, Cambridge University Press, Cambridge,
1999.

Graduate students and researchers across the mathematical sciences will find it
worthwhile to consult these three books for further information on the beautiful
subject of classical invariant theory from a contempory perspective.

Berlin, January 2008 Bernd Sturmfels
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1 Introduction

Invariant theory is both a classical and a new area of mathematics. It played a
central role in 19th century algebra and geometry, yet many of its techniques
and algorithms were practically forgotten by the middle of the 20th century.

With the fields of combinatorics and computer science reviving old-fashioned
algorithmic mathematics during the past twenty years, also classical invariant
theory has come to a renaissance. We quote from the expository article of Kung
and Rota (1984):

“Like the Arabian phoenix rising out of its ashes, the theory of invariants, pro-
nounced dead at the turn of the century, is once again at the forefront of mathe-
matics. During its long eclipse, the language of modern algebra was developed,
a sharp tool now at last being applied to the very purpose for which it was
invented.”

This quote refers to the fact that three of Hilbert’s fundamental contributions
to modern algebra, namely, the Nullstellensatz, the Basis Theorem and the Syzygy
Theorem, were first proved as lemmas in his invariant theory papers (Hilbert
1890, 1893). It is also noteworthy that, contrary to a common belief, Hilbert’s
main results in invariant theory yield an explicit finite algorithm for computing
a fundamental set of invariants for all classical groups. We will discuss Hilbert’s
algorithm in Chap. 4.

Throughout this text we will take the complex numbers C to be our ground
field. The ring of polynomials f .x1; x2; : : : ; xn/ in n variables with complex
coefficients is denoted CŒx1; x2; : : : ; xn�. All algorithms in this book will be
based upon arithmetic operations in the ground field only. This means that if
the scalars in our input data are contained in some subfield K � C, then all
scalars in the output also lie in K. Suppose, for instance, we specify an algorithm
whose input is a finite set of n� n-matrices over C, and whose output is a finite
subset of CŒx1; x2; : : : ; xn�. We will usually apply such an algorithm to a set of
input matrices which have entries lying in the field Q of rational numbers. We
can then be sure that all output polynomials will lie in QŒx1; x2; : : : ; xn�.

Chapter 1 starts out with a discussion of the ring of symmetric polynomials,
which is the simplest instance of a ring of invariants. In Sect. 1.2 we recall some
basics from the theory of Gröbner bases, and in Sect. 1.3 we give an elemen-
tary exposition of the fundamental problems in invariant theory. Section 1.4 is
independent and can be skipped upon first reading. It deals with invariants of
algebraic tori and their relation to integer programming. The results of Sect. 1.4
will be needed in Sect. 2.7 and in Chap. 4.



2 Introduction

1.1. Symmetric polynomials

Our starting point is the fundamental theorem on symmetric polynomials. This
is a basic result in algebra, and studying its proof will be useful to us in three
ways. First, we illustrate some fundamental questions in invariant theory with
their solution in the easiest case of the symmetric group. Secondly, the main
theorem on symmetric polynomials is a crucial lemma for several theorems to
follow, and finally, the algorithm underlying its proof teaches us some basic
computer algebra techniques.

A polynomial f 2 CŒx1; : : : ; xn� is said to be symmetric if it is invariant
under every permutation of the variables x1; x2; : : : ; xn. For example, the poly-
nomial f1 WD x1x2Cx1x3 is not symmetric because f1.x1; x2; x3/ 6D f1.x2; x1;
x3/ D x1x2 Cx2x3. On the other hand, f2 WD x1x2 Cx1x3 Cx2x3 is symmetric.

Let ´ be a new variable, and consider the polynomial

g.´/ D .´ � x1/.´ � x2/ : : : .´ � xn/

D ´n � �1´
n�1 C �2´

n�2 � : : :C .�1/n�n:

We observe that the coefficients of g with respect to the new variable ´,

�1 D x1 C x2 C : : :C xn;

�2 D x1x2 C x1x3 C : : :C x2x3 C : : :C xn�1xn;

�3 D x1x2x3 C x1x2x4 C : : :C xn�2xn�1xn;

� � � � � � � � � � � � � � � � � � � � �
�n D x1x2x3 � � � xn;

are symmetric in the old variables x1; x2; : : : ; xn. The polynomials �1; �2; : : : ; �n

2 CŒx1; x2; : : : ; xn� are called the elementary symmetric polynomials.
Since the property to be symmetric is preserved under addition and multi-

plication of polynomials, the symmetric polynomials form a subring of CŒx1;
: : : ; xn�. This implies that every polynomial expression p.�1; �2; : : : ; �n/ in the
elementary symmetric polynomials is symmetric in CŒx1; : : : ; xn�. For instance,
the monomial c � ��1

1 �
�2

2 : : : �
�n
n in the elementary symmetric polynomials is

symmetric and homogeneous of degree �1 C 2�2 C : : : C n�n in the original
variables x1; x2; : : : ; xn.

Theorem 1.1.1 (Main theorem on symmetric polynomials). Every symmetric
polynomial f in CŒx1; : : : ; xn� can be written uniquely as a polynomial

f .x1; x2; : : : ; xn/ D p
�
�1.x1; : : : ; xn/; : : : ; �n.x1; : : : ; xn/

�
in the elementary symmetric polynomials.

Proof. The proof to be presented here follows the one in van der Waerden
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(1971). Let f 2 CŒx1; : : : ; xn� be any symmetric polynomial. Then the fol-
lowing algorithm rewrites f uniquely as a polynomial in �1; : : : ; �n.

We sort the monomials in f using the degree lexicographic order, here de-
noted “�”. In this order a monomial x˛1

1 : : : x
˛n
n is smaller than another mono-

mial xˇ1

1 : : : x
ˇn
n if it has lower total degree (i.e.,

P
˛i <

P
ˇi ), or if they have

the same total degree and the first nonvanishing difference ˛i � ˇi is negative.
For any monomial x˛1

1 : : : x
˛n
n occurring in the symmetric polynomial f also

all its images x˛1

�1 : : : x
˛n
� n under any permutation � of the variables occur in f .

This implies that the initial monomial init.f / D c � x�1

1 x
�2

2 : : : x
�n
n of f satisfies

�1 � �2 � : : : � �n. By definition, the initial monomial is the largest monomial
with respect to the total order “�” which appears with a nonzero coefficient
in f .

In our algorithm we now replace f by the new symmetric polynomial Qf WD
f �c ���1��2

1 �
�2��3

2 � � � ��n�1��n

n�1 �
�n
n , we store the summand c ���1��2

1 �
�2��3

2 � � �
�

�n�1��n

n�1 �
�n
n , and, if Qf is nonzero, then we return to the beginning of the pre-

vious paragraph.
Why does this process terminate? By construction, the initial monomial of

c ���1��2

1 �
�2��3

2 � � � ��n�1��n

n�1 �
�n
n equals init.f /. Hence in the difference defining

Qf the two initial monomials cancel, and we get init. Qf / � init.f /. The set
of monomials m with m � init.f / is finite because their degree is bounded.
Hence the above rewriting algorithm must terminate because otherwise it would
generate an infinite decreasing chain of monomials.

It remains to be seen that the representation of symmetric polynomials in
terms of elementary symmetric polynomials is unique. In other words, we need
to show that the elementary symmetric polynomials �1; : : : ; �n are algebraically
independent over C.

Suppose on the contrary that there is a nonzero polynomial p.y1; : : : ; yn/
such that p.�1; : : : ; �n/ D 0 in CŒx1; : : : ; xn�. Given any monomial y˛1

1 � � �y˛n
n

of p, we find that x˛1C˛2C:::C˛n

1 x
˛2C:::C˛n

2 � � � x˛n
n is the initial monomial of

�
˛1

1 � � � �˛n
n . Since the linear map

.˛1; ˛2; : : : ; ˛n/ 7! .˛1 C ˛2 C : : :C ˛n; ˛2 C : : :C ˛n; : : : ; ˛n/

is injective, all other monomials �ˇ1

1 : : : �
ˇn
n in the expansion of p.�1; : : : ; �n/

have a different initial monomial. The lexicographically largest monomial
x

˛1C˛2C:::C˛n

1 x
˛2C:::C˛n

2 � � � x˛n
n is not cancelled by any other monomial, and

therefore p.�1; : : : ; �n/ 6D 0. This contradiction completes the proof of Theo-
rem 1.1.1. G

As an example for the above rewriting procedure, we write the bivariate
symmetric polynomial x3

1 C x3
2 as a polynomial in the elementary symmetric

polynomials:

x3
1 C x3

2 �! �3
1 � 3x2

1x2 � 3x1x
2
2 �! �3

1 � 3�1�2:
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The subring CŒx�Sn of symmetric polynomials in CŒx� WD CŒx1; : : : ; xn�
is the prototype of an invariant ring. The elementary symmetric polynomials
�1; : : : ; �n are said to form a fundamental system of invariants. Such fundamen-
tal systems are generally far from being unique. Let us describe another gener-
ating set for the symmetric polynomials which will be useful later in Sect. 2.1.
The polynomial pk.x/ WD xk

1 C xk
2 C : : :C xk

n is called the k-th power sum.

Proposition 1.1.2. The ring of symmetric polynomials is generated by the first
n power sums, i.e.,

CŒx�Sn D CŒ�1; �2; : : : ; �n� D CŒp1; p2; : : : ; pn�:

Proof. A partition of an integer d is an integer vector � D .�1; �2; : : : ; �n/
such that �1 � �2 � : : : � �n � 0 and �1 C �2 C : : : C �n D d . We assign
to a monomial xi1

1 : : : x
in
n of degree d the partition �.i1; : : : ; in/ which is the

decreasingly sorted string of its exponents.
This gives rise to the following total order on the set of degree d mono-

mials in CŒx�. We set xi1
1 : : : x

in
n � x

j1

1 : : : x
jn
n if the partition �.i1; : : : ; in/ is

lexicographically larger than �.j1; : : : ; jn/, or if the partitions are equal and
.i1; : : : ; in/ is lexicographically smaller than .j1; : : : ; jn/. We note that this total
order on the set of monomials in CŒx� is not a monomial order in the sense of
Gröbner bases theory (cf. Sect. 1.2). As an example, for n D 3, d D 4 we have
x4

3 � x4
2 � x4

1 � x2x
3
3 � x3

2x3 � x1x
3
3 � x1x

3
2 � x3

1x3 � x3
1x2 � x2

2x
2
3 �

x2
1x

2
3 � x2

1x
2
2 � x1x2x

2
3 � x1x

2
2x3 � x2

1x2x3.
We find that the initial monomial of a product of power sums equals

init.pi1pi2 : : : pin/ D ci1i2:::in � xi1
1 x

i2
2 : : : x

in
n whenever i1 � i2 � : : : � in;

where ci1i2:::in is a positive integer.
Now we are prepared to describe an algorithm which proves Proposition

1.1.2. It rewrites a given symmetric polynomial f 2 CŒx� as a polynomial func-
tion in p1; p2; : : : ; pn. By Theorem 1.1.1 we may assume that f is one of the el-
ementary symmetric polynomials. In particular, the degree d of f is less or equal
to n. Its initial monomial init.f / D c � xi1

1 : : : x
in
n satisfies n � i1 � : : : � in.

Now replace f by Qf WD f � c
ci1:::in

pi1 : : : pin . By the above observation the

initial monomials in this difference cancel, and we get init. Qf / � init.f /. Since
both f and Qf have the same degree d , this process terminates with the desired
result. G

Here is an example for the rewriting process in the proof of Proposition
1.1.2. We express the three-variate symmetric polynomial f WD x1x2x3 as a
polynomial function in p1; p2 and p3. Using the above method, we get
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x1x2x3 �! 1
6
p3

1 � 1
2

P
i 6Dj

x2
i xj � 1

6

P
k

x3
k

�! 1
6
p3

1 � 1
2

�
p1p2 �P

k

x3
k

� � 1
6

P
k

x3
k

�! 1
6
p3

1 � 1
2
p1p2 C 1

3
p3:

Theorem 1.1.1 and Proposition 1.1.2 show that the monomials in the ele-
mentary symmetric polynomials and the monomials in the power sums are both
C-vector space bases for the ring of symmetric polynomials CŒx�Sn . There are
a number of other important such bases, including the complete symmetric poly-
nomials, the monomial symmetric polynomials and the Schur polynomials. The
relations between these bases is of great importance in algebraic combinatorics
and representation theory. A basic reference for the theory of symmetric poly-
nomials is Macdonald (1979).

We close this section with the definition of the Schur polynomials. Let An

denote the alternating group, which is the subgroup of Sn consisting of all even
permutations. Let CŒx�An denote the subring of polynomials which are fixed by
all even permutations. We have the inclusion CŒx�Sn � CŒx�An . This inclusion
is proper, because the polynomial

D.x1; : : : ; xn/ WD Q
1�i<j �n

.xi � xj /

is fixed by all even permutations but not by any odd permutation.

Proposition 1.1.3. Every polynomial f 2 CŒx�An can be written uniquely in
the form f D g C h �D, where g and h are symmetric polynomials.

Proof. We set

g.x1; : : : ; xn/ WD 1
2

�
f .x1; x2; x3; : : : ; xn/C f .x2; x1; x3; : : : ; xn/

�
and

Qh.x1; : : : ; xn/ WD 1
2

�
f .x1; x2; x3; : : : ; xn/ � f .x2; x1; x3; : : : ; xn/

�
:

Thus f is the sum of the symmetric polynomial g and the antisymmetric poly-
nomial Qh. Here Qh being antisymmetric means that

Qh.x�1
; : : : ; x�n

/ D sign.�/ � Qh.x1; : : : ; xn/

for all permutations � 2 Sn. Hence Qh vanishes identically if we replace one of
the variables xi by some other variable xj . This implies that xi � xj divides Qh,
for all 1 	 i < j 	 n, and therefore D divides Qh. To show uniqueness, we
suppose that f D gC hD D g0 C h0D. Applying an odd permutation � , we get
f B � D g � hD D g0 � h0D. Now add both equations to conclude g D g0 and
therefore h D h0. G



6 Introduction

With any partition � D .�1 � �2 � : : : � �n/ of an integer d we associate
the homogeneous polynomial

a�.x1; : : : ; xn/ D det

0BBBBB@
x

�1Cn�1
1 x

�1Cn�1
2 � � � x

�1Cn�1
n

x
�2Cn�2
1 x

�2Cn�2
2 � � � x

�2Cn�2
n

:::
:::

: : :
:::

x
�n

1 x
�n

2 � � � x
�n
n

1CCCCCA :

Note that the total degree of a�.x1; : : : ; xn/ equals d C �
n
2

�
.

The polynomials a� are precisely the nonzero images of monomials under
antisymmetrization. Here by antisymmetrization of a polynomial we mean its
canonical projection into the subspace of antisymmetric polynomials. Therefore
the a� form a basis for the C-vector space of all antisymmetric polynomials. We
may proceed as in the proof of Proposition 1.1.3 and divide a� by the discrimi-
nant. The resulting expression s� WD a�=D is a symmetric polynomial which is
homogeneous of degree d D j�j. We call s�.x1; : : : ; xn/ the Schur polynomial
associated with the partition �.

Corollary 1.1.4. The set of Schur polynomials s�, where � D .�1 � �2 � : : :
� �n/ ranges over all partitions of d into at most n parts, forms a basis for the
C-vector space CŒx�Sn

d
of all symmetric polynomials homogeneous of degree d .

Proof. It follows from Proposition 1.1.3 that multiplication with D is an iso-
morphism from the vector space of symmetric polynomials to the space of an-
tisymmetric polynomials. The images of the Schur polynomials s� under this
isomorphism are the antisymmetrized monomials a�. Since the latter are a basis,
also the former are a basis. G

Exercises

(1) Write the symmetric polynomials f WD x3
1

C x3
2

C x3
3

and
g WD .x1 � x2/

2.x1 � x3/
2.x2 � x3/

2 as polynomials in the elementary
symmetric polynomials �1 D x1 C x2 C x3, �2 D x1x2 C x1x3 C x2x3,
and �3 D x1x2x3.

(2) Study the complexity of the algorithm in the proof of Theorem 1.1.1. More
precisely, find an upper bound in terms of deg.f / for the number of steps
needed to express a symmetric f 2 CŒx1; : : : ; xn� as a polynomial in the
elementary symmetric polynomials.

(3) Write the symmetric polynomials �4 WD x1x2x3x4 and
p5 WD x5

1
C x5

2
C x5

3
C x5

4
as polynomials in the first four power sums

p D x1 C x2 C x3 C x4, p2 D x2
1

C x2
2

C x2
3

C x2
4

,
p3 D x3

1
C x3

2
C x3

3
C x3

4
, p4 D x4

1
C x4

2
C x4

3
C x4

4
.

(4) Consider the vector space V D CŒx1; x2; x3�
S3

6
of all symmetric
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polynomials in three variables which are homogeneous of degree 6. What is
the dimension of V ? We get three different bases for V by considering
Schur polynomials s.�1;�2;�3/, monomials � i1

1
�

i2

2
�

i3

3
in the elementary

symmetric polynomials, and monomials pi1

1
p

i2

2
p

i3

3
in the power sum

symmetric polynomials. Express each element in one of these bases as a
linear combination with respect to the other two bases.

(5) Prove the following explicit formula for the elementary symmetric
polynomials in terms of the power sums (Macdonald 1979, p. 20):

�k D 1

k Š
det

0BBBBBBB@

p1 1 0 : : : 0

p2 p1 2 : : : 0

:::
:::

: : :
: : :

:::

pk�1 pk�2 : : : p1 k � 1
pk pk�1 : : : : : : p1

1CCCCCCCA
:

1.2. Gröbner bases

In this section we review background material from computational algebra. More
specifically, we give a brief introduction to the theory of Gröbner bases. Our
emphasis is on how to use Gröbner bases as a basic building block in designing
more advanced algebraic algorithms. Readers who are interested in “how this
black box works” may wish to consult either of the text books Cox et al. (1992)
or Becker et al. (1993). See also Buchberger (1985, 1988) and Robbiano (1988)
for additional references and details on the computation of Gröbner bases.

Gröbner bases are a general-purpose method for multivariate polynomial
computations. They were introduced by Bruno Buchberger in his 1965 disser-
tation, written at the University of Innsbruck (Tyrolia, Austria) under the super-
vision of Wolfgang Gröbner. Buchberger’s main contribution is a finite algorithm
for transforming an arbitrary generating set of an ideal into a Gröbner basis for
that ideal.

The basic principles underlying the concept of Gröbner bases can be traced
back to the late 19th century and the early 20th century. One such early reference
is P. Gordan’s 1900 paper on the invariant theory of binary forms. What is called
“Le système irréductible N” on page 152 of Gordan (1900) is a Gröbner basis
for the ideal under consideration.

Buchberger’s Gröbner basis method generalizes three well-known algebraic
algorithms:

– the Euclidean algorithm (for univariate polynomials)
– Gaussian elimination (for linear polynomials)
– the Sylvester resultant (for eliminating one variable from two polynomials)

So we can think of Gröbner bases as a version of the Euclidean algorithm
which works also for more than one variable, or as a version of Gaussian elimi-
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nation which works also for higher degree polynomials. The basic algorithms
are implemented in many computer algebra systems, e.g., MAPLE, REDUCE,
AXIOM, MATHEMATICA, MACSYMA, MACAULAY, COCOA1, and playing with
one of these systems is an excellent way of familiarizing oneself with Gröbner
bases. In MAPLE, for instance, the command “gbasis” is used to compute a Gröb-
ner basis for a given set of polynomials, while the command “normalf” reduces
any other polynomial to normal form with respect to a given Gröbner basis.

The mathematical setup is as follows. A total order “�” on the monomi-
als x�1

1 : : : x
�n
n in CŒx1; : : : ; xn� is said to be a monomial order if 1 
 m1 and

.m1 � m2 ) m1�m3 � m2�m3/ for all monomialsm1; m2; m3 2 CŒx1; : : : ; xn�.
Both the degree lexicographic order discussed in Sect. 1.1 and the (purely) lexi-
cographic order are important examples of monomial orders. Every linear order
on the variables x1; x2; : : : ; xn can be extended to a lexicographic order on the
monomials. For example, the order x1 � x3 � x2 on three variables induces the
(purely) lexicographic order 1 � x1 � x2

1 � x3
1 � x4

1 � : : : � x3 � x3x1 �
x3x

2
1 � : : : � x2 � x2x1 � x2x

2
1 � : : : on CŒx1; x2; x3�.

We now fix any monomial order “�” on CŒx1; : : : ; xn�. The largest mono-
mial of a polynomial f 2 CŒx1; : : : ; xn� with respect to “�” is denoted by
init.f / and called the initial monomial of f . For an ideal I � CŒx1; : : : ; xn�,
we define its initial ideal as init.I / WD hfinit.f / W f 2 I gi. In other words,
init.I / is the ideal generated by the initial monomials of all polynomials in I .
An ideal which is generated by monomials, such as init.I /, is said to be a mono-
mial ideal. The monomials m 62 init.I / are called standard, and the monomials
m 2 init.I / are nonstandard.

A finite subset G WD fg1; g2; : : : ; gsg of an ideal I is called a Gröbner basis
for I provided the initial ideal init.I / is generated by finit.g1/; : : : ; init.gs/g.
One last definition: the Gröbner basis G is called reduced if init.gi / does not
divide any monomial occurring in gj , for all distinct i; j 2 f1; 2; : : : ; sg. Gröb-
ner bases programs (such as “gbasis” in MAPLE) take a finite set F � CŒx� and
they output a reduced Gröbner basis G for the ideal hFi generated by F . They
are based on the Buchberger algorithm.

The previous paragraph is perhaps the most compact way of defining Gröb-
ner bases, but it is not at all informative on what Gröbner bases theory is all
about. Before proceeding with our theoretical crash course, we present six con-
crete examples .F ;G/ where G is a reduced Gröbner basis for the ideal hFi.
Example 1.2.1 (Easy examples of Gröbner bases). In (1), (2), (5), (6) we also
give examples for the normal form reduction versus a Gröbner bases G which
rewrites every polynomial modulo hFi as a C-linear combination of standard
monomials (cf. Theorem 1.2.6). In all examples the used monomial order is
specified and the initial monomials are underlined.

(1) For any set of univariate polynomials F , the reduced Gröbner basis G is

1 Among software packages for Gröbner bases which are current in 2008 we also
recommend MACAULAY 2, MAGMA and SINGULAR.
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always a singleton, consisting of the greatest common divisor of F . Note
that 1 � x � x2 � x3 � x4 � : : : is the only monomial order on CŒx�.

F D f12x3 � x2 � 23x � 11; x4 � x2 � 2x � 1g
G D fx2 � x � 1g
Normal form: x3 C x2 !G 3x C 2

Here x2 generates the initial ideal, hence 1 and x are the only standard
monomials.

(2) This ideal in two variables corresponds to the intersection of the unit circle
with a certain hyperbola. We use the purely lexicographic order induced from
x � y.

F D fy2 C x2 � 1; 3xy � 1g
G D fy C 3x3 � 3x; 9x4 � 9x2 C 1g
Normal form: y4 C y3 !G 27x3 C 9x2 � 24x � 8

The Gröbner basis is triangularized, and we can easily compute coordinates
for the intersection points of these two curves. There are four such points and
hence the residue ring CŒx; y�=hFi is a four-dimensional C-vector space.
The set of standard monomials f1; x; x2; x3g is a basis for this vector space
because the normal form of any bivariate polynomial is a polynomial in x of
degree at most 3.

(3) If we add the line y D xC1, then the three curves have no point in common.
This means that the ideal equals the whole ring. The Gröbner basis with
respect to any monomial order consists of a nonzero constant.

F D fy2 C x2 � 1; 3xy � 1; y � x � 1g
G D f1g

(4) The three bivariate polynomials in (3) are algebraically dependent. In order
to find an algebraic dependence, we introduce three new “slack” variables f ,
g and h, and we compute a Gröbner basis of

F D fy2 C x2 � 1 � f; 3xy � 1 � g; y � x � 1 � hg
with respect to the lexicographic order induced from f � g � h � x � y.

G D fy � x � h� 1; 3x2 C 3x � gC 3hx � 1; 3h2 C 6hC 2g� 3f C 2g
The third polynomial is an algebraic dependence between the circle, the hy-
perbola and the line.

(5) We apply the same slack variable computation to the elementary symmetric
polynomials in CŒx1; x2; x3�, using the lexicographic order induced from
�1 � �2 � �3 � x1 � x2 � x3.

F D fx1 C x2 C x3 � �1; x1x2 C x1x3 C x2x3 � �2; x1x2x3 � �3g
G D fx3 Cx2 Cx1 ��1; x

2
2 Cx1x2 Cx2

1 ��1x2 ��1x1 C�2; x
3
1 ��1x

2
1 C

�2x1 � �3g
The Gröbner basis does not contain any polynomial in the slack variables
�1; �2; �3 because the elementary symmetric polynomials are algebraically
independent. Here the standard monomials are 1; x1; x

2
1 ; x2; x2x1; x2x

2
1 and

all their products with monomials of the form �
i1
1 �

i2
2 �

i3
3 .

Normal form: .x1 � x2/
2.x1 � x3/

2.x2 � x3/
2 !G

�27�2
3 C 18�3�2�1 � 4�3�

3
1 � 4�3

2 C �2
2�

2
1
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(6) This is a special case of a polynomial system which will be studied in detail
in Chap. 3, namely, the set of d �d -subdeterminants of an n�d -matrix .xij /
whose entries are indeterminates. We apply the slack variable computation
to the six 2 � 2-minors of a 4 � 2-matrix, using the lexicographic order
induced from the variable order Œ12� � Œ13� � Œ14� � Œ23� � Œ24� � Œ34� �
x11 � x12 � x21 � x22 � x31 � x32 � x41 � x42. In the polynomial ring
in these 14 D 6C 8 variables, we consider the ideal generated by

F D fx11x22 � x12x21 � Œ12�; x11x32 � x12x31 � Œ13�;
x11x42 � x12x41 � Œ14�; x21x32 � x22x31 � Œ23�;
x21x42 � x22x41 � Œ24�; x31x42 � x32x41 � Œ34�g

The Gröbner basis equals
G D F [ fŒ12�Œ34� � Œ13�Œ24�C Œ14�Œ23�; : : : : : : : : : (and

many more) : : :g
This polynomial is an algebraic dependence among the 2 � 2-minors of any
4 � 2-matrix. It is known as the (quadratic) Grassmann–Plücker syzygy.
Using the Gröbner basis G, we can rewrite any polynomial which lies in
the subring generated by the 2 � 2-determinants as a polynomial function in
Œ12�; Œ13�; : : : ; Œ34�.

Normal form: x11x22x31x42 C x11x22x32x41 C x12x21x31x42 C
x12x21x32x41 � 2x11x21x32x42 � 2x12x22x31x41 !G
Œ14�Œ23�C Œ13�Œ24�

Before continuing to read any further, we urge the reader to verify these six
examples and to compute at least fifteen more Gröbner bases using one of the
computer algebra systems mentioned above.

We next discuss a few aspects of Gröbner bases theory which will be used
in the later chapters. To begin with we prove that every ideal indeed admits a
finite Gröbner basis.

Lemma 1.2.2 (Hilbert 1890, Gordan 1900). Every monomial ideal M in
CŒx1; : : : ; xn� is finitely generated by monomials.

Proof. We proceed by induction on n. By definition, a monomial ideal M in
CŒx1� is generated by fxj

1 W j 2 J g, where J is some subset of the nonnega-
tive integers. The set J has a minimal element j0, and M is generated by the
singleton fxj0

1 g. This proves the assertion for n D 1.
Suppose that Lemma 1.2.2 is true for monomial ideals in n � 1 variables.

For every nonnegative integer j 2 N consider the .n � 1/-variate monomial
ideal Mj which is generated by all monomials m 2 CŒx1; : : : ; xn�1� such that
m � xj

n 2 M. By the induction hypothesis, Mj is generated by a finite set Sj

of monomials. Next observe the inclusions M0 � M1 � M2 � : : : � Mi �
MiC1 � : : :. By the induction hypothesis, also the monomial ideal

S1
j D0 Mj

is finitely generated. This implies the existence of an integer r such that Mr D
MrC1 D MrC2 D MrC3 D : : :. It follows that a monomial x˛1

1 : : : x
˛n�1

n�1 x
˛n
n

is contained in M if and only if x˛1

1 : : : x
˛n�1

n�1 is contained in Mt , where t D
min fr; ˛ng. Hence the finite monomial set

Sr
iD0 Si � xi

n generates M. G
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Corollary 1.2.3. Let “�” be any monomial order on CŒx1; : : : ; xn�. Then there
is no infinite descending chain of monomials m1 � m2 � m3 � m4 � : : :.

Proof. Consider any infinite set fm1; m2; m3; : : :g of monomials in CŒx1; : : : ;
xn�. Its ideal is finitely generated by Lemma 1.2.2. Hence there exists an inte-
ger j such that mj 2 hm1; m2; : : : ; mj �1i. This means that mi divides mj for
some i < j . Since “�” is a monomial order, this implies mi � mj with i < j .
This proves Corollary 1.2.3. G
Theorem 1.2.4.
(1) Any ideal I � CŒx1; : : : ; xn� has a Gröbner basis G with respect to any

monomial order “�”.
(2) Every Gröbner basis G generates its ideal I .

Proof. Statement (1) follows directly from Lemma 1.2.2 and the definition of
Gröbner bases. We prove statement (2) by contradiction. Suppose the Gröbner
basis G does not generate its ideal, that is, the set I n hGi is nonempty. By
Corollary 1.2.3, the set of initial monomials finit.f / W f 2 I n hGig has a mini-
mal element init.f0/ with respect to “�”. The monomial init.f0/ is contained in
init.I / D hinit.G/i. Let g 2 G such that init.g/ divides init.f0/, say, init.f0/ D
m � init.g/.

Now consider the polynomial f1 WD f0�m �g. By construction, f1 2 I nhGi.
But we also have init.f1/ � init.f0/. This contradicts the minimality in the
choice of f0. This contradiction shows that G does generate the ideal I . G

From this we obtain as a direct consequence the following basic result.

Corollary 1.2.5 (Hilbert’s basis theorem). Every ideal in the polynomial ring
CŒx1; x2; : : : ; xn� is finitely generated.

We will next prove the normal form property of Gröbner bases.

Theorem 1.2.6. Let I be any ideal and “�” any monomial order on CŒx1; : : : ;
xn�. The set of (residue classes of) standard monomials is a C-vector space basis
for the residue ring CŒx1; : : : ; xn�=I .

Proof. Let G be a Gröbner basis for I , and consider the following algorithm
which computes the normal form modulo I .
Input: p 2 CŒx1; : : : ; xn�.
1. Check whether all monomials in p are standard. If so, we are done: p is in

normal form and equivalent modulo I to the input polynomial.
2. Otherwise let hnst.p/ be the highest nonstandard monomial occurring in p.

Find g 2 G such that init.g/ divides hnst.p/, say, m � init.g/ D hnst.p/.
3. Replace p by Qp WD p �m � g, and go to 1.

We have init. Qp/ � init.p/ in Step 3, and hence Corollary 1.2.3 implies that this
algorithm terminates with a representation of p 2 CŒx1; : : : ; xn� as a C-linear
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combination of standard monomials modulo I . We conclude the proof of Theo-
rem 1.2.6 by observing that such a representation is necessarily unique because,
by definition, every polynomial in I contains at least one nonstandard mono-
mial. This means that zero cannot be written as nontrivial linear combination
of standard monomials in CŒx1; : : : ; xn�=I . G

Sometimes it is possible to give an a priori proof that an explicitly known
“nice” subset of a polynomial ideal I happens to be a Gröbner basis. In such
a lucky situation there is no need to apply the Buchberger algorithm. In order
to establish the Gröbner basis property, tools from algebraic combinatorics are
particularly useful. We illustrate this by generalizing the above Example (5) to
an arbitrary number of variables.

Let I denote the ideal in CŒx; y � D CŒx1; x2; : : : ; xn; y1; y2; : : : ; yn� which
is generated by the polynomials �i .x1; : : : ; xn/ � yi for i D 1; 2; : : : ; n. Here
�i denotes the i -th elementary symmetric polynomial. In other words, I is the
ideal of all algebraic relations between the roots and coefficients of a generic
univariate polynomial.

The i -th complete symmetric polynomial hi is defined to be the sum of all
monomials of degree i in the given set of variables. In particular, we have
hi .xk; : : : ; xn/ D P

x
�k

k
x

�kC1

kC1
� � � x�n

n where the sum ranges over all
�

n�kCi
i

�
nonnegative integer vectors .	k; 	kC1; : : : ; 	n/ whose coordinates sum to i .

Theorem 1.2.7. The unique reduced Gröbner basis of I with respect to the
lexicographic monomial order induced from x1 � x2 � : : : � xn � y1 � y2 �
: : : � yn equals

G D
�
hk.xk; : : : ; xn/C

kP
iD1

.�1/i hk�i .xk; : : : ; xn/yi W k D 1; : : : ; n

�
:

Proof. In the proof we use a few basic facts about symmetric polynomials and
Hilbert series of graded algebras. We first note the following symmetric poly-
nomial identity

hk.xk; : : : ; xn/C
kP

iD1

.�1/i hk�i .xk; : : : ; xn/ �i .x1; : : : ; xk�1; xk; : : : ; xn/ D 0:

This identity shows that G is indeed a subset of the ideal I .
We introduce a grading on CŒx; y � by setting degree.xi / D 1 and degree.yj /

D j . The ideal I is homogeneous with respect to this grading. The quotient ring
R D CŒx; y �=I is isomorphic as a graded algebra to CŒx1; : : : ; xn�, and hence
the Hilbert series of R D L1

dD0Rd equals H.R; ´/ D P1
dD0 dimC.Rd /´

d D
.1 � ´/�n. It follows from Theorem 1.2.6 that the quotient CŒx; y �= init�.I /
modulo the initial ideal has the same Hilbert series .1 � ´/�n.

Consider the monomial ideal J D hx1; x
2
2 ; x

3
3 ; : : : ; x

n
ni which is generated

by the initial monomials of the elements in G. Clearly, J is contained in the
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initial ideal init�.I /. Our assertion states that these two ideals are equal. For the
proof it is sufficient to verify that the Hilbert series of R0 WD CŒx; y �=J equals
the Hilbert series of R.

A vector space basis for R0 is given by the set of all monomials xi1
1 � � � xin

n y
j1

1

� � �yjn
n whose exponents satisfy the constraints i1 < 1; i2 < 2; : : : ; in < n. This

shows that the Hilbert series of R0 equals the formal power series

H.R0; ´/ D
�P

´i1Ci2C:::Cin
	 �P

´j1C2j2C:::Cnjn

	
:

The second sum is over all .j1; : : : ; jn/ 2 Nn and thus equals Œ.1 � ´/.1 �
´2/ � � � .1 � ´n/��1. The first sum is over all .i1; : : : ; in/ 2 Nn with i� < � and
hence equals the polynomial .1C ´/.1C ´C ´2/ � � � .1C ´C ´2 C : : :C ´n�1/.
We compute their product as follows:

H.R0; ´/ D



1

1 � ´
�


1C ´

1 � ´2

�

1C ´C ´2

1 � ´3

�
� � �


1C ´C ´2 C : : :C ´n�1

1 � ´n

�
D



1

1 � ´
�


1

1 � ´
�


1

1 � ´
�

� � �



1

1 � ´
�

D H.R; ´/:

This completes the proof of Theorem 1.2.7. G
The normal form reduction versus the Gröbner basis G in Theorem 1.2.7

provides an alternative algorithm for the Main Theorem on Symmetric Polyno-
mials (1.1.1). If we reduce any symmetric polynomial in the variables x1; x2;
: : : ; xn modulo G, then we get a linear combination of standard monomials
y

i1
1 y

i2
2 � � �yin

n . These can be identified with monomials � i1
1 �

i2
2 � � � � in

n in the ele-
mentary symmetric polynomial.

Exercises

(1) Let “�” be a monomial order and let I be any ideal in CŒx1; : : : ; xn�.
A monomial m is called minimally nonstandard if m is nonstandard and
all proper divisors of m are standard. Show that the set of minimally
nonstandard monomials is finite.

(2) Prove that the reduced Gröbner basis Gred of I with respect to “�” is unique
(up to multiplicative constants from C). Give an algorithm which transforms
an arbitrary Gröbner basis into Gred.

(3) Let I � CŒx1; : : : ; xn� be an ideal, given by a finite set of generators. Using
Gröbner bases, describe an algorithm for computing the elimination ideals
I \ CŒx1; : : : ; xi �, i D 1; : : : ; n � 1, and prove its correctness.

(4) Find a characterization for all monomial orders on the polynomial ring
CŒx1; x2�. (Hint: Each variable receives a certain “weight” which behaves
additively under multiplication of variables.) Generalize your result to
n variables.
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(5) * Fix any ideal I � CŒx1; : : : ; xn�. We say that two monomial orders are
I -equivalent if they induce the same initial ideal for I . Show that there are
only finitely many I -equivalence classes of monomial orders.

(6) Let F be a set of polynomials whose initial monomials are pairwise
relatively prime. Show that F is a Gröbner basis for its ideal.

1.3. What is invariant theory?

Many problems in applied algebra have symmetries or are invariant under cer-
tain natural transformations. In particular, all geometric magnitudes and proper-
ties are invariant with respect to the underlying transformation group. Properties
in Euclidean geometry are invariant under the Euclidean group of rotations, re-
flections and translations, properties in projective geometry are invariant under
the group of projective transformations, etc. This identification of geometry and
invariant theory, expressed in Felix Klein’s Erlanger Programm (cf. Klein 1872,
1914), is much more than a philosophical remark. The practical significance of
invariant-theoretic methods as well as their mathematical elegance is our main
theme. We wish to illustrate why invariant theory is a relevant foundational sub-
ject for computer algebra and computational geometry.

We begin with some basic invariant-theoretic terminology. Let 
 be a sub-
group of the group GL.Cn/ of invertible n � n-matrices. This is the group of
transformations, which defines the geometry or geometric situation under con-
sideration. Given a polynomial function f 2 CŒx1; : : : ; xn�, then every linear
transformation � 2 
 transforms f into a new polynomial function f B � . For
example, if f D x2

1 C x1x2 2 CŒx1; x2� and � D �
3 5
4 7

�
, then

f B � D .3x1 C 5x2/
2 C .3x1 C 5x2/.4x1 C 7x2/ D 21x2

1 C 71x1x2 C 60x2
2 :

In general, we are interested in the set

CŒx1; : : : ; xn�
� WD ff 2 CŒx1; : : : ; xn� W 8� 2 
 .f D f B �/g

of all polynomials which are invariant under this action of 
 . This set is a
subring of CŒx1; : : : ; xn� since it is closed under addition and multiplication.
We call CŒx1; : : : ; xn�

� the invariant subring of 
 . The following questions are
often called the fundamental problems of invariant theory.

(1) Find a set fI1; : : : ; Img of generators for the invariant subring CŒx1; : : : ;

xn�
� . All the groups 
 studied in this text do admit such a finite set of funda-

mental invariants. A famous result of Nagata (1959) shows that the invariant
subrings of certain nonreductive matrix groups are not finitely generated.

(2) Describe the algebraic relations among the fundamental invariants I1; : : : ;
Im. These are called syzygies.
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(3) Give an algorithm which rewrites an arbitrary invariant I 2 CŒx1; : : : ; xn�
�

as a polynomial I D p.I1; : : : ; Im/ in the fundamental invariants.

For the classical geometric groups, such as the Euclidean group or the projective
group, also the following question is important.

(4) Given a geometric property P , find the corresponding invariants (or co-
variants) and vice versa. Is there an algorithm for this transition between
geometry and algebra?

Example 1.3.1 (Symmetric polynomials). Let Sn be the group of permutation
matrices in GL.Cn/. Its invariant ring CŒx1; : : : ; xn�

Sn equals the subring of
symmetric polynomials in CŒx1; : : : ; xn�. For the symmetric group Sn all three
fundamental problems were solved in Sect. 1.1.

(1) The elementary symmetric polynomials form a fundamental set of invariants:

CŒx1; : : : ; xn�
Sn D CŒ�1; : : : ; �n�:

(2) These fundamental invariants are algebraically independent: There is no non-
zero syzygy.

(3) We have two possible algorithms for rewriting symmetric polynomials in
terms of elementary symmetric ones: either the method in the proof in The-
orem 1.1.1 or the normal form reduction modulo the Gröbner basis in Theo-
rem 1.2.7.

Example 1.3.2 (The cyclic group of order 4). Let n D 2 and consider the group

Z4 D ˚
1 0
0 1

�
;


�1 0
0 �1

�
;



0 1

�1 0

�
;



0 �1
1 0

��
of rotational symmetries of the square. Its invariant ring equals

CŒx1; x2�
Z4 D ff 2 CŒx1; x2� W f .x1; x2/ D f .�x2; x1/g:

(1) Here we have three fundamental invariants

I1 D x2
1 C x2

2 ; I2 D x2
1x

2
2 ; I3 D x3

1x2 � x1x
3
2 :

(2) These satisfy the algebraic dependence I 2
3 � I2I

2
1 C 4I 2

2 . This syzygy can
be found with the slack variable Gröbner basis method in Example 1.2.1.(4).

(3) Using Gröbner basis normal form reduction, we can rewrite any invariant as
a polynomial in the fundamental invariants. For example, x7

1x2 � x7
2x1 !

I 2
1 I3 � I2I3.
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We next give an alternative interpretation of the invariant ring from the point
of view of elementary algebraic geometry. Every matrix group 
 acts on the
vector space Cn, and it decomposes Cn into 
-orbits


v D f�v W � 2 
g where v 2 Cn:

Remark 1.3.3. The invariant ring CŒx�� consists of those polynomial functions
f which are constant along all 
-orbits in Cn.

Proof. A polynomial f 2 CŒx� is constant on all 
-orbits if and only if

8 v 2 Cn 8� 2 
W f .�v/ D f .v/

” 8� 2 
 8 v 2 CnW .f B �/.v/ D f .v/:

Since C is an infinite field, the latter condition is equivalent to f being an
element of CŒx�� . G

Remark 1.3.3 suggests that the invariant ring can be interpreted as the ring
of polynomial functions on the quotient space Cn=
 of 
-orbits on Cn. We
are tempted to conclude that Cn=
 is actually an algebraic variety which has
CŒx�� as its coordinate ring. This statement is not quite true for most infinite
groups: it can happen that two distinct 
-orbits in Cn cannot be distinguished
by a polynomial function because one is contained in the closure of the other.

For finite groups 
 , however, the situation is nice because all orbits are finite
and hence closed subsets of Cn. Here CŒx�� is truly the coordinate ring of the
orbit variety Cn=
 . The first fundamental problem (1) can be interpreted as
finding an embedding of Cn=
 as an affine subvariety into Cm, where m is the
number of fundamental invariants. For example, the orbit space C2=Z4 of the
cyclic group in Example 1.3.2 equals the hypersurface in C3 which is defined by
the equation y2

3 �y2y
2
1 C4y2

2 D 0. The map .x1; x2/ 7! .I1.x1; x2/; I2.x1; x2/;

I3.x1; x2// defines a bijection (check this!!) from the set of Z4-orbits in C2 onto
this hypersurface.

Let us now come to the fundamental problem (4). We illustrate this question
for the Euclidean group of rotations, translations and reflections in the plane.
The Euclidean group acts on the polynomial ring CŒx1; y1; x2; y2; : : : ; xn; yn�
by rigid motions 


xi

yi

�
7!



cos� sin�
� sin� cos�

�
�


xi

yi

�
C


a
b

�
;

and by reflections, such as .xi ; yi / 7! .�xi ; yi /. The invariant polynomials un-
der this action correspond to geometric properties of a configuration of n points
.xi ; yi / in the Euclidean plane. Naturally, for this interpretation we restrict our-
selves to the field R of real numbers.
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Example 1.3.4. Consider the three polynomials L WD x2
1 C y2

1 � 7, D WD .x1 �
x2/

2C.y1�y2/
2, and R WD x2

1 Cy2
1 �x1x2�y1y2�x1x3�y1y3Cx2x3Cy2y3.

The first polynomial L expresses that point “1” has distance 7 from the origin.
This property is not Euclidean because it is not invariant under translations, and
L is not a Euclidean invariant. The second polynomial D measures the distance
between the two points “1” and “2”, and it is a Euclidean invariant. Also R
is a Euclidean invariant: it vanishes if and only if the lines “12” and “13” are
perpendicular.

The following general representation theorem was known classically.

Theorem 1.3.5. The subring of Euclidean invariants is generated by the squared
distances

Dij WD .xi � xj /
2 C .yi � yj /

2; 1 	 i < j 	 n:

For a new proof of Theorem 1.3.5 we refer to Dalbec (1995). In that article an
efficient algorithm is given for expressing any Euclidean invariant in terms of the
Dij . It essentially amounts to specifying a Gröbner basis for the Cayley–Menger
ideal of syzygies among the squared distances Dij . Here are two examples for
the resulting rewriting process.

Example 1.3.6 (Heron’s formula for the squared area of a triangle).
Let A123 2 CŒx1; y1; x2; y2; x3; y3� denote the squared area of the triangle
“123”. The polynomial A123 is a Euclidean invariant, and its representation in
terms of squared distances equals

A123 D det

0B@0 1 1 1
1 0 D12 D13

1 D12 0 D23

1 D13 D23 0

1CA :
Note that the triangle area

p
A123 is not a polynomial in the vertex coordinates.

Example 1.3.7 (Cocircularity of four points in the plane). Four points .x1; y1/,
.x2; y2/, .x3; y3/, .x4; y4/ in the Euclidean plane lie on a common circle if and
only if

9 x0; y0W .xi � x0/
2 C .yi � y0/

2 D .xj � x0/
2 C .yj � y0/

2 .1 	 i < j 	 4/:

This in turn is the case if and only if the following invariant polynomial vanishes:

D2
12D

2
34 CD2

13D
2
24 CD2

14D
2
23 � 2D12D13D24D34 � 2D12D14D23D34 �

� 2D13D14D23D24:
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Writing Euclidean properties in terms of squared distances is part of a method
for automated geometry theorem proving due to T. Havel (1991).

We have illustrated the basic idea of geometric invariants for the Euclidean
plane. Later in Chap. 3, we will focus our attention on projective geometry.
In projective geometry the underlying algebra is better understood than in Eu-
clidean geometry. There we will be concerned with the action of the group

 D SL.Cd / by right multiplication on a generic n � d -matrix X D .xij /. Its
invariants in CŒX� WD CŒx11; x12 : : : ; xnd � correspond to geometric properties
of a configuration of n points in projective .d � 1/-space.

The first fundamental theorem, to be proved in Sect. 3.2, states that the cor-
responding invariant ring CŒX�� is generated by the d � d -subdeterminants

Œi1i2 : : : id � WD det

0@xi1;1 : : : xi1;d
:::

: : :
:::

xid ;1 : : : xid ;d

1A :
Example 1.3.8. The expression in Example 1.2.1 (6) is a polynomial function
in the coordinates of four points on the projective line (e.g., the point “3” has
homogeneous coordinates .x31; x32/). This polynomial is invariant, it does cor-
respond to a geometric property, because it can be rewritten in terms of brack-
ets as Œ14�Œ23� C Œ13�Œ24�. It vanishes if and only if the projective cross ratio
.1; 2I 3; 4/ D Œ13�Œ24�=Œ14�Œ23� of the four points equals �1.

The projective geometry analogue to the above rewriting process for Eu-
clidean geometry will be presented in Sects. 3.1 and 3.2. It is our objective to
show that the set of straightening syzygies is a Gröbner basis for the Grassmann
ideal of syzygies among the brackets Œi1i2 : : : id �. The resulting Gröbner basis
normal form algorithm equals the classical straightening law for Young tableaux.
Its direct applications are numerous and fascinating, and several of them will be
discussed in Sects. 3.4–3.6.

The bracket algebra and the straightening algorithm will furnish us with the
crucial technical tools for studying invariants of forms (= homogeneous polyno-
mials) in Chap. 4. This subject is a cornerstone of classical invariant theory.

Exercises

(1) Show that every finite group 
 � GL.Cn/ does have nonconstant
polynomial invariants. Give an example of an infinite matrix group 
 with
CŒx�� D C.

(2) Write the Euclidean invariant R in Example 1.3.4 as a polynomial function
in the squared distances D12, D13, D23, and interpret the result
geometrically.

(3) Fix a set of positive and negative integers fa1; a2; : : : ; ang, and let

 � GL.Cn/ denote the subgroup of all diagonal matrices of the form
diag.ta1 ; ta2 ; : : : ; tan/, t 2 C�, where C� denotes the multiplicative group
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of nonzero complex numbers. Show that the invariant ring CŒx1; : : : ; xn�
�

is finitely generated as a C-algebra.
(4) Let CŒX� denote the ring of polynomial functions on an n � n-matrix

X D .xij / of indeterminates. The general linear group GL.Cn/ acts on
CŒX� by conjugation, i.e., X 7! AXA�1 for A 2 GL.Cn/. The invariant
ring CŒX�GL.Cn/ consists of all polynomial functions which are invariant
under the action. Find a fundamental set of invariants.

1.4. Torus invariants and integer programming

Let n � d be positive integers, and let A D .aij / be any integer n � d -matrix
of rank d . Integer programming is concerned with the algorithmic study of the
monoid defined by A:

MA WD ˚
.	1; : : : ; 	n/ 2 Zn n f0g W
	1; : : : ; 	n � 0 and .	1; : : : ; 	n/ � A D 0

�
:

.1:4:1/

We are interested in the following three specific questions:

(a) Feasibility Problem: “Is MA nonempty?” If yes, find a vector 	 D .	1; : : : ;
	n/ in MA.

(b) Optimization Problem: Given any cost vector ! D .!1; : : : ; !n/ 2 RnC, find a
vector 	 D .	1; : : : ; 	n/ 2 MA such that h!; 	i D Pn

iD1 !i	i is minimized.
(c) Hilbert Basis Problem: Find a finite minimal spanning subset H in MA.

By “spanning” in (c) we mean that every ˇ 2 MA has a representation

ˇ D P
�2H

c� � 	; .1:4:2/

where the c� are nonnegative integers. It is known (see, e.g., Schrijver 1986,
Stanley 1986) that such a set H exists and is unique. It is called the Hilbert
basis of MA. The existence and uniqueness of the Hilbert basis will also follow
from our correctness proof for Algorithm 1.4.5 given below.

Example 1.4.1. Let n D 4; d D 1. We choose the matrix A D .3; 1;�2;�2/T
and the cost vector ! D .5; 5; 6; 5/. Our three problems have the following
solutions:

(a) MA 6D ; because 	 D .1; 1; 1; 1/ 2 MA.
(b) 	 D .0; 2; 0; 1/ 2 MA has minimum cost h!; 	i D 15.
(c) The Hilbert basis of MA equals H D f.2; 0; 3; 0/; .2; 0; 2; 1/; .2; 0; 1; 2/;

.2; 0; 0; 3/; .1; 1; 2; 0/; .1; 1; 1; 1/; .1; 1; 0; 2/; .0; 2; 0; 1/; .0; 2; 1; 0/g.

The Hilbert basis problem (c) has a natural translation into the context of
invariant theory; see, e.g., Hochster (1972), Wehlau (1991). Using this translation



20 Introduction

and Gröbner bases theory, we will present algebraic algorithms for solving the
problems (a), (b) and (c).

With the given integer n � d -matrix A we associate a group of diagonal
n � n-matrices:


A WD
�

diag
� dQ

iD1

t
a1i

i ;
dQ

iD1

t
a2i

i ; : : : ;
dQ

iD1

t
ani

i

� W t1; : : : ; td 2 C�
�
: .1:4:3/

The matrix group 
A is isomorphic to the group .C�/d of invertible diagonal
d � d -matrices, which is called the d -dimensional algebraic torus. We call 
A
the torus defined by A. In this section we describe an algorithm for computing
its invariant ring CŒx1; x2; : : : ; xn�

�A .
The action of 
A maps monomials into monomials. Hence a polynomial

f .x1; : : : ; xn/ is an invariant if and only if each of the monomials appearing
in f is an invariant. The invariant monomials are in bijection with the elements
of the monoid MA.

Lemma 1.4.2.
(a) A monomial x� D x

�1

1 � � � x�n
n is 
A-invariant if and only if 	 D .	1; : : : ; 	n/

2 MA.
(b) A finite set H � Zn equals the Hilbert basis of MA if and only if the

invariant ring CŒx1; : : : ; xn�
�A is minimally generated as a C-algebra by

fx� W 	 2 Hg.

Proof. The image of x� under a torus element diag.
Qd

iD1 t
a1i

i ; : : : ;
Qd

iD1 t
ani

i /
equals

.x1

dQ
iD1

t
a1i

i /�1 � � � � � � .xn

dQ
iD1

t
ani

i /�n D .x
�1

1 � � � x�n
n / �

dQ
iD1

t

Pn
j D1 �j aji

i : .1:4:4/

Therefore x� is invariant under the action of 
A if and only if
Pn

j D1 	jaj i D 0,
for i D 1; : : : ; d . This is equivalent to 	 � A D 0, which is the defining equation
of the monoid MA. Part (b) follows from the fact that (1.4.2) translates into
xˇ D Q

�2H
�
x�
�c� . G

Example 1.4.1 (continued). Let 
A be the group of diagonal 4 � 4-matrices of
the form diag.t3; t1; t�2; t�2/, where t 2 C�. The invariant ring equals CŒx1;

x2; x3; x4�
�A D C

�
x2

1x
3
3 ; x

2
1x

2
3x4; x

2
1x3x

2
4 ; x

2
1x

3
4 ; x1x2x

2
3 ; x1x2x3x4; x1x2x

2
4 ;

x2
2x3; x

2
2x4

�
.

We first show how to solve the easiest of the three problems. The subsequent
Algorithms 1.4.3 and 1.4.4 are due to Pottier (1991). For an alternative Gröbner
basis approach to integer programming see Conti and Traverso (1991).
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Algorithm 1.4.3 (Integer programming – Feasibility problem (a)).
Input: An integer n � d -matrix A D .aij /.
Output: A vector .ˇ1; : : : ; ˇn/ in the monoid MA if MA 6D ;; “INFEASIBLE”
otherwise.

1. Compute any reduced Gröbner basis G for the kernel of the C-algebra ho-
momorphism

CŒx1; x2; : : : ; xn� ! CŒt1; : : : ; td ; t
�1
1 ; : : : ; t�1

d �; xi 7!
dQ

j D1

t
aij

j : .1:4:5/

2. Does there exist an element of the form x
ˇ1

1 x
ˇ2

2 � � � xˇn
n � 1 in G?

If yes, then output “.ˇ1; : : : ; ˇn/ 2 MA”. If no, then output “INFEASIBLE”.

In step 1 of Algorithm 1.4.3 we may encounter negative exponents aij . In prac-
tice these are dealt with as follows. Let t0 be a new variable, and choose any
elimination order ft0; t1; : : : ; td g � fx1; : : : ; xng. Using the additional relation
t0t1 � � � td � 1, clear the denominators in xi �Qd

j D1 t
aij

j , for i D 1; 2; : : : ; n. For
the resulting nC 1 polynomials compute a Gröbner basis G0 with respect to �.
Let G WD G0 \ CŒx1; : : : ; xn�.

Algorithm 1.4.4 (Integer programming – Optimization problem (b)).
0. Choose a monomial order � which refines the given cost vector ! 2 RnC. By

this we mean

8˛; ˇ 2 NnW h˛; !i < hˇ; !i H) x˛ � xˇ :

1. Let G be the reduced Gröbner basis with respect to � for the kernel of
(1.4.5).

2. Among all polynomials of the form x
ˇ1

1 x
ˇ2

2 � � � xˇn
n �1 appearing in G, choose

the one which is smallest with respect to �. Output .ˇ1; ˇ2; : : : ; ˇn/.

Proof of correctness for Algorithms 1.4.3 and 1.4.4. Let I denote the kernel
of the map (1.4.5). This is a prime ideal in the polynomial ring CŒx1; : : : ; xn�,
having the generic point .

Qd
iD1 t

a1i

i ; : : : ;
Qd

iD1 t
ani

i /. By the proof of Lemma
1.4.2, a monomial xˇ is invariant under 
A if and only if xˇ is congruent to 1
modulo I . Therefore, if Algorithm 1.4.3 outputs a vector ˇ, then ˇ must lie in
MA.

We must show that Algorithm 1.4.3 outputs “INFEASIBLE” only if MA D ;.
Suppose that MA 6D ; and let ˇ 2 MA. Then xˇ � 1 lies in the ideal I , and
hence the normal form of xˇ modulo the Gröbner basis G equals 1. In each
step in the reduction of xˇ a monomial reduces to another monomial. In the
last step some monomial x� reduces to 1. This implies that x� � 1 2 G. This
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is a contradiction to the assumption that the output equals “INFEASIBLE”. We
conclude that Algorithm 1.4.3 terminates and is correct.

To see the correctness of Algorithm 1.4.4, we suppose that the output vector
ˇ D .ˇ1; : : : ; ˇn/ is not the optimal solution to problem (b). Then there ex-
ists a vector ˇ0 D .ˇ0

1; : : : ; ˇ
0
n/ in MA such that h!; ˇ0i < h!; ˇi. Since the

monomial order � refines !, the reduction path from xˇ 0
to 1 decreases the

!-cost of the occurring monomials. The last step in this reduction uses a rela-
tion x� �1 2 G with h!; �i 	 h!; ˇ0i < h!; ˇi. This is a contradiction, because
x� � 1 would be chosen instead of xˇ � 1 in step 2. G

Our next algorithm uses 2nC d variables t1; : : : ; td ; x1; : : : ; xn; y1; : : : ; yn.
We fix any elimination monomial order ft1; : : : ; td g � fx1; : : : ; xng � fy1; : : : ;
yng. Let JA denote the kernel of the C-algebra homomorphism

CŒx1; x2; : : : ; xn; y1; y2 : : : ; yn� ! CŒt1; : : : ; td ; t
�1
1 ; : : : ; t�1

d ; y1; : : : ; yn�;

x1 7! y1

dQ
j D1

t
a1j

j ; : : : ; xn 7! yn

dQ
j D1

t
anj

j ; y1 7! y1; : : : ; yn 7! yn:

(1.4.6)

Algorithm 1.4.5 (Integer programming – Hilbert basis problem (c)).
1. Compute the reduced Gröbner basis G with respect to � for the ideal JA.
2. The Hilbert basis H of MA consists of all vectors ˇ such that xˇ � yˇ

appears in G.

Proof of correctness for Algorithm 1.4.5. We first note that JA is a homoge-
neous prime ideal and that there is no monomial contained in JA. By the same
reasoning as above, a vector ˇ 2 Nn lies in MA if and only if the monomial
difference xˇ � yˇ lies in JA.

We wish to show that the finite subset H � MA constructed in step 2
spans the monoid MA. Suppose this is not the case. Then there exists a minimal
(with respect to divisibility) monomial xˇ such that ˇ 2 MA, but ˇ is not a
sum of elements in H. The polynomial xˇ � yˇ lies in JA, so it reduces to zero
modulo G. By the choice of monomial order, the first reduction step replaces xˇ

by some monomial x�yı , where ı D ˇ � � is nonzero. Therefore

x�yı � yˇ D yı.x� � y� / 2 JA:

Since JA is a prime ideal, not containing any monomials, we conclude that
x� � y� lies in JA. This implies that � lies in MA, and therefore the non-
negative vector ı D ˇ � � lies in MA. By our minimality assumption on ˇ,
we have that both ı and � can be written as sums of elements in H. Therefore
ˇ D � C ı can be written as sums of elements in H. This is a contradiction, and
the proof is complete. G
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Example 1.4.1 (continued). For A D .3; 1;�2;�2/T , we consider the relations˚
x1 � t3y1; x2 � ty2; t

2x3 � y3; t
2x4 � y4

�
The reduced Gröbner basis with respect to the lexicographic monomial order
t � x1 � x2 � x3 � x4 � y1 � y2 � y3 � y4 equals G D˚
t3y1 � x1; t

2x2y1 � x1y2; t
2x3 � y3; t

2x4 � y4; tx1x
2
3 � y1y

2
3 ;

tx1x3x4 � y1y3y4; tx1x
2
4 � y1y

2
4 ; tx

2
2y1 � x1y

2
2 ; tx2x3 � y2y3;

tx2x4 � y2y4; ty1y3 � x1x3; ty1y4 � x1x4; ty2 � x2; x
2
1x

3
3 � y2

1y
3
3 ;

x2
1x

2
3x4 � y2

1y
2
3y4; x

2
1x3x

2
4 � y2

1y3y
2
4 ; x

2
1x

3
4 � y2

1y
3
4 ; x1x2x

2
3 � y1y2y

2
3 ;

x1x2x3x4 � y1y2y3y4; x1x2x
2
4 � y1y2y

2
4 ; x1x3y2 � x2y1y3;

x1x4y2 � x2y1y4; x1y
3
2 � x3

2y1; x
2
2x3 � y2

2y3; x
2
2x4 � y2

2y4; x3y4 � x4y3

�
The polynomials not containing the variable t form a Gröbner basis for the ideal
JA. The Hilbert basis of MA consists of the nine underlined monomials.

Exercises

(1) Compute a Hilbert basis for MA where A D .4; 1;�2;�3/T . Verify your
result using the polyhedral methods given in (Stanley 1986: section 4.6).

(2) * Give a bound for the complexity of the Hilbert basis H in terms of the
input data A.

(3) * With an integer n � d -matrix A we can also associate the monoid

M0
A WD ˚

� 2 Zd j A � � � 0
�
:

Give an algorithm, using Gröbner bases, for computing a Hilbert basis for
M0

A.
(4) * With an integer n � d -matrix A we can also associate the monoid

M00
A WD ˚

� 2 Zd j 9 	 2 QnW 	 � 0 and 	 � A D �
�
:

Give an algorithm, using Gröbner bases, for computing a Hilbert basis for
M00

A.



2 Invariant theory
of finite groups

Let CŒx� denote the ring of polynomials with complex coefficients in n vari-
ables x D .x1; x2; : : : ; xn/. We are interested in studying polynomials which
remain invariant under the action of a finite matrix group 
 � GL.Cn/. The
main result of this chapter is a collection of algorithms for finding a finite set
fI1; I2; : : : ; Img of fundamental invariants which generate the invariant subring
CŒx�� . These algorithms make use of the Molien series (Sect. 2.2) and the
Cohen–Macaulay property (Sect. 2.3). In Sect. 2.4 we include a discussion of
invariants of reflection groups, which is an important classical topic. Sections
2.6 and 2.7 are concerned with applications and special cases.

2.1. Finiteness and degree bounds

We start out by showing that every finite group has “sufficiently many” invari-
ants.

Proposition 2.1.1. Every finite matrix group 
 � GL.Cn/ has n algebraically
independent invariants, i.e., the ring CŒx�� has transcendence degree n over C.

Proof. For each i 2 f1; 2; : : : ; ng we define Pi WD Q
�2�.xi B � � t / 2 CŒx�Œt �.

Consider Pi D Pi .t/ as a monic polynomial in the new variable t whose coef-
ficients are elements of CŒx�. Since Pi is invariant under the action of 
 on the
x-variables, its coefficients are also invariant. In other words, Pi lies in the ring
CŒx�� Œt �.

We note that t D xi is a root of Pi .t/ because one of the � 2 
 in the
definition of P equals the identity. This means that all variables x1; x2; : : : ; xn

are algebraically dependent upon certain invariants. Hence the invariant subring
CŒx�� and the full polynomial ring CŒx� have the same transcendence degree n
over the ground field C. G

The proof of Proposition 2.1.1 suggests that “averaging over the whole
group” might be a suitable procedure for generating invariants. This idea can
be made precise by introducing the following operator which maps polynomial
functions onto their average with respect to the group 
 . The Reynolds opera-
tor “�” is defined as

� W CŒx� ! CŒx�� ; f 7! f � WD 1

j
j
P

�2�

f B �:

Each of the following properties of the Reynolds operator is easily verified.
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Proposition 2.1.2. The Reynolds operator “�” has the following properties.

(a) “�” is a C-linear map, i.e., .�f C	g/� D �f � C	g� for all f; g 2 CŒx� and
�; 	 2 C.

(b) “�” restricts to the identity map on CŒx�� , i.e., I D I � for all invariants
I 2 CŒx�� .

(c) “�” is a CŒx�� -module homomorphism, i.e., .f I /� D f � �I for all f 2 CŒx�
and I 2 CŒx�� .

We are now prepared to prove a theorem about the invariant rings of finite
groups.

Theorem 2.1.3 (Hilbert’s finiteness theorem). The invariant ring CŒx�� of a
finite matrix group 
 � GL.Cn/ is finitely generated.

Proof. Let I� WD hCŒx��Ci be the ideal in CŒx� which is generated by all homo-
geneous invariants of positive degree. By Proposition 2.1.2 (a), every invariant I
is a C-linear combination of symmetrized monomials .xe1

1 x
e2

2 : : : x
en
n /

�. These ho-
mogeneous invariants are the images of monomials under the Reynolds operator.
This implies that the ideal I� is generated by the polynomials .xe1

1 x
e2

2 : : : x
en
n /

�,
where e D .e1; e2; : : : ; en/ ranges over all nonzero, nonnegative integer vectors.

By Hilbert’s basis theorem (Corollary 1.2.5), every ideal in the polynomial
ring CŒx� is finitely generated. Hence there exist finitely many homogeneous
invariants I1; I2; : : : ; Im such that I� D hI1; I2; : : : ; Imi. We shall now prove
that all homogeneous invariants I 2 CŒx�� can actually be written as polynomial
functions in I1; I2; : : : ; Im.

Suppose the contrary, and let I be a homogeneous element of minimum
degree in CŒx�� n CŒI1; I2; : : : ; Im�. Since I 2 I� , we have I D Ps

j D1 fj Ij for
some homogeneous polynomials fj 2 CŒx� of degree less than deg.I /. Applying
the Reynolds operator on both sides of this equation we get

I D I � D � sP
j D1

fj Ij
�� D

sP
j D1

f �
j Ij

from Proposition 2.1.2. The new coefficients f �
j are homogeneous invariants

whose degree is less than deg.I /. From the minimality assumption on I we get
f �

j 2 CŒI1; : : : ; Im� and therefore I 2 CŒI1; : : : ; Im�, which is a contradiction
to our assumption. This completes the proof of Theorem 2.1.3. G

This proof of Theorem 2.1.3 implies the remarkable statement that every
ideal basis fI1; : : : ; Img of I� is automatically an algebra basis for CŒx�� , i.e.,
a fundamental system of invariants. Observe also that in this proof the finiteness
of the group 
 has not been used until the last paragraph. The only hypothe-
sis on the group 
 which we really needed was the existence of an averaging
operator “�” which satisfies (a), (b) and (c) in Proposition 2.1.2.
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The finiteness theorem and its proof remain valid for infinite groups 
 which
do admit a Reynolds operator with these properties. These groups are called
reductive. In particular, it is known that every matrix representation 
 of a com-
pact Lie group is reductive. The Reynolds operator of such a compact group 

is defined by the formula f � D R

�
.f B �/d� , where d� is the Haar proba-

bility measure on 
 . For details on reductive groups and proofs of the general
finiteness theorem we refer to Dieudonné and Carrell (1971) or Springer (1977).

Let us now return to the case of a finite group 
 . Here the general incon-
structive finiteness result of Hilbert can be improved substantially. The following
effective version of the finiteness theorem is due to E. Noether (1916).

Theorem 2.1.4 (Noether’s degree bound). The invariant ring CŒx�� of a finite
matrix group 
 has an algebra basis consisting of at most

�
nCj�j

n

�
invariants

whose degree is bounded above by the group order j
j.

Proof. With every vector e D .e1; e2; : : : ; en/ of nonnegative integers we asso-
ciate the homogeneous invariant Je.x/ WD .x

e1

1 x
e2

2 : : : x
en
n /

� which is obtained
by applying the Reynolds operator to the monomial with exponent vector e. We
abbreviate e WD jej D e1 C e2 C : : :C en.

Let u1; : : : ; un be a new set of variables, and consider the polynomial

Se.u;x/ WD f.u1x1 C : : :C unxn/
eg�

D 1

j
j
P

�2�

Œu1.x1 B �/C : : :C un.xn B �/�e

in the new variables whose coefficients are polynomials in the old variables
x1; : : : ; xn. The Reynolds operator “�” acts on such polynomials by regarding
the ui as constants. By complete expansion of the above expression, we find that
the coefficient of ue1

1 : : : u
en
n in Se is equal to the invariant Je times a positive

integer.
The polynomials Se are the power sums of the j
j magnitudes u1.x1 B�/C

: : : C un.xn B �/ where � ranges over 
 . By Proposition 1.1.2, we can ex-
press each power sum Se as a polynomial function in the first j
j power sums
S1; S2; : : : ; Sj�j. Such a representation of Se shows that all u-coefficients are
actually polynomial functions in the u-coefficients of S1; S2; : : : ; Sj�j.

This argument proves that the invariants Je with jej > j
j are contained in
the subring C

�fJe W jej 	 j
jg�. We have noticed above that every invariant is a
C-linear combination of the special invariants Je. This implies that

CŒx�� D C
�fJe W jej 	 j
jg�:

The set of integer vectors e 2 Nn with jej 	 j
j has cardinality
�

nCj�j
n

�
. G
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The following proposition shows that, from the point of view of worst case
complexity, the Noether degree bound is optimal.

Proposition 2.1.5. For any two integers n; p � 2 there exists a p-element ma-
trix group 
 � GL.Cn/ such that every algebra basis for CŒx�� contains at least�

nCp�1
n�1

�
invariants of degree p.

Proof. Consider the action of the p-element cyclic group on Cn given by


 WD ˚
diag.e

2ik�
p ; e

2ik�
p ; : : : ; e

2ik�
p / W k D 0; 1; : : : ; p � 1 �:

We can easily determine the action the Reynolds operator on all monomials:

.x
e1

1 x
e2

2 � � � xen
n /

� D
(
x

e1

1 x
e2

2 � � � xen
n if p divides e D e1 C : : :C en;

0 otherwise.

This shows that the invariant ring CŒx�� is the Veronese subalgebra of CŒx�
which is generated by all monomials of total degree p. Clearly, any graded
algebra basis for this ring must contain a vector space basis for the

�
nCp�1

n�1

�
-

dimensional C-vector space of n-variate polynomials of total degree p. G
The lower bounds in Proposition 2.1.5 have been shown to hold for essen-

tially all primitive groups 
 by Huffman and Sloane (1979). In spite of these
discouraging results, there are many special groups for which the system of fun-
damental invariants is much smaller. For such groups and for studying properties
of invariant rings in general, the technique of “linear algebra plus degree bounds”
will not be sufficient, but we will need the refined techniques and algorithms to
be developed in the subsequent sections.

Exercises

(1) Determine the invariant rings of all finite subgroups of GL.C1/, that is, the
finite multiplicative subgroups of the complex numbers.

(2) Let � W CŒx1; x2� ! CŒx1; x2�
Z4 be the Reynolds operator of the cyclic

group in Example 1.3.2., and consider its restriction to the 5-dimensional
vector space of homogeneous polynomials of degree 4. Represent this
C-linear map “�” by a 5 � 5-matrix A, and compute the rank, image and
kernel of A.

(3) Consider the action of the symmetric group S4 on
CŒx12; x13; x14; x23; x24; x34� by permuting indices of the six variables
(subject to the relations xji D xij ). Determine a minimal algebra basis for
the ring of invariants. Compare your answer with the bounds in Theorem
2.1.4.

(4) Let 
 � GL.Cn/ be a finite matrix group and I � CŒx� an ideal which
is fixed by 
 . Show that 
 acts on the quotient ring CŒx�=I, and give
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an algorithm for computing a finite algebra basis for the invariant ring
.CŒx�=I/� .

2.2. Counting the number of invariants

We continue our discussion with the problem “how many invariants does a given
matrix group 
 have?” Such an enumerative question can be made precise as
follows. Let CŒx��

d
denote the set of all homogeneous invariants of degree d .

The invariant ring CŒx�� is the direct sum of the finite-dimensional C-vector
spaces CŒx��

d
. By definition, the Hilbert series of the graded algebra CŒx�� is

the generating function ˆ�.´/ D P1
dD0 dim.CŒx��

d
/´d .

The following classical theorem gives an explicit formula for the Hilbert
series of CŒx�� in terms of the matrices in 
 . We write id for the n � n-identity
matrix.

Theorem 2.2.1 (Molien 1897). The Hilbert series of the invariant ring CŒx��

equals

ˆ�.´/ D 1

j
j
P

�2�

1

det.id � ´�/ :

Theorem 2.2.1 states in other words that the Hilbert series of the invariant ring
is the average of the inverted characteristic polynomials of all group elements.
In order to prove this result we need the following lemma from linear algebra.

Lemma 2.2.2. Let 
 � GL.Cn/ be a finite matrix group. Then the dimension
of the invariant subspace

V � D fv 2 Cn W �v D v for all � 2 
g

is equal to 1
j�j
P

�2� trace.�/.

Proof. Consider the average matrix P� WD 1
j�j
P

�2� � . This linear map is a

projection onto the invariant subspace V � . Since the matrix P� defines a projec-
tion, we have P� D P 2

� , which means that P� has only the eigenvalues 0 and 1.
Therefore the rank of the matrix P� equals the multiplicity of its eigenvalue 1,
and we find dim.V �/ D rank.P�/ D trace.P�/ D 1

j�j
P

�2� trace.�/. G

Proof of Theorem 2.2.1. We write CŒx�d for the
�

nCd�1
d

�
-dimensional vector

space of d -forms in CŒx�. For every linear transformation � 2 
 there is an
induced linear transformation �.d/ on the vector space CŒx�d . In this linear
algebra notation CŒx��

d
becomes precisely the invariant subspace of CŒx�d with

respect to the induced group f�.d/ W � 2 
g of
�

nCd�1
d

� � �nCd�1
d

�
-matrices.

In order to compute the trace of an induced transformation �.d/, we identify
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the vector space Cn with its linear forms CŒx�1. Let `�;1; : : : ; `�;n 2 CŒx�1 be
the eigenvectors of � D �.1/, and let ��;1; : : : ; ��;n 2 C denote the correspond-
ing eigenvalues. Note that each matrix � 2 
 is diagonalizable over C because
it has finite order.

The eigenvectors of �.d/ are precisely the
�

nCd�1
d

�
d -forms `d1

�;1 : : : `
dn
�;n

where d1 C : : : C dn D d . The eigenvalues of �.d/ are therefore the complex
numbers �d1

�;1 � � � �dn
�;n where d1 C : : : C dn D d . Since the trace of a linear

transformation equals the sum of its eigenvalues, we have the equation

trace.�.d// D P
d1C:::CdnDd

�
d1

�;1 : : : �
dn
�;n:

By Lemma 2.2.2, the dimension of the invariant subspace CŒx��
d

equals the
average of the traces of all group elements. Rewriting this dimension count in
terms of the Hilbert series of the invariant ring, we get

ˆ�.´/ D
1P

dD0

1

j
j
P

�2�

� P
d1C:::CdnDd

�
d1

�;1 : : : �
dn
�;n

�
´d

D 1

j
j
P

�2�

P
.d1;:::;dn/2Nn

�
d1

�;1 : : : �
dn
�;n ´

d1C:::Cdn

D 1

j
j
P

�2�

1

.1 � ´��;1/ � � � .1 � ´��;n/

D 1

j
j
P

�2�

1

det.id � ´�/ : G

In the remainder of this section we illustrate the use of Molien’s theorem
for computing invariants. For that purpose we need the following general lemma
which describes the Hilbert series of a graded polynomial subring of CŒx�.

Lemma 2.2.3. Let p1; p2; : : : ; pm be algebraically independent elements of
CŒx� which are homogeneous of degrees d1; d2; : : : ; dm respectively. Then the
Hilbert series of the graded subring R WD CŒp1; p2; : : : ; pm� equals

H.R; ´/ WD
1P

nD0

.dimC Rd /´
d D 1

.1 � ´d1/.1 � ´d2/ : : : .1 � ´dm/
:

Proof. Since the pi are algebraically independent, the set

fpi1
1 p

i2
2 : : : p

im
m W i1; i2; : : : ; im 2 N and i1d1 C i2d2 C : : :C imdm D dg

is a basis for the C-vector space Rd of degree d elements in R. Hence the
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dimension of Rd equals the cardinality of the set

Ad WD f.i1; i2; : : : ; im/ 2 Nm W i1d1 C i2d2 C : : :C imdm D dg:

The expansion

1

.1 � ´d1/.1 � ´d2/ : : : .1 � ´dm/
D 1

.1 � ´d1/
� 1

.1 � ´d2/
: : :

1

.1 � ´dm/

D � 1P
i1D0

´i1d1
�� 1P

i2D0

´i2d2
�
: : :
� 1P

imD0

´imdm
�

D
1P

dD0

P
.i1;i2:::;im/2Ad

´d D
1P

dD0

jAd j ´d

proves the claim of Lemma 2.2.3. G

The following matrix group had already been considered in Example 1.3.2.

Example 2.2.4.
The invariant ring CŒx1; x2�

Z4 of the group f˙� 1 0
0 1

�
; ˙� 0 �1

1 0

�g is generated
by the invariants I1 WD x2

1 C x2
2 , I2 WD x2

1x
2
2 and I3 WD x1x

3
2 � x3

1x2.

Proof. The graded algebra CŒI1; I2; I3� is clearly contained in the graded alge-
bra CŒx1; x2�

Z4 . In order to establish that these two algebras are equal, it suffices
that, for each d 2 N, their graded components CŒI1; I2; I3�d and CŒx1; x2�

Z4

d
have the same finite dimension as C-vector spaces. In other words, we need
to show that the Hilbert series of CŒI1; I2; I3� equals the Molien series of the
invariant ring.

The Hilbert series ˆZ4
.´/ of CŒx1; x2�

Z4 can be computed using Molien’s
Theorem.

ˆZ4
.´/

D 1
4



1ˇ̌̌

1 � ´ 0
0 1 � ´

ˇ̌̌ C 1ˇ̌̌
1C ´ 0
0 1C ´

ˇ̌̌ C 1ˇ̌̌
1 ´

�´ 1

ˇ̌̌ C 1ˇ̌̌
1 �´
´ 1

ˇ̌̌ �

D 1
4



1

.1 � ´/2 C 1

.1C ´/2
C 2

1C ´2

�
D 1C ´4

.1 � ´2/.1 � ´4/

D 1C ´2 C 3´4 C 3´6 C 5´8 C 5´10 C 7´12 C 7´14 C 9´16 C 9´18 C : : :

The Hilbert series of CŒI1; I2; I3� can be computed as follows. Using the Gröb-



32 Invariant theory of finite groups

ner basis method discussed in Sect. 1.2 (see also Subroutine 2.5.3), we find that
the algebraic relation I 2

3 � I2I
2
1 C 4I 2

2 generates the ideal of syzygies among
the Ij . This implies that every polynomial p 2 CŒI1; I2; I3� can be written
uniquely in the form p.I1; I2; I3/ D q.I1; I2/ C I3 � r.I1; I2/, where q and r
are bivariate polynomials. In other words, the graded algebra in question is de-
composed as the direct sum of graded C-vector spaces

CŒI1; I2; I3� D CŒI1; I2�˚ I3 CŒI1; I2�:

The first component in this decomposition is a subring generated by algebraically
independent homogeneous polynomials. Using Lemma 2.2.3, we find that its
Hilbert series equals 1

.1�´2/.1�´4/
. Since the degree d elements in CŒI1; I2� are

in one-to-one correspondence with the degree dC4 elements in I3 CŒI1; I2�, the
Hilbert series of the second component equals ´4

.1�´2/.1�´4/
. The sum of these

two series equals ˆZ4
.´/, and it is the Hilbert series of CŒI1; I2; I3� because the

vector space decomposition is direct. G

The method we used in Example 2.2.4 for proving the completeness of a
given system of invariants works in general.

Algorithm 2.2.5 (Completeness of fundamental invariants). Suppose we are
given a set of invariants fI1; : : : ; Img � CŒx�� . We wish to decide whether
this set is complete, i.e., whether the invariant ring CŒx�� equals its subalgebra
R D CŒI1; : : : ; Im�. This is the case if and only if the Hilbert series H.R; ´/
is equal to the Molien series ˆ�.´/. Otherwise, we can subtract H.R; ´/ from
the Molien series, and we get ˆ�.´/ �H.R; ´/ D cd´

d C higher terms, where
cd is some positive integer. From this we conclude that there are cd linearly
independent invariants of degree d which cannot be expressed as polynomials
in I1; : : : ; Im. We may now compute these extra invariants (using the Reynolds
operator) and proceed by adding them to the initial set fI1; : : : ; Img.

Hence our problem is reduced to computing the Hilbert function of a graded
subalgebra CŒI1; : : : ; Im� � CŒx� which is presented in terms of homogeneous
generators. Let dj WD deg.Ij /. Using the Subroutine 2.5.3, we compute any
Gröbner basis G D fg1; : : : ; grg for the kernel I of the map of polynomial rings
CŒy1; : : : ; ym� ! CŒx1; : : : ; xn�, yi 7! Ii .x/. Then R is isomorphic as a graded
C-algebra to CŒy1; : : : ; ym�=I where the degree of each variable yj is defined
to be dj .

By Theorem 1.2.6, R is isomorphic as a graded C-vector space to CŒy1;
: : : ; ym�=hinit.g1/; : : : ; init.gr/i. Hence the d -th coefficient dimC.Rd / of the
desired Hilbert series H.R; ´/ equals the number of monomials yi1

1 y
i2
2 � � �yim

m

with i1d1 C : : : C imdm D d which are not multiples of any of the mono-
mials init.g1/; : : : ; init.gr/. Fast combinatorial algorithms for determining this
number are given in Bayer and Stillman (1992) and Bigatti et al. (1992). These
algorithms are implemented in the computer algebra systems MACAULAY and
COCOA respectively.
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Example 2.2.6 (A 3-dimensional representation of the dihedral group D6). Con-
sider the action of the dihedral group D6 D fid; ı; ı2; ı3; ı4; ı5; �; �ı; �ı2; �ı3;
�ı4; �ı5g on CŒx; y; ´� which is defined by the matrices

� D
0@1 0 0

0 �1 0

0 0 �1

1A and ı WD

0B@ 1=2 �p
3=2 0p

3=2 1=2 0

0 0 1

1CA
By computing the characteristic polynomials of all twelve matrices we obtain

ˆD6
.t/ D 1

12

P
�2D6

1

det.id � t �/

D 1

12



1

.1 � t /3 C 2

.1 � t /.t2 � t C 1/
C 2

.1 � t /.t2 C t C 1/

C 7

.1 � t /.t C 1/2

�
D 1C 2t2 C 3t4 C 5t6 C t7 C 7t8 C 2t9 C 9t10

C 3t11 C 12t12 C 5t13 C 15t14 CO.t15/:

According to Proposition 2.1.1 there exist three algebraically independent in-
variants. The Molien series ˆD6

.t/ suggests to search for such invariants in
degree 2 and 6. Using the Reynolds operator we find

P2 WD x2 C y2; Q2 WD ´2; P6 WD x6 � 6x4y2 C 9x2y4:

We can see (e.g., using Gröbner bases) that P2, Q2 and P6 are algebraically
independent over C. By Lemma 2.2.3, their subring R D CŒP2;Q2; P6� has the
Hilbert series

H.R; t/ D 1

.1 � t2/2.1 � t6/ D 1C2t2 C3t4 C5t6 C7t8 C9t10 C12t12 C : : :

Since ˆD6
.t/ �H.R; t/ D t7 C 2t9 C : : : is nonzero, R is a proper subring of

CŒx; y; ´�D6 . We need to find an additional invariant in degree 7. For instance,
let

P7 WD 3x5y´ � 10x3y3´C 3xy5´:

Following Algorithm 2.2.5 we now compute a Gröbner basis G for the set
fP2.x; y; ´/�p2; Q2.x; y; ´/� q2; P6.x; y; ´/�p6; P7.x; y; ´/�p7g, where
p2; q2; p6; p7 are new variables lexicographically smaller than x; y; ´. We find

G \ CŒp2; q2; p6; p7� D ˚
p2

7 � p3
2q2p6 C q2p

2
6

�
;
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which means that the four invariants satisfy a unique syzygy of degree 14. We
conclude that the current subring R0 D CŒP2;Q2; P6; P7� has the Hilbert series

H.R0; t / D .1C t7/

.1 � t2/2.1 � t6/
D 1C 2t2 C 3t4 C 5t6 C t7 C 7t8 C 2t9 C 9t10 C 3t11 C : : :

This series is equal to the Molien series, and hence fP2;Q2; P6; P7g is a com-
plete set of invariants. Every other invariant I.x; y; ´/ can be expressed as a poly-
nomial function in P2;Q2; P6; P7 by computing the normal form of I.x; y; ´/
with respect to G.

In the remainder of this section we present an application of the invariant
theory of finite groups to the study of error-correcting codes. Our discussion
is based on an expository paper of N. J. A. Sloane (1977), and we refer to
that article for details and a guide to the coding theory literature. According to
Sloane’s “general plan of attack”, there are two stages in using invariant theory
to solve a problem.

I. Convert the assumptions about the problem (e.g., from coding theory) into
algebraic constraints on polynomials (e.g., weight enumerators).

II. Use invariant theory to find all possible polynomials satisfying these con-
straints.

Imagine a noisy telegraph line from Ithaca to Linz, which transmits 0s and 1s.
Usually when a 0 is sent from Ithaca it is received as a 0 in Linz, but occasion-
ally a 0 is received as a 1. Similarly a 1 is occasionally received as a 0. The
problem is to send a lot of important messages down this line, as quickly and as
reliably as possible. The coding theorist’s solution is to send certain strings of 0s
and 1s, called code words.

Consider a simple example: One of two messages will be sent, either YES or
NO. The message YES will be encoded into the code word 00000, and NO into
11111. Suppose 10100 is received in Linz. The receiver argues that it is more
likely that 00000 was sent (and two errors occurred) than that 11111 was sent
(and three errors occurred), and therefore decodes 10100 as 00000 D YES. For
in some sense 10100 is closer to 00000 than to 11111. To make this precise,
define the Hamming distance dist.u; v/ between two vectors u D .u1; : : : ; un/
and v D .v1; : : : ; vn/ to be the number of places where ui 6D vi . It is easily
checked that “dist” is a metric. Then the receiver should decode the received
vector as the closest code word, measured in the Hamming distance.

Notice that in the above example two errors were corrected. This is possible
because the code words 00000 and 11111 are at distance 5 apart. In general,
if d is the minimum Hamming distance between any two code words, then the
code can correct e D Œ.d � 1/=2� errors, where Œx� denotes the greatest integer
not exceeding x. This motivates the following definition. Let V be the vector
space of dimension n over GF.2/ consisting of all n-tuples of 0s and 1s. An
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Œn; k; d � binary code is a k-dimensional linear subspace C � V such that any
two code words in C differ in at least d places. Then n is called the length,
k the dimension, and d the minimum distance of the code. In a good code n is
small (for rapid transmission), k is large (for an efficient code), and d is large
(to correct many errors). These are incompatible goals, and coding theory deals
with the problem to find best possible compromises.

The weight of vector u D .u1; : : : ; un/ is the number of nonzero ui . Since a
code C is a linear space, for any code words u; v , dist.u; v/ D weight.u � v/
D weight.w/ for some w 2 C. Therefore the minimum distance d between
code words equals the smallest weight of any nonzero code word. The weight
enumerator of an Œn; k; d � code C is a bivariate polynomial which tells the
number of code words of each weight. If C contains ai code words of weight i ,
then the weight enumerator of C is defined to be

WC.x1; x2/ WD
nP

iD0

ai x
n�i
1 xi

2:

Notice that WC is a homogeneous polynomial of degree n. The weight enu-
merator immediately gives the minimum distance d of C. For C always con-
tains the zero code word, giving the leading monomial xn

1 of WC , and the next
nonzero monomial is ad x

n�d
1 xd

2 . As an example consider the Œ3; 2; 2� code
C1 D f000; 011; 101; 110g. Its weight enumerator equals WC1

D x3
1 C 3x1x

2
2 .

Let C be any Œn; k; d � code. The dual code C? consists of all vectors having
zero dot product in GF.2/ with every code word of C. It is an Œn; n�k; d 0� code
for some d 0. E.g., the dual code of C1 is the Œ3; 1; 3� code C?

1 D f000; 111g.
A self-dual code is one for which C? D C. In a self-dual code, k must be equal
to n=2, and so n must be even.

Example 2.2.7. The following 16 code words

00000000 11101000 01110100 00111010 10011100 01001110

10100110 11010010 11111111 00010111 10001011 11000101

01100011 10110001 01011001 00101101

define a self-dual Œ8; 4; 4� code C2. Its weight enumerator equals WC2
D x8

1 C
14x4

1x
4
2 C x8

2 .

The following theorem relates the weight enumerators of dual pairs of codes.
A proof can be found in Sloane (1977: theorem 6).

Theorem 2.2.8. If C is an Œn; k; d � binary code with dual code C?, then

WC?.x1; x2/ D 1

2k
�WC.x1 C x2; x1 � x2/:
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The class of self-dual codes is of particular interest in coding theory because
here the decoding of messages is relatively easy (Sloane, 1977: sect. II.B). It is
the study of this class of codes to which invariant theory of finite groups has
been applied. The basic observation is the following.

Corollary 2.2.9. Let WC be the weight enumerator of a self-dual binary code C.
Then

WC
�
.x1 C x2/=

p
2; .x1 � x2/=

p
2
� D WC.x1; x2/

WC.x1;�x2/ D WC.x1; x2/:

Proof. The first of these identities follows from Theorem 2.2.8 and the fact that
WC is homogeneous of degree n D 2k. The second one is equivalent to the fact
that every w 2 C has an even number of 1s, since w � w D 0. G

We rephrase Corollary 2.2.9 in the language of invariant theory. Consider the
group D8 which is generated by the matrices 1p

2

�
1 1
1 �1

�
and

�
1 0
0 �1

�
. It consists

of 16 elements, and geometrically speaking, D8 is the symmetry group of a
regular octagon in the plane.

Corollary 2.2.90. Let WC be the weight enumerator of a self-dual binary code C.
Then WC is a polynomial invariant of the group D8.

Proposition 2.2.10. The invariant ring CŒx1; x2�
D8 is generated by the funda-

mental invariants 
1 WD x2
1 C x2

2 and 
2 WD x2
1x

2
2.x

2
1 � x2

2/
2.

Corollary 2.2.11. The weight enumerator of every self-dual binary code is a
polynomial function in 
1 and 
2.

As an example consider the weight enumerator WC2
D x8

1 C14x4
1x

4
2 Cx8

2 of
the self-dual code in Example 2.2.7. We have the representation WC2

D 
4
1 �4�
2

in terms of fundamental invariants.
One of the main applications of Sloane’s approach consisted in proving the

nonexistence of certain very good codes. The desired properties (e.g., minimum
distance) of the code are expressed in a tentative weight enumerator W , and
invariant theory can then be used to show that no such invariant W exists.

Exercises

(1) Compute the Hilbert series of the ring CŒ�1; �2; : : : ; �n� of symmetric
polynomials.

(2) Consider the subring of CŒx1; x2; x3; x4� consisting of all polynomials p
which satisfy the shift invariance p.x1; x2; x3; x4/ D p.x2; x3; x4; x1/.
Find a generating set for this invariant ring and use Molien’s theorem to
prove the correctness of your result.

(3) The dihedral group Dn acts on CŒx; y� via the symmetries of a regular
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n-gon. Show that there exists an invariant 
 of degree n such that
CŒx2 C y2; 
� D CŒx; y�Dn . In particular, prove Proposition 2.2.10.

(4) * Let 
 � GL.Cn/ be a finite matrix group and let � W 
 ! C� be any
character.
(a) Find a generalization of Molien’s theorem 2.2.1 for the graded vector

space of relative invariants CŒx��� D ff 2 CŒx� W f B � D �.�/ � f g.
(b) Show that CŒx��� is a finitely generated module over the invariant ring

CŒx�� , and give an algorithm for computing a set of module generators.
(c) Find an example where CŒx��� is not free as a CŒx�� -module.

(5) Consider the action of a finite matrix group 
 � GL.Cn/ on the exterior
algebra ^�Cn D Ln

dD0 ^d Cn, and let .^�Cn/� D Ln
dD0.^d Cn/�

denote the subalgebra of 
-invariants. Prove the following anticommutative
version of Molien’s theorem:

nP
dD0

dim..^d Cn/�/ ´d D 1

j
j
P

�2�

det.id C ´�/:

(6) * Prove the following expression of the Molien series in terms of the
character “trace” of the given representation of 
 . This formula is due to
Jarić and Birman (1977).

ˆ�.´/ D 1

j
j
P

�2�

exp
� 1P

lD1

trace.�l /´l

l

	
:

2.3. The Cohen–Macaulay property

In this section we show that invariant rings are Cohen–Macaulay, which implies
that they admit a very nice decomposition. Cohen–Macaulayness is a fundamen-
tal concept in commutative algebra, and most of its aspects are beyond the scope
of this text. What follows is a brief introduction to some basic concepts and prop-
erties. For further reading on Cohen–Macaulayness and commutative algebra in
general we refer to Atiyah and MacDonald (1969), Kunz (1985), Matsumura
(1986), and Hochster and Eagon (1971). I thank Richard Stanley for supplying
the elementary proof of Theorem 2.3.1 given below.

Let R D R0 ˚ R1 ˚ R2 ˚ : : : be a graded C-algebra of dimension n. This
means that R0 D C, Ri � Rj � RiCj , and that n is the maximal number of
elements of R which are algebraically independent over C. This number is the
Krull dimension of R, abbreviated dim.R/ WD n. We write H.RC/ for the set of
homogeneous elements of positive degree in R. A set f
1; : : : ; 
ng � H.RC/ is
said to be a homogeneous system of parameters (h. s. o. p.) provided R is finitely
generated as a module over its subring CŒ
1; : : : ; 
n�. This implies in particular
that 
1; : : : ; 
n are algebraically independent. A basic result of commutative al-
gebra, known as the Noether normalization lemma, implies that an h. s. o. p.
for R always exists. See Logar (1988) and Eisenbud and Sturmfels (1994) for
discussions of the Noether normalization lemma from the computer algebra point
of view. We will need the following result from commutative algebra.
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Theorem 2.3.1. Let R be a graded C-algebra, and let 
1; : : : ; 
n be an h. s. o. p.
for R. Then the following two conditions are equivalent.

(a) R is a finitely generated free module over CŒ
1; : : : ; 
n�. In other words,
there exist �1; : : : ; �t 2 R (which may be chosen to be homogeneous) such
that

R D
tL

iD1

�iCŒ
1; : : : ; 
n�: .2:3:1/

(b) For every h. s. o. p. �1; : : : ; �n of R, the ring R is a finitely generated free
CŒ�1; : : : ; �n�-module.

If condition (a) and therefore (b) holds, then the elements �1; : : : ; �t satisfy
(2.3.1) if and only if their images form a C-vector space basis of the quotient
algebra R=h
1; : : : ; 
ni.

The proof of Theorem 2.3.1 is based on two lemmas. We recall that a
sequence 
1; : : : ; 
n of elements in R is said to be regular if 
i is not a zero-
divisor in R=h
1; : : : ; 
i�1i for i D 1; 2; : : : ; n. If 
1; : : : ; 
n are algebraically
independent over C, then the condition that 
1; : : : ; 
n is a regular sequence is
equivalent to the condition that R is a free module over its subring CŒ
1; : : : ; 
n�.

Lemma 2.3.2. Let R be a graded C-algebra and a1; : : : ; an positive integers.

(a) A set f
1; : : : ; 
ng � H.RC/ is an h. s. o. p. if and only if f
a1

1 ; : : : ; 

an
n g is

an h. s. o. p.
(b) A sequence 
1; : : : ; 
n 2 H.RC/ is regular if and only if the sequence



a1

1 ; : : : ; 

an
n is regular.

Proof. Suppose 
1; : : : ; 
n are algebraically independent over C. Then the poly-
nomial ring CŒ
1; : : : ; 
n� is a free module of rank a1a2 � � � an over its subring
CŒ


a1

1 ; : : : ; 

an
n �. In fact, the set f
b1

1 � � � 
bn
n j 0 	 bi < aig is a free basis. This

implies both (a) and (b). G

We also need the following “weak exchange property”. For combinatorialists
we note that h. s. o. p.’s do not form the bases of a matroid.

Lemma 2.3.3. Let �1; : : : ; �n and 
1; : : : ; 
n be h. s. o. p.’s of R, with all 
i of
the same degree. Then there exists a C-linear combination 
 D �1
1C: : :C�n
n

such that �1; : : : ; �n�1; 
 is an h. s. o. p.

Proof. The ring S D R=h�1; : : : ; �n�1i has Krull dimension dim.S/ D 1. Let
T denote the image of CŒ
1; : : : ; 
n� in S . Since S is finitely generated as a
module over its subring T , we have dim.T / D dim.S/ D 1. By the Noether
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normalization lemma, there exists a linear combination 
 D �1
1 C : : :C �n
n,
�i 2 C, which is a parameter for T . Now T is a finitely generated CŒ
 �-module,
and hence S is a finitely generated CŒ
 �-module. Thus 
 is a parameter for S ,
and hence �1; : : : ; �n�1; 
 is an h. s. o. p. for R. G

Proof of Theorem 2.3.1. Clearly, (b) implies (a). To prove the converse, suppose
that 
1; : : : ; 
n is a regular sequence in R and that �1; : : : ; �n is any h. s. o. p.
We need to show that �1; : : : ; �n is a regular sequence. We proceed by induction
on n D dim.R/.

n D 1: Let 
 2 H.RC/ be regular and � 2 H.RC/ a parameter. In other
words, 
 is not a zero-divisor, and R is a finitely generated CŒ��-module. Sup-
pose � is not regular, and pick an element u 2 H.RC/ such that � u D 0 in R.
Thus � lies in the annihilator Ann.u/ D fv 2 R j v u D 0g. Since � 2 Ann.u/
is a parameter for the 1-dimensional ring R, the quotient ring R=Ann.u/ is
zero-dimensional. Hence 
m 2 Ann.u/ for some m 2 N. This means that 
m

is a zero-divisor and hence not regular. This is a contradiction to Lemma 2.3.2,
because 
 was assumed to be regular.

n�1 ! n: By Lemma 2.3.2, we may assume that 
1; : : : ; 
n are of the same
degree. Choose 
 as in Lemma 2.3.3, and suppose (after relabeling if necessary)
that 
1; : : : ; 
n�1; 
 are linearly independent over C. Then 
1; : : : ; 
n�1; 
 is a
regular sequence in R, and consequently 
1; : : : ; 
n�1 is a regular sequence in
the .n � 1/-dimensional quotient algebra S WD R=h
i.

By the choice of 
 , the set f�1; : : : ; �n�1g is an h. s. o. p. for S . Apply-
ing the induction hypothesis to S , we conclude that �1; : : : ; �n�1 is regular
for S and therefore �1; : : : ; �n�1; 
 is regular for R. In particular, 
 is a non-
zero-divisor in the 1-dimensional ring R=h�1; : : : ; �n�1i. Applying the induc-
tion hypothesis again, we find that the parameter �n is also a nonzero-divisor in
R=h�1; : : : ; �n�1i. Hence �1; : : : ; �n is a regular sequence in R. This completes
the proof of the implication from (a) to (b).

For the second part of the statement we rewrite the C-linear decomposition
(2.3.1) as

R D � tL
iD1

�i C
�˚

� L
.i1;:::;in/2Nnnf0g

tL
iD1

�i 

i1
1 � � � 
 in

n C
	
:

The claim follows from the fact that the second summand is the ideal
h
1; : : : ; 
ni. G

A graded C-algebra R satisfying the conditions (a) and (b) in Theorem 2.3.1
is said to be Cohen–Macaulay. The decomposition (2.3.1) is called a Hironaka
decomposition of the Cohen–Macaulay algebra R. Once we know an explicit
Hironaka decomposition for R, then it is easy to read off the Hilbert series of R.
The following formula is a direct consequence of Lemma 2.2.3.

Corollary 2.3.4. Let R be an n-dimensional graded Cohen–Macaulay algebra
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with Hironaka decomposition (2.3.1). Then the Hilbert series of R equals

H.R; ´/ D � tP
iD1

´deg 	i
� ı nQ

j D1

.1 � ´deg 
j /:

We now come to the main result of this section. Theorem 2.3.5 first appeared
in Hochster and Eagon (1971), although it was apparently part of the folklore of
commutative algebra before that paper appeared.

Theorem 2.3.5. The invariant ring CŒx�� of a finite matrix group 
 � GL.Cn/
is Cohen–Macaulay.

Proof. Consider the polynomial ring CŒx� as a module over the invariant subring
CŒx�� . We have seen in the proof of Proposition 2.1.1 that every coordinate
function xi satisfies a monic equation with coefficients in CŒx�� . This implies
that CŒx� is finitely generated as a CŒx�� -module. Note that the set U WD ff 2
C� W f � D 0g of polynomials which are mapped to zero by the Reynolds
operator is also a CŒx�� -module. We can write the full polynomial ring as the
direct sum CŒx� D CŒx�� ˚ U of CŒx�� -modules.

By the Noether normalization lemma, there exists an h. s. o. p. 
1; : : : ; 
n

for CŒx�� . Since CŒx� is finite over CŒx�� as observed above, and since CŒx��

is finite over the subring CŒ
1; : : : ; 
n�, it follows that CŒx� is also finite over
CŒ
1; : : : ; 
n�. Hence 
1; : : : ; 
n is an h. s. o. p. also for CŒx�.

Taking the coordinate functions x1; : : : ; xn as an h. s. o. p. for the polyno-
mial ring CŒx�, we see that CŒx� is Cohen–Macaulay. From the implication
“(a) ) (b)” of Theorem 2.3.1 we get that CŒx� is a finitely generated free
CŒ
1; : : : ; 
n�-module.

From the module decomposition CŒx� D CŒx�� ˚ U we obtain a decompo-
sition

CŒx�=h
1; : : : ; 
ni D CŒx��=h
1; : : : ; 
ni ˚ U=.
1U C : : :C 
nU/

f CP
hi
i 7! f � CP

h�
i 
i C .f � f �/CP

.h�
i � hi /
i

of finite-dimensional C-vector spaces. We can choose a homogeneous C-basis
N�1; : : : ; N�t ; N�tC1; : : : ; N�s for CŒx�=h
1; : : : ; 
ni such that N�1; : : : ; N�t is a C-basis
for CŒx��=h
1; : : : ; 
ni and N�tC1; : : : ; N�s is a C-basis for U=.
1U C : : :C 
nU/.
Lift N�1; : : : ; N�t to homogeneous elements �1; : : : ; �t of CŒx�� , and lift
N�tC1; : : : ; N�s to homogeneous elements �tC1; : : : ; �s of U . By the last part of
Theorem 2.3.1, CŒx� D Ls

iD1 �iCŒ
1; : : : ; 
n�. This implies the desired Hiro-
naka decomposition

CŒx�� D
tL

iD1

�i CŒ
1; : : : ; 
n� .2:3:2/

which shows that the invariant ring CŒx�� is Cohen–Macaulay. G
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In the following we shall see that the Hironaka decomposition (2.3.2) prom-
ised by Theorem 2.3.5 is a useful way of representing the invariant ring of a
finite matrix group 
 . In this representation every invariant I.x/ can be written
uniquely as

I.x/ D
tP

iD1

�i .x/ � pi

�

1.x/; : : : ; 
n.x/

�
; .2:3:3/

where p1; p2; : : : ; pt are suitable n-variate polynomials. In particular, we have
that f
1; : : : ; 
n; �1; : : : ; �tg is a set of fundamental invariants for 
 . The poly-
nomials 
i in the h. s. o. p. are called primary invariants, while the �j are called
secondary invariants. We abbreviate the respective degrees with di WD deg.
i /
and ej WD deg.�j /.

Note that for a given group 
 there are many different Hironaka decomposi-
tions. Also the degrees of the primary and secondary invariants are not unique.
For instance, take 
 D f1g � GL.C1/, then we have

CŒx�� D CŒx� D CŒx2�˚ xCŒx2� D CŒx3�˚ xCŒx3�˚ x2 CŒx3� D : : : :

But there is also a certain uniqueness property. Suppose that we already know the
primary invariants or at least their degrees di , i D 1; : : : ; n. Then the number t
of secondary invariants can be computed from the following explicit formula. In
the algebraic language of the proof of Theorem 2.3.5 the integer t is the rank
of the invariant ring CŒx�� as a free CŒ
1; : : : ; 
n�-module. Moreover, also the
degrees e1; : : : ; et of the secondary invariants are uniquely determined by the
numbers d1; : : : ; dn.

Proposition 2.3.6. Let d1; d2; : : : ; dn be the degrees of a collection of primary
invariants of a matrix group 
 . Then

(a) the number of secondary invariants equals

t D d1d2 : : : dn

j
j ;

(b) the degrees (together with their multiplicities) of the secondary invariants are
the exponents of the generating function

��.´/ �
nQ

iD1

.1 � ´dj / D ´e1 C ´e2 C : : :C ´et :

Proof. We equate the formula for the Hilbert series of a Cohen–Macaulay al-
gebra given in Corollary 2.3.4 with Molien’s formula (Theorem 2.2.1) for the
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Hilbert series ˆ�.´/ of the invariant ring CŒx�� :

1

j
j
P

�2�

1

det.id � ´�/ D � tP
iD1

´ei
� ı nQ

j D1

.1 � ´dj /: .2:3:4/

Multiplying both sides of (2.3.4) with .1 � ´/n, we get

1

j
j
P

�2�

.1 � ´/n
det.id � ´�/ D � tP

iD1

´ei
� ı nQ

j D1

.1C ´C ´2 C : : :C ´dj �1/: .2:3:5/

We now take the limit ´ ! 1 in (2.3.5). The expressions .1�´/n

det.id�´�/
all converge

to zero except for one summand where � equals the identity matrix. For that
summand we get 1, and hence the left hand side of (2.3.5) converges to 1=j
j. On
the right hand side we get t=d1d2 : : : dn. The resulting identity t=d1d2 : : : dn D
1=j
j proves statement (a). The statement (b) follows directly from Eq. (2.3.4). G

Now it is really about time for a concrete example which casts some light
on the abstract discussion on the last few pages.

Example 2.3.7. Consider the matrix group


 D
n0@1 0 0

0 1 0

0 0 1

1A ;
0@ 0 1 0

�1 0 0

0 0 �1

1A ;
0@�1 0 0

0 �1 0

0 0 1

1A ;
0@0 �1 0

1 0 0

0 0 �1

1Ao:
This is a three-dimensional representation of the cyclic group of order 4. Its
invariant ring equals

CŒx1; x2; x3�
� D ˚

f 2 CŒx1; x2; x3� W f .x1; x2; x3/ D f .�x2; x1;�x3/
�
:

By Molien’s theorem the invariant ring has the Hilbert series

ˆ�.´/ D 1
4

�



1

.1 � ´/3 C 2

.1C ´/.1C ´2/
C 1

.1C ´/2.1 � ´/
�

D ´3 C ´2 � ´C 1

.1C ´/2.1C ´2/.1 � ´/3
D 1C 2´2 C 2´3 C 5´4 C 4´5 C 8´6 C 8´7 C 13´8 C 12´9 C 18´10 C : : :

The following three invariants


1 WD x2
1 C x2

2 ; 
2 WD x2
3 ; 
3 WD x4

1 C x4
2 ;

are algebraically independent and they have no common roots except the zero
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vector. This means that CŒx1; x2; x3� is a finitely generated free CŒ
1; 
2; 
3�-
module. By the arguments in our proof of Theorem 2.3.5, also the invariant
ring CŒx1; x2; x3�

� is then a finitely generated free CŒ
1; 
2; 
3�-module, which
means that 
1; 
2; 
3 can serve as primary invariants.

Proposition 2.3.6 tells us that we need to find four secondary invariants
�1; �2; �3; �4 whose degrees e1; e2; e3; e4 are computed by the formula

´e1 C ´e2 C ´e3 C ´e4 D ˆ�.´/ � .1 � ´d1/.1 � ´d2/.1 � ´d3/

D .´3 C ´2 � ´C 1/.1 � ´2/2.1 � ´4/

.1C ´/2.1C ´2/.1 � ´/3
D 1C 2 � ´3 C ´4:

We can simply read off e1 D 1, e2 D e3 D 3, e4 D 4. Now we can apply the
Reynolds operator

� W f 7! 1
4
Œf .x1; x2; x3/C f .�x2; x1;�x3/C f .�x1;�x2; x3/

C f .x2;�x1;�x3/�

to all monomials of degree 3 and 4, and we obtain the desired secondary invari-
ants

�1 WD 1; �2 WD x1x2x3; �3 WD x2
1x3 � x2

2x3; �4 WD x3
1x2 � x1x

3
2 :

Using the Gröbner basis methods of Sects. 1.2 and 2.5 (or by hand calculations)
we finally verify that there does not exist a nontrivial polynomial relation of the
form

P4
iD1 �i pi .
1; 
2; 
3/ D 0. Therefore the invariant ring has the Hironaka

decomposition

CŒx1; x2; x3�
� D CŒ
1; 
2; 
3�˚ �2CŒ
1; 
2; 
3�˚ �3CŒ
1; 
2; 
3�

˚ �4CŒ
1; 
2; 
3�:

Exercises

(1) Prove that the algebra A WD CŒx1; x2�=hx1x2i is Cohen–Macaulay, and find
a Hironaka decomposition for A. (Hint: Try 
 D x1 C x2.)
Prove that B WD CŒx1; x2�=hx2

1
x2; x1x

2
2

i is not Cohen–Macaulay. (Hint:
Every homogeneous element of positive degree in B is a zero-divisor.)
Compare the Hilbert functions of both algebras.

(2) Consider the six invariants �2
2
; �2�3; �2�4; �

2
3
; �3�4; �

2
4

in Example 2.3.7,
and compute their Hironaka decompositions

�i�j ! pij1.
1; 
2; 
3/C �2 � pij 2.
1; 
2; 
3/C �3 � pij 3.
1; 
2; 
3/

C �4 � pij 4.
1; 
2; 
3/:
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Using your results, find a rewriting rule for computing the Hironaka
decomposition of an arbitrary invariant T D I.
1; 
2; 
3; �2; �3; �4/.

(3) * Let 
 � GL.Cn/ be a matrix group and H � 
 any subgroup. True or
false: CŒx�H is a free module over its subring CŒx�� . Hint: Consider

 D A4, the alternating group consisting of 4 � 4-permutation matrices with
determinant 1, and H D fid; .12/.34/; .13/.24/; .14/.23/g, the Klein four
group.

(4) Let R be the subring of CŒx1; x2; x3; x4� spanned by all monomials
x

a1

1
x

a2

2
x

a3

3
x

a4

4
with

a1 C 3a2 C a3 
 0 .mod 4/ and 4a1 � a3 C 2a4 
 0 .mod 5/:

(a) Show that R is the invariant ring of a finite abelian group 
 .
(b) Compute the Hilbert series of the graded ring R.
(c) Compute a Hironaka decomposition for R.

2.4. Reflection groups

In view of Theorem 2.3.5 it is natural to ask under what circumstances does
the Hironaka representation CŒx�� D Lt

iD1 �i CŒ
1; : : : ; 
n� have a particularly
simple or interesting form. In this section we discuss the simplest possibility of
all, namely, the case CŒx�� D CŒ
1; : : : ; 
n� when the invariant ring is generated
by n algebraically independent invariants. We have seen in Sect. 1.1 that this
happens for the symmetric group Sn of n � n permutation matrices. In Exercise
2.2.3 we have seen that also the invariant ring of the symmetry group of a reg-
ular n-gon is isomorphic to a polynomial ring in two variables.

The main theorem in this section characterizes those matrix groups whose
invariants form a polynomial ring. In order to state this theorem we need two
definitions. A matrix or linear transformation � 2 GL.Cn/ is called a reflection
if precisely one eigenvalue of � is not equal to one. Actually, these reflections
are what some authors call “generalized reflections” or “pseudo-reflections”. The
“usual” hyperplane reflections in Rn are those reflections whose n-th eigenvalue
is equal to �1. A finite subgroup 
 � GL.Cn/ is said to be a reflection group
if 
 is generated by reflections.

Theorem 2.4.1 (Shephard–Todd–Chevalley theorem). The invariant ring CŒx��

of a finite matrix group 
 � GL.Cn/ is generated by n algebraically independent
homogeneous invariants if and only if 
 is a reflection group.

It is important to note that being a reflection group is not a property of
the abstract group underlying 
 but it depends on the specific n-dimensional
representation. For instance, the 2-dimensional representation of the dihedral
group D6 as the symmetry group of a hexagon is a reflection group (and its
invariant ring is a polynomial ring by Exercise 2.2.3), while the 3-dimensional
representation of D6 considered in Example 2.2.6 is not a reflection group (and
its invariant ring is not a polynomial ring). See also Example 2.4.6.

Theorem 2.4.1 was first proved for real reflection groups by Shephard and
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Todd (1954), and subsequently generalized to the complex case by Chevalley
(1955) and Serre (Stanley 1979b). Shephard and Todd explicitly determined all
finite subgroups generated by reflections, and they verified the if-part of Theo-
rem 2.4.1 by explicitly computing their invariant rings CŒx�� .

The proof of the if-part to be presented here follows the exposition of Cheval-
ley’s proof given in Grove and Benson (1985). Let � 2 GL.Cn/ be any reflec-
tion. Then the kernel of the linear transformation � � id is a hyperplane H� in
Cn. Let L� denote the linear polynomial whose zero set is the hyperplane H� .

Lemma 2.4.2. For all polynomials f 2 CŒx�, the linear polynomial L� is a
divisor of �f � f .

Proof. Given v 2 Cn with L� .v/ D 0, we have

v 2 H� ) �v D v ) f .�v/ � f .v/ D 0 ) .�f � f /.v/ D 0:

Since the linear polynomial L� is irreducible, Hilbert’s Nullstellensatz implies
that �f � f is a multiple of L� . G

In the following let 
 � GL.Cn/ be a finite reflection group. Let I� denote
the ideal in CŒx� which is generated by all homogeneous invariants of positive
degree.

Proposition 2.4.3. Let h1; h2; : : : ; hm 2 CŒx� be homogeneous polynomials,
let g1; g2; : : : ; gm 2 CŒx�� be invariants, and suppose that g1h1 C g2h2 C : : :
C gmhm D 0. Then either h1 2 I� , or g1 is contained in the ideal hg2; : : : ; gmi
in CŒx�.

Proof. We proceed by induction on the degree of h1. If h1 D 0, then h1 2 I� .
If deg.h1/ D 0, then h1 is a constant and hence g1 2 hg2; : : : ; gmi. We may
therefore assume deg.h1/ > 0 and that the assertion is true for smaller degrees.
Suppose that g1 62 hg2; : : : ; gmi.

Let � 2 
 be any reflection. Then

mP
iD1

gi � .�hi / D �
� mP

iD1

gi � hi

� D �.0/ D 0:

By Lemma 2.4.2, we can write �hi D hi CL� � Qhi , where Qhi is a homogeneous
polynomial of degree deg.hi / � 1. We get

0 D
mP

iD1

gi � .hi C L� � Qhi / D L� �
mP

iD1

gi
Qhi ;

and consequently g1
Qh1 Cg2

Qh2 C : : :Cgm
Qhm D 0. By the induction hypothesis,

we have Qh1 2 I� , and therefore �h1 � h1 D Qh1 � L� 2 I� .
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Now let � D �1�2 : : : �l be an arbitrary element of 
 , written as a product
of reflections. Since the ideal I� is invariant under the action of 
 ,

�h1 � h1 D
l�1P
iD1

.�1 : : : �i�iC1h1 � �1 : : : �ih1/

D
l�1P
iD1

.�1 : : : �i /.�iC1h1 � h1/ 2 I� :

This implies h�
1 � h1 2 I� and consequently h1 2 I� . G

Proof of Theorem 2.4.1 (if-part). By Hilbert’s basis theorem (Corollary 1.2.5),
there exists a finite set ff1; f2; : : : ; fmg � CŒx� of homogeneous invariants
which generates the ideal I� . With the same argument as in the proof of Theo-
rem 2.1.3 this automatically implies

CŒx�� D CŒf1; f2; : : : ; fm�:

Suppose now that m is minimal with this property, i.e., no smaller set of homo-
geneous invariants generates I� . We need to prove that m D n, or, equivalently,
that the invariants f1; f2; : : : ; fm are algebraically independent over C.

Our proof is by contradiction. Suppose there exists a nonzero polynomial
g 2 CŒy1; y2; : : : ; ym� such that g.f1; f2; : : : ; fm/ D 0 in CŒx�. We may as-
sume that g is of minimal degree and that all monomials xi1

1 x
i2
2 : : : x

in
n occur-

ring (before cancellation) in the expansion of g.f1; f2; : : : ; fm/ have the same
degree d WD i1 C i2 C : : :C in.

For i D 1; 2; : : : ; m consider the invariant

gi WD


@g

@yi

�
.f1; f2; : : : ; fm/ 2 CŒx�� :

Each gi is either 0 or of degree d�deg fi . Since g.y1; : : : ; ym/ is not a constant,
there exists an i with

�
@g
@yi

�
.y1; : : : ; ym/ 6D 0, and hence gi 6D 0, by the choice

of g.
Let J denote the ideal in CŒx� generated by fg1; g2; : : : ; gmg, and relabel

if necessary so that J is generated by fg1; : : : ; gkg but no proper subset. For
i D kC1; : : : ; m write gi D Pk

j D1 hijgj , where hij is either 0 or homogeneous
of degree deg.gi / � deg.gj / D deg.fj / � deg.fi /. We have

0 D @

@xs

�
g.f1; f2; : : : ; fm/

�
D

mP
iD1

gi

@fi

@xs
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D
kP

iD1

gi

@fi

@xs

C
mP

iDkC1

� kP
j D1

hijgj

� @fi

@xs

D
kP

iD1

gi



@fi

@xs

C
mP

j DkC1

hj i

@fj

@xs

�
:

Since g1 62 hg2; : : : ; gki, Proposition 2.4.3 implies

@f1

@xs

C
mP

j DkC1

hj1

@fj

@xs

2 I� for s D 1; 2; : : : ; n:

Multiplying with xs and summing over s, we can apply Euler’s formula to find

nP
sD1

xs

@f1

@xs

C
mP

j DkC1

hj1

nP
sD1

xs

@fj

@xs

D .deg f1/f1 C
mP

j DkC1

hj1 .deg fj /fj

2 hx1; : : : ; xniI�

� hx1f1; : : : ; xnf1i C hf2; : : : ; fmi:

All monomials in this polynomial are of degree deg.f1/, and therefore

.deg f1/f1 C
mP

j DkC1

hj1 .deg fj /fj 2 hf2; : : : ; fmi:

The last expression implies f1 2 hf2; : : : ; fmi, which is a contradiction to the
minimality of m. This completes the proof of the “if”-part of Theorem 2.4.1. G

Our proof of “only-if”-direction follows Stanley (1979b). It is based on some
interesting generating function techniques. In what follows we do not assume
any longer that 
 is a reflection group.

Lemma 2.4.4. Let r be the number of reflections in a finite matrix group 
 �
GL.Cn/. Then the Laurent expansion of the Molien series about ´ D 1 begins

ˆ�.´/ D 1

j
j .1 � ´/�n C r

2j
j .1 � ´/�nC1 CO
�
.1 � ´/�nC2

�
:

Proof. Recall from Theorem 2.2.1 the representation

ˆ.´/ D 1

j
j
P

�2�

det.id � ´�/�1:
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The only term det.id � ´�/�1 in this sum to have a pole of order n at ´ D 1 is
the term .1 � ´/�n corresponding to the identity matrix in 
 . If det.id � ´�/�1

has a pole of order n � 1 at ´ D 1, then � is a reflection and

det.id � ´�/�1 D .1 � ´/�nC1.1 � det� � ´/�1:

Hence the coefficient of .1 � ´/�nC1 in the Laurent expansion of ˆ�.´/ equals

1

j
j
P
�

.1 � det �/�1;

where the sum ranges over all reflections � in 
 . Since � is a reflection if and
only if ��1 is a reflection, we conclude

2 �P
�

1

1 � det �
D P

�

� 1

1 � det �
C 1

1 � .det �/�1

� D P
�

1 D r;

completing the proof. G

Corollary 2.4.5. Let 
 � GL.Cn/ be a finite matrix group whose invariant
ring CŒx�� is generated by n algebraically independent homogeneous invariants

1; : : : ; 
n where di WD deg 
i . Let r be the number of reflections in 
 . Then

j
j D d1d2 : : : dn and r D d1 C d2 C : : :C dn � n:

Proof. By Lemma 2.2.3, we have

ˆ�.´/ D 1

.1 � ´d1/

1

.1 � ´d2/
: : :

1

.1 � ´dn/
:

The Laurent expansion of this power series about ´ D 1 begins

ˆ�.´/ D 1

d1d2 : : : dn

.1 � ´/�n C d1 C d2 C : : :C dn � n
2d1d2 : : : dn

.1 � ´/�nC1

CO
�
.1 � ´/�nC2

�
:

Comparing with Lemma 2.4.4 completes the proof. G

Proof of Theorem 2.4.1 (only-if part). Suppose that CŒx�� D CŒ
1; : : : ; 
n� with
deg.
i / D di . Let H be the subgroup of 
 generated by all reflections in 
 .
Then by the if-part of Theorem 2.4.1, we have

CŒx�H D CŒ 1; : : : ;  n�;



2.4. Reflection groups 49

where deg. j / D ej . Clearly CŒx�� � CŒx�H , so each 
i is a polynomial func-
tion in the  ’s.

Since the 
 ’s and the  ’s are both algebraically independent, the Jacobian
determinant det.@
i=@ j / is nonzero. Hence there exists a permutation � with

@
�.1/

@ 1

@
�.2/

@ 2

: : :
@
�.n/

@ n

6D 0:

This means that  i actually appears in 
�.i/ D 
�.i/. 1; : : : ;  n/, and conse-
quently ei D deg i 	 d�.i/ D deg 
�.i/.

Let r be the number of reflections in 
 and therefore in H . By Corol-
lary 2.4.5, we have

r D
nP

iD1

.di � 1/ D
nP

iD1

.d�.i/ � 1/ D
nP

iD1

.ei � 1/:

Since ei 	 d�.i/, we have ei D d�.i/, so again by Corollary 2.4.5 we have
j
j D d1d2 : : : dn D e1e2 : : : en D jH j, and hence H D 
 . G

The “only-if” part is useful in that it proves that most invariant rings are not
polynomial rings.

Example 2.4.6 (Twisted symmetric polynomials). Let Sn denote the set of per-
mutation matrices in GL.Cn/, and consider its representation 
 WD fsign.�/ �� W
� 2 Sng. We call the elements of the invariant ring CŒx�� twisted symmetric
polynomials. Note that a homogeneous polynomial f is twisted symmetric if
and only if f B � D sign.�/deg f � f for all permutations � . Theorem 2.4.1 im-
plies that the ring CŒx�� is not a polynomial ring. For instance, for n D 3 we
have the Hironaka decomposition

CŒx1; x2; x3� D CŒ
1; 
2; 
3�˚ �CŒ
1; 
2; 
3�;

where 
1 WD x2
1 C x2

2 C x2
3 , 
2 WD x1x2 C x1x3 C x2x3, 
3 WD x2

1x2 C x2
2x3 C

x2
3x1 � x2

2x1 � x2
1x3 � x2

3x2 and � WD x4
1 C x4

2 C x4
3 .

Exercises

(1) Consider the full symmetry group 
 � GL.R3/ of any of the five Platonic
solids. (The five Platonic solids are the tetrahedron, the octahedron, the
cube, the icosahedron, and the dodecahedron.)
(a) Show that 
 is a reflection group.
(b) Find three algebraically independent invariants 
1; 
2; 
3 which generate

the invariant ring CŒx; y; ´�� .
(c) How are the degrees of 
1; 
2; 
3 related to the order of the group 
?

How are they related to the face numbers of the polytope in question?
(d) Find an explicit formula which expresses each symmetrized monomial
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.xiyj´k/� as a polynomial function in the fundamental invariants

1; 
2; 
3.

(2) Determine the Molien series and a Hironaka decomposition for the ring of
twisted symmetric polynomials in n variables for n � 4 (cf. Example 2.4.6).
Can you generalize your results to the case where “sign” is replaced by an
arbitrary character of the symmetric group?

2.5. Algorithms for computing fundamental invariants

In this section we present algorithms for computing a fundamental set of invari-
ants for any finite matrix group 
 . Our input will be a black box which evaluates
the Reynolds operator “�” of 
 , and our output will be a set of primary and
secondary invariants as in Sect. 2.3. The reason for this assumption is that the
knowledge of the full group 
 might not be necessary to compute the invariants:
it suffices to know the Reynolds operator.

We begin with a description of six commutative algebra subroutines based
on Buchberger’s method. The first four of these algorithms are well known, and
they are discussed in practically every introduction to Gröbner bases theory. It is
those four subroutines which we will apply later in this section. The other two
subroutines 2.5.5 and 2.5.6 are perhaps a little less known. These are included
here because they are quite useful for working with Cohen–Macaulay rings such
as invariant rings of finite groups.

Whenever the monomial order is left unspecified, any monomial order will
work for the Gröbner bases computation in question. The two most frequently
used monomial orders are the purely lexicographical order “>pl” and the reverse
lexicographical order “>rl”. These are defined as follows. We assume that an
order is given on the variables, say, x1 > x2 > : : : > xn. We then put x˛ >pl xˇ

if there exists i; 1 	 i 	 n, such that j̨ D ǰ for all j < i , and ˛i > ˇi .
In contrast to “>pl”, the reverse lexicographic order “>rl” is a linear extension
of the natural grading on CŒx�. We define x˛ >rl xˇ if

P
˛i >

P
ˇi , or ifP

˛i D P
ˇi and there exists i; 1 	 i 	 n, such that j̨ D ǰ for all j > i ,

and ˛i < ˇi .

Subroutine 2.5.1 (Radical containment).
Input: f1; f2; : : : ; fm; g 2 CŒx�.
Question: Let I WD hf1; : : : ; fmi. Does g lie in Rad.I /, the radical of I ?
Solution: Let G be a Gröbner basis of hf1; f2; : : : ; fm; g´ � 1i, where ´ is a
new variable. Then g 2 Rad.I / if and only if 1 2 G.

Subroutine 2.5.2 (Solvability of homogeneous equations).
Input: Homogenous polynomials f1; f2; : : : ; fm 2 CŒx�.
Question: Is there a nonzero vector a 2 Cn such that f1.a/ D f2.a/ D : : : D
fm.a/ D 0.
Solution: Compute a Gröbner basis G of the ideal I WD hf1; f2; : : : ; fmi. We
have Rad.I / D hx1; x2; : : : ; xni (i.e., there is no nonzero solution) if and only
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if a monomial of the form x
ji

i occurs among the initial monomials in G for
every i , for 1 	 i 	 n.

Subroutine 2.5.3 (Algebraic dependence).
Input: A set F WD ff1; f2; : : : ; fmg � CŒx�, considered as subset of the field of
rational functions C.x/.
Questions: Is F algebraically dependent over C? If so, find an m-variate poly-
nomial P such that P.f1; f2; : : : ; fm/ D 0 in C.x/.
Solution: Introduce m new “slack” variables y WD .y1; : : : ; ym/, and compute a
Gröbner basis G of ff1 � y1; f2 � y2; : : : ; fm � ymg with respect to the purely
lexicographical order induced from x1 > : : : > xn > y1 > : : : > ym. Let
G0 WD G \ CŒy �. Then F is algebraically independent if and only if G0 D ;. On
the other hand, if P.y/ 2 G0, then P.f1; : : : ; fm/ D 0 in CŒx�.

Subroutine 2.5.4 (Subring containment).
Input: f1; f2; : : : ; fm; g 2 CŒx�.
Question: Is g contained in the subring CŒf1; : : : ; fm� of CŒx�? If so, find an
m-variate polynomial Q such that g D Q.f1; f2; : : : ; fm/ in CŒx�.
Solution: Compute the Gröbner basis G as in Subroutine 2.5.3, and let Q 2
CŒx; y � be the unique normal form of g with respect to G. Then g 2 CŒf1; : : : ;
fm� if and only if Q is contained in CŒy �. In that case we have the identity
g D Q.f1; f2; : : : ; fm/ in CŒx�.

Subroutine 2.5.5 (Hironaka decomposition of a Cohen–Macaulay subring).
Input: Homogeneous polynomials f1; f2; : : : ; fm 2 CŒx�, generating the ideal I .
Question: Decide whether R D CŒx�=I is a d -dimensional Cohen–Macaulay
ring, and if so, construct a Hironaka decomposition as in (2.3.1).
Solution:

1. Pick a random n � d matrix .aij /1�i�n;1�j �d over C, and abbreviate


1 WD
nP

iD1

ai1xi ; 
2 WD
nP

iD1

ai2xi ; : : : ; 
d WD
nP

iD1

aidxi :

2. Introduce d new variables z WD .´1; : : : ; ´d /. Compute a reduced Gröbner
basis G with respect to reverse lexicographic order induced from ´1 < ´2 <
: : : < ´d < x1 < x2 < : : : < xn for the ideal

J WD I C h
1 � ´1; 
2 � ´2; : : : ; 
d � ´d i in CŒx; z�:

3. Does the initial monomial of some element in G contain a new variable ´i ?
If so; STOP: R is not a free CŒ
1; : : : ; 
d �-module. Otherwise, proceed with
Step 4.

4. Let F be the set of ˛ 2 Nn such that x˛ is standard (i.e., not a multiple of
the initial monomial of some element in G). If F is infinite (i.e., 9i 8s 8g 2
G W xs

i 6D init.g/), then STOP: R is an infinite-dimensional free CŒ
1; : : : ; 
d �-
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module. If F is finite, then R is a d -dimensional Cohen–Macaulay ring hav-
ing the Hironaka decomposition

R D L̨
2F

x˛ CŒ
1; 
2; : : : ; 
d �:

Subroutine 2.5.6 (Normal form with respect to a Hironaka decomposition).
Input: Generators 
1; : : : ; 
n; �1; : : : ; �t 2 CŒx� of a Cohen–Macaulay subring
R with Hironaka decomposition as in Theorem 2.3.1 (1).
Question: Decide whether a given polynomial f 2 CŒx� lies in the subring R,
and if so, find the unique representation

f .x/ D
tP

iD1

�i .x/ � pi

�

1.x/; : : : ; 
n.x/

�
: .2:5:1/

Solution: Introduce n C t new “slack” variables .y ; z/ WD .y1; : : : ; yn; ´1; : : : ;
´t /, and compute a Gröbner basis G of f
1 � y1; : : : ; 
n � yn; �1 � ´1; : : : ;
�t � ´tg with respect to the following monomial order “�” on CŒx; y ; z�. We
define x˛yˇ z� � x˛0

yˇ 0
z� 0

if x˛ > x˛0
in the purely lexicographic order, or

else if z� > z� 0
in the purely lexicographic order, or else if yˇ > yˇ 0

in the
degree lexicographic order.

Then f !G
Pt

iD1 ´i �pi

�
y1; : : : ; yn/ if and only if the identity (2.5.1) holds.

Note that G contains in particular those rewriting relations �i�j � Pt
kD1 ´i �

qijk

�
y1; : : : ; yn/ which express the Hironaka decompositions of all quadratic

monomials in the �’s.

We now come to the problem of computing a fundamental set of invariants
for a given finite matrix group 
 � GL.Cn/. Our algorithm will be set up so that
it generates an explicit Hironaka decomposition for the invariant ring CŒx�� .

In the following we will assume that the group 
 is presented by its Reynolds
operator

� W CŒx� ! CŒx�� ; f 7! f � WD 1

j
j
P

�2�

�.f /:

We recall from Proposition 2.1.2 that the Reynolds operator “�” is a CŒx�� -
module homomorphism and that the restriction of “�” to CŒx�� is the identity.

In the course of our computation we will repeatedly call the function “�”,
irrespective of how this function is implemented. One obvious possibility is to
store a complete list of all group elements in 
 , but this may be infeasible in
some instances. The number of calls of the Reynolds operator is a suitable mea-
sure for the running time of our algorithm. As far as asymptotic worst case
complexity is concerned, Proposition 2.1.5 implies that also in this measure we
will not be able to beat Noether’s bound (Theorem 2.1.4).

Let us mention parenthetically that the approach presented here generalizes
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directly to infinite reductive algebraic groups, provided the Reynolds opera-
tor “�” and the ideal of the nullcone are given effectively. The nullcone of any
matrix group is defined as the set of common zeros of all invariants. Finding a
defining set for the nullcone is generally easier than computing a fundamental
set of invariants. For the case of the general linear group 
 D GL.Cn/ we will
discuss this in detail in Chap. 4.

Here we are concerned with a finite group 
 , and the following lemma states
that in this case the nullcone consists only of the origin. Equivalently, the ideal
of the nullcone equals the irrelevant ideal M WD hx1; x2; : : : ; xni.

Lemma 2.5.7. Let 
 � GL.Cn/ be any finite matrix group, and let I� denote
the ideal in CŒx� generated by all homogeneous invariants of positive degree.
Then Rad.I�/ D M .

Proof. Each homogeneous polynomial of positive degree lies in the irrelevant
ideal M . Therefore we need only show the reverse inclusion M � Rad.I�/. In
view of Hilbert’s Nullstellensatz, it is sufficient to show that the variety of I� in
Cn equals the variety of M , which is the origin. We will do so by constructing,
for an arbitrary nonzero vector a 2 Cn, a suitable invariant in I� which does
not vanish at a.

Let a 2 Cn n f0g. Since every matrix � in the group 
 is invertible, the
orbit 
a D f�a 2 Cn j � 2 
g does not contain the origin. The orbit 
a is a
finite subset of Cn, and therefore it is Zariski closed. This means there exists a
polynomial function f 2 CŒx� such that f .0/ D 0 and f .�a/ D 1 for all � 2 
 .

We apply the Reynolds operator to the polynomial f , and we obtain an
invariant f � which lies in I� because f �.0/ D 0. On the other hand we have
f �.a/ D 1

j�j
P

�2� f .�a/ D 1. Hence the point a does not lie in the variety of

I� . This completes the proof of Lemma 2.5.7. G

We will now present the basic algorithm for computing a Hironaka decom-
position of CŒx�� . In Algorithm 2.5.8 we do not make use of the Molien series
techniques in Sects. 2.2 and 2.3. A more practical variant based upon the Molien
series will be presented in Algorithm 2.5.14.

We fix any monomial order m1 < m2 < m3 < m4 < : : : which refines the
partial order given by the total degree on the set of monomials in CŒx�.

Algorithm 2.5.8.
Input: The Reynolds operator � W CŒx� ! CŒx�� of a finite subgroup 
 of
GL.Cn/.
Output: A Hironaka decomposition for the invariant ring CŒx�� .

0. Let t WD 1 and Q WD ;.
1. Repeat t WD t C 1 until m�

t 62 Rad.hQi/ (using Subroutine 2.5.1).
2. Let Q WD Q [ fm�

t g. If Rad.hQi/ 6D M , then go to step 1 (using Subrou-
tine 2.5.2).
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3. If Q has cardinality n
3.1. then P WD Q;
3.2. else modify Q to an algebraically independent set P of n invariants

with Rad.hPi/ D M (using Subroutine 2.5.3; see Subroutine 2.5.10).
4. Write P D f
1; 
2; : : : ; 
ng, let S WD f1g, t WD 0, and set bound WDPn

iD1 degree.
i / � n.
5. Let t WD t C 1. If degree.mt / > bound, then STOP. At this point P and S

are primary and secondary invariants respectively, and their union generates
CŒx�� as a ring.

6. Test whether m�
t lies in the CŒP�-module generated by S (see Exercise (3)

below). If no, then S WD S [ fm�
t g. Go to 5.

We will explain the details of Algorithm 2.5.8 and prove its correctness along
the way.

Theorem 2.5.9. Algorithm 2.5.8 terminates with finite sets P D f
1; 
2; : : : ; 
ng
(the primary invariants) and S D f�1; �2 : : : ; �tg (the secondary invariants,
where �1 D 1) such that the invariant ring CŒx�� is a free CŒP�-module with
basis S. In other words, for any f 2 CŒx�� , there exist unique polynomials
f1; : : : ; ft 2 CŒx� such that

f D
tP

iD1

fi .
1; : : : ; 
n/ � �i :

Thus we have the Hironaka decomposition CŒx�� D Lt
iD1 �i CŒP�.

The steps 0 to 3 in Algorithm 2.5.8 generate the primary invariants. These
form an h. s. o. p. for CŒx�� . By Theorem 2.3.5, the invariant ring is a finitely
generated free module over the subring generated by this h. s. o. p. A free mod-
ule basis over this subring is then constructed in steps 4 to 6.

In steps 1 and 2 we generate a sequence of homogeneous invariants whose
variety gets smaller and smaller. In step 2 we will in practice first check whether
the symmetrized monomial m�

t is zero. Only if m�
t is nonzero, we will employ

Subroutine 2.5.1 to test radical containment. This entire process will terminate
once this variety consists of the origin only, and termination is guaranteed by
Lemma 2.5.7.

After the completion of step 2 we have a set Q of invariants whose variety
equals the nullcone, namely, the origin. Moreover, the degree of the polynomial
in Q will be lexicographically optimal with respect to this property, since we
proceed one degree level at a time. The homogeneous ideal generated by Q
contains fxd1

1 ; : : : ; x
dn
n g for some d1; : : : ; dn. This implies that the polynomial

ring CŒx� is finitely generated as a CŒQ�-module, and therefore the invariant ring
CŒx�� is finitely generated as a CŒQ�-module. This implies that Q contains at
least n elements. If Q contains precisely n elements, then Q is an h. s. o. p for
CŒx� and hence also for CŒx�� . In this case (step 3.1) we choose P D Q as the
set of primary invariants. If Q contains more than n elements, then we proceed
as follows.
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Subroutine 2.5.10 (Creating a homogeneous system of parameters). Suppose
Q D fq1; q2; : : : ; qmg with m > n and let dj WD degree.qj /. Let d denote
the least common multiple of d1; d2; : : : ; dm. We now choose an n � m-matrix
.aij / of complex numbers such that the ideal generated by the polynomials

pi WD Pm
j D1 aijq

d=dj

j , i D 1; 2; : : : ; n, has the irrelevant ideal M as its radical.
It follows from Noether’s normalization lemma that every sufficiently generic
matrix .aij / will have this property. In practice it is of course desirable to choose
.aij / as sparse as possible. See Eisenbud and Sturmfels (1992) for a systematic
approach to maintaining sparseness during this process.

We now discuss the remaining steps in Algorithm 2.5.8. Upon entering
step 4, we are given an explicit h. s. o. p. P D f
1; : : : ; 
ng for the invariant
ring. In steps 5 and 6 we determine a set of symmetrized monomials which
forms a free basis for CŒx�� as a CŒP�-module. In step 4 we assign a degree
upper bound for the possible symmetrized monomials to be considered. The cor-
rectness of steps 4, 5 and 6 follows from Theorem 2.3.1 and the validity of this
degree bound.

Lemma 2.5.11. Let P D f
1; 
2 : : : ; 
ng be a set of algebraically independent
invariant generators of I� . Then there exists a finite set of invariants S of degree
bounded by

Pn
iD1 degree.
i / � n such that CŒx�� is a free CŒP�-module with

basis S.

Proof. Let d1; : : : ; dn be the degrees of 
1; : : : ; 
n, and let d be the maximum
degree occurring in any system of secondary invariants. By Proposition 2.3.6 (b),
the Molien series satisfies an identity

ˆ�.´/
nQ

iD1

.1 � ´dj / D pd .´/;

where pd is a polynomial of degree d . We multiply both sides of this identity
with the polynomial

q.´/ WD Q
�2�

det.id � ´�/:

The right hand side pd .´/q.´/ is a polynomial of degree d C nj
j. The expres-
sion q.´/ˆ�.´/ is a polynomial of degree at most nj
j � n. Therefore the left
hand side is a polynomial of degree at most d1 C : : : C dn C nj
j � n. This
implies the desired inequality d 	 d1 C : : :C dn � n, and it completes the proof
of Lemma 2.5.11 and Theorem 2.5.9. G

It can happen that the degree d of a system of primary invariants generated
as in Subroutine 2.5.10 exceeds the cardinality of the group 
 . The following
approach due to Dade provides an alternative method for computing a system of
primary invariants all of whose degrees are divisors of the group order.
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Subroutine 2.5.12 (Dade’s algorithm for generating primary invariants).
Input: The Reynolds operator � W CŒx� ! CŒx�� of a finite subgroup 
 of
GL.Cn/.
Output: An h. s. o. p. f
1; : : : ; 
ng for CŒx�� having the property that degree.
i /
divides j
j for i D 1; : : : ; n.

For i from 1 to n do
– Choose a linear form `i .x/ on Cn which does not vanish on the subspace

defined by the linear forms `1B�1; : : : ; `i�1B�i�1, for any choice of matrices
�1; : : : ; �i�1 in 
 .

– Let 
i denote the product over the set f`i B � W � 2 
g.

Note that the required choice of the linear forms `i is always possible since
C is an infinite field. All necessary computations are using only linear algebra.
To check correctness, we first observe that the cardinality of the set f`i B � W
� 2 
g divides the order of the group 
 , and hence so does the degree of the
homogeneous invariants 
i . By construction, the zero set of the linear forms
`1 B �1; : : : ; `n B �n consists only of the origin, for any choice of matrices �1;
: : : ; �n in 
 . This shows that the set of common zeros of the homogeneous
invariants 
1; : : : ; 
n consists only of the origin. This implies, as above, that

1; : : : ; 
n is an h. s. o. p. for CŒx�� .

The method described in Subroutine 2.5.12 can also be rephrased as follows.
Let u D .u1; : : : ; un/ be a new set of variables. We define the Chow form of the
matrix group 
 to be the polynomial

R.u;x/ WD Q
�2�

hu; �xi;

where h; i denotes the usual scalar product. This polynomial can be expanded as
R.u;x/ D P

˛ r˛.x/u
˛, where ˛ 2 ranges over all nonnegative integer vectors

whose coordinates sum to j
j.

Proposition 2.5.13. A system of primary invariants can be obtained by tak-
ing n sufficiently generic C-linear combinations of the coefficients r˛.x/ of the
Chow form R.u;x/.

Proof. By construction, the polynomials r˛.x/ are homogeneous invariants hav-
ing the same degree j
j. It therefore suffices to show that their common zero set
consists only of the origin. Suppose a 2 Cn is a common zero of the r˛ . Then
R.u; a/ D Q

�2�hu; �ai vanishes identically as a polynomial in CŒu�. Hence
there is an invertible matrix � 2 
 such that hu; �ai D 0 in CŒu�. But this
implies �a D 0 and consequently a D 0. G

In practice we will usually be able to precompute the Molien series of the
group 
 . Naturally, we will then use this information to speed up all compu-
tations. We close this section with the following general algorithm which sum-
marizes most of the techniques we have discussed so far in this chapter.
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Algorithm 2.5.14 (Computing the invariants of a finite matrix group).
Input: The Reynolds operator � W CŒx� ! CŒx�� of a finite subgroup 
 of
GL.Cn/.
Output: A Hironaka decomposition for the invariant ring CŒx�� .

0. Compute the Molien series ˆ.´/ of 
 as a rational function in ´.
1. Choose a system P D f
1; : : : ; 
ng of primary invariants for 
 (using any

of the procedures suggested in 2.5.8, 2.5.10, 2.5.12, or 2.5.13). Abbreviate
di WD degree.
i /.

2. Compute the polynomial

ˆ�.´/ �
nQ

iD1

.1 � ´dj / D c1´
e1 C c2´

e2 C : : :C cr´
er ;

where c1; : : : ; cr are positive integers.
3. Using the Reynolds operator “�”, find invariants �1; : : : ; �ci

of degree ei

which are linearly independent modulo the ideal generated by 
1; : : : ; 
n for
i D 1; : : : ; r .

In step 1 we will use the information provided by a partial expansion of
the Molien series ˆ�.´/ to skip those degree levels which have no invariants
whatsoever. In step 3 we can consider the ideal h
1; : : : ; 
ni either in CŒx�� or
in CŒx�. It seems reasonable to precompute a Gröbner basis G for h
1; : : : ; 
ni
after step 1. Then the ideal membership tests in step 3 amount to a normal form
reduction with respect to G.

Exercises

(1) Verify the correctness of Subroutines 2.5.5 and 2.5.6 for the rings discussed
in Exercises 2.3. (1).

(2) Let 
 � GL.Cn/ be a finite matrix group and fix a 2 Cn n f0g. Give an
algorithm for computing a homogeneous invariant I 2 CŒx�� such that
I.a/ 6D 0.

(3) Explain how the test in step 6 of Algorithm 2.5.8 can be implemented using
Gröbner bases. (Hint: Use a monomial order like in Subroutine 2.5.6).

(4) * Implement some version of Algorithm 2.5.14 in your favorite computer
algebra system (e.g., MAPLE, MATHEMATICA).

(5) Let 
 be any subgroup of the group Sn of n � n-permutation matrices.
Show that there exists a system of secondary invariants whose degree does
not exceed

�
n

2

�
.

(6) Let 
 be the cyclic subgroup of order 210 of the group S17 of
17 � 17-permutation matrices which is generated by the permutation (in
cycle notation)

� D .1; 2/.3; 4; 5/.6; 7; 8; 9; 10/.11; 12; 13; 14; 15; 16; 17/:
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(a) Give an example of an invariant of 
 which is not invariant under any
permutation group 
 0 � S17 which properly contains 
 .

(b) Compute the Molien series ˆ�.´/ of this matrix group.
(c) Identify a system of primary invariants of degree at most 7.
(d) Show that the degree of the secondary invariants is at most 35. Is this

estimate sharp? What is the number of secondary invariants?
(7) * Compile a list of all (isomorphism classes of) five-dimensional

representations of the symmetric group S3. Compute an explicit Hironaka
decomposition for the invariant ring of each representation.

2.6. Gröbner bases under finite group action

In the preceding sections we have seen how algorithms from computer algebra
can be used to solve problems in the invariant theory of finite groups. In the
following the reverse point of view is taken: we wish to illustrate the application
of invariant-theoretic methods for solving typical problems in computer algebra.
Our main attention will be on computing with ideals and varieties which are
fixed by some finite matrix group.

Consider the problem of finding the zeros of an ideal I � CŒx� which is pre-
sented in terms of generators. A standard solution method consists in comput-
ing a lexicographic Gröbner basis for I , from which the zeros can be “read off”.
It is known that this computation is generally very time-consuming. Moreover,
it has been observed in practice that the running time is particularly bad if the
given set of generators for I happens to be invariant under some finite group
action. This is unsatisfactory because many polynomial systems arising from
applications do have symmetries. It is our first goal to show how invariant theory
can be used to compute a Gröbner basis which respects all symmetries.

The problem of solving systems of polynomial equations with symmetry has
been addressed by Gatermann (1990). In this work the author shows how to sub-
stantially simplify and solve symmetric polynomial systems using representa-
tion theory of finite groups. The invariant-theoretic ideas to be presented in this
section may lead to useful additions to the representation-theoretic algorithms
introduced by Gatermann.

We fix a finite group 
 � GL.Cn/ of n � n-matrices. The set of 
-orbits
in Cn is denoted Cn=
 and called the orbit space of 
 . We have an induced
action of 
 on the coordinate ring of Cn, which is the polynomial ring CŒx� in
n complex variables x D .x1; x2; : : : ; xn/. The invariant subring CŒx�� consists
of all polynomials which are fixed under the action of 
 .

By Hilbert’s finiteness theorem, there exists a finite set fI1.x/; I2.x/; : : : ;
Ir.x/g of fundamental invariants which generates the invariant ring CŒx�� . In
geometric terms, the choice of these invariants amounts to choosing an embed-
ding of the orbit space Cn=
 as an algebraic subvariety into affine r-space Cr .
The equations defining the orbit variety Cn=
 in Cr are the syzygies or alge-
braic relations among the Ij .x/.

We have seen in Sect. 2.5 how to use Gröbner bases for computing funda-
mental invariants and their syzygies. This preprocessing will be done once for
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the given group 
 . In the special case where 
 equals the symmetric group Sn

of n � n-permutation matrices this preprocessing is taken care of by Theorem
1.2.7, and Subroutine 2.6.1 is unnecessary.

Subroutine 2.6.1 (Preprocessing a fixed group 
). Let 
 be any finite matrix
group. We first compute a fundamental set of invariants fI1.x/; I2.x/; : : : ;
Ir.x/g as in the preceding sections. We then compute a Gröbner basis G0 for
the ideal generated by

fI1.x/� y1; I2.x/� y2; : : : ; Ir.x/� yrg in CŒx1; x2; : : : ; xn; y1; y2; : : : ; yr �

with respect to the lexicographic monomial order induced from x1 � : : : � xn �
y1 � : : : � yr (cf. Subroutine 2.5.3). Then the set G0 \ CŒy1; y2; : : : ; yr � is a
Gröbner basis for the ideal J defining the orbit variety V.J / D Cn=
 ,! Cr .

Let F D ff1.x/; f2.x/; : : : ; fm.x/g be a set of polynomials which is in-
variant under the action of 
 , i.e., 8� 2 
 8 i 9 j W fi B � D fj . Then its ideal
I D hFi is invariant under the action of 
 on CŒx�, and its variety V.F/ D V.I /
is invariant under the action of 
 on Cn. When applying Gröbner bases to study
V.I /, usually the following happens.

(a) One starts with symmetric input data F .
(b) The Buchberger algorithm applied to F � KŒx� breaks all symmetries, and

one gets a Gröbner basis G which is not symmetric at all.
(c) The symmetric variety V.I / is computed from the asymmetric polynomial

set G.

Invariant theory enables us, at least in principle, to replace step (b) by a Gröbner
basis computation which preserves all symmetries. Since the variety V.I / � Cr

is invariant under the action of 
 , we can define the relative orbit variety V.I /=

whose points are the 
-orbits of zeros of I .

We find that V.I /=
 is an algebraic subvariety of Cn=
 , and therefore it is
an algebraic subvariety of Cr . In order to preserve the symmetry in step (b), we
propose to compute a Gröbner basis for the relative orbit variety V.I /=
 rather
than for V.I / itself. Once we have gotten such a “symmetric Gröbner basis”, it
is not difficult to reconstruct properties of V.I / from the knowledge of V.I /=
 .

Algorithm 2.6.2 (Computing the relative orbit variety). Let G0 and “�” be as in
Subroutine 2.6.1. The computation of a Gröbner basis for the ideal of the rela-
tive orbit variety V.I /=
 in CŒy1; y2; : : : ; yr � works as follows.

– Compute a Gröbner basis G1 for F [G0 with respect to the elimination order
“�”. Then G2 WD G1 \ CŒy1; y2; : : : ; yr � is a Gröbner basis for the ideal of
V.I /=
 .

– Each point Qy in V.I /=
 gives rise to a unique 
-orbit in V.I /. Such an orbit
is a subset of Cn of cardinality 	 j
j. The points in the orbit corresponding
to Qy can be computed by substituting the coordinates of Qy D . Qy1; Qy2; : : : ; Qyr/
2 Cr for the variables y1; y2; : : : ; yr in the precomputed Gröbner basis G0.
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The desired orbit equals the subvariety of Cr which is defined by the spe-
cialized Gröbner basis G0. Qy/ � CŒx�.

Example 2.6.3. Let n D 3 and consider the set of polynomials F D ff1; f2; f3g
� CŒx1; x2; x3�, where

f1.x/ D x2
1 C x2

2 C x2
3 � 1

f2.x/ D x2
1x2 C x2

2x3 C x2
3x1 � 2x1 � 2x2 � 2x3

f3.x/ D x1x
2
2 C x2x

2
3 C x3x

2
1 � 2x1 � 2x2 � 2x3:

The Gröbner basis G of the ideal I D hFi with respect to the purely lexico-
graphic order induced from x1 > x2 > x3 equals˚
50750x1 C 50750x2 C 54x11

3 C 585x9
3 C 1785x7

3 C 17580x5
3 C 28695x3

3

C 32797x3; 5800x2
2 C 1740x5

3x2 C 1740x3
3x2 C 4060x2x3 C 27x10

3

C 9345x2
3 � 3825x4

3 C 1110x6
3 C 75x8

3 � 3684; 420x6
3x2 � 420x4

3x2

C 2940x2
3x2 � 560x2 C 9x11

3 C 45x9
3 C 210x7

3 C 165x5
3 C 1335x3

3 � 268x3;

9x12
3 � 18x10

3 C 315x8
3 � 465x6

3 C 1860x4
3 � 1353x2

3 C 196
�
:

From the underlined initial monomials we see that CŒx1; x2; x3�=I is a C-vector
space of dimension 18 (cf. Theorem 1.2.6). This implies that the variety V.I /
consists of 18 points in affine 3-space C3, possibly counting multiplicities.

The input set F is invariant with respect to the symmetric group S3 of
3 � 3-permutation matrices. The invariant ring CŒx1; x2; x3�

S3 is the ring of
symmetric polynomials, and it is generated, for instance, by the elementary sym-
metric functions

I1.x/ D x1 C x2 C x3; I2.x/ D x1x2 C x1x3 C x2x3; I3.x/ D x1x2x3:

By Theorem 1.2.7, the preprocessed Gröbner basis for fI1.x/� y1; I2.x/� y2;
I3.x/� y3g in the lexicographic order “�” induced from x1 � x2 � x3 � y1 �
y2 � y3 equals

G0 D fx1 C x2 C x3 � y1; x
2
2 C x2x3 C x2

3 � x2y1 � x3y1 C y2;

x3
3 � x2

3y1 C x3y2 � y3g:

We now compute the Gröbner basis for the orbit variety V.I /=S3 as in Al-
gorithm 2.6.2, and we find

G2 D ˚
8260y1 C 9y5

3 � 87y3
3 C 5515y3; 1475y2 C 9y4

3 � 264y2
3 C 736;

27y6
3 � 513y4

3 C 33849y2
3 � 784�:
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The orbit variety V.I /=S3 consists of six points, where each point Qy D . Qy1; Qy2;
Qy3/ 2 V.I /=S3 corresponds to a three-element S3-orbit in V.I /. If we wish to
explicitly compute each individual orbit f. Qx�.1/; Qx�.2/; Qx�.3// W � 2 S3g, we may
do so by factoring the cubic polynomial

t3 � Qy1t
2 C Qy2t � Qy3 D .t � Qx1/.t � Qx2/.t � Qx3/

in terms of radicals over the rationals. Note that the Gröbner basis G2 is not
only symmetric (after yi 7! Ii .x/) but it is also simpler than the “ordinary”
Gröbner basis G. In this example the computation time for G2 is roughly equal
to the computation time for G.

It is a natural question whether each 
-invariant ideal I � CŒx� can be
generated by a suitable set of invariants. As stated, the answer to this question is
“no”. For instance, consider the action of the symmetric group S2 by permuting
the variables in CŒx; y�. The irrelevant ideal I D hx; yi is invariant under S2

but this ideal cannot be generated by symmetric polynomials. For, the ideal I 0
in CŒx; y� generated by all symmetric polynomials in I is the proper subideal
I 0 D hx C y; xyi D hx2; y2; x C yi. Note, however, that the radical of I 0
equals I . It is true in general that each 
-invariant ideal has a subideal with the
same radical which is generated by a collection of invariants.

Proposition 2.6.4. Let I � CŒx� be a 
-invariant ideal, and let I 0 be the
subideal which is generated by all invariants in I . Then Rad.I 0/ D Rad.I /.

Proof. Since I 0 � I , we clearly have Rad.I 0/ � Rad.I /. By Hilbert’s Nullstel-
lensatz, it suffices to show that the variety V.I 0/ is contained in the variety V.I /.
Let a 2 V.I 0/ and f 2 I . We need to show that f .a/ D 0.

We first note that f B � lies in the ideal I for all � 2 
 . Now consider the
polynomial Q

�2�

�
´ � f .�x/

� D ´j�j C
j�j�1P
j D0

pj .x/ ´
j ;

where ´ is a new variable. Each coefficient pj is a linear combination of f B � ,
� 2 
 , and hence pj lies in I . Moreover, since the pj are symmetric functions
in the f B� , we see that pj lies in the invariant ring CŒx�� . Hence each pj lies in
the subideal I 0, and therefore pj .a/ D 0. This implies

Q
�2�

�
´�f .�a/

� D ´j�j,
and hence f .a/ D 0. G

Suppose we are given a set of generators F for an invariant ideal I as above.
Then a set of invariant generators for its subideal I 0 can be computed using Al-
gorithm 2.6.2. Thus we have a method for computing a set of invariant equations
for any invariant variety.

In practice we will often be interested in the case where I is a zero-dimen-
sional radical ideal, which means that V.I / is the union of a finite number of
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orbits 
a in Cn. We will often find that the ideal I 0 of the relative orbit variety
is a radical ideal, in which case we have the equality I 0 D I , and the given
ideal I is indeed generated by a set of invariants.

Example 2.6.5 (Computing invariant equations for an invariant variety). Con-
sider the two polynomials

f .x; y/ WD 256y16 � 1536y14 C 3648y12 � 4416y10 C 3136y8 � 1504y6

C 508y4 � 92y2 C 15

g.x; y/ WD 26233x2 C 95744y14 � 572224y12 C 1340864y10 � 1538288y8

C 913824y6 � 287484y4 C 84717y2 � 33671:

These polynomials form a Gröbner basis for their ideal I WD hf; gi � CŒx; y�
with respect to the lexicographic monomial order induced from x � y. Using
the corresponding normal form reduction, it can be verified that the transformed
polynomials f .xCy; x�y/ and g.xCy; x�y/ also lie in the ideal I . Moreover,
we see that f .x; y/ D f .x;�y/ and g.x; y/ D g.x;�y/. These considerations
show that the ideal I is invariant under the dihedral group D8 which is generated
by the matrices 1p

2

�
1 1
1 �1

�
and

�
1 0
0 �1

�
.

By Proposition 2.2.10, the invariant ring CŒx; y�D8 is generated by the in-
variants

a.x; y/ D x2 C y2 and b.x; y/ D x8 C 14x4y4 C y8:

Let us apply the preprocessing of Subroutine 2.6.1 with respect to the lexico-
graphic monomial order induced from x � y � A � B . As the result we obtain
the Gröbner basis

G0 D ˚
x2 C y2 � A; 16y8 � 32Ay6 C 20A2y4 � 4A3y2 C A4 � B�

for a generic D8-orbit.
We now apply Algorithm 2.6.2 to compute the relative orbit variety V.I /=D8

(in the embedding into C2 defined by the fundamental invariants a.x; y/ and
b.x; y/). This results in the Gröbner basis

G2 D ˚
A � B � 1; B2 � B�:

We see that V.I /=D8 consists of the two points . QA D 1; QB D 0/ and . QA D 2;
QB D 1/. Each point corresponds to a regular orbit (i.e., having cardinality 16)

of the dihedral group D8. For each individual orbit we get a Gröbner basis
by substituting A D QA and B D QB in G0. Using the notation of Proposition
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2.6.4, we conclude that the ideal I is equal to I 0 and that it has the invariant
decomposition

I D hx2 Cy2 �1; x8 C14x4y4 Cy8i \ hx2 Cy2 �2; x8 C14x4y4 Cy8 �1i:

We now return to our general discussion with the following question. What
happens if our Algorithm 2.6.2 is applied to a set of polynomials F which is
not invariant under 
? We will see that this operation corresponds to taking the
image of the variety V.F/ under the group 
 .

Proposition 2.6.6. Let I � CŒx� be any ideal and let I 0 be the subideal which
is generated by all 
-invariants in I . Then V.I 0/ D 
 �V.I /, the image of V.I /
under 
 .

Proof. We need to show that a point a 2 Cn lies in V.I 0/ if and only if its
orbit 
a intersects V.I /. For the “if”-direction suppose that �a 2 V.I / for
some group element � 2 
 , and consider any f 2 I 0. Since I 0 � I , we have
f .�a/ D 0, and since f is an invariant we conclude f .a/ D f .�a/ D 0.

For the “only if”-direction suppose that 
a \ V.I / D ;. By Hilbert’s Null-
stellensatz, there exists a polynomial g 2 I which is identically 1 on the finite
set 
a. Now consider the invariant polynomial f .x/ WD Q

�2� g.�x/. By con-
struction, f lies in the ideal I 0 but we have f .a/ D 1. Therefore a 62 V.I 0/,
which completes the proof. G

Note that in the following algorithm the group 
 is presented only by the
output of our preprocessing Subroutine 2.6.1. Neither the explicit group elements
nor the Reynolds operator is needed at all. The correctness of Algorithm 2.6.7
is a direct corollary of Proposition 2.6.6.

Algorithm 2.6.7 (Computing the image of a variety under a finite group).
Input: Fundamental invariants I1.x/; : : : ; Ir.x/ and the preprocessed Gröbner
basis G0 of a finite matrix group 
 � GL.Cn/. Any finite set of polynomials
F � CŒx�.
Output: A finite set H � CŒx�� such that V.H/ D 
 � V.F/ in Cn.

– Compute a Gröbner basis G1 for F [G0 with respect to the elimination order
x � y on CŒx; y �.

– Then G2 WD G1 \ CŒy � is a Gröbner basis for the subvariety
�

 � V.F/�=


of Cr .
– Let H � CŒx� be the set obtained from G2 by substituting yj 7! Ij .x/.

Example 2.6.8 (Computing the image of a variety under the symmetric group S3).
The invariant ring of the group S3 of 3 � 3-permutation matrices is generated
by the elementary symmetric functions a WD x C y C ´, b WD xy C x´ C y´,
c WD xy´. We will give six examples of sets of polynomials F � CŒx; y; ´� and
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H � CŒa; b; c� such that the variety of H is the image of the variety of F under
the action of S3. In each case H is computed from F using Algorithm 2.6.7.

(1) F D fx � 1; y � 2; ´ � 3g; H D fc � 6; b � 11; a � 6g.
(2) F D fxyg; H D fcg.
(3) F D fx � 1g; H D fa � b C c � 1g.
(4) F D fxy � ´g; H D f2ac C c � c2 � 2cb � b2 C ca2g.
(5) F D fxy � 2; ´2 � 3g; H D fc2 C c � 12; �bc � c C 6ag.
(6) F D fxy2 �2; ´2 �3g; H D fc6 C4c5 C4c4 �12c2b2 C144cb�432; c9 C

8c8 C24c7 C32c6 C16c5 C216c4bC864c3bC864c2b�864c2 �144cb4 C
864b3 C 5184ag.

Exercises

(1) In Example 2.6.8, give a geometric description of all six varieties and their
S3-images.

(2) Let I � CŒx� be a radical ideal which is invariant under the action of a
finite matrix group 
 , and suppose that the stabilizer in 
 of each root of I
is trivial. Is it true that then I is generated by a set of invariant polynomials?

(3) * Consider the ideals I and I 0 in Proposition 2.6.6.
(a) Show that if I is principal, then I 0 is principal.
(b) Compare I and I 0 with respect to some typical numerical invariants

such as dimension, multiplicity, minimal number of generators, . . .
(4) Let 
 � GL.R3/ be the symmetry group of a regular cube

C WD f.x; y; ´/ 2 R3 W �1 	 x; y; ´ 	 1g. Following Algorithm 2.6.2,
compute the relative orbit variety X=
 for the following 
-invariant
subvarieties X of C3.
X D the eight vertices of C,
X D the midpoints of the twelve edges of C,
X D the centroids of the six faces of C,
X D the union of the planes spanned by the six faces of C,
X D the union of the four diagonal lines of C,
X D the “superellipsoid” V.x4 C y4 C ´4 � 1/.

2.7. Abelian groups and permutation groups

By a permutation group we mean a subgroup 
 of the group Sn of n � n-
permutation matrices. This section deals with specific techniques and algorithms
for computing invariants of abelian groups and of permutation groups. We be-
gin our discussion with an example which lies in the intersection of these two
classes.

Example 2.7.1 (The cyclic group of order 5). Consider the cyclic subgroup
of S5 generated by the cycle � D .12345/, and let 
 � GL.C5/ denote the
corresponding cyclic permutation group. We abbreviate the scaled image of a
monomial xi

1x
j
2x

k
3x

l
4x

m
5 under the Reynolds operator of this group by
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Jijklm WD xi
1x

j
2x

k
3x

l
4x

m
5 C xi

2x
j
3x

k
4x

l
5x

m
1 C xi

3x
j
4x

k
5x

l
1x

m
2 C xi

4x
j
5x

k
1x

l
2x

m
3

C xi
5x

j
1x

k
2x

l
3x

m
4 :

By Noether’s theorem 2.1.4, the invariant ring

CŒx�� D ˚
f 2 CŒx� W f .x1; x2; x3; x4; x5/ D f .x2; x3; x4; x5; x1/

�
is generated by the set of invariants

˚
Jijklm W 0 	 i C j C kC l Cm 	 5

�
. The

Molien series of 
 equals

ˆ�.´/ D 1C ´2 C 3´3 C 4´4 C 6´5 C 4´6 C 3´7 C ´8 C ´10

.1 � ´/.1 � ´2/.1 � ´3/.1 � ´4/.1 � ´5/

D 1C ´C 3´2 C 7´3 C 14´4 C 26´5 C 42´6 C 66´7 C 99´8

C 143´9 C 201´10 C 273´11 C : : :

By the results of Sect. 2.3 we know that the invariant ring CŒx�� is a free module
over the subring of symmetric polynomials CŒx�S5 D CŒ�1; �2; �3; �4; �5�. The
rank of this module equals 24, which is the index of 
 in S5. We can read off
the degrees in any free basis from the above presentation of the Molien series:
there is one generator in degree 0, one generator in degree 2, three generators in
degree 3, etc.

Nevertheless it is quite hard to compute a system of 24 secondary invariants
using the general methods of Sect. 2.5. For instance, we may start by choos-
ing the secondary invariants J11000 in degree 2, we then continue by choosing
J21000, J11100 and J11010 in degree 3, etc. During this process we need to guar-
antee that none of the chosen invariants lies in the submodule generated by the
previously chosen ones.

We will instead pursue an alternative approach to CŒx�� which is based on
the fact that 
 is an abelian group. It is known (cf. Proposition 2.7.2) that the
matrices in any finite abelian subgroup 
 � GL.Cn/ can be diagonalized simul-
taneously. For a cyclic group this diagonalization process is essentially equiva-
lent to the discrete Fourier transform. Let ! 2 C be any primitive fifth root of
unity. We think of ! as a formal variable subject to the relation !4 C!3 C!2 C
!1 C 1 D 0. We perform a linear change of variables by setting

y0 D x1 C x2 C x3 C x4 C x5

y1 D x1 C !4x2 C !3x3 C !2x4 C !x5

y2 D x1 C !3x2 C !x3 C !4x4 C !2x5

y3 D x1 C !2x2 C !4x3 C !x4 C !3x5

y4 D x1 C !x2 C !2x3 C !3x4 C !4x5:
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It is easy to see that the cyclic group 
 consists of diagonal matrices with respect
to this new basis. More precisely, we have yi B � D !i � yi for i D 0; 1; : : : ; 4.
This implies the following presentation of the invariant ring

CŒx�� D spanC

˚
y

i0
0 y

i1
1 y

i2
2 y

i3
3 y

i4
4

ˇ̌
i1 C 2i2 C 3i3 C 4i4 
 0 .mod 5/

�
:

Each linear homogeneous congruence, such as i1 C2i2 C3i3 C4i4 
 0 .mod 5/,
is equivalent to a linear homogeneous diophantine equation, such as i1 C 2i2 C
3i3 C 4i4 � 5i5 D 0.

The problem of solving linear equations over the nonnegative integers is
an important problem in combinatorics and in mathematical programming. We
refer to Schrijver (1986) for a general introduction to integer programming and to
Stanley (1986: section 4.6) for a combinatorial introduction to linear diophantine
equations. An algorithm using Gröbner basis was presented in Sect. 1.4.

In our example we find a minimal generating set of fifteen lattice points
for the solution monoid of the given congruence equation. From this we obtain
the following presentation of the invariant ring as a monomial subalgebra of
CŒy0; y1; y2; y3; y4�:

CŒx�� D C
�
y0; y1y4; y2y3; y1y

2
2 ; y

2
1y3; y2y

2
4 ; y

2
3y4; y1y

3
3 ; y

3
2y4; y3y

3
4 ;

y3
1y2; y

5
1 ; y

5
2 ; y

5
3 ; y

5
4

�
:

A canonical choice of five primary invariants is given by taking the pure powers
of the coordinate functions. Indeed, the invariant ring CŒx�� is a free module of
rank 125 over its subring CŒy0; y

5
1 ; y

5
2 ; y

5
3 ; y

5
4 �. The degree generating function

for a free basis equals

ˆ�.´/ � .1 � ´/.1 � ´5/4 D 1C 2´2 C 4´3 C 7´4 C 8´5 C 16´6 C 16´7

C 17´8 C 16´9 C 16´10 C 8´11 C 7´12 C 4´13 C 2´14 C ´16:

The unique generator in degree 16 equals y4
1y

4
2y

4
3y

4
4 , the two generators in de-

gree 14 are y3
1y

4
2y

4
3y

3
4 and y4

1y
3
2y

3
3y

4
4 , etc.

It is an easy task to express an arbitrary invariant I.y0; y1; y2; y3; y4/ in
terms of the eleven basic invariants. For each monomial yi0

0 y
i1
1 y

i2
2 y

i3
3 y

i4
4 which

occurs in the expansion of I.y0; y1; y2; y3; y4/ satisfies the congruence i1 C
2i2 C 3i3 C 4i4 
 0 .mod 5/ and is therefore a product of some of the eleven
basic monomials.

In practice it may be preferable to work in the old variables x1; x2; x3; x4; x5

rather than in the transformed variables y0; y1; y2; y3; y4. In order to do so,
we may express the eleven fundamental invariants in terms of the symmetrized
monomials Jijklm:

y0 D J10000;

y1y4 D J20000 � J11000 C .�J11000 C J10100/!
2 C .�J11000 C J10100/!

3;
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y2y3 D J20000 � J10100 C .J11000 � J10100/ !
2 C .J11000 � J10100/!

3;

y1y
2
2 D J30000 � J21000 � 2J10200 C 2J11010 C .J12000 � J21000 C 2J20100

� 2J10200/! C .2J12000 � J21000 � 2J11100 � J10200 C 2J11010/!
2

C .J21000 C J20100 � 2J11100 � 2J10200 C 2J11010/!
3;

y2
1y3 D J30000 � 2J21000 � J20100 C 2J11100 C .2J12000 � 2J21000 � J20100

C J10200/! C .2J11100 � J21000 � J20100 C 2J10200 � 2J11010/!
2

C .�2J21000 C J12000 C J20100 C 2J11100 � 2J11010/!
3; : : : etc. : : :

From this we get an easy algorithm for rewriting any invariant I.x1; x2; x3;
x4; x5/ in terms of symmetrized monomials Jijklm of degree at most 5. First
replace the xi ’s by yj ’s via

5x1 D y0 C y1 C y2 C y3 C y4

5x2 D .y3 � y4/!
3 C .y2 � y4/!

2 C .y1 � y4/! C y0 � y4

5x3 D .y4 � y2/!
3 C .y1 � y2/!

2 C .y3 � y2/! C y0 � y2

5x4 D .y1 � y3/!
3 C .y4 � y3/!

2 C .y2 � y3/! C y0 � y3

5x5 D .y2 � y1/!
3 C .y3 � y1/!

2 C .y4 � y1/! C y0 � y1:

Write the result as a polynomial function I D I 0.y0; y1y4; y2y3; : : : ; y
5
4/ in

the eleven basic invariants. Finally, substitute the above expansions in terms of
Jijklm into I 0. G

We now consider the case of an arbitrary abelian subgroup 
 of GL.Cn/.
The following result from linear algebra is well known. Its proof follows from
the fact that each matrix of finite order can be diagonalized over C and that the
centralizer of the subgroup of diagonal matrices in GL.Cn/ equals the diagonal
matrices themselves.

Proposition 2.7.2. A finite matrix group 
 � GL.Cn/ is abelian if and only if
there exists a linear transformation T� 2 GL.Cn/ such that the conjugate group
T� � 
 � T �1

� consists only of diagonal matrices.

It is important to note that this theorem is false over the real or rational
numbers. As we have seen in Example 2.7.1, it can happen that each matrix
in 
 has rational entries but the diagonalization matrix T� has entries in some
algebraic extension of the rationals.

For a given abelian group 
 we can use algorithms from representation
theory to compute the matrix T� . In the following we will assume that this
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preprocessing of 
 has been done and that our input consists of an abelian ma-
trix group 
 together with its diagonalization matrix T� . The following algo-
rithm shows that the invariant theory of finite abelian groups is equivalent to the
study of linear homogeneous congruences.

Algorithm 2.7.3 (Computing fundamental invariants for an abelian group).
Input: A set of generating matrices �1; : : : ; �m for an abelian group 
 �
GL.Cn/, and a matrix T� which simultaneously diagonalizes �1; : : : ; �m.
Output: A finite algebra basis for the invariant ring CŒx�� .

1. Introduce new variables y D .y1; : : : ; yn/ via y D T� x.
2. For i D 1; : : : ; m write T� �i T

�1
� D diag.!i1; !i2; : : : ; !in/. Let dij denote

the order of the complex number !ij , and let gi denote the order of the
matrix �i .

3. Consider the system of m linear homogeneous congruences

di1�1 C di2�2 C : : :C din�n 
 0 .mod gi / i D 1; 2; : : : ; m: .2:7:1/

Compute a finite generating set H for the solution monoid of this system.
Then

CŒx�� D CŒy �T� � T �1
� D C

�
y

�1

1 y
�2

2 � � �y�n
n W � D .�1; �2; : : : ; �n/ 2 H

�
:

We need to make a few comments about Algorithm 2.7.3. In step 2 the order of

the complex number !ij is the smallest positive integer dij such that !
dij

ij D 1.
The order gi of the matrix �i then simply equals the least common multiple of
di1; di2; : : : ; din.

The generating set H in step 3 is a Hilbert basis of the monoid F . It has
the property that every � D .�1; : : : ; �n/ 2 F is a ZnC-linear combination of
elements in H. The Hilbert basis can be computed using Algorithm 1.4.5.

Let us briefly discuss the structure of the monoid F and its Hilbert basis H.
For the statement and derivation of Corollary 2.7.4 we shall assume that the
reader is familiar with the terminology in Stanley (1986: section 4.6). For any
j 2 f1; : : : ; ng let ej denote the least common multiple of d1j ; d2j ; : : : ; dmj .
Then the scaled j -th coordinate vector .0; : : : ; 0; ej ; 0; : : : ; 0/ lies in F , or,
equivalently, the monomial y

ej

j is an invariant. This shows that F is a sim-
plicial monoid with set of quasi-generators Q D f.0; : : : ; 0; ej ; 0; : : : ; 0/ W j D
1; : : : ; ng.

Consider the “descent set” D.F/ D f� D .�1; : : : ; �n/ 2 F W �1 < e1;
: : : ; �n < eng. By Stanley (1986: lemma 4.6.7), every � 2 F can be written
uniquely as the sum of an element in D.F/ and a ZC-linear combination of Q.
This implies that the monomials corresponding to Q and D.F/ form a system
of primary and secondary invariants.
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Corollary 2.7.4. The invariant ring of the abelian group 
 has the Hironaka
decomposition

CŒx�� D CŒy �T� � T �1
� D L

�2D.F/

CŒy
e1

1 ; y
e2

2 ; : : : ; y
en
n � � y�1

1 y
�2

2 � � � y�n
n :

In Example 2.7.1 this decomposition consists of five primary invariants and
jD.F/j D 125 secondary invariants. From those 130 invariants we were able to
choose a subset of fifteen invariants which generate CŒx�� as an algebra. Also
in the general setting of Corollary 2.7.4 such a simplification is possible: We can
always find a subset H of Q [D.F/ which is a minimal Hilbert basis for F .

We now come to the study of invariants of permutation groups. As a moti-
vation we discuss an application to classical Galois theory. Suppose we are given
a polynomial f .´/ D ´n C an�1´

n�1 C : : :C a1´C a0 with coefficients in the
field Q of rational numbers. Suppose further that the roots of f are labeled
x1; : : : ; xn 2 C. Such a labeling defines a representation of the Galois group
of f as a subgroup 
 of Sn � GL.Cn/.

Problem 2.7.5. Suppose the Galois group 
 of f .´/ is a solvable group for
which an explicit solvable series is given. How can we express the roots x1; : : : ;
xn in terms of radicals in the coefficients a0; : : : ; an�1?

Only few text books in algebra provide a satisfactory answer to this ques-
tion. One notable exception is Gaal (1988). Section 4.5 of that book explains
“How to solve a solvable equation”. We will here illustrate how Gröbner bases
in conjunction with invariant theory of permutation groups can be used to solve
Problem 2.7.5. In our discussion the Galois group is part of the input, and it
is our objective to compute a formula in terms of radicals which works for all
polynomials with that Galois group. We are not proposing to use invariants for
computing the Galois group 
 in the first place. For the problem of computing
Galois groups and its complexity we refer to Landau (1985). We illustrate our
approach to Problem 2.7.5 for the case of a general cubic.

Example 2.7.6 (Automatic derivation of Cardano’s formula). Consider an arbi-
trary univariate cubic polynomial

p.´/ D ´3 C a2´
2 C a1´C a0 D .´ � x1/.´ � x2/.´ � x3/

with both coefficients and roots in the complex numbers. We wish to synthesize
a general formula which expresses the xi in terms of the aj . To that end we view
x D .x1; x2; x3/ as indeterminates and a2; a1; a0 as generic constants, and we
consider the ideal I in CŒx� which is generated by x1 C x2 C x3 C a2; x1x2 C
x1x3 C x2x3 � a1; x1x2x3 C a0.

Let 
 � S3 denote the alternating group of even permutations. In order
to preprocess its invariant ring, we introduce a new variable ! subject to the
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relation !2 C ! C 1 D 0 and we set

y0 D x1 C x2 C x3; y1 D x1 C !2x2 C !x3; y2 D x1 C !x2 C !2x3:

The inverse relations are conveniently encoded in the Gröbner basis

G0 D ˚
3x1 � y0 � y1 � y2; 3x2 � y0 � y1! C y2! C y2;

3x3 � y0 C y1! C y1 � y2!; !
2 C ! C 1

�
:

Using Algorithm 2.7.3 we find the four generators u0 D y0, u12 D y1y2,
u13 D y3

1 and u23 D y3
2 for the invariant ring CŒx�� . In this situation our

preprocessing Algorithm 2.6.1 would generate the Gröbner basis

G1 D ˚
y0 � u0; y

3
1 � u13; y

2
1u12 � y2u13; y1y2 � u12; y1u

2
12 � y2

2u13;

y1u23 � y2
2u12; y

3
2 � u23; u

3
12 � u13u23

�
:

This means we embed the orbit variety C3=
 into C4 as the hypersurface
u3

12 � u23u13 D 0.
The ideal I which encodes the roots of f is clearly invariant under the

action of 
 . Let us compute the relative orbit variety V.I /=
 . To this end we
first transform coordinates in the input equations

x1 C x2 C x3 C a2 D y0 C a2

x1x2 C x1x3 C x2x3 � a1 D 1
3
y2

0 � 1
3
y1y2 � a1

x1x2x3 C a0 D 1
27
y3

0 C 1
27
y3

1 C 1
27
y3

2 � 1
9
y0y1y2 C a0;

and then we apply Algorithm 2.6.2 to find the Gröbner basis

G2 D ˚
u3

12 � u23u13; u0 C a2; u12 C 3a1 � a2
2;

u13 C u23 C 27a0 � 9a1a2 C 2a3
2;

u2
23 C 27u23a0 � 9u23a1a2 C 2u23a

3
2 � 27a3

1 C 27a2
1a

2
2 � 9a1a

4
2 C a6

2

�
:

Now the combination of the Gröbner bases G2, G1 and G0 provides an explicit
formula for the xi in terms of the aj . We first solve for u23, u13, u12 and u0 in
G2 which involves the extraction of a square root. We substitute the result into
G1 and we solve for y2, y1, y0 which involves the extraction of a cube root.
We finally get the roots x1, x2, x3 as linear combinations as of y2, y1, y0 by
substituting into G0. The resulting formula is Cardano’s formula for cubics.

When does an irreducible cubic polynomial f have the alternating group 

as its Galois group? This is the case if and only if the relative orbit variety
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V.I /=
 is reducible into ŒS3 W 
� D 2 components over the ground field. This
can be checked by factoring the fifth element of G2 as a polynomial in u23. This
polynomial factors if and only if its discriminant is a square, and in this case f
has Galois group 
 . G

In order to solve Problem 2.7.5 in the general case we may proceed as fol-
lows. We will only sketch the basic ideas and leave it as a challenging exercise
for the reader to work out the details. For doing so it may be helpful to consult
Gaal (1988: section 4.6).

Let 
 D 
1 > 
2 > : : : > 
k�1 > 
k D .id/ be a composition series
of the given permutation group 
 � Sn. This means that each factor group

i=
iC1 is cyclic of prime order pi . For each occurring prime number pi we
introduce a primitive pi -th root of unity !i . We may assume that the polynomial
f .´/ D P

ai´
i has distinct roots x1; x2; : : : ; xn. Let G0 be the Gröbner basis

constructed in Theorem 1.2.7 for the vanishing ideal I � CŒx� of the Sn-orbit
of the point .x1; : : : ; xn/ in Cn.

– Choose a system of fundamental invariants I1.x/; I2.x/ : : : ; Im.x/ for the
tentative Galois group 
 . Using the methods of Sect. 2.6 we compute a Gröb-
ner basis for the relative orbit variety V.I /=
 with respect to the embedding
defined by the Ij .

– The Galois group of f is equal to 
 (or a subgroup thereof) if and only if
the relative orbit variety V.I /=
 factors completely over the ground field.
In this case we can factor the ideal of V.I /=
 as an intersection of ŒSn W 
�
maximal ideals of the form hI1 �c1; I2 �c2; : : : ; Im �cmi, where the ci are
rational expressions in the aj . This gives us a decomposition of the ideal I as
an intersection of ideals of the form hI1.x/�c1; I2.x/�c2; : : : ; Im.x/�cmi
in CŒx�.

– Compute the invariant ring CŒx��i for each intermediate group 
i . It follows
from Theorem 2.3.5 that CŒx��iC1 is a free module of rank pi over CŒx��i .
The cyclic group 
i=
iC1 acts on this module. We can diagonalize the action
via a linear change of variables as in Examples 2.7.1 and 2.7.6 (involving the
primitive root of unity !i ). As the result we obtain an element �i 2 CŒx��iC1

on which a generator of the cyclic group 
i=
iC1 acts via �i 7! !i � �i . This
implies that �pi

i lies in the subring CŒx��i and that f1; �i ; �
2
i ; : : : ; �

pi �1
i g is a

free basis for CŒx��iC1 as a CŒx��i -module.
– Now each element of CŒx��iC1 can be expressed by extracting one pi -th

root and by rational operations in terms of elements of CŒx��i . We iterate
this process from i D 1; : : : ; k � 1 to get an expression for x1; : : : ; xn in
terms of c1; : : : ; cm, which involves only rational operations, pi -th roots of
unity !i and extracting pi -th roots.

Next we study the invariant ring of an arbitrary permutation group 
 � Sn.
A good choice of primary invariants for 
 consists in the elementary symmetric
functions �1; �2; : : : ; �n, or any other algebra basis for the ring of symmetric
polynomials CŒx�Sn . It is therefore natural to study the structure of CŒx�� as a
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module over CŒx�Sn . Our first theorem is a direct consequence of the results in
Sect. 2.3.

Theorem 2.7.6. The invariant ring CŒx�� is a free module of rank t WD nŠ=j
j
over the subring of symmetric polynomials. If �1; �2; : : : ; �t is any free module
basis, then

tP
iD1

´deg.	i / D ˆ�.´/ � .1 � ´/.1 � ´2/ � � � .1 � ´n/:

The computation of the Molien series ˆ� of a permutation group is facili-
tated by the following easy observation. The cycle type of a permutation � is the
integer vector `.�/ D .`1; `2; : : : ; `n/, where `i counts the number of cycles of
length i in the cycle decomposition of � .

Remark 2.7.7. The characteristic polynomial of a permutation matrix � can be
read off from its cycle type `.�/ D .`1; `2; : : : ; `n/ via the formula det.1 � ´�/
D Qn

iD1.1 � ´i /`i .

A system of secondary invariants f�1; �2; : : : ; �tg as in Theorem 2.7.6 is
called a basic set for 
 . Finding explicit basic sets for permutation groups is an
important problem in algebraic combinatorics. A large number of results on this
subject are due to Garsia and Stanton (1984), with extensions by Reiner (1992).
In what follows we explain the basic ideas underlying the algebraic combina-
torics approach.

Let us begin with the seemingly trivial case of the trivial permutation group

 D fidg. Its invariant ring equals the full polynomial ring CŒx�. By Theorem
2.7.6, CŒx� is a free module of rank nŠ over the symmetric polynomials, and
finding a basic set for fidg means finding nŠ module generators for CŒx� over
CŒx�Sn . The Hilbert series of the polynomial ring equals ˆfidg.´/ D .1 � ´/�n,
and so we get the following formula for the degree generating function of any
basic set:

.1 � ´/.1 � ´2/.1 � ´3/ � � � .1 � ´n/

.1 � ´/n
D .1C ´/.1C ´C ´2/ � � � .1C ´C ´2 C : : :C ´n�1/:

Let ci denote the coefficient of ´i in the expansion of this product. This number
has the following two combinatorial interpretations; see Stanley (1986: corollary
1.3.10).

Proposition 2.7.8. The number ci of elements of degree i in a basic set for

 D fidg

(a) equals the cardinality of the set f.	1; 	2; : : : ; 	n/ 2 Zn W 0 	 	j < j; 	1 C
: : :C 	n D ig.

(b) equals the number of permutations � 2 Sn having precisely i inversions.
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There are natural basic sets associated with both combinatorial interpreta-
tions. With each permutation � D .�1; �2; : : : ; �n/ in Sn we associate its de-
scent monomial m.�/. This is defined as the product of all monomials
x�1

x�2
� � � x�i

, where 1 	 i < n and �i > �iC1. For instance, the descent mono-
mial of the permutation � D .2; 1; 4; 5; 3/ equals m.�/ D x2.x2x1x4x5/ D
x1x

2
2x4x5. It is a remarkable combinatorial fact that the number of descent

monomials of degree i equals the number of permutations � 2 Sn having pre-
cisely i inversions. For a proof see Stanley (1986: corollary 4.5.9).

Theorem 2.7.9.
(a) The set of monomials x�1

1 x
�2

2 � � � x�n
n with 0 	 	i < i is basic.

(b) The set of descent monomials m.�/, � 2 Sn, is basic.

Proof. By the dimension count of Proposition 2.7.8, it is sufficient in both cases
to show that the given monomials span CŒx� as a CŒx�Sn-module. Let us see
that part (a) is an easy corollary to Theorem 1.2.7. Consider any p.x/ 2 CŒx�.
Its normal form with respect to the Gröbner basis G is an expression of the
form

P
0��i <i q.y/x

�1

1 x
�2

2 � � � x�n
n . We may now replace each slack variable yi

by the corresponding elementary symmetric function �i .x1; : : : ; xn/ to get a pre-
sentation of p.x/ as a CŒx�Sn-linear combination of the basic set in question.
For the proof of part (b) we refer to Garsia and Stanton (1984). G

We can construct a basic set for an arbitrary permutation group 
 as fol-
lows. Let I denote the ideal in CŒx� spanned by all symmetric polynomials with
zero constant term. A Gröbner basis for I can be read off from Theorem 1.2.7.
This means we can easily compute and decide linear independence in the nŠ-
dimensional vector space V WD CŒx�=I. Since the ideal I is 
-invariant, we get
an action of 
 on V .

Corollary 2.7.10. A set of 
-invariants C � CŒx�� is basic if and only if its
image modulo I is a vector space basis for the invariant subspace V � .

Corollary 2.7.10 is a direct consequence of Theorem 2.3.1. We get the fol-
lowing general method for producing basic sets of permutation groups.

Algorithm 2.7.11 (Constructing secondary invariants for a permutation group).
Let B be either of the two basic sets in Theorem 2.7.9. Its image B� under the
Reynolds operator of 
 spans the vector space V � . Using Gröbner basis normal
form modulo I we can now find a subset C of B� which is a C-linear basis
for V � .

Example 2.7.12 (The dihedral group of order 5). Let I denote the ideal in
CŒx� D CŒx1; x2; x3; x4; x5� generated by the elementary symmetric polyno-
mials. By Theorem 1.2.7, the lexicographic Gröbner basis for I equals
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G D ˚
x1 C x2 C x3 C x4 C x5; x

4
4 C x3

4x5 C x2
4x

2
5 C x4x

3
5 C x4

5 ;

x3
3 C x2

3x4 C x2
3x5 C x3x

2
4 C x3x4x5 C x3x

2
5 C x3

4 C x2
4x5 C x4x

2
5 C x3

5 ;

x2
2 C x2x3 C x2x4 C x2x5 C x2

3 C x3x4 C x3x5 C x2
4 C x4x5 C x2

5 ; x
5
5

�
:

Consider the dihedral group 
 � S5 which is generated by the permutations
.12345/ and .12/.35/. Let us apply Algorithm 2.7.11 to determine a basic set C
for 
 . We first compute the Molien series ˆ�.´/ and the degree generating
function for C:

ˆ�.´/.1 � ´/.1 � ´2/.1 � ´3/.1 � ´4/.1 � ´5/

D 1C ´2 C ´3 C 2´4 C 2´5 C 2´6 C ´7 C ´8 C ´10:

Note that jCj D 12 equals the index of 
 in S5. Consider the basic set B D
fxi

2x
j
3x

k
4x

l
5 W 0 	 i < 2; 0 	 j < 3; 0 	 k < 4; and 0 	 l < 5g from

Theorem 2.7.9, and let B� be its image under the Reynolds operator for 
 .
Using normal form reduction with respect to G, we can determine the image
of all 120 elements in B� modulo I. Let C be the subset of the following ten
symmetrized monomials. These are linearly independent modulo I because their
normal forms have distinct initial terms.

.x4x5/
� !G 2x2x3 � 2x2x5 C 2x2

3 C 4x3x4 C 2x2
4 C 2x4x5

.x4x
2
5/

� !G � x2x3x4 C x2x4x5 � x2
3x5 � x3x4x5 � x3x

2
5 C x3

4 C x2
4x5

C x4x
2
5

.x4x
3
5/

� !G � x2x3x
2
4 � x2x3x4x5 � 2x2x3x

2
5 � x2x

3
4 � x2x

2
4x5

� 2x2x4x
2
5 � : : :

.x3x4x
2
5/

� !G � x2x
2
3x4 C x2x

2
3x5 C x2x3x4x5 C x2x3x

2
5 C x2x

3
4

C 2x2x
2
4x5 C : : :

.x4x
4
5/

� !G x2x3x
2
4x5 C 2x2x3x4x

2
5 C x2x

3
4x5 C x2x

2
4x

2
5 C x2x4x

3
5

� x2x
4
5 C : : :

.x3x4x
3
5/

� !G x2x
2
3x

2
4 � x2x

2
3x

2
5 � 2x2x3x

2
4x5 � 4x2x3x4x

2
5 � 2x2x3x

3
5

� : : :

.x3x4x
4
5/

� !G � x2x
2
3x

2
4x5 C x2x

2
3x4x

2
5 C 2x2x3x

2
4x

2
5 C x2x3x4x

3
5

� x2x3x
4
5 C : : :

.x2x3x4x
3
5/

� !G � x2x3x
2
4x

2
5 C x2x3x4x

3
5 C x2x3x

4
5 � x2x

3
4x

2
5 � x2x

2
4x

3
5

C x2x4x
4
5 � : : :
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.x3x
2
4x

4
5/

� !G � x2x
2
3x

2
4x

2
5 � 2x2x

2
3x4x

3
5 � 2x2x

2
3x

4
5 � 2x2x3x4x

4
5

C 2x2x
3
4x

3
5 C : : :

.x2
3x

2
4x

4
5/

� !G � 2x2x
2
3x

2
4x

3
5 � 2x2x

2
3x4x

4
5 � 4x2x3x

2
4x

4
5 � 2x2x

3
4x

4
5 C : : :

.x2x
2
3x

3
4x

4
5/

� !G 10x2x
2
3x

3
4x

4
5

This proves that this set C of symmetrized monomials is basic for 
 .

The work of Garsia and Stanton (1984) provides an explicit combinatorial
construction of basic sets for a large class of important permutation groups.
This class includes the Young subgroups which are defined as follows. Let T D
ft1 < t2 < : : : < tkg be any ordered subset of Œ1; n � 1�. We define 
T to
be the subgroup consisting of all permutations � that fix each of the intervals
Œti C 1; tiC1�, i D 0; : : : ; k. (Here t0 WD 0 and tkC1 WD n.) We call 
T the Young
permutation group associated with the descent set T . As an abstract group 
T

is isomorphic to the product of the symmetric groups StiC1�ti , i D 0; : : : ; k.
Let CT denote the set of all permutations � having the property that each

of the sequences .ti C 1; ti C 2; : : : ; tiC1/ appears in increasing order in .�1;
�2; �3; : : : ; �n/. The set CT is clearly a system of representatives for the cosets
of 
T , and hence its cardinality equals the cardinality of any basic set for 
T .

Theorem 2.7.13 (Garsia and Stanton 1984). The set of symmetrized descent
monomials f.m.�//� W � 2 CT g is a basic set for 
T .

For the proof of this theorem we refer to the article of Garsia and Stanton.
It is based on shellability of posets and the theory of Stanley–Reisner rings.

Exercises

(1) Let 
T D S2 � S3 be the Young subgroup of S5 associated with T D f2g.
(a) Apply Theorem 2.7.13 to compute a basic set for this permutation

group.
(b) Give an algorithm for rewriting an arbitrary invariant in

CŒx1; x2; x3; x4; x5�
�T in terms of these basic invariants.

(2) * Describe an algorithm for solving any fifth-degree polynomial with
cyclic Galois group in terms of radicals. Use Example 2.7.1 and the
methods of Example 2.7.6. Apply your algorithm to the polynomial
f .´/ D ´5 � 10´4 C 40´3 � 80´2 C 80´ � 29. Describe an extension for
solving quintics with dihedral Galois group (cf. Example 2.7.12).

(3) Determine a minimal algebra basis for the ring of invariants of the cyclic
permutation group of order prime p.



3 Bracket algebra
and projective geometry

According to the general philosophy outlined in Sect. 1.3, analytic geometry
deals with those properties of vectors and matrices which are invariant with
respect to some group of linear transformations. Applying this program to
projective geometry, one is led in a natural way to the study of the bracket
algebra.

In Sects. 3.1 and 3.2 we present the two “Fundamental Theorems” of clas-
sical invariant theory from the point of view of computer algebra. These results
will subsequently be used to derive algebraic tools and algorithms for projective
geometry. In the last two sections of this chapter we apply bracket algebra to
the study of invariants of binary forms, and in particular, we prove Gordan’s
finiteness theorem for binary forms.

3.1. The straightening algorithm

One of the most important features of the bracket algebra is the straightening
algorithm due to Alfred Young (1928). The general method of rewriting in terms
of standard Young tableaux plays an important role in representation theory and
has applications in many areas of mathematics. The specific straightening algo-
rithm to be discussed here will be understood as the normal form reduction with
respect to a Gröbner basis for the ideal of algebraic dependencies among the
maximal minors of a matrix. Our presentation follows Hodge and Pedoe (1947)
and Sturmfels and White (1989).

Let X D .xij / be an n � d -matrix whose entries are indeterminates, and let
CŒxij � denote the corresponding polynomial ring in nd variables. Throughout
this chapter we will think of X as a configuration of n vectors in the vector
space Cd . These vectors represent a configuration of n points in projective .d�1/-
space P d�1. It is our objective to study those polynomial functions in CŒxij �
which correspond to geometric properties of the projective point configura-
tion X .

Consider the set ƒ.n; d/ WD fŒ�1�2 : : : �d � j 1 	 �1 < �2 < : : : < �d 	 ng
of ordered d -tuples in Œn� WD f1; 2; : : : ; ng. The elements of ƒ.n; d/ are called
brackets. They will serve as indeterminates over C. We define CŒƒ.n; d/� to
be the polynomial ring generated by the

�
n
d

�
-element set ƒ.n; d/. Furthermore,

we abbreviate Œ�� WD Œ�1�2 : : : �d � and Œ��1
��2

: : : ��d
� WD sign.�/ � Œ�� for all

permutations � of f1; : : : ; dg.
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Consider the algebra homomorphism

�n;d W CŒƒ.n; d/� ! CŒxij �

Œ�� 7! det

0BBB@
x�11 x�12 : : : x�1d

x�21 x�22 : : : x�2d

:::
:::

: : :
:::

x�d 1 x�d 2 : : : x�d d

1CCCA
which maps each bracket Œ�� to the d � d -subdeterminant of X whose rows are
indexed by �. The map �n;d is called the generic coordinatization. At this point
we stress the distinction between the “formal” bracket Œ�� and the associated
determinant �n;d .Œ��/. Later on we will follow the standard abuse of notation
and identify these two objects.

Example 3.1.1. Let d D 3 and n D 6. The rows of the matrix

X D

0BBB@
x11 x12 x13

x21 x22 x23

:::
:::

:::

x61 x62 x63

1CCCA
can be thought of as six points in the projective plane. Then the determinant

�6;3.Œ146�/ D x11x42x63 � x11x62x43 � x41x12x63 C x41x62x13

C x61x12x43 � x61x42x13

vanishes if and only if the points “1”, “4” and “6” lie on a common line. In
Example 3.4.3 it will be shown that the six points lie on a common quadratic
curve in P 2 if and only if the polynomial �3;6.Œ123�Œ145�Œ246�Œ356�� Œ124�Œ135�
Œ236�Œ456�/ vanishes.

The image of the ring map �n;d coincides with the subring Bn;d of CŒxij �
which is generated by the d � d -minors of X . We call Bn;d the bracket ring.
Example 3.1.1 suggests that precisely the polynomials in the bracket ring Bn;d

correspond to geometric properties. In the next section we will show that this is
indeed the case. First, however, we analyze the structure of the bracket ring and
we give an algorithm for computing in Bn;d .

Example 3.1.2. Even for relatively small parameters, such as d D 3 and n D
6, it is rather cumbersome to compute in Bn;d using the variables xij . As an
example, we consider the polynomial

F WD x11x22x33x41x52x63 � x11x22x33x41x53x62 � x11x22x33x51x42x63
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C x11x22x33x61x42x53 � x11x23x32x41x52x63 C x11x23x32x41x53x62

� x11x23x32x51x43x62 C x11x23x32x61x43x52 � x21x12x33x41x52x63

C x21x12x33x41x53x62 C x21x12x33x51x42x63 � x21x12x33x61x42x53

C x21x13x32x41x52x63 � x21x13x32x41x53x62 C x21x13x32x51x43x62

� x21x13x32x61x43x52 � x31x12x23x51x42x63 C x31x12x23x51x43x62

C x31x12x23x61x42x53 � x31x12x23x61x43x52 C x31x13x22x51x42x63

� x31x13x22x51x43x62 � x31x13x22x61x42x53 C x31x13x22x61x43x52

� x11x22x43x31x52x63 C x11x22x43x31x53x62 C x11x22x43x51x32x63

� x11x22x43x61x32x53 C x11x23x42x31x52x63 � x11x23x42x31x53x62

C x11x23x42x51x33x62 � x11x23x42x61x33x52 C x21x12x43x31x52x63

� x21x12x43x31x53x62 � x21x12x43x51x32x63 C x21x12x43x61x32x53

� x21x13x42x31x52x63 C x21x13x42x31x53x62 � x21x13x42x51x33x62

C x21x13x42x61x33x52 C x41x12x23x51x32x63 � x41x12x23x51x33x62

� x41x12x23x61x32x53 C x41x12x23x61x33x52 � x41x13x22x51x32x63

C x41x13x22x51x33x62 C x41x13x22x61x32x53 � x41x13x22x61x33x52:

The geometric meaning of this polynomial is as follows: The three lines “12”,
“34” and “56” meet in a common point if and only if F D 0. The polynomial F
lies in the subring B3;6. It has the two distinct representations (among others)

F D �6;3.Œ123�Œ456� � Œ124�Œ356�/ D �6;3.�Œ125�Œ346�C Œ126�Œ345�/:

This example shows that the ring map �n;d is in general not injective. Let
In;d � CŒƒ.n; d/� denote the kernel of �n;d . This is the ideal of algebraic de-
pendencies or syzygies among the maximal minors of a generic n�d -matrix. For
instance, in Example 3.1.2 we saw that Œ123�Œ456� � Œ124�Œ356� C Œ125�Œ346� �
Œ126�Œ345� 2 I6;3.

Remark 3.1.3. The bracket ring Bn;d is isomorphic to the quotient CŒƒ.n; d/�=
In;d .

We now give an explicit Gröbner basis for the ideal In;d . The projective
variety defined by the syzygy ideal In;d is the .n�d/d -dimensional Grassmann
variety whose points correspond to the d -dimensional vector subspaces of Cn.

We shall need the following abbreviations. The complement of a d -tuple � 2
ƒ.n; d/ is the unique .n�d/-tuple �� 2 ƒ.n; n�d/ with �[�� D f1; 2; : : : ; ng.
The sign of the pair .�; ��/ is defined as the sign of the permutation � which
maps �i to i for i D 1; 2; : : : ; d and ��

j to d C j for j D 1; 2; : : : ; n � d .
Let s 2 f1; 2; : : : ; dg, ˛ 2 ƒ.n; s�1/, ˇ 2 ƒ.n; dC1/ and � 2 ƒ.n; d �s/.

We define the van der Waerden syzygy ŒŒ˛ P̌��� to be the following quadratic
polynomial in CŒƒ.n; d/�:
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ŒŒ˛ P̌��� WDP
�2ƒ.dC1;s/

sign.�; ��/ � Œ˛1 : : : ˛s�1ˇ��
1
: : : ˇ��

dC1�s
� � Œˇ�1

: : : ˇ�s
�1 : : : �d�s�:

Example 3.1.4. Let d D 3, n � 6, s D 3 and consider the index tuples

˛ D Œ˛1; ˛2� 2 ƒ.n; 2/; ˇ D Œˇ1; ˇ2; ˇ3; ˇ4� 2 ƒ.n; 4/; � D Œ � 2 ƒ.n; 0/:
The corresponding van der Waerden syzygy equals

ŒŒ˛ P̌��� D ŒŒ˛1˛2
P̌
1

P̌
2

P̌
3

P̌
4��

D Œ˛1˛2ˇ4�Œˇ1ˇ2ˇ3� � Œ˛1˛2ˇ3�Œˇ1ˇ2ˇ4�

C Œ˛1˛2ˇ2�Œˇ1ˇ3ˇ4� � Œ˛1˛2ˇ1�Œˇ2ˇ3ˇ4�:

In Example 3.1.2 we encountered this syzygy with indices ˛ D Œ1; 2� and ˇ D
Œ3; 4; 5; 6�.

Let us first verify that the van der Waerden syzygies are indeed algebraic
dependencies among the maximal minors of X .

Lemma 3.1.5. The polynomials ŒŒ˛ P̌��� are contained in the ideal In;d .

Proof. We need to show that the polynomial �n;d .ŒŒ˛ P̌���/ 2 CŒxij � evaluates to
zero for every n�d -matrix X . Consider the row vectors x˛1

; : : : ; x˛s�1
; xˇ1

; : : : ;
xˇdC1

; x�1
; : : : ; x�d�s

of X which are indexed by the tuples ˛, ˇ and � respec-
tively. We specialize the d�1 row vectors x˛i

and x�j
to arbitrary elements from

Cd , while the d C 1 vectors xˇk
are left as indeterminates. After this specializa-

tion, the expression �n;d .ŒŒ˛ P̌���/ defines a multilinear .d C1/-form on Cd . We
see that this multilinear form is antisymmetric because the sum defining the van
der Waerden syzygies is alternating. A well-known theorem from linear algebra
states that there is no antisymmetric multilinear .dC1/-form on a d -dimensional
vector space except the zero form. Since the above specialization was arbitrary,
we conclude that �n;d .ŒŒ˛ P̌���/ D 0 in CŒxij �. G
Example 3.1.6. The ideal I4;2 of algebraic relations among the six 2� 2-minors
of a generic 4 � 2-matrix is principal. It is generated by the quadratic Plücker
relation ŒŒ1 P2P3P4�� D Œ12�Œ34� � Œ13�Œ24�C Œ14�Œ23�.

In order to perform computations in the bracket ring Bn;d D CŒƒ.n; d/�=
In;d , it is necessary to express every bracket polynomial F by a unique normal
form modulo the syzygy ideal In;d . In particular, we need a method for deciding
whether a given bracket polynomial F 2 CŒƒ.n; d/� is contained in In;d , i.e.,
whether F vanishes under the generic coordinatization �n;d . Such a normal form
procedure is the straightening law due to A. Young (1928). We will present this
classical algorithm within the framework of Gröbner bases theory.
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We order the elements of ƒ.n; d/ lexicographically, that is, Œ�� � Œ�� if
there exists an m, 1 	 m 	 d , such that �j D �j for 1 	 j 	 m � 1, and
�m < �m. This specifies a total order on the set of variables in CŒƒ.n; d/�. The
induced degree reverse lexicographic monomial order on CŒƒ.n; d/� will also
be denoted by “�”.

The monomial order “�” is called the tableaux order, as it is customary
to write monomials in CŒƒ.n; d/� as rectangular arrays or tableaux. Given
Œ�1�; : : : ; Œ�k� 2 ƒ.n; d/ with Œ�1� 
 : : : 
 Œ�k�, then the monomial T WD
Œ�1� � Œ�2� � : : : � Œ�k� is written as the tableau

T D

266664
�1

1 : : : �1
d

�2
1 : : : �2

d
:::

: : :
:::

�k
1 : : : �k

d

377775 :
A tableau T is said to be standard if its columns are sorted, that is, if �1

s 	
�2

s 	 : : : 	 �k
s for all s D 1; 2; : : : ; d ; otherwise it is nonstandard.

The van der Waerden syzygy ŒŒ˛ P̌��� is called a straightening syzygy pro-
vided ˛s�1 < ˇsC1 and ˇs < �1. Let Sn;d denote the set of all straightening
syzygies.

Theorem 3.1.7. The set Sn;d is a Gröbner basis for In;d with respect to the
tableaux order. A tableau T is standard if and only if T is not in the initial ideal
init�.In;d /.

Proof. The set Sn;d is contained in In;d by Lemma 3.1.5. Let M � init�.In;d /
denote the monomial ideal generated by the initial tableaux of the elements
in Sn;d . We need to prove the reverse inclusion init�.In;d / � M. Our proof
proceeds in two steps. We first show each nonstandard tableau lies in M, and
we then prove that each monomial in init�.In;d / is a nonstandard tableau.

Let T D Œ�1�Œ�2� : : : Œ�k� be any nonstandard tableau. There exist i 2 f2; 3;
: : : ; kg and s 2 f2; 3; : : : ; dg such that �i�1

s > �i
s . We find that the factor

Œ�i�1�Œ�i � is the initial tableau of the straightening syzygy ŒŒ˛ P̌��� where ˛ WD
Œ�i�1

1 �i�1
2 : : : �i�1

s�1�, ˇ WD Œ�i
1 : : : �

i
s�

i�1
s : : : �i�1

d
�, and � WD Œ�i

sC1 : : : �
i
d
�.

Hence T lies in the ideal M.
For our second step, we consider the polynomial ring CŒxij � and we intro-

duce the lexicographic monomial order “<” induced by the variable order x11 >
x12 > : : : > x1d > x21 > : : : > xn1 > : : : > xnd . We call “<” the diagonal
monomial order on CŒxij �.

Given any tableau T D Œ�1�Œ�2� : : : Œ�k� 2 CŒƒ.n; d/�, we consider its im-
age �n;d .T / 2 CŒxij � under the generic coordinatization. The initial monomial
of this product of k maximal minors in the diagonal monomial order equals
init�n;d .T / D Qk

iD1 x�i
1

1x�i
2

2 : : : x�i
d

d .
The crucial step of our proof consists in the following combinatorial fact.
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Lemma 3.1.8. Let f�1; : : : ; �kg be any multisubset of ƒ.n; d/. Then there ex-
ists a unique standard tableau QT such that

init�n;d . QT / D
kQ

iD1

x�i
1

1x�i
2

2 : : : x�i
d

d :

The standard tableau QT is obtained from the tableau T D Œ�1�Œ�2� : : : Œ�k� by
sorting each column.

Let us now suppose that some standard tableau T lies in the initial ideal
init�.In;d /, say, T D init.F /, where F 2 In;d . Without loss of generality we
may assume that all tableaux occurring in F are standard. For, any nonstan-
dard tableau can be replaced by its normal form (which may not be unique)
with respect to Sn;d . Any such normal form is a linear combination of standard
tableaux, by the first part of our proof.

Since F is nonzero but �n;d .F / D 0, there exists a non-initial standard
tableau T 0 in the expansion of F such that �n;d .T / and �n;d .T

0/ have the
same initial monomial in the diagonal monomial order on CŒxij �. This is a con-
tradiction to Lemma 3.1.8, and our proof is complete. G

The Straightening Law for bracket polynomials is usually stated in the fol-
lowing form. Corollary 3.1.9 is an immediate consequence of Theorem 3.1.7 and
Theorem 1.2.6.

Corollary 3.1.9 (Straightening law). The standard tableaux form a C-vector-
space basis for the bracket ring Bn;d .

The normal form reduction with respect to the Gröbner basis Sn;d is called
the straightening algorithm. Let us see in an example how the straightening
algorithm works.

Example 3.1.10. Let n D 6, d D 3, and consider the tableau T D Œ�1�Œ�2�Œ�3� D
Œ145�Œ156�Œ234�. This tableau is nonstandard because �2

2 D 5 > �3
2 D 3. We can

reduce T modulo the straightening syzygy

ŒŒ1 P5P6P2P3 4�� D Œ156�Œ234�C Œ136�Œ245� � Œ135�Œ246�

� Œ126�Œ345�C Œ125�Œ346�C Œ123�Œ456�

which results in the bracket polynomial

F D T � Œ145� ŒŒ1 P5P6P2P3 4��
D Œ136�Œ145�Œ245�C Œ135�Œ145�Œ246�C Œ126�Œ145�Œ345�

� Œ125�Œ145�Œ346� � Œ123�Œ145�Œ456�:

The second, fourth and fifth tableau in this expression are standard. The first and
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the third tableau are still nonstandard, and we need to straighten them next. This
process eventually terminates because all tableaux in the new expression F are
smaller in the tableaux order than T . The unique representation of T as a linear
combination of standard tableaux equals Œ123�Œ145�Œ456� � Œ124�Œ145�Œ356� C
Œ134�Œ145�Œ256�.

The Gröbner basis Sn;d of the syzygy ideal is by no means minimal. There
are many proper subsets of Sn;d which are also Gröbner bases of In;d . For
example, let

S�
n;d WD fŒŒ˛ P̌��� 2 Sn;d W ˛i 	 ˇi for all i; 1 	 i 	 s � 1g:

These syzygies straighten the leftmost violation in a given pair of rows. All our
arguments in the proof of Theorem 3.1.7 are still valid, whence also S�

n;d
is a

Gröbner basis. However, even S�
n;d

is not a reduced Gröbner basis.
We close this section with a description of the unique reduced Gröbner basis

Rn;d for In;d with respect to the tableaux order. Since each polynomial in Rn;d

must be in reduced form modulo the other polynomials in Rn;d , we see that each
polynomial in Rn;d consists of a two-rowed nonstandard tableau T minus the
linear combination of standard tableaux obtained by applying the straightening
algorithm to T .

Example 3.1.11 .nD 6; d D 3/. The reduced Gröbner basis R6;3 for the syzygy
ideal I6;3 contains, among others, the following syzygies.

Œ126�Œ345� � Œ123�Œ456�C Œ124�Œ356� � Œ125�Œ346�

Œ136�Œ245�C Œ123�Œ456�C Œ134�Œ256� � Œ135�Œ246�

Œ145�Œ236�C Œ125�Œ346� � Œ135�Œ246� � Œ124�Œ356�C Œ134�Œ256�C Œ123�Œ456�

Œ146�Œ235�C Œ125�Œ346� � Œ135�Œ246�C Œ123�Œ456�

Œ156�Œ234�C Œ124�Œ356� � Œ134�Œ256� � Œ123�Œ456�

This list, which is ordered with respect to the tableaux order of their initial
monomials, is sufficient to straighten all bracket polynomials with n D 6, d D 3
which are linear in each point, i.e., no number occurs twice in any tableau.
Observe that only the underlined initial monomials are nonstandard.

This description of the reduced Gröbner bases generalizes to an arbitrary
polynomial ideal I � CŒx1; : : : ; xn�. Let G be any Gröbner basis for I and
consider a set of monomials fu1; : : : ; urg which minimally generates the ini-
tial ideal init.I /. Then the reduced Gröbner basis Gred of I equals Gred D
fu1 � normal formG.u1/; : : : ; ur � normal formG.ur/g. Here the monomials ui

are called minimally nonstandard (see also Exercises (1) and (2) of Sect. 1.2).
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Exercises

(1) The bracket ring Bn;d is a graded subring of the polynomial ring CŒxij �.
Show that the Hilbert series of Bn;d has the form
H.Bn;d ; ´/ D P1

kD0 an;d;k ´
dk . Compute the Hilbert series of Bn;d

explicitly in the case d D 2.
(2) Apply the straightening algorithm to the polynomial

det

0B@Œ124� Œ143� Œ423�

Œ125� Œ153� Œ523�

Œ126� Œ163� Œ623�

1CA 2 CŒƒ.6; 3/�:

Can you generalize your result?
(3) * A van der Waerden syzygy ŒŒ˛ P̌��� with s D 1 is called a Grassmann–

Plücker syzygy.
(a) Show that the ideal In;d is generated by the Grassmann–Plücker

syzygies. (This is sometimes called the Second Fundamental Theorem
of Invariant Theory.)

(b) The Grassmann–Plücker syzygies form a Gröbner basis whenever
d 	 3.

(c) The Grassmann–Plücker syzygies are not a Gröbner basis for d D 4,
n D 8.

(4) Consider the ideal J in CŒxij � which is generated by �n;d .Bn;d /. (What is
its variety?) Compute the reduced Gröbner basis of J with respect to the
diagonal monomial order on CŒxij �.

(5) * Here we assume familiarity with face rings of simplicial complexes (cf.
Stanley 1983).
(a) The initial ideal init�.In;d / is square-free and hence corresponds to a

simplicial complex �n;d on ƒ.n; d/. Describe the simplices of �n;d .
(b) Show that �n;d is the order complex of a partially ordered set on

ƒ.n; d/.
(c) Show that �n;d is a shellable ball, and conclude that its face ring

CŒ�n;d � D CŒƒ.n; d/�= init�.In;d / is Cohen–Macaulay. Find a
Hironaka decomposition.

(d) Show that the bracket ring Bn;d is Cohen–Macaulay. Give an explicit
Hironaka decomposition for Bn;d .

3.2. The first fundamental theorem

The group SL.Cd / of d � d -matrices with determinant 1 acts by right multi-
plication on the ring CŒxij � of polynomial functions on a generic n � d -matrix
X D .xij /. The two fundamental theorems of classical invariant theory give

an explicit description of the invariant ring CŒxij �
SL.Cd /. It is clear that every

d � d -minor of X is invariant under SL.Cd /. Therefore CŒxij �
SL.Cd / contains

the bracket ring Bn;d which is generated by all d � d -minors. The main result
of this section states that these two rings coincide.
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Theorem 3.2.1 (First fundamental theorem of invariant theory). The invariant
ring CŒxij �

SL.Cd / is generated by the d � d -minors of the matrix X D .xij /.

Together with the results of Sect. 3.1, this provides an explicit presentation

CŒxij �
SL.Cd / D CŒƒ.n; d/�=In;d D Bn;d :

The Second Fundamental Theorem of Invariant Theory states that the syzygy
ideal In;d is generated by certain sets of quadratic polynomials, such as the
quadratic Grassmann–Plücker relations in Exercise 3.1. (3). An even stronger
result was established in Theorem 3.1.7, where we exhibited an explicit Gröb-
ner basis consisting of quadratic polynomials.

In order to prove Theorem 3.2.1, we introduce the following multigrad-
ing on the polynomial ring CŒxij �. Let m 2 CŒxij � be any monomial. For
each column index j 2 f1; 2; : : : ; dg we define degj .m/ to be the total de-
gree of m in the subset of variables fxij W 1 	 i 	 ng. The vector deg.m/ WD
.deg1.m/; deg2.m/; : : : ; degd .m// is called the multi-degree of m. Note that if
a polynomial f 2 CŒxij � is multi-homogeneous of multi-degree .ı1; ı2; : : : ; ıd /,
then f is homogeneous of total degree ı1 C ı2 C : : :C ıd .

Here are a few examples. The monomial x21x
2
31x22x52x13x43x53x33 2

CŒxij � has multi-degree .3; 2; 4/. The polynomial x21x
2
31x22x52x13x33x43x53 �

x11x21x51x
2
22x

3
43x53 is multi-homogeneous of degree .3; 2; 4/. The polynomial

in Example 3.1.2 is quadratic in each column of the 6 � 3-matrix, which means
that it is multi-homogeneous of degree .2; 2; 2/.

Observation 3.2.2. Let T WD Œ�1�Œ�2� � � � Œ�k� 2 CŒƒ.n; d/� be any tableau.
Then its expansion �n;d .T / in CŒxij � is multi-homogeneous of degree .k; k;
k; : : : ; k/.

A polynomial I 2 CŒxij � is said to be a relative invariant of the general
linear group GL.Cd / if there exists an integer p � 0 such that I BA D det.A/p �I
for all A 2 GL.Cd /. The integer p is called the index of I . Clearly, every relative
invariant of GL.Cd / is an (absolute) invariant of SL.Cd /. But also the converse
is essentially true.

Lemma 3.2.3. Let I 2 CŒxij � be a homogeneous invariant of SL.Cd /. Then
there exists an integer p � 0 such that

(i) I has multi-degree .p; p; : : : ; p/, and
(ii) I is a relative invariant of GL.Cd / of index p.

Proof. We fix two row indices j1; j2 2 f1; : : : ; dg. Let D.j1; j2/ denote the
d�d -diagonal matrix whose j1-th diagonal entry equals 2, whose j2-nd diagonal
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entry equals 1
2

, and all of whose other diagonal entries are equal to 1. Note that
D.j1; j2/ 2 SL.Cd /. This matrix transforms a monomial m into mBD.j1; j2/ D
m � 2degj1

.m/�degj2
.m/.

Since I was assumed to be an invariant, we have I D I B D.j1; j2/. This
implies that each monomial m which occurs in the expansion of I must satisfy
degj1

.m/ D degj2
.m/. Since the indices j1 and j2 were chosen arbitrarily, the

claim (i) follows.
Now let A be an arbitrary matrix in GL.Cd /. We define the diagonal matrix

QA WD diag.det.A/; 1; 1; : : : ; 1/, and we observe that A � QA�1 2 SL.Cd /. Now
part (i) implies

I B A D I B .A � QA�1 � QA/ D .I B .A � QA�1// B QA D I B QA D det.A/p � I:

This completes the proof of (ii). G

We now extend the n � d -matrix X to a generic .n C 2d/ � d -matrix as
follows:

 
A
X
B

!
WD

0BBBBBBBBBBBBBBBBB@

a11 : : : a1d

:::
: : :

:::

ad1 : : : add

x11 : : : x1d

x21 : : : x2d

:::
: : :

:::

xn1 : : : xnd

b11 : : : b1d

:::
: : :

:::

bd1 : : : bdd

1CCCCCCCCCCCCCCCCCA

:

The polynomial ring CŒaij ; xij ; bij � in the .nC2d/d matrix entries is a superring
of CŒxij �. Our strategy is the following: We will prove the first fundamental
theorem (Theorem 3.2.1) for the matrix X by applying the straightening law

(Theorem 3.1.7) to the larger matrix
�

A
X
B

	
. The rows of this matrix are indexed

by the ordered set fa1 < : : : < ad < x1 < x2 < : : : < xn < b1 < : : : < bd g.
The corresponding bracket ring CŒƒ.nC 2d; d/� is generated by brackets of the
form Œai1 : : : aisxj1

: : : xjt
bk1

: : : bkd�s�t
�. The crucial idea is to study the effect

of two suitable C-algebra homomorphisms CŒxij � ! CŒƒ.n C 2d; d/� on the
subring of invariants. These homomorphisms are defined by

xij 7! Œa1 : : : aj �1 xi aj C1 : : : ad � and xij 7! Œb1 : : : bj �1 xi bj C1 : : : bd �:
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Example 3.2.4. Let n D d D 4 and consider the expansion of the determinant

det

0B@x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

1CA :
This is a polynomial in CŒxij � of multi-degree .1; 1; 1; 1/, which is a rela-
tive GL.C4/-invariant of index 1. If we replace the variable xij by the bracket
Œb1 : : : bj �1 xi bj C1 : : : b4�, then we obtain

Œx1b2b3b4�Œb1x2b3b4�Œb1b2x3b4�Œb1b2b3x4�

� Œx1b2b3b4�Œb1x2b3b4�Œb1b2x4b4�Œb1b2b3x3�

� Œx1b2b3b4�Œb1x3b3b4�Œb1b2x2b4�Œb1b2b3x4�

C Œx1b2b3b4�Œb1x3b3b4�Œb1b2x4b4�Œb1b2b3x2�

C Œx1b2b3b4�Œb1x4b3b4�Œb1b2x2b4�Œb1b2b3x3�

� Œx1b2b3b4�Œb1x4b3b4�Œb1b2x3b4�Œb1b2b3x2�

� Œx2b2b3b4�Œb1x1b3b4�Œb1b2x3b4�Œb1b2b3x4�

C Œx2b2b3b4�Œb1x1b3b4�Œb1b2x4b4�Œb1b2b3x3�

C Œx2b2b3b4�Œb1x3b3b4�Œb1b2x1b4�Œb1b2b3x4�

� Œx2b2b3b4�Œb1x3b3b4�Œb1b2x4b4�Œb1b2b3x1�

� Œx2b2b3b4�Œb1x4b3b4�Œb1b2x1b4�Œb1b2b3x3�

C Œx2b2b3b4�Œb1x4b3b4�Œb1b2x3b4�Œb1b2b3x1�

C Œx3b2b3b4�Œb1x1b3b4�Œb1b2x2b4�Œb1b2b3x4�

� Œx3b2b3b4�Œb1x1b3b4�Œb1b2x4b4�Œb1b2b3x2�

� Œx3b2b3b4�Œb1x2b3b4�Œb1b2x1b4�Œb1b2b3x4�

C Œx3b2b3b4�Œb1x2b3b4�Œb1b2x4b4�Œb1b2b3x1�

C Œx3b2b3b4�Œb1x4b3b4�Œb1b2x1b4�Œb1b2b3x2�

� Œx3b2b3b4�Œb1x4b3b4�Œb1b2x2b4�Œb1b2b3x1�

� Œx4b2b3b4�Œb1x1b3b4�Œb1b2x2b4�Œb1b2b3x3�

C Œx4b2b3b4�Œb1x1b3b4�Œb1b2x3b4�Œb1b2b3x2�

C Œx4b2b3b4�Œb1x2b3b4�Œb1b2x1b4�Œb1b2b3x3�

� Œx4b2b3b4�Œb1x2b3b4�Œb1b2x3b4�Œb1b2b3x1�

� Œx4b2b3b4�Œb1x3b3b4�Œb1b2x1b4�Œb1b2b3x2�

C Œx4b2b3b4�Œb1x3b3b4�Œb1b2x2b4�Œb1b2b3x1�:

The eight appearing index letters are sorted x1 � x2 � x3 � x4 � b1 � b2 �
b3 � b4. The normal form of this large polynomial modulo the Gröbner basis
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for I8;4 given in Theorem 3.1.7 equals the single standard tableau:

Œx1x2x3x4�Œb1b2b3b4�Œb1b2b3b4�Œb1b2b3b4�:

This example can be generalized as follows.

Lemma 3.2.5. Let I D I.xij / 2 CŒxij � be any relative GL.Cd /-invariant of
index p. Then the bracket polynomial

Œb1b2 : : : bd �
p.d�1/ � I �Œa1 : : : aj �1 xi aj C1 : : : ad �

�
� Œa1a2 : : : ad �

p.d�1/ � I �Œb1 : : : bj �1 xi bj C1 : : : bd �
�

is contained in the syzygy ideal InC2d;d � CŒƒ.nC 2d; d/�.

Proof. We need to show that the image of the above bracket polynomial under
the generic specialization �nC2d;n is zero. For simplicity of notation, we abbre-
viate the determinant �nC2d;n

�
Œ��
�

by the corresponding bracket Œ��.
Let Adj.A/ denote the adjoint matrix of A. Its entry Adj.A/jk is the correctly

signed .d � 1/� .d � 1/-minor of A which is obtained by deleting the j -th row
and the k-th column of A. By Laplace expansion we obtain

Œa1 : : : aj �1 xi aj C1 : : : ad � D
dP

kD1

xik Adj.A/jk;

and therefore

Œa1a2 : : : ad �
p.d�1/ � I.xij / D det.A/p.d�1/ � I.xij /

D det.Adj.A//p � I.xij /

D �
I B Adj.A/

�
.xij /

D I
� dP

kD1

xik Adj.A/jk

�
D I

�
Œa1 : : : aj �1 xi aj C1 : : : ad �

�
:

The same argument holds for the matrix B . This implies the desired identity in
BnC2d;d :

Œb1b2 : : : bd �
p.d�1/Œa1a2 : : : ad �

p.d�1/ � I.xij /

D Œb1b2 : : : bd �
p.d�1/I � �Œa1 : : : aj �1 xi aj C1 : : : ad �

�
D Œa1a2 : : : ad �

p.d�1/I � �Œb1 : : : bj �1 xi bj C1 : : : bd �
�
: G

We are now prepared to prove the First Fundamental Theorem, which states
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that every invariant I 2 CŒxij �
SL.Cd / can be written as a polynomial in the

brackets Œxi1xi2 : : : xid �.

Proof of Theorem 3.2.1. By Lemma 3.2.3, we may assume that the given in-
variant I is a relative GL.Cd /-invariant of index p. We apply the straightening
algorithm to the polynomial

Œb1b2 : : : bd �
p.d�1/ � I �Œa1 : : : aj �1 xi aj C1 : : : ad �

� 2 CŒƒ.nC 2d; d/�;

that is, we compute its normal form modulo the Gröbner basis given in The-
orem 3.1.7. Since all row indices b1; : : : ; bd are larger than the row indices
a1; : : : ; ad ; x1; x2; : : : ; xn, the result is a linear combination of standard tableaux
of the form P

j

Tj .a1; : : : ; ad ; x1; x2; : : : ; xn/ � Œb1 : : : bd �
p.d�1/;

where the Tj are certain standard tableaux in the row indices a1; : : : ; ad ; x1; x2;
: : : ; xn. Similarly, the polynomial

Œa1a2 : : : ad �
p.d�1/ � I �Œb1 : : : bj �1 xi bj C1 : : : bd �

�
is straightened to a polynomialP

k

Œa1 : : : ad �
p.d�1/ � T 0

k.x1; x2; : : : ; xn; b1; : : : ; bd /;

where the T 0
k

are standard tableaux in the indices x1; x2; : : : ; xn; b1; : : : ; bd .
By Lemma 3.2.5 and the straightening law (Corollary 3.1.9), these two stan-

dard tableaux expansions must be equal in CŒƒ.n C 2d; d/�. But this is only
possible if both sums are of the formP

l

Œa1 : : : ad �
p.d�1/ � T 00

l .x1; x2; : : : ; xn/ � Œb1 : : : bd �
p.d�1/;

where the T 00
l

are certain standard tableaux only in the “old” indices x1; x2; : : : ;
xn. On the other hand, by the proof of Lemma 3.2.5, both polynomials in ques-
tion are equal to

Œa1 : : : ad �
p.d�1/Œb1 : : : bd �

p.d�1/ � I.xij /:

This implies the desired expansion

I.xij / D P
l

T 00
l .x1; x2; : : : ; xn/;

and the proof of Theorem 3.2.1 is complete. G
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Our proof of the First Fundamental Theorem implies the following algo-
rithm for rewriting a given SL.Cd /-invariant polynomial I 2 CŒxij � in terms of
brackets. We replace each variable xij in I.xij / by the corresponding bracket
Œa1 : : : aj �1 xi aj C1 : : : ad �, and then we apply the straightening algorithm for
the enlarged bracket ring CŒƒ.n C d; d/� with respect to the order a1 < : : : <
ad < x1 < x2 < : : : < xn on the row indices. If I is a relative invariant
of index p, then Œa1a2 : : : ad �

p.d�1/ appears as a factor in the resulting standard
representation. Dividing this factor out, we obtain the unique expansion of I.xij /
in terms of standard tableaux in the row indices xi .

This algorithm for the First Fundamental Theorem turns out to be rather
slow for practical computations. In the remainder of this section we will discuss
an alternative procedure which usually performs much better.

Let “�” denote the lexicographic monomial order on CŒxij � induced from
the variable order x11 � x12 � : : : � x1d � x21 � x22 � : : : � x2d �
: : : � xn1 � xn2 � : : : � xnd . This was called the diagonal order in Sect. 3.1.
A monomial m in CŒxij � is said to be diagonal if its degree is divisible by d
and it can be written in the form

m D
kQ

iD1

�
x�i

1
1 x�i

2
2 � � � x�i

d
d

�
; .�/

where �i
1 < �i

2 < : : : < �i
d

for all i D 1; 2; : : : ; k. It is easy to see that the
initial monomial of any (expanded) tableau is a diagonal monomial.

Lemma 3.2.6. Let T denote the tableau Œ�1�Œ�2� : : : Œ�k� 2 CŒƒ.n; d/�. Then
the initial monomial of its expansion �n;d .T / 2 CŒxij � with respect to “�”
equals the diagonal monomial m in .�/.

Conversely, every diagonal monomial is the initial monomial of some tab-
leau. This tableau is unique if we require it to be standard.

Lemma 3.2.7. Let m be the diagonal monomial in .�/. Then there is a unique
standard tableau Tm such that init�

�
�n;d .Tm/

� D m.

Lemmas 3.2.6 and 3.2.7 are a reformulation of Lemma 3.1.8. The standard
tableau Tm promised by Lemma 3.2.7 is constructed from the diagonal mono-
mial m as follows. Consider the tableau

T WD

266664
�1

1 �1
2 : : : �1

d

�2
1 �2

2 : : : �2
d

:::
:::

: : :
:::

�k
1 �k

2 : : : �k
d

377775 ;
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and let Tm denote the unique standard tableau which is obtained from T by
sorting all d columns.

Lemmas 3.2.6 and 3.2.7 imply the correctness of the following easy algo-
rithm for the First Fundamental Theorem.

Algorithm 3.2.8.
Input: A polynomial I 2 CŒxij � which is an invariant of SL.Cd /.
Output: A bracket polynomial P 2 CŒƒ.n; d/� whose expansion equals I.xij /.

1. If I D 0, then output the bracket representation P D 0.
2. Let m WD init�.I /.
3. If m is not diagonal, then STOP and output “I is not an invariant”.
4. Otherwise, let c be the coefficient of init�.I / in I , output the summand

c � Tm, replace I by I � c � �n;d .Tm/, and return to step 1.

Both Algorithm 3.2.8 and the procedure used in our proof of Theorem 1.1.1
are instances of a general method for computing in subrings of polynomial
rings. This is the method of SAGBI bases due to Robbiano and Sweedler (1990)
and Kapur and Madlener (1989), which is the natural Subalgebra Analogue
to Gröbner Bases for Ideals. Let R be any subalgebra of the polynomial ring
CŒx1; : : : ; xn�, and let “�” be any monomial order. We define the initial algebra
init�.R/ to be the C-algebra generated by init�.f /, where f ranges over R.
A finite subset ff1; : : : ; fmg of R is called a SAGBI basis if the initial algebra
init�.R/ is generated by the initial monomials init�.f1/; : : : ; init�.fm/.

The main difference to the theory of Gröbner bases lies in the fact that
init�.R/ need not be finitely generated even if R is finitely generated (Robbiano
and Sweedler 1990: example 4.11). In such a case the subring R does not have
a finite SAGBI basis with respect to “�”.

On the other hand, in many nice situations a finite SAGBI basis ff1; : : : ; fmg
exists, in which case we can use the following easy subduction algorithm to test
whether a given polynomial f 2 CŒx1; : : : ; xn� lies in the subring R:

While f 6D 0 and init�.f / 2 init�.R/, find a representation init�.f / D
init�.f1/

�1 � � � init�.fm/
�m and replace f by f � f �1

1 � � �f �m
m .

Our proof of Theorem 1.1.1 implies that the elementary symmetric polynomi-
als form a SAGBI basis for the ring of symmetric polynomials CŒx1; : : : ; xn�

Sn .
Similarly, Lemmas 3.2.6 and 3.2.7 imply the same result for the maximal minors
and the bracket ring Bn;d . Note that in this case the general subduction algorithm
specializes to Algorithm 3.2.8.

Theorem 3.2.9. The set of d�d -minors of the n�d -matrix .xij / is a SAGBI ba-

sis for the bracket ring Bn;d D CŒxij �
SL.Cd / with respect to the diagonal mono-

mial order on CŒxij �.

We close this section with an example from projective geometry.
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Example 3.2.10 (Projections of the quadrilateral set). Let C be an arbitrary con-
figuration of six points on the projective line P 1. We write the homogeneous
coordinates of the points in C as the columns of a generic matrix

X D


a1 b1 c1 d1 e1 f1

a2 b2 c2 d2 e2 f2

�
:

Consider the following polynomial function

I D � a1b1c1d2e2f2 � a1b1c2d1e2f2 C a1b1c2d2e1f2 C a1b1c2d2e2f1

C a1b2c1d1e2f2 � a1b2c2d2e1f1 C a2b1c1d1e2f2 � a2b1c2d2e1f1

� a2b2c1d1e1f2 � a2b2c1d1e2f1 C a2b2c1d2e1f1 C a2b2c2d1e1f1:

Is this polynomial invariant under the action of SL.C2/? If so, which geometric
property of the configuration C is expressed by the vanishing of I ? The answer
to the first question is affirmative, and we can compute a bracket representation
using either of the two given algorithms for the First Fundamental Theorem.
For the second question see Exercise (1) below and Fig. 3.1.

In the straightening approach we replace X by the extended matrix

X0 D


a1 b1 c1 d1 e1 f1 0 �1
a2 b2 c2 d2 e2 f2 1 0

�
whose last two columns are labeled 1 and 2. We express each matrix entry of X
as a maximal minor of X0 via a1 D Œa1�; b1 D Œb1�; : : : ; f2 D Œf 2�. This trans-
forms the invariant I into the bracket polynomial

� Œa1�Œb1�Œc1�Œd2�Œe2�Œf 2� � Œa1�Œb1�Œc2�Œd1�Œe2�Œf 2�

C Œa1�Œb1�Œc2�Œd2�Œe1�Œf 2�C Œa1�Œb1�Œc2�Œd2�Œe2�Œf 1�

C Œa1�Œb2�Œc1�Œd1�Œe2�Œf 2� � Œa1�Œb2�Œc2�Œd2�Œe1�Œf 1�

C Œa2�Œb1�Œc1�Œd1�Œe2�Œf 2� � Œa2�Œb1�Œc2�Œd2�Œe1�Œf 1�

� Œa2�Œb2�Œc1�Œd1�Œe1�Œf 2� � Œa2�Œb2�Œc1�Œd1�Œe2�Œf 1�

C Œa2�Œb2�Œc1�Œd2�Œe1�Œf 1�C Œa2�Œb2�Œc2�Œd1�Œe1�Œf 1�:

We apply the straightening algorithm for CŒƒ.8; 2/� with respect to the order of
column indices a < b < c < d < e < f < 1 < 2. In the specific strategy used
in the author’s implementation of the straightening algorithm this computation
requires 58 steps. The output is the following linear combination of standard
tableaux:

� Œab�Œcd �Œef �Œ12�Œ12�Œ12�C Œab�Œce�Œdf �Œ12�Œ12�Œ12�

C Œac�Œbd �Œef �Œ12�Œ12�Œ12� � Œac�Œbe�Œdf �Œ12�Œ12�Œ12�

� Œad �Œbe�Œcf �Œ12�Œ12�Œ12�:
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Hence the invariant I has the bracket representation

I D �Œab�Œcd �Œef �C Œab�Œce�Œdf �C Œac�Œbd �Œef �� Œac�Œbe�Œdf �� Œad �Œbe�Œcf �:

For the same input polynomial I Algorithm 3.2.8 works as follows. The ini-
tial monomial of I with respect to the diagonal monomial order equals m D
�a1b1c1d2e2f2. The corresponding standard tableau Tm equals �Œad �Œbe�Œcf �,
and so we replace I by I ��6;2.Tm/. Now the initial monomial equals �a1b1 �
c2d1e2f2, so we subtract (the expansion of) �Œac�Œbe�Œdf �. The new initial
monomial equals a1b1c2d2e1f2, so we subtract Œac�Œbd �Œef �. The new initial mo-
nomial equals a1b2c1d1e2f2, so we subtract Œab�Œce�Œdf �. The new initial mono-
mial equals �a1b2c1d2e1f2, so we subtract �Œab�Œcd �Œef �. The result is zero
and we are done. The number of steps needed in Algorithm 3.2.8 – here: five –
is always equal to the size of the output.

Note that the bracket representation found by both methods is in general not
minimal. In our example the minimal bracket representation of I has only two
tableaux:

I D �Œad �Œcf �Œbe� � Œaf �Œbc�Œde�:
For general SL.Cd /-invariants, it remains an interesting research problem to find
a good algorithm for computing a bracket representation having the minimal
number of tableaux.

Exercises

(1) A configuration of six points a D .a1 W a2 W a3/; : : : ; f D .f1 W f2 W f3/ in
the projective plane P 2 is called a quadrilateral set if the triples ace, adf ,
bcf and bde are collinear (Fig. 3.1). The one-dimensional configuration
.a1 W a2/; : : : ; .f1 W f2/ in Example 3.2.10 is the projection of a
quadrilateral set if and only if there exist complex numbers
a3; b3; c3; d3; e3; f3 such that .a1 W a2 W a3/; : : : ; .f1 W f2 W f3/ is a
quadrilateral set. Prove that this geometric property is equivalent to the
vanishing of the invariant I .

Fig. 3.1. The projection of a quadrilateral set



94 Bracket algebra and projective geometry

(2) Let n D 4, d D 2, and consider the polynomial

P.xij / D

ˇ̌̌̌
ˇ̌̌̌
ˇ
x3

11
x2

11
x12 x11x

2
12

x3
12

x3
21

x2
21
x22 x21x

2
22

x3
22

x3
31

x2
31
x32 x31x

2
32

x3
32

x3
41

x2
41
x42 x41x

2
42

x3
42

ˇ̌̌̌
ˇ̌̌̌
ˇ 2 CŒxij �:

Prove that P is an invariant of SL.C2/ and find a bracket representation.
Interpreting the xij as homogeneous coordinates of four points on the
projective line, what is the geometric meaning of the invariant P ?

(3) Let n D 4, d D 4, and consider the rational function

Q.xij / D

ˇ̌̌̌
ˇ̌x11 x12 x13

x21 x22 x23

x31 x32 x33

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌x11 x12 x14

x21 x22 x24

x41 x42 x44

ˇ̌̌̌
ˇ̌ �

ˇ̌̌̌
ˇ̌x11 x12 x14

x21 x22 x24

x31 x32 x34

ˇ̌̌̌
ˇ̌
ˇ̌̌̌
ˇ̌x11 x12 x13

x21 x22 x23

x41 x42 x43

ˇ̌̌̌
ˇ̌ˇ̌̌̌

x11 x12

x21 x22

ˇ̌̌̌ :

Show that Q is actually a polynomial in CŒxij �
SL.C4/, and find its bracket

representation. (The resulting formula is called the Bareiss expansion.)
(4) * Compare the computational complexity of the subduction algorithm

3.2.8 with the straightening algorithm used in the proof of Theorem 3.2.1.
Hint: Compare the number of standard tableaux with the number of
nonstandard tableaux.

3.3. The Grassmann–Cayley algebra

The Grassmann–Cayley algebra is an invariant algebraic formalism for express-
ing statements in synthetic projective geometry. The modern version to be pre-
sented here was developed in the 1970s by G.-C. Rota and his collaborators
(Doubilet et al. 1974, Rota and Stein 1976). The main result in this section is
an algorithm for expanding Grassmann–Cayley algebra expressions into bracket
polynomials. As an illustration of these techniques, we give an “automated in-
variant-theoretic proof” of Desargues’ theorem.

Let V be a C-vector space of dimension d , and let ƒ.V / denote the exterior
algebra over V . We refer to Greub (1967) for a detailed introduction to the
exterior algebra. For geometric reasons we write the exterior product in ƒ.V /
as “_” instead of the usual “^”, and refer to it as the join operation. The join
(= exterior product) is multilinear, associative, and antisymmetric. The exterior
algebra ƒ.V / is a graded C-vector space of dimension 2d , namely,

ƒ.V / D
dL

kD0

ƒk.V /; where dimƒk.V / D


d

k

�
: .3:3:1/
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Let fe1; : : : ; ed g be any basis of V . Then a basis for ƒk.V / is given by

fej1
_ ej2

_ : : : _ ejk
j 1 	 j1 < j2 < : : : < jk 	 d g: .3:3:2/

Consider any k vectors a1; : : : ; ak 2 V and their expansions ai D Pd
j D1 aij ej

in terms of the given basis. By multilinearity and antisymmetry, the expansion
of their join equals

a1 _ a2 _ : : : _ ak

D P
1�j1<:::<jk�d

ˇ̌̌̌
ˇ̌̌̌
ˇ
a1j1

a1j2
: : : a1jk

a2j1
a2j2

: : : a2jk

:::
:::

: : :
:::

akj1
akj2

: : : akjk

ˇ̌̌̌
ˇ̌̌̌
ˇ ej1

_ ej2
_ : : : _ ejk

:
.3:3:3/

An element A 2 ƒk.V / is said to be an extensor (of step k) if it has the form
A D a1 _a2 _ : : :_ak for some a1; : : : ; ak 2 V . In the following we abbreviate
A D a1a2 : : : ak .

We remark that our choice of basis identifies the ring of polynomial functions
on ƒk.V / with the polynomial ring C

�
ƒ.d; k/

�
defined in Sect. 3.1. The map

V k ! ƒk.V /, .a1; a2; : : : ; ak/ 7! a1a2 : : : ak corresponds to the ring map �d;k .
Hence the set of extensors in ƒk.V / coincides with the affine algebraic variety
defined by the ideal Id;k D ker.�d;k/. Since the ideal Id;k is homogeneous, we
can also consider the projective variety defined by Id;k . This projective variety
is called the Grassmann variety.

The following argument shows that the points on the Grassmann variety are
in bijection with the k-dimensional linear subspaces of V . Let A D a1a2 : : : ak

be a nonzero extensor of step k. Then a1; a2; : : : ; ak is the basis of a k-dimen-
sional linear subspace SA of V . The subspace SA is determined by the extensor A
because SA D fv 2 V W A _ v D 0g. On the other hand, the extensor A is de-
termined (up to scalar multiple) by SA, because the expansion (3.3.3) is invariant
(up to scalar multiple) under a change of basis in SA.

Let B D b1b2 � � � bj be another nonzero extensor of step j . Then the join

A _ B D a1 _ a2 _ : : : _ ak _ b1 _ : : : _ bj D a1a2 � � � akb1 � � � bj .3:3:4/

is an extensor of step j C k. The following lemma explains why we use the
term “join” for the exterior product in ƒ.V /. Its proof is straightforward from
the definitions.

Lemma 3.3.1. The extensor A _ B is nonzero if and only if a1; a2; : : : ; ak; b1;
b2; : : : ; bj are distinct and linearly independent. In this case we have

SAC SB D A _ B D spanfa1; a2; : : : ; ak; b1; b2; : : : ; bj g: .3:3:5/
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Lemma 3.3.1 states that the algebraic join of extensors corresponds to the
geometric join of linear subpaces. This raises the question of how to define
an algebraic operation which corresponds similarly to the geometric meet or
intersection of linear subspaces.

We first identify the 1-dimensional vector space ƒd .V / with the ground
field C via e1e2 : : : ed 7! 1. Hence an extensor of step d can simply be ex-
pressed as the determinant of its d constituent vectors. We denote this determi-
nant using the familiar bracket notation, say, Œa1; a2; : : : ; ad � WD a1a2 : : : ad . Let
A D a1a2 � � � aj and B D b1b2 � � � bk be extensors with j C k � d . Then their
meet is the element of ƒj Ck�d .V / defined by

A ^ B WDP
�

sign.�/
�
a�.1/; : : : ; a�.d�k/; b1; : : : ; bk

� � a�.d�kC1/ � � � a�.j /:
.3:3:6/

The sum is taken over all permutations � of f1; 2; : : : ; j g such that �.1/ <
�.2/ < : : : < �.d � k/ and �.d � k C 1/ < �.d � k C 2/ < : : : < �.j /.
Such permutations are called shuffles of the .d � k; j � .d � k// split of A.
We have given the definition for both join and meet only for pairs of extensors.
These definitions are extended to arbitrary elements of ƒ.V / by distributivity.
The Grassmann–Cayley algebra is the vector space ƒ.V / together with the op-
erations _ and ^.

A useful notation for signed sums over shuffles such as (3.3.6) is the dotted
notation, which we will frequently employ. We simply place dots over the shuf-
fled vectors, with the summation and sign.�/ implicit. Similarly, shuffles may
be defined over splits into any number of parts. Here the brackets are always
delimiters which define the parts of the split. If we wish to sum over several
shuffles of disjoint sets, we will use separate symbols over each shuffled set.
Thus (3.3.6) is equivalent to

A ^ B D Œ
�
a1; : : : ;

�
ad�k; b1; : : : ; bk�

�
ad�kC1 � � � �

aj : .3:3:7/

If j C k D d , then we have A ^ B D Œa1; : : : ; aj ; b1; : : : ; bk�: This is a scalar
of step 0, and it needs to be distinguished from A _ B , a scalar with the same
numerical value but of step d . Thus ƒ0.V / is a second copy of the ground
field C in ƒ.V /. We will now prove that the meet operation corresponds to our
geometric intuition in the case when A and B themselves are nondegenerate and
the dimension of SA \ SB is as small as possible.

Theorem 3.3.2.
(a) The meet is associative and anticommutative in the following sense:

A ^ B D .�1/.d�k/.d�j / � B ^ A:

(b) The meet of two extensors is again an extensor.



3.3. The Grassmann–Cayley algebra 97

(c) We have A^B 6D 0 if and only if SAC SB D V . In that case A ^ B D SA\ SB ,
i.e., the meet corresponds to the intersection of linear subspaces.

Proof. Consider the following quadratic bracket polynomial in CŒƒ.2d; d/�:

Œ
�
a1; : : : ;

�
ad�k; b1; : : : ; bk�Œ

�
ad�kC1; : : : ;

�
aj ; c1; : : : ; c2d�j �k�

� .�1/.d�k/.d�j /Œ
B
b1; : : : ;

B
bd�j ; a1; : : : ; aj �Œ

B
bd�kC1; : : : ;

B
bj ; c1; : : : ; c2d�j �k�:

(3.3.8)

Using induction on k C j , it can be shown that this bracket polynomial lies
in the syzygy ideal I2d;d . The syzygy (3.3.8) is equivalent to .A ^ B/ _ C D
.�1/.d�k/.d�j /.B ^A/_C for all extensors C of step 2d � j �k. This implies
the statement (a).

It follows from the defining equation (3.3.6) that the meet A ^ B remains
invariant (up to a scalar multiple) if we replace b1; : : : ; bk by any other basis
of SB . By the anticommutativity of the meet operation, the same holds when
a1; : : : ; aj is replaced by any other basis of SA.

In view of our assumption SAC SB D V , we can choose a basis v1; v2; : : : ; vd

of V such that v1; : : : ; vj Ck�d is a basis of SA \ SB , v1; : : : ; vj is a basis of SA,
and vj C1; : : : ; vd ; v1; : : : ; vj Ck�d is a basis for SB . There exist nonzero constants
c1 and c2 such that A D c1 � v1v2 : : : vj and B D c2 � vj C1 : : : vd v1 : : : vj Ck�d .
Substituting these representations into the defining equation (3.3.6), we find that

A ^ B D ˙c1c2

�
v1; v2; : : : ; vd

� � v1v2 : : : vj Ck�d : .3:3:9/

This proves the statements (b) and (c) of Theorem 3.3.2. G

We now illustrate the translation of geometric incidences into the Grass-
mann–Cayley algebra. Each nonzero vector in V represents a point in the
.d � 1/-dimensional projective space P d�1. This provides an identification of
k-dimensional linear subspaces SA of V with .k�1/-dimensional projective sub-
spaces of P d�1. Such subspaces are represented uniquely (up to scalar multiple)
by the extensors of step k.

Example 3.3.3. Let a; b; c; d; e; f be any six points in the projective plane P 2

such that the lines ad , be and cf are distinct (cf. Fig. 3.2). Under which alge-
braic condition are these three lines concurrent, i.e., have a point in common?

To answer this question we apply Theorem 3.3.2 (c). In the Grassmann–
Cayley algebra the intersection point of the lines ad and be is represented as
.a _ d/ ^ .b _ e/, an extensor of step 1. This point lies on the line cf if and
only if ..a _ d/ ^ .b _ e// ^ .c _ f / D 0. Using the defining equation of the
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Fig. 3.2. The incidence relation
expressed by (3.3.10)

meet (3.3.6), we obtain the bracket expansion�
.a _ d/ ^ .b _ e/� ^ .c _ f /

D �
Œabe�d � Œdbe�a� ^ cf D Œabe�Œdcf � � Œdbe�Œacf �: .3:3:10/

Naturally, this quadratic bracket polynomial can be further expanded into a
polynomial in the coordinates of the six points a D .a1 W a2 W a3/; : : : ; f D
.f1 W f2 W f3/. The resulting polynomial in the coordinates is homogeneous of
degree 6 and has 48 monomials. It is listed completely in Example 3.1.2.

In similar fashion, any incidence relation or incidence theorem in projective
geometry may be translated into a conjunction of simple Grassmann–Cayley
algebra statements. Here simple means that the expression involves only join
and meet, not addition. For instance, .a _ b/ ^ .c _ d/ ^ .e _ f / is a simple
Grassmann–Cayley algebra expression. Conversely, every simple Grassmann–
Cayley algebra statement may be translated back to projective geometry just as
easily.

Now, generalizing the derivation in (3.3.10), every simple Grassmann–Cay-
ley algebra expression of step 0 may be expanded into a bracket polynomial
using only the definitions and basic properties of join and meet.

Algorithm 3.3.4 (Expanding Grassmann–Cayley algebra expressions into brack-
ets).
Input: A Grassmann–Cayley algebra expression C.a; b; : : :/ of step 0.
Output: A bracket polynomial equivalent to C.a; b; : : :/.

1. Replace each occurrence of a subexpression .a1 : : : aj /^ .b1 : : : bk/ in C by

Œ
�
a1; : : : ;

�
ad�k; b1; : : : ; bk�

�
ad�kC1 � � � �

aj .
2. Erase unnecessary parentheses using the associativity of meet and join.

Using distributivity, write C.a; b; : : :/ as a linear combination of simple
Grassmann–Cayley algebra expressions.

3. Extract bracket factors from each expression. For any remaining Grassmann–
Cayley algebra factor C 0.a; b; : : :/ return to step 1.

When applying Algorithm 3.3.4, we will usually ignore global signs in the
intermediate computations and in the output. This is justified by multilinearity
and Theorem 3.3.2 (a).
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Most Grassmann–Cayley algebra statements resulting from geometric inci-
dence relations have step 0 or d , in which case Algorithm 3.3.4 can be applied
directly. If a Grassmann–Cayley algebra statement C.a; b; : : :/ has step k with
0 < k < d , then C.a; b; : : :/ D 0 is equivalent to the following universally
quantified statement of step d :

8 x1; : : : ; xd�k 2 V W C.a; b; : : :/ _ x1 _ : : : _ xd�k D 0: .3:3:11/

In fact, here it suffices to take x1; : : : ; xd�k from a basis of V , so (3.3.11) is
equivalent to a finite conjunction of bracket statements.

In summary, Algorithm 3.3.4 gives an easy method for expanding simple
Grassmann–Cayley algebra expressions into bracket polynomials. However, the
converse problem, that of rewriting a bracket polynomial as a simple Grassmann–
Cayley algebra expression, whenever possible, is not easy at all. This is the prob-
lem of Cayley factorization, which we will discuss in Sect. 3.5.

An often useful postprocessing to Algorithm 3.3.4 is the straightening al-
gorithm (cf. Sect. 3.1). It rewrites the output bracket polynomial into a unique
normal form, namely, as a linear combination of standard tableaux. In partic-
ular, we thus obtain an algorithm for testing whether two Grassmann–Cayley
algebra expressions are equal. We illustrate these invariant-theoretic techniques
by proving a classical incidence theorem of projective geometry.

Example 3.3.5 (Desargues’ theorem). The corresponding sides of two triangles
meet in collinear points if and only if the lines spanned by corresponding vertices
are concurrent.

The vertices of the two triangles are labeled a; b; c and d; e; f as in Fig. 3.3.
The corresponding sides of the triangles meet in collinear points if and only if
the following Grassmann–Cayley algebra expression vanishes. We compute its
bracket expansion using Algorithm 3.3.4.

Fig. 3.3. Desargues’ theorem
in the plane
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ab ^ de� _ �bc ^ ef � _ �ac ^ df �

D �
Œade�b � Œbde�a

� _ �Œbef �c � Œcef �b
� _ �Œadf �c � Œcdf �a

�
D � Œade�Œbef �Œcdf �Œbca�C Œbde�Œcef �Œadf �Œabc�:

Applying the straightening algorithm, we get the following standard bracket
polynomial:

� Œabc�Œabc�Œdef �Œdef � � Œabc�Œabe�Œcdf �Œdef �

� Œabc�Œacd �Œbef �Œdef �C Œabc�Œace�Œbdf �Œdef �:

This expression can be rewritten as

Œabc�Œdef � � ��Œabc�Œdef � � Œabe�Œcdf � � Œacd �Œbef �C Œace�Œbdf �
�

D Œabc�Œdef � � �Œabe�Œdcf � � Œdbe�Œacf �� D Œabc�Œdef � � �ad ^ be ^ cf �:
By Example 3.3.3, this expression vanishes if and only if a; b; c are collinear,
or d; e; f are collinear, or the lines ad; be and cf are concurrent. This proves
Desargues’ theorem. G

Exercises

(1) Prove that the quadratic bracket polynomial in (3.3.8) is a syzygy.
(2) Expand the following Grassmann–Cayley algebra expressions into bracket

polynomials of rank 3. In each case give a geometric interpretation:
– cd ^ ..fg ^ hk/ _ e/ ^ ab
– .ab ^ cd/ _ .ad ^ bc/ _ .ac ^ bd/
– .ab ^ cd/ _ .ad ^ bc/ _ .ac ^ de/

3.4. Applications to projective geometry

In this section we discuss six applications which illustrate the use of Grassmann–
Cayley algebra and bracket algebra as a computational tool in projective geom-
etry.

Example 3.4.1 (Coordinatization of abstract configurations). A main problem in
computational synthetic geometry (cf. Bokowski and Sturmfels 1989) is to find
coordinates or nonrealizability proofs for abstractly defined configurations; see
also Sturmfels (1991). The methods of bracket and Grassmann–Cayley algebra
are well suited for this problem. We illustrate this application with an example
which is drawn from Sturmfels and White (1990). In that article it is shown that
all 113- and all 123-configurations can be coordinatized over the field of rational
numbers.

Consider a configuration C of eleven points in the projective plane, labeled
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1; 2; : : : ; 9; 0 and A, such that precisely the following eleven triples are collinear:

124 235 346 457 568 679 780 89A 901 0A2 A13: .3:4:1/

This configuration is called 113 because it consists of 11 points and 11 lines,
with each point lying on 3 lines and each line containing 3 points.

In order to find coordinates for such a configuration we proceed as follows.
Let us suppose that x1; x3; x4; x5; x8; x9 are arbitrary points in P 2. The configu-
ration (3.4.1) translates into the following system of equations in the Grassmann–
Cayley algebra:

xA _ x1 _ x3 D 0; xA D .x8 _ x9/ ^ .x0 _ x2/;

x0 D .x7 _ x8/ ^ .x1 _ x9/; x7 D .x4 _ x5/ ^ .x6 _ x9/;

x6 D .x3 _ x4/ ^ .x5 _ x8/; x2 D .x1 _ x4/ ^ .x3 _ x5/:

(3.4.2)

We solve these equations by substituting x8x9 ^ x0x2 for xA in xA _ x1 _ x3,
then substituting x7x8 ^ x1x9 for x0 in the result, etc. Proceeding in this fash-
ion, we find that (3.4.2) is equivalent to the vanishing of the following simple
Grassmann–Cayley algebra expression:�

x8x9 ^
��
x4x5 ^ .x3x4 ^ x5x8/x9

�
x8 ^ x1x9

	
.x1x4 ^ x3x5/

	
_ x1 _ x3:

(3.4.3)

We now apply Algorithm 3.3.4 to (3.4.3). This means we successively replace
each subexpression xixj ^ xkxl by Œkij �xl � Œlij �xk , using distributivity af-
ter each replacement. As the result we obtain the following bracket polynomial
which is equivalent to (3.4.3):

� Œ834�Œ945�Œ958�Œ189�Œ314�Œ513� � Œ534�Œ845�Œ198�Œ314�Œ589�Œ913�

� Œ834�Œ945�Œ158�Œ314�Œ589�Œ913�C Œ534�Œ845�Œ198�Œ514�Œ389�Œ913�

C Œ834�Œ945�Œ158�Œ514�Œ389�Œ913� D 0 (3.4.4)

It remains to find six points in P 2 which satisfy the equation (3.4.4). We may
assume

x1 D .1 W 0 W 0/; x3 D .0 W 1 W 0/; x4 D .0 W 0 W 1/;
x5 D .1 W 1 W 1/; x8 D .1 W a W b/; x9 D .1 W c W d/ .3:4:5/

Under this choice of six vectors the bracket equation (3.4.4) specializes to

a3d2 � a3d3 C 2a2bcd2 � a2bcd � a2cd2 C a2d3 � a2d2 � ab2c2d

C abc2 � abcd2 C 2abcd � abc � abd2 C ad2 C b2c3 � 2b2c2

C b2cd C b2c � bc3 C bc2d C bc2 � 2bcd D 0:
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We choose the solution a D 3
5

, b D 57
17

, c D 2, d D 5 to this equation.
Substituting the points (3.4.5) into the Grassmann–Cayley expressions (3.4.2),
we obtain the following coordinates for the configuration (3.4.1):

.x1; x2; : : : ; x0; xA/ D

0B@1 1 0 0 1 0 17
185

1 1 1 1

0 0 1 0 1 � 17
100

17
185

3
5

2 18
37

�9
4

0 1 0 1 1 1 1 57
17

5 45
37

0

1CA :
Example 3.4.2 (Final polynomials). Here is another coordinatization problem
similar to Example 3.4.1. Consider a configuration C0 of eight distinct points in
projective 3-space P 3, labeled 1; 2; 3; 4; 5; 6; 7; 8, such that precisely the follow-
ing five quadruples are coplanar:

1256 1357 1458 2367 2468: .3:4:6/

Does such a configuration exist?
We claim that the answer is “no”, that is, C0 cannot be coordinatized over

C. Suppose that, on the contrary, there exist vectors x1; : : : ; x8 2 C4 such that,
for .i; j; k; l/ 2 ƒ.8; 4/, det.xi ; xj ; xk; xl/ is zero if and only if ijkl appears in
(3.4.6). Then we get a C-algebra homomorphism

� W B8;4 ! C; Œi j k l � 7! det.xi ; xj ; xk; xl/

having the property that �.Œijkl�/ D 0 if and only if ijkl appears in (3.4.6).
We consider the following bracket polynomial

f WD Œ1256�Œ1734�Œ1284�Œ7234�C Œ1357�Œ1264�Œ1284�Œ7234�

C Œ1458�Œ1264�Œ1237�Œ7234�C Œ2367�Œ1734�Œ1284�Œ1254�

C Œ2468�Œ1734�Œ1254�Œ1237�C Œ3478�Œ1264�Œ1254�Œ1237�

in CŒƒ.8; 4/�. Using the straightening algorithm introduced in Sect. 3.1, it can
be verified easily that f lies in the syzygy ideal I8;4, that is, f D 0 in B8;4.
On the other hand, the underlined brackets are mapped to zero by �, and hence
�.f / D �.Œ3478�Œ1264�Œ1254�Œ1237�/ 6D 0. This is a contradiction, and the proof
of our claim is complete.

The bracket polynomial f 2 CŒƒ.8; 4/� is said to be a final polynomial
for the configuration (3.4.6). In general, final polynomials provide a systematic
method of representing nonrealizability proofs for abstract configurations. This
method is originally due to Bokowski and Whiteley; it has been developed in
detail in Bokowski and Sturmfels (1989).

We remark that the configuration in (3.4.6) is known as the Vamos matroid
in matroid theory. Its nonrealizability is equivalent to the following well-known
incidence theorem in projective geometry. This incidence theorem is sometimes
called the bundle condition.
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Theorem. Given four lines `1; `2; `3; `4 in projective 3-space, no three in a
plane, such that five of the six pairs .`i ; j̀ / of lines intersect, then also the sixth
pair of lines intersects.

Proof. Suppose that `1; `2; `3; `4 are lines in P 3, no three in a plane, such that
`3 \ `4 D ;, but each of the pairs .`1; `2/, .`1; `3/, .`1; `4/, .`2; `3/, .`2; `4/
intersects. Choose sufficiently generic points x1; x5 2 `1, x2; x6 2 `2, x3; x7 2
`3, x4; x8 2 `4. Then precisely the quadruples in (3.4.6) are coplanar. This is
impossible by the final polynomial f . G

Example 3.4.3 (Pascal’s theorem). In this example we outline an algorithm for
both discovering and proving a certain class of geometry theorems in the plane.
Suppose we are given the following problem:

Under which “geometric” condition do six points a;b; c;d; e; f in the pro-
jective plane lie on a common quadric? Find such a condition and prove that it
is correct!!

Using homogeneous coordinates a D .a1 W a2 W a3/, b D .b1 W b2 W b3/, : : :,
f D .f1 W f2 W f3/, our problem can be rephrased as follows.

Find a synthetic interpretation or construction for the algebraic condition:

9 .	200; 	020; 	002; 	110; 	101; 	011/ 2 C6 n f0g W
	200a

2
1 C 	020a

2
2 C 	002a

2
3 C 	110a1a2 C 	101a1a3 C 	011a2a3 D 0

	200b
2
1 C 	020b

2
2 C 	002b

2
3 C 	110b1b2 C 	101b1b3 C 	011b2b3 D 0

: : : : : : : : : : : : : : :

	200f
2

1 C 	020f
2

2 C 	002f
2

3 C 	110f1f2 C 	101f1f3 C 	011f2f3 D 0

.3:4:7/

The existentially quantified variables in (3.4.7) are the coefficients 	200; : : : ; 	011

of the desired quadric
P

iCj CkD2 	ijk x
i
1x

j
2x

j
3 . It is our goal to compute an

equivalent simple Grassmann–Cayley expression which uses only the symbols
a;b; c;d; e; f ;^ and _. In the first step we eliminate the 	ijk’s from (3.4.7),
obtaining

det

0BBBBBBBB@

a2
1 a2

2 a2
3 a1a2 a1a3 a2a3

b2
1 b2

2 b2
3 b1b2 b1b3 b2b3

c2
1 c2

2 c2
3 c1c2 c1c3 c2c3

d2
1 d2

2 d2
3 d1d2 d1d3 d2d3

e2
1 e2

2 e2
3 e1e2 e1e3 e2e3

f 2
1 f 2

2 f 2
3 f1f2 f1f3 f2f3

1CCCCCCCCA
D 0: .3:4:8/

This elimination step involved only easiest linear algebra. In more general situ-
ations we would need Gröbner bases or resultants.

The degree 12 polynomial with 720 summands in (3.4.8) is invariant under
projective transformations and can therefore be rewritten as a bracket polynomial
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in B6;3. Using Algorithm 3.2.8, we find that (3.4.8) equals the following sum of
two standard tableaux:

�Œabc�Œade�Œbdf �Œcef �C Œabd�Œace�Œbcf �Œdef � D 0: .3:4:9/

Our last step is now to find a simple Grassmann–Cayley algebra expression
which is equivalent to (3.4.9). In general, translating bracket expressions into
Grassmann–Cayley expressions is a very difficult problem. As we already re-
marked in Sect. 3.3, this problem is called the Cayley factorization problem. It
will be discussed in Sect. 3.5. For our example Cayley factorization yields the
following expression:

.ab ^ de/ _ .bc ^ ef / _ .cd ^ fa/ D 0: .3:4:10/

It is easy to verify that (3.4.10) is equal to (3.4.9), using Algorithm 3.3.4 and
subsequently the straightening algorithm. The expression (3.4.10) is equivalent
to the synthetic statement,

“The intersection points ab \ de, bc \ ef and cd \ fa are collinear.” (3.4.11)

Thus we have “automatically” discovered Pascal’s theorem.

Pascal’s theorem (see Fig. 3.4). Six points a;b; c;d; e and f in the projective
plane lie on a common quadric if and only if the intersection points ab \ de,
bc \ ef and cd \ fa are collinear.

A special case of Pascal’s theorem is Pappus’ theorem. It is concerned with
the case of degenerate quadrics, consisting of two lines. It states that if a; e; c

and d;b; f are collinear, then ab \ de, bc \ ef and cd \ fa are collinear.
We obtain a proof of Pappus’ theorem directly from the equality of (3.4.9) and
(3.4.10). For, if a; e; c and d;b; f are collinear, then the two underlined brackets
in (3.4.9) are zero, and hence (3.4.10) and (3.4.11) hold.

Fig. 3.4. Pascal’s theorem
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Example 3.4.4 (Parametric representation of quadrics in P 2). Let a;b; c;d; e be
points in general position in P 2, and let C denote the unique quadratic curve
through these five points. In this example we consider the problem of find-
ing a parametric representation for C , directly in terms of a;b; c;d; e. Such
a parametrization must exist because quadrics are known to be rational curves.
Let f .x/ D f .x1; x2; x3/ denote the defining equation of C . From (3.4.9) we
find

f .x/ D �Œabc�Œade�Œbd x�Œce x�C Œabd�Œace�Œbc x�Œde x� D 0: .3:4:12/

In order to parametrize C , we take a general point �b C c on the secant line
b _ c, and we join it with a (see Fig. 3.5). A general point of the resulting line
equals

x D a C �.�b C c/; where �;� 2 C: .3:4:13/

We now substitute this point into (3.4.12), and we expand the result as a poly-
nomial in �:

f
�
aC�.�bCc/

� D �2 �P.�I a;b; c;d; e/C� �Q.�I a;b; c;d; e/; .3:4:14/

where P;Q are homogeneous bracket polynomials of degree 4 with coefficients
in CŒ��. Note that (3.4.14) has no constant term with respect to � because
f .a/ D 0. Solving the right hand side of (3.4.14) for � and clearing denom-
inators (all points are given by homogeneous coordinates!!), we obtain the fol-
lowing parametrization of the quadratic curve C :

x.�/ D �P.�I a;b; c;d; e/ � a CQ.�I a;b; c;d; e/ � .�b C c/: .3:4:15/

Example 3.4.5 (Common transversals of four lines in P 3). This example con-
cerns invariants of four lines `1; `2; `3; `4 in complex projective 3-space. By a
common transversal of `1; `2; `3; `4 we mean a line ` � P 3 such that

` \ `1 6D ;; ` \ `2 6D ;; ` \ `3 6D ;; and ` \ `4 6D ;: .3:4:16/

Fig. 3.5. Parametrization of the quadric
through five given points
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We will prove that a configuration of lines `1; `2; `3; `4 has either one transversal
or two transversals or infinitely many transversals. Moreover, we will compute
the algebraic invariants which discriminate these three cases.

Each line `i can be written as the join of two points, say,

`1 D x1 _ x2; `2 D x3 _ x4; `3 D x5 _ x6; `4 D x7 _ x8: .3:4:17/

As usual, the bracket Œijkl� denotes the determinant det.xi ; xj ; xk; xl/, and we
have the Grassmann–Cayley algebra identities `1_`2 D Œ1234�, `1_`3 D Œ1256�,
: : :, `3 _ `4 D Œ5678�.

Suppose that ` is a common transversal of `1; `2; `3; `4. The intersection
point of ` and `1 equals �x1 C �x2 for some �;� 2 C. The plane spanned by
this point and the line `2 is given by the Cayley expression .�x1C�x2/_x3_x4,
and the intersection point of this plane with the line `3 equals

�
.�x1 C �x2/ _

x3 _ x4

� ^ .x5 _ x6/. Hence the transversal equals

` D ��
.�x1 C �x2/ _ x3 _ x4

� ^ .x5 _ x6/
� _ .�x1 C �x2/: .3:4:18/

Since ` also meets the line `4 D x7 _ x8, we have the following Grassmann–
Cayley algebra identity:��
.�x1C�x2/_x3_x4

�^ .x5_x6/
�_ .�x1C�x2/_ x7 _ x8 D 0: .3:4:19/

This is quadratic polynomial in �;�. We now apply Algorithm 3.3.4 to (3.4.19)
to get �

Œ1345�Œ6178� � Œ1346�Œ5178���2

C �
Œ2345�Œ6278� � Œ2346�Œ5278���2

C
�
Œ1345�Œ6278� � Œ1346�Œ5278�

C Œ2345�Œ6178� � Œ2346�Œ5178�
	
�� D 0:

.3:4:20/

The four lines have infinitely many common transversals if and only if all three
bracket coefficients are zero. Generically, this is not the case and (3.4.20) has
two distinct roots, corresponding to two distinct transversals. The discriminant
of (3.4.20) is a polynomial of degree 4 in brackets; its unique expansion in terms
of standard bracket monomials equals

� 2 Œ1234�Œ1256�Œ3478�Œ5678� � 2 Œ1234�Œ1256�Œ3578�Œ4678�

C Œ1235�Œ1235�Œ4678�Œ4678� � 2 Œ1235�Œ1236�Œ4578�Œ4678�

� 2 Œ1235�Œ1245�Œ3678�Œ4678� � 2 Œ1235�Œ1246�Œ3478�Œ5678�

C 4 Œ1235�Œ1246�Œ3578�Œ4678�C Œ1236�Œ1236�Œ4578�Œ4578�

� 2 Œ1236�Œ1246�Œ3578�Œ4578�C Œ1245�Œ1245�Œ3678�Œ3678�

� 2 Œ1245�Œ1246�Œ3578�Œ3678�C Œ1246�Œ1246�Œ3578�Œ3578�:
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We conclude that this invariant vanishes whenever there is exactly one transver-
sal. It is instructive to verify that this expression is symmetric with respect to
permuting the pairs of letters f1; 2g, f3; 4g, f5; 6g, f7; 8g, and it is antisymmetric
with respect to permuting letters within each pair.

Here is a specific example of a configuration of four lines which has precisely
one common transversal. Let

.x1; x2; x3; x4; x5; x6; x7; x8/ D

0B@1 0 0 0 0 1 0 1
0 1 0 0 1 0 2 �1
0 0 1 0 1 0 1 0
0 0 0 1 0 1 �1 2

1CA :
Then (3.4.20) specializes to �.���/2, which means the lines x1 _ x2, x3 _ x4,
x5 _ x6, x7 _ x8 have precisely one common transversal.

Example 3.4.6 (Common transversals of five lines in P 3). We have seen in Ex-
ample 3.4.5 that any four lines in P 3 have a common transversal. What is the
situation for five lines? When do they have common transversals?

What is the algebraic condition for five lines `1; `2; `3; `4; `5 in projective
3-space to be incident to a common sixth line `? Two equivalent answers to this
question will be presented.

For our first answer, we identify each line `i with the corresponding extensor
`i D P

1�j <k�4 `
jk
i ej _ ek in ƒ2.C4/. We call .`12

i ; `
13
i ; `

14
i ; `

23
i ; `

24
i ; `

34
i / the

vector of Plücker coordinates for `. Forming the meet of two lines defines an
inner product on the space of lines:

Œ`i ; j̀ � WD `i _ j̀ D `12
i `

34
j � `13

i `
24
j C `14

i `
23
j C `23

i `
14
j � `24

i `
13
j C `34

i `
12
j :

From our discussion above we derive the two basic facts about the inner product
of lines:

1. Two lines `i and j̀ are incident if and only if Œ`i ; j̀ � D 0.
2. An arbitrary six-dimensional vector ` D .`12; `13; `14; `23; `24; `34/ is the

vector of Plücker coordinates of a line if and only if Œ`; `� D 0.

Here is the first solution to our problem. If ` is a common transversal, then it
satisfies the following system of linear equations:

Œ`; `1� D Œ`; `2� D Œ`; `3� D Œ`; `4� D Œ`; `5� D 0:

In the generic case this system has a unique solution vector ` which can be found
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by Cramer’s rule:

` D

det

0B@`
12
1 `13

1 `14
1 `23

1 `24
1

:::
:::

:::
:::

:::

`12
5 `13

5 `14
5 `23

5 `24
5

1CA ; det

0B@`
12
1 `13

1 `14
1 `23

1 `34
1

:::
:::

:::
:::

:::

`12
5 `13

5 `14
5 `23

5 `34
5

1CA ;

det

0B@`
12
1 `13

1 `14
1 `24

1 `34
1

:::
:::

:::
:::

:::

`12
5 `13

5 `14
5 `24

5 `34
5

1CA ; � det

0B@`
12
1 `13

1 `23
1 `24

1 `34
1

:::
:::

:::
:::

:::

`12
5 `13

5 `23
5 `24

5 `34
5

1CA ;

� det

0B@`
12
1 `14

1 `23
1 `24

1 `34
1

:::
:::

:::
:::

:::

`12
5 `14

5 `23
5 `24

5 `34
5

1CA ; � det

0B@`
13
1 `14

1 `23
1 `24

1 `34
1

:::
:::

:::
:::

:::

`13
5 `14

5 `23
5 `24

5 `34
5

1CA �
:

This means that the lines `1; `2; `3; `4; `5 are incident to a common line if and
only if the above vector satisfies

Œ`; `� D 2 � �`12`34 � `13`24 C `14`23
� D 0: .3:4:21/

Notice that this expression is a polynomial condition of total degree 10 in the
Plücker coordinates `jk

i of the five given lines. If it is satisfied, then the vector `
is the Plücker coordinate vector of the desired sixth line.

Let us now suppose that each line is given as the join of two distinct points
ai D .a1

i ; a
2
i ; a

3
i ; a

4
i /, bi D .b1

i ; b
2
i ; b

3
i ; b

4
i / in projective 3-space. We can easily

express our condition as a polynomial in the coordinates of these ten points. If

we replace `jk
i ! det



a

j
i b

j
i

ak
i bk

i

�
in Eq. (3.4.21), then we obtain the desired

homogeneous polynomial P.aj
i ; b

j
i / in 40 variables of total degree 20.

This situtation is unsatisfactory both from a practical and a theoretical point
of view. First, the polynomial P is so large that it cannot be written down in
a nice way. Secondly, it would be desirable to rewrite the polynomial P as a
polynomial function in the fundamental invariants of projective geometry, which
are the brackets

Œaibiajbj � WD det

0BBBB@
a1

i b1
i a1

j b1
j

a2
i b2

i a2
j b2

j

a3
i b3

i a3
j b3

j

a4
i b4

i a4
j b4

j

1CCCCA :

We wish to answer the following question.
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Find an algebraic condition in terms of the brackets Œaibiajbj �, 1 	 i < j

	 5 which expresses the fact that the five lines a1b1, a2b2, a3b3, a4b4, a5b5 are
incident to a common sixth line.

The following answer is due to Neil White (pers. commun.):

Theorem 3.4.7. Five lines a1b1, a2b2, a3b3, a4b4, a5b5 in projective 3-space
have a common transversal if and only if

det

0BBBBB@
0 Œa1b1a2b2� Œa1b1a3b3� Œa1b1a4b4� Œa1b1a5b5�

Œa2b2a1b1� 0 Œa2b2a3b3� Œa2b2a4b4� Œa2b2a5b5�

Œa3b3a1b1� Œa3b3a2b2� 0 Œa3b3a4b4� Œa3b3a5b5�

Œa4b4a1b1� Œa4b4a2b2� Œa4b4a3b3� 0 Œa4b4a5b5�

Œa5b5a1b1� Œa5b5a2b2� Œa5b5a3b3� Œa5b5a4b4� 0

1CCCCCA D 0:

Proof. If we use Plücker coordinates for the lines `i D aibi , then we can use the
identity Œaibiajbj � D Œ`i ; j̀ � to rewrite all brackets as inner products of lines.
The asserted condition translates to det.Œ`i ; j̀ �/ D 0, where .Œ`i ; j̀ �/ denotes
the 5 � 5-Gram matrix of the five lines. This 5 � 5-matrix can be written as the
product of a 5 � 6-matrix with a 6 � 5-matrix:

0BBBBB@
`12

1 `13
1 `14

1 `23
1 `24

1 `34
1

`12
2 `13

2 `14
2 `23

2 `24
2 `34

2

`12
3 `13

3 `14
3 `23

3 `24
3 `34

3

`12
4 `13

4 `14
4 `23

4 `24
4 `34

4

`12
5 `13

5 `14
5 `23

5 `24
5 `34

5

1CCCCCA �

0BBBBBBBB@

`34
1 `34

2 `34
3 `34

4 `34
5

�`24
1 �`24

2 �`24
3 �`24

4 �`24
5

`14
1 `14

2 `14
3 `14

4 `14
5

`23
1 `23

2 `23
3 `23

4 `23
5

�`13
1 �`13

2 �`13
3 �`13

4 �`13
5

`12
1 `12

2 `12
3 `12

4 `12
5

1CCCCCCCCA
:

Consider the vectors of 5 � 5-minors of these two matrices. Up to signs and
reindexing, both vectors are equal to `. By the Cauchy–Binet theorem, the dot
product of these two vectors is equal to the determinant in question. Using the
same notation as above, we can thus rewrite this determinant as

`12`34 C `13.�`24/C `14`23 C `23`14 C `24.�`13/C `34`12:

This expression equals (3.4.21), and we are done. G

Exercises

(1) Derive (3.4.9) from (3.4.10).
(2) Compute the bracket polynomials P;Q in (3.4.12) and straighten them.
(3) * Consider the condition for ten points a;b; c;d; e; f ;g;h; i; j in

projective 3-space to lie on a quadric surface. In terms of coordinates this
polynomial equals
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det

0BBBBBBBBBBBBBBBBBBB@

a2
1

a2
2

a2
3

a2
4

a1a2 a1a3 a1a4 a2a3 a2a4 a3a4

b2
1

b2
2

b2
3

b2
4

b1b2 b1b3 b1b4 b2b3 b2b4 b3b4

c2
1

c2
2

c2
3

c2
4

c1c2 c1c3 c1c4 c2c3 c2c4 c3c4

d2
1

d2
2

d2
3

d2
4

d1d2 d1d3 d1d4 d2d3 d2d4 d3d4

e2
1

e2
2

e2
3

e2
4

e1e2 e1e3 e1e4 e2e3 e2e4 e3e4

f 2
1

f 2
2

f 2
3

f 2
4

f1f2 f1f3 f1f4 f2f3 f2f4 f3f4

g2
1

g2
2

g2
3

g2
4

g1g2 g1g3 g1g4 g2g3 g2g4 g3g4

h2
1

h2
2

h2
3

h2
4

h1h2 h1h3 h1h4 h2h3 h2h4 h3h4

i2
1

i2
2

i2
3

i2
4

i1i2 i1i3 i1i4 i2i3 i2i4 i3i4

j 2
1

j 2
2

j 2
3

j 2
4

j1j2 j1j3 j1j4 j2j3 j2j4 j3j4

1CCCCCCCCCCCCCCCCCCCA

:

(a) Rewrite this projective invariant as a bracket polynomial in CŒƒ.10; 4/�
(Turnbull and Young 1926, White 1990).

(b) Does there exist a synthetic condition analogous to Pascal’s theorem for
10 points in P 3 to lie on a quadric? (This is an unsolved geometry
problem dating back to the 19th century; see Turnbull and Young
[1926].)

(4) * Consider twelve points x1; x2; : : : ; x12 in general position in the
projective plane, let C1 denote the quadric through x1; x2; x3; x4; x5, let C2

denote the quadric through x6; x7; x8; x9; x10, and let ` denote the line
through x11; x12. Find a bracket polynomial R 2 B12;3 which vanishes if
and only if C1 \ C2 \ ` 6D ;. (Hint: This is the synthetic resultant of two
quadrics and a line. The degree of R in brackets equals 16.)

3.5. Cayley factorization

Cayley factorization stands for the problem of (re-)translating bracket polyno-
mials into Grassmann–Cayley algebra expressions, or Cayley expressions, for
short. This problem is much harder than its inverse, which is solved by Al-
gorithm 3.3.4. As of today, no effective algorithm is known for the general
Cayley factorization problem. An important partial result is Neil White’s Cay-
ley factorization algorithm for multilinear bracket polynomials (White 1991).
In this section we give an exposition of this algorithm. Our first theorem, to be
presented without proof, is the universal factorization result in Sturmfels and
Whiteley (1991).

We have seen that there are four levels of description in projective geometry:

(1) Projective geometry
l

(2) Cayley algebra
# " Cayley factorization

(3) Bracket algebra
l

(4) Coordinate algebra
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We illustrate this diagram for the geometric statement in Examples 3.1.2 and
3.3.3:

(1) “The lines ab, cd and ef are concurrent”
l

(2) .a _ b/ ^ .c _ d/ ^ .e _ f / D 0
# " Cayley factorization

(3) Œabe�Œdcf � � Œabf �Œdce� D 0
l

(4) a1b2e3c1d2f3 C a1b2e3d1c2f3 C : : : (48 monomials) : : : D 0

The translations .1/ $ .2/ and .3/ ! .4/ are straightforward. The arrow
.4/ ! .3/ is given by the First Fundamental Theorem (Algorithm 3.2.8), and
the arrow .2/ ! .3/ is the Cayley-bracket expansion (Algorithm 3.3.4). In what
follows we will be concerned with the translation .3/ ! .2/.

We define the weight of a tableaux T 2 CŒƒ.n; d/� as the vector !.T / D
.!1; : : : ; !n/ 2 Nn, where !i equals the number of occurrences of the letter i
in T . A bracket polynomial P 2 CŒƒ.n; d/� is called homogeneous if each
tableau in P has the same weight. Each syzygy in In;d is homogeneous, and
therefore the weight of a tableau and the property of being homogeneous de-
pends only on the image in Bn;d D CŒƒ.n; d/�=In;d .

Suppose that C.a; b; c; : : :/ is a simple Cayley expression, i.e., it involves
only join and meet, not addition. Let P.a; b; c; : : :/ be its expansion in terms of
brackets. Then P.a; b; c; : : :/ is homogeneous, and the weight of P.a; b; c; : : :/
counts the number of occurrences of a; b; c; : : : in C.a; b; c; : : :/. A bracket
polynomial or a simple Cayley expression is called multilinear if it is homoge-
neous of weight .1; 1; : : : ; 1/. We can now state our problem.

Cayley factorization problem
Input: A homogeneous bracket polynomial P.a; b; c; : : :/.
Question: Does there exist a simple Cayley expression C.a; b; c; : : :/ whose
bracket expansion (modulo the syzygy ideal) is equal to P.a; b; c; : : :/? If yes,
output C.a; b; c; : : :/; if no, output “NOT CAYLEY FACTORABLE”.

A typical example of a successful Cayley factorization is the translation
from (3.4.9) into (3.4.10), the synthetic condition for Pascal’s theorem. Note
that (3.4.9) has weight .2; 2; 2; 2; 2; 2/ and is therefore not multilinear. Before
proceeding further, let us see that not all bracket polynomials – not even multi-
linear ones – are Cayley factorable.

Example 3.5.1. The multilinear bracket polynomial P D Œabc�Œdef � C
Œabd �Œcef � does not factor in the Grassmann–Cayley algebra of rank 3. This
can be seen by inspecting all possible multilinear simple Cayley expressions
C.a; b; c; d; e; f / of rank 3. None of these expressions is symmetric in two of
its letters. However, the invariant P is antisymmetric in both .a; b/ and .e; f /
while it is symmetric in .c; d/, and it is therefore not Cayley factorable. Another
proof is given in Example 3.5.7.
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This example has another more subtle aspect. If we multiply the given
bracket polynomial by an appropriate tableau, then the resulting bracket poly-
nomial becomes Cayley factorable. The expression Œacd �Œbcd � � P does factor
as follows.

˚
.ac ^ bd/ _ .ad ^ bc/� ^ ef ^ cd

D ˚
.Œacb�d � Œacd �b/ _ .Œadb�c � Œadc�b/� ^ fŒefc�d � Œefd �cg

D ˚
.Œacb�Œadb�dc � Œacd �Œadb�bc � Œacb�Œadc�db/� ^ fŒefc�d � Œefd �cg

D � Œacd �Œadb�Œefc�Œbcd �C Œacb�Œadc�Œefd�Œdbc�

D Œacd �Œbcd �
�
Œabc�Œdef �C Œabd �Œcef �

�
: (3.5.1)

This Cayley factorization would not be found by White’s Algorithm 3.5.6 be-
cause the bracket polynomial in (3.5.1) is not multilinear. The multiplier tableau
Œacd �Œbcd � corresponds to the subsidiary condition that both points a and b are
not on the line through c and d . Under this nondegeneracy assumption we get a
synthetic construction.

This example raises the question whether every homogeneous bracket poly-
nomial with integer coefficients can be Cayley factored after a suitable multiplier
has been chosen. Our first theorem states that this is true for rank d � 3.

Theorem 3.5.2 (Sturmfels and Whiteley 1991). Let P.a; b; c; : : :/ be a homo-
geneous bracket polynomial with integer coefficients of rank d � 3. Then there
exists a simple Cayley expression C.a; b; c; : : :/ and a tableau T .a; b; c; : : :/
such that the bracket expansion of C equals T � P .

In this theorem we need the hypothesis d � 3 because there are no sig-
nificant synthetic constructions on the projective line, except for coincidence
of points. A rank 2 bracket polynomial Œab�Œcd � � Œac�Œbd � will never factor
to a synthetic construction unless the projective line is embedded into some
higher-dimensional projective space. The proof of Theorem 3.5.2 is based on
the classical construction of the arithmetic operations addition and multiplication
in terms of synthetic projective geometry. We refer to Sturmfels and Whiteley
(1991) and Bokowski and Sturmfels (1989: chapter 2) for details.

This factorization theorem is far too general to be of practical use. Our
proof method generates a multiplier tableau T which has very high degree rel-
ative to P , and the Cayley expression C does not tell the “true” synthetic in-
terpretation of P , if such exists. Perhaps the main importance of Theorem 3.5.2
lies in the fact that it suggests the following problem.

Generalized Cayley factorization problem
Input: A homogeneous bracket polynomial P.a; b; c; : : :/.
Question: Find a tableau T .a; b; c; : : :/ of minimal degree such that P � T D C
for some simple Cayley expression C.a; b; c; : : :/.
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We will now concentrate on the Cayley factorization problem for multilin-
ear bracket polynomials. In order to state White’s algorithm, we first derive a
few structural properties of Cayley expressions. Suppose that C.a; b; c; : : :/ is
a simple and multilinear Cayley expression. We may represent C by a binary
tree T whose leaves are labeled uniquely by a; b; c; : : : and whose inner nodes
are labeled _ or ^. The step of a subtree T 0 of T is the step of the correspond-
ing Cayley expression C 0. We say that an operation _ or ^ in T is trivial if its
operands have steps j and d � j for some j , or, one of its operands has step 0
or d . We note that, under the numerical identification of steps 0 and d , a trivial
_ may be replaced by a ^ and vice versa. Having a trivial operation amounts
to having a subtree which evaluates to a bracket polynomial which factors out
of C .

Lemma 3.5.3. Let C.a; b; c; : : :/ be a nonzero multilinear simple Cayley ex-
pression. Then C is antisymmetric in two arguments a and b if and only if a
and b do not have a nontrivial ^ on the unique path joining them in the tree T
which represents C .

Proof. Since C is multilinear, the tree T has two unique leaves labeled a and b
respectively. If there are no nontrivial ^’s on the path from a to b in T , then,
exchanging trivial ^’s for _’s, we may assume that there are only _’s on the
path. Since _ is an associative, anticommutative operation, we may rearrange C
so that .a _ b/ occurs explicitly. Thus C is antisymmetric in a and b.

Conversely, suppose there is a nontrivial ^ on the path from a to b. Denote
by ^1 the first such. By modifying any trivial ^’s as above, we may assume that
C D ..a _ S/ ^1 Z/ � � � . We now specialize a few of the indeterminate points
in S , so that S has the form S D b _ U , with a … SU and b … SU . This may
be done inductively: if S D X _ Y , then specialize either X or Y to have b as
a join factor, while if S D X ^ Y , then specialize both X and Y to have b as
a join factor. This specialization has replaced some of the original points by b
and left all others indeterminate. Note that, by multilinearity, only points in S
have been specialized to b. Denote by bC D bC.a; b; c; : : :/ the image of C under
this specialization. Observe that bC.b; a; c; : : :/ D 0, because it has b _ b _U as
a factor.

Now we claim that bC.a; b; c; : : :/ 6D 0, which will prove that C is not anti-
symmetric in a and b. First note that .a _ b _ U/ ^1 Z/ is a nonzero Cayley
expression because b occurs at most once in Z and the operation ^1 is nontrivial.
Since the rest of bC contains entirely different letters, we conclude bC 6D 0. G

Let C.a; b; c; : : : ; ´/ be a simple Cayley expression. A subset of letters
fa; b; : : : ; eg is called an atomic extensor of C if its join .a _ b _ : : : _ e/ oc-
curs explicitly in C . This is equivalent to saying that there is no nontrivial meet
on the path (in the tree of C ) between any two elements of fa; b; : : : ; eg. Note
that each atomic extensor has cardinality at least 2. For instance, the Cayley
expression ..a _ b/^ .c _ d//^ .e _ f / has the atomic extensors fa; bg, fc; dg
and fe; f g.
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Let P.a; b; c; : : : ; ´/ be a multilinear bracket polynomial. We define an
equivalence relation � on the letters occurring in P as follows. We set a � b if
P.a; b; c; : : : ; ´/ D �P.b; a; c; : : : ; ´/, or, equivalently, if P.a; a; c : : : ; ´/ D 0.
For instance, the bracket polynomial Œabc�Œdef � � Œabd �Œcef � has the equiv-
alence classes fa; bg, fc; dg and fe; f g. These are precisely the atomic exten-
sors in its Cayley factorization. Note that the bracket polynomial Œabc�Œdef �C
Œabd �Œcef � (discussed in Example 3.5.1) has the equivalence classes fa; bg,
fe; f g, fcg and fdg.

Corollary 3.5.4. Let P be a multilinear bracket polynomial which is Cayley
factorable. Then each equivalence class of � is an atomic extensor in some
Cayley factorization of P .

Proof. If C is a simple Cayley expression which expands to P , and if A is an
equivalence class of points under �, then by Lemma 3.5.3, there are no non-
trivial meets between the points in A. Hence C may be rewritten so that the
points of A are explicitly joined. Conversely, points in the same atomic extensor
must be in the same equivalence class. G

Lemma 3.5.5. Let P be a multilinear bracket polynomial which is Cayley fac-
torable, let A and B be atomic extensors of P , and suppose that P D .A^B/_Q
for some linear combination Q of extensors with bracket coefficients. Then there
exists a Cayley factorization P D .A ^ B/ _ U , where U is a simple Cayley
expression.

Proof. Let C be any Cayley factorization of P , and let T be its tree. We fix
a generic hyperplane H in the ambient vector space V , and we specialize the
points of A and B to be in generic position in H , with all other points remaining
in generic position in V . Let bP , bC and bT denote the images of P , C and T under
this specialization. We identify A and B with an inner node in T (resp. bT ). Our
hypothesis implies bP D 0.

Suppose that A and B have a nontrivial join on the path between them in T ,
and therefore in bT also. Consider the node o1 on the path from A to B which
is nearest the root of bT . If a nontrivial join not equal to o1 occurs, then at most
one of its operands is in H , and at least one of its operands is in generic position
in V . The result of such a join is in generic position in V . Thus higher operations
in bT never have more than one operand in H , and it follows that bC ¤ 0. The
other case is that o1 itself is a nontrivial join, both of whose operands are in
generic position in H . The nontriviality of the join at o1 in C implies that it
is also nontrivial in bC . Thus the result of the join has step at most d � 1, and
is hence nonzero and in generic position in H . Again, higher operations in bT
have at most one operand in H , and we again conclude that bC ¤ 0. In both
cases we have contradicted P D C , hence there is no nontrivial join on the
path from A to B . By associativity and anticommutativity of the meet, we may
rearrange so that .A ^ B/ occurs explicitly in our Cayley factorization. G



3.5. Cayley factorization 115

Neither Lemma 3.5.3 nor Lemma 3.5.5 generalizes to nonmultilinear Cayley
expressions. These two lemmas are crucial for the correctness of the multilinear
algorithm below, and their failure in the general case indicates that the general
Cayley factorization problem is considerably harder than the multilinear prob-
lem. By a primitive factor of a simple Cayley expression C we mean an explicit
subexpression .E ^ F / in C , where E and F are two atomic extensors. Note
that any simple Cayley expression must have such a primitive factor, and Lemma
3.5.5 gives a criterion for detecting them in Cayley factorable multilinear bracket
polynomials.

Algorithm 3.5.6 (Multilinear Cayley factorization) (White 1991).
Input: A multilinear bracket polynomial P.a; b; c; : : :/ of rank d .
Output: A Cayley factorization C of P if it exists; “NOT FACTORABLE” other-
wise.

1. Find all atomic extensors of P . We defined a � b by P.a; a; c; : : :/ D 0.
This is checked using the straightening algorithm, where the transitivity of �
cuts down on the number of pairs of points we have to check. If there do not
exist two atomic extensors whose sizes sum to at least d , then output “NOT
FACTORABLE”.

2. If there is an atomic extensor A of step d , then apply straightening with the
d elements of A first in the linear order. The result has the bracket ŒA� as an
explicit factor, P D ŒA� � P 0. Remove A, store P D A ^ P 0, and proceed
with the bracket polynomial P 0 replacing P . Repeat step 2 as appropriate. If
P is a scalar, then we are DONE, and the required Cayley factorization may
be reconstructed.

3. Find two atomic extensors E D fe1; e2; : : : ; ekg and F D ff1; f2; : : : ; f`g
with k C ` > d such that the criterion of Lemma 3.5.5 for E ^ F to be a
primitive factor is satisfied: Apply the straightening algorithm to P , using an
ordering in which e1 < : : : < ek < f1 < : : : < f` comes first. Then the
result has the form

P
x1;:::;y1:::

2666664
e1 : : : : : : : : : : : : ek

�
f 1 : : :

�
f d�k

�
f d�kC1 : : :

�
f ` x1 : : : : : : : : : : : : x2d�k�`

y1 : : : : : : : : : : : : : : : : : : : : : yd
:::

:::
:::

3777775 : .3:5:2/

That is, every tableau has E in the first row, part of F filling up the rest of
the first row, and the rest of F in the second row. The sum is over various
terms with different choices for the x’s and y’s.

4. If such E and F do not exist, then return “NOT FACTORABLE”. If they do
exist, then choose new letters g1; g2; : : : ; gp, where p D kC`�d , and store
G D E ^ F . Let G replace E and F in the collection of atomic extensors,
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and proceed with

P 0 D P
x1;:::;y1;:::

264g1 : : : gp x1 : : : x2d�k�`

y1 : : : : : : : : : : : : yd
:::

:::
:::

375 ; .3:5:3/

where x1; : : : ; y1; : : : are the same as above.
5. Recompute the atomic extensors by trying to extend the current ones. Go to

step 2.

The termination and correctness of this algorithm is implied by our two
lemmas on the structure of multilinear simple Cayley expressions. Termina-
tion is guaranteed because the loops in steps 2 and 3 are over the finite set of
atomic extensors, and both in step 2 and in step 4 the degree of the new bracket
polynomial P 0 is one less than the degree of P . As for correctness, Lemma
3.5.3 implies that step 2 finds all atomic extensors of any potential Cayley fac-
torization. Lemma 3.5.5 guarantees that no backtracking will be necessary in
step 4. Once a tentative primitive factor .E ^ F / has been found in step 4, then
.E ^ F / must be part of a Cayley factorization if one exists at all. We now
illustrate how this algorithm works.

Example 3.5.7. We apply Algorithm 3.5.6 to the multilinear bracket polynomial
P D Œabc�Œdef �C Œabd �Œcef � (cf. Example 3.5.1). Its atomic extensors are ab,
ef , c and d . In step 2 we see that there is no atomic extensor of cardinality 3 D
rank.P /, and our unique choice in step 3 is the pair of extensors ab and ef . We
apply the straightening algorithm in the ordering a < b < e < f < c < d to P .
The output desired in (3.5.2) would have each monomial equal to Œabe�Œf : : :�
or Œabf �Œe : : :�. This is not the case, because we get the output

Œabe�Œfcd � � Œabf �Œecd �C 2Œabc�Œefd�:

Therefore we conclude in step 4 that P is not Cayley factorable. G

Example 3.5.8. We apply Algorithm 3.5.6 to the multilinear bracket polynomial

P D Œabc�Œdef �Œghk� � Œabc�Œdeg�Œf hk�

� Œabd �Œcef �Œghk�C Œabd �Œceg�Œf hk�:
.3:5:4/

The atomic extensors are ab, cd , e, fg and hk, so we skip step 2. In step 3 we
choose the pair of atomic extensors ab and cd , and we apply the straightening
algorithm in the usual lexicographic order. Here (3.5.4) is already standard, and
it is of the form required in (3.5.2):

P D Œab
�
c�Œ

�
d ef �Œghk� � Œab �

c�Œ
�
d eg�Œf hk�:
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In step 4 we now choose a new letter u, we store u D .ab ^ cd/, and we
proceed with P 0 D Œuef �Œghk�� Œueg�Œf hk�. In step 5 we compute the atomic
extensors ue, fg and hk, we skip step 2, and we then apply step 3 to ue and

fg to get P 0 D Œue
�
f �Œ

�
g hk�. In step 4 we now choose a new letter v, we

store v D .ue^ fg/, and we proceed with P 00 D Œvhk�. Now the unique atomic
extensor is vhk, and we are done after a single application of step 2. Our final
result is the Cayley factorization

C D v ^ hk D .ue ^ fg/ ^ hk D ...ab ^ cd/ _ e/ ^ fg/ ^ hk: .3:5:5/

In this example it was relatively easy to guess the answer directly from the input.
Note, however, that P could have been presented in a completely different form.
For instance, if we switch a and k in the linear ordering of letters, then the
straightened form of (3.5.4) has 19 tableaux, and the Cayley factorization (3.5.5)
becomes far from obvious. G

The main bottleneck in Algorithm 3.5.6 is the application of the straightening
algorithm in step 1 and step 3. McMillen and White (1991) have given a variant
of the straightening algorithm which performs much better in step 3 – see White
(1991) – and which is also of general invariant-theoretic interest. This variant is
called the dotted straightening algorithm, and it can be understood as a special
case of the straightening law in the superalgebra due to Grosshans et al. (1987).

Exercises

(1) What is the geometric interpretation of the Cayley expression in (3.5.1)?
(2) * Find a bracket polynomial P and a single bracket T such that P is not

Cayley factorable but P � T is Cayley factorable.
(3) A Cayley factorable bracket polynomial generally has many distinct Cayley

factorizations. For instance, another Cayley factorization of (3.5.5) is
...fg ^ hk/ _ e/ ^ ab/ ^ cd .
(a) Find all distinct Cayley factorizations of the Pascal condition (3.4.9).
(b) Give an algorithm which finds all Cayley factorizations of a multilinear

bracket polynomial.
(4) Compute the (rank 5) bracket expansion of

...cdf ^ agh/_ bij /^ klm/^ eno, and apply Algorithm 3.5.6 to the result.

3.6. Invariants and covariants of binary forms

The invariant theory of binary forms is a central chapter of classical invariant
theory. It links the theory of projective invariants which was studied in the pre-
vious sections with the invariants and covariants of general polynomial systems.
It is our principal objective to study binary forms from the perspective of com-
puter algebra. The general path of our exposition follows Kung and Rota (1984),
with the main difference that we avoid the use of the umbral calculus. At this
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point we also refrain from employing techniques from the representation theory
of GL.C2/, as these will be easier to understand (and appreciate) within the gen-
eral context of Chap. 4. Instead we discuss many elementary examples, with a
particular emphasis on projective geometry, and we illustrate the use of Gröbner
bases as a tool for studying invariants of binary forms. In Sect. 3.7 we will prove
Gordan’s finiteness theorem, derive Kempe’s circular straightening algorithm,
and determine fundamental sets of covariants for binary forms of low degree.

Our investigations will concern those properties of polynomial functions on
the complex projective line P 1 which are independent of the choice of coordi-
nates. A binary form of degree n is a homogeneous polynomial

f .x; y/ D
nP

kD0



n

k

�
ak x

kyn�k .3:6:1/

in two complex variables x and y. The numbers ak are the coefficients of
f .x; y/. For mainly technical reasons the coefficients are scaled by binomial
factors

�
n
k

�
in (3.6.1). A linear change of variables .cij / is a transformation of

the variables x and y given by

x D c11 Nx C c12 Ny; y D c21 Nx C c22 Ny .3:6:2/

such that the determinant of the transformation matrix, c11c22 � c12c21, is non-
zero. Under a linear change of variables (3.6.2), the binary form f .x; y/ is trans-
formed into another binary form Nf . Nx; Ny/ in the new variables Nx and Ny. It is
defined by

Nf . Nx; Ny/ D
nP

kD0



n

k

�
ak .c11 Nx C c12 Ny/k.c21 Nx C c22 Ny/n�k: .3:6:3/

After expanding and regrouping terms, we obtain a binary form

Nf . Nx; Ny/ D
nP

kD0



n

k

�
Nak Nxk Nyn�k .3:6:4/

in the new variables Nx and Ny. The new coefficients Nak are linear combinations
of the ai whose coefficients are polynomials in the cij . This representation is
described explicitly in the following proposition, whose proof we omit.

Proposition 3.6.1. The coefficients Nak of the transformed binary form Nf . Nx; Ny/
satisfy

Nak D
nP

iD0

� min.i;k/P
j Dmax.0;i�nCk/



k

j

�

n � k
i � j

�
c

j
11c

i�j
12 c

k�j
21 c

n�k�iCj
22

	
ai .3:6:5/

for k D 0; 1; 2; : : : ; n.
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Changing our point of view slightly, we now assume that the coefficients
a0; a1; : : : ; an in (3.6.1) are algebraically independent variables over the ground
field C. Consider the polynomial ring CŒa0; a1; : : : ; an; x; y� in both the old
variables x and y and the new variables ai . The group GL.C2/ of invertible
2�2-matrices .cij / acts linearly on the .nC3/-dimensional vector space spanned
by a0; : : : ; an; x; y. This action x 7! Nx, y 7! Ny, ai 7! Nai is described by the
formulas (3.6.2) and (3.6.5). It extends to an action of GL.C2/ on the polynomial
ring CŒa0; : : : ; an; x; y�.

Example 3.6.2. Consider the case n D 2 of a binary quadric f .x; y/ D a2x
2 C

2a1xy C a0y
2. The linear transformation group GL.C2/ acts on CŒa0; a1; a2;

x; y� via

.cij / W


x
y

�
7!

 Nx

Ny
�

D


c11 c12

c21 c22

��1

x
y

�
;0@a0

a1

a2

1A 7!
0@ Na0

Na1

Na2

1A D
0@ c2

22 2c12c22 c2
12

c21c22 c11c22 C c12c21 c11c12

c2
21 2c11c21 c2

11

1A0@a0

a1

a2

1A :
Here the coordinate vector .x; y/ is transformed by the inverse matrix of .cij /,
while the coefficient vector .a0; a1; a2/ is transformed by a 3 � 3-matrix which
is the second symmetric power of .cij /.

It is our objective to study and characterize the subring CŒa0; a1; : : : ; an;

x; y�GL.C2/ of relative invariants with respect to the linear transformation group
GL.C2/. A polynomial I 2 CŒa0; a1; : : : ; an; x; y� is said to be a covariant of
index g if

I. Na0; Na1; : : : ; Nan; Nx; Ny/ D .c11c22 � c12c21/
g � I.a0; a1; : : : ; an; x; y/:

A covariant I 2 CŒa0; a1; : : : ; an; x; y� is homogeneous if it is homogeneous
both as a polynomial in the variables a0; a1; : : : ; an and in the variables x; y.
In that case the total degree of I in a0; a1; : : : ; an is called the degree of the
covariant I , and its total degree in x; y is called the order of I . A covariant of
order 0, that is, a covariant I 2 CŒa0; a1; : : : ; an� with no occurrences of the
variables x and y, is said to be an invariant.

In many situations it becomes necessary to consider a collection of binary
forms

fi .x; y/ D
niP

kD0



ni

k

�
aik x

kyni �k; i D 1; 2; : : : ; r:

As before we assume that the aik are algebraically independent over C, and
we consider the natural action of the group GL.C2/ of invertible 2 � 2-matrices
on the polynomial ring in x; y and the aik . A polynomial I 2 CŒa10; a11; : : : ;
a1n1

; : : : ; ar0; ar1; : : : ; arnr
; x; y� is called a joint covariant of the forms



120 Bracket algebra and projective geometry

f1; f2; : : : ; fr if it is a relative invariant of the GL.C2/-action. We say that I
is a joint invariant of f1; f2; : : : ; fr if I does not depend on x and y at all.

Whenever a (joint) covariant I.aik; x; y/ vanishes identically under some
specialization of the aik , this means that a certain geometric condition is satisfied
by the specialized forms f1; f2; : : : ; fr . Conversely, every geometric (i.e., in-
variant) condition in the coefficients of f1; f2; : : : ; fr is expressible as a boolean
combination of a finite set of covariants.

Let us take a look at some examples of covariants of binary forms. We will
be particularly interested in the geometric meaning of these covariants. Consider
a binary quadric

f2 D a2x
2 C 2a1xy C a0y

2;

a binary cubic

f3 D b3x
3 C 3b2x

2y C 3b1xy
2 C b0y

3;

and a binary quartic

f4 D c4x
4 C 4c3x

3y C 6c2x
2y2 C 4c1xy

3 C c0y
4:

(a) We consider the polynomial D2.a0; a1; a2/ WD a0a2 � a2
1 in the coefficients

of the binary quadric. In order to determine whether D2 is an invariant, we
replace a0 by Na0 D c2

22a0 C 2c12c22a1 C c2
12a2, we replace a1 by Na1 D

c21c22a0 C c11c22a1 C c12c21a1 C c11c12a2, and we replace a2 by Na2 D
c2

21a0 C 2c11c21a1 C c2
11a2. As the result we obtain

D2. Na0; Na1; Na2/

D .c2
22a0 C 2c12c22a1 C c2

12a2/.c
2
21a0 C 2c11c21a1 C c2

11a2/

� .c21c22a0 C c11c22a1 C c12c21a1 C c11c12a2/
2

D .c22c11 � c21c12/
2.a0a2 � a1/

2

D .c22c11 � c21c12/
2D2.a0; a1; a2/:

This identity shows that D2 is a covariant of degree 2, of order 0, and of
index 2. The invariant D2 is called the discriminant of the binary quadric f2.
It vanishes for a binary quadric f2 if and only if f2 has a double root on the
projective line P 1.

(b) The discriminant

D3.b0; b1; b2; b3/ WD �3b2
1b

2
2 � 6b0b1b2b3 C b2

0b
2
3 C 4b0b

3
2 C 4b3

1b3

of the binary cubic f3 is an invariant of degree 4 and index 6. It vanishes if
and only if f3 has a double root.
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(c) Our next example is the Hessian

H3.b0; b1; b2; b3; x; y/ WD det

0@ @2f3

@x2

@2f3

@x@y

@2f3

@x@y
@2f3

@y2

1A
of the binary cubic f3. It is a covariant of degree 2, index 2, and order 2. By
expansion we find

1
36
H3 D .b3b1 � b2

2/x
2 C .�b2b1 C b3b0/xy C .�b2

1 C b2b0/y
2:

The Hessian vanishes identically (i.e., all three coefficient polynomials are
zero) if and only if f3 has a triple root.

(d) Next consider the polynomial

R23.a0; a1; a2; b0; b1; b2; b3/ D
b2

0a
3
2 � 6b0a

2
2b2a0 C 6b0a2b3a0a1 � 6b2a

2
0b3a1 � 6a1b1a

2
2b0

� 18a1b1a2b2a0 C 9b2
2a

2
0a2 C 12a2

1b1b3a0 C 12a2
1b2a2b0 � 8a3

1b3b0

C 9a0b
2
1a

2
2 � 6a2

0b1a2b3 C a3
0b

2
3 :

This is the Sylvester resultant of the quadric f2 and the cubic f3. The resul-
tant R23 is our first example of a joint invariant. It vanishes if and only if
f2 and f3 have a root in common.

(e) The Hessian

H4.c0; c1; c2; c3; c4; x; y/ WD det

0@ @2f4

@x2

@2f4

@x@y

@2f4

@x@y
@2f4

@y2

1A
of the quartic f4 expands to

.c4c2 � c2
3/x

4 C .2c4c1 � 2c3c2/x
3y C .2c3c1 C c4c0 � 3c2

2/x
2y2

C .2c3c0 � 2c2c1/xy
3 C .c2c0 � c2

1/y
4

after division by the constant 144. The Hessian H4 is a covariant of degree 2,
order 4, and index 6 which vanishes (identically) if and only if all four roots
of f4 coincide.

(f) Our next invariant is the catalecticant

C4.c0; c1; c2; c3; c4/ WD det

 
c0 c1 c2

c1 c2 c3

c2 c3 c4

!
D c0c2c4 � c0c

2
3 � c2

1c4 C 2c1c2c3 � c3
2 :
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This invariant cannot be interpreted easily in terms of the roots. For an inter-
pretation we need the general fact that every binary quartic can be written as
a sum

f4.x; y/ D .�1x � 	1y/
4 C .�2x � 	2y/

4 C .�3x � 	3y/
4

of three perfect powers. Now the catalecticant C4 of a quartic f4.x; y/ van-
ishes if and only if f4.x; y/ can be expressed as the sum of only two perfect
powers. A similar invariant C2m exists for every binary form of even degree.

Since the ground field C is algebraically closed, every binary form of degree n
can be factored into n linear factors. The coefficients a0; a1; : : : ; an of the binary
form

f .x; y/ D
nP

kD0



n

k

�
ak x

kyn�k

D .�1x � 	1y/.�2x � 	2y/ � � � .�nx � 	ny/

.3:6:6/

can thus be expressed as polynomial functions in the roots .	1; �1/, .	2; �2/, : : :,
.	n; �n/ of f .x; y/. Here .	i ; �i / is the homogeneous coordinate vector of the
i -th root of f on the projective line P 1. In the examples (a)–(e) discussed above
we gave a geometric interpretation of the given covariant in terms of the roots of
the binary forms. Here we go one step further: Using the root representation de-
rived from (3.6.6), we shall characterize covariants as those bracket polynomials
in the roots which satisfy an easy regularity and symmetry condition.

We treat the coordinates �1; 	1; �2; 	2; : : : ; �n; 	n as algebraically indepen-
dent variables over C, and we denote with CŒ�1; 	1; : : : ; �n; 	n; x; y� the ring
of polynomials in both the homogenized roots and the original variables x and y.
The expansion in terms of roots defines a C-algebra homomorphism

‰ W CŒa0; a1; : : : ; an; x; y� ! CŒ�1; 	1; : : : ; �n; 	n; x; y�

an�k 7! .�1/k
nŠ

P
�2Sn

	�.1/ � � � 	�.k/��.kC1/ � � ���.n/

D .�1/k
nŠ

�1 � � ��n � �k.
	1

�1

; : : : ;
	n

�n

/:

(3.6.7)

Here �k denotes the k-th elementary symmetric function in n variables. The
image ‰.I / of a polynomial I 2 CŒa0; a1; : : : ; an; x; y� under the expansion
map ‰ is called the representation of I in terms of homogenized roots. The
following lemma states that each covariant can be recovered uniquely from this
representation.
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Lemma 3.6.3. The expansion homomorphism ‰ is injective.

Proof. Let P be any polynomial in the coefficients and suppose that ‰.P / D 0
as a polynomial in the homogenized roots. Let now a0; a1; : : : ; an 2 C be arbi-
trary field elements, and factor the corresponding binary form into linear factors
.�ix � 	iy/ as in (3.6.6). Here �i and 	i are elements of the ground field C.
From the definition of ‰ we get the following identity in the bivariate polyno-
mial ring CŒx; y�:

P.: : : ; ak ; : : : ; x; y/

D P
�
: : : ;

.�1/n�k

nŠ

P
�2Sn

��.1/ � � ���.k/	�.kC1/ � � � 	�.n/; : : : ; x; y
�

D Œ‰.P /�.�1; 	1; : : : ; �n; 	n; x; y/ D 0:

This proves that the polynomial P is equal to zero in the ring CŒa0; a1; : : : ; an;
x; y�. G

This embedding raises the question under which conditions a polynomial in the
homogenized roots can be expressed in terms of the coefficients a0; a1; : : : ; an.
The answer is given in our next result, which is a homogenized version of the
main theorem of symmetric functions (Theorem 1.1.1). We first need the follow-
ing definitions. A monomial

M D �
u1

1 �
u2

2 � � ��un
n 	

v1

1 	
v2

2 � � � 	vn
n xw1yw2

in the homogenized roots is said to be regular of degree d provided

u1 C v1 D u2 C v2 D : : : D un C vn D d:

A polynomial R 2 CŒ�1; 	1; : : : ; �n; 	n; x; y� is regular (of degree d ) if ev-
ery monomial in the expansion of R is regular (of degree d ). A polynomial
R.�1; 	1; : : : ; �n; 	n; x; y/ is said to be symmetric provided

R.�1; 	1; : : : ; �n; 	n; x; y/ D R.��.1/; 	�.1/; : : : ; ��.n/; 	�.n/; x; y/

for all permutations � 2 Sn.

Proposition 3.6.4. A polynomial R 2 CŒ�1; 	1; : : : ; �n; 	n; x; y� is contained
in the image of the expansion map ‰ if and only if R is regular and symmetric.

Proof. We see from (3.6.7) that the images of the variables a0; a1; : : : ; an; x; y
under ‰ are both regular and symmetric. Since the property to be regular and
symmetric is preserved under addition and multiplication, it follows that every
element of image.‰/ is regular and symmetric.



124 Bracket algebra and projective geometry

To prove the converse, let R be symmetric and regular of degree d . Then R
can be rewritten as

R.�1; 	1; : : : ; �n; 	n; x; y/ D .�1 : : : �n/
d � bR� 	1

�1

; : : : ;
	n

�n

; x; y
�
;

where bR is a symmetric function (in the usual sense) in the ratios �i

�i
. By The-

orem 1.1.1, we can write bR as a polynomial Q with coefficients in CŒx; y� in the
elementary symmetric functions �k.

�1

�1
; : : : ; �n

�n
/. MultiplyingQ by .�1 : : : �n/

d

and distributing factors of �1 : : : �n, we obtain a representation of R as a polyno-
mial function in the magnitudes �1 � � ��n�k.

�1

�1
; : : : ; �n

�n
/. By (3.6.7) this com-

pletes the proof of Proposition 3.6.4. G
In the following we give Gröbner bases illustrations of Lemma 3.6.3 and Propo-
sition 3.6.4 for the special case of a binary quadric

f .x; y/ D a2x
2 C 2a1xy C a0y

2 D �1�2 x
2 � .�1	2 C 	1�2/ xy C 	1	2 y

2:

In order to invert the expansion homomorphism

‰ W CŒa0; a1; a2; x; y� ! CŒ�1; 	1; �2; 	2; x; y�

we consider the ideal

I WD ha2 � �1�2; 2a1 C �1	2 C 	1�2; a0 � 	1	2i
in the polynomial ring CŒa0; a1; a2; �1; 	1; �2; 	2�. This ideal is the vanishing
ideal of the graph of the map ‰. We compute the Gröbner basis

G D ˚
�1�2 � a2; �1	2 C 	1�2 C 2a1; �1a0 C 	2

1�2 C 2	1a1;

�2
2	1 C 2�2a1 C 	2a2; �2

2a0 C 2�2	2a1 C 	2
2a2; 	1	2 � a0

�
of I with respect to the lexicographic order induced from �1 > �2 > 	1 >
	2 > a0 > a1 > a2. The injectivity of the expansion map ‰ (Lemma 3.6.3)
is equivalent to the fact that no polynomial from CŒa0; a1; a2� appears in the
Gröbner basis G. As an example for inverting ‰ we consider the polynomial

R D �2
1	

2
2 � 	1�1�2	2 C 	2

1�
2
2 2 CŒ�1; 	1; �2; 	2�

which is symmetric and regular of degree 2. Taking the normal form of R mod-
ulo G we obtain its unique preimage ‰�1.R/ D 4a2

1 � 3a0a2.

We now return to the general case, and we consider the action by linear substitu-
tion of the group GL.C2/ D f.cij /g on the polynomial ring CŒ�1; 	1; : : : ; �n; 	n;
x; y� in the homogenized roots. For any invertible 2�2-matrix .cij / the resulting
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transformation is described by the formulas

	i

�i

�
7!

 N	i

N�i

�
D


c22 �c12

�c21 c11

�

	i

�i

�
and



x
y

�
7!

 Nx

Ny
�

D 1

c11c22 � c12c21



c22 �c12

�c21 c11

�

x
y

�
: (3.6.8)

In order to characterize the relative invariants of this GL.C2/-action, we use the
bracket notation for all vectors in question. As in the previous sections we set

Œi j � WD �i	j � 	i�j and Œi u� WD �iy � 	ix

for i; j 2 f1; : : : ; ng. The subring generated by these brackets in CŒ�1; 	1; : : : ;
�n; 	n; x; y� is called the bracket ring. Every homogeneous bracket polynomial
R is a relative GL.C2/-invariant, which means that there exists an integer g 2 N
such that .cij / BR D det.cij /

g �R for all linear transformations .cij / 2 GL.C2/.
Also the converse is true.

Lemma 3.6.5. A homogeneous polynomial R in CŒ�1; 	1; : : : ; �n; 	n; x; y� is
a relative GL.C2/-invariant if and only if R is contained in the bracket ring.

Proof. If we restrict the linear action to the subgroup SL.C2/ of unimodular
matrices, then we obtain the familiar action by right multiplication on the generic
.nC 1/ � 2-matrix 0BB@

	1 �1

:::
:::

	n �n

x y

1CCA :
By the First Fundamental Theorem (Theorem 3.2.1), every invariant R.�1; 	1;
: : : ; 	n; x; y/ can be written as a polynomial in the brackets

Œ1 2�; Œ1 3�; : : : Œ1 n�; Œ2 3�; : : : Œn � 1 n�; Œ1u�; Œ2u�; : : : Œnu�: G

We are now ready to prove the main result of this section.

Theorem 3.6.6. The expansion map ‰ defines an isomorphism between the sub-
ring of covariants in CŒa0; a1; : : : ; an; x; y� and the subring of symmetric regular
bracket polynomials in CŒ�1; 	1; : : : ; �n; 	n; x; y�. If I.a0; a1; : : : ; an; x; y/ is a
covariant of degree d and order t , then ‰.I / is a symmetric bracket polynomial
with each of the indices 1; 2; : : : ; n occurring d times and the letter u occurring
t times.
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Proof. Let I be any polynomial in CŒa0; a1; : : : ; an; x; y�, and let R D ‰.I /
be its image in CŒ�1; 	1; : : : ; �n; 	n; x; y� under the expansion map. The expan-
sion map ‰ commutes with the GL.C2/-action on both rings, and hence I is a
covariant if and only if R is a bracket polynomial (cf. Lemma 3.6.5). By Propo-
sition 3.6.4, R is regular and symmetric. Conversely, every regular symmetric
bracket polynomial R is the representation R D ‰.I / in terms of homogenized
roots of some covariant I . The fact that ‰ restricts to an isomorphism follows
from Lemma 3.6.3.

Suppose now that the above I is a (homogeneous) covariant of degree d
and order t . Since ‰.x/ D x and ‰.y/ D y, also the bracket polynomial R
is homogeneous of order t in .x; y/. From formula (3.6.7) we see that, for
all i and k, the total degree of R in .�i ; 	i / equals the degree of I in ak . This
completes the proof of Theorem 3.6.6. G

Let us illustrate this representation theorem by some examples in the case
n D 3. We consider the seven bracket polynomials

R1 WD Œ1 2�Œ2u�Œ3u�;

R2 WD Œ1 2�Œ1 3�Œ2u�Œ3u�;

R3 WD Œ1u�C Œ2u�C Œ3u�;

R4 WD Œ1 2�Œ1 2�Œ1 3�Œ1 3�Œ2 3�Œ2 3�;

R5 WD Œ1u�Œ2u�Œ3u�;

R6 WD � Œ1 2�Œ1 2�Œ3u�Œ3u� � Œ1 3�Œ1 3�Œ2u�Œ2u� � Œ2 3�Œ2 3�Œ1u�Œ1u�

C 2Œ1 2�Œ3 1�Œ2u�Œ3u�C 2Œ2 3�Œ1 2�Œ1u�Œ3u�C 2Œ3 1�Œ2 3�Œ1u�Œ2u�;

R7 WD � 4Œ1 2�Œ1 2�Œ3u�Œ3u�C 4Œ1 2�Œ1 3�Œ2u�Œ3u� � 4Œ1 3�Œ1 3�Œ2u�Œ2u�:

The bracket polynomial R1 is neither symmetric nor regular, R2 is regular of
degree 2 but not symmetric, and R3 is symmetric but not regular. The bracket
polynomial R4 is symmetric and regular of degree 4: it is the root representation
of the discriminant D3 of the binary cubic f3.x; y/. R5 is symmetric and regu-
lar of degree 1: it equals the binary cubic f3.x; y/, here viewed as a covariant
of itself. R6 is symmetric and regular of degree 2: it equals (up to a multiplica-
tive constant) the root representation of the Hessian of H3 of the binary cubic
f3.x; y/. The last bracket polynomial R7 is regular but it appears to be not sym-
metric. However, we can see that R7 is symmetric if we use some syzygies.
Indeed, R7 equals the expansion of R6 in terms of standard tableaux (for the
order 1 	 2 	 3 	 u) and thus also represents the Hessian.

By suitably extending the notion of regularity, all results of this section gen-
eralize to several binary forms. Let f1.x; y/; : : : ; fr.x; y/ be binary forms of
degrees n1; : : : ; nr , and let 	.k/

i ; �
.k/
i , i D 1; 2; : : : ; nk , be the homogenized

roots of the k-th binary form fk.x; y/. The brackets are the polynomials in the
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algebra CŒ	
.k/
i ; �

.k/
i ; x; y� of homogenized roots of the form

Œi .k/ j .l/� WD �
.k/
i 	

.l/
j � �.l/

j 	
.k/
i or Œi .k/ u� WD �

.k/
i x � �.l/

j y:

Here a bracket polynomial R is symmetric if it is invariant under permuting the
roots of each form fk.x; y/ individually, and R is regular of degree .d1; : : : ; dr/
if each root of fk.x; y/ occurs with the same multiplicity dk . With this defini-
tion of symmetric regular bracket polynomials, the assertion of Theorem 3.6.6
extends to several binary forms.

It was stated in Sect. 1.3 that we wish to provide algorithmic tools for go-
ing back and forth between geometric statements and invariants/covariants. In
the case of binary forms this means that we would like to compute the covari-
ants for a given geometric property of binary forms, and vice versa. If such a
geometric property is presented as a bracket polynomial in the roots, then we
can use the Gröbner basis inversion of ‰ to compute the corresponding covari-
ant. Conversely, whenever we are given a covariant, then we can expand it into
homogenized roots and use Algorithm 3.2.8 for computing the corresponding
bracket polynomial. We close this section by giving examples for these transfor-
mations.

Consider two binary quadrics

f .x; y/ D a2x
2 C 2a1xy C a2

0y D .�1x � 	1y/.�2x � 	2y/ and

g.x; y/ D b2x
2 C 2b1xy C b2

0y D .�3x � 	3y/.�4x � 	4y/:

The polynomial

R WD Œ1 3�Œ1 4�Œ2 3�Œ2 4�

D .	1�3 � �1	3/.	1�4 � �1	4/.	2�3 � �2	3/.	2�4 � �2	4/

is symmetric and regular of degree .2; 2/. Clearly, R vanishes if and only if
f and g have a root in common. In order to find the coefficient representation
‰.R/ of the invariant R, we consider the ideal

ha0 � 	1	2; b0 � 	3	4; a2 � �1�2; b2 � �3�4; 2b1 C �3	4 C 	3�4;

2a1 C �1	2 C 	1�2i
of algebraic relations between the coefficients and the roots. We compute its
Gröbner basis G with respect to the purely lexicographic order induced from

	1 > �1 > 	2 > �2 > 	3 > �3 > 	4 > �4 > a0 > a1 > a2 > b0 > b1 > b2:

The normal form of R modulo the Gröbner basis G equals

‰�1.R/ D 4 a0a2b
2
1 C 4 a2

1b0b2 � 4 a0a1b1b2 � 4 a1a2b0b1

� 2 a0a2b0b2 C a2
0b

2
2 C a2

2b
2
0 :
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This is the expansion of the Sylvester resultant of the two quadrics f .x; y/ and
g.x; y/ in terms of their coefficients.

Next we illustrate the reverse direction for the bilinear invariant L2 D a0b2�
2a1b1 C a2b0 of f .x; y/ and g.x; y/. In order to “automatically” derive the
geometric interpretation of L2, we first compute its expansion

‰.L2/ D 2�1�2	3	4 C 2�3�4	1	2 � �1	2�3	4 � �1	2	3�4

� 	1�3	4�2 � 	1�2	3�4

in terms of homogenized roots. We apply Algorithm 3.2.8 to find the standard
tableaux expansion

‰.L2/ D �Œ1 2�Œ3 4�C 2 Œ1 3�Œ2 4�

D �.�1	2 � 	1�2/.�3	4 � 	3�4/C 2 .�1	3 � 	1�3/.�2	4 � 	2�4/:

Note also the alternative bracket representation

‰.L2/ D Œ1 3�Œ2 4�C Œ1 4�Œ2 3�

D .�1	3 � 	1�3/.�2	4 � 	2�4/C .�1	4 � 	1�4/.�2	3 � 	2�3/

which makes the symmetries (“1” $ “2” and “3” $ “4”) more transparent. As
the result we conclude that the joint invariant L2 of two binary quadrics vanishes
if and only if the projective cross-ratio

.1; 2I 3; 4/ D Œ1 3�Œ2 4�

Œ1 4�Œ2 3�

of the two pairs of roots is equal to �1.

Exercises

(1) Prove Proposition 3.6.1.
(2) Find a joint covariant of the binary cubic f3 and the binary quartic f4

which vanishes if and only if f3 and f4 have two or more roots in common.
(3) Define the catalecticant C2m of a binary form f2m.x; y/ of degree 2m, and

show that C2m vanishes if and only if f2m.x; y/ can be written as a sum of
m or less perfect powers.

(4) Let I be a covariant of degree d and order t of the binary form fn.x; y/ of
degree n. Prove that the index of I equals g D 1

2
.dn � t /.

(5) The bracket monomial Œ1 2�2Œ1 3�2Œ1 4�2Œ2 3�2Œ2 4�2Œ3 4�2 represents the
discriminant of the binary quartic

f4 D c4x
4 C 4c3x

3y C 6c2x
2y2 C 4c1xy

3 C c0y
4
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in terms of its homogenized roots. Write this invariant as a polynomial in
the coefficients c0; c1; c2; c3; c4.

(6) Express the catalecticant C4 of the binary quartic f4.x; y/ as a bracket
polynomial in the roots of f4.

3.7. Gordan’s finiteness theorem

We now come to the central problem of classical invariant theory: Does there
exist a finite set of generators for the ring of covariants? For binary forms the
affirmative answer to this question was given by Gordan (1868). Gordan’s finite-
ness result is undoubtedly one of the most important theorems of 19th-century
constructive algebra. Both Gordan’s original proof and the proof presented here
are algorithmic. They can in principle be used to compute fundamental systems
of (joint) covariants for binary forms of any degree.

Theorem 3.7.1 (Gordan’s finiteness theorem). There exists a finite set of co-
variants fI1; : : : ; Ikg of a binary form of degree n such that every covariant
I 2 CŒa0; a1; : : : ; an; x; y� can be expressed as a polynomial function I D
p.I1; : : : ; Ik/.

In order to prove Theorem 3.7.1, we need one lemma about finite group
actions on quotients of polynomial rings. Let 
 � GL.Cr/ be any finite matrix
group, and let I be an ideal in the polynomial ring CŒx1; : : : ; xr � which is fixed
under the action of 
 on I . In this situation, we get an induced action of 
 on
the quotient ring CŒx1; : : : ; xr �=I .

Lemma 3.7.2.
(a) Suppose that p1; : : : ; pm generate the invariant ring CŒx1; : : : ; xr �

� .
Then .CŒx1; : : : ; xr �=I /

� is generated by the images of p1; : : : ; pm under
the canonical surjection CŒx1; : : : ; xr � ! CŒx1; : : : ; xr �=I .

(b) The invariant ring .CŒx1; : : : ; xr �=I /
� is generated by the Reynolds images

.x
i1
1 x

i2
2 : : : x

ir
r /

� of all monomials xi1
1 x

i2
2 : : : x

ir
r with degree i1 Ci2 C : : :Cir

	 j
j.

Proof. We need to show that every element p 2 .CŒx1; : : : ; xr �=I /
� can be

written as a polynomial in (the images of) p1; : : : ; pm. The fact that p is invari-
ant means that p � p� 2 I . But the canonical preimage of p� is an invariant
in CŒx1; : : : ; xr � and thus is expressible as a polynomial in p1; : : : ; pm. Hence
p D p� C .p � p�/ 2 p� C I can be written as in terms of the residues
p1 C I; : : : ; pm C I , and (a) is proved. Statement (b) follows directly from (a)
and Noether’s degree bound (Theorem 2.1.4). G

As before in Sect. 2.5, we can apply Gröbner basis methods to compute
an optimal generating set, which is usually much smaller than the one given
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in Lemma 3.7.2 (b). Note, however, that in general we cannot obtain a Hiron-
aka decomposition because the invariant ring .CŒx1; : : : ; xr �=I /

� need not be
Cohen–Macaulay.

Proof of Theorem 3.7.1. The bracket subring in CŒ�1; 	1; : : : ; �n; 	n; x; y� is
denoted by

B WD C
�
Œ1 2�; Œ1 3�; : : : Œ1 n�; Œ2 3�; : : : Œn � 1 n�; Œ1u�; Œ2u�; : : : Œnu�

�
:

We write Breg for the subring of regular bracket polynomials in B, and we
write Breg;sym for the subring of symmetric regular bracket polynomials in Breg.
By Theorem 3.6.6, it suffices to show that Breg;sym is finitely generated as a
C-algebra.

A bracket monomial M 2 B is said to be minimally regular if it is regular
and none of its proper factors are regular. Let M denote the set of minimally
regular bracket monomials in B. By minimality, no two elements of M are
comparable in the divisibility order. Gordan’s lemma (Lemma 1.2.2) implies
that the set M is finite, say, M D fM1;M2; : : : ;Mrg. In other words, the Mi

are polynomials in the homogenized roots which generate the subring of regular
bracket polynomials:

Breg D CŒM1;M2; : : : ;Mr �:

The symmetric group Sn acts on the bracket ring B by permuting the letters “1”,
“2”, : : :, “n”. Since minimally regular monomials remain minimally regular after
permuting letters, the symmetric group Sn acts on the subring Breg of regular
bracket polynomials by permuting its generators M1;M2; : : : ;Mr .

In this situation we can apply Lemma 3.7.2 (a) in order to conclude that the
subring

Breg;sym D BSn
reg D CŒM1;M2; : : : ;Mr �

Sn .3:7:1/

of symmetric regular bracket polynomials is finitely generated. Lemma 3.7.2 (b)
implies that an explicit finite set of generators for this invariant ring is given
by the Reynolds images .M i1

1 M
i2
2 : : :M

ir
r /

� of all monomials M i1
1 M

i2
2 : : :M

ir
r

with degree i1 C i2 C : : : C ir 	 nŠ. This completes the proof of Gordan’s
finiteness theorem. G

The above proof is not entirely satisfactory because the invocation of Gor-
dan’s lemma appears to be a nonconstructive step. Kung and Rota (1984) suggest
two possible algorithms for computing a generating set M D fM1;M2; : : : ;Mrg
of the subring Breg of regular bracket polynomials. The first approach consists
in expressing the exponent vectors of all regular bracket monomials as the non-
negative solutions of a linear diophantine system. Using algorithms from integer
programming, we can compute a Hilbert basis for the monoid of all solutions;
see Sect. 1.4. The bracket monomials corresponding to these exponent vectors
then generate the ring Breg.
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The disadvantage of the general integer programming approach lies in the
fact that it ignores the specific combinatorial structure of our problem. The sec-
ond and more efficient algorithm is based on the following result of Kempe.

Theorem 3.7.3 (Kempe’s lemma). The ring Breg of regular bracket polynomials
is generated by all bracket monomials which are regular of degree 1 or 2.

The proof of Kempe’s lemma, given in sections 6.2 and 6.3 of Kung and
Rota (1984), is based on the circular straightening algorithm. In the spirit of
Sect. 3.1 we will interpret circular straightening in terms of Gröbner bases. This
leads to a new proof of Theorem 3.7.3, based on Proposition 3.7.4 and Lemma
3.7.5 below.

Consider the set Sn;2 of straightening syzygies in CŒƒ.n; 2/�,

Pi1i2i3i4 WD Œi1i3�Œi2i4�� Œi1i2�Œi3i4�� Œi1i4�Œi2i3� .1 	 i1 < i2 < i3 < i4 	 n/:

Let �circ be any monomial order on CŒƒ.n; 2/� which selects the underlined
initial monomial for each syzygy Pi1i2i3i4 . Establishing the existence of such a
monomial order is a nontrivial exercise in solving linear systems of inequalities.
It can also be deduced from the proof of Kung and Rota (1984: lemma 6.1) in
conjunction with the main theorem in Reeves and Sturmfels (1993).

Proposition 3.7.4. The set Sn;2 is a Gröbner basis of the syzygy ideal with
respect to �circ.

First proof. Suppose that n is the smallest positive integer for which Proposition
3.7.4 is false. By the Buchberger criterion (Buchberger 1985: theorem 6.2), there
exist two polynomials Pi1i2i3i4 and Pj1j2j3j4

whose S-polynomial with respect
to �circ does not reduce to zero. By Exercise 1.2. (6), the initial monomials of
Pi1i2i3i4 and Pj1j2j3j4

cannot be relatively prime, and therefore the set of in-
dices fi1; i2; i3; i4; j1; j2; j3; j4g has cardinality at most seven. After relabeling
we assume that fi1; i2; i3; i4; j1; j2; j3; j4g � f1; 2; : : : ; 7g. Our minimality as-
sumption implies n 	 7. It is clear that n � 5 because there are no syzygies for
n 	 3 and for n D 4 the syzygy ideal I4;2 D hŒ13�Œ24� � Œ12�Œ34�C Œ14�Œ23�i is
principal. It therefore suffices to verify the Gröbner basis property in the three
cases n D 5; 6; 7. This can be done easily by computer. G

Here is an alternative and more conceptual proof, based on enumerative
combinatorics.

Second proof. Let init�.In;2/ denote the initial ideal of In;2 with respect to the
standard tableaux order in Sect. 3.1, and let init�circ.In;2/ denote the initial ideal
with respect to the circular order �circ. Let J denote the ideal in CŒƒ.n; 2/�
generated by all initial monomials init�circ.Pi1i2i3i4/ D Œi1i3�Œi2i4�, where 1 	
i1 < i2 < i3 < i4 	 n. We need to show that the inclusion J � init�circ.In;2/ is
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an equality. This will be done using Proposition 7.3 of Sturmfels and Zelevinsky
(1992). In order to apply this result, we need to verify that the monomial order
�circ is compatible with the set Sn;2.

Every square-free monomial ideal can be identified with a simplicial complex
(Stanley 1983: section II.1). Let �n and �0

n be the simplicial complexes on
ƒ.n; 2/ such that

J D I�n
and init�.In;2/ D I�0

n
: .3:7:2/

Now, by Exercise 3.1.5, the complex �0
n is isomorphic to the chain complex of

a poset on ƒ.n; 2/. This poset is isomorphic to the graded poset J.Œn� 2�� Œ2�/,
consisting of the order ideals in the product of chains Œn � 2� � Œ2�. It follows
from Stanley (1986: example 3.5.5) that �n is a pure .2n � 4/-dimensional
complex with 1

n�1

�
2n�4
n�2

�
maximal faces. By Theorem 3.1.7, this number equals

the degree of the syzygy ideal In;2.
Every maximal face of the complex �n contains the set fŒ1 2�; Œ2 3�; : : : ;

Œn � 1 n�; Œn 1�g. Hence �n is the free join of an .n � 1/-simplex with a cer-
tain simplicial complex †n of dimension n � 4 on the set ƒ n fŒ1 2�; Œ2 3�; : : : ;
Œn � 1 n�; Œn 1�g. Identify this set with the set of diagonals in a regular planar
n-gon. The faces of the complex †n are precisely the sets of noncrossing diag-
onals. It is known (Lee 1989) that †n is the boundary complex of a simplical
.n� 3/-polytope Qn. The polar to the polytope Qn is the famous associahedron
or Stasheff polytope. We conclude that �n is a pure .2n � 4/-dimensional com-
plex. By Lee (1989: theorem 3), the number of maximal faces of �n equals the
Catalan numbers

f2n�4.�n/ D 1

n � 1


2n � 4
n � 2

�
D f2n�4.�

0
n/: .3:7:3/

We now apply proposition 7.3 of Sturmfels and Zelevinsky (1992) to complete
our proof. G

As in Sect. 3.6, we work in the polynomial ring CŒƒ.n C 1; 2/�, where we
identify the index nC1 with the letter x. A bracket monomial in CŒƒ.nC1; 2/�
is called cyclically standard if it is standard with respect to the Gröbner basis
in Proposition 3.7.4. We call a bracket monomial elemental if it is minimally
regular and cyclically standard. For instance, if n D 5 then the bracket mono-
mials Œ1 2�Œ3 4�Œ5x�, Œ1 2�Œ3x�Œ4x�Œ5x�, and Œ1 2�Œ2 3�Œ3 4�Œ4 5�Œ5 1� are elemental.
It follows from Proposition 3.7.4 that the elemental bracket monomials gener-
ate Breg as a C-algebra. Therefore Theorem 3.7.3 is implied by the following
lemma.

Lemma 3.7.5. Every elemental bracket monomial in Breg is regular of degree
at most 2.
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Proof. Suppose M is elemental and regular of degree d . By the second proof of
Proposition 3.7.4, the brackets occurring in M can be extended to a triangulation
of the .nC1/-gon having vertices 1; 2; : : : ; n;x. We now use the elementary fact
that (the edge graph of) any triangulation of a regular .n C 1/-gon has at least
two 2-valent vertices. This implies that at least one of the indices 1; 2; : : : ; n
occurs in at most two distinct brackets of M . Therefore M is regular of degree
at most 2. G

Our results suggest the following algorithm for computing a fundamental
system of covariants fI1; : : : ; Ikg of a binary n-form. First compile a list of all
elemental bracket monomials, and then apply Lemma 3.7.2 (b) to this list to get
a presentation as in (3.7.1).

Example 3.7.6 (Fundamental system of covariants for the binary cubic). For
n D 3 there are precisely four elemental bracket monomials:

A WD Œ1 2�Œ2 3�Œ3 1�; B WD Œ1 2�Œ3x�; C WD Œ2 3�Œ1x�; D WD Œ1x�Œ2x�Œ3x�:

By Lemma 3.7.1, the ring of covariants is generated by the finite set˚
.AiBjC kDl/� W i; j; k; l 2 N; i C j C k C l 	 6

�
; .3:7:4/

where “�” denotes the Reynolds operator for the action of the symmetric group
S3 on the bracket algebra. For instance,

.B2C 4/� D 1
3

�
Œ1 2�2Œ1 3�4Œ2x�4Œ3x�2 C Œ2 1�2Œ2 3�4Œ1x�4Œ3x�2

C Œ3 1�2Œ3 2�4Œ1x�4Œ2x�2
	
:

The set (3.7.4) is by no means a minimal generating set for the covariant ring.
To reduce its size, we first observe that both A2 D .A2/� and D D D� are
covariants already. For, the bracket monomial 1

27
A2 equals the discriminant,

and D is the form itself. By Proposition 2.1.2 (c), we have .AiBjC kDl/� D
Ai�i 0

Dl � .Ai 0
BjC k/�, where i 0 D 1 if i is odd and i 0 D 0 if i is even. We

conclude that the set˚
A2;D

�[˚.AiBjC k/� W i; j; k 2 N; i 2 f0; 1g; i C j C k 	 6
�

.3:7:5/

suffices to generate all covariants. By explicitly evaluating all covariants in
(3.7.5), we can show that the following four covariants are sufficient.

Proposition 3.7.7. A minimal generating set for the covariants of the binary
cubic consists of the following four covariants:

f D a3x
3 C 3a2x

2y C 3a1xy
2 C a0y

3, the form itself;
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D D a2
3a

2
0 � 6a3a0a1a2 � 3a2

1a
2
2 C 4a3

2a0 C 4a3
1a3, the discriminant;

H D .a3a1 � a2
2/x

2 C .a3a0 � a2a1/yx C .a2a0 � a2
1/y

2, the Hessian; and
T D .a2

3a0 �3a3a2a1 C2a3
2/x

3 C.3a2
2a1 C3a3a2a0 �6a3a

2
1/yx

2 C.�3a2a
2
1 C

6a2
2a0 � 3a1a3a0/y

2x C .3a1a2a0 � 2a3
1 � a2

0a3/y
3, the Jacobian of the

form and the Hessian.

The unique minimal syzygy among these covariants equals f 2D � T 2 �
4H 3 D 0.

Proof. We need to show that each covariant in (3.7.5) can be expressed as a
polynomial in f;D;H and T . Using computer algebra, we find the following
presentations:

.B2/� D .C 2/� D �6H; .BC/� D 3H; .BC 2/� D 9
2
T; .B2C/� D �9

2
T;

.B4/� D .C 4/� D 54H 2; .BC 3/� D .B3C/ D �27H 2; .B2C 2/� D 27H 2;

.BC 4/� D .B3C 2/� D �81
2
HT; .B2C 3/� D .B4C/� D 81

2
HT;

.BC 5/� D .B5C/� D 27
2
J 2 C 297H 3;

.B2C 4/� D .B4C 2/� D 27
2
J 2 � 189H 3; .B3C 3/� D �27J 2 C 135H 3;

.AB3/� D .AC 3/� D 27Df; .AB2C/� D .ABC 2/� D �27
2
Df;

.AB5/� D .AC 5/� D �405DHf; .AB4C/� D .ABC 4/� D �405
2
DHf;

.AB2C 3/� D .AB3C 2/ D �81
2
DHf:

The Reynolds images of all other bracket monomials AiBjC k in (3.7.5) are
zero.

It remains to be shown that the ideal of algebraic relations among f , D,
H and T is the principal ideal generated by f 2D � T 2 � 4H 3. The validity
of this syzygy is easily checked, and since f 2D � T 2 � 4H 3 is an irreducible
polynomial, it suffices to show that f , D and H are algebraically independent.
But this follows from the fact that their lexicographic initial monomials a3x

3,
a2

3a
2
0 and a3a1x

2 are algebraically independent. G

In closing, we briefly mention the known results for binary forms of higher
degree n. Explicit fundamental systems of invariants and covariants are known
only for n 	 8. For details see Meyer (1892), Springer (1977: section 3.4),
and Dixmier and Lazard (1988). However, as in the case of finite groups, it is
possible for general n to determine a priori the Hilbert series of the invariant
and covariant ring of a binary n-form. This result is based on the representation
theory of GL.C2/. It will be presented in Sect. 4.2.
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Exercises

(1) Prove that every invariant of the binary quadric f2.x; y/ is a polynomial
function in the discriminant D2 D a0a2 � a2

1
. Prove the same result for the

binary cubic.
(2) * Let fI1; I2; : : : ; Ikg be a minimal generating set for the joint covariants

of a binary cubic f3.x; y/ and a binary quartic f4.x; y/. Find an upper
bound for the degrees of the fundamental covariants Ij .

(3) Determine the Hilbert function of the ring of covariants of a binary cubic.
(4) * Find finite generating set for the invariants and covariants of a binary

quartic f4.x; y/. Write each element in your generating set as a bracket
polynomial in the roots. (Hint: Use the list 3.4.4 in Springer (1977).)



4 Invariants of the
general linear group

This chapter deals with methods for computing the invariants of an arbitrary
polynomial representation of the general linear group GL.Cn/. The main al-
gorithm, to be presented in Sect. 4.6, is derived from Hilbert (1893). We will
discuss Hilbert’s algorithm from the point of view of Gröbner bases theory. This
chapter is less elementary than the previous three. While most of the presenta-
tion is self-contained, familiarity with basic notions of commutative algebra and
representation theory will be assumed.

4.1. Representation theory of the general linear group

Throughout this chapter we let 
 D GL.Cn/ denote the group of invertible
complex n�n-matrices. This section provides a crash course in the representation
theory of 
 . All stated results are well known, and we will omit most of the
proofs. This theory is essentially due to I. Schur, with extensions by H. Weyl
and A. Young. A comprehensive introduction with many geometric applications
can be found in Fulton and Harris (1991).

A representation of 
 (or 
-module) is a pair .V; �/, where V is a C-vector
space and

� W 
 ! GL.V /;

A D .aij /1�i; j �n 7! �.A/ D �
�kl.A/

�
1�k; l�N

.4:1:1/

is a group homomorphism. The dimension N of the representation .V; �/ is the
dimension of the vector space V . We say that .V; �/ is a polynomial represen-
tation (of degree d ) if the matrix entries �kl.A/ D �kl.a11; a12; : : : ; ann/ are
polynomial functions (homogeneous of degree d ). If the action � is understood,
then we sometimes write A B v instead of �.A/ � v, where v 2 V and A 2 
 .

Examples of representations (4.1.1).

(a) The trivial representation: V D Cn, .N D n; d D 1/.
(b) The determinant: V D C1, � D det, .N D 1; d D n/.
(c) The action � by left multiplication on the space of n � s-matrices

V D Cn�s D Cn ˚ Cn ˚ : : :˚ Cn„ ƒ‚ …
s times

: .N D s � n; d D 1/

(d) The adjoint representation: V D Cn�n, � D the action by conjugation:
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A B M D AMA�1. This is not a polynomial representation but a rational
representation, i.e., the �kl.A/ are rational functions. Note that det.A/n�1 is
a common denominator for the rational functions �kl.A/.

The following result explains why we restrict ourselves to polynomial
representation.

Proposition 4.1.2. Given any rational representation � W 
 ! GL.V /, there
exists an integer k and polynomial representation �0 W 
 ! GL.V / such that
� D �0 � det�k .

From now on all representations are assumed to be polynomial represen-
tations of 
 .

(e) The d -th symmetric power representation: V D Sd Cn D the space of ho-
mogeneous polynomials of degree d in x1; x2; : : : ; xn, � D action by lin-
ear substitution, N D �

nCd�1
d

�
. For instance, for d D 3, n D 2 we have

S3C2 D binary cubics D spanfx3; x2y; xy2; y3g ' C4, and � is the group
homomorphism�
a11 a12

a21 a22

	

7!

0BBB@
a3

11 a2
11a12 a11a

2
12 a3

12

3a2
11a21 a2

11a22 C 2a11a12a21 2a11a12a22 C a12a
2
21 3a2

12a22

3a11a
2
21 2a11a21a22 C a12a

2
21 a11a

2
22 C 2a12a21a22 3a12a

2
22

a3
21 a2

21a22 a21a
2
22 a3

22

1CCCA :
(f) The d -th exterior power representation: V D V

d Cn D the space of alter-
nating d -forms on Cn. A basis of V is fei1 ^ : : :^ eid W 1 	 i1 < : : : < id 	
ng. Here N D �

n
d

�
and �.A/ D V

d A, the d -th compound matrix whose
entries are the d � d -minors of A.

(g) The d -th tensor power representation:

V D N
d Cn D Cn ˝ Cn ˝ : : :˝ Cn„ ƒ‚ …

d times

: .N D nd /

(h) Building new representations from old ones: For any two 
-representations
.V; �/ and .W; �/, we can form their direct sum .V ˚ W; � ˚ �/ and their
tensor product .V ˝W; �˝�/. If fv1; : : : ; vN g and fw1; : : : ; wM g are bases
of V and W respectively, then fv1; : : : ; vN ; w1; : : : ; wM g is a basis of V ˚
W , and fvi ˝ wj W 1 	 i 	 N; 1 	 j 	 M g is a basis of V ˝W . The two
new representations are defined by

.�˚ �/.A/ W
(
vi 7! �.A/vi

wj 7! �.A/wj

.�˝ �/.A/ W vi ˝ wj 7! .�.A/vi /˝ .�.A/wj /:

.4:1:2/
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A main tool for studying representations of the general linear group is the
theory of symmetric polynomials. We write CŒA� D CŒa11; a12; : : : ; ann� for
the ring of polynomial functions on n � n-matrices. We consider the action
of 
 on CŒA� via the adjoint representation (d). Let CŒA�� denote the invari-
ant ring. The character of a polynomial representation .V; �/ is the polynomial
tr
.A/ WD trace.�.A// in CŒA�. Since the trace is invariant under conjugation,
we have tr
.B

�1AB/ D tr
.A/.

Remark 4.1.3. For every polynomial representation .V; �/, the character tr
 lies
in CŒA�� .

Let t1; t2; : : : ; tn be new variables representing the eigenvalues of a generic
n�n-matrix A. We write diag.t1; t2; : : : ; tn/ for the corresponding diagonal ma-
trix. Every symmetric polynomial in t1; t2; : : : ; tn can be written as an invariant
polynomial in the entries of A, and vice versa, by Exercise 1.3. (4).

Lemma 4.1.4. The map f 7! f
�
diag.t1; t2; : : : ; tn/

�
defines an isomorphism

between the invariant ring CŒA�� and the ring of symmetric polynomials CŒt1; t2;
: : : ; tn�

Sn . The image of the character tr
.A/ under this isomorphism,

f
.t1; t2; : : : ; tn/ WD trace
�
�.diag.t1; t2; : : : ; tn//

�
; .4:1:3/

is called the formal character of the representation .V; �/. Note that the dimen-
sion of V can easily be read off from the formal character: dimV D N D
f
.1; 1; : : : ; 1/.

Examples 4.1.5. The formal characters of the representations in Examples 4.1.1
are:

(a) V D Cn, f
 D t1 C t2 C : : :C tn.
(b) V D C1, f
 D t1t2 : : : tn.
(c) V D Cn�s , f
 D s.t1 C t2 C : : :C tn/.
(e) V D Sd Cn, f
 D the sum of all degree d monomials in t1; : : : ; tn (the d -th

complete symmetric polynomial); for instance, for V D S2C3 we have f
 D
t31 C t21 t2 C t1t

2
2 C t32 .

(f) V D V
d Cn, f
 D the d -th elementary symmetric polynomial in t1; t2;

: : : ; tn.
(g) V D N

d Cn, f
 D .t1 C t2 C : : :C tn/
d .

Lemma 4.1.6. The formal characters of the direct sum and the tensor product
satisfy the relations f
˚� D f
 C f� and f
˝� D f
 � f� .

Proof. This follows immediately from the rules for traces of matrices: trace.A
˚ B/ D trace.A/C trace.B/ and trace.A˝ B/ D trace.A/ � trace.B/. G

A submodule of a representation .V; �/ is a pair .W; �jW /, where W is a
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-invariant subspace of V and �jW is the restriction of � to W . We say that
.V; �/ is irreducible if V contains no proper 
-invariant subspace. Otherwise it
is reducible. For instance, the representations Sd Cn and

V
d Cn are irreducible,

while the representation
N

d Cn is reducible for d; n � 2.

Theorem 4.1.7 (Schur). Every 
-representation is a direct sum of irreducible
representation, and it is uniquely determined by its formal character (up to iso-
morphism).

A standard problem is to decompose the tensor product of two irreducible
representations into irreducibles. Only in certain extreme cases it can happen
that such a tensor product is again irreducible. For instance, for n D 2 the rep-
resentation W.2;1/C

2 WD V
2 C2 ˝ C2 is irreducible. It has the formal character

f
 D t1t2.t1 C t2/.

Example 4.1.8 (Decomposition into irreducible representations).
(a) Every tensor in

N
2 Cn can be written uniquely as a sum of a symmetric

tensor and an antisymmetric tensor. For instance, we have the decompositionN
2 C3 D S2C3 ˚V

2 C3

.t1 C t2 C t2/
3 D .t21 C t22 C t23 C t1t2 C t1t3 C t2t3/C .t1t2 C t1t3 C t2t3/

(b) The statement in (a) is false for tensors in
N

d Cn with d � 3. For instance,N
3 C2 D S3C2 ˚W.2;1/C

2 ˚W.2;1/C
2

.t1 C t2/
3 D .t31 C t21 t2 C t1t

2
2 C t32 /C .t21 t2 C t1t

2
2 /C .t21 t2 C t1t

2
2 /

The Grothendieck ring M.
/ is the Z-algebra generated by all (isomorphism
classes of) 
-representations, having addition ˚ and multiplication ˝. Theorem
4.1.7 states in other words that the formal character defines a monomorphism
from the Grothendieck ring M.
/ into ZŒt1; : : : ; tn�

Sn , the ring of symmetric
polynomials with integer coefficients. By Theorem 1.1.1 and Example 4.1.5 (f),
this map is in fact an isomorphism.

Corollary 4.1.9. The Grothendieck ring M.
/ is isomorphic to ZŒt1; : : : ; tn�
Sn .

We will now describe the irreducible 
-representations. First note that ev-
ery irreducible polynomial 
-representation is homogeneous of some degree d
(Exercise 1 below). The following basic fact is also due to Schur.

Proposition 4.1.10. Every irreducible 
-representation of degree d is a sub-
module of

N
d Cn.

Let � D .�1; �2; : : : ; �n/ be a partition of the integer d . The Ferrers diagram
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of � is the set f.i; j / 2 Z2 W 1 	 i 	 n; 1 	 j 	 �ig. A standard Young tableau
of shape � (for short: SYT �) is a filling T of the Ferrers diagram of � with the
integers 1; 2; : : : ; d (without repetitions) such that the rows and the columns are
increasing.

For instance, the partition � D .3; 3; 1/ of d D 7 has the Ferrers diagram

:

Examples of SYT�’s corresponding to this partition are

1 2 3
4 5 6
7

;
1 2 3
4 5 7
6

;
1 2 3
4 6 7
5

;
1 2 4
3 5 6
7

; : : : ;
1 4 6
2 5 7
3

:

The tableau
1 3 6
2 4 5
7

is not a SYT� because its last column is not increasing.

With each SYT� T we associate an idempotent linear map cT W Nd Cn !N
d Cn. This map is called the Young symmetrizer of T , and it is defined as

follows. Let rowstb.T / denote the subgroup of permutations of f1; 2; : : : ; dg
which preserve the set of entries in each row of T . Similarly, let colstb.T / denote
the subgroup of permutations of f1; 2; : : : ; dg which preserve the entries in each
column of T . We define cT by giving its image for decomposable tensors:

cT W v1 ˝ v2 ˝ � � � ˝ vd

7! P
�2colstb.T /

P
�2rowstb.T /

.sign �/ � v��.1/ ˝ v��.2/ ˝ : : :˝ v��.d/:

Let WT Cn denote the image of the Young symmetrizer cT . Thus WT Cn is the
subspace of all tensors in

N
d Cn which are symmetric with respect to the rows

of T and antisymmetric with respect to the columns of T . The 
-representation
WT Cn is called the Weyl module associated with the SYT� T . If T and T 0 are
SYT of the same shape �, then WT and WT 0 are isomorphic 
-modules, and we
sometimes write W� WD WT ' WT 0 .

Theorem 4.1.11. The Weyl modules WT Cn are precisely the irreducible 
-
modules of degree d . The Young symmetrizers cT define an isomorphism of

-modules N

d

Cn ' L
�`d

L
T SYT�

WT Cn: .4:1:4/

The first direct sum in (4.1.4) is over all partitions � of d , and the sec-
ond direct sum is over all standard Young tableaux T of shape �. The Young
symmetrizer cT is the projection from

N
d Cn onto WT Cn. For d D 2 the
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decomposition (4.1.4) looks like

c 1
2

˚ c1 2 W N2 Cn ! W1 2Cn ˚W 1
2
Cn ' S2Cn ˚V

2 Cn

v1 ˝ v2 ! .v1 ˝ v2 C v2 ˝ v1/C .v1 ˝ v2 � v2 ˝ v1/:
.4:1:5/

For d D 3 there are three different partitions and four different SYT’s. We haveN
3 Cn ' W 1

2
3

Cn ˚W 1 2
3

Cn ˚W 1 3
2

Cn ˚W1 2 3Cn: .4:1:6/

As is seen in Example 4.1.8 (b), the last summand in (4.1.6) is zero if n D 2.
We now construct an explicit basis for the Weyl module WT Cn. As a conse-

quence we will obtain a description of the formal character of WT Cn. A semi-
standard Young tableau of shape � ` d (for short: SSYT �) is a filling U of the
Ferrers diagram of � with the integers 1; 2; : : : ; n (repetition is allowed!) such
that the rows of U are weakly increasing and the columns of U are strictly in-
creasing. A standard bitableau of shape � ` d is a pair .T; U / where T is a
SYT� and U is a SSYT�. With each standard bitableau .T; U / we associate a
basis vector of

N
d Cn as follows. Set e.T;U / WD ei1 ˝ ei2 ˝ : : : ˝ eid , where

ij 2 Œn� is in the cell of U which is occupied by j 2 Œd � in T .

Theorem 4.1.12. The set fcT .e.T;U // W .T; U / standard bitableaug is a basis forN
d Cn.

The proof of Theorem 4.1.12 is based on two important techniques in alge-
braic combinatorics. To show that the set in question is spanning, one uses the
straightening law for bitableaux in Désarmenien et al. (1978). This is a gener-
alization of the straightening law for bracket monomials which was discussed
in Sect. 3.1. To show linear independence, it suffices to show that the number
of standard bitableaux equals nd . This can be done using the Knuth–Robinson–
Schensted correspondence (Knuth 1970).

Example 4.1.13 (d D 3, n D 2). From Theorem 4.1.12 we get the following
explicit formulas for the isomorphism in Example 4.1.8 (b) or (4.1.6):

c1 2 3.e1 2 3; 1 1 1/ D c1 2 3.e1 ˝ e1 ˝ e1/ D 6 � e1 ˝ e1 ˝ e1

c1 2 3.e1 2 3; 1 1 2/ D c1 2 3.e1 ˝ e1 ˝ e2/

D 2.e1 ˝ e1 ˝ e2 C e1 ˝ e2 ˝ e1 C e2 ˝ e1 ˝ e1/

c1 2 3.e1 2 3; 1 2 2/ D c1 2 3.e1 ˝ e2 ˝ e2/

D 2.e1 ˝ e2 ˝ e2 C e2 ˝ e1 ˝ e2 C e2 ˝ e2 ˝ e1/

c1 2 3.e1 2 3; 2 2 2/ D c1 2 3.e2 ˝ e2 ˝ e2/ D 6e2 ˝ e2 ˝ e2

c 1 3
2
.e 1 3 1 1

2 2
/ D c 1 3

2
.e1 ˝ e2 ˝ e1/ D 2e1 ˝ e2 ˝ e1 � 2e2 ˝ e1 ˝ e1

c 1 3
2
.e 1 3 1 2

2 2
/ D c 1 3

2
.e1 ˝ e2 ˝ e2/ D e1 ˝ e2 ˝ e2 � e2 ˝ e1 ˝ e2
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c 1 2
3
.e 1 2 1 1

3 2
/ D c 1 2

3
.e1 ˝ e1 ˝ e2/ D 2e1 ˝ e1 ˝ e2 � 2e2 ˝ e1 ˝ e1

c 1 2
3
.e 1 2 1 2

3 2
/ D c 1 2

3
.e1 ˝ e2 ˝ e2/ D e1 ˝ e2 ˝ e2 � e2 ˝ e2 ˝ e1

Theorems 4.1.11 and 4.1.12 have a number of important consequences.

Corollary 4.1.14. Let d; n be positive integers and � a partition of d .

(1) The set fcT .e.T;U // W U SSYT�g is a basis for the Weyl module WT Cn.
(2) The formal character of the Weyl module W�Cn ' WT Cn equals

s�.t1; t2; : : : ; tn/ D P
U SSYT�

nQ
iD1

t#i’s in U
i : .4:1:7/

The monomial
Qn

iD1 t
#i’s in U
i is called the weight of the SSYT� U . It turns

out that the formal character in (4.1.7) is equal to the Schur polynomial s� D
s�.t1; : : : ; tn/ as defined in Sect. 1.1. This result is a nontrivial identity in the
theory of symmetric polynomials; for the proof and many details we refer to
Macdonald (1979).

Example 4.1.15. We consider the case d D 6, n D 3, � D .4; 2/. There are
precisely 27 SSYT�. Here is a complete list of all of them:

1 1 1 1
2 2

1 1 1 1
2 3

1 1 1 1
3 3

1 1 1 2
2 2

1 1 1 2
2 3

1 1 1 2
3 3

1 1 1 3
2 2

1 1 1 3
2 3

1 1 1 3
3 3

1 1 2 2
2 2

1 1 2 2
2 3

1 1 2 2
3 3

1 1 2 3
2 2

1 1 2 3
2 3

1 1 2 3
3 3

1 1 3 3
2 2

1 1 3 3
2 3

1 1 3 3
3 3

1 2 2 2
2 3

1 2 2 2
3 3

1 2 2 3
2 3

1 2 2 3
3 3

1 2 3 3
2 3

1 2 3 3
3 3

2 2 2 2
3 3

2 2 2 3
3 3

2 2 3 3
3 3

We form the sum of the weights of all 27 SSYT� (in the above order):

s.4;2/ D t41 t
2
2 C t41 t2t3 C t41 t

2
3 C t31 t

3
2 C t31 t

2
2 t3 C t31 t2t

2
3 C t31 t

2
2 t3 C t31 t2t

2
3 C t31 t

3
3

C t21 t
4
2 C t21 t

3
2 t3 C t21 t

2
2 t

2
3 C t21 t

3
2 t3 C t21 t

2
2 t

2
3 C t21 t2t

3
3 C t21 t

2
2 t

2
3 C t21 t2t

3
3

C t21 t
4
3 C t1t

4
2 t3 C t1t

3
2 t

2
3 C t1t

3
2 t

2
3 C t1t

2
2 t

3
3 C t1t

2
2 t

3
3 C t1t2t

4
3 C t42 t

2
3

C t32 t
3
3 C t22 t

4
3

D .t21 C t1t2 C t22 /.t
2
1 C t1t3 C t23 /.t

2
2 C t2t3 C t23 /:
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This Schur polynomial is the formal character of the 27-dimensional Weyl mod-
ule W.4;2/C

3. By the above remarks, it satisfies the identity

s.4;2/ D

ˇ̌̌̌
ˇ̌̌t

4C2
1 t4C2

2 t4C2
3

t2C1
1 t2C1

2 t2C1
3

t0C0
1 t0C0

2 t0C0
3

ˇ̌̌̌
ˇ̌̌

ˇ̌̌̌
ˇ̌̌t21 t22 t23
t11 t12 t13
1 1 1

ˇ̌̌̌
ˇ̌̌

:

Any partition � ` d can be encoded into a monomial !.�/ WD t
�1

1 t
�2

2 � � � t�n
n

as follows: the exponent 	i is the cardinality of the i -th column in the Ferrers
diagram of �. Equivalently, 	i D # fj W �j � ig. It is easy to see that !.�/ is the
lexicographically leading monomial of the Schur polynomial s�.t1; t2; : : : ; tn/.
This monomial uniquely characterizes the partition � and hence the Weyl module
W�Cn. We call !.�/ the highest weight of W�Cn. For instance, t41 t

2
2 is the

highest weight of the Weyl module in Example 4.1.15.
A main problem in representation theory is to decompose a given represen-

tation .�; V / into a direct sum of irreducible representations

V ' L
�

c�W�Cn: .4:1:8/

A generally satisfactory solution to this problem is the list of all nonnegative
integers c�, which are called multiplicities. Once the multiplicities are known,
then one may (or may not) ask for a more explicit description of the isomorphism
in (4.1.8).

Our discussion shows that the problem of determining the multiplicities c�

is a problem in the theory of symmetric polynomials. The Schur polynomials s�
are a Z-basis for the Grothendieck ring M.
/ ' ZŒt1; : : : ; tn�

Sn . We need to
find the coefficients in the expansion

f
 D P
c� s�; .4:1:9/

where f
 is the formal character of the given representation .�; V /. This can be
done using the following subduction algorithm (cf. Algorithm 3.2.8):

Algorithm 4.1.16 (Expanding a symmetric polynomial into Schur polynomials).
Input: A symmetric polynomial f 2 ZŒt1; : : : ; tn�

Sn homogeneous of degree d .
Output: The unique representation f D P

�`d c� s� in terms of Schur polyno-
mials.

1. If f D 0, then output the zero polynomial.
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2. Let t�1

1 t
�2

2 � � � t�n
n be the lexicographically leading monomial of f , let � ` d

be the unique partition with !.�/ D t
�1

1 t
�2

2 � � � t�n
n , and let c be the coefficient

of !.�/ in f .
3. Compute the Schur polynomial s� (e.g., using the formula in Sect. 1.1).
4. Output the summand c � s�, replace f by f � c � s�, and return to step 1.

A much more efficient version of this algorithm and other conversion al-
gorithms for symmetric polynomials have been implemented in J. Stembridge’s
MAPLE package “SF” (available at no cost from J. Stembridge, University of
Michigan, Ann Arbor).

Example 4.1.17. Let S3S2C3 denote the space of polynomial functions of de-
gree 3 in the coefficients of a ternary quadric

a200 x
2 C a020 y

2 C a002 ´
2 C a110 xy C a101 x´C a011 y´: .4:1:10/

A basis is given by the set of monomials ai1
200a

i2
020a

i3
002a

j3

110a
j2

101a
j1

011, where i1 C
i2 Ci3 Cj1 Cj2 Cj3 D 3 in nonnegative integers. The action of 
 D GL.C3/ by
linear substitution on .x; y; ´/ gives rise to a linear action � on S3S2C3. Thus

S3S2C3 is a 
-module of dimension 56 D �.2C3�1
2 /C3�1

3

�
. Its formal character

equals

f
.t1; t2; t3/ D P
i1Ci2Ci3Cj1Cj2Cj3D3

t
2i1Cj2Cj3

1 t
j1C2i2Cj3

2 t
j1Cj2C2i3
3 : .4:1:11/

Using Algorithm 4.1.6 we obtain the following decomposition into Schur poly-
nomials

f
.t1; t2; t3/ D �
t61 C lower terms/C �

t41 t
2
2 C lower terms/C t21 t

2
2 t

2
3

D s.6/.t1; t2; t3/C s.4;2/.t1; t2; t3/C s.3;3;3/.t1; t2; t3/:
.4:1:12/

Thus S3S2C3 splits up as the direct sum of three irreducible 
-modules. The
first one (with highest weight t61 ) has dimension 28 and is isomorphic to S6C3.
The second one (with highest weight t41 t

2
2 ) has dimension 27 and is isomorphic

to the Weyl module in Example 4.1.15. The third and most interesting piece is
the 1-dimensional representation � W A 7! det.A/2, or, equivalently,

W.2;2;2/C
3 ' V

3 C3 ˝V
3 C3: .4:1:13/

This submodule of S3S2C3 is spanned by the discriminant of the ternary quadric
(4.1.10):

� WD a200a020a002C2a011a101a110�a200a
2
011�a020a

2
101�a002a

2
110: .4:1:14/
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We have thus proved that an element p 2 S3S2C3 satisfies A B p D .detA/2 � p
for all A 2 
 if and only if it is a multiple of the discriminant �. Using the
same argument as in Lemma 3.2.3, we conclude that the multiples of � are the
only SL.C3/-invariants in S3S2C3.

We have seen in the previous example that quite interesting 
-modules can
be obtained by repeated application of the operators Sd and

V
d . For instance,

– SmSd Cn is the space of homogeneous polynomials of degree d in the coef-
ficients of a generic homogeneous polynomials of degree m in x1; : : : ; xn.

– Sm

V
d Cn is the space of homogeneous bracket polynomials of degree m in

CŒƒ.n; d/�.

More generally, we can build new representations from old ones by apply-
ing the so-called Schur functors W�. � /. Suppose that .�; V / is any 
-module.
Then we get a new 
-module .W�.�/;W�.V // as follows. The underlying vector
space is the Weyl moduleW�.V / with respect to the representation �� of GL.V /.
The new 
-action on this space is defined by the composition W�.�/ WD �� B �.

By Corollary 4.1.9 there must exist corresponding functors in the theory
of symmetric polynomials. These functors are called plethysms. We summarize
this construction in the following proposition. Let f
.t1; : : : ; tn/ be the formal
character of the 
-module .�; V /, where 
 D GL.Cn/, suppose that V has
dimension m, and let s�.´1; ´2; : : : ; ´m/ be the Schur polynomial which is the
formal character of the GL.V /-module W�.V /. We write f
.t1; : : : ; tn/ as the
sum of m not necessarily distinct monomials of the form t

i1
1 t

i2
2 : : : t

in
n .

Proposition 4.1.18. The formal character fW�.
/.t1; t2; : : : ; tn/ of the 
-module

.W�.�/;W�.V // is obtained by substituting the m monomials t i11 t
i2
2 : : : t

in
n for

the m variables ´i into the Schur polynomial s�.´1; ´2; : : : ; ´m/ (in any order).

We illustrate this proposition by computing the formal character of the
GL.C4/-module

V
3

V
2 C4. Here V D V

2 C4 has dimension m D 6 and for-
mal character

f
.t1; t2; t3; t4/ D t1t2 C t1t3 C t1t4 C t2t3 C t2t4 C t3t4:

The GL.V /-module
V

3 V D W.1;1;1/V has the formal character

s.1;1;1/.´1; ´2; ´3; ´4; ´5; ´6/ D
4P

iD1

5P
j DiC1

6P
kDj C1

´i j́´k:

By Proposition 4.1.18, the GL.C4/-module W.1;1;1/.V / D V
3

V
2 C4 has the

formal character
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s.1;1;1/

�
t1t2; t1t3; : : : ; t3t4

� D t31 t2t3t4 C t21 t
2
2 t

2
3 C 2t21 t

2
2 t3t4 C t21 t

2
2 t

2
4

C 2t21 t2t
2
3 t4 C 2t21 t2t3t

2
4 C t21 t

2
3 t

2
4 C t1t

3
2 t3t4 C 2t1t

2
2 t

2
3 t4 C 2t1t

2
2 t3t

2
4

C t1t2t
3
3 t4 C 2t1t2t

2
3 t

2
4 C t1t2t3t

3
4 C t22 t

2
3 t

2
4 :

Exercises

(1) Prove that every irreducible polynomial 
-representation is homogeneous.
(2) Verify that the eight Young symmetrized vectors in Example 4.1.13 are a

basis of
N

3 C2. Compute the determinant of the 8 � 8-transformation
matrix with respect to the standard basis.

(3) * Describe the action of GL.Cn/ on Sm

V
d Cn.

(4) Determine the decomposition of
V

3

V
2 C4 into irreducible

GL.C4/-representations.

4.2. Binary forms revisited

We can now rephrase the main problem of invariant theory in the language of
representation theory. The techniques developed in the previous section will then
be applied to the rings of invariants and covariants of a binary form. In particular,
we give an algorithm for computing the Hilbert (Molien) series of these invariant
rings.

As before let 
 D GL.Cn/. Let .V; �/ be a 
-representation of dimension m.
We assume that .V; �/ is homogeneous of degree d . For each integer k � 0
we get a representation .Sk.V /; Sk.�// of degree dk. The symmetric power
Sk.V / is a vector space of dimension

�
mCk�1

k

�
. We identify it with the space of

homogeneous polynomial functions of degree k on V . The ring of polynomial
functions on V is denoted CŒV � D L1

kD0 Sk.V /.
A polynomial f 2 CŒV � is an invariant of index g provided A B f D

det.A/g � f for all A 2 
 . Here A B f is the polynomial function on V defined
by .A B f /.v/ D f .�.A/ � v/ for v 2 V . This implies that f is a homogeneous
polynomial of degree gn=d ; in particular gn=d must be an integer. The invari-
ant ring CŒV �� is the C-linear span of all homogeneous invariants. Our main
problem is to determine the invariant ring as explicitly as possible.

To this end we consider CŒV � as an (infinite-dimensional) 
-module. Its
formal character is the generating function

fCŒV �.t1; : : : ; tn/ D
1P

kD0

fSk.V /.t1; : : : ; tn/; .4:2:1/

where each summand fSk.V /.t1; : : : ; tn/ is a symmetric polynomial of degree
dk. We can compute (4.2.1) using plethysms as in Proposition 4.1.18. Let
f
.t1; : : : ; tn/ denote the formal character of the m-dimensional representation
.V; �/. We write the symmetric polynomial f
 as the sum of m monomials (not



148 Invariants of the general linear group

necessarily distinct):

f
.t1; : : : ; tn/ D t
i11

1 t
i12

2 � � � t i1n
n C t

i21

1 t
i22

2 � � � t i2n
n C : : :C t

im1

1 t
im2

2 � � � t imn
n :

(4.2.2)

Proposition 4.2.1. The formal character of the 
-module CŒV � is the generating
function

fCŒV �.t1; : : : ; tn/ D 1Qm
�D1.1 � t i�1

1 t
i�2

2 � � � t i�n
n /

: .4:2:3/

Proof. The formal character of Sk.V / as a GL.V /-module equals

s.k/.´1; : : : ; ´m/ D P
i1C:::CimDk

i1;:::;im�0

´
i1
1 ´

i2
2 � � � ´im

m :

Therefore the formal character of CŒV � as a GL.V /-module is the generating
function 1P

kD0

P
i1C:::CimDk

i1;:::;im�0

´
i1
1 ´

i2
2 � � � ´im

m D 1Qm
�D1.1 � ´�/

: .4:2:4/

Following Proposition 4.1.18, we now substitute ´� 7! t
i�1

1 t
i�2

2 � � � t i�n
n in (4.2.4)

to get the formal character of CŒV � as a 
-module. G
Example 4.2.2. Let n D 2 and consider the space of binary quadrics V D S2C2.
This is a three-dimensional 
-module having formal character f
 D t21 C t1t2 C
t22 . By Proposition 4.2.1, the polynomial ring CŒV � is a 
-module having the
formal character

fCŒV �.t1; t2/ D 1

.1 � t21 /.1 � t1t2/.1 � t22 /
D (4.2.5)

1C .t21 C t1t2 C t22 /C .t41 C t31 t2 C t21 t
2
2 C t1t

3
2 C t42 /C .t21 t

2
2 /

C .t61 C t51 t2 C t41 t
2
2 C t31 t

3
2 C t21 t

4
2 C t1t

5
2 C t62 /C .t41 t

2
2 C t31 t

3
2 C t21 t

4
2 /

C .t81 C t2t
7
1 C t61 t

2
2 C t51 t

3
2 C t41 t

4
2 C t31 t

5
2 C t21 t

6
2 C t1t

7
2 C t82 /

C .t61 t
2
2 C t51 t

3
2 C t41 t

4
2 C t31 t

5
2 C t21 t

6
2 /C .t41 t

4
2 /C : : : : : : (higher terms):

Let .V; �/ be any 
-module of degree d . We can decompose the graded

-module CŒV � into a unique direct sum of the irreducible Weyl modules:

CŒV � D
1L

kD0

Sk.V / D
1L

kD0

L
�`dk

c�W�Cn .4:2:6/

As in (4.1.19), the multiplicities c� can be read off from the corresponding de-
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composition of the formal character of CŒV � into a positive linear combination
of Schur polynomials

fCŒV �.t1; t2 : : : ; tn/ D
1P

kD0

P
�`dk

c� s�.t1; t2; : : : ; tn/: .4:2:7/

For instance, the identity (4.2.5) in Example 4.2.2 translates into the following
irreducible decomposition of GL.C2/-modules:

C
�
S2C2

� D W.0;0/C
2 ˚W.2;0/C

2 ˚W.4;0/C
2 ˚W.2;2/C

2 ˚W.6;0/C
2

˚W.4;2/C
2 ˚ : : :

For each integer g � 0 there is a unique partition

� D .g; g; : : : ; g/„ ƒ‚ …
n times

of gn having a rectangular Ferrers diagram. The corresponding Weyl module
W.g;g;:::;g/C

n equals the one-dimensional 
-module defined by � D detg . In
precise terms, the underlying one-dimensional vector space should be written as
.
V

n Cn/˝g . Its Schur polynomial equals s.g;g;:::;g/ D t
g
1 t

g
2 � � � tgn .

A homogeneous polynomial in f 2 CŒV � is an invariant of index g if and
only if it lies in a 
-submodule isomorphic to W.g;g;:::;g/C

n D �
.
V

n Cn/˝g ;

detg
�
. Using the notation in (4.2.6) we let c.g;g;:::;g/ denote the multiplicity of

this Weyl module in CŒV �. This number counts the linearly independent invari-
ants of index g and hence of degree gn=d . The following theorem summarizes
the representation-theoretic view on our main problem.

Theorem 4.2.3. Let V be any 
-module. Then its invariant ring has the decom-
position

CŒV �� D
1L

gD0

c.g;g;:::;g/W.g;g;:::;g/C
n

as a 
-module. In particular, the Hilbert function of the invariant ring is given by

dim CŒV ��k D
(
c.g;g;:::;g/ if g D kd=n is an integer;

0 otherwise .

Example 4.2.2 (continued). Let n D 2, d D 2 and V D S2C2, the space
of binary quadrics. As can be seen from (4.2.5), the multiplicity of the Weyl
module W.g;g/C

2 in CŒV � equals c.g;g/ D 1 if g is even and c.g;g/ D 0 if g
is odd. Therefore the invariant ring CŒV �� has the Hilbert function 1=.1 � ´2/.
This proves that CŒV �� is generated as C-algebra by one quadratic polynomial,
which is the discriminant of the binary quadric.
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For the remainder of this section we fix n D 2. We will develop the repre-
sentation theory of 
 D GL.C2/ in detail and apply it to the study of binary
forms. We begin with a description of the irreducible 
-modules W�C2 and
their Schur polynomials. Each Weyl module is indexed by a partition � D .i; j /
having at most two distinct parts i � j � 0.

Lemma 4.2.4. The Weyl moduleW.i;j /C
2 is isomorphic to Si�j C2˝.^2C2/˝j .

Proof. For the partition � D .i; j / there are precisely i � j C 1 SSYT�’s with
entries in f1; 2g. A typical such SSYT� looks like

1 � � � 1 1 � � � 1 1 : : : 1
1 � � � 1 2 � � � 2

By Corollary 4.1.14 (b), the formal character of W.i;j /C
2 equals the sum of the

weights of all i � j C 1 SSYT�’s:

s.i;j /.t1; t2/ D t i1t
j
2 C t i�1

1 t
j C1
2 C t i�2

1 t
j C2
2 C : : :C t

j
1 t

i
2

D .t
i�j
1 C t

i�j �1
1 t2 C t

i�j �2
1 t22 C : : :C t

i�j
2 / � .tj1 tj2 /

D t iC1
1 t

j
2 � tj1 t iC1

2

t1 � t2
By Lemma 4.1.6, this Schur polynomial is the formal character of the tensor
product Si�j C2˝.V2 C2/˝j . Lemma 4.2.4 now follows directly from Theorem
4.1.7. G

Let V D Sd C2 denote the space of binary d -forms

a0 x
d C



d

1

�
a1 x

d�1y C


d

2

�
a2 x

d�2y2 C


d

3

�
a3 x

d�3y3 C : : :C ad y
d :

We identify the polynomial ring CŒa0; : : : ; ad � with the 
-module CŒV � DL1
kD0 SkSd C2. More generally, the polynomial ring CŒa0; : : : ; ad ; x; y� is a

rational 
-module via the natural 
-action defined in Sect. 3.6. For A 2 
 this
action is given by

.a0; a1; : : : ; ad /
t 7! �Sd C2.A/ � .a0; a1; : : : ; ad /

t and

.x; y/t 7! A�1 � .x; y/t : .4:2:8/

Let CŒa0; : : : ; ad ; x; y�
� denote the ring of covariants, and let CŒa0; : : : ; ad ;

x; y��
.k;i/

denote the vector subspace of covariants of degree k, order i and index

g D dk�i
2

.
We now determine the decomposition of CŒV � into irreducible 
-modules.
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For i D 0; 1; : : : ; b dk
2

c let m.d; k; i/ denote the multiplicity of the Weyl module

W
. dkCi

2 ; dk�i
2 /

C2 D SiC
2 ˝ .

V
2 C2/˝g

in CŒV �, or, equivalently, in SkSd C2. We write W.d;k;i/ ' m.d; k; i/ �
W

. dkCi
2 ; dk�i

2 /
C2 for the corresponding submodule of CŒV �. Let f 2 CŒV � and

let g be the largest integer for which there exists Qf 2 CŒV; A� such that A Bf D
det.A/g � Qf for all A 2 
 . Then f lies in W.d;k;i/ if and only if f is homo-
geneous of degree k and the transformation f 7! Qf is isomorphic to the action
of 
 on SiC

2.
Given any polynomial f 2 CŒa0; : : : ; ad ; x; y�, we view f as a polyno-

mial in x and y with coefficients in CŒV �. The leading coefficient of f is the
polynomial lead.f / WD f .a0; : : : ; ad ; 1; 0/ in CŒV �.

Lemma 4.2.5. The assignment f 7! lead.f / defines a vector space monomor-
phism from CŒa0; : : : ; ad ; x; y�

�
.k;i/

into Wd;k;i .

Proof. Let f be a covariant of degree k, order i and index g D dk�i
2

. Then

f
�
�Sd C2.A/ B .a0; : : : ; ad /; A

�1 B .x; y/� D det.A/g � f .a0; : : : ; ad ; x; y/:

Substituting .x; y/ 7! .1; 0/ shows that lead.f / is a polynomial of degree k
in CŒV �, which satisfies the above defining condition of W.d;k;i/. The map
f 7! lead.f / is injective because every covariant f can be recovered from
its leading coefficient h D lead.f / as follows:

f .a0; : : : ; ad ; x; y/ D h
�
�Sd

�
x 1
y 0

	
� .a0; : : : ; ad /

	
: G .4:2:9/

Theorem 4.2.6 (Robert’s theorem). The dimension of the space CŒa0; : : : ; ad ;

x; y��
.k;i/

of covariants of degree k and order i is equal to m.d; k; i/.

Proof. Our argument follows Schur and Grunsky (1968: p. 28). Let Qm.d; k; i/
denote the dimension of the space of covariants of degree k and order i . By
Lemma 4.2.5, the map f 7! lead.f / defines a vector space monomorphism

Qm.d; k; i/ �W.g;g/C
2 ' CŒa0; : : : ; ad ; x; y�

�
.k;i/

! W.d;k;i/ ' m.d; k; i/ �W
. dkCi

2 ; dk�i
2 /

C2:

We need to show that m.d; k; i/ D Qm.d; k; i/.
Consider the unipotent subgroup U D ˚ �

1 ˛
0 1

� W ˛ 2 C
�

in 
 . The ac-
tion of U on the 
-module W

. dkCi
2 ; dk�i

2 /
C2 has a unique fixed vector, up to
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scaling, say, h. This follows, for instance, from the construction of the irre-
ducible 
-modules in Theorem 4.1.11. We now define f 2 CŒa0; : : : ; ad ; x; y�
by the formula (4.2.9). Then f is a covariant and h D lead.f /. This proves
m.d; k; i/ 	 Qm.d; k; i/.

Conversely, if f is any covariant, then h D lead.f / is a unipotent invariant.
This implies m.d; k; i/ � Qm.d; k; i/, and we are done. G

The multiplicities m.d; k; i/ can be expressed in terms of a certain explicit
generating function. This technique is due to Cayley and Sylvester. The q-
binomial coefficient is the expression


d C k
k

�
.q/ WD .1 � qdC1/.1 � qdC2/ � � � .1 � qdCk/

.1 � q/.1 � q2/ � � � .1 � qk/
; .4:2:10/

where q is an indeterminate. The rational function (4.2.10) is a polynomial in
q of degree kd . It is sometimes called the Gaussian polynomial. Its coefficients
have the following combinatorial interpretation. If


d C k
k

�
.q/ D

dkP
nD0

p.d; k; n/ � qn;

then p.d; k; n/ equals the number of partitions of the integer n into at most k
parts, with largest part 	 d . For the proof of this statement and related com-
binatorial interpretations we refer to Stanley (1986: chapter 1). We note that�

dCk
k

�
.q/ specializes to the usual binomial coefficient

�
dCk

k

�
for q D 1. Many

of the familiar properties of binomial coefficients generalize to q-binomial co-
efficients: For instance, we have

�
dCk

k

�
.q/ D �

dCk
d

�
.q/ because p.d; k; n/ D

p.k; d; n/.

Theorem 4.2.7. The dimension m.d; k; i/ of the space of covariants of degree
k and order i of a binary d -form is given by the generating function

.1 � q/ �


d C k
k

�
.q/ D

b dk
2 cP

gD0

m.d; k; dk � 2g/ � qg CO.qb dk
2 cC1/: .4:2:11/

Proof. The formal character of the 
-module CŒV � equals

1

.1 � td1 /.1 � td�1
1 t2/.1 � td�2

1 t22 / � � � .1 � td2 /
D

1P
kD0



d C k
k

�� t1
t2

� � tkd
2 :

(4.2.12)

The identity (4.2.12) follows from known results on the partition function; see,
e.g., formula (29) in Stanley (1986: p. 39). The summand on the right hand side of
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(4.2.12) equals the formal character of SkSd C2. By definition, m.d; k; dk�2g/
is the multiplicity of W.dk�g;g/C

2 in SkSd C2. Therefore we have



d C k
k

�� t1
t2

��tkd
2 D

b kd
2 cP

gD0

m.d; k; dk�2g/� t
kd�gC1
2 t

g
1 � tg2 tkd�gC1

1

t2 � t1 : .4:2:13/

We substitute t1 D q and t2 D 1 in (4.2.13), and we multiply both sides by 1�q.
This gives the desired identity (4.2.11). G

Corollary 4.2.8. The number of linearly independent covariants of degree k and
order i of a binary d -form equals

m.d; k; i/ D p
�
d; k;

dk � i
2

� � p�d; k; dk � i � 2
2

�
; .4:2:14/

where p.d; k; n/ equals the number of partitions of n into 	 k parts with largest
part 	 d .

These results provide useful algorithmic tools for precomputing the Hilbert
series (or parts thereof) for the rings of invariants and covariants of binary forms.
For many examples of such calculations see Schur and Grunsky (1968); see
also Springer (1977: section 3.4) for an asymptotic estimate of the number of
fundamental invariants. A typical application of the enumerative method is the
following duality result for invariants of binary forms.

Corollary 4.2.9 (Hermite reciprocity). The number m.d; k; 0/ of degree k in-
variants of a binary d -form equals the number m.k; d; 0/ of degree d invariants
of a binary k-form.

Proof. The expression in terms of partition functions

m.d; k; 0/ D p
�
d; k;

dk

2

� � p�d; k; dk
2

� 1�
shows that this function is symmetric in its two parameters d and k. G

Example 4.2.10. We illustrate the above techniques for the ring of covariants of
a binary cubic .d D 3/. The generating function (4.2.11) for the covariants of
degree k equals

.1 � qkC1/.1 � qkC2/.1 � qkC3/

.1 � q2/.1 � q3/
: .4:2:15/
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For small values of k the generating function (4.2.15) equals

k D 1 W 1 � q4

k D 2 W 1C q2 � q5 � q7

k D 3 W 1C q2 C q3 � q7 � q8 � q10

k D 4 W 1C q2 C q3 C q4 C q6 �O.q7/

k D 5 W 1C q2 C q3 C q4 C q5 C q6 �O.q10/

k D 6 W 1C q2 C q3 C q4 C q5 C 2q6 C q8 �O.q11/

.4:2:16/

Consider the four basic covariants of a binary cubic given in Sect. 3.7:

covariant degree order index
k i g D .3k � i/=2

f 1 3 0
H 2 2 2
T 3 3 3
D 4 0 6

These four covariants correspond to the four underlined terms in the gener-
ating functions in (4.2.16). We remark that the three covariants f 2D, T 2 and
H 3 all have degree 6, order 6 and index 6. Are these covariants linearly inde-
pendent? Note that the coefficient of q6 in the last line of (4.2.16) is only two,
not three. This proves that f 2D, T 2 and H 3 are linearly dependent. Indeed, we
have the syzygy f 2D D T 2 C 4H 3.

We will now sketch an alternative proof of Proposition 3.7.7. The algebra
of covariants CŒa0; a1; a2; a3; x; y�

� is a bigraded algebra via the degree k and
the order i . Consider the subalgebra CŒf;H; T;D�. We need to show that both
algebras have the same Hilbert function, and therefore are equal. Using Gröbner
bases, we find that CŒf;H; T;D� has the bigraded Hilbert function:

P
i;k�0

dim CŒf;H; T;D�.i;k/ s
i tk D 1 � s6t6

.1 � s1t3/.1 � s4t0/.1 � s2t2/.1 � s3t3/
:

(4.2.17)

Here the term s6t6 comes from the syzygy f 2D D T 2 C 4H 3. It remains to be
shown that the coefficient of si tk in (4.2.17) equals the coefficient m.3; k; i/ of
q.3k�i/=2 in (4.2.15). We leave this to the reader.
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Exercises

(1) Show that the following identity holds for all integers d � e � 0:�qdC1 � 1
q � 1

	
�
�qeC1 � 1

q � 1
	

D
eP

iD0

qi �
�qdCeC1�2i � 1

q � 1
	
:

(2) Deduce from (1) that for d � e � 0 there is an isomorphism of
GL.C2/-modules:

Sd C2˝SeC2 ' SdCeC2˚W.dCe�1;1/C
2˚W.dCe�2;2/C

2˚ : : :˚W.d;e/C
2:

This identity is called the Clebsch–Gordan formula.
(3) * Compute the complete system of covariants for the binary quartic

.d D 4/. See Springer (1977: section 3.4.4).
(4) What is the number of linearly independent covariants of degree k and

order i of the binary quintic .d D 5/?

4.3. Cayley’s �-process and Hilbert finiteness theorem

The objective of this section is to prove Hilbert’s famous finiteness theorem.

Theorem 4.3.1 (Hilbert’s finiteness theorem). Let .V; �/ be any rational rep-
resentation of the general linear group 
 D GL.Cn/. Then the invariant ring
CŒV �� is finitely generated as a C-algebra.

Like his contemporaries, Hilbert was mainly interested in invariants of ho-
mogeneous polynomials or forms, that is, relative 
-invariants of the natural
action on the symmetric power V D Sd Cn. We will focus on invariants and
covariants of forms in Sects. 4.4 and 4.5. Throughout Sect. 4.3 we are working
with an arbitrary polynomial 
-module V . The assumption of polynomiality is
no restriction by Proposition 4.1.2.

The first proof of Theorem 4.3.1 appeared in Hilbert (1890). It was based on
a radically new, nonconstructive method, namely, the Hilbert basis theorem for
polynomial ideals (Corollary 1.2.5). When Paul Gordan, “the king of invariants”,
first learned about this technique, he made his famous exclamation, “Das ist
Theologie und nicht Mathematik.”

Within three years Hilbert responded to Gordan’s criticism by giving a con-
structive proof. This second proof, published in Hilbert (1893), is considerably
deeper and more difficult than the first one. We will present this second proof and
the resulting explicit algorithm for computing a finite algebra basis for CŒV ��

in Sects. 4.6 and 4.7.
In this section we are concerned with Hilbert’s nonconstructive 1890 proof.

One main ingredient of this proof is Cayley’s �-process, a technical tool which
was well known in the 19th century. The �-process is a certain differential
operator for the general linear group 
 D GL.Cn/ which plays the part of the



156 Invariants of the general linear group

Reynolds operator � in the case of a finite matrix group 
 . Since 
 is a reductive
group, there does exist also a full-fledged Reynolds operator, i.e., a CŒV �� -linear
map from CŒV � to CŒV �� fixing CŒV �� . But we will not need this Reynolds op-
erator here, but instead we use the classical �-process.

Let CŒt� denote the polynomial ring generated by the n2 entries in a generic
n � n-matrix t WD .tij /. With each polynomial

f .t11; t12; : : : ; tnn/ D P
�

a� t
�11

11 t
�12

12 � � � t�nn
nn .4:3:1/

we associate a corresponding differential operator

Df WD f .
@

@t11

;
@

@t12

; : : : ;
@

@tnn

/ D P
�

a�

@j�j

@t
�11

11 @t
�12

12 � � � @t�nn
nn

: .4:3:2/

In (4.3.1) and (4.3.2) the sum is over a finite set of nonnegative integer matrices
	 D .	ij / which serve as exponent matrices for monomials in CŒt�. The norm
j	j of a nonnegative matrix 	 is the sum of its entries.

Suppose that f is a homogeneous polynomial and hence Df is a homoge-
neous differential operator. Now apply Df to the polynomial f itself. When
applying a differential monomial occurring in Df to a monomial in f , we get 0
unless the monomials correspond to the same exponent matrix 	. In this case
the result equals the constant 	11Š 	12Š : : : 	nnŠ. These observations prove the
following.

Lemma 4.3.2. Each homogeneous polynomial f D P
� a�t

�11

11 � � � t�nn
nn in CŒt�

satisfies
Df .f / D P

�

a2
� 	11Š 	12Š � � � 	nnŠ:

The next lemma states five basic rules for polynomial differential operators.
The bilinearity rules (a), (b) and (c) follow immediately from the definition.
Rules (b) and (c) reduce (d) to the case of differential monomials applied to
monomials, which is easily checked. Property (e) is a consequence of (d).

Lemma 4.3.3.
(a) Df .�1 C �2/ D Df .�1/C D.�2/,
(b) Dc	f .�/ D Df .c � �/ D c � Df .�/ for constants c 2 C,
(c) Df Cg.�/ D Df .�/C Dg.�/,
(d) Dfg.�/ D Df Dg.�/, the composition of differential operators, and
(e) Df p .�/ D Dp

f
.�/.

We now choose a specific homogeneous polynomial f .t/, namely, the determi-
nant of t. The resulting differential operator is called Cayley’s �-process and is
abbreviated � WD Ddet D det

�
@

@tij

�
. Using the familiar expansion of the deter-
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minant, we get

�.�/ D P
�2Sn

sign.�/
@n�

@t1;�1
@t2;�2

� � � @tn;�n

.4:3:3/

for all � 2 CŒt�.
In what follows we consider three generic matrices t D .tij /, s D .sij /,

u D .uij /. Their 3n2 entries are algebraically independent indeterminates over
C. All matrices have an associated �-process, which we denote with �s, �t

and �u respectively. Given a matrix-valued polynomial function �, the expres-
sion �st

�
�.st/

�
stands for the polynomial in s and t which is gotten by substi-

tuting the matrix product u D st into the expression �u.�.u//. The expression
�t

�
�.st/

�
denotes the result of applying the operator �t to �.st/, viewed as a

polynomial function in t with parameters s.

Theorem 4.3.4 (First main rule for the �-process). In CŒs; t� we have the iden-
tities

�t

�
�.st/

� D det.s/��st

�
�.st/

�
and �s

�
�.st/

� D det.t/��st

�
�.st/

�
: .4:3:4/

Proof. We prove the first identity by expanding the left hand side as in (4.3.3).
For each term, corresponding to a permutation � 2 Sn we get

@k �.st/

@t1;�1
@t2;�2

� � � @tn;�n

D
nP

�1;�2;:::;�nD1

@k �.u D st/

@u�1;�1
@u�2;�2

� � � @u�n;�n

s�1;1s�2;2 : : : s�n;n:

.4:3:5/

Note that on the right hand side of (4.3.5) we have to sum over all index tuples
� and not only over permutations. Now if we antisymmetrize the expression
(4.3.5) with respect to � 2 Sn, then the left hand side becomes �t

�
�.st/

�
. On

the right hand side we get, after interchanging the two summations,

nP
�1;�2;:::;�nD1

s�1;1s�2;2 : : : s�n;n

� P
�2Sn

sign.�/
@k �.u D st/

@u�1;�1
@u�2;�2

� � � @u�n;�n

	
:

(4.3.6)

The expression in the large bracket equals 0 by antisymmetry whenever the �i

are not distinct. Otherwise � 2 Sn is a permutation, and the bracket equals

sign.�/ �
� P

�2Sn

sign.�/
@k �.u D st/

@u1;�1
@u2;�2

� � � @un;�n

	
D sign.�/ ��st

�
�.st/

�
:

(4.3.7)
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Plugging (4.3.7) into (4.3.6), we get the desired resultP
�2Sn

s�1;1s�2;2 : : : s�n;n � sign.�/ ��st

�
�.st/

� D det.s/ ��st

�
�.st/

�
:

The proof of the second identity in (4.3.4) is analogous. G

We can generalize the first main rule to the case of an iterated �-process.
Application of the operator �t to both sides of (4.3.4) yields

�2
t

�
�.st/

� D det.s/ ��t�st

�
�.st/

� D det.s/2 ��2
st

�
�.st/

�
: .4:3:8/

The second equation in (4.3.8) is gotten by applying the rule (4.3.4) to the func-
tion Q�.u/ D �u�.u/, with the substitution u D st. By iterating (4.3.8) we
obtain the following result.

Corollary 4.3.5 (Generalized first main rule for the�-process). For each integer
p � 0 we have the following two identities in CŒs; t�:

�
p
t

�
�.st/

� D det.s/p ��p
st

�
�.st/

�
and �

p
s

�
�.st/

� D det.t/p ��p
st

�
�.st/

�
:

.4:3:9/

Theorem 4.3.4 has the consequence that the �-process preserves the one-
dimensional subalgebra which is generated by the determinant det.s/ in CŒs�.

Corollary 4.3.6. In CŒs� we have the identity

�s

�
det.s/p

� D cp � det.s/p�1; .4:3:10/

where cp is a nonzero constant depending only on the integer p.

Proof. Applying (4.3.4) to the polynomial function �.u/ WD det.u/p, we get

�t

�
det.st/p

� D det.s/ ��st

�
det.st/p

�
: .4:3:11/

On the other hand, Lemma 4.3.3 (b) implies

�t

�
det.st/p

� D �t

�
det.s/p det.t/p

� D det.s/p ��t

�
det.t/p

�
: .4:3:12/

In the resulting identity

�st

�
det.st/p

� D det.s/p�1 ��t

�
det.t/p

�
.4:3:13/
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we replace t by the unit matrix 1, and we get the desired identity (4.3.10), where

cp WD ˚
�t

�
det.t/p

��
tWD1

:

It remains to be checked that the constant cp is indeed nonzero. To this end we
repeatedly apply �s to (4.3.10). We obtain �2

s

�
det.s/p

� D cp cp�1 det.s/p�2,
�3

s

�
det.s/p

� D cp cp�1 cp�2 det.s/p�3, and finally,

�p
s

�
det.s/p

� D cp cp�1 cp�2 : : : c2 c1: .4:3:14/

By Lemma 4.3.3 (e), �p
s equals the differential operator Ddet.s/p associated with

the polynomial det.s/p . The expression (4.3.14) is a positive integer by Lemma
4.3.2. G

We will next derive the Second Main Rule for the �-Process. The ring CŒV �
of polynomial functions on the 
-module V is written as CŒv �, where v is a
generic vector in V . For any polynomial function f D f .v/ we consider its
image t B f D f .t v/ under a generic linear transformation t 2 
 . Thus f .t v/
is a polynomial in n2 C dim.V / variables, namely, it is a polynomial both in t
and in v . For every nonnegative integer p the expression det.t/q � f .t v/ is a
polynomial function in CŒv ; t�. The Cayley process �t acts on these polynomi-
als by regarding the coordinates of v as constants. After repeated application of
�t to det.t/q � f .t v/, we can then replace t by the n � n-zero matrix 0. This
procedure always generates an element in the invariant ring CŒv �� :

Theorem 4.3.7 (Second main rule for the �-process). Let f 2 CŒv � be a ho-
mogeneous polynomial, and let p; q � 0 be arbitrary integers. Then

Ip;q.f / WD ˚
�

p
t

�
det.t/q � f .t v/

��
tWD0

.4:3:15/

is a relative 
-invariant.

Proof. We abbreviate

�.v ; t/ WD det.t/q � f .t v/: .4:3:16/

We will show that �
Ip;q.f /

�
.v/ D ˚

�
p
t

�
�.v ; t/

��
tWD0

is either 0 or it is a relative 
-invariant of index p � q. Let s be a second n� n-
matrix with generic entries. Then we find

�.v ; s t/ D det.s t/q � f .s t v/

D det.t/q � det.s/q � f .s .t v// D det.t/q � �.t v ; s/:
.4:3:17/
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We now apply the differential operator �p
s to both sides of (4.3.17), starting with

the right hand side:

det.t/q �p
s

�
�.t v ; s/

� D �p
s

�
�.v ; s t/

� D det.t/p �p
s t

�
�.v ; s t/

�
: .4:3:18/

Here the second equation is derived from Corollary 4.3.5. In the resulting iden-
tity

�p
s

�
�.t v ; s/

� D det.t/p�q ��p
s t

�
�.v ; s t/

�
.4:3:19/

we specialize s to the zero matrix 0. The left hand side then specializes to
ŒIp;q.f /�.t v/, while the right hand side specializes to det.t/p�qŒIp;q.f /�.v/.
This proves that Ip;q.f /, if nonzero, is a relative invariant with index p � q. G

Theorem 4.3.7 gives an explicit algorithm for generating an invariant Ip;q.f /
from an arbitrary polynomial function f in CŒV �. We will illustrate this algo-
rithm in the next section. At this point we just note that Ip;q.f / will often be
simply zero. For instance, this is always the case when p < q.

We are now prepared to prove Hilbert’s finiteness theorem.

Proof of Theorem 4.3.1. Let I�C � CŒv � be the ideal generated by all homoge-
neous invariants of positive degree. By the Hilbert basis theorem, there exists a
finite set fJ1; J2; : : : ; Jrg of homogeneous invariants such that

I�C D hJ1; J2; : : : ; Jri: .4:3:20/

We will show that the Ji form a fundamental system of invariants, i.e.,

CŒv �� D CŒJ1; J2; : : : ; Jr �: .4:3:21/

Let J 2 CŒv �� be any homogeneous invariant of positive degree, and sup-
pose that all homogeneous invariants of lower total degree lie in the subring
CŒJ1; J2; : : : ; Jr �. Write

J.v/ D
rP

iD1

fi .v/ Ji .v/ .4:3:22/

where f1; f2; : : : ; fr 2 CŒv � are homogeneous of degree deg.fi / D deg.J / �
deg.Ji /. In (4.3.22) we replace v by t v , where t is a generic n� n-matrix. If p
and pi are the indices of the invariants J and Ji respectively, then we get

det.t/p J.v/ D
rP

iD1

det.t/pi fi .t v/ Ji .v/: .4:3:23/

We now apply the differential operator �p
t to the identity (4.3.23). On the left

hand side we obtain �p
t

�
det.t/p J.v/

� D c � J.v/, where c is a positive integer,
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by Lemma 4.3.2. By linearity on the right hand side,

c � J.v/ D
rP

iD1

Ji .v/ ��p
t

�
det.t/pi fi .t v/

�
: .4:3:24/

We finally replace the generic matrix t in (4.3.24) by the zero matrix 0, and we
get

c � J.v/ D
rP

iD1

Ji .v/ � �Ip;pi
.fi /

�
.v/: .4:3:25/

By the second main rule (Theorem 4.3.7), all expressions on the right hand
side lie in CŒv �� . Since the fi have degree < deg.J /, and the operator Ip;pi

is
degree-preserving, the invariants Ip;pi

.fi / have lower total degree than J . Hence
they are contained in CŒJ1; J2; : : : ; Jr �. Since c 6D 0, the representation (4.3.25)
implies that J lies in CŒJ1; J2; : : : ; Jr �. G

Exercises

(1) Show that the invariant ring CŒv �� is the C-linear span of the expressions
Ip;q.m/ where m runs over all monomials in CŒv �.

(2) Consider the action of GL.Cn/ by left multiplication on the space of
n � s-matrices and on the induced polynomial ring CŒxij �. Verify the First
and Second Main Rule for the �-process for this representation.

(3) * Give an explicit formula for the operator Ip;q. � / in the case where
V D S3C2, the space of binary cubics. Find p; q and a monomial m such
that Ip;q.m/ equals the discriminant of a binary cubic.

4.4. Invariants and covariants of forms

A homogeneous polynomial

f .x1; x2; : : : ; xn/ D P

d

i1 i2 : : : in

�
� ai1i2:::in � xi1

1 x
i2
2 : : : x

in
n .4:4:1/

of total degree d in n variables x D .x1; x2; : : : ; xn/ is called an n-ary form
of degree d (or short: n-ary d -form). These terms are traditionally in Latin;
for instance, a binary cubic is a 2-ary 3-form and a quaternary quintic is a 4-
ary 5-form. The sum in (4.4.1) is over the

�
nCd�1

d

�
-element set of nonnegative

integer vectors .i1; i2; : : : ; in/ with i1 C i2 C : : : C in D d . The coefficients
ai1i2:::in are algebraically independent transcendentals over C. It is customary
(and essential for the symbolic representation in Sect. 4.5) to scale the ai1i2:::in

by the multinomial coefficients
�

d
i1 i2 ::: in

� D dŠ=.i1Š � i2Š � � � inŠ/.
The set of n-ary d -forms is a

�
nCd�1

d

�
-dimensional complex vector space.

We identify it with Sd .C
n/, the d -th symmetric power of Cn. This means that
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the form f is identified with the vector a WD .: : : ; ai1i2:::in ; : : :/ of its coeffi-
cients. Thus f D f .x/ D f .a;x/ and a represent the same element of Sd .C

n/.
In some situations it is preferable to distinguish these two objects, in which case
we refer to a as the symmetric tensor of step d associated with the d -form f .

Let CŒa;x� denote the polynomial ring in the coefficients and the variables
of f . This is the ring of polynomial functions on the vector space Sd .C

n/˚Cn.
Its subring CŒa� is the ring of polynomial functions on Sd .C

n/. The action of
general linear group 
 D GL.Cn/ on Cn induces a natural linear action on the
space Sd .C

n/˚ Cn. For each T 2 
 , the action T W .a;x/ 7! .a;x/ is defined
by the equations

x D T � x and f .a;x/ D f .a;x/ for all T D .tij / 2 
: .4:4:2/

It is crucial to note that this 
-module is not the direct sum of the 
-modules
Sd .C

n/ and Cn. The 
-module defined by (4.4.2) is the direct sum of Sd .C
n/

and Hom.Cn;C/, the latter being the contragredient representation to Cn. It is
the rational (but not polynomial) 
-module which has the formal character

� 1
t1

C 1

t2
C : : :C 1

tn

� P
i1C:::CinDd

t
i1
1 t

i2
2 : : : t inn :

A polynomial I 2 CŒa;x� is a covariant of f if it is a relative 
-invariant, i.e.,

I.a;x/ D det.T /g � I.a;x/ .4:4:3/

for some nonnegative integer g, which is called the index of the covariant I . The
total degree of I with respect to the coefficient vector a is called the degree of the
covariant I , and its total degree with respect to the old variables x is called the
order of I . So, every d -form is a covariant of itself, having order d , degree 1
and index 0. An invariant of the n-ary d -form f is a covariant I 2 CŒa� of
order 0. The covariant ring of f is the graded C-algebra CŒa;x�� generated by
all covariants. The invariant ring of f is the subalgebra CŒa�� generated by all
invariants.

We also consider joint covariants and joint invariants of a collection of n-ary
formsf1;f2; : : : ; fk of degrees d1; d2; : : : ; dk . In that case the underlying 
-mod-
ule equals the direct sum V D Sd1

Cn ˚Sd2
Cn ˚ : : :˚Sdk

Cn ˚ Hom.Cn;C/.
This gives rise to the covariant ring CŒV �� D CŒa1; a2; : : : ;ak;x�

� and the
invariant ring CŒa1; : : : ;ak�

� . Both rings are subalgebras of the polynomial ring
CŒa1; : : : ;ak;x�. They are multigraded with respect to the “old variables” x and
the coordinates of each symmetric tensor ai .

From Theorem 4.3.1 we infer that CŒV �� is finitely generated.

Corollary 4.4.1 (Hilbert’s finiteness theorem). The invariant ring or the covari-
ant ring of one n-ary d -form or of several n-ary forms is finitely generated as a
C-algebra.
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This result had been proved in Theorem 3.7.1 for the case of binary forms
(n D 2). But there is an essential difference between both finiteness proofs. In
Sect. 3.7 we gave an explicit algorithm for computing a finite set of fundamental
set of invariants (or covariants). The general finiteness proof in Sect. 4.3 does
not yield such an algorithm. The more difficult problem of giving an algorithm
for Corollary 4.4.1 will be addressed in Sect. 4.6. The present section has two
objectives. We discuss important examples of invariants and covariants, and we
illustrate the practical use of the machinery developed in Sects. 4.1 and 4.3.

Our first example of a covariant of an n-ary d -form f .a;x/ is the Hessian

H.a;x/ D det
� @2f

@xi@xj

�
: .4:4:4/

Proposition 4.4.2. The Hessian H 2 CŒa;x� of an n-ary form f of degree
d � 2 is a covariant of index 2, degree n, and order n.d � 2/.

Proof. We consider a and x as polynomial functions in a, x and T D .tij /.

Applying the differential operator @2

@xi @xj
to the identity f .a;x/ D f .a;x/ in

(4.4.2), we get
@2f

@xi@xj

�
a;x/ D

nP
k;lD1

@2f

@xi@xj

.a;x/ � tik � tjl : .4:4:5/

Forming the n � n-determinant of these expressions for 1 	 i; j 	 n, we obtain

H.a;x/ D det
� @2f

@xi@xj

�
a;x/

	
D det.T /2 � det

� @2f

@xi@xj

�
a;x/

	
D det.T /2 �H.a;x/:

.4:4:6/

This shows that the Hessian H is a covariant of index 2. Each expression
@2f=@xi@xj is homogeneous of degree 1 in a and of degree .d � 2/ in x, and
hence H has degree n and order n.d � 2/. G

In the case d D 2 the Hessian does not depend on x. The resulting invariant
D.a/ WD H.a;x/ is the discriminant of the n-ary quadratic form f .a;x/ DPn

iD1

Pn
j Di aij xixj . It is preferable to interpret the coefficient vector a as a

symmetric matrix a D .aij /. The discriminant D.a/ equals the determinant
of that matrix. Using matrix products, we write the given quadratic forms as
f .a;x/ D xt � a � x.

We illustrate this relabeling for the case n D 3. The ternary quadric
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f .a;x/ D a200 x
2
1 C a020 x

2
2 C a002 x

2
3 C 2a110 x1x2 C 2a101 x1x3

C 2a011 x2x3

D xtax D a11 x
2
1 C a22 x

2
2 C a33 x

2
3 C 2a12 x1x2 C 2a13 x1x3 C 2a23 x2x3

(4.4.7)

defines a general quadratic curve in the projective plane. Its discriminant

D.a/ D a200 a020 a002 C 2a110 a101 a011 � a2
110 a002 � a2

101 a020

� a2
011 a200 (4.4.8)

vanishes if and only if the quadric form f factors into two linear factors, or,
equivalently if the curve ff D 0g is the union of two lines. Returning to the
general quadratic form, we have the following solution to the problem of finding
the invariants.

Theorem 4.4.3. The discriminant D generates the invariant ring a quadratic n-
ary form.

Proof. In matrix notation Eq. (4.4.2) becomes

xtax D xtax D .T x/ta.T x/ D xt .T t aT /x;

and the 
-action on S2.C
n/ is expressed by the matrix equation a D T taT .

In order to show CŒa�� D CŒD�, we let I.a/ be any homogeneous invariant
of index g. Then

I.a/ D I.T taT / D det.T /g � I.a/: .4:4:9/

Writing 1 for the n � n-unit matrix, we let c WD I.1/ 2 C. This implies the
equation

I.T tT / D c � det.T /g for all n � n-matrices T over C. .4:4:10/

Every symmetric matrix a admits a factorization a D T tT over the complex
numbers C. Therefore (4.4.10) implies

I.a/ D c � det.a/g=2 in CŒa�: .4:4:11/

But I was assumed to be a polynomial function, hence g D 2p is even, and we
conclude I D cDp 2 CŒD�. G

An important example of a joint covariant of several forms is the Jacobian
determinant J of n forms

f1.a1;x/; f2.a2;x/ : : : : : : ; fn.an;x/

of degrees d1; d2; : : : ; dn in n variables.



4.4. Invariants and covariants of forms 165

Example 4.4.4. The Jacobian determinant

J D J.a1; : : : ; an;x/ D det

0BB@
@f1

@x1
.a1;x/ � � � @f1

@xn
.a1;x/

:::
: : :

:::
@fn

@x1
.an;x/ � � � @fn

@xn
.an;x/

1CCA
is a joint covariant of index 1, order d1Cd2C: : :Cdn�n, and degrees 1; 1; : : : ; 1
in the coefficients.

We have the following general degree relation for joint covariants:

Proposition 4.4.5. Let I.a1; a2; : : : ;ak;x/ be a joint covariant of k n-ary forms

f1.a1;x/; f2.a2;x/; : : : ; fk.ak;x/

of degrees d1; d2; : : : ; dk . Suppose that I has index g, order m, and I is homo-
geneous of degrees r1; r2; : : : ; rk in the coefficient vectors a1; a2; : : : ;ak . Then

r1d1 C r2d2 C : : :C rkdk D n g Cm:

Proof. Consider the n�n-diagonal matrix T D diag.t; t; t; : : : ; t /. By definition
(4.4.2) of the induced transformation on the i -th symmetric tensor in question,
we have fi .ai ;x/ D fi .ai ;x/ D fi .ai ; t

�1x/. This implies ai D tdi ai for
i D 1; 2; : : : ; k. The property that I is a covariant now implies

I.td1a1; t
d2a2; : : : ; t

dk ak; t
�1x/ D I.a1; a2; : : : ;ak;x/

D .detT /g � I.a1; : : : ; ak;x/ D tgn � I.a1; : : : ;ak;x/:
.4:4:12/

On the other hand, by the homogeneity assumption, the left hand side equals
t r1d1 : : : t rkdk t�m I.a1; : : : ; ak;x/, and consequently t r1d1 : : : t rkdk t�m D
tgn. G

There are two invariants that are of great importance for elimination theory.
These are the (multivariate) discriminant D.a/ of an n-ary d -form f , which
vanishes if and only if the projective hypersurface ff D 0g has a singularity, and
the (multivariate) resultant R.a1; a2; : : : ;an/ of n n-ary forms f1; f2; : : : ; fn,
which vanishes if and only if the polynomial system ff1.x/ D f2.x/ D : : : D
fn.x/ D 0g has a nonzero solution. For detailed introductions and many results
on resultants and discriminants we refer to Jouanalou (1991) and Gel’fand et al.
(1994).

At this point we have reached a good understanding of the invariant theory
of binary forms and of quadratic forms. Let us therefore proceed to the next case
(n D 3, d D 3). The space V D S3C3 of ternary cubics has dimension 10.
A typical element in V is
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f .x; y; x/ D a300 x
3 C 3a210 x

2y C 3a201 x
2´C 3a120 xy

2

C 6a111 xy´C 3a102 x´
2 C a030 y

3 C 3a021 y
2´

C 3a012 y´
2 C a003 ´

3:

.4:4:13/

We express the action a 7! T a of a linear transformation for T D .tij / 2 
 in
coordinates:

a300 7! t311a300 C 3t211t12a210 C 3t211t13a201 C 3t11t
2
12a120 C 6t11t12t13a111

C 3t11t
2
13a102 C t312a030 C 3t212t13a021 C 3t12t

2
13a012 C t313a003

a210 7! .t211t22 C 2t11t12t21/a210 C .t211t23 C 2t11t13t21/a201

C .2t11t12t22 C t212t21/a120 C .2t11t12t23 C 2t11t13t22 C 2t12t13t21/a111

C .2t11t13t23 C t213t21/a102 C t212t22a030 C .t212t23 C 2t12t13t22/a021

C .2t12t13t23 C t213t22/a012 C t213t23a003 C t211t21a300 etc., etc.

In order to get some information about the invariants of a ternary cubic, we
compute the formal character of the 
-module SmS3C3 for small values of m.
By Proposition 4.1.18 we need to compute the plethysm hm B h3, where h3

denotes the complete symmetric polynomial of degree 3 in t1; t2; t3, and hm

denotes the complete symmetric polynomial of degree m in 10 D dim.S3C3/
variables. Using Algorithm 4.1.16, we determine the following decompositions
into Schur polynomials s� D s�.t1; t2; t3/.

h2 B h3 D s.6;0;0/ C s.4;2;0/;

h3 B h3 D s.9;0;0/ C s.7;2;0/ C s.6;3;0/ C s.5;2;2/ C s.4;4;1/;

h4 B h3 D s.12;0;0/ C s.10;2;0/ C s.9;3;0/ C s.8;4;0/ C s.8;2;2/

C s.7;4;1/ C s.7;3;2/ C s.6;6;0/ C s.6;4;2/ C s.4;4;4/:

.4:4:14/

While there are no invariants in degrees 1, 2 and 3, the underlined term shows
that there exists one invariant of degree 4 and index 4. Continuing this process,
we find that there are no invariants in degrees 5, 7, 9 and 11, while the space of
invariants is one-dimensional in the degrees 6, 8 and 10. In degree 12 there are
two linearly independent invariants.

These enumerative results prove that there exists a unique (up to scaling)
invariant S of degree 4 and a unique (up to scaling) invariant T of degree 6. All
invariants of degree at most 12 lie in the subring CŒS; T �. The following result
is to be proved in Exercise 4.7. (2), using the methods developed in Sect. 4.7.

Theorem 4.4.6. The ring of invariants of a ternary cubic is generated by two
invariants S and T of degrees 4 and 6 respectively.

In the remainder of this section and in Sect. 4.5 we will address the question
of how to generate and encode invariants such as S and T . Our first method
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for computing invariants is the �-process, which was crucial in the proof of
finiteness theorem. We apply it to generate the degree 4 invariant S . The degree 6
invariant T will be generated in the next section; its monomial expansion in
given in Example 4.5.3.

In order to find the invariant S we first choose a suitable degree 4 monomial
in S4S3C3, such as a4

111. We apply to it the �-process an appropriate number
of times. We compute

I4;0.a
4
111/ D �4

T .T B a4
111/;

where �T D @3

@t11@t22@t33

� @3

@t11@t23@t31

� @3

@t12@t21@t33

C @3

@t12@t23@t31

C @3

@t13@t21@t32

� @3

@t13@t22@t33

:

The expression T B a4
111 is a polynomial in the two groups of variables t11; : : : ;

t33 and a300; a210; : : : ; a003. It is homogeneous of degree 4 in each group. The
complete expansion of T ı a4

111 has 18;630 monomials.
Having computed this expansion, we successively apply the operator �T .

Each application decreases the degree in the tij by one while the degree in the
aijk stays four. Thus �T .T B a4

111/ has degree three in the tij . It has 7;824
monomials. The next polynomial �2

T .T B a4
111/ is quadratic in the tij , and it has

3;639 monomials. The next polynomial �3
T .T B a4

111/ is linear in the tij , and it
has 150 monomials. Our final result I4;0.a

4
111/ D �4

T .T B a4
111/ is a polynomial

in the variables aijk alone. It has only 25 monomials. Each coefficient is an
integer multiple of 18630, which we divide out for convenience.

Proposition 4.4.7. The degree 4 invariant of a ternary cubic equals

S D 1
18630

� I4;0.a
4
111/

D a300a120a021a003 � a300a120a
2
012 � a300a111a030a003

C a300a111a021a012 C a300a102a030a012 � a300a102a
2
021 � a2

210a021a003

C a2
210a

2
012 C a210a201a030a003 � a210a201a021a012 C a210a120a111a003

� a210a120a102a012 � 2a210a
2
111a012 C 3a210a111a102a021 � a210a

2
102a030

� a2
201a030a012 C a2

201a
2
021 � a201a

2
120a003 C 3a201a120a111a012

� a201a120a102a021 � 2a201a
2
111a021 C a201a111a102a030 C a2

120a
2
102

� 2a120a
2
111a102 C a4

111:

We now explain what it means that the monomial a4
111 was “suitable”. In

what follows V can be any 
-module. Let T denote the subgroup of diagonal
matrices in 
 . This group is isomorphic to .C�/n, and it is called the maximal
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torus of 
 . It can be assumed that a basis of V has been chosen such that T acts
by scaling on the monomials in CŒV �.

We have the inclusion of graded invariant rings CŒV �� � CŒV �T . It is easy
to see that the �-process preserves the ring of torus invariants CŒV �T . Therefore
the only suitable monomials m (with possibly Ip;q.m/ 6D 0) are the monomials
in CŒV �T .

In order to compute the invariant ring CŒV �T we apply the methods pre-
sented in Sect. 1.4. Let us first suppose that V D Sd Cn. A torus element
diag.t1; : : : ; tn/ 2 T acts on a variable ai1i2:::in by multiplying it with t i11 t

i2
2 � � �

t
in
n . Thus a monomial

Qm
j D1 a�j1�j 2:::�jn

lies in CŒV �T if and only if

mQ
j D1

t
�j1

1 t
�j 2

2 : : : t
�jn
n D t

g
1 t

g
2 � � � tgn where g D md=n .4:4:15/

Let r denote the least denominator of the rational number d=n. We abbreviate

A D fr � .i1 � g; i2 � g; : : : in � g/ W
i1; : : : ; in � 0 integers with i1 C : : :C in D dg: .4:4:16/

We can reformulate (4.4.14) as follows.

Observation 4.4.8. The invariant ring CŒV �T equals the ring of invariants of the
matrix group 
A, as defined in Sect. 1.4.

This observation extends to an arbitrary 
-module V . In (4.4.15) we need to
take A to be the set of exponent vectors .i1; i2; : : : ; in/ appearing in the formal
character of V . Algorithm 1.4.5 can be used to compute a Hilbert basis for
CŒV �T , and thus a vector space basis for the graded components CŒV �Tm D
.SmSd Cn/T . We summarize our first algorithm for computing all 
-invariants
in SmSd Cn.

Algorithm 4.4.9.
Output: A spanning set for the C-vector space of 
-invariants in SmSd Cn.
1. Using Algorithm 1.4.5, compute all T -invariant monomials in SmSd Cn.
2. To each T -invariant monomial apply the m-fold �-process Im;0. � /.

Exercises

(1) Extend the list (4.4.14) by computing the plethysm h5 B h3 in terms of
Schur polynomials.

(2) Apply Algorithm 4.4.9 to generate the fundamental covariants f;H; T;D of
a binary cubic.

(3) Determine the ring of covariants of an n-ary quadratic form.
(4) * Determine the ring of joint invariants of two ternary quadratic forms.
(5) Compute the resultant R of three ternary quadratic forms.
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4.5. Lie algebra action and the symbolic method

There are three different algorithms for computing a basis for the vector space
of invariants of fixed degree.

(1) The �-process (Algorithm 4.4.9)
(2) Solving linear equations arising from the Lie

algebra action (Theorem 4.5.2)
(3) Generating invariants in symbolic representation (Algorithm 4.5.8).

In this section we introduce the second and the third method. Both of these
outperform the �-process in practical computations.

Let � W 
 ! GL.V / be any rational representation of 
 D GL.Cn/. The Lie
algebra Lie.
/ can be identified with the vector space Cn�n of n � n-matrices.
We choose the canonical basis fEij g of matrix units for Lie.
/. The group ho-
momorphism � induces a homomorphism of Lie algebras

�� W Lie.
/ ! Lie.GL.V //: .4:5:1/

By C-linearity, it suffices to give the image of basis elements under ��. We
have

��.Eij / D
n @

@tij
�.T /

o
T D1

.4:5:2/

where 1 denotes the n � n-unit matrix.

Lemma 4.5.1. A vector v 2 V is a 
-invariant of index g if and only if
��.Eij / � v D 0 for all i; j 2 f1; : : : ; ng; i 6D j and ��.Ei i / � v D g � v for
all i 2 f1; : : : ; ng.

Proof. A vector v 2 V being a 
-invariant of index g means that �.T / � v D
det.T /g � v for all T D .tij / 2 
 . Differentiating this identity with respect to
the variables tij and substituting T D 1 thereafter, we obtain the only-if part of
Lemma 4.5.1.

For the converse suppose that v is not a 
-invariant. This means there exists
an element in the Lie group �.
/\ SL.V / which moves v. Since this Lie group
is connected, we can find such an element in any neighborhood of the identity.
This implies that v is not fixed by the Lie algebra of �.
/ \ SL.V /. G

We work out an explicit description of the linear map (4.5.1) for the case
V D Sd Cn, � D �d . Let f D f .x/ be any n-ary d -form. By (4.5.2), its image
under ��

d
.Eij / is the n-ary d -form
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�
��

d .Eij / � f �.x/ D
n @

@tij
f .T x/

o
T D1

D
n @f
@xj

.T x/ � xi

o
T D1

D xi

@f

@xj

.x/:

.4:5:3/

On the monomial basis of Sd Cn this action is given by

��
d .Eij /.x

˛/ D j̨ � x˛C.ei �ej /; .4:5:4/

where x˛ D x
˛1

1 x
˛2

2 � � � x˛n
n and ei ; ej are unit vectors. This formula can be

rewritten in terms of the canonical basis fE˛;ˇ g of the Lie algebra Lie.GL.V //.
We have

��
d .Eij / D P

˛W j̨ >0
j̨ E˛C.ei �ej /;˛: .4:5:5/

We now iterate this construction and consider W D SmV , first as a GL.V /-
module and then as a 
-module. These two representations are denoted �m and
�m B �d respectively. In the following we represent forms f D P

˛

�
d
˛

�
a˛x˛

in V by their symmetric tensors a D .a˛/. Elements in W are homogeneous
polynomial functions P D P.a/. By (4.5.3) the Lie algebra Lie.GL.V // acts on
W via �

��
m.E˛;ˇ /

�
.P / D a˛ � @

@aˇ

P.a/:

The action of the smaller Lie algebra Lie.
/ on W is described by the formula

��
m.�

�
d .Eij //.P / D P

˛W j̨ >0
j̨ � a˛C.ei �ej / � @P

@a˛

: .4:5:6/

Lemma 4.5.1 now implies the following theorem.

Theorem 4.5.2. Let V D Sd Cn. An element I D I.a/ 2 CŒV � is a 
-invariant
of index g if and only if it satisfies the linear differential equations

P̨
j̨ � a˛

@I

@a˛

D g � I for i D j; 2; : : : ; n

and
P̨

j̨ � a˛C.ei �ej /

@I

@a˛

D 0 for i; j 2 f1; 2; : : : ; ng; i 6D j:

.4:5:7/

The differential equations (4.5.7) translate into a system of linear equations
on W D SmSd Cn. The solution space to this system is precisely the vector
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space of degree m invariants of an n-ary d -form. The first group of equations in
(4.5.7) states that I is invariant under the action of the maximal torus T ' .C�/n
in 
 .

By the discussion at the end of Sect. 4.4, we can assume that a basis for
the linear space of torus invariants W T has been precomputed (e.g., using the
methods in Sect. 1.4). We can restrict ourselves to the second group of n2 � n

differential equations. These translate into a system of linear equations on W T ,
whose solution space is W � .

Example 4.5.3 (Ternary cubics). The degree 6 invariant T of the ternary cubic
equals

a2
300a

2
030a

2
003 � 6a2

300a030a021a012a003 C 4a2
300a030a

3
012 C 4a2

300a
3
021a003

� 3a2
300a

2
021a

2
012 � 6a300a210a120a030a

2
003 C 18a300a210a120a021a012a003

� 12a300a210a120a
3
012 C 12a300a210a111a030a012a003

� 24a300a210a111a
2
021a003 C 12a300a210a111a021a

2
012

C 6a300a210a102a030a021a003 � 12a300a210a102a030a
2
012

C 6a300a210a102a
2
021a012 C 6a300a201a120a030a012a003

� 12a300a201a120a
2
021a003 C 6a300a201a120a021a

2
012

C 12a300a201a111a030a021a003 � 24a300a201a111a030a
2
012

C 12a300a201a111a
2
021a012 � 6a300a201a102a

2
030a003

C 18a300a201a102a030a021a012 � 12a300a201a102a
3
021 C 4a300a

3
120a

2
003

� 24a300a
2
120a111a012a003 � 12a300a

2
120a102a021a003 C 24a300a

2
120a102a

2
012

C 36a300a120a
2
111a021a003 C 12a300a120a

2
111a

2
012

C 12a300a120a111a102a030a003 � 60a300a120a111a102a021a012

� 12a300a120a
2
102a030a012 C 24a300a120a

2
102a

2
021 � 20a300a

3
111a030a003

� 12a300a
3
111a021a012 C 36a300a

2
111a102a030a012 C 12a300a

2
111a102a

2
021

� 24a300a111a
2
102a030a021 C 4a300a

3
102a

2
030 C 4a3

210a030a
2
003

� 12a3
210a021a012a003 C 8a3

210a
3
012 � 12a2

210a201a030a012a003

C 24a2
210a201a

2
021a003 � 12a2

210a201a021a
2
012 � 3a2

210a
2
120a

2
003

C 12a2
210a120a111a012a003 � 24a2

120a
2
111a

2
102 C 24a120a

4
111a102

C 6a2
210a120a102a021a003 � 12a2

210a120a102a
2
012 C 12a2

210a
2
111a021a003

� 24a2
210a

2
111a

2
012 � 24a2

210a111a102a030a003 � 27a2
210a

2
102a

2
021

C 36a2
210a111a102a021a012 C 24a2

210a
2
102a030a012 � 12a210a

2
201a030a021a003

C 24a210a
2
201a030a

2
012 � 12a210a

2
201a

2
021a012 C 6a210a201a

2
120a012a003
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� 60a210a201a120a111a021a003 C 36a210a201a120a111a
2
012

C 18a210a201a120a102a030a003 � 6a210a201a120a102a021a012

C 36a210a201a
2
111a030a003 � 12a210a201a

2
111a021a012

� 60a210a201a111a102a030a012 C 36a210a201a111a102a
2
021

C 6a210a201a
2
102a030a021 C 12a210a

2
120a111a102a003 � 12a210a

2
120a

2
102a012

� 12a210a120a
3
111a003 � 12a210a120a

2
111a102a012 C 36a210a120a111a

2
102a021

� 12a210a120a
3
102a030 C 24a210a

4
111a012 � 36a210a

3
111a102a021

C 12a210a
2
111a

2
102a030 C 4a3

201a
2
030a003 � 12a3

201a030a021a012 C 8a3
201a

3
021

C 24a2
201a

2
120a021a003 � 27a2

201a
2
120a

2
012 � 24a2

201a120a111a030a003

C 36a2
201a120a111a021a012 C 6a2

201a120a102a030a012 � 12a2
201a120a102a

2
021

C 12a2
201a

2
111a030a012 � 24a2

201a
2
111a

2
021 C 12a2

201a111a102a030a021

� 3a2
201a

2
102a

2
030 � 12a201a

3
120a102a003 C 12a201a

2
120a

2
111a003

C 36a201a
2
120a111a102a012 � 12a201a

2
120a

2
102a021 � 36a201a120a

3
111a012

� 12a201a120a
2
111a102a021 C 12a201a120a111a

2
102a030 C 24a201a

4
111a021

� 12a201a
3
111a102a030 C 8a3

120a
3
102 � 8a6

111:

This invariant was generated as follows. We first computed all monomials of
degree 6 which are invariant under the action of the maximal torus, using Obser-
vation 4.4.8. There are precisely 103 such monomials, namely, the monomials
appearing in the above expansion of T . We then made an “ansatz” for T with
103 indeterminate coefficients. By Theorem 4.5.2 the invariant T is annihilated
by the following six linear differential operators:

E21 D 3a210

@

@a300

C 2a120

@

@a210

C 2a111

@

@a201

C a030

@

@a120

C a021

@

@a111

C a012

@

@a102

E31 D 3a201

@

@a300

C 2a111

@

@a210

C 2a102

@

@a201

C a021

@

@a120

C a012

@

@a111

C a003

@

@a102

E12 D a300

@

@a210

C 2a210

@

@a120

C a201

@

@a111

C 3a120

@

@a030

C 2a111

@

@a021

C a102

@

@a012
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E32 D a201

@

@a210

C 2a111

@

@a120

C a102

@

@a111

C 3a021

@

@a030

C 2a012

@

@a021

C a003

@

@a012

E13 D a300

@

@a201

C a210

@

@a111

C 2a201

@

@a102

C a120

@

@a021

C 2a111

@

@a012

C 3a102

@

@a003

E23 D a210

@

@a201

C a120

@

@a111

C 2a111

@

@a102

C a030

@

@a021

C 2a021

@

@a012

C 3a012

@

@a003

Applying these operators to our ansatz for T , and equating the result with zero,
we obtained a system of 540 linear equations in 103 variables. The solution
space to this system is one-dimensional, in accordance with Theorem 4.4.6. The
unique generator for this space, up to scaling, is the vector of coefficients for the
above invariant.

We close Example 4.5.3 with a remark concerning the geometric significance
of two invariants derived from S and T . The zero set defined by the ternary
cubic (4.4.13) in the projective plane is a cubic curve. This curve is singular
if and only if the discriminant � vanishes. Otherwise the curve is an elliptic
curve. A classical invariant for distinguishing elliptic curves is the j-invariant J .
This is a 
-invariant rational function. We have the following formulas for the
discriminant and the j-invariant in terms of the two basic invariants:

� D T 2 � 64S3 and J D S3

�
: .4:5:8/

Thus Theorem 4.4.6 implies the well known geometric fact that the moduli space
of elliptic curves is birationally isomorphic to projective line P 1.

We now come to the symbolic method of classical invariant theory, which
provides our third algorithm for computing invariants and covariants. One par-
ticularly nice feature of the symbolic method is a compact encoding for large
invariants. Indeed, many of the 19th century tables of invariants are presented in
symbolic notation. Familiarity with the subsequent material is thus a precondi-
tion for accessing many classical results and tables.

For simplicity of exposition we restrict ourselves to the 
-module V D
Sd Cn, which is the case of invariants of a single form. The generalization to
joint invariants and to covariants is straightforward and left as an exercise. Other
generalizations, for instance to V D V

d Cn, are more difficult, as they involve
the use of noncommutative algebras. For the state of the art regarding the sym-
bolic method we refer to Grosshans et al. (1987).
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It is our objective to construct the 
-invariants in the vector space SmSd Cn.
Recall that the index g of these invariants satisfies the relation g � n D m � d .
Consider the ring CŒxij � of polynomial functions on a genericm�n-matrix .xij /,
and let CŒxij �.d;:::;d/ denote the subspace of polynomials that are homogeneous
of degree d in each row .xi1; xi2; : : : ; xin/.

The natural monomial basis in CŒxij �.d;:::;d/ is indexed by all nonnegative
m � n-matrices .	ij / having each row sum to d . We define the C-linear map

� W CŒxij �.d;:::;d/ ! SmSd Cn

mQ
iD1

nQ
j D1

x
�ij

ij 7!
mQ

iD1

a�i1;�i2;:::;�in
:

.4:5:9/

The map � is sometimes called the umbral operator.
The symmetric group Sm acts on CŒxij � by permuting rows. Images under �

are invariant under this action, that is, �.�P / D �.P / for all P 2 CŒxij �.d;:::;d/

and � 2 Sm. Let � denote the Reynolds operator of the symmetric group Sm.

Lemma 4.5.4. The restriction of � to the subspace of Sm-invariants defines a
vector space isomorphism

Q� W CŒxij �
Sm

.d;:::;d/
' SmSd Cn: .4:5:10/

Proof. The inverse to Q� is given by

. Q�/�1 W
mQ

iD1

a�i1;�i2;:::;�in
7! .

mQ
iD1

nQ
j D1

x
�ij

ij /� D 1

mŠ

P
�2Sm

mQ
iD1

nQ
j D1

x
��.i/;j

�.i/;j
: G

We next show that Q� preserves the invariants under the 
-action on both
spaces.

Theorem 4.5.5. An element P 2 CŒxij �
Sm

.d;:::;d/
is a 
-invariant of index g if

and only if its image �.P / in SmSd Cn is a 
-invariant of index g.

Proof. We consider the action of the Lie algebra Lie.
/ on both spaces. By
Lemma 4.5.1 and Theorem 4.5.2, it suffices to show that these two actions com-
mute.

For SmSd Cn the Lie algebra action had been determined above. We can
rewrite (4.5.6) as follows:

Ekl W
mQ

iD1

a�i1;�i2;:::;�in
7!

mP
j D1

	jl

a�j1;:::;�jkC1;:::;�jl �1;:::;�jn

a�j1;�j 2;:::;�jn

mQ
iD1

a�i1;�i2;:::;�in
:

(4.5.11)
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The action on CŒxij �.d;:::;d/ can be described as follows. The image of a mono-
mial m D Qm

iD1

Qn
j D1 x

�ij

ij under the basis elements Ekl of Lie.
/ is the coeffi-
cient of the variable t in the expansion of

mQ
iD1

.xil C txik/
�il

nQ
j D1
j 6Dl

x
�ij

ij :

This coefficient equals

mP
j D1

	jl � xjk

xjl

� m D
mP

j D1

	jl

x
�j1

j1 � � � x�jkC1

jk
� � � x�jl �1

jl
� � � x�jn

jn

x
�j1

j1 x
�j 2

j 2 � � � x�jn

jn

� m: .4:5:12/

The image of (4.5.12) under � is equal to (4.5.11). This completes the proof. G
Recall from Sect. 3.2 that the 
-invariants in CŒxij � are precisely the rank n

bracket polynomials on m letters. Using the First Fundamental Theorem 3.2.1,
we may thus replace CŒxij �

� by Bm;n D CŒƒ.m; n/�=Im;n, the bracket ring
modulo the syzygy ideal. Let Bm;n;g denote the subspace of all rank n bracket
polynomials of total degree g that are symmetric in the letters 1; 2; : : : ; m.

Corallary 4.5.6. The space Bm;n;g is isomorphic to the vector space of invari-
ants .SmSd Cn/� .

Example 4.5.7 (Cubic invariants of a ternary quadric, n D 3, d D 2, m D 3,
g D 2). The space B3;3;2 consists of rank 3 bracket polynomials in f1; 2; 3g,
homogeneous of bracket degree 2. This is a one-dimensional space, spanned by
the bracket monomial Œ1 2 3�2. Therefore the space .S3S2C3/� is spanned by the
invariant �.Œ1 2 3�2/.

We evaluate this invariant in terms of the coefficients of the ternary quadric
(4.1.10). In the following table the first column lists the monomial expansion of
Œ1 2 3�2 D .x11x22x33 � x11x23x32 � x12x21x33 C x12x23x31 � x13x21x32 C
x13x22x31/

2. To each monomial we apply the operator �. The results are listed
in the second column:

x2
11x

2
22x

2
33 a200a020a002

�2x2
11x22x23x32x33 �2a200a

2
011

Cx2
11x

2
23x

2
32 Ca200a020a002

�2x11x12x21x22x
2
33 �2a2

110a002

C2x11x12x21x23x32x33 C2a110a101a011

C2x11x12x22x23x31x33 C2a110a101a011

�2x11x12x
2
23x31x32 �2a2

110a002

C2x11x13x21x22x32x33 C2a110a101a011
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�2x11x13x21x23x
2
32 �2a2

101a020

�2x11x13x
2
22x31x33 �2a2

101a020

C2x11x13x22x23x31x32 C2a110a101a011

Cx2
12x

2
21x

2
33 Ca200a020a002

�2x2
12x21x23x31x33 �2a2

101a020

Cx2
12x

2
23x

2
31 Ca200a020a002

�2x12x13x
2
21x32x33 �2a200a

2
011

C2x12x13x21x22x31x33 C2a110a101a011

C2x12x13x21x23x31x32 C2a110a101a011

�2x12x13x22x23x
2
31 �2a200a

2
011

Cx2
13x

2
21x

2
32 Ca200a020a002

�2x2
13x21x22x31x32 �2a2

110a002

Cx2
13x

2
22x

2
31 Ca200a020a002

The sum over the second column in this table equals �.Œ1 2 3�2/ D 6 ��, where
� equals the discriminant (4.1.14).

From Theorem 4.5.5 and Corollary 4.5.6 we derive the following algorithm.

Algorithm 4.5.8.
Input: Integers m, d and n such that g D m	d

n
is an integer.

Output: A basis I for the space of 
-invariants in SmSd Cn, in symbolic nota-
tion.

1. Let T be the set of rank n standard bracket monomials in the letters f1; 2;
: : : ; mg having degree g.

2. For each standard bracket monomial t 2 T compute its Sm-symmetriza-
tion t�.

3. Compute a basis I for the C-linear span of the bracket polynomials ft� W
t 2 T g.

Example 4.5.9 (Ternary cubics revisited, m D 4, d D 3, n D 3). The space of
symmetrized rank 3 standard bracket polynomials on f1; 2; 3; 4g having degree 4
is one-dimensional. It is spanned by the bracket monomial Œ123�Œ124�Œ134�Œ234�.
Therefore the space of degree 4 invariants is spanned by

�
�
Œ123�Œ124�Œ134�Œ234�

� D 24 � S: .4:5:13/

Here S denotes the familiar invariant given in Proposition 4.4.7.
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Exercises

(1) Describe the action of the Lie algebra Lie.
/ on the spaces Sm

V
d Cn andV

m Sd Cn.
(2) Give a symbolic representation for the degree 6 invariant of the ternary

cubic.
(3) Compute a basis for the degree 8 invariants of the binary quintic.
(4) What is the smallest degree for an invariant of the ternary quartic?
(5) * Formulate the symbolic method for joint invariants and joint covariants

of forms. State the map � explicitly. Determine symbolic representations for
the resultant and for the Jacobian of two binary cubics.

(6) * Determine the ring of joint invariants of k binary quadrics.

4.6. Hilbert’s algorithm

We give an algorithm for computing a finite generating set for the invariant ring
CŒV �� of an arbitrary polynomial 
-module. Our discussion follows closely the
original work of Hilbert (1893). One of the key concepts introduced in Hilbert
(1893) is the nullcone. Computing the nullcone will be our theme in the first half
of this section. Later on we need to pass from invariants defining the nullcone to
the complete set of generators, which amounts to an integral closure computa-
tion. The complexity analysis, based on results of Hochster and Roberts (1974)
and Popov (1981, 1982), will be presented in Sect. 4.7.

Let I� denote the ideal in CŒV � that is generated by all homogeneous 
-
invariants of positive degree. Let N� denote the affine algebraic variety defined
by I� . This subvariety of V is called the nullcone of the 
-module V . The
following result is crucial for our algorithm. Its proof is the very purpose for
which Hilbert’s Nullstellensatz was first invented.

Theorem 4.6.1 (Hilbert 1893). Let I1; : : : ; Im be homogeneous invariants
whose common zero set in V equals the nullcone N� . Then the invariant ring
CŒV �� is finitely generated as a module over its subring CŒI1; : : : ; Im�.

Proof. By Theorem 4.3.1, the invariant ring is finitely generated as a C-algebra:
there exist invariants J1; : : : ; Js such that

CŒV �� D CŒJ1; J2; : : : ; Js�: .4:6:1/

Let d denote the maximum of the degrees of J1; J2; : : : ; Js . The nullcone N� ,
which is the variety defined by the fundamental invariants J1; : : : ; Js , coincides
with the variety defined by I1; : : : ; Im. By Hilbert’s Nullstellensatz, there exists
an integer r such that

J r
1 ; J

r
2 ; : : : ; J

r
s 2 hI1; I2; : : : ; Imi: .4:6:2/
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Let I 2 CŒV �� be any invariant of degree � drs. By (4.6.1) we can write
I as a C-linear combination of invariants of the form J

i1
1 J

i2
2 � � �J is

s , where i1 C
i2 C : : :C is � sr . Each such invariant lies in the ideal hI1; I2; : : : ; Imi, and so
does I , by (4.6.2). We can write

I D f1I1 C f2I2 C : : :C fmIm where f1; f2; : : : ; fm 2 CŒV �: .4:6:3/

Applying the �-process to the identity (4.6.3) as in (4.3.23), we see that the co-
efficients f1; f2; : : : ; fm may be chosen to be invariants. We now iterate this pro-
cedure for those invariants fi 2 CŒV �� whose degree is larger or equal to drs.

This proves that I is a linear combination of 
-invariants of degree <

drs, with coefficients in CŒI1; : : : ; Im�. Hence CŒV �� is finite over its subring
CŒI1; : : : ; Im�. G
Corollary 4.6.2. Under the hypothesis of Theorem 4.6.1, the invariant ring
CŒV �� equals the integral closure of CŒI1; : : : ; Im� in the field C.V / of rational
functions on V .

Proof. The ring CŒV �� is finite and therefore integral over CŒI1; : : : ; Im�. For
the converse suppose that f 2 C.V / is any rational function on V which is
integral over CŒI1; : : : ; Im�. This means there exists an identity in C.V / of the
form

f n C pn�1.I1; : : : ; Im/ � f n�1 C : : :C p1.I1; : : : ; Im/ � f C p0.I1; : : : ; Im/

D 0; (4.6.4)

where the pi are suitable polynomials. We write f D g=h, where g; h are
relatively prime polynomials in CŒV �. The resulting identity

gn=h D �pn�1.I1; : : : ; Im/ � gn�1 � : : : � p1.I1; : : : ; Im/ � ghn�2

� p0.I1; : : : ; Im/h
n�1 (4.6.5)

shows that gn=h is actually a polynomial in CŒV �. This means h divides gn.
Since g and h are assumed to be relatively prime, also h and gn are relatively
prime. This implies that h is a constant, and therefore f D g=h lies in CŒV �.

It remains to be seen that f is a 
-invariant. Since 
 is a connected group, it
suffices to show that the orbit of f under 
 is a finite set. Consider the n roots of
the polynomial in (4.6.4) in the algebraic closure of C.V /. Since each coefficient
pi .I1; : : : ; Im/ is 
-invariant, the set of roots is 
-invariant. Therefore the orbit
of f has at most n elements. G

The problem of computing fundamental invariants now splits up into two
parts:
– Compute homogeneous invariants I1; : : : ; Im whose variety equals the null-

cone N� .
– Compute the integral closure of CŒI1; : : : ; Im� in C.V /.
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We first address the problem of computing the nullcone. Let T ' .C�/n
denote the maximal torus in 
 , and consider its ring of invariants CŒV �T . We
know that CŒV �T is a monomial algebra whose minimal generating set H, the
Hilbert basis, can be computed using Algorithm 1.4.5. Let IT denote the mono-
mial ideal in CŒV � that is generated by H or, equivalently, by all homogeneous
T -invariants of positive degree. The affine algebraic variety defined by IT is
denoted CT;� and called the canonical cone. It is a union of linear coordinate
subspaces of V .

For algebraic geometers we note that in geometric invariant theory (Mumford
and Fogarty 1982) the points not in N� are called 
-semistable and the points
not in CT;� are called T -semistable. The following theorem relates the nullcone
to the canonical cone.

Theorem 4.6.3. The nullcone equals the 
-orbit of the canonical cone, i.e.,

8 v0 2 V W v0 2 N� ” 9A0 2 
 W A0 B v0 2 CT;� : .4:6:6/

We will not present the proof of Theorem 4.6.3 here, but instead we refer
to Hilbert (1893: § 15–16). Other proofs using modern algebraic geometry lan-
guage can be found in Kraft (1985: § II.2.3) and in Mumford and Fogarty (1982).

The condition (4.6.6) can be rephrased in ideal-theoretic terms. Let A D
.aij / be a generic n � n-matrix, and let CŒV; A� denote the polynomial ring
generated by the variables aij and the coordinates of the generic point v of V .
Let A B IT denote the ideal in CŒV; A� gotten by substituting A B v for v in IT .
Then (4.6.6) is equivalent to

Ideal.N�/ D Rad.I�/ D Rad
�
.A B IT / \ CŒV �

�
; .4:6:60/

where Ideal.�/ stands for “the vanishing ideal of” and Rad.�/ refers to the radical
of ideals in CŒV �. As a consequence of Theorem 4.6.3 we get the following
algorithm.

Algorithm 4.6.4 (Computing the nullcone).
Input: A polynomial 
-module V .
Output: Homogeneous invariants whose affine variety in V equals the nullcone
N� .

1. Compute the Hilbert basis H of the ring CŒV �T of torus invariants (Algo-
rithm 1.4.5).

2. Using Gröbner bases, eliminate the variables A D .aij / from the ideal

A B IT D hA Bm W m 2 Hi � CŒV; A�:

Let g1; g2; : : : ; gs be the resulting (noninvariant!) generators of .A B IT / \
CŒV �.
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3. Generate invariants I1; I2; I3; : : : degree by degree until

g1; g2; : : : ; gs 2 Rad.hI1; I2; : : : ; Imi/ for some m � 0:

Step 3 is formulated rather vaguely, as is the specification of the input. One
reasonable assumption is that the action of the Lie algebra Lie.
/ on CŒV � is
given explicitly, that is, we know the system of differential equations (4.5.7).
Equivalent to this is the knowledge of the system of linear equations Lie.V / �
Sm.V / D 0 for each degree level m. The latter is the working assumption in
Popov (1981). From the first group of equations in (4.5.7) we can read off the
set of weights A � Zn, which is the input for step 1.

Another possibility is that we might have an efficient subroutine for the sym-
bolic method which supplies a stream of invariants as in Algorithm 4.5.8. A third
possibility is that we are given a subroutine for performing the �-process. This
is closest in spirit to Algorithm 2.5.8 for finite groups. In all three cases we will
naturally proceed one degree at a time in step 3, similar to Algorithm 2.5.8.

In order to improve Algorithm 4.6.4 and to analyze its complexity, we need
to study the nullcone and the canonical cone more closely. Let CŒA� denote the
polynomial ring on the generic matrix A D .aij /. The determinant det.A/ is
an element of degree n in CŒA�. For each fixed vector v0 2 V we let CŒAv0�
denote the subring of CŒA� generated by the coordinates of the transformed
vector A B v0.

Lemma 4.6.5. A vector v0 2 V does not lie in the nullcone N� if and only if
det.A/ is integral over CŒAv0�.

Proof. Suppose that v0 does not lie in N� . Then there exists a homogeneous
invariant I 2 CŒV �� of positive degree such that I.v0/ 6D 0. We have the identity

det.A/p D I.Av0/=I.v0/ in CŒAv0�; .4:6:7/

where p > 0 is the index of I . This shows that det.A/ is integral over CŒAv0�.
For the converse, suppose there exists an identity

det.A/p C
p�1P
j D0

fj .Av0/ det.A/j D 0 in CŒAv0�: .4:6:8/

We may assume that this identity is homogeneous, in particular each fj is homo-
geneous. We replace v0 by the generic vector v and consider the homogeneous
polynomial

det.A/p C
p�1P
j D0

fj .Av/ det.A/j in CŒV; A�: .4:6:9/

We apply the p-fold �-process �p
A to (4.6.9). By the results of Sect. 4.3, this
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transforms (4.6.9) into an expression

c C
p�1P
j D0

Ij .v/ in CŒV; A�; .4:6:10/

where c is a nonzero constant and I0; I1; : : : ; Ip�1 are homogeneous invariants
of positive degree. Moreover, if in (4.6.10) the generic element v is replaced by
the specific v0, then we get zero by (4.6.8). Since c is nonzero, there exists an
index j 2 f0; 1; : : : ; p � 1g such that Ij .v0/ 6D 0. Therefore v0 62 N� . G

We next give a criterion for v0 to lie in the canonical cone. Let t D
diag.t1; t2; : : : ; tn/ be a generic element of the maximal torus T D .C�/n.
For each fixed vector v0 2 V we let CŒt v0� denote the subring of CŒt� D
CŒt1; t2; : : : ; tn� generated by the coordinates of the transformed vector t B v0.

Lemma 4.6.6. For any vector v0 2 V the following statements are equivalent:
(a) det.t/ D t1t2 : : : tn is integral over CŒtv0�;
(b) .t1t2 : : : tn/p lies in CŒtv0� for some integer p > 0;
(c) v0 does not lie in the canonical cone CT;� .

Proof. The algebra CŒtv0� is generated by monomials in t1; : : : ; tn. Another
monomial, such as t1t2 : : : tn, lies in the integral closure of CŒtv0� if and only
if one of its powers lies in CŒtv0�. To see the equivalence of (b) and (c), we
note that a nonconstant monomial m 2 CŒV � is T -invariant if and only if
m.t v/ D det.t/p � m.v/ for some p > 0. Now, (b) states that there exists a
monomial m 2 CŒV � such that det.t/p D m.t v0/ D t

i1
1 t

i2
2 � � � t inn � m.v0/. This

relation implies i1 D p; : : : ; in D p;m.v0/ D 1; so (b) is equivalent to the
existence of a nonconstant monomial m 2 CŒV �T with m.v0/ D 1, and hence
to (c). G

The two previous lemmas suggest the following more refined approach to
computing invariants. The correctness of Algorithm 4.6.7 follows from Theorem
4.6.3 and Lemma 4.6.5, and the elimination property of the chosen Gröbner basis
monomial order.

Algorithm 4.6.7 (“The geometric invariant theory alternative”).
Input: A 
-module V of dimension N , and a point v0 2 V .
Output: Either a nonconstant homogeneous invariant I 2 CŒV �� such that I.v0/
6D 0, or a matrix A0 2 
 such that A0v0 lies in the canonical cone CT;� .

1. Introduce new variables D;y1; : : : ; yN and compute the reduced Gröbner
basis G for the relations

det.A/ �D; Av0 � .y1; : : : ; yN /
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with respect to an elimination monomial order faij g > D > fyig and let
G0 WD G \ CŒD; y1; : : : ; yN �.

2. Does there exist a relation of the form

Dp C
p�1P
j D0

fj .y1; : : : ; yN /D
j in G0‹

If yes, then det.A/ satisfies the integral relation (4.6.8). Proceed as in (4.6.9)
and (4.6.10) to compute an invariant with I.v0/ 6D 0.

3. If no, compute the minimal generating set H0 of Rad.IT /, by taking the
square-free part in each monomial in the Hilbert basis H of CŒV �T .

4. Compute a common zero .A0;D0; b1; : : : ; bN / of G [ H such that D0 D 1.
Then A0 2 
 , and A0v0 D .b1; : : : ; bN / lies in CT;� .

In many examples of 
-semistable points v0 2 V n N� it happens that the
relation found in step 2 equals

Dp � I.y1; y2; : : : ; yN /;

where I is already an invariant. It clearly satisfies I.v0/ 6D 0, so we do not need
to invoke the second part of step 3 at all. We illustrate this nice behavior in the
following example.

Example 4.6.8 (Two binary cubics). Let V D S3C2, the space of cubics in two
variables x1 and x2. We consider the following two elements in V :

v0 D x3
1 � 6x2

1x2 C 11x1x
2
2 � 6x3

2 D .x1 � x2/.x1 � 2x2/.x1 � 3x2/
(4.6.11)

v 0
0 D x3

1 � 8x2
1x2 C 21x1x

2
2 � 18x3

2 D .x1 � 2x2/.x1 � 3x2/
2:

Let A D �
a11 a12
a21 a22

�
denote a generic matrix of 
 . The relations

det.A/ �D and A B v0 � .y1; y2; y3; y4/; .4:6:12/

in the polynomial ring CŒa11; a12; a21; a22;D; y1; y2; y3; y4� are explicitly giv-
en as:

a11a22 � a12a21 �D; .a3
11 � 6a2

11a12 C 11a11a
2
12 � 6a3

12/ � y1;

.3a21a
2
11 � 12a21a11a12 � 6a2

11a22 C 11a21a
2
12 C 22a11a22a12

� 18a22a
2
12/ � y2;
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.3a2
21a11 � 6a2

21a12 � 12a21a11a22 C 22a21a22a12 C 11a11a
2
22

� 18a2
22a12/ � y3;

.a3
21 � 6a2

21a22 C 11a21a
2
22 � 6a3

22/ � y4: (4.6.120)

The analogous relations for the second binary cubic v 0
0 are

a11a22 � a12a21 �D; .a3
11 � 8a2

11a12 C 21a11a
2
12 � 18a3

12/ � y1;

.3a21a
2
11 � 16a21a11a12 � 8a2

11a22 C 21a21a
2
12 C 42a11a22a12

� 54a22a
2
12/ � y2;

.3a2
21a11 � 8a2

21a12 � 16a21a11a22 C 42a21a22a12 C 21a11a
2
22

� 54a2
22a12/ � y3;

.a3
21 � 8a2

21a22 C 21a21a
2
22 � 18a3

22/ � y4: (4.6.13)

Using the monomial order specified in step 1 of Algorithm 4.6.7, we now com-
pute Gröbner bases G and G0 for (4.6.12) and (4.6.13) respectively. In G we find
the polynomial

D6 � 1
4
y2

2y
2
3 C y1y

3
3 C y3

2y4 � 9
2
y1y2y3y4 C 27

4
y2

1y
2
4 :

This trailing polynomial in y1; y2; y3; y4 is a multiple of the discriminant of the
binary cubic. The discriminant is an invariant of index 6, which does not vanish
at v0.

The other Gröbner basis G0 contains no such integral dependence, so we
enter step 3 in Algorithm 4.6.7. The minimal defining set of the canonical cone
equals

H0 D fx1x3; x1x4; x2x3; x2x4g:

From the Gröbner basis for G0 [ H0 we can determine the following common
zero:

D D 1; a11 D 3; a12 D 1; a21 D 2; a22 D 1; y1 D 0; y2 D 0; y3 D 1; y4 D 0:

This tells us that the matrix A0 D �
3 1
2 1

�
transforms v 0

0 into the binary cubic

A0 B v 0
0 D x1x

2
2 2 CT;� : G

We now come to the problem of passing from the invariants I1; : : : ; Im

to the complete system of invariants. Equivalently, we need to compute the in-
tegral closure of CŒI1; : : : ; Im� in C.V /. The second task is related to the nor-
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malization problem of computing the integral closure of a given domain in its
field of fractions. They are not quite the same problem because the field of frac-
tions of CŒI1; : : : ; Im� is much smaller than the ambient rational function field
C.V /. The normalization is a difficult computational problem in Gröbner basis
theory, but there are known algorithms due to Traverso (1986) and Vasconcelos
(1991). It is our objective to describe a reduction of our problem to normal-
ization. It would be a worthwhile research problem to analyze the methods in
Traverso (1986) and Vasconcelos (1991) in the context of invariant theory. In
what follows we simply call “normalization” as a subroutine.

Algorithm 4.6.9 (Completing the system of fundamental invariants).
Input: Homogeneous invariants I1; : : : ; Im whose affine variety equals the null-
cone N� .
Output: A generating set fJ1; J2; : : : ; Jsg for the invariant ring CŒV �� as a C-
algebra.

1. Compute the integral closure R of the domain C
�
det.A/; Av ; I1.v/; : : : ;

Im.v/
�

in its field of fractions.
2. Among the generators of R choose those generators J1.v/; J2.v/; : : : ; Js.v/

which do not depend on any of the variables A D .aij /.

The correctness of Algorithm 4.6.9 is a consequence of Corollary 4.6.2 and the
following result.

Proposition 4.6.10. The invariant ring equals the following intersection of a
field with a polynomial ring:

CŒV �� D C
�
det.A/; Av ; I1.v/; : : : ; Im.v/

� \ CŒV �:

Proof. The inclusion “�” follows from the fact that every homogeneous invari-
ant J.v/ satisfies an identity

J.v/ D J.Av/

det.A/p
:

To prove the inclusion “�” we consider the 
-action on C.A; V / given by

T W A 7! A � T �1; v 7! T B v :

The field C
�
det.A/; Av ; I1.v/; : : : ; Im.v/

�
is contained in the fixed field C.A;

V /� . Therefore its intersection with CŒV � is contained in C.A; V /� \ CŒV �
D CŒV �� . G
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Exercises

(1) Compute the canonical cone for the following 
-modules. In each case give
the irreducible decomposition of CT;� into linear coordinate subspaces:
(a) V D Sd C2, the space of binary d -forms
(b) V D Sd C3, the space of ternary d -forms
(c) V D S3C4, the space of quaternary cubics (Hint: see Hilbert [1893:

§ 19].)
(d) V D V

2 C4

(2) This problem concerns the action of 
 D GL.C2/ on the space of
2 � n-matrices C2�n.
(a) Compute the canonical cone.
(b) Compute the nullcone, using Algorithm 4.6.4.
(c) Choose one matrix in the nullcone and one matrix outside the nullcone,

and apply Algorithm 4.6.7 to each of them.
(d) Find a system of 2n � 3 algebraically independent bracket polynomials,

which define the nullcone set-theoretically. (Hint: see Hilbert [1893:
§ 11].)

(e) Apply Algorithm 4.6.9 to your set of 2n � 3 bracket polynomials in (d).
(3) * In general, is the invariant ring CŒV �� generated by the images of the

Hilbert basis H of CŒV �T under the �-process? Give a proof or a
counterexample.

(4) * Compute a fundamental set of invariants for the 
-module V D V
2 C4.

4.7. Degree bounds

We fix a homogeneous polynomial representation .V; �/ of the general linear
group 
 D GL.Cn/ having degree d and dimension N D dim.V /. It is our goal
to give an upper bound in terms of n, d and N for the generators of the invariant
ring CŒV �� . From this we can get bounds on the computational complexity of
the algorithms in the previous section. The results and methods to be presented
are drawn from Hilbert (1893) and Popov (1981).

We proceed in two steps, just like in Sect. 4.6. First we determine the com-
plexity of computing primary invariants as in Theorem 4.6.1.

Theorem 4.7.1. There exist homogeneous invariants I1; : : : ; Im of degree less
than n2.dnC 1/n

2
such that the variety defined by I1 D : : : D Im D 0 equals

the nullcone N� .

Note that this bound does not depend on N at all. For the proof of Theorem
4.7.1 we need the following lemma.

Lemma 4.7.2. Let f0; f1; : : : ; fs be homogeneous polynomials of degree t in
s variables y1; : : : ; ys . Then there exists an algebraic dependency P.f0; f1; : : : ;
fs/ D 0, where P is a homogeneous polynomial of degree 	 s.t C 1/s�1.
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Proof. Let us compute an algebraic dependency P of f0; f1; : : : ; fs of minimum
degree r , where r is to be determined. We make an “ansatz” for P with

�
rCs

s

�
indeterminate coefficients. The expression P.f0; f1; : : : ; fs/ is a homogeneous
polynomial of degree rt in s variables. Equating it to zero and collecting terms
with respect to y1; : : : ; ys , we get a system of

�
rtCs�1

s�1

�
linear equations for the

coefficients of P . In order for this system to have a nontrivial solution, it suffices
to choose r large enough so that

r C s

s

�
D .r C 1/ � � � .r C s/

1 � 2 � � � s � .rt C 1/ � � � .rt C s � 1/
1 � 2 � � � .s � 1/ D



rt C s � 1
s � 1

�
:

(4.7.1)

If we set r D s.t C 1/s�1, then .r C 1/s > s.rt C s � 1/s�1 and (4.7.1) is
satisfied. G

Proof of Theorem 4.7.1. We need to show the following statement: For any v0 2
V nN� there exists an invariant I of degree < n2.dnC1/n2

such that I.v0/ 6D 0.
We apply step 1 of Algorithm 4.6.7 and identify y1; : : : ; yN with the coordinates
of Av0.

Let s denote the Krull dimension of CŒAv0� D CŒy1; : : : ; yN �. Clearly,
s 	 n2. By the Noether normalization lemma, there exist s algebraically inde-
pendent linear combinations ´i D PN

j D1 �ijyj , such that CŒAv0� is integral over
CŒ´1; : : : ; ´s�. By Lemma 4.6.5, D D det.A/ is integral over CŒAv0�, and hence
it is integral over CŒ´1; : : : ; ´s�.

Each of the polynomials Dd ; ´n
1; ´

n
2; : : : ; ´

n
s is homogeneous of degree nd

in the variables A D .aij /. Since Dd is integrally dependent upon the alge-
braically independent polynomials ´n

1; ´
n
2; : : : ; ´

n
s , there exists a unique homo-

geneous affine dependency of minimum degree of the form

P.Dd ; ´n
1; ´

n
2; : : : ; ´

n
s / D Ddp �

p�1P
iD0

Pi .´
n
1; ´

n
2; : : : ; ´

n
s /D

ip D 0: .4:7:2/

By Lemma 4.7.2, the degree of this relation and hence the degree of each Pi is
bounded above by s.nd C 1/s�1 < n2.nd C 1/n

2
. Applying the �-process as

in the proof of Lemma 4.6.5, we obtain a homogeneous invariant of degree <
n2.nd C 1/n

2
which does not vanish at v0. G

In order to derive degree bounds for the fundamental invariants from The-
orem 4.7.1, we first need to state a very important structural property of the
invariant ring CŒV �� , for 
 D SL.Cn/.

Theorem 4.7.3 (Hochster and Roberts 1974). The invariant ring CŒV �� is a
Cohen–Macaulay and Gorenstein domain.
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The Cohen–Macaulay property for invariants of finite groups was proved in
Sect. 2.3. We refer to Hochster and Roberts (1974) or Kempf (1979) for the
general proof in the case of a reductive group, such as 
 D SL.Cn/. The fact
that CŒV �� is an integral domain is obvious because the polynomial ring CŒV �
is an integral domain.

What we need here is the fact that CŒV �� is Gorenstein. For a Cohen–
Macaulay ring the Gorenstein property is equivalent to an elementary symmetry
property of the Hilbert series. Recall that the Hilbert series of any finitely gener-
ated graded C-algebra is a rational function (Atiyah and Macdonald 1969). The
following theorem combines results of Stanley (1978) and Kempf (1979). The
Hilbert series H.CŒV �� ; ´/ is also called the Molien series of the 
-module V .

Theorem 4.7.4. The Molien series satisfies the following identity of rational
functions:

H
�
CŒV �� ;

1

´

� D ˙´q �H.CŒV �� ; ´/; .4:7:3/

where q is a nonnegative integer.

The fact that q is nonnegative is due to Kempf (1979). Stanley (1979a) has
shown that for most representations we have in fact q � dim.V /.

Just like in the case of finite groups, one would like to precompute the Molien
series H.CŒV �� ; ´/ before running the algorithms in Sect. 4.6. In practice the
following method works surprisingly well. As in (4.2.2) let

f
 D t
i11

1 t
i12

2 � � � t i1n
n C t

i21

1 t
i22

2 � � � t i2n
n C : : :C t

im1

1 t
im2

2 � � � t imn
n .4:7:4/

be the formal character of the given representation. Consider the following gen-
erating function in t1; : : : ; tn and one new variable ´.Q

1�i<j �n.ti � tj / Qn
iD1 t

i�1
iQm

�D1.1 � ´ � t i�1

1 t
i�2

2 � � � t i�n
n /

: .4:7:5/

Algorithm 4.7.5 (Precomputing the Molien series).
Input: The formal character (4.7.4) of a polynomial 
-module V , and an integer
M � 0.
Output: The truncated Molien series

H�M .CŒV �
� ; ´/ D PM

mD0 dimC.CŒV �
�
m/´

m:

1. Compute the Taylor series expansion of (4.7.5) with respect to ´ up to
order M .

2. Let P.´; t1; : : : ; tn/ denote its normal form with respect to ft1t2 � � � tn ! 1g.
(This singleton is a Gröbner basis.)

3. The constant term P.´; 0; 0; : : : ; 0/ equals the desired truncated Molien
series.
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By studying the truncated Molien series for increasingM it is sometimes pos-
sible to guess (and then prove) a formula for the rational function H.CŒV �� ; ´/.

We present two alternative proofs of correctness for Algorithm 4.7.5.

Proof I. We multiply the both sides of the identity (4.2.7) by the Vandermonde
determinant

Q
1�i<j �n.ti � tj /. The truncation of the resulting formal power

series equals

b M n
d

cP
kD0

P
�`dk

c� s�.t1; t2; : : : ; tn/
Q

1�i<j �n

.ti � tj / D
b M n

d
cP

kD0

P
�`dk

c� a�.t1; t2; : : : ; tn/;

where a� denotes the antisymmetrization of the monomial t�1Cn�1
1 t

�2Cn�2
2 � � �

t
�n
n , as in Sect. 1.1. Multiply the right hand side by

Qn
iD1 t

i�1
i . After the re-

duction t1t2 � � � tn ! 1 in step 1, the only terms not containing t1; : : : ; tn are
those arising from partitions of the form � D .g; g; : : : ; g/. Theorem 4.2.3 now
implies the correctness of Algorithm 4.7.6. G
Proof II. The continuous generalization of Molien’s Theorem 2.2.1 states that

H.CŒV �� ; ´/ D
Z

g2�

dg

det.1 � ´g/ ; .4:7:6/

where dg denotes the Haar probability measure concentrated on the maximal
compact subgroup of 
 . Using Weyl’s character formula (Weyl 1926), the inte-
gral (4.7.6) can be expressed as an integral over the maximal compact torus in
T 0 D T \ SL.Cn/ D fdiag.t1; t2; : : : ; tn/ W t1t2 � � � tn D 1g. Denoting elements
of T 0 by t D diag.t1; : : : ; tn/, we have

H.CŒV �� ; ´/ D
Z

t2T 0

�.t/ dt

det.1 � ´t/
; .4:7:7/

where �.t/ D Q
1�i<j �n.1 � tj

ti
/. This integral is with respect to the Haar

probability measure concentrated on the maximal compact subgroup of T 0. Such
an integral can be evaluated formally using the following rule: the integral of
any nonconstant character t i11 t

i2
2 � � � t inn over T 0 is zero. Noting that det.1 � ´t/

equals the denominator in (4.7.5), we find that evaluating the integral in (4.7.7)
is equivalent to Algorithm 4.7.5. G
Example 4.7.6 (The number of invariants of a ternary quartic). We compute the
Molien series of V D S4C3. The generating function (4.7.5) equals

.t1 � t2/.t1 � t3/.t2 � t3/t2t23
.1 � ´t43 /.1 � ´t2t33 /.1 � ´t22 t23 /.1 � ´t32 t3/.1 � ´t42 /.1 � ´t1t33 / � � � .1 � ´t41 /

:

(4.7.8)
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Using Algorithm 4.7.5 we easily compute the Molien series up to degree M D
21:

H.CŒV �� ; ´/ D 1C ´3 C 2´6 C 4´9 C 7´12 C 11´15 C 19´18 C 29´21 C : : :

For analyzing the ternary quartic this suggests that we start by looking for one
fundamental invariant in degree 3 and another fundamental invariant in degree 6.

Let us return to our discussion of general degree bounds. The bound given
in the subsequent Theorem 4.7.7 is doubly-exponential, and it is certainly not
best possible. At present, it is unknown whether there exists a degree bound for
Hilbert’s finiteness theorem which is single-exponential in n2, the dimension of
the group 
 .

Theorem 4.7.7 (Popov 1981). The invariant ring CŒV �� is generated as a C-
algebra by homogeneous invariants of degree at most N

�
n2.dnC 1/n

2�
Š.

Proof. Let I1; : : : ; Im be homogeneous polynomials of degree at most n2.dn

C 1/n
2

such that CŒV �� is integral over CŒI1; : : : ; Im�. Both algebras have the
Krull dimension, say r . Clearly, r 	 N .

We perform a homogeneous Noether normalization: we replace I1; : : : ; Im

by pure powers I d1

1 ; : : : ; I
dm
m which are homogeneous of the same degree, say S .

The integer S can be generously bounded above by the factorial
�
n2.dnC1/n2�

Š.

Let 
1; : : : ; 
r be generic C-linear combinations of I d1

1 ; : : : ; I
dm
m . Then 
1; : : : ;


r are algebraically independent polynomials of degree S such that CŒI1; : : : ;
Im� is integral over CŒ
1; : : : ; 
r �.

In summary, we have found a homogeneous system of parameters 
1; : : : ; 
r

of the same degree S 	 �
n2.dn C 1/n

2�
Š for the invariant ring CŒV �� . By

Theorem 4.7.3, the invariant ring is Cohen–Macaulay, which means there exists
a Hironaka decomposition as in (2.3.1). Let �1; �2; : : : ; �t be a basis for CŒV ��

as free CŒ
1; : : : ; 
r �-module, and let e1 	 e2 	 : : : 	 et denote the degrees of
�1; �2; : : : ; �t . It suffices to prove that et 	 N � S .

By Corollary 2.3.4, the Molien series equals

H.CŒV �� ; ´/ D ´e1 C ´e2 C : : :C ´et

.1 � ´S /r
: .4:7:9/

From Theorem 4.7.4 we get the following identity of rational functions:

´qCe1 C : : :C ´qCet

.1 � ´S /r
D ˙´�e1 C : : :C ´�et

.1 � ´�S /r
D ˙´rS�e1 C : : :C ´rS�et

.1 � ´S /r
:

Clearing denominators results in an identity of polynomials. Equating highest
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terms on both sides, we see that q C et D rS � e1 and consequently

et D rS � e1 � q 	 rS 	 N � S:
This completes the proof of Theorem 4.7.7. G

Exercises

(1) Compute the unique degree three invariant of the ternary quartic. What does
its vanishing mean geometrically?

(2) Prove Theorem 4.4.6, using the following steps:
(a) Show that the invariants S and T are algebraically independent.
(b) Show that the invariants S and T define the nullcone set-theoretically.
(c) Using Theorem 4.7.4, give an upper bound M for the degrees in a

minimal fundamental set of invariants.
(d) Using Algorithm 4.7.5, compute the Molien series up to order M .
(e) Conclude that H.CŒV �� ; ´/ D 1

.1�´4/.1�´6/
.
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