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PREFACE

Computational molecular biology has emerged from the Human Genome Project as
an important discipline for academic research and industrial application. The expo-
nential growth of the size of biological databases, the complexity of biological prob-
lems, and the necessity to deal with errors in biological sequences require the de-
velopment of fast, low-memory requirement and high-performance algorithms. This
book is a forum of such algorithms, based on new/improved approaches and/or tech-
niques. Most of the current books on algorithms in computational molecular biology
either lack technical depth or focus on specific narrow topics. This book is the first
overview on algorithms in computational molecular biology with both a wide cov-
erage of this field and enough depth to be of practical use to working professionals.
It surveys the most recent developments, offering enough fundamental and technical
information on these algorithms and the related problems without overloading the
reader. So, this book endeavors to strike a balance between theoretical and practical
coverage of a wide range of issues in computational molecular biology. Of course,
the list of topics that is explored in this book is not exhaustive, but it is hoped that
the topics covered will get the reader to think of the implications of the presented
algorithms on the developments in his/her own field. The material included in this
book was carefully chosen for quality and relevance. This book also presents a mix-
ture of experiments and simulations that provide not only qualitative but also quan-
titative insights into the rich field of computational molecular biology. It is hoped
that this book will increase the interest of the algorithmics community in studying
a wider range of combinatorial problems that originate in computational molecular
biology. This should enable researchers to deal with more complex issues and richer
data sets.

Ideally, the reader of this book should be someone who is familiar with computa-
tional molecular biology and would like to learn more about algorithms that deal with
the most studied, the most important, and/or the newest topics in the field of com-
putational molecular biology. However, this book could be used by a wider audience
such as graduate students, senior undergraduate students, researchers, instructors,
and practitioners in computer science, life science, and mathematics. We have tried
to make the material of this book self-contained so that the reader would not have
to consult a lot of external references. Thus, the reader of this book will certainly
find what he/she is looking for or at least a clue that will help to make an advance in

XXXi
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his/her research. This book is quite timely, because the field of computational molec-
ular biology as a whole is undergoing many changes, and will be of a great use to
the reader.

This book is organized into seven parts: Strings Processing and Application to
Biological Sequences, Analysis of Biological Sequences, Motif Finding and Struc-
ture Prediction, Phylogeny Reconstruction, Microarray Data Analysis, Analysis of
Genomes, and Analysis of Biological Networks. The 42 chapters, that make up the
seven parts of this book, were carefully selected to provide a wide scope with min-
imal overlap between the chapters in order to reduce duplication. Each contributor
was asked that his/her chapter should cover review material as well as current devel-
opments. In addition, we selected authors who are leaders in their respective fields.

MoURAD ELLOUMI AND ALBERT Y. ZOMAYA
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STRING DATA STRUCTURES
FOR COMPUTATIONAL
MOLECULAR BIOLOGY

Christos Makris and Evangelos Theodoridis

1.1 INTRODUCTION

The topic of the chapter is string data structures with applications in the field of
computational molecular biology. Let ¥ be a finite alphabet consisting of a set of
characters (or symbols). The cardinality of the alphabet denoted by |X| expresses
the number of distinct characters in the alphabet. A string or word is an ordered list
of zero or more characters drawn from the alphabet. A word or string w of length n is
represented by w[l ---n] = w[l]w[2] - -, w[n], where w[i] € ¥ for 1 <i <n and
|w| denotes the length of w. The empty word is the empty sequence (of zero length)
and is denoted by &. A list of characters of w, appearing in consecutive positions,
is called a substring of w, denoted by w[i - - - j], where i and j are the starting and
ending positions, respectively. If the substring starts at position 1, then it is called
a prefix, whereas if it ends at position n, then it is called a suffix of w. However,
an ordered list of characters of w that are not necessarily consecutive is called a
subsequence of w.

Strings and subsequences appear in a plethora of computational molecular biology
problems because the basic types of DNA, RNA, and protein molecules can be rep-
resented as strings—pieces of DNA as strings over the alphabet {A, C, G, T} (repre-
senting the four bases adenine, cytosine, guanine, and thymine, respectively), pieces
of RNA as strings over the alphabet {A, C, G, U} (with uracil replacing thymine),

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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4 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

and proteins as strings over an alphabet of 20, corresponding to the 20 amino acid
residues.

The basic string algorithmic problems that develop in computational molecular
biology are:

¢ Exact pattern matching: given a pattern P and a text T to locate the occurrences
of PintoT

* Approximate pattern matching: given a pattern P, a text 7', a similarity metric
distance function d(), and a threshold parameter k to locate all positions i and
Jjsuchthatd(P, T;.;) <k

* Sequence alignment: given two string sequences, 7; and 73, try to find the
best alignment between the two sequences according to various criteria. The
alignment can be either local or global. A special case of this problem, which
has great biological significance, is the longest common subsequence prob-
lem in which we try to locate the longest subsequence that is common to both
sequences

* Multiple approximate and exact pattern matching in which more than two
strings are involved into the computation

¢ String clustering: given a set of stings, cluster them into a set of clusters accord-
ing to the distance between the involved strings; this problem has great biolog-
ical significance because DNA sequence clustering and assembling overlap-
ping DNA sequences are critical operations when extracting useful biological
knowledge

¢ Efficient implementation of indexing techniques for storing and retrieving in-
formation from biological databases

Besides these classical string algorithmic problems, there are also applications
that demand the processing of strings whose form deviates from the classical def-
inition. The most known category of such variations are the weighted strings that
are used to model molecular weighted sequences [54]. A molecular weighted se-
quence is a molecular sequence (a sequence of either nucleotides or amino acids)
in which in every position can be stored a set of characters each having a certain
weight assigned. This weight can model either the probability of appearance or the
stability of the character’s contribution to the molecular complex. These sequences
appear in applications concerning the DNA assembly process or in the modeling of
the binding sites of regulatory proteins. In the first case, the DNA must be divided
into many short strings that are sequenced separately and then are used to assemble
the sequence of the full string; this reassembling introduces a degree of uncertainty
that initially was expressed with the use of the “don’t care” character denoted as “x,”
which has the property of matching against any symbol in the given alphabet. It is
possible, though, that scientists are able to be more exact in their modeling and de-
termine the probability of a certain character to appear at a position; j then a position
that previously was characterized as a wild card is replaced by a probability of ap-
pearance for each of the characters of the alphabet and such a sequence is modeled as
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a weighted sequence. In the second case, when a molecular weighted sequence mod-
els the binding site of a regulatory protein, each base in a candidate motif instance
makes some positive, negative, or neutral contribution to the binding stability of the
DNA-—protein complex [37, 65], and the weights assigned to each character can be
thought of as modeling those effects. If the sum of the individual contributions is
greater than a threshold, then the DNA—protein complex can be considered stable
enough to be functional.

A related notion is the notion of an indeterminate or (equivalently in the scien-
tific literature) a degenerate string. This specific term refers to strings in which each
position contains a set of characters instead of a simple character; in these strings,
the match operation is replaced by the subset operation. The need for processing
efficiently such strings is driven by applications in computational biology cryptanal-
ysis and musicology [76, 45]. In computational biology, DNA sequences still may be
considered to match each other if letter A (respectively, C) is juxtaposed with letter
T (respectively, G); moreover, indeterminate strings can model effectively polymor-
phism in protein coding regions. In cryptanalysis, undecoded symbols can be mod-
eled as the set or characters that are candidates for the specific position, whereas in
music, single notes may match chords or a set of notes.

Perhaps the most representative application of indeterminate strings is haplotype
inference [42, 63]. A haplotype is a DNA sequence that has been inherited by one
parent. A description of the data from a single copy is called a haplotype, whereas a
description of the mixed data on the two copies is called a genotype. The underlying
data that form a haplotype is either the full DNA sequence in the region or, more com-
monly, is the values of only DNA positions that are single nucleotide polymorphisms
(SNPs). Given an input set D of n genotype vectors, a solution to the haplotype infer-
ence problem is a set of n pairs of binary strings one pair for each genotype; for any
genotype g, the associated binary vectors vy, v, must be a “feasible resolution” of g
into two haplotypes that could explain how g was created. Several algorithms have
been proposed for the haplotype inference problem such as those based on the “pure
parsimony criteria,” greedy heuristics such as “Clarks rule,” Expectation Maximiza-
tion (EM)-based algorithms, and algorithms for inferring haplotypes from a set of
Trios [42, 63]. Indexing all possible haplotypes that can be inferred from D as well
as gathering statistical information about them can be used to accelerate these hap-
lotype inference algorithms. Moreover, as new biological data are being acquired at
phenomenal rates, biological datasets have become too large to be readily accessible
for homology searches, mining adequate modeling, and integrative understanding.
Scalable and integrative tools that access and analyze these valuable data need to be
developed. The new generation of databases have to (i) encompass terabytes of data,
often local and proprietary; (ii) answer queries involving large and complex inputs
such as a complete genome; and (iii) handle highly complex queries that access more
than one dataset. These queries demand the efficient design of string indexing data
structures in external memory; the most prominent of these structures are: the string
B-tree of Ferragina and Grossi [30], the cache oblivious string dictionaries of Brodal
and Fagerberg [15], the cache-oblivious string B-trees [14], and various heuristic
techniques for externalizing the suffix tree [28].
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In the sequel, (i) we will present the main string indexing data structures (suffix
trees and suffix arrays ), (ii) we will present the main indexing structures for weighted
and indeterminate strings, and (iii) we will present the main external memory string
indexing structures.

1.2 MAIN STRING INDEXING DATA STRUCTURES

In this subsection, we will present the two main string indexing structures, suffix trees
[92] and suffix arrays [67], and depict their special characteristics and capabilities.

1.2.1 Suffix Trees

The suffix tree is the most popular data structure for full string indexing, which was
presented by Weiner in 1973 [92]. It is considered the oldest and most studied data
structure in the area that, besides answering effectively to the pattern matching prob-
lem, can be used for the efficient handling of a plethora of string problems (see [41]
for a set of applications in the area of computational molecular biology). More for-
mally, the suffix tree STy of a text T is a compact digital search tree (trie) that
contains all suffixes of T as keys. It is assumed that before building the suffix tree,
the text T gets padded with an artificial character—the $ character, which does not
belong in the alphabet ¥ from which 7' was formed. This assumption is used to
guarantee that every suffix is stored to a distinct leaf of the tree (that is, no suffix is a
prefix of another). The leaf of the tree that corresponds to the suffix 7;..,,$ stores the
integer i.

The suffix tree has the following structural properties that are induced by its defi-
nition:

® There are n leaves—a leaf for each suffix of 7. The concatenation of the sub-
strings at the edges, which we traverse when moving from the root to the leaf
that stores i, forms the suffix 7;...,.

¢ Consider two different suffixes of T', T;.., = xa and T;.., = xb, that share a
common prefix x. In the suffix tree, the two leaves that correspond to the two
suffixes have a common ancestor ¥ for whom the concatenation of the sub-
strings at the edges that we traverse, moving from the root to the u, forms the
common prefix x. This also can be phrased in a different way. For every internal
node u of a suffix tree, all suffixes that correspond to the leaves of its subtree
share a common prefix x that is represented from the edges of the path from the
root to u. The substring that is created from the concatenation of the substrings
of the edges traversed when moving from the root to u is called the path label
of the node u.

A lot of sequential algorithms have been proposed for building a suffix tree in
linear time. The algorithms provided in [92, 70, 88] are based on the assumption that
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the strings have been formed from alphabets of constant size and basically are based
on similar concepts. On the other hand, and for large alphabets (where we cannot
ignore a time cost similar to its size), an elegant linear time algorithm has been
proposed in [27]. Finally, in [10, 43, 81] parallel algorithms have been presented for
the CRCW PRAM parallel model of computation.

Concerning implementation, a suffix tree ST for a string T of n characters will
have at most 2n — 1 nodes and 2n — 2 edges. The edges of a node can be stored
either in a linear list (unsorted or sorted according to the first character of the edge
label) or in an array of size |X|. In the first case (space-efficient implementation),
a node can be traversed in O(|X]) time, whereas in the second case, a node can be
transversed in O(1) time (though the space complexity for large alphabets is clearly
worse). Between these two extreme choices of implementation, we can choose other
alternatives as search trees or hash tables. The most efficient implementation, espe-
cially in the average case, is based in the use of a hash table. In [70], it the usage of
the hashing scheme of Lampson [61], is proposed which belongs to the class of hash
functions with chaining.

The suffix tree data structure can be extended to store the suffixes of more than
one strings. In this case, we talk about the generalized suffix tree. More formally, a
generalized suffix tree (GST) ({71, T3, - - - Ti}) of a set of strings {7, T, - - - T}.} is the
compact trie that contains all suffixes of these strings as keys. For the construction
of a generalized suffix tree, we can use the known algorithms for constructing suffix
trees by superimposing the suffixes of different strings in the same structure; when
having completed the insertion of the suffixes for a string, the procedure is continued
for the next string by beginning from the root. A generalized suffix tree occupies
O(|T\| + |T»| + - - - + |Tx]) space, and it can be built in O(|T}| + |T2| + - - - + | Tk ])
time [41].

Concerning applications, let us consider the pattern matching problem and see
how the suffix tree deals with the specific problem. Consider a string 7' for which we
have built the suffix tree ST and suppose that we want to locate the positions within
it where a pattern P appears. By starting from the root of ST, we follow the path that
is defined by P. After the i-th step of this procedure, if we are at an internal node
and we have matched the i leftmost characters of P, then we follow the outgoing
edge that starts with the character P;,, whereas if we are at the interior of the edge,
then we test whether the next character at the edge is equal to P;;. If this traversal
from the root to the leaves finishes by matching successfully all | P| characters of the
pattern, then according to the aforementioned properties, the suffixes that correspond
to the subtree below the point where the pattern matching procedure ended, share the
pattern P as a common prefix. Hence, the requested pattern appears at the positions
that correspond to the leaves of that subtree. If the match procedure from the root to
the leaf finishes before accessing all characters of the pattern, then no suffixes of T’
can have the pattern P as prefix; hence, the pattern does not appear anywhere inside
the text. As a conclusion and with the assumption that in every internal node the
edge that will be followed is being chosen in constant time, at most | P| comparisons
with the characters of the pattern are performed and the time complexity totals (| P| +
o), where « is the size of the answer.
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The suffix tree can answer to numerous other questions optimally besides per-
forming pattern matching efficiently. The interested reader can consult [41] and the
respective chapters in [72] and [3]. Some characteristic applications of the suffix tree
are the longest repeated substring and the longest common substring (LCS) prob-
lems. In the longest repeated substring problem, we seek the longest substring of
a text T that appears in 7 more than once. Initially, we built the suffix tree STy
in O(|T|) time, and then by performing a traversal of the nodes of the suffix tree,
we compute for every node the number of characters of the string from the root to
the node. Then, we locate the internal node with the label of maximum length; the
positions that are stored in the leaves of the subtrees below that node are the posi-
tions where the longest repeated substring appears. In the LCS problem, we search
for the longest common substring of two strings 7} and 7. Initially and in time
O(|T| + |T»]), we construct the generalized suffix tree gST ({71, T»}) of the two se-
quences. In this generalized tree, some leaves will store suffixes of the one string,
some of the other, and some will store suffixes of both strings. We traverse all nodes
of the tree, and we compute for every node the number of the characters from the root
to it; by a similar traversal, we mark the nodes in whose subtrees are stored leaves
of both strings. Then to get our reply, we simply have to select the internal marked
node with the path label of maximum length. Then the positions that correspond to
the leaves of the corresponding subtrees are the positions where the longest common
substring appears. With a similar linear time algorithmic procedure, we can locate
the longest common substring between a set of more than two strings.

Concluding the suffix tree, is the main and better representative for data structures
for full text indexing. The cost for this enhanced functionality is the extra space
complexity. There are cases in which the required space can be 25 times more than
the indexed data. This fact and the poor behavior when being transferred in secondary
memory restricts the use of suffix trees in applications that are limited in the main
memory of a computer system.

Optimizations of the suffix tree structure to face these disadvantages were un-
dertaken by McCreight [70] and more recently by Kurtz [62]. Kurtz reduced the
RAM required to around 20 bytes per input character indexed on the worst case and
to 10,1 bytes per input character on average. Compact encodings of the suffix tree
based on a binary representation of the text have been investigated by Munro and
Clark [20] Munro et al. [73] and Anderson et al. [7]. There are also other works
concerning efficient compression of the suffix tree; the interested reader should con-
sult [32, 38, 39, 73, 80] for further details on this interesting algorithmic area.

1.2.2 Suffix Arrays

The suffix arrays have been introduced in [67] and constitute the main alternative full
text indexing data structure as compared with the suffix tree. The main advantages
of the suffix array are its small memory requirements, its implementation simplicity,
and the fact that the time complexities for constructing and query answering are
independent from the size of the alphabet. Its main disadvantages are that the query
time is usually larger than the respective query time of the suffix tree and that the
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range of applications where it can be used is smaller than the range of applications
of the suffix tree.

More formally, a suffix array SAy for a string T of n characters is an array that
stores the suffixes of T in lexicographic order. That is, in every position i of the
suffix array, the starting position j of the suffix 7}..,, (SAz[i] = j) is stored in such
a way that the suffixes that are lexicographically smaller than T}.., are located in
positions smaller than i, whereas the suffixes that are lexicographically larger than
T;.., are located in positions larger than i. Hence, we get Tsa,[11... <1 Tsa;[2].n <L

- <r Tsar[n)-n Where <, designates the lexicographic order. Because suffix arrays
store the suffixes of T lexicographically ordered they have the following property:
suppose that the suffixes, located at positions i, j, with i < j have a common prefix
x, that is LCP (s, [i}.--n» SA;[j]--n) = X. Then all suffixes T4, [y)..., that are located in
positions i < w < j have x as a prefix.

Because the suffix array is basically an array of n elements without the need for
extra pointers, its space requirements are significantly smaller (in terms of constant
factors) from the respective space requirements that characterize the suffix trees.
However, the use of suffix array without extra information does not permit efficient
searching. To understand this concept, let us explain how the suffix tree can solve
the problem of exact pattern matching of a pattern P into a text 7. To accomplish
the search, we need to locate two positions i, j with i < j for which the follow-
ing holds: the first | P| characters of the suffixes at position j are lexicographically
smaller or equal from the pattern (that is Tsa,[j]..s4,[j1+/P| <t P),and j is the max-
imum position with this property, whereas the first | P| characters of the suffix at
position i are lexicographically larger or are more equal than the pattern (that is
P <p Tsa,pi1-sar1i1+/p) and i is smaller with that property. According to that, the
suffixes that correspond to positions i, j, and all intermediate positions have P as
a prefix. Consequently, the places where P appears in T can be located by finding
the two extreme positions i, j in the suffix array and then scanning the intermedi-
ate positions. To locate the extreme positions, a binary search needs to be executed
on the suffix array in which at each step of the search procedure, | P| comparisons
are needed and then the procedure moves right or left. Hence, the problem of pat-
tern matching by using the suffix arrays is solved in (| P|logn + «) time, where
« is the size of the answer. This time complexity can be reduced significantly to
(|P| 4+ logn + «) if we use two more arrays of n — 2 elements containing precom-
puted information; with the help of these elements, it is possible in every repetition
of the binary search procedure, not to execute all | P| comparisons that correspond
to the middle of the active segment. In particular, suppose that the binary search
procedure is in an interval [L, R] of the suffix array, and we seek to compute the
value m = LCP(P, Tsa,[m]..n) for the middle of the search interval. We suppose that
the values [ = LCP(P, Tsa,(r]..n) and r = LCP(P, Ts4,(r}.-») have been computed
in a previous repetition of the binary search. The first remark that can be made is
that we do not have to perform all |P| comparisons from the beginning because
of the basic property of the suffix array m > min{/, r}; hence, the comparisons can
continue from position m + 1, and hence, it is possible to save min{/, r} compar-
isons. However, despite this improvement, there are scenarios in which the order
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of the total complexity does not change. Suppose now that we have as extra infor-
mation the longest common prefix of the suffixes of the left edge L of the search
interval, with the suffix at the middle and the longest common prefix of the right
edge R of the search interval with the suffix of the middle. Let us symbolize them
asx = LCP(TSAT[L]~»-n, TSAT[M]---n) and x’ = LCP(TSAT[M]---m SAT[R].UV,), respectively.
Let us suppose that/ > r, and hence, we have the following, depending on whether x
is the longest common prefix of the left edge with the medium, or is largest, smaller,
or equal to /:

e Ifx > [, then because L has the first / characters equal to P and the first x equal
to the suffix at position M and it holds x > [, the / + 1-st character of the suffix
at position M does not match with the / + 1-st character of P. Hence, according
to the basic property of the suffix array, no common prefix exists with P to the
left side of M. Hence, we choose [M, R] as the new interval.

e If x <, then because P matches with the / characters of L and with the x
characters of the middle suffix, we will have a nonmatching of the middle suffix
at position x + 1. Hence, a larger prefix of P must exist in the left interval, and
hence, we will choose [L, M] as the new search interval.

e Ifx equals/, then we cannot deduce that the longest common prefix with P is in
the left or the right interval. Hence, by a character to character comparison, we
extend the common prefix (if it can be extended) beyond the position /. If we
perform A/ successful comparisons, then the common prefix of the suffix of M
with P will have length [ 4+ Ah. The failure in matching at position/ + Ah + 1
guides us left or right depending on whether the character of the corresponding
position at P is lexicographically smaller or larger than the respective position
at the middle suffix.

Hence, every one of the O(logn) steps of the binary search either performs a
constant number of operations (cases x > [ or x < /) or performs Ah comparisons
(case x = I). The sum of comparisons in the last case does not exceed | P| because the
middle chosen element will be one of the extreme elements in the next repetition (its
value is continuously increasing). Hence, the problem of pattern matching is being
solved in (| P| + log n) time.

Concerning the needed space consumption, the improved time complexity is
achieved by using the LCP(TSAT[L]M,,, TSAT[M]M,,) and LCP(TSAT[M]..AH, TSAT[R]---n)
values as precomputed information for every possible interval that can exist dur-
ing binary searching. The number of different intervals is n — 2 because the
role of middle elements can be played by all elements, except the first and
the last. Hence, one array stores the values of the left extreme for every pos-
sible middle element, whereas the other array stores the values of the right ex-
treme. The existing suffix array algorithms precompute in the arrays LCP[i] =
LCP(Tsa(i1-n> Tsazfi+11-n) for i =1---n in linear time. By using the relationship
LCP(L, R) = min{LCP(L, M), LCP(M, R)} from this array, we can create the LCP
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values for all possible intervals of binary searching. Concluding the enhanced suffix
array construction occupies approximately 5n space (see also chapter 29 of [3]),
which is less than the space complexity of the suffix tree. The time to solve a pat-
tern matching problem is O(| P| 4 logn), which can be compared with the time re-
quired for the query replying of a suffix tree O(]2|P) (in the implementation that
is space effective) or O(| P|) (in the implementation that is time effective). The con-
struction algorithm that has been presented initially in [67] was not linear but needed
O(nlogn) time. A linear time procedure can be envisaged by simply constructing (in
linear time) a suffix tree and then transforming it to the respective suffix array. This
transformation is possible by traversing lexicographically the suffix tree in linear
time and then computing the arrays LCP in linear time by nearest common ances-
tor queries. This procedure takes linear time but cancels the main advantage of the
suffix tree, which is the small space consumption. In 2003, three papers were pub-
lished [58, 75, 26] that describe a worst-case linear time construction of a suffix array
without the need of an initial construction of the respective suffix tree. Other algo-
rithms for constructing suffix arrays can be found in [17, 36, 47, 55, 68]. Moreover,
a recent line of research concerns compressed suffix arrays [46, 38, 39, 35].

Concerning applications, the main weakness of the suffix array in comparison
with the suffix tree data structure is that the range of application in which it can be
used is limited. To resolve this handicap, in [59], a method was presented that com-
bined the information of a suffix array with the LCP information, which simulates
the postorder traversal in the equivalent suffix tree of the string, thus providing the
so-called virtual suffix tree. This simulation (which was extended in [35] with a space
efficient variant) gives the ability for some of the suffix tree applications whose algo-
rithmic procedure is based in the bottom-up traversal of the suffix tree to be executed
with some extra changes in the suffix array.

The suffix array table is being traversed from left to right, and an auxil-
iary stack is being used. Initially, the stack contains the root and LCP[1] =
LCP(Tsa,(1}--n> Tsari21-n) = 0. If this value is equal to zero, then the two leftmost
leaf-suffixes have a minimum common ancestor in the root, and hence, during the
implicit postorder traversal, we process the first and then the second element. If
the value is greater than zero, then an internal node exists that is being inserted in
the stack. More generally, during step i, if LCP[i] = (Tsa,i1.--n» TsAz[i+1].-n) 15 larger
than the depth of the node u at the top of the stack (that is, the length of the path label
L(u)), then between the i-th leaf/suffix and the next, a deeper node exists that will be
inserted in the stack; otherwise, the value LCP[i] is smaller than the depth of node u,
and the minimum common ancestor is higher in the path from u to the root. In this
case, the stack is emptied until a node is located with smaller depth, and the first case
is applied. Based on this described procedure, a node is inserted in the stack when
it is seen during the top-down traversal, whereas it is removed from the stack when
it is faced moving bottom up for the last time. Because in every step of the method,
we either add a node in the stack or we have several deletions from the stack, every
node is inserted and deleted from the stack once, and the whole procedure needs
O(n) time. In [1], other combinations of the suffix array with additional information
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were provided (the so-called enhanced suffix array), and additional applications were
described.

1.3 INDEX STRUCTURES FOR WEIGHTED STRINGS

The notion of the weighted sequence extends the notion of a regular string by permit-
ting in each position the appearance of more than one character, each with a certain
probability. In the biological scientific literature weighted sequences also are called
position weight matrices (PWM). More formally, a weighted word w = wyw; - - - w,
is a sequence of positions with each position w; consisting of a set of couples, of the
form (s, ;(s)), with ;(s) being the probability of having the character s at position
i. For every position w;, | <i <n, Y m(s) = 1.

For example, if we consider the DNA alphabet ¥ = {A, C, G, T}, then the word
w = [(A,0.25), (C,0.5), (G,0.25), (T.O)I[(A, 1), (C,0), (G,0), (T,0)] [(A,1), (C,0), (G,0), (T,0)]
represents a word having three letters; the first one is either A,C,G with probabil-
ities of appearance of 0.25, 0.5, and 0.25, respectively; the second one is always
A, whereas the third letter is necessarily an A because its probability of presence
is equal to 1. The probability of presence of a subword either can be defined to be
the cumulative probability, which is calculated by multiplying the relative probabil-
ities of appearance of each character in every position, or it can be defined to be the
average probability.

There have been published works in the scientific literature [19, 5, 6, 54] con-
cerning the processing of string sequences; we will refer to these works giving more
emphasis to the structure presented in [54]. In [19], a set of efficient algorithms
were presented for string problems developing in the computational biology area.
In particular, assume that we deal with a weighted sequence X of length n and
with a pattern p of length m, then (i) the occurrences of p in X can be located
in O((n + m)logm) time and linear space; the solution works for both the multi-
plicative and the average model of probability estimation, although it can be ex-
tended also to handle the appearance of gaps; (ii) the set of repetitions and the set
of covers (of length m) in the weighted sequence can be computed in O(n logm)
time. In [6] and for the multiplicative model of probability estimation the prob-
lem of approximately matching a pattern in a weighted sequence was addressed.
In particular, two alternative definitions were given for the Hamming distance and
two alternative definitions for the edit distance in weighted sequences with the aim
of capturing the aspects of various applications. The authors presented algorithms
that compute the two versions of the Hamming distance in time O(n,/mlogm),
where the length of the weighted text is n, and m is the pattern length; the algo-
rithms are based in the application of nontrivial bounded divide-and-conquer al-
gorithms coupled with some insights on weighted sequences. The two versions of
the edit distance problem were solved by applying dynamic programming algorithm
with the first version being solved in O(nm) time and the other version in O(nm?)
time. Finally, the authors extended the notion of weighted matching in infinite al-
phabets and showed that exact weighted matching can be computed in O(s log® s)
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time, where s is the number of text symbols with nonzero probability, and they also
proved that the weighted Hamming distance over infinite alphabets can be computed
in min(O (kn./s + 53/ log2 s), O(s*3m'3logs)), where m is the length of the pat-
tern. In [5], a different approach was followed, and a transformation was proved
between weighted matching and property matching in strings; the pattern matching
with properties (property matching for short) was introduced in the specific paper in
which pattern matching with properties involves a string matching between the pat-
tern and the text and the requirement that the text part satisfies some property. The
aforementioned reduction allows off-the-self solutions to numerous weighted match-
ing problems (some were not handled in the previously published literature) such as
scaled matching, swapped matching, pattern matching with swaps, parameterized
matching, dictionary matching, and the indexing problem. All presented results are
enabled by a reduction of weighted matching to property matching that creates an
ordinary text of length O(n(é)2 log %) for the weighted matching problem of length
n and the desired probability of appearance €. Based on this reduction, all pattern
matching problems that can be solved in ordinary text can have their weighted ver-
sions solved with the time degradation of the reduction.

Finally in [54], a data structure was presented for storing weighted sequences that
can be considered the appropriate generalization of the suffix tree structure to han-
dle weighted sequences. A resemblance exists between this structure and the work
related to regulatory motifs [71, 66, 83, 60] and probabilistic suffix trees [78, 82, 69].
Regulatory motifs characterize short sequences of DNA and determine the timing
location and level of gene expression, and the approaches extracting regulatory mo-
tifs can be divided into two categories: those that exploit word-counting heuristics
[57, 69] and those based on the use of probabilistic models [40, 48, 64, 79, 85, 87];
in the second category of approaches, the motifs are represented by position prob-
abilistic matrices, whereas the remainder of the sequences are represented by back-
ground models. The probabilistic or prediction suffix tree is basically a stochastic
model that employs a suffix tree as its index structure to represent compactly the
conditional probabilities distribution for a cluster of sequences. Each node of a prob-
abilistic suffix tree is associated with a probability vector that stores the probability
distribution for the next symbol given the label of the node as the preceding segment,
and algorithms that use probabilistic suffix trees to process regulatory motifs can be
found in [82, 69]. However, the probabilistic suffix tree is inefficient for efficiently
handling weighted sequences, which is why the weighted suffix tree was introduced;
however, it could be possible for a suitable combination of the two structures to be
effective to handle both problem categories.

The main idea behind the weighted suffix tree data structure is to construct the
suffix tree for the sequence incorporating the notion of probability of appearance for
each suffix; that is, for every suffix x[i - - - n], we store in a set of leaves labeled S; the
first [ characters so that 7w (x; - - - x;4y—1) > 1/k. In more detail, for every suffix start-
ing at position i, we define a list of possible weighted factors (not suffixes because
we may not eventually store the entire suffix) so that the probability of appearance
for each one of them is greater than 1/k; here, k is a user-defined parameter that is
used to denote substrings that are considered valid.
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The formal definition as provided in [54] is that the weighted suffix tree (WST)
of a weighted sequence S (denoted as WST(S)) is the compacted trie of all weighted
factors starting within each suffix S; of S having a probability of appearance greater
than 1/k. The leaf u of WST(S) is labeled with index i if L(u) = S; ;[i ---n] and
m(S;;li---nl) = 1/k, where j > 0 denotes the j-th weighted factor starting at posi-
tion i. L(u) denotes the path label of node # in WST(S) and results by concatenating
the edge labels along the path from the root to u. D(u) = |L(u)| is the string-depth
of u, whereas LL(u) is defined as the leaf list of the subtree below u. LL(u) = @ if u
is a leaf.

It can be proven that the time and space complexity of constructing a WST is
linear to the length of the weighted sequence.

The WST is endowed with most of the sequence manipulation capabilities of the
generalized suffix tree, that is:

¢ Exact pattern matching: Let P and T be the pattern and the weighted sequence,
respectively. Initially, the weighted suffix tree is built for 7', and if the pattern
P is weighted, too, then it is broken into solid subwords; for each of these
subwords, the respective path is spelled by moving from the root of the tree
until an internal node is reached then all leaves descending from this node are
reported. The time complexity of the procedure is O(m + n + a), where m and
n are the sizes of the pattern and the text, respectively, and a is the answer size.

¢ Finding repetitions in weighted sequences: It is possible to compute all repe-
titions in a given weighted sequence, with each repetition having a probability
of appearance greater than 1/k; initially, the respective weighted suffix tree
is constructed, and then the weighed suffix tree is traversed with a depth-first
traversal, during which a leaf list is kept for each internal node. The elements
of a leaf list are reported if the size of the list exceeds two; in total, the problem
is solved in O(n + a) time, where n is the sequence length and a is the answer
size.

* Longest common substring of weighted sequences: The generalized weighted
suffix tree is built for two weighted sequences, w; and w,, and then the internal
node with the greatest depth is located; the path label of this node corresponds
to the longest weighted subsequence of the two weighted strings. The time
complexity of the procedure is equal to O(n; + ny), with n; and n;, being the
sizes of w; and w,, respectively.

1.4 INDEX STRUCTURES FOR INDETERMINATE STRINGS

Indeterminate or (equivalently in the scientific literature) degenerate strings are
strings that in each position contain a set of characters instead of a simple character.
The simplest form of indeterminate string is one in which indeterminate positions
can contain only a do-not-care letter that is a letter “x,” which matches any letter
in the alphabet on which x is defined. In 1974, an algorithm was described [33] for
computing all occurrences of a pattern in a text where both the pattern and the text
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can contain do-not-care characters, but although efficient in theory, the algorithm was
not useful in practice; the same remark also holds for the algorithms presented in [2].
In [11, 93], the shift-or technique (a bit-mapping technique for pattern matching) was
applied to find matches in indeterminate strings. In [51], an easily implemented av-
erage case O(n) time algorithm was proposed for computing all periods of every
prefix of a string with do-not-care characters. In [44], this work was extended by
distinguishing two forms of indeterminate match (“quantum” and “deterministic’)
and by refining the definition of indeterminate letters so that they can be restricted
to matching only with specified subsets of ¥ rather than with every letter of X.
More formally, a “quantum” match allows an indeterminate letter to match with two
or more distinct letters during a single matching process, whereas a “deterministic”
match restricts each indeterminate letter to a single match.

These works were continued by researchers in [9, 8, 50, 52, 53, 76, 45], in which
a set of algorithms were presented for computing repetitive structures, computing
covers, computing longest common subsequences, and performing approximating
and exact pattern matching; some of them improved the aforementioned previous
constructions. From these structures, special emphasis should be given to the works
in [76] and [45] because they fell in the focus of interest of this chapter. In particular,
in [45], efficient practical algorithms were provided for pattern matching on inde-
terminate strings where indeterminacy may be determined either as “quantum” or
“deterministic”; the algorithms are based on the Sunday variant of the Boyer—Moore
pattern matching algorithm and are applied more generally to all variants of Boyer—
Moore (such as Horspool’s) that depend only on the calculation of the “rightmost
shift” array. It is assumed that X is indexed being essentially an integer alphabet.
Moreover, three pattern-matching models are considered in increasing order of so-
phistication: (i) the only indeterminate letter permitted is the do-not-care character,
whose occurrences may be either in the pattern or in the text, (ii) arbitrary indetermi-
nate letters can occur but only in the pattern, (iii) indeterminate letters can occur in
both the pattern and the text. In [76], and asymptotically faster algorithms were pre-
sented for finding patterns in which either the pattern or the text can be degenerate
but not both. The algorithms for DNA and RNA sequences work in O(n logm) time,
where n and m are the lengths of the text and the pattern, respectively. Efficient im-
plementations also are provided that work in O(n +m + n [m/w] + [n/w]) time,
where w is the word size; as can be seen, for small sizes of the text and the pattern,
the algorithms work in linear time. Finally it also is shown how their approach can
be used to solve the distributed pattern matching problem.

Concerning indexing structures, there are some results that can be divided into
two categories, one based on the use of compressed tries and the other based on the
used of finite automata.

Concerning results in the first category in [63], the dictionary matching problem
was considered in which the dictionary D consists of n indeterminate strings and the
query p is a string over the given alphabet . A string p matches a stored indeter-
minate string s; if |p| = |s;| and p[j] € s;[j] for every 1 < j < |p|. The goal is to
preprocess D for queries that search for the occurrence of pattern p in D and count
the number of appearances of p in D.
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Let m denote the length of the longest string in D and let D’ be the set of all
patterns that appear in D. For example, if D contains a single indeterminate string
cd{a, b}c{a, b}, then D' = {cdaca, cdach, cdbca, cdbcbh}. The data structure is ba-
sically a compressed trie of D’ that can be constructed naively in O(|Z [*nm) time
and O(|X||D’|) space, assuming every s € D has at most k locations in which
[s[i]] > 1. With this structure, a query time of O(|p|) can be supported for a pat-
tern p plus a time complexity equal to the size of the output. Using techniques pre-
sented in [22], the structure can be modified to solve the problem in O (nm log(nm) +
n(cylogn)**1/k!) preprocessing time, and O(m + (c; logn)* loglogn) query time
(c; and ¢, are constants); this approach is worse than the trie approach for small
values of X.

In [63], two faster constructions of the trie have been presented. The first
construction is based on the divide-and-conquer paradigm and requires O(nm +
|X|knlogn) preprocessing time, whereas the second construction uses ideas in-
troduced in [4] for text fingerprinting and requires O(nm + |Z|*nlogm) pre-
processing time. The space complexity is O(|Z||D’|), and it can be reduced to
O(|D’|) by using the suffix tray [23] ideas. The query time becomes O(|p|+
loglog|X]), and it is also possible by cutting the dictionary strings and con-
structing two tries to obtain O(nm + |Z|*n 4 |Z|¥/?n log(min{n, m})) prepro-
cessing time at the cost of O(|p|loglog|X|+ min{|p|,log|D’|}loglog|D’|) =
O(|p|loglog | 2| 4+ min{|p|, log(|Z|*n)} loglog(|X [¥n)) query time. The first two
constructions can calculate the number of appearances in D of each pattern in D’, a
knowledge that can be useful in a possible application of the structures to the Haplo-
type inference problem [63].

On the other hand, there are works based in the use of finite automata, which
are based in indexing small factors (that is, substrings of small size). Indexing of
short factors is a widely used and useful technique in stringology and bioinformat-
ics, which has been used in the past to solve diverse text algorithmic problems. More
analytically, in [90], the generalized factor automaton (GFA) was presented, which
has the disadvantage that it cannot be used to index large texts because, experimen-
tally, it tends to grow super-quadratically with respect to the length of the string.
Later in [91], the truncated generalized factor automaton (TGFA) was presented that
is basically a modification of GFA that indexes only factors with length not exceed-
ing a given constant k having at most a linear number of states. The problem with the
specific algorithm is that it is based on the subset construction technique and inherits
its space and time complexity that is a bottleneck of the algorithm when indexing
very long text because the corresponding large Nondeterministic Finite Automaton
needs to be determinized. Finally, in [34], an efficient on-line algorithm for the con-
struction of the TGSA was presented, which enables the construction of TGSAs for
degenerate strings of large sizes (order of Megabytes (MBs)). The proposed con-
struction works in O(n?) time, where 7 is the length of the input sequence. TGSA
has, at most, a linear number of states with respect to the length of the text and en-
ables the location of the list occ(u) of all occurrences of the given pattern u in the
degenerate text in time |u| 4 |occ(u)|.
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We consider string data structures in external memory [89]. The design of such
data structures is a necessity in the computational molecular biology area, as the
datasets in various biological applications and the accumulated data in DNA se-
quence databases are grown exponentially, and it is not possible to have them in
main memory; a characteristic number is provided in [74] where it is mentioned that
in the GenBank, the DNA sequence database has crossed the 100 Gbp (bp stands
for base pairs), with sequences from more than 165,000 organisms. The basic ex-
ternal memory model used to analyze the performance of the designed algorithms
is the two-level memory model; in this model, the system memory is partitioned
into a small but fast in access partition (the main memory with size M) and into a
(theoretically unbounded) secondary part (the disk). Computations are performed by
central processing unit (CPU) on data that reside in main memory while data transfer
between memory and disk take place in contiguous pieces of size B (the block size).

In string algorithmics, there are two lines of related research, one that focuses
on transferring the main-memory-tailored design of the suffix tree and/or suffix ar-
ray data structures to secondary memory and another that tries to envisage novel,
external-memory-tailored data structures with the same functionality as the suf-
fix tree.

In the first line of work, a plethora of published material exists dealing with the
externalization of the suffix tree: [49, 74, 86, 16, 49, 12, 13, 18, 21, 56, 84, 86] and
the suffix array [24, 25]. Most of these works suffer from various problems such as
nonscalability, nonavailability of suffix links (that are necessary for the implementa-
tion of various operations) and nontolerance to data skew, and a few are the works
that manage to face effectively these problems; from these works, we will present
briefly the approach in [74]. More specifically, the authors in [74] present TRELLIS,
an algorithm for constructing genome-scale suffix trees on disk with the following
characteristics: (i) it is an O(n?) time and O(n) space algorithm that consists of four
main phases—the prefix creation phase, the partitioning phase, the merging phase,
and the suffix link recovery phase; the novel idea of the algorithm lies in the use
of variable length prefixes for effective disk partitioning and in a fast postconstruc-
tion phase for recovering the suffix links; (ii) it can scale effectively for very large
DNA sequences with suffix links; (iii) it is shown experimentally that it outperforms
most other constructions because it is depicted as faster than the other algorithms
that construct the human genome suffix tree by a factor of 2—4 times; moreover, its
query performance is between 2—15 times faster than existing methods with each
query taken on the average between 0.01-0.06 seconds.

In the second line of research, string B-trees [30], cache oblivious string dictio-
naries [14], and the cache oblivious string B-tree [15] come into play.

The string B-tree [30] is an extension of the B-tree suitable for indexing strings
with a functionality equivalent to the functionality of the suffix tree. More ana-
lytically, assume that we have to process a set S of n strings with a total num-
ber of N characters and suppose that each of the strings is stored in a contiguous
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sequence of disk pages and is represented by its logical pointer to the external
memory address of its first character. In the leaves of the string B-tree, we store
the logical pointers of the strings lexicographically ordered, and the leaves also are
linked together to form a bidirectional list. In every internal node v, we store as
search keys the leftmost and the rightmost string stored in each of the node’s chil-
dren. Hence, if v has k children ¢;, (1 <i < k) then the keys stored in v will be
K, = {L(c1), R(c1), L(c2), R(c2), - - -, L(cy), R(ci)}, where L(c;) and R(c;) are the
leftmost and the rightmost keys stored in the child ¢;. The string B-tree in this form
can answer prefix queries for a query string P. The total number of disk accesses
will be 0(% logy |S|log, B) I/0s because (i) O(log, B) accesses are needed in ev-
ery internal node for locating the proper subtree via binary search, (ii) in every binary
search step all characters of P will need to be loaded from the disk, and thus, a total of
O(I—ZI) disk I/O accesses are needed. The whole procedure is executed in every inter-
nal node moving from the root to the leaf, and hence, it is repeated O(logg |S|) times.

The time complexity of the aforementioned procedure can be reduced by organiz-
ing the elements stored in each node of the string B-tree as a Patricia trie. A Patricia
trie is a compact digital search tree (trie) that can store a set of k strings in O (k) space
as follows: (i) a compacted trie of O(k) nodes and edges is built on the k strings; (ii)
in each compacted trie node we store the length of the substring into it, and the sub-
string that normally would label each edge is replaced by its first character. This
construction gives the possibility to fit O(B) strings into one node independently of
the length of the strings and allows lexicographic searches by branching out from a
node without further disk accesses.

By using Patricia tries for storing the strings in internal nodes, we see that we do
not need binary search in each node, but it is possible to select the proper subtree
in 0(%) I/Os, and hence, the total time complexity of disk accesses when moving

from the root to the leaf becomes 0(% logy |S|) I/0s. The query time complexity
can be reduced further by a more careful search procedure that will take into ac-
count the observation that the longest common prefix that a query can have with
the keys of a node is at least equal to the longest common prefix between the query
and the keys stored in the parent of the node; in this case, the query time becomes
0('—5I + logy |S]) I/Os for completing the traversal from the root to the leaves. Con-
cerning dynamic operations to insert/delete a string 7’ a query initially is executed
for locating the appropriate leaf position among the leaves of the string B-tree. If
space exists for inserting the appropriate leaf, it is inserted; otherwise, the leaf gets
split, and the father node is updated with appropriate pointers. The rest of the in-
sertion and deletion procedure is similar to the balancing operations performed in
the traditional B-tree with the difference that in the worst case the balancing opera-
tions can be propagated until the root of the tree, and hence, the total number of disk
accesses will be bounded from above by 0(% + logg |S|) I/Os.
The above lead to the following theorems:

Theorem 1.1 The string B-tree can store a set S of n strings with a total number
of N characters in O(n/B) space (the index) plus O(N/B) space (the characters
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of the string) so that the strings in S that have a query prefix P can be computed
in 0(% +logg n + %) I/Os, where a is the size of the answer. To insert or delete a

string T' in S, 0(% + logg n) I/Os are needed.

To use the string B-tree for efficient pattern matching, we should insert all suffixes
of the involved strings, because in this case, prefix matching with a given pattern
becomes equivalent to pattern matching with the given pattern. It can be proved that
the produced structure will have the following properties:

Theorem 1.2 The string B-tree can store a set S of n strings with a total number
of N characters in O(N/B) space (the index) plus O(N/B) space (the characters
of the string) so that the strings in S that contain a given query pattern P can be
computed in 0('”% + logg n) I/0s, where a designates the size of the answer. To
insert or delete a string of length m in S O(mlogg(N + m)) I/Os are needed.

The specific structure has been improved with two other structures [14, 15] that
are valid for the cache oblivious model of computation. The cache-oblivious model
is a generalization of the two-level I/O model to a multilevel memory model, by
employing a simple trick: the algorithm is not allowed to know the value of B and
M, and thus, its functionality and working remains valid for any value of B and
M. In particular, in [15], a cache-oblivious string dictionary structure was presented
supporting string prefix queries in O(logz n + |P|/B) 1/Os, where P is the query
string and »n is the number of stored strings. The dictionary can be constructed in
O(Sort(N)) time where N is the total number of characters in the input, and Sort(N)
is the number of I/Os needed for comparison-based sorting. The input as in the string
B-tree can be either a set of strings to store or a single string for which all suffixes are
to be stored; moreover, if it is given as a list of edges of the appropriate tree, then it
also can accept a trie, a compressed trie, or a suffix tree. It is assumed that M > B9,
The aforementioned structure has the following two novel characteristics: (i) it uses
the notion of the giraffe tree that provides an elegant linear space solution to the path
traversal problem for trees in external memory; the giraffe trees permit the exploita-
tion of redundancy because parts the path in the trie may be stored multiple times but
with only a constant factor blowup in total space as the trie gets covered by them; (ii)
it exploits a novel way for decomposing a trie into components and subcomponents
based on judiciously balancing the progress in scanning the query pattern with the
progress in reducing the number of strings left as matching candidates.

The aforementioned contribution was improved in [14] where a cache-oblivious
string B-tree (COSB-tree) was presented that can search asymptotically optimal and
insert/delete nearly optimal and can perform range queries with no extra disk seeks.
An interesting characteristic of the structure is that it employs front compression
to reduce the size of the stored set. In particular for a set D, assume that we
denote by ||D|| the sum of key lengths in D and by front(D) the size of the
front-compressed D. The proposed structure has space complexity O(front(D))
and possesses the following performance characteristics: (i) insertion of a key &



20 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

requires O(1 + ||k| |(log2 front(D))/B + logz N) memory transfers with high proba-
bility (w.h.p.), (ii) searches and successor/predecessor queries for a key k’ require an
optimal O(1 + ||k'||/B + loggz N) block transfers w.h.p. The result set Q is returned
in compressed representation and can be decompressed in additional O(||Q||/B)
memory transfers, which is optimal for front compression. Because COSB-trees,
store all keys in order on disk range, queries involve no extra disk seeks.

An important component of the COSB-tree of independent interest is the front-
compressed packed memory array (FC-PMA) data structure. The FC-PMA main-
tains a collection of strings D stored in order with a modified front compression. As
is shown in [14], the FC-PMA has the following properties: (i) for any €, the space
usage of the FC-PMA can be set to (1 + €) front(D) while enabling a string k to be
reconstructed with O(1 + ||k||/(e B)) memory transfers, (ii) inserting and deleting a
string k into a FCPMA requires O(]|k| |(log2 front(B))/(e B)).

The interested reader can find a nice exposition of some of these plus other struc-
tures in [77, 28].

1.6 CONCLUSIONS

String indexing algorithms and data structures play a crucial role in the field of com-
putational molecular biology, as most information is stored by means of symbol se-
quences. Storing, retrieving, and searching in this vast volume of information is a
major task to have several specific queries and problems being solved efficiently. In
this chapter, we have presented the main indexing structures in the area.

We conclude by noting that despite the great progress in the string indexing re-
search field in the last decade, the frontiers need to move a little bit further by means
of: (i) minimizing the volume of data with compression and searching in compressed
files, (ii) minimizing the extent of the indexing structures by compressing them,
too [29], (iii) building and placing the indexing structures cache obliviously to min-
imize the cache misses [31], and (iv) building the indexing structures efficiently in
parallel, using the model multiprocessor machines and operating systems.
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EFFICIENT
RESTRICTED-CASE
ALGORITHMS FOR
PROBLEMS IN
COMPUTATIONAL BIOLOGY

Patricia A. Evans and H. Todd Wareham

2.1 THE NEED FOR SPECIAL CASES

Many problems of interest, in computational biology as in other fields, have been
proven to be NP-hard and so cannot be solved efficiently in general unless P = NP
(the set of problems that can be solved nondeterministically in polynomial time). The
large sizes and increasingly massive quantities of data make problem tractability and
algorithm efficiency a critical concern for computational biology, and indeed, even
polynomial-time algorithms can have difficulty coping with the large amounts of
data typically encountered, necessitating the development of specialized algorithms
to deal with these situations and applications.

Although intractability results are certainly a formidable obstacle to solving such
problems and tend to lead researchers to use heuristics and approximations, the gen-
eral form of each problem that has been proven hard rarely resembles the problem as
it is applied. Reduction gadgets and constructions often describe data that does not
look like the relevant biological data, leaving open the possibility that special cases
that more closely resemble the intended application may be tractable.
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One key aspect that may lead to tractable special cases is that the data in bio-
logical problems often have characteristics that are small or limited in size. Lengths
in particular can be relatively short, such as the length of a substring representing
a motif and the length of a newly sequenced genome snippet. For genome data, the
alphabet is also very small, consisting of four bases (possibly with the addition of
wildcards or limited unknowns).

For cases in which one or more characteristics of the data are small, algorithms
for the tractable special cases can be identified using techniques from the theory of
parameterized complexity [15]. Parameterized complexity examines the tractability
of a problem relative to one or more parameter, characteristics of the problem that
potentially can be restricted to small values to provide an efficient algorithm for those
cases. Such fixed-parameter tractable algorithms can provide practical and accurate
results for otherwise intractable problems, and there is an extensive and expanding
set of techniques for designing and improving fixed-parameter algorithms [15,42].

Intractability in the parameterized setting is determined by showing hardness for
one of the classes in the parameterized complexity W-hierarchy. Because the hard-
ness or tractability can be affected by the choice of parameters, analyzing the results
for the same problem with different parameters leads to insights about the effect
of these parameters on the difficulty of the problem and ultimately defines which
parameter-based special cases and related applications are tractable.

Not all special cases are defined by parameters. To make the problems tractable,
properties of input sequences and structures often need to be restricted to cases that
resemble biological data, which will change naturally depending on the application
being examined. In this chapter, we examine the relevant parameters and special
cases for several sequence and string problems applicable to computational biology
problems, namely Shortest Common Superstring (SCS), Longest Common Subse-
quence (LCS), and Common Approximate Substring (CAS). We present the differ-
ent known tractable and intractable variants of these problems, showing which re-
strictions lead to usable algorithms and also define those variants for which further
research is needed.

2.2 ASSESSING EFFICIENT SOLVABILITY OPTIONS FOR GENERAL
PROBLEMS AND SPECIAL CASES

Two basic questions must be addressed by a formal efficiency analysis of a compu-
tational problem:

1. Can the problem as given be solved efficiently?
2. If not, can particular restrictions of that problem be solved efficiently?

In this section, we will outline briefly how these questions can be answered using
techniques from the classical and parameterized theories of computational complex-
ity [15,23].

In regards to the first question, we will adopt the common notion of effi-
ciency in computer science—namely, we will say that a computational problem is
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(polynomial-time) tractable if it can be solved by an an algorithm whose worst-case
running time is bounded by some function n¢, where n is the input size and c is a con-
stant.! If no such algorithm exists, then the problem is (polynomial-time) intractable.
Super-polynomial time algorithms generally are considered impractical because they
have unrealistically long running times for all but small inputs.

We can establish polynomial-time tractability by simply giving an algorithm for
a problem that runs in polynomial time. Establishing polynomial-time intractability
typically is done by proving that the problem is at least as computationally difficult
as every problem in a class X of known intractable problems (i.e., the problem is
X-hard). For details of how this is done, the interested reader is referred to [23].2

If our problem of interest is polynomial-time intractable, then how might we show
that it is tractable (in some sense) under a particular restriction? There are two pos-
sible types of restrictions:

1. Structural restrictions (i.e., restrictions phrased in terms of structural properties
of the inputs given or outputs requested in the problem)

2. Parameterized restrictions (i.e., restrictions phrased in terms of the numerical
values of one or more aspects of the problem)

Structural restrictions can be addressed by defining new versions of the problem that
incorporate these restrictions and by assessing the polynomial-time tractability of
these new problems as described by. Parameterized restrictions require a new way
of thinking. As our problem is polynomial-time intractable, all algorithms solving
that problem run in super-polynomial time; however, if this time is super-polynomial
only in the aspects being restricted (whose values are assumed to be very small) and
polynomial in all other aspects of input size, then the resulting running time may in
practice be effectively polynomial and hence reasonable. Let us call such a set p of
one or more simultaneously restricted aspects of a problem IT a parameter of IT, and
denote the version of IT restricted relative to p by (p)-II.

This looser conception of tractability under parameterized restrictions is captured
by the following definition:

Definitio : A problem IT is fixed-parameter tractable (fp-tractable) relative to a particu-
lar parameter p if IT is solvable by an algorithm with running time bounded by f(p)n¢,
where f is an arbitrary function, » is the input size, and c is a constant.

ISuch running times often are stated in terms of O()-notation, where O(g(n)) is the set of functions f(n)
that are asymptotically upperbounded by g(n) (i.e., f(n) < ¢ x g(n)) for all n > n¢ for some constants ¢
and ng (cf. Footnote 4).

2Ideally, we want to show X-hardness relative to an X such that P C X (i.e., X properly contains the class
P of polynomial-time solvable problems). However, we often only can show hardness for an X such that
P C X, and we have strong empirical support (though not mathematical certainty) that P # X. This is
the case in this chapter in which all our polynomial-time intractability results are demonstrated by NP-
hardness, which is acceptable, as the conjecture P # NP has very strong empirical support; again, the
interested reader is referred to [23] for details.
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If no such algorithm exists for IT relative to p, then IT is said to be fp-intractable rel-
ative to p (or, equivalently, (p)-IT is fp-intractable). Note that as a problem may
be fp-tractable relative to some parameters and fp-intractable relative to others,
fp-(in)tractability always must be stated relative to a parameter.

This is the conception of tractability underlying the theory of parameterized
computational complexity created by Downey and Fellows [15]. As in the case of
polynomial-time tractability, we show fp-tractability simply by giving an algorithm
for the problem with the required running time relative to the specified parameter (of-
ten by invoking specialized techniques [42]), and we show fp-intractability of a prob-
lem relative to a specified parameter by showing the problem-parameter combination
is hard relative to a class in the W-hierarchy = {W[1], W[2], ..., W[P], ... XP}J3
Again, as the details of how this is done need not concern us here, the interested
reader is referred to [15]. The class of fp-tractable problems is FPT.

In analyses of a problem’s complexity, intractability proofs (by virtue of their
generality and intricacy) often take center stage and are given the most attention.
However, it is worth remembering that our ultimate goal is to solve efficiently the
given problem or a useful restricted version of this problem. Given this, intractability
results assume their proper role—namely, delimiting which versions of a problem
cannot be solved efficiently, hence, both highlighting and allowing us to focus more
productively our energies on developing the best possible algorithms for versions of
the problem that can be solved efficiently.

2.3 STRING AND SEQUENCE PROBLEMS

Three central string-based problems in computational biology are:

1. Sequence Reconstruction: Given a set of sequence-fragments, we reconstruct
the original sequence.

2. Sequence Alignment: Given a set of sequences, we derive the best overall
global alignment of these sequence to highlight both corresponding and diver-
gent elements of these sequences.

3. Sequence Consensus: Given a set of sequences, we derive the best consen-
sus sequence, summarizing corresponding and divergent elements of these
sequences.

As genomic regions of interest range in size from several thousand (individual genes)
to millions or billions (whole genomes) of nucleotides in length and because current
technologies only can sequence regions less than 2000 nucleotides long reliably [47],
sequence reconstruction is a critical first step in any sequence-level genomic analysis.

3 Analogous to Footnote 2, using such hardness results to establish fp-intractability is acceptable as the
conjecture FPT # W/[1] has strong empirical support, where FPT is the class of fp-tractable problem-
parameter combinations. The interested reader is referred to [15] for details.
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Subsequent analysis of groups of two or more sequences often are based on sequence
alignments. For example, as random mutations that occur in functionally significant
regions of sequences are typically deleterious and thus will not be passed on to future
generations, highly similar regions in an alignment of sequences that have evolved
from a common ancestral sequence frequently are assumed to be of functional signif-
icance and thus can be used to unravel protein and regulatory functions in the cases
of coding and noncoding regions, respectively. Consensus sequences, in addition to
being concise summaries of corresponding regions in alignments, have their own
applications. For example, under certain notions of consensus, consensus sequences
specify short complementary strings that can bind to a specific region in each of a
given set of sequence, and are therefore potential universal primers for polymerase
chain reaction sequencing reactions or drug targets.

In the following sections, we will give overviews of both general and special-
case algorithms for the formal computational problems associated with each of these
problems—namely, Shortest Common Superstring (Section 2.4), Longest Common
Subsequence (Section 2.5), and Common Approximate Substring (Section 2.6).

2.4 SHORTEST COMMON SUPERSTRING

The most basic formal computational problem associated with sequence reconstruc-
tion is the following:

Shortest Common Superstring (SCSt)
Input: A set S = {s1, 2, ..., ¢} of strings over an alphabet | X|.
Output: The shortest string s’ such that each string s € S is a substring of s’.

This problem is an idealization of actual sequencing under currently available tech-
nologies on several counts:

1. The DNA strand from which fragments originated typically is not known, and
fragments thus may be complementary and reversed relative to the coding
strand.

2. Errors may occur in determining the sequence of any fragment.

3. Depending on the genomic region being sequenced, repetitive sequence re-
gions may be collapsed together and hence not reconstructed correctly in any
shortest common superstring.

The first difficulty can be accommodated by requiring for each s € S that either s or
rev(comp(s)) be a substring of s’, where rev(s) returns the reversed version of string
s and comp(s) returns the base-complemented version of DNA or RNA string s (i.e.,
1ev(ATTC) = CTTA, comp(ATTC) = TAAG, and comp(AUUC) = UAAG.) The sec-
ond difficulty can be accommodated by requiring that each s € S match some sub-
string s” of s” such that dst(s, s”) < €, where dst() is a distance function on pairs
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of strings measuring the degree of error required to produce s from s” and € is
an acceptable sequencing-error threshold. Denote the version of SCSt incorporat-
ing these modifications by SCSt-re. The third difficulty is much more problematic,
as it is a product of the parsimony assumption underlying the requirement that pro-
duced superstrings be the shortest possible. However, this difficulty, to a large extent,
can be eliminated by either including fragments in S that are long enough to span the
regions between repeats, or incorporating extra information about the ordering of
fragments on the genome; as such techniques are beyond the scope of this chapter,
the interested reader is referred to [48] and references for details.

In typical instances of DNA sequencing, the sequence-alphabet X =
{A, G, C, T} is of a small fixed size, the number of fragments k£ can be on the or-
der of thousands to millions, and the maximum fragment-length (denoted by n =
maxeg |§|) varies with the sequencing technology from fixed constants less than 10
to roughly 1000. This suggests that algorithms that are efficient relative to restricted
alphabet and/or fragment size would be of use. Known intractability results suggest
that polynomial-time efficiency in these cases is probably not possible, that is,

e SCStis NP-hard whenn = 3 or |X]| > 2 [22].
e SCSt-re is NP-hard when |X| = 4 or n = 15 [54, Theorem 7.2].

The intractability of SCSt holds even if (1) |X| = 2, and one of these symbols occurs
only three times ineach s € Sor (2)n = 3 and each o € X occurs at most eight times
in the strings in S [36, 37] (see also [51]). Though it may be tempting to consider
solution-superstrings whose lengths are within a small multiplicative factor of the
length of the shortest superstring, it is known that such approximate superstrings
cannot be derived in polynomial time to an arbitrary degree of accuracy even for
|2| =2 [8,44,52], and the best known polynomial-time approximation algorithm
only can guarantee solutions whose lengths are less than or equal to 2.5 x optimal
[50] (see also [30]), which is not practical. However, as we will discuss, there may
yet be acceptable exact algorithms for special cases.

In the remainder of this section, we will look at algorithms for solving the general
shortest common superstring problem (Section 2.4.1) and the special case in which
|2| and n are bounded simultaneously (Section 2.4.2).

2.4.1 Solving the General Problem

Courtesy of the NP-hardness results described, all exact algorithms for SCSt must
run in exponential time. There are two general strategies for such algorithms:

1. Enumerate all possible solution superstrings and check for each superstring if
it includes every s € S as a substring; return the shortest such common super-
string.

2. Enumerate all possible solution superstrings generated by orderings of strings
in S that allow these strings to overlap; return the shortest such superstring.
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Naive algorithms implementing these strategies have the following resource require-
ments:

* The longest possible solution superstring is simply a concatenation of all
strings in S and hence has length at most k x n; thus, there are Z’{ln Iz <
(kn — (n — 1))|Z|*" = O(kn|X|F") possible solution superstrings. As the in-
clusion of a string x as a substring in string y can be checked in O(|x| 4+ |y|)
using a suffix-tree based algorithm [25, Section 7.1], the first strategy runs in
Okn|Z|*" x k(kn +n)) = O(|X|*"k*n?) time and O(kn) space.

* The number of possible orderings of the strings in S is k! = O(k¥). In any short-
est superstring based on such an ordering, a pair of adjacent strings in this order-
ing will have the maximum overlap possible (otherwise, the maximum overlap
potentially could be used to create a shorter superstring, which is a contradic-
tion). As the maximum overlap between two strings from S can be computed
in O(n) time, the second strategy runs in O(k*n) time and O (kn) space.

The actual (though not worst-case) run time of the second strategy can be improved
by exploiting the incremental manner in which solution superstrings are created in
this strategy. For example, a branch-and-bound algorithm such as that in [6] could
evaluate all orderings in a search tree in which each level adds the next string in
the generated ordering. In such a search tree, nodes generating superstrings longer
than the best seen so far can be pruned, potentially eliminating a large proportion of
orderings of S from even being considered. Alternatively, orderings could be encoded
implicitly in a directed edge-weighted complete graph whose vertices correspond to
the strings in S, and arcs (s;, 5;), 1 < i, j, < k, have weight equal to the maximum
overlap of s; with s; (which may be O if the strings do not overlap). Given such
an overlap graph, the shortest superstring can be derived by finding the maximum-
weight Hamiltonian path in this graph. Though this overlap graph algorithm for SCSt
is elegant, it requires more (specifically, O (k*n)) space; moreover, the running time is
still exponential, as the problem of finding maximum-weighted Hamiltonian paths is
NP-hard [23, Problem GT39].

Both of these strategies can be adapted (albeit at increased computational cost) to
handle the fragment reversal and sequencing errors difficulties associated with actual
sequencing. In the case of the first strategy, for each s € S, both s and rev(comp(s))
can be checked against the solution superstring using the error-measure string-
comparison function dst(). Assuming a sequencing-error model allowing base sub-
stitutions, insertions, and deletions, dst() is pairwise edit distance, which can be com-
puted in in O(|x||y|) time and O(|x| + |y|) space [25, Section 11]. The run-time and
space requirement increase is more dramatic in the case of the second strategy; not
only is the number of orderings of S increased by a factor of 2* (each string s in the
ordering is now either s or rev(comp(s))), but pairs of adjacent strings in the order-
ing can overlap in more than one way (as we must allow errors). Further increases
come from allowing errors in regions of strings that in s that do not overlap with
other strings, as well as coordinating errors when more than two strings overlap in
the solution superstring.
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In the case of the second strategy, it is possible to handle repeats using the ap-
proach proposed by Myers [40] in which an overlap graph is processed to create a
string graph in which each arc is either required (can be traversed at most once),
exact (must be traversed exactly once), or optional (can be traversed any number of
times). In such a string-graph, optional arcs allow fragments to be included more
than once in a solution superstring corresponding to a minimum-length walk that
respects all arc-constraints, hence, allowing repeats to be reconstructed. Though the
processing to create string graphs from overlap graphs can be done efficiently [40],
any algorithm implementing this approach is still exponential time because the prob-
lem of finding a minimum-length constraint-respecting walk in a string-graph is
NP-hard [35, Theorem 1].

2.4.2 Special Case: SCSt for Short Strings Over Small Alphabets

Interest in this special case first developed with the development of various technolo-
gies in the mid-1980s for rapidly assessing which subset S of the strings in a set C
of length-n DNA strings (n-mers) are present in a given DNA string (e.g., oligonu-
cleotide arrays and DNA chips). The hope was that given this information, it would
be possible to determine the sequences of short DNA strands (so-called sequencing
by hybridization (SBH)) faster than using conventional Sanger-based technologies.
There is, in fact, a linear-time algorithm for ideal SBH in which no n-mer in §
occurs more than once in the sequence s’ to be reconstructed, and all n-mers in s’
have been read correctly (i.e., S is complete). This algorithm relies on a variant of
overlap graphs called de Bruijn graphs. In a de Bruijn graph, it is the arcs rather than
the vertices that correspond to the n-mers in S and the vertices are the set of (n — 1)-
mers that occur in the strings in S. In particular, there is an arc between vertices x
and y in a de Bruijn graph if there is an n-mer z in S such that x is the prefix (n — 1)-
mer of z and y is the suffix (n — 1)-mer of z. As S is complete and all n-mers in S
occur exactly once in s, the sequence of s’ can be reconstructed from any path in
the de Bruijn graph that uses each arc exactly once (i.e., an Euler path). Unlike the
computation of Hamiltonian paths through all vertices in an overlap graph, which
is NP-hard, the computation of Euler paths can be done in time linear in the size
of the graph. Hence, as the de Bruijn graph corresponding to a given set S can be
constructed in time linear in the size of S, the ideal SBH algorithm runs in linear time.
Early theoretical analyses of the occurrences of repeats in random DNA strings
suggested that sets C composed of complete sets of n-mers could be used to recon-
struct sequences with lengths up to +/2 x 4" [1,16]). However, it has been difficult to
achieve this level of success because actual DNA sequence has statistical irregulari-
ties even in relatively short regions, and it has proven to be much more difficult than
expected for all n-mers in a given sequence to be detected reliably on DNA chips,
because of n-mer probe cross-hybridization and hybridization signal misreading.
The net effect of these problems is that the produced § not only may contain more
than one copy of an n-mer (i.e., S is a multiset), but that there may also be n-mers
in S that are not in s’ (positive errors) and n-mers in s that are not in S (negative
errors). As we can no longer guarantee that all and only elements of s” are present
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in S, reconstructing s as a shortest superstring of the strings in § is unacceptable.
The more reasonable approach, advocated by Btazewicz et al. [6,7] is rather to look
for a superstring of length less than a specified threshold / that has the maximum
possible number of elements of S as substrings (note that the threshold is required
as different quantities simultaneously cannot be optimized in a problem). Blazewicz
et al. [6] give search-tree-based algorithms (analogous to the search-tree algorithm
for SCSt described in Section 2.4.1) for both this variant of SCSt and the variant
of SCSt incorporating only positive errors. These algorithms run in O(k*nl) time
and O(min(kn, 1)) space but perform much faster in practice (particularly so if only
positive errors are present). It is unlikely that algorithms with subexponential running
times will be found, as Btazewicz and Kasprzak subsequently have shown that both
of these variants of SCSt (as well as the variant incorporating only negative errors)
are NP-hard [7, Theorems 1 and 2].

A hybrid overlap-de Bruijn graph approach to dealing with the presence of
n-mer repeats in given sequence-fragments was proposed by Pevzner ef al. [46]. In
this approach, conventional arbitrary-length sequence fragments are used to create
de Bruijn graphs relative to a specified length n by decomposing each sequence-
fragment into its associated set of overlapping n-mers. The sequence then is recon-
structed by finding a minimal superwalk in the de Bruijn graph that includes the
walks corresponding to each given sequence-fragment (note that these are walks in-
stead of paths because individual sequence-fragments may contain n-mer repeats).
No exact algorithm for solving this problem has yet been given in the literature. How-
ever, it is unlikely that a nonexponential time-exact algorithm exists, as the problem
of finding minimal superwalks in de Bruijn graphs has been shown to be NP-hard for
|2| > 3 and any n > 2 [35, Theorem 2].

2.4.3 Discussion

Table 2.1 summarizes known parameterized results for Shortest Common Super-
string, considering the number of fragments and the fragment length as potential
parameters together with different possible restrictions on the alphabet size. Though
some variants are fp-tractable, the running times of the best known algorithms for
these variants are still prohibitive in practice. Hence, all currently used assemblers
are based on heuristics [48].

Table 2.1 The parameterized complexity of Shortest
Common Superstring

Alphabet Size |X|

Parameter Unbounded Parameter Constant
- NP-hard Z XP NP-hard
k FPT FPT FPT

n & XP & XP NP-hard
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Given the existence of the parameterized algorithms discussed, especially for mul-
tiparameter combinations such as (||, k)-SCSt, further work needs to be done to
find faster and more useful algorithms within these regions of tractability. Future re-
search needs to focus on the special cases most suitable for sequence assembly prob-
lems, especially with the different characteristics (most notably the short read length
together with constant size alphabet, still NP-hard) produced by recent advances in
next-generation sequencing technology [48]. Additional special cases that incorpo-
rate errors, error rates, and how repeats are handled are also worthy of investigation
to find algorithms tailored to the current input data characteristics.

2.5 LONGEST COMMON SUBSEQUENCE

The most basic formal computational problem associated with sequence alignment
is the following:

Longest Common Subsequence (LCS)
Input: A set S = {s1, 52, ..., sx} of strings over an alphabet | X|
Output: The longest string s’ such that s’ is a subsequence of each string s € S

This problem is an idealization of sequence alignment in that LCS contains all and
only exactly corresponding symbols in the given sequences in S and does not indi-
cate explicitly how symbols that do not match exactly can correspond. Hence, LCS
is a restricted case of the general sequence alignment problem in which any func-
tion may be used to evaluate the costs of aligning various symbol positions across
the sequences in S [45, Section 3]. As LCS also summarizes all and only the ex-
actly corresponding elements in the given sequences in S, LCS is a restricted case
of the general sequence consensus problem [14, Section 3]. Algorithms for LCS are
used occasionally directly for finding alignments and consensus sequences, [4,43];
therefore, such algorithms and resource-usage lower bounds for LCS are also useful
to the extent that they apply to the various restricted sequence alignment and con-
sensus methods used in practice (e.g., sum-of-pairs (SP) alignment, tree alignment
see [25, section 14] and references).

In typical instances of DNA sequence alignment, the sequence-alphabet ¥ =
{A, G, C, T} is of small fixed size; the number of sequences k to be aligned can
vary from two to several hundred, and the maximum sequence-length (denoted by
n = max,cg |§|) varies from several hundred to several million. Various situations
also require a variant of LCS in which the requested length of the derived common
subsequence is specified as part of the input; let us call this length /. This suggests
that algorithms that are efficient relative to restrictions on any of these parameters
would be of use. In the important case of pairwise alignment (i.e., k = 2) many
efficient quadratic time and space algorithms are known for both sequence align-
ment and LCS [5, 25]. However, when k£ >> 2, known intractability results suggest
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that under many restrictions, polynomial-time efficiency is probably not possible,
that is,

e LCS is NP-hard when |X]| > 2 [33].

(k)-LCS is W[t]-hard for t > 1 [10, Theorem 2].
(I)-LCS is W[2]-hard [10, Theorem 3].

(k, 1)-LCS is W[1]-complete [10, Theorem 1].

(k, |Z])-LCS is W[t]-hard for r > 1 [9].

(k)-LCS is W[1]-hard when |X| > 2 [47, Theorem 2].

Though it may be tempting to consider solution-subsequences whose lengths are
within a small multiplicative factor of the length of the longest subsequence, it is
known that such approximate subsequences cannot be derived in polynomial time
within any constant degree of accuracy unless P = NP [29]. However, as we will
discuss, there may yet be acceptable exact algorithms for special cases.

In the remainder of this section, we will look at algorithms for solving the general
longest common subsequence problem (Section 2.5.1) and the special cases in which
the given sequences are very similar (Section 2.5.2) or in which each symbol in | X|
occurs at most a constant number of times in each s € S (Section 2.5.3).

2.5.1 Solving the General Problem

Courtesy of the NP-hardness result described, all exact algorithms for LCS must run
in exponential time. There are two general strategies for such algorithms:

1. Enumerate all possible strings of length m = min,cg |s| (or, if it is given, )
and check if each such string is a subsequence of every string in S; return the
longest such common subsequence.

2. Enumerate all possible ways in which individual symbol positions can be
matched exactly over all strings in S to generate common subsequences; re-
turn the longest such common subsequence.

Given that the longest common subsequence of two strings x and y can be com-
puted in O(Jx||y|) time and space [5, 25], the naive algorithm implementing the
first strategy runs in O(|Z|"nm) = O(|X|"n?) (O(|Z|'nl)) time and O(n?) (O(nl))
space. Algorithms implementing the second strategy depend on the data structures
used to store all possible matching generated subsequences for S. The two most
popular alternatives based on either dynamic programming tables or edit graphs are
described.

The second strategy typically is implemented as a dynamic programming algo-
rithm that encodes all possible matching generated subsequences in a k-dimensional
table T with [, s |Is| = O(n*) entries. Each dimension of T corresponds to one
of the strings s € S and has range O to |s| and entry T[iy, i», ..., i;] contains the
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length of the longest common subsequence of the strings up to these indices (i.e.,
51[0..i1], 520..i2], . . ., s¢[0..i]), where s,[0..i,] is the substring of s, consisting of
the first i, symbols of s,. The values of each entry is specified by the recurrence

0 ifanyi; =0,1<j<k
.. . Ty —1,i—1,..., iy —1]1+1 if si[ij] = s2[ix] = ...
Tlir.ia. ... 0] = 1 2 k=11 1[_1] - S2[i2]
= seLix]
MaXceC(iy.iy.....ip) 1 [€] otherwise
where C(iy, iz, ..., 1) is the set of k entry coordinate vectors generated by sub-
tracting one from each of the coordinate values in (i, i3, ..., ix) in turn. Note that

each time the second clause in the recurrence is invoked, a symbol match that is
potentially part of a longest common subsequence is established across all s € S.
By applying this recurrence in a bottom-up manner, the table entries are filled in
until the value of entry T'[|s1], |s2], ... |sx|], the length of the longest common sub-
sequence of S, is computed at which point a traceback procedure is used to recon-
struct a (possibly nonunique) path of recurrence applications from 7'[0, 0, ..., 0] to
T(lIs1l, Is2l, - - ., |sx|] corresponding to a longest common subsequence of the strings
in S. As most k + 1 table entries must be consulted in the process of filling in a table
entry or reconstructing a path backward one step from a table entry, this algorithm
runs in O (kn* + k*n) time and O (n*) space.

The second strategy also can be implemented as a path-finding algorithm relative
to an edit graph. An edit graph is essentially a directed acyclic graph corresponding to
the dynamic programming table described, such that there is a vertex for each entry
in the table, and there is an arc (x = T'[iy, i2,...it), Yy = Tlj1, j2, - - -, JiD) if (1)
in=jp—1forl <h <kandsi[ji] =s:0p]l=... =scljelor 2) (i1,ir,...,0x) €
C(j1, j2, .-, ji)- As these two types of arcs correspond to the second and third
clauses, respectively, in the recurrence discriber, a straightforward weighting scheme
would be to assign arcs of the two types weights 1 and 0, respectively. Under this
scheme, a maximum-weight directed path in the edit graph with weight D between
the vertices corresponding to 7[0, 0, ..., 0] and T[|s{], |s2], ..., |sx|] corresponds
to a longest common subsequence with length [ = D (as each unit of weight cor-
responds to a symbol position that is matched across all strings in §). Though
such paths can be computed in polynomial time, the weighting-scheme often is re-
versed (i.e., the two types arcs are assigned weights O and 1, respectively, to take
advantage of faster shortest-path algorithms). Under this scheme, the analogous
shorted path of weight D corresponds to a longest common subsequence with length
I =((3_,cs 1s1) — D)/ k (as each unit of weight corresponds to symbol that must be
deleted in some string in S such that all strings in S can be converted to the longest
common subsequence) [3, p. 328]. The running time and space of edit graph-based
algorithms is slightly larger than that required by the dynamic programming algo-
rithm; however, as we will see below in Section 2.5.2, edit graphs have properties
that can be exploited when solving certain special cases of LCS.
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2.5.2 Special Case: LCS of Similar Sequences

This case is of interest when sequences that are very closely related (and hence very
similar) are compared. The simplest way to exploit such similarity is to assume
that the sequences are within a specified distance b of each other (i.e., at most, b
deletions are required in the given strings to convert them into the longest common
subsequence). If b is known in advance, then observe that the path in the dynamic
programming table corresponding to the longest common subsequence only passes
through entries within a b-width “band” surrounding the hypothetical diagonal ex-
tending from (0, 0, . . ., 0) that indicates all perfect matches across all sequences (this
is because each deletion can cause the path to diverge at most one unit outward from
this hypothesized 0-diagonal). Hence, it suffices to construct and operate on only
this part of the table, which consists of O(bn*~1) cells, reducing both time and space
required for the overall dynamic programming algorithm by an order of magnitude.
This algorithm, sketched in [27, Section 4], is a generalization of the band approach
to aligning a pair of sequences described in [12].

General LCS algorithms dynamically minimize the portion of the dynamic pro-
gramming table or edit a graph that is explored in response to similarity in the given
sequences and, hence, do not require that distance-threshold b be specified as input—
namely, the first (“lazy dynamic programming”) algorithm given in [28] and the
shortest-path edit graph-based algorithm in [3]. Both algorithms are generalizations
of the algorithms in [38,55], which essentially greedily construct a path in a dynamic
programming table or edit graph by starting at 7[0, 0, ..., O] on the 0-diagonal and
iteratively traveling as far as possible along the current diagonal before skipping to
and resetting the current diagonal to the most promising (according to a distance-
estimate) of the closest diagonals until T'[|s], |s2], ..., |sk|] is reached. The algo-
rithm in [28] runs in O(kn(n — [)*~!) time and space and the algorithm in [3] runs
in O(nD*~') time and space (though the space can be reduced to O(kn 4+ nD*"!) at
the cost of doubling the runtime [3, Section 4]).

The theoretical runtime savings of both these algorithms improves dramatically
as the similarity of the strings in § increases; however, there may be constant fac-
tors hidden by the asymptotic O-notation that boost actual run times. Experiments
reported in Barsky er al. [3] suggest that their algorithm has low run times even
for moderately similar strings, outperforming the general dynamic programming al-
gorithm for LCS described in Section 2.5.1 even when strings are as little as 50%
similar (i.e., I/n = 0.5 (cf. experiments reported in [28] which show their algorithm
only outperforms at 90% similarity or above)). That being said, it is important to
note that in the worst case in which the strings have no symbols in common and
there is no common subsequence (i.e.,! = 0 and D = k), both these algorithms have
time complexities that are comparable with or even slightly worse than the general
dynamic programming algorithm for LCS.

2.5.3 Special Case: LCS Under Symbol-Occurrence Restrictions

This case is of interest when the strings being modeled are orders of homologous
genes on chromosomes in different organisms in which each organism has a small
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number of copies (often one) of each type of gene; thus, |X| can be as large as n or
even O(kn) if there are genes unique to particular organisms (cf. |X| = 4 for DNA
sequences). Alignment of such gene-order sequences is useful in gene prediction
and certain genomic-level variants of evolutionary tree reconstruction (see [39] and
references).

Such gene-order sequences can be modeled by p-sequences [20]. A p-sequence
is a string s over an alphabet ¥ in which each symbol in X| occurs at most once;
if every symbol in ¥ occurs exactly once (i.e., s is a permutation of X), then s is a
complete p-sequence. Let p-LCS denote the special case of LCS in which all s € §
are p-sequences. When all s € S are complete p-sequences, p-LCS can be solved in
in O(kn(k 4 logn)) time [20, theorem 6].

It turns out that this polynomial-time solvability still holds for general p-
sequences and small sets of sequences in which each symbol in ¥ is allowed to
occur at most some constant ¢ > 1 times. Let us call a sequence in which each sym-
bol in ¥ occurs at most o times a p(o)-sequence, and let p(0)-LCS denote the variant
of LCS that operates over p(o)-sequences for an o specified in the input; note that
p(1)-LCS is equivalent to p-LCS when o = 1 and to LCS when o = n.

To show these results, we can use any one of several LCS algorithms whose run
times are low when the number of occurrences of each symbol of X in each string of
S is small [2,26]. These algorithms restrict the portions of the dynamic programming
table that they explore by focusing on match points. A match point of a set S of k
strings is a vector (i1, i, ..., ix) such that s1[i;] = sz2[iz] = ... = silix] (i.e., entries
in the dynamic programming table whose entries are filled in using the second clause
of the LCS recurrence given in Section 2.5.1). Note that match points correspond to
possible elements in a longest common subsequence. The algorithms in [26] and [2]
essentially encode sequences of match points (i.e., common subsequences), for S in
a search tree and a deterministic finite automaton, respectively, and find the longest
common subsequences by traversals of the graphs associated with these structures.
If P is the set of match points for a set S of strings, then the algorithm in [26]
runs in O(k|X||P|) time and O(|P|+kn|X]|) space, and the algorithm in [2] runs in
O(kn|X|logn + |P]) time and O((k + |X|)n + |P]) space.

Observe that in a set S of k p(o0)-sequences, there can be at most |X|of match
points. Therefore, general p-LCS is solvable in polynomial time and p(0)-LCS is
solvable in polynomial time when k and o are small constants. That being said, it is
important to note that in the worst case in which all strings in S are length-n strings
over a single symbol (e.g., aaaaaaaa . . . aaa), |P| = O(n*) and both of these algo-
rithms have time-complexities that are comparable with or even slightly worse than
the general dynamic programming algorithm for LCS.

2.5.4 Discussion

Table 2.2 summarizes known parameterized results for Longest Common Subse-
quence, considering parameters of input sequence length, desired LCS length, and
number of input sequence, all with respect to different potential restrictions on the
alphabet size. The lone remaining open question is the parameterized complexity of
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Table 2.2 The parameterized complexity of Longest Common Subsequence

Alphabet Size | X|

Parameter Unbounded Parameter Constant
- NP-hard & XP NP-hard

k W(t]-hard fort > 1 W(t]-hard fort > 1 W|(1]-hard
l W{2]-hard FPT FPT

n 27? FPT FPT

(n)-LCS, which would allow for many short sequences of unbounded alphabet to be
compared and their LCS found.

The previous subsections have demonstrated several exact albeit exponential-time
algorithms for LCS. Observe that even though some of these algorithms have very
low run times on particular special cases of LCS, all (with the exception of the
subsequence enumerate-and-check algorithm) have run times of O(n*) or greater in
the worst case. It is tempting to hope that so-called subexponential algorithms with
O0(n°®) running times* (e.g., O(nV¥), O(n'°219e%)), exist for LCS. However, several
recent results make this extremely unlikely, that is,

¢ When X is an alphabet of fixed size, LCS is not solvable in f(k)n°® time for
any function f unless the exponential time hypothesis is false [11].

* LCS is not solvable in f(/)n’?® time for any function f unless the exponential
time hypothesis is false [27, theorem 5].

Note that these results do not forbid exponential-time algorithms whose run
times have exponents that are functions of k and/or / and other parameters (e.g.,
O(n!*!logky, O(nl"gk‘ﬁ)), or have bases other than n (i.e., O(|Z|%), O(k")). However,
these results do suggest that dramatic improvements in general LCS algorithm run-
times will not be forthcoming from the current dynamic programming/edit graph
framework, and that future exact algorithm development efforts for LCS (and se-
quence alignment in general) should explore other options.

2.6  COMMON APPROXIMATE SUBSTRING

The most basic formal computational problem associated with sequence consensus
is the following:

Common Approximate Substring (CASub(dst))
Input: A set S = {sy, 52, ..., 8¢} of k strings over an alphabet |X| and positive integers
landd.

4In o()-notation, o(g(n)) is the set of functions f(n) that are asymptotically strictly less than g(n) (i.e.,

lim,— oo g((s)) = 0 (cf. Footnote 1)).




42 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

Output: The string s of length / such that for every string s in S, there is an length /
substring s” of s such that dst(s’, s”") < d.

dst() is a distance-measure function on pairs of strings. Here we will consider the
most common of such measures, Hamming distance and edit distance, and their
associated problems (CASub(H) and CASub(E)). In an optimization model, with
minimizing distance as the objective, the CASub problem also is known as closest
substring.

In typical instances of sequence consensus, the sequence-alphabet is of small
fixed size (i.e., has |X| = 4 for DNA and RNA sequences and |X| = 20 for pro-
tein sequences) the number of sequences k can vary from two to several hundred,
the requested substring length can vary from < 25 to n, and the maximum sequence-
length (denoted by n = maXx,s |s|) varies from several hundred to several million.
This suggests that algorithms that are efficient relative to restrictions on any of these
parameters would be of use. However, known intractability results suggest that under
many restrictions, polynomial-time efficiency is probably not possible, that is,

e CASub(H) is NP-hard when |X| > 2 [21].

o (k,l,d)-CASub(H) is W[1]-hard [18, Theorem 13]; see also [19, Theorem 1].
({, d)-CASub(H) is W[2]-hard [18, Theorem 15].

(k, |2 [)-CASub(H) is W[2]-hard [18, Theorem 20].

(

(

k, d)-CASub(H) is W[1]-hard when |X| = 2 [34, Theorem 6.1].
k)-CASub(H) is W[1]-hard when || = 2 [19, Theorem 2].

These hardness results also hold for the arbitrary edit distance cases (E) because
Hamming distance is still a potential edit distance. It also may be tempting to con-
sider solution substrings whose lengths are within a small multiplicative factor of the
length of the longest substring. Though such approximate substrings can be derived
in polynomial time within any constant degree of accuracy [31], the run times are
impractical for useful degrees of accuracy; moreover, it is not possible to reduce this
run time to make such schemes practical [53]. However, as we will discuss, there yet
may be acceptable exact algorithms for special cases.

In the remainder of this section, we will look at algorithms for solving the gen-
eral common approximate substring problem (Section 2.6.1) and the special case in
which all strings in S and the returned string are of the same length (Section 2.6.2).

2.6.1 Solving the General Problem

Because of the intractability results, all known exact algorithms run in exponential
time. Furthermore, the parameterized hardness results necessitate the inclusion of
either the input sequence length n or both the desired substring length / and the
alphabet size |X| in the parameter to have tractable results. Indeed, the number of
input sequences k has little effect on the problem’s hardness, though if limited, it can
be added to other parameters to yield a faster algorithm.
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Algorithmic strategies for exactly solving CASub are of three types:

1. Enumerate all |2 | strings of length [ and check whether each such string is a
substring of every string in S; return the substring with the smallest maximum
distance from strings in S (or, potentially, all strings that appear in each string
in §).

2. Starting from a short string occurring as a substring of one of the strings in
S, consider it as a potential CASub result. Gradually modify this string (or
another starting string) to accommodate other substrings that are sufficiently
close to the developing result until a substring of all strings in S is found.

3. Combine techniques 1 and 2 first to develop gradually a potential common ap-
proximate substring and then search its close relatives to adapt it to accommo-
date other strings. This type of technique often can focus on a limited number
of nonidentical columns.

The naive search algorithm applying the first strategy solves (| X[, [)-CASub(H) in
O(|Z|'knl) time and O(kn) space [18, Theorem 10(1)]. The modification strategies
(strategies 2 and 3) produce a variety of results depending on how the substring is de-
veloped and how much of a neighborhood of the developing substring is considered.

For example, the develop center algorithm that implements the second strat-
egy [18, Theorem 10(2)] works by considering each substring of length [ of an ar-
bitrary initial string as an instance C of a potential common approximate substring.
Because it could have up to d mismatches, all possible (411) selections of d positions
in the substring are tried. For each combination, the d positions are replaced by a
special blocking character (¢ X), with the remaining unblocked positions occurring
exactly in the developing substring. The other strings s; in S are considered in turn;
if C is within distance d of a substring of s;, then C can continue in its current
form. If instead there are no substrings of s; within distance d from C, then all sub-
strings of s; within distance 2d are considered, and new alternative substrings C’
are created from C by substituting for a minimal number of blocked positions. This
process is repeated for each developing substring and each string s;. If the develop-
ing process uses all of S for a developed substring, then it reports this substring as
aresult.

This algorithm solves (n)-CASub(H) in O(nzk((ll)(( d‘jz)n)d) time [18, Theorem
10(2)]. Of particular note in this result is the complete absence of the alphabet size
| 2| from the running time; the time is also only linearly dependent on the number of
input strings k, so it would be the most suitable for applications with a large number
of short input strings over an unrestricted (or less restricted) alphabet. It would not
be particularly appropriate for DNA or RNA sequences in which the alphabet is very
small.

Several different data organization techniques are used to enable algorithms to
find similar substrings efficiently and narrow the search of the string neighborhood
that they define. These searches often are dependent on the size N of a substring’s
neighborhood, where N = Ef’:l (5)(| %| — 1)\, Suffix trees are used and traversed by
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Sagot [49] to restrict motif search to O(lk*nN) time and O (Ikn) space. A modifica-
tion of suffix trees to allow errors is used to produce an approximate neighborhood
tree of common approximate occurrences by Evans and Smith [17] to enumerate all
possible CASub results in O(lknN) time and O (lkn) space.

Davilla et al. [13] introduce a set of related algorithms that organize their data in
lists of the neighboring strings that are kept in lexicographic order and intersected.
The neighborhoods are reduced by limiting the search to substrings that are within
distance 2d of each other because only those substrings can have a common neighbor
within distance d. This algorithm exploits the computer’s word length w as part of a
radix sort, and runs in O (kn* + %N S) time and O(kn?) space, where S is the sum,
over all % pairs of consecutive input strings and of the number of substring pairs (one
from each string) that are within distance 2d. [13]. This algorithm also is extended
using a branch-and-bound approach to run more efficiently in practice.

Although these results are sufficient to resolve the parameterized complexity of
all parameter combinations and provide some different tradeoffs between the pa-
rameters, incorporating additional parameters greatly can improve the best known
running times for algorithms that solve the problem, and they can be exploited by
different data organization and search space-narrowing techniques. Marx [34] de-
veloped two different techniques for motif search using (| X[, n, d) as parameters,
with the second technique also including k as part of the parameter for additional
efficiency. Without limiting k, a common approximate substring can be found by
considering the substrings of strings in S that generate it by their identical posi-
tions; all length [ substrings occurring in S are considered, and Marx proved that
considering only substring subsets of size < log, d + 2 are sufficient to generate any
possible common approximate substring (if one exists). The remaining positions in
the solution can be found through exhaustive search, yielding an algorithm that runs
in O(| 2 |4logd+2)plogd+0M))y time [34, Theorem 2.3].

Ma and Sun reduce this running time by providing a O (kI + kd2*|x|?pMlosd1+1)
time [32, Theorem 2] algorithm, which operates by repeatedly modifying an arbi-
trarily chosen substring, defining some positions as error-free and searching through
other possible characters for the remaining positions.

Faster techniques are possible if & is also limited and included in the parameter.
For this situation, Marx [34] builds a hypergraph with the / possible positions in a
substring as its vertices; a hyperedge is added for each substring s/, linking those
positions in that substring that are different from a selected base substring s{. Each
substring occurring in s; is used in turn as the base substring for constructing such a
hypergraph. A common approximate substring can be found by considering all oc-
currences of half-covering subhypergraphs, which are constant in number and each
have a O(log log k) fractional cover number. Their enumeration then solves the prob-
lem in O((|X|d)9%d)y Ologlogh)y time [34, Theorem 4.5].

2.6.2 Special Case: Common Approximate String

For many applications of sequence consensus in computational biology, the entirety
of each input sequence needs to be covered by a full-length consensus sequence. This
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restriction of [ = n produces a well-investigated special case of CASub, Common
Approximate String (CAStr), better known by its optimization name Closest String.
As with CASub, CAStr can incorporate different distance measures including Ham-
ming distance (H) and edit distance (E). This restriction on the problem makes all
parameterized variants that include either d or k as a parameter tractable for CAStr
under Hamming distance despite the intractability of the corresponding CASub vari-
ants. Some intractability results, however, still hold, especially if an arbitrary edit
distance is to be used, that is

e CAStr(H) is NP-hard when |X| > 2 [21].
e CAStr(E) is NP-hard when |X| > 2 [41, Theorem 3]; result also holds under
arbitrary weighted edit distance [41, theorem 6]

e (k)-CAStr(E) is W[1]-hard when |X| > 2 [41, Theorem 3]; result also holds
under arbitrary weighted edit distance [41, theorem 6]

Though (d)-CASub is W[1]-hard, the corresponding variant of CAStr is in FPT
for Hamming distance. Gramm et al. use a linear search tree to solve this problem in
O(kn + kd“*") time [24, Theorem 1]. In this strategy, a consensus string is searched
for by repeatedly picking a string that is not sufficiently close to the current prospec-
tive solution and then modifying the solution to bring the string into the neighbor-
hood. They also show that (k)-CAStr(H) is FPT by describing how to construct an
integer linear program with no more than B(k) x k variables, where B(k) < k! is
the kth Bell number. Although the running time grows very quickly with respect to
k, it is however linear with respect to the input size [24, Theorem 4]. Restricting /,
potentially useful for arbitrarily sized alphabets, has the effect of restricting d, so
CAStr(H) is thus fixed-parameter tractable for all parameters except | X| alone.

Adding |X| to the parameter enables a faster algorithm for those cases in which
the alphabet is small. Ma and Sun [32] use a similar technique for CAStr as they
do for CASub; indeed, the CAStr algorithm forms the basis for their CASub al-
gorithm that also needs to consider different substrings of the input strings. Elimi-
nating this need greatly simplifies the running time needed, making the result only
linearly dependent on the string length n, thus yielding an algorithm that runs in
O(nk + kd(16|=))?) time [32, Corollary 1].

2.6.3 Discussion

Table 2.3 summarizes the known parameterized results for Common Approximate
Substring. Most work so far has focused on the Hamming distance versions of these
problems; these results should be used as a basis for further exploration of more
general edit distance, likely considering different restrictions on distance such as
metrics. The work of [32,34] also could be extended to find faster algorithms for the
variants known to be in FPT and for even faster algorithms when additional problem
aspects can be restricted and included in the parameter. Note, however, that there are
known limitations on such algorithm development, as there are no f;(k, d)n°1°e4)
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Table 2.3 The parameterized complexity of Common
Approximate Substring

Alphabet Size |X|

Parameter Unbounded Parameter Constant
- NP-hard & XP NP-hard

k W{2]-hard W{2]-hard W]1]-hard
d W{2]-hard W[1]-hard W|[1]-hard
[ W[2]-hard FPT FPT

n FPT FPT FPT

or fa(k, d)n°1°e1°eh time algorithms for CASub(H) unless the exponential time hy-
pothesis fails [34, Corollary 6.8].

As for CAStr, CAStr(H) inherits FPT results from CASub(H) and has additional
FPT results for parameters that make CASub(H) intractable, completing CAStr(H)’s
parameterized complexity map. Many of these algorithms, however, have high expo-
nential functions of the parameter, so further development is needed to produce use-
ful algorithms. Examining CAStr relative to more general edit distances also should
produce interesting results.

2.7 CONCLUSION

The results outlined in the preceding sections show that fixed-parameter algorithms
and other special cases can solve problems that generally are considered intractable,
providing solutions that are consistent with the problems in computational biology
to which the theoretical problems are applied.

Parameterized results are usually only a starting point for research. Once a variant
has been shown to be in FPT for its parameter set, the algorithm usually can be made
more efficient through incorporating additional fixed-parameter techniques. The de-
velopment of better algorithms for Common Approximate Substring as described in
Section 1.6.1 is a good example of this type of work; these algorithms also show that,
when multiple characteristics of the problem are included in the parameter, different
approaches and their respective parameter tradeoffs may be more or less appropri-
ate depending on the parameter restrictions and values characteristic of the specific
applications. Regardless of such parameterized efforts, it is critical that work also
be done on restricted special cases characterized by structural restrictions because
some problem characteristics cannot be captured well or at all by parameterized
restrictions.

The work presented in this chapter demonstrates how application-focused prob-
lem analysis has been successful at finding tractable and useful special cases for
basic sequence problems. Given this success, this work should be continued for the
problems discussed here and, perhaps more importantly, extended to other problems
in computational biology.
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FINITE AUTOMATA IN
PATTERN MATCHING

Jan Holub

3.1 INTRODUCTION

Stringology is a part of computer science dealing with processing strings and se-
quences. It finds many important applications in various fields used by information
society. Biological sequences processing is one of the most important fields. How-
ever, the finite automata theory is a well-developed formal system used for a long
time in the area of compiler construction.

The chapter aims to show various approaches of the finite automata use in
stringology. The approaches are demonstrated on practical examples. Of course, it
is impossible to describe all approaches, as it would be out of scope of the chapter.
However, we would like to present basic approaches that the reader can modify and
combine to a given task.

The following four kinds of finite automata use were identified in the area of
stringology:

1. A direct use of deterministic finite automata (DFA)

2. A simulation of nondeterministic finite automata (NFA)

3. A use of finite automata as a model for computation

4. A composition of various automata approaches for particular subproblems

The direct use of DFA is used in case of pattern matching automata when a DFA is
built over the given pattern and then a text is given as an input to the DFA (the pattern
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is preprocessed). One also can construct a DFA over a given text and a pattern is given
as an input of DFA, which is the case of factor automata (providing a complete index
of the text; the text is preprocessed). Which of these approaches is used depends on
the real task and what data we have in advance.

If the pattern matching DFA is too large, then one can use the NFA simulation.
Three simulation methods are presented: basic simulation method (BSM), bit paral-
lelism (BP), and dynamic programming (DP). BSM is a general simulation method
that works for any NFA. BP and DP improve running times of BSM in a special case
when NFA has a regular structure (like in pattern matching).

When an NFA is constructed for a given task and then determinized, the structure
of the resulting DFA can bring answers to some questions. Particularly, so-called
d-subsets are studied for identifying both exact and approximate repetitions.

More and more complicated problems appear in stringology. If we can decompose
such a complicated problem into simple subproblems and solve these subproblems
by automata approaches, then we can build the resulting solution as a composition
of solutions of the subproblems.

3.1.1 Preliminaries

Let ¥ be a nonempty input alphabet, ¥* be the set of all strings over X, ¢ be the
empty string, and T = $*\ {¢}.If a € ¥, thena = X \ {a} denotes a complement
of a over X. If w =xyz, x,y,z € X% then x, y, z are factors (substrings) of w;
moreover, x is a prefix of w and z is a suffix of w.

NFA is a 5-tuple (Q, %, 8, qo, F), where Q is a set of states, X is a set of input
symbols, 8 is a mapping Q x (X U {e}) > 2!9!, g is an initial state, and F C Qisa
set of final (accepting) states. DFA is NFA, where § is a mapping Q x X — Q.
We can extend 8 to 8 mapping Q x ¥* > 22 for NFA or Q x ©* > Q for
DFA, respectively. DFA (respectively, NFA) accepts a string w € * if and only
if 8(go, w) € F (respectively, 8(go, w) N F # @). The set of all strings accepted by
automaton M is the language of automaton denoted by L(M). For more details
see [3].

If P C Q, then for NFA, we define eCLOSURE(P) ={¢' | g’ €8(q,¢),q €
P} U {P}. In other words, eCLOSURE(P) contains all states accessible from states
in P using only e-transitions.

An active state of NFA, when the last symbol of a prefix w of an input string is
processed, denotes each state g, g € S(qo, w). At the beginning, only gy is an active
state.

A depth of state g in NFA is the minimum number of moves that are needed to
get from an initial state g to this state g without using e-transitions. A level of state
q in NFA is the minimum among the numbers of differences (errors) associated with
all final states reachable from ¢. In the figures of this chapter, the states of the same
depth are in the same column, and the states of the same level are in the same row.

An algorithm A simulates a run of an NFA; if Yw, w € X*, then it holds that A
with given w at the input reports all informatiop associated with each final state g 7,
qs € F, after processing w if and only if g € 6(qo, w).
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Table 3.1 Basic classification of pattern matching algorithms using finite automata

Text
Not Preprocessed Preprocessed
Pattern | Not Preprocessed | Elementary algorithm Suffix, factor, and oracle
automata
Preprocessed Pattern matching automata | Intersection of automata

For measuring the similarity of two strings v, w € £*, we use edit distance
D(v, w) defined as the minimum number of edit operations needed to convert v to
w. We distinguish three edit distances:

1. Hamming distance [18] Dy, which allows the edit operation replace
2. Levenshtein distance [33] Dy, which allows replace, insert, and delete

3. Damerau distance [15] (also called generalized Levenshtein distance) Dp,
which allows replace, insert, delete, and transpose. Each symbol of v can par-
ticipate at most in one edit operation transpose.

In exact string matching, one can look at the automata solutions used according
to a preprocessing text and/or pattern as shown in Table 3.1. When neither pattern
nor text is preprocessed, an elementary (naive) search is performed employing a lot
of comparisons. If we preprocess the pattern, then we get classical pattern matching
automaton running on the input text. On the other hand, if we preprocess the text,
then we get suffix, factor, or oracle automata. If we consider preprocessing both the
pattern and the text, then we get two automata (one for pattern, one for text) and
we try to find the so-called intersection automaton (approach number 4). The previ-
ously mentioned approaches can be applied also to the approximate string matching;
however, the complexity then rises.

3.2 DIRECT USE OF DFA IN STRINGOLOGY

3.2.1 Forward Automata

Traditional finite automata are accepting automata. They read whole input text w,
and then text w is accepted (verified) if the finite automaton reaches a final state.
In other words, w is in the set of strings (called language) accepted by the finite
automaton. In addition, pattern matching automaton (see Figure 3.1) has been de-
signed in stringology. It traverses the input text w and reports each location of
a given pattern p (i.e., the finite automaton accepts language L = {up | u € X*},
checking any prefix of w). So in each step, the pattern matching automaton checks
whether a final state is reached. The verification (accepting) automaton performs the
check only once at the end of the text traversal. From the biology point of view,
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Figure 3.1 DFA for the exact string matching (p = aca).

Figure 3.2 NFA for the exact string matching (p = aca).

the text may be a DNA sequence (alphabet ¥ is then {a, c, g, t}), and the pattern
may be a gene we would like to find in the DNA sequence. The text and pattern
also may be build over the symbols representing amino acids. The alphabet is then
Y ={g,a,v,l,i,p, f,y,c,m,h,k,r,w,s,t,d,e,n,q,b,z}.

One easily can construct an NFA first (see Figure 3.2) and transform it into the
equivalent DFA using the standard subset construction [26, 30]. The determinization
runs in time O(| Qpra || Oneal| Z|), where | Onga| and | Qpga | are numbers of states of
the NFA and the resulting DFA, respectively. The direct DFA construction algorithm
also exists [12] (see Algorithm 3.1), running in time O(m|%|), where m is the length
of the pattern.

Algorithm 3.1 (Construction of DFA for the exact string matching)
Input: Pattern p = p1p>... pn-

Output: DFA M accepting language L(M) = {wp | w € £*}.

Method: DFA M = ({q0, g1, ---,9m}, 2, 6, q0, {gm}), Wwhere the mapping & is
constructed as follows:

foreacha € X do

8(qo, a) < {qo} /% self-loop of the initial state s/
endfor
for i < 1,2,...,m do

r < 8(gi-1, pi)

8(gi—1, pi) < qi /% forward transition s/

foreacha € © do
8(gi,a) < 6(r, a)
endfor
endfor
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Figure 3.3 NFA for the exact sequence matching (p = aca).

Well, the pattern does not need to be a solid string. One can consider pattern p =
P1D2 - - Pm as a sequence. Thus, one searches for all occurrences of p in input text
w where any number of symbols are inserted between any adjacent pattern symbols
pi and p; 1. The NFA for exact sequence matching can be constructed easily from
the NFA for exact string matching by inserting a self loop labeled by ¥ (matching
any symbol of alphabet) to any nonfinal state as shown in Figure 3.3. The self-loop
skips those inserted symbols.

In biology, when we search for genes, we actually search for a sequence of ex-
ons (coding sequences) while skipping introns (noncoding sequences) by self-loops
labeled by X labels. The NFA for a gene searching is shown in Figure 3.4. The gene
consists of three exons aca, tag, and gaa.

Another extension is approximate string matching in which we allow up to k er-
rors where k is given. The errors can be introduced by edit operations replace, delete,
insert, and transpose. Let us consider just replace, insert, and delete, which are the
base for the Levenshtein distance. The corresponding approximate string matching
NFA for pattern p is constructed as k + 1 copies (Mg, My, ..., M;) of exact string
matching automaton for pattern p: one for “no error” (level 0), one for “one error”
(level 1), ..., one for “k errors” (level k). These k + 1 automata are connected by the
transitions representing edit operations.

Each transition for replace is labeled by symbol p; ,; (mismatching symbol p;
in pattern p) and leads from state g; of automaton M; to state g;4; of automa-
ton M;y1, 0 <i <k, 0<j < m; the depth j in the automaton (corresponding to
a pointer in the pattern) is increased as well as the minimum number of errors. Each
transition for insert is labeled by symbol p;_ | and leads from state ¢; of automaton
M; to state g; of automaton M; 1,0 <i <k, 0 < j < m; the minimum number of
errors is increased, but the depth in automaton remains the same. Each transition for
delete is labeled by ¢ and leads from state g; of automaton M; to state g; of au-
tomaton M; 1,0 <i < k,0 < j < m; the depth in automaton is increased as well as
the minimum number of errors, but no symbol is read from the input.

Figure 3.4 NFA for the exact gene matching (gene has three exons aca, tag, and gaa).
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Figure 3.5 NFA for the approximate string matching using Levenshtein distance (m = 4, k= 2).

The initial state of such automaton is the initial state of automaton M. Inacces-
sible states of the resulting automaton are removed. The resulting NFA is shown in
Figure 3.5.

After the determinization of this NFA, the resulting DFA may have up to
(k + D!(k + 2)"~2 states [34]. This gives us the memory complexity of DFA and
its preprocessing time. The following DFA run then has the time complexity linear
with the size of the input text. However, if the DFA is too large, then one has to use
a NFA simulation described in Section 3.3.

The previous NFA has the same weights of all edit operations. If the weights are
different integers, then we just need to reconnect the corresponding transitions to
states of corresponding levels.

3.2.2 Degenerate Strings

In bioinformatics, some positions of DNA are not determined precisely, or we do not
care which symbol of a subset of alphabet is present. The position simply matches
more than one symbol of alphabet. In such cases, we talk about a degenerate sym-
bol. Special symbols for those degenerate symbols (e.g., H matches a, c, or t) are
introduced in [39]. A string containing one or more degenerate symbols is called
a degenerate string. It also is called an indeterminate or a generalized string. For
example, isoleucine is the amino acid encoded by triplet ar H.

NFA can handle degenerate symbols very easily. Instead of having a single match-
ing transition, we introduce one transition for each matching symbol as shown in
Figure 3.6. We usually collapse the parallel transitions into one transition labeled
by several symbols. For exact indeterminite string matching, a sublinear algorithm
exists [24].
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Figure 3.6 NFA searching all occurrences of isoleucine (p = atH).

Figure 3.7 NFA searching all occurrences of leucine.

A single degenerate string cannot be used for all amino acids. For example,
leucine is encoded as “ctN and ttR” (i.e., “ct{a,c, g, t} and tt{a, g}”). If we en-
code it as YtN = {¢t, c}t{a, c, g, t}, then it also covers phenylalanine encoded as
1tY = tt{c, t}. Thus, when searching for occurrences, we have to specify the pattern
as “ctN or ttR.”” NFA solves this problem very easily as well. Using Thompson’s
construction [43], we get the NFA shown in Figure 3.7.

The same degenerate string approach can be used when searching for an amino
acid pattern in an amino acid text. For example, as isoleucine and leucine have the
same chemical properties, we may not care which actually is found on a given posi-
tion of the pattern.

So far, all algorithms presented were constructing NFA first, then converting it
into DFA, and finally running the DFA over the text in time O(n) where n is the
length of the input text. The preprocessing time (NFA construction and determiniza-
tion) and space is linear with the pattern size. For approximate pattern matching, the
preprocessing time and space is worse, as already stated.

3.2.3 Indexing Automata

Another approach used in stringology is to preprocess the text and not the pattern;
we build an automaton for the input text and give the pattern as an input to the finite
automaton. This is the case of factor and suffix automata' [9, 10, 14]. We build a
suffix or factor automaton for a given text w, and then in m steps, we figure out

I'This kind of automaton also is called directed acyclic word graph (DAWG). However, then it is not clear
whether DAWG is the suffix or the factor automaton.
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Figure 3.8 Relation among suffix trie, suffix tree, suffix automaton, and compact suffix au-
tomaton (p = caaca).

whether a given pattern p of length m is a factor (substring) of text w. Therefore, the
automaton also is called indexing automaton (or complete index) of the text. This
process is a very efficient full-text searching in a collection of documents in which
the documents are given in advance while the pattern is provided at the moment when
we want to know in which documents it is located.

The suffix automaton is the minimal DFA accepting all suffixes of a given string
w. The factor automaton is the minimal DFA accepting all factors of w. However, the
suffix automaton is a little bit simpler to construct, and it also can identify all factors
of w. Therefore, the suffix automaton is used in practice. The suffix automaton has
at most 2n — 1 states [12].

Suffix trie and suffix tree are other indexing automata that are less space efficient.
However, the most space efficient is compact suffix automaton. Their mutual relation
is shown in Figure 3.8.

The most efficiently implemented data structure for indexing an input text is the
suffix tree by Kurtz [32], suffix automaton by Balik [8], and compact suffix automa-
ton by Holub and Crochemore [21]. The implementations of suffix automaton and
compact suffix automaton are very close in space requirements—ranges about 1-5
bytes® per input symbol. However, the implementation of suffix automaton [8] is

2The value depends on the type of the input text.



3.2 DIRECT USE OF DFA IN STRINGOLOGY 59

Figure 3.9 Factor oracle (p = caaca).

focused on the smallest space used (using some compression techniques), the imple-
mentation of compact suffix automaton [21] is focused on the speed of traversing.

The next section describes even more compacted automaton called factor ora-
cle [4] (Figure 3.9).

3.2.4 Filtering Automata

One can use pattern matching DFA as a filter. An example of such technique is factor
oracle [4]—an automaton build over an input text w of size n. The factor oracle is
smaller than the factor automaton. It has only n + 1 states. However, in addition to
all factors of input text w, it also accepts some other strings as a penalty for only
n + 1 states. Therefore, the answer “no” means the pattern p is not a factor of w, and
the answer “yes” means “maybe,” so it should be verified.

3.2.5 Backward Automata

Backward matching algorithms align the pattern at the first possible position in the
text and start to compare the pattern and the text backward. If a mismatch is found,
then the pattern is shifted further and a new comparison begins. Thus, these methods
can achieve a sublinear time.

The first algorithm using this approach was the Boyer-Moore algorithm [11].
There are many variants of the algorithm like the Boyer-Moore-Horspool [27] or
the Boyer-Moore-Sunday [42], which perform a pure comparison, and the following
shift is done according to the last aligned symbol or the symbol after, respectively.

The suffix automaton can be applied to a pattern in backward matching as well. In
backward DAWG matching algorithm (BDM) [13], the reversed suffix automaton is
constructed for reversed pattern. Running the automaton backward identifies possible
prefixes that influence the next shift of the pattern. Nondeterministic automaton for
BDM called BNDM (backward nondeterministic DAWG matching; see Figure 3.10)
[38] and backward oracle matching (BOM) algorithm [4] also work backward and
they are very efficient. They use the bit parallel NFA simulation technique discussed
in Section 3.3.2.

Figure 3.10 BNDM automaton (p = caaca).
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Figure 3.11 KMP automaton (p = caaca).

3.2.6 Automata with Fail Function

For all aforementioned finite automata, the DFAs are used. If we construct NFA, then
we have to transform it to the equivalent DFA. A special kind of DFA also is used in
stringology. Knuth-Morris-Pratt (KMP) type automaton [29]? is a special DFA ex-
tended by fail function (see Figure 3.11). KMP does not have all outgoing transitions
defined (it is called not completely defined automaton). If the automaton should use
an undefined transition, then the fail function is used to switch the automaton into
another state. The fail function is used until we reach a state with the required tran-
sition defined. In the worst case, the initial state is reached in which the transitions
are defined for all symbols of the input alphabet. KMP automaton is very memory
efficient, it needs memory linear to the length of the pattern. KMP automaton is used
for exact string matching for one pattern. Aho-Corasick (AC) type automaton [2] is
an extension of KMP for a finite set of patterns.

3.3 NFA SIMULATION

DFA cannot always be used. Theoretically, we can face up to an exponential increase
of number of states when determinizing NFA. If the resulting DFA cannot fit into
memory, then we have to search for another approach. Thus, the NFA simulation is
used. Instead of determinizing, we traverse the NFA in width-first order with a goal
to reach a final state. The basic simulation method [19, 20] was designed for that
purpose. It was implemented using bit vectors.

For NFA with a regular structure, we also can use other simulation methods called
bit parallelism and dynamic programming. They improve time and space complexi-
ties; however, they cannot be used for general NFA.

NFA simulation runs slower than DFA, but it requires less memory. NFA sim-
ulation also is used when determinization would take too much time with respect
to the length of input text. A resolution system [25] was developed that for a given
stringology task recommends the most suitable method (DFA or one of simulation
methods).

To speed up the BSM, the deterministic state cache was implemented [22]. It com-
bines advantages of both DFA run and NFA simulation as shown in Section 3.3.4.

Once we know how to simulate NFA efficiently, we can use this approach for
other stringology tasks like BNDM [38] and BOM [4] for exact pattern matching.

3KMP automaton [29] is an optimized version of the original Morris-Pratt (MP) automaton [36].
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3.3.1 Basic Simulation Method

The basic simulation method maintains a set S of active states during the whole
simulation process. At the beginning, only the state gy is active, and then we
evaluate e-transitions leading from go: So = eCLOSURE({go}). In the i-th step
of the simulation with text ¢t = #;t,...t, on input (i.e., #; is processed), we com-
pute a new set S; of active states from the previous set S;_; as follows: S; =
U 7€ eCLOSURE((q, £;)). In each step, we also check whether S; = @ then the
simulation finishes (i.e., NFA does not accept ¢) and whether S; N F # (J, then we
report that a final state is reached (i.e., NFA accepts string ¢, . ..t;). If each final
state has an associated information, then we report it as well.

This simulation is implemented by using bit vectors as described in [19]. This
implementation runs in time O(n| Q| ['%]) and space O(|XZ]| Q| (%]), where w is a
length of used computer word in bits, | Q| is a number of states of NFA, and n is a
length of the input string.

3.3.2 Bit Parallelism

The bit parallelism [16, 40, 6] is a method that uses bit vectors and benefits from the
feature that the same bitwise operations (OR, AND, ADD, ... etc.) over groups of bits
(or over individual bits) can be performed at once in parallel over the whole bit vector
(see Figure 3.12). The representatives of the bit parallelism are Shift-Or, Shift-And,
and Shift-Add algorithms.

The simulation using the bit parallelism will be shown in a Shift-Or algorithm
that uses for each level (row) I, 0 <[ < k, of states one bit vector R’ (of size m).
Each state of the level then is represented by one bit in the vector. If a state is active,

RO
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N 2 J23 D D
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< >y >y s, R'
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ZANNK NN NN
" ” " 2
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Figure 3.12 Bit parallelism uses one bit vector R for each level of states of NFA.



62 FINITE AUTOMATA IN PATTERN MATCHING

then the corresponding bit is 0; if it is not active, then the bit is 1. We have no bit
representing g, because this state is always active. Formula (3.1) shows, how the

vectors Rf = [r{J., r{’i .. .r,ﬂu.] in the ith step are computed.
rio <0, 0<,j<L0<I<k
rio < 1 l<j<mO0<I<k
RY <« shr(R? ) or D[4], 0O<i<n
Rl <« (shr(R!_)) or D[1;]) /% match */
and (shr(Rf:i) or not D[t]) /[ replace */ G-
and shr(R'™") /* delete */

and (RE1 or not shl(D[#;]) or V), /* insert */

i—1
0<i<nO<l<k

In the formula, shr() (respectively, shl()) is the bitwise operation right (respec-
tively, left) shift, ‘or’ (respectively, ‘and’) is the bitwise operation OR (respectively,
AND), and NoOT() is a bitwise operation that exchanges Os and 1s.

At the beginning, only the states of eCLOSURE({go}) are active; therefore, the
first [ bits are 0 in each vector Ré. The transitions representing matching are the
only transitions leading to the states of level 0. To simulate these transitions, we shift
vector RLI to the right*—it is represented by term shr(Rf,fl). The operation shr()
inserts O at the beginning of the vector, which implements the self-loop of the initial
state. At this moment, all active states moved to the right, and we have to select only
those transitions, which are labeled by ¢;. For this selection, we use table D of mask
vectors. The table D is defined as follows: D[x] = [d] xd2.x - ..dm.x], x € ¥, where
dj. =0,if p; = x, or 1, otherwise. When we execute the bitwise operation or over
the shifted vector and the mask vector D[#;], 1s is inserted in the positions where
the transitions are not labeled by #;. Thus, O remains only in such a position that the
previous position contained 0, and there is a transition match labeled by #; connecting
these two positions.

The term shr(Rfj) or not ((D[t;])) represents replace. In this case, we shift the
vector from the previous level / — 1. Then we have to select the transitions labeled
by t;. While in transition match, these transitions correspond to the positions match-
ing the pattern; in case of transition replace, these transitions correspond to the posi-
tions mismatching the pattern. Therefore, we use mask vector not (D[t;]).

The term shr(Rf._l) represents delete. In this case, we shift the new value of the
vector from the previous level [ — 1. We do not use any mask vector because we
implement e-transitions, which always apply. We use the new value of R'~! because
no input symbol is read when e-transitions are executed.

The term Rf:} or not (shl(D[#])) or V represents insert. We take the previous
value of vector R/~!. Because each such transition is labeled by p ; (i.e., mismatching
the label of the transition match leading from the same state), we use mask vector

“4In practice, the Shift-Or algorithm has the right and left shifts exchanged because of easier implementa-
tion when the vectors are too long and have to be divided into several computer words.
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Table 3.2 Matrix D for pattern
p = atggca

D a

Y\ {a, g, c,t}

[
~

Q 0O 0 0 = Q
O = == =0
—_— 0 O =~ |0
—_ O = = = e
—_ = = O =
—_ e

D[t;]. We have to exchange 0 and 1 in the vector, but in addition, we have to shift
this vector in the opposite direction than we usually shift the vectors. It is because
we do not shift vector R/"| (it is a vertical transition that does not change a position
in the pattern), we must get the corresponding bits to the correct positions in this
way. Vector V = [00...01] is used to prevent insert transitions leading into the final
states.

All these terms are connected by bitwise operation and, which adds up all states
arriving along all the transitions leading to the same state. If the last bit of vector R’
is 0, then the final state of level [ is active. In this case, it means that the pattern has
been found with at most / differences.

Example:
Let p = atggca, t = atcagcaagatggca, and k = 3. Matrix D is shown in Table 3.2,
and Table 3.3 shows the simulation process of NFA run.

With the knowledge how bit parallelism simulates corresponding NFA, we could
modify easily bit parallelism for other pattern matching tasks. One big advantage
of bit parallelism is that we can define matching matrix D for degenerate strings
without changing the time and space complexity of the algorithm.

3.3.3 Dynamic Programming

The basic simulation method described in [19, 20] maintains a set of active states
during the whole simulation process. Although in bit parallelism this set is repre-
sented by bit vectors, in dynamic programming, this set is represented by a vector
of integer variables. We divide all states into some subsets, and each of the subsets
is represented by one integer. The value of this integer then holds the information of
what states of the subset are active.

The simulation using the dynamic programming will be shown on the NFA for the
approximate string matching using the Levenshtein distance. This problem is defined
as a searching for all occurrences of pattern p = pypy ... py intext t = titp.. .1,
where the found occurrence x (substring of #) can have at most k differences. The
number of differences is given by the Levenshtein distance Dy (p, x), which is de-
fined as the minimum number of edit operations replace, insert, and delete, that are
needed to convert p to x.
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Table 3.3 Matrices R’ for the approximate string matching using the
Levenshtein distance (p = atggca, k= 3, and t = atcagcaagatggca)

RO - a t ¢ a g ¢ a a g a t g g ¢ a
a 1 6 1 1 0 1 1 0 0 1 o0 1 1 1 1 O
t 1P 1o 1 1 1 1 1 1 1 1 0 1 1 1 1
g 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
g 1 1r 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 11 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
R' - a t ¢ a g ¢ a a g a t g g c a
a 0 0 0 0 0 0 O O O O O O O o0 0 O
t 10 o0 0 0 0 1 0 O O O0 O0 1 1 1 O
g 1 1.0 0 1 0 1 1 1T O 1 O O 1 1 1
g 1 11 1 1 1 1 1 1 1 1 1 0 0 1 1
c 1 11 1 1 1 1 1 1 1 1 1 1 0 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 O
R> - a t ¢ a g ¢ a a g a t g g c a
a 0 0 0 0 0 0 O0 0 O O O O O o0 o0 O
t o o0 0 0 0 0 O O O O O O O O0 o0 o
g 1 06 0 0 0 0 0 0 O0 O O O 0 o0 1 O
g 1 1. 0 0 0 0 0 1 1T 0 O O 0 O0 1 1
c 1 1.1 0 1 1 0 1 1 1 1 1 0 0 0 1
a 1 11 1 0 1 1 0 1 1 1 1 1 0 0 O
R - a t ¢ a g ¢c a a g a t g g ¢ a
a 0 0 0 0 0 0 O O O O O O O o0 0 O
t o o0 0 0 0 0 O O O O O O O O0 o0 o
g 0 0 0 0 0 O O O O O O O O o0 0 O
g 1 0 0 0 0 O O O O O O O O o0 o0 O
c 1 1.0 0 0 0 O O 1 O O O O O0 O 1
a 1 11 0 0 1 0 O O 1 O0 1 O O O0 O

Figure 3.13 shows the NFA constructed for this problem (m =4, k = 2). The
horizontal transitions represent matching, the vertical transitions represent insert,
the diagonal e-transitions represent delete, and the remaining diagonal transitions
represent replace. The self-loop of the initial state provides skipping the prefixes of
t located in front of the occurrences. Formula (3.2) simulates the run of the NFA in

Figure 3.13.

djio < J,
dO,i < O,

dj,i <~ min(if1; = Pj then dj—l,i—l else dj—l,i—l +1,
ifj<mandt; # pjy thend;;_; + 1,
di_1;+1),

0<j=<m
0<i<n

(3.2)
0<i<mn,
O<j<m
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Figure 3.13 Dynamic programming uses for each depth of states of NFA one integer variable d.

In the dynamic programming for the approximate string matching using the Lev-
enshtein distance, there is for each depth j, 0 < j < m, of NFA in each step i of the
run one integer variable d;; that contains a level number of the topmost active state
in jth depth of NFA. Each value of d; ; greater than k + 1 can be replaced by value
k + 1 and represents that there is no active state in jth depth of NFA in ith step of
the run.

The term d;_;,;_; represents matching transition, the term d;_;;_; + 1 repre-
sents transition replace, the term d;; ;_; + 1 represents transition insert, and the term
dj_1; + 1 represents transition delete.

The self-loop of the initial state is represented by setting dp; <— 0, 0 <i < n.
Only the states reachable from g, by e-transitions are active at the beginning. Thus,
all transitions (paths) of the NFA are considered.

Each element d,, ; < k shows an occurrence of p with at most d,, ; differences the
final state in level d,, ; is active. An example of matrix D is shown in Table 3.4.

Table 3.4 Matrix D for pattern p = adbbca and text t = adcabcaabadbbca
using the Levenshtein distance

D — a d ¢ a b ¢ a a b a d b b c¢ a
— 0 0 0 0O o 0O O O 0 O o O o o0 o0 o
a i1 o 1 1 0 1 1 0 O 1 O 1 1 1 1 O
d 2 1 o 1 1 1 2 1 1 1 1 O 2 2 2 1
b 32 1 1 2 1 2 2 2 1 2 1 0 2 3 2
b 4 3 2 2 2 2 2 3 3 2 2 2 1 0 3 3
c 5 4 3 2 3 3 2 3 4 3 3 3 2 1 0 4
a 6 5 4 3 2 4 3 2 3 4 3 4 3 2 1 0
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The matrix D can be compressed [17] using the property that (d;; —d;_1;—1) €
{0, 1}. The behavior of these simulation methods was studied with respect to chang-
ing the length of text, length of pattern, edit distance (Hamming, Levenshtein, and
Damerau distances), and pattern class (English text, DNA sequence, image, ... ).

3.3.4 Basic Simulation Method with Deterministic State Cache

There is a similarity between NFA simulation represented by BSM and NFA deter-
minization. Each configuration of set S of active states determines one state of the
equivalent DFA. In fact, BSM creates states of DFA with three basic differences:

1. BSM creates states of DFA in the processing phase,’ whereas NFA deter-
minization creates them in the preprocessing phase.

2. BSM creates only those states of DFA it really needs, whereas NFA deter-
minization creates all states of whole DFA.

3. BSM does not remember states of DFA. Once a new DFA states is computed,
the previous one is forgotten.

That leads to an idea to create something in between. The BSM was extended
by deterministic state cache (DSC) [22] where previously computed DFA states are
stored. The only DFA states that are need are computed. If the transition needed
during processing the input text is in DSC, then it is used; otherwise it is computed.
If the DSC is full, then some cache technique to free some space in DSC are used.
The BSM using DSC runs faster than original DSC but no faster than DFA.

The idea of on-the-fly construction of DFA originally was mentioned in [1], then
it was discussed in [7] for the approximate string matching using Hamming dis-
tance, in [37] for the approximate string matching using Levenshtein distance and
for the general problem in [31]. However, there was no practical implementation. In
addition, [22] adds not only the practical implementation but also the cache of the
deterministic states so that one can control the memory used.

3.4 FINITE AUTOMATON AS MODEL OF COMPUTATION

The finite automaton does not need to be run to solve some task. Even the construc-
tion of DFA can give us a solution. If we construct nondeterministic factor automa-
ton, where each state represents one position in the input text (the position would be
a number of the state), then by determinizing it by standard subset construction with
preserving these positions (stored in d-subsets), we get deterministic factor automa-
ton holding some extra information. For example, we easily can identify both exact
and approximate repetitions in the input text as shown in [35].

SWhile working on the input text.
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Another example is searching for all borders of the text by constructing an in-
tersection of prefix and suffix automata as shown in [41]. The border of the text is
a prefix, which is simultaneously a suffix of the text. As we know the automaton
model behind the computation, we easily can extend into searching for the approxi-
mate borders as also shown in [41].

3.5 FINITE AUTOMATA COMPOSITION

The task of approximate string matching is to find out if a given text # contains a pat-
tern p with some errors that are measured by an edit distance. Here, we decompose
the problem into two subproblems:

* Approximate pattern matching for pattern p
¢ Searching for all factors of text ¢

We build an approximate pattern matching automaton for pattern p (accepting
language of all strings within a given edit distance from p) and a factor automaton
for text ¢ (accepting all factors of ¢). The resulting solution is then an intersection
automaton of the two automata (an automaton accepting intersection of the two lan-
guages). If we are interested only in the answer, then we do not need to construct
whole intersection automaton. The algorithm drives the intersection computation in
such a way so that the answer would be found as fast as possible. This approach then
was used in [23, 28].

A more complicated composition is presented in [5] in which the finite automata
approach was used to solve a DNA processing task. The task is to find common
motifs with gaps in a set of input strings. The approaches used are the factor au-
tomaton, the computation of automaton accepting the union of languages of given
automata, a subsequence automaton, and the computation of automaton accept-
ing the intersection of languages of given automata presented already in [23]. Al-
though other solutions of the problem require some limit of gaps (fixed gap, or
bounded gap, or bounded sum of gaps), this algorithm allows any gaps while keep-
ing the same time and space complexities like other algorithms requiring some limit
of gaps.

3.6 SUMMARY

Table 3.5 summarizes the automata algorithms described in this chapter. It shows
for each task (and method) whether pattern (P) and/or text (P) is preprocessed, the
section describing the method, the preprocessing time, the running time, and the
space required.

In the approximate pattern matching, the size of DFA (|Qpgal) is (k + D)!(k +
2)"=2 [34]. The size |Onpa| of NFA for the approximate pattern matching is
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m+Dk+1)— @ Machine word size w plays an important role in bit par-
allelism and bitwise implementation of BSM. If the bit vectors are longer than w,
then they have to be divided into several machine words. BMH, BNDM and BOM
(marked by *) run in O(nm) in the worst case but in sublinear time on average. Note
that the running time of the approximate string matching using automata intersection

does not depend on the length of input text.
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NEW DEVELOPMENTS IN
PROCESSING OF
DEGENERATE SEQUENCES

Pavlos Antoniou and Costas S. lliopoulos

4.1 INTRODUCTION

Degenerate sequences are sequences that have several possible letters in some of their
positions. In terms of biological sequences, degenerate sequences can have more
than one base or amino acid in some positions. For example, in the DNA sequence
AG[CT]JACCJACT]A, at position 3, we have either C or T, and in position 7 we can
have either A, C, or T.

The processing of these degenerate sequences presents problems that have inter-
ested researchers because of their direct applications in biology, cryptography, and
music. In music, for example, single nodes may match chords. In cryptography, un-
decoded symbols may match one of a specific set of letters in the alphabet [9].

In computational biology research, degenerate sequences have been used exten-
sively to represent polymorphisms in DNA/RNA sequences. These polymorphisms
in coding regions are caused by redundancy of the genetic code or polymorphism in
binding sites or plainly by errors and limitations of the sequencing equipment in bi-
ological labs. Additionally, biologists have been interested in degenerate sequences
especially for the problem of degenerate primer design in polymerase chain reaction
(PCR) sequences [17] .

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright © 2011 John Wiley & Sons, Inc.
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4.1.1 Degenerate Primer Design Problem

PCR, is a process that amplifies a specific region of DNA to provide enough copies
of that region to be tested or sequenced. To use this PCR process, the biologists need
to know the exact sequences, which lie on either side of the region of interest. These
sequences are used to design two synthetic DNA oligonucleotides and are called
primers. Primers usually have a length around 20-30 base pairs [14].

The PCR primer sequences are often degenerate as some of their positions have
several possible bases. The degeneracy of a primer is the number of unique sequence
combinations it contains [14]. The primer design problem usually involves a set of
sequences for which we wish to design primers that can match as many of the se-
quences of the set as possible. For example, the primer P = TT[CG]C[ACT]G
covers all four of the following strings:

S =TTGCAG
S =TTCCAG
S3=TTGCTG
S4 =TTGCCG

To find solutions for these problems associated with degenerate sequences, the
repetitive structures and properties that can be found in degenerate strings have been
the subject of research in string algorithms. In recent years, there were many algo-
rithms concerning degenerate strings, and the advances in this area provided solu-
tions in cryptography, music, and biology.

In this chapter, we will investigate and present new algorithms to find repetitive
structures in degenerate strings. We begin with the problem of finding local and
global covers and repetitive structures called seeds in the degenerate strings. We
present an algorithm for finding the smallest cover of the string x in O(n logn) time,
where n is the length of the string n. Subsequently, we extend this algorithm to find
all local and global covers of the string x and we extend the latter to compute the
seeds of the string.

Subsequently, we study the problem of finding local and global covers as well
as seeds in conservative degenerate strings. A conservative degenerate string is a
degenerate string in which the number of degenerate symbols in the positions of
the string (i.e., the nonsolid symbols), is bounded by a constant k. We present an
algorithm for finding a conservative degenerate pattern p in a degenerate string x.
Furthermore, we present algorithms for computing conservative covers and seeds of
a degenerate string x.

4.2 BACKGROUND

As mentioned, in this chapter, we will investigate algorithms that find repetitive
structures in degenerate sequences. These structures include covers and seeds of the
strings.
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Covers are considered common regularities in a string along with repetitions and
periods. They are periodically repetitive. A substring w of a string x is called a cover
of x if and only if x can be constructed by concatenations and superpositions of w.
A seed is an extended cover in the sense of a cover of a superstring of x.

Finding the regularities present in strings is not only interesting in string algo-
rithms, but it is also useful in many applications. These applications include molec-
ular biology, data compression, and computational music analysis. Regularities in
strings have been studied widely in the last 20 years. There are several O(nlogn)
time algorithms for finding repetitions [6], in a string x, where » is the length of x.
Apostolico and Breslauer [2] gave an optimal O(loglog n) time parallel algorithm for
finding all repetitions. The preprocessing of the Knuth—Morris—Pratt algorithm [13]
finds all periods of every prefix of x in linear time.

In many cases, it is desirable to relax the meaning of repetition. For instance, if we
allow overlapping and concatenations of periods in a string, then we get the notion of
covers. The notion of covers was introduced by Apostolico, Farach, and Iliopoulos
in [3] in which a linear-time algorithm to test superprimitivity was given. Moore and
Smyth in [15] gave linear-time algorithms for finding all covers of a string x.

An extension of the notion of covers, is that of seeds (i.e., covers of a superstring
of x). The notion of seeds was introduced by Iliopoulos, Moore, and Park [11] and
an O(nlogn) time algorithm was given for computing all seeds of x. A parallel
algorithm for finding all seeds was presented by Berkman, Iliopoulos, and Park [5],
that requires O (logn) time and O(n logn) work.

In this chapter, we find these string regularities in degenerate strings. Figure 4.1
presents an example of a degenerate biological sequence in which in some positions,
we do not have only one base but may have up to four. That means that in those
particular positions, it is not clear which base resides there; in other words the base
in those positions is not determined.

An algorithm was described [8] for computing all occurrences of a pattern p
in a text string x, where both p and x are defined on the alphabet X*, but al-
though efficient in theory, the algorithm was not useful in practice. Indeterminate
string pattern matching mainly has been handled by bit mapping techniques (ShiftOr
method) [4],[19]. These techniques have been used to find matches for a degenerate
pattern p in a string x [9] and the agrep utility [18] has been virtually one of the few
practical algorithms available for degenerate pattern matching.

In [9], the authors extended the notion of degenerate strings by distinguishing
two distinct forms of degenerate match (“quantum” and “deterministic”). Roughly
speaking, a “quantum” match allows a degenerate letter to match two or more dis-
tinct letters during a single matching process; a “determinate” match restricts each
degenerate letter to a single match [9].

In the area of biology, we can find the notion of conservative degenerate strings.
In biology, usually, the number of degenerate positions in a sequence is bounded nat-
urally by a constant value. Otherwise, we would have a cover of length 1 with just
a do not care symbol that corresponds to all letters of the alphabet X. Therefore, we
impose a constraint on the strings, which requires that the number of degenerate posi-
tions in a cover c is less than the constant, that is, a “conservative” cover. An example
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1 t at t t at
2 t 1 t t
3 t
4 ttatctct tott
5 ttat t tt
6 t tct t 1
7 t at 1
8 ttat tt 1 1
9 t t tott
10 t tott
11 tt tct t t
12 ttat t
27
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Figure 4.1 A sequence logo of a biological degenerate sequence. Picture taken from [16].

of a sequence containing degenerate positions is shown in Figure 4.1, which depicts a
sequence logo of a degenerate sequence. The bottom logo is the consensus sequence
derived by the 12 sequences on top of it. If we look at the logo, then we can see that
position 1 is degenerate as we can have [TCAG] occurring, position 2 is degenerate
also having a possible occurrence of [TCA], position 3 is solid, nondegenerate, as in
that position, only A occurs.

This chapter is organized as follows. Section 4.3 presents the basic definitions and
notations used throughout this chapter. Section 4.4 presents linear-time algorithms to
find covers and seeds in degenerate strings, and section 4.5 presents algorithms for
finding repetitive structures in linear time for conservative degenerate strings. Finally,
section 4.6 presents some concluding remarks.

4.3 BASIC DEFINITIONS

A string is a sequence of zero or more symbols from the alphabet X. The set of all
strings over ¥ is denoted by ¥*. The length of a string x is denoted by |x|. The
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empty string, the string of length zero, is denoted by €. The i-th symbol of a string x
is denoted by x[i].

A string w is a substring of x if x = uwwv, where u, v e £*. We denote by x[i ... j]
the substring of x that starts at position i and ends at position j. Conversely, x is
called a superstring of w. A string w is a prefix of x if x = wy for y € X*. Similarly,
w is a suffix of x if x = yw for y e ¥*.

We call a string w a subsequence of x (or x is a supersequence of w) if w is
obtained by deleting zero or more symbols at any positions from x. For example,
ace is a subsequence of aabcdef . For a given set S of strings, a string w is called a
common supersequence of S if w is a supersequence of every string in S.

The string xy is the concatenation of the strings x and y. The concatenation of
k copies of x is denoted by x*. For two strings x = x[1...n] and y = y[l...m]
suchthat x[n —i +1...n] = y[1...i] for somei > 1 (i.e., such that x has a suffix
equal to a prefix of y), the string x[1...n]y[i 4+ 1...m] is a superposition of x and
y. We also say that x overlaps with y. A substring y of x is called a repetition in
x if x = uy*v, where u, y, v are substrings of x and k > 2, |y| # 0. For example, if
x = aababab, then a (appearing in positions 1 and 2) and ab (appearing in positions
2,4, and 6) are repetitions in x; in particular, a®> = aa is called a square, and (ab)® =
ababab is called a cube.

A nonempty substring w is called a period of a string x, if x can be written as
x = wkw’ where k < 1 and w' is a prefix of w. The shortest string of the periods of
x is called the period of x. For example, if x = abcabcab, then abc, abcabc, and
the string x itself are periods of x, whereas abc is the period of x.

A substring w of x is called a cover of x, if x can be constructed by concate-
nating or overlapping copies of w. We also say that w covers x. For example, if
x = ababaaba, then aba and x are covers of x. If x has a cover w # x, then x is
quasiperiodic; otherwise, x is superprimitive.

A substring w of x is called a seed of x if w covers one superstring of x (this can
be any superstring of x, including x itself). For example, aba and ababa are some
seeds of x = ababaab.

A degenerate string is a sequence T = T[1]T[2]...T[n], where T[i] € X for
each i, and X is a given alphabet of a potentially large size. When a position of the
string is degenerate, and it can match more than one element from the alphabet X,
we say that this position has nonsolid symbol. If in a position, only one element
of the alphabet X is present, then we refer to this symbol as solid. A conservative
degenerate string, is a degenerate string in which its number of degenerate symbols
is bounded by a constant k.

Regular Expressions and Languages. Any subset of X* is a language on the
alphabet X. The regular expressions on an alphabet ¥ and the regular languages they
describe are defined recursively as follows [7]:

1. 0 and 1 are regular expressions that recursively describe the empty set ¥
and{e},
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Figure 4.2 The transition diagram of a DFA accepting all strings that have a substring 01.

2. For every letter a € X, a is a regular expression that describes the singleton
{a},

3. If x and y are regular expressions, respectively describing the regular lan-
guages X and Y, then (x) + (y), (x) x (¥), and (x)* are regular expressions
that describe the regular languages X U Y, X x Y, X*, respectively.

A deterministic finite automaton (DFA), consists of the following [10]:

1. A finite set of states denoted Q
2. A finite set of input symbols often denoted X

3. A transition function denoted § that takes as an argument a state and an input
symbol and returns a state

4. A start state one state of Q
5. A set of final states F, where F is a subset of Q.

A DFA can be represented as a five-tuple notation A = (Q, %, §, qo, F), where
A is the name of the DFA, Q is its set of states, X is its set of input symbols, § is its
transition function, gy is its starting state, and F is its set of final states [10].

An example of a DFA is presented in Figure 4.2, which presents the transition
diagram of a DFA accepting all strings with a substring O1.

A nondeterministic finite automaton (NFA), has the ability to be in several states
at once, whereas the DFA for every pair of states and transition function exists at
most one receiving state exists [10].

The Aho-Corasick Automaton [1]. The Aho-Corasick Automaton for a given
finite set P of patterns is a deterministic finite automaton G accepting the sets of all
words containing a word of P as a suffix.

G=(0,%,g, f, qo, F), where function Q is the set of states, X is the alphabet,
g is the forward transition, f is the failure link (i.e., f(g;) = g,), if and only if S; is
the longest suffix of S; that is also a prefix of any pattern, ¢y is the initial state, and
F is the set of final (terminal) states [1]. The construction of the Aho Corasick (AC)
automaton can be done in O(d)-time and space complexity, where d is the size of
the dictionary (i.e., the sum of the lengths of the patterns that the AC automata will
match).

Theorem 4.1 ([12]) Let a[l], ..., a[n] be a doubly linked list. An algorithm exists
that preprocess the list a in such way that after several deletions in the list a, one
can find the nearest al j] to the left of ali] with a[j] < ali] in constant time.



4.4 REPETITIVE STRUCTURES IN DEGENERATE STRINGS 79

4.4 REPETITIVE STRUCTURES IN DEGENERATE STRINGS

4.41 Using the Masking Technique

To match efficiently character classes, we represent our strings as a sequence of four
bit masks. The alphabet for describing DNA sequences has four symbols, namely
{A, C, G, T}. We convert these single characters to represent the set of bit masks
{1000, 0100, 0010, 0001}.

For k characters, x; . . . x;, we can represent the character set [x; . .. x;] as follows:

M (x;) OR M(x;) OR ... OR M(xg)

where M (x;) is the 4 bit mask of x;. Using this representation and the bitwise AND
operation, we can determine whether there is a match between characters or character
sets. Where a nonzero result would indicate a match, and a zero result would indicate
a mismatch.

For example, if we wanted to determine whether [AC] matched with [CG], then
we first would convert the character sets into the following four bit masks: [AC] =
1000 OR 0100 = 1100, [CG] = 0100 OR 0010 = 0110. We then perform a bitwise
AND operation on the four bit masks:1100 AND 0110 = 0100. Because we have
a nonzero result, we can conclude [AC] matched with [CG], as they have C as a
common symbol (the character representation of the resulting bit mask).

In the algorithms of this chapter, we will be applying bit masking to the degenerate
strings.

4.4.2 Computing the Smallest Cover of the Degenerate String x

The following algorithm finds the smallest cover & that covers the degenerate string
x. Assume that we have performed k-iterations. So far, we have built the following:

Position Array. We find all occurrences of substring i in x, and we denote the
occurrence of # at position /, as u*. Then u! is a prefix of x and |&t| = k. Then
the cover t = u", 1 < u < £. The starting positions of each substring u is noted in
the following array S:

Sl = {Ilv 129 "'IM—ly I/L’ I/»L+1 "'I[}

Gap Array. The distances between the starting positions of consecutive u*, u**! is
denoted by g; and i is entered into a second array S,. Then the array S, is as follows:

S =181, 82 - 8u—1, &u» gu+1--- &}

Figure 4.3 presents the distances g; between the substrings u as arcs between the
substrings.
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g & gu

ul u? ul ut utt!

Figure 4.3 Covering the string x with substring u.

Order Array. We create the array S3, which holds the elements of array S, sorted
from smallest to largest. We also create a doubly linked list L, where for each element
gi in Sy, we keep its Order (g;) according to S3. The reason we create this doubly
linked list is to be able to use Theorem 1. This theorem allows us to access any
element of S5 in constant time.

Testing. We apply a simple test to determine whether the substring i is a cover of
x. We check whether the largest element of S3, g, is smaller than k. If g, < k, then
it is a cover of x.

If & is not a cover of x for || = k, then we continue by extending k by 1 and
solve the problem for |u| = k + 1. Accordingly, the distance allowed between the
substrings for them to be considered as covers also is increased to k + 1.

Main Steps. We extend the length of each u*, 1 < u < £ by one character, to
length k + 1. So far, we have a series of prefixes of length k to check whether they
can be extended by one character. Let uj_, , denote the k + 1-th character of u'.

STEP 4.1
We check to see whether the next character of the current substring is equal to the
next character of another substring (i.e., if u}, is equal to uj_ ). This check can
be performed via the bit masking method for index i, which is a good method for
practical purposes without affecting the running time of the algorithm.

Let

i __ i _ it
Uppr = Upyy = -+ = Upp
and let their starting positions

I={i1ir...i}

A

Then, i}, = {ala € uf{H,i € l}and it = s ... Uy.

STEP 4.2

Suppose in one position I, u, cannot be extended further without giving a mis-
match. This is illustrated in Figure 4.4 at the point marked by x. But matching sub-
strings follow this unmatched substring. Therefore, we want to discard this u,, and
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ul u
X

Figure 4.4 Extending the length of substring u from k to k+ 1 to find a cover for string x. At the
position marked by a cross, substring u cannot be extended further without giving a mismatch.

cover the string with the rest of the substrings u;. We do this by first deleting /,, from
Si. Then we delete and update the distances between g,,—; and g,4+1 in S,.

St =11, by oo Lt W L - 10}
S2 =181, 82, - 8u-1, 80+ u+1 - - - §¢}

By keeping the linked list L and from Theorem 1, the corresponding distances
8u—1 and g, 41 in S can be found in constant time.

STEP 4.3
We do a binary search and insert the distance g, in its corresponding position in the
sorted set ;. This requires O(log n) time.

We test whether |g¢| < k + 1. If this equation is true, then & with |##]| =k 4+ lisa
cover of x.

Figure 4.4, shows an example of this operation. Arcs g, and g, will be deleted
and will be replaced by g,,".

4.4.3 Computing Maximal Local Covers of x

The following algorithm finds maximal substrings of x, which are covered locally
by some nonextendable factor, & of x. As with Algorithm 4.4.2, we assume that we
have performed k-iterations. However, the algorithm varies in that we now not only
are concerned with u that is a prefix of x. We therefore are considering all factors
of x (starting with length two) as possible local covers of x. After k-iterations, we
would have created the following:

Position Array. We have a set of local covers {a", 2, ..., a™} with |i;| = k,
1 <i < A. The starting positions of each substring i/; is noted in an array S 5’ ).

D — 7 4D 0))
SO = 1)

We perform the following steps for each j, 1 < j < A:
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1 19 20 34
LC = {(1,18), (20, 34)}

Figure 4.5 Example of LC array, supposing that dand &’ are local covers.

Gap Array. The distances between the starting positions of consecutive &/ sub-
strings are entered into a second array S;’ ). We denote the distances between consec-
. ()

utive ugj )_th and ul(i)l-th occurrences of /) as g;’’; then the array S, is as follows:

() [C)N0)) i )
S = {g} ,gzj,...gfj),...gzj}

Order Array. We create array S, which holds the elements of array Sé'i ) sorted
from smallest to largest. We also create a doubly linked list L, where for each element
gi(j ) in Séj ), and we keep its Order (gfj )) according to ng ). As with Algorithm 4.4.2,
the doubly linked list is needed to use Theorem 1.

Local Covers. We create an array LC of local covers that have been detected up
to now in the algorithm. Each cover is stored as a set of pairs, (A;J ), Aﬁ’ )), where

A;j " and AY are the left-most and right-most positions of the i-th local cover of x,
respectively. Figure 4.5 shows an example of the local covers array.

Main Steps. We extend the length of each # ; by one character to length k£ + 1. We

then partition the set S fj ) into sets to represent all possible extensions # ; of length k +
1. The following steps are repeated until & cannot be extended any further. Figure 4.6
presents the extension for local covers, and Figure 4.7 presents the partition of the
set S.

STEP 4.4

We check to see whether the next character of the current substring is equal to the
next character of another substring (i.e., if u;{frjl) is equal to u,':iil). This check can
be performed via the bit masking method for index i, which is a good method for
practical purposes without affecting the running time of the algorithm.

Let

i, (j) i2,(j) _ ir,(Jj)

uk+1 :Mk+1 _...=uk+1
A~/ ~ 1! ~ 1 A~/ ~ 117 ~ 111
U U U U U U
b 1a, b ib b b b a ot C ———iC
I Iy I3 Iy I I

Figure 4.6 Extension of & for local covers.
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={l,I2,13,14,I5,..., I

M\\

S//—{Ig,[g,...} S/—{Il,l4,.., S///—{I5,...,Il}

Figure 4.7 Partitioning the set S

and let their starting positions

I ={i1ir...i}

Then, 2 = {ala € u}V),i € IYand a; = a2y ... 2.

STEP 4.5

Suppose in one position 1,/’, u**/ cannot be extended further without giving a mis-
match, but matching substrings follow this unmatched substring. Therefore, we want

to discard this u,, and cover the string with the rest of the substrings u;. We do this by
(1)

I;(Lj)

first deleting 1; 9 from S, ) Then we delete and update the distances between g,

) S;j).

and g\ in

S(J) {I(J) I(J) I(j_)l,%”/ I:Lj_')_l Ié])}

(J) [2NE)) ) ) )
={g" & - - 8ul ;L’g;H—l . }

By keeping the linked list L and from Theorem 4.1, the corresponding distances
gf{)l and gfﬁl in S;" ) can be found in constant time.
The nonextendable occurrences, say u? get a new set of data structures

s 87 80 and LC.

STEP 4.6
We now have to update the LC array. After the extension of /), two cases are pos-
sible:

Case 4.1  An occurrence of 4" within a local cover cannot be extended by the
same character as all other occurrences of #%) in the same local cover. In this case,

1. The local cover of length k is maximal

2. The local cover of length k£ + 1 will be split into two smaller local covers and
A updated accordingly (see Figure 4.8).

N7 N7 N ~ 11
N u u N7 u ~ 11 u ~ 11
u u u u

1 7 1o 19 I20 34
LC ={(1,7),(9,18),(20,34)}

Figure 4.8 LC after removal of third occurrence of 4’ .
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~ 11 N7 N ~ 1111
~ 11 u U N U N u N
u _— U u u

1 7 9 34
LC ={(1,7),(9,34)}

Figure 4.9 LC after extension of u”.

Case 4.2 An occurrence of /) can be extended beyond the end position of the

local cover to which it belongs. In this case, if the condition ggj ) <k +1 is met,
then the two local covers are joined together to make a larger local cover, and A is
updated accordingly (see Figure 4.9).

4.4.4 Computing All Covers of x

To find all covers of the string x, we slightly modify Algorithm 4.4.2. Instead of
stopping when we have g,, we continue increasing the length of u, until |u| =n — 1,
where n = |x|. During every iteration of the Main Step, if g, < |u|, then we output
u, as it is a cover of x.

4.4.5 Computing the Seeds of x

A substring w of x is called a seed of x if w covers one superstring of x (this can
be any superstring of x, including x itself). For example, aba and ababa are some
seeds of x = ababaab.

If a substring u’ is a seed of a string x, then a superstring y, exists y = sxv,
|s| < |u| and |v| < |u|, which can be constructed by overlapping or concatenating
copies of the strings ul,u? ul, . ut.

By the definition of seeds, x[i ...n] can be matched to any prefix of u’, and
x[1...j] can be matched to any suffix of ut.

With the previous algorithm, we find the covers # of string x. Therefore, we ex-
tend the previous algorithm by one more test, which tests whether & is also a seed
of x.

We want to check whether cover # is also a seed of x. We would do this by
checking whether x[i . . . n] can be matched to any prefix of i1, and whether x[1 ... j]
can be matched to any suffix of #i. In position /;, where we have the first occurrence
of @i, u', we test whether u! is a suffix of x. Additionally, we test whether the last
occurrence of i, u®, is a prefix of x. If these two sentences are true, then the cover i
with the sequence of u', u? ... u" of substrings is also a seed of x, as it can form a
superstring of x, as shown in Figure 4.10.

4.5 CONSERVATIVE STRING COVERING IN DEGENERATE STRINGS

In this section, we describe algorithms for finding string regularities in constrained
degenerate strings. Section 4.5.1 describes the algorithm for conservative pattern
matching. Additionally, Section 4.5.2 and Section 4.5.3 describe the algorithms for
computing conservative covers and seeds of a string, respectively.
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=>

Figure 4.10 Finding seeds of string x.

4.5.1 Finding Constrained Pattern p in Degenerate String T

As a building step, here, we study the constrained pattern matching problem on
degenerate strings. The problem of constrained degenerate pattern matching is
defined as follows:

INPUT: We are given a pattern p of length m with at most x nonsolid symbols, where
k is a constant. We are given a degenerate string 7', the text of length n.

QuERyY: Find all occurrences of the pattern p in the text T, (i.e., find the positions in
T where the intersection of the pattern and the text is nonempty).

B EXAMPLE 4.1

We consider a pattern, p = A[CG]TA[AG] and text, T = GA[CG][CT]AG[AT]A
[AG][CT][AT]AG. Figure 4.11 shows the result of searching for p in ¢. It is shown
in the figure that p occurs in ¢ starting at positions 2, 5, 8, and 9.

The algorithm works in two steps:

STEP 4.7

Let the pattern p be p = PP, ... P,,. We built the Aho-Corasick automaton for
the dictionary of the prefixes of the pattern D = {m 7, ... 7w, Va; € P;, 1 <i <m}.
Note that |D| = []/L, | P;| < 2*, as there are at most x nonsolid symbols.

| i |1 2 3 4 5 6 78 9 10 11 12 13 |
| ¢ |G A [cGl [cT] A G [AT] A [AG] [CT] [AT] A G |
Matches A [CG] T A [AG]
A [CG] T A [AQ]
A [CG] T A [AG]

A [CG] T A [AQ]

Figure 4.11 Pattern matching with p and t.
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Figure 4.12 Aho-Corasick automata and its failure function for p.

STEP 4.8
Assume that we have processed T'[1, i]. At this point, we have a set, P, of prefixes
of the strings in the dictionary in the Aho-Corasick automaton. We now will perform
iteration i 4+ 1. For each symbol t occurring at T'[i + 1], we try to extend each prefix
in P by that symbol t, or we follow its failure link provided by the Aho-Corasick
automaton. Figures 4.12 and 4.13 present a part of the matching process for the
previous example.

Note that | P| is bounded by the maximum number of possible prefixes, which in
turn, is bounded by the size of the automaton. Thus, this method is linear.

4.5.2 Computing A-Conservative Covers of Degenerate Strings

Here, we study another string regularity—a conservative covering of a degenerate
string with a fixed length cover. The A-conservative cover problem is defined as
follows:

INPUT: We are given a conservative degenerate string ¢, of length n, a constant «,
which is the maximum number of nonsolid symbols allowed in a cover, and an inte-
ger A, which is the length of the cover.

QUERY: Is there a conservative cover, c, of ¢ of length A?

0o 1 2 3 4 5 6 |

i

t

|
| G A [0G] [T A G AT] ... |
| 0 {1} {23} {48} {59 {6,100} {8} ... |

v

Figure 4.13 Matches of prefixes of P in text t.
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T T

t

Figure 4.14 The cover, ¢, covers the beginning and the end of T. Thus, T and T provide the
set of potential candidates.

STEP 4.9
We consider the prefix, 7', of ¢ of length A (see Figure 4.14),

T=1..T

and the suffix, 7 of ¢ of length A,

T= Tn*)x+l7 T
We build the Aho-Corasick automaton for the dictionary

D:{l‘]...l;\|vti€Tim’1}+n_}\, 1<i <A}

STEP 4.10

For each d € D, we find all of its occurrences in 7', parsing the text 7 through the
Aho-Corasick Automaton built in STEP 4.9. If a word d occurs at position i, then we
set a flag L(i) = true. If the distance |i — j| of any two consecutive flags is less than
A, then we have a cover

C1C,...C,, where

C; = {d;, is the i-th letter of every wordin D, 1 <i < A}

The overall complexity of these two steps is linear.

4.5.3 Computing A-Conservative Seeds of Degenerate Strings

Here we study yet another regularity, covering a degenerate string with a seed of a
given length. The A-constrained seed problem is defined as follows:

INpPUT: We are given a degenerate string ¢, of length n, a constant «, which is the
maximum number of nonsolid symbols allowed in a seed and an integer A, which is
the length of the seed. Figure 4.15 presents an example of a conservative seed, §, a
seed of the string 7.

QUERY: Is there a conservative seed, s, of ¢ of length A?
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Figure 4.15 Above, §is a seed of the string f, where each § contains at most « nonsolid
symbols and is of length 1. Also, §yef and & are a prefix and suffix of § respectively.

Ly

— I
-—

t

Figure 4.16 The positions of candidate seeds from lists L and L».

STEP 4.11

The first occurrence of the seed can be in any of the positions {1 ... A}. Figure 4.16
presents positions of candidate seeds. Thus, we consider the following strings of
length A:

Ly ={T[1.AL, T[2.A+1],...,T[A.2% — 1]}
and all suffixes of string ¢ of length A:
Ly={Tlh—x..n,TIn—A—-1l.n—1],...,T[n =21 — 1]}
We build the Aho-Corasick automaton for the dictionary
D ={t;, ...1;|Vt;,, where t;, is the j-th symbol of T € L; U L,}.

STEP 4.12

For each d € D, we find all of its occurrences in T, parsing the text 7 through the
Aho-Corasick Automaton built in STEP 4.11. If a word d occurs at position i, then
we set a flag L,(i) = true. If the distance |i — j| of any two consecutive flags in
L, is less than A, then d is a candidate for a seed. Let i; and i, be the first and
last occurrences of d in T. We check whether T'[1, i;] is a suffix of d and whether
Ti,, n] is a prefix of d; if that is the case, then d is a seed. The overall complexity
of the algorithm is O (An).

4.6 CONCLUSION

In this chapter, we have seen recent advances in algorithms for degenerate strings
that can be applied for computational biology problems. We have shown O(nlogn)
algorithms for finding the smallest cover, local covers, and all covers of a string. We
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also have presented a O(nlogn) algorithm for finding the seeds of a string. Addi-
tionally, we have shown O (n) algorithms for finding the smallest conservative cover,
A-conservative local covers. We also have presented a O(An) algorithm for finding
the A-conservative seeds of a string. All algorithms we have used are easily adaptable
to allow the bit-matching techniques to be used to allow efficient implementations.
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EXACT SEARCH
ALGORITHMS FOR
BIOLOGICAL SEQUENCES

Eric Rivals, Leena Salmela, and Jorma Tarhio

5.1 INTRODUCTION

With the development of sequencing techniques, it has become easy to obtain the
sequence (i.e., the linear arrangement of residues [nucleotides or amino-acids]), of
DNA, RNA, or protein molecules. However, determining the function of a molecule
remains difficult and is often bound to finding a sequence similarity to another
molecule whose role in the cell is at least partially known. Then the biologist can
predict that both molecules share the same function and try to check this experimen-
tally. Functional annotations are transferred from one sequence to another provided
that their similarity is high enough. This procedure is also applied to molecule sub-
parts, whose sequences are shorter; such as protein domains, DNA/RNA motifs, and
SO on.

Depending on the sequence lengths and the expected level of evolutionary relat-
edness, the sequence similarity can be found using alignment or pattern matching
procedures. A quest in bioinformatics has been to design more sensitive sequence
similarity searching methods to push further the limit or gray zone at which evo-
lutionary sequence similarity cannot be departed from random sequence similar-
ity [4,21]. These methods (e.g., profile hidden Markov Models) have provided, at the
expense of computing time, important improvements in functional annotations. How-
ever, it has soon become clear that in other frameworks, only high-level similarity

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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was sought, and speed rather than sensitivity was the major issue. Hence, researchers
have designed the following continuum of methods that can be classified according
to the level of allowed dissimilarity:

1. Full sensitivity alignment (Smith and Waterman algorithm [58]),
2. Fast similarity search programs (e.g., BLAST [4]),

3. Approximate pattern matching (e.g., BOWTIE [36]),

4. Near-exact and exact pattern matching (e.g., MPSCAN [53]).

For some everyday sequence manipulation tasks, the user needs exact pat-
tern matching programs (as available in large bioinformatic program suites like
EMBOSS) to find from which chromosome or where in a genome a given sequence
comes from; to find short nucleotidic motifs, like restriction or cleavage sites, in
long DNA sequences; to verify whether a distinguishing sequence motif really sep-
arates negative from positive instances (longer sequences). The latter happens when
designing oligonucleotides for gene expression arrays or multiple primers for multi-
plex polymerase chain reactions [50]. Even for exploring protein sequences, a server
has been launched that offers an exact search for short polymers in all sequences of
protein databanks [9]. In such frameworks, the need is for a single or multiple pattern
search for a few hundreds patterns, which can be solved easily by repetitively apply-
ing a single pattern matching program. Algorithmic solutions for these tasks will
be described in Section 5.2. However, pattern matching algorithms fail to become
popular among biologists for several reasons as follows:

* Most of them lack implementations capable of handling biological sequence for-
mats (which then requires to change the format).

* They lack a graphical interface or were not integrated in popular graphical se-
quence exploration package like the Genetics Computer Group (GCG) package.

* As BLAST [4] was used for similarity searching on a daily basis, it has become
the all-purpose tool for most sequence processing tasks, even when more adapted
solutions were available [15].

Since 2005, biology has experienced the revolution of high-throughput sequenc-
ing (HTS) because of the renewal of sequencing techniques (new technologies of-
ten are termed next generation sequencing) [43]. Because of the invention of par-
allel sequencing of multiple molecules on a single machine, the sequencing output
per run has grown by orders of magnitude compared with the traditional Sanger
technique and is expected to increase further [20]. This change does not only have
technological consequences. Experiments previously done by hybridization now are
performed preferentially by sequencing [10], because these techniques offer a much
deeper sampling and allow covering the whole genome. Hence, HTS now is exploited
to address surprisingly diverse biological questions of genome sequencing or rese-
quencing [5,43], transcriptomics [49,59], genomic variation identification or genome
breakpoint mapping [14], metagenomics [24], and epigenomics [12, 26]. To grasp
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how drastic the shift is, consider that one epigenomic census assay published in 2007
produced in one experiment an already amazing 1.5 million short read sequences of
27 base pairs (bp)' each [27], whereas another assay published only one year later
delivered with the same technology 15 million sequences of 20 bp reads [12].

In all such applications, the first bioinformatic task is to map the short reads on
a reference genome sequence or on a large collection of DNA sequences. The goal
of mapping in transcriptomics, epigenomics, and other applications is to point out
chromosomic positions either transcribed [59], bound to a protein [27], or whose
three-dimensional conformation is altered by a protein [12]. Hence, further analy-
sis only considers those reads that mapped to a unique genomic positions. In other
frameworks, all mapped reads inclusive of those mapped at multiple positions pro-
vide important information to detect, for example, new copies of repeats in the sam-
pled genome. The number of (uniquely and/or multi-) mapped reads depends on the
read length, on the expected probability for a read to map on the genome, on the level
of sequence errors in the reads, as well as on the genetic differences between the cell
from which the reads were sequenced and that which provided the reference genome
sequence. The following approaches are possible: to map exactly or approximately
(up to a limited number of differences between the read and the genome sequences)
reads on the genome sequence. The choice between the two is not obvious because it
has been shown for instance that exact mapping with a shorter read length can yield
the same number of uniquely mapped reads than approximate matching allowing up
to two mismatches [53] and because all approximate mapping tools are not based on
the same algorithm [26,36,39,40,57]. If approximate mapping is used, then another
question is how to distinguish a difference resulting from genetic variation or from
sequence error in a match?

More practically, whether sequence quality information is provided aside the
reads themselves, often the complete read sequence cannot be exploited because of
low quality positions. Hence, either preprocessing with various parameters is ap-
plied to eliminate some positions, or multiple mappings with different parameters
are tested to optimize the mapping output. In any case, the number of reads to map
is so large that mapping efficiency and scalability, both in terms of time and to a less
extent of memory, becomes a major issue. In Section 5.4, we will discuss the com-
parison of exact versus approximate mapping approaches on these issues. Before
that, Section 5.2 presents efficient solutions for the single pattern matching problem,
whereas Section 5.3 details fast algorithms for multiple or set pattern matching.

5.2 SINGLE PATTERN MATCHING ALGORITHMS

We consider locating nucleotide or amino acid sequence patterns in a long biolog-
ical sequence called the text. We assume that the sequences are in the raw format.
We denote the pattern of length m by P = pop; ... pn—1 and the text of length n by

! A base pair is the length unit of a DNA/RNA sequence.
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T = tyt; ...t,—1. We also use C-like notations |, &, and, < to represent bitwise oper-
ations OR, AND, and left shift, respectively. The goal of the single pattern matching
problem is to find all occurrences of the pattern in the text (i.e., positions j such that
tivi=pifori=0,1,...,m—1).

5.2.1 Algorithms for DNA Sequences

Most efficient string matching algorithms in the DNA alphabet are modifications of
the Boyer—Moore algorithm [11], which processes the text in windows of length m.
In each window, the characters are read from right to left, and when a mismatch with
the pattern is found, the window is shifted based on the text characters read. The
algorithm applies two shifting heuristics, match and occurrence. The match heuristic
assures that the matching suffix of the current window matches the pattern also after
the shift if it then is aligned with the pattern. The occurrence heuristic (also called
the bad character heuristic) determines the shortest possible shift such that either the
mismatching or the right-most character of the current window matches the pattern
after the shift. If no such shift is possible, then a shift of length m is taken. In most
modifications of the Boyer—Moore algorithm, only the occurrence heuristic is ap-
plied for shifting. The Boyer—-Moore—Horspool algorithm [22] (BMH) is a famous
implementation of this simplification.

Because the DNA alphabet contains only four symbols, shifts based on one char-
acter are short on average. Therefore, it is advantageous to apply g-mers (or g-
grams), strings of g characters, for shifting instead of single characters. This tech-
nique was mentioned already in the original paper of Boyer and Moore [11, p. 772],
and Knuth et al. [34, p. 341] theoretically analyzed its gain. Zhu and Takaoka [65]
presented the first algorithm using the idea. Their algorithm uses two characters for
indexing a two-dimensional array. Later, Baeza-Yates [6] introduced another varia-
tion based on the BMH algorithm in which the shift array is indexed with an integer
formed from a g-mer with shift and add instructions.

For the DNA alphabet, Kim and Shawe-Taylor [32] introduced a convenient al-
phabet compression by masking the three lowest bits of ASCII characters. In addition
to the a, ¢, g, and t, one gets distinguishable codes also for n and u. Even the impor-
tant control code \n = LF has a distinct value, but \r = CR gets the same code as u.
With this method, they could use g-mers of up to six characters. Indexing of the shift
array is similar to that of Baeza-Yates’ algorithm.

With the DNA alphabet, the probability of an arbitrary short g-mer appearing
in a long pattern is high. This restricts the average shift length. Kim and Shawe-
Taylor [32] introduced a variation for the cases in which the g-mer in the text occurs
in the pattern. Then two additional characters are checked one by one to achieve a
longer shift.

In most cases, the g-mer that is taken from the text does not match with the last
g-mer of the pattern, and the pattern can be shifted forward. For efficiency, one can
apply a skip loop [23] in which the pattern is moved forward until the last g-mer of
the pattern matches with a g-mer in the text. The easiest way to implement this idea is
to place a copy of the pattern as a stopper after the text and artificially define the shift



5.2 SINGLE PATTERN MATCHING ALGORITHMS 95

of the last g-mer of the pattern to be zero. Then the skip loop is exited when the shift
is zero. After a skip loop, the rest of the pattern is compared with the corresponding
text positions.

A crucial point for the efficiency of a g-mer algorithm is how g-mers are com-
puted. Tarhio and Peltola [61] presented a g-mer variation of BMH that applies a
skip loop. The algorithm computes an integer called a fingerprint from a g-mer. The
ASCII codes are mapped to the range of 4: 0 < r[x] < 3, where r[x] is the new
code of x, such that characters a, c, g, and t get different codes, and other possible
characters get, for example, code 0. In this way, the computation is limited to the
effective alphabet of four characters. The fingerprint is simply a reversed number
of base. A separate transformation table %; is used for each position i of a g-mer,
and multiplications are incorporated during preprocessing into the following tables:
hi[x] = r[x] x 4. For g = 4, the fingerprint of xg - - - x3 is Z?:O rlx;] x 4/, which
then is computed as

holxol + hilx1] + halxa] + hslx3]

Recently, Lecroq [37] presented a related algorithm. Its implementation is based
on the Wu—Manber algorithm [63] for multiple string matching, but as suggested, the
idea is older [11,65]. For ¢ = 4, the fingerprint of xq - - - x3 is

((((((xo € D +x1) € 1) + x2) K 1) + x3) mod 256

SSABS [56] and TVSBS [62] were developed with biological sequences in mind.
SSABS is a Boyer—-Moore-type algorithm. In the search phase, the algorithm verifies
that the first and last characters of the pattern match with the current alignment before
checking the rest of the alignment (or guard tests). TVSBS uses a 2-mer for calcu-
lating the shift, adopted from the Berry—Ravindran algorithm [8], which is a cross of
the Zhu-Takaoka algorithm and Sunday’s Quick Search algorithm [60]. Instead of
the two-dimensional shift table of Berry—Ravindran, TVSBS uses a hash function to
compute an index to a one-dimensional table. According to Kalsi et al. [28], SSABS
and TVSBS are not competitive with g-mer algorithms in the DNA alphabet.

We present one fast g-mer algorithm for DNA sequences in detail. It is SBNDM4
[19], a tuned version of backward nondeterministic DAWG matching (BNDM) by
Navarro and Raffinot [45]. BNDM is a kind of cross of the backward DAWG match-
ing algorithm (BDM) [16] and the Shift-Or [7] algorithm. The idea of BNDM is
similar to BDM, although instead of building a deterministic automaton, a nonde-
terministic automaton is simulated even without constructing it. The resulting code
applies bit-parallelism, and it is both efficient and compact. We present a pseudo
code? for SBNDM4 as Algorithm 5.1. The code contains a skip loop so that a copy
of the pattern is placed to #,, . . . f,4,,—1 on line 3. The presented version outputs only
the number of matches. The matches can be reported by changing line 13.

2The conditional expressions of the while statements on lines 6 and 9 contain side assignments. Thus, the
operators = of these expressions are not relational operators but assignment operators.
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Algorithm 5.1
SBNDM4 (P = popP1 .- Pm—1, T =tot1...th—1)
1. for (i =0; i <256; i=i+1) B[i]=0
2. for (i=0; i<m; i=i+1) Blpp_i-1]ll=01 K i)
3. for (i=0; i<m; i=i+1) thyi = pi
4. j=m—1
5. while true
6. while not (d = ((Bt;] < 3) & (Bltj—1] < 2) & (Bltj2] < 1) & Blt;_3]))
7. j=j+tm=3
8. pos=j

9. while d=(d<D)&B[tj4]) j=j—1
10. j=j+m—4
11. if j = pos

12. if (j >n) return nmatch
13. nmatch = nmatch + 1
14. j=j+1

SBNDM4 is very fast in practice. On x86 processors, one still can boost its per-
formance by using 16-bit reading [19]. In searching DNA patterns of 20 characters,
SBNDM4 with 16-bit reading is more than eight times faster than the classical
Boyer—-Moore algorithm [19] (see also comparisons [28,37,61]). SBNDM4 works
for DNA patterns of up to 32 or 64 characters depending on the word size of the
processor. In practice, longer exact patterns are seldom interesting, but, for exam-
ple, Lecroq’s algorithm [37], with the divisor 4096 instead of 256, is good for them.
SBNDM4, like other variations of BNDM, also works for more general string match-
ing in which positions in the pattern or in the text represent character classes [46]
instead of single characters. So, for example, the standard [UB/IUPAC nucleic acid
codes [66] can be used with SBNDM4.

There are also algorithms [33, 51] for packed DNA. We decided to leave them
outside this presentation.

5.2.2 Algorithms for Amino Acids

In general, there is hardly any difference in performance when searching amino acid
or natural language patterns. So any good search algorithm for natural language is
also applicable to amino acids. In searching short patterns [19], SBNDM2, the 2-
mer variation of SBNMD4, is among the best. SBNDM2 is derived from SBNDM4
as follows: replace line 6 with

while not (d = ((B[#;]1 < 1) & B[t;_1]))

and on lines 7-10, replace m — 3 with m — 1, j — 4 with j — 2, and m — 4 with
m — 2, respectively.

As for SBNDM4, one still can boost the performance of SBNDM?2 by using 16-bit
reading [19]. In searching patterns of five characters, SBNDM?2 with 16-bit reading
is more than two times faster than the classical Boyer—-Moore algorithm.
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5.3 ALGORITHMS FOR MULTIPLE PATTERNS

In this section, we consider exact searching of multiple patterns. More precisely, we
are given a text and r patterns, and we need to find all occurrences of all patterns in
the text. Here, we focus on algorithms that can be run on standard hardware. Some
attempts also have been made to implement standard set pattern matching algorithms
on specific parallel hardware to gain computing time [18].

5.3.1 Trie-Based Algorithms

Many algorithms for exact searching of multiple patterns are based on a data structure
called trie for storing the patterns. A trie is a tree in which each edge is labeled
with a character. Each node of the trie is associated with a string that is formed by
concatenating all the labels of the edges on the path from the root to the node. Given a
node in the trie, all edges to the children of this node have a different label. Figure 5.1
shows the trie storing the strings {acc, accg, att, cca, cgt}.

5.3.1.1 Aho—Corasick. The Aho—Corasick algorithm [2] builds as preprocess-
ing an automaton that recognizes the occurrences of all patterns. The preprocessing
starts by building the trie of the pattern set. We add an edge from the root to the root
for all those characters that do not yet have an outgoing edge from the root. The trie
then is augmented with failure links as follows. The failure link of a node N in the
trie points to a node that is associated with the longest possible suffix of the string

Figure 5.1 An example trie storing the strings {acc, accg, att, cca, cgt}.
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Figure 5.2 An example of the Aho—Corasick automaton for the patterns {acc, accg, att, cca,
cgt}. The dashed lines show the failure links. Failure links to the starting state of the automaton
have been omitted. The numbers inside the nodes show the values of the output function.

associated with the node N excluding the node N itself. Additionally, we associate
an output function with each node whose associated string is one of the patterns. The
output function outputs the identifier of the pattern. Figure 5.2 shows an example of
an Aho—Corasick automaton for the patterns {acc, accg, att, cca, cgt}.

The automaton is used for searching the text as follows. We start at the root node
of the trie. We read the text character by character, and for each character, we perform
the following actions. As long as there is no child node with an edge labeled with
the read character, we follow the failure link. Then we descend to the child with an
edge labeled with the read character. Finally, we output the identifiers returned by
the output function for the child node.

The Aho—Corasick automaton can be built in O(cM) time, where ¢ is the size
of the alphabet and M is the total length of the pattern set (i.e., M =r x m if all
patterns are of length m). The searching phase takes O(n 4 occ) time, where occ is
the total number of occurrences of all patterns in the text.

5.3.1.2 Set Backward Oracle Matching. The set backward oracle match-
ing (SBOM) algorithm [3] builds an automaton that recognizes at least all factors
(i.e., substrings) of the reversed patterns. The automaton is built as shown in Algo-
rithm. 5.2. First we build a trie of the reversed patterns. Then we traverse the trie in
breath-first order and add some more edges between the nodes turning the trie into a
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Figure 5.3 An example of the SBOM automaton. The dashed lines show the supply links.

Algorithm 5.2
SBOM-preprocess (Py, ..., P.)
1. build-trie(P[,..., P])

2. set supply link of root to NULL
3. for each node N in the trie in breath first order
4 down = supply link of parent
5. ¢ = the edge label from parent to N
6 while down # NULL and
down does not have a child with edge label ¢

7. add an edge from down to N with label ¢

8. down = supply link of down

9. if down # NULL

10. set supply link of N to the child of down with edge label c¢
11. else

12. set supply link of N to root

directed acyclic graph (DAG) that recognizes all factors of the reversed patterns. To
assist us in adding these new edges, we associate a supply link with each node. For
each node we then perform the pseudo code on lines 4-12 shown in Algorithm 5.2.
Figure 5.3 shows an example of the SBOM automaton built for patterns {aag, gac}.
As is shown, the automaton also recognizes some other strings, like caa, which are
not factors of the patterns.

This automaton then is used for searching the occurrences of the patterns as fol-
lows. Initially, we set the endpoint to the length of the shortest pattern. We then
read the characters of the text backward, starting at the endpoint character. For each
character, we make the corresponding state transition in the automaton. Whenever
we encounter a node associated with one of the patterns, we verify the read re-
gion character by character against the pattern. If there is no transition from the
current state with the read character, we can shift the endpoint forward and start the
backward scan again at the new endpoint. The length of the shiftis  orm — j + 1,
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where m is the length of the shortest pattern and j is the number of characters that
we have read—whichever is longer.

The SBOM automaton can be built in O(M) time, where M is the total length of
the pattern set. The worst-case searching time in SBOM is O(Mn), but on average,
SBOM does not inspect every character of the text.

5.3.2 Filtering Algorithms

Filtration aims at eliminating most positions that cannot match any given pattern
with an easy criterion. Then, verification checks whether the remaining positions
truly match a pattern. Thus, filtering algorithms operate in three phases. The pat-
terns first are preprocessed; in the second phase, we search the text with a filter-
ing method, and the candidate matches produced by the filtering are verified in the
third phase.

Here, we describe several algorithms that use a generalized pattern of charac-
ter classes for filtration [55]. Let us explain the filtration scheme with the following
example in which we have a set of three patterns of length m = 8: { Py, P», P3} =
{accttgge, gtettgge, accttcea), and we set g to 5. The overlapping 5-mers (or 5-grams)
of each pattern are given in Figure 5.4. For a text window W of length 8 to match
Py, the substring of length g starting at position i in W must match the i-th g-
mer of P; for all possible i and conversely. Now, we want to filter out windows
that do not match any pattern. If the substring starting at position i in W does not
match the i-th g-mer of neither Py, P,, nor P;, then we are sure that W cannot
match any patterns. Thus, our filtration criterion to eliminate surely any nonmatch-
ing window W is to find whether a position i exists such that the previous condition
1s true.

{P1, P», P3} = {accttggc; gtcttgge; acctteca}l
(a)

2345678 2345678 2345678
Praccttgge Pogtcttgge Pzaccttcca
ccttg tcttg cctte
cttgg cttgg cttcec
ttgge ttggec ttcca
(b)

[ , |[ccttg, tettg, cettc][cttgg, cttec][ttgge, ttecal

()

Figure 5.4 (a) A set of three patterns of length m = 8. (b) The overlapping 5-mers starting at
position 1 to 4 (in very light gray, light gray, gray, dark gray, respectively) of each pattern. (c) The
generalized 5-mer pattern for the set of patterns.
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Given a set of patterns, the filtering algorithms build a single g-mer generalized
pattern (Figure 5.4c). A generalized pattern allows several symbols to match at a
position (like a position [DENQ] in a PROSITE pattern, which matches the symbols
D, E, N, and Q). However, here each g-mer is processed as a single symbol. Then, a
string matching algorithm that can handle classes of characters is used for searching
for occurrences of the generalized pattern in the text.

Various different algorithms can be used for implementing the filtering phase.
Subsequently we describe in more detail algorithms in which filtering is based on
the shift-or, BNDM, and Boyer—Moore—Horspool algorithms. A filtering algorithm
always requires an exact algorithm to verify the candidate matches. In principle, any
presented exact algorithm could be used for this purpose.

We recently have shown that the average time complexity of the filtering algo-
rithm based on the BNDM or Boyer—Moore—Horspool algorithm for searching r pat-
terns of length m in a text of length n over an alphabet of size c is O(n log.(rm)/m),
provided that g = ©(log.(rm)) [53,54]. As it was proved that the minimum time
required is 2(n log.(rm)/m) [44], these algorithms are asymptotically optimal on
average.

5.3.2.1 Multipattern Shift-Or with g-Grams. The shift-or algorithm is ex-
tended easily to handle classes of characters in the pattern [1, 7], and thus, devel-
oping a filtering algorithm for multiple pattern matching is straightforward. The pre-
processing phase now initializes the bit vectors for each g-mer as follows. The i-th
bit is set to O if the given g-mer is included in the character class in the i-th po-
sition. Otherwise, the bit is set to 1. The filtering phase proceeds then exactly like
the matching phase of the shift-or algorithm. Given this scheme, it is clear that all
actual occurrences of the patterns in the text are candidates. However, there are also
false positives, as the generalized pattern also matches other strings than the original
patterns. We call this algorithm SOG (short for multipattern Shift-or with g-grams).

5.3.2.2 Multipattern BNDM with g-Grams. The second filtering algorithm is
based on the BNDM algorithm by Navarro and Raffinot [45]. This algorithm has been
extended to classes of characters in the same way as the shift-or algorithm. We call
the resulting multiple pattern filtering algorithm BG (short for BNDM with g-grams).
The bit vectors of the BNDM algorithm are initialized in the preprocessing phase
so that the i-th bit is 1 if the corresponding g-mer is included in the character class
of the reversed generalized pattern in position i. In the filtering phase, the matching
is then done with these bit vectors. As with SOG, all match candidates reported by
this algorithm must be verified.

5.3.2.3 Multipattern Horspool with g-Grams. The last of our algorithms uses
a Boyer—Moore—Horspool [22] type method for matching the generalized pattern
against the text. Strictly speaking, this algorithm does not handle character classes
properly. It will return all those positions in which the generalized pattern matches
and also some others. This algorithm is called HG (short for Horspool with g-grams).
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5-mer tables:
1. 2. 3. 4.
accct accct  accct accct
ccctt ccctt ccctt
cctta cctta
cttaa

Figure 5.5 Data structures of the HG algorithm for the pattern “acccttaa”.

The preprocessing phase of HG constructs a bit table for each of the m — g + 1
positions in which a g-mer starts in the pattern. The first table keeps track of g-mers
contained in the character class of the first position of the generalized pattern, the
second table keeps track of g-mers contained in the character classes of the first and
the second position in the generalized pattern, and so on. Finally, the m — g + 1-st
table keeps track of characters contained in any character class of the generalized pat-
tern. Figure 5.5 shows the four tables corresponding to the pattern “acccttaa” when
using 5-mers.

These tables then can be used in the filtering phase as follows. First, the m — g +
1-st g-mer is compared with the m — g + 1-st table. If the g-mer does not appear in
this table, then the g-mer cannot be contained in the character classes of positions
1...m — g + 1 in the generalized pattern, and a shift of m — g + 1 characters can be
made. If the character is found in this table, then the m — g-th character is compared
with the m — g-th table. A shift of m — g characters can be made if the character does
not appear in this table and, therefore, not in any character class in the generalized
pattern in positions 1, ..., m — q. This process is continued until the algorithm has
advanced to the first table and found a match candidate there. The pseudocode is
shown as Algorithm 5.3. Given this procedure, it is clear that all positions matching
the generalized pattern are found. However, other strings also will be reported as
candidate matches.

Algorithm 5.3

HG-matcher(T =1ty...thy—1, n)
1.i=0

2. while i <n—m

3. j=m—qg+1

4. while true

5. if not qMerTable[j1[ti4j—1..itj+q—2]
6. i=i+j

7. break

8. elseif j =1

9. verify-match(i)

10. i=i+1

11. break

12. else

13. j=j—1
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5.3.3 Other Algorithms

Other algorithms for searching multiple patterns include the Commentz—Walter algo-
rithm [17] with its variations, the Wu—Manber algorithm [63], and algorithms derived
from the Rabin—Karp algorithm [29] for a single pattern.

5.4 APPLICATION OF EXACT SET PATTERN MATCHING FOR READ
MAPPING AND COMPARISON WITH MAPPING TOOLS

Here, we concentrate on the question of set pattern matching and on its main cur-
rent application—read mapping on genomic sequences. In most frameworks, mil-
lions of reads that originate from a genome have been sequenced using HTS. A
read serves as a signature for a molecule or a chromosomic position. The goal
of mapping is to find for each different read the chromosomic position of origin
in the reference genome. As a read may be sequenced several times according to
its number of occurrences in the biological sample, the number of different reads
may be much smaller than the number of read sequences. For example, in a tran-
scriptomic assay in which 2 million reads were sequenced, the read set contains
2~ 440.000 elements [49]. As a read sequence can differ from the original chro-
mosomic sequence because of polymorphisms or sequence errors, read mapping
is often performed using approximate pattern matching, which allows a few mis-
matches and/or indels. For approximate mapping, either near-exact sequence similar-
ity search programs (BLAT [30], MEGABLAST [64], or SSAHA [48]) or mapping
tools (ELAND, TAGGER [25], RMAP [57], SEQMAP [26], SOAP [39], MAQ [38],
BOWTIE [36], and ZOOM [40]) are used. An alternative option when dealing with
short reads is to resort to exact set pattern matching, for which MPSCAN offers an
efficient solution [49, 53].

Because of the number of reads to match, repeated application of a single pattern
matching algorithm for each read would require an unaffordable computing time.
Hence, practically efficient solutions involve either

1. Indexing the reads in main memory and scanning the genome only once (or a
few times) for all reads (the solution chosen in MEGABLAST [64], SEQMAP
[26], and MPSCAN [53])

2. First preprocessing the genome to build an index and then loading the in-
dex in memory before searching each read one after the other (the approach
followed in SSAHA [48], BLAT [30], and in mapping tools like ELAND,
TAGGER [25], RMAP [57], SOAP [39], MAQ [38], BOWTIE [36])

5.4.1 MPSCAN: An Efficient Exact Set Pattern Matching Tool for
DNA/RNA Sequences

The program MPSCAN [49, 53] is an implementation of the exact multipattern
BNDM with g-grams algorithm presented in Section 5.3.2.2. It is specialized for
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searching large sets of relatively short DNA/RNA patterns in large DNA/RNA
sequence files, and its interface is adequate for the purpose of mapping reads; it
handles file formats commonly used in biology, can search for the reverse comple-
mentary of the pattern, and so on.

Its correctness, which ensures it to yield for each read all text positions at which
that read matches the text, derives from that of the multipattern BNDM with g-grams
algorithm. The filtration efficiency depends on the parameter g. If we choose ¢ =
O(log.(rm)), then MPSCAN is optimal on average.

For example, on an Intel Xeon CPU 5140 processor at 2.33 GHz with 8 GB main
memory, when searching 4 million 27 bp reads on the 247 Mbp of human chromo-
some 1, MPSCAN sets the parameter ¢ to 13, uses 229 MB memory, and runs in 78
seconds.

5.4.2 Other Solutions for Mapping Reads

With HTS becoming more popular and the increase of sequencing capacity, the ques-
tion of mapping reads on a genome sequence is a crucial issue as well as a bottleneck.

At the HTS advent, an available solution was to use ultrafast similarity search
with BLAST-like programs, which were not designed for this purpose but for locally
aligning sequences that differ little (e.g., only because of sequencing errors). They
typically were intended to align expressed sequence tags on the human genome.
These programs are not adapted to short reads (below 60 bp) and because of in-
ternal limitations cannot handle millions of queries. Hence, both their sensitivity
and scalability are insufficient for the mapping application with short reads [53].
However, some users still resort to these tools because, unlike mapping tools, they
allow an unrestricted number of differences between the read and the genome
[31]. All these tools implement a filtration strategy that requires a substring of the
query sequence to match the genome either exactly [48, 64] or with at most one
mismatch [30].

Since the commercialization of HTS, plenty of commercial or free mapping tools
have been developed or published (cf. previous list); for instance, the ELAND soft-
ware is provided with the Illumina Solexa sequencer. As mentioned, the goal of map-
ping differs with the application, but it is often to find the best match for a read—the
match with the least differences and, if possible, unique. All mapping programs per-
form successive approximate pattern matching up to a limited number of differences.
Some tools can find matches with up to four mismatches and/or indels, but generally
a guarantee to find all matches (as required in the definition of approximate match-
ing) is given only up to one or two mismatches. This limitation makes sense to speed
the search and derives from the applied filtration scheme. All tools (except ZOOM)
use variants of the so-called partition into exact search (PEX) filter [46], which con-
sists of splitting the read in k + 1 adjacent pieces, knowing that at least one piece will
match exactly when a maximum of k errors are allowed. Many mapping programs
make it efficient by using 2-bit encoded sequences and/or an index of the genome
(e.g., MAQ, ELAND, BOWTIE, RMAP, or SOAP).
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The program ZOOM exploits spaced seeds; it requires that a subsequence of a de-
fined form, instead of a substring, matches between the read and the genome [13,41].
The subsequence’s pattern of required matching positions and wild cards is intention-
ally designed depending on the expected match length and maximal number of differ-
ences [35]. The advantage of spaced seeds is their capacity to handle mismatches and
insertion/deletions (indels) and their increased sensitivity compared with substring-
based filtration [13,41]. Their main drawback is the difficulty of seed design; ZOOM
uses a conjunction of several seeds. Hence, sets of spaced seeds are designed specifi-
cally for a certain read/match length and a maximum number of allowed differences,
and different sets corresponding to different parameter combinations are hard coded
in ZOOM. All known formulations of the seed design problem are at least NP-hard
even for a single seed [35,42,47].

5.4.3 Comparison of Mapping Solutions

As already mentioned, many groups have developed and/or published their own map-
ping tools, and all tools, except MPSCAN, implement a solution-based on approxi-
mate pattern matching. However, to date, one lacks a comparative evaluation of the
sensibility of all these tools in various application frameworks. The intended ap-
plication makes a difference because, for example, identifying genomic variations
and multiple matching locations of a read provide useful information, whereas in
transcriptomics, one usually discards multimapped reads. Probing the sensitivity and
evaluating the sensitivity versus speed or memory balance is a difficult task, know-
ing that the programs differ in their notion of approximation (e.g., with or without
indels).

Here, we discuss the conclusions of a comparison on the less difficult task of
exact set pattern matching. We exclude the program ELAND because it is not free
for academics as well as MAQ, which does not accept parameters for searching only
exact read matches.

5.4.3.1 Speed, Memory Footprint, and Scalability. We compared RMAP,
SEQMAP, SOAP (versions 1 and 2), ZOOM, BOWTIE, and MPSCAN for searching
increasing read sets on the longest human chromosome (chromosome 1, 247 Mbp).
The public input datasets contains 6.5 million 27 bp reads, and we took subsets every
million reads (available on the GEO database under accession number GSM325934).
At the date of this comparison, this set belongs to the largest ones in terms of number
of different reads, and there is no available dataset of similar size with much longer
reads (say > 36 bp).

Figure 5.6 reports the running times in seconds on a logarithmic scale for search-
ing the subsets of 1,2, ... up to 6 and 6.5 million reads. Of course, the times do not
include the index construction time for those programs that use an index, which
is for example, hours for BOWTIE in the case of the complete human genome
[36, Table 5].

First, all tools can handle very large read sets, and their running times remain im-
pressive even if they degrade somehow with increasing read sets. Second, the com-
parison of ZOOM or MPSCAN compared with genome indexing tools like BOWTIE
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Figure 5.6 Comparison of mapping tools: Search times of RMAP, SEQMAP, SOAP (versions
1 and 2), ZOOM, BOWTIE, and MPSCAN in seconds (log scale) for increasing subsets of 27
bp reads. All tools behave similarly and offer acceptable scalability. MPSCAN remains the most
efficient of all and can be 10 times faster than tools like SEQMAP or RMAP. Times do not include
the index construction time.

or SOAP shows that high performance is not bound to a genome index, at least
for exact pattern matching. Knowing that the ZOOM algorithm also handles ap-
proximate matches with up to two mismatches or indels, it seems that it offers a
very satisfying solution compared with BOWTIE, which is limited to mismatches
and offers less guarantees. For exact pattern matching, the performance differences
can be large (10 times between MPSCAN and SOAP-v2 for 2 million reads), and
MPSCAN offers the fastest solution overall, even if it exploits only a 32-bit architec-
ture. However, MPSCAN time increases more when going from 4 to 5 million reads,
suggesting that for equal read length, a coarse-grain parallelization would improve
its performance.

To illustrate the low memory footprint of mapping tools that do not load a genome
index in RAM, we give the amount of RAM required by ZOOM, SEQMAP, and
MPSCAN for searching the complete human genome with 1 million sequences for 27
bp tags. ZOOM requires 17 minutes and 0.9 gigabytes, RMAP takes 30 minutes and
0.6 gigabytes, SEQMAP performs the task in 14 minutes with 9 gigabytes, whereas
MPSCAN needs < 5 minutes using 0.3 gigabytes. In contrast, the BOWTIE human
genome index, which is constructed using the Burrows—Wheeler Transform, takes at
least 1.4 gigabytes [36].

5.4.3.2 Exact Pattern Matching for Read Mapping. The read length influ-
ences the probability of a read to map on the genome and also its probability to map
once. The shorter the read, the higher the probability of mapping but the lower that
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of mapping once. In many applications, reads mapping at unique genomic positions
are preferred. A rationale for the currently developed extension of read length is the
increased probability to map to a unique genomic location. On the human genome, a
length of 19 bp already brings the risk of mapping at random below 1%, and we have
shown recently that it already maximizes the number of uniquely mapped reads on
four real datasets [49]. Studying the sequence error position in the reads, we could
show that the error probability at one sequence position increases with the position
in the read for Illumina/Solexa data. Hence, an alternative to approximate mapping
is to perform exact matching using only a prefix (of an adequate length) of each read.

To evaluate this, we compared the result of approximate matching with full-length
reads with that of MPSCAN on read prefixes. ELAND searches the best read match
up to two mismatches, whereas we ran MPSCAN to search for exact matches of read
prefixes. The full-length reads are 34 bp. If one maps with MPSCAN the full-length
reads, 86% remain unmapped, and 11% are uniquely mapped. With at most two
mismatches, ELAND finds 14% of additional uniquely mapped reads with one or two
mismatches, whereas mapping the 20 bp prefix of each read with MPSCAN allows
mapping 25% of all reads at unique positions (14% more sites than with full-length
reads). Hence, both approaches yield a similar output, but exact matches represent
easier and more secure information than approximate matches. For the current rates
of sequencing errors and read lengths, exact matching is a suitable solution for read
mapping. Moreover, it allows us to estimate computationally the sequence error rate
without performing control experiments (cf. [49] for a more in-depth presentation),
which would be more difficult using approximate matching.

5.5 CONCLUSIONS

For pattern matching, g-gram-based algorithms and especially MPSCAN represent
the most efficient theoretical and practical solutions to exact set pattern matching
for huge pattern sets (greater than million patterns). Compared with known solutions
surveyed seven years ago in [46], which were reported to handle several hundred
thousands of patterns, MPSCAN provides more than an order of magnitude improve-
ment; it allows processing at astonishing speed pattern sets of several millions reads.
The second take-home message is that its filtration scheme can compete with ap-
proaches that use a text index.

Since 2005, the capacity of HTS is evolving continuously; biotechnological re-
search and development aim at reducing the quantity of biological extract, augment-
ing the sequencing capacity and quality, raising the read length, and even enlarging
the application fields. Despite the efforts for designing scalable and efficient map-
ping programs, it will remain a computational issue to let mapping solutions fit the
requirements of new HTS versions. This question is complex because read lengths
greater than 20 are not necessary to point out a unique position in a genome as large
as that of human [49].

An interesting conclusion is that different filtration schemes achieve impressive
efficiency and scalability but may be insufficient for tomorrow’s needs. The abundant
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pattern matching literature still may contain other possible algorithms whose appli-
cations in this setup have not yet been evaluated. With the spread of multicore com-
puters, parallelization represents another future line of research.

Finally, we left aside the problem of mapping pairs of reads. In this framework,
two reads are sequenced for each targeted molecule, each at a different extremity.
The reads come in pairs, and the goal of mapping is to find one matching position
for each read such that the two positions are on the same chromosome and in an
upper bounded vicinity. In other applications, the pair relations are unknown, and
it then is required to find across the two sets of beginning and ending reads which
ones constitute a pair because they map on the same chromosome not too far from
another [52]. Some mapping tools like MAQ or ZOOM can solve read pair mapping
efficiently, whereas a predecessor of MPSCAN has been developed and applied in
the second framework [52].
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ALGORITHMIC ASPECTS
OF ARC-ANNOTATED
SEQUENCES

Guillaume Blin, Maxime Crochemore, and Stéphane Vialette

6.1 INTRODUCTION

Structure comparison for RNA has become a central computational problem bear-
ing many computer science challenging questions. Indeed, RNA secondary structure
comparison is essential for (i) identification of highly conserved structures during
evolution (which always cannot be detected in the primary sequence because it is of-
ten unpreserved), which suggests a significant common function for the studied RNA
molecules, (ii) RNA classification of various species (phylogeny), (iii) RNA folding
prediction by considering a set of already known secondary structures, and (iv) iden-
tification of a consensus structure and consequently of a common role for molecules.

From an algorithmic point of view, RNA structure comparison first was consid-
ered in the framework of ordered trees [21]. More recently, it also has been consid-
ered in the framework of arc-annotated sequences [10]. An arc-annotated sequence
is a pair (S, P), where S is a sequence of RNA bases and P represents hydrogen
bonds between pairs of elements of S. From a purely combinatorial point of view,
arc-annotated sequences are a natural extension of simple sequences. However, using
arcs for modeling nonsequential information together with restrictions on the rela-
tive positioning of arcs allow for varying restrictions on the structure of arc-annotated
sequences.

Different pattern matching and motif search problems have been considered in
the context of arc-annotated sequences among which we can mention the longest

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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arc-annotated subsequence (LAPCS) problem, the arc preserving subsequence (APS)
problem, the maximum arc-preserving common subsequence (MAPCS) problem,
and the edit-distance for arc-annotated sequence (EDIT) problem. This chapter is
devoted to presenting algorithmic results for these arc-annotated problems.

This chapter is organized as follows. We present basic definitions in Section 6.2.
Section 6.3 is devoted to the problem of finding a LAPCS between two arc-annotated
sequences, whereas we consider in Section 6.4 the restriction of deciding whether an
arc-annotated sequence occurs in another arc-annotated sequence, the so-called APS
problem. Section 6.5 is concerned with some variants of the longest arc-preserving
common subsequence problem. Section 6.6 is devoted to computing the edit distance
between two arc-annotated sequences.

6.2 PRELIMINARIES

6.2.1 Arc-Annotated Sequences

Given a finite alphabet X, an arc-annotated sequence is defined by a pair (S, P),
where S is a string of £* and P is a set of arcs connecting pairs of characters of S.
The set P usually is represented by set of pairs of positions in S. Characters that are
not incident to any arc are called free.

In the context of RNA structures, we have ¥ = {A,C,G,U}, and S and P represent
the nucleotide sequence and the hydrogen bonds of the RNA structure, respectively.
Characters in S thus often are referred to as bases.

Relative positioning of arcs is of particular importance for arc-annotated se-
quences and is described completely by three binary relations. Let p; = (i, j) and
p2 = (k,I) be two arcs in P that do not share a vertex. Define

the precedence relation (<) — p; < ppifi < j <k <1 m
the embedding relation (C) — py C prifi <k <l < j @)

the crossing relation (() — py § poifi <k < j <1 @)

Using arcs for modeling nonsequential information together with these relations
allows for varying restrictions on the complexity of arc-annotated sequences.

6.2.2 Hierarchy

The following five levels of arc structure initially have been considered in the foun-
dation work of Evans [9]:

UNLIMITED (UNLIM) — no restriction at all m

CRrossING (Cros) — there is no character incident to more @O
than one arc
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NESTED (NEST) — there is no character incident to more (@%
than one arc and no arcs are crossing

CHAIN (CHAIN) — there is no character incident to more @
than one arc, no arcs are crossing and no arc embedded
into another

PLAIN — there is no arc COOO0000
The induced hierarchy is described by the following chain of inclusion:

PLAIN C CHAIN C NESTED C CROSSING C UNLIMITED.

6.2.3 Refined Hierarchy

In [13], Guignon et al. extended the aforementioned hierarchy by introducing a new
refinement of the NESTED level called STEM; no character is incident to more than
one arc, and given any two arcs, one is embedded in the other.

For providing a unified framework and as a next step toward a better understand-
ing of the inner complexity of the problems related to arc-annotated sequences,
Blin et al. [4] proposed to refine the hierarchy further following the example of
Vialette [22, 23] in the context of 2-intervals (a simple abstract structure for model-
ing RNA secondary structures). The refinement consists of splitting those models of
arc-annotated sequences into more precise relations between arcs, taking advantage
of the combinatorics induced by the relations <, , and (.

Two arcs p; and p; are R-comparable for some R € {<, C, ()} if p; Rp, or p,Rp;.
Let P be a set of arcs and R be a nonempty subset of {<, , (}. The set P is R-
comparable if any two distinct arcs of P are R-comparable for some R € R. An arc-
annotated sequence (S, P) is an R-arc-annotated sequence for a nonempty subset
R C {<, C, (§} if P is R-comparable. By abuse of notation, we will write R = @ in
case P = 0.

As a straightforward illustration of these definitions, most levels in the classical
hierarchy can be expressed in terms of a combination of the three relations; PLAIN
is described fully by R = ¢, CHAIN is described fully by R = {<}, STEM is de-
scribed fully by R = {C}, NESTED is described fully by R = {<, C}, and CROSSING
is described fully by R = {<, C, ()}. The key point is to observe that this refine-
ment allows us to consider new levels for arc-annotated sequences, namely R = {()},
R ={<,(},and R = {CC, {}.

6.2.4 Alignment

Given two sequences S and 7 on a common alphabet ¥, we define an alignment
of S and T as a pair of sequences (S’, T') built from S and T on X U {—} (— is
usually referred to as a gap) such that (i) |S'| = |T’], (i) for any 1 <i < |S§’|, either
S'[i] = T'[i] # — or exactly one of S'[i] and T'[i] is a gap, and (iii) removing the
gaps from S’ or T’ yields S or T, respectively).
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al-g-orithm al-g-orithm
-loga-rithm -loga-rithm
(a) (b) (©)
Figure 6.1 lllustration of a) sequences of alignment leading to a common subsequence which

is “lgrtihm,” b) an arc-preserving alignment of two arc-annotated sequences, and c) the resulting
common arc-annotated subsequence.

ngthm

Let (', T') be an alignment of S and T. For any 1 < i < |§’| such that S'[/] # —,
character S’[{] is said to be aligned with character T'[i] if T'[i] # — and deleted oth-
erwise. Similarly, For any 1 < i < |T’| such that T'[i] # —, character T'[{] is said to
be aligned with character S’[i] if S'[i] # — and inserted otherwise. An illustration
is given in Figure 6.1.

An alignment (S’, T’) of two arc-annotated sequences (S, P) and (T, Q) is arc-
preserving if the arcs induced by (S’, T”) are preserved (i.e., the arcs induced by the
aligned bases are preserved). In this context, the notion of common subsequence is
extended by including the common arcs—that is, the arcs that have been preserved
by the alignment.

6.2.5 Edit Operations

Following the example of stringology, when comparing two arc-annotated sequences
(S, P) and (T, Q), instead of computing an alignment, one might consider a set of
edit operations (together with their associate costs) that alter arc-annotated sequences
and seek for a minimal cost sequence according to these operations that leads from
(S, P)to (T, Q).

Formally, given a set of edit operations £ and two arc-annotated sequences (S, P)
and (T, Q), an edit-script from (S, P) to (T, Q) refers to a series of nonoriented op-
erations of £ transforming (S, P) into (7', Q). The cost of an edit-script from (S, P)
to (T, Q), denoted cost((S, P), (T, Q), £), is the sum of the costs of all operations
involved in the edit-script. The edit-distance between (S, P) and (T, Q) is the mini-
mum cost of an edit-script from (S, P) to (T, Q).

The classical approach is to consider a subset of the operations introduced in [15],
which can be divided into the following groups:

Substitution operations, inducing the renaming of characters in the arc-annotated
sequence:

match (WX —=R) --R-+ — R

mismatch (W : X —>R) - R--v — W

arc-match (Wam = T+ > R) (1 ()

BT = cerEeee T
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arc-mismatch  (Wgm : * = R) () () ()

E-+ T+ —> +etA- T QL B Yoee
OF ++ A+ Y-

Deletion operations, inducing the deletion of characters and/or of arcs in the arc-
annotated sequence:

deletion (wg: X > R) S ERY-++  —> - E Ye--
arc-breaking  (wp : ¥* — R)  --AZE---RTY--- —  ..-AZE---RTY.--
arc-removing  (w, : ¥2 = R)  ---AZE---RTY--+  — A E---RY---

D

. .33
arc-altering (W : 27— R) “-AZE-+-RTY--- —> ++-AZE:--R Y:+: OF -+-A E---RTY: -

6.3 LONGEST ARC-PRESERVING COMMON SUBSEQUENCE

6.3.1 Definition

The LAPCS problem has been introduced by Evans [9] and is defined as follows:
given two arc-annotated sequences (S, P) and (7, Q), find an arc-preserving com-
mon subsequence of maximal length. The computational complexity of the LAPCS
problem has been studied in [9, 10, 17, 18, 14, 7], and the main results are summa-
rized in Tables 6.1, 6.2 and 6.3.

Table 6.1 LAPCS classical complexity with n=|S| and m=|T|

AXB LAPCS
STEM X STEM NP-complete — Blin et al. [7]
CHAIN x CHAIN
X
X

N
NEST CHAIN O(nm”) — Jiang et al. [17]

NEST NEST NP-complete even for unary, c-fragment (with ¢ > 2) and
c-diagonal (with ¢ > 1) — Jiang [18]

Cros x CHAIN
Cros x NEST
Cros x CRros NP-complete — Evans [9] but polynomial-time solvable for
1-fragment LAPCS(CROSSING, CROSSING) and 0-diagonal
LAPCS(CROSSING, CROSSING) [18]

NP-complete — Evans [9]

UNLIM x CHAIN
UNLIM X NEST
UNLIM x CROS NP-complete — Evans [9]
UNLiMm x UNLIM
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Table 6.2 LAPCS parameterized complexity with n=|S|and m=|T|

AXxB LAPCS
STEM X STEM FPT when parameterized by the number of deletions — Alber
etal [1]
FPT when parameterized by the bandwidth or the nesting
depth — Evans [9], FPT when parameterized by the number of
deletions — Alber et al. [1]

NEsT x CHAIN
NEST X NEST

Cros x CHAIN FPT when parameterized by the bandwidth or the cutwidth —
CROS X NEST Evans [9], Jiang et al. [16]

W/[1]-complete and FPT when parameterized by the bandwidth or
Cros x Cros the cutwidth — Evans [9], Fixed Parameter Tractable (FPT) when
parameterized by the desired common subsequence length — Alber
etal [1]

UNLIM x CHAIN
UNLIM X NEST
UNLIM x CROS WI[1]-complete — Evans [9]
UNLIM x UNLIM

In the sequel, we use the notation LAPCS(A, B) to represent the LAPCS problem
in which the arc structure of S (or 7) — namely P (or Q) — is of level A (or B),
respectively.

6.3.2 Classical Complexity

In [9], Evans proved that LAPCS(CHAIN, CHAIN) is polynomial-time solvable,
whereas both LAPCS(UNLIMITED, PLAIN) and LAPCS(CROSSING, PLAIN) are non-
deterministic polynomial NP-complete (reductions from independent set). In [18],
Lin et al. proved that LAPCS(NESTED, NESTED) is NP-complete (reduction from in-
dependent set). Complementing these results, Jiang et al. [17] designed an O (nm?)
time algorithm for LAPCS(NESTED, CHAIN) and LAPCS(CHAIN, CHAIN). Recently,

Table 6.3 LAPCS approximability

A X B LAPCS
NEST x CHAIN 2-approximable — Jiang et al. [16], PTAS for c-fragmented and
NEST X NEST c-diagonal cases [18]
Cros x CHAIN
Cros x NEST MaxSNP-hard, 2-approximable — Jiang et al. [16]
Cros x Cros
UNLIM x CHAIN
UNLIM X NEST Cannot be approximated within ratio n¢ for any
UNLIM x CROS € €(0,9)-[16]
UNLiM x UNLIM
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Blin et al. [7] proved that LAPCS(STEM, STEM) is NP-complete (reduction from
3-SAT).

Lin et al. further investigated this last problem by studying restricted cases,
namely, c-FRAGMENTED, ¢-DIAGONAL, and UNARY LAPCS(NESTED, NESTED). Given
two arc-annotated sequences that are divided into fragments of lengths exactly ¢
(the last fragment can have a length less than c¢), the c-fragment LAPCS problem
with ¢ > 1, is defined as the classical LAPCS problem with the extra constraint
that the allowed matches are those between fragments at the same location [14].
The c-diagonal LAPCS problem with ¢ > 0 is an extension of c-fragment LAPCS,
where character S[i] is allowed only to match a character in the range T[i — c,
i+c]. Lin et al. [18] showed the NP-hardnessof the c-fragment (with
¢ > 2) and c-diagonal (with ¢ > 1) LAPCS (NESTED, NESTED) problem. They
also proved that the I-fragment LAPCS(CROSSING, CROSSING) and 0-diagonal
LAPCS(CROSSING, CROSSING) are solvable in time O(n).

6.3.3 Parameterized Complexity

Considering the parameter / as being the desired length of common subse-
quence, Evans [9], using one of the previously-mentioned reductions for LAPCS
(UNLIMITED, PLAIN) and providing a reduction from Clique to LAPCS(CROSSING,
CrossING), roved that both LAPCS(UNLIMITED, PLAIN) and LAPCS(CROSSING,
CROSSING) are W[1]-complete when parameterized by /. Moreover, Evans proved
in [10] that although LAPCS(CROSSING, CROSSING) is W[1]-complete, then the prob-
lem becomes fixed-parameter tractable when parameterized by the arc cutwidth. The
arc cutwidth [10] of an arc-annotated sequence is defined as the maximal number of
arcs that cross or end at any arbitrary position of the sequence. If both sequences
have their cutwidth bounded by some k, then the problem, as shown by Evans,
can be solved in O(9*nm) time, where |S| = n and |T| = m. Evans also investi-
gated the parameterized complexity of the problem considering two other param-
eters: the bandwidth and the nesting depth. The bandwidth d of an arc-annotated
sequence (S, P) is defined by max, j)ep{lj — i|} and its nesting depth s is equal to
max{|P’|}, where P’ C P such that for all (i, j) € P/, (k,l) € P’ does not exist with
i<k<j<lori<j<k<lI Evans showed that if both sequences have their
nesting depth bounded by some s, then LAPCS(NESTED, NESTED) can be solved
in O(s?4°nm) time, where |S| =n and |T| = m. In case the arcs do not share
endpoints, both cutwidth and nesting depth are always no more than bandwidth.
Thus, Evans, was able to extend the previously mentioned results to the param-
eter d. Finally, one has to observe that if the complexity of the arc structure is
bounded by a logarithm of the maximal sequence length n, then LAPCS can be
solved in O(n*m) time even for CROSSING type arc structures. Moreover, because the
cutwidth is equal to one for LAPCS(CHAIN, CHAIN), one can use the algorithm for
LAPCS(CRrosSING, CROSSING) to solve this problem in O(nm) time.

Considering LAPCS(NESTED, NESTED), Alber et al. [1] designed an algorithm
that determines in time O(3.31¥%%2p) whether an arc-preserving common sub-
sequence can be obtained by deleting (together with incident arcs) k; characters
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from S and k, from T, thereby proving that LAPCS(NESTED, NESTED) is fixed-
parameter tractable when parameterized by the number of deletions. Finally, Alber
et al. [1] showed that c-fragment LAPCS(CROSSING, CROSSING) and c-diagonal
LAPCS(CRrOSSING, CROSSING) parameterized by the length / of the desired common
subsequence are solvable in O((B + 1)' B + ¢*n) time, with B = ¢> +2c¢ — 1 and
B = 2¢? + Tc + 2, respectively.

6.3.4 Approximability

Jiang et al. in [16] proved that LAPCS(CROSSING, CROSSING) admits a simple
2-approximation algorithm running in O(nm) time, whereas LAPCS(UNLIMITED,
PLAIN) cannot be approximated within ratio n¢ for any € € (0, }1), where n de-
notes the length of the longest input sequence. In the same paper, they proved that
LAPCS(CROSSING, PLAIN) is MaxSNP-hard, thereby excluding a polynomial-time
approximation scheme (PTAS). Jiang et al. [18] proved that both c-fragmented and c-
diagonal LAPCS(NESTED, NESTED) have a PTAS. They also give a %—approximation
algorithm for the unary LAPCS(NESTED, NESTED) problem.

6.4 ARC-PRESERVING SUBSEQUENCE

6.4.1 Definition

The APS problem is a decision problem derived from LAPCS. Given two arc-
annotated sequences (S, P) and (7, Q) the APS problem asks whether (T, Q) is
the LAPCS of (S, P) and (T, Q) (i.e., (T, Q) is an arc-preserving subsequence
of (S, P)). The computational complexity of the APS problem has been studied
in [9, 11, 12, 14, 5, 4], and the main results are summarized in Tables 6.4 and 6.5.

In the following, we use the notation APS(A, B) to represent the APS problem
in which the arc structure of S (or 7)) — namely P (or Q) — is of level A (or B),
respectively.

Table 6.4 APS classical complexity with n=|S| and m=|T|

A X B APS
CHAIN x CHAIN
NEsST x CHAIN O(nm)—-Guo et al. [11, 12]
NEST X NEST
Cros x PrLAIN NP-complete — Blin et al. [5, 4]
gigz i ;I]:g;N NP-complete — Guo et al. [11, 12]
Cros x Cros
UNLIM x CHAIN
UNLIM X NEST NP-complete — Evans [9]
UNLIM x CRos
UNLIM x UNLIM
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Table 6.5 APS classical refined complexity where n=|S| and m=|T|

A X B APS
{<} x 0 O(n +m)Guo et al [11]
{<} x {<}
{C} x = Guo et al. [11, 12]
{<,C} x =%
{Q} X @ 2 _ Bl 4
{0} x {0} O(nm~) in et al. [5, 4]
{<,0} x =
{C,0} x = NP-complete — Blin et al. [5, 4], Guo [14], Evans [9]

{<,C, 0} x %

6.4.2 Classical Complexity

Guo proved in [14] that the APS(CROSSING, CHAIN) problem is NP-hard. Guo et
al. observed in [11, 12] that the NP-completenessof the APS(CROSSING, CROSSING)
and APS(UNLIMITED, PLAIN) easily follows from LAPCS Evans’ work [9]. Further-
more, they gave an O(nm) time algorithm for the APS(NESTED, NESTED) problem.
This algorithm can be applied to easier problems such as APS(NESTED, CHAIN),
APS(NESTED, PLAIN), APS(CHAIN, CHAIN), and APS(CHAIN, PLAIN). Finally, Guo
et al. mentioned in [11, 12] that APS(CHAIN, PLAIN) can be solved in O(n + m)
time. Finally, Blin et al. [5, 4] proved that APS(CROSSING, PLAIN) is NP-complete.

6.4.3 Classical Complexity for the Refined Hierarchy

In analyzing the computational complexity of a problem, we often are trying to define
the precise boundary between the polynomial and the NP-complete cases. Therefore,
as another step toward establishing the precise complexity landscape of the APS
problem, it is of particular interest to refine the classical complexity levels of the
APS problem to define precisely what makes the problem hard. To this aim, Blin
et al. [5, 4] used the framework introduced by Vialette [23] in the context of two-
intervals. As a consequence, the number of complexity levels rises from four (not
taking into account the UNLIMITED case) to eight.

On the positive side, Gramm et al. have shown that APS(NESTED, NESTED) is
solvable in O(nm) time [11, 12]. Another way of stating this result is to say that
APS({<, C}, {<, }) is solvable in O(mn) time. According to the properties of the
refined hierarchy, that result may be summarized by saying that APS(R;, R;) for any
compatible R; and R, such that (¢ R; and ()¢ R, is polynomial-time solvable.

Conversely, the NP-completenessof APS(CROSSING, CROSSING) has been proved
by Evans [9]. A simple reading shows that her proof is actually concerned with
{<, C, ()}-arc-annotated sequences and, hence, actually proves that APS({<, C, (},
{<,C,(}) is NP-complete. Similarly, in proving that APS(CROSSING, CHAIN) is
NP-complete [14], Guo actually proved that APS({<, C, (J}, {<}) is NP-complete.
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Therefore, both APS({<,LC,{},{<.C}) and APS({<,C,{},{<,0}) are NP-
complete.

In [5, 4], Blin et al. proved that both APS({C, (j}, #) and APS({<, (j}, @) are
NP-complete. They also gave a polynomial time algorithm to show that both
APS({()}, {0}) and APS({(}}, ¥) problems can be solved in O(nm?) time. In other
words, they proved that the relation {§ alone does not imply hardness.

6.4.4 Open Problems

The refinement suggested by Blin et al. in [5, 4] shows that an APS problem be-
comes hard when one considers sequences containing {{), R}-comparable for some
R C {<, C, ()}. Therefore, crossing arcs alone do not imply APS hardness. It is of
course a challenging problem to explore further the complexity of the APS problem,
especially the parameterized views, by considering additional parameters such as the
cutwidth or the depth of the arc structures.

6.5 MAXIMUM ARC-PRESERVING COMMON SUBSEQUENCE

6.5.1 Definition

The MAPCS problem was introduced by Blin et al. [3] as an intermediate model
for comparing arc-annotated sequences — lying between LAPCS and the EDIT (see
Section 6.6). The MAPCS problem is defined as follows: given two arc-annotated se-
quences (S, P) and (T, Q), and two functions f, : ¥ — N*and f, : 2 — N*, find
a common arc-annotated subsequence (U, R) that maximizes the following score
function: ). fo(c) + Z(L.M.z)e z fa(c1, c2). In other words, the MAPCS problem
seeks to find a common subsequence whose score takes into account both the num-
ber of bases and arcs. The computational complexity of the MAPCS problem was
determined fully in [3], and the main results are summarized in Table 6.6.

Table 6.6 MAPCS* and MAPCS classical complexity for
n=|S|and m=|T|

A X B MAPCS* MAPCS
CHAIN x CHAIN O(nm) O(nm)
NEST x CHAIN O(n*m) O(nm?)
NEST x NEST o (n’m?)
Cros x CHAIN 413
Cros x NEST O log"n)
Cros x CRros NP-complete NP-complete
UNLIM x CHAIN O(n* log® n)
UNLIM X NEST nologn
UNLIM x CRros
UNLIM x UNLIM NP-complete
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In the following, we use the notation MAPCS(A, B) to represent the MAPCS
problem where the arc structure of S (or 7) —namely P (or Q) —is of level A (or B),
respectively.

6.5.2 Classical Complexity

In [3], Blin et al. first investigated two special cases of MAPCS, namely when one
allows function f, or f, to return to zero. They easily noticed that f,(x, y) = 0 for
all (x, y) € X reduces to the LAPCS problems. They investigate the case fj,(x) = 0
for all x € ¥, problems called MAPCSx, and proved that MAPCS:x(CHAIN,CHAIN)
can be solved in O(nm) time, MAPCS+(NESTED,NESTED) in O(n?m?) time,
MAPCS#(NESTED,CHAIN) in O(nm?) time, and MAPCS+(UNLIMITED,NESTED)
in on* log3 n) time, where n =S| and m = |T|. They also proved that
MAPCS:#(CROSSING,CROSSING) is NP-complete by providing a reduction from
Clique.

They also completely investigated the complexity of MAPCS by proposing
an O(nm) and O(nm?) time algorithm for MAPCS (CHAIN,CHAIN) and MAPCS
(NEsT,CHAIN) respectively, and by proving that both MAPCS (NESTED,NESTED) and
MAPCS (CrossING,PLAIN) are NP-complete.

6.5.3 Open Problems

As far as we know, neither the parameterized complexity nor the approximability of
MAPCS have been studied (except f, always returns to zero because it corresponds
to the LAPCS problems and inherits all its complexity results).

6.6 EDIT DISTANCE

6.6.1 Definition

Given two arc-annotated sequences, the EDIT problem is to find the edit-distance
between (S, P) and (7, Q). It has been studied extensively [15, 19, 13, 8, 6, 3, 2, 7]
(see Table 6.7 and 6.8).

6.6.2 Classical Complexity

Lin et al. proved in [19] that the problem EDIT (CRrOSSING, PLAIN) is NP-complete,
and gave a (polynomial time) dynamic programming algorithm for the EDIT
(NESTED, PLAIN) problem. Sankoff [20] previously had solved EDIT (PLAIN, PLAIN).

Blin et al. [8] proved that the LAPCS problem actually can be seen as a very
specific case of the EDIT problem. More precisely, any edit script of minimum cost
goes through a common subsequence of optimal score. This means that finding one
allows finding the other. Thus, LAPCS can be seen as a particular case of EDIT in
which the cost system for edit operations is the following: w, = 2w; = 2w,, and
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Table 6.7 EDIT classical complexity for n=|S| and m=|T|

AXB EDIT

STEM X STEM NP-complete — Blin et al. [7]
C;’;E : (C:Eif; O(nm®) - Lin et al. [19]

NEST X NEST NP-complete — Jiang et al. [15] and Blin et al. [6]

CRrRos x CHAIN

CROS X NEST

Cros x Cros
UNLIM x CHAIN NP-complete — Lin et al. [19]
UNLIM X NEST
UNLiM x CRros

X

UNLIM UNLIM

all substitution operations and arc-breakings are prohibited by an arbitrary high cost.
The main idea is to penalize deletion operations proportionally to the number of
bases that are deleted. This last result proved that the complexity of EDIT (NESTED,
NESTED) simply follows from the complexity of LAPCS(NESTED, NESTED). These
results were extended in [6] where the authors showed that only a very restricted
number of instances of EDIT (NESTED, NESTED) were shown to be NP-complete and
that the corresponding cost system needed to satisfy restrictions that can be discussed
biologically. Therefore, as another step toward establishing the precise complexity
landscape of the EDIT problem, they considered a more accurate class of instances—
but not overlapping with the one used in the proof from LAPCS - for determining
more precisely what makes the problem hard.

The authors want to point out another interesting result from Blin et al. [8]—
namely a unifying framework to express comparison of arc-annotated sequences
called ALIGN. Indeed, Blin et al. showed that this hierarchy brings together most
comparison models for arc-annotated sequence and leads to the introduction of new
comparison models that are biologically relevant. In particular, they proposed two
polynomial time algorithms for the problem of comparing two NESTED arc-annotated

Table 6.8 EDIT approximability for n=|S|and m=|T|

A x B \ EDIT

NEST x NEST max [ﬁ, %]—approximable—Lin etal. [19]
Cros x CHAIN

Cros x NEST

Cros x Cros

UNLIM x CHAIN MaxSNP-hard — Lin et al. [19]

UNLIM X NEST

UNLIM x CRos

UNLIM x UNLIM
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sequences, whereas corresponding algorithms considering the same set of edit oper-
ations in other formalisms are not polynomial time solvable. Because it did not only
rely on arc-annotated sequences, we decided not to include it in this contribution.

In [13], Guignon et al. introduced the notion of conservative edit distance and
mapping between two RNA stem-loops to design a polynomial-time algorithm for
comparing general secondary RNA structures using the full set of biological edit
operations introduced in [15]. This algorithm is based on a decomposition in stem-
loop-like substructures that are pairwised compared and used to compare complete
RNA secondary structures. As mentioned in [13], although in the very restrictive case
of conservative distance and mapping, the computation of the general edit distance is
polynomial-time solvable, it was not known whether the general (i.e., not conserva-
tive) edit distance between two stem-loops also can be computed in polynomial-time.
In [7], Blin et al. proved that the general edit distance is indeed NP-complete.

6.6.3 Approximability

Lin et al. proved in [19] that the problem EDIT (CROSSING, PLAIN) is MaxSNP-hard.
They also showed that EDIT (NESTED,NESTED) has a polynomial-time approxima-
2w, wp+w,

tion algorithm with ratio f = max{ =, ===},

6.6.4 Open Problems

The approximation ratio of EDIT (NESTED,NESTED) depends on the respective values
of the parameters w,, wp, and w,. An interesting question is whether a polynomial-
time algorithm exists with constant approximation ratio.
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ALGORITHMIC ISSUES IN
DNA BARCODING
PROBLEMS

Bhaskar DasGupta, Ming-Yang Kao, and lon Mandoiu

7.1 INTRODUCTION

In the outbreak of an epidemic, possibly as a result of biological warfare, there is an
urgent need to identify the pathogen or the family it belongs to as early as possible.
Armed with the identity of the pathogen or its family, and with prior knowledge of
how the pathogen typically is spread, decision makers efficiently can alert the general
public and first responders on how best to stave-off the invasion. Recent advances in
genomic technologies, including the availability of a whole genome sequence for nu-
merous pathogens and the improved sensitivity of a second generation of microarray-
based hybridization platforms, have opened the way for the development of highly re-
liable genomic-based pathogen detection systems. However, the development of such
a detection system appropriate for use by first responders still raises several challeng-
ing design issues. In addition to portability and cost-effectiveness, widespread use of
such systems requires rapid and reliable identification from minute amounts of ge-
netic material of mutated or artificially engineered unknown pathogens. At the same
time, these systems should provide comprehensive coverage of known or partially
known pathogens, robustness of the detection algorithms against malicious adver-
saries, and built-in support for easy updates of the set of recognized pathogens.

As a motivation to study a basic version of barcoding problems of interest in this
chapter, consider the following scenario. Classical approaches to pathogen detection

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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are based on sequencing and direct microarray hybridization [16,24]. Although very
reliable, sequencing-based detection is practically applicable only when the num-
ber of candidate pathogens is small because it requires the ability to isolate very
few pathogen-specific DNA or RNA fragments. At the same time, direct microarray
hybridization does not scale well with the number of potential pathogens. Reliable
detection by this method requires as much as 10-20 arrayed probes per pathogen,
each 70 nucleotides long [24], thus limiting the coverage of a single microarray to at
most a few thousand pathogens. To overcome some of these difficulties, one employs
rapid and robust computational procedures to compute barcodes that produce short
signatures and thereby both reduce database size and optimize cost of designing the
hybridization array.

In this chapter, we survey several barcoding problems that have applications as
mentioned as well as in other areas, and we survey some key algorithmic techniques
used in the existing literatures for these problems. We assume that the reader is famil-
iar with the basic concepts of exact and approximation algorithms (e.g., see [6,23]),
basic computational complexity classes such as polynomial time (P) and nondeter-
ministic polynomial (NP) [10, 13, 20], and basic notions of molecular biology such
as DNA sequences [12].

7.2 TEST SET PROBLEMS: A GENERAL FRAMEWORK FOR
SEVERAL BARCODING PROBLEMS

One of the test set problems was on the classic list of NP-complete problems given
by Garey and Johnson [10]; these problems develop naturally in many other appli-
cations. One can define a general framework for test set problems in the following
manner. We are given an universe of objects, family of subsets (“tests”) of the uni-
verse, and a notion of “distinguishability” of pairs of elements of the universe by a
collection of these tests. Our goal is to select a subset of these tests of minimum size
that distinguishes every pair of elements of the universe. To be precise, each of these
problems is obtained by fixing parameters in the general test set problem TS' (k) as
described subsequently (2% denotes the power set of a set X).

Definitio 7.1 (Problem TS" (k) with T C 21902 gnd k being a positive integer)

Instance: (n, S) where S C 2{0:1:2n=1}
Terminologies:
® A k-test is a union of at most k sets from S
e Foray €T and two distinct elements x,y € {0,1,2,...,n — 1}, a k-test
T y-distinguishes x and y if [{x, y}NT| €y
Valid solutions: A collection T of k-tests such that
Vx,yef{0,1,2,....,.n—1} Vy el') x#y
= 3T € T where T y-distinguishes x and y
Objective: minimize |7 |
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This framework captures several “barcoding-type” problems in a few areas in bioin-

formatics and biological modeling such as:

Minimum Test Collection Problem: This problem has applications in diagnostic
testing [10]. Here a collection of tests distinguishes two objects if a test from
the collection contains exactly one of them. In our previous formalism, this is

precisely TS{(1).

Condition Cover Problem: Karp et al. [15] considered a problem of verifying
a multioutput feedforward Boolean circuit as a model of biological pathways.
This problem can be phrased like the minimum test collection problem, except
that two elements are distinguished by a collection of tests if one tests contains
exactly one of them, and another contains both or none of them. Assuming
that the allowed perturbations are given as part of the input, this problem is

identical to TSUH0:21(1),

String Barcoding Problem (SB¥ (k)): In the “basic” version of this problem cor-
responding to k = 1, first discussed by Rash and Gusfield [21], the universe
U consists of sequences (strings) over an alphabet ¥, and any string v € ©*
defines a test T, consisting of a collection of strings from U in which v ap-
pears'. Because this chapter is significantly concerned with this basic version,
we write the problem definition explicitly for the convenience of the reader.
We are given a set S of sequences over some alphabet ¥. For a fixed set of m
“distinguisher” sequences t= (to, ..., tu_1), the barcode code(s, ;) for each
s € § is defined to be the Boolean vector (cg, ¢1, ¢;u—1) Where ¢; is 1 if ¢; is a
substring of s. We say that the set of distinguishers t defines a valid barcode
if for any two distinct strings s, s’ € S, code(s, ?) is different from code(s’, ?).

Then the basic version SB*(1) is defined as follows:

Instance: S C ©*

Valid solutions: a set of distinguisher sequences t defining a valid barcode

Objective: minimize |¥|

As an example, let ¥ ={A,C,T,G} and S = tAAC, ACC, GGGGQG,
GTGTGG, TTTT}. Then, the set of four distinguishers t = {A, CC, TTT, GT}

defines the set of valid barcodes for the input sequences in S as follows:

A CC TIT GT

AAC 1 0 0 0
ACC 1 1 0 0
GGGG 0 0 0 0
GTGTGG 0 O 0 1
TTTT 0 0 1 0

I'$* is the standard notation of denoting the set of all possible strings formed by a concatenation of zero

or more symbols of X.
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The name “‘string barcoding” derives from the fact that the Boolean vector in-
dicating the occurrence (as a substring) of the tests from an arbitrary collection
of tests in a given input sequence is referred to as the “barcode” of the given
sequence with respect to this collection of tests. Motivations for investigating
these problems come from several sources, such as

* Database compression and fast database search for DNA sequences

* DNA microarray designs for efficient virus identification in which the im-
mobilized DNA sequences at an array element are from a set of barcodes

In general, for k > 1, a test can be defined by a set T of at most k strings and
u € U passes test T is one of the strings in T that is a substring of u; such tests
may be feasible in practice as the one-string tests.

Minimum Cost Probe Set Problem with a Threshold » (MCP>(r)): This prob-
lem is very similar to string barcoding and was considered first by Borneman
etal. [3]. Denote by oc(x, y) the number of occurrences of x in y as a substring,
For a fixed set of m distinguisher sequences? = (ty, i, ..., y_1), an r-barcode
code(s, ?) for any sequence s is defined to be the vector (co, ¢, ..., Cu_1)
where ¢; = min{r, oc(;, s)}. Given a set S of sequences over some alphabet X,
t defines a valid r-barcode if for any two distinct strings s, s’ € S, code(s, ?) is
different from code(s’, ?). MCPZ(r) now is defined as follows:

Instance: (r, S, P) where S, P C %

Valid solutions: a set of distinguisher sequences tcp defining a valid
r-barcode

Objective: minimize |?|

This problem was used in [3] for minimizing the number of oligonucleotide
probes needed for analyzing populations of ribosomal RNA gene (rDNA)
clones by hybridization experiments on DNA microarrays; the probes are se-
lected from a prespecified set P. However, it also can be used in the context of
other string barcoding approaches in which the barcodes are integer-valued as
opposed to being Boolean.

7.3 A SYNOPSIS OF BIOLOGICAL APPLICATIONS OF BARCODING

Applications of barcoding techniques range from rapid pathogen identification in
epidemic outbreaks to point-of-care medical diagnosis to monitoring of microbial
communities in environmental studies (e.g., see [3, 21]). For example, genomic-
based identification of microorganisms such as viruses or bacteria is performed
by spotting or synthesizing on a microarray the Watson—Crick complements of
the distinguisher strings and then hybridizing to the array the fluorescently labeled
DNA extracted from the unknown microorganism. Under the assumption of per-
fect hybridization stringency, the hybridization pattern can be viewed as a string of
k zeros and ones, referred to as the barcode of the microorganism. By construc-
tion, the barcodes corresponding to the n microorganisms are distinct, and thus,
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Figure 7.1 A hypothetical architecture of FRPDS.

the barcode uniquely identifies any one of them. To improve identification robust-
ness, one also may require redundant distinguishability (i.e., at least m different
distinguishers for every pair of microorganisms, where m > 1 is some fixed con-
stant) and impose a lower bound on the edit distance between any pair of selected
distinguishers [21].

A hypothetical system implementing a high level architecture that meets the de-
sign criteria for a first responder pathogen detection system (FRPDS) using string
barcoding is shown schematically in Figure 7.1. Such a hypothetical system includes
the following three major components:

1. A component that provides rapid amplification of the collected genetic mate-
rial (e.g., degenerate oligonucleotide primer-based multiplex polymerase chain
reaction (PCR)).

2. A pathogen fingerprinting and/or barcoding component (say, built around uni-
versal DNA tag arrays).

3. Rapid and robust computational procedures to compute barcodes that produce
short signatures and thereby both reduce database size and optimize cost of
designing the hybridization array.

7.4 SURVEY OF ALGORITHMIC TECHNIQUES ON BARCODING

In this section, we survey several algorithmic methods used to solve the barcod-
ing problems. We then will discuss in more detail in the next two sections the set-
covering and information content algorithmic approach.
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7.4.1 Integer Programming

In [21], Rash and Gusfield discussed some experimental results for SBZ(1) but left
open the exact complexity and approximability of this problem. Their algorithmic
approach is based on writing the problem as an integer program and then solving
it directly. Unfortunately, the run time of this approach does not scale well with
the number of microorganisms and the length of the genomic sequences (e.g., the
largest instance sizes reported in [21] have a total genomic sequence length of around
100, 000 bases). We will not discuss the integer programming formulation in more
detail because we will discuss heuristics based on set-covering methods in more de-
tail subsequently, and an integer programming formulation for set-covering problems
is well-known (e.g., see [23]).

7.4.2 Lagrangian Relaxation and Simulated Annealing

Borneman et al. [3] noted that the MCP*(r) problem was NP-complete assuming
that the lengths of the sequences in the prespecified set were unrestricted and dis-
cussed some experimental results for a few heuristics that they implemented. Their
algorithmic approach is based on a Lagrangian relaxation of the integer program-
ming formulation of set cover and simulated annealing approach.

7.4.3 Provably Asymptotically Optimal Results

In [2] Berman et al. were able to provide tight theoretical worst-case approximability
bounds for almost all of these problems. A summary of the results in [2] is as follows
(where £ is the maximum length of any sequence in S, L is the total length of all
sequences in S, and ¢ and § are constants):

e TS!(1) can be approximated to within a ratio of 1 +Inzn in O(n?|S|) time
and cannot be approximated to within a ratio of (1 — ¢)Inn assuming NP #
DTIME(n'08logn),

o TSI02}(1) can be approximated to within a ratio of 1+41n2+1Inn in
O(n?|S)) time and cannot be approximated to within a ratio of (I — &) Inn as-
suming NP # DTIME(n'og'2"),

* SB¥(1) can be approximated to within a ratio of 1 +1nn in O(n3¢?) time
and cannot be approximated to within a ratio of (1 — &) Inn assuming NP #
DTIME(n'oglogm),

¢ MCPZ(r) can be approximated to within a ratio of [1 + o(1)] Inn in O(n?|P| +
LP|) time and cannot be approximated to within a ratio of (1 — ¢) Inn assum-
ing NP % DTIME(n'0glogm),

e TS!"(n?) cannot be approximated to within a ratio of n® assuming NP # co-
randomized polynomial time (RP) forany 0 < ¢ < § < 1.

3K2

* SBZ(n?) cannot be approximated to within a ratio of n® assuming NP # co-RP

forany0<s<8<%.
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The provably optimal algorithmic approach in [2] uses an entropy-based algorithmic
approach that they term as the “information content” approach. Informally, this is a
greedy technique based on the information content of a partial solution; the notion
of information content is related directly to the Shannon information complexity
[1,22]. The greedy approach seeks to select an augmenting step for a partial solutions
that maximizes the new information content of the augmented partial solution as
compared with the partial solution. A key nontrivial step for applying this technique
is to define a suitable easy-to-compute measure of the information content of a partial
solution such that the monotonicity of this measure is ensured with respect to any
subset of an optimal solution. The next section defines the approach more precisely.

7.5 INFORMATION CONTENT APPROACH

In this section, we discuss the information content approach for TS!" as designed
in [2] running in time O(n?|S|) with an approximation ratio of 1 + Inn. Notice that
the upper bound almost matches the lower bound stated in Section 7.4.3 for SB{*:1},
a special case of TS,

For simplicity, we illustrate the approach for the problem TS} In the following
definition and throughout the rest of this section we use 7 + T to denote 7 U {T'}.

Definitio 7.2 A set of tests T C S defines the following:

T T
® An equivalence relation = on {0, 1,2, ...,n — 1} given by i=j if and only if
VT €eT(ieT=jeT)
® A set of permutations Il = {mw € (permutations of {0,1,2,...,n —1}): Vi €

[0,n — 1] i=n(i)}
® entropy Hr = log, |I17|.
* information content of a T € S with respecttoT, IC(T,T7) = Hr — Hr1 =

7]
log,

As an example, coTnsider T ={{1,2,3,4},{1,5, 6}} with n = 8. Then, the equiv-
alence classes of = are {1}, {2, 3, 4}, {5, 6}, {7, 8}, and Hr = log,(3H(2H(2!)) ~
4.585. This definition of entropy is somewhat similar (but not the same) to the one
suggested in [18]. Suppose that the equivalence relation = on {0, 1,2,...,n — 1}
produces ¢ equivalence classes of size sy, 52, ..., s,. Then, the entropy suggested
in [18] is % log2(H?:]sf"), whereas our entropy Hr is logz(Hles,- D.

The information content heuristic (ICH) is the following simple greedy heuristic:

T=0

while Hr # 0 do
selecta T € S — 7 that maximizes IC(T,T)
T=T+T
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The correctness of ICH follows from the fact that Hy = 0 implies that the equiv-
alence classes of = are n singleton sets {0}, {1}, ..., {n — 1} and the fact that if
Hr #0,then a T € S\ 7 exists with IC(T,T) > 0 (otherwise, the problem in-
stance has no feasible solution). ;

To implement ICH, one iteratively maintains the equivalence classes of = as
sorted lists. We also precompute and store log,(i!) for each i € [1, n]. Given a
specific T € S — 7, it is easy to compute in O(n) time the equivalence classes
of = from the equivalence classes of = because an equivalence class E of =
is either an equivalence class of ET, or it is partitioned into two equivalence
classes Ey = ENT and E, = E — E| of %T; the first case contributes nothing to
IC(T, T), whereas the second case adds log, (‘Ilg‘l) to IC(T, T).

The performance guarantee of this approach is given by the following theorem
proved in [2] using a very careful amortized analysis.

Theorem 7.1 [2] The previous approach yields:

e for TS an approximation ratio of 1 + Inn;
o for TSUWLHO2Y ay approximation ratio of 1 +1n2 + Inn;

e for MCP%(r) an approximation ratio of 1 + Inn + Inlog,(r' + 1), where r’ =
min{r, n}.

7.6 SET-COVERING APPROACH

Methods based on this approach enable distinguisher selection based on whole
genomic sequences of hundreds of microorganisms of up to bacterial size on a well-
equipped workstation and can be parallelized easily to extend further the applicabil-
ity range to thousands of bacterial size genomes. Whole-genome-based selection is
beneficial in at least two significant ways. First, it simplifies assay design because
the DNA of the unknown pathogen can be amplified using inexpensive general-
purpose whole-genome amplification methods such as specialized forms of degen-
erate primer multiplex PCR [4] or multiple displacement amplification [9]. Second,
whole-genome-based selection results in a reduced number of distinguishers, often
very close to the information theoretic lower bound of [log, n].

Set-covering approaches are based on a simple greedy selection strategy; in
every iteration we pick a substring that distinguishes the largest number of not-
yet-distinguished pairs of genomic sequences. This selection strategy is an embod-
iment of the greedy set-cover algorithm (e.g., see [23]) for a problem instance with
O(n?) elements corresponding to the pairs of sequences. Hence, by a classical re-
sult of [5, 14, 17], the algorithm guarantees an approximation factor of 2 Inn for the
barcoding problem. Experimental results provided in [7, 8] show that our set-cover
greedy algorithm produces solutions of virtually identical quality to those obtained
by the information content heuristic.
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The set-cover greedy algorithm is extremely versatile and can be extended easily
to handle redundancy and minimum edit distance constraints as well as other bio-
chemical constraints on individual distinguisher sequences. Furthermore, the greedy
set-cover algorithm also can take into account genomic sequence uncertainties ex-
pressed in the form of degenerate bases. Although degenerate bases are ubiquitous
in genomic databases, previous works have not recognized the need to handle them

properly.

7.6.1 Set-Covering Implementation in More Detail

In this section, for simplicity, we present the implementation of the set-cover greedy
algorithm as provided in [7, 8] in the context of the basic version of the string bar-
coding problem only. Implementation modifications needed to handle the robust bar-
coding problem in its full generality are available in [8].

The implementation of the set-cover greedy algorithm has two main phases: a
candidate generation phase and a candidate selection phase.

In the candidate generation phase, a representative set of candidate distinguishers
is generated from the given genomic sequences. Essentially, they use an incremen-
tal algorithm for quickly generating a representative set of candidate distinguishers
and collecting all their occurrences in the given genomic sequences. For each gen-
erated candidate, we also compute the list of sequences with which the candidate
has perfect matches; this information is needed in the candidate selection phase. To
reduce the number of candidates, we avoid generating any substring that appears in
all genomic sequences, which typically eliminates very short candidates. For each
genomic sequence, we also make sure to generate only one of the substrings that
appear exclusively in that sequence; this optimization eliminates from consideration
most candidate distinguishers above a certain length. Unlike the suffix tree method
proposed by Rash and Gusfield [21], this approach may generate multiple candidates
that appear in the same set of k genomic sequences (for 1 < k < n). However, the
penalty of having to evaluate redundant candidates in the candidate selection phase is
offset in practice by the faster candidate generation time. Efficient implementation of
candidate elimination rules is achieved by generating candidates in increasing order
of length and using exact match positions for candidates of length / — 1 when gen-
erating candidates of length /. For each position p in the input genomic sequences,
we also maintain a flag to indicate whether the algorithm should evaluate candidate
substrings starting at p. The possible values for the flag are TRUE (the substring of
current length starting at p is a possible candidate), FALSE (we already have saved
the substring of current length starting at p as a candidate), or DONE (all candidates
containing as prefix the substring of current length starting at p are redundant, i.e.,
the position can be skipped for all remaining candidate lengths). Initially, all flags
are set to TRUE. The FALSE flags are reset to TRUE whenever we increment the
candidate length; however, we never reset DONE flags.

For every candidate length /, candidate evaluation proceeds sequentially over all
positions of the genomic sequences. Whenever we reach a position p whose flag is
set to TRUE, we use the list of matches for the substring of length [ — 1 starting at p
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Input: Set C of candidate distinguishers
Output: Set D of selected distinguishers

D «— ; For every c € C, Aga(c) «— o0
Repeat

A" 0

For every ¢ € C' with Agq(c) > A" do // Because A(c, D) < Aga(c), ¢ can be

ignored if Aga(c) <A™
Ao (€) <= Afe, D)
If A(e, D) > A" then A" — Ae,D); ¢* —¢
If A* > 0then D — DU{c"}

While A* >0
Return D

Figure 7.2 The greedy candidate selection algorithm.

(or a linear time string matching algorithm if / is the minimum candidate length) to
determine the list of matches for the substring of length / starting at p, and set the flag
to FALSE for all positions in which these matches occur. If the substring of length
[ starting at p has matches only within the source sequence, and we have already
generated a “unique” candidate for this sequence, then we discard the candidate and
set the flag of p to DONE.

A further speed-up technique is to generate candidate distinguishers from a strict
subset of the input sequences. Although this speedup potentially can affect solution
quality, experimental results show that the solution quality loss for whole-genome
barcoding is minimal, even when we generate candidates based on a single input
sequence, which corresponds to preassigning a barcode of all 1’s to this sequence.

After the set of candidates is generated, we select the final set of distinguishers
in the greedy phase of the algorithm (Figure 7.2). We start with an empty set of
distinguishers D. Although pairs of sequences are not yet distinguished by D, we
loop over all candidates and compute for each candidate ¢ the number A(c, D) of
pairs of sequences that are distinguished by ¢ but not by D, then add the candidate ¢
with the largest A value to D.

Two sequences s and s’ are distinguished by a candidate c if and only if exactly
one of s and s’ appears in the list P, of perfect matches of ¢, which is available
from the candidate generation phase. A simple method for computing A values is
to maintain an n X n symmetric matrix indicating which of the pairs of sequences
already are distinguished and then to probe the | P.| x (n — | P.|) entries in this matrix
corresponding to pairs (s, s’) with s € P. and s’ ¢ P. when computing A(c, D). A
more efficient method is based on maintaining the partition defined on the set of
sequences by D. If the partition defined by D consists of sets S, ..., Sk, then we
can compute A(c, D) in O(k + | P.|) = O(n) time using the observation that

Alc, D)=ZISiﬁPc| X |Si\ Pel (7.1)
i=1



7.7 EXPERIMENTAL RESULTS AND SOFTWARE AVAILABILITY 139

In addition to the fast partition-based computation, the implementation of the
greedy selection phase uses a lazy strategy for updating the A values, based on
the observation that they are monotonically nonincreasing during the algorithm (see
Figure 7.2). Thus, the efficient implementation of the greedy selection phase of the
algorithm combines a partition-based method for computing the coverage gain of
candidate distinguishers (this method first was proposed in the context of the infor-
mation content heuristic in [2]) with a “lazy” strategy for updating coverage gains.

7.7 EXPERIMENTAL RESULTS AND SOFTWARE AVAILABILITY

The authors in [7, 8] performed experiments on both randomly generated instances
and whole microbial genomes extracted from the National Center for Biotechnology
Information (NCBI) databases. Random test cases were generated from the uniform
distribution induced by assigning equal probabilities to each of the four nucleotide;
these test cases do not contain any nucleotides with degeneracy greater than 1. The
NCBI test case represents a selection of 29 complete microbial sequences, varying in
length between 490, 000 and 4, 750, 000 bases (more than 76 million bases in total).
All experiments were run on a PowerEdge 2600 Linux server with 4 Gb of RAM
and dual 2.8 GHz Intel Xeon central processing units (CPUs)—only one of which is
used by the sequential algorithms.

7.7.1 Randomly Generated Instances

As described in Section 7.6.1, there are two main phases in the algorithm: candidate
distinguisher generation and greedy candidate selection. Results were reported about
the average candidate selection CPU time for n random sequences of length 10,000
and redundancy 1, averaged over 10 instances of each size. Combining the two speed-
up techniques for this phase (partition-based coverage gain computation and lazy
update of candidate gains) results in more than two orders of magnitude reductions
in run time.

A further speedup technique is to generate candidate distinguishers from a select
subset of the input sequences. Although this speed-up potentially can affect solution
quality, the results showed that on large instances, the solution quality loss is mini-
mal even when we generate candidates based on a single input sequence; this corre-
sponds to preassigning a barcode of all 1’s to this sequence. The technique reduces
significantly both the memory requirement (which is proportional to the number of
candidates and the number of times they match input sequences) and the run time
required for candidate generation and greedy selection.

The quality of the solution in the simulations was as follows. The number of dis-
tinguishers returned by the set-cover greedy algorithm were reported for redundancy
varying between 1 and 20 on between 10 and 1,000 random sequences of length
10,000. These results were compared with the results obtained by the information
content heuristic results of [2] as well as the information theoretic lower bound of
[log, n] for when the redundancy requirement is 1. The number of distinguishers
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returned by the set-cover greedy algorithm was virtually identical to that returned
by the information content heuristic, despite the latter one having a better approxi-
mation guarantee. Furthermore, the results for redundancy were within 50% of the
information theoretic lower bound for the range of instance sizes considered in this
experiment. The gap between the solutions returned by the algorithms and the lower
bound does increase with the number of sequences; however, it is not clear how much
of this increase is caused by degrading algorithm solution quality and how much is
caused by degrading lower bound quality.

7.7.2 Real Data

The algorithm was run on a set of 29 complete microbial genomic sequences ex-
tracted from NCBI databases [19]. Sequence lengths in the set vary between 490,000
bases and 4.75 million bases, with an average length of 2.6 million bases (more than
76 million bases total). In these experiments, we varied the redundancy requirement,
from 1 to 20. To see the effect of length and edit distance requirements on the number
of distinguishers, for each redundancy requirement, they computed both an uncon-
strained solution and a solution in which distinguishers must have a length between
15 and 40, and there should be a minimum edit distance of six between every two
selected distinguishers (these values are similar to those used in [21]). In all exper-
iments, they generated candidates based only on the shortest sequence of 490,000
bases.

Naturally, meeting higher redundancy constraints requires more distinguishers to
be selected. Additional length and edit distance constraints further increase the num-
ber of distinguishers, but the latter is still within reasonable limits. The length con-
straints reduce the number of candidates (from 1,775,471 to 122,478), which for low
redundancy values, has the effect of reducing greedy selection time. However, for
high-redundancy requirements, the reduction in number of candidates is offset by
the increase in solution size, and greedy selection becomes more time consuming
with length and edit distance than without (selection time grows roughly linearly
with solution size).

7.7.3 Software Availability

The implementation of the set-covering approach, which was named DNA-BAR,
can be used online through the web interface provided at http://dna.engr.uconn.edu/
software/DNA-BAR/. The open source C code, released under the GNU General
Public License, is also available at this address.

7.8 CONCLUDING REMARKS

In many practical pathogen identification applications, collected biological samples
may contain the DNA of multiple pathogens. This issue is considered to be par-
ticularly significant in medical diagnosis applications (e.g., see [11] for studies in
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detecting more than one human papilomavirus (HPV) genotype with a varying rate
of multiple HPV infections carried by the same HPV carrier). A significant future
research direction could be to develop extensions of the barcoding technique that re-
liably can detect multiple pathogens for a given bound on the number of pathogens
present.
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RECENT ADVANCES IN
WEIGHTED DNA
SEQUENCES

Manolis Christodoulakis and Costas S. lliopoulos

8.1 INTRODUCTION

It is a well-known fact, referred to as “the first fact of biological sequence analysis”
[21], that biological sequences that are similar to each other tend to have similar two-
or three-dimensional structure and/or perform similar biological functions. This fact
indeed is used to infer the function of a given gene or protein by finding similar
sequences whose functionality already is known [35].

One of the most fundamental tools for visualising similarity between two se-
quences is the string alignment. Numerous pairwise alignment methods exist, in-
cluding the dot matrix analysis [19], various forms of dynamic programming—i(e.g.,
the local alignment Smith—Waterman algorithm [40], and the Needleman—Wunsch
global alignment algorithm [34]) as well as heuristic methods (e.g., FASTA [30,36]
and BLAST [2]).

Although the importance of pairwise sequence alignment cannot be overstated, it
seems that aligning more than two sequences concurrently can be even more helpful
in identifying similarities. Subsequences that are conserved among all (or, most) se-
quences and, therefore, possibly characterize all sequences at hand are easier to iden-
tify. Similar to pairwise alignments, several types of multiple alignments also exist,
like global alignments (e.g., ClustalW [42]) and local alignments (e.g., Dialign [33]).
Figure 8.1, shows a small portion of the alignment of a set of serine/arginine-rich

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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i 10 20 30 40 50
GATTTCACTGAAGGT--CGACAACTTAACCTACCGC-ACAACACCGGATG
GATTTCACTGAAGGT--CGACAACTTAACCTACCGC-ACAACACCGGATG
GATTTCACTGAAGGT--CGACAACTTAACCTACCGC-ACAACACCGGATG
GATTTCACTGAAGGT--CGACAACTTAACCTACCGC-ACAACACCGGATG
GGTCTCGCTTAAGGT--CGACAATCTCACATATCGC-ACCACGCCGGAGG
GGTCTCGCTTAAGGT--CGACAATCTCACATATCGC-ACCACGCCGGAGG
GGTCTCGCTTAAGGT--CGACAATCTCACATATCGC-ACCACGCCGGAGG
GGTGAT-CTGCAGGT--CGACAATCTCACATATCGC-ACCACGCCGGAGG
GACGTCCCTCAAGGT--GGACAACCTGACCTACCGG-ACGTCCCCGGACA
GACGTCCCTCAAGGT--GGACAACCTGACCTACCGG-ACGTCCCCGGACA
GACTTCGTTAAAAGT--GGATAATTTAACGTACCGC-ACGTCGCCGGAGA
GACTTCGTTAAAAGT--GGATAATTTAACGTACCGC-ACGTCGCCGGAGA
GACTTCGTTAAAAGT--GGATAATTTAACGTACCGC-ACGTCGCCGGAGA
GGACGAATGCGAACCCGCGGCTCCTCGGCACTTCGCTGC-GCGGCGGCGG
GGACGAATGCGAACCCGCGGCTCCTCGGCACTTCGCTGC-GCGGCGGCGG
GCACTCACCTGCGGCTGCGGCGGCCGTAACCGCTGCTCCCGTAGCGGCGG

Figure 8.1 Part of a multiple alignment of the SC35 protein across species and alleles.

(SR) proteins SC35 across species and alleles, obtained by the implementation of
ClustalW available on the web [17].

Multiple alignments capture the essence of a family of related sequences, but as
such families grow larger, it is not easy to manipulate the whole alignment; one
needs some sort of representation for the family. Any such representation ought to
be easier to manipulate but still capable of revealing the conserved subsequences of
the sequences in the family. Three main types of representations exist for families of
aligned sequences, each with its own advantages and disadvantages.

The simplest form of representation is the consensus string, which is a string in
which each position records the nucleotide (or amino acid) that occurs more fre-
quently in that position of the multiple alignment. The simplicity in this model is
obvious, but it lacks recording important information, such as the variation in the
positions.

For this reason, regular expressions were introduced. In their least complex form,
regular expressions are sequences in which a position contains either a single symbol
if that symbol is conserved among the family or the set of all symbols that occur at
that position within the family. For instance, for the multiple alignment shown in
Figure 8.1 the regular expression would look like

G[ACG] [ACT] [CGT] [AGT] [ACT] [-ACG] ...

Regular expressions, or variations of them, are used widely in biological databases;
PROSITE [7, 8] for example, is a database that uses a more sophisticated form
of regular expression (called patterns), which allows for variable-size gaps, efc.
Regular expressions do record the various symbols occurring at each position of
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1 2 3 4 5
A 0 0.56 0.19 0 0.07
¢ 0 0.06 0.31 0.38 0
G | 1.00 0.38 0 0.19 0.13
T 0 0 0.5 043 0.80
- 0 0 0 0 0

Figure 8.2 Weighted sequence.

=ebbae berb e s s

Figure 8.3 Sequence logo: a graphical representation of a weighted sequence.

the alignment, but they do not store any information regarding how conserved each
symbol is at each position.

Weighted sequences' [20] were introduced as a means of overcoming the limi-
tations of consensus strings and regular expressions. A weighted sequence not only
records the various symbols occurring at each position but also a score or weight
associated with each symbol, which often corresponds to the relative frequency of
the symbol at the particular position. Weighted sequences can be visualized as a
matrix in which rows correspond to the symbols of the alphabet, columns corre-
spond to the positions of the sequence, and in the cells, the probabilities (relative
frequencies) of the symbols are stored. For example, Figure 8.2 shows the first
five positions of the weighted sequence that corresponds to the alignment shown in
Figure 8.1.

Alternatively, weighted sequences can be represented by sequence logos [39]. The
latter constitute graphical representations of weighted sequences in the following
manner: first, the symbols occurring at each position are drawn with size proportional
to their relative frequency for that particular position, and second, the overall height
of a column is drawn in proportion to the conservation at that position. Figure 8.3
shows the first five positions of the logo of our usual example, drawn with the web
tool weblogo [16].

In this chapter, we review existing algorithms to manipulate and efficiently extract
information from weighted sequences. More specifically, after formally introducing
the notions used throughout the chapter (Section 8.2), we study the problems of in-
dexing weighted sequences (Section 8.3), performing pattern matching (Section 8.4),

! Also known as sequence profiles, position weight matrices (PWM:s), position frequency matrices (PFM),
or position specific score matrices (PSSM).
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locating repetitive elements (Section 8.6), and discovering motifs (Section 8.7).
Finally, in Section 8.8 we conclude the chapter and describe open algorithmic prob-
lems on weighted sequences that still need to be addressed.

In all cases examined in this chapter, we assume that the main sequence, the “text,”
as we call it, is a weighted sequence and the pattern, or the repetitive elements or
motifs that are extracted, are regular (nonweighted) strings. Algorithmic problems
similar to the ones studied here, but where the pattern is itself a weighted sequence
and the text is either weighted or not is also interesting both algorithmically and in
terms of their applications in bioinformatics but are beyond the scope of this chapter.
For a review of such algorithms, the reader may refer to [37].

8.2 PRELIMINARIES

8.2.1 Strings

An alphabet is a nonempty finite set of symbols ¥ = {ay, ..., a,}. The size of
%, denoted by |X|, is the number of distinct symbols in X, (i.e., o). A string2
x = x[1]...x[n] over an alphabet ¥ is a sequence of zero or more symbols
x[i] € . The string that contains zero symbols is known as the empty string and
is denoted by &. The set of all strings over an alphabet X is denoted by X*. The
length of a string x = x[1]...x[n], denoted by |x|, is the number of symbols in
x (i.e., n).

A string y is a substring (or a factor) of a string x if and only if strings u, v € *
exist such that x = uyv. Similarly, y is said to be a prefix of x if and only if x = yv,
and y is said to be a suffix of x if and only if x = uy. y is called a subsequence of x
if y is obtained by deleting zero or more symbols at any positions from x.

Let x =x[1]...x[n] and y = y[1]...y[m]; x is said to overlap with y by i
symbols if a suffix of x equals a prefix of y, x[n —i + 1l..n] = y[l..i], for i €
1 -.min(n, m).

A string y = y[1]...y[m] (m > 0) is said to be a repetition in a string x =
x[1]...x[n] if there are r > 2 distinct positions ji, jo,...,jr € 1l...n —m +
1 such that x[j,...j,+m —1] =y, for all g € 1...r. Moreover, if there are
qi,q2,---,qs €1.r, g1 < g2 < ... < g, suchthat j, = j, , +m,foralll € l.s,
then x[ j,, .. jq, +m — 1]is called a tandem repeat or a run and can be written in short
X[jg o Jg, +m — 1] = y°.

A substring y of a string x is called a period of x if x = y*y’, where k > 1 and
y' is a (possibly empty) prefix of y.> The shortest period of x is called the period
of x.

2Where it is not clear from the context, we will refer to strings as solid (or regular) strings to emphasize
that they are not weighted sequences (see Section 8.2.2).

3Note that the usual definition of the period of a string refers to the length of the string y, rather than y
itself. We prefer this definition here, however, because we will be interested in the string itself rather than
its length. Although, for solid strings, the period string can be deduced from the period length, in weighted
sequences this is not the case.
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8.2.2 Weighted Sequences

A weighted sequence is a sequence in which each position, instead of consisting of a
single symbol as in (solid) strings, it contains several symbols, each one associated
with a weight. Formally, for alphabet ¥ = {a;, a», ..., a,}, a weighted sequence
w = w[l]...w[n] over X is a sequence of vectors of size o x 1, such that

mi(ar)

wi(az)
wli] = ) fori € 1..n

7i(as)

where 7;(ay,) represents the weight (or score) of the symbol a;,, h € 1..0 at position i
of w. Because weighted sequences in most cases are used to represent a set of aligned
sequences, the weight associated with each symbol represents the relative frequency
(or, in other words, the probability) of occurrence of the symbol at that particular
position. Thus, for every position i € 1..n and every symbol a;, € X,

mi(ay) € 0..1 and Zni(ah) =1
h=1

The previous definition suggests that a weighted sequence can be viewed as a
o X n matrix, where columns represent the positions, i € 1...n, of the weighted
sequence, and rows represent the symbols in X. For this reason, a weighted sequence
often is called a position weight matrix.*

For example, consider ¥ = {A, C, G, T}. Then the matrix
1 2 3 4 5 6

0305 0255 0.004 040, 0805 0.004

0.00c 025 1.00c 020c 0.05¢ 0.50¢

Y=1020g 050 000 020g 0.10g 0.00g @1

0.50r 0.00p 0.00p 0207 0.057 0.507

represents a weighted sequence of length 6. Note that, for clarity, next to each prob-
ability, the symbol that corresponds to that probability is written. At position 1, the
probability of A is 30%, C is 0%, G is 20%, and T is 50%.

A symbol a is said to occur or match at position i of a weighted sequence
w = w[l]...w[n] if and only if m;(a) > 0. A string y = y[1]...y[m] occurs (or
matches) at position i of a weighted sequence w = w[l]...w[n] if and only if,
for all j € 1...m, y[j] occurs at position w[i + j — 1]; that is, if and only if

4When the weighted sequence is sparse, containing only a few symbols per position, storing a o x 1
vector for each position is not practical. In such cases, each position can be represented by a set of pairs
of the form (a, m;(a)), thus storing only the symbols that have nonzero probability.
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it j—1(¥[j1) > 0, for all j € 1...m. We also say that y matches w at position i
or that y is a factor of w at position i. For example, y = ACTA occurs in the weighted
sequence w defined earlier, at position 2 because 7(A) = 0.25 > 0, 73(C) = 1 > 0,
m4(T) = 0.2 > 0, and 7r5(A) = 0.8 > 0. If the string y occurs at position 1 of w, then
it is called a prefix of w, whereas if it occurs at position n — m + 1 (thus ending at
position n), then it is called a suffix.

For every occurrence of the string y in w, we define the probability (or
weight/score) of that occurrence as follows:

Mi(y) = [ [ i1 GLiD

j=1
For instance, for the weighted sequence (1.1)
IT(ACTA) =0.25 x 1 x 0.2 x 0.8 = 0.04

If we interpret the m;’s as scores, rather than probabilities, then other
matching measures may become interesting. For example, we could define the
matching weight as the maximum of the weights of the individual symbols,
maxjei_m{7i+j—1(y[jD}, oras theirsum ;. {miy;—1(Y[jD}-

The computation of the weights of the matches plays an important role in distin-
guishing good, valid, matches from random ones. For this reason, algorithms dealing
with weighted sequences normally require the existence of a threshold probability &,
and any matches with a probability less than k are discarded.

8.3 INDEXING

The notion of indexing refers to preprocessing (usually large) input sequences to
speed up queries that will follow, like pattern matching or finding repetitions. In this
section, we present two indexing data structures, the weighted suffix tree (WST) and
the property suffix tree (PST), which both index maximal solid factors of a weighted
sequence. The great advantage of using such data structures is that they allow various
existing algorithms on solid strings to be applied transparently (or almost transpar-
ently) on weighted sequences.

8.3.1 Weighted Suffix Tree

The weighted suffix tree was introduced by Iliopoulos er al. [22, 23] as an effi-
cient data structure for computing different types of repetitions and regularities in
weighted sequences, whereas in [29], the authors extended its use to other applica-
tions, such as pattern matching and motif extraction.

For solid strings, the suffix tree is one of the most fundamental data structures.
Simply put, the suffix tree of a string is a compact trie of all suffixes of the string.
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Weiner [45] and McCreight [32] presented off-line linear-time algorithms to con-
struct the suffix tree, whereas more recently Ukkonen [43] devised an online linear-
time algorithm. For a given string x, the suffix tree is constructed on x$, where $ is
a unique symbol not occurring in x, to ensure that each suffix is associated with a
(unique) leaf of the suffix tree. It is clear that the number of suffixes in a string and
thus the number of leaves in the suffix tree is linear.

On the contrary, the number of (solid) suffixes in a weighted sequence can be in
the worst case exponential (|X|" for a weighted sequence of length 7), and thus, a
suffix tree containing all the suffixes is impractical here. However, as discussed in
Section 8.2.2, we hardly ever are interested in factors of a weighted sequence with
very little probability of occurrence, and to accommodate this, we normally are given
a cut-off probability k. Consequently, the weighted suffix tree need not store suffixes
or factors with probability less than k.

Let w = w[1]...w[n] be a weighted sequence and let WST(w) denote its
weighted suffix tree. For every position i € 1..n of w, a set &} is constructed that
contains for every (solid) suffix that starts at position w[i], the longest prefix of it
that has a probability greater than or equal to k; let X; ; denote the j-th suffix in
arbitrary ordering. A leaf v of WST(w) is labelled with index i if and only if a pre-
fix exists of one of the suffixes starting at position i, say X; ;, whose probability is
greater than or equal to k. Notice that in contrast to regular suffix trees, a leaf of
the WST does not necessarily correspond to a suffix but rather to the longest prefix
of the particular suffix whose probability is greater than or equal to k. Interestingly,
in [29], it was proven that the size of X; is bounded by O(|%|"°¢*/ 10g(kkfll)), which is
a constant (considering ¥ and k as constants).

Figure 8.4 shows the weighted suffix tree of the weighted sequence

| 2 3 4 5 6 7 8 0 10 "
Ip O0p O0p Op 054 O0p O0p 055 0p 0p Op
Oc 1¢ O Oc 05¢ Oc 1¢ 03¢ Oc O¢ Oc
Og Ogc O Og 00 O Og 00g Og Og O¢g
Or O 1 1t 00r It O 027 17 17 IT

with cut-off probability k = 0.25. Notice that, for instance, the suffix ATCCTTT, start-
ing at position 5 is not stored in the WST because its probability is 0.15.
The weighted suffix tree can be built in linear time in the following stages [29]:

Colouring. The weighted sequence is scanned, and all positions are marked with a
color according to the following criteria’:

® A position i is marked as black, if w;(a) < 1 — k for all @ € X; these positions
are called branching positions because more than one symbol occurring at this
position may have probability k or more.

SThere is an implicit assumption that k < 0.5 here; when k > 0.5 the coloring process is even simpler as
there will be no branching positions.
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X141 = ACTTATCATTTS,

Xi12 = ACTTCTCATTTS,
Xz21 = CTTATCATTTS,
X2y = CTTCTCATTTS,
Xoi= ATTTS
Xga= CITT$
Xop= TITS
Xior= TT%
Xua= TS

Figure 8.4 Example of a weighted suffix tree [29].

* A position i is marked as gray, if one a € ¥ exists such that 7;(a) > 1 —k;
in these positions, although several symbols occur, only one of them eventually
“survives” because only one symbol can have a probability greater than or equal
to k and thus can contribute to a substring with a probability of at least k.

* A position i is marked as white, if there exists one a € X such that ;(a) = 1;
these are called solid positions, as they contain only one symbol.

A list B of all black positions is maintained in increasing order of i.

Generation. In this stage, all substrings of w with a probability of at least k are
generated. For every position i € 1...n, alist of substrings starting from i is main-
tained; each substring is associated with two probability values—a value 7/, which is
the actual probability of the particular substring, and a temporary value 7", which is
computed by considering all grey positions as white (thus ignoring the probabilities
of the gray symbols). The idea at this stage is for every position i to extend the list of
substrings generated in the previous position by adding a single symbol at their end
every time a white or grey position is met and by creating new substrings every time
a black position is met. The generation of new substrings stops whenever a black
position is met and the probability " is less than k. Notice that the actual substrings
may be shorter, as 77" may have reached the k limit earlier.

Construction. All substrings generated in the previous stage now are used to build
a generalized suffix tree. As explained earlier, some substrings generated may be
longer than the actual substrings to be inserted in the WST because grey positions
were considered as white. To correct this, the substrings that are actually longer are
pruned to their correct size in the suffix tree.
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The weighted suffix tree has various applications, among which are pattern match-
ing, finding repetitions and covers, computing the longest common substring, and
extracting motifs, as will be shown in the following sections.

8.3.2 Property Suffix Tree

Amir et al. [3,4] recently devised the property suffix tree (PST), an indexing data
structure for property matching on solid strings and showed that it can be built on
weighted sequences, too after some preprocessing.

A property of a string x = x[1]...x[n] is a set of intervals

P = {(sn, flsn, fn € L.nand s, < f}

In the pattern matching problem, a property can be used to limit the matches of the
pattern, only to those occurring within the intervals of the given property. Formally,
givenatextx = x[1]...x[n] and apattern y = y[1]... y[m], y matches x[i..j] with
property P if y matches x[i..j] and (s;, f) € P exists such thati > s, and j < f;,.

Before describing the PST, a few definitions [4] are in place. For a position i of
a string x = x[1]...x[n], let end (i) denote the largest f;, such that (s, f,) € P
and i € sy ... fr; end(i) = NIL if no such f, exists. Consider the suffix tree of
x, ST(x), and for a node u of ST(x), let Sf denote the maximal set of locations
{i1,..., i} ©{1,...,n} such that, for every i; € Sf, the following two conditions
hold: (i) the leaf of ST(x) that corresponds to the suffix i is a descendant of u, and (ii)
if end(i;) # NIL, then end(i;) — i; > [label(u)|, where label(x) denotes the label
on the path from the root to u. That is, for every node u, a list is maintained of all
suffixes prefixed by label(x) that occur within an interval large enough to fit u. If v
is the parent node of u in ST(x), then it can be established easily that SZ; C Sf VIf
leaf(i) denotes the leaf node of ST(x) that corresponds to x[i..n], then the path from
the root to leaf(i) can be split into two subpaths: (i) the path consisting of all nodes
u for which i € SZ), and (ii) the path of all nodes u for which i ¢ Sf . Finally, if v
is the deepest node in the first path, then let loc(i) either denote the node v, when
end(i) — i = |label(v)|] — 1 or end(i) = NIL, or otherwise loc(i) denotes the edge
that connects the two paths.

The PST is then the suffix tree of x modified so that every suffix x[i...n] is
moved up to loc(7). Initially, a normal suffix tree of x is constructed [32,43,45]. Then,
for every suffix x[i ...n], loc(i) is identified, and for every node v (for every edge
e), a list suf(v) (suf(e)) is maintained of all positions i with loc(i) = v (loc(i) = e).
Then ST(x) is scanned and each node u is marked if either suf(x) is not empty or
u is connected to an edge e with suf(e) nonempty, or u is an ancestor of a marked
node. All nodes that are not marked at the end of this process are deleted from the
tree, and nonbranching paths in the remaining tree are compressed. This process can
be performed in O(nlog |X| + nloglogn) time.

The PST can be applied to weighted sequences as follows. The weighted se-
quence w = w[l]...w[n]is preprocessed in a similar manner as in the construction
of the WST (Section 8.3.1); positions are marked as solid (white), leading (grey), and
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branching (black). Then, leading positions are considered as solid, and maximal (in
length) factors with probability greater than or equal to k are identified. The number
of such factors in w, as well as their total length is proved again in [4] to be linear.
Finally, all these (extended) maximal factors are concatenated into one solid string,
and the probability of each is maintained separately. Then a PST can be built on this
solid string with property P defined on intervals (s;, f,) such that the probability
of the factor starting at position s, and ending at fj is at least k, and this factor is
maximal (extending to the left or right would yield probability less than k). Because
the total length of the extended factors is linear, the PST of a weighted sequence can
be built in O(nlog|X| + nloglogn) time.

It should be noted that, in the following sections, whenever we demonstrate how
the WST can be used to solve a problem in weighted sequences, the PST can be
applied equally well.

8.4 PATTERN MATCHING

The pattern matching problem, in its simplest form, can be defined as the problem of
locating all occurrences of a given string, the pattern, within a usually longer string,
the text. Numerous variants of this problem exist, such as allowing gaps between
the symbols, allowing do-not-care symbols in either the text or the pattern (or both),
and so on. For solid strings, there are literally hundreds of algorithms for all types of
pattern matching (see, for instance, [15,21,41] for an overview).

The problem of exact pattern matching on weighted sequences is defined formally
as follows: given a string y = y[1]... y[m] (the pattern), a weighted sequence w =
w[l]...w[n] (the text), and a constant k € 0..1, compute the set, Z, of positions in
w where y occurs with a probability of at least k

T={iel--n L) >k}

8.4.1 Pattern Matching Using the Weighted Suffix Tree

Similar to the traditional suffix trees, the weighted suffix tree can be used to perform
pattern matching on weighted sequences. The algorithm is simple; first the WST is
built from the weighted sequence w for the given threshold probability k. Then, start-
ing from the root of the WST, the pattern y is spelt out following the corresponding
path on the tree. If a leaf is reached before the pattern has been spelt out completely,
then there is no occurrence of y in w with probability at least k. On the other hand, if
a node v is reached, then there is an occurrence of y in all positions i that are stored
in the leaves in the subtree rooted at v (or v itself if v is a leaf). The running time of
this algorithm is O(n) for preprocessing the weighted sequence and is O(m + |Z])
for locating occurrences of the pattern, where |Z| denotes the number of occurrences
of y in w with probability at least k.

Clearly, this algorithm is beneficial when the same weighted sequence is searched
repeatedly for different patterns. However, it must be noted that the time to construct
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and the size of the WST is heavily based on the choice of the threshold probability
k; it is crucial, therefore, that k is a small constant. Otherwise, the time and space
cost is prohibitive. Moreover, if the value of k varies across different queries, then a
new WST must be built for each such k, making this algorithm impractical for these
cases.

8.4.2 Pattern Matching Using Match Counts

In this section, we present an alternative algorithm [11] for the pattern matching
problem, which although slower than the previous one, has the advantage of not
depending on the value of k. The algorithm operates in two stages; it first locates all
positions of w that match y, regardless of their probability; then, the probabilities of
the matches are computed, and positions i with IT;(y) < k are discarded.

At the heart of the algorithm lies the match count problem [21]. For a weighted
sequence w = w[l]...w[n] and a string y = y[1]... y[m], the match count prob-
lem can be defined as follows: compute vector M(w, y), such that M(w, y)[i], for
i € 1...n,isthe number of symbols of y that match with symbols in w, when y[1] is
aligned with w(i]. Clearly, the positions, i, for which M (w, y)[i] = |y| are precisely
the positions where y matches w.

The problem can be tackled by considering | X | subproblems, one for each symbol
a € X. Let M,(w, y) be a vector such that M,(w, y)[i] denotes the number of as
of w that match with as of y, when y[1] is aligned with w[i], fori € 1...n. It is
straightforward to see that

M(w,y) =Y M(w,y)

YaeX

To compute each M, (w, y), two bit vectors, y, and w,, are constructed in which the
i-th position is 1 if a occurs in y[i] and w[i], respectively, and O otherwise. Then,
the number of matches for the symbol a, when y[1] is aligned with position w[i] can
be computed as follows:

M, (w, y)[i] Z Jl x weli +j —1]

where w,[i + j] is considered to be zero for all i 4+ j > n. But this sum of products
is nothing more than the vector correlation of y, and w, and thus can be computed
in O(nlogm) time using the fast fourier transform (FFT) [13].

At the second stage, the probabilities of the occurrences are computed, using an
algorithm similar to that of stage one and the observation that

Mi(y) = [ [ /0101 = kif and only if Y log(miyj-1(y[j]) > logk
j=1 j=1
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Specifically, we construct new vectors y, and W, such that

v J1 ifyljl=a A ‘
Yalj1= {0 otherwise Wq(i] = log(mi(a))

forallj e 1...mandi € 1...n.Then, similarly to stage one, the sums of the proba-
bilities of the symbols of y for each possible alignment of y with w can be computed
by performing |X| FFTs as follows:

m

Mw,y)= " Miw,y) where M,(w, y)li] Z (1 X @ali +j — 1]

YaeX j=1

The vectors M(w, y) and M(w, y) can be used in conjunction to identify all oc-
currences of y in w with a probability greater than or equal to k. The running time
of this algorithm is O(|X|n logm) because at each stage, | X | vector correlations are
performed with the use of fast fourier transform. If the number of occurrences iden-
tified in stage one is less than (n logm)/m, then stage two can be skipped, and the
probabilities can be computed straightforwardly in O(nlogm) time (thus avoiding
| 2| FFTs, which are costly operations).

8.4.3 Pattern Matching with Gaps

This section is concerned with the problem of pattern matching with gaps—
allowing gaps between occurrences of successive symbols of the pattern y in the
weighted sequence w. Formally, given a string y = y[1]... y[m], a weighted se-
quence w = w[l]...w[n], a constant k € 0...1, and a constant «, the «-bounded
pattern matching with gaps problem is to find all positions i; € 1...n such that po-
sitions i, i3, ..., i,; exist for which

. n,l(y[j]) >0, foralljel...m

o [Timim, LD = &
*ij—ij1—1=<aforallje2...m

For example, let y = TGA,
1

3 4 5 6

030, 0255 0.004 040, 0804 0.004
000c 025 1.00c 020c 0.05c 0.50¢
020 050z 0.00g 020 0.10g 0.00g
0.50r 0.00F 0.00p7 0207 0057 0.507

k = 0.05,and ¢ = 1. Then y occurs in w at position 1, with a-bounded gaps, because
IT1(y) = m1(T) X m(G) X m4(A) =0.5x0.5%x04=0.1 >k

Notice the gap (of size 1) between the occurrences of y[2] and y[3].
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The pattern matching with gaps problem is tackled in [11]. The idea behind this
algorithm is to use dynamic programming to locate continuously increasing prefixes
of y in w, allowing gaps between the occurrences of the symbols of y in w. Two
dynamic programming tables are used, one for finding the occurrences and one for
computing the probabilities of these occurrences. As it is more natural for this al-
gorithm, it is reporting the ending positions of occurrences rather than the starting
positions. Moreover, notice that because of the gaps, it is possible that two or more
occurrences of y end at the same position i in w. The algorithm is only considering
for each position i in w, at most one occurrence of y ending at i; if two or more such
occurrences exist, then only the one with the maximum probability will be consid-
ered, provided that its probability is larger than or equal to k.

Let D be an (n + 1) x (m + 1) matrix. D[i, j],fori e l...nand je1...m,
indicates whether there is an occurrence of y[1... j] ending at position i of w, al-
lowing gaps of size at most « and with probability larger than or equal to k. In
particular, D[i, j] will contain £, if £ is the last (rightmost) position of w where the
j-th prefix of y ends, with adequate probability and without violating the gap in-
variant; D[i, j] = —1 otherwise. The base conditions for D are D[i, 0] =i, for all
i€0...n,and D[O, j]=—1foralljel...m.

The value of D[i, j],fori e 1...nand j € 1...m, is determined by the follow-
ing three cases:

1. y[j] matches w[i] and the previous prefix y[1...j — 1] ends at a position
i’ <i of wsuch that i —i’ — 1 < «. In this case, the gap between y[j — 1]
and y[j] (if there was such a gap) is closed. Note that, for this case to be true,
one more condition has to be satisfied: the probability of y[1 ... j] must be at
least k. We defer the discussion of the probabilities until later in this section.

2. There is no occurrence of y[j] in w[i], but the same prefix y[1... j] ends at
some position i’ < i such that i — i’ < «, and thus, the gap between y[;] and
y[j + 1] can be extended (or opened, if it did not exist already).

3. None of the aforementioned conditions is true, and therefore, there cannot be
amatch of y[1... j] ending at position i.

These three cases are summarized in the following recurrence relation:

if y[j] occurs in w[i] and
. Dli—1,j—-1]1=0 and
I i—-Dli—1,j—1]-1<a and
Dli, j1= max(L[i —1,j = 1) -m([jD = k (8.2)
. ., if previous case does not hold and
D=Ll pli—1.j1-1<a
-1, otherwise

where L[i, j] denotes the (maximum) probability of y[1... j] ending at position i
of w.
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Recall that more than one occurrence of y[1..j] might exist ending at (or before)
position i of w. Consequently, each L[i, j] should be a data structure able to store
at most « probabilities, I1; o1, [1;_g40, ..., I1;, where I, hei —a+1...1,
denotes the maximum probability among the probabilities of the occurrences of
y[1...j] that end precisely at position & (and not before), provided that this prob-
ability is greater than or equal to the cut-off probability k. Moreover, two adjacent
cells L[i — 1, j] and L[i, j] should have the same values with the following excep-
tions:

® The first element of L[i — 1, j], the maximum probability of the occurrences
ending at position i — « (if any such occurrence exists), should not appear in
L[i, j] because this element is no longer satisfying the gap invariant.

* A new element, the maximum probability of the occurrences ending at posi-
tion i (if any such occurrence exists), must be inserted into L[, j]. This can be
computed by multiplying 7;(y[j]) with the maximum probability of the occur-
rences of y[1...j — 1] ending at (or before) position i — 1.

Following these observations on the properties of L, it was established in [11]
that if no trace-back of the dynamic programming is required, then a column-wise
computation of L (and D) would allow a single data structure, L, to be used per
column, and so, at iteration i of the algorithm, L is simply updated from that of
iteration i — 1. In this case, a heap-ordered queue [18] can be used for L, which
supports the update of L from one iteration to the next in constant time.

If, on the other hand, trace-back is required, to identify the actual occurrences of
y in w, then at iteration i (for a given j) the whole list L[i — 1, j] must be copied
into L[, j], and possibly, its head and tail must be updated as explained. In this case,
a simplified version of a persistent list [26] can be used, which supports amortized
constant time of the computation of L[i, j] from L[i — 1, j].

The running time of the algorithm is O(mn), assuming that no trace-back is re-
quired, because there are mn iterations, and at each iteration (i, j), the computation
of D[i, j] and the update of L[i, j] (from L[i — 1, j]) can be performed in constant
time.

8.4.4 Pattern Matching with Swaps

A swap in a string is the interchange of two symbols appearing in consecutive po-
sitions. A string y’ is a swapped version of a string y = y[1]... y[m] if and only if
y’ is derived from y by interchanging some symbols appearing in consecutive posi-
tions in y (y'[j]1 = y[j + 1] and y’[j + 1] = y[j]), where each position j of y can
participate in at most one swap operation. The pattern matching with swaps problem
is that of locating all positions i in a weighted sequence w = w[1]...w[n] in which
any swapped version of the pattern y occurs with probability k or more.

This problem has been addressed in [47] by combining the techniques presented
in [22,23,29] for building the weighted suffix tree with the algorithms presented
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in [5] for solving the swap-matching problem in solid strings. In particular, first all
(solid) factors of w with a probability of at least k are identified, using the steps
described in Section 8.3.1. The number of such factors is proven to be O(n) for a
fixed value of k. Next these factors are concatenated to a long (solid) string x, and
the starting positions (within this new string) of the factors are stored in a separate
array. In this way, both the pattern, y, and the new text, x, are solid strings, and
therefore, the overlap matching [5] technique can be applied to find all matches with
swaps.

The preprocessing step of extracting the maximal factors takes O(n) time. There-
fore, the running time of this algorithm is dominated by the overlap match algorithm,
which takes O(nlogm logo), where o = min(m, | X|).

8.5 APPROXIMATE PATTERN MATCHING

Approximate pattern matching refers to locating factors of a weighted sequence w
that are similar, rather than identical, to a given pattern y. The notion of similarity can
be defined via a distance function, which computes how dissimilar two strings are;
the larger the distance, the smaller the similarity. The distance between two strings
can be viewed as the number of errors that supposedly transformed one string to the
other. In many cases, a maximum distance d is provided as input to the problem so
that only approximate occurrences with distance at most d are located.

Amir et al. [6] devised algorithms for the approximate pattern matching problem
on weighted sequences under the hamming distance [46] and briefly addressed the
problem under the edit distance [28]. Because of space limitations, we only cover
the former here.

8.5.1 Hamming Distance

The Hamming distance between two equal-length® strings is defined as the minimum
number of substitutions that are necessary to transform one string into the other.
In solid strings, the Hamming distance is symmetric in the sense that it does not
make a difference whether the error is assumed to occur in the text or in the pattern.
However, when comparing a solid string with a weighted sequence this is not the
case; depending on whether the errors are assumed to occur in the weighted sequence
or in the string, the definition of the distance function differs, with consequences for
the approximate pattern matching algorithms. Here, both cases are examined.

8.5.1.1 Hamming Distance when Errors Occur in the Text. Consider a
string y = y[1] ... y[m] and an equal-length weighted sequence w = w[l]...w[m].
The Hamming distance, under the assumption that the string is error-free, and thus,
all errors occur in the weighted sequence, can be defined as the minimum number of
positions in w that must be substituted by a single symbol (i.e., with probability 1)

9The Hamming distance is defined only on strings of equal length.
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so that that y matches w with a probability of at least k. From this definition, it is
clear that if one substitutes at most m positions in w with the corresponding symbols
from y, then y will match w regardless of how close to 1 k is.

The approximate pattern matching problem when using the Hamming distance
with errors in the weighted sequence can be defined as follows: given a weighted
sequence w = w[l]...w[n], a string y = y[1]...y[m] and a constant k € 0...1,
identify for each position i € 1..n — m + 1 of w the minimum number of errors, d;,
that must be substituted in w for y to match with the substring w[i ...i +m — 1] of
w with a probability greater than or equal to k.

The first step to solve this problem is to transform the input as follows:

e A string w' = w'[1]...w'[|Z|n] of nonpositive integers is constructed from
w, where |X| consecutive positions of x correspond to one position of w as
follows:

w[(i — D|Z| + k] = logm(ay), forallh € 1.2

In simple words, for every position i of w, the logarithms of the probabilities
of all symbols are written one after the other

e Astring y) = y'[1]...y'[|X|m] of bits is constructed from y as follows:

1, ifylil=ay
i = DIZ|+h] =
Vi JIZ|+h] 0, otherwise

¢ A new threshold probability is defined £’ = log k

With this transformation in place, the approximate pattern matching prob-
lem can be reduced to the ignored mask bits problem, which is defined as fol-
lows: given a string w’ = w'[1]...w'[|X|n] of nonpositive integers, a string y’ =
y'[1]...y'[|Z|m] of bits and a nonpositive constant k', find for every location
i’ € 1..|Z|n the minimum number, d;/, of bits in y’ that must change from 1 to 0
so that 2’7:1 w'[i” 4+ j1y'[j] = k’. Then the minimum distance, d;, for the ith posi-
tion of the original sequence w is simply d; = [d;/ /| X]].

The algorithm that solves the ignored mask bits problem [6] uses divide-and-
conquer to split the input into subproblems that can be tackled by two special cases
(1) the bounded alphabet case in which the size of the alphabet of w’ is bounded, and
(ii) the bounded relevant numbers case in which the number of elements in w’ that
are greater than k' is bounded. The former problem can be solved in O(rnlogm)
time, where r is the upper bound on the size of the alphabet, and the latter in O(ns)
time, where s is the maximum number of elements larger than k’ in any substring
of w’ of length m. The divide-and-conquer algorithm sorts the text elements and
then splits them into r blocks of size at most 2| X|* each. In this way, the bounded
alphabet algorithm and the bounded relevant numbers algorithm are applied on each



8.5 APPROXIMATE PATTERN MATCHING 159
block. To achieve optimal time, the number of blocks, r, is proven [6] to be

_[m om
~ Vlogm  J/mlogm

which yields overall running time

r

O(rnlogm + nﬁ) = O(ny/mlogm)
r

8.5.1.2 Hamming Distance when Errors Occur in the Pattern. The Ham-
ming distance between y and w, when errors are assumed to occur in y, can be
defined as the minimum number of symbols in y that must be substituted by other
symbols for y to match w with probability at least k. In contrast to the previous def-
inition of the Hamming distance, here it might be the case that y cannot match w
even if all m symbols of y are substituted.

Let y and w be of length m and consider the probability of y occurring at w[1] as
less than k

M(y) = [[=0LD <k

Jj=1

The aim is to substitute as few symbols from y as possible, until IT;(y) > k. Clearly,
if a symbol y[ /] is to be substituted, then it will be replaced by the symbol with the
maximum probability at position j of w (i.e., maxlhzzll(nj (ap))). To find the minimum
number of such positions j to be substituted, one has to order the positions according
to the gain each of them offers to the overall probability IT;(y). The gain for substi-
tuting y[j] is the ratio of the maximum probability at position j of w divided by the
probability of the symbol being replaced

maxiil1 (7w j(ap))

7O ®
Consequently, it suffices to sort the input sequences in decreasing order of their ra-
tio (8.3) and keep substituting symbols from y in this order until IT;(y) > k. As
highlighted in [6], substituting a symbol y[j] with a new symbol a is equivalent to
substituting, at position j, in the weighted sequence the probability 7 ;(y[j]) with
wi(a).

The algorithm for solving the approximate pattern matching problem, under
the Hamming distance function with errors in the pattern, sorts the weighted se-

m

quence according to the ratio (8.3) and then splits it into O( \/1_) blocks of size
mlogm

O(y/mlogm), similar to the algorithm that considers errors in the text. Then, for
each location i, the probabilities are computed O(—=2—) times as follows: In the

A/ mlogm
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first iteration, the probabilities are computed without any substitutions in the text; in
the second iteration, the probabilities are computed having substituted the element
with the highest gain ratio in each group; ...; in the j-th iteration, the probabilities
are computed having substituted the j — 1 elements with the highest gain ratio. Each
calculation can be done in O(n log m) time using FFT; thus, the overall running time

is O(ny/mlogm).

8.6 REPETITIONS, COVERS, AND TANDEM REPEATS

In this section, we examine algorithms for locating repetitive elements in weighted
sequences—that is, factors that occur two or more times within a weighted sequence.
Again, various definitions are adopted according to the underlying assumptions on
what constitutes a repetition.

Consider two occurrences of a factor y = y[1]... y[m] in a weighted sequence
w = w[l1]...w[n], such that the distance between the two occurrences is less than
m; in contrast to solid strings, here the two occurrences do not necessarily overlap
with each other. The following example illustrates this:

1 2 3 4 5 6

0304 0255 0204 0404 0.80; 0.00,

0.00c 025¢ 0.80¢ 020c 020c 0.50¢

Y=1020 050 000z 020 000z 0.00g (84)

0.50p 0.00p 0.007 0207 0.00r 0.507

y = ACC occurs at positions 1 and 2; however, the two occurrences do not overlap
with each other: Rather, they are making use of different symbols for some of the
common positions; specifically at position 2, the first occurrence is using C, whereas
the second uses A.

Depending on what the weighted sequence, or the repetitions themselves, repre-
sent, this “anomaly”” might or might not be acceptable. For this reason, the following
types of repetitions were defined in [9]:

* Simple repetitions are repetitions in which “borderless” overlaps are allowed.

o Strict repetitions introduce the extra restriction that distinct occurrences should
be using the same symbol for every common position in w.

The same distinction applies to covers. Recall that a cover of length £ is a repeti-
tion whose consecutive occurrences are no more that £ distance from each other, and
the first (last) occurrence starts (ends) at the first (last) position of w (thus “covering”
w). Therefore, simple and strict covers can be defined similarly. For instance, in the
previous weighted sequence, the string ACC is a simple cover (occurs at positions 1,
2, and 4) whereas ACAC is a strict cover (occurs at positions 1 and 3) and the two
occurrences do overlap with each other.
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In this section, we present the algorithms for locating repetitions in a weighted
sequence. Currently, the only linear time algorithm is based on the use of the
weighted suffix tree (see Section 8.6.1). However, because of the inherent draw-
backs associated with the WST, such as the large size and the dependence on k,
alternative algorithms have been discovered, which, although they do not achieve
the optimal asymptotic running time, in practice they likely to perform better;
these are presented in Sections 8.6.2-8.6.5. These algorithms are not perfect ei-
ther, their main drawback being that they compute repetitions of prespecified
length only.

8.6.1 Finding Simple Repetitions with the Weighted Suffix Tree

The asymptotically optimal running time for this problem was achieved by Iliopou-
los et al. [22], in which the authors used the weighted suffix tree [29] to find
the repetitions. The algorithm works as follows: once the WST of weighted se-
quence w = w[l1]...w[n] is built (see Section 8.3.1), it is traversed bottom-up, and
at each internal node v, the factors that are stored in the leaves under v are re-
ported. The number of factors in the WST is linear, and thus, the running time is
also linear.

8.6.2 Fixed-Length Simple Repetitions

The problem of finding all simple repetitions of a weighted sequence is defined as
follows: given a weighted sequence w = w[1]...w[n], a constant k € 0...1, and
an integer m € 1...n — 1 identify, for every length-m factor y that occurs at least
twice in w, the set Z, of positions where y occurs in w with a probability greater
than or equal to k.

Christodoulakis et al. [10, 12] devised an algorithm for this problem based on
ideas first presented in [27] for finding repetitions in solid strings. The idea is to
split the positions of the input sequence into equivalence classes; two positions that
belong to the same equivalence class contain the same factor of length m in which m
is a prespecified constant. Then, equivalence classes of factors of increasing length
are computed by combining equivalence classes for smaller factors that already have
been computed.

Formally, equivalence classes are defined as follows: Two positions i and j of
a weighted sequence w = w[l]...w([n] are m equivalent (m € 1...n and i, j €
1...n—m+1) (written i E,, j) if and only if at least one solid string y exists of
length m that occurs at both positions i and j with a probability greater than or equal
to k.

The relation E,,, is called an equivalence relation and is represented as a vector,
E,[1...n—m+ 1], of sets of integers; the set E,,[i] consists of the integers that
represent the equivalence classes of the factors of length m that start at position i and
have a probability of at least k.

When dealing with solid strings, every positioni € 1...n —m + 1 contains pre-
cisely one factor of length m. For weighted sequences, on the other hand, any position
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may contain more than one symbol; thus, more than one factor of length m can oc-
cur at the same position with probability greater than or equal to k. Consequently, a
single position i of a weighted sequence may belong to more than one equivalence
class.

To solve the problem of locating repeated substrings of length m over a weighted
sequence w, the algorithm proceeds as follows; it first computes the equivalence
relation E,:

1. Scan w to construct relation Ej.

2. Construct E,, from smaller equivalence relations that already have been com-
puted, using the principles of binary multiplication (binary decomposition of
d) (e.g., combine E| with itself to get E,, E, with itself to get E4, E4 with E|
to get Es, and so on).

Then, by a single scan through E,,, one can identify all equivalent positions and thus
all repetitions of length m.

The first step, constructing E1, is straightforward; scan w, and for each symbol at
position i € 1...n, insert into E;[i] the integer (equivalence class) that represents
this symbol. The second step, which is performed repeatedly and is used to construct
new equivalence relations from existing ones, is explained next.

Given two equivalence relations, E,,, and E,,,, m, < m, the relation E,,, where
m = m| + my, can be constructed using the following observation:

iE,j ifandonlyif {E, jandi+mE,,j+m (8.5)

To implement efficiently the construction of E,,, two sets of stacks are used:
P(l),..., P(en,) and Q(1), ..., O(ey,), where e,, and e,, represent the number
of distinct equivalence classes in E,, and E,,,, respectively.

1. Sort vector E,,, using the P-stacks: run through E,, , and for each equivalence
class y at each position i, push (i, 77;(y)) into P(y). This step sorts the positions
according to the equivalence classes of length m;.

2. Resort using the Q-stacks: pop each P(y) until it is empty. As posi-
tion (i,7;(y)) is popped from P(y), push (i, 7;(y)7jsm, (x)) onto Q(x),
x € E,,[i +m], provided that i +m; <n — (m; +my — 1) and m;(y) x
Tivm, (x) > k. That is, resort the positions of E,,, according to the factors of
length m, that occur m positions to the right.

3. Construct E,,: pop each Q-stack until empty. Let ¢ (initially set to 1) denote the
current equivalence class. As each (i, 7;(y)7;4m, (x)) is popped from a given
stack Q(x), store c in the set E,,[i]. c is incremented every time a new factor
y is popped out of Q(x) or if y is the first factor popped out of Q(x).

The process of combining two equivalence relations to build a larger one takes
O(n) time, provided that the input weighted sequence is drawn from a bounded-size
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alphabet. This is a consequence of the fact that the number of factors occurring at any
position with probability k£ or more is constant, as discussed in Section 8.3.1. Because
this process is repeated logm times, the overall running time of the algorithm is
O(nlogm).

8.6.3 Fixed-Length Strict Repetitions

Strict repetitions are similar to, but slightly more restricted than, their simple coun-
terparts. We now are looking for sets of positions such that no two occurrences of
the same factor occur in overlapping positions without the occurrences themselves
overlapping. Formally, given a weighted sequence w = w[l]...w[n], a constant
ke€0...1, and an integer m € 1...n — 1, identify for every length m simple rep-
etition y in w, a set Z), € Z, of positions in which y occurs in w with a probabil-
ity greater than or equal to k such that, for every pair of positions i, i € Z/,, either
li —i'| >morm — |j — j'| is the length of a border of y. )

To identify which occurrences of a simple repetition form a strict repetition, one
must discover whether any two occurrences of a factor use the same symbols at all
their overlapping positions (if any). This can be done by simply computing the bor-
ders of the factor under question and by checking whether the right-most occurrence
begins at a position that corresponds to a (right) border of the factor.

Consequently, the algorithm presented in Section 8.6.2, must be modified so
that, together with an equivalence relation E,,, a list F,, of all equivalence classes
and factors they correspond to are stored. Initially, the factor list F) of factors
of length 1 (single symbols) is built by a simple scan in w. Then, two equiv-
alence relations E,, and E,, are combined, and their factor lists F,, and F,,
are concatenated. Finally, once all simple repetitions are found, as in the algo-
rithm of Section 8.6.2, their occurrences are tested to see whether they over-
lap to identify strict repetitions. The running time of the updated algorithm is
O(nm), because now the border arrays [1] of O(n) factors of length m must be
computed.

8.6.4 Fixed-Length Tandem Repeats

The problem of finding tandem repeats in weighted sequences is defined as follows:
given a weighted sequence w = w[1]... w[n], aconstant k € 0...1, and an integer
m € 1...n — 1, identify for every length m simple repetition y in w, all sets Z§ " C I,
of posmons in which y occurs in w with probablhty greater than or equal to k such
that, for every pair of positions i, i’ € I;’ withi <i’,i' =i+ m.

The algorithms for simple repetitions (Section 8.6.2) can be extended easily to
locate tandem repeats of length m. The time consumed to construct E,, is O(n logm),
whereas scanning E,, to identify tandem repeats takes linear time, because there is a
constant number of factors for every position of w, and each is only accessed once.

In [24], a different algorithm was presented for the same problem, which was
based on Crochemore’s algorithm [14] for finding tandem repeats in solid strings.
However, this algorithm later was proved [10] to run in O(n?) time.
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8.6.5 Identifying Covers

It is straightforward to see that covers can be identified by checking whether the
occurrences of each repetition “cover” the whole of w. Therefore, to locate all length
m covers, it suffices to:

1. Find all length m repetitions, y, and the corresponding positions of occurrence,
Z,, using one of the algorithms presented in the previous sections

2. Identify which of these factors have an occurrence at position 1 of w and an-
other occurrence at position n — m + 1; all other factors can be discarded as
they certainly do not “cover” the whole of w

3. For each y selected scan Z, and check whether the distance between consecu-
tive occurrences of yj is always less than or equal to d

Steps 2 and 3 can be applied in O(n) time; thus, the overall running time is dominated
by the algorithm used in step 1 to locate the repetitions.

8.7 MOTIF DISCOVERY

In biological sequences, motifs are repeating factors in a sequence or set of sequences
that have some important biological role. Similar to repetitions, which we examined
in the previous section, the exact string of the motif is unknown at first; however,
other information about the motif is normally available, which helps distinguish mo-
tifs from other random repetitions. For instance, the minimum number of occurrences
of the motif in a sequence or set sequences might be known in advance, or the struc-
ture of the motif might be known. Moreover, often the repeated factors of a motif are
not identical, because of mutations or errors from the sequencing equipment.

8.7.1 Approximate Motifs in a Single Weighted Sequence

Tliopoulos et al. [25] considered the problem of locating approximate motifs in a
weighted sequence using the Hamming distance. More specifically, the problem they
addressed was to identify the factors (motifs), y, of a given weighted sequence w =
w[l1]...w[n] that have the following properties:

. lyl=m>2
2. The probability of occurrence of each approximate occurrence of y is at least
ke0...1

3. The Hamming distance between the identified motif y and its approximate
occurrences in w is at most e

4. There are at least g > 2 approximate occurrences of y in w, and no two occur-
rences overlap with each other

where m, q, e, and k are prespecified constants.
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The algorithm initially constructs the WST of w. Then, following a process sim-
ilar to that of [38], all motifs of length m are identified on the WST, starting from
length one and iteratively extending the current model by one symbol either with
a match or by considering a mismatch if the limit e already has not been reached.
The difference of this algorithm from that of [38] is that overlapping positions have
to be filtered out according to the last constraint set earlier.

Let L = {vy, va, ..., vy} denote the set of all internal nodes of the WST with
path label of length m. For each node v € L, a sorted list, v™ of all leaves under v is
maintained, using van Emde Boas trees [44]. Let L' = {v; , vj,, .. ., Vi, },L' € L,be
the set of nodes that constitute a candidate motif y (i.e., nodes whose label is within
distance e from y). The last property of the motif, to have at least g occurrences, can
be verified easily at this stage by simply summing the number of leaves under all
nodesin L', Y1 _, vl

Checking whether the occurrences overlap can be done as follows: scan the leaves
of all nodes in L’ to identify the one with the smallest position of occurrence, i; next,
find the first location, i’, such that i" > i 4 |y| 4 1; and so on, until at least g such
occurrences are identified.

Once the WST is constructed, building L and the associated lists v™ for all
nodes of L can be done in linear time because the lists are disjoint, and they con-
sist of integers in the range 1...n. The process of identifying nonoverlapping oc-
currences can be performed in O(q|L|loglogn) time because the lists are stored
as van Emde Boas trees. Consequently, the total running time of the algorithm is
OV, m)q loglogn), where V (e, m) is the number of motifs of length m with at
most ¢ Hamming distance errors (mismatches).

8.7.2 Approximate Common Motifs in a Set of Weighted Sequences

Generalizing the approximate motifs problem to more than one weighted se-
quence yields the following problem: given a set of weighted sequences W =
{wy, wy, ..., wy}, identify the motifs, y, that have the following properties:

L. lyl=m=>2

2. The probability of occurrence of each approximate occurrence of y is at least
ke0...1

3. The Hamming distance between the identified motif y and its approximate
occurrences in weighted sequences of W is at most e

4. Approximate occurrences of y occur in at least g > 2 distinct sequences
from W

where m, q, e, and k are prespecified constants.

The algorithm for this problem is very similar to that of Section 8.7.1. A general-
ized weighted suffix tree is constructed from the set of weighted sequences W, and
occurrences can be checked for whether they overlap in the same manner as in Sec-
tion 8.7.1. The main difference is the mechanism that is necessary here for checking
that the motif occurs in at least ¢ weighted sequences (condition 4). An integer array
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u, of length g is maintained for each node v to store the index i, of the weighted
sequence, w;, in which an occurrence of the candidate motif has been found. As
soon as this vector gets full, then ¢ occurrences have been found in distinct weighted
sequences and any other occurrences are ignored from this point on. The process of
filling these arrays is described next.

The suffix tree is traversed in a post-order manner. To compute the vector u, of
a node v, either of the following suffices (i) find a child, v’ of v whose vector u, is
already full, or (ii) merge the arrays of all children of v omitting repetitive entries.
Because any node v has at most |X| children, this process can be accomplished in
O(|Z]|q) time (or O(q), because |X| is a constant). Repeating the process for each
of the O(nN) nodes in the generalized WST, and for each of the V (e, m) motifs of
length m, the total running time becomes O(nNqV (e, m)).

8.8 CONCLUSIONS

Sequence alignment today is one of the major tools for identifying potential struc-
tural and/or functional similarities between DNA sequences. With the rapid growth
of data in the last 15 years, the importance of effectively storing representations
of this data and efficiently extracting information from them has become immense.
Weighted sequences were introduced to fulfill this role and are perhaps one of the
most advanced (in terms of the amount of information they hold) models for repre-
senting whole sets of aligned sequences.

In this chapter, we provided an overview of the most recent advances in the re-
search field of weighted sequences and more specifically in the cases in which the
text is weighted and the pattern, or the repetitions and motifs sought for, are solid
strings. We covered the problems of indexing, pattern matching (exact and approxi-
mate), repetition finding, and motif extraction. These problems have been the subject
of research for at least 30 years as far as solid strings are concerned but only recently
have received large attention for weighted sequences. Algorithmically, weighted se-
quences pose a great challenge as the existing, well-studied, algorithms for solid
strings rarely can be applied directly.

Despite the growing number of research outcomes on this field, still numerous
open problems need to be addressed. In the topic of indexing, for example, a more
space-efficient data structure would be beneficial, especially given the already large
size of weighted sequences (perhaps, a weighted suffix array to mimic its counter-
part in solid strings); of equal importance would be the ability for this data struc-
ture to be independent of the threshold probability or at least capable to get up-
dated dynamically every time the threshold changes. Similarly, in the field of pat-
tern matching, there is an endless list of possible definitions of a match, especially
if errors are permitted; it would be interesting to elaborate on the application of
other distance functions, such as the edit distance, for example, or even to devise
new distance functions more appropriate for the weighted nature of the weighted
sequences. Regarding repetitions and motif extraction, different applications de-
mand different models, and the ability to incorporate extra information regarding
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the structure of the repetitive elements helps distinguish significant sequences from
random ones.

Although most research on weighted sequences has focused on their biological

applications, it should be noted that model weighted sequences can fit easily into
other contexts too. Very recently, Makris ef al. [31] have used weighted suffix trees
to model the navigation history of users in a web site, aiming to predict the usage of
each web page on the site.

REFERENCES

. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algo-

rithms. Addison-Wesley, Reading, MA, 1974.

. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. A basic local alignment

tool. J Mol Bio, 215:403-410, 1990.

. A. Amir, E. Chencinski, C.S. Iliopoulos, T. Kopelowitz, and H. Zhang. Property matching

and weighted matching. In Moshe Lewenstein and Gabriel Valiente, editors, Proceedings
of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009
of Lecture Notes in Computer Science, Springer, Barcelona, Spain, 2006, pp. 188-199.

. A. Amir, E. Chencinski, C.S. Iliopoulos, T. Kopelowitz, and H. Zhang. Property matching

and weighted matching. Theor Comput Sci, 395(2-3):298-310, 2008.

. A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching. In Pro-

ceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Society for Industrial and Applied Mathematics. Philadelphia, PA, 2001, pp. 279-288.

. A. Amir, C.S. Iliopoulos, O. Kapah, and E. Porat. Approximate matching in weighted

sequences. In Moshe Lewenstein and Gabriel Valiente, editors, Proceedings of the 17th
Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009 of Lecture
Notes in Computer Science, Springer, Barcelona, Spain, 2006, pp. 365-376.

. A. Bairoch. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acid Res,

20:2013-2018, 1992.

. A. Bairoch and P. Bucher. PROSITE: recent developments. Nucleic Acid Res, 22:3583—

3589, 1992.

. M. Christodoulakis. Regularities on Fixed and Weighted Sequences. PhD dissertation,

Department of Computer Science, King’s College London, 2005.

. M. Christodoulakis, C.S. Iliopoulos, L. Mouchard, K. Perdikuri, A. Tsakalidis, and K.

Tsichlas. Computation of repetitions and regularities of biologically weighted sequences.
J Computat Bio, 13(6):1214-1231, 2006.

. M. Christodoulakis, C.S. Iliopoulos, L. Mouchard, and K. Tsichlas. Pattern matching on

weighted sequences. In Katia S. Guimardes and Marie-France Sagot, editors, Proceed-
ings of the Algorithms and Computational Methods for Biochemical and Evolutionary
Networks (CompBioNets). King’s College London, 2004, pp. 17-30.

. M. Christodoulakis, C.S. Iliopoulos, K. Tsichlas, and K. Perdikuri. Searching for regular-

ities in weighted sequences. In Theodore Simos and George Maroulis, editors, Proceed-
ings of the International Conference of Computational Methods in Sciences and Engi-
neering (ICCMSE), Lecture Series on Computer and Computational Sciences, 2004, pp.
701-704.



168

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms, 2nd
edition. The MIT Press, Boston, MA, 2001.

M. Crochemore. An optimal algorithm for computing the repetitions in a word. Inf Pro-
cess Lett, 12(5):244-250, 1981.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Inc., New York,
NY, 1994.

G.E. Crooks, G. Hon, J.-M. Chandonia, and S.E. Brenner. WebLogo: A sequence logo
generator. Genome Res, 14:1188-1190, 2004.

European Bioinformatics Institute (EMBL-EBI). ClustalW. http:// www.ebi.ac.uk/
clustalw/.

H. Gajewska and R.E. Tarjan. Deques with heap order. Inf Process Lett, 22(4):197-200,
1986.

A.J. Gibbs and G.A. Mclntyre. The diagram, a method for comparing sequences. Eur. J
Biochem, 16(1):1-11, 1970.

M. Gribskov, A.D. McLachlan, and D. Eisenberg. Profile analysis: Detection of distantly
related proteins. Proc Natl Acad Sci, 84:4355-4358, 1987.

D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, Cambridge, MA, 1997.

C.S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsakalidis.
Computing the repetitions in a weighted sequence using Weighted Suffix Trees. European
Conference on Computational Biology (ECCB), Posters’ Track, 2003, pp. 539-540.

C.S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsakalidis.
Efficient algorithms for handling molecular weighted sequences. In J.J. Levy, E.W. May,
and J.C. Mitchell, editors, Exploring New Frontiers of Theoretical Informatics. Kluwer
Academic Publishers, New York, 2004, p. 265.

C.S. Iliopoulos, L. Mouchard, K. Perdikuri, and A. Tsakalidis. Computing the repetitions
in a weighted sequence. In M. Simének, editor, Proceedings of the 8th Prague Stringology
Conference (PSC). 2003, pp. 91-98.

C.S. Iliopoulos, K. Perdikuri, E. Theodoridis, A. Tsakalidis, and K. Tsichlas. Motif ex-
traction from weighted sequences. 11th International Conference String Processing and
Information Retrieval (SPIRE), volume 3246, Padova, Italy, 2004, pp. 286-297.

H. Kaplan, C. Okasaki, and R.E. Tarjan. Simple confluently persistent catenable lists.
SIAM J Comput, 30(3):965-977, 2000.

R.M. Karp, R.E. Miller, and A.L. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. Proceedings of the Fourth Annual ACM Symposium on Theory
of Computing (STOC), ACM, New York, NY, 1972, pp. 125-136.

V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Sov Phys Dokl, 10:707-710, 1966.

C.S. Liopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsakalidis.
The weighted suffix tree: An efficient data structure for handling molecular weighted
sequences and its applications. Fundamenta Informaticae, 71(2,3):259-277, 2006.

D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches. Science,
227:1435-1441, 1985.

C. Makris, Y. Panagis, E. Theodoridis, and A.K. Tsakalidis. A web-page usage prediction
scheme using weighted suffix trees. In Nivio Ziviani and Ricardo A. Baeza-Yates, editors,
Proceedings of the 14th International Symposium on String Processing and Information



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

REFERENCES 169

Retrieval (SPIRE), volume 4726 of Lecture Notes in Computer Science, 2007, pp. 242—
253.

E.M. McCreight. A space-economical suffix tree construction algorithm. J ACM,
23(2):262-272, 1976.

B. Morgenstern, A. Dress, and T. Werner. Multiple DNA and protein sequence alignment
based on segment-to-segment comparison. Proc Natl Acad Sci, 93:12098-12103, 1996.
S.B. Needleman and C.D. Wunsch. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. J Mol Biol, 48:443-453, 1970.

W.R. Pearson. Effective protein sequence comparison. Meth Enzymol, 266:227-258,
1996.

W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. In
Proc Natl Acad Sci, 85:2444-2448, 1988.

C. Pizzi and E. Ukkonen. Fast profile matching algorithms — a survey. Theor Comput Sci,
395(2-3):137-157, 2008.

M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. Pro-
ceedings of the 3rd Latin American Symposium on Theoretical Informatics (LATIN), vol-
ume 1380 of Lecture Notes in Computer Science, Springer, New York, 1998, pp. 374-390.
T.D. Schneider and R.M. Stephens. Sequence logos: A new way to display consensus
sequences. Nucleic Acids Res, 18:6097-6100, 1990.

T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J Mol
Biol, 147:195-197, 1981.

W.E. Smyth. Computing Patterns in Strings. Addison-Wesley, Reoding, MA, 2003.

J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: Improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting, positions-
specific gap penalties and weight matrix choice. Nucleic Acid Res, 22:4673-4680, 1994.
E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.

P. van Emde Boas. Preserving order in a forest in less than logarithmic time. Inf Process
Lett, 6(3):80-82, 1977.

P. Weiner. Linear pattern matching algorithms. Proceedings of the 14th Annual Sympo-
sium on Switching and Automata Theory, 1973, pp. 1-11.

R.W. Hamming. Error detecting and error correcting codes. Bell Syst Tech J, 29(2):147—
160, 1950.

H. Zhang, Q. Guo, and C.S. Iliopoulos. String matching with swaps in a weighted se-
quence. Proceedings of International Symposium on Computational and Information Sci-
ences (CIS), Shanghai, China, 2004.






DNA COMPUTING FOR
SUBGRAPH ISOMORPHISM
PROBLEM AND RELATED
PROBLEMS

Sun-Yuan Hsieh, Chao-Wen Huang, and Hsin-Hung Chou

9.1 INTRODUCTION

A DNA is a polymer made up of a sequence of subunits known as nucleotides.
Distinct nucleotides are detected only with their bases, which come from adenine,
guanine, cytosine, and thymine, abbreviated A, G, C, and T, respectively. A DNA
strand is essentially a sequence of four types of nucleotides detected by one of four
bases they contain [28]. DNA-based computing [24], or more generally molecular
computing, is a computational paradigm that uses DNA molecules as information
storage media. The techniques of molecular biology, such as polymerase chain re-
action (PCR), gel electrophoresis, and enzymatic reactions, can be used as computa-
tional operators for copying, sorting, and splitting/concatenating the information in
the DNA molecules, respectively [1].

Through the progress in molecular biology, it is now possible to produce about
10'® DNA strands contained in a test tube [28]. We can use each DNA strand to
represent a piece of information. Primitive biological operations can be employed to
operate 10'® pieces of information simultaneously. It has the same computing power
as 10'8 processors running in parallel. Accordingly, DNA-based computing can pro-
vide a huge parallelism for dealing with the intractable problems in the real world.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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Feynman [14] first proposed DNA-based computation in 1961, but his idea was
not implemented by experiment for a few decades. Adleman [1] was the first re-
searcher who succeeded in solving the Hamiltonian path problem by properly ma-
nipulating DNA strands as the input instance of the problem in a test tube. Next,
Lipton [21] demonstrated the power of DNA-based computing using the Adleman
techniques to solve the satisfiability problem. After that, many researchers studied
computational hard problems using the Adleman—Lipton model [17, 23, 29, 22, 13,
27,3,4,5,6,7, 16, 8]. A few years later, Roweis et al. [26] proposed the concept of
sticker for enhancing the Adleman—Lipton model. Since then, several nondetermin-
istic polynomial (NP)-complete problems were solved using the Adleman-Lipton
model with stickers [26, 25,9, 10, 18, 11, 19, 20]. The NP-complete problems solved
using the Adleman-Lipton model further include the traveling salesman problem, the
dominating set problem, the vertex cover problem, the maximum clique problem,
the maximum independent set problem, the three-dimensional matching problem,
the knapsack problem, the set packing problem, the subset sum problem, the set
cover problem, and so on.

This chapter describes a DNA-based graph encoding scheme that can be used to
solve the subgraph isomorphism problem and related problems [20] in the Adleman—
Lipton model with stickers using a polynomial number of basic biological opera-
tions. Theoretically, the subgraph isomorphism problem, which is known to be an
NP-complete problem [15], is a common generalization of many important graph
problems including finding Hamiltonian paths, cliques, matchings, girth, and short-
est paths. Variations of the subgraph isomorphism problem also have been used to
model varied practical problems such as molecular structure comparison, integrated
circuit testing, and microprogrammed controller optimization [12].

This chapter is organized as follows. In Section 9.2, we introduce the graph iso-
morphism problem, the subgraph isomorphism problem, and the maximum common
subgraph problem. In Section 9.3, we detail the Adleman—Lipton model with stick-
ers. In Section 9.4, we present DNA-based algorithms to generate the solution space
for the graph problems. In Section 9.5, complete algorithms for the subgraph isomor-
phism problem, graph isomorphism problem, and the maximum common subgraph
problem are presented, respectively. In Section 9.6, we provide DNA sequences for
experiments using our algorithms. Conclusions are given in Section 9.7.

9.2 DEFINITIONS OF SUBGRAPH ISOMORPHISM PROBLEM AND
RELATED PROBLEMS

Without loss of generality, we only consider undirected simple graphs (i.e., graphs
without loops and multiple edges) throughout this chapter. We denote the vertex and
edge sets of a graph G by V(G) and E(G), respectively. The numbers of edges in
G is called the size of G. A graph G’ is a subgraph of G, denoted by G’ C G,
if V(G") C V(G) and E(G’) C E(G). Given two graphs G and H, we say “G is
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G G H

Figure 9.1 An example of the subgraph isomorphism problem in which G’ is the subgraph of
G and G is isomorphic to H.

isomorphic to H,” written G = H, if a one-to-one and onto function exists, then it
is called an isomorphism from G to H, ¢ : V(G) — V(H) so that (u, v) € E(G) if
and only if (¢(u), ¢(v)) € E(H). The definitions of the graph isomorphism problem,
the subgraph isomorphism problem, and the maximum common subgraph problem
are described as follows.

Definitio 9.1 Given two graphs G and H, the graph isomorphism problem is
defined to determine whether G is isomorphic to H.

Notice that the graph isomorphism problem is currently still unknown to be in P
or in NP-complete [15].

Definitio 9.2 Given two graphs G and H, respectively, called source graph and
target graph, the subgraph isomorphism problem is defined to determine whether
there is a subgraph of the source graph G isomorphic to the target graph H.

B EXAMPLE 9.1

In Figure 9.1, G is a source graph and H is a target graph. G contains a subgraph
G’ isomorphic to H with an isomorphism ¢: V(G’) — V(H) defined by ¢(1) =
a, p(3) = b, and p(4) = c.

Definitio 9.3 Given two graphs G and H, the maximum common subgraph prob-
lem is defined to find a subgraph of G with maximum size that is isomorphic to a
subgraph of H.

B EXAMPLE 9.2

In Figure 9.2, G’ and H' are a pair of maximum isomorphic subgraphs of graphs G
and H, respectively, with an isomorphism ¢: V(G’) — V(H’) defined by ¢(1) =
a,9(2) =b,$(3) =c,and p(4) = d.
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1 2 1 2 a b a b
@ 9
@ 9
4 3 4 3 d c d c
G G' H' H

Figure 9.2 An example of the maximum common subgraph problem in which G' and H’ are a
pair of maximum isomorphic subgraphs of graphs G and H, respectively.

9.3 DNA COMPUTING MODELS

In this section, we introduce the model we adopt—the Adleman-Lipton model with
stickers.

9.3.1 The Stickers

The stickers model [2, 24, 26] employs two basic groups of single-stranded DNA
molecules in its representation of a bit string. In short, the model involves a
long single memory strand and several sticker strands or stickers as indicated (see
Figure 9.3). A memory strand is a single-stranded DNA with n bases. It is divided
into k nonoverlapping substrands, each of which has m bases (i.e., n = km). Each
sticker has m bases and is complementary to exactly one of the k substrands in the
memory strand. During a course of computation, each substrand is identified as a
Boolean variable and is considered “on” (1) or “off” (0) as to whether its corre-
sponding sticker is annealed or not: If a sticker is annealed to its matching region on
a given memory strand, then the bit corresponding to that particular region is on for
that strand. If no sticker is annealed to a region, then that region’s bit is off. Each
memory strand along with its annealed stickers (if any) represents one bit string.

Stickers
5-[ATTAATTC]-3'  5-[CATTCCAA]-3'  5-[AACAACT(-3'  5'-[TAACACAT]-3'

Memory strand

3'-TAATTAAGGTATTGGTGTAAGGTTGGGAAATATTGTTGAGATTAGGGAATTGTGTAAAGGAAGT-5'

Memory complex

ATTAATTC] CATTCCAA| AACAACT( TAACACA
TAATTAAGGTATTGGTGTAAGGTTGGGAAATATTGTTGAGATTAGGGAATTGTGTAAAGGAAGT
1 0 1 0 1 0 1 0

Figure 9.3 lllustration of the stickers model that encodes 10101010. Note that the memory
strand consists of eight eight-basis-long subsections. Each subsection is defined as 1 by an-
nealing a sticker and defined as 0 by annealing no sticker.
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A memory complex is the term defined as a memory strand in which part of the sub-
strands is annealed by the matching stickers, such that the computational information
can be carried in a binary format along the memory complex.

9.3.2 The Adleman-Lipton Model

A set is a group of distinct unordered objects. Different from a set, a multiset is a
group of unordered objects that allows an object to occur more than once. In the
Adleman-Lipton model [1], a tube is a multiset of DNA strands over an alphabet set
{A, G, C, T}. Given tubes, one can perform the following operations:

1. Extract(7, S): Given a tube T and a short single strand of DNA, say S, the op-
eration produces two tubes (T, $)* and (T, ), where (T, S)™ consists of all
molecules of DNA in T such that each contains S as a substrand, and (7, S)~
consists of all molecules of DNA in T that do not contain S. Finally, the tube
T becomes empty.

2. Merge(Ty, T»): Given tubes T} and T3, the operation is to pour two tubes into
one, without any change in the individual strands.

3. Detect(T'): Given a tube T, the operation returns “yes” if tube T contains at
least one DNA molecule. Otherwise, it returns “no.”

4. Amplify(T, T, T»): Given a tube T, the operation produces two tubes 7} and
T, such that T} and 7, contain the “original copy of those molecules in 7',” and
then tube 7" becomes empty after this operation.

5. Read(T): Given a tube T, the operation is to describe a single molecule con-
tained in 7. Moreover, the operation can give an explicit description of exactly
one of them even if T contains many different molecules, each encoding a
different set of bases.

6. Append(7, S): Given a tube T and a short DNA strand S, the operation ap-
pends S onto the end of every strand in 7.

9.4 THE STICKER-BASED SOLUTION SPACE

Given the set {1, 2,...,n}, a linear arrangement of these n integers is called an
n-permutation. The set of all n-permutations is called the n-permutation set, denoted
by P(n). In the remainder of this chapter, we label the vertices of any n-vertex graph
as integers from 1 to n. The first step of our strategy is to generate the solution space
using DNA strands in which each DNA strand contains the graph information includ-
ing an n-permutation of the vertex labels and its corresponding adjacency relation.
Next, we check whether a desired solution exists in the solution space for decision.

To indicate the position of any item in an n-permutation, we attach the position
symbol in front of each item of the n-permutation. For example, 3-permutation 213
is represented by “p12p,1p33,” where symbol p; denotes position i.
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In our algorithm, integers and positions are represented by their binary represen-

tations using stickers. We define seven symbols represented by 15-base stickers to
encode the information into DNA strands:

e x0 (x!): binary bit 0 (1) for representing integers of permutations

p° (p"): binary bit 0 (1) for representing positions
e 0 (y"): binary bit 0 (1) for representing adjacency relation of two vertices
® ||: separator symbol

For example, 3-permutation 213 is encoded as “p°p' || x'x° || p'p® || x%x! |
p'p" | x'x' || Such representation is called the DNA-representation of 213. For
short, we use B;(i) and Bp(p) to denote the DNA representation of integer i and
position p, respectively.

9.4.1 Using Stickers for Generating the Permutation Set

With repetition of elements allowed, a sequence with n elements of {1, 2, ..., n}is
called an n-sequence. The set of all possible n-sequences is called the n-sequence set,
denoted by S(n). For example, S(2) = {11, 12, 21, 22}. Notice that an n-permutation
is also an n-sequence. Thus, the n-permutation set is a subset of the n-sequence set,
that is, P(n) C S(n). There is a simple recursive way to generate S(n) by appending
all integers one by one and digit by digit, which is presented in Algorithm 9.1. In this
algorithm, we insert the position symbols to the n-sequences for efficient indexing
in the successive algorithms.

Algorithm 9.1

Sequence_Generation(n) {
Input: A nonnegative integer n.

Output A tube 7, containing the n-sequence set.

1:Initially, tube 7, contains only one DNA strand that is a pure

strand without any encoding.

ifor i=1 ton

Append(75, “Bp(i) || ™)

for j =1 to [log,(n+ 1)]
Amplify(T,, Ty, T1)
Append(Tp, “x%”)
Append(Ty, “x!”)
T, := Merge(Tp, T1)

end for

10:  Append(7,,“ | )

11: end for

© 00 N O O WN
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Lemma 9.1 Algorithm 9.1 correctly generates S(n) and takes ©(n logn) Append,
Amplity, and Merge operations.

Proof: Without loss of generality, we assume that n is an integer of the power
of 2. Proved by induction on i, when i = 1, it is easy to verify that 7, contains
DNA strands of “Bp(1) || B;(x) ||” for 0 < x < 2Mo20+D1 - Agsume that T, con-
tains S(n — 1) when i =n — 1. When i = n, “Bp(i) ||” is first appended to all
(n — 1) sequences. In the j for-loop, we append each possible integer, with bi-
nary bit length [log,(n + 1)], to all (n — 1) sequences in S(n — 1). Thus, S(n) is
generated.

The number of operations can be obtained directly from the algorithm. [ ]

In Algorithm 9.2, the n-permutation set is generated by removing the n-sequences
that are not n-permutations from the given n-sequence set.

Algorithm 9.2

Permutation_Generation(n) {
Input: A nonnegative integer n.

Output: A tube 7; containing the n-permutation set.

1:Call Sequence_Generation(n) to generate a tube 7; containing the
n-sequence set.

2:for i=1ton

3:  Extract(T;, “B;(i)”)

4 Tpi=(Tr, “Bi())*

5: end for

Lemma 9.2 Algorithm 9.2 correctly generates P(n) and takes ®(n) Extract oper-
ations.

Proof: Because an n-permutation is also an n-sequence, and an n-sequence contains
all elements in {1, 2, ..., n} it must be an n-permutation, the claim follows. The
number of operations can be obtained directly from the algorithm. [ ]

9.4.2 Using Stickers for Generating the Solution Space

After generating the n-permutation set of the given n-vertex graph G, for each per-
mutation, we encode the adjacency relation of G to be appended to the corresponding
DNA strand in parallel, which is presented in Algorithm 9.3. Because the graphs we
considered are undirected, the adjacency matrices of the graphs are symmetric. Thus,
the entries in the upper triangle of the adjacent matrix of G are enough to represent
the adjacency relation of G. That is, there are @ 15-base stickers y;y, ... Yro-n
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appended to every n-permutation ;5 . . . &, DNA strand based on the following two
rules:

Rule 9.1 The @ 15-base stickers yi, ya, ..., Yun-y represent the adjacency re-

lation of ““~ pairs of vertices (a1, @2), (a1, @3), .. ., (@1, &y_1), (c2, @3), (02, ts),

con (@2, ap21), ..o, (0g—2, 0p1), (@n—2, ), and (a,—1, ), Tespectively. For 1 <

i < j < n, the adjacency relation of (a;, «;) is represented by yi, where k = n(i —
Ni—1 . .

1) — QD 4 (j —i).

Rule 9.2 Fork =n(i — 1) — QD 4 (j —i),

y! if o; and o; are adjacent

Ye=13 o

. . O.h
y" if @; and o are not adjacent.

Algorithm 9.3

Solution_Space(G, n) {
Input: A graph G and a positive integer n that is the number of
vertices in G.
Output: A tube T,4; contains all n-permutations associated with
the adjacency relation of G.

1:Tyqj := Permutation Generation(n);
2:k=0;

3:for p=1ton—1

4 for g=i+1 ton

5 for i=1 ton

6 for j =1 ton

7: if i #j

8: T, := (Extract(Taq;, “Bp(p) | B1()")™;
9: T; := (Extract(T,q;, “Bp(p) | Bi(i)")';
10: T, := (Extract(T;, “Bp(q) | Br(j)");

11: T;,; := (Extract(T;, “Bp(q) | Bi(j)" )T ;
12: k=k+1;

13: if vertex i is adjacent to vertex j in G then
14: Append(T;,j, “Bp(k) [ y' | ™);

15: else

16: Append(T;, ;. “Bp(k) [ Y | ™);

17: end if

18: Tagj := Merge(T; ;, Merge(T,, Tp));
19: end if

20: end for

21: end for

22: end for

23: end for

24: end for

Lemma 9.3 After executing, Algorithm 9.3 consists of all n-permutations associ-
ated with the adjacency relation of G, satisfying Rules 1 and 2.
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Proof: In the algorithm, we use the indices p and g to represent positions and the
indices i and j to represent the labels of vertices. All pairs of vertices described in
Rule 9.1 are considered sequentially. From lines 7-10, we extract all DNA strands in
which vertex i is located at position p and vertex j is located at position g from 7; ;.
From lines 11-17, if the vertex i is adjacent (respectively, nonadjacent) to the vertex
J» then sticker representing 1 (respectively, 0) will be appended to all DNA strands
in T; ;. Therefore, Rule 9.2 also holds. |

Lemma 9.4 Algorithm 9.3 takes ©(n*) Extract, Append, and Merge operations.

Proof: Tt follows directly from the algorithm. [ ]

9.5 ALGORITHMS FOR SOLVING PROBLEMS

In this section, we present DNA-based algorithms for solving the subgraph isomor-
phism problem, the graph isomorphism problem, and the maximum common sub-
graph problem based on biological operations in the Adleman—Lipton model and the
solution space of stickers in the sticker-based model.

9.5.1 Solving the Subgraph Isomorphism Problem

After executing Algorithm Solution_Space(G, n), each DNA strand in the result tube
of the solution space consists of two parts, an n-permutation string P and the ad-
Jjacency string Y with respect to P. We call PY the string representation of G. For
convenience, we write string representations without the position and separator sym-
bols.

Lemma 9.5 Given two n-vertex graphs G and H, if a pair of string representations
exists PY and P'Y' of G and H, respectively, suchthatY = Y', then G is isomorphic
to H.

Proof: Suppose P =owjay...0n, PP=ajcts...a,, Y=y ... ISR and
Y = y¥, ... Yuu - Recall that each adjacency bit y; is decided by the adjacency

relation of the pzair of vertices (;, ;) at determined positions i and j such
that k =n(i — 1) — W +(j —1i). Because ¥ =Y’, we have that y; = y! for
1<i< ”("T*I) Thus, we can obtain an isomorphism ¢ from {o;, ®s, ..., a,}
to {o], @), ..., «,} such that ¢(ap) :a‘/,, for 1 <p<n and (o;,a;) € E(G)
(i.e., yy = 1) if and only if (a{,ot}) € E(H) (ie, ypy=1) for 1 <i < j<n.By
definition, G is isomorphic to H. [ ]

Lets = bib,...b, and s’ = b\b) ... D, be two binary strings of the same length.
We say “s is an overlay string of s”” if the following property is satisfied: for 1 <i <
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Figure 9.4 An example of the subgraph isomorphism problem in which Gs is the subgraph of
Gy, and Gs is isomorphic to Go.

n,if b} = 1, then b; = 1. For example, 1011 is an overlay string of 1010, but 1011 is
not an overlay string of 1110.

Lemma 9.6 Given two n-vertex graphs G and H, if a pair of string representations
exists PY and P'Y' of G and H, respectively, such that Y is an overlay string of Y',
then G contains a subgraph isomorphic to H.

Proof: Because each bit in the adjacency string represents the existence of an edge,
it is clear that any subgraph G’ of G with V(G’) = V(G) and E(G’) C E(G) must
have a string representation P~Y~ such that P~ = P and Y is an overlay string
of Y~. Because Y is an overlay string of Y’, a subgraph G’ of G exists with string
representation PY’. By Lemma 9.5, G’ is isomorphic to H. ]

B EXAMPLE 9.3

In Figure 9.4, G and G, are five-vertex graphs. The string representations of
G and G, are PY = 12345 1111101101 and P'Y’' = 1'2'3’45/ 1001101101, re-
spectively. Obviously, Y is an overlay string of Y’. We can find a subgraph G
of G, constructed by removing the edges (1,3) and (1,4) from G; with the string
representations PY’ = 12345 1001101101. Because the adjacency strings of G,
and Gj are the same, it follows that G, = G3 by Lemma 9.5. An isomorphism
exists, ¢:V(G,) — V(G3) such that ¢(1') =1, ¢(2") =2, ¢(3) =3, ¢p(4") =4,
and ¢(5') = 5.

A vertex with degree 0 is called an isolated vertex. Given an m-vertex graph H and
an integer n > m, we define the n-extension graph of H as the graph H," such that
E(H)= E(H) and V(H) = V(H)UV,, where V, is a set of isolated vertices,
called pseudovertices, labeled from m + 1 to n.

Lemma 9.7 Given an n-vertex graph G and an m-vertex graph H form < n, ifa
pair of string representations exists PY and PTY™ of G and H, (the n-extension
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1 4 51 4 1
2 5 2 5
34 o2 3 3
G H G’

Figure 9.5 G and H are five-vertex and four-vertex graphs, respectively. The graph G’ is a
subgraph of G, which is isomorphic to H.

graph of H), respectively, such that Y is an overlay string of Y, then G contains a
subgraph isomorphic to H.

Proof: By Lemma 9.6, we have that G contains a subgraph isomorphic to H,". Sup-
pose G’ is a subgraph of G, which is isomorphic to H,". Then an isomorphism
¢ exists in which V(G") — V(H,). Let V, be the set of pseudovertices in H, and
V. be the vertex subset of V(G’) that maps to V, by ¢. Because the pseudovertices
in H} are isolated vertices, it follows that the vertices in V, are also isolated ver-
tices in G’. Then we can construct graph G” by removing the vertices in V, from
G’'. That is, V(G") = V(G")\ V, and E(G") = E(G’). G” is obviously also a sub-
graph of G. Let us consider a mapping ¢’ in which (V(G")\ V)) — (V(H;)\ V.)
(i.e., ¢’ : V(G") — V(H)). Because E(G") = E(G") and E(H,}) = E(H), we have
that ¢ is an isomorphism from G” to H. Thus, the claim follows. [ ]

B EXAMPLE 9.4

In Figure 9.5, G and H are five-vertex and four-vertex graphs, respectively. Let
P'Y’ =1'2'3'4' 001011 be a string representation of H. Let H," be a 5-extension
graph of H by adding one pseudovertex 5. The string representation of H," with
respect to the five-permutation 1'2'3’4’5" is PTY+ = 1'2'3'4’5’ 0010010100. Let
us consider the string representation PY = 35124 0011111100 of G with re-
spect to the five-permutation 35124. Clearly, Y is an overlay string of Y*. By
Lemma 9.7, G has a subgraph isomorphic to H. For example, G’ is a subgraph of
G isomorphic to H.

Let G be the source graph with n vertices and H be the target graph with m
vertices. Notice that n > m. We first generate all n-permutations associated with
the adjacency relations of G by Algorithm 9.3. Next, we construct the n-extension
graph H;t of H. Finally, we check in parallel whether an n-permutation exists
whose corresponding adjacency string is an overlay string of the adjacency string
of HF.
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Algorithm 9.4

Solving_Subgraph_Isomorphism(G, H, n, m) {
Input: (1) G is the source graph and H is the target graph.

(2) n is the number of vertices of G.
(3) m is the number of vertices of H.

Output: A1l isomorphisms from G’ to H for all subgraphs G’ of G

N =

that are isomorphic to H. If no such subgraph exists,
then it outputs the message that "G contains no subgraph
isomorphic to H."

:Call Solution Space(G,n) to generate Tuy;;
:H' is the n-extension graph of H by adding n —m pseudovertices

labeled from m+1 to n;

sfor i=1 tom—1
for j=i+1 tom
if vertex i and vertex j are adjacent in H'
ke=n(i —1)— QD 4 (j—i);
Extract(To, "Bp (k) || y');
Tudj = (Tugj, "Bp(k) || y'")+;
end if
end for
: end for
if Detect(T,qj) ="yes"
Read(T,qj);
: else

Output "G contains no subgraph isomorphic to H";

: end if

B EXAMPLE 9.5

Let us consider two graphs G and H shown in Figure 9.6. The adja-
cency string of H," = 110100. After executing the algorithm Solving_Subgraph
_Isomorphism(G, H, 4, 3), tube T, = {1234 110111, 1324 110111, 2134
111101, 2314 111110, 2341 111110, 2431 111101, 3124 111101, 3214 111110,
3241 111110, 3421 111101, 4231 110111, 4321 110111}. By applying Read
operations in line 13, we obtain 12 DNA strands. This implies that G

G H Hy

Figure 9.6 G and H are four-vertex and three-vertex graphs, respectively. HI is a 4-extension

graph of H.
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Table 9.1 Twelve isomorphisms are obtained
from the string representations of strands in T,g;
and the adjacency string of H;}

T V(G — V(H)

T m()=1, mQ2)=2, m13) =73
T () =1, 1,3) =2, m,(2)=73
T3 . 7'[3(2) = 1/, 7'[3(1) = 2/, 7'[3(3) =3
T4 - w2y =1, 1;3) =2, my(1) =3
5 - 7s2) =1, 7s(3) =2, n5(4) =73
e - n6(2) =1, m6(4) =2, 16(3) =73
Ty m3)=1, m;(1) =2, m;(2) =73
g m3(3) =1, 13(2) =2, mg(1) =73
Ty - 19(3) =1, m9(2) =2/, me(4) =3
o - mo(3) =1, m(4) =2/, m0(2) =3
Ty - @) =112 =2, 7,3 =%
T @) =1,723) =2, 7,2) =3

contains subgraphs G’ that are isomorphic to H. Moreover, 12 isomorphisms
Ty, T2, ..., T2 - V(G') — V(H) are obtained, and they are shown in Table 9.1.

Theorem 9.1 Algorithm 9.4 solves the subgraph isomorphism problem and takes
O(|E(H)|) Extract operations, excluding the operations for generating the permuta-
tions.

Proof: The correctness of this algorithm follows from Lemma 9.5. |

9.5.2 Solving the Graph Isomorphism Problem

Because a graph is a subgraph of itself, we easily can revise Algorithm 9.4 to the
algorithm for solving the graph isomorphism problem as follows:

Algorithm 9.5

Solving_Graph_Isomorphism(G, H, n, m) {
Input: (1) G and H are two graphs.
(2) n is the number of vertices of G.
(3) m is the number of vertices of H.
Output: All isomorphisms from G to H if G is isomorphic
to H. If G is not isomorphic to H, then it outputs the
message that "G is not isomorphic to H."

cif n#m;
Output "G is not isomorphic to H";
else
Call Solution_Space(G,n) to generate Ty4;;
for i=1ton—1
for j=i+1 ton

O 0D WN -
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7: if vertex i and vertex j are adjacent in H
8: k=n(i—1)— QD 4 (j—i);

9: Extract(Tyq, "Bp (k) || yiny;
10: Tagj = (Tagj» "Bp(K) || ¥ ") +;
11: end if
12: end for
13:  end for
14: if Detect(T,qj) ="yes"
15: Read(7,qj) 5
16: else
17: Output "G is not isomorphic to H";
18: endif
19: end if

Theorem 9.2 Algorithm 9.5 solves the graph isomorphism problem and takes
O(|E(H)|) Extract operations, excluding the operations for generating the permuta-
tions.

Proof: The correctness of this algorithm follows from Lemma 9.7. |

9.5.3 Solving the Maximum Common Subgraph Problem

Lets = biby...b, and s' = b} b, ... b, be two binary strings of the same length. We
define the match number of s and s’ as the number of matched bits so that b; = b; = 1
for 1 <i < n. For example, the match number of 101100 and 101010 equals two and
the matched bits are underlined.

Lemma 9.8 Let G and H be two n-vertex graphs, and PY and P'Y' be two string
representations of G and H, respectively. Suppose that the match number of Y and
Y’ equals t. Then G and H have a common subgraph of size t.

Proof: Let Yy be the string obtained by the Boolean “and” operation on Y and
Y’ with match number ¢. Obviously, ¥ and Y’ are both overlay strings of Y.
Thus, PYy and P’Y) are two string representations of subgraphs of G and H,
respectively. By Lemma 9.5, we have that these two subgraphs are isomorphic
because they have the same adjacency string. Because Y, has ¢ adjacency bits of 1,
the size of the common subgraph is equal to ¢. [ ]

According to Lemma 9.8, we propose an edge-based algorithm to solve the maxi-
mum common subgraph problem. Let G and H be two considered graphs with n and
m vertices, respectively. Without loss of generality, we assume that n > m. In the al-
gorithm, there are | E(H)| stages. In each stage, we classify the permutation strands
of G into a set of tubes 7; by checking the adjacency bit corresponding to an edge of
H, where tube T; carries the permutation strands with at least i matched adjacency
bits. After all adjacency bits corresponding to E(H) are checked, the tube 7; with
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maximum index carries all permutation strands with maximum matched adjacency
bits. Then we can obtain a subgraph and an isomorphism by the positions appended
after the adjacency string of each strand in the result tube.

Algorithm 9.6

Solving_Maximum_Common_Subgraph(G, H, n, m) {
Input: G and H are two graph with n and m vertices, respectively,
where n>m.
Output: All maximum subgraphs of H that are isomorphic to some
subgraphs of G.

1:Initial the tube index ¢t =0;

2:Call Solution_Space(G,n) to generate Tp;

3:H, is the n-extension graph of H by adding n —m pseudovertices
labeled from m+1 to n

4:for i=1 to m—1

5: for j=i+1 tom

6: if vertex i and vertex j are adjacent in H™T
7: ke=n(i —1)— Q&0 4 (j —i);

8: Extract(T,, “Bp(k) || y');

9: if Detect((T;, “Bp(k) || y!")+) = “yes”

10: Take a new tube Ty4q := (T;, “Bp(k) || Y+
11: Append(T;y1, “Bp(k) || 7);

12: end if

13: for p=1t—1 down to 0

14: Extract(T,, “Bp(k) || y');

15: Tpi1 = (Tp, “Bp(k) Il y")+;

16: Append (Ty,1, “Bp(K) | );

17: Ty = (Tp, “Bp(k) | y')—;

18: end for

19: t = the maximum index of the tubes;

20: end if

21: end for

22: end for

23: Read(T;);

B EXAMPLE 9.6

Let us consider two graphs G and H shown in Figure 9.7. The adjacency
string of H;" = 110100. After executing the Algorithm 9.6, tube T, = { 1234
100101 Bp(1) Bp(4), 1324 010110 Bp(2) Bp(4), 2134 110001 Bp(1) Bp(2),
2314 110010 Bp(1) Bp(2), 2341 101100 Bp(1) Bp(4), 2431 011100 Bp(2)
Bp(4), 3124 011100 Bp(2) Bp(4), 3214 101100 Bp(1) Bp(4), 3241 110010
Bp(1) Bp(2), 3421 110001 Bp(1) Bp(2), 4231 010110 Bp(2) Bp(4), 4321
100101 Bp(1) Bp(4) }, tube Ty = { 1243 100011 Bp(1), 1342 001110 Bp(4),
1423 010011 Bp(2), 1432 001101 Bp(4), 2143 101001 Bp(1), 2413 011010
Bp(2), 3142 011010 Bp(2), 3412 101001 Bp(1), 4123 001101 Bp(4), 4132
010011 Bp(2), 4213 001110 Bp(4), 4312 100011 Bp(1) }, and tube Ty = @.
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G H H

Figure 9.7 G and H are four-vertex and three-vertex graphs, respectively. H4+ is a four-
extension graph of H.

By applying Read operations on the strands in 7,, we obtain 12 isomorphisms
T, T2, .., 123 V(G') — V(H') are obtained, where G’ and H' are subgraphs
of G and H, respectively, and they are shown in Table 9.2.

Theorem 9.3 Algorithm 9.6 solves the maximum common subgraph problem and
takes O(|E(H)|?) Extract and Append operations, excluding the operations for gen-
erating the permutations.

Proof: Suppose H’ is a maximum common subgraph of H with G. It follows that
the n-extension graph of H', H' "is also a subgraph of the n-extension graph of H,
H;. Assume that P,Y, and P,Y, are the string representations of H;} and H;',
respectively. By Lemma 9.7, we have that Y}, is an overlay string of ¥;. Suppose G’
is a subgraph of G isomorphic to H'. Because G’ is a subgraph of G, the n-extension
graph of G’,G,f is also a subgraph of G. Assume that P,Y, and P,Y éﬁ are the string

representations of G and Gjl'/, respectively. By Lemma 9.7, we have that Y, is also

Table 9.2 Twelve isomorphisms are
obtained from the string representations of
strands in T, and the adjacency string of HI

b4 V(G — V(H)

T m() =1, 112)=2, m;3)=73
T (1) =1, m(3) =2, m1,(2)=73
T3 732) =1, 13(1) =2, 733) =3
Ty 742 =1, m;(3) =2, m(1) =73
s s(2) =1, 75(3) =2/, ns(4) =73
g - w6s(2) =1, mg(4) =2/, m1s(3) =3’
7 7'[7(3) = 1/, 7T7(1) = 2/, 7'[7(2) =3
g n3(3) =1, n52) =2/, mg(1) =73
Ty - 19(3) =1, m9(2) =2/, m9(4) =3’
T - moB) =1, me(4) =2, mp(2) =3
Tyt @) =1, m12)=2,m,3)=3

T - @) =1, 13)=2,m,2) =3
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an overlay string of Y;. Because G" and H' are isomorphic, it derives that Y, = Y.
Thus, the strand with string representation P,Y, will be contained in the tube with
maximum index after the execution of Algorithm 9.6. That is, Algorithm 9.6 can
find a maximum common subgraph of G and H. The number of operations can be
obtained directly from the algorithm. [ ]

9.6 EXPERIMENTAL DATA

In our experiment, we used a unique value sequence, a 15-base DNA sequence, to
implement each symbol of {xo, xk yO, yl, pO, pl, [|} in our algorithms. A library se-
quence is a concatenation of value sequences for representing an instance in the so-
lution space. DNA molecules that carry library sequences are named library strands.
A library is a tube containing library strands, and the probe used for separating the
library strands have sequences complementary to the value sequences.

In DNA-based computation, there are errors in the separation of the library
strands. To make the computation reliable, sequences must be designed to ensure that
the following two conditions hold: one is that library strands have little secondary
structure that might inhibit intended probe—library hybridization and the other is that
the design must exclude sequences that might encourage unintended probe-library
hybridization. To help achieve the goals, good sequences were generated to satisfy
the following seven constraints defined by Braich ef al. [2].

1. Library sequences contain only As, Ts, and Cs.

2. Alllibrary and probe sequences have no occurrence of five or more consecutive
identical nucleotides (i.e., no runs of more than 4 As, 4 Ts, 4 Cs or 4 Gs occur
in any library or probe sequences).

3. Every probe sequence has at least four mismatches with all 15-base alignment
of any library sequence (except for with its matching value sequence).

4. Every 15-base subsequence of a library sequence has at least four mismatches
with all 15-base alignment of itself or any other library sequence.

5. No probe sequence has a run of more than seven matches with any eight
base alignment of any library sequence (except for with its matching value
sequence).

6. No library sequence has a run of more than seven matches with any eight base
alignment of itself or any other library sequence.

7. Every probe sequence has four, five, or six Gs in its sequence.

We used BioPython, a python package for computational molecular biology, to
generate good DNA sequences that are suitable for running our algorithms in the
laboratory. The package and its documents can be downloaded from the web site
http://biopython.org/. Moreover, we built a web server at http://algorithm.csie.ncku.
edu.tw:18080/DNA/ to generate DNA sequences satisfying the constraints. In our
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Table 9.3 DNA sequences for solving the graph problems

Sticker DNA sequence G-C ratio DeltaS DeltaH Ty
x° CCTATACCCATACCC 53.33 313.73 108.9 38.08
x! CCCATATACACCTCA 46.66 313.33 108.7 37.87
p° TTAACATCTCCTATT 26.66 308.63 104.8 30.80
P! CTCCTCCACCCTAAT 53.33 310.13 108.6 40.45
y° CTAAATCCATACCTC 40.0 320.13 109.3 33.62
y! TCTTCCTCTCAAATC 40.0 317.73 109.4 35.98

I ATACCACTATACCAA 33.33 307.53 105.3 33.23

system, the seven constraints are optional. After the constraints are selected, the sys-
tem will generate new DNA sequences that satisfy the selected constraints. The DNA
sequences generated for the algorithm using our system are described in Table 9.3.
Our system also can compute the G-C ratio, DeltaH, DeltaS, and melting temperature
T,. G-C ratio is the percentage of G or C in its sequence. Enthalpy and entropy are
two properties for thermodynamics. Enthalpy comes from its greek meaning “heat
inside,” and entropy is a measure of the disorder of a system. DeltaH is defined as
the enthalpy change, and DeltaS is the entropy change. The melting temperature is
defined as the temperature at which half of all duplexes are denatured.

9.7 CONCLUSION

In this chapter, we have presented DNA-based algorithms for solving the subgraph
isomorphism problem, the graph isomorphism problem, and the maximum common
subgraph problem based on biological operations in the Adleman—Lipton model and
the solution space of stickers in the sticker-based model. Our algorithms provide a
DNA-based graph encoding scheme to these graph problems. The algorithms can
be performed in a fully automated manner in a laboratory. Furthermore, we have
developed a web server to generate good DNA sequences for generating the solution
space of the graph problems. It ensures the presented algorithms have a low rate of
errors for hybridization.
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10.1 GRAPH THEORY—ORIGIN

Graph theory emerged in 1736 when Euler addressed the problem of walking across
the seven bridges of Konigsberg without crossing any bridge twice [1]. Euler used
the benefits of graph theory to conclude that it was impossible to walk through the
city crossing each bridge only once. A century later, graphs were applied to recre-
ational mathematical problems [2] such as the Knight’s Tour and the Icosian Game
[3]. Representing graphs in the form of dots and lines emerged out of 19th century
chemistry, with the introduction of the term graph into both the chemical and math-
ematical literature by Sylvester [4], with a molecule represented by the connectivity
between its constituent atoms. Since then, graphs have been applied successfully to
diverse areas such as chemistry, operations research, computer science, electrical en-
gineering, and drug design. More recently, graph theory has been used extensively
to address biological problems. After a brief introduction to graph theory and the
generic solution set commonly applied to several fields, we present select recent ap-
plications of significance in bioinformatics.

10.1.1 What is a Graph?

A graph is a set of nodes or vertices connected by a set of links, connections, or
edges. This is represented mathematically as G = (V, E), where V represents the
vertices and E represents the edges [5]. Two vertices are said to be adjacent if there
is an edge connecting them.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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Figure 10.1 Types of graphs. (a) Directed graph. All edges are directed. (b) Undirected graph.
No edges are directed. (c) Complete graph. Every vertex is connected to every other vertex with
exactly one edge. (d) Example of a generic graph. Here, a walk defines the path from one vertex
to another (e.g., a-b-c-d-e); a trail is a walk with no repeated edges, (e.g., a-b-c-f-e-c-d), a path is
a trail with no repeated vertices (e.g., a-b-c-e-d), a circuit is a closed trail (e.g., a-b-c-f-e-c-d-e-a),
and a cycle is a closed path (e.g., a-b-c-d-e-a).

10.1.2 Types of Graphs

Graphs either can be directed or undirected. In a directed graph (digraph), each
element of E (edges) is an ordered pair (a,b). An ordered pair implies that
(a,b) # (b,a) unless a = b, where a and b are elements of the set of vertices
V, a being the initial vertex and b being the terminal vertex of an edge [5].
In other words, a directed graph is simply a graph whose edges have a spe-
cific direction. A loop is an edge that starts and ends at the same node. Fig-
ure 10.1a depicts a directed graph with V = {1, 2, 3,4, 5, 6}. The edge set is
E=1{(1,2),(23),(3,4), (4 5),(56), (6, 1), (5 4),(, 1)}. Vertex 1 carries a loop,
whereas vertices 4 and 5 have multiple edges between them. In an undirected graph,
the edges do not have directionality. Each edge, {a, b}, is an element of the set E,
such that {a, b} = {b, a}. Figure 1b shows an undirected graph that has the same
set of vertices as the directed graph (Figure 1a). However, in the undirected graph,
E ={{1, 2}, {2 3}, {3, 4}, {4, 5},{5, 6}, {6, 1}, {1, 1}}. Although there are mul-
tiple edges between the vertices 4 and 5, both are represented in the edge list as
{4, 5} because {4, 5} = {5, 4}, making them redundant. Because of this redundancy
reduction, undirected graphs usually end up with fewer edges than directed graphs
with the same number of nodes.

Graphs also either can be simple or complex. A graph in which there are no self
loops and only one edge between two vertices is called a simple graph, whereas
all others are called multigraphs [6]. A road map and a flowchart are examples of
multigraphs. A graph in which every vertex is connected to every other vertex with
exactly one edge is called a complete graph (Figure 1c).

10.1.2.1 Walks, Trails, Paths, and Cycles. Translocating from one vertex
to another vertex along an edge is called a walk. The number of edges making up
the walk defines the length of the walk. If no edges occur more than once, then the
walk becomes a trail. A path is a special representation of a trail with no vertex
being repeated. A walk in which the initial vertex is the same as the final vertex
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Figure 10.2 Types of graphs. (a) Connected graph. (b) Two-component disconnected graph.

is called closed. A cycle is a closed path, whereas a circuit is a closed trail [7].
In Figure 10.1d, the traversal, a-b-c-d-e is one example for a walk through the
graph. The walk a-b-c-f-e-c-d is a trail, as none of the edges are repeated. However,
a-b-c-e-d is a path because none of the vertices have been repeated. The walk,
a-b-c-f-e-c-d-e-a is a circuit, whereas a-b-c-d-e-a is a cycle, although both have the
same initial and terminal nodes. In general, the terms path and trail refer to a walk
through a given graph.

A graph in which there is a path from every vertex to every other vertex is a
connected graph. Figure 10.2a represents a connected graph, despite the fact that
vertex a is not directly connected to vertex b. a-f-e-d-c-b is a path from vertex a to
vertex b. On the other hand, Figure 10.2b represents a disconnected graph, as there
is no path from node a to node f.

A graph with no cycles is acyclic (Figure 10.3a), whereas a digraph with no cycles
is a directed acyclic graph (DAG; Figure 10.3b). On the other hand, a graph that has
at least one cycle is called a cyclic graph (Figure 10.3c).

A weighted graph has values associated with its edges (edge-weighted) or vertices
(vertex-weighted). If the graph is directed, it would then be called a weighted directed
graph [5]. Undirected graphs also can have weights associated with them. Figure
10.4 shows a weighted undirected graph in which each edge is associated with a
number, representing the weight of the edge.

If v is the vertex of an undirected graph, then the degree of v is the number of
edges connected to it. If v is a directed graph, then the out-degree of v is the number
of edges commencing at v, whereas the in-degree of v is the number of edges ter-
minating at v. A regular graph is a graph in which all vertices have equal degrees.

Figure 10.3 Types of graphs. (a) Acyclic graph. (b) Directed acyclic graph. (c) Cyclic graph.
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Figure 10.4 Weighted graph. Every edge has a value associated with it.

A vertex in a directed graph is balanced if its in-degree equals its out-degree [7].
In Figure 10.1b, the degree of the vertex 4 is three. In Figure 10.1a the in-degree of
the vertex 4 is two and the out-degree is one. Vertex 6 in Figure 10.1a is balanced
because its in-degree is equal to its out-degree.

10.1.2.2 Eulerian Graph. Eulerian graphs are based on Euler’s theorem, which
stemmed from the concept that no walking tour of the seven bridges of Konigsberg
can be designed such that each bridge is traversed exactly once. Figure 10.5a shows
the seven bridges of Konigsberg and Figure 10.5b shows the graphical representation
of these seven bridges. The four land masses are represented as nodes (A, B, C, D),
and the bridges connecting the land masses are represented as edges. An Eulerian
path, trail, or walk through a graph is a path whose edge list contains each edge
of the graph exactly once [5]. If the graph is a circuit/cycle, then it is an Eulerian
circuit or Eulerian cycle/tour. An Eulerian graph is a graph with an Eulerian path.

(a) B

River A

D

(b) A (c) A (d) A

c c c
Figure 10.5 Eulerian and Hamiltonian paths. (a) Schematic diagram of the seven bridges of
Kodnigsberg. (b) Graphical representation of the seven bridges of Kénigsberg. All vertices have
odd degrees and therefore do not satisfy the condition for an Eulerian graph. This is, however,
a Hamiltonian graph, and the path A-B-C-D is a Hamiltonian path. (c) Adding a second edge
A-C makes the graph in Figure 10.5a Eulerian. Only vertices B and D have odd degrees. The
path B-C-B-A-C-A-D-C-D is an Eulerian path. (d) A directed Eulerian graph. The in-degree of

every vertex is equal to its out-degree. This is also a Hamiltonian graph with D-A-B-C-D being a
Hamiltonian circuit.
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An undirected graph is Eulerian if and only if it is connected and has either zero or
two vertices with an odd degree. If no vertices have an odd degree, then the graph
has an Eulerian circuit.

It can be observed from Figure 10.5b that the seven bridges of Konigsberg have
odd degrees on all vertices (three on A, B, and D and five on C), and therefore, this
graph is not Eulerian. However, adding one more edge between the vertices A and
C makes the degrees of A and C even (Figure 10.5¢) [5]. This new graph now has
only two vertices with odd degrees (B and D), and therefore, it is possible to find an
Eulerian path by starting at one of the two odd-degree nodes, such as B-C-B-A-C-A-
D-C-D. In a directed graph, if the in-degree of every vertex is equal to its out-degree,
then it is sure to have an Eulerian circuit. In Figure 10.5d, the in-degree is the same as
the out-degree for every node, and A-B-C-D-C-B-A-C-A-D-A is an Eulerian circuit.

10.1.2.3 Hamiltonian Graphs. The next interesting problem in graphs is to
find a path in which each node is visited only once. Hamilton defined graphs in
which each node is visited exactly once now are known as Hamiltonian graphs.
The vertex list of a Hamiltonian path through a graph contains each vertex exactly
once. A circuit fulfilling this criterion is a Hamiltonian circuit. A Hamiltonian graph
is one that has a Hamiltonian path [8]. The path A-B-C-D in Figure 10.5b is a
Hamiltonian path, whereas the path D-A-B-C-D in Figure 10.5d is a Hamiltonian
circuit.

10.1.2.4 Subgraphs and Cliques. A subgraph is a smaller portion of the
original graph. Every vertex and edge of the sub-graph is a member of the ver-
tex and edge list, respectively, of the main graph. For a graph G = (V,E), a sub-
graph is defined as S = (V’, E’), where V’ is a subset of V and E’ is a subset
of E. Figure 10.6a is a subgraph of the complete graph in Figure 10.1c. We can
see that in the subgraph, some edges and vertices are missing, thereby making it a
smaller version of the original graph. In an undirected graph, a clique is a subgraph

(a) (b)

Figure 10.6 Subgraphs and cliques. (a) A subgraph of the graph in Figure 10.1c. It is evident
that the edge list of the graph in (a) is a subset of the edge list of the graph in Figure 10.1c.
However, the vertex list is the same for both graphs. (b) A complete subgraph of (a) in which
every vertex is connected to every other vertex. This subgraph is a clique of size 4. Vertex 5 in
(a) is absent.
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Figure 10.7 Trees and forests. (a) A tree. The graph is connected but undirected. (b) A forest
of trees. Each separate component of the forest is connected and is a tree.

C = (V’, E’), comprising pairwise edges. In other words, the subgraph C is a com-
plete graph. The size of a clique is measured by the number of vertices it contains
[9]. Figure 10.6b is a complete subgraph of the graph in Figure 10.6a and is thus a
clique of size four.

10.1.2.5 Trees, Forests and Spanning Trees. A connected graph that has
no self-loops or cycles is called a tree. A forest is an undirected graph whose com-
ponents are all connected. Figure 10.7a is a tree and Figure 10.7b is a forest. It
can be seen that a forest is a disconnected graph whose individual components
are connected. In a tree, if there is a unique path from a particular vertex to every
other vertex, then this special node is considered distinguished and is referred to as
a root.

A tree with a distinguished vertex is a rooted tree. The level of a vertex in a rooted
tree is the number of edges that separates the vertex from the root. In Figure 10.8, A,
C, D, E and F are child nodes of the root vertex B. D is a parent of both G and H,
whereas B and D are ancestors of G. G and H are descendents of D. Any vertex that
does not have descendents is called a leaf (A, C, E, F, G, and H in Figure 10.8). The
vertices D, G, and H form a subtree of B. Vertices E, F, A, and C are also subtrees
with only one node each. A binary tree has only two subtrees for any vertex at each
level.

A spanning tree, T = (V, E’) of the graph, G = (V, E) is a tree that connects all
vertices of G such that E’ is a minimum subset of E required to connect every vertex

©

Figure 10.8 A rooted tree. Vertex B is the root node.

(8)
» ® ®
©
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Figure 10.9 Three possible trees with three edges are shown, with spanning trees shown in
dotted lines. It is possible to find many spanning trees for the same graph.

in V [5]. Figure 10.9 shows three different possibilities of spanning trees (dotted
lines) for the graph in Figure 10.6b. As the number of vertices and edges increases,
it is almost impossible to find all possible spanning trees for a given graph, without
the aid of a computer.

10.1.2.6 Networks and Flows. A network is a weighted digraph that contains
two distinguished vertices called the source and the sink. The maximum rate of flow
through any edge is called its capacity, and it is this information that the weight func-
tion of the network contains. The flow through a network can be defined as a function
f such that the amount of information passing through any edge is nonnegative and
is not larger than its capacity [5]. For each vertex other than the source or the sink,
the amount of information going into the vertex is equal to the amount of informa-
tion leaving the vertex. Figure 10.10a shows a network in which s is the source and
t is the sink. Figure 10.10b represents one flow through the network (dotted lines)
from source to sink. The amount of flow along each edge is represented as the first
number and the capacity of the edge is the second number. The flow along an edge
should always be less than or equal to the capacity of the edge. There can be many
other flows through a given network from source to sink.

(@) 6*0» (b) 0/10
5
S
N _-¥
~ _-

Figure 10.10 Network, flow, and capacity. (a) Each network has a source s and a sink .
Every edge has a weight associated with it that is called the capacity of the edge. (b) s-c-t is
one of the many flows through the network starting at the source and ending at the sink. The
flow from the source to the sink is 3.

t
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10.1.3 Well-Known Graph Problems and Algorithms

Graphs are a convenient way of representing the relationship between entities, and
therefore, there has been a lot of innovation in finding new algorithms to represent
different problems in everyday life. A few of these algorithms have been discussed
in this chapter.

10.1.3.1 The Traveling Salesman Problem (TSP). The notion of the travel-
ing salesman problem (TSP) originated from the situation of a salesman who wants
to minimize the distance that he travels to visit all his customers. In other words, a
traveling salesman problem is a Hamiltonian path in which the sum of the weights of
the edges is a minimum. It is possible to find numerous Hamiltonian paths through
a given graph; however, to identify the minimum cost or optimum solution, an ex-
haustive check to find the cost of every possible path is required. As the number of
vertices in a graph increases, this method becomes nearly impossible to determine
manually. Harnessing computational power to find the optimal solution has resulted
in the optimal TSP solution to be calculated within a few hours for 1000 cities and
in a few seconds for 100 cities [10]. Many heuristic algorithms have been developed
to find a path or circuit that is closest to the optimal one. One such algorithm is the
closest neighbor algorithm. This algorithm starts at any random vertex a and visits
the closest neighbor that has not been visited previously. At each vertex, the next
vertex to be visited is such that the distance from the current vertex to the next unvis-
ited vertex is the smallest available one. In the completely connected and weighted
graph in Figure 10.11, the TSP problem [5] has been solved using the closest neigh-
bor algorithm. Vertex a is selected randomly as the first node. The possible traversals
from a include a-c, with weight five, a-b, with weight six, and a-d, with weight eight.
As five is the smallest of the three, a-c is selected as the first edge. The next choice
is either c-b (six) or c-d (seven). c-b is thus the selected route. The two subsequent
visits from b are either to a or d. As vertex a is already visited, the only choice is to
travel to d and then to a to complete the circuit. The final path covering all vertices
has been shown in dotted lines (a-c-b-d-a) with a cost of 29.

However, if checked carefully, we can find another circuit (a-b-c-d-a) in this graph
that has a smaller cost of 27. It is not always possible to find an optimal solution with

/7 \
/7 |6 \\
10,/ N3
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7 \
,’,’ So \
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Figure 10.11 The TSP has been solved for the given graph using the closest neighbor algo-
rithm. Vertex ais selected randomly. The nearest node to ais node c. The nearest node to cis
b and the nearest node to b that is not visited is d. Finally, the circuit is completed by travelling
back to node a (starting node). The edges traversed from each node is shown in dotted lines.
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the closest neighbor algorithm. Therefore, we have to try and find a closest neighbor

circuit in a graph such that the ratio of the cost of the closest neighbor path (C¢,) to

that of the optimal path (Cop) is as close to 1 as possible. If Ca j5 ~ 1, then that
opt

C
algorithm is considered good [5].

10.1.3.2 The Minimal Spanning Tree Problem (MST). For a weighted, con-
nected and undirected graph, G = (V, E, w), where V is the vertex list, E is the edge
list and w is the list of weights associated with the edges, a Minimum spanning tree
MST)is T = (V, E’), where E’ is a subset of E, such that there are no cycles in
T, but every vertex is connected. The sum of the weights of each edge in the span-
ning tree (E’) should be as small as possible [8]. In other words, a spanning tree of
a connected graph G also can be defined as a minimal set of edges of G that con-
nects all vertices. Two commonly used approaches to find minimal spanning trees are
Kruskal’s algorithm and Prim’s algorithm. Both these algorithms generate the same
minimal spanning tree for a given graph. In total, we will have to find n—1 edges to
find a minimal spanning tree for a graph with n vertices [6].

10.1.3.2.1 Kruskal’s Algorithm. In Kruskal’s algorithm [11], a given graph first
is broken down into a forest that consists of n# components, where n is the number
of the vertices of the given graph. Each component in the forest consists of only one
node and nothing else. Next, an edge with the smallest weight is selected such that
the selected edge does not create a loop, and it does not connect vertices that belong
to the same tree. This edge is added to the new list of edges for the spanning tree.
This procedure is continued until all vertices are visited, resulting in only one tree.
At every step of the algorithm, two different trees of the forest are connected to make
a bigger tree. Therefore, from smaller trees in our forest, we end up with a tree that
is the minimal spanning tree [12].

By applying the Kruskal’s algorithm to the graph in Figure 10.12a we can obtain
the minimal spanning tree in Figure 10.12b (dotted lines). Of the two edges A-E and
B-E, with weights of only two (the smallest weight in the graph), let A-E be selected.
The next shortest arc that does not form a cycle is B-E, and is added to the tree.
E-C with a weight of three then is added to the new edge list followed by E-G. The
subsequent smallest weight is five between nodes B and A. This edge is not selected
as it forms a cycle, B-E-A-B. The edge, B-C, has a weight of six but is ignored, as B
and C are already part of the same tree. The next edge selected is B-D, with a weight
of seven. The only vertex left to connect is F, which is connected to either C with a
cost of eight or G with a cost of 11. We select F-C, which is the smaller of these two
cost values. Therefore, the final spanning tree has six edges, connects all vertices,
and has a total cost of 26. It is also important to note that the total number of edges
in a spanning tree is one less than the number of nodes in the given graph.

10.1.3.2.2 Prim’s Algorithm. Jarnik (1930), Prim (1957), and Dijkstra (1959) are
believed to have developed this algorithm independently, although it is attributed to
Prim in current literature [12]. As discussed earlier, for a given connected weighted
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Figure 10.12 Applying Kruskal’s algorithm. (a) A weighted connected undirected graph. (b)
The minimal spaning tree for the graph obtained by applying the Kruskal’s algorithm. Edges A-E
(2), B-E (2), E-C (3), E-G (4), B-D (7), and C-F (8) constitute the minimum spanning tree, of
weight 26. The same minimal spanning tree is obained by applying Prim’s algorithm with any
vertex chosen as the starting point.

graph G = (V, E, w), a minimal spanning tree is defined as T = (V, E’). Prim’s
algorithm finds the minimal spanning tree 7" as follows:

1. Chose an arbitrary vertex, say x, from V and add this to V. SO Vie, = {x}.
No matter which vertex is selected, the solution will be the same.

2. Select an edge (x, y) so that x is a member of V,,,, and y is an unvisited vertex
that has the least weight. If there are multiple edges with the same weight, then
choose arbitrarily but consistently.

3. Add this newly visited vertex to V., and the edge (x, y) to E.,-
4. Repeat steps 2 and 3 until V,,,, = V.

In short, the algorithm works by choosing a random starting node and building a
tree by selecting at every stage the shortest available edge starting from any of the
already visited vertices that can extend the tree to an additional node [6].

Figure 10.12b represents the minimal spanning tree obtained by applying Prim’s
algorithm to the graph in Figure 10.12a. We have selected A as the first node in V..
There are two possible edges that can be selected from A, namely A-E (2) and A-B
(5), where the values in the brackets represent their respective costs. A-E has the
minimum cost, and therefore, this edge is chosen and is added to the edge list, and
E is added to V,,,,. The next edge chosen can be any connected to A or E. E-B (2)
is subsequently selected. Thereafter, E-C (3) is the least weighted edge among the
different edges possible from the already visited vertices A, E, and B. Next, the edge
E-G (4) is chosen. Although the next smallest edge available is A-B (5), this edge is
ignored as both A and B are already in V... The same argument holds for edge B-C.
So, the next edge selected is B-D (7). The only node left to be connected is F', which
is linked to C (8) orto G (11). We chose C-F, as this has a smaller weight than F-G.
The resulting MST is identical to the one obtained from Kruskal’s approach.
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Figure 10.13 Shortest path through the graph from the source to the sink is s-e-t that has a
weight of six.

10.1.3.3 The Shortest Path Problem. The shortest path problem involves
finding a path between two given vertices such that the sum of the weights of its
edges is a minimum [13]. One of the most important approaches to solve this prob-
lem is Dijkstra’s algorithm. An everyday example is finding the quickest way to get
from one location to another on a road map. In this case, the vertices represent loca-
tions, and the edges represent segments of road and are weighted by the time needed
to travel each segment. Figure 10.13 shows the shortest path (dotted lines) through a
connected and weighted graph from the source, s to the sink, .

10.1.3.3.1 Dijkstra’s Algorithm. Dijkstra’s algorithm, developed in 1959 [14],
can be applied to solve the single-source shortest path problem for a graph with non-
negative edge costs, resulting in the shortest path tree. For a given source vertex (s)
in the graph, the algorithm finds the path with the least cost between s and every
other vertex.

The node that we start with is called an initial node. Dijkstra’s algorithm first
assigns arbitrary initial distance values to each node and then attempts to improve
these values iteratively [6].

1. Select an initial node and assign a distance value of zero to it. Assign a distance
of infinity to all other nodes.

2. Mark the initial node as current (white) and all other nodes as unvisited.

3. For the current node, calculate the distance to all its unvisited nodes from the
initial node. If this distance is less than the previously recorded distance, then
overwrite the distance.

4. Mark the current node as visited (grey) after considering all its neighbors. A
visited node will not be checked again; its distance recorded now is final and
minimal.

5. Set the unvisited node with the smallest distance from the current node as the
next current node and repeat steps 3-5.

Figure 10.14 shows an example of Dijkstra’s algorithm being carried out. a is the
initial node, and d is the final node, in a graph with five vertices (Figure 10.14a). First,
node a is assigned a distance value of 0 and marked as the current node, whereas all
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Initial node

Figure 10.14 Using Dijkstra’s algorithm to find the shortest path. (a) The initial node is node
a, and the final node is node d. (b) The initial node (white) is assigned a distance value of 0,
and all other nodes are assigned a distance value of co. (c) Node a is marked as visited (grey)
after calculating the distance to all unvisited neighboring nodes ¢ ¢, and b (marked with *). ¢
is set as the next current node (white). (d) Node cis marked as visited (grey) after calculating
the distance to all unvisited neighboring nodes ¢, d, and b. Note that the distance to node b has
been overwritten as the new distance value is less than six (the previous value on b). eis set as
the next current node (white), as it is the unvisited node with the smallest distance from node c.
(e) Node e is marked as visited after calculating the distance to the only unvisited neighboring
node d. The shortest path to d from a (initial node) therefore, is a-e-d with a distance value
of six.

other nodes are assigned distance values of infinity (Figure 10.14b). Node a has three
neighbors: b, ¢, and e. The distances to the three nodes b, c, and e are calculated as
the weights of the interconnecting edge, and the infinity value is replaced by the
current values of six, one, and two, respectively (Figure 10.14c). Node a is then
marked as visited, and node ¢, which is closest to node a, is marked as the new
current node, with four neighboring nodes, a, e, d, and b (Figure 10.14d). Because
a is already marked as visited, this node is ignored and the distance values to the
remaining three nodes are calculated from a by summing up the distance a-c and the
distance between ¢ and each of its other neighbors.

Applying this formula, the distance from a to e through c is a-c (1) + c-e (3)
= 4. The distance value of e is not overwritten as the new distance value of e is
4 > 2, the existing value on e. But the distance from a to b through c is a-c (1) 4 ¢-b
(3) = 4, less than the previously recorded value of six. So we replace six with the
newly obtained distance value for b. Similarly, the distance from a to d through ¢
is eight. The nearest node to c is e, based on its weight, making it the next current
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Figure 10.15 Maximal flow network for the graph in Figure 10.13. The first value shown on
each edge is the actual flow through the network, and the second value is the edge’s capacity.
The flow from the source sto nodes a and cis 1 and 3, respectively, resulting in the total flow

leaving the source being 4. The total flow entering the sink t is also therefore 4. The edges
participating in the maximal flow are shown in dotted lines.

node. The new distance value for d (six) is smaller than the previous value (eight)
and therefore is replaced with the new value. Thus, the shortest path from a to d has
a weight of six (dotted lines) in Figure 10.14e.

10.1.3.4 The Maximal Flow Problem. The maximal flow problem involves
maximizing the amount of information that passes through a network [6]. This is
the same as finding the flow with the largest possible value in any given network.
Figure 10.15 shows the maximal flow network for the graph in Figure 10.15. There
are two values represented on the edge in a network; the first value being the actual
flow f through the edge, and the second value being the capacity c. Several algo-
rithms are available to calculate the maximal flow in a directed graph in which each
edge has a defined capacity. One such algorithm is the Ford—Fulkerson algorithm.

10.1.3.4.1 Ford-Fulkerson Algorithm. The Ford—Fulkerson algorithm, pub-
lished in 1956 [15], computes the maximum flow in a network. To describe the
Ford-Fulkerson algorithm, we need to define residual networks and augmentation
paths [16]. If the flow f along an edge a-b in a given network is less than the ca-
pacity c¢ of the edge, then there is a forward edge a-b with a capacity equal to the
difference of the capacity and the flow (= c-f), known as the residual capacity. If
the flow is positive, then there is a backward edge, b-a with a capacity equal to the
flow (= f) on a-b. An augmenting path links the source to the sink in the residual
network and helps to increase the flow in a network. In an augmenting path, the edges
can point the wrong way when compared with the real network. The minimum flow
possible from source to sink in the given network is determined first. Then a residual
network of this graph is found to check whether there is an augmentation path in this
residual network. If there is a path, then more flow is directed along this path. The
process is continued untill no augmentation path is available in the residual network
from source to sink.

In Figure 10.16a, there are a few different paths from the source s, to the sink .
Let us select the path s-a-e-t. The capacity of the edges s-a, a-e, and e-t are two,
ten, and one, respectively. We select the smallest capacity (one) along this path and
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Figure 10.16  Using the Ford—Fulkerson algorithm to find the maximal flow for a network from
source sto sink t. (a) A flow of 1 is directed along s-a-e-t. (b) The residual network Figure
10.16a. As s-ain the orginal network has a flow of 1, the forward edge s-ain the residual network
has a capacity of 1 (difference of capacity(2) and flow (1)). The flow is positive from s to a. So
the backward edge a-s is equal to the actual flow (1) through the edge. Likewise, the forward
edge a-e has a capacity of 10 — 1 = 9 the backward edge e-a has a capacity of 1. The forward
edge e-t has a capacity of 0 as flow-capacity on this edge is zero. Edges s-c, s-e, and c-t also
have backward edges with capacity zero as flow = 0 on these edges. There is an augmentation
path (s-c-t) from s to t in this residual path. (c) A flow of 3 (minimum capacity of the edges
involved) is directed along the augmentation path, thereby increasing the flow from 1 to 4. (d)
Residual network of Figure 10.16c. There is no available augmentation path in this residual
network from s to t. The maximal flow through the network is 4.

direct this amount of flow through that path as depicted in Figure 10.16a. There-
fore, in the residual network (Figure 10.16b), edge s-a has a forward and backward
flow of capacity one. The forward edge s-a has a capacity of one (difference of ca-
pacity (two) and flow (one)). As the flow is positive from s to a in Figure 10.16a,
the backward edge a-s is equal to the actual flow (1) through the edge. Likewise,
the forward edge a-e has a capacity of 10 — 1 =9 the backward edge e-a has a
capacity of one. The forward edge e-r has a capacity of zero, as flow is equal to
capacity on this edge. Edges s-c, s-e and c-t have backward edges with capacity
zero, as flow equals to zero on these edges in Figure 10.16a. We can see clearly
from Figure 10.16b that there is an augmentation path (s-c-f) from s to ¢ in this
residual network. A flow of three (minimum capacity of the edges involved) is di-
rected along the augmentation path, thereby increasing the flow from one to four
(Figure 10.16¢). There is clearly no augmentation path present in the new resid-
ual network (Figure 10.16d) from s to z. Therefore, the maximal flow through the
network is four.

The veracity of this algorithm can be validated by using the max-flow min-cut
theorem [17]. The theorem states that the maximum flow in a network is equal to the
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minimum cut of the network. A cut in a flow network is the set of edges such that if
they are removed, then there is no path from the source to the sink. The capacity of a
cut is equal to the sum of the capacities of the every edge in the cut. In Figure 10.15,
s-a, s-e, and c-t together represent a cut with capacity 10. Similarly, e-t and c-f can
be another cut with capacity four. By exhaustively determining every possible cut,
we can see that the smallest possible cut for the graph in Figure 10.15 has a capacity
of four. According to the max-flow min-cut theorem, the maximum flow through the
network should be 4 for the graph. This is exactly the same value for maximum flow
that we found using the Ford—Fulkerson algorithm in Figure 10.16.

10.2 GRAPHS AND THE BIOLOGICAL WORLD

The data explosion in biology in recent years [18] can be attributed to the sequenc-
ing and annotation of several genomes, coupled with the advances in high-throughput
experimental screening techniques. We now have data on genomes, transcriptomes,
proteomes, and interactomes along with genes, proteins, transcription factors, path-
ways, and regulatory networks. Bioinformatics, the application of computational
techniques to analyze the information associated with biomolecules on a large scale,
now has established itself firmly as a discipline in molecular biology and encom-
passes a wide range of subject areas from structural biology and genomics to gene
expression studies [19]. The language of graph theory offers a mathematical abstrac-
tion for the description of various relationships involved in molecular biology [20].
We present here recent bioinformatics applications of graph theory that proved their
utility in analyzing large datasets.

10.2.1 Alternative Splicing and Graphs

Alternative Splicing (AS) is a fundamental mechanism that leads to complexity in
higher eukaryotes. The introns in the pre-mRNA are removed in a process called
splicing, and the exons are coupled in varying combinations. This can change the
composition of the primary transcript. A single gene therefore can generate several
unique transcripts by combining exons and introns in different combinations because
of the phenomenon of AS. It is critical to conduct an indepth study on AS because
the disruption of AS is associated with many diseases such as cardiovascular, cancer,
and neurodegenerative disorders [21]. Analyses also have shown that up to 15%
of all point mutations causing human genetic diseases result in an mRNA splicing
defect [22], providing a link between AS events and inherited genetic diseases.
Splicing graphs facilitate the systematic study of alternatively spliced genes of
higher eukaryotes by generating graphs for the compact visual representation of
transcript diversity from a single gene. Lee ef al. [23] have developed a database
of Drosophila melanogaster genes (DEDB), with alternative splicing information
of all transcripts developing from each gene organized as a splicing graph. Their
study used DAGs; (Figure 10.3b) to represent the transcripts, which were clustered
based on overlapping genomic positions. Splicing graphs were constructed using
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these clusters of transcripts. In each cluster, exons and introns that had identical start
and end positions were merged into nodes and connections, respectively to form
the complete splicing graph. Lee et al. [23] suggested that by condensing all splice
variants into a single graph, where each splice variant is a path through the graph,
users quickly can establish the types and effects of various alternative splicing events
present in the gene. The splicing graphs provided an efficient platform to break down
the graphs further and identify the various alternative splicing events within the same
genes. This group has discussed eight alternative splicing events in which the exons
in a gene either are included or excluded from the transcripts in varying combina-
tions leading to different patterns within the transcripts and also suggested that by
using this method to represent transcripts, users can pick up bifurcations that denote
alternative splicing events far quicker than for the traditional approach of presenting
separate transcripts, wherein the user has to deduct AS events by visual analysis.

The Alternative Splicing Graph Server (ASGS) [21] is another approach to depict
transcripts from a single gene as a splicing graph. Unlike the approach of Lee ef al.
[23] in which the first transcript was used as a reference to define AS events for all
other transcripts, ASGS attempts to identify the path most traversed in the splicing
graph. For a given set of transcripts, ASGS identifiesdistinct exons as the most com-
monly occurring exons at a genomic location so that all other exons are classified as
variable exons. AS events therefore are defined with respect to these distinct exons.
Figure 10.17 shows the use of directed acyclic graphs to represent exons and introns
used by ASGS.

10.2.2 Evolutionary Tree Construction

The construction of an evolutionary tree is a very challenging problem in computa-
tional biology and has been studied extensively by many researchers. Korostensky
and Gonnet [10] have applied the traveling salesman problem algorithm to recon-
struct a correct evolutionary tree by defining a phylogenetic tree 7 = (V, E) as a
binary connected acyclic graph, where the vertices are denoted as V and the edges
as E. For a given set of protein sequences, their method constructs a tree with a
minimum score, representing evolution measured in point accepted mutation (PAM)

(a) Transcripts (b) Splicing Graph
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Figure 10.17 An alternative splicing graph generated using ASGS. (a) Transcript structure of
a single gene. The exons (black) are nodes and the introns (dotted lines) are edges. (b) The
splicing graph representation of the gene. The distinct exons are shown in black and the variant
exons are in grey.
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Figure 10.18 Traversal of evolutionary tree in a circular order. The dotted lines represent the
traversal. Evey edge is traversd exactly twice.

distances [10]. Their tree constructing algorithm, CircTree takes as input the PAM
distances of the pairwise alignments as well as the circular order of the optimal tree
calculated with a TSP algorithm. The circular order C(T) for a set of sequences
S ={s1, ..., s,} is defined as any tour through a tree 7'(S) in which each edge is tra-
versed exactly twice, and each leaf is visited once. Figure 10.18 shows the traversal
of a tree in a circular order along the dotted lines from A-B-C-D-E-A. It traverses all
edges exactly twice and, thus, weighs all edges of the evolutionary tree equally.

Korostensky and Gonnet [10] were able to reconstruct a correct evolutionary tree
if the error for each distance measurement was smaller than %, where x is the shortest
edge in the tree. For datasets with large errors, a dynamic programming approach was
used to reconstruct the tree. The group carried out simulations with real data, and
their studies showed that the algorithm produced good results compared with other
established algorithms developed by Fitch and coworkers [24] and the ProbModel
approach [25], especially for smaller trees.

10.2.3 Tracking the Temporal Variation of Biological Systems

A common approach to studying the behavior of naturally dynamic biological sys-
tems and phenomena is to sample individuals, tissues, or other relevant units at inter-
vals throughout the chronological progression of the system under study [26], known
as a time series. The temporal progress of biological systems can be measured by us-
ing well-characterized time series as benchmarks. Temporal variation data also can
be used as diagnostic tools for assessing and treating diseases [26]. Magwene et al.
used modifications of a minimal spanning tree calculated from a weighted undirected
graph to estimate temporal orderings of biological samples from unordered sets of
sample elements [26]. This technique was applied to an artificial dataset as well as
to several gene expression datasets derived from DNA microarray experiments.

First a graph was constructed such that the vertices represent the sample observa-
tions, and the weights on edges are pairwise dissimilarities. Then, a minimum span-
ning tree Gy = {V, Eng} of the complete weighted graph G was found. This was
taken to be the best estimate of the ordering if the minimum spanning tree obtained
was a path and it had no branches.
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When G, is not a path, the diameter path noise ratio, branch distribution, and
sampling intensity were calculated. A noisy sample has numerous edges dangling
from the diameter path, leading to these edges and the nodes they connect, forming
branches. The diameter path noise ratio was calculated as the ratio of the number
of points on branches to the total number of points. If the distribution of points on
branches (known as the branch distribution) was uniform, then the branch points
were truly noisy. If they were not uniform, then relatively long branches may repre-
sent signal rather than noise. The sampling intensity was calculated using the ratio of
the average segment length to the total length of the diameter path. When the sam-
pling seemed to be relatively intense for a relatively uniform diameter path branch
distribution, the diameter path gave an estimate of the ordering.

A data structure called the PQ-tree was used to summarize all uncertainties of
path variations if the diameter path sampling intensity ratio was large and the di-
ameter path branch distribution seemed to be nonuniform with a few long branches
coming off the diameter path. A secondary condition of the shortest path ordering
was applied to the variations of the paths. Each of the Xshortest paths that were
consistent with the PQ-tree were reported, where Xis a user-defined value.

This algorithm worked for both artificial and experimental datasets from bacterial
and yeast gene expression studies. As the natural geometric characterization pro-
vided by minimum spanning trees are free of a priori distributional assumptions,
this approach can be applied to any dataset using a variety of dissimilarity measures.

10.2.4 Identifying Protein Domains by Clustering Sequence
Alignments

Protein domains are regarded as compact, independent units [27] that can fold sep-
arately [28] and perform a specific biological function in the living cell. Two pro-
teins with similar domains exhibit similar functions, so that the identification of
the functional domains of a protein serves as a means of protein annotation and
classification [29].

The currently available tools for searching the enormous biological sequence
databases result in inordinately long result files from which it is often difficult to
glean biologically relevant functional information [30]. Weak but biologically sig-
nificant homologies can be missed by not being able to identify many interesting re-
lationships buried in numerous alignments in the output files. To parse such database
similarity search output files, Guan and Du [30] algorithmically have classified
matching sequences into clusters, where each of these clusters represents similarity
to a different region of the query sequence, thereby extracting domain information.
They construct a graph with sequences representing vertices and the distance be-
tween two sequences as edges. A small distance value is assigned to two sequences
matching the same region of the query sequence and a greater distance to sequences
matching different regions of the query sequence. For a query sequence of length
n, the vector C = cjc; ... c, represents the similarity of a database sequence to the
query sequence in a search output, where ¢; = 1 if the sequences are similar and
¢; = 0 if they are dissimilar. The distance between two sequences is defined as the
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distance between their vector representations (C* and C/), with small values if C
values are close to 1 and vice versa.

Prim’s algorithm was used to find the MST in this connected graph. In a minimum
spanning tree, if an edge is removed, separating the MST into two subtrees, then
the two subtrees are still MSTs, with respect to the complete subgraphs formed by the
nodes contained in the two subtrees [30]. First, the algorithm finds the edge with the
longest distance in the tree and separates the tree by removing the edge if the two
resulting subtrees differ by a constant D,

dCi,Cj
p < 4c. ¢

n

where d(C?, C/) is the difference between the vector representation of two se-
quences, n is the length of the query sequence, and the number of nodes in each
subtree is > M, where M is a user-defined parameter. The use of M helps to intro-
duce some control over the cluster size (minimum cluster size) and limits the number
of nodes that the clusters should have. The algorithm repeats this step until no more
subtrees can be separated. Based on the constants D and M, the algorithm classifies
the sequences into several clusters. Guan and Du [30] observed that coarse clustering
(high values of D and M) reveal the main domains, whereas fine clustering (lower
D and M) reveals weak and distantly related domains.

10.2.5 Clustering Gene Expression Data

Functional relationships of genes in a biological process can be studied using gene
expression data clustering. The problem of clustering genes with associated expres-
sion patterns over some time series and under different conditions requires efficient
methods to interpret the observed expression data. Xu et al. [31] have suggested new
methods to represent a set of multidimensional gene expression data as a minimal
spanning tree using Kruskal’s algorithm. They suggested that the simple structure of
a tree facilitates the efficient implementation of rigorous clustering algorithms. Also,
an MST-based clustering does not depend on the detailed geometric shape of a clus-
ter and can overcome many problems faced by classical clustering algorithms. These
clustering algorithms have been implemented in the software, Expression Data Clus-
tering Analysis and VisualizATiOn Resource (EXCAVATOR), for testing on three
datasets with encouraging results.

To obtain the best possible results, different clustering problems may need
different objective functions [31]. Within the MST framework, Xu et al. have dis-
cussed three different objective functions, and their clustering algorithms partition
a tree into K subtrees, where K is any integer greater than zero. The first objective
function is to partition an MST into K subtrees so that the total edge-distance of all
K subtrees is minimized, and it captures the perception that two data points with a
short edge-distance should belong to different clusters and hence be cut. The second
algorithm, attempts to partition the MST into K subtrees so that the total distance
between the center of each cluster and its data points are minimized. In the third
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algorithm, data points around the best representatives from the dataset were grouped
together. Here, the best representatives are not preselected. Instead, they are the
result of the optimization process that attempts to partition the tree into K subtrees.
The K representatives are selected simultaneously in such a way that they optimize
the objective function.

The results obtained from all the three clustering algorithms were virtually identi-
cal for the gene expression data in the budding yeast, Sacchromyces cerevisiae. Both
the Euclidean distance and the correlation distance were used as distance measures.
The program determined that a four-way clustering gives the most natural number of
clusters for this problem, and these results are concordant with the annotated analysis
outcomes of Eisen et al. [32].

10.2.6 Protein Structural Domain Decomposition

With the number of protein structures in the Protein Data Bank (PDB) increasing at
an exponential rate, there is an urgent need to develop reliable and efficient methods
for identifying the underlying protein structural domains in each structure. Domain-
Parser has been developed by Xu et al. [33] to solve this domain decomposition
problem. Each residue of a protein is represented as a node and the relationship be-
tween residues as edges with a nonnegative capacity depending on the type of the
contact, thereby reducing this to a network flow problem. Any edge that has a zero
capacity corresponds to a nonexistent edge. The capacity of an edge is defined to
reflect the packing between the two residues under consideration.

By finding a minimum cut of the network and minimizing the total cross-edge
capacity using the classical Ford—Fulkerson algorithm, Xu et al. could solve the two-
domain decomposition problem, and by iteratively solving a sequence of two-domain
problems, a multidomain decomposition problem was worked out. This algorithm
requires a source and a sink, and to avoid a trivial and incorrect partition, two groups
of nodes are selected as the source and the sink rather than choosing two nodes from
the network representation of the protein as the source and the sink. At the outset,
all interesting source—sink networks are listed for a given network. Subsequently, for
each source—sink network, Xu et al. have enumerated all the minimum source—sink
cuts by applying the Picard—Queyranne algorithm [33] based on the residual network
of the Ford—Fulkerson algorithm. Different partitions are calculated and ranked using
global parameters in the post—processing step.

The DomainParser program has been tested on a commonly used test set of 55
multidomain protein structures. The decomposition results are 72% in agreement
with the literature on both the number of decomposed domains and the assignments
of residues to each domain, which compare favorably with other existing programs.
On the subset of two-domain proteins, the program assigned 96.7% of the residues
correctly.

10.2.7 Optimal Design of Thermally Stable Proteins

Making a protein more structurally and functionally stable at higher temperatures
makes it advantageous for many industrial and laboratory settings [34]. A more stable
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protein permits higher process temperatures, which can reduce the risk of microbial
contamination and increase both reaction rates and reactant solubility [35, 36]. Mu-
tating specific amino acids to improve explicitly properties of the protein structure by
rational or structure-based design is one among the many approaches that have been
developed [34]. Directed evolution, which endeavors to accelerate natural evolution
in a laboratory setting, is another major innovation in this direction. A computational
approach in which data from sequence databases are used is yet another method for
making more thermally stable proteins [37, 38].

Bae et al. [39] used measures of local structural entropy (LSE) to design more
thermally stable proteins. They called this novel approach improved configurational
entropy (ICE). Chan er al. [38] examined structures deposited in the Protein Data
Bank (PDB) to see how often particular amino acid tetramers (four consecutive
amino acids from the protein sequence) appeared in protein secondary structures
to derive a value for LSE, with a higher LSE value attributed to a tetramer occur-
ring in several kinds of structures compared with one that is restricted to a single
secondary structure. Chan et al. [38] observed a correlation between LSE and pre-
viously published differences of thermal stability for thermophilic proteins and their
mesophilc homologues. Bae et al. [39] incorporated LSE as part of ICE and used
it successfully to select amino acids from closely homologous proteins that mini-
mized the total structural entropy for the target sequence. To solve efficiently the
LSE minimization problem, Bannen ef al. [34] modeled it as a shortest path network
optimization problem. A protein sequence of length n is decomposed into an ordered
sequence of nodes in a network to construct a network representation. A tetramer
was used to label each node with directed edges connecting the nodes, thereby rep-
resenting each sequence of length n with a path of length n — 3. Each node la-
bel also was prefixed with its “stage,” which is the position of its first amino acid
in the protein sequence. For example, the protein sequence MERLTG can be rep-
resented as Source—(1,M,E,R,L)— (2,E,R,L,T)—(3,R,L,T,G)— Sink. The entropy
values derived by Chan et al. [38] that correspond to the tetramer at the destination
represents the values for each edge. The source node with weights equal to the en-
tropies for the tetramers of all the first-stage nodes and a sink node are two other
important nodes in this network. A protein sequence of the same length as the orig-
inal sequence can be arrived at, by finding a path through the network from source
to sink [34]. The amino acid at each position is chosen from position-specific amino
acid conservation in a multiple sequence alignment of homologous sequences. By
finding the shortest path through this network from source to sink, Bannen et al.
were able to find the optimal sequence using Dijkstra’s algorithm to solve this short-
est path problem. The optimal string is retrieved from the shortest path by strip-
ping out the node stage numbers and merging the tetramers along the path, thereby
eliminating overlaps.

Compared with a simple brute force approach, the shortest path problem using
Dijkstra’s algorithm improves computational efficiency [34]. With two sequences
that are 67% identical and 4800 amino acids long, the shortest path approach gener-
ates a graph about the same size as two sequences that are 400 amino acids long and
share 0% sequence identity (~6500 nodes) and the shortest path algorithm calculates
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S ={ ATG, AGG, TGC,TCC, GTC, GGT, GCA, CAG }
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) Path leads to sequence ATGCAGGTCC (b) Path leads to sequence ATGGCAGTCC

Figure 10.19 Using Hamiltonian paths to reconstruct sequences. Different reconstructions for
the same given spectrum S lead to the sequences (a) ATGCAGGTCC and (b) ATGGCAGTCC.

the overall minimum in less than a second [34]. The overall minimum is found in 26
hours for a graph with ~2 million nodes [34], proving the scalability of the algorithm
even in extreme situations.

10.2.8 The Sequencing by Hybridization (SBH) Problem

Although a DNA array provides information regarding all strings of length ¢ for
an unknown gene sequence, it does not provide information about their positions
in the sequence [40]. The r-mer composition, or the spectrum, Spectrum(s, ¢) for a
string s of length n, is the multiset of (n — ¢ + 1) r-mersin s [40]. If t =3 and s =
TATGGTGC, then Spectrum(s,t) = {TAT, ATG, TGG, GGT, GTG, TGC}. The pri-
mary obstacle of applying DNA arrays for sequencing is the inaccuracy in inter-
preting hybridization data to distinguish between perfect matches and highly stable
mismatches [40].

This Sequencing By Hybridization (SBH) problem can be reduced to a Hamilto-
nian path problem. To construct the graph, a vertex is introduced for every ¢-mer in
the Spectrum(s, 7), and two vertices are connected by a directed edge if those two
vertices overlap [40]. There is a one-to-one correspondence between paths that visit
each vertex of H exactly once and DNA fragments represented by the Spectrum(s, ¢).
Oftentimes, it is possible to find more than one Hamiltonian path for a given spec-
trum, and each of these paths corresponds to different reconstructions. Figure 10.19
shows two such possible paths through a given spectrum. It is clearly shown that the
reconstructed sequences are different in both cases. This approach is therefore not
very practical when the overlap graph is large.

Another approach is to reduce the SBH problem to an Eulerian path problem [37]
in which every edge is visited exactly once. In this new graph, the edges represent the
respective t-mers from the Spectrum(s, ). A graph is built on all (¢-1)-mers, rather
than on the set of all t-mers. A (¢-1)-mer node v is joined by a directed edge with
a (z-1)-mer node w, if the spectrum contains a ¢t-mer where v is the prefix and w
is the suffix of that respective t-mer [37]. For a given spectrum, Spectrum(s, t) =
{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}, (¢-1)-mers and the directed
edges between them are shown in Figure 10.20. Figure 10.20a is the graph represen-
tation of this spectrum. The sequence can be reconstructed from this graph by finding
an Eulerian path. The two possible Eulerian paths through the graph (Figure 10.20a)
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(@) Graphical representation for the given sequence
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Figure 10.20 Sequencing by hybridization as an Eulerian path problem. (a) Graph repre-
sentation of the spectrum S= {ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}. Two nodes
AT and TG are connected with a directed edge from AT to TG if there is a 3-mer such that its
prefix is AT and its suffix is TG. Eulerian paths though the graph (a) producing the sequence (b)
ATGGCTGCA and (c) ATGCGTGGCA.

are presented (Figure 10.20b and Figure 10.20c). Although finding an Eulerian path
may seem as difficult as finding a Hamiltonian path, Jones and Pevzner [40] have
stated that finding an Eulerian path can be implemented in time linear in the number
of edges in the graph. Furthermore, they have suggested that in a balanced graph,
it is possible to find more than one Eulerian path and then combine these different
paths into one to obtain the single path.

10.2.9 Predicting Interactions in Protein Networks by Completing
Defective Cliques

Identification of the complete set of interactions among proteins in a cell is a funda-
mental problem in modern biology [41,42]. The experimental techniques available
are either small-scale or large-scale experimental methods. For a given set of pro-
teins, small-scale techniques such as coimmunoprecipitation recognize the interac-
tions between a pair of proteins at a time [43—46]. Large-scale techniques like yeast
two-hybrid and tandem affinity purification (TAP) tagging, on the other hand, locate
numerous interacting pairs in a single experiment [47-50].

Yu et al. [9] propose using a graph-based method to represent a protein interaction
network. Proteins are represented as vertices and pairs of interacting proteins are
connected by edges. The matrix model interpretation of the results of these large-
scale experiments reveals that two proteins interacting with the same protein cluster
are likely to interact with each other, leading to a predicted interaction [9]. Using
defective cliques to carry forward their algorithm, they observed that if nonadjacent
vertices P and Q are both adjacent to every vertex in a clique K, then it is likely that



216 GRAPHS IN BIOINFORMATICS

P and Q are adjacent to each other [9]. P, Q, and K then form a defective clique.
Their algorithm searches for these special defective cliques in protein interaction
graphs and predicts interactions that complete these defective cliques, resulting in
full cliques.

The algorithm first identifies all cliques in a network and finds pairs of cliques
overlapping on all but one node each. Then, edges between the overlapping and
the nonoverlapping nodes, in each of these pairs are predicted, and the new node is
added to the network. The efficiency of the algorithm is improved by looking for
partial overlaps of maximal cliques (a clique that is not contained in any other clique
in the graph) that differ in more than one node.

Yu et al. [9] applied their clique completion method to a large-scale experimental
dataset of the protein interaction network of S. cerevisiae obtained by Bader and
Hogue [51], with excellent results.

10.3 CONCLUSION

Graph theory has a wide range of applications in bioinformatics, represented by DNA
fragment assembly, protein domain decomposition, evolutionary tree construction,
visualization techniques for alternative splicing, identification of structural domains,
and clustering sequence alignments. In light of the many methodologies described
in this chapter, it is evident that the key algorithms of graph theory can be applied
successfully to address various biological problems. With the advent of a systems
biology approach to deciphering biological processes, we expect graph theoretical
methods to be applied extensively in the future.
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A FLEXIBLE DATA STORE
FOR MANAGING
BIOINFORMATICS DATA

Bassam A. Algaralleh, Chen Wang, Bing Bing Zhou, and
Albert Y. Zomaya

11.1 INTRODUCTION

With the abundance of scientific data in recent years, how to manage them effectively
becomes a challenging problem. Data produced by scientific activities often evolve
quickly and are too dynamic to have broadly agreed metadata structures. Bioinfor-
matics data belong to this category. The advances of high-throughput genome se-
quencing and gene expression profiling technologies produce huge amounts of data.
They are open for new interpretations, and the interpretations may change when new
discoveries are made. The research community use data annotation heavily to record
these interpretations. In a certain time frame, there could be a burst of annotations on
certain data. Traditional database systems do not provide enough flexibility in man-
aging such kinds of data. There are efforts to build new data management systems.
A promising one is to allow data to be stored freely in any format and to index these
data using small pieces of structured information so that data can be retrieved through
these indexes. This technique has been attempted in social networking sites like flickr
and del.icio.us, which allows users to annotate pictures and bookmarks flexibly. The
structures of these annotations are as simple as tags and key-value pairs. The simplic-
ity has advantage in usability but raises challenges for the accuracy of data search. It
is therefore not sufficient for indexing bioinformatics data. In this chapter, we inves-
tigate the use of a multidimensional indexed data store to tackle this problem.
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Multidimensional indexing is important to a variety of data-centric applica-
tions, ranging from sequence matching, to protein structure matching, and to spatial
databases [19]. In a multidimensional indexing scheme, a data element is indexed us-
ing multiple keys selected from the data element’s attribute list. A query containing
the indexed keys therefore can locate the target data element quickly via the index.

11.1.1 Background

Multidimensional indexing and spatial query processing have been studied exten-
sively in centralized systems. In many of these methods, the data space is divided
hierarchicaly into smaller subspaces (regions), such that the higher level data space
contains the lower level subspaces and acts as a guide in searching. Among these
various spatial index structures [3, 11], R-tree [8] and its variations (R*-tree [2],
R+-tree [13], etc.) are used widely in the industry and research communities. The
R-tree is a multidimensional extension of the B+-tree. In R-trees, each spatial data
object is represented by a minimum bounding rectangle (MBR), which is used to
store the leaf node data entries.

R-trees efficiently can answer various types of multidimensional queries, espe-
cially range query. Given a query window ¢, a range query retrieves all objects inside
or intersecting ¢. Range query answering starts from the root level of the R-tree. For
any MBR intersecting the query window, its subtrees are explored recursively. If a
leaf entry is encountered, then all objects whose bounding range intersects the query
window are examined [8]. Figure 11.1 shows two-dimensional space with some data
objects, and Figure 11.2 shows its corresponding R-tree.

11.1.2 Scalability Challenges

The scalability of a data management system includes two aspects: scaling up incre-
mentally as data grow in size and scaling up incrementally as demands for these data
and data indexes grow.

| R11

RI [R6

R7 R2

R10

Ry |RI2

Figure 11.1 Data rectangles.
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Figure 11.2 R-tree.

Recently, Internet companies, such as Google (Mountain View, CA) and Amazon
(Seattle, WA) built large-scale data centers for scaling up their applications. These
data centers often consist of tens of thousands of commodity personal computers
(PCs). Their data management systems can deal with structured data (e.g., Amazon
system has a key-value store (Dynamo) [20], and Google cluster supports a sparse
sorted map (Bigtable) [21]). Data with simple structures are convenient to partition,
and these systems often scale up data storage through partitioning data and storing
partitions incrementally in available nodes. However, they leave the access scalability
to applications to handle. The replication mechanisms in these systems often only
serve for high availability and fault-tolerance purpose. When a dataset is requested
heavily, the application using the dataset has to deal with the scalability itself. It is
difficult for individual applications to handle this when the dataset is shared. Existing
systems lack of a systematic approach for addressing this issue.

In this chapter, we propose a data model that allows multidimensional data index-
ing in a data store. The data model is flexible and expressive for bioinformatics data
annotation and indexing. It is also convenient to build a scalable data store to support
this data model. We detail the mechanisms used for constructing a self-organizing
data store in this chapter. The mechanism is scalable for both data storage and access
request processing.

The rest of the chapter is organized as follows: Section 11.2 describes the data
model and the system architecture supporting this data model; Section 11.3 intro-
duces the algorithms for scaling up the system in a self-organized manner; Section
11.4 presents the simulation results; Section 11.5 summarizes related work, and Sec-
tion 11.6 summarizes the chapter.

11.2 DATA MODEL AND SYSTEM OVERVIEW

In our system, a structured data item is represented as a set of tuples in the format (at-
tribute, type, value). For example, a protein sequence can be represented as follows:

{(gene_bank_ID, string, “gi : 1000344”),
(db_source, string, “locus CEU34596 accession U34596.17),
(Iength, int, 570)}.
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DO 4 D1 I
(*attribute_0:value_0, (*attribute_0:value_2
*attribute_1:value_1, *attribute_1:value_3,
other_attributes:values) \other_attributes:values)/
4 D2 I
(*attribute_1:value_5,
Attribute_0:int other_attributes:values
S \other- ))
Attribute_1:string
Attribute_2:string
Dm
- ) (*attribute_2:value_6,
Attribute_n:date *attribute_3:value_7,

*attribute_4:value_8,
other_attributes:values)

Figure 11.3  An example of bio-data representation using the proposed data model.

We assume all attributes are defined in the same namespace. A subset of attributes
can be used to index data items (e.g., gene_bank_ID can be used to keep track the
location where the data item is stored). This index can be recorded in the following
form:

(gi:1000344, node_x:uid)

in which uid is the unique key corresponding to the data item. The unique key is
generated using a collision resilient hash function like MD5 or SHA-1. When a data
item is indexed using more than one attribute, it becomes a multidimensional indexed
data item.

Data items often have an overlapped attribute set and are indexed using a com-
mon subset of attributes. Figure 11.3 shows such an example. The table on the left
is the attribute set used by all data items and DO, D1, and Dm denote different data
items. DO and D1 are indexed using (attribute 0, attribute_1) (indexing attributes
are marked with “*”). D2 is indexed using (attribute_1), and Dm is indexed using
(attribute 2, attribute 3, and attribute_4). Note, D2 also can be treated as mul-
tidimensional indexed by adding unconstrained attributes to it (e.g., it can share the
same index repository with DO and D1 by allowing attribute_0 to anything).

In general, the same indexing attribute set forms an index repository. The repos-
itory can be identified by hashing the concatenated attribute set using the same col-
lision resilient hash function mentioned. The output of the hash function is used to
map the repository to a physical node. The mapping is done using a distributed hash
table (DHT) algorithm Pastry [14] in our system.

Figure 11.4 shows our system architecture. Based on the role a node may play
in answering a client query, the nodes in our system can be classified into three
categories: routing nodes, index nodes, and data nodes.
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Query requests

Figure11.4 The system architecture (index nodes and data nodes are part of the DHT overlay).

Each node in the system can be a routing node. A node forwards messages ac-
cording to the Pastry algorithm.

An index node stores the multidimensional indexes (R-trees) of a certain type of
data. An index node is addressable in the DHT network via the hash value of the
concatenated keys in its index, for example, the following query:

Q1 = (select * from Overlay where ay = x and a; = y)

will be directed to a node whose identification (ID) is closest to 4(ag||a;), where A is
a collision resilient function and || is concatenation.

A data node stores the actual data. A piece of data has an ID generated from its
content, and this ID is used to map the data to a target storage node. To maintain the
data locality, the ID of the tuple is generated using a locality sensitive hash function
so that similar data are stored close to each other in the DHT overlay.

To insert a data element (ay : vy, a; : vy, ..., a, : V,) indexed using an attribute set
(ai, ajt1, ..., @i+m) to the system, we may use an inserting statement in the following
syntax:

insert (ag : v, d; : V1, ..., a, : v,) indexedBy (a;, i1, - - - Gitm)

The insertion process is described as follows:

e StTEP 1
A client submits the insertion request to any node in the overlay network.

® STEP2
The DHT node that receives the request, denoted by N,, calculates the
data ID using a locality sensitive hash function (LSH) as follows: d =
Ish(a;llait1ll - . - l|aistml Vil lvipr ] - Vim)-

e STEP3
N, sends a data insertion request to the data node with an ID closest to d. If the
request is accepted, then the data is sent to that data node, denoted by N,.

e STEP 4
If the request is rejected, then N, recalculates the data ID as d =
Ish(a;|la;+1]l.--1l@i+m| Vil Vi1 |- ||Vitm]||7), Where r is a random number. N,
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repeats Step 3 untill the request is accepted by a data node. A data node rejects
the data insertion request mainly because of its storage capacity. If no data node
accepts the request after a predefined maximum number of attempts, then Ne
declares the insertion failed and returns an “out of space” error message to the
client.

STEP 5

N, locates the index node by calculating the hash ID from the index keys: [ =
h(a;|laix1l] ... |lai+m), where h is a collision resilient hash function, and then
forwards an indexing request (I, (a@; : Vi, @j+1 : Vit1s - Qitm : Vitm)s Ng) tO
the index node N;.

STEP 6

N inserts the data index to its R-tree and notifies N,. A data element also can
be indexed by multiple indexes, such as,

insert (ap : vo, a : vy, ..., a, : v,) indexedBy (a;, aiy1, - .., aiyp),

(ajv Ajils -y ajJrq)

Step 5 and 6 repeat if multiple indexes present in the insert statement.
StEP 7
N, returns success to the client.

The indexing mechanism supports two types of queries; one is a point query in which
a query statement contains known values of some attributes; the other is a range query
in which a query statement specifies the value range of some attributes. In both cases,
a query is submitted to any DHT node and is forwarded to an index node based on
the attributes in the query. The index node returns the IDs of qualified data and their
locations (i.e., the data node IDs). The DHT node then gets data from those data
nodes, assembles the results for range queries, and returns the results to the client.
The process is illustrated in Figure 11.5.

Each index/data node maintains a first come first serve (FCFS) queue for incom-
ing query/data-fetch requests. The queue is lossless, as it does not drop queuing

Client DHT routing node Index node Data node X Data nodeY

Submit query

((X,1Ds-X), (Y, IDs-Y)) = getDatalLocations(query)

X.getData(IDs)

v

<
<

Y.getData(IDs)

<
<

v

Results

Figure 11.5 The query resolving process.
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requests. To ensure quality of service, a queue is associated with a predefined value
called capacity. The capacity is defined as the number of queries the node can process
in a certain time frame. When the capacity is reached, the node is considered over-
loaded, and the requests coming subsequently may suffer a long delay. To reduce
the queue length, requests may be forwarded to a node that can serve the request.
When such a node cannot be found, our system replicates the content of the over-
loaded node to a lightly loaded node. The query serving capacity increases once the
new replica is created, and therefore, the load on the overloaded node will decrease
gradually.

11.3 REPLICATION AND LOAD BALANCING

The data in our system can be diverse, and the access to these data is dynamic.
It is difficult to allocate nodes for data storage in a static manner. When demands
increase, both index nodes and data nodes in our system can expand themselves in
a self-organized manner. This is done through replication by dynamically recruiting
nodes in the overlay to host their replicas.

Nodes storing the same data form a content distribution network for the data. In its
simplest form, the content distribution network of a data ID is fully connected, and
load information is exchanged periodically along these links so that the forwarding
destination can be obtained easily. When the data hosted by a node is popular, it is
likely that the queue size is close to or over the capacity most of the time. When all
nodes in a content distribution network are overloaded, the network will be expanded
by creating new replicas. The new replica node is selected from available nodes in
the underlying network. Each node in the system autonomously can create replicas
of its local data objects. The whole system is organized in a decentralized manner.
Each node makes a replication decision by itself.

Our replication and load balancing mechanism intends to achieve the following
goals:

1. To improve query service quality in terms of queuing time, traveling time, and
response time

2. To optimize the number of replicas needed for serving queries to a hot content
by balancing the load among existing content nodes that host this data item

Replicating and load balancing are implemented on a simple protocol we first intro-
duced in [22]. The protocol is summarized in Figure 11.6. There are three types of
messages in the protocol:

1. Messages used by an overloaded content node to recruit new replica node
2. Messages used to forward queries to lightly loaded nodes

3. Messages used by a node to update other nodes with its current workload. This
is the information used for load balancing
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candidate replica node || candidate replica node
query 1 ! !
Random E E
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Figure 11.6 lllustration of replica management protocol.

An overloaded node may send a replication request to multiple candidate nodes
simultaneously, but only one that accepts the request is selected at a time to replicate
the highly requested data.

11.3.1 Replicating an Index Node

As all queries to a certain type of data go through a particular index node, the node
can be overwhelmed easily. Replication of an index node includes the following
steps:

e STEP 1

Mark the start of snapshot taking for the R-tree of the overloaded node.
* STEP2

Create a temporary queue to hold the incoming insert/update requests.

e STEP3
Create the snapshot. During this step, only query requests are processed in the
index node.

* STEP 4
After the snapshot is taken, allow the processing of insert/update requests on
the index node; meanwhile, replicate the snapshot to a selected lightly-loaded
node.
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* STEPS
Forward the insert/update requests in the temporary queue to the replica node.

* STEP 6
Delete the temporary queue when it is empty.

After these steps, the new index node is ready to use, and incoming queries can
be forwarded to the new node for processing through the load balancing mechanism.
The subsequent insert/update requests are forwarded immediately to replica nodes
to update the replicas. The mechanism implements a relaxed consistency, and there
is a small window that replicas are in different states. Our choice is based on the
assumption that the arrival rate of insert/update requests is much lower than that of
the query requests. This is realistic in our target problem domain in which queries
can tolerate data inconsistency in a short time frame within a predefined freshness
bound. However, our replication mechanism can be configured to support strong data
consistency when needed. This only requires modifications in Steps 2 and 3 to hold
the incoming query requests in the temporary queue before the snapshot is taken.
The drawback is the increase of response time of the queries in the temporary queue.

On the other hand, a DHT routing node caches the locations of nodes that answer
queries passing through it. By doing so, the subsequent query to the same type of
data may be directed to a replica of an indexing node, and it avoids going through
the original index node. This further can reduce the workload of the original index
node.

To balance the load on replicas, our system requires each replica node to update
its queue length to other replica nodes when the change exceeds a predefined per-
centage. Each replica node therefore can forward requests to the least-loaded node
when its own load exceeds a predefined threshold. As our load-updating mechanism
does not guarantee the load information fresh enough, there is a chance that a replica
node is no longer lightly loaded when a forwarded request arrives. In this case, the
request is forwarded further to another lightly loaded node based on the node’s local
information. A request is forwarded like this until a predefined maximum forwarding
hops is reached. The query will be inserted into the request queue in the last node
it visits. When this occurs, the whole content distribution network for the data in-
dex is likely to be overloaded. The last hop node of the request will elect itself to
expand the content distribution network by recruiting new replica node to join. The
candidate node is selected randomly from the DHT ID space.

11.3.2 Answering Range Queries with Replicas

Range queries seek nodes with data regions that intersect the query region. Because
many MBRs (minimum bounding rectangles) may intersect with a given query re-
gion, the index node may return the locations of multiple data nodes for answering a
range query. As a result, the response time of the query is determined by the slowest
data node that stores the data intersecting the data region in the query.
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With the self-organized replication mechanism, we effectively can reduce the
chance that an overloaded node becomes the bottleneck for answering range queries.
As each index/data node creates replica to keep the length of its request queue lower
than a predefined threshold, the difference in request queue lengths among data nodes
selected to answer a range query is bounded by the threshold of these queues. As a
result, it is unlikely that the range query answering takes a long time waiting for a
slow data node.

11.4 EVALUATION

We run extensive simulations to evaluate our mechanism. Our simulator uses FreeP-
astry to construct the underlying DHT network, which consists of 1000 nodes in
total.

We generate 100,000 data objects randomly in multidimensional space (two- and
three-dimensional) and publish them on the overlay by indexing data values on these
dimensions. The length of each dimension is 1000 units. We randomize the index
processing time between 10 ms and 20 ms, and the data processing time between 40
ms and 60 ms. The setting is based on the data access time in common database sys-
tems. The query forwarding delay between two nodes is set to 2 ms. The capacity of
each node (query queue length), including indexing node and data node, is set to 10.

11.4.1 Point Query Processing Performance

We used a two-dimensional space without overlapped regions to investigate the cost
of point queries. Point query cost is measured by the number of routing hops and
response time. Queries are generated using two different distributions to simulate
different access patterns. In the first one, clients search for data points uniform and
randomly distributed in data space. The data points in a two-dimensional space are
illustrated in Figure 11.7. In the second one, clients search for data points that are
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Figure 11.7 lllustration of data points of 1000 queries (uniform distributed).
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Figure 11.8 lllustration of data points of 1000 queries (zipf distribution with & = 1.0).

distributed in the data space according to Zipfian, or zipf distribution, as shown in
Figure 11.8. Zipf distribution creates a high access load toward a few data nodes
(hotspots). We use 30,000 queries to feed the system. Queries arrive in the system in
a Poisson process.

11.4.1.1 Response Time. Figrue 11.9 shows the average query response time
under a different query arrival rate. As expected, queries to skewed data points in-
cur a higher average response time than those to uniformly distributed data points.
This is because skewed queries easily can overwhelm nodes hosting popular data
and therefore trigger the creation of more replicas. The cost of creating additional
replicas results in a longer average query response time. One may notice that in

Average response time vs. query arrival rate
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200 A
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Mean query arrival rate (query/second)

Figure 11.9 Average query response time under different workload — point query, 30000
queries.
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Figure 11.10 Utilization of index replicas under different workload.

Figure 11.9, the average response time for queries of uniformly and randomly dis-
tributed data points keeps increasing, whereas the average response time for queries
of skewed data points quickly becomes stable. This can be explained by the number
of nodes involved in query answering. When workload is low, queries are answered
by more nodes in a “uniform” case than in a “skewed” case. The replica creation
speed is slower in “uniform” than in “skewed.” When the workload becomes high,
queries overwhelms most data nodes, even for nonskewed queries, and incur increas-
ing replica creation cost.

11.4.1.2 Node Utilization. We measure how load is balanced among replicas by
comparing the node utilization of each replica. The node utilization is calculated as
the percentage of busy time in the node’s lifetime.

The lifetime of a node is between its creating time and the time when the system
finishes processing the last query.

Figure 11.10 shows the average utilization of index content nodes is greater than
80%. When the query arrival rate increases, the average utilization slightly decreases.
This is mainly because of the increasing cost of query forwarding and load updating
among replica nodes. On the other hand, our self-organizing mechanism can avoid
creating unnecessary replicas, as there is no significant decrease in the average node
utilization.

Figure 11.11 shows the standard deviation of the replica utilizations of index
nodes, which directly reflects how imbalanced the load is among replicas of an in-
dex node. As the query arrival rate increases, the difference between replica nodes
increases; however, the difference is generally very small.

Figure 11.12 and Figure 11.13 measure the load balancing among replicas of
data nodes. The load among replicas of data nodes is not as balanced as that among
replicas of the index node. There are two factors contributing to this:

1. The load on a data node is affected by the performance of the index node that
dispatches queries to it

2. More data nodes are involved in answering queries in the data layer
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Figure 11.11 The standard deviation of utilization of replicas of an index node.

11.4.2 Range Query Processing Performance

In range query experiments, we compose range queries by selecting the central data
points of queries in multidimensional data space according to uniform random dis-
tribution. The sizes of query windows (the area has equal edge length) are set to be
0.25%, 1%, and 2% of the total area size.

Our range query experiments are designed to observe how a content distribution
network grows and how it performs when it becomes stable. To achieve this, we feed
the simulator two groups of queries with queries arriving at the same rate in each
group. The first group consists of 10,000 queries. These queries make the content
distribution network grow to a size capable of serving queries in a satisfactory re-
sponse time. The second group also consists of 10,000 queries. These queries are
used to measure the query serving quality when the content distribution network is
built. The following results are collected during the stable phase.

Avg. Data node utilization under different query arrival rate
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Figure 11.12 Ultilization of data node replicas under different workload: uniformly distributed
point queries.
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Figure 11.13 The standard deviation of utilizations of data node replicas: in uniformly dis-
tributed point queries.

11.4.2.1 Response Time. Figure 11.14 and 11.15 show the average query re-
sponse under different query arrival rates and different query window sizes.

We can see that the response time is affected by query window size. This is be-
cause a bigger query window overlaps more MBRs in an R-tree, and more nodes
therefore are involved in answering a query.

Figures 11.14 and 11.15 also show that query response time is not sensitive to the
change of query arrival rate, which reveals the good scalability of our mechanism.
One also may find that the dimensionality does not affect the response time much by
comparing Figure 11.14 and Figure 11.15.
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Figure 11.14  Average query response time for a two-dimensional query with 10,000 queries.
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Figure 11.15 Average query response time for a three-dimensional query with 10,000 queries.

11.4.2.2 Node Utilization. We measured the node utilization distribution. Fig-
ure 11.16 shows that the overall node utilization in the range query test is lower than
that in the point query test. This is because the overlapping of query windows makes
the distribution of requests among nodes slightly uneven, but we can see only about
10% of nodes are underutilized in our experiment.

11.4.3 Growth of the Replicas of an Indexing Node

We visualize the replica creating process for an index node in Figure 11.17 and
Figrue 11.18. Figure 11.17 plots how the replica number of an indexing node grows
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Figure 11.16 Distribution of data node utilization.
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Figure 11.17 The change of replica number of an index node.

along with the number of queries processed. Figure 11.18 plots how this process af-
fects the query-answering performance. We test this under two different workloads.
These figures show that when the replica creation completes and its capacity can
serve queries at the given arrival rates, the response time decreases, and the query
service quality falls below the predefined threshold (10 queries in the queue in this
case).

At the beginning of the test, the queuing time increases rapidly until a replica is
created and starts to serve queries. It is important to mention that the replica growth
pattern of indexing nodes is not affected by the type of queries (i.e., range or point
queries). The replica growth pattern is not affected by query distribution in a point
query case either. The experiment shows that our mechanism enables the system to
scale up in a self-organizing manner.
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Figure 11.18 Index query queuing time vs. number of processed queries.
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11.5 RELATED WORK

Our data model is related to work on flexible metadata management in social net-
working sites. Yu et al. [24] proposes a generic data model for tags and data at-
tributes. Differing from their effort on clustering tags and attributes, our focus is
scalability of storing and accessing flexibly indexed data.

Multidimensional indexing, including low- and high-dimensional indexing, has
received extensive attention in the context of centralized databases [2, 5, 6, 8, 13].
Adapting these methods to the peer-to-peer (P2P) systems encounters four challeng-
ing issues: distribution, dynamism, data evolution, and decentralization [10]. There
are efforts on partitioning multidimensional data [10, 16] in a P2P environment. As
the multidimensional data in our data model contain only location information of the
actual data and data indexes are distributed according to index types, an index node in
our mechanism does not need to store much information, and therefore, partitioning
an R-tree is not of our concern.

Compared with work on supporting range query in a DHT network [1, 4, 12, 15,
17, 18], our approach simply uses R-trees to store range information and maps these
trees to DHT nodes corresponding to the attribute set they represent. Our replication
mechanism effectively can overcome the single point of failure problem by creating
additional replicas at the time an index node is created.

Our mechanism bears some similarities to the Google file system (GFS) [23],
which uses a centralized server to store metadata of data chunks distributed in a
Google cluster. It differs from GFS in the following aspects:

1. There are many index nodes in our systems, and an index node is only respon-
sible for data indexed using a certain attribute set.

2. The replicas of an index node are managed in a self-organizing manner in our
mechanism.

Our data store deals with scalability of data storage and data access simultane-
ously. There are few approaches to this. In the context of multidimensional indexing
schemes, Jagadish et al. [9] attempt to address both problems based on migrating
partial data from a node. This is inadequate in highly skewed data access distribu-
tions. In such cases, a single popular data value can make the node heavily loaded;
transferring this value to another peer node only transfers the problem but does not
solve. Therefore, the problem should be addressed better using replication of popular
values to distribute the access load among the peers storing such replicas.

11.6 SUMMARY

In this chapter, we discussed how to manage effectively fast evolving scientific data.
We described a flexible data store for managing distributed scientific data. To man-
age data annotations, which form an important part of bioinformatics data, our data
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store supports a multidimensional data indexing scheme. The data indexing model

is
sy

unique because of its flexibility and its support by a underlying self-organized
stem. The scalability of the data store is addressed through data partitioning and

replication. The replication decision is made by each node based on local informa-
tion, and the load-balancing among replicas is achieved in a decentralized manner.
Our extensive simulations showed that the data store scales on demand for both data
storing and accessing.
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ALGORITHMS FOR THE
ALIGNMENT OF
BIOLOGICAL SEQUENCES

Ahmed Mokaddem and Mourad Elloumi

12.1 INTRODUCTION

Bioinformatics is a science dedicated to the automatic processing of information
related to biological macromolecules (i.e., DNA, RNA, and proteins). These macro-
molecules are coded by strings called biological sequences. Every character in a
string codes a constituent of the macromolecule. DNA, RNA, and proteins can be
coded by sequences in which every character is in {A, T, C, G}, {A, U, C, G},
and {A,C,D,E,E G H LK, L, M, N,P,Q, R, S, T, V, W, Y}, respectively.
Among the most studied problems in bioinformatics is the comparison of biological
sequences in order to identify similar substrings, occuring in the same order, in these
sequences. This operation makes a very important contribution in the analysis of bi-
ological macromolecules. In fact, it can reveal information about shared functions of
biological macromolecules, coming from several different organisms, by the identi-
fication of regions that are shared by the sequences coding these macromolecules.
These regions, which have been conserved during evolution, often play an important
structural or functional role and, consequently, shed light on the mechanisms and
the biologic processes in which these macromolecules participate. In addition, the
comparison of biological sequences permits the detection of functional regions. It is
also used in evolutionary studies to analyze relationships that exist between species
and establish whether two, or several, macromolecules are homologous (i.e., have a

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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common biological ancestor) and to reconstruct the phylogenetic tree that links them
to this ancestor. Another application of the comparison of biological sequences is the
prediction of secondary/tertiary structures by comparing the sequences of biological
macromolecules with known secondary/tertiary structures to those with unknown
ones. The comparison of biological sequences also facilitates the classification of
these sequences in different families according to the shared similar regions. The
comparison of biological sequences can be achieved via aligning these sequences;
it consists in optimizing the number of matches between the characters occurring in
the same order in each sequence. We distinguish two main classes of alignments:

1. Global alignments: A global alignment involves the alignment of entire se-
quences. Global alignments are suitable when the sequences to compare are
closely related.

2. Local alignments: A local alignment involves the alignment of portions of
sequences. Local alignments are suitable when the sequences to compare are
distantly related.

Although optimal algorithms exist for the alignment of two sequences, also called
pairwise alignment, the problem of aligning more than two sequences, also called
multiple alignment, is Nondeterministic Polynomial (NP)-complete [14,29].

12.2 ALIGNMENT ALGORITHMS

In the next subsection, we present pairwise alignment algorithms.

12.2.1 Pairwise Alignment Algorithms

There are two types of pairwise alignment algorithms: pairwise global alignment
algorithms and pairwise local alignment ones. Let us begin with pairwise global
alignment algorithms.

12.2.1.1 Pairwise Global Alignment Algorithms. There are two main ap-
proaches to construct a pairwise global alignment:

The Dynamic programming approach [6,7]: The most used dynamic program-
ming algorithm for pairwise global alignment is the one of Needleman and
Wunsch [58]. By using this algorithm, the construction of a pairwise global
alignment of two sequences S; and S, with respective lengths m and n, is
performed in two steps:

1. During the first step, we construct a matrix M of size mn, and we initialize it
by using a substitution matrix (e.g., Percent Accepted Mutations (PAM) [21],
Blocks Substitution Matrix (BLOSUM) [38]). Then, we transform matrix M
by adding scores line by line, starting by the rightmost lower cell and ending
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Table 12.1 Gap penalties, where kis the number of
successive gaps, and a, b, and care constants

Linear gap penalty P =ak
Affine gap penalty P=ak+c
Logarithmic gap penalty P =blogk)+c

Logarithmic-affine gap penalty P = ak + b x log(k) + ¢

by the leftmost upper one, by using the following equation:
Mli, j1 = se(i, j) + max(M[x, y]) (12.1)

where x =i+ land j <y<nori <x <mandy=j+ 1, and se(i, j) is
the score between the character at position i in §; and the one at position j in
S>. We also can incorporate in the equation a gap penalty. A gap is a character
(e.g., —), inserted in aligned sequences so that aligned characters are found in
front of each other. It is sufficient to subtract from the calculation of every sum
a penalty according to their position. So, equation (12.1) becomes:

M+ 1,5+ 11,
Mli, j] =se(i, j)+max | M[x,j+1]— P, (12.2)
M[i+1,y]-P

wherei +2 <x <mand j +2 < y < n, and P is a gap penalty.
The gap penalty P can have several possible forms. Examples of gap penalties
are given in Table 12.1.

2. During the second step, we establish a path in the matrix, called maximum
scores path, which leads to an optimal pairwise global alignment. The con-
struction of this path is achieved by starting from the cell that contains the
maximum score in the transformed matrix, which corresponds normally to
the leftmost upper cell and allows three types of possible movements (see
Figure 12.1):

(1) Diagonal movement: This movement corresponds to the passage from a
cell i, jytoacell G + 1, j+ 1).
(ii) Vertical movement: This movement corresponds to the passage from a cell
@i, jytoacell G + 1, j).
(iii) Horizontal movement: This movement corresponds to the passage from a
cell i, j)toacell (i, j + 1).
The time complexity of the algorithm of Needleman and Wunsch is O(mn).

Other dynamic programming algorithms for pairwise global alignment exist,
such as the one of Huang and Chao [40] and NGILA [16].

The Anchoring approach: Pairwise global alignment algorithms that adopt this
approach operate as follows: First, they search for identical or similar regions
in the two sequences by using different techniques such as suffix trees and dot



244

ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

Figure 12.1 Backtracking in a two-dimensional matrix.

matrices or by using a local alignment algorithm such as CHAOS [13]. These
regions are called anchors. Then, they form the final alignment by chaining the
anchors identified in the previous step. Finally, they align the regions situated
between the anchors by using a standard dynamic programming algorithm or
by applying the same procedure, by recursive calls, or by combining both.
Compared with the dynamic programming approach, the anchoring approach
is economic in memory space, especially when applied to long sequences.

Among the pairwise global alignment algorithms that adopt the anchoring
approach, we can cite MUMMER [22], AVID [10], which uses suffix trees to
detect anchors, GLASS [5], LAGAN [12], which uses the CHAOS algorithm
[13], and ACANA [41].

12.2.1.2 Pairwise Local Alignment Algorithms. There are two main ap-
proaches to construct a pairwise local alignment:

The Dynamic programming approach: The most used dynamic programming al-

gorithm for pairwise local alignment is the one of Smith and Waterman [77].
The main difference with the algorithm of Needleman and Wunsch [58] is that
any cell of the matrix M can be considered as a starting point for the calcu-
lation of the scores and that any score that becomes lower than zero stops the
progression of the calculation of the scores. The associated cell is then reini-
tialized to zero and can be considered as a new starting point. That implies
that the selected system of scores has negative scores for bad associations that
can exist between the characters of the sequences. The equation used for the
calculation of each score during the transformation of the initial matrix is as
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follows:
se(i, j)+ M[i + 1, j+ 1],
se(i, j)+ max(M|[x, j + 1] — P),
M[i, j] = max (. ].) ( [. J ] ) (12.3)
Se(l’ J)+maX(M[l + 17 y] - P)v
0

where i +2 <x <m and j+2 <y <n, se(i, j) is the score between the
character at position i in S} and the one at position j in S, P is a gap penalty,
and m and n are the lengths of the sequences S; and S, to align, respectively.

The time complexity of the algorithm of Smith and Waterman is O (mn).

The Seeding approach: Pairwise local alignment algorithms that adopt this ap-
proach use a hashing function to define a seed and use it as a model to detect
alignments. A seed is a substring made-up by characters that can be contigu-
ous or not and defined on a precise alphabet. A seed is characterized by its
extent, which represents the length of the substrings that can be covered by the
seed, and by its weight, which represents the number of characters that must
appear simultaneously in the seed and in the substrings covered by the seed.
These characters are called matches. A seed can be represented either by a set
{i,i,i, ...}, wherei is a position of a match, or by a substring defined on alpha-
bets like {#, -},{#, @, -} or {0,1}, where “#” or “1” represents a match, “-”” or
“0” represents a joker character, and “@” represents the characters associated
with the following substitutions (“G” with “C” or “A” with “T”).

The seeding approach is based on the notion of filtering: It involves, first, the
deletion of the zones that have no possibility of participating in the final local
alignment and, second, the conservation of the positions that verify the seed.

The principle of the seeding approach first comprises defining the seed
used for filtering then, detecting in every sequence the positions of the regions
that verify the seed. Among pairwise local alignment algorithms that adopt
the seeding approach, we cite FASTA [64], BLAST [1], PATTERNHUNTER
[53], CHAOS [13], YASS [59], and BLASTZ [73]. Table 12.2 lists discussed
pairwise alignment softwares.

12.2.2 Multiple Alignment Algorithms

In the next subsection, we present multiple alignment algorithms. There are two main
types of multiple alignment algorithms: multiple global alignment algorithms and
multiple local alignment ones. However, there are also algorithms that combine local
and global alignment.

12.2.2.1 Multiple Global Alignment Algorithms. There are four main ap-
proaches to construct a multiple global alignment:

The Dynamic programming approach: A possible exact dynamic programming
algorithm for the multiple global alignment problem is a generalization of the
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Table 12.2 Pairwise alignment softwares

Software Type Approach Link

ACANA [41] Global  Anchoring http://biomedempire.org

AVID [10] Global  Anchoring http://baboon.math.berkeley.edu/
avid_supplementary/avid.html

BLAST [1] Local Seeding http://www.ebi.ac.uk/Tools/blast/

CHAOS [13] Local Seeding http://www.cs.toronto.edu/~brudno/chaos/

FASTA [64] Local Seeding http://www.ebi.ac.uk/Tools/fasta/

LAGAN [12] Global  Anchoring http://genome.lbl.gov/cgi-bin/Vistalnput?
align_pgm=lagan&num_seqs=2

MUMMER [22] Global Anchoring http://mummer.sourceforge.net/

NGILA [16] Global Dynamic http://scit.us/projects/ngila/

Programming
YASS [59] Local Seeding http://bioinfo.lifl.fr/yass/yass.php

pairwise global alignment algorithm of Needleman and Wunsch [58]. Mul-
tiple global alignment algorithms that are based on a dynamic programming
approach operate in two steps:

1. During the first step, they fill a matrix M of size L, where N is the number
of the sequences and L is the maximal length of a sequence.
2. Then, during the second step, they make a backtracking in the matrix M to

construct a maximal score path that corresponds to an optimal alignment (see
Figure 12.2).

Figure 12.2 Backtracking in a three-dimensional matrix.
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An exact dynamic programming algorithm for the multiple global alignment prob-
lem is exponential in computing time and in memory space. A heuristic dynamic
programming algorithm has been developed and implemented in the Measurement
Systems Analysis (MSA) software [52]. The MSA software can handle only a few
short sequences and is not often used in practice.

The Progressive approach: By using the progressive approach, we construct a
multiple alignment in a gradual manner. First, we construct alignments for
each pair of sequences in the set of N sequences to align by using a pairwise
alignment algorithm. Then, we assign to each pairwise alignment a score by
using a score function. Finally, we construct the final multiple alignment by
using an algorithm based on the pairwise alignments obtained. The two most
similar sequences are aligned then; at each iteration, we align the aligned se-
quences with another sequence chosen according to precise criteria. Hence, we
gradually align larger and larger sets of sequences until all the N sequences are
aligned.

The progressive approach is the most used multiple global alignment ap-
proach, and several algorithms have been proposed. These algorithms differ
according to the following criteria:

1. The pairwise alignment algorithm (dynamic programming, anchoring)

2. The score function or the distance between a pair of sequences (score [14,61],
substitution matrix [21,38], ...)

3. The order of merging sequences in the final alignment (guide tree [78,71], ...)

4. The method of aligning sequences during the multiple alignment stage (align-
ing profiles [34], aligning alignments [44,45,94], ...)

Multiple global alignment algorithms adopting the progressive approach are fast,
simple to implement, and require a small memory space. However, they present two
major drawbacks:

1. The restriction of only comparing two sequences at a time rather than compar-
ing all sequences simultaneously does not enable taking into consideration the
common characters to a set of sequences.

2. The constructed alignment depends on the order in which the sequences are
aligned and on the chosen score.

Among multiple global alignment algorithms adopting the progressive approach,
we cite the one of Feng and Doolitle [31], CLUSTALW [85], T-COFFEE [62],
DBCLUSTAL [86], MAVID [11], KALIGN [48], PRALINE [75], SPEM [97],
EXPRESSO [3], PSALIGN [83], COBALT [63], PROMALS [67], and GRAMA-
LIGN [70].

To address the drawbacks of the progressive approach, a stage of refinement of the
multiple global alignments often is applied. Multiple global alignment algorithms
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adopting the progressive approach that apply a refinement stage are called hybrid
algorithms. Different strategies of refinement have been developed (e.g., the iterative
construction of the guide tree until the stabilization of this tree, or the division of the
guide tree in subtrees followed by the alignment of the sequences of each subtree,
separately, and the integration of the obtained alignments).

Hybrid algorithms include MULTALIN [20], PRRP [36], MULTI-LAGAN [13],
MUSCLE [28], PROBCONS [25], MAFFT [43], and MSAID [54].

The Iterative approach: Algorithms adopting this approach construct an initial
alignment, then during each iteration, they perform a set of modifications on
the current alignment to construct a new one. The iterations are repeated un-
til convergence (i.e., no improvement can be made on the current alignment).
Several ways have been described to modify an alignment [92]:

1. A disruption such as an insertion/deletion of one or more gaps is made in the
alignment.

2. One or more sequences are excluded from the initial alignment. The remaining
sequences are realigned, and finally, the new alignment is aligned with the
excluded sequences.

3. The alignment is divided into two groups, then each group is aligned sepa-
rately, and finally, the two alignments are aligned.

4. The alignment is divided into two groups, then a profile is constructed for each
alignment, and finally, the two profiles are aligned.

The iterative approach is especially suitable for stochastic algorithms such
as genetic algorithms and simulated annealing ones. It can improve the quality
of an alignment but needs more computing time than the progressive approach.

Multiple global alignment algorithms adopting the iterative approach also
can incorporate Hidden Markov Models (HMM). Among these algorithms, we
cite HMMER [26], SAM [42], SATCHMO [27], and FSA [9]. The time com-
plexities of SAM and SATCHMO are, respectively, O(L?NK) and O(L>N? +
LN?), where N is the number of the sequences, L is the length of a sequence,
and K is the number of the iterations.

Other multiple global alignment algorithms adopting the iterative approach
include SAGA [60] and QOMA [96].

The Divide-and-conquer approach: The multiple global alignment algorithms
that adopt this approach process the sequences to align simultaneously. By us-
ing these algorithms we operate in three steps. First, we choose a position in
each sequence, which subdivides the sequence into two smaller ones: a prefix
and a suffix. We thus obtain two new families of sequences: the family of pre-
fixes and the family of suffixes. Then, we reiterate recursively this operation on
the new families until we obtain small sequences that can be aligned optimally.
Finally, the alignment of the initial sequences is obtained by concatenating the
alignments of the small ones.
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The drawback of the divide-and-conquer approach is that the choice of the
division positions in each sequence has an influence on the construction of the
alignements of the generated families of prefixes and suffixes.

Multiple global alignment algorithms that adopt the divide-and-conquer ap-
proach include DCA [80] and a-uALIGN [30]. The time complexity of a-
WALIGN is O(N2L*(log(L))?), where N is the number of the sequences and
L is the length of the longest sequence.

A new category of multiple global alignment algorithms, called constrained mul-
tiple alignment algorithms, tries to improve the biological significance of an align-
ment by integrating structural and/or functional information, extracted from different
biological databases, or by using programs of comparison of secondary/tertiary struc-
tures. Several techniques have been proposed to improve the biological significance
of an alignment, among which, we mention:

1. Alignment of significant motifs extracted from biological databases in each se-
quence. The remainder of the sequences is aligned by using one of the methods
described earlier

2. Construction of a multiple global alignment by using local structural alignment
of secondary/tertiary structures

Constrained multiple alignment algorithms include DBCLUSTAL [86], FMA-
LIGN [17], PRALINE [75], SPEM [97], EXPRESSO [3], MUMMALS [66],
PSALIGN [83], HSA [95], COBALT [63], and PROMALS [67].

12.2.2.2 Multiple Local Alignment Algorithms. There are two main ap-
proaches to construct a multiple local alignment:

1. Dynamic programming approach: A possible exact dynamic programming al-
gorithm for the multiple local alignment problem is a generalization of the
pairwise local alignment algorithm of Smith and Waterman [77]. An exact
dynamic programming algorithm for the multiple local alignment problem is
exponential in computing time and in memory space.

2. Motif finding approach: Multiple local alignment algorithms adopting this ap-
proach are based on the search of motifs in the set of sequences to align. These
algorithms are generally statistical ones. The algorithms adopting the mo-
tif finding approach include MACAW [74], MATCHBOX [23], GIBBS [50],
MEME [4], and GLAM [32].

Other multiple local alignment algorithms have been defined and are based on
other techniques. Among these algorithms, we mention DIALIGN [56], which is
based on the use of dotplots to extract common fragments in each pair of sequences,
TSUKUBA-BB [39], which is based on a branch-and-bound approach, POA [51],
which is based on a graph representation of an alignment, CHAOS/DIALIGN [13],
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which is based on the CHAOS algorithm to search for similar regions and the DI-
ALIGN principle of consistency, and Align-m [91].

Let us note that there are algorithms that refine multiple alignments to improve
the quality of these alignments and to make them more meaningful. Among these
algorithms, we mention:

1. RASCAL [88]: The RASCAL algorithm operates in two steps. During the first
step, it analyzes the initial multiple alignment by localizing the well-aligned
regions by using the Mean Distance (MD) score. Then, during the second step,
it detects the badly aligned regions and realigns them.

2. REFINER [18]: The REFINER algorithm realigns each sequence with the pro-
file of the alignment of the remaining sequences. The displacement of blocks
in the sequences is allowed under the condition that a block does not contain
any gaps. Convergence is obtained when all iterations are applied or when no
improvement is observed in the alignment.

3. RF [92]: The RF algorithm is based on an approach similar to the one on which
REFINER is based but without any condition on the blocks. The iterations are
stopped if convergence is obtained or if the number of the iterations reaches
2NZ2, where N is the number of the sequences.

Table 12.3 lists discussed multiple alignment software.

12.3 SCORE FUNCTIONS

A score function, or objective function, is a function that assigns to an alignment
a score that reflects its quality or significance. The alignment that has the maximal
score is considered to be an optimal alignment. Score functions thus optimize math-
ematical scores and do not necessarily reflect a biological significance. The most
widely used score functions are:

1. Sum of pairs [14]: The Sum of Pairs (SP) score is used by most alignment
softwares. The SP score corresponds to the sum of the scores for all pairs of
characters in the alignment and is defined by the following equation:

L
SP(A) =" > sCwlil, wylil) (12.4)

i=1 1<k<j<N

where wi[i] and w;[i] are the characters in the sequences k and j that are in
the ith column of the alignment A, L is the length of the alignment A, and s is
the score for aligning a pair of characters.

2. Weighted sum of pairs [35]: The Weighted Sum of Pairs (WSP) score is a
variant of the SP score that assigns a weight to each sequence according to
its importance in the alignment. This weight depends on the relationships
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between the sequences. The WSP score of an alignment is given by the
following equation:

L
WSP(A) =Y Y pyprsCunlil, w;lil) (12.5)

i=1 1<k<j<N

where p; and py are the weights of the sequences j and k, respectively.

. Entropy: The entropy defines the frequencies of appearance of each charac-

ter in each column of the multiple alignment. Thus, the entropy of a multiple
alignment is the sum of the entropies of each column and is defined by:

E(A)==) " peilogp.i (12.6)

where p, ; is the number of occurrences of character x in the ith column.

. Consensus: The computation of the consensus score requires the construction

of the consensus sequence of the multiple alignment. The consensus sequence
is made by taking from each column of the multiple alignment the most fre-
quent character in the column. The consensus score is the sum of the scores
between each sequence S;, 1 <i < N, of the multiple alignment and the con-
sensus sequence S:

N
Consensus(A) = ) s(S;. S.) (12.7)

i=l1

where s is the distance between S;, 1 <i < N, and S..
Other scores have been proposed such as Coffee [61], Al2co [65], Normd [87],
Divaa [69], Mumsa [49], and Confind [76].

12.4 BENCHMARKS

To evaluate the performances of an alignment algorithm, reference alignments have
been constructed in a manual, or automatic, way with the help of biologists and
have been grouped to form benchmarks. A benchmark generally includes a ratio for
comparing alignments, built by an alignment algorithm, with reference alignments
found in the benchmark. For example, we have:

1. Column Score (CS) [84] that represents the ratio between the number of cor-

rectly aligned columns and the total number of columns in the core blocks (i.e.,
the regions whose alignments are known).

. Sum-of-Pairs Score (SPS) [84] that represents the ratio between the number of

correctly aligned pairs of characters and the total number of pairs of characters
in the core blocks.
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Other scores to compare multiple alignments include overlap score [47], cline
score and shift score [19], and mean opinion score (MOS) [49].
The most used benchmarks include:

1. BALIBASE [89]: This benchmark is the first benchmark dedicated to protein
multiple alignment algorithms and contains several accurate reference align-
ments. The alignments are constructed based on the superposition of proteins
tertiary structures and manual improvement of the results. These alignments
are grouped in different categories according to the nature of the set of the se-
quences used. Thus, each reference set represents a different alignment prob-
lem. For example, reference I contains small alignments of sequences with dif-
ferent sizes, whereas reference 2 is made up of families of sequences aligned
with one, two, or three orphan sequences.

BALIBASE uses the CS and SPS scores as criteria for assessment.

No alignment algorithms give the best result for all references of BAL-
IBASE, but there are algorithms such as PROBCONS, MUSCLE, MAFFT,
and T-COFFEE that have good performances.

2. PREFAB [28]: This benchmark is made up of 1932 multiple alignments con-
structed automatically as follows: The tertiary structures of two sequences are
aligned using two different superposition methods. A set of 50 homologous
sequences then is extracted from databases, and a multiple alignment is con-
structed for the whole set of sequences.

A test alignment is evaluated by using the Q score, which is similar to the SP
score of BALIBASE.

3. SABMARK [90]: This benchmark contains families of sequences extracted

from the SCOP database [57] of protein structures. It is made up by two sets,
Twilight and Superfamily. These sets contain sequences classified according to
the SCOP database. The sequences of Twilight are 0-25% identical, whereas
those of Superfamily are 25-50% identical.
Every pair of sequences in every set is aligned by superposing their tertiary
structures. SABMARK compares the multiple alignments by comparing each
pair of sequences in the alignment rather than the complete multiple align-
ment. Pairs of sequences are extracted from the test alignment, and then each
of them is compared with the corresponding pair in the reference alignment.
To compare alignments, SABMARK uses the average of the scores of several
reference alignments. SABMARK uses the fd score, that is identical to the
SP score [84] of BALIBASE, and the fin score (i.e., the modeler’s score [72])
that represents the ratio between the number of the correctly aligned pairs of
characters and the length of the generated alignment.

4. OXBENCH [68]: This benchmark is constructed automatically using known
tertiary structures and different alignment methods. So the result can be biased
when we compare alignment algorithms based on the same approach used for
the construction of the benchmark. OXBENCH is made up by three subsets:

a. The first one, called master, contains 218 alignments of protein domains
of 2 to 122 sequences whose tertiary structures are known.
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b. The second one, called full, contains all sequences whose domains are rep-
resented in master.

c. Finally, the last one, called extended, is made up by the sequences of mas-
ter in addition to other homologous sequences.
Several scores are implemented in OXBENCH for the assessment of the align-
ments, such as the CS score and the position-shift score.

IRMBASE and DIRMBASE [82]: These benchmarks use the same scores
as BALIBASE and are dedicated to assessing multiple local alignment al-
gorithms. IRMBASE contains alignments of random synthetic sequences
classified in three references and constructed by integrating motifs in
the random sequences. These motifs are constructed by using ROSE
[81]. DIRMBASE simulates DNA sequences, whereas IRMBASE simulates
protein ones.

HOMSTRAD [79]: Although this database originally was not designed as a
benchmark, it often has been used as such. It contains 1032 alignments of
protein sequences representing different structures and grouped in homologous
families.

. DNA PREFAB [15]: This benchmark contains alignments of DNA sequences

extracted from different databases.

. BRALIBASE [33]: This benchmark is the first benchmark used to assess RNA

alignment algorithms. It contains alignments of families of noncoding RNA
sequences, such as 5S rRNA and tRNA. These sequences are extracted from
the RFAM database [37].

Several studies have been conducted to compare different multiple alignment al-
gorithms using different benchmarks and different score functions. Among these
studies, we mention [84,47,8]. All these studies show that there are no align-
ment algorithms that are efficient for all alignment problems, and the choice of
the most efficient alignment algorithm depends on the nature and the number of
the sequences to align. Table 12.4 lists the popular benchmarks and where to
find them.

Table 12.4 Alignment benchmarks

Benchmark Link

BALIBASE [89] http://www-bio3d-igbmc.u-strasbg.fr/balibase/
BRALIBASE [33] http://projects.binf.ku.dk/pgardner/bralibase/
HOMSTRAD [79] http://www-cryst.bioc.cam.ac.uk/ homstrad//

IRMBASE and http://dialign-t.gobics.de/main
DIRMBASE [82]
PREFAB [28]: http://www.drive5.com/muscle/prefab.htm
OXBENCH [68] http://www.compbio.dundee.ac.uk/Software/Oxbench/oxbench.htm

SABMARK [91] http://bioinformatics.vub.ac.be/databases/content.html
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12.5 CONCLUSION

Sequence alignment is an efficient way to compare biological sequences. It involves
the identification of similar substrings in these sequences. Alignment algorithms can
be classified according to the type of alignment they perform: either global or local
alignment. The alignment of two sequences is called pairwise alignment, whereas
the alignment of more than two sequences is called multiple alignment.

The multiple alignment problem is NP-complete, and several approaches have
been developed to deal with this problem in a polynomial time: the progressive ap-
proach, the iterative approach, and the divide-and-conquer approach.

Each approach presents advantages and drawbacks, and the choice of an approach
and an algorithm depends on the nature of the sequences to align and the goal of the
alignment.

Because most alignment algorithms are heuristic, the evaluation of alignment
quality is crucial. The quality of a given alignment is judged by using score func-
tions that assign a score that reflects alignment accuracy and significance and that
allows the user to differentiate between different alignments of the same set of se-
quences. The accuracy of an alignment algorithm is measured by using benchmarks
that contain reference alignments specifically constructed with the help of biological
knowledge. The benchmarks also contain tools for comparing the reference align-
ments and the results obtained by different alignment algorithms.

Although multiple alignment has been the subject of extensive research, none of
the existing alignment algorithms is perfect, and the construction of accurate align-
ments for numerous complex or distantly related sequences remains a problem that
requires new work to meet the new requirements and expectations of the biologists.

The implementation of intelligent systems, such as the ALEXSYS [2] expert sys-
tem, which automatically chooses a suitable algorithm of alignment for a given set
of sequences, represents a potential solution and a better alternative to the standard
algorithms. The integration of supplementary information, (e.g., structural or func-
tional information) to guide the alignment should improve such systems further.

ACKNOWLEDGMENTS

We are grateful to Dr. Julie Thompson, of the Institut de Génétique et de Biolo-
gie Moléculaire et Cellulaire, Strasboug France, for her valuable comments on the
manuscript.

REFERENCES

1. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool, J Mol Biol, 215:403-410, 1990.

2. M.R. Aniba, S. Siguenza, A. Friedrich, F. Plewniak, O. Poch, A. Marchler-Bauer, and
J.D. Thompson. Knowledge-based expert systems and a proof-of-concept case study for



256

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

multiple sequence alignment construction and analysis. Briefings Bioinformatics, 10:11—
23, 2009.

. E. Armougom, S. Moretti, O. Poirot, S. Audic, P. Dumas, B. Schaeli, V. Keduas, and

C. Notredame. Expresso: Automatic incorporation of structural information in multiple
sequence alignments using 3D-Coffee. Nucleic Acids Res, 34:W604—-W608, 2006.

. T.L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using

expectation maximization. Mach Learn, 21(1/2):51-80, 1995.

. S. Batzoglou, L. Pachter, J. Mesirov, B. Berger, and E.S. Lander. Human and mouse gene

structure: Comparative analysis and application to exon prediction. Genome Res, 10:950—
958, 2000.

. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

. R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton University Press,

Princeton, NJ, 1962.

. G. Blackshields, .M. Wallace, M. Larkin, and D.G. Higgins. Analysis and comparison of

benchmarks for multiple sequence alignment. In Silico Biol, 6:0030, 2006.

. R.K. Bradley, A. Roberts, M. Smoot, S. Juvekar, J. Do, C. Dewey, I. Holmes, and L.

Pachter. Fast statistical alignment. PLoS Comput Biol, 5(5):2009.

N. Bray, I. Dubchak, and L. Pachter. AVID: A Global Alignment Program. Genome Res,
13:97-102, 2003.

N. Bray and L. Pachter. MAVID: Constrained ancestral alignment of multiple sequences.
Genome Res, 14:693-699, 2004.

M. Brudno, C. Do, G. Cooper, M. Kim, E. Davydov, E.D. Green, A. Sidow, and S. Bat-
zoglou. LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of
genomic DNA, Genome Res, 13:721-731, 2003.

. M. Brudno, M. Chapman, B. Géttgens, S. Batzoglou, and B. Morgenstern. Fast and sen-

sitive multiple alignment of large genomic sequences. BMC Bioinformatics, 4:2003.

H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM
J Appl Math, 48(5):1073-1082, 1988.

H. Carroll, W. Beckstead, T. O’Connor, M. Ebbert, M. Clement, Q. Snell, and D. Mc-
Clellan. DNA reference alignment benchmarks based on tertiary structure of encoded
proteins. Bioinformatics, 23(19):2648-2649, 2007.

R.A. Cartwright. Ngila: global pairwise alignments with logarithmic and affine gap costs.
Bioinformatics, 23(11):1427-1428, 2007.

S. Chakrabarti, N. Bhardwaj, P.A. Anand, and R. Sowdhamini. Improvement of alignment
accuracy utilizing sequentially conserved motifs. BMC Bioinformatics, 5:167-188, 2004.
S. Chakrabarti, C.J. Lanczycki, A.R. Panchenko, T.M. Przytycka, P.A. Thiessen, and
S.H. Bryant. Refining multiple sequence alignments with conserved core regions. Nucleic
Acids Res, 34:2598-2606, 2006.

M.S. Cline, R. Hughey, and K. Karplus. Predicting reliable regions in protein sequence
alignments. Bioinformatics, 18(2):306-314, 2002.

F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res,
16(22):10881-10890, 1988.

M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change in pro-
teins. In Atlas of Protein Sequence and Structure. National Biomedical Research Founda-
tion, Washington, DC: 345-358, 1978.



22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

REFERENCES 257

A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for large-scale
Genome alignment and comparison. Nucleic Acids Res, 30(11):2478-2483, 2002.

E. Depiereux and E. Feytmans. MATCHBOX: A fundamentally new algorithm for the
simultaneous alignment of several protein sequences. CABIOS, 8(5):501-509, 1992.

V. Derrien, J.M. Richer, and J.K. Hao. PLasMA: un nouvel algorithme progressif pour
I’alignement multiple des séquences, Proc. Premiéres Journées Francophones de Pro-
grammation par Contraintes (JFPC’05): 39-48, 2005.

C.B. Do, M.S. Mahabhashyam, M. Brudno, and S. Batzoglou. PROBCONS: Probabilistic
consistency-based multiple sequence alignment. Genome Res, 15:330-340, 2005.

S.R. Eddy. Multiple alignment using hidden markov models. Proceedings of the Interna-
tional Conference on Intelligent Systems for Molecular Biology, Cambridge, UK: 114—
120, 1995.

R.C. Edgar and K. Sjolander. SATCHMO: sequence alignment and tree construction using
hidden Markov models. Bioinformatics, 19(11):1404-1411, 2003.

R.C. Edgar. MUSCLE: multiple sequence alignment with high accuracy high throughput.
Nucleic Acids Res, 32(5):1792-1797, 2004.

I. Elias. Settling the intractability of multiple Alignment. J Computat Biol, 13(7):1323—
1339, 2006.

M. Elloumi and A. Mokaddem. An Algorithm for Multiple and Global Alignments. Pro-
ceedings of the 2" International Conference on Bioinformatics Research and Develop-
ment, BIRD’08 Vienna, Austria, Communications in Computer and Information Science
(CCIS), Springer-Verlag, Berlin, Heidelberg, Germany: 479488, 2008.

D.F. Feng and R.F. Doolittle. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. J Mol Biol, 25(4):351-360, 1987.

M.C. Frith, U. Hansen, J.L.. Spouge, and Z. Weng. Finding functional sequence elements
by multiple local alignment. Nucleic Acids Res, 32(1):189-200, 2004.

PP. Gardner, A. Wilm, and S. Washietl. A benchmark of multiple sequence alignment
programs upon structural RNAs. Nucleic Acids Res, 33:2433-2439, 2005.

O. Gotoh. Further improvement in methods of group-to-group sequence alignment with
generalized profile operations. CABIOS, 10:379-387, 1994.

O. Gotoh. A weighting system and algorithm for aligning many phylogenetically related
sequences. Comput Appl Biosci, 11:543-551, 1995.

O. Gotoh. Significant improvement in accuracy of multiple protein sequence alignments
by iterative refinement as assessed by reference to structural alignments. J Mol Biol,
264(4):823-838, 1996.

S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S.R. Eddy. RFAM: an RNA
family database. Nucleic Acids Res, 31(1):439—-441, 2003.

S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc Natl Acad Sci U S A, 89(22):10915-10919, 1992.

P. Horton. TSUKUBA BB: a branch and bound algorithm for local multiple se-
quence alignment. Proceedings of the 11th Annual Symposium on Combinatorial Pattern
Matching, CPM’00, (Montréal, Canada), Lecture Notes in Computer Science (LNCS),
Springer-Verlag, Berlin, Heidelberg, Germany: 84-98, 2000.

X. Huang and K.M. Chao. A generalized global alignment algorithm. Bioinformatics,
19(2):228-233, 2003.



258

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

W. Huang, D.M. Umbach, and L. Li. Accurate anchoring alignment of divergent se-
quences. Bioinformatics, 22(1):29-34, 2006.

K. Karplus, C. Barrett, and R. Hughey. Hidden markov models for detecting remote pro-
tein homologies. Bioinformatics, 14(10):846-856, 1998.

K. Katoh, K. Kuma, H. Toh, and T. Miyata. MAFFT version 5: Improvement in accuracy
of multiple sequence alignment. Nucleic Acids Res, 33(2):511-518, 2005.

J. Kececioglu and W. Zhang. Aligning alignments. Proceedings of the 9th Symposium on
Combinatorial Pattern Matching, CPM’98 (New Jersey, USA), Lecture Notes in Computer
Science (LNCS), Springer-Verlag, Berlin, Heidelberg, Germany: 189-208, 1998.

J. Kececioglu and D. Starrett. Aligning alignments exactly. Proceedings of the 8th ACM
Conference on Research in Computational Molecular Biology, RECOMB’04, San Diego,
CA: 85-96, 2004.

T. Lassman, O. Frings, and L.L. Sonnhammer. KALIGN2: high-performance multiple
alignment of protein and nucleotide sequences allowing external features. Nucleic Acids
Res, 37(3):858-865, 2009.

T. Lassman and L.L. Sonnhammer. Quality assessment of multiple alignment programs.
FEBS Lett, 529:126-130, 2002.

T. Lassman and L.L. Sonnhammer. KALIGN: An accurate and fast multiple sequence
alignment algorithm. BMC Bioinformatics, 6:298, 2005.

T. Lassman and L.L. Sonnhammer. Automatic assessment of alignment quality. Nucleic
Acids Res, 33:7120-7128, 2005.

C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A. Neuwald, and F.J.C. Wootton.
Detecting subtle sequence signals : A GIBBS sampling strategy for multiple alignment.
Science, 262:208-214, 1993.

C. Lee, C. Grasso, and M.F. Sharlow. Multiple sequence alignment using partial order
graphs. Bioinformatics, 18(3):452-464, 2002.

DJ. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for multiple sequence alignment.
Proc Natl Acad Sci U S A, 86:4412-4415, 1989.

B. Ma, T. John, and M. Li. PATTERNHUNTER: faster and more sensitive homology
search. Bioinformatics, 18(3):440-445, 2002.

Z. Min, F. Weiwu, Z. Junhua, and C. Zhongxian. MSAID: multiple sequence alignment
based on a measure of information discrepancy. Comput Biol Chem, 29:175-181, 2005.
K. Mizuguchi, C.M. Deane, T.L. Blundell, and J.P. Overington. HOMSTRAD: a database
of protein structure alignments for homologous families. Protein Sci, 7:2469-2471, 1998.
B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment approach to mul-
tiple sequence alignment. Bioinformatics, 15(3):211-218, 1999.

A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classifica-
tion of proteins database for the investigation of sequences and structures. J Mol Biol,
247:536-540, 1995.

S.B. Needleman and C.D. Wunsch. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. J Mol Bio, 48(1):443-453, 1970.

L. Noé and G. Kucherov. YASS: enhancing the sensitivity of DNA similarity search,
Nucleic Acids Res, 33(2):540-543, 2005.

C. Notredame and D. Higgins. SAGA: sequence alignment by genetic algorithm. Nucleic
Acids Res, 24:1515-1524, 1996.



61

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

REFERENCES 259

. C. Notredame, L. Holm, and D.G. Higgins. COFFEE: an objective function for multiple
sequence alignments. Bioinformatics, 14(5):407-422, 1998.

C. Notredame, D. Higgins and J. Heringa. T-COFFEE: A novel method for multiple se-
quence alignments. J Mol Biol, 302:205-217, 2000.

J.S. Papadopoulos and R. Agarwala. COBALT: constraint-based alignment tool for mul-
tiple protein sequences. Bioinformatics, 23(9):1073-1079, 2007.

W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proc
Natl Acad Sci U S A, 85:2444-2448, 1988.

J. Pei and N.V. Grishin. Al2co: Calculation of positional conservation in a protein se-
quence alignment. Bioinformatics, 17(8):700-712, 2001.

J. Pei and N.V. Grishin. MUMMALS: Multiple sequence alignment improved by
using hidden Markov models with local structural information. Nucleic Acids Res,
34(16):4364-4374, 2006.

J. Pei and N.V. Grishin. PROMALS: Towards accurate multiple sequence alignments of
distantly related proteins. Bioinformatics, 23(7):802-808, 2007.

G.P. Raghava, S.M. Searle, P.C. Audley, J.D. Barber, and G.J. Barton. OXBENCH: a
benchmark for evaluation of protein multiple sequence alignment accuracy. BMC Bioin-
formatics, 4:2003.

DJ. Rodi, S. Mandava, and L. Makowski. Divaa: analysis of amino acid diversity in
multiple aligned protein sequences. Bioinformatics, 20(18):3481-3489, 2004.

D.J. Russell, H.H. Out, and K. Sayood. Grammar-based distance in progressive multiple
sequence alignment. BMC Bioinformatics, 9:2008.

N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol Biol Evol, 4:406-425, 1987.

J.M. Sauder, J.W. Arthur, and R.L. Dunbrack. Large-scale comparison of protein se-
quence alignments with structural alignments. Proteins, 40:6-22, 2000.

S. Schwartz, J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison, D. Haussler,
and W. Miller. Human-mouse alignments with BLASTZ. Genome Res, 13:103-107,
2003.

G.D. Schuler, S.F. Altschul, and D.J. Lipman. A workbench for multiple alignment con-
struction and analysis. Proteins, 9:180-190, 1991.

V.A. Simossis and J. Heringa. PRALINE: A multiple sequence alignment toolbox that
integrates homology-extended and secondary structure information. Nucleic Acids Res,
33(2):289-294, 2005.

J.A. Smagala, E.D. Dawson, M. Mehlmann, M.B. Townsend, R.D. Kuchta, and K.L.
Rowlen. Confind: a robust tool for conserved sequence identification. Bioinformatics,
21(24):4420-4422, 2005.

T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
J Molecular Biol, 147:195-197, 1981.

P. Sneath and R. Sokal. Numerical Taxonomy, Freeman, San Francisco, CA: 230-234,
1973.

L.A. Stebbings and K. Mizuguchi. HOMSTRAD: recent developments of the Homolo-
gous Protein Structure Alignment Database. Nucleic Acids Res, 32, D203-D207, 2004.
J. Stoye. Multiple sequence alignment with the divide-and-conquer method. Gene,
211:GC45-GC56, 1998.



260

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

J. Stoye, D. Evers, and F. Meyer. ROSE: generating sequence families. Bioinformatics,
14(2):157-163, 1998.

A.R. Subramanian, J. Weyer-Menkhoff, M. Kaufmann, and B. Morgenstern. DIALIGN-T:
an improved algorithm for segment-based multiple sequence alignment. BMC Bioinfor-
matics, 6: 2005.

S.H. Sze, Y. Lu, and Q. Yang. A polynomial time solvable formulation of multiple se-
quence alignment. J Comput Bio, 13:309-319, 2006.

J.D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple se-
quence alignment programs. Nucleic Acids Res, 27(13):2682-2690, 1999.

J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTALW: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position specific
gap penalties and weight matrix choice. Nucleic Acids Res, 22(22):4673-4680, 1994.
J.D. Thompson, F. Plewniak, J.C. Thierry, and O. Poch. DBCLUSTAL.: rapid and reliable
global multiple alignments of protein sequences detected by database searches. Nucleic
Acids Res, 28(15):2919-2926, 2000.

J.D. Thompson, F. Plewniak, R. Ripp, J.C. Thierry, and O. Poch. Towards a reliable ob-
jective function for multiple sequence alignments. J Mol Biol, 314:937-951, 2001.

J.D. Thompson, J.C. Thierry, and O. Poch. RASCAL: Rapid scanning and correction of
multiple sequence alignments. Bioinformatics, 19(9):1155-1161, 2003.

J.D. Thompson, P. Koehl, R. Ripp, and O. Poch. BALIBASE 3.0: latest developments of
the multiple sequence alignment benchmarks. Proteins, 61:127-136, 2005.

I. Van Walle, I. Lasters, and L. Wyns. SABMARK: a benchmark for sequence alignment
that covers the entire known fold space. Bioinformatics, 21(7):1267-1268, 2005.

I. Van Walle, I. Lasters, and L .Wyns. Align-m: a new algorithm for multiple alignment
of highly divergent sequences. Bioinformatics, 20(9):1428-1435, 2004.

ILM. Wallace, O. O’Sullivan, and D.G. Higgins. Evaluation of iterative alignment algo-
rithms for multiple alignments. Bioinformatics, 21(8):1408-1414, 2005.

L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J Comput Biol,
1:337-348, 1994.

T.J. Wheeler and J.D. Kececioglu. Multiple alignment by aligning alignments. Bioinfor-
matics, 23(13):559-568, 2007.

X.Zhang and T. Kahveci. A New Approach for alignment of Multiple Proteins. Pac Symp
Biocomput: 339-350, 2006.

X. Zhang and T. Kahveci. QOMA: quasi-optimal multiple alignment of protein se-
quences. Bioinformatics, 23(2):162—168, 2007.

H. Zhou and Y. Zhou. SPEM, Improving multiple sequence alignment with sequence
profiles and predicted secondary structure. Bioinformatics, 21(18):3615-3621, 2005.



13

ALGORITHMS FOR LOCAL
STRUCTURAL ALIGNMENT
AND STRUCTURAL MOTIF

IDENTIFICATION

Sanguthevar Rajasekaran, Vamsi Kundeti, and Martin Schiller

13.1 INTRODUCTION

A protein is characterized by both the amino-acid sequence and the three-
dimensional (3-D) structure of the underlying atoms. Although it is a common prac-
tice of the biologists to use sequence similarity among different proteins to identify
any conserved regions during the evolution, it has been proven that the 3-D struc-
tures of the proteins are conserved more fundamentally than the sequence during the
evolution. Even though two given proteins may not exhibit much of a sequence ho-
mology, the structural similarity between them might account for similar properties.
Proteins with a similar structure might have similar properties [10]. This is the mo-
tivation behind the study of the structural alignment problem in a manner similar to
that of the sequence alignment problem [4].

The structural alignment problem has received immense attention in the past few
decades, especially with the increasing number of tertiary structures available in the
Protein Data Bank (PDB) [1]. Given two proteins P; and P», the problem of struc-
tural alignment is to find a highly similar substructure S, between P, and P. The
number of known protein structures has increased drastically from 10,000 in 1999 to
45,000 in 2007. This growth makes manual structural alignment almost impossible,
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and hence, we need algorithms that can yield almost similar accuracy as manual
alignment and are very fast.

Almost all existing algorithms perform structural alignment based on the back-
bone of the protein. For any two given proteins, these algorithms try to find the
correspondence between the Co atoms on the backbone along with the transforma-
tion matrices R (rotational) and T (translational) that will transform one protein to
the other minimizing the interatomic distance between the corresponding C« atoms
(see e.g., [3], [7], [5], [8], and [6]). All these algorithms share a common flavor that
consists of two major steps. The first step consists of identifying small structurally
similar regions between the two protein back bones. These are known as alignment
fragment pairs (AFPs). In the next step, a subset of these AFPs is identified that
essentially forms the alignment between the two structures. In all these algorithms,
the AFPs are identified by sliding a window of constant size along the backbone of
the protein. However, we feel that using a constant size window in identifying the
AFPs is too restrictive, especially when we want to improve the accuracy of struc-
tural classification. In this work, we add an extra degree of freedom in the form of
variable length alignment fragment pairs (VLAFPs) and present a generalized al-
gorithmic framework for structural alignment. Our framework is independent of the
scoring schemes used to score the AFP’s. Another important fact is that all existing
algorithms only consider the global structural alignment between the two proteins
P) and P, rather than the local alignment. Local structural alignment can be very
effective in the identification of structural motifs.

Our contributions are three fold. First, we introduce a new idea of using VLAFPs
in structural alignment; second, we provide new scoring schemes based on center
of gravity (CG) to identify structurally similar AFPs; and finally, we address the
problem of identifying structural motifs with our algorithm.

The organization of the chapter is as follows. In Section 13.2, we define the local
structural alignment problem. In Section 13.3 we introduce our VLAFP framework.
In Section 13.4 we show how we can use center-of-gravity-based scores to identify
highly structurally similar AFPs. Section 13.5 describes how the VLAFP framework
can aid in the identification of structural motifs. Section 13.6 describes how we can
classify the proteins based on the VLAFP framework and the center of gravity scor-
ing scheme.

13.2 PROBLEM DEFINITION OF LOCAL STRUCTURAL ALIGNMENT

Input: Input are two protein structures P; = (ajj,da12,a13,...) and P, =
(b1,1,b1,2, b13, ...), where q; ; represents the j-th atom of the i-th residue of P,
and b, , represents the g-th atom in the p-th residue of P,. In fact, a; ; and
b4 have information about the location of the corresponding atoms. For instance,
a,"j = (Xj, Yj, Zj) and bp,q = (Xq, Yq, Zq)

Output: Define the correspondence between Py and P, as Cis = ((ap g, brs),
(@m.ns bryp), .. .) (ie., specify which atom of P; corresponds to which atom of P,).
The local structural alignment problem is to find a correspondence (C| ) between P,
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and P, along with a rotation matrix R and a translation matrix 7 such that when we
apply R and T to one set of coordinates (@, 4, @m,n, - - -), we end up with the other set
(br.s, bi g, - . .). The optimization version of this problem is to find a correspondence
C1.2 such that |Cy 7| is maximal.

13.3 VARIABLE-LENGTH ALIGNMENT FRAGMENT PAIR (VLAFP)
ALGORITHM

The existing algorithms for structural alignment share a common flavor that consists
of two major steps. The first step consists of identifying small structurally similar
regions between the two protein back bones (AFPs). In the next step, a subset of
these AFPs is identified. This subset forms the alignment between the two structures.
The following sections will give a brief overview of these steps and the details about
our Variable-Length Alignment Fragment Pair Algorithm.

13.3.1 Alignment Fragment Pairs

AFPs in the first step of the existing algorithms are identified by sliding a win-

dow W of constant size along the protein backbones. Let By = ¢! cl,...cl, be

the backbone of protein P;, and similarly, let B, = cilcgz ... cém be the backbone
of protein P,. The backbones B; and B, now are transformed into two sequences

Wy =wlw)...w! ; and W, = wiw] ... w’_,_, where k is the size of the win-
RIS 1 " 2 ;
dow W and w; = ¢y;Copp1y - - - Cogiph—ty W = CajCa(j+1) - - - Ca(j+h—1)- Lhe Align-

ment Fragment Pairs are defined as AFP; j = (u)i', w?), and each of these AFPs
is associated with a normalized cost function COSTy ;) € [0, 1]. If COST(, 4 < €
(for some appropriate threshold value €), then it indicates that the structure of the
¢ — o atoms in windows w}, and wé have very similar structures. In contrast, if
COST,,4) > €, then the AFP at (p, g) is not structurally similar. A careful analy-
sis of the algorithms CE [8], DALI [7], TM-Align [17], and PSIST [3] reveals that
these algorithms only differ in the cost functions associated with the AFPs. For ex-
ample, DALI and CE use a pairwise ¢ — « distance matrix to compute COSTj; ;). CE
also combines some extra statistical information into the cost function. PSIST uses
the bond angle information among the ¢ — o atoms within each window. TM-Align
uses the TM-score [16] as its cost function.

All existing algorithms work with constant size AFPs. Using constant size AFPs
is too restrictive in the identification of good local alignments among the back bones
of the proteins, especially in the presence of noise in estimating the coordinates of
¢ — « atoms during X-ray crystallography. For example, consider an AFP at (i, j)
of constant size k. Let COST, 4 > €. The cost of the same AFP at (i, j) with a
different size k + y may be under the threshold of €. Another good example for
the need of VLAFPs is the presence of variable length secondary structure elements
that consists of helices and sheets. An important fact to note is that these secondary
structure elements are not always of the same size (in terms of the residues). It is
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possible that a helix structure may consist of eight residues in one structure and may
consist of 12 residues in another structure. Therefore, the use of constant size AFPs
may not yield a good alignment. For example, if we assume that the size of any
AFP is fixed to be eight then a helix structure of 12 residues could be matched only
partially either at the start of the helix or at the fourth position, thus making the local
alignment only partial. However, if we allow the AFPs to take variable length such
that 2 < |W| < 8, then we clearly can produce an alignment of size 4 + 8 and could
match the 12 residue helix exactly. To address such drawbacks with constant size
AFPs, we present a much general idea of VLAFPs. The extra degree of freedom is
added in the form of an extra variable into the VLAFP cost function which is defined
as follows.

[P

Cost of aligning a fragment of size “q
VCOST(, j,q) = { at position “i” in P; and at

[13¢3]

position “j” in P,

VCOST(, j, q) € [0, 1] Normalized VLAFP Cost
k1 <q <k Range of the VLAFP variable “q”

Our core noniterative dynamic programming framework is independent of any
VCOST function. In the later sections, we introduce a new VCOST function based
on center of gravity.

13.3.2 Finding the Optimal Local Alignments Based on the VLAFP
Cost Function

With the definition of the VLAFP cost function in the previous section, we now
describe our dynamic programming framework for finding the local structural align-
ments among the structures. The aim of this dynamic programming formulation is to
find the longest contiguous sequence of VLAFPs such that the cost of each VLAFP
is under the threshold €. Details of the dynamic programming formulation follow.
We define the dynamic programming subproblem in the form of VLCS. Variables i
and j refer to the indices of the residues in the protein backbones of corresponding
proteins.

Longest contiguous sequence of VLAFPs
VLCS(i, j) = { in the backbones of P, and P, ending at
the i-th and j-th residues, respectively

In our algorithm, we need a two-step initialization. Because the minimum length of
the VLAFP is k, pairs of the kind (7, j) withi < k; and j < k; are not of interest.

VLCS(, j) =0
<@ j)=hk =1
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In the second initialization step, we consider the first k; residues from protein P;
and check whether we can align these residues to any part of the protein P, based
on the cost function VCOST as follows. This initialization is similar to the standard
sequence alignment initialization.

. ki IF VCOST(k;, j) <€
VLCS(ky, j) = {01 S (k1, J)

l<j=I|P|
The core dynamic programming computation is based on the following equations:

q+ VLCSG —q,j—¢q)
IF VCOST(, j, q) <€
QLCS(, j, q) =
0
ELSE
ki +1<i<|Pl,
ki+1=<j=<|P
.. max {QLCS(, j, q)}
VLESG, ) = {kl <q=<k
ki+1<i=<|Pl,
ki < j =< I|P|

max {VLCS(, j)}
Final answer required = { 1 <i < |Py|
1 <j=|P

After the end of the computation, we end up with the length of the longest contiguous
sequence of VLAFPs such that the cost of each VLAFP is within a threshold €. Along
with this, we also can compute the exact position in P; and P, where this sequence
starts. So our VLAFP framework has the following two major steps to compute the
local structural alignment:

¢ Compute the VCOST(I, j, g) function on the backbones of the proteins.

¢ Compute local structural alignment, which is equivalent to finding a contiguous
sequence of VLAFPs in P, and P; such that the cost of each VLAFP is under
a threshold €.

A pseudocode of the core dynamic programming frame work is illustrated in
Algorithm 13.1. Clearly, VCOST(, j, q) should be such that it takes a value close to
0 for highly structurally similar AFPs and a value close to 1 for structurally dissim-
ilar AFPs. In the next sections, we introduce a new VCOST function based on the
center of gravity that has these desired properties.
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Algorithm 13.1 Core VLAFP Algorithm to compute local structural alignments

INPUT : VCOST,|P;|,| P|
OUTPUT: Length of optimal local alignment and its location
Initialize VLCS
MaxLen =0
fori =k, to |P;| do
for j = k| to | P;| do
CurrentMax = 0
for g = k; to ky do
if VCOST(, j, q) < € then
if VLCS(i —q, j — g¢) + g > CurrentMax then
| CurrentMax = VLCS( —¢q,j —¢q)+g¢
end
end
end
VCLS(i, j) = CurrentMax

if CurrentMax > MaxLen then
MaxLen = CurrentMax

StartPosition] = i — CurrentMax + 1
StartPosition2 = j — CurrentMax + 1
end

end

end
return (MaxLen,StartPosition1,StartPosition2)

13.4 STRUCTURAL ALIGNMENT BASED ON CENTER OF
GRAVITY: SACG

One of the ideas that we propose in this work is that of using the sorted distances from
the center of gravity to identify AFPs. One of the advantages of using the center of
gravity is that we can perform structural alignment not only at the ¢ — « level but also
including the side chains. Our main goal is to use the algorithms in this section to
identify highly structurally similar AFPs and build a VCOST function and then apply
the VLAFP algorithm to compute the local structural alignment. Before presenting
the details, we provide a summary of how exactly the structure of any protein is
described in the PDB file format [1].

13.4.1 Description of Protein Structure in PDB Format

The PDB file for a protein structure is a text description of the 3-D-coordinates
of the atoms/residues in the protein. The file consists of a linear list Lyq, of atoms
that are a part of the protein and the corresponding 3-D coordinates of each atom.
Lpay = (a1, ar2,a13,...,a;;...), where a; ; is the j-th atom in residue i. It
is noteworthy that the list Lpg, is partially ordered with respect to the residue



13.4 STRUCTURAL ALIGNMENT BASED ON CENTER OFGRAVITY: SACG 267

numbers (i.e., ap 4 < ap,, <= (p < m)). Although there is an ordering among
the residues, the atoms within a reside may not follow any order. If Llpdb and szdb
are two PDB structure instances of the same protein, then the ordering of the atoms
within each residue may be different (though the residues themselves will be in the
same order). As an example the atoms in the first residue of Llpdb may be ordered
as (aip,a11,a15,0a14,4d13,...), but the atoms in the same residue of szdb may
be ordered as (a5, ai.1,a12,4ai4,a13,...). This variation is mainly because of
different frames of reference during X-ray crystallography. The variation of the
ordering of the atoms within the same residue makes structural alignment algorithms
that consider the sidechain conformations nontrivial. In the next sections, we will
see how our algorithms overcome this ordering issue when side-chain conformations
are considered.

13.4.2 Related Work

The problem of checking whether two point sets (in two-dimensional [2D] or 3-D)
are rigidly transformable from one to the other is a well-studied problem in compu-
tational geometry. This problem is known as geometric congruence. Several algo-
rithms for exact geometric congruence were given in [11], [12], [13], and [15]. All
these algorithms solve the exact geometric congruence in O(n logn) time. There is
also a more general version of the geometric congruence known as the e-congruence.
In this version, we are required to determine whether two given point sets of the
same cardinality are rigidly transformable from one to the other within a tolerance
of €. The e-congruence problem can be solved in time O (n®) deterministically (see,
e.g., [13]). The problem of e-congruence is related closely to the substructure iden-
tification problem, but a run time of O(n®) may not be practical. In the literature of
structural alignment of proteins, several iterative dynamic programming-based algo-
rithms have been proposed (see, e.g., [6] and [14]). However, there are several issues
on the convergence of these algorithms. In these algorithms, the correspondence be-
tween the atoms is changed in every iteration, and hence, it is possible for these
algorithms never to converge to an optimal solution. In our algorithm, we first find
the substructures that are highly similar, and we will not change this correspondence
throughout the algorithm and finally use the VLAFP framework in Section 13.3 to
find the longest common substructure among the protein structures.

13.4.3 Center-of-Gravity-Based Algorithm

If P, and P, are two given proteins with n residues each, a simple algorithm to find
the correspondence between P; and P, will take O(n!) time. The key idea behind our
structural alignment algorithm based on center of gravity is based on the following
theorem.

Theorem 13.1 Given two 3-D pointsets S1 and S, each of size n, with S =
{(-x115 ylla le)’ (x125 yl21 le)’ .- } and S2 = {(le, y2]7 Zzl)a (-x22’ )’22, 222)’ .. '}’
we can check whether Sy is a rigid transformation of S, in O(nlogn) time and O(n)
space.
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This directly follows from the Atkinson’s algorithm (exact geometric congruence)
(see [11]). The proof is based on a very simple fact that the relative position (from any
of the points in the point set) of the center of gravity of a set of 3-D points remains
unchanged when these 3-D points are transformed by any rigid transformation. The
CG for a 3-D point set is defined as follows:

S1 = {(x1, y1, 20), (x2, ¥2, 22), . . .}

Z:;l Xi | - Z?=1 Vi
n n

s Yeg =

Z?=1 Zi
n

Xcg = 3 ZcG =
If the relative position of the CG with respect to any of the points in the point set
changes because of a transformation, then the transformation is not rigid. We use
this fact and compute the Euclidean distance of each point from (Xcg, Ycg, Zcg)-
Let this distance for the i-th point be d;®.

4 = (Xcg = %P + (Yoo — y)? + (Zea — 20

Once we compute d;“¢, we sort these distances and create a distance vector V¢ for
the point set S;. Similarly, we create a vector V,¢ for S, and compare whether V¢
and V,“¢ are the same. If the distance vectors are the same, then we find the convex
hulls of the point sets and check whether the hulls are the same. This can be done in
O(nlogn) time, and hence, the entire algorithm runs in O(n logn) time.

Theorem 13.1 readily yields an algorithm for structural alignment. Although in
Theorem 13.1, we mentioned that we also need to find the convex hulls and check
whether the hull are the same, in practice just using the sorted distance vectors from
the center of gravity seems to be sufficient (see Algorithm 13.2).

Algorithm 13.2 algorithm to check whether pointsets S; and S, are rigidly trans-
formable

INPUT : Pointsets S, S

OUTPUT: True if S| can be transformed (rigidly) to S

(X', Y', Z" = COMPUTE_CG(S));

(X?,Y?, Z%) = COMPUTE_CG(S,);

fori < 1tondo
VIl = VXT—x12 + (YT =y 2+ (2" =21
V2l = (X2 = x2)2 + (Y2 = y2)2 + (22 = 2)%

end

SORT(V!);

SORT(V?);

if V!==V? then

| return true;

else
| return false;
end
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13.4.4 Extending Theorem 13.1 for Atomic Coordinates in Protein
Structure

Algorithm 13.2 returns true if an exact rigid transformation (R, T') exists, which
when applied to the point set S;, will give S, or vice-versa. But in the context of pro-
tein structures in which there is a considerable noise while measuring the coordinates
during X-ray crystallography, exact rigid transformations may not be meaningful.
We need an algorithm that can take the coordinates of the protein substructures and
determine whether one substructure can be transformed approximately into another
substructure using some rigid transformation. Keeping this in mind, we extend the
exact version of the algorithm based on Theorem 13.1. We define weighted distance
(W;,;) between two sorted vectors V; and V; (each of length n) as follows:

n

Wij =Y (n—k) x [ (Vilk] = V;[k])*

k=1

We also define an approximation threshold € whose value is proportional to n. The
typical value of € is 1.8 for n = 20. We have determined the value of € from several
experimental runs of our program. Algorithm 13.3 incorporates these definitions,
and it can detect whether two given atomic coordinate sets (from protein structures)
P, and P, can be transformed approximately from one to the other, with an error
of €. Algorithm 13.3 is much faster and simpler than the O(n®) algorithm of [13].
As our experimental data indicate, the accuracy of Algorithm 13.3 is very good. Al-
gorithm 13.3 can be very effective in checking whether two sets of atoms have the
same structure, but our main intention is to compute the local structural alignment

Algorithm 13.3 Algorithm to check whether atomic coordinates P, and P, are
approximately transformable

INPUT : Pointsets P; and P;; €

OUTPUT: True if P; can be transformed (approx) to P,

(X', Y', z"Y = COMPUTE_CG(P));

(X%, Y?, Z%) = COMPUTE_CG(P,);

fori < 1ton do
VI =X =x1)2+ (YT —y! )2+ (21 - 2%
V2i] = (X2 — x2)2 + (Y2 — y2)? + (22 — 22)%

end

SORT(V1);

SORT(V?);

Wiz = i (n—k) s/ (VI[k] = V2[k])? ;

if W1, < € then

| return true;

else
| return false;
end
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among the protein backbones. This is where we seek the help of our VLAFP frame-
work presented in Section 13.3. We use Algorithm 13.3 to build a cost function
VCOST(, j, q) and apply the VLAFP algorithm on top of this cost function, thus
obtaining the required local structural alignment. Section 13.4.5 gives more details
on building this cost function.

13.4.5 Building VCOST(i,j,q) Function Based on Center of Gravity

We define VCOST(, j, g) for a fragment pair of length ¢ at indices i and j in the

protein backbones of Py and P, as follows. Let W1 = {a},a/, . ..., ai1+q_l} be

the atoms in the fragment corresponding to protein P; at index i in the backbone.
Similarly, we can define W2 corresponding to protein P,. The pair (W1}, W29) is
an AFP of size g. Let (CG1,, CGl1,, CGl;) be the center of gravity for the set of
atoms in Wlf’ and (CG2,, CG2,, CG2,) be the center of gravity for the set of atoms
in W2‘}. The cost function VCOST(, j, ¢) is defined as follows:

dl = (x} —CG1,)? + (y{ = CG1,)*+(z} —CG1,)%, 1 <k <gq
d} = (x} — CG1,)* + (y} — CG1,)* + (z; —CGl,)*, 1 <k <gq
V! = Sorted distance vector of d}, 1 <k < ¢
V2 = Sorted distance vector of d,f, 1<k<gqg
DAFP(, j, q) = > {_(V'[k] = V[k])*

DAFP(, j, q)
VDAFPG, j, ¢ + ¢

VCOSTG, j, q) =

Once we have the normalized cost function VCOST we then can apply the
VLAFP dynamic programming framework (see Algorithm 13.1) to compute the lo-
cal structural alignment. Figure 13.1 illustrates the outcome of the VLAFP local
alignment between 1C2N and 1COT PDB structures based on the center of grav-
ity VCOST function. Also Figure 13.2 displays the local alignment between 1HIJ
and IITL. The local alignments are marked in red. We refer to the combination of
the center-of-gravity-based VCOST function with VLAFP framework as structural
alignment based on center of gravity (SACG).

13.5 SEARCHING STRUCTURAL MOTIFS

Finding structural patterns among the protein structures is of immense interest for
biologists, who often look for structural patterns including the side-chain conforma-
tions [9]. No existing algorithms addresses this issue of identifying structurally sim-
ilar patterns including the side-chain conformations. Biologists often want to search
for a part of the protein structure (substructure) in the existing proteins in the PDB.
Finding similar substructures including the side chains is a more difficult problem
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Figure 13.1 Local structural alignment between 1C2N and 1COT using our SACG algorithm.

Figure 13.2 Local structural alignment between 1HIJ and IITI using our SACG algorithm.
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because of the ordering of the atoms on the side chains is not necessarily fixed. The
ordering of side chain atoms in the PDB file for the same structure can vary from
experiment to experiment.

Our algorithms to identify similar substructures easily can address this ordering
issue because we use the sorted distances from the center of gravity as a signature
to identify the substructure. The problem with different ordering of the atoms will
not affect our algorithm. Algorithm 13.3 can be used readily to identify structural
motifs including the side chains. Biologists can supply the list of 3-D coordinates of
the atoms (in any order) to Algorithm 13.3. The algorithm then creates a sorted dis-
tance vector (d;e) for that set of 3-D coordinates and search the entire PDB database
to identify the regions that have signatures similar to dg,. All regions that have a
signature close to dgj, can be potential structural motifs. Figure 13.3 shows the real
substructures (Tyrosine phosphorylated substrates [9]) found by Algorithm 13.3. We
have got these regions by taking a subset of atomic coordinates from a known YXN
motif and searched the entire PDB database for regions having a signature similar to
the atoms in YXN motif and identified the regions in 1C86, 1LAR, 2H4V, 2GJT, and
2NVS5, as shown in Figure 13.3.

1C86 1LAR 2GJT

2H4V 2NVS

Figure 13.3 Tyrosine phosphorylated substrates (XYXNX motifs) identifed by Algorithm 13.3
in 1C86, 1LAR, 2H4V, 2GJT, and 2NV5.
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13.6 USING SACG ALGORITHM FOR CLASSIFICATION OF NEW
PROTEIN STRUCTURES

An important problem in structural alignment is to predict accurately protein struc-
tures from the PDB that are close to a newly discovered protein structure Py . This
can be addressed easily by computing all pairwise local structural alignments be-
tween the new protein P, and existing proteins in the PDB database and by rank-
ing all alignments according to the length of the local structural alignment and the
normalized costs. We have used our VLAFP framework to perform the local struc-
tural alignments and ranked the proteins based on length (number of residues) and
the cost(VCOST) of the alignment.

13.7 EXPERIMENTAL RESULTS

We provide two sets of experimental data. The first set covers all experimental
data related to the classification accuracy of the SACG algorithm, and the second
set contains the experimental data related to the structural motif search. The al-
gorithm was implemented in C, and the entire source code and all datasets/results
can be downloaded from http://trinity.engr.uconn.edu/ vamsik/VAFP_
ALGO/. The program was run on a 1GB (RAM), 1.3 GHZ intel processor linux
machine.

13.8 ACCURACY RESULTS

Our dataset is the same standard dataset used by PSIST [3] and other algorithms like
Progress and geometric hashing. Please see [3] for additional details of the dataset.
The dataset consisted of 181 superfamilies, and each of the superfamilies had at least
10 protein structures. The proteins are chosen in such a way that there is less than
30% of sequence homology between any two proteins from the same superfamily.
The superfamilies are based on structural classification of proteins (SCOP) [2] clas-
sification. So our database consists of around 2000 proteins. The query sample is a
sample of 176 proteins selected randomly from these 2000 proteins. PSIST used the
same sample size. Once the sample is selected, we run our algorithm (SACG) and
PSIST and classify the results based on the most frequently occuring superfamily and
class in the top 20 ranked proteins. The results indicate that our algorithm achieves
an average accuracy of 84.09% (superfamily) and 86.93 % (class). See Table 13.1
for additional details. Table 13.2 and Table 13.3 show the results of the top-ranked
proteins for query proteins 1¢c2n and 1hsm using our algorithm.

Experimental results in searching for structural motifs

Now we illustrate practical results in identifying a functional structural motif (Tyro-
sine phosphorylated substrate) in some PDB structures. We started with 1C86, which
has a functional motif between atoms (348 and 392) (please refer to the PDB file of
protein 1C86). We make the atom list from 348 to 392 in 1C86 as S; and apply our
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Table 13.1 Accuracy comparison between PSIST and SACG

Correct  Correct Accuracy  Accuracy
Algorithm (SF) (Class)  Top-K (SF) (Class)
PSIST 120 129 K=20 68.18% 73.29%
CG_ALGO 148 153 K=20 84.09% 86.93%

Algorithm 13.3. We found that 1LAR, 2GJT, 2NV5, and 2H4V (see Table 13.4) have
highly similar substructures (Tyrosine phosphorylated substrate) to the one in 1C86
between atoms 348 and 392. Please see Table 13.3 for the actual locations of this in
the PDB files. Please refer to Figure 13.3 for 3-D-visualization of these substructures.

13.9 CONCLUSION

In this chapter, we have introduced a new idea of using variable length alignment
fragment pairs in performing local structural alignment among the proteins. We also
showed how to use the VLAFP framework to classify proteins and search for struc-
tural motifs. In addition, we have introduced a new scoring function based on center

Table 13.2 Top scored proteins for query pdbic2n sf(46626) c1(46456) with SACG. *c*’
indicates that the class of query matches the class of the corresponding protein

Match Length Cost pdb-id Superfamily (sf) Class (cl)
Hok 44 24.13 pdblmbj- 46689 46456
Hok 34 21.99 pdb2bby- 46785 46456
#ok 40 26.39 pdbljtb- 47699 46456
HoH 46 31.96 pdblhsn- 47095 46456
HoH 36 25.84 pdblnhm- 47095 46456
#ek 32 23.05 pdblmbe- 46689 46456

37 26.80 pdb2cjo- 54292 53931
Hok 35 25.40 pdbluxd- 47413 46456
*ok 36 26.39 pdblaab- 47095 46456
Hok 39 28.69 pdbImbk- 46689 46456
40 29.54 pdbleot- 54117 53931
Hok 37 27.86 pdbletd- 46785 46456
HoH 46 35.43 pdblnhn- 47095 46456
47 36.75 pdble09-A 55961 53931
*eH 47 38.05 pdb2new- 48695 46456
45 36.70 pdb1bt7- 50494 48724
Hok 50 41.15 pdblgjt-A 46997 46456
32 26.90 pdb4ull- 50203 48724
*ok 37 31.49 pdbla2i- 48695 46456
HoH 47 40.16 pdblwjd-B 46919 46456
Hok 47 40.57 pdblwjd-A 46919 46456

+ve cl classification (46456) occurs 16 times, —ve sf classification (47095) occurs four times.
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Table 13.3 Top scored proteins for query pdb1hsm sf(47095) c1(46456) using SACG.

*c*sf’ indicates both class and superfamily of the query matches with the
corresponding protein

Match Length Cost pdb-id Superfamily (sf) Class (cl)
#okgf 168 72.65 pdblhsn- 47095 46456
HoH 33 19.64 pdb2bby- 46785 46456
31 19.40 pdb2cjo- 54292 53931
#okgf 145 95.48 pdblnhm- 47095 46456
HoH 38 26.18 pdblba5s- 46689 46456
Hek 38 28.57 pdbledj- 46997 46456
HoH 39 30.66 pdblwtu-B 47729 46456
#o¥gf 127 102.17 pdblnhn- 47095 46456
#o¥gf 107 86.43 pdblhmf- 47095 46456
*ekgf 110 89.27 pdblhme- 47095 46456
33 27.14 pdblbc6- 54862 53931
35 29.19 pdblgrx- 52833 51349
42 35.98 pdb2cjn- 54292 53931
Hok 37 31.73 pdbltnt- 46785 46456
41 35.81 pdb1mit- 54654 53931
*c#gf 52 46.02 pdblhma- 47095 46456
*ok 36 32.18 pdblbqv- 47769 46456
#ek 46 41.35 pdblhue-A 47729 46456
Hok 42 38.25 pdblmbg- 46689 46456
Hok 35 31.92 pdblbdc- 46997 46456
33 30.16 pdblsvg- 55753 53931

+ve ¢l classification (46456) occurs 15 times, +ve sf classification (47095) occurs six times.

Table 13.4 Regions having tyrosine phosphorylated
substrate found by Algorithm 13.3

Protein(PDB-ID)

Region(start-end)

1LAR
2GJT

2NV5
2H4V

Residue 383 to 425
Residue 427 to 472
Residue 430 to 470
Residue 440 to 486

of gravity. Experimental results indicate that using the VLAFP framework can pro-
duce better local structural alignments compared with using constant size AFPs.
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EVOLUTION OF THE
CLUSTAL FAMILY OF
MULTIPLE SEQUENCE
ALIGNMENT PROGRAMS

Mohamed Radhouene Aniba and Julie Thompson

14.1 INTRODUCTION

One of the cornerstones of modern bioinformatics is the comparison or alignment
of protein sequences. Multiple alignments are used to compare a set of sequences,
either to estimate their overall similarity or to identify locally conserved motifs. As
such, classical string-matching algorithms have been applied to the problem as well
as many other algorithms, such as dynamic programming, hidden Markov Models,
genetic algorithms, and so on. Nevertheless, it is important to keep in mind that the
sequences analyzed in biology represent biological molecules (DNA, RNA, or pro-
tein) having unique three-dimensional (3-D) structures and specific functions. They
act in complex networks, interacting with other molecules in a stable or transitory
way within a changing cellular environment.

By placing the sequence in the framework of the overall family, multiple align-
ments not only identify important structural or functional motifs that have been con-
served during evolution but also can highlight particular nonconserved features re-
sulting from specific events or perturbations [32, 15]. As a consequence, multiple
sequence comparison or alignment has become a fundamental tool in many differ-
ent domains in modern molecular biology, from evolutionary studies to prediction of

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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two-dimensional (2-D) of 3-D structure, molecular function, intermolecular interac-
tions, and so on.

Numerous multiple alignment programs are now available, using a wide variety
of different algorithms. Many of these methods are described in detail in the chap-
ter 12 “multiple alignment algorithms,” and here we will concentrate on one specific
suite of programs: the Clustal family (www.clustal.org). Clustal is the oldest of the
programs still in wide use today, having been first distributed by post on floppy disks
in the late 1980s. It originally was written in Microsoft Fortran for MS-DOS and
ran on IBM-compatible personal computers (PCs) as four separate executable pro-
grams, Clustall-Clustal4 [11, 12]. These programs later were rewritten in C and
merged into a single program, ClustalV [13], that was distributed for VAX/VMS,
Unix, Apple Macintosh, and IBM-compatible PCs.

The original Clustal was designed to perform multiple alignments of large num-
bers of amino acid or nucleotide sequences efficiently. The method was based on first
deriving a phylogenetic tree from a matrix of all pairwise sequence similarity scores,
obtained using a fast pairwise alignment algorithm. Then the multiple alignment was
achieved from a series of pairwise alignments of clusters of sequences following the
branching order of the tree. The method was sufficiently fast and economical with
memory to be implemented easily on a microcomputer, and yet the results obtained
were comparable with those from packages requiring mainframe computer facilities.

The Clustal programs in use today derive from ClustalW [27], which incorporated
several enhancements to take into account the nature of the molecules under study
and to facilitate the analysis of the relationships between sequence, structure, func-
tion, and evolution. These programs have been amended and added to many times
since 1994 to increase functionality and to increase sensitivity. The user friendliness
also was enhanced greatly by the addition, in 1997, of a graphical user interface [28].
By the late 1990s, ClustalW and ClustalX had become the most widely used multiple
alignment programs. They were able to align medium-sized datasets very quickly and
were easy to use. Today, ClustalW and ClustalX continue to be very widely used, in-
creasingly on websites. The EBI Clustal site (www.ebi.ac.uk/clustalw) literally gets
millions of multiple alignment jobs per year.

Development is ongoing, with the latest major release of ClustalW 2.0 and
ClustalX 2.0 in 2007 [14]. Once again, the programs were completely rewritten, this
time in C++ with a simple object model to make it easier to maintain the code and,
more importantly, to make it easier to modify or even replace some alignment algo-
rithms. This complete redesign now is facilitating the latest evolution of the Clustal
software, away from a single isolated algorithm toward a more integrated, cooper-
ative system combining different, complementary algorithms, and additional infor-
mation other than the sequence itself.

14.2 CLUSTAL-CLUSTALV

The first Clustal program was written by Des Higgins in 1988 [11] and was designed
specifically to work efficiently on personal computers, which at that time, had feeble
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1. Do pairwise alignments and calculate a similarity matrix

| 1HNF CD2 HORSE CD2_RAT MYPS_HUMAN 1WIT

1HNF 100 50 42 17 15
CD2_HORSE 100 40 14 18
CD2_RAT 100 24 17
MYPS_HUMAN 100 31
1WIT 100

2. Cluster similarities and construct a "guide tree"

1HNF
CD2_HORSE
CD2_RAT

MYPS_HUMAN
1WIT

3. Do multiple alignment following the guide tree

1HNF -===TNALETWGALGQDINLDIPSFOQMSDDIDDIKWEKTSDKKKIAQFRKEKETF
CD2_HORSE GAVSKENITILGALERDINLDIPAFQMSEHVEDIQWSK--GKTKIAKFENGSMTF
CD2_RAT GADCRDSGTVWGALGHGINLNIPNFOMTDDIDEVRWER--GSTLVAEFKRKMKPF
MYPS_HUMAN -==LDADNTVTVIAGNKLRLEIP--ISGEPPPKAMWSR--GDKAIMEGS—==~=~=
IWIT PKILTASRKIKIKAGFTHNLEVDFI--GAPDPTATWIV--GDSGAALA----==~

Figure 14.1 The basic progressive alignment procedure in Clustal.

The algorighm is illustrated using a set of five immunoglobulin-like domains. The sequence
names are from the Swissprot or protein Data Bank and are as follows (PDB) databases: IHNF:
human cell adhesion (CD2) protein, CD2_HORSE: horse cell adhesion protein, CD2_RAT: rat cell
adhesion protein, MYPS_HUMAN: human myosin-binding protein, and IWIT: rematode twitchin
muscle protein.

computing power by today’s standards. It combined a memory-efficient dynamic
programming algorithm [19] with the progressive alignment strategy [6, 26], which
exploits the fact that homologous sequences are related evolutionarily. A multiple se-
quence alignment is built up gradually using a series of pairwise alignment following
the branching order in a phylogenetic tree. An example using five immunoglobulin-
like domains is shown in Figure 14.1.

The next sections describe the different stages of this progressive multiple align-
ment approach in more detail.

14.2.1 Pairwise Similarity Scores

The first step involves the calculation of similarity scores for each pair of sequences
to be included in the multiple alignment. The scores are calculated from fast align-
ments generated by the method of [33]. These are “hash” or “word” or “k-tuple”
alignments carried out in three stages. First, every fragment of sequence of length k
(for proteins, the default length is one residue; for DNA, it is two bases) is marked
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in both sequences, and all k-tuple matches between the two sequences are identified.
This is similar to a dot-matrix plot between the two sequences, with each k-tuple
match represented by a dot. The next step is to find those diagonals in the plot with
the most matches and mark all diagonals within a specific window size of each top
diagonal. This process defines the diagonal regions in the plot where the regions
of similarity most likely will lie. Finally, the head-to-tail arrangement of k-tuple
matches from these diagonal regions is found that gives the highest score. The score
is defined as the number of exactly matching residues in this alignment, minus a “gap
penalty” for every gap that was introduced.

Several options are provided that can be modified by the user to optimize the
similarity score calculation depending on the set of sequences to be aligned:

— K-tuple size: the length of “words” to be matched. Increasing this parameter
increases the speed of the calculation, whereas decreasing it leads to improved
sensitivity

— Gap penalty: the number of matching residues that must be found to introduce
a gap

— Number of top diagonals: The number of best diagonals in the dot-matrix plot
that are considered. Decreasing this parameter leads to increased speed, whereas
increasing it improves sensitivity

— Window size: The number of diagonals around each “top” diagonal that are con-
sidered. Decreasing this parameter leads to increased speed, whereas increasing
it improves sensitivity

— Scoring method: The similarity scores for each pair of sequences may be ex-
pressed as raw scores (number of identical residues minus a “gap penalty” for
each gap) or as a percentage of the shorter sequence length.

14.2.2 Guide Tree

Once the similarity scores have been calculated for each pair of sequences, the next
step is to create a “guide tree” or dendogram, which will be used to determine the
order of alignment in the final progressive alignment step.

The original Clustal and ClustalV programs used a simple bottom-up data clus-
tering method to build the tree, known as the unweighted pair grouping method with
arithmetic means (UPGMA) [25]. This is a form of cluster analysis, and the end re-
sult is a representation of the sequence similarity as a hierarchy. An example for six
sequences is shown in Figure 14.2.

Each row in the dendogram represents the joining together, or grouping, of two or
more sequences. For N sequences, there are N-1 groupings; hence, there are five rows
in Figure 14.2 for six sequences. The first number in each row is the similarity score
for the grouping. The last six digits in the line show which sequences are grouped,
where each sequence is represented by one digit. At each step, all sequences with
the digit “1” are joined to all sequences with digit “2” (sequences with digit “0” are
not excluded). Thus, the hierarchy progresses from the top down, joining more and
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91.0 0 0 2 012000 !sequence B joinssequence C

72.0 1 0 3 011200 !sequence D joins sequences B,C

71.1 0 0 2 000012 !sequence E joins sequence F

35.5 0 2 4 122200 !sequence A joins sequences B,C,D
21.7 4 3 6 111122 !sequencesA,B,C,D join sequences E,F

Figure 14.2 An example dendogram is used as a guide tree in Clustal.
An example dendogram is shown for six sequences, named A-F. The meaning of the different
columns is explained in the text.

more sequences until all are joined together. For example, in the first row, sequence
B joins sequence C at a similarity level of 91% identity; next, sequence D joins the
previous grouping of B plus C at a level of 72%, and so on. The other three columns
of numbers are a pointer to the row from which the “1” sequences last were joined
(or zero if there is only one of them), a pointer to the row in which the “2” sequences
last were joined, and the total number of sequences joined in this line.

14.2.3 Progressive Multiple Alignment

The final stage in the alignment progress is the progressive multiple alignment of
all sequences. First, the two sequences with the largest similarity score are aligned.
Then, all sequences are aligned gradually from the closest to the most distant follow-
ing the order of grouping specified in the dendogram.

14.2.4 An Efficient Dynamic Programming Algorithm

At each alignment stage (corresponding to a row in the dendogram), a dynamic pro-
gramming algorithm is used to align two sequences, a single sequence with a group
of sequences, or two groups of sequences. The dynamic programming algorithm
for aligning two sequences S1 and S2, with residues ay,...,ay and by,... by, re-
spectively, optimizes a so-called sum-of-pairs score and can be summarized by the
following recursion:

Hi_1j1+Cij
H;; = {max {H;_ ; — (GOP + k x GEP)}
max { H; j_; — (GOP + [ x GEP)}

where C; ; is the comparison matrix score for aligning residues a; and b;, GOP is
the gap opening penalty, and GEP is the gap extension penalty for extending a gap
by one residue. The residue comparison matrix and gap penalties are described in
more detail subsequently. The alignment of two groups of sequences (or profiles) is
a simple extension of the algorithm in which the score for aligning two positions is
simply the average score for aligning each pair of residues in the respective profiles.
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0 S1 M

S2 1. Divide sequence S1 in half. Midpoint is L.

2. For each position j in S2,
i calculate max score F, for aligning a,...a, and b,...b,
92 calculate max score R, for aligning a, ...a, and b ..b,

3. Find point J in S2, corresponding to max score FI+RJ

0 S"' M

J 4a.Ifa ora, is aligned on a residue,
5 repeat steps 1-4, first fora,...A and b..b,.
52 then fora..A and b,..b
N
g J’ M
] 4b. If both a, and a,, are aligned on a gap,
S2 repeat steps 1-4, first fora,..A, andb,..b,

then fora, ..A andb,..b,

N

I-1 I+1

Figure 14.3 Schematic outline of the Myers and Miller algorithm.

Steps involved in finding an optimal alignment between two sequences, S1 and S2. Sequence
S1 is of length M and has residues denoted ay,...am. Sequence S2 is of length N and has
residues by,. . . by. Steps 14 are repeated until all residues have been aligned.

To calculate the optimal alignment in linear time and space, Clustal uses the algo-
rithm of [19], which is a very memory efficient variation of Gotoh’s algorithm [8].
This recursive algorithm delivers an optimal alignment by first dividing sequence S1
in half then finding the best residue in sequence S2 to align with this midpoint. Pairs
of residues are found recursively on both sides of the midpoint, until all residues in
sequence S1 are aligned. Figure 14.3 provides an outline of the algorithm for the
alignment of two sequences.

The Myers and Millers algorithm calculates an optimal alignment with space re-
quirements of O(M + N) and time O(MN), where M and N are the lengths of the two
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sequences. The alignment is considered “optimal” if it gives the best sum-of-pairs
score for the aligned residues depending on the parameters used. Unfortunately, for
any given set of sequences, the best parameters that will give a biologically “correct”
alignment are generally unknown, and in practice, it is normally necessary to test a
certain number of parameter combinations. Clustal provides menu options that can
be selected by the user to modify the most important parameters, namely the residue
comparison matrix and the gap opening and extension penalties:

— Residue comparison matrix: The simplest matrix assigns a score for each pair of
identical residues that are aligned. This is known as the identity matrix. For ex-
ample, for alignments of nucleotide sequences, the identity matrix would assign
the same score to a match of the four classes of bases, ACGT, and 0 for any mis-
match. When the sequences to be aligned are closely related, this usually will
find approximately the correct solution. However, for more divergent sequences
(sharing less than 25-30 % identity), the scores given to nonidentical, but sim-
ilar, residues become more important. Therefore, more sophisticated matrices
have been developed for both DNA and protein sequences. These matrices can
be stored in a text file and input to Clustal if required. To continue the nucleotide
sequence example, transitions (substitution of A-G or C-T) happen much more
frequently than transversions (substitution of A-T or G-C), and it is often desir-
able to score these substitutions differently. More complex matrices also exist
in which matches between ambiguous nucleotides are scored whenever there
is any overlap in the sets of nucleotides represented by the two symbols being
compared. For protein sequences, the matrices generally take into account the
biochemical similarities between residues and/or the relative frequencies with
which each amino acid is substituted by another. Widely used matrices include:
the point accepted mutation (PAM) matrices [34], the Blosum matrices [10], or
the Gonnet matrices [4]. Other more specialized matrices also have been devel-
oped (e.g., for specific secondary structure elements [16] or for the comparison
of particular types of proteins, such as transmembrane proteins [21].

— Gap opening and extension penalties: One of the first gap scoring schemes
for the alignment of two sequences charged a fixed penalty for each residue
in either sequence aligned with a gap in the other. Thus, the cost of a gap is
proportional to its length. Alignment algorithms implementing such length-
proportional gap penalties are efficient, although the resulting alignments
often contain numerous short insertions or deletions that are not biologically
meaningful. To address this problem, Clustal uses linear or “affine” gap
costs [1] that define a gap insertion or “gap opening” penalty in addition to
the length-dependent or “gap extension” penalty. The goal is to mimic the
biological processes or constraints that are thought to regulate the evolution of
DNA or protein sequences. Thus, a smaller number of long gaps is preferred
over many short ones. Fortunately, algorithms using affine gap costs are only
slightly more complex than those using length-proportional gap penalties,
requiring only a constant factor more space and time.
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14.2.5 Profile Alignments

As mentioned earlier, the progressive algorithm gradually builds up a multiple align-
ment by aligning larger and larger groups of sequences. At each step, a pairwise
alignment is performed involving two sequences, a single sequence with a group of
sequences, or two groups of sequences. The alignment of groups of sequences (oth-
erwise known as profiles) is achieved by an extension of the algorithm developed
by [9]. Profile alignments are a simple extension of sequence—sequence alignments
in which the score for matching residues is replaced by a score for matching posi-
tions in the profiles. This score is defined as the mean comparison matrix score of all
residues in one alignment versus all those in the other. For example, if we consider
two alignments with M and N sequences, respectively, then the score at any position
is the average of the M x N scores of the residues compared separately. Any gaps
that are introduced are inserted in all sequences in the alignment at the same position.

This alignment strategy works well when the sequences to be aligned are of dif-
ferent degrees of divergence. Pairwise alignment of closely related sequences can
be performed very accurately. By the time the more distantly related sequences are
aligned, important information about the variability at each position is available from
those sequences already aligned. Unfortunately, this greedy approach works less well
when the sequences do not have a smooth evolutionary distribution or when all se-
quences are very divergent.

14.3 CLUSTALW

The most important risks regarding the progressive multiple alignment are, first,
the choice of inappropriate alignment parameters and, second, the possibility that
a wrong alignment at the initial stages may be amplified in subsequent steps. These
problems led to the development of a new version of the program, ClustalW [27],
which introduced several improvements to minimize the risks.

14.3.1 Optimal Pairwise Alignments

The initial pairwise sequence comparisons are performed using an optimal dynamic
programming algorithm [20] with a residue comparison matrix and two gap penalties
(for opening or extending gaps) rather than the more approximative k-tuple method
used originally. The pairwise similarity scores then are defined as the percentage of
identities in the optimal alignment compared with the number of residues aligned
(gap positions are excluded).

14.3.2 More Accurate Guide Tree

The guide tree in ClustalW is built using another phylogenetic tree construc-
tion method called neighbour-joining (NJ) [24]. The algorithm is shown briefly in
Figure 14.4.
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. Test all possible pairs of sequences
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. Select the pair giving the shortest tree and join them

6. Recalculate all branch lengths

(c

7. Repeat steps 2—6 with remaining sequences,

until the tree is completly resolved

Figure 14.4 Outline of the neighbour-joining algorithm.

The construction of the tree is shown for six sequences, numbered 1-6. X and Y represent
potential nodes in the tree. The initial steps in the construction are shown in (a) and (b). The tree
shown in (c) is the final neighbour-joining tree.

Although the NJ method is less efficient than the UPGMA method used in the
original Clustal version, it has been tested extensively and usually finds a tree that is
close to the optimal tree. As input, the method requires pairwise sequence distance
scores rather than similarities. Therefore, the percentage similarity scores calculated,
are converted to distances by dividing by 100 and subtracting from 1.0 to give the
number of differences per site.

14.3.3 Improved Progressive Alignment

14.3.3.1 Automatic Parameter Choice. During the progressive multiple
alignment, different residue comparison matrices are used depending on the diver-
gence of the sequences to be aligned. Some matrices are more appropriate for align-
ing closely related sequences, whereas others work better at greater evolutionary
distances. In ClustalW, a matrix is selected automatically depending on the distance
between the two sequences or groups of sequences to be compared. These distances
are obtained directly from the guide tree. In addition, suitable gap opening and ex-
tension penalties are selected automatically. Initially, two gap penalties are used: a
GOP, which gives the cost of opening a new gap of any length, and a GEP, which
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gives the cost of every item in a gap. The software then automatically attempts to
choose appropriate gap penalties for each sequence alignment, depending on the fol-
lowing factors:

— Dependence on the weight matrix. It has been shown [13] that varying the
gap penalties used with different weight matrices can improve the accuracy
of sequence alignments. ClustalW uses the average score for two mismatched
residues (i.e., off-diagonal values in the matrix) as a scaling factor for the GOP.

— Dependence on the similarity of the sequences. First, the percent identity of the
two (groups of) sequences to be aligned is estimated from the pairwise align-
ment. This then is used to increase the GOP for closely related sequences or to
decrease it for more divergent sequences on a linear scale.

— Dependence on the lengths of the sequences. The scores for sequence align-
ments increase with the length of the sequences whether the alignment is opti-
mal or not. Therefore, we use the logarithm of the length of the shorter sequence
to increase the GOP with sequence length. Using these three modifications, the
initial GOP calculated by the program is:

GOP - [GOP + log[min(N,M)]} x (average residue mismatch score) x (per
cent identity scaling factor), where N and M are the lengths of the two
sequences.

— Dependence on the difference in the lengths of the sequences. The GEP is mod-
ified depending on the difference between the lengths of the two sequences to
be aligned. If one sequence is much shorter than the other, then the GEP is in-
creased to inhibit too many long gaps in the shorter sequence. The initial GEP
calculated by ClustalW is:

GEP - GEP x [1.0 4+ log(N/M)], where N and M are the lengths of the two
sequences.

14.3.3.2 Position-Specific Gap Penalties. In most dynamic programming
applications, the initial gap opening and extension penalties are applied equally at
every position in the sequence, regardless of the location of a gap, except for ter-
minal gaps, which usually are allowed at no cost. In ClustalW, position-specific gap
penalties are incorporated to encourage the opening of gaps at specific positions
(Figure 14.5), such as regions already containing gaps (often corresponding to loops
in the 3-D structure) rather than conserved regions (such as regular secondary struc-
tures).

The local gap penalty modification rules are applied in a hierarchical manner.
The exact details of each rule are given below. First, if there is a gap at a position,
then the gap opening and gap extension penalties are lowered; the other rules do
not apply. This makes gaps more likely at positions where there are already gaps.
If there is no gap at a position, then the gap opening penalty is increased if the
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Gap Opening Penalty
507

40 |

YIAPTILVDVDP---QSPVMQEEIFGPVMPIVCVRSLEEATIQFINQREKPLA
LICPILFDEVTT=---DMRLAWEEPFGPVLPIIRVTSVEEAIEISNKSEKGLQ
YVQPTLVEAPADRVKDMVLYKREVFAPVASAVEVEDLDQATELANGTPYGLD

Figure 14.5 Calculation of variable gap penalties.

The gap opening penalties are plotted for an example alignment. Two sequence segments
with hydrophilic residues are underlined. The lowest penalties are observed at the ends of the
alignment, the hydrophilic segments, and the three positions with gaps in the alignment. The
highest values correspond to the positions to each side of the two gaps. The remaining variation
is caused by the residue-specific gap penalties.

position is within eight residues of an existing gap. This discourages gaps that are too
close together. Finally, at any position within a run of hydrophilic residues, then the
penalty is decreased. These runs usually indicate loop regions in protein structures.
If there is no run of hydrophilic residues, then the penalty is modified using a table of
residue-specific gap propensities (12). These propensities were derived by counting
the frequency of each residue at either end of the gaps in alignments of proteins of a
known structure (Figure 14.5).

— Lowered gap penalties at existing gaps. If there are already gaps at a position,
then the GOP is reduced in proportion to the number of sequences with a gap at
this position, and the GEP is lowered by a half. The new gap opening penalty is
calculated as:

GOP — GOP x 0.3 x (no. of sequences without a gap/no. of sequences).

— Increased gap penalties near existing gaps. If a position does not have any gaps
but is within eight residues of an existing gap, then the GOP is increased by:

GOP — GOP x t2 + [(8 — distance from gap) x 2]/8j

— Reduced gap penalties in hydrophilic stretches. Any run of five hydrophilic
residues is considered to be a hydrophilic stretch. The residues that are to be
considered hydrophilic may be set by the user but are conservatively set to D,
E, G, K, N, Q, P, R, or S by default. If, at any position, there are no gaps and
any of the sequences has such a stretch, then the GOP is reduced by one third.

— Residue-specific penalties. If there is no hydrophilic stretch and the position
does not contain any gaps, then the GOP is modified by the propensity of the
residues at this position to be found next to gaps [22].
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Figure 14.6 Sequence weight calculation.

The sequence weights are calculated based on the branch lengths in the guide tree. The branches
along the path from a sequence to the root are said to be owned by the sequence, and the order
of a branch is defined by the number of sequences that own the branch. The sequence weight
then is defined as the sum of the branch lengths divided by the order of the branch. For example,
the weight for sequence “seq1”is (3.0/1 +2.0/2 4+ 0.7/3) = 4.2.

14.3.3.3 Weighted Profile Alignments. As described, to align two groups of
sequences (profiles), we need to calculate a score for matching each position in the
first profile with each position in the second profile. To correct for unequal sampling
of sequences, weights are introduced into the profile alignments. Suppose we have
two profiles, P1 and P2, with M and N sequences, respectively. The score for aligning
any position in P1 with another position in P2 is defined as follows:

M j=N
Z C(a;,bj) X Wi X Wj
0 j=0

i

MII

1

M x N

where C is the comparison matrix score, g; is the residue in the i-th sequence in P1,
b; is the residue in the j-th sequence in P2, and W; is weight for sequence i.

The weighting scheme is designed to down-weight closely related sequences
and to up-weight the most divergent ones. The weights are calculated based on the
lengths of the branches in the guide tree (Figure 14.6).

14.3.3.4 Divergent Sequences. The most divergent sequences (most different
on average from all other sequences) are usually the most difficult to align correctly.
It is sometimes better to delay the incorporation of these sequences until all of the
more easily aligned sequences are merged first. This may give a better chance of
correctly placing the gaps and matching weakly conserved positions against the rest
of the sequences. A choice is offered to set a cut off (default is 30% identity or less
with any other sequence) that will delay the alignment of the divergent sequences
until all of the rest have been aligned.
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Figure 14.7 ClustalX graphical user interface.

Residues are colored according to the conservation observed at each position. Conservation
scores are plotted below the alignment. A high score indicates a highly conserved column, a low
score indicating a less well-conserved position. The white residues on a grey or black background
indicate the results of alignment quality analyses (see main text).

14.4 CLUSTALX

In the 1980s, a computer revolution occurred with the appearance of new operating
systems (e.g., MAC OS, Windows Microsoft, or UNIX X Windows) that had win-
dowing capacities and a graphical user interface (GUI). These systems made it much
easier to access information by exploiting graphical images in addition to simple
text. Clustal also profited from these new developments with the development of a
new user-friendly interface, ClustalX [28]. The software included novel algorithms
for alignment quality analysis and flexible strategies for the correction of the initial
alignment. Despite of the improvements introduced in ClustalW, a manual refine-
ment was still necessary for complex alignment problems to obtain a high-quality
alignment.

ClustalX displays the sequence alignment in a window (Figure 14.7) and a color
coding of the residues as well as the conservation scores plotted below the align-
ment are used to highlight motifs or conserved features. Pull-down menus provide
access to all options necessary at each stage of the multiple sequence alignment.
Furthermore, facilities are provided that allow the user to build up manually a multi-
ple alignment in difficult cases, using successive sequence—profile or profile—profile
alignments.
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14.4.1 Alignment Quality Analysis

Several methods are provided to analyze the quality of an alignment and to identify
low-scoring regions and outlier residues. These methods, in combination with the
facilities to realign specific regions of the alignment, provide flexible tools to detect
errors in the input sequences and the refinement of the multiple alignment.

14.4.1.1 Conservation Scores. The conservation scores plotted below the
alignment in the ClustalX window are calculated using an analogous approach to that
introduced by [31], who used a geometric analysis based on a continuous sequence
space to compare sequence weighting methods. Suppose we have an alignment of M
sequences of length N. Then, the alignment can be written as follows:

Al Al Azt AN
Ari Asp Arzeeennne. Aoy
AM,IAM,ZAM,S .......... AM,N

Suppose we also define a residue comparison matrix C of size R x R, where R
is the number of residues. C(a, b) is the score for aligning residue a with residue
b, and the problem is to calculate a score for the conservation of the j th position
in the alignment. An R-dimensional space then is defined in which each column of
the alignment can be considered. For a specified position j in the alignment, each
sequence consists of a single residue that is assigned a point S in the space. For
sequence i, position j, the point S is defined as follows:

C(1, A;j)

s_ | cap

C(R, A;j)

We then calculate a consensus value X for the j-th position in the alignment. X is
defined as follows:

- -
> FijxC@, 1)

i=1
M

R

> FijxC(i,2)

i=1

M

R
> FijxC(@, R)
i=l

L M J
where F; ; is the count of residues i at position j in the alignment.
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Now, if S is the position of sequence i in the R-dimensional space, then we can
calculate the distance D; between each sequence residue i and the consensus posi-
tion X.

where X, is the r th dimension of position X, and S, is the r-th dimension of posi-
tion S.

We define the quality score for the j-th position in the alignment as the mean of
the sequence distances Di:

D;

M=

1
M

Score =

Finally, the scores are normalized by multiplying by the percentage of sequences that
have residues (and not gaps) at this position.

14.4.1.2 Exceptional Residues. Outlier residues are defined as those residues
in the column conservation calculations described, which are found a long way from
the consensus point (i.e., which have a large distance D;), thus, lowering the qual-
ity score for the column. For the j-th position in the alignment, only the sequences
that have a residue at this position (and not a gap) are considered. We then calcu-
late the upper and lower quartiles (the distances lying one-quarter of the way from
the top and bottom of the array, respectively) and the interquartile range (the dif-
ference between the two quartiles) of the distances D; for this set of sequences. A
residue A;; is considered an exception if the sequence distance D; is greater than
(upper quartile + inter quartile range x scaling factor). The scaling factor can be
adjusted by the user to select the proportion of residue exceptions that will be high-
lighted in the alignment display.

14.4.1.3 Low-Scoring Segments. Given this alignment of M sequences of
length N and a residue exchange matrix, we can build a profile that is weighted
for sequence divergence. The weights are calculated directly from a neighbor join-
ing tree, using the “branch-proportional” method described earlier, which corrects
for unequal representation by down-weighting similar sequences and up-weighting
divergent ones. Each sequence is assigned a weight W;. In the residue comparison
matrix C, the scores for common residue substitutions are positive, whereas rarer
substitutions are scored negatively. The profile P has a column of scores for each
position in the alignment. The column is of height R and consists of a score for each
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residue in the matrix C. The profile score for residue r at position j in the alignment
is defined as follows:

M
Y C(r, Aj) x W,
P j)="=

M

2 Wi
i=1
For the j-th position in the i-th sequence the score S;; is defined as follows:
Sij = P(Aij, J)

The low-scoring regions in the i-th sequence are found by summing the scores §;;
along the alignment in both the forward and the backward directions. The forward
phase can be described by the following recurrence relations:

Fj71+Sij if ijl+Sij <0
FJ': 0 if Fj_1+SijZO
0 it j=0

Having found the regions in the sequence that have negative F; scores, these regions
then are refined by removing those positions at the end of each segment that have a
positive profile score S;;.

In a similar way, the backward phase can be described as follows:

Bj+1 +Sij if Bj+1 + Sij <0
Bj: 0 if Bj+1+SijZO
0 if j=N+1

The regions in the sequence that have negative B; scores again are refined by re-
moving those positions at the beginning of each segment that have a positive profile
score §;;. The calculation is repeated for each sequence compared with a profile for
all aligned sequences, except itself, and the low-scoring segments then are defined
as those positions for which both F; and B; are negative.

14.5 CLUSTALW AND CLUSTALX 2.0

The developments described in the previous sections, mean that ClustalW and
ClustalX can be used to produce high-quality, reliable multiple alignments for many
real-world problems. Nevertheless, work to improve the software is ongoing, and
many enhancements have been introduced since the original publication of the al-
gorithms. For example, a faster implementation of the NJ algorithm now is used to
construct guide trees during the multiple alignment process and also to construct
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phylogenetic trees based on the final alignment [5]. Major progress also has been
achieved with the development of parallel versions of ClustalW and ClustalX by
SGI and others, which show increased speeds and significantly reduce the time re-
quired for data analysis. The latest implementations of the software (versions 2.0)
were described in a recent publication, by [14]. The programs were rewritten com-
pletely in C++ with a simple object model to make it easier to maintain the code and,
more importantly, to make it easier to modify or even replace some of the alignment
algorithms. For example, this version of Clustal offers both the UPGMA and the
NJ methods for constructing the guide tree. Although the NJ tree is generally more
accurate, the algorithm is time-consuming for very large datasets. UPGMA repre-
sents a more efficient option, which is more suitable for large-scale, high-throughput
projects. The graphical interface in ClustalX 2.0 also was recoded using the portable
Qt GUI toolbox.

A major new feature included in this version is the ability to improve alignment
accuracy automatically using an iterative algorithm. Iteration is a quick and effective
method of refining alignments. A “remove first” iteration scheme, which optimizes
a weighted sum-of-pairs (WSP) score, has been included in this version of Clustal.
During each iteration step, each sequence is removed from the alignment in turn and
realigned. If the WSP score is reduced, then the resulting alignment is retained. The
iteration scheme can be used either to refine the final alignment or at each step in the
progressive alignment. Iterating during the progressive alignment is much more time
consuming, as there are 2N-3 nodes in the guide tree, but it also tends to result in
more accurate alignments.

14.6 DBCLUSTAL

Today, a new dimension is emerging, thanks to the systematic application of high-
throughput genomics technologies and the resulting complete genomes, transcrip-
tomes, proteomes, interactomes, and so on. This wealth of data provides unique
opportunities to study complex biological systems, but it also clearly requires the
development of algorithms and methodologies capable of handling the very large,
complex datasets and of providing reliable, automatic analyses.

The complexity of today’s multiple alignment problem has incited several re-
search teams to investigate combinations of different alignment algorithms and in-
corporation of biological information other than the sequence itself. For example, a
comparison of several local and global protein alignment methods based on the BAI-
iBASE benchmark [29] showed that no single algorithm was capable of constructing
accurate alignments for all test cases. In particular, it was shown that global align-
ment methods were more accurate for the alignment of sequences that were homol-
ogous along their full lengths, but the local methods were more successful at iden-
tifying conserved regions when the sequences were only partially related. A similar
observation was made in another study of RNA alignment programs [7], in which al-
gorithms that incorporated structural information outperformed pure sequence-based
methods for divergent sequences.
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To address these problems, a modified version of Clustal, called DbClustal [30],
was developed to allow the incorporation of local conservation information in the
global alignment in the form of anchor points between pairs of sequences. An an-
chor point describes a locally conserved motif that is shared between two sequences.
DbClustal reads an input file with a list of anchors in which each anchor is entered
on a single line with the following format:

seq: NAMEI NAME2 beg: R1 R2 len: L weight: W

where NAME1 and NAME?2 are the names of the two sequences, 1 and R2 are the
first residues in the motif for sequences 1 and 2, respectively, L is the length of the
anchor, and W is the weight or score of the anchor.

14.6.1 Anchored Global Alignment

In the multiple alignment stage of Clustal, two sequences with residues ay,..., ay
and by,. .. by are compared, and the optimal alignment is selected with the best sum-
of-pairs score. The sum-of-pairs score is based on scores S; ; for aligning residues
a; and b, and gap penalties for opening and extending a gap. In ClustalW, the score
S;,j 1s simply equal to the residue comparison matrix score C; ; for the two residues.
The alignment of two groups of sequences (or profiles) is a simple extension of the
algorithm in which the score for aligning two residues is replaced by the score for
aligning two columns in the respective profiles.

The score for aligning two residues (or profile columns) has been modified further
in DbClustal to incorporate local anchors. During the progressive multiple alignment,
an M x N position-specific anchor matrix is calculated for each pair (or group) of
sequences to be aligned. For column i in the first group of sequences and column j
in the second group, the anchor matrix score Anchor;; is:

Anchor; ; = Max(0, W)
for all anchors containing any pair of residues in columns 7, j, where W;, is the weight
defined in the anchor input file.

For a pair of sequences, the score for aligning residues A; and B; is then defined
as follows:

Ci,j + Anchor; ;

where C; ; is the residue comparison matrix score for A; and B;.
Similarly, the score for aligning two groups of sequences is defined as follows:

Pi,j + Al’lChOI'[,j

where P; ; is the profile-to-profile score for A; and B;.
The penalties for opening and extending gaps remain the same.
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Figure 14.8 Schematic representation of the integration of Ballast anchors in DbClustal.

A theoretical query sequence is shown possessing two functional domains. This query is used
to perform a database search with the BlastP program. BlastP detects sequences sharing at
least one domain with the query sequence. The BlastP results then are processed by Ballast to
identify locally conserved motifs. Finally, the motifs are used as anchors for the DbClustal global
alignment.

The anchor points can be constructed from any local alignment algorithm, such as
Dialign [18] or the Ballast program [23]. Figure 14.8 illustrates this approach with
conserved motifs extracted from the top sequences detected by a BlastP database
search [2] using the Ballast program.

By combining the advantages of both global and local alignment methods into a
single system, DbClustal represents a significant step toward the automatic construc-
tion of high-quality alignments of large families of complex sequences, for example,
with large N/C-terminal extensions or internal insertions, or multiple structural or
functional domains.

14.7 PERSPECTIVES

Multiple alignment methods currently are evolving away from a single isolated al-
gorithm toward more cooperative systems based on the exploitation of additional
information (3-D structures, function, and evolution), and the development of the
Clustal family of alignment programs clearly will follow this trend. In this context,
the recent redesign of the code in an object-oriented language was aimed at facilitat-
ing the integration of novel algorithms in the field.

The potential of this approach was estimated in a recent study to test and evaluate
several more successful algorithms (Figure 14.9), which demonstrated that the exe-
cution time and the quality of the resulting multiple alignments could be improved
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Figure 14.9  Evolution of the Clustal programs.

Creation and integration of alternative modules at each alignment stage: (A) pairwise dis-
tance calculation, (B) guide tree construction, (C) detection of local “anchors,” and (D) iterative
refinement.

significantly [3]. Future versions of Clustal undoubtedly will incorporate some, or
all, of these complementary algorithm, as well as other data mining composants, sta-
tistical analyses, and so on. The developments will allow us to create an integrated
system to test, evaluate, and optimize each step in the construction and subsequent
analysis of a multiple alignment.
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FILTERS AND SEEDS
APPROACHES FOR FAST
HOMOLOGY SEARCHES IN
LARGE DATASETS

Nadia Pisanti, Mathieu Giraud, and Pierre Peterlongo

15.1 INTRODUCTION

15.1.1 Homologies and Large Datasets

Homologies inside large sequences or a large set of sequences are the key to sev-
eral molecular biology studies. Similarities between genomic sequences are often
traces of common ancestry, and the study of distances between species teaches us
about the history of the evolution. Conserved elements between distant species are
genes, transcription factors binding sites, transposable elements, or other functional
elements.

Basically, homology-finding algorithms aim to detect in nucleic sequences more
or less similar fragments, called simply repeats. Such fragments can be found within
one sequence or in a set of several sequences. The selection pressure is not focused on
the only nucleic sequences; for proteins, comparisons on the proteic sequences are
often more relevant, and for RNA, the secondary structure can be more conserved
than the nucleic sequence [14]. Similarities between sequences are often a first step
to other more specific tools applied to the study of particular conserved elements.

On the other hand, the amount of data that biologists are dealing with are
growing exponentially. Another recent reason for this relies on next generation
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sequencers [56]; they enable faster sequencing of DNA and with lower costs (several
orders of magnitude cheaper) than using the original Sanger et al. [54] method. These
recent sequencers open the way to new horizons in molecular biology. As claimed in
Mardis’ review [40], “an astounding potential exists for these technologies to bring
enormous change in genetic and biological research and to enhance our fundamen-
tal biological knowledge.” Extracting pertinent knowledge from these floods of data
requires to find similarities and patterns quickly and efficiently.

The exhaustive similarity search, implying dynamic programming [58], suffers
from a time bottleneck. If no heuristic is used, then finding similarities between se-
quences requires a time proportional to the product of their lengths. Such approaches
are difficult with large datasets. In practice, the exhaustive similarity search is re-
served for small datasets and when the application requires very precise results. On
larger datasets, similarities are found using preprocessing or heuristics through fil-
ters. Some filters have huge success; the most used tool in bioinformatics for se-
quences comparison in the last two decades, BLAST [2, 1], is based on a filtering
heuristics.

15.1.2 Filter Preprocessing or Heuristics

Filters approaches are based on the following idea: occurrences of an approximately
repeated fragment must share a certain number of short fragments that are exactly
conserved. The search of repeats thus shall focus on regions of high enough concen-
tration of these shared fragments. This idea can be used either for preprocessing data
(removing as much as possible portions that can not contain occurrences of repeats),
or as a heuristic (anchoring the search of the repeats using the so-called seeds).

In both cases, these approaches are powerful for quickly finding similarities with
full sensibility (without missing any information) or high sensibility (possibly miss-
ing some information). Since the early 1990s, seed-based filters have been developed
in two different directions. Lossless filters guarantee that no occurrence is missed
(typically exhibiting a seed-based condition that is proven to be necessary and that
it is easy to check), whereas lossy seed filters propose some seed models as a start-
ing point (and then explore the properties of those models to assess the sensitivity
performances of the filter).

Actually, lossless filters and lossy seed filters are highly related. The fundamental
idea of both approaches is to focus directly on sequences fragments that are likely to
provide a similarity, getting rid of useless computations that may be avoided. There
is no precise border between these two concepts.

15.1.3 Contents

Within various contexts, the authors of this chapter developed methods based on
lossless filters or on seed-based lossy filters. This chapter will present the lossless
filters and the seed-based approaches by describing a brief state-of-the-art process for
each method and by presenting the most recent works in these fields. The following
section gives some common definitions and introduces basic concepts.
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15.2 METHODS FRAMEWORK

15.2.1 Strings and Repeats

We introduce here the terminology used in the forthcoming sections. A string is a
concatenation of zero or more symbols from an alphabet ¥. A string s of length
n on X is represented also by s[0]s[1]...s[n — 1], where s[i] € ¥ for 0 <i < n.
The length of a string s is denoted by |s|. We denote s[i, j] the substring s[i]s[i +
1]...s[j] of s. In the following, we also use the notion of g-gram. A g-gram is a
word (a short string) of length ¢. If a g-gram occurs in two strings @ and «’, then
this g-gram is said to be shared by w and o'

We recall that the Hamming distance between two words of the same length is
the minimal number of substitutions needed to transform the first into the other,
whereas the edit distance between two words (not necessarily of the same length)
is the minimum number of substitutions, insertions and deletions to transform the
first into the other. We denote by dy(w, ') (respectively, dg(w, o)) the Hamming
distance (respectively, the edit distance) between the two strings w and o’'.

A set of words whose pairwise Hamming distance or edit distance is bounded
by a given threshold is called an approximate repeat. To simplify the reading, in the
following, the term “repeat” will design an approximate repeat. A multiple repeat is a
repeat with at least three words. We focus on (L, r, d)-Hrepeat and (L, r, d)-Erepeat,
defined as follows:

Definitio 15.1 ((L, r, d)- Hrepeat) Given a set S of one or more input strings,
a length L > 0, an integer r > 2, and a Hamming distance 0 < d < L, we call
a (L,r,d)-Hrepeat a set {w, ...,w,} of r words of length L occurring in the se-
quences of S such that for all i, j € [1,r], duy(w;, w;) < d.

Definitio 15.2 ((L, r, d)-Erepeat) Given a set S of one or more input strings,
a length L > 0, an integer r > 2, and an edition distance 0 <d < L, we call a
(L, r,d)-Erepeat a set {wy, ...,w,} of r words having a length of at least L — d
occurring in the sequences of S such that for all i, j € [1,r], dg(w;, w;) < d.

Both definitions can be used to study repeats inside one sequence (|S| = 1) or
between several sequences (|S| > 1). In the latter case, one also can enforce that the
r words occur over r distinct sequences (and thus one needs |S| > r).

15.2.2 Filters—Fundamental Concepts

For finding multiple repeats, exhaustive methods based on dynamic programming
suffer from a theoretical time complexity in O(n"), where n is the size of each se-
quence and r is the number of sequences (or the number of repeats searched in a
unique sequence). Some optimizations based on string compression achieve a sub-
O(n") complexity [10], but applications on large datasets remain very difficult. The
goal of filters thus is to reduce this factor n considerably by getting rid of almost
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all the useless data that only would slow down the real search. Repeats then could
be sought in a much reduced dataset. Ideally, this dataset would contain only the
searched repeats. All filters start from the same observation that can be explained
with the simple Example 15.1: two similar words share at least a certain number of
g-grams.

B EXAMPLE 15.1 Shared ¢-Gram

Words ATAGGAT and ATATGAT are two words of length 7 with Hamming dis-
tance equal to 1 (one substitution position 4). Occurring in a set of sequences S,
they are occurrences of a (7,2,1)-Hrepeat. These two words share the 3-gram ATA
at position 0 and the 3-gram GAT at position 4.

Filters thus are meant as a preprocessing task to any algorithm that finds and
localizes repeats, and hence, they can be employed as a preliminary step to any tool
designed for finding repeats or an application using repeats.

With lossless filters, we refer to methods that filter the data ensuring that no frag-
ments that may contain a repeat are removed; there are no false negatives. In gen-
eral, however, there can be false positives; otherwise, there would be no difference
between a filter (required to be fast) and an exhaustive search (inevitably slow). Be-
sides the speed requirement, a filter is powerful if it is selective; that is, it leaves the
least amount of false positives.

On the other hand, lossy filters may produce false negatives; preprocessing data
with such filters may modify the final result. A good lossy filter must be as selective
as possible but also as sensitive as possible; that is, it generates the least amount of
false negatives, thus approaching the full sensitivity guaranteed by lossless filters.

Being lossless or lossy depends on the design of filter, but the same filter can be
used for distinct repeat models (the kind of repeats searched, their required length,
and their minimal frequency) and, hence, switching from lossless to lossy if the con-
ditions happen to require more speed over precision. For example, as shown in Ex-
ample 15.1, requiring to find at least two (possibly overlapping) 3-grams between
words of length 7 leads to a lossless filter for (7,2,1)-Hrepeats. This means that the
two members of any (7,2,1)-Hrepeat share at least two 3-grams. However, if the same
condition (at least two 3-grams shared) is used for filtering for (7,2,2)-Hrepeats, then
the filter become lossy. Its sensitivity can be measured; only 28.5% couples of words
{w, @'} with |o| = || = 7 and dy(w, »’) < 2 share at least two 3-grams. The filter
has thus a 28.5% sensibility.

Moreover, the computation of sensitivity and specificity also depends on the back-
ground probability model. The 28.5% sensibility of the previous filter was com-
puted on a Bernoulli model consisting of independent and identically distributed
nucleotides. Other more elaborated models better reflect the exact nature of biologi-
cal sequences.

Although some filters can be used as a generic preprocessing step to any tools that
finds repeats, specific filters thus are designed often for a particular repeat model and
probability model.
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Table 15.1 Methods discussed in this chapter

Hamming distance Edit distance
(substitutions) (+ indels)
Lossless (sensitivity = 1) NIMBUS QUASAR, SWIFT, TUIUIU
Lossy (sensitivity < 1) spaced seeds, and their optimizations

In the following, we expose some recent filtering methods as summed up in
Table 15.1. Section 15.3 details lossless filters, and Section 15.4 details lossy seed
filters.

15.3 LOSSLESS FILTERS

For large or complex problem instances, lossless filters help to get exact solutions
that would have been otherwise prohibitive. They also speed up other heuristics.
This section presents a brief history of lossless filters as well as a description of
four of these filters. In all cases, the rationale first is to detect and prove a necessary
condition for a fragment to be part of a repeat and then to design a fast method that
checks this condition. To be as efficient as possible, the necessary condition should
be designed ad hoc for the kind of sought repeat. For example, it does matter whether
insertions and deletions are admitted; filters on Hamming or edit distance basically
only share the rationale we just described.

15.3.1 History of Lossless Filters

Already in 1987, filtering has been suggested as a screening task to speed exact
pattern matching algorithms; in [21], an efficient hash function was suggested for
these purposes. The first screening method explicitly designed for finding repeats
was suggested in [22] as an online algorithm that searches for “frequent elements”
in stream data; also in the latter case, the elements to be searched were exact, that
is, their occurrences all are required to be identical. The first time that a screening
was devised that took into account approximation was in [17] where up to a certain
number of mismatches are allowed (a bounded Hamming Distance is tolerated) but
only with the purpose of finding (approximate) occurrences of a given pattern inside
a given text.

Specifically aiming at computational biology applications, filtering has been em-
ployed successfully by several tools as a preprocessing to approximate pattern match-
ing tasks. The QUASAR (Section 15.3.2, [7]) method first applies a necessary condi-
tion for two strings to be similar then finds all matches that admit a given limited
number of edit operations. This necessary condition also has been used in SWIFT [52]
to design a filter that is an evolution of QUASAR. The sWIFT algorithm adds the use of
parallelograms in the necessary conditions (see Section 15.3.2). This approach leads
to faster and more selective tools.
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Both QUASAR and swIFT filters search for fragments of the text that fulfill a condi-
tion that can be seen as a requirement for two words to belong to a (L, 2, d)-Erepeats.
In this sense, they are both ancestors of NIMBUS (sections 15.3.3) and TuruIU (Sec-
tion 15.3.4), filters for finding multiple repeats.

15.3.2 QuasaARr and swiFT—Filtering Repeats with Edit Distance

The necessary condition of QUASAR [7] and swIFT [52] tools can be embedded in
any tool, exact or heuristic, that preprocesses the search of long repeats that consist
of multiple occurrences with a limited number of insertions, deletions, and substitu-
tions. By long repeats, we refer to repeats whose length of each occurrence is about
50 nucleotides and more.

With respect to QUASAR, SWIFT presents some improvements that lead to shorter
execution time and to more specific filtering.

15.3.2.1 Necessary Condition. Quasar and swiFT apply the following condi-
tion to filter for (L, 2, d)-Erepeat. This condition was first introduced in [60].

Theorem 15.1 The minimum number of q-grams that words of an (L,2,d)-
Erepeat must share is

pp=L—-—q+1—qd

Thus, while filtering for finding (L, 2, d)-Erepeats, all sequence fragments of length
L that do not share at least p, g-grams with another fragment are filtered out. Note
that g, user-defined, is thus one of the main parameter of such approaches.

15.3.2.2 quasArR Implementation. The QUASAR tool slides a window w of
length L, checking whether in the sequence there is another fragment of length
at most L — d that shares at least p, g-grams with w. For finding sets of shared
g-grams, the sequences are partitioned into blocks of size b > 2L occurring at every
b position. Each such block overlaps by at least L characters with its predecessor.
Such an approach ensures that any occurrence of a word of an (L, 2, d)-Erepeat is
always totally contained in at least one such block. The g-grams of each block are
indexed using a suffix array. The sliding window is retained if it shares at least p,
g-grams with at least one such block.

15.3.2.3 swirtT Implementation. swirT is an evolution of QUASAR. The main
improvement relies on the use of restricted parallelograms that are a shaped area that
limits the space search of the shared ¢g-grams. Figure 15.1 shows an example of such
a parallelogram. Should two strings w and w’ have an edit distance no greater than d,
then in the dynamic programming matrix used for computing their alignment within
the edit distance, there would be an optimal alignment consisting in a path making
at most d vertical or horizontal steps and, thus, involving at most d consecutive
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Figure 15.1 An example a (11, 2, 2)-repeat found using 2-grams. The shown parallelogram
defines portions of sequences in which shared 2-grams must be searched for filtering for finding
(11, 2, 2)-repeats.

diagonals. Because the matches caused by the mandatory g-grams shared by w and
w’ necessarily will belong to this path, they would be forced to be in an area restricted
by two diagonals that are d positions apart—a parallelogram.

In practice, searching shared g-grams in the area restricted to the parallelograms
is an elegant approach leading to major improvements. First, it enables increas-
ing the speed of computations by limiting the working space. Second, it increases
the specificity of the filter, avoiding false positives because of g-grams outside the
parallelograms.

15.3.3 NimBus—Filtering Multiple Repeats with Hamming Distance

The NIMBUS tool is based on the Hamming distance. It has been the first filter de-
signed directly for filtering while searching multiple repeats instead of repeats having
only two occurrences. The tool NIMBUS [49, 50] can be employed as a preprocessing
step to any tool that searches for long multiple repeats with mismatches or that per-
forms alignments based on the detection of such local repeats. Being a lossless filter,
this tool can be used as a preliminary step of both heuristics and exact methods.
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15.3.3.1 NimBus Necessary Condition. NiMBUSs uses the following condition
to filter for (L, r, d)-Hrepeats:

Theorem 15.2  The minimum number of nonoverlapping q-grams that words of an
(L, r, d)-Hrepeat must share is

H H
pr=|=|-d—t-2x|%
q 2

NimMBUS uses Theorem 15.2 and hence detects and removes all sequences frag-
ments of length in [L — d, L + d] that do not share at least p, g-grams with at least
r — 1 other fragments of length in [L — d, L 4 d]. For r = 2, the formula of Theo-
rem 15.2 coincides with Theorem 15.1.

We now give an insight of the proof. The full proof can be found in [49]. Let
us consider the hypothetical alignment of r words of length L of a (L, r, d)-Hrepeat.

Suppose d = 0 (words are all identical), then they share exactly L%J nonoverlapping

q-grams. Now, if d > 0, then the number of shared g-grams obviously decreases. In
the worst case scenario, every pair of the r strings has Hamming distance d. For
each position i in which there is a letter substitution between any pair of strings
(positions represented by an x in Figure 15.2), no shared g-gram can include that
position, meaning that up to ¢ of them are excluded. Given that there are a total of
d x r(r — 1)/2 positions in which there is a mismatch, at worstg x d x r(r — 1)/2

g-grams are excluded, and thus, p, = IﬁJ — (g xd x r(r — 1)/2) shared g-grams

must be left. This would be a very weak necessary condition for a filter.

Observing that the positions of the mismatches between pairs of strings must
necessarily overlap, the stronger bound of Theorem 15.2 is obtained. To see why the
positions of mismatches must overlap, let us consider the simple case of r = 3 strings
s1, 82, and s3, and d = 1. Let a be the position of the unique mismatch between s;
and s», let b be that of the mismatch between s, and s3, and let ¢ be that between s
and s3. Because s;[a] # s»[a], then s3[a] cannot match with both, and thus, either
s3 mismatches with s; at position a (and hence a = c¢), or it mismatches with s,
there, and therefore, a = b; summing up, column a either coincides with b or with
c. Moreover (and symmetrically), at position ¢, it must be that s; has a mismatch

ATATAGTTAGTAC
ATCTAGTTAGTAC
ATCTATTTCGTAC

X X x#gg#

Figure 15.2 Words belonging to a (13, 3, 2)-Hrepeat share at least ps nonoverlapping
3-grams with p3 = LgJ -2—-(83-2)x {%J = 1. Indeed, a 3-gram GTA, for instance, is shared
by the three sequences. In this example, mismatches were spread every three characters. This
repartition is the most limiting case for the number of shared 3-grams.
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with s, or with s3, and hence, actually when d = 1, it must be that a = b = c; there
is a unique column that no g-gram can cross. Clearly, in the general case of r > 3
and d > 1, there are more than one position of mismatches, but the principles of the
mandatory concentration of mismatches positions into columns can be generalized.
Roughly speaking, for any d and r > 2, each new word contributes by around d /2
new columns containing a mismatch.

15.3.3.2 Multiple Sequences Versus a Single Sequence. 1t is worth notic-
ing that Theorem 15.2 does not depend on the repartition of repeat occurrences over
sequences. Thus, it applies either in the case of searching repeats occurring in a sin-
gle sequence or distributed over at least » sequences.

15.3.3.3 NivBus Implementation: Bifactor Array. Sets of shared g-grams
are searched efficiently thanks to bifactors. Given a sequence, a bifactor is simply
two substrings separated with a gap. Example 15.2 shows a bifactor. Each couple of
shared g-gram is a shared bifactor. The set of p, > 1 shared g-grams are detected by
finding a couple of shared g-grams A — B as shared bifactors. Then a second shared
bifactor B — C (starting by B) is searched. In case of success, the group of three
shared g-grams A — B — C is found and so on. To speed the detection of shared
bifactors, they are indexed in a specialized data structure called the bifactor array
described in [50].

B EXAMPLE 15.2 Bifactor

On the sequence TATATAGTAC, at position 1, occurs the bifactor ATA GTA,
with two substrings of length three separated by a gap of length two. Bifactors are
similar to spaced seeds that will be discussed in Section 15.4.2.

15.3.3.4 Quasar and NimBus Implementations Differences. The algorithm
of NIMBUS deals with repeats having possibly more than two occurrences, whereas
QUASAR was designed for filtering for repeats having only two occurrences. More-
over, QUASAR does not check the order of the shared g-grams. As the edit and Ham-
ming distances do not allow inversions, the shared g-grams must have the same
repartition in each word of (L, r, d)-Hrepeats. Thus, the NIMBUS tool, in addition to
allowing the finding of repeats with more than two occurrences, applies in practice a
method with higher specificity.

15.3.3.5 Performance. Preprocessing with NIMBUS a dataset in which one wants
to find functional elements using a multiple local alignment tool such as GLAM [16],
the overall execution time could be reduced from 7.5 hours (directly aligning with
GLAM only) to less than two minutes (filtering with NIMBUS and then aligning with
GLAM) [49].
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15.3.4 Tuviu—Filtering Multiple Repeats with Edit Distance

The TuIUIU [51] tool proposes to extend the filtration for (L, r, d)-Erepeat with r >
2. The approach uses a filtration condition framework based on the p, number of
shared g-grams (Theorem 15.1).

With r > 2, a necessary condition involving the number of ¢-grams that must be
shared by all r occurrences of the repeats would result as too weak here because,
when indels are allowed, the property of mismatch columns that concentrate does
not hold anymore. Therefore, the choice made in TuluIU actually was to design a
very strong necessary condition for two strings to be at most edit distance d and to
insert this checking in a suitable framework that detects fragments of the input data
that fulfill the requirement with respect to at least » — 1 other fragments belonging
to distinct input strings. Therefore, the contribution of the algorithm introduced in
Turulu is twofold; first, a new necessary condition for (L, 2, d)-Erepeat is intro-
duced, which results in being stronger that previous ones; second, the framework
that extends the necessary condition to multiple repeats, which actually can be em-
ployed with any (L, 2, d)-Erepeat condition inside.

The necessary condition checked by TuIUIU is actually a series of three possible
levels of selectivity, resulting in as many versions of the filter. The first condition
(already introduced in [52]) requires that Theorem 15.2 holds with r = 2, and also
that in the alignment matrix of the two strings, these p, = |L/q| — d g-grams result
in matches that lay in a parallelogram-shaped area (see Figure 15.1). The second
(further) condition that TUTUTU imposes is very simple; for w and w’ tobe a (L, 2, d)-
Erepeat, the g-grams that they must share have to occur in w at distinct positions
(that is, at least p, of them). This apparently trivial condition actually resulted in
giving a substantial contribution to the strength of the filter in that TurUIU can check
it in negligible constant time, and it does increase the selectivity. For this reason, the
performances of the filter version that use this condition clearly outperform those
of the filter that uses the first condition only. The third and most stringent condition
additionally imposes that there is a set of p, shared g-grams that occur in w and
w’ in the same order. This third condition, involving longest common subsequence
(LCS) computations, checks the conservation in the order of the shared g-grams. It
requires some extra time to be checked, but experiments showed evidence of the fact
that because this is done only for pairs of strings w and w’ that already survived the
previous conditions, the delay is limited. In practice, this most restrictive constraints
resulted in being worth using in many interesting applications, as, for example, while
using values of d larger than 10% of L.

The first is the fastest and less sensible and is, in practice, the same as that of
SWIFT (the use of a parallelogram), except that it is used within the multiple repeats
filtering task. The second option introduces an extra requirement that leads to a more
selective tool while being still as fast as before (or actually sometimes even faster).
This condition actually could be itself a good filter for finding approximate matches
of a pattern into a text. The third choice results in the most selective filter but at a
time cost that experiments show to be often worth paying when the target task is
finding multiple repeats.



15.4 LOSSY SEED-BASED FILTERS 309

To require that the repeat occurs in r distinct sequences, TUIUIU slides a window
over all input sequences. At each moment, it considers the window itself w and all
remaining sequences virtually divided into blocks that are candidate to contain w’'.
For the first position of the window, it builds an index of all its g-grams and stores
how many of them belong to each block. For every new position of the window, up-
dating this information is very simple as w simply drops a g-gram and acquires a
new one. It is thus also easy to check, for each block, whether it has enough shared
g-grams. If for w, there are enough blocks that satisfy the retained, then w is con-
served; otherwise, w is filtered out.

Like NIMBUS, TUIUIU also supports a query in which there is a single input se-
quence, and the r occurrences of the repeat only are required to be distinct as they
all must belong to the same sequence.

15.3.4.1 Complexity and Parameters. In general (with p, large enough,
see [51]), the average complexity is in

b+d
o (%nﬂzrq)

where n is the sum of the sequence lengths and b the thickness of parallelograms.
It is worth noting that ¢, the length of the g-grams, strongly influences the results
and the computation time. With a small ¢, computation is slow (a lot of shared ran-
domly g-grams), but the filter is very specific. On the other hand, a large value for ¢
increases the theoretical speed both because of the |X|™¢ term in the complexity but
also because only few large g-grams are shared randomly between sequences. How-
ever, with a larger ¢ value, the filter becomes less selective. This is a result of the
decrease of the strength of the necessary condition on p,. In practice, as presented
in [51], applying TUIUIU on biological sequences with ¢ = 6 presents a good balance
between specificity and execution time.

15.3.4.2 Success Story. TuiulU was applied as a preprocessing step of a mul-
tiple alignment application (GLAM2 [15], an evolution of GLAM that allows indels and
is thus more suitable with edit distance), leading to an overall execution time (filter
plus alignment) on average of 63 and at best 530 times smaller than before (direct
alignment).

15.4 LOSSY SEED-BASED FILTERS

When dealing with weaker similarities, lossless filters become too difficult to be
implemented efficiently. As an example, when we search for (40, 2, 10)—Hrepeats
(that means a > 75% similarity), Theorem 15.2 cannot ensure anything for g-grams
with g > 4. In some homology studies between “distant” species, one frequently has
to look at similarity levels between 30% and 60%; for those kind of similarities, tools
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indexed sequence query sequence
k iti ..TGOAACTTAT...
AZA i)gm 1121165 108 / ,,,CTAGGC--- —> bad alignment
[AAC 87,121,187, ...] > ..TTOAAQTAAT.. —> good alignment

AAT 45,98, 105, .. ..TAGAA(QGCTA... —> bad alignment

filtering phase finishing phase

Figure 15.3 During the filtering phase, a scan of the query sequence uses the index (here
with the key AAC) to identify all matching seeds. Here the first r = 3 seeds are shown. Then
the finishing phase get neighborhoods of the indexed sequence from the memory (one memory
access per position) and builds local alignments between this neighborhood and the one of the
query sequence. Here only the position 121 in the indexed sequence leads to a “good” local
alignment.

other than lossless filters must be designed. In this section, we explain seed-based
heuristics and detail some of their implementations.

15.4.1 Seed-Based Heuristics

As in lossless filters, the idea of seed-based heuristics is to anchor the detection
of similarities using matching short words or short subsequences occurring in both
compared sequences. The form of these words or subsequences is provided by a
pattern called a seed. A word that respects the seed is called a key. For instance,
MVK is one of the 20* possible keys for the seed of three consecutive characters on
the protein alphabet.

We now summarize the discussion made by the excellent survey of Brown ([5],
page 122). Seed-based alignment proceeds in three phases (Figure 15.3):

® [ndexing phase: “indexing one or more of the sequences”—typically in O(n)
time, or at most O (kn) time, where 7 is the size of the indexed sequence and k
is the size of keys. For each key, all positions of the occurrences in the database
are stored.

e Filtering phase: “using the index to identify possible alignment seeds”—
typically, each position in the query is processed in O(1 + r) time, where r
is the number of matching seeds. Thus, this phase takes O(m + R) time, where
m is the size of the query and R is the total number of matching seeds.

* Finishing phase: “building local alignments from the seeds”—O(R), assuming
that most seeds are bad seeds (that are not extended into good alignments). To
be efficient, the finishing step usually begins by a fast alignment between the
query and the database on a small neighborhood around the seed match, then
proceeds to a full alignment if the fast alignment was above a given threshold.

In fact, if we leave out the constant terms and the O(m + n) time required to
read the sequences, a seed-based alignment algorithm runs in additional O(R) time;
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the specificity of the filtering phase is crucial. Traditional BLAST seeds, noted as
A are contiguous 11-grams on nucleotides. Assuming the DNA se-
quences are random, R is approximately mn /4'!. With large genomes, this quantity
becomes too large.

15.4.2 Advanced Seeds

For the same number of detected good alignments (sensibility), how can it be pos-
sible to have less hits and thus to decrease R ? Instead of contiguous k-words, it is
more advantageous to use so-called spaced seeds that correspond to matches “with
gaps” between sequences and thus gapped diagonals in the dynamic programming
matrix. Hits of a spaced seed are less related than the hits of a contiguous word; for
a same specificity (number of hits), the sensitivity is better.

B EXAMPLE 15.3 Spaced Seeds

With the spaced seed ##-## of weight 4, the nucleic key AA-CT matches the
four strings AAACT, AACCT, AAGCT and AATCT. This seed is lossless on
(40, 2, 10)—Hrepeats: that means that all (40, 2, 10)—Hrepeats share at least a
gapped 4-gram shaped by ##-##. This is better than the contiguous 4-gram ####
that misses some (rare) alignments.

On (40, 2, 20)—Hrepeats, both seeds are lossy. On a Bernoulli model, the
spaced seed ##-## has now a sensibility of 86,8%, whereas the seed #### only
achieves a 79,8 % sensibility. Sensibilities are computed with Iedera [27].

The idea of using spaced seeds for biological sequence comparisons first was
proposed in 2002 by Ma et al. [37] in the PatternHunter software. Following this
article, theoretical design and usage of better seeds became an active field of re-
search [6, 11, 32, 38], with extensions on vector seeds [3], protein seeds [4, 24], and
subset seeds [27, 53]. The most complete and recent survey of this domain is [5].

In all those seed models, one designs appropriate seeds according to sensitiv-
ity/selectivity criteria and the class of target alignments. Moreover, instead of using
a single seed, one can use several seeds simultaneously (so-called multiple seeds) to
improve further the sensitivity/selectivity trade-off.

15.4.3 Latencies and Neighborhood Indexing

15.4.3.1 Latencies for the Finishing Step. What exactly is stored during the
indexing phase? For each key, we want to remember the list of all its occurrences in
the database. In the usual offset indexing approach, depicted on Figure 15.3, an offset
of log N bits is stored for each seed position (where N is the size of the database).
The index size thus is equal to N x log N bits.

For each query position, each hit returned by the filtering phase leads to an iter-
ation of the finishing phase. This iteration accesses some neighborhood of the posi-
tions. These memory accesses are random, that is, unpredictable and noncontiguous.
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indexed sequence, with neighborhoods query sequence
key  positions .. TGCAACQTTAT...
50

AAA 10 (GAT ATCC), 156 (TGT TACT), 198 (TAG CATC), ...
[AAC_87 (CTAAGGC), 121 (TTC TAAT), 187 (TAG GCTA), ...] Jiltering phase
AAT 45 (CCATACG), 98 (TAC TAAT), 105 (AAT TGCT), ... \

finishing phase

Figure 15.4 In the neighborhood indexing approach, for each key, a small neighborhood of
each key occurrence is stored redundantly in the index. Here L = 7 nucleotides are stored with
each position. The filtering phase needs one memory access (per key). The finishing phase does
not need any more additional access.

Such accesses are not cached efficiently and require high latencies [19]. This is es-
pecially true when using multiple seeds, for example, in the BlastP approach (on
average, 26 index look-ups for the Blosum-62 background distribution of amino
acids [48]).

15.4.3.2 Neighborhood Indexing. A way to reduce the computation time thus
is to avoid as far as possible such random memory accesses. In [48], a neighborhood
indexing approach was proposed. The idea is to store additionally, for each key oc-
currence, its left and right neighborhoods in the sequence (Figure 15.4). Thus, given
a position in the query and its corresponding key, all neighborhoods of this key oc-
currences in the database are obtained through a single memory access. There is no
need for further memory accesses to random positions in the original sequence. The
overall index size then is equal to N x (log N + «L) bits, where « is the number of
bits for coding a character (nucleotide or amino acid), and L is the total length of the
neighborhoods.

The main advantage of the neighborhood indexing is that it speeds the execution
time by a factor ranging between 1.5 and 2 over the offset indexing [48]. The actual
speed gain depends on the database length and on many implementation and archi-
tecture parameters (such as memory and cache sizes, cache strategies, and access
times) that will not be discussed here. An obvious drawback of the neighborhood
indexing is the additional memory it requires to store neighborhoods. Comparing the
two indexing schemes, the ratio between the overall index sizes of the neighborhood
indexing and the offset indexing is 1 4+ «L/log N. Usual values for log N are be-
tween 20 and 40, and usual values for L are between between 2 x 20 and 2 x 200;
hence, this ratio is between 2 and 21.

15.4.3.3 Implementation Detail of the Neighborhood Indexing: Alpha-
bet Reduction. In [48], a reduction of this ratio for the proteic case is proposed.
The idea is is to use a reduced amino acid alphabet, and thus to reduce «. Grouping
amino acids was studied in several papers [8, 13, 33, 42]. Groups can rely on amino
acid physical-chemical properties or on a statistical analysis of alignments. For ex-
ample, the authors of [42] computed correlation coefficients between pairs of amino
acids based on the BLOSUMS0 matrix and used a greedy algorithm to merge them.
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A branch-and-bound algorithm for partitioning the amino acids was proposed in [8].
An extreme application of the grouping gives alphabets with only two symbols. Li
et al. proposed in [33] the alphabet ¥, = {CFYWMLIV, GPATSNHQEDRK}. Us-
ing this alphabet for amino acids divides the storage requirement per 5 but is, of
course, far less precise.

In [48], we showed that we could retrieve the original sensitivity by using longer
neighborhoods and keeping the original alphabet for the query string. We computed
rectangular BLOSUM matrices (ReBlosum, Example 15.4) that compare amino acid
groups (from the indexing alphabet) with actual amino acids (for the query string).
Our method applies on any amino acid partition. The best results were obtained with
Li’s X, alphabet; with the same sensibility, 35% less memory is neeeded for a neigh-
borhood length of 2 x 32 instead of 2 x 11 amino acids when log N = 24.

B EXAMPLE 154 Alphabet Reduction

CFYWMLIV 4 4 3 4 3 4 4 3 -6 —6
GPATSNHQEDRK -4 -5 -4 -6 -3 -5 -5 -4 2 2

CFYWMLIV -2 -2 -4 -6 -4 -4 -6 -7 -5 =5
GPATSNHQEDRK 1 1 2 2 1 2 2 2 2 2

The ReBlosum matrix for comparison of Li’s alphabet ¥, (indexing alphabet)
with the usual alphabet X, (querying alphabet) computed on alignments with
62% identity. On a Bernoulli model, comparing a query of length 32 (on %)
with an indexed neighborhood of length 32 (on X,) is as sensible as comparing a
query of length 11 (on X,p) with a usual neighborhood on length 11 on X,y but
with a 35% memory reduction.

15.4.4 Seed-Based Heuristics Implementations

15.4.4.1 CPU Implementations. The first widely used implementations of
seed-based heuristics were Fasta [46] then Blast [1]. The Blast 2 implementation [2]
uses a double hit, allowing a greater sensibility.

PatternHunter [37], followed by PatternHunter 2 [31], are the reference papers for
the spaced seeds and the multiple seeds ideas. Another widely used tool, Blat [23],
allows one mismatch in a contiguous seed and, thus, is equivalent to a collection of
several spaced seeds. Yass [45, 44] is a comparison tool between nucleic sequences
that implements several optimisation to seeds, including multiple “transition con-
strained” seeds, favoring transition mutations between purines and between pyrim-
idines. Yass come with the Iedera tool [27] that designs and evaluates various types
of seeds.
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indexed sequence 1 indexed sequence 2
key positions key positions
AAA 10,156,198, ... filtering phase AAA 18,78,208, ...
[AAC 87,121, 187, ...] [AAC 50, 101, 110, ...]
AAT 45,98, 105, .. \ / AAT 57,98, 87, ..
finishing phase

Figure 15.5 ORIS and PLAST seed-based indexing. As the two sequences are indexed, the
filtering phase is a simultaneous scan of both indexes. If the neighborhoods also are included in
the index, then here there is almost no more random access during both filtering and finishing
phases.

A really nice idea appeared in 2008 in ORIS and then PLAST [28, 43]. The idea
here is to build two indexes, one for each bank and then to scan simultaneously the
both indexes (Figure 15.5). The advantage of such an approach is that there is virtu-
ally no cache miss for seeds that are not extended further; all latencies are removed
even during the filtering step.

Seed-based heuristics are found in wider applications, for example, in ZOOM, a
read mapper for high-throughput sequencers [18].

15.4.4.2 Parallel Implementations. Instead of a serial implementation of a
seed-based heuristics, one can parallelize some parts of the computation. Fine-
grained parallelism can be realized either through vector single instruction multi-
ple data (SIMD) instructions or on specialized architectures (custom processors or
reconfigurable FPGA processors). Moreover, threads on a multicore architecture,
or clusters of any of the previous solutions can provide additional coarse-grained
parallelism.

® Blast-like seeds. The first hardware implementation of a seed-based heuris-
tic was done in 1993 on a custom processor with the BioSCAN archi-
tecture [57]. Several implementations on reconfigurable field-programmable
gate array (FPGA) processors have been developed independently since 2003
(9, 20, 26, 41], see [29] for a review). A cluster-enabled version of Blast was
proposed on message possing interface (MPI) [12, 59].

e Other heuristics. DASH [25] is an algorithm implemented on FPGA with a
better sensibility than BLAST. In 2006, [30] proposed an architecture designed
to proteic comparisons using seeds of three amino acids. We proposed the im-
plementation on subset seeds [27] on a FPGA architecture coupled with large
Flash memories [47]. The PLAST algorithm was designed especially for easy
parallelization, and several parallel versions are available [43].

Finally, the new many-cores architectures like graphic processing units (GPUs)
also can offer both levels of parallelism. Recently, numerous parallel GPU im-
plementations of regular Smith—Waterman dynamic programming were proposed
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[34, 35, 36, 39, 55]. Seed-based heuristics also could take benefit from those ar-
chitectures.

15.5 CONCLUSION

Sequence homologies are the key to molecular biology studies. Modeled by approxi-
mate repeats and approximate multiple repeats, the discovery of homologies remains
a difficult task suffering from time bottlenecks. Moreover, molecular biology studies
have to cope with datasets whose size grows exponentially. Today biologists often
must restrict the area of their research while looking for similarities into sequences
or between sequences. Some computations, in particular concerning the research of
similarities not limited to two occurrences, are simply unfeasible.

Given a similarity model, filters are methods permitting quick focus on sequences
fragments that may contain some repeats occurrences. Thus, after a filtering step,
programs designed for the similarity research may be applied to much smaller
datasets and find faster repeat occurrences. This chapter exposed two kind of fil-
ters. First, lossless filters that ensure that no occurrences of repeats may be filtered
out. Second, lossy seed filters that are heuristics that do not assure that no repeat
occurrences are missed after filtration.

Used as first steps of similarity research, lossless filters present the large advan-
tage that they do not modify the results quality. Although applied for the research of
multiple repeats, they can reduce computation time by several orders of magnitude.
However this kind of filter generally is limited to the research of well-conserved sim-
ilarities. On the other hand, lossy seed filters are methods widely used that provide
even faster results. This kind of filter may be used for finding similarities with a high
divergence rate. However, even if some approaches estimate the sensitivity of the
results, they cannot ensure finding 100% of the searched results.

Today, new sequencing techniques increase even the exponential rate of the flood
of data. New methods must be designed to improve further the similarity search still
working for increasing the sensitivity close to the full sensitivity.
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NOVEL COMBINATORIAL
AND INFORMATION-
THEORETIC ALIGNMENT-
FREE DISTANCES FOR
BIOLOGICAL DATA MINING
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and Marinella Sciortino

16.1 INTRODUCTION

Sequence comparison plays a central role in many scientific areas [70] and, in par-
ticular, for computational molecular biology [41, 81]. In fact, biological molecules
can be seen as linear sequences of discrete units similar to linguistic representations,
despite their physical nature as a three-dimensional (3D) structure and the dynamic
nature of molecular evolution.

The problem of defining good mathematical functions to measure similarity be-
tween biological sequences is fundamental for their analysis. Indeed, a high simi-
larity among biological sequences, as measured by mathematical functions, usually
gives a strong indication of functional relatedness and/or common ancestry [41].
However, there is not a bijective correspondence between sequence and structure or
sequence and function because, in general, the converse of the previous statement is
not true.
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Classically, the notions of similarity and distance hinge on sequence alignment
[41]. Algorithmically, these methods usually are implemented by using dynamic pro-
gramming and target specific goals such as global and local alignments, with many of
their variants (e.g., [40,41, 60, 72]). Because of their worst case superlinear running
time in the input parameters, these methods are considered inadequate for the anal-
ysis of long sequences in which one usually resorts to heuristic algorithms, such as
BLAST [13,14] and FASTA [64,65]. In case of protein alignment, all algorithms we
have mentioned so far use matrices point accepted mutation (PAM) [27] and blocks
of amino acid substitution matrix (BLOSUM) [42] as their scoring schemes [41].

Now that entire genomes are available, the sequence alignment approach no
longer is perceived as right for sequence comparison. In fact, it is not suitable to
measure events and mutations that involve very long segments of genomic sequences
because sequence alignment considers only local mutations of the genome. Actually,
the conservation of contiguity underlying alignment is at odds with genetic recom-
bination, which includes shuffling subgenomic DNA fragments. This is the case, for
instance, of orthologous regulatory sequences or no orthologous functionally related
sequences (such as cis-regulatory modules), which do not show any statistically sig-
nificant alignment. Moreover, with reference to proteomic sequences comparison,
the use of scoring matrices in the alignment-based methods shows limitations when
one has to deal with sequences with less than 20% sequence identity. Furthermore,
the growing mass of biological data makes impracticable the alignment-based ap-
proach both for running time and memory usage.

The need to overcome these critical limitations of alignment-based measures, in
whole or in part, has required the development of alternative approaches. The first
systematic organization of alignment-free measures, together with the name, was
given in the ground-breaking paper by Vinga and Almeida in [78].

Most of the alignment-free methods can be classified in accordance with well-
established paradigms. A first paradigm concerns information-theoretic approaches
that use classical information measures. The power of information measures is a
result of their ability to determine statistical dependence among sequences, which
in turn, may reveal biologically important relationships. Another paradigm regards
the use of techniques and notions from combinatorics on words. The third paradigm
collects methods that are based on the notion of subword composition of sequences
in which vectors of word frequencies of a given length are considered, whereas the
fourth paradigm focuses on counting the exact matches of words of a given length.

Within those paradigms, we have identified some representative methods that have
been introduced recently and that provide promising solutions for alignment-free
comparison and that will be the object of this chapter. Moreover, we also present
several domains of biological relevance in which experiments support the conclusion
that the methods performed here are indeed adequate. As for algorithm experimenta-
tion and engineering, we provide a kernel of datasets and publicly available software
libraries that can be used for benchmarking and comparative studies.

The remainder of the chapter is organized as follows: Section 16.2 presents some
recent and innovative alignment-free methods that make explicit use of information
measures, based on the notions of empirical relative entropy and empirical mutual



16.2 INFORMATION-THEORETIC ALIGNMENT-FREE METHODS 323

information between sequences. Section 16.3 is devoted to the presentation of some
combinatorial alignment-free methods chosen from the ones available in this class
for either having been used already for large-scale, genome-wide, studies or having
the potential to perform well in those studies. In Section 16.4 we describe some
alignment-free methods based on the notion of subword composition of sequences,
which, thanks to extensive experimentation, have become significant for biological
data mining. Section 16.5 presents some alignment-free word matches methods and,
in particular, the distance D,, which stands out for its mathematical elegance as
well as its usefulness and two generalizations of it. The first one is a straightforward
extension of D, to approximate k-word matches, whereas the second one, nicknamed
D,z, is a variant of D,, which offers several advantages with respect to it.

Section 16.6 contains the main experimental contributions to the bioinformatic
area of the papers cited in Sections 16.2 to 16.5. In particular, we briefly present
the biological domains in which the distances described here have been applied.
Those domains are representative of the use of alignment-free distances in biological
investigations.

Moreover, Section 16.7 presents a kernel of datasets that seem to be the most used
for benchmarking purposes. Such datasets are of interest for comparative analysis of
similarity measures, as they are used for classification and phylogenetic studies. Fur-
thermore, we provide the most prominent publicly available software libraries that
one can use for benchmarking and comparative studies. The final section is devoted
to conclusions.

16.2 INFORMATION-THEORETIC ALIGNMENT-FREE METHODS

Shannon information theory often is perceived as being of interest for data commu-
nication and storage. However, it is also deeply related to classification, data mining,
and analysis. For many years, in computational biology and bioinformatics, the most
successful use of information theory has been for sequence analysis and, in par-
ticular, to measure the “deviation from randomness” of nucleotide and amino acid
sequences. Anyway, the power of information measures is because of their ability to
determine statistical dependence among sequences, which in turn, may reveal biolog-
ically important relationships. A homogeneous presentation of the role of informa-
tion theory and data compression in computational biology is given in [38]. It is also
natural that those techniques explicitly offer natural alignment-free methods for bio-
logical data analysis. Moreover, fundamental measures of information are also at the
very foundation of many other alignment-free methods. That is, the former are not
used explicitly to compute the latter, but they are connected conceptually to them. For
this reason, the first subsection is devoted to outline the relation between information
measures and “similarity” of sequences, via statistical dependency. The remaining
subsections are devoted to some recent and particularly innovative alignment-free
methods that make explicit use of information measures. In particular, the second
subsection presents two measures based on empirical relative entropy between se-
quences; the first one uses, in a novel way, the empirical version of entropy, whereas
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the second introduces the use of Markov chains, learned from the two sequences for
which similarity is to be assessed to evaluate entropy. The third subsection is devoted
to an alignment-free method that is based on the notion of empirical mutual infor-
mation between sequences. The interesting novelty of that approach consists of the
introduction of a test to quantify the level of statistical significance of a dependency
between two sequences as quantified by an information measure.

16.2.1 Fundamental Information Measures, Statistical Dependency,
and Similarity of Sequences

Three basic concepts underlying Shannon information theory are certainly entropy,
relative entropy, and mutual information [25]. They are presented here in their gen-
erality, whereas Subsections 16.2.2 and 16.2.3 consider their empirical counterparts
as they are applied to the design of alignment-free methods.

The entropy of a random variable is a measure of its uncertainty. Technically, it
quantifies the amount of information (in bits) required on average to describe the
random variable. More precisely, given a discrete random variable X with alphabet
¥ and probability mass function p(x) = Pr{X = x}, x € X, the entropy H(X) is
defined by

H(X)= - p(x)log p(x)

xeX

Note that entropy is a functional of the probability distribution of X (i.e., it is
dependent only on the probabilities and not on the actual values taken by that random
variable).

The relative entropy or Kullback—Leibler distance is a measure of the distance
between two probability distributions. It is defined between two probability mass
functions p(x) and g(x) as

p(x)

RE(p. q) = log 22
(p.9)=)_ p(x) s

xeXx

The relative entropy is a measure of the inefficiency of assuming that the distribution
is ¢ when the true distribution is p. It is always nonnegative and it is zero if and only
if p = gq. It also can be interpreted as a quantification of how p is “distant” from q.
Technically, however, it is not a distance measure because it is not symmetric and
does not satisfy the triangle inequality.

Mutual information of two random variables X and Y is a measure of the amount
of information that the first variable has about the second one. It also can be seen as
a special case of the relative entropy of two probability distributions. Indeed, given
two random variables X and Y with a joint probability mass function p(x, y) and
marginal probability mass functions p(x) and p(y), the mutual information is the
relative entropy between the joint distribution and the product distribution p(x)p(y),
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that is,

p(x,y)

I(X,Y) =RE(p(x, y), - 1
(X.Y) (p(x, y), p(x)p(y)) Z p(x, y)log px)p(y)

X, yeX
The following result is fundamental for the entire chapter:

Theorem 16.1 Given two random variables X and Y, 1(X,Y) > 0, with equality
ifand only if X and Y are statistically independent.

The statement establishes a deep connection between statistical dependency of
random variables and an information measure; we can quantify the former by com-
puting the latter, with the following great practical impact. Statistical dependency
on real data can be determined only once that the probability distributions are es-
timated, usually a rather complex and error-prone procedure. When one resorts to
the assessment of statistical dependency via information measures, an entire world
of heuristic solutions becomes available, via the connection of information measures
to data compression and combinatorics on words. Finally, the estimation of statis-
tical dependency is fundamental for computational biology because the statistical
dependency among sequences commonly is accepted as an indication of biological
relatedness.

16.2.2 Methods Based on Relative Entropy and Empirical
Probability Distributions

Throughout this chapter, let A = aja, - --a, and B = byb; - - - b,, denote two strings
over the alphabet X. Fix an integer k > 1, which we refer to as the word size. More-
over, we refer to any string in XX as a k-word.

Consider string A and, for each k-word w; in X, let n;; be the number of oc-
currences of w; in A. Let {px; = ni;/(|A| — k + 1)}1_31‘ be the kth order empirical
probability distribution for the string A. The kth order empirical entropy of the string
A then is defined as

Iz

Hi(A) = = prilog(pi)

i=I

It is important to stress that there is an important difference between the entropy
defined in the probabilistic setting and its empirical counterpart. In fact, Shannon
entropy is an expected value taken on a set of strings, whereas empirical entropy is
defined “pointwise” for each string, and it can be used as a function of the string
structure without any assumption on the information source emitting the string.

Similarly, it is possible to extend the concept of relative entropy to empirical
probability distributions based on k-words. As a result, k-word empirical relative
entropy becomes a natural approach to measure dissimilarity between biological
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sequences. As pointed out by Vinga and Almeida [78], the case k = 1 (i.e., the em-
pirical Kullback-Leibler distance), has been one of the first methods used in this area.
Apparently however, the case k > 1 has been studied experimentally only recently
by Wu et al. [85]. Technically, consider A and B and let { p,ﬂi} and { p,fi} be their
k-word empirical probability distributions, respectively. The kth order empirical rel-
ative entropy between A and B is defined as

Iz A

Di.i
RE(A, B) =Y pil;log, (p%)
i=1 k,i

To avoid an indefinite value when p,‘z ; =0, Wu et al. also suggest to modify that
formula by adding a unit to both terms of the probability ratio.

It is obvious that the representation of biological sequences by their empirical
probability distributions and information measures involves some trade-offs. When
k is small, one loses information about the sequences (i.e., even very dissimilar se-
quences can have probability distributions close to each other). On the other hand, as
k increases, k-word information measures suffer of the so-called finite sample effect
yielding degenerate results [38]; when k is large, we do not have enough substrings
in the strings to sample accurately the “true” probability distributions underlying the
strings. In particular, some word types that are present in one string may be absent
in the other. To date, no satisfactory solution to this problem is known, although one
common approach consists of grouping some k-words having frequencies up to a
particular threshold into one event, but this is accompanied by a loss of sequence
information.

Wang and Zheng [80] propose a novel method, referred to as Weighted Sequence
Entropy (WSE) that attempts to overcome the finite sample effect problem. Although
it is based on the classical empirical relative entropy, the two distributions involved
are { p,é ;} and the arithmetical average value of distributions { p,é ;1 and { p,f ;1. Wang
and Zheng also introduce two slight variations of that measure by assigning weights
to { p,ﬁ ;yand {p ,5 ;1. These variants are equivalent to the k-word relative entropy when
k is small but tend to avoid the degeneration when k increases. Some technical details
follow.

Consider the probability distributions {p;;}, {(p{; + p£;)/2}, and their relative
entropy

= 2
REI(A, B) =) plilog, | ——
; 7 [)/é,- + Pii

Because, by definition, RE1;(A, B) # RE1;(B, A), to ensure the symmetry con-
dition, Wang and Zheng consider the sum d;(A, B) = RE1;(A, B) + RE1(B, A).
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By using the empirical information entropy, d; (A, B) can be rewritten as

A+ B
di(A,B)=2H < > ) — H(A) — H(B)
Notice that (A 4+ B)/2 is a shorthand for the probability distribution {( p,ﬁ ;+
P ,‘3 ;)/2}. It is interesting to point out that the “averaging” method just outlined gener-
alizes to give weights to the probability distributions { p,‘?’ ;1and { p,‘z ;1 as the following
two examples illustrate. Let

n—+m
RE2(A, B) = Zpg‘,logz( ( i )

pkz+mpk1

(Vn+ ﬁ)Pk,i
«/%p/?,,‘ + \/ﬁplgi

RE3;(A, B) = Z pii log, (
i=1

Their corresponding distance measures are as follows:

nA+mB

(A, B) = (n +m)H( —

) —nH(A) —mH(B)

A B
d5(A, B) = (Vi1 + i) H (%) — JnH(A) — JmH(B)

It is of interest to point out that, because d;, d», and d5 are linear combinations
of empirical entropies, this approach has been nicknamed as the weighted sequence
entropy. Notice that none of the distances can have an indefinite value because they
are all nonnegative and bounded by 2, n + m, and /n + /m, respectively.

In the case of short words sizes, Wang and Zheng show that their three revised ver-
sions of the classical empirical relative entropy perform as well as empirical relative
entropy in phylogenetic inferences. However, for large word sizes, their methods still
grant reliable phylogenetic inferences, whereas relative entropy returns degenerate
results because of the absence of some word types. Moreover, the authors compare,
with positive results, their new methods with other existing ones for the construc-
tion of phylogenetic trees, namely, Euclidean distance [18, 78], linear correlation
coefficient [32,66], cosine function [68,69,73,74], and information-based similarity
index [43].

Dai et al. [26] propose two other methods, whose novelty is to combine the statis-
tical information about k-words by deriving it both empirically and from a Markov
chain that supposedly represents well the salient features of a family of strings. The
rationale is that both k-word distributions and Markov models contain important in-
formation about strings, but they are of a different nature. In k-word distributions,
the probability of each word is dictated punctually by the string, whereas it is an
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average, or the result of a training process on a set of strings, when one uses a
Markov chain.

The first two measures Dai et al. introduce, denoted rre.k.r and S;.k.r, extend
the concept of empirical relative entropy between strings to Markov chains of order
r. The other ones, denoted wre.k.r and S,.k.r, are defined starting from rre.k.r. In
particular, for these last two measures the probability of a k-word is computed by
multiplying the probability of that k-word, as predicted by a Markov chain of order
r, by the same probability obtained via the frequency of occurrence of that k-word
in the string. We provide some details next.

The revised relative entropy rre.k.r is an information measure between two
Markov chains M, and M7}, of order . Each Markov chain is learned from A and B,
respectively. It is

rrek.r(M)y, My) = Z

wexk

p(w|M;;>1n( 2p(w|M4) )‘

p(w|M}) + p(w|Mp)

where p(w|M") denotes the probability of the k-word w = wjw, - - - wy as computed
via a Markov chain M" of order r. In particular, for 0 < r <2, p(w|M") can be
computed as follows

T, Ty = * Ty ifr=0
pw|M") = { my,, p(wy, wr) p(wa, w3) - - - p(wg_y, W) ifr =1

Tww, PW1W2, W3) p(Waw3, we) - - - p(Wr_owi—_1, wy) ifr =2

where p(i, j) is obtained from the state transition matrix of M". The vector 7; =
p(w; = §;) is the initial state probability distribution, with S; denoting the ith state
of M".

The symmetric form of rre.k.r, denoted by S;.k.r, is defined by

0 if M7, = M},

o 2p(w| M,
Sy k(M M%) = Zwezkp(wwg)ln( p(w|My) )

p(w[M}) + p(w|Mpg)

2p(w|Mp) )
— - ,else
p(w|M}) + p(w|My)

+> L esk P(wIMp)In (

Furthermore, Dai et al. present a statistical model, denoted by & = (M, W), that
contains probabilistic information from both Markov chains M and k-word distribu-
tions W.Let &, , = (M, W) and &, , = (M}, W/%) be two probabilistic models of
A and B, respectively. The weighted relative entropy between those two probability
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distributions is defined as

20(wlg] ) )'

wrekrEp 6.0 = o(wlEr )+ p(wlEy )

wexk

<P(w|$/§,k)ln<

where, for each 1 < k < min{n, m}, p(w|&;) denotes the entry corresponding to the
k-word w under the statistical model &/. As already outlined, it can be computed
by multiplying p(w|M") as defined previously by the probability obtained via the
frequency of the k-word w in the string. Finally, the symmetric form of wre.k.r,
denoted by S,.k.r, is defined by Sz.k.r(éj;’k, &g 1) as follows:

0 64k = &b

pwl&) ) + o(wlég )

(Zwezk (P(W|€2,k) In ( 2¢(w|EA,k) )

20(w|&p )
p(wls; )+ owlég )

+ D pest (p(u)|§1’3’k)ln< )) /IZ¥| +21In2, else

and it is proved to be a valid distance measure.

With the use of receiver operating characteristic (ROC) analysis, Dai et al. com-
pare the performance of their measures with respect to other existing ones. More
precisely, they first compare wre.k.r with some similarity measures based on align-
ment and k-word distributions, such as ClustalW, cosine of the angle, Euclidean dis-
tance, Pearson’s correlation coefficient, and empirical relative entropy. Then they
compare the measures wre.k.r and S.k.r, based on Markov model plus k-word
distributions, with some others similarity measures based on Markov model, such
as D, [55] and D,z [47] (see Section 16.5 for further details on these measures),
SimMM [67], rre.k.r, and S;.k.r. They show that wre performs better than other
alignment-based or alignment-free methods for similarity searches, whereas its sym-
metrical form S;.k.r has no significant improvement.

Because the measure S,.k.r can be seen as a statistical distance measure, they also
use it to construct phylogenetic trees. In this case, they show that the so obtained
trees are in good agreement with benchmark phylogenies, which indicates that the
distance S.k.r is a good measure for phylogenetic analysis.

16.2.3 A Method Based on Statistical Dependency,
via Mutual Information

In the specialistic literature, there are plenty of alignment-free techniques based on
information-theoretic ideas that attempt to quantify the statistical correlation among
various parts of biomolecules, such as DNA, RNA, and proteins (see [38] and the
references therein). But none of them addresses the problem of how statistically
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significant the computed dependency is. To the best of our knowledge, Aktulga
et al. [12] are the first to propose a solution to this problem via a methodology based
on the notion of mutual information. Indeed, they define a threshold function that
quantifies the level of significance of dependencies between strings. Such a func-
tion is connected to the probability of error (i.e., declaring two strings statistically
dependent when they are not and vice versa).

Consider again A and B and assume that the two strings come from possibly
different independent and identically distributed (iid) probability distributions. Re-
call that we denote by n the length of A and by m the length of B. We assume that
m > n. Consider now the following two possible scenarios that formalize the notions
of dependence and independence:

® Dependence: A and B are dependent (i.e., after having generated the sequence
A, anindex j, 1 < j <m —n + 1, is chosen in an arbitrary way, and a word
BI*™ ' =b;bj i+ bjiny of length n is generated as the output of a discrete
memoryless channel having input A). The rest of the symbol in B generate i.i.d.
according to its probability distribution.

® Independence: A and B are independent (i.e., the scenario of the previous point
does not hold).

To distinguish between the two scenarios, Aktulga et al. propose computing the
empirical mutual information between A and each factor of B of length n. For

eachinteger j, 1 < j <m —n+ 1, let { p:.",f’ } be the joint empirical distribution of
(A, BH”_I) (i.e., p(A’Zl)gj is the proportion of the n positions (a;, b;), (a2, bj41), -

(a,,, i+n—1)), wWhere (a;, bj4,—1) equals (s;, 57), s; ,sl in X. Similarly, let {pA} and
{ql 7} be the empirical distribution of A and B] - respectlvely. Hence, the em-

pirical mutual information /;(n) between A and B’ =1 is defined by applying the

classical definition of mutual information to the empmcal distributions that have
been just defined as follows:

IZ] |Z] A,
(i,

Ii(n) = ZZPU 1)} log b

i=1 I=1 P,CI

B;
1)
B;
l

The interesting novelty of the approach proposed by Aktulga et al. consists in
the use of a statistical test to capture dependence between A and B. For this pur-
pose, they fix a threshold 6 > 0 and compute the empirical mutual information /;(n)
between A and each factor B/ of length n of B. So, if I;(n) > 6 for some j,
then the sequences A and B are declared dependent; otherwise, they are declared
independent. There are two kinds of errors this test can make: declaring that the two
strings are dependent when they are not and vice versa. Aktulga et al. provide two

asymptotic estimates for those two errors reported as follows:
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® Independence: for a fixed threshold 6 > 0 and large =, the probability of error
is

P, | = Pr{declare dependence | independent strings} =

= Pr{I(n) > 6 | independent strings} ~ exp{—(6 In2)n}

® Dependence: if I is the true value of the mutual information, then for any fixed
threshold 6 < I, and for large n, the probability of error is

P, » = Pr{declare independence | dependent strings} =

. (I —06)
= Pr{l(n) < 6 | dependent strings} &~ exp —Tn
o}

where o2 is the variance of a given Gaussian distribution (see [12] for details).

For both probabilities of error to decay to zero for large n, the threshold 6 needs to
be strictly between 0 and /. So it is necessary to have some prior information about
the value of [ that indicates the desired level of dependence. In practice, however, it
is unreasonable to expect to be able to specify in advance the exact kind and level
of dependence one wishes to detect in the data. Because the probability of error of
the first kind P; ., only depends on 6 (at least for large n), and because, in practice,
declaring false positives is much more undesirable than overlooking potential de-
pendence, in experiments, one can set an acceptably small false-positive probability
€ and then, based on it, compute the threshold 6 by setting P, ; & €. For instance,
e = 0.001.

Aktulga et al. present experimental results for the problem of detecting statistical
dependency between different parts in a DNA sequence that indicate the appropria-
teness of their method.

16.3 COMBINATORIAL ALIGNMENT-FREE METHODS

This section is devoted to the presentation of some combinatorial alignment-free
methods. From the ones available in this class, we have chosen to describe those
that either already have been used for large-scale, genome-wide, studies or that
have the potential to perform well in those studies. Indeed, as research moves to-
ward “system-wide” views of biology, phylogenetic reconstructions based on entire
genomes become increasingly important. Moreover, there are cases in which phy-
logenetic reconstruction based on traditional methods, as maximum likelihood or
maximum parsimony, seem to be of limited applicability. For instance, in the study
of viruses in which different families share very few genes.

The first subsection presents a distance that is based on computing the aver-
age lengths of maximum common substrings of two strings. The second subsection
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presents a distance based on an extension to multisets of the well-known Burrows-
Wheeler Transform. The last subsection introduces a method that allows classifying
strings according to the local similarity of segments of a fixed length N that they
share.

16.3.1 The Average Common Substring Distance

This distance, introduced by Ulitsky et al. [76] and referred to as average common
substring (ACS), is deeply related to the Kullback-Leibler distance and has the great
potential to scale well to deliver phylogenies involving higher eukaryotic genomes.

Consider strings A and B. Forany i, 1 <i < n,letl(i) be the length of the longest
substring of A starting at position i that occurs also in B and let

i=1

L(A,B) =

The ACS distance is defined as

d(A,B)+d(B, A)

ACS(A, B) = >

where

logm logn

dAB) =170 " LA A

Ulitsky et al. use suffix arrays [41] to compute ACS efficiently, which turns out
to be efficient enough to support large-scale experiments. Nevertheless, recall that
a suffix array [41] is an array of integers giving the starting positions of suffixes
of a string in lexicographical order. The fundamental and most expensive step for
its construction, in particular in terms of main memory, is the sorting of the suffixes.
Although there has been quite a bit of investigation on space-conscious indexing data
structures [31,59], none of the available techniques seem to scale well with sequence
lengths to grant phylogenetic reconstruction for genomes in the gigabases.

It can be shown [76] that ACS is related to the relative compressibility of two
Markov induced distributions. As argued by Ulitsky et al., if A and B are two strings
generated by a pair of Markovian distributions p and g, then d(A, B) converges to
D(qllp) = —E,(log(g(X)), as the length of A and B goes to infinity.

To assess the performance of ACS, the authors compare it with some reference
methods [52,61,69] on benchmark datasets, reporting satisfactory results. Moreover,
they go a step further and show that ACS can be used to generate the genome phy-
logenomic forest for almost 2000 viruses and the proteome phylogenomic tree for
hundreds of species. For details on experiments, see Section 16.6.
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16.3.2 A Method Based on the EBWT Transform

Mantaci et al. [57] present a methodology that provides one of the first applications
of the well-known Burrows and Wheeler transform (BWT) [19] outside the realm of
data compression. Indeed, the authors define a new distance measure that is based on
an extension to multisets of the BWT. We first will describe the extended Burrows—
wheeler transform (EBWT) transform and the class of distances based on it. Given
two strings A and B, we say that

A fa)B <$Aw <lex Bw

where the relation <jx denotes the well-known lexicographic order and, for any
x € ¥*, x? is defined as x” = xxxx . ... Although the <, order is defined on infinite
words, by using the Fine and Wilf Theorem [33], Mantaci et al. show that one can
decide the mutual <, ordering between A and B in linear time because only their
lengths up to |A| + | B| — gcd(|Al, | B|) matter.

Now fix two colors, R for red and W for white. The application y defined by
y(A) = R, y(B) = W is the coloring of (A, B). Recalled that two words u# and v
in ¥* are conjugates if u = xy and v = yx for some x, y € ¥*, it is possible to
extend the coloring y to the set of all conjugates of A and B, Conj(A, B), as follows:
VC € Conj(A, B)

©) R if C has been obtained as conjugate from A
y =
W if C has been obtained as conjugate from B

Let M be the matrix with three columns and |A| + | B| rows in which for every
C € Conj(A, B), each row is of the form (C, L(C), y(C)), where L(C) denotes the
last letter of word C. Sort, now, rows in M by taking as sorting key the first compo-
nent of each row, using the <, order, and second sorting key the third component of
the triplets, y (C), by considering R < W. The second and third columns of M, M|,
and M, is what Mantaci et al. denote the y or EBWT(A, B). Table 16.1 presents an
example.

The colored EBWT is used in [57] to define a class of distance measures between
strings. In fact, if A and B are two primitive strings and P is a parsing of M,,, then
the distance of A and B associated to the parsing P is:

Dp(A, B) =) Imy — myy|
xeP

where n% (or ny,) counts the number of characters colored by R (or W) in the factor
x of M,,, x’s being the blocks of the parsing.

Notice that a distance measure exists for each parsing of M,,. These measures
are symmetric, but the property of identity of indiscernible does not age. In fact, if
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Table 16.1 Table representing the matrix M corresponding
to the y-EBWT(u, v), where u = abaababba and v = baabbaba.

i MC M; M,
1 aababbab b R
2 aabbabab b w
3 abaababb b R
4 abaabbab b w
5 ababaabb b w
6 ababbaba a R
7 abbabaab b R
8 abbababa a w
9 baababba a R
10 baabbaba a w
11 babaabab b R
12 babaabba a w
13 bababaab b w
14 babbabaa a R
15 bbabaaba a R
16 bbababaa a w

A = B, then it is sufficient to choose a parsing with blocks of odd length to obtain
Dp(A, B) > 0.

An important property proved in [57] is that a connection exists between the dis-
tance defined by these authors and the k-tuple count Euclidean distance. Indeed,
for any positive integer k < min{|A|, |B|}, it is possible to find a parsing P(k) of
M, (A, B), depending on k, such that Dpg) approximates Dy. In practice, the au-
thors give evidence that it is sufficient to choose a relatively “small” k (i.e., k = 10),
to obtain a good approximation.

Mantaci et al. also introduce another distance that represents a semimetric, being
symmetric and preserving the identity of indiscernible, but it not a metric because
the triangle inequality does not hold. This new distance, called the monotonic block
distance and denoted by Dpy, is defined as the distance of A and B associated to the
monotonic block parsing M (i.e., to the parsing that decomposes the column M, of
EBWT in blocks made each by equal characters).

Experiments in [57] prove that this new distance is a very good measure for mi-
tochondrial genome phylogeny. Note that, as is stressed for the ACS distance, also
here the suffix sorting step is a computational bottleneck.

16.3.3 N-Local Decoding

Although most alignment-free methods known in the literature can be seen as a
global synopsis of two strings, Didier et al. [29] introduce a method that captures
local similarity of sequences. These definitions are deeply investigated in [24] in
which the authors stress the importance of the method.
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We first introduce the notion of local decoding and then the dissimilarity functions
one can define on that notion.

Let S ={A, B, C, ...} be a set of sequences over the alphabet ¥. The jth site
of any string A in S, 1 < j < |A]|, is defined as the pair 0 = (A, j). By convention,
o+c=(A,j+c)forl <j+c<|Al

Given a positive integer N, the N-neighborhood of site 0 = (A, j) is the set of
sites (A, my) ... (A, My), where my = sup{l, j — N + 1} and My = inf{|A|, j +
N — 1} (i.e., the substring of A of length 2N — 1 centered in j and possibly truncated
at the ends of A). A string B of length N is in relative position | with respect to the
site 0 = (A, j) if B matches exactly the substring of A beginning at position j — [.

Two sites o and o’ are said to be directly related, o >~y o', if and only if a string
B of length N exists at the same relative position in the N-neighborhoods of o and
o’. This implies that o and o’ have to be occupied by the same letter. Two sites o and
o’ may be related directly to a third one o”, even if they are not directly related. This
depends on the relative positions in the N-neighborhoods of the sites in which their
associated strings coincide. Anyway, o, ¢’, and ¢” will be occupied by the same
letter.

It is natural to extend this definition as follows. Two sites o and ¢’ are related
o ~y o’ if there is a chain of direct relations that links them. This transitive closure
represents an equivalence relation among the set of sites of S and induces on it a
partition, called the N-local decoding of S.

It is convenient to recall that a suffix tree data structure is a trie in which all
substrings of a given string are stored. An example is given in Figure 16.1. Its con-
struction takes linear time, and it can be stored in linear space. The interested reader
can find an excellent introduction to suffix trees and its applications in [41].

Didier et al. also present an algorithm for computing the N-local decoding of a
given set S. Their construction relies on that of the suffix tree associated to the string
obtained by catenating sequences of S through special symbols not belonging to the
alphabet X. Leaves in that suffix tree are indexed by the sites of S (and the external
symbols). A node of depth N is a common ancestor of two leaves o and oy if they
are the starting site of a common word of length N (i.e., if 0 >~y o¢”). Therefore, the

missis
sippi$
ssippi$

ssippi$

Figure 16.1  Suffix tree of word mississippi$.
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described suffix tree yields a very fast procedure for the computation of the N-local
decoding.

Based on N-local decoding, it is possible to define two dissimilarity scores. Let
A and B be two strings, s; be any character in both A and B, and niA (or. nlB ) be the
number of occurrences of s; in A (or B). The similarity between A and B is given by
the quantity

s A B
sim(A, B) = —fo,mm(n" 1)
min(|Al, | B|)
that is, the ratio between the smallest number of occurrences of s; in the two se-
quences and the length of the shorter sequence.
Now, let {A", BV} represent the N-local decoding of {A, B}, the N-local dissim-
ilarity score between A and B is given by

distLy(A, B) = 1 —sim(A", BY)

Moreover, by denoting with A[N] (or B[N]) the sequence of successive overlap-
ping strings of length N of A (or B), it is possible to define another distance, the
N-block dissimilarity score between A and B, as

distBy(A, B) =1 —sim(A[N], BN])

Didier et al. evaluate the accuracy of these two dissimilarities over several
datasets. They obtain essentially the same results with respect to more realistic align-
ment methods. Moreover, they compare their results, in the case of N = 10, with the
ones obtained with another alignment-free method, the one by Pham and Zuegg [67].
This last dissimilarity, based on short words, shows lower correlation with the refer-
ence than distL o and distB}. N-local decoding also has been applied to construct
trees for the subtyping of Human Immunodeficiency Virus (HIV) and Simian Im-
munodeficiency Virus (SIV) variants [28].

16.4 ALIGNMENT-FREE COMPOSITIONAL METHODS

In this section we describe some alignment-free methods based on the notion of sub-
word composition of sequences, which, thanks to extensive experimentation, have
become significant for biological data mining. The first subsection is devoted to illus-
trate the k-string composition approach, as described in [69]. The second subsection
is devoted to a generalization of that method introduced in [86]. It also briefly de-
scribes another variant [56] that is supposedly more robust and efficient in perform-
ing sequence comparison with respect to the previous methods. The third subsection
covers algorithmic issues relating to the efficient implementation of the method de-
scribed in Section 16.4.1.
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16.4.1 The k-String Composition Approach

Qi et al. [69] propose a method to infer evolutionary relatedness of microbial or-
ganisms that is based on the k-word frequencies taken over the alphabet of amino
acids. They also show that the method can applied be successfully to phyloge-
netic studies of entire proteomes. Although analogous methods already had been
proposed with some success in the literature, the novelty of their approach is to
account for background letter probability distributions to factor out the amount of
information in a sequence caused by “evolutionary pressure” as opposed to ran-
dom processes. Moreover, the choice of the domain of application is also well
motivated. Indeed, the authors propose determining an evolutionary distance be-
tween two organisms by counting the olipeptide strings of a fixed length k in
the collection of their protein sequences. They observe that the mutation rates
are higher when one considers noncoding segments in the genomes. So, trans-
lated amino acid sequences from coding regions of DNA are considered more sig-
nificant to obtain phylogenetic relations. We now provide a formal definition of
their method.

Consider A and a k-word ¢ = «ja5 . . . ax. The probability of occurrence of « in
Ais

where f denotes the number of occurrences of « in A.

When A is a biological sequence, the probability distribution induced by p over
¥ accounts for random mutations as well as effective evolution. To emphasize the
selective diversification during evolution rather than the random mutations, the au-
thors propose to subtract a random background from p(«). That is done by consid-
ering the probability of appearance of a k-word in terms of (k — 1)-words, where the
probability of those latter are computed via a Markovian background model of order
k — 1. That is,

plajon . ..ax_1)plazas . ..ax)
plonas ... ox_1)

pPe) =

Notice that the probability of a k-word now depends on the probability of words
of length k — 1 and k — 2, as generated by the background Markov model.

The difference between p and p° gives the real information about the evolutionary
process. Now, for each k-word «, let

p(@) — p(@)

if p° #£0
Fa(a) = pP(e) s

0 otherwise
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Next, fix an arbitrary order of the words in X* and refer to the ith word in it simply
as i. Finally, the composition vector (CV) for A is (F4(1), Fa(2), ..., Fa(N)), where
N = |Z|*.

Given two strings A and B and the respective CVs (Fa(1), Fa(2), ..., F4(N))
and (Fg(1), Fgp(2), ..., Fg(N)), the correlation between A and B is defined as
follows:

S, Fa(i) x Fi(i)
(CN, FaG? x Y, Fp?)?

C(A,B) = (16.1)

Because C varies between —1 and 1, the distance between A and B is defined as
follows:

D(A. B) = 1-C(A, B)
2
Qi et al. have used such a distance to build phylogenetic trees of 109 organisms.
Note that k is a parameter of the method, and in fact Qi et al. have studied how
the topology of the phylogenetic tree they build varies with k. Remarkably, their
experiments show that the topology of the tree exhibits less and less variation as k

increases. Moreover, for the taxa they examined, such a topology becomes stable for
k=5 and6.

16.4.2 Complete Composition Vector

This method, introduced in [86], integrates the strategy described in the previous
subsection and the notion of complete information set. The latter was proposed by Li
et al. [54] and consists of considering the occurrence probability p(ojs . . . o) for
each k-word and for each k, 1 < k < n. Each of those probability distributions gives
the kth information set U* for the sequence A. The collection of all information sets
(U', U?,...,U") is referred to as the complete information set of A.

The introduction of the complete composition vector (CCV for short) is motivated
by a problem in the CV. Indeed, the subtraction stage disconnects the kth composi-
tion vector and the k — 1th one. The approach here provides the lost information
by using a collection of CVs (Uk, Uk+1 . UR), where k| < k, are two a priori
fixed bounds on the word sizes. Those values are determined experimentally, and one
appropriate setting seems to be k; = 3 and k, = 7.

Given a word size range [k, k»], for two strings A and B, the respective CCVs are
(AR, AR+ AR and (BR, BRH .., B*). The correlation C(A, B) between
A and B is defined as follows:

. N ‘
Zf:k, Yo f <&

C(A s B) = - - ;
(R SN P x T Y g
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where fl.j and gij are the ith entry in the jth CVs of A and B, respectively. The
distance between A and B is defined as follows:

pn, =i LECAD)

The method has been applied to infer evolutionary information for several biological
datasets.

Although the CCV distance gives finer evolutionary information than its CV
counterpart, it requires nontrivial computational resources (i.e., both time and mem-
ory). To address that problem, an improved version of the CCV distance is provided
in [56]. The main improvement consists of constructing the CCVs by using the fre-
quencies of all k-words normalized via expectation and variance:

fla) = E[f(a)]
/ Var[ f ()]

It is somewhat unfortunate that such a suggested speed-up has very serious draw-
backs. In fact, the computation of expectation and variance are given for the case in
which the background model from which a random string is generated is iid. This
is a serious limitation because there is no account of the so-called “context depen-
dencies” within a string. Such a shortcoming can be solved with the use of a back-
ground Markov model, but in that case, the computation of expectation and variance
are highly nontrivial tasks, both mathematically and computationally, as briefly dis-
cussed in Section 16.5.1.

16.4.3 Fast Algorithms to Compute Composition Vectors

A straightforward computation of distances based on CVs takes time exponential
in k, severely limiting their application range. It is also fortunate, as noticed and
exploited by Apostolico and Denas [16], that those distances can be computed in time
linear in the length of the input sequences via the use of suffix tree data structures.
Apostolico and Denas compute a generalization of the CV distance in which all
k-words, up to a fixed length K, contribute to the distance. Because the algorithm is
a nearly standard application of suffix trees, we limit ourselves to mention its main
points.

A variant of a suffix tree is built in which all strings of length up to K are consid-
ered. This means that the tree is truncated at depth K. Intuitively, the computation
of the distance between two sequences A and B is done by considering their respec-
tive truncated suffix trees, drawn in different colors and then superimposed. Note that
only the strings occurring in both A and B contribute to the numerator of the distance
formula (see Formula (16.1)). Those words are exactly the ones that can be found on
paths and nodes bearing both colors. The words found on a path with only one color
contribute to only one sum appearing in the denominator (see Formula (16.1)). There
are also some words that do not appear in the sequences but could contribute to the



340 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

values of the composition vectors because their substrings of length k — 1 and k — 2
appear in either or both of A and B. Such words are referred to as chimeral words
in [16]. They are words of the form avb, where avb does not appear in the considered
sequence but both av and vb do. It is interesting to notice that chimeral words corre-
spond to a well-known combinatorial notion known as minimal forbidden words [58].
Besides the notion of chimeral words, also the notion of maximal and nonmaximal
word are of use. In particular, a word is maximal when it is impossible to extend it by
a character without losing some of its occurrences. The contribution of such words to
the distance between two sequences can be computed in linear time. Indeed, a word
is maximal if and only if it ends at a node of the truncated suffix tree. Its frequency
count can be computed in constant time, via a bottom-up visit of the tree. Therefore,
the contributions of maximal words to the composition vectors can be computed in
overall linear time. The case of nonmaximal words can be handled without increas-
ing that time complexity. Indeed, a nonmaximal word is a word terminating in the
middle of an arc of the suffix tree, and therefore, it has the same frequency count
as its shortest extension that is a maximal word. Also the case of chimeral words is
considered, and also in this case, the computation of the contribution given by those
words to the distance formula can be done in linear time.

16.5 ALIGNMENT-FREE EXACT WORD MATCHES METHODS

Among the plethora of alignment-free methods that have been developed, the one
nicknamed D, stands out for its mathematical elegance as well as its usefulness.
Indeed, it is among the few measures that lends itself to rigorous mathematical stud-
ies, and it is a standard for Expressed Sequence Tag (EST) clustering and database
searches as well as ab initio discovery of cis-regulatory modules. The interested
reader can find references to both its introduction and its initial uses in [55], whereas
this section focuses on an outline of its main statistical properties and relevant ex-
tensions. The remainder of this section is organized as follows. The first subsection
formally defines D, and presents some of its statistical properties useful for database
searches. Subsection 16.5.2 presents a generalization of D, as well as a procedure to
determine experimentally the best word size k for its use. Although that procedure
has been proposed for D», it is fully general and can be useful for other methods
based on k-words. Finally, Subsection 16.5.3 contains a variant of D, referred to as
D;z, which offers several advantages with respect to D,. This new measure is a de
facto z-score indicating how many standard deviation units the computed value of
D, is away from its expected value.

16.5.1 D, and its Distributional Regimes

The D, measure is defined as the number of k-word matches between the two se-
quences A and B, including overlaps. Formally it is expressed as follows:

Dy(A, B) = X jer Y, ) (16.2)
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where Y|; ;) is an indicator variable equal to one if and only if the substring of
length & starting in position i of A is equal to the one starting in position j of B,
I={G,j): 1<i<nandl <j<m},withn=n—k+1landm=m—k+ 1.
D, can be computed in linear time, with the use of a suffix tree [41], for any word
size. Let N4 be the word count vector of A. It is obtained by listing, in lexicographic
order, the frequency counts f(a) of all k-words in X*. N is defined analogously.
Then, it can be shown easily that D>(A, B) is equal to the inner product of those two
vectors.

For any similarity/distance function F between two strings to be a valuable tool
for biological data mining and, in particular, database searches, it is essential to have
associated it with methodologies that establish how “surprising” or “unusual” the
value F (A, B)is (i.e., whether it is significantly different than what one would expect
if A and B were correlated randomly). A good and well-known example is given
by the BLAST program in which the e value associated to an alignment indicates
how likely it is for that alignment to have occurred by chance. Unfortunately, those
methodologies are rare because of the mathematical difficulties associated with the
task of deriving them. In any case, a first step toward that goal, which for D; is still
open, is to identify the distributional regime of F (i.e., when F is considered as a
random variable one would be interested to know, for instance, whether ' behaves
according to a Poisson or a normal distribution. In regard to D, investigation into
those issues has been initiated in [55], with additional results presented in [45]. A
summary follows.

Assume that the two sequences have been obtained by means of an iid background
model. Then, the following results hold:

(a) When the letter distribution is not uniform (i.e., all letters are not equiproba-
ble, and k > 2log,, n), the distribution of D, has a compound Poisson asymp-
totic behavior, where b is a rather complex function of the letter probabilities
(see [55] for details).

(b) Again, when the letter distribution is not uniform and k < 1/6log, n, the dis-
tribution of D, has a normal asymptotic behavior.

(c) When the letter distribution is uniform and k = @ log, n + C,0 < o < 2 and
C constant, the distribution of D; has a normal asymptotic behavior. We point
out, however, that there are example from Lippert et al. [55] showing that
for uniform letter distributions, the distribution of D, is neither Poisson nor
normal.

Apart from the technical merit of the results just outlined, they also have a great
practical significance. Indeed, they indicate that as the word size changes, the beha-
vior of the random variable D, changes, implying that significance tests on its value
must take into account the word size. It is unfortunate that no full characterization
of those distributional changes, as a function of k is yet available for D,. However,
there are experiments indicating that the “boundary” between the Poisson and the
normal distributional regimes (i.e., (a) and (b)), is close to k = 2log, n [46].
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16.5.2 An Extension to Mismatches and the Choice of the Optimal
Word Size

A straightforward extension of D, to approximate k-word matches has been pro-
posed in [35]. Fix an integer ¢+ > 0 and let

Dy(A, B) = X jer Yi ) (16.3)

where the notation is as in Equation (16.2), except that Y (i, j) is equal to one if and
only if the two substrings involved in the comparison have a Hamming distance of
at most ¢. The distributional regimes of D; have been studied in [35,46]. In terms
of theoretic results, state of the art is far from an even partial characterization of the
distributional regimes of D) along the same lines of points (a)-(c) of the previous
subsection. However, with the use of Kolmogorv—Smirnov tests, experiments show
that D} is in good agreement with the normal distributions for various word sizes.
Foret et al. [35], in their investigation of the mathematical properties of D), also
proposed a methodology to estimate experimentally the optimal word size for the
use of D;. That is, a method to estimate the value of k that would capture best the
similarity among sequences when evaluated by means of Dj. Although hardly dis-
cussed, such an estimation is a key step for most measures presented in this chapter.
As we bring to light here, it is fortunate that the method proposed by Foret et al. for
Dj is general, elegant, and particularly simple. The following procedure presents it
in terms of a generic similarity function Fj, where k is a parameter of the function
indicating the word size it uses. It takes as input F', a “seed” string Ag of length n
and two integers g > 0 and kp,x, Whose role is specified in the procedure. It returns
Kopt, a (possibly singleton) set of word sizes for which F is “most discriminative.”

Algorithm 16.1 K-OPT (F, Ao, g, kmax, Kopt)

1. Generate a gold standard dataset. Generate an increasing sequence of in-
tegers y;, 1 <i < g, in the range [1, 100]. Generate a set of sequences A;,
1 <i < g, such that each A; is at Hamming distance L%J from Ay, (i.e.,
Ap and A; “differ” by y;%). Let RANK( be a vector of length g such that
RANKG[i] =i (i.e., it is the ranking of the strings A; according to their dis-
similarity from Ay).

2. Compute dissimilarity rank vectors using F. For 1 < k < ky,,x, compute
Fr(Ap, A;), 1 <i < g, and sort that sequence in decreasing order. Store in
RANK, the permutation of 1, 2, - - - , g so obtained.

3. Estimate k. For 1 < k < kp,y, perform a Spearman rank correlation test be-
tween RANK( and RANK. Return as K, the set of values of k for which the
Spearman correlation with RANKj is maximum.

A few remarks are in order. The seed sequence Ag either may be generated at
random, or it may be chosen as a good “representative” of a particular application
domain (e.g., coding regions). The value of g must be “large enough” so that the
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Spearman correlation test is reliable (small p-value). That is usually achieved for g
in the hundreds. Hamming distance can be substituted with any other kind of distance
to generate the gold standard dataset. For instance, for DNA sequences, Foret ef al.
use the Kimura model of evolution [49] to produce a gold standard dataset from the
seed sequence of Human chromosome one. In practice, Algorithm 16.1 is really to
be used as a Monte Carlo sampling strategy in which, for various seeds and sequence
length, one tries to obtain a consensus set, possibly a singleton, Kop.

The results reported by Foret ef al. regarding D} show that Koy is remarkably
stable across sequence length and ¢. For instance, a value of k = 7 seems to be the
best choice for + = 0 and sequence length in the range [400, 3000].

16.5.3 The Transformation of D, into a Method Assessing the
Statistical Significance of Sequence Similarity

Despite the efforts to characterize the statistical properties of D,, the state of the art
gives only a partial picture with some serious limitations. For instance, all results
mentioned in the previous two subsections apply only to the iid case in which both
sequences are derived from the same memoryless probability distribution. Moreover,
there is no measure of how significant a computed value of D, is.

To address those shortcomings, Kantorovitz et al. [47] have introduced a variant
of D5, referred to as D,z, which offers several advantages with respect to D,. First,
for significance analysis purposes, it is not necessary to assume that the two strings
involved in the comparison come from the same iid probability distribution. Indeed,
one can assume that the background models associated with the strings are two dif-
ferent Markov chains of finite order. Moreover, the new measure is a de facto z-score
indicating how many standard deviation units the computed value of D; is away from
its expected value. Therefore, very low or very high values of D,z indicate that the
similarity of the two strings involved in the comparison is “surprising.” Formally:

D>(A, B) — E[D
Dyz(A, B) = 2 6[)1)2] D21 (16.4)

where E[D,] and o[D;,] are the mean and standard deviation of D, with respect to
two background probability models generating A and B, respectively.

For the D,z measures to have the formal rigor of a z-score, one needs to choose
background probability models so that D; is distributed normally. For iid background
models, results outlined in Section 16.5.1 are useful here, although they do not cover
the entire range of word sizes. When the background models are Markov chains
of finite order, Kantorovitz et al. resorted to numeric simulations to show that even
when the length of the sequences is as short as 400, D, approximates well the normal
distribution, even for finite-order Markov chains.

Another relevant aspect concerning D,z is the computation of its mean and vari-
ance. For iid, those formulas are easy to derive and lend themselves to efficient
computation via algorithms with time complexity quadratic in k. As for Markov
background models, both quantities can be computed in O(|X|*) time, although the
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derivation of those algorithms involves some very sophisticated mathematical tech-
niques related to the computation of the expectation and variance of random strings.
We provide an outline next for the expectation only, limiting ourselves to mention
that the efficient algorithm for the computation of the variance makes key use of deep
approximation results concerning an infinite series of stochastic matrices because of
Kleffe and Borodovsky [50].

Let M4 be a Markov chain of order one from which A is generated. Let p;‘ (c)
be the probability that ¢ occurs at position j of A. As justified in [50], one can
assume that p]*.‘(c) is independent of j (i.e., one can assume that M 4 has a character
stationary probability distribution pM+). Now, for any given word «, its probability
p™(a) of occurrence in A can be written as pM (o) pM4(ar), where pMa(a) is the
same occurrence probability but conditioned on the first symbol being alpha,. Such
a probability can be computed from the state transition probability matrix of M.
Using the same notation for B and linearity of expectation, the problem of computing
E(D>) can be reduced to that of computing E[Y; ;], as follows:

E[Y; 1= Pr(Yi; = 1) = Zgexs p"* (01) p2* () p™* (1) p2"* () (16.5)

One last remark is in order. For each string, its background Markov model is
learned from the string itself. That is done via maximum likelihood estimates of the
state transition probability matrix. Such an approach of deriving “locally” the back-
ground model for a string offers some advantages over a single model for when the
family of strings one needs to model does not have homogeneous statistical prop-
erties, as in the case of metazoan genomes that have great local variability in base
composition.

16.6 DOMAINS OF BIOLOGICAL APPLICATION

In this section, we briefly present the computational biology domains in which the
distances previously described have been applied. In fact, we believe that to eval-
uate the effectiveness of such measures for large-scale biological investigations, it
is important to show the biological contexts in which they have been experimen-
tally validated. Most biological datasets used in the experiments comprise proteomic
or genomic sequences, mitochondrial genomes and proteins, as summarized in the
following:

¢ Phylogeny: information theoretic and combinatorial methods [26,28,57,76,80]
* Phylogeny: compositional methods [16,69, 86]

e CIS regulatory modules [26,47]

* DNA sequence dependencies [12]

In the following subsections, we describe the main experimental contributions of
the cited papers.



16.6 DOMAINS OF BIOLOGICAL APPLICATION 345

16.6.1 Phylogeny: Information Theoretic and Combinatorial Methods

Phylogeny via alignment-free methods has been the object of considerable investi-
gation (e.g., [15,20,22,26,28,30,52,53,57,61,69,76,80]). Among those methods,
here we concentrate on the ones we have examined in this chapter [26,28,57,76,80]
and that present phylogenetic trees generated by using either combinatorial or infor-
mation theoretic distances. For the convenience of reader is we group experiments
according to the nature of the datasets that have been used.

In the first part of the experimental assessment of the ACS measure, Ulitsky et al.
[76] use the same datasets of proteomic and genomic sequences of [61, 69]. The
datasets consist of sequences coming from 75 species and the reference phylogenetic
tree (the gold standard) is taken to be a maximum likelihood tree based on the small
ribosomal subunit rRNAs [23]. The Robinson—Foulds measure, a statistical standard
that indicates the “distance” between two trees, is used for evaluation. Ulitsky et al.
report that the trees obtained with the use of ACS are closer to the reference tree than
the ones obtained by other methods, in particular, the ones in [61,69]. It is interesting
to report that, for genomic sequences, the improvement of ACS compared with [69]
is only about 2%, whereas for proteomes, it is about 17%.

Mitochondrial genomes have been used extensively to assess the quality of phy-
logenetic methods. In particular, Ulitsky et al. use ACS on a set of mitochondrial
genomes of 34 mammalian species, which is the one previously used by Li ez al. [52].
The results between the two methods are comparable but ACS is faster than the
method by Li et al.

Dai et al. extract a dataset of 29 mammalian species, of which five are rodents,
from the mithocondrial one studied in [52,61]. The phylogenetic tree constructed by
using their measure S,.k.r is consistent with biological knowledge and state of the
art [20, 52, 61]; in particular, marsupials and monotremes are grouped close to each
other as well as the five rodents. Three nonmurid rodents (squirrel, dormouse, and
guinea pig) are separated from murid rodents, whereas primates are related closely
to each other, and finally, ferungulates are grouped in a branch and clustered with
primates. Moreover, their method reconfirms the hypothesis of the grouping (rodents,
(primates, ferungulates)). These results confirm that S,.k.r can be considered another
efficient distance measure for mithocondrial phylogenetic analysis.

Finally, Mantaci et al. [57] also present experiments on phylogenies of mitochon-
drial genome. In particular, they use the mtDNA genomes of 20 mammals from
GenBank. The results they obtain are very close to the ones derived with other ap-
proaches [20, 52,53, 61]. Also in this case, the resulting phylogeny confirms the hy-
pothesis of grouping of the placental mammals (rodents, (primates, ferungulates)).

Most methods described in this chapter become of very little use when the datasets
become large. A remarkable result by Ulitsky et al. is to show that ACS is a substan-
tial step forward for large phylogenetic studies. Indeed, they show that it is possible
to generate a reliable phylogenetic forest for a large dataset of viral genomes. In par-
ticular, they use 1865 viral genomes, whose superfamily is known for 1837 of them.
A study of the classification so obtained shows that their phylogenetic reconstruction
is mostly in agreement with the accepted taxonomy.
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Two other phylogenetic studies involving viruses are also worth mentioning.
Wang and Zheng [80] select 25 complete virus genomes, 12 coronaviruses from the
three isolated typical groups, 12 SARSCoV (severe acute respiratory syndrome coro-
navirus) strains and a torovirus. They construct phylogenetic trees using weighted
sequence entropy distances (d|, d», d3) as well as some other classical distance mea-
sures (i.e., euclidean distance, the linear correlation coefficient, the cosine function,
and the information-based similarity index). Their experiments show that their dis-
tances are not inferior to those classical methods. Didier et al. [28] evaluate their
method on HIV and SIV. The tree topologies they obtain agree with those obtained
by a combination of standard methods present in the HIV Sequence Compendium.

Finally, Ulitsky et al. present a phylogenetic tree based on all existing proteomes
in the NCBI database, release 2006. The dataset that the authors consider consisted of
19 proteomes of Archea, 161 proteomes of Bacteria, and 11 proteomes of Eukaryota.
The ACS method leads to a tree in which the species are split up correctly in the three
main domains, except for two archean species that do not belong to their domain
branch. The method accuracy is good if considering genera, families, and classes,
whereas it decreases for higher taxonomyc groups.

16.6.2 Phylogeny: Compositional Methods

In this subsection, we present some experimental results concerning the alignment-
free compositional methods presented in Section 16.4. These methods, based on the
notion of subword composition of sequences, have become significant for biological
data mining thanks to extensive experimentation. In particular, they have been tested
extensively on protein sequences [16, 69, 86].

Wu et al. [86] apply their method to infer the phylogeny footprint of 64 verte-
brates, with 13 homologous proteins for each species, and 99 microbes. In particular,
they show that the constructed phylogeny on the first dataset is largely consistent
with the taxonomy tree. In fact, all perissodactyls, carnivores, cetartiodactyls, ro-
dents, primates, noneutherians, birds, reptiles, bony fish, and cartilaginous fish are
grouped together correctly. Concerning the second dataset, each of the 99 microbes
is represented by its complete set of protein sequences. By comparing the CCV-based
phylogeny and the taxonomy tree, they show that they are similar in most branches.

Qi et al. [69] use their distance to build phylogenetic trees of 109 organisms,
including 16 Archaea, 87 Bacteria, and 6 Eukaryota. Qi et al. study how the topology
of the phylogenetic tree they build varies with the parameter k. Remarkably, their
experiments show that the topology of the tree exhibits less and less variation as
k increases. Moreover, for the taxa they examine, such a topology becomes stable
for k = 5 and 6. In general, their phylogenetic trees support the small subunit (SSU)
rRNA “tree of life” in its overall structure and in many details. Moreover, even if their
trees and the SSU rRNA tree are based on nonoverlapping parts of the genomic data,
namely, the RNA segments and the protein-coding sequences, and they are obtained
by using entirely different ways of inferring distances between species, then they
lead to basically consistent results.

Apostolico and Denas [16] report experiments on a dataset that consists of two
Eukaryota, four Archea, of which two Euryarchaeota and two Crenarchaeota, four
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Bacteria, of which three Proteobacteria and one Thermotogae. The distance com-
putations based on all k-words produce unreliable trees as soon as k > 7. At low
level taxa (i.e., lower levels of classification discrimination), trees based on fixed-
length k-words and maximal k-words are consistent, as they both correctly group
together Eukaryota, Proteobacteria, Euryarcheota, and Crenarchaeota. However, at
higher level taxa, the distance based on maximal k-words seems to be more stable.
In fact, it groups Euryarcheota and Crenarchaeota in all cases, whereas with fixed-
length k-mers, this holds only for £ < 9. All methods fail grouping Thermotogae
with Proteobacteria, a deficiency that might be attributable to the absence of other
organisms from the dataset.

Finally, Apostolico and Denas consider a sample dataset comprising seven Firmi-
cutes, one Fuso, one Thermotogae and one Aquificae. Even if their experiments are
on this limited dataset, it seems that their distances based on fixed-length k-words
perform well for moderate values of k, whereas it seems to loose stability with “dis-
tant” organisms and resolution with “close” ones for larger values of k.

16.6.3 CIS Regulatory Modules

Regulatory sequence comparison can prove vital for the ab initio discovery of cis-
regulatory modules (CRMs) with a common function. A CRM may be defined as
a contiguous noncoding sequence that contains multiple transcription factor bind-
ing sites and drives many aspects of gene expression profiles. If a set of coregulated
genes in a single species is given, then it is important to find in their upstream and
downstream regions (called “control regions”) the CRMs that mediate the common
aspect of their expression profiles. The control regions may be tens of Kbp long for
each gene (especially for metazoan genomes), whereas the CRMs to be discovered
are often only hundreds of bp long. One therefore must search in the control regions
for subsequences (the candidate CRMs) that share some functional similarity. The
CRM search algorithm thus requires a method that can discern functional similarity
among candidate CRMs based on their sequence similarity. Also, because the dif-
ferent CRMs are only functionally related, and not orthologous, it is useful that the
comparison method is alignment-free [47].

Papers in this chapter that make evaluations on functionally related regulatory
sequences are essentially [26,47]. Both papers contain experiments on the following
seven datasets, well studied by Gallo et al. [36] and accurately described in [47]:

e FLY BLASTODERM: 82 CRMs with expression in the blastoderm-stage em-
bryo of the fruitfly, Drosophila melanogaster

e FLY PNS: 23 CRMs (average length 998 bp) driving expression in the periph-
eral nervous system of the fruitfly

e FLY TRACHEAL.: 9 CRM:s (average length 1220 bp) involved in the regulation
of the tracheal system of the fruitfly

e FLYEYE: 17 CRMs (average length 894 bp) expressing in the Drosophila eye

e HUMAN MUSCLE: 28 human CRMs (average length 450) regulating muscle-
specific gene expression
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e HUMAN LIVER: 9 CRMs (average length 201) driving expression specific to
the human liver

e HUMAN HBB: 17 CRMs (average length 453) regulating the HBB complex

Kantorovitz et al. perform extensive tests with the D, z-score on the listed
tissue-specific families of known enhancers. Their results show that the D, z-score
accurately can discriminate functionally related CRMs from unrelated sequence
pairs, and orthologous CRMs from orthologous nonregulatory noncoding sequences.
Moreover, they also compared the D,z with five other scores (euclidean distance,
empirical relative entropy, van Helden’s Poisson scores [77], Pearson’s correlation
coefficient, and cosine function). All scores are run with word lengths k = 5, 6. The
D, z-score and the Poisson score are run with background models of Markov order
0, 1, 2. The authors report that the D, z-score outperforms all other scores in each
of the datasets analyzed, with the Poisson score being the next best method in five
datasets.

Analogous experiments are presented in [26], in which Dai ef al. make use of the
statistical measures they introduce to evaluate whether functionally or evolutionary
related sequence pairs are scored better than unrelated pairs of sequences randomly
chosen from the genome. They analyze the seven datasets described and compare
similarity measures that satisfy the symmetry condition. The measures they consider
are: S.k.r, S>.k.r, euclidean distance, empirical relative entropy, D,, Dz, SImMM,
Pearson’s correlation coefficient, cosine function, and similarity measures based on
alignment, which are NeedlemanWunsch for global alignment or SmithWaterman
for local alignment. All statistical measures based on k-word distributions run with
k-word from two to eight, and the similarity measures based on Markov model run
with Markov order r from zero to two. The experiments on these seven datasets show
that S,.k.r performs significantly better than other measures in six experiments be-
cause it incorporates the k-word information into the Markov model directly. It is
important to point out that, because the different CRMs are only functionally re-
lated and not orthologous, the CRM search algorithm requires a method that can
discern functional similarity among candidate CRMs based on their sequence sim-
ilarity. ROC analysis on the seven datasets shows that the alignment-free methods
give better results than alignement-based ones in the evaluation of functionally re-
lated regulatory sequences.

16.6.4 DNA Sequence Dependencies

This subsection is devoted to describe some experimental results presented by Ak-
tulga et al. in [12]. The focus of their work is on the development of reliable and pre-
cise information-theoretic methods that determine whether two biological sequences
are statistically dependent or not.

They make two different kinds of experiments based on the application of the
empirical mutual information. More precisely, they first show that this notion can
be used effectively to identify statistical dependence between regions of the maize
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zmSRp32 gene [37], which belongs to a group of genes functionally homologous to
the human alternative splicing factor/splicing factor 2 (ASF/SF2). This gene may be
involved in alternative processing (splicing) of pre-mRNA transcripts. Second, the
authors show how this methodology can be applied to the problem of identifying
short tandem repeats (STRs) in genomic sequences, which represents an important
task in genetic profiling.

Concerning the first experiment, Aktulga et al. present their empirical findings for
the problem of detecting statistical dependency between different parts in a DNA se-
quence by making extensive numerical experiments carried out on certain regions of
the maize zmSRp32 gene. To understand and quantify the amount of correlation be-
tween different parts of this gene, they compute the mutual information between all
functional elements including exons, introns, and the 5" untranslated region (5’UTR).
Their findings show the existence of a biological connection between the 5'UTR in
zmSRp32 and its alternatively spliced exons. The UTRs are multifunctional genetic
elements that control gene expression by determining mRNA stability and efficiency
of mRNA translation. Like in the zmSRp32 maize gene, they can provide multi-
ple alternatively spliced variants for more complex regulation of mRNA translation.
Therefore, they observe that the maize zmSRp32 5'UTR contains information that
could be used in the process of alternative splicing. This is stressed by the fact that the
value of the empirical mutual information between 5'UTR and the DNA sequences
that encode alternatively spliced elements is significantly greater than zero.

Concerning the second experiment, Aktulga et al. examine the performance of
empirical mutual information statistic on the problem of detecting STRs in genomic
sequences. STRs, usually found in noncoding regions, are made of back-to-back
repetitions of a sequence that is at least two bases long and is generally shorter than
15 bases. Their short lengths let STRs survive mutations well.

Many algorithms exist for the problem of detecting STRs in long DNA strings
with no prior knowledge about the size and the pattern of repetition [41]. These
algorithms mostly are based on pattern matching, and they all have high time com-
plexity. Moreover, when the query string is a DNA segment that contains many er-
rors resulting from mutations, the problem becomes even harder. To overcome these
limitations, the authors propose a statistical approach using an adaptation of their
method. More precisely, results in the paper prove that their methodology is very
effective at detecting the presence of STRs, although at first glance, it may seem
like it cannot provide precise information about their start-end positions and their
repeat sequences. Their method can be seen as an initial filtering step that has to be
combined with an exact pattern matching algorithm.

16.7 DATASETS AND SOFTWARE FOR EXPERIMENTAL
ALGORITHMICS

In this section, we present datasets that we believe to be of interest for comparative
analysis of similarity measures, as they are used for classification and phylogenetic
studies. Indeed, several benchmark datasets of nonhomologous protein structures
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and genomes have been assembled in the last few years (e.g., [21,71,75, 84]), by
researchers in this area, but there is not a common line in the use of them. There-
fore, we limit our presentation to a kernel of datasets that seem to be used the most
for benchmarking purposes. Moreover, although most papers in this area report ex-
perimental results, there are very few publicly available software libraries that one
can use for benchmarking and comparative studies. We provide the ones that are
prominent in this area.

16.7.1 Datasets

Among several datasets of nonhomologous protein structures we have identified the
Chew-Kedem dataset, the guanine nucleotide-binding proteins (G-proteins), subsets
of the Clusters of Orthologus Groups (COG) database and the GH2 family. We also
have included in this presentation a benchmark dataset of 15 complete unaligned
mitochondrial genomes, referred to as the Apostolico dataset. Some details about
them are provided next.

Note that for datasets of protein structures, it is possible to consider several alter-
native representations for the structure. Besides the standard representation of amino
acid sequences in FASTA format [63], it is also possible to use a text file consisting
of the ATOM lines in the Protein Data Bank (PDB) entry for the protein domain, the
topological description of the protein domain as a TOPS string of secondary struc-
ture elements [34, 39, 82, 83], and the complete TOPS string with the contact map.
The TOPS model is based on secondary structure elements derived using DSSP [44]
plus the chirality algorithm of [83].

The Chew-Kedem dataset [21] is a de facto standard in this area as it has been used
as a benchmark in many studies related to this chapter (e.g., [51]). It consists of 36
protein domains drawn from PDB entries of three classes (alpha-beta, mainly-alpha,
mainly-beta), which are listed as follows.

e alpha-beta: 1aa900, 1chrAl, 1ct9Al, 1gnp00, 1qraA0, 2mnrO1, 4enlOl,
5p2100, 6g21A0, and 6xia00

* mainly beta: 1cd800, 1cdb00, 1ciSA0, 1hnf01, 1neu00, 1qa9A0, and 1qgfoAO

* mainly alpha: 1ash0O, 1babAO, 1babB0, lcnpAO, leca00, 1flp00, 1hlb00,
1hlmO00, 1ithA0, 1jhgAO0, 11h200, 1mba00, 1myt00, 2hbg00, 21hb00, 2vhb00,
2vhbAO, 3sdhA0, and 5mbn00

The files of this dataset are provided at [6]. For the classification of protein do-
mains, CATH classification of proteins [62] is assumed to provide the gold stan-
dard [2].

Good benchmark datasets to assess the accuracy of similarity measures and clas-
sification algorithms in grouping protein sequences according to their functional an-
notation and biological classification are based on the phylogenetic classification of
proteins encoded in complete genomes. That is commonly referred to as the COGs
database [8]. The COGs were identified by comparing protein sequences encoded in
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complete genomes, representing major phylogenetic lineages. Each COG consists of
individual proteins or groups of paralogs from at least three lineages and thus corre-
sponds to an ancient conserved domain. Six randomly generated subsets of the COG
database were made available by Kelil er al. [48]. The FASTA files of these subsets
are provided at [8,48]. The classification of the COG database [8] is taken to be the
gold standard.

Another family of proteins that has been used in a considerable number of pub-
lications and is a good reference classification is represented by the G-proteins
family. It is well known that G-proteins is a family of proteins “easy to align.”
From a biological point of view, G-proteins are a family of proteins involved in
second-messenger cascades, and they belong to the larger group of enzymes called
guanosine triphosphate (GTPases). G-proteins are so called because they function
as “molecular switches,” alternating between an inactive guanosine diphosphate
(GDP) and active GTP bound state, ultimately going on to regulate downstream
cell processes.

A dataset containing 381 protein sequences selected from the G-proteins and re-
ceptor activity-modifying proteins (RAMPs) family was made available by Kelil
et al. [48]. The FASTA files of these subsets are provided at [4, 48]. RAMPs are
a class of proteins that interact with and modulate the activities of several Class
B G-protein-coupled receptors (GPCRs) including the receptors for secretin, calci-
tonin (CT), glucagon, and vasoactive intestinal peptide (VIP). There are three dis-
tinct types of RAMPs, denoted RAMP1, RAMP2, and RAMP3, each encoded by
a separate gene. The classification is according to the GPCRIPDB Data Base (a
molecular-specific information system for GPCR interacting partners (G-proteins
and RAMPs) [5], and it is taken as the gold standard.

The glycoside hydrolase family 2 (GH2) is a multidomain protein family whose
members are known to be “hard to align.” In fact, no definitive multiple alignment
of this family is available yet. For this reason, it is a particularly challenging fam-
ily of sequences for multiple alignment algorithms. From a biological point of view,
the glycoside hydrolases are a widespread group of enzymes that hydrolyse the gly-
cosidic bond between two or more carbohydrates or between a carbohydrate and a
noncarbohydrate moiety. Among glycoside hydrolases families, the GH2 family in-
cludes enzymes that perform five distinct hydrolytic reactions. With respect to known
biochemical activities, we can distinguish among the following:

* beta-galactosidases
* beta-mannosidases
® beta-glucuronidases

exo-beta-glucosaminidase
* mannosylglycoprotein endo-beta-mannosidase (in plants)

A dataset of 316 protein sequences belonging to the GH2 family selected from
the Carbohydrate-Active Enzymes (CAZy) database was made available by. Kelil
et al. [48]. The FASTA files of these subsets are provided at [9, 48]. The CAZy
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Branch 2

Branch 3

Branch 1 Branch 4

Figure 16.2 The gold tree of the GH2 family.

database describes the families of structurally related catalytic and carbohydrate-
binding modules (or functional domains) of enzymes that degrade, modify, or cre-
ate glycosidic bonds. The phylogenetic tree shown in Figure 16.2 and given in
[48, Figure 6] is taken to be the gold standard according to the following division:

® Branch 1 corresponds to “B-galactosidases” activities

® Branch 3 corresponds to “B-mannosidase” activities

® Branch 4 corresponds to “B-glucuronidase” activities

* Branch 2 contains enzymes labeled as “putative B-galactosidases” in databases

e the subfamily SF — 8 includes 22 “exoglucosaminidase” and ‘“‘endo-
mannosidase” activities

¢ the subfamily SF — 17 includes 19 sequences labeled “B-galactosidases” in
databases. Although the branch 1 “B-galactosidases” consist of five modules,
known as the “sugar binding domain,” the “immunoglobulin-like S-sandwich,”
the “(aB)8-barrel,” the “B-gal small-N domain,” and the “pB-gal small-C
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domain,” the members of subfamily 17 lack the last two of these domains,
which makes them more similar to “B-mannosidases” and “B-glucuronidases.”
These enzymes are distinct from those of branch 1, and their separate localiza-
tion is justified,

¢ the Subfamily SF — 28 contains a sequence that is a putative glycosyltrans-
ferase, and hence, it is not a member of GH2 family. In the phylogenetic tree in
Figure 16.2 this sequence is in the SF — 28 that is contained in branch 4.

The Apostolico dataset [15] consists of complete unaligned mitochondrial
genomes of the following 15 mammals from GenBank: human (Homo sapiens
[GenBank: V00662]), chimpanzee (Pan troglodytes [GenBank:D38116]), pigmy
chimpanzee (Pan paniscus [GenBank:D38113]), gorilla (Gorilla gorilla [Gen-
Bank:D38114]), orangutan (Pongo pygmaeus [GenBank:D38115]), gibbon (Hy-
lobates lar [GenBank: X99256]), sumatran orangutan (Pongo pygmaeus abelii
[GenBank:X97707]), horse (Equus caballus [GenBank:X79547]), white rhino
(Ceratotherium simum [GenBank:Y07726]), harbor seal (Phoca vitulina [Gen-
Bank:X63726]), gray seal (Halichoerus grypus [GenBank:X72004]), cat (Felis catus
[Gen- Bank:U20753]), finback whale (Balenoptera physalus [GenBank:X61145]),
blue whale (Balenoptera musculus [GenBank:X72204]), rat (Rattus norvegicus
[Gen- Bank:X14848]), and house mouse (Mus musculus [Gen- Bank:V00711]). The
dataset, in FASTA format, is provided in [6]. It is a standard for the assessment of
performance of similarity measures and phylogenetic algorithms. Although there is
no gold standard for the entire tree, biologists suggest the following grouping for this
case:

® FEutheria-Rodens: house mouse and rat

* Primates: chimpanzee, gibbon, gorilla, human, orangutan, pigmy chimpanzee,
and sumatran orangutan

® Ferungulates: blue whale, finback whale, gray seal, harbor seal, horse, and
white rhino

However, one can assume the NCBI Taxonomy [7] as the gold standard. For con-
venience of the reader, that tree is reported in Figure 16.3.

16.7.2 Software

As supplementary material to their fundamental paper on alignment-free methods
[78], Vinga and Almeida provided a Matlab library that implements some basic
methods mostly based on the evaluation of distances between vectors. For a string
A, each entry in its characteristic vector corresponds to a k-word w, and the value of
that entry corresponds to the number of occurrences of w in A. The software is avail-
able at [1]. A comparative study, as well as novel methods based on characteristic
vectors, is presented in [79].
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_|: Pan_paniscus

Pan_troglodytes
Gorilla_gorilla
Homo_sapiens

Pongo_pygmaeus_abeli
Hylobates_lar

_|: Mus_musculus

Rattus_norvegicus
_|: Halichoerus_grypus
Phoca_vitulina
Felis_catus

_|: Balaenoptera_musculus

Balaenoptera_physalus

_|: Ceratotherium_simum

Equus_caballus

Figure 16.3 The NCBI philogenetic tree of the Apostolico dataset.

As a supplementary contribution to their extensive study of the Universal Sim-
ilarity Metric (USM) as it applies to biological data mining [30], Ferragina et al.
provide an entire library of more than 20 data compression methods together with
software to compute the various incarnations of the USM via those compressors. The
entire system is available at [6]. Based on the USM, Barthel ef al. [17] provide an
entire decision support system for the classification of proteins. The corresponding
web server, nicknamed Pro(CKSI), can be found at [11].

Apostolico and Denas provide both public software and a web service to eval-
uate distances between strings that are based on composition vectors [3]. Finally,
Kantorovitz et al. also provide a web server as well as a publicly available software
library for their D, measure [10].

16.8 CONCLUSIONS

This chapter surveys some alignment-free distances between biological sequences,
chosen among the several ones in the specialistic literature, that are perceived as
representative of the novel techniques that have been devised in the past few years.
Given the availability of complete genomes of various organisms, sequence align-
ment is not suitable to measure events and mutations that involve longer segments
of genomic sequences because it considers only local mutations of the genome. Fur-
thermore, a major challenge is to define alignment-free distances that make use of
algorithms and structures able to handle the growing mass of biological data.

We have described some alignment-free methods, ranging from combinatorics to
information theory that have been applied to genomic sequences or that seem to be
scalable at the genomic level. In particular, we considered distances making explicit
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use of information measures, combinatorial-based measures, methods based on the
notion of subword composition, and finally, exact word matches methods. Moreover,
each approach has been validated experimentally on a collection of relevant biologi-
cal datasets, such as proteomic and genomic sequences, mitochondrial genomes, and
proteins. From those experimental results, it is possible to deduce that some methods
are efficiently scalable when the datasets become large and the sequences become
long. For the others, the genomic-wide experimentation seems to be within reach.

Finally, we presented some datasets for comparative analysis of similarity mea-
sures. Actually, several benchmark datasets of nonhomologous protein structures and
genomes have been collected in the last few years, but they are not largely used. So,
we provided a kernel of datasets that seem to be the most used for benchmarking
purposes. We also provided the most prominent publicly available software libraries
in this area that can be used for benchmarking and comparative studies.
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17.1 INTRODUCTION

17.1.1 Chemoinformatics and “Drug-Likeness”

During the past decades, paralleling the exponential data flow from the -omic sci-
ences, there has been a steep rise in information technology approaches to organize
and mine the enormous data generated. Chemoinformatics [1, 2] belongs to a large
family of informatic sciences that include contemporary areas like bioinformatics
[3], immunoinformatics [4], biodiversity informatics [5], and biomedical informatics
[6]. Chemoinformatics is the application of information technology to address prob-
lems in the realm of chemistry and to tackle the massive chemical space, comprising
natural products, synthetic organic compounds, drugs, and toxins. At its inception,
chemoinformatics was restricted to the in silico drug discovery process [7]. Subse-
quently, the definition has been broadened to incorporate the storage, management,
and retrieval of chemical data, reaction and spectral analysis, visualization, simi-
larity and diversity analyses, virtual library design, molecular modeling, and struc-
ture activity/property relationships studies. Gasteiger [8], Leach and Gillet [9], and
more recently, Agrafiotis et al. [10] provide comprehensive accounts on chemoin-
formatics. The exponential growth of biological and chemical data has raised crucial
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challenges for maintaining and searching the databases for knowledge mining. Struc-
ture representation, data handling, and searching of chemical databases are key as-
pects of chemoinformatics, with searching of chemical databases being particularly
significant in drug discovery programs [11].

The drug discovery and optimization process has undergone a rapid change in the
last two decades. With the discovery of two complementary technologies in the early
1990s, viz. high-throughput screening and combinatorial synthesis, pharmaceutical
companies now can synthesize and assay a vast number of compounds per target per
year [12]. However, an exhaustive search of chemical space is not feasible because
of the enormity of the task, as a conservative estimate of known small molecules is
of the order of 10’ [13]. As a result, an early in silico prediction of pharmacological
properties of potential drug candidates is becoming increasingly popular [14] to cut
down the time required to bring a drug into the market. Low-cost computational tech-
nologies, such as similarity searching by constructing pharmacophore models, diver-
sity oriented synthesis, and molecular modeling are finding widespread applications
in the drug discovery process. There also has been an increased effort to produce fo-
cused or directed libraries that are biased toward a specific target, structural class, or
known pharmacophore [15] over universal libraries, which are target-independent.

Subsequently, the concept of “drug-like” (DL) [16,17] or “lead-like” [18]
molecules evolved and various models were developed to recognize DL compounds
from a diverse set of molecules [19]. Walters et al. [17] summarized “drug-likeness”
as the tendency of a molecule to contain functional groups and/or physical properties
consistent with the majority of known drugs. The credit for popularizing the concept
of DL substances goes to Lipinski, Murcko, and researchers at Pfizer and Vertex
[20], who performed a statistical analysis of 2200 drugs from the World Drug In-
dex (WDI). They established certain threshold values that seem to be valid for most
drugs known at that time. In 2008, Ertl et al. [21] introduced a similar measure called
Natural Product (NP)-likeness score to characterize a molecule and thereby distin-
guish it from drugs and synthetic compounds. Similarly, with the growing knowledge
of biochemical pathways and the cognate metabolites, several researchers have rec-
ommended metabolite-likeness [22,23] as one of the main criteria for drug design.
Dobson et al. [22] compared different molecular properties among human metabo-
lites, drugs, and “predrugs” (precursor drug molecules) and concluded that although
metabolites are a distinct class of compounds, they share a significant percentage of
property space with drugs. They further suggested that metabolite-likeness may be
used as a filter for designing drugs that are functionally similar to metabolites, lead-
ing to better absorption, distribution, metabolism, elimination, toxicology (ADMET)
properties, which are critical for the delivery and uptake of drugs in vivo.

All drug discovery methods aim to identify properties or group of features, known
as descriptors that are necessary for designing drugs with reduced toxicity, improved
potency, selectivity, and bioavailability. Commonly used descriptors, data sources,
and methods available for chemoinformatics research with particular emphasis on
drug discovery are discussed in the following sections. Starting with the various
forms to represent chemical structures, we briefly survey the freely available and
most commonly used small molecule databases and then introduce the algorithms



17.2 MOLECULAR DESCRIPTORS 363

available for drug research. Current trends, future directions, and some key sugges-
tions that could solve existing problems are presented.

17.2 MOLECULAR DESCRIPTORS

The set of features or characteristics that describes a molecule to the best approxima-
tion are called molecular descriptors. Descriptors can be calculated using chemical
structure (conformations, configurations, and constitution) or the properties (physi-
cal, chemical, or biological) of the small molecules [24]. Classically, descriptors are
categorized into three groups based on complexity and encoded information.

17.2.1 One-Dimensional (1-D) Descriptors

One-dimensional (1-D) representations of a molecule generate the simplest known
descriptors that include physicochemical properties (log P and molecular weight),
count of chemical features (number of hydrogen bond donors and number of rotat-
able bonds), molecular codes, and so on.

17.2.1.1 Physicochemical Properties. The simplest types of descriptors are
calculated physicochemical properties of molecules (log P, atom counts, and molec-
ular weight). These often are referred to as whole molecule descriptors as they de-
scribe the properties of the complete molecule. The advantage of these descriptors
is that they are easily calculable and can be predicted based on molecular structure
alone [25].

17.2.1.2 Molecular Codes. Molecular codes are the descriptors calculated
from linear notations such as molecular formula, 1-D line notations such as Sim-
plified Molecular Input Line Entry Specification (SMILES) representation [26], the
International Union of Pure and Applied Chemistry (IUPAC) name, and more re-
cently, International Chemical Identifier codes (InChl) developed in collaboration
between IUPAC and NIST (National Institute of Standards and Technology) also are
characterized as 1-D descriptors.

17.2.1.2.1 Chemical Formula. A chemical formula is the most common means
to represent the chemical structure. Besides being compact and easy to interpret, it
conveys the chemical constituents and the number of atoms in a compound. However,
it does not give any information on connectivity, stereochemical configuration, or the
three-dimensional (3-D) coordinates, which are essential for advanced studies. For
example, vasicine (Figure 17.1) has C;HoN,O as its chemical formula, which only
provides details of atom composition and molecular mass.

17.2.1.2.2 1-D Line Notations. Linear notation provides the complete consti-
tution and connectivity of chemical compounds as a linear sequence of characters.
Among all available 1-D notations, SMILES has found widespread application in the
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Figure 17.1  Structure and SMILES format representation of vasicine. SMILES representation
can be calculated starting from the position 1 as pointed in the figure.

representation and exchange of chemical information over the Internet. The SMILES
format for vasicine is C1ICN2CC3=CC=CC=C3N=C2C10, which can be calcu-
lated from Figure 17.1.

17.2.2 Two-Dimensional (2-D) Descriptors

The descriptors calculated from two-dimensional (2-D) representations are called
2-D descriptors and are grouped broadly into three types. Topological indices
(Wiener index, molecular connectivity index, and Kappa shape index), 2-D finger-
prints (dictionary-based and hash-based), and 2-D fragment descriptors (atom pairs
[APs], topological torsions, augmented atoms [AAs], and atom sequence). Typically,
the 2-D descriptors are related to the size, rigidity/flexibility, and the electron distri-
bution of the molecule.

17.2.2.1 Molecular Connectivity or Topological Indices. Topological in-
dices (TI) are single-value numerical quantities based on certain characteristics of a
molecular graph [27,28] and encode molecular properties such as ring structure,
number of atoms, branching, heteroatom content, bond order, and overall shape.
They are easy to calculate and hence have found a widespread use among the
researchers.

17.2.2.2 2-D Fingerprint (Binary) Descriptors. 2-D fingerprint (binary de-
scriptor) is another commonly used descriptor for chemical database mining [29]. A
fingerprint is a string of binary characters encoding the information on the presence
or absence of substructures in a given molecule. Each binary character is called a bit.
These descriptors originally were designed for chemical substructure searching but
also have found application in similarity searching [30]. There are two types of bi-
nary descriptors described in the literature [31]: dictionary-based (dataset dependent)
and hash-based (dataset independent).

17.2.2.2.1 Dictionary-Based Binary Descriptors. Dictionary-based descrip-
tors are said to be dataset dependent because the reference substructure dictionary
contains the fragments from the dataset. For a given molecule x, the appropriate
bit is set to 1 (ON in Boolean algebra) when the substructure in x matches the
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Figure 17.2 Dictionary-based fingerprint. Molecules A and B are compared against a reference
fingerprint dictionary.

fragment present in the dictionary or else it is set to O (OFF in Boolean algebra). In
Figure 17.2, molecule A comprises three substructures, namely benzene, alcohol,
and acid. Therefore, these bits will be set to 1 in the fingerprint.

A limitation of the dictionary-based approach is that every time the dataset
changes, a new dictionary based on these changes has to be created for comparison,
and the entire fingerprint database has to be recreated. As an example, a dictionary
used for DL molecules may not be suitable for comparing with an organometallic
compound database. The generation of substructure keys is a rate-limiting step; how-
ever, once these keys are generated, the comparison of bitstrings is very rapid using
one or more similarity metrics, such as Tanimoto, Treversky, Cosine, or Hamming
distance. Of all the similarity metrics proposed, perhaps Tanimoto still remains the
most popular coefficient. A list of commonly used metrics is given in Table 17.1, with
details of how each metric is calculated. Two examples of dictionary-based finger-
prints are the Barnard Chemical Information (BCI) fingerprints and the Molecular
Access System (MACCS) structural keys [8].

17.2.2.2.2 Hash-Based Binary Descriptors. To avoid the shortcomings of
dictionary-based fingerprints, hash-based fingerprints were proposed that eliminate
the need for predefined patterns. However, similar to dictionary-based structural
keys, these are binary in nature and are designed for database searching applica-
tions. The patterns are generated from the molecule itself, and the list of patterns
is exhaustive. For example, all possible connected linear paths of the atoms in the
molecule ranging from length zero to seven (typically) are considered to be patterns.
For pyrrole (shown in Figure 17.3), the patterns of length one are: H1—N2, N2—C3,
C3=C4, C4—C5, C5=C6, and C6—N2, whereas the patterns of length two are:
H1—N2—C3, N2—C3=C4, C3=C4—C5, C4—C5=C6, C5=C6—N2, C6—N2—H],
and so on. The most commonly used hash-based fingerprints are Daylight and
UNITY [8].
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Table 17.1 Most commonly used similarity coefficients with formulas

Coefficient Formula
Tanimoto/Jaccard c/la+b—c)
Tversky c/(ea+ Bb+c)
Dice/ Sorenson/Czekanowski 2c/(a + b)
Cosine/Ochiai a/ v (a.b)

Simpson a/min(a + b, a + ¢)
Hamming/Manhattan/City-block a+b—-2c

a - Number of bits on in molecule A.

b - Number of bits on in molecule B.

¢ - Number of bits on in both the molecules A and B.
d - Number of bits off in both the molecules A and B.
o, - User-defined coefficients.

2N
H

Figure 17.3 Numbering of pyrrole for showing the hashing scheme. Different patterns of path
one to seven can be calculated on the fly.

Recently, Scitegic pipeline pilot circular fingerprints [32] have become popular
and provide fingerprints with extended connectivity (ECFP) and functional connec-
tivity (FCFP). Initially, each atom is assigned a code based on its properties and
connectivity. With every iteration, each atom code is combined with the code of its
immediate neighbors to produce the next order code. This process is repeated un-
til the desired number of iterations has been achieved, typically to four iterations,
generating ECFP_4 or FCFP_4 fingerprints.

17.2.3 Three-Dimensional (3-D) Descriptors

Three-dimensional (3-D) descriptors provide information regarding the spatial dis-
tribution of atoms and chemical groups in a molecule that leads to the calculation
of molecular surfaces and volumes. In nature, molecular recognition occurs in 3-D,
and hence, it is intuitive to compare molecules using their 3-D characteristics. 3-D
descriptors require conformational properties to be taken into account and hence are
more computationally demanding than 1-D and 2-D descriptors.

17.2.3.1 Pharmacophoric Keys. Pharamacophoric features in the molecule
are atoms or substructures that are important for receptor bonding [33]. There
are usually three-point pharamacophoric keys containing three features hydrogen
bond donor (HBD), hydrogen bond acceptor (HBA), aromatic rings centers, or
hydrophobic centers) or four-point pharamacophoric keys containing four feature
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combinations. Pharmacophoric keys are widely used 3-D descriptors in molecular
similarity and diversity analyses. Binary pharmacophoric keys also can be derived
for a molecule based on the presence or absence of a pharmacophore in a molecule.
The resulting fingerprints are similar to 2-D fingerprints, but their characteristics are
different [34].

17.2.3.2 Graphs. Graph matching algorithms also have been applied to obtain
3-D descriptors [35]. In 3-D graphs, nodes represent atoms and the interatomic dis-
tance between the atoms is represented by edges in the graph. In 3-D graph rep-
resentations, all nodes are connected to every other node by edges. The maximum
common subgraphs (MCS) can be calculated for similarity searching applications
using 3-D graph representations. However, the calculation of MCS between two 3-D
graphs is more time consuming and computationally intensive than 2-D graphs.

17.2.3.3 Other 3-D Descriptors. Other 3-D descriptors are based on molecular
shape and various field representations of a molecule such as steric, electrostatic,
or hydrophobic. The superposition of molecular shapes has been used widely as a
technique to understand ligand receptor binding and similarity calculations [36]. In
these techniques, molecular shape is modeled as the total volume of the compound
depicted as spheres [37], Gaussian [38], or other representations of densities such as
grid-based encoding [39].

17.3 DATABASES

Small molecule databases are essential to characterize novel natural or synthetic
compounds and predict their likely biological properties to cut down the biological
assays required to determine the properties of a lead compound and minimize toxi-
city. For several decades, small molecules were the proprietary data of drug compa-
nies. Today, large collaborative efforts to annotate the small molecules and analysis
software for chemical research [40] have been spearheaded in analogy to the related
field bioinformatics. The main publicly available small molecule databases relevant
to drug discovery and lead optimization are presented in Table 17.2, with a brief
summary of relevant freely available databases.

17.3.1 PubChem

PubChem [41] is a part of the National Institute of Health’s (NIH) “Molecular Li-
braries” initiative and is hosted by the National Center of Biotechnology (NCBI).
PubChem is organized as three linked subdatabases; PubChem Substance, Pub-
Chem Compound, and PubChem BioAssay. The PubChem Compound databases cur-
rently contain >19 million unique structures with computed properties. Searching
the database is possible using 1-D and 2-D descriptors described earlier. Each hit
provides information about chemical properties, chemical structure, bioactivity, and
links to various other related databases such as PubChem Substance and PubMed.
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17.3.2 Chemical Entities of Biological Interest (ChEBI)

Chemical Entities of Biological Interest (ChEBI) [42] is maintained by the European
Bioinformatics Institute. It focuses on “small” chemical substances made syntheti-
cally or produced naturally, which can affect living organisms. ChEBI relies on two
main sources for information: the Integrated Relational Enzyme Database (IntEnz)
with information on enzyme nomenclature and the Kyoto Encyclopedia of Genes
and Genomes Ligand COMPOUND database with information on metabolic com-
pounds and other chemical substances relevant to biological systems. ChEBI also
includes an ontological classification in which the relationship between entities and
their parent compounds has been specified. A 1-D search can be carried out against
ChEBI entries. Furthermore, each ChEBI entry is cross linked to the UniProt protein
database enabling access to known biological function of proteins.

17.3.3 ChemBank

ChemBank [43] is a comprehensive, online informatics system developed through
collaboration between the Broad Institute Chemical Biology Program of Harvard
and the Massachussetts Institute of Technology (MIT). The aim of the database is to
provide biologically relevant pharmacogenomics data and open-source tools to em-
power the global scientific community in understanding and treating of diseases. The
knowledge base stores the high-quality raw screening data and various measurements
derived from cells and other biological systems after treatment with small molecules.
Several analysis tools that allow studying the relationships among small molecules,
cell measurements, and cell states are being developed and updated continuously.

17.3.4 ChemlIDplus

ChemIDPlus [44] is a web-based searchable system that provides access to structural
and chemical information for the chemical substances cited in the National Library
of Medicine (NLM) databases. Currently, ChemIDplus contain more 370,000 com-
pounds that can be searched by their 1-D properties and toxicity indicators such
as median lethal dose (LD50) and physicochemical properties like log P, molecu-
lar weight, and so on. 2-D similarity and substructure can be performed with user-
specified structures.

17.3.5 ChemDB

The ChemDB [45] is a highly annotated database that supports multiple molecular
formats. It is compiled from 150 different sources, which include commercial ven-
dors, catalogs, and publicly available repositories. Currently, the database contains
nearly 5 million commercially available small molecules. The chemical data includes
predicted or experimentally determined physicochemical properties such as molecu-
lar weight, H-bond donors, acceptors, and 3-D structure. The data is available in sev-
eral formats SMILES (1-D), 2-D graphs, 3-D coordinates (SDF or MOL format), and
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in fingerprints. The database is searchable by text, SMILES, and physicochemical
properties. The tversky coefficient is applied for substructure or similarity searches.
ChemDB maintains a repository of datasets for machine-learning experiments and
also supports online tools for system biology and virtual screening programs.

17.4 METHODS AND DATA ANALYSIS ALGORITHMS

The necessity to classify DL substances from ordinary chemicals present in the vast
chemical space is of utmost importance [46]. In an effort to select DL molecules, sev-
eral methods besides quantitative structure activity relationship (QSAR) equations,
have been applied to optimize compound selection. Binary classification algorithms
such as decision trees and support vector machines frequently are applied to dis-
tinguish between DL and non-DL molecules. A variety of methods, ranging from
simple count to advanced knowledge-based methods, have been proposed.

17.4.1 Simple Count Methods

Simple count methods utilize molecular descriptors that are computed rapidly and
are thus highly popular. The most famous of these is Ro5 [16], proposed by Lipinski
et al. at Pfizer and Vertex. The “Pfizer rule,” or better known as the “rule of five”
(Ro5), derive guidelines for absorption and permeation of drug molecules and states
that a hit (lead) compound has a better chance of survival through the drug discovery
pipeline if its molecular weight (MW) is less than 500 (MW < 500), its log P is less
than equal to 5 (log P =5), it has five or fewer HBD sites (HBD = 5) and a maximum
of 10 HBA sites (HBA = 10). Ro5 originally was designed as a guideline to pick DL
substances, but it has been used as a rule for distinguishing between DL and non-
DL compounds. Although Ro5 has dominated drug design, several current drugs do
not comply with Lipinski’s rule, with the majority of violations coming form natural
products, vitamins, and antibiotics. In one of the studies [47], it was shown that using
this criteria, only 66% of the compounds in the MDL Drug Data Report (MDDR)
database are classified as DL, whereas 75% of the theoretically non-DL compounds
from the Available Chemical Directory (ACD), in fact, were regarded as DL.

Similarly, from an analysis by Oprea et al. [48], new pharmaceutical substances
entering the market exhibit a higher molecular weight and an increased number of
hydrogen bond donors and acceptors than is suggested by Ro3, although if a com-
pound fails the Ro5 test, then oral bioavailability problems are likely. At the same
time, fulfilling Ro5 does not guarantee that a compound is DL. Moreover, Ro5 does
not consider toxicity and structural features, leading to drug failures. Analyses of the
failed drugs over past few years have shown that more than 90% of the setbacks are
a result of drug toxicity [49, 50].

17.4.1.1 Example Studies Using Simple Count Methods. Ghose et al.
[51] extended the concept of drug-likeness and carried out a broad analysis of seven
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different subsets of drugs in the Comprehensive Medicinal Chemistry (CMC)
database. These subsets included drugs for the central nervous system, cardiovas-
cular, cancer, inflammation, and infectious disease states molecules. A total of 6304
molecules were included in the study. Based on the calculated physicochemical prop-
erties, Ghose et al. determined qualifying ranges and preferred ranges that covered
80% and 50% of the database, respectively. Ranges were established for A logP
(—0.4 to 5.6), molar refractivity (40 to 130), molecular weight (160 to 480), and the
number of atoms (20 to 70).

A similar study was conducted by Oprea [52] who performed Pareto analysis (a
statistical technique that selects a limited number of tasks that account for signifi-
cant overall effect) on various drug-related databases. Oprea examined the property
distribution among several commercial databases including MACCS-II Drug Data
Report (MDDR), CMC, Current Patent Fast Alert, New Chemical Entities, and ACD
databases. The conclusions were that Ro5 does not distinguish between drugs and
nondrugs because the distribution of the Ro5 parameters does not differ significantly
between drugs and nondrugs. In addition to the Ro5 properties, Oprea also con-
sidered counts of ring bonds, rigid bonds, and rotatable bonds in his study, which
facilitated the discrimination of drugs and nondrugs.

17.4.2 Enhanced Simple Count Methods, Using Structural Features

Counting of substructures also has been employed by many researchers to distinguish
between DL and non-DL substances.

17.4.2.1 Substructure Analysis and Example Studies. Substructure anal-
ysis usually is performed to distinguish potentially useful compounds [53]. Bemis
and Murcko carried out an extensive study of CMC database to characterize molec-
ular skeletons and side chains that occur most frequently in drugs [54, 55].

Muegge et al. [56] has proposed a simple selection criteria for DL compounds
based on pharmacophore point filters based on the observation that nondrugs often
contain fewer functional groups than drugs. Therefore, a minimum count of well-
defined pharmacophoric points would distinguish successfully between DL and non-
DL compounds. Methods based on functional group filters including this method are
significantly less accurate than various machine learning (ML) methods described
later. Nevertheless, Muegge et al. were able to filter 66%—69% of the MDDR subset
and 61%—-68% of the CMC subset as DL, whereas only 36% of ACD was found to
be DL.

Similarly, Zheng et al. [57] developed a chemical space filter by analyzing 50
structural and physicochemical properties on drug (MDDR and CMC) and nondrug
databases (ACD). Using molecular saturation-related descriptors and the proportion
of heteroatom in a molecule, both of which are molecular-size-dependent descriptors,
the developed filter was applied to the Chinese Natural Product Database (CNPD).
Their filter was reliable, as the entire CNPD was classified DL.
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17.4.3 ML Methods

During past few decades, several prediction methods have been developed to classify
DL and non-DL molecules. Methods dependent on learning algorithms for develop-
ing classification rules are called ML methods [58]. Essentially in a ML task, training
molecules are represented by n-dimensional vectors. These vectors define the point
in a chemical space describing the molecule, and an ML algorithm tries to classify
the object into distinct groups. In recent years, ML algorithms have gained popularity
for following reasons:

¢ Exponential increase in data generation (biological and chemical)
® Generally ML algorithms perform well in real-world problems
* Well suited for high-dimension data like microarray and images

* Sound mathematical foundations, computationally efficient, and scalability to
handle large datasets

ML algorithms are of two types based on supervised and unsupervised learning.

17.4.3.1 Supervised Classification (SC) Methods. In supervised learning,
we have a prior knowledge, even if only approximate, of the outcome for m samples
in the training set. We expect to find a hypothesis h, which closely resembles our
prior knowledge for the training set members, and then this hypothesis will serve
as a good model for the remaining members of the dataset, usually called the test
set. The most common examples of SC methods are discriminant analysis (linear
discriminant analysis [LDA] or quadratic discriminant [QDAY]), support vector ma-
chines (SVMs), artificial neural networks [ANNs], and classification and regression
trees.

17.4.3.1.1 Neural Networks (NNs). Neural network [NN]-type algorithms are
based on nature inspired architecture. An ANN is an interconnected group of arti-
ficial neurons (programming constructs that mimic the properties of biological neu-
rons). The three components of an ANN are the input node, the output node, and
the neuron itself. The drawback of this type of network is that they are computation-
ally intensive and the sample size should be large. There are different types of NNs
available.

1. Feed forward neural networks (FFNNs): These are one of the simplest types of
artificial NN, with a unidirectional flow of information. There are no cycles or
loops involved, so that information flow is from input nodes to hidden nodes and
then to output nodes.

2. Kohonen Self-Organizing Maps (SOMs): This is one of the more computation-
ally intensive types of learning algorithm. The basic idea is to reduce the dimen-
sionality without losing useful information and to organize data on the basis of
similarity.
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Margin hyperplane
Optimal hyperplane

.+ Margin hyperplane

Figure 17.4 A schematic representation of a binary classification task. Two classes of com-
pounds are separated by calculating an optimal margin hyperplane.

3. Recurrent NN: Unlike feed forward NNs, recurrent NNs have a bidirectional
dataflow. Although a feed forward NN propagates data linearly, recurrent NN can
propagate data from later processing stages to earlier stages.

17.4.3.1.2 Support Vector Machines (SVMs). The support vector machine [59]
is a supervised learning algorithm that recently has received attention in chemoinfor-
matics because of its robust nature and binary classification ability. Several com-
parison studies have pointed that SVMs almost always outperform other contempo-
rary machine learning techniques and is the best method for classifying molecules
[60,61]. In a typical SVM classification exercise, a training set belonging to two
different classes (toxic versus nontoxic or active versus inactive) is projected in a
chemical space using various descriptors, and an optimal hyperplane is derived that
will best separate the two classes. The basic idea of the SVM principle is easy to
interpret and can be understood from Figure 17.4. The disadvantage of using a clas-
sifier like SVM is that it does not rank the output, and therefore, it presents a risk of
eluding potential ligands that could be improved with minor modifications.

17.4.3.1.3 k-Nearest Neighbor Classifier (k-NN). The nearest neighbour
method is the simplest of the machine learning methods. This method classifies
an element by finding its k-closest neighbors and by choosing the more common
class among the k elements. Usually Euclidian distance is used as the distance met-
ric; however, for text classification, Hamming distance also can be used. The major
drawback of k-NN technique is that classes with more frequent examples tend to
dominate and hence can introduce a bias in prediction. In the past, k-NN has been
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used to classify toxicity data and also has been used in various comparison studies
with NN, SVM, and other methods [62].

17.4.3.2 Unsupervised Classification (UC) Methods. In unsupervised
learning, we do not have any prior knowledge of the outcomes. Clustering and par-
titioning are the two most common examples of an unsupervised learning task.

17.4.3.2.1 Clustering. Clustering is a technique that tries to organize the vari-
ables into relatively homogenous groups called clusters, according to a defined dis-
tance measure. The clusters formed exhibit large intracluster similarity and interclus-
ter dissimilarity [63]. Therefore, the result of a cluster analysis would be the number
of heterogeneous groups with homogenous contents. One of the methods to choose
a diverse set of compounds from a molecular database is to cluster the compounds
present in the database and then select a representative compound from each clus-
ter. Clustering techniques are classified into two main categories, hierarchical and
nonhierarchical, based on the way the compounds are clustered. Hierarchical clus-
tering is the most common clustering approach in which the output is a hierarchy
(dendrogram) or a tree. Hierarchical clustering may follow top-down (divisive) or
bottom-up (agglomerative) approaches. In the top-down clustering approach, a sin-
gle large cluster is split down sequentially and recursively into smaller clusters until
each object is in its own singleton cluster. Conversely, bottom-up algorithms treat
each object as a singleton cluster at the beginning and successfully merge the clus-
ters together into a single cluster that contains all objects. The second class is non-
hierarchal clustering, and the most popular method of the class is the Jarvis-Patrick
Clustering algorithm. It involves the calculation of k nearest neighbors of each object
in the dataset. Once completed, two molecules are clustered if both of them are on
each other’s nearest neighbor list and share the £k minimum number of neighbors be-
tween them. The advantage of this approach is its speed, but one problem associated
with this methodology is the tendency to produce too many singletons or too few
large clusters depending on the clustering criteria.

17.4.3.3 Example Studies. Some notable studies include the reports by Ajay
et al. [19], Sadowski and Kubinyi [64], Wagener and van Geerestein [65], Frimurer
et al. [47], Takaoka et al. [66], and Li and Lai [67]. A summary of the studies carried
out by these researchers is provided in Table 17.3.

Ajay et al. [19] used a Bayseian neural network (BNN) and a decision tree (c4.5)
to build the model for classifying drugs and non-DL molecules. In their study, the
training and test sets consisted of 3500 and 2000 compounds each from the CMC
and ACD databases, respectively. They used a set of seven one-dimensional and two-
dimensional fingerprint descriptors. The results suggest that BNN performed well on
all occasions when compared with the decision tree approach. Furthermore, the keys,
combined with 1-D descriptors, were the best performing combination than using any
single descriptor, with the ability to classify 90% of CMC and ACD compounds and
80% of MDDR compounds correctly.
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Figure 17.5 Grid or cell-based selection. Similar molecules tend to fall in similar property space
and hence can be partitioned.

Wagener and van Geerestein [65] employed a step-by-step approach using deci-
sion tree algorithms. They found that 75% of all drugs can be predicted based on the
occurrence of six chemical groups. Likewise, the majority of unsuitable compounds
can be ruled out from further analysis based on the presence of specific chemical
groups that result in a substance being reactive, toxic, or difficult to synthesize. Sad-
owski and Kubinyi [64] used Ghose atom types as molecular descriptors, which
originally were developed for predicting log P. Their study included ~38,000 DL
compounds taken from WDI and ~169,000 non-DL compounds from ACD. A feed
forward NN approach was able to classify 83% of the ACD and 77% of the WDI
database.

Frimurer et al. [47] used the CONCORD atom type descriptors along with a feed
forward NN technique to classify DL and non-DL molecules. They were able to
classify correctly 88% of DL (MDDR) and non-DL (ACD) compounds. When com-
pared with the rule of five, their method performed significantly better in identifying
non-DL compounds.

17.5 CONCLUSIONS

As documented in this chapter, chemoinformatics is a rapidly growing field that
forms an important link between already established areas such as bioinformatics,
computational chemistry and emerging areas like metabolomics, chemogenomics,
and pharmacogenomics. Key areas of chemoinformatics like Molecular similarity
(MS) and molecular diversity (MD) analysis are widely accepted concepts in ratio-
nal drug design. MS lies at the core of all clustering techniques available, whereas
molecular diversity is concerned with exploring the structural coverage of the set
of molecules in the chemical space. MD lies at the heart of all approaches for
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compound selection and combinatorial library design. The present level of chemoin-
formatics understanding has already made it an effective tool in drug discovery and
development process.

The current structure and property databases provide a foundation for building in
silico models with reasonable accuracy. In silico models are used for large-scale vir-
tual screening tasks. Although there are various ML techniques available for model
building, not all are readily interpretable. There is thus extensive scope for improve-
ment in these methods. Moreover, methods and databases that predict metabolite-
likeness are more desirable to those that are restricted to drug-likeness. Furthermore,
to ensure the reliability of these models, the inherent redundancy of the datasets
should be taken into consideration because redundant datasets can lead to biased re-
sults. It is thus important to balance the data such that a particular class of compounds
is not overrepresented.

Also, a large proportion of current research effort is directed toward in silico mod-
eling of absorption, distribution, metabolism, and excretion properties of leads or
potential drug candidates. A variety of models are available for the prediction of
physicochemical properties such as log P, oral bioavailability and aqueous solubil-
ity, intestinal absorption, and blood-brain barrier penetration. There are some models
for metabolism but very few models for excretion and toxicity. Analysis of various
drug failure cases has revealed that more than 90% of the setbacks in drug discovery
programs are a result of toxicity. Lack of toxicity data could be one of the major
bottlenecks in the development of toxicity models. Hence, it is essential that freely
available toxic compound databases are developed to get better in silico toxicity mod-
els. We can expect further development in chemoinformatics approaches to facilitate
rational drug design for personalized medicine.
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MOTIF FINDING
ALGORITHMS IN
BIOLOGICAL SEQUENCES

Tarek El Falah, Mourad Elloumi, and Thierry Lecroq

18.1 INTRODUCTION

The motif finding problem consists in finding substrings that are more or less con-
served in a set of strings. This problem is a fundamental one in both computer sci-
ence and molecular biology. Indeed, when the concerned strings code biological
sequences (i.e., DNA, RNA, and proteins), extracted motifs offer biologists many
tracks to explore and help them to deal with challenging problems. Actually, a motif
generally represents an expression that characterizes a set of biological sequences
[4,13]. It generally codes a substructure and/or a biological function [8]. And hence,
on the one hand, a motif can help biologists to learn about the biological functions
of biological sequences and, consequently, can help them to understand the mech-
anisms of the biological processes in which these sequences are involved. On the
other hand, a motif common to a set of biological sequences can help biologists to
determine common biological ancestors to these biological sequences [14].

Despite many efforts, the motif finding problem remains a challenge for both
computer scientists and biologists. Indeed, on the one hand, the general version of
this problem is Nondeterministic Polynomial (NP)-hard [11], and on the other hand,
our incomplete and fuzzy understanding of several biological mechanisms does not
help us to provide good models for this problem.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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In the literature, several versions of the motif finding problem have been identi-
fied. In this chapter, we are interested in the following ones:

i. Planted (1, d)-Motif Problem (PMP)

ii. Extended (I, d)-Motif Problem (ExXMP)
iii. Edited Motif Problem (EAMP)
iv. Simple Motif Problem (SMP)

Independently of the version of the motif finding problem, we can group motif
finding algorithms into two classes:

i. The first class is made up of pattern-based algorithms. By using these algo-
rithms, we try to identify the motif itself.

ii. The second class is made up of profile-based algorithms. By using these al-
gorithms, we try to identify not the motif itself but the position of the first
character of the motif in each string.

In this chapter, we make a survey of algorithms that address the most studied
versions of the motif finding problem, which are PMP, ExXMP, EAMP, and SMP.

The rest of this chapter is organized as follows: In Section 18.2, we present some
preliminaries. In Sections 18.3—18.6, we survey algorithms for the PMP, the ExXMP,
the EAMP, and SMP, respectively. Finally, in Section 18.7, we present the conclusion
for this chapter.

18.2 PRELIMINARIES

Let A be a finite alphabet; a string is a concatenation of elements of A. The length of
a string s, denoted by |s|, is the number of the characters that constitute this string. A
portion of a string s that begins at a position i and ends at a position j, 1 <i < j <
|s|, is called substring of s. Wheni = 1 and 1 < j < |s|, the corresponding substring
is called prefix of 5, and when 1 <i < |s| and j = |s|, the corresponding substring
is called suffix of s.

The strings coding DNA, RNA, and proteins are built, respectively, from the al-
phabets {A, C, G, T}, {A,C,G, U}, and {A,C,D,E,F, G, H,, K, L, M, N, P, Q,
R,S,T,V,W,Y}.

Let s and s’ be two strings of the same length; the Hamming distance between
s and s’, denoted by H(s, s’), is the number of the positions where s and s’ have
different characters.

The edit distance [6], denoted by Dy, s(s, s’), between s and s’ is the minimum
cost of a sequence of edit operations (i.e., change of cost o, insert of cost y, and
delete of cost §) that changes s into s’.
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First, we present a formulation of this problem, and then we present algorithms that
address this problem.

18.3.1 Formulation

The PMP is defined as follows: Given a set of strings S = {Si, S2, ..., Sy} over an
alphabet A, ||| = |S2| = ... =|Sy| = L,twointegers/ andd,0 <d <[ < L, find
astring m, |m| = [, such that for each string S;, 1 <i < n, there exists a substring m;
of S;, |m;| =1, with H(m;, m) < d [9,10]. The substring m is called planted (I, d)-
motif, and the substrings m;, | < i < n, are called planted (I, d)-variants of m.

Let us note that in other papers [8, 14, 5], the PMP is defined with H(m;, m) = d.

The PMP originates in molecular biology from the need to find transcription
factor-binding sites in genomic sequences.

18.3.2 Algorithms

Among pattern-based algorithms for the PMP, we mention algorithms Pattern-
Branching [9], Chin and Leung’s algorithm [1], PMS1, and PMS2 [10]. Among
profile-based algorithms for the PMP, we mention algorithm ProfileBranching [9].

18.3.2.1 PatternBranching. Algorithm PatternBranching [9] operates as fol-
lows: For each different substring m in S, it constructs iteratively a succession of
substrings mq, my, ma, ..., mgy, where m ;| = BestNeighbor(m ;) for 0 < j <d.
At each iteration, it scores the current substring m;, 0 < j < d, thanks to the score
H(m, §) and compares this score with the highest score obtained so far.

Let us denote by A, (m ;) the set of the substrings of length [ that are at a Hamming
distance equal to ¢, 1 < g <d, from m;. And, for any string §;, 1 <i <n, of §,
let us denote by A(m;, S;) the minimum Hamming distance between m; and any
substring of length / of ;. So:

H(m;, )= h(m;, S (18.1)
i=1

BestNeighbor(m ) is an element p of & (m ;) with the lowest distance H(p, S).
Here is a pseudocode of algorithm PatternBranching:

Algorithm 18.1 PatternBranching (S, 1, d)

Let m be an arbitrary substring of length /
for each different substring m in S do
for j: =0tod do
it Homj, S) < H(m, S) then m: = m; endif
my1: = BestNeighbor(m ),
endfor
endfor
return m
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In [9], the authors described algorithmic details to speed up this algorithm.

When experimented on strings coding DNA sequences (i.e., with the alphabet
A ={A, C, G, T}), PatternBranching achieves good results in finding subtle motifs
and succeeds in finding known biological ones. It would be good to experiment this
algorithm on sets of strings built from larger alphabets.

18.3.2.2 Chin and Leung'’s. In [1], Chin and Leung developed a voting algo-
rithm to address the PMP. By adopting this algorithm, we operate as follows: Each
substring of length / in the strings of S gives one vote to each of its variants (i.e.,
substrings of length / that are at a Hamming distance equal to at most d from this
string), under the restriction that each substring of length / in the strings of S gets
at most one vote from each string. Hence, the substrings of length / that have got
exactly n votes are considered to be planted (/, d)-motifs.

The time complexity of this algorithm is O(nL((|A| — 1)I)?), and the memory
space complexity is O(L((|A| — 1)I)? + Ln), where A is the alphabet.

18.3.2.3 PMS1. Algorithm PMSI1 [10] operates in four steps:

i. During the first step, it extracts the different substrings of length / from the
strings of S. Let us denote by C; the set of the different substrings of length /
of S;,1 <i <n.

ii. During the second step, for each set C;, 1 <i < n, and each element m’ of
C;, it generates all the variants of m’ (i.e., substrings of length / that are at a
Hamming distance equal to at most d from m’). Let us denote by C’; the set
of the different variants of the elements of C;.

iii. During the third step, for each set C’;, 1 <i < n, it sorts the elements of C’;,
and it eliminates the duplicates. Let L; be the sorted list obtained from C”;.

iv. Finally, during the fourth step, the substrings of length / that are in the intersec-
tion of all the lists L;’s, 1 < i < n, are considered to be planted (/, d)-motifs.

The time complexity of algorithm PMS] is O(anl(gIl)(|A| — 1)%). Furthermore,
according to Rajasekaran et al. [10], the PMP can be solved in a time O(nL(lli)(| Al —
l)d%), where w is the length of the computer word. A time O([nL + L(é)2(|A| —
1)*]L) is also achievable.

18.3.2.4 PMS2. Algorithm PMS?2 [10] operates in four steps:

i. During the first step, it uses algorithm PMS1, for example, to solve the planted
(d + ¢, d)-motif problem for some appropriate value ¢, (d + ¢) < [. Let R be
the set of all the planted (d + ¢)-motifs found.

ii. During the second step, it chooses a string S;, 1 < j < n, of S, and it generates
all the variants of all the motifs of R that are in §; with a Hamming distance
equal to at most d. For every position i, 1 <i < L, in §;, let L; be the list of
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the motifs of R that are in S;,with a Hamming distance equal to at most d,
that start at position i.

iii. During the third step, for each position i in S;, let m’ be the substring of
length I of §; starting at position i, m; be an element of L;, and m; be an
element of Ly/)—+c)- If the suffix of length 2(d + ¢) — I of m; is equal to
the prefix of length 2(d + ¢) — I of m,, then it appends the suffix of length
I — (d + ¢) of m, to m; to get a substring m” of length [. If the Hamming
distance between m’ and m” is equal to at most d, then we include m” in the
list L of candidate solutions for the planted (I, d)-motif problem.

iv. Finally, during the last step, it checks whether any elements of L are correctly
planted (I, d)-motifs.

The steps i, ii and iii represent the first phase of the algorithm, whereas the last
step represents the second phase.

The time complexity of algorithm PMS2 is O(nL Zfzo(dfc)(|A| - l)i% +
znLl + ZiLz_llH |L;||A'=@+9]), where z is the number of the potential substrings
of length / extracted during the first phase and w is the length of the computer
word. If d < L%J, then this complexity becomes O(nL(d;rC)(IAI — l)d% + znlLl +
i LA,

Now, let us move to profile-based algorithms that address the PMP.

18.3.2.5 ProfileBranching. This algorithm is proposed by Price et al. [9]. It is
similar to the PatternBranching algorithm [9] but with the following changes:

i. Each different substring mg in S is converted to a profile X (mg) as follows:
Let m( be a substring then the profile X (m) is defined as being a |A| x |my|
matrix (x;;), where

a. Arowi, 1 <i <|A|, represents the ith element of the alphabet A

b. A column j, 1 < j < |my|, represents the jth character of m,

c. And x;; = % if the ith element of the alphabet A is equal to the jth char-
acter of mg and x;; = é, else.

ii. The score H for substrings is replaced by an entropy score for profiles. This is

done as follows: Given a profile X = (x;;) and a substring mo = m(l) m(z) mf),

let e(X, mg) be the log probability of sampling m( from X; that is:
!
e(X, mo) = Zlog(xord(mg) ) (18.2)
j=1

where ord(m)) is the order of m, in the alphabet A.
Then, for each string S;, S; € S, we define e(X, S;) as follows:

e(X, S;) = max {e(X, mg)|my is a substring of S;} (18.3)
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Hence, the entropy score of X is:

eX,S) = Z e(X, S (18.4)

s;i€S

The relative entropy of two profiles X and X’ is defined as follows:

re(X', X) = Zx 1og< ) (18.5)
Xij

iii. The branching method is modified to apply to profiles.

iv. The top scoring profile is used as a seed to the Expectation Maximization (EM)
algorithm [2].

So, algorithm ProfileBranching operates as follows: For each different substring
my in S, it converts this substring to a profile X(mg) = Xy; then it constructs itera-
tively a succession of profiles Xo, X1, X, ..., Xg4, where X ;| = BestNeighbor(X ;)
for 0 < j < d. At each iteration, a profile X;, 0 < j < d, is scored, thanks to the
entropy score e(X;, S), and compared with the top scoring profile X found so far.
Finally, it calls the EM algorithm [2] to converge on the top scoring profile X found.

Let us denote by K, (X) the set of profiles obtained from a profile X by amplifying
the probabilities of g characters in ¢ components of X to create a new profile X’ =
(x’yw) with relative entropy equal to p, where p is an implicit parameter.

BestNeighbor(X ;) is an element Y in K (X ;) with the highest entropy e(Y, S).

Here is a pseudocode of algorithm ProfileBranching:

Algorithm 18.2  ProfileBranching (S, [, d)

Let X be an arbitrary profile
for each different substring m in S do
Xo: = X(my)
for j: =0tod do
ife(X;,S) > e(X, S) then X: = X endif
X j4+1: = BestNeighbor(X ;)
endfor
endfor
call the EM algorithm with X as a seed.
return the resulting profile

Like algorithm PatternBranching, algorithm ProfileBranching achieves good re-
sults in finding subtle motifs in strings coding DNA sequences.

Algorithm ProfileBranching runs about five times slower than algorithm Pattern-
Branching.



18.4 THE EXTENDED (/, d )-MOTIF PROBLEM 391

18.4 THE EXTENDED (/, d)-MOTIF PROBLEM

Let us first formulate this problem.

18.4.1 Formulation
The ExMP is defined as follows: Let S = {S;, S2, ..., S,} be a set of strings built

from an alphabet A, |S|| = |S;| =...=|S,| = L, and let [ and d be two integers,
0 <d <l < L. Find a string m built from the alphabet A such that there exists at
least k substrings my, my, ..., mg, |m;| = |m|, 1 <i < k, appearing in the strings of

S and any substring m;, 1 <i < k, differs from m in at most d positions over any

window of / characters, / < |m| [14, 5]. The substring m is called extended (I, d)-

motif, and the substrings m;, 1 <i < k, are called extended (I, d)-variants of m.
The EXMP is defined to fix two main weaknesses in the PMP:

i. First, biologists seldom get a set of biological sequences in which each se-
quence contains a variant of the motif. This is due to experimental errors. They
usually get a set of biological sequences; not all of them contain variants.

ii. Second, biologists usually do not know the exact length of the motif. At best,
they only know the range for the length.

18.4.2 Algorithms

To the best of our knowledge, the only existing algorithms that address the EXMP are
pattern-based ones. In this section, we describe two algorithms, Styczynski et al.’s
algorithm [14] and exVote [5].

18.4.2.1 Styczynski et al.’s. Styczynski et al.’s algorithm [14] operates in two
phases:

1. During the first phase, called scan phase, it concatenates the strings of S in a
single string ¢, and then it constructs a symmetric matrix M of size N2, where
N =n(L — |m|+ 1) and |m]| is a length supplied by the user, defined as fol-
lows: A row i or a column j represents the position in ¢ of a substring of length
|m| that is not in overlap between two strings of S, and a cell M[i, j] repre-
sents the Hamming distance between the substring of length |m| that starts at
position i in ¢ and the substring of length |m| that starts at position j. So, the
matrix M contains the pairwise Hamming distances between the substrings of
length |m| found in the set S. Actually, the matrix M represents a graph in
which a vertex represents a substring of length |m| in the set S and an edge
connecting two vertices expresses the fact that the Hamming distance between
the corresponding substrings is equal to at most 2d.

ii. During the second phase, called convolution phase, it basically clusters the
substrings of length |m|, extracted during the scan phase, to make motifs.
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The clustering is made thanks to Tomita et al.’s optimal algorithm [16] for
finding all cliques in the graph represented by the matrix M.

Let us note that the whole approach adopted by this algorithm is similar to the
one adopted by algorithm Winnower [8].

The time complexity of this algorithm is O((nL)**2-370) [5]. Of course, this algo-
rithm is far from being useful in practice. For example, for L = 600, n = 20, = 14,
and d = 4, this algorithm takes more than three months of computing time [5].

18.4.2.2 exVote. Leung and Chin developed another algorithm, called exVote, to
address the ExXMP [5]. This algorithm is based on the voting approach described in
[1] to address the PMP. To address the ExXMP, each substring of length |m| in the
strings of § gives one vote to each of its variants (i.e., substrings of length |m| that
differ from this substring in at most d positions over any window of / characters,
I < |m]) under the restriction that each substring of length |m| in the strings of S
gets at most one vote from each string. Hence, the substrings of length |m| that have
received at least k votes are considered to be extended (, d)-motifs.

Algorithm exVote is of complexity O(nLo(|m|, [, d)) in computing time, where
o(lm|,1,d) is the number of the extended (I, d)-variants of a substring of length
|m|. When A = {A, C, G, T}, this number is always less than |A|"™ = 4/"|. When
k ~ n, which is usually much larger than |m|, the time complexity becomes then
O(nL|A|"™) = O(nL4™) and is much smaller than O((nL)*237°), which is the time
complexity of Styczynski ef al.’s algorithm [14].

Algorithm exVote is of complexity O(|A|"™! 4 nL) in memory space. When A =
{A, C, G, T}, this complexity becomes 04" 4+ nL), and it would not create much
of a problem when |m| is small. To handle large |m|, Leung and Chin describe tech-
niques to reduce the memory space complexity without increasing too much the time
complexity.

Algorithm exVote achieves good results by running faster than Styczynski ez al.’s
algorithm [5].

In [5], a modified version of exVote is developed to process the Further Extended
(I, d)-Motif Problem (FExMP).

18.5 THE EDITED MOTIF PROBLEM

Let us formulate this problem.

18.5.1 Formulation

The EAMP is defined as follows: Let S = {5}, S>,..., S,} be a set of strings, of
average length L and built from an alphabet A, and let /, d, and g be three integers;
find all the substrings of length [ in §, called edited motifs, such that each substring
has at least g edited variants in at least g distinct strings of S. A substring s is an
edited variant of another substring s’ if D ,, 5(s,s’) < d [12, 11, 15].
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18.5.2 Algorithms

To the best of our knowledge, the only existing algorithms that address the EDMP are
pattern-based ones, they are Speller [12], Deterministic Motif Search (DMS) [11],
Edit Distance Motif Search (EDMS) EDMS1, and EDMS?2 [15]. In this section, we
describe only Speller [12] and DMS [11].

18.5.2.1 Speller. Algorithm Speller [12] operates in two steps:

i. During the first step, called preprocessing step, it constructs a Generalized
Suffix Tree (GST) associated with the strings of S. This can be done via Ukko-
nen’s online linear algorithm [17].

ii. During the second step, called spelling step, for every substring m of length [
in the strings of S, it searches in the GST for the substrings of length / that are
at an edit distance of at most d from m. If at least ¢ of the strings of S have
each one an edited variant of m, then m is an edited motif.

This algorithm is of complexities O(nled |Al?) in computing time and O("ZTL) in
memory space, where w is the length of the computer word.

18.5.2.2 DMS. Algorithm DMS [11] operates as follows: First, it extracts the dif-
ferent substrings of length [ from the n strings of S. Then, for each substring m of
these substrings, it generates all the edited variants of m. This generation is made
thanks to Myers’s algorithm [7]. Then, for each edited variant of m, it determines the
list of the strings of S where this edited variant is a substring. Finally, it merges the
lists associated with the different edited variants of m into a single list. If the size of
this list is at least equal to g, then m is an edited motif.

This algorithm is of complexities O(n?LI‘|A|¢) in computing time and
O(nLI*|A|%) in memory space. The memory space complexity can be reduced to
O(nLd + I'|A|?) [11].

18.6 THE SIMPLE MOTIF PROBLEM

Let us first formulate this problem.

18.6.1 Formulation

First, let us give some definitions related to this problem: A simple motif is a string
built from an alphabet AU{?} that cannot begin or end with “?,” where “?” is a
wildcard character; it can be replaced by any character from A. The length of a
simple motif is the number of the characters that constitute this motif, including the
wildcard characters. The class of the simple motifs in which each simple motif is of
length u and has exactly v wildcard characters will be denoted by (u, v)-class.
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Now let us formulate the SMP: Let § = {S}, S, ..., S,} be a set of strings built
from an alphabet A and [ > 0 be an integer; find all the simple motifs of length equal
to at most / with anywhere from 0 to [/|2] ?’s, and for each simple motif, give the
number of times it appears in the strings of S [11].

18.6.2 Algorithms

To the best of our knowledge, the only existing algorithms that address the SMP are
pattern-based ones. In this section, we present two algorithms, Simple Motif Search
(SMS) [11] and Teiresias [3]. Actually, algorithm Teiresias does not address the SMP
but addresses a problem close to the SMP.

18.6.2.1 SMS. Algorithm SMS [11] operates as follows:
For each (u, v)-class,0 <u <land 0 <v < [I/2]:

i. First, it extracts all the substrings of length u in the strings of S.
ii. Then, it sorts the substrings of length u extracted during the step i, only with
respect to the nonwildcard positions.
iii. Finally, it scans through the sorted list and counts the number of times each
simple motif appears.

The time complexity of this algorithm is O(I//?N), where N = _ |S;].
i=1
In [11], the authors implemented algorithm SMS both sequentially and in parallel.
In the sequential implementation on a Pentium 4, 2.4 Ghz machine with 1 GB RAM,

SMS takes around 7.25 hours.

18.6.2.2 Teiresias. As we said earlier, algorithm Teiresias [3] does not address
the SMP but addresses a problem that is close to the SMP. So, let us first give some
definitions related to this problem:

A simple motif has the same definition as in the SMP. A simple motif m is called
< [, d >-motif if every simple motif of m of length at least / contains at least d
characters belonging to A. An elementary < I, d > motif-is a substring of length [
that contains exactly d characters belonging to A. A simple motif m’ is said to be
more specific than a simple motif m if m’ can be obtained from m by changing one or
more ?’s of m into characters belonging to A and/or by adding one or more characters
belonging to A U {?} to the extremities of m. A simple motif m is said to be maximal
if there is no simple motif m’ that is more specific than m and which appears in more
strings of S than m.

Now let us formulate the problem addressed by algorithm Teiresias: Let S =
{81, 85, ..., S,} be a set of strings built from an alphabet A and [/, d, and ¢ be three
positive integers; find all the maximal < /, d >-motifs in S that occur in at least g
distinct strings of S.
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Table 18.1 Synoptic table of some motif finding algorithms

Problems Algorithms Time Space

PMP PatternBranching [9]
ProfileBranching [9]

PMS1 [10] 0(nL21(2>(|A| -1
d

PMS2 [10] 0<an<d;rC>(|A|_1)fd:;C+
i=0

L—I+1
Ll + Z |L;||A|-@+o 1)

i=1

ExMP Styczynski et al.’s [14] O((nL)k+2370)
ExVote [5] OLo(|m|. 1, d)) O(A|" + nL)
277d) 41d n’L
EdMP Speller [12] O(n°LI“|1A|%) ol—
w
DMS [10] 0L Al OLd + I|Al%)
EDMS1, EDMS2 [15]
SMP  SMS[I1] 0@ N)
Teiresias [3] £2(IN log(N))

Algorithm Teiresias operates in two steps.

i. During the first step, it identifies the elementary < [, d >-motifs in the strings
of S.

ii. Then, during the second step, it superposes overlapping elementary < [, d >-
motifs identified during the first step to obtain larger < I, d >-motifs. The
obtained < [, d >-motifs in S that are maximal and that occur in at least g
distinct strings of S are solutions to the addressed problem.

Algorithm Teiresias is of complexity 2(1N log(N)) in computing time, where
N = Z |S;:].

i=1
Table 18.1 lists algorithms that address motif finding problems.

18.7 CONCLUSION

In this chapter, we have surveyed algorithms that address four versions of the motif
finding problem: The PMP, the ExXMP, the EAMP, and the SMP.

Developing more efficient algorithms that address these versions and others is still
an ongoing problem.
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COMPUTATIONAL
CHARACTERIZATION OF
REGULATORY REGIONS

Enrique Blanco

19.1 THE GENOME REGULATORY LANDSCAPE

Genomes are genetic information repositories on each cell of a living being. Yeast
was the first eukaryote that was sequenced more than one decade ago [31]. Since
then, the sequence of many other genomes has been published, becoming publicly
available in most cases for the worldwide research community. We now can access
from our computer the human genome [80, 39] and the sequence, among others, of
the fruit fly [3], mouse [40], chicken [38], chimpanzee [70], cow [69], or rice [30, 41]
using any of the popular genome browsers [46, 37].

Once the sequence of nucleotides on each chromosome is assembled, one of the
initial tasks is to identify the catalogue of biological signals and regions that shape the
genome landscape [11]. Genes are units of hereditary information in the organism.
In response to variable internal and external conditions, cells increase or decrease
the activation of multiple genes, expressing different gene regulatory programs dur-
ing their lifetime. Protein-coding genes are translated into proteins, which perform
diverse biological functions in the organisms (see more about protein-coding genes
in [84]). Noncoding genes, such as those that give rise to microRNAs, are responsible
for other essential processes in cells (see [29] for a comprehensive gene taxonomy).

Gene transcription initiation is considered to be one important control point in
most gene regulatory programs. Multiple actors play specific roles during RNA

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
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Figure 19.1 Components of gene regulatory regions.

polymerase II recruitment to initiate the synthesis of transcripts [5]. In eukaryotes,
chromatin is packaged into compact structures organized by specific proteins called
histones. Nucleosomes, the fundamental packaging units, are histone complexes with
DNA wrapping around. In a high regulatory level, gene transcription and nucleosome
positioning along the genome are intimately related. Access to gene regulatory re-
gions free of nucleosomes must be granted for the RNA polymerase II to permit the
transcription. Multiple chromatin remodelers are thought to imprint different modifi-
cations on the histones that constitute the nucleosomes. Such histone marks epigenet-
ically shape long chromosomal regions in the genome to become active or inactive
depending on the context (see more about the histone code on [45]). The existence
of chromosomal domains that favor coordinated regulation of gene groups results in
the nonuniform distribution of genes along the genome [49, 71, 13].

In a low regulatory level, gene transcription is governed locally in the promoter
regions. Promoters, as depicted in Figure 19.1, are functional regions inmediately
upstream from the transcription start site of genes (TSS) harboring different bind-
ing sites for multiple proteins. Transcription factors (TFs) are proteins guiding RNA
polymerase II in the recognition of the appropriate inititation site. Core promoter
region rules basal expression, whereas specific gene control actually is triggered by
a particular collection of TFs in the proximal promoter. Binding sites for transcrip-
tion factors (TFBSs) are highly variable short sequences (5—15 bp). Protein—protein
interactions between TFs, which might confer cooperative or competitive structures
such as composites or modules, are poorly known [83]. Although important efforts
are being carried out to standardize the construction of libraries [62, 81, 60], current
promoter databases still contain incorrect annotations.

Gene expression programs in eukaryotes are highly flexible. Thus, regulatory el-
ements can be found often in regions other than promoters (see Figure 19.1) such
as first introns [65] and enhancers [8]. Comprehensive characterization of gene reg-
ulatory regions therefore is difficult and complex, making necessary the integration
of different computational and experimental techniques to produce accurate descrip-
tions [82]. Using these approaches, several developmental gene regulatory networks
have been reconstructed successfully [36, 19]. Thus, substantial improvement in the
establishment of the catalogue of functional elements in the human genome was pub-
lished recently [17]. The availability of gene regulatory architecture maps offers great
promises in the elaboration of novel methods to tackle multiple genetic diseases [47].

This chapter briefly reviews the basic computational methods widely employed
to characterize regulatory regions, searching for TFBSs in genomic regions that
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Genome browsers
Ensembl
UCSC Genome Browse

Promoter collections
EPD

DBTSS

RefSeq

Regulatory catalogues
ABS

Jaspar

Oreganno

Pazar

Transfac

Promoter scanning
Match

MatScan
RSAtools

Phylogenetic footprinting
Conreal

eShadow

Footprinter

rVISTA

TF-Map alignment

Motif finding
Gibbs sampler
Melina2
Meme

Composite prediction
DIRE
Oppossum?2

Visualization tools
eff2ps

Pipmaker

VISTA

Weblogo

http://www.ensembl.org
http://genome.ucsc.edu

http://www.epd.isb-sib.ch
http://dbtss.hgc.jp
http://www.ncbi.nlm.nih.gov/RefSeq

http://genome.imim.es/datasets/abs2005
http://jaspar.cgb.ki.se
http://www.oreganno.org
http://www.pazar.info
http://www.gene-regulation.com

http://www.gene-regulation.com
http://genome.imim.es/software/meta
http://rsat.ulb.ac.be/rsat

http://conreal.niob.knaw.nl
http://eshadow.dcode.org

http://genome.cs.mcgill.ca/cgi-bin/FootPrinter3.0

http://rvista.dcode.org

http://genome.imim.es/software/meta/index.html

http://bayesweb.wadsworth.org/gibbs/gibbs.html

http://melina.hgc.jp
http://meme.sdsc.edu

http://dire.dcode.org
http://www.cisreg.ca/oPOSSUM
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potentially share similar regulatory mechanisms. First, different representations of
these biological signals are introduced. The algorithms that use such models to in-
fer binding sites in other regulatory sequences are described next. Particular focus
is given then to learn how to use evolutionary information to filter the initial set of
predictions. Finally, experimental methods that currently are used to validate compu-
tational predictions are enumerated briefly. Throughout the chapter, several methods
to visualize regulatory annotations are presented to the reader. A comprehensive list

of selected resources to analyze regulatory sequences is shown in Table 19.1.
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19.2 QUALITATIVE MODELS OF REGULATORY SIGNALS

Biological signals are short genomic sequences recognized and processed by the
cellular machinery that governs the gene expression pathway. TFBSs are regulatory
signals located on gene regulatory regions. Because of the variability observed in
binding sites of the same TF (see Figure 19.2a), multiple representations have been
developed to capture common trends observed on these sequences. The information
about a signal class retrieved from input sequences is particularly useful to recognize
putative members of this class in other regulatory sequences.

Consensus sequences are the simplest model that can be derived from a multiple
sequence alignment of TFBSs (see Figure 19.2b). The consensus can be constructed
easily by selecting the nucleotide base more frequently appearing at each position
of the signal. The number of matches between the consensus and the candidate se-
quence can be used to evaluate how similar this site is to the signal class according
to the consensus definition. Unless the set of binding sites is uniform, consensus are
rather limited predictive models as no information about the variability at each posi-
tion is modeled [73]. To support some degree of ambiguity on a particular position,
the International Union of Pure and Applied Chemistry (JUPAC) extended genetic
alphabet of 15 elements allows for special symbols that code for multiple letters (see
Table 19.2).
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Figure 19.2 Predictive models of biological signals.
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Table 19.2 IUPAC extended code

Symbol Letters Meaning

A A Adenine

C C Cytosine

G G Guanine

T T Thymine

R AorG puRine

Y CorT pYrimidine

M AorC aMino

K GorT Keto

S CorG Strong interaction (3 H-bonds)
W AorT ‘Weak interaction (2 H-bonds)
B CorGorT not A, B follows A

D AorGorT not C, D follows C

H AorCorT not G, H follows G

\" AorCorG not T (not U), V follows U

N AorCorGorT aNy

The extended genetic code defines, as depicted in Figure 19.2¢, a limited set of
regular expressions. In general, regular expressions allow for more than one single
nucleotide on every position in the regulatory motif. Variability on a position usually
depends on the number of times a given nucleotide is observed there in the input
dataset (e.g., more than 30% of sequences present this feature). Regular expressions
define the motif in terms of subexpressions occurring zero or more times (*) or one
or more than one times (4) within the sequence that characterizes the binding sites.
The expression (A)*(TCT) + (A)*, for instance, denotes the set of sequences starting
by zero or more A symbols, followed by at least one occurrence of the submotif
TCT, finishing in zero or more A symbols again. As in consensus sequences, the
number of matches between the regular expression and the candidate site determines
the score of putative sequence. An overwhelming number of putative sequences can
be recognized, however, by a regular expression constructed from a particular set of
sites. Many of these combinations might not be present in the original input, though.
Because of the lack of quantitative information, consensus and regular expressions
are therefore more appropriate models to construct human-readable representations
of these sequences [73, 82].

19.3 QUANTITATIVE MODELS OF REGULATORY SIGNALS

Popular position weight matrices (PWMs)—also known as position-specific scoring
matrices (PSSMs)—are quantitative models that capture the numerical variability on
sets of binding sites. The first step to construct a PWM from a multiple sequence
alignment of binding sites is producing a position frequency matrix (PFMs). As
shown in Figure 19.2d, PFM profiles are two-dimensional arrays of values counting
the number of times each nucleotide is observed on a set of functional sites [72, 16].
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Normalized PFMs, in which relative instead of absolute frequencies are calculated,
are tables of probabilities for each nucleotide along the characteristic motif. Let F
be a PFM, where F (b, i) indicates the number of counts of base b in position i of the
alignment. The normalized PFM P must be calculated from the frequency distribu-
tion as follows:

F(b, i)

Pbh,i)= ———F—
D = S o D)

(19.1)

Normalized PFMs represent the composition of a particular class of positive ex-
amples of binding sites. To produce PWMs, the initial model is compared with a
second description derived from negative examples that improve their discriminative
power. Random uniform distributions or background frequencies of each nucleotide
on the genome are typical examples of secondary models. Let Q be a table containing
the genome composition (e.g., frequency of each base). The PWM M that computes
the ratio between positive and negative models is therefore defined as follows:

P(b,i)
()
For efficient computational analysis when using these models to predict putative

sites, weight matrices must be converted into log-likelihood ratios (see Figure 19.2e).
From a given PWM M, the log conversion is:

M(b,i) = 19.2)

. . P(b,i) .
(b,i) =1logM(b,i) =log W =log P(b,i) —log Q(b) (19.3)

Pseudocounts are introduced in the matrix to prevent null values, correcting for
small sample sizes [82]. Let S be a table of pseudocounts, the normalized PFM must
be then recomputed:

F(b,i)+ S(b)

P&, 5= Y ncor Fb, i)+ Sb)

(19.4)

The amount of information available in a weight matrix can be expressed in terms
of entropy or in amount of uncertainty. Entropy is measured in bits per symbol for
each position of the signal (see [44] for a review of the topic). The uniform random
distribution of symbols in a motif results in maximum entropy (e.g., 2 bits in the
DNA alphabet). The information content H (i) in position i of the normalized PFM
P is defined as [66] follows:

H(i)=2+ Y P(b.i)log, P(b.i) (19.5)
A,C,G,T

Bias in the information content of a given position can be explained in biological
terms (e.g., binding energy of the DNA—protein interaction [73]). Most informative
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positions constitute the core of the matrix (see boxed positions in Figure 19.2). In-
stead, the context around usually presents weaker conservation levels. Information
content can be depicted in a sequence logo, as in Figure 19.2f. The height of each
position in the motif is proportional to its information content; the higher the symbol,
the more conserved that position is in the motif [66].

PWMs are used to identify new sites that might belong to the same signal class.
Weights are used to score every position of the candidate according to its content.
Every position within the site is assumed to make an independent contribution to the
final score. Under the hypothesis that highly conserved positions are more relevant
for the biological activity of the binding site, any site that differs from the profile is
scored proportionally to the significance of the mismatching positions in the motif
[73]. The final score of a candidate site therefore indicates how similar the prediction
is to the profile constructed for this class of TFs. Let C be an input candidate of /
nucleotides and LM be a PWM of length / that represents a set of real binding sites.
The score S of such a putative site is computed as follows:

1
S(C) =Y LM(C(). i) (19.6)

i=1

The score S can be normalized into a value S’ between 0 and 1 using maximum
and minimum matrix scores (MaxS$ and MinS, respectively):

S'(C) = M (19.7)
MaxS — Min§

For sequences longer than the length of a given PWM, a window of this size
is slid over them in increments of one position to evaluate each putative binding
site (for further information see pattern-driven algorithms). When constructing the
matrix, the election of the appropriate length is usually arbitrary. PWMs typically
contain the maximum set of consecutive positions that show stronger conservation
in comparison to the context in the alignment of binding sites [73].

19.4 DETECTION OF DEPENDENCIES IN SEQUENCES

When using weight matrices, the contribution of each nucleotide to the biological
signal is supposed to be independent [73]. There are many documented cases, how-
ever, in which this assumption is not true [82]. Protein-coding regions, for instance,
are constituted of groups of three nucleotides (codons) that are translated into amino
acids. Dependencies between neighboring amino acids and bias in the codon usage
into proteins produce a nonuniform genomic composition in the coding sequence
of genes (see [34] for further details). Oligonucleotide composition in promoter re-
gions may be biased because of certain particular configurations of TFs (see more
about promoter identification in [25]). Nevertheless, current biological knowledge
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about the existence of dependencies between positions in TFBSs is not particu-
larly abundant. To circumvent this, several works have been published on this area
(see [1] for a recent review). Oligonucleotide counts, Markov chains, and hidden
Markov models are alternative signal representations to model dependencies in these
sequences.

Markov chains are the most popular probabilistic model to capture dependencies
between consecutive symbols in biological sequences [21]. A Markov chain M ba-
sically is defined as a collection of states (X), each one denoting a combination of
one or more symbols. The probability of a certain symbol following another group
of k symbols is defined by the transition probability function (A) between two states
a and b as follows:

A(a,b) = P(x; = b|xi_y = a) (19.8)

The beginning of the sequence is modeled for each state a as follows (/, is the
initial probability function):

I(a) = P(x; = a) (19.9)

The probability of the input sequence S = s; ...s, to follow the model defined
by the Markov chain M (k = 1) is calculated as follows:

P(SIM) = P(x; =sp)Px2 = s2|x1 = 51) ... P(xy = Sp|xp1 = 8p-1)
= I(s1)A(s1, 82)...A(Sn—1, Su) (19.10)
= I(s)IT]_, A(si—1, 8i)

This value represents the probability that a given sequence has been generated by
this model in which dependencies between symbols are incorporated. Similarly to
PWMs, positive and negative models are constructed for signal detection (negative
models can be calculated from the background frequency in the genome). Therefore,
the score in logarithmic terms of a candidate binding site S of n nucleotides using the
following predictive model that discriminates between positive and negative signals
M+, M—)is:

PSIM+) _ | THoDIT AT it s)
EPsIM—) ~ B T, A~ (51, 51)

= (log I'*(sy) + log Z AT (siz1, 80) —
i—2

(log I~ (s1) +log > A™(si_1,5:) (19.11)

i—2
=logI"(s;) —log I (sy) +

log Y " (AT (si-1,5) — A (s5i-1.5:))

i=2
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AC  T00794 AC  M00252

XX XX

FA  TBP

XX ID V$TATA_O1

SY  TATA-binding protein; TATA-box-binding protein; TBP; TFIID; TFIIDtau. XX

XX DE cellular and viral TATA box elements

0S  human, Homo sapiens XX

0C  eukaryota; animalia; metazoa; chordata; vertebrata; tetrapoda; BF T00796 TBP: Species: mouse, Mus musculus
mammalia; eutheria; primates ;P B ’ N )

XX BF T00794 TBP; Species: human, Homo sapiens.

SZ 339 AA; 37.7 kDa (cDNA), 38-43 kDa (SDS) BF  TO0797 TBP; Species: fruit fly, Drosophila

xx melanogaster.

SQ  MDQNNSLPPYAQGLASPQGAMTPGIPLFSPMMPYGTGLTPQPIQNTNSLSILEEQQRQQQ XX

SQ  0QQQQAQQQAEQAARAAAAAAAAAAAAAAAAAAAAAVAAAAVQQSTSAQATAGTSGRAPQ

SQ  LFHSQTLTTAPLPGTTPLYPSPMTPMTPITPATPASESSGIVPQLQNIVSTVNLGCKLDL PO N ¢ G T

SQ  KTIALRARNAEYNPKRFAAVIMRIREPRTTALIFSSGKMVCTGAKSEEQSRLAARKYARV 01 61 145 162 31 S
SQ  VQKLGFPAKFLDFKIQNMVGSCDVKFPIRLEGLVLTHQQFSSYEPELFPGLIYRMIKPRI 02 16 46 18 309 T
SQ  VLLIFVSGKVVLTGAKVRAEIYEAFENIYPILKGFRKTT 03 352 0 2 35 A
XX

SC  SwissProt #P20226 04 3 10 2 374 T
XX 05 354 0 5 30 A
FT 6 50 serine-/threonine-/proline-rich region 1 (18/45). 06 268 0 0 121 A
FT 55 95 glutamine-rich region (40/41). 07 360 3 20 6 A
FT 105 159 serine-/threonine-/proline-rich region 2 (30/55).

FT 157 273 essential for TAFII125 contact [18]. 08 222 2 a4 121 W
FT 160 245 PF00352; TBP. 09 185 44 187 33 R
FT 166 225 direct repeat I. 10 56 135 150 48 N
FT 202 272 contact region to PU.1, E1A (basic region) [37]. 11 83 147 128 31 N
FT 202 272 contacts to PU.1, E1A. 12 82 107 198 52 N
FT 220 271 contact region to p53 [13].

FT 250 336 PF00352; TBP. 13 82 118 128 61 N
FT 256 319 direct repeat II. 14 68 107 139 75 N
FT 273 339 essential for TAFII250 contact [18]. 15 7 101 140 71 N
xx XX

MX  MO0252 V$TATA_O1.

XX BA 389 TATA box elements

BS  RO3158 HS$DHFR_04; Quality: 6; DHFR, G000241; human, Homo sapiens. XX
BS  RO3167 HS$GFAP_02; Quality: 6; GFAP, GO00267; human, Homo sapiens. RX  PUBMED: 2329577.
XX RA  Bucher P.

RX  PUBMED: 9241250.

RA  Hardenbol P., Wang J. C., van Dyke M. . RT Weight matrix descriptions of four eukaryotic

RT Identification of preferred hTBP DNA binding sites by the RNA polymerase II promoter elements derived
combinatorial method REPSA from 502 unrelated promoter sequences
RL  Nucleic Acids Res. 25:3339-3344 (1997). RL  J. Mol. Biol. 212:563-578 (1990).

Figure 19.3 Example of Transfac entries.

Multiple gene finding and promoter applications use this approach to predict bi-
ological signals [58]. Markov chains are not appropriate models to process larger
sequences, though. Even using a sliding window technique, Markov chains sharply
define the overlap between both positive and negative signals around a long re-
gion. Hidden Markov models (HMMs) are more sophisticated models in which such
boundaries are calculated precisely because of the use of probabilistic methods that
compute the optimal path of states when generating the input sequence (see [21] for
a comprehensive explanation on HMMs).

19.5 REPOSITORIES OF REGULATORY INFORMATION

Several repositories of known transcription regulatory signals have been published
(see Table 19.1 for further information). These resources contain information ex-
tracted from the literature about experimentally validated TFBSs (see Figure 19.3).
Transfac and Jaspar are catalogues of weight matrices constructed for different fam-
ilies of TFs to predict putative binding sites in other sequences (see stats as of June
2009 in Table 19.3). Transfac [53], which appeared more than two decades ago,
stores regulatory information classified on diffent TFs, sites, and matrices tables. Jas-
par [15] is another popular collection of predictive models derived from experimental
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Table 19.3 Number of entries in different regulatory catalogues

Database TFs Sites Matrices Genes Reference
ABS 68 650 — 100 [10]
Jaspar 138 — 138 — [15]
Oreganno 465 14229 — 3853 [33]
Transfac 6133 7915 398 1504 [53]

publications that incorporates tools to compare matrices and predict TFBSs in se-
quences provided by users. ABS consists of a list of experimentally validated sites
that are conserved phylogenetically in human and mouse [10]. Accurate information
about the location on the genomes of such sites is particularly important to build
consistent benchmarks that instruct bioinformatics applications to find binding sites
correctly. Oreganno is another comprehensive database of regulatory annotations cu-
rated by human experts [33].

Because of the flexiblity of the TFs to recognize binding sites, there is a substantial
degree of redundancy in the available regulatory resources. A recent bioinformatics
analysis measured the similarity between matrices of several popular collections, re-
porting the existence of equivalence classes between PWMs of different TFs [67].
This redundancy partially might be caused by the small number of sites usually em-
ployed to construct these models [63].

19.6 USING PREDICTIVE MODELS TO ANNOTATE SEQUENCES

Successful recognition of regulatory signals is essential for the gene expression ma-
chinery in cells. Because of their small size, in comparison with promoter regions,
a computational search of signals using predictive models such as those introduced
in the previous section is necessary. Pattern-driven algorithms, relying on the use of
external repositories of binding sites, are the most important family of computational
approaches to characterize the set of binding sites located on promoter regions [14].
The complete protocol to identify TFBSs in regulatory regions is the following:

1. Construction of a catalogue of experimentally annotated sites of a given class
2. Modeling these examples to mask their variability without losing information
3. Detection of new sites in other sequences using the signal models

4. Inspection of predictions to identify modules or composites

To circumvent the complexity of the characterization problem, pattern-driven
methods scan unannotated promoter regions simultaneously using repositories for
several TFs. This search usually is performed with PWMs from external databases
such as Transfac or Jaspar (see [12] for example). A generic version of the pattern-
driven algorithm is:
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Algorithm 19.1

pattern_driven algorithm

{
INPUT: §: sequence; M: signal model; 7: integer;
QUTPUT: L: list of sites;

i=1;
(* Apply the model on each window of length |M| *)
while (i <|S|—|M|+1) do
{
J=i+IM[;
(* Evaluate the current candidate with this model *)
score = M(S; ;);
(* Report the candidates above a quality threshold *)
if (score >T)
{ AddCandidatelList(S; ;,score,L); }
(* Evaluate next possible binding site *)
i=i+1;
}
ReportCandidates(L);
return(L);

The computational cost is linear in terms of time being very efficient in the anal-
ysis of promoter regions, which are typically 500 to 1000 bp long (depending on
the species and the gene in question). Two aspects are critical when running pattern-
driven searches: the election of the signal models (M) and the threshold to filter out
false positives (T"). The standard procedure to set an appropriate value consists of the
evaluation of these predictive models on a set of annotated TFBSs. According to the
percentage of true positive examples above a given value, users can set proper strin-
gent thresholds in future searches using these models. As the amount of information
on each set of TFBSs is variable, specific threshold values can be associated to every
predictive model.

Multiple applications implement variants of the basic pattern-driven strategy.
Most programs read sequences in Fasta and output predictions in several standard
formats. The Matscan program, which is part of the TF-map alignment suite [12],
can process the whole human genome in a few hours using multiple sets of PWMs
provided by the user. The output in general feature format (GFF) then can be pro-
cessed by other graphical applications such as gff2ps [2] to produce high-quality
representations of the predictions as shown in Figure 19.4. The RSA tools [78] im-
plement a comprehensive group of promoter characterization techniques, including
several pattern-driven programs that produce graphical outputs (see Figure 19.4).
Transfac and Jaspar databases provide rudimentary tools to scan promoter regions
with their own models of sites as well [53, 15].

Once the map of putative TFBSs is constructed for a given set of gene promoters,
accurate inspection of the relationships between predictions of different TF classes
(composition and distance of consecutive predictions) may be useful to reveal the
existence of composites or regulatory modules [26]. Research on this area is still in
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Figure 19.4 Pattern-driven applications.

its infancy, despite several applications recently having produced promising results
in particular datasets [32, 74].

19.7 COMPARATIVE GENOMICS CHARACTERIZATION

Current methods to analyze a single regulatory region produce a huge number of
predictions because of the low specificity of signal models [76]. The availability of
many genomes promises, however, substantial improvement in the characterization
of gene promoter sequences. Transcription regulation and animal diversity are asso-
ciated intimately. Emerging evidence suggests that a more sophisticated elaboration
of the regulatory mechanisms can be the responsibility of variable organismal com-
plexity along the tree of life [51]. As functional sequences through evolution tend to
be more conserved than nonfunctional ones, which might accumulate mutations pro-
ducing no damage to the organism, interspecies comparisons can be extremely useful
to identify common regulatory sequences (see sequence conservation on functional
sites in Figure 19.5).

Tagle et al. [75] coined the term phylogenetic footprinting to describe the phy-
logenetic comparisons that reveal evolutionary conserved functional elements in ho-
mologous genomic regions. The election of the appropriate species to perform the
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Figure 19.5 Conservation in regulatory sequences.

comparisons is crucial for every gene in particular as every region of the genome
evolves at a different rate [22]. The existence of specific functional elements on
each genome also must be taken into account [20] when performing comparative
genomics. In the last years, phylogenetic footprinting has become very popular, be-
ing accepted as an interesting and efficient method to locate regulatory elements
(see [59, 82] for further information).

A distinct family of algorithms named sequence-driven methods approaches the
promoter characterization problem from a different perspective [14]. Sequence-
driven techniques do not rely on the use of a external dictionary of elements to rec-
ognize novel binding sites. Instead, this technique attempts to detect conserved pat-
terns in a set of sequences that are hypothetically coregulated (e.g., orthologous gene
promoters or coexpressed genes in microarrays). The protocol to identify TFBSs in
regulatory regions using sequence comparisons is as follows

Selection of species to perform comparisons

Construction of the dataset of orthologous regulatory sequences

Sequence comparison to extract the set of evolutionarily conserved regions
Analysis of conserved sequences with other predictive models

A e

Report candidate binding sites according to their conservation level

There is no particular protocol to implement a comparative approach. A possible
sequence-driven algorithm that can be applied systematically to characterize pro-
moter regions might consist of these steps:

Algorithm 19.2

sequence_driven algorithm
{
INPUT: S=S;...5,: list of sequences;
M=M,;...M,: list of signal models;
T: integer;
OUTPUT: L: list of sites;
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(* Perform the sequence comparison *)

A =Alignment(S;...S,);

(* Extract the conserved regions *)

R =ExtractRegions(S, A);

(* Analyze regions with predictive models *)
L =AnalyzeRegions(R,M, T);

(¥ Report the candidates *)
ReportCandidates (L) ;

return(L) ;

As multiple combinations of alignment methods and predictive models are possi-
ble to analyze regulatory regions, the computational cost of sequence-driven meth-
ods is highly variable. Conserved regions and multiple genome comparisons, how-
ever, usually are precomputed in most popular genome browsers (e.g., conservation
tracks in University of California—Santa Cruz (UCSC) Genome Browser [46] in
Figure 19.5).

19.8 SEQUENCE COMPARISONS

Sequences are symbolic representations of biological molecules encoding relevant
information about their structure, function, and evolution. Sequence comparisons,
which reveal the fraction that is similar, are one of the most important tools in molec-
ular biology. Strong sequence similarity usually is assumed to be a good marker
for common biological function conserved through evolution. As the number of
alignments between two or more sequences is very high, these comparisons must
be approached systematically using computational alignment methods. Phylogenetic
analyses to identify conserved biological features between distant species usually are
conducted using genome-wide alignment methods. These algorithms, basically iden-
tify local similarity regions between two genomes, using them as anchors to align the
interleaving regions (see [79] for a review).

Several applications produce graphical annotations of the genome alignments
(see Table 19.1). VISTA (visualization tool for alignment [54]), for instance, rep-
resents conservation scores along sequences as peaks indicating with different colors
whether the region is overlapping annotated genes or noncoding regions. The myc
gene in human and the comparison with orthologous forms in other vertebrates is
shown in Figure 19.6. The shadowed areas in the promoter of the gene are interest-
ing regions for further analysis. Using powerful genome-wide alignment methods,
the presence of ultraconserved elements in the genomes was reported recently. Such
consistent motifs might be playing important regulatory roles [6, 24].

Once the regulatory regions conserved throughout evolution are identified, motif
finding programs highlight common patterns on those locations. Pattern discovery is
a complex computational problem that cannot be solved optimally. Multiple alterna-
tives have been proposed in the last years to find overrepresented regulatory motifs
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Figure 19.6 Visualization of genomic regions in VISTA.

in unaligned sequences [56]. Most programs consist of iterative searches of common
words, relying on different heuristics to simulate the motif distribution along the in-
put sequences [14, 79]. Phylogenetic information can be incorporated into the motif-
finding algorithm to weight the relevance of the occurrences on each species [9].

Expectation maximization (EM) is one of the most popular variants of pattern
discovery techniques [4]. EM algorithms estimate the parameters of a probabilistic
model that might generate the input dataset of sequences. Such a model contains
two components: the occurrences of the motif on each sequence and the remaining
positions (background). A fitness function must be defined to assess the quality of
the model usually measuring how different the current motif is from the background.
EM methods perform an iterative search that refines the initial model until no im-
provement is observed in the fitness function. The motif is constructed initially from
random locations on each sequence. Several initial random points therefore must be
evaluated to prevent the fitness function to fall into a local maximum peak. EM algo-
rithms to search motifs of w nucleotides in genomics sequences are structured into
the following steps:

Algorithm 19.3

pattern_discovery algorithm
{
INPUT: S=3S;...5,: list of sequences; T: integer;
OUTPUT: M: signal model;
L: list of sites;

(* Choose random locations on each sequence *)
(* to build the initial model *)
InitializeModel(M,S);

i=1;
convergence = FALSE;
while (i < MAXITERATIONS and convergence is FALSE) do
{
for each §; in S do
{
(* E-step: evaluate all candidates of length w *)
(* sliding a window along the sequence S; *)
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Scores = EvaluateCandidates(S;,M);
(* M-step: update current model *)
(* to detect overrepresentations *)
M’ = UpdatelModel (M ,Scores) ;

}
if (fitness(M') < fitness(M))
{ convergence=TRUE; }
else
{M=M; i=i+1; }
}

(* Identify occurences of this model in S *)
L = pattern_driven(S,M,T);
ReportCandidates(L);

return(L);

}

The model M constructed during the iterative procedure can be used to identify
putative sites in the input sequences. Optimal motif width can be estimated prior to
running the algorithm in a range determined by the user (between 5 and 15 bp for
TFBSs) [4].

19.9 COMBINING MOTIFS AND ALIGNMENTS

A substantial reduction in the number of predictions can be achieved when phylo-
genetic footprinting is combined with predictive models. Searches of binding sites
using catalogues of regulatory information typically produce too many false pos-
itives [82]. However, when the search is confined to those regions reported to be
conserved evolutionarily, a dramatic reduction of candidate TFBSs is observed (see
Figures 19.4 and 19.7). Automatic annotation pipelines can perform binding sites
prediction with PWMs on conserved genomic regions [50, 52]. Manual inspection
of results still is recommended, though, to identify accurately regulatory sites for
further experimental validation [55]. As shown in Figure 19.7, initial predictions ob-
tained using PWMs for a given TF on a particular promoter can be combined with
motif finding on phylogenetically conserved regions in other species to filter candi-
date binding sites that must be validated in the wet lab.

Similar sequences tend to play similar functions. The opposite, however, is not
necessarily true. Often similar functions are encoded in higher order sequence
elements, and the relation between these and the underlying primary sequence may
not be univocal. As a result, similar functions are encoded frequently by diverse se-
quences. For instance, similar TFBSs can exhibit great variability at the sequence
level in different species. Consequently, promoter regions of genes with similar ex-
pression patterns may not show sequence similarity, even though they may be reg-
ulated by similar configurations of TFs. Several applications have been published
recently to overcome this inconvenience [12, 7, 35]. By representing a promoter
region in a new alphabet in which the different symbols denote binding sites for
different TFs, promoter comparisons can be performed in the appropriate level. For
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Figure 19.7 Improving initial predictions using comparative genomics.
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instance, the alignment of MMP13 promoter regions shown in Figure 19.8 does not
detect accurately the four TFBSs that have been validated experimentally accord-
ing to the literature. Instead, the alternative multiple TF map alignment, which is
based on comparisons using the TF alphabet, can recover the four sites in the same

promoters [12].

The following algorithm is a simplified version of the TF map alignment as intro-
duced in [12]. For every consecutive pair of TF matches in the TF-map alignment,
A and p penalties are evaluated to weight how many input binding sites are not in-
cluded in the current alignment and how similar the location of matches on each
original sequence is (positional conservation is assumed to denote biological func-

tion):

Algorithm 19.4

TFmap_pairwise_alignment algorithm

{

INPUT: S =S1,5: list of sequences;

M=M;...M,: list of signal models;

T: integer;
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OUTPUT:
A: TF-map alignment of sites;

(* Construct the TF-maps using a catalogue of models *)
Mapl = pattern.driven(S;,M,T);

Map2 = pattern_driven(S$S;,M,T);

(* Visit each site on both maps to find TF label matches *)
for each site s; in Mapl do

{

for each site s; in Map2 do

{
if (TFlabel(s;) = TFlabel(s;))

{

score = 0.0;
for each previous match (si,s;y) in A do

{
penaltyj=computeA (s;, Sj,Si, sj/) 5
penaltyy=computes (s, s;j, 87, 5jr) ;
score’ = computeSimilarity(penalty;,penalty;);
if (score’ > score)
{ score = score’; }

}

registerMatch(s;,s;, A,score);

}

ReportOptimalAlignment (A);
return(A);

19.10 EXPERIMENTAL VALIDATION

Once bioinformatics analysis identifies a set of solid predictions that characterize
gene promoter regions, additional biological validation is necessary to confirm the
location of functional TFBSs. In contrast to computational biology, experimental
validation of targets is expensive and time consuming. Candidates to be verified,
therefore, must be supported convincingly by different sources of evidence (predic-
tive models, motif finding, and evolutionary conservation). Numerous experimental
techniques can validate whether a binding site is bound by a given protein. The elec-
tion of the appropriate method depends on many variables: organism, tissue, gene,
or TF, in particular. In addition, some experiments are performed in vivo, whereas
others only can validate in vitro binding between protein and DNA. Confirmation
of predicted TFBSs in the wet lab can be performed through the following methods
(see [23] for a comprehensive review on this topic):

¢ DNA footprinting is a method to identify approximately the binding site of a
given TF on a fragment of genomic sequence [27]. The DNA molecule must
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Figure 19.8 Multiple TF map and sequence alignments.

be labeled radioactively at one end. It then is cleaved with a nuclease that
makes random single-stranded cuts. Once the DNA is denatured to separate
the two strands, the fragments from the labeled strand are separated on a gel
electrophoresis and detected by autoradiography. The pattern of bands from the
DNA molecules that were cut in presence of the DNA-binding protein is com-
pared with that of the same fragment without the TF. The part of the genomic
sequence bound by the protein is protected from cleavage so that the labeled
fragments overlapping the binding site will be missing, leaving a gap or foot-
print in the gel (see Figure 19.9a).

Electrophoretic mobility shift assay (EMSA) or gel mobility shift electrophore-
sis is a common technique to determine whether one protein complex is capable
of binding to a given DNA sequence [28]. EMSA experiments are based on the
effect of a bound protein on the migration of DNA in an electric field. When
analyzed by gel electrophoresis, DNA molecules bound by TFs will move more
slowly through the gel than naked genomic sequences. Initially, a short DNA
fragment of specific length and sequence is labeled radioactively and mixed
with a cell extract. The mixture then is loaded onto a polyacrylamide gel for
running electrophoresis. When several sequence-specific proteins bind on a
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Figure 19.9 Experimental methods to validate predictions.

region, autoradiography reveals a series of DNA bands, each one with a specific
delay resulting from different protein complexes as shown in Figure 19.9b. The
precise binding site must be identified by competition using different oligonu-
cleotides on additional experiments.

Chromatin immunoprecipitation (ChIP) or precipitation of an antigen out of a
solution using an antibody is a method used to determine which proteins bind
to a particular region on the chromatin of living cells [23]. First, proteins in
contact with the DNA are cross-linked to the chromatin and immobilized using
formaldehyde fixation. Then, chromatin is fragmented by sonication, and whole
protein-DNA complexes are immunoprecipitated using an antibody specific for
the protein in question. Finally, DNA molecules from such complexes can be
purified and their sequence can be determined by polymerase chain reaction
(PCR).

Systematic evolution of ligands by exponential enrichment (SELEX) is a com-
binatorial technique to produce oligonucleotides that specifically bind to a tar-
get ligand [77]. First, a very large oligonucleotide library, which theoretically
contains all possible sequences of n nucleotides, is synthesized. The genomic
library is exposed next to the target ligand to remove those elements that do not
bind the protein by affinity chromatography. The remaining oligonucleotides
are amplified by reverse transcription PCR (RT-PCR) to prepare for subsequent
rounds of selection in which the stringency of the elution conditions is increased
to identify the tightest-binding sequences.
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¢ ChIP-on-chip (ChIP-chip) is a high-throughput technology that combines chro-
matin immunoprecipitation with microarrays [64]. DNA microarrays are ar-
rayed devices divided into series of spots, each one containing a genomic
fragment of interest that hybridizes to a cDNA sample under certain condi-
tions. Tiling microarrays, in which the whole genome is spotted, provide high-
resolution genome-wide maps. ChIP-on-chip devices are microarrays in which
the protein — DNA immunoprecipitated fragments are hybridized to determine
their location in the genome.

® ChIP-Sequencing (ChIP-Seq) is a recent high-throughput technology that com-
bines chromatin immunoprecipitation with ultra-sequencing machines [42].
Once ChIP fragments are obtained, genome sequencers drive massive sequenc-
ing of these short sequences in parallel. Next, computational analysis is re-
quired to map each read on the whole genome as shown in Figure 19.9c. The
precise map of binding sites for a given TF therefore can be reconstructed with
very high resolution.

19.11 SUMMARY

Computational identification of transcription regulatory elements is key to under-
stand the gene expression machinery. Multiple bioinformatics applications are avail-
able for users to characterize binding sites to transcription factors in gene promoter
regions. The sequence of regulatory signals is highly variable. Different approaches
to model them have been designed, weight matrices being the most popular ones
in the research community. Promoter regions initially are characterized using these
predictive models, which provide a preliminary annotation of TFBSs. Performing
comparative genomics, most predictions can be filtered out to define a solid set of
putative binding sites that are evolutionary conserved. The combination of predic-
tive models, sequence comparisons, and emerging high-throughput expression tech-
niques promises great improvements in the elucidation of gene regulatory networks.
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ALGORITHMIC ISSUES IN
THE ANALYSIS OF
CHIP-SEQ DATA

Federico Zambelli and Giulio Pavesi

20.1 INTRODUCTION

Researchers in biology and medicine nowadays have at their disposal enormous
amounts of data and information, which provide an unprecedented opportunity to
gain novel insights into the molecular basis of life and disease. The completion of
several genome projects has given the (almost) complete DNA sequence of human
and of several different organisms of interest, from viruses, to bacteria, to plants, to
animals. This, in turn, has permitted the large-scale annotation of genes and their
products, on the bricks of which life is built. Technologies like oligonucleotide mi-
croarrays, on the other hand, permit measuring the level of transcription of genes,
that is, when and how much a given gene is activated according to developmental
stage, cell cycle, external stimuli, disease, and so on. All in all, the emerging picture
is that gene expression, that is, the series of steps in which a DNA region is tran-
scribed into a RNA sequence, which in turn, is translated into a protein, is a process
finely modulated at every stage by the cell. Thus, only when the regulation of this
process also will be fully understood we will be able to obtain a complete picture of
the mechanisms acting inside every living cell.

The first step of gene expression, the transcription of a DNA region into a com-
plementary RNA sequence, is finely modulated and regulated by the activity of tran-
scription factors (TFs), which are proteins (or protein complexes) that in turn are
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encoded by the genome. TFs bind DNA in a sequence-specific manner in the neigh-
borhood of the transcription start site of genes, or also in distal elements that are
brought by the three-dimension (3-D) arrangement of DNA close to the gene region,
with the overall effect of initiating the transcription process or, in some cases, of
blocking it. The transcription of the gene thus can be started only when the right
combination of TFs are bound to the DNA at the right time in its neighborhood [24].
To understand the complexity of this process suffices it to say that at least 10% of
the about 22,000 human genes can be estimated to have this function, that is, reg-
ulate the transcription of other genes, yielding an exponential number of possible
combinations and interactions.

Modern lab techniques allow for the large-scale identification of TF-DNA binding
sites on the genome with experiments that were simply impossible to perform just a
few years ago. A protein-DNA complex, like the genetic material comprising DNA
and proteins that condense to form chromosomes in eukaryotic cells is called chro-
matin. Chromatin immunoprecipitation (ChIP) [8] is a technique that allows for the
extraction from the cell nucleus of a specific protein-DNA chromatin complex, in our
case, a given TF bound to the DNA. First, the TF is cross-linked, that is, fixed to the
DNA. Then, a specific antibody that recognizes only the TF of interest is employed,
and the antibody, bound to the TF, which in turn is bound to the DNA, permits the
extraction and isolation of the chromatin complex. At this point, DNA is released
from the TF by reverse cross linking, and researchers have at their disposal the DNA
regions corresponding to the genomic locations of the sites that were bound in vivo,
that is, inside living cells. The experiment is performed on thousands of cells at the
same time to have a quantity of DNA suitable for further analysis and to have in the
sample a good coverage of all regions bound by the TF.

The next phase logically is the identification of the DNA regions themselves and
of their corresponding location in the genome, which in turn is made possible by
the availability of the full genomic sequences. Also for this step, technology has wit-
nessed dramatic improvements. From the identification of only predetermined candi-
date sites through polymerase chain reaction (PCR), the introduction of tiling arrays
has permitted the analysis of the extracted DNA on a whole-genome scale (ChIP on
Chip [44]) by using microarray probes designed to cover the sequence of a whole
genome. The recent introduction of novel and efficient sequencing technologies col-
lectively known as next-generation sequencing [35] has permitted moving this type
of experiment one step further by providing at reasonable cost perhaps the simplest
solution: to identify the DNA extracted by the cell, simply sequence the DNA itself
(ChIP Sequencing, or ChIP-Seq [40, 34], Figure 20.1). In this way, all limitations
derived from microarray technology can be overcome. These new sequencing sys-
tems can generate huge amounts of data. For example, the Illumina-Solexa system
can generate more than 50 million sequences of length 3050 nt in a single run tak-
ing less than three days. Using a different technology, the ABI-SOLiD system can
generate data at a similar rate. The Roche-454 system generates fewer but longer
sequences [35].

Without delving into technical details, two of the three sequencing platforms
just introduced are used nowadays for ChIP Seq: Illumina/Solexa and Solid which
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Figure 20.1 The ChIP-Seq workflow. A protein (red), bound to the DNA inside the cell nucleus
(1) is cross-linked (fixated) to the DNA, which is sheared into fragments (2). An antibody able to
recognize only the red protein is added and binds to the red protein (3). The antibody-protein-
DNA complex is isolated (4). DNA is separated from the red protein (reverse cross-linking, 5).
Finally, the DNA obtained is sequenced (6).

produce on a given sample a larger number of sequences although shorter than 454,
thus providing higher coverage of significant regions, as we will show later. Given
a double-stranded DNA fragment derived as just described, the machine determines
the nucleotide sequence at the beginning of either strand, moving from the 5" to
the 3’ direction (see Figure. 20.2). For technical limitations, the sequencer cannot
determine the sequence of the complete region but only of a short fragment at its

5' 3
I v

I

3 5'

Figure 20.2 Next-generation sequencing applied to a DNA region bound by a TF extracted by
chromatin immunoprecipitation. Sequencing proceeds in the 5’ to 3’ direction, starting from the
beginning of either strand and producing the sequence of either of the regions marked in red
(usually, 25-50 base pairs). In case paired end sequencing is performed, the sequence of both
the red regions is obtained simultaneously.
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beginning, in other words, of a prefix usually ranging from 25 to 40 base pairs in
ChIP-Seq applications. Thus, the output is a huge collection of millions of short
sequences (called reads or tags), which mark the beginning of either strand of the
DNA extracted from the cells. Recent developments also include the possibility of
sequencing the beginning of both strands at the same time, producing paired end
tags. As discussed, because before each region should have appeared more than once
in the DNA sample and also because of the amplification of the DNA prior to se-
quencing, we should have tags marking the ends of the DNA regions bound by the
TF appearing several times in the output. The overall number of sequence reads ob-
tained varies from experiment to experiment and depends on several factors like the
TF involved, sample preparation, experiment replicates, and so on. Suffice it to say
that it usually ranges from a few to 10-20 million.

Once the sequencing has been completed, the computational analysis of the data
can begin [40]. The usual workflow is shown in Figure. 20.3. First, the tags are

Chromatin
Immunoprecipitation

DNA sequencing

v

Tag mapping

A

Identification of significantly
enriched regions

v

Identification of transcription
factor binding sites

v

Modelling of the binding
specificity of the TF

v

Prediction of further targets

A

» Experimental validation <

Figure 20.3 The ChIP-Seq analysis pipeline. Analysis steps that are performed in silico are
highlighted in green.
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mapped on the genome to recover their original location. Then, regions bordered by
tags on both ends (on opposite strands) in numbers high enough to represent a sig-
nificant enrichment and not experimental noise are singled out (also, when available,
with respect to a control experiment, aimed at producing some kind of random DNA
and thus a random background model). These are the regions likely to have come
from the sample because they are bound by the TF, and a genome-wide map of the
binding of the TF is available. Then, further analyses are nevertheless possible; for
example, because the regions extracted are longer than the actual binding sites for
the TF, the latter have to be identified within the regions themselves; sites identified
then can be employed to model the binding specificity of the TF to perform further in
silico predictions in different cell types or experimental conditions; TF binding data
can be crossed with expression data to understand better its activity in the regulation
of target genes; co-operating or competing TFs can be identified in different ways,
and so on.

20.2 MAPPING SEQUENCES ON THE GENOME

The first step of the analysis is the reassignment of the DNA fragments extracted on
their original location on the genome, often called tag mapping or read mapping. In
other words, each of the sequence tags produced has to be matched (or aligned) to
the genome to recover its original position. Although, at least in theory, this would
correspond to exact pattern matching, for which optimal and fast solutions already
exist, in practice, we can expect only a limited number of tags to map exactly on the
genome, mainly because of two reasons:

* Nucleotide polymorphisms: Although we have at our disposal a reference ge-
nomic sequence for several species of interest, in practice, the sequence of each
individual of the same species is different, more notably at single positions in
the genome (called simple nucleotide polymorphisms, or SNPs [6]). In other
words, we can find that a tag cannot be matched exactly anywhere on a genome
simply because the DNA sequence of the cells employed in the ChIP exper-
iment differs from the sequence of the same region in the reference genomic
sequence.

* Sequencing errors: A tag cannot be matched exactly anywhere on a genome
because its sequence has been determined wrongly in one or more nucleotides.

Hence, we have to deal with a problem of approximate pattern matching, in which
usually up to three substitutions are allowed on tags of 35-40 base pairs (bp). Also,
one should consider the possibility of insertions and/or deletions in either the tags or
the genome, for example, induced by the presence of stretches of the same nucleotide
that may cause technical problems in the sequencing process. Moreover, given the
nonuniform and repetitive nature of eukaryotic genomes, another factor that has to
be considered is that despite the fact that about 30 bp should be enough to guarantee
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Sequence #mm | #lmm | #2mm | CHR | HIT POS STR | MM
CTAGAAGCAGAAGCAGGIATTIGGGGGGAGGGTIG | RO | 3 0 0

AACTGCTTIGAGATAGGGTCTCTCTIGTICACTTT | NM | 0 0 0

TCGAGACGTAAACTAGCTANCCTACATIATCCCCT | NM | 0 0 0

AATARAARAAAAANAARAAAAAAAAAARRARAAAA | RO | 204 255 255

CGCGATGATGTCTCAATACACCCCCCCGCTACCAE | NM | 0 0 0

CATGTCATGCGCTCTARTCICTGGGCATCTIGAGA | NM | 0 0 0

CCGAACTTCTGACAGGTTIGAGCCTTCTGCTCARG | Ul | 0 1 0 chr | 110761807 F 13A
CAATTAAATAATAATARACTAACACACAATACARA | NM | 0 0 0

TCAGCAAACAAACCCCCAACATARAATCCATTATG | NM | 0 0 0

TCATCGAGAGGGGACTGAMGTGGARGCTAGTCAGC | U0 | | 0 0 chrld | 33191761 F

Figure 20.4 A typical example of the result of tag mapping on the human genome, allowing,
at most, two mismatches. Most tags do not match anywhere in the genome (NM in the second
column from the left). The first and the fourth have repeated matches with no substitutions (RO0),
the first has three exact matches and the fourth has 204 exact, 255 with one mismatch, and 255
with two. Finally, we have two tags with a unique map, exact for the last one (U0, on chromosome
14, forward strand at hit pos coordinates), and one with one substitution (U1) at position 13
where a C on the tag (in red) matches an A on the genome.

a unique match on the genome, a single tag often can match different positions. A
typical example is shown in Figure. 20.4; some tags do not map anywhere on the
genome because of DNA contamination or sequencing artifacts; some map exactly
or approximately on different positions; some map uniquely on a single position.

All in all, the problem can be formalized in different ways: from approximate
pattern matching allowing only mismatches to approximate pattern matching also
allowing indels. That is, find all substrings of the genome within a maximum Ham-
ming distance or edit distance from the tag. Also, the output can range from the list
of tags that map uniquely on the genome to the list of all matches, optimal or sub-
optimal, for each tag. Also, suitable heuristics can be and have been introduced to
speed up the search. Often tags are accompanied by quality scores, which indicate for
each nucleotide how reliable the read performed by the sequencer can be. Thus, for
example, mismatches can be confined only to those tag nucleotides that are deemed
to be less reliable by the sequencer itself. Or, because less reliable base calls often
are located near the end of the sequence reads, one could require exact matching for
the beginning of the tags (say, the first half) and allow for mismatches in the rest
(say, the second half). Or, when the matching of some tags fails, the last bases can
be trimmed away (probably wrong or a sequencing artifact), and the matching can
be repeated for the shorter reads.

The main overall goal of research in this field is, intuitively, to obtain satisfactory
solutions in as little time and space as possible to avoid the requirement of expensive
dedicated hardware. As a result, many methods are based on the similar principles
and algorithms but differ in the programming tricks or ad hoc heuristics that have
been added to them, aimed at increasing their performance on real case studies at
the price of a little decrease in their reliability. Research in this field is booming
because next-generation sequencing is widely used in different applications well be-
yond ChIP-Seq from the sequencing or resequencing itself of genomes or transcrip-
tomes, to genotyping, to expression profiling, and so on. As a consequence, new
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mapping software or improved versions of older tools today appear on an almost
weekly basis and very often are released well before a publication fully describing
their algorithmic details. Thus, here we will confine ourselves to a description of
the general principles the most successful algorithms are based on, leaving to the
interested reader the task of keeping abreast with one of the hottest and most rapidly
growing fields of modern bioinformatics.

As mentioned before, a typical ChIP-Seq experiment on an organism like a human
or a mouse can produce 5-20 million tags, and this number is increased further to
hundreds of millions when, instead of selected regions of a genome, a whole genome
or transcriptome has been sequenced. Thus, the sheer size of the data makes the prob-
lem virtually impossible to be tackled without the indexing of the sequences. And,
as a matter of fact, all algorithms available for this step differ on whether they build
an index of the genome or the tags and on the indexing method applied. Although
the size of a genome like the human one is measured in billions of base pairs, on the
other hand the overall size of the set of tags to be mapped in a ChIP-Seq experiment
is in the millions or hundreds of millions. Thus, building an index for the genome
and matching the tags against the index will have the consequence of requiring more
memory space for the index but less time in the matching stage. Vice versa, index-
ing the tags and matching the genome against them has the consequence of reducing
the memory requirements at the price of longer matching time. The indexing of the
tags also has the benefit of being trivially scalable; in other words, if the available
memory is not sufficient to hold the index of the whole set of tags to be processed,
then the tags can be split into subsets, and each subset can be processed separately
(or in parallel, if several computing cores are available). The final result is just given
by merging the results obtained for each subset. Although clearly, the computation
time is increased, on the other hand, tools of this kind are suitable for standard state-
of-the-art personal computing equipment.

In general, approximate matching is based on the pigeon-hole principle. If we
have 10 pigeons living in nine holes, then we can be sure that one hole has at least
two pigeons living into it. Applied to our problem, suppose that we have to map a tag
of length 32 with up to two mismatches. The tag can be defined as the concatenation
of four strings of length eight: let A,B,C, and D be these four substrings. Then, at
least two substrings should match the genome exactly, and we have that at least one
of these strings matches the genome: AB, AXC, AXD, BC, BXD, and CD, where X
denotes a stretch of eight wildcard or do not care characters. Thus, if we want to build
an index for the genome, then we can index substrings of length 16, corresponding
to the AB, AXC, and AXD combinations and use these as seeds for the initial exact
matching stage. Alternatively, in the same situation, we can be certain that at least a
substring of length 11 will match exactly. Hence, we can index substrings of length
11 and employ them as initial matching seed. In both cases, once a seed has been
matched, it can be extended, allowing for mismatches and/or insertion and deletions.

The problem of mapping (or, in general, of aligning) sequences against a genome
was introduced well before the problem we are dealing with appeared. It had and
still has to be solved in any genome annotation project, for example for the map-
ping of RNAs or shorter expressed sequence tags (ESTs). Blast-like alignment tool
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(BLAT) [20] was introduced exactly for this task and is based on the indexing of all
nonoverlapping k-mers (substrings of length k) in a given genome. The index usually
fits inside the random access memory (RAM) of inexpensive computers. Although
very efficient, BLAT was designed for a different flavor of the problem (longer se-
quences to be mapped, and the mapping can include large gaps to accommodate for
the intron-exon structure of the genes producing transcripts and/or accommodate for
a larger number of errors to permit cross-species mapping). Its application to short
tag mapping, which in turn implies using k-mers as short as eight base pairs and
higher error frequency does not yield satisfactory results in terms of computation
time and performance.

A 32 base pair tag-specific aligner called ELAND was developed in parallel with
the Solexa sequencing technology, and it is provided for free for research groups
that buy the sequencer. Probably the first tool introduced for this task, ELAND in-
dexes the tags with the tag-splitting strategy we introduced before (and in its original
version could map tags up to 32 nucleotides long), allowing only mismatches. It
still is reported to be one of the fastest and less memory-greedy pieces of software
available. Likewise, SeqMap [17] builds an index for the tags by using the longest
substring guaranteed to match exactly, and scans the genome against it. It includes
the possibility of introducing insertions and deletions for approximate matches.

ZOOM [29] again is based on the same principles as ELAND, with the differ-
ence being that tags are indexed by using spaced seeds that can be denoted with
a binary string. For example, in the spaced seed 111010010100110111, 1s mean a
match is required at that position, Os indicate do not care positions. Only positions
with a 1 in the seed are indexed. The performance reported is faster than ELAND,
at the price of higher memory requirements. Short oligonucleotide alignment pro-
gram (SOAP) [28] was one of the first methods published for the mapping of short
tags in which both tags and genome first converted to numbers using 2-bits-per-base
encoding. Each tag then is compared with exclusive-OR to the genome sequence.
Then the value is used as a suffix to check a look-up table to know how many bases
are different. To have a tradeoff between memory usage and efficiency, SOAP uses
unsigned 3-bytes data type as the table element. To admit two mismatches, a read is
split into fragments as in ELAND, and x mismatches can exist in at most x of the
fragments at the same time. Mapping with either mismatches or indels is allowed
but not simultaneously. Because for technical reasons, reads always exhibit a much
higher number of sequencing errors at the 3’-end, which sometimes make them un-
alignable to the genome, SOAP iteratively can trim several base pairs at the 3’-end
and redo the alignment until hits are detected or until the remaining sequence is too
short for a specific match. All in all, the main drawback is the memory requirement,
which is reported to be greater than 10 Gb for a genome like human.

PASS [7] likewise is based on a data structure that holds in RAM the hash table
of the genomic positions of seed substrings (typically 11 and 12 bases) as well as an
index of precomputed scores of short words (typically seven and eight bases) aligned
against each other. After building the genomic index, the program matches each tag
performing three steps: (1) it finds matching seed words in the genome; (2) for ev-
ery match, it checks the precomputed alignment of the short flanking regions (thus
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including insertions and deletions); (3) if it passes step 2, then it performs an exact
dynamic alignment of a narrow region around the initial match. The performance is
reported to be much faster than SOAP but, once again, at the price of high memory
requirements (10s of gigabytes (Gb)) for the genomic index.

Once again, the Maximum Oligonucleotide Mapping (MOM) [10] algorithm has
two stages: first, searching for exactly matching short subsequences (seeds) between
the genome and tag sequences and, second, performing ungapped (allowing only
mismatches) extension on those seeds to find the longest possible matching sequence
with an user-specified number of mismatches. To search for matching seeds, MOM
creates a hash table of subsequences of fixed length k (k-mers) from either the
genome or the tag sequences and then sequentially reads the unindexed sequences
searching for matching k-mers in the hash table. The addition in MOM is that, like
in SOAP, tags that cannot be matched entirely given a maximum number of errors are
trimmed automatically at both ends, assuming that sequencing errors or artifacts ap-
pear at the beginning or at the end of the tags (the original version of SOAP trimmed
only the 3’ end, i.e., the suffixes). In this way, for each tag, it reports the maximal
length match within the short read satisfying the error parameters. The performance
reported is higher than SOAP in the number of tags successfully matched. Again,
more than 10 Gb of memory are needed for typical applications.

The space requirements of building a genomic index with a hash table can be
reduced by using more efficient strategies. A good (at least theoretically) perfor-
mance also is obtained by vmatch [1], which employs enhanced suffix arrays for
several different genome-wide sequence analysis applications. Bowtie [21] employs
a Burrows—Wheeler index based on the full-text minute-space (FM) index, which
has a reported memory requirement of only about 1.3 Gb for the human genome.
In this way, Bowtie can run on a typical desktop computer with 2 Gb of RAM. The
index is small enough to be precomputed and distributed together with the software.
However, if one or more exact matches exist for a tag, then Bowtie always reports
them, but if the best match is inexact, then Bowtie is not guaranteed in all cases to
find it. Also the very recent Burrows—Wheeler aligner (BWA) [25] is based on the
Burrows—Wheeler transform.

Mapping and Assembly with Quality (MAQ) [26] is one of the most success-
ful tools in this field, especially devised to take advantage of the nucleotide-by-
nucleotide quality scores that come together with the Solexa/Illumina tag sequences.
The general idea is that mismatches caused by errors in sequencing mostly should
appear at those positions in the tags that have a low quality score, thus are less reli-
able in the determination of the tag sequence. And, vice versa, those caused by single
nucleotide polymorphisms (SNPs) always should appear at the same position in the
genomic sequence. Mismatches thus are weighted according to their respective qual-
ity scores. For matching, MAQ builds multiple hash tables to index the tags and scans
the genomic sequence. By default, six hash tables are used, ensuring that a sequence
with two mismatches or fewer will be hit in an ELAND-like fashion. The six hash
tables correspond to six spaced seeds as in ZOOM. Given 8-bp reads, for example,
the six seeds would be 11110000, 00001111, 11000011, 00111100, 11001100, and
00110011, where nucleotides at 1’s are be indexed, whereas those at 0’s are not. By
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default, MAQ indexes the first 28 bp of the reads, which typically are the most accu-
rate part. Very fast, MAQ on the other hand is based on several heuristics that do not
always guarantee finding the best match for a tag.

Sequence quality scores provided by Illumina also are employed by RMAP [53].
A cutoff for the base-call quality score is used to designate positions as either high-
quality or low-quality, depending on whether the quality score of the highest scor-
ing base at that position exceeds the cutoff. Low-quality positions always induce a
match (i.e., act as wild cards). To prevent the possibility of trivial matches, a quality-
control step eliminates reads with too many low-quality positions. CloudBurst [49]
is a RMAP-like algorithm that supports cloud computation using the open-source
Hadoop implementation of MapReduce (Google, Mountain View, CA) to parallelize
execution using multiple nodes.

All in all, the clear picture is that the research in the field of large-scale short
sequence mapping has boomed since 2007, when the first aligners were introduced.
The performance of the different methods can be measured according to different
parameters: time required, memory occupation, disk space, and in case of heuristic
mappers, the actual number of tags that have been assigned correctly to their original
position on the genome. In turn, the choice of a given method against another one
depends on how many tags have to be mapped and naturally to the specifics of the
computing equipment available. In our experience with ChIP-Seq experiments, in
which the number of tags available is limited (a few million) as compared with a
genome or transcriptome sequencing experiment (that can be as high as 100 times
more), we usually chose an exhaustive algorithm able to guarantee, given a set of
parameters, the optimal matching of every tag satisfying them (including trimming
in case of unsuccessful mapping at the first try) also because, as we briefly discuss in
the next section, the failure to map some tags can bias the results obtained from the
experiment.

20.3 IDENTIFYING SIGNIFICANTLY ENRICHED REGIONS

Once the mapping has been completed, at least in theory, one already should have
the final results of the experiment at his/her disposal. However, it is typical of a high-
throughput experiment to produce a lot of noise, which is increased and amplified at
each step, producing outputs like the one shown in Figure 20.4 where most tags do
not map anywhere, and some match at multiple positions. Thus, it is hardly a surprise
the fact that an experiment can be considered successful if about 20-25% of the tags
produced can be mapped uniquely on the reference genome. The remaining major-
ity of tags can be mapped on repetitive genomic regions or are simply experimental
error resulting from DNA contamination, sequencing artifacts, errors in sequencing,
and so on. And once the tags have been mapped on the genome, we are still far from
the ideal situation of having them bordering the original DNA regions. What we usu-
ally have are tags that seem to map everywhere, with no clear separation (at least,
for the human eye) of what are the regions derived from the original chromatin and
which are “random” tags produced in the process by experimental noise, sequencing
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artifacts, or sample contamination. Thus, the next step in the analysis is far from be-
ing trivial and consists of determining the DNA regions that are bordered by several
sequence tags sufficient to discriminate them from experimental noise.

A very efficient way to filter out noise is to conduct another experiment aimed at
the production of noise itself; in other words, if random genomic DNA was added
to the original experiment, then another experiment that produces only random DNA
from the same type of cell (the control experiment) should give the opportunity to
clean the result of the original one. The control experiment can be performed in
different ways, by using an antibody not specific for any TF or, if possible, by using a
cell in which the gene encoding the TF studied has been knocked out or silenced. An
ideal output is the one shown in Figure 20.5. A true positive region should correspond
to a genomic region that is bordered by several tags on both strands, and the tags on
the two ends should be at a distance typical of experiments of this kind, that is,
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Figure 20.5 An ideal peak in a ChIP-Seq experiment that identifies a binding site for TF
FOXA3 shown within an UCSC genome browser window. FOXA3 reads are tags mapping on
the sense (orange) and antisense (blue) DNA strand, bordering a region of about 250 base pairs
corresponding to a FOXAS binding site in the APOA2 promoter on human chromosome 1. Track
FOXA3 signal depicts how many times each base pair in the region is covered by extending the
tags in their respective direction, with a peak in the center of the region. Tracks “Input reads” and
“Input signal” are the corresponding data for the control experiment. Notice how tags defining
the peak in the center of the region are virtually absent from the control. Notice also how several
tags map on the rightmost part of the region visualized but not in such a number or with an
organization suitable to show a clear enrichment peak.
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about 200-300 bps. By plotting the number of tags falling in each genomic position,
the region thus should be bordered by two peaks, one made by tags on the positive
strand and one on the negative. Analogously, if one extends each tag by the estimated
length of the immunoprecipitated DNA fragments and plots how many times each
nucleotide of the genome is covered by an extended tag, then a significantly enriched
region should correspond to a single peak located in the middle of the region itself.
On the other hand, the same region also should not appear at least with the same
number of bordering tags or with the same height of the central peak in the control
experiment.

In the absence of the control experiment, the problem to be solved is to estimate
how many tags are sufficient to deem a region to be significantly enriched. Given ¢,
the overall number of tags, and g, the size of the genome, if we assume that in a com-
pletely random experiment, each genomic region has the same probability of being
extracted and sequenced, then the probability of finding one tag mapping in a given
position is given by 7/g. The same idea can be applied by dividing the genome into
separate regions (e.g., the chromosomes or chromosome arms) because for experi-
mental reasons, different regions can have different propensities at producing tags.
In this way, a global or region-specific local matching probability can be calculated
and, therefore, the expected number of tags falling into any genomic region of size
w. For this calculation, different statistical models can be employed, for example,
Poisson, negative binomial, or gamma distributions [62]. Finally, the significance of
tag enrichment is computed, by using sliding windows across the whole genome. If
a control experiment is available, then the number of tags it produced from a given
region can serve directly as background model.

Several peak-finding methods already have been published, including Find-
Peaks [12], F-Seq [5], SISSRS [19], QuEST [58], MACS [61], the ChipSeq Peak
Finder used in [18], ChIPDiff [60], and CisGenome [16], which encompasses a se-
ries of tools for the different steps of the ChIP-Seq analysis pipeline. Regardless of
the method used, false discovery rate estimates are calculated by these tools, based
on the level of enrichment (number of tags) at the site, either globally or locally,
compared with the background model used, for which in some cases a control ex-
periment explicitly is required. Moreover, because so far, most experiments did not
employ paired end tags as described in the introduction, some methods try and deter-
mine the original size of the DNA regions from the spacing of the tags on opposite
strands that were extracted from the ChIP. In other words, they try to make ends meet
guessing for each tag on a strand which could be the tag on the opposite strand mark-
ing the end of the original genomic region that was sequenced. This is usually done
by determining which tag distances seem to be overrepresented in the sample. Some
other methods, instead, simply leave this as a parameter to be set as input to the user.

The advantages and reliability of peak finding methods have yet to be fully ap-
preciated because most of them initially were devised for a single experiment, and
their portability to different organisms and/or experimental conditions is often not
straightforward. Moreover, with current tools, the choice of a significance or enrich-
ment threshold to discriminate real binding sites from background is often not clear
and left to users based on calculated false discovery rates, on the level of enrichment
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of the expected binding motif, and/or on prior knowledge about genomic regions
bound by the TF itself. That is, regions usually are ranked according to their en-
richment, and it is up to the user to draw a line and choose thresholds above which
regions can be considered to be significantly enriched. Threshold choice is especially
difficult for TFs because most bind at low affinity to numerous sites, and a neat sep-
aration for the number of tags necessary to define enriched regions typically is not
obtained. Moreover, some peaks could be missed because tags defining them map
ambiguously on different positions on the genome, and if only best unique matches
are kept, then the corresponding region does not contain enough tags to be deemed
significant, or one of its ends disappears because it falls within a repetitive genomic
region. Despite all these issues, several methods can be used to provide an argument
that sites are functional. For example, the expression of genes with or without an
associated site (thus regulated or not by the TF) can be compared. This can be con-
vincing if the activity of the TF is straightforward (i.e., the factor is a strong activator
or a strong repressor). However, this is often not the case, and TFs can act as both
activators and repressors within the same cell depending on the context of the site, or
have varying levels of effect, depending on other TFs cooperating with them. All in
all, the take-home message is that as always in bioinformatics but more importantly
in case like these, reliable results cannot be produced without knowledge of the un-
derlying biology; an over- or underestimation of the activity of a TF can produce
biased views or, much worse, a completely wrong picture.

20.3.1 ChIP-Seq Approaches to the Identification of
DNA Structure Modifications

So far, we have presented and discussed transcription regulation and ChIP-Seq from
the viewpoint of transcription factors. However, the activation of transcription is reg-
ulated by several additional factors, the most important of which, called epigenetic
regulation [15], depends on the structure of DNA itself. Inside cell nuclei, DNA is
wrapped around specific proteins called histones forming structures called nucleo-
somes. Once again, DNA and histones together form chromatin. And, if the DNA re-
gion corresponding to a gene is wrapped up so to prevent TFs and the transcriptional
mechanisms from contacting the DNA, then transcription simply does not start. DNA
structure and accessibility inside the cell nuclei can be modified by the cell itself
through posttranslational modifications of the histones like acetylation, methylation,
ubiquitylation, phosphorylation, and sumoylation or by remodeling of chromatin.
The result is that a previously unaccessible DNA region can become accessible or
vice versa.

ChIP-Seq opened new avenues of research also for these aspects of gene regula-
tion. In fact, ChIP can be used to extract from the cell histones that underwent some
given modification together with the DNA attached to them. If the histone modifi-
cation is associated with DNA unwrapping, then it permits the extraction of DNA
accessible to TFs and the transcriptional machinery and to have a genome-wide map
of active promoters/genes. As a matter of fact, the most successful applications of
ChIP-Seq so far have been related to epigenetic regulation (see e.g., [45]), perhaps
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because the problem is somewhat easier to be dealt with than with TFs. The analysis
protocol is the same as we just described with TFs, with the difference in this case
being that we do not have TFs binding DNA with different affinities resulting in grey
areas of tag enrichment, as we discussed before. Rather, it is a yes or no decision, a
histone can be modified or not, and thus, the separation between signal and noise in
peak detection should be much clearer.

20.4 DERIVING ACTUAL TRANSCRIPTION FACTOR BINDING SITES

The actual DNA region bound by a TF (called Transcription Factor Binding Site,
or TFBS) is much smaller than the DNA fragment isolated by ChIP. TFBSs in fact
usually range in size from 8-10 to 16-20 nucleotides (small sequence elements of
this size also are called oligonucleotides, or oligos) [54, 23]. A further step in the
analysis thus is to recognize which are the actual TFBSs in the regions extracted to
have an idea of the binding specificity of the TF and to build descriptors suitable
for scanning genomic sequences for the identification of further sites in the absence
of experimental data. As briefly mentioned in the introduction, TFs bind the DNA
in a sequence-specific manner; but different from other DNA interacting proteins,
like restriction enzymes, they bind DNA sequences that are similar but not identical;
in other words, TF tolerate a certain degree of approximation in the DNA sequence
they bind. This has the effect of complicating the problem in an awesome way. An
example is shown in Figure 20.6. By comparing the different sites, one can notice
that they differ in a few positions (mismatches) as nearly always the situation with

CTTGGTGACGTG
GTGAGTGACGTC
CGGGTTGACGCA
CCTACTTACGTA
TATGGTGACGTC
TCGGATGACGAT
TAGGATGACGTC
CCTGGTGACGCC
CGCGGTGACGTA
GCCGTTGACGCC
CGCGATGACGCA
CCTGTTGACGTG
TTGCATGACGTC
GTTGGTGACGTG
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Figure 20.6 Representing transcription factor binding site motifs. Given a set of sequences
bound by the same TF, we can represent the motif they form by a consensus (bottom left) with
the most frequent nucleotide in each position; a degenerate consensus, which accounts for
ambiguous positions where there is no nucleotide clearly preferred (N = any nucleotide; K = G
or T; M= A or C, according to IUPAC codes [39]); an alignment profile (right), which is converted
into a frequency matrix by dividing each column by the number of sites used.
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TFBSs. And we can notice how some positions are conserved strongly (i.e., the TF
does not seem to tolerate substitutions in those places, whereas in others any nu-
cleotide seems to do). Given a set of validated instances, the binding preference of
a given TF can be summarized and modeled. In the simplest form, we simply can
take, position by position, the most frequent nucleotide and build a consensus of
the sites. All oligos that differ from the consensus up to a maximum number of al-
lowed substitutions can be considered valid instances of binding sites for the same
TF. Clearly, this is an oversimplification that does not take into account the differ-
ent level of variability at different position of the sites. A more involved method is
to use degenerate consensi, which can be formalized, for example, by using regu-
lar expressions. Positions where there does not seem to be any preference for any
nucleotide are left undefined, and any nucleotide can match these; positions where
two or three nucleotides can be found with approximately the same frequency are
left ambiguous, and any of the ambiguous nucleotides are considered a valid match;
a single nucleotide is used only for the most conserved positions, which require a
single-nucleotide match. Finally, the most flexible and widely used way of building
descriptors for TF is to align the available sites and to build an alignment profile
representing the frequency with which each nucleotide appears at each position in
the sites. Thus, any candidate oligo can be aligned against the profile, and the corre-
sponding frequencies can be used to evaluate how well it fits the descriptor (rather
than a simple yes/no decision like with consensi) [54].

All in all, the problem can be defined informally as follows: given a set of DNA
sequences (the regions identified by the ChIP-Seq), find a set of oligos appearing in
all or most of the sequences (thus allowing for experimental errors and the presence
of false positives in the set) similar enough to one another to be instances of sites
recognized by the same TF. And, the same set of similar oligos should not appear
with the same frequency and/or the same degree of similarity in a set of sequences
selected at random or built at random with a generator of biologically feasible DNA
sequences. This set of similar and overrepresented oligos collectively build a motif
recurring in the input sequences.

This problem, generally described in literature as motif discovery, appeared well
before the introduction of large-scale techniques like Chip-Seq [42, 48]. The same
principles, in fact, apply to the analysis of gene promoter sequences; a set of genes
showing similar expression patterns should be coregulated to some extent by the
same TFs; because the latter usually bind DNA in the promoter region, by analyz-
ing promoter sequences from coexpressed genes, we should be able to identify as
overrepresented the sites recognized by the common regulators. Unfortunately, this
type of problem has proven itself to be one of the hardest in bioinformatics history
for several reasons [57]. When instead of a set of promoters the input is a set of se-
quences derived from a ChIP experiment, the problem seems to become easier, for
different reasons:

* The size of the sequence sets: A ChIP produces usually thousands of candidate
regions, whereas a typical promoter analysis of coexpressed genes is performed
on a few dozen sequences.
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* The length of the sequences: Sequences extracted from ChIP-Seq are usually
200-300 bp long, as opposed to promoters that usually are defined as 500-1000
bp long.

* The frequency with which binding sites for the same TF appears: In a ChIP-
Seq, they should appear in a very high percentage of the sequences examined,
whereas in a set of coexpressed genes, there is no guarantee for this. In the latter
case, in fact, a TF could regulate only a limited subset of the genes, and the
common pattern of expression observed could be a result of the simultaneous
action of several TFs.

All in all, what happens is that with ChIP-Seq, we have a somewhat cleaner input
sequence set (most sequences should contain what we are looking for), and more
redundant, because in thousands of sequences, we can expect to find several instances
of binding sites very similar to one another. In gene promoter analysis, the input set
is much less cleaner (there is no guarantee on how many sequences actually share
the same motif), the sequence set is much smaller (and thus, the different sites in
the sequences can be very different from one another), and the sequences are longer.
Thus, at least in theory, in ChIP-Seq, we can expect to obtain a clearer separation of
the signal (the motif) from random similarities.

Approaches to the problem mainly differ in these three points:

1. In how similar oligos forming a candidate motif are detected and in how the
motif they form is modeled

2. In the random background model used to assess the statistical significance of
the motifs

3. In the optimization strategy used to find the most significant motif

Given k input sequences of length n and a motif size m, by assuming that a motif
instance should appear in each sequence, we have (n — m + 1)* candidate solutions,
an exponential number of input sequences that, regardless of the significance or scor-
ing function used to evaluate the solutions, leads to a nondeterministic polynomial
(NP)-hard problem. Leaving aside the design of performance-guaranteed approxi-
mation algorithms [2], which produce solutions too far from the optimal one to be
biologically meaningful, different heuristics can be applied to the problem. And, as a
matter of fact, research on this field already has produced many different approaches
and methods. Here, for the sake of space, we will describe the general ideas in tack-
ling the problem in its more general definitions, which are the basis of tools most
widely used now in the analysis of ChIP-Seq data. First of all, one has to decide how
to model a solution. The most widely known algorithms can be split roughly into
consensus-driven and sequence-driven methods [42]. In the former, each set of oli-
gos is summarized by using a consensus, and all oligos differing from the consensus
up to a maximum number of mismatches can be considered a priori a valid motif
instance. Thus, the problem can be formalized as follows: for each of the 4" DNA
strings of reasonable size m (8—16 nucleotides), collect from the input sequences all
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the approximate occurrences up to e mismatches, where e depends on the motif size
m. In other words, the problem becomes exhaustive approximate pattern matching.
Introduced in the early days of bioinformatics [13, 47, 59], this approach had been
abandoned because it is considered too time-consuming, because it requires enu-
merating an exponential (in the solution length) number of candidate solutions. The
application of indexing structures like suffix trees to the input sequence set never-
theless showed its feasibility, reducing its complexity to be exponential in the num-
ber of mismatches allowed [41, 36]. The search space can be trimmed further by
employing degenerate consensi to model the solutions and to tolerate mismatches
only in the degenerate positions, with a significant improvement in the time needed
for matching [50, 52]. Consensi can be ranked finally according to the number of
matches/degree of conservation of the matches. Conversely, the problem can be tack-
led by a combinatorial approach. Assuming, for example, that the TF should have one
site per input sequence, the problem becomes choosing from each sequence an oligo
so that the resulting motif yields the maximum score given a measure of significance
to be optimized. Exhaustive enumeration of all combinations is unfeasible; thus, ap-
proaches to this problem differ in the heuristics used to build initial solutions and in
the exploration of the search space. Here we briefly will describe the most successful
methods in the “one occurrence per sequence” mode, but each one can be adapted to
the discovery of motifs appearing only in a subset of the input sequences.

Consensus [14], one of the earliest methods, is based on a greedy algorithm. Se-
quences are processed one-by-one. The best solutions for two sequences are kept and
augmented by adding one oligo from the third sequence. Again, the best solutions
are kept and augmented with oligos from the fourth sequence, and so on, until all
sequences have been processed, and the remaining solutions contain one oligo per
input sequence. MEME [4] is an EM algorithm that is equivalent to performing a
local search; given an initial solution built with one oligo per input sequence, oligos
that fit the motif better than the existing ones are chosen and replace them building a
new solution. For time reasons, this step is not iterated until convergence but is per-
formed a limited number of times on numerous initial candidate solutions. Only the
highest scoring ones are finally further optimized until convergence. Several meth-
ods are based, with little differences, on the Gibbs sampling strategy first introduced
in [22]. The general idea is a Monte Carlo variation on the local search; instead
of choosing the oligo for replacement that best fits the current motif, each oligo in
the input sequences has a probability of being chosen to form a motif dependent
on its fitness with respect to the motif currently being optimized. Thus, suboptimal
optimization steps can be taken. The algorithm is usually very fast, obtaining rapid
convergence in a limited number of steps, resulting in its application in different tools
for the optimization of different significance functions [31, 33, 37, 38, 51, 55, 56].
Nested-MICA [9] employs a different optimization strategy, called Nested Sampling,
which claims to be “likely to find a globally optimal model (motif) in a single run,”
and uses a model based on the independent component analysis (ICA) framework to
learn motifs.

Although at the beginning, all methods mostly were tested and validated on
synthetic datasets, more recent assessments based on real case studies have been
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introduced, some derived from ChIP experiments. The results have shown that the
real issue in this field seems not to be the strategy used to optimize a significance
function but rather on the choice itself of a suitable measure of significance able to
discriminate real motifs from random similarities. As mentioned before, any measure
should take into account at least two factors: how much of the motif is conserved
(how much the oligos forming it are similar to one another) and how unlikely the
same motif is to appear in a set of sequences chosen at random or built at random
with some sequence generator.

If a motif is modeled with a profile, then we can view the sequences as generated
by two different sources: the motif itself, which produces nucleotides with the prob-
ability equivalent to the frequencies of the nucleotides in each column of the profile,
and the background, which produces nucleotides according to some background dis-
tribution. If we assume that nucleotides in the input sequences are independent, that
is, the probability of finding a nucleotide in any position is not influenced by its
neighbors, then the overall conservation (similarity among the oligos) of the motif
and its distance from the background distribution thus can be measured by computing
the information content (or relative entropy) of the profile:

4 m
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i=1 j=1

where m;_; is the entry in row i and column j of the profile (ranging from O to 1) and
b; is the expected frequency of nucleotide i in the input sequences (which in turn can
be estimated by using the genomic sequence of the organism studied or by the input
sequences themselves). Clearly, for each column j, we have that Z?:] m; ;j = 1and
Z?zl b; = 1. It clearly is shown how this measure accounts for how much each col-
umn is conserved and how much the nucleotide frequencies obtained in the profile
differ from what would have been obtained by aligning oligos chosen at random.
This was, for example, the measure optimized in the first versions of Consensus,
MEME, and the Gibbs Sampler. For assessing the significance of motifs described
with consensi, the principle is the same; the probability of finding any oligo in the
input sequences can be computed as the product of the background probabilities for
each nucleotide of the oligo, and analogously, the probability of finding an approxi-
mate occurrence of the consensus with e substitutions is the sum of the probabilities
associated with the oligos within Hamming distance e from the consensus. Alter-
natively, the match count for a consensus in the input sequences can be compared
with the match count obtained in shuffled input sequences (i.e., consists of the same
nucleotides in a different order [36, 46]), which serves as expected count. Then, en-
richment in the input sequences can be computed with different statistical models
based on different background probability distributions.

In both approaches we just described, the weakest link is the independent assump-
tion. If we take any real DNA sequence, then we can observe that in most cases,
the expected number of times a given oligo appears in the sequence is significantly
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higher or lower than the expected count that would be derived from the product of
nucleotide probabilities. Thus, significant improvements have been obtained by as-
suming that the probability of finding a nucleotide at any given position is influenced
by neighboring nucleotides as well. This can be done by modeling the background
with higher order Markov models. Intuitively, in a jth order Markov model, the prob-
ability of finding a nucleotide in a given position of an oligo depends on the j nu-
cleotides preceding it (the independent model is thus a 0 order Markov model). These
parameters can be estimated from available sequences; for example, a motif finding
tool for human promoter sequences can use a Markov model built from the analysis
of all available human promoter sequences. By augmenting the information content
score with a background rareness score based on the probability of finding at random
the oligos forming the motif computed with a 5th or 6th order Markov model, the
performance of profile-based methods was improved significantly (see e.g., [33]). In
the consensus-based method Weeder [43], the probabilities associated with oligos
up to length eight are computed directly from the oligo counts in all promoters of a
given genome and for longer oligos with a Markov model of the 7th order. Indeed,
research also has focused on finding the most suitable Markov model order for mo-
tif discovery [27]. NestedMICA [9] introduces mosaic background modeling. The
idea is to use four different higher order background models according to the overall
nucleotide composition of the input sequences, particularly for the content of C and
G nucleotides (corresponding to the presence or absence of CpG islands), reporting
good performance results.

As mentioned before, solutions to the problem applied to sequences derived from
ChIP-Seq and similar large-scale experiments benefit from the fact that the motif is
more redundant in the input set, both in number of occurrences and in the degree of
conservation. And, on the other hand, the large number of sequences to be processed
make combinatorial approaches demanding for computational resources. Perhaps
with these considerations in mind, algorithms that were devised for large-scale ChIP
experiments like MDScan [32] and the latest additions to the field (Trawler [11] and
Amadeus [30]) show superior performance on ChIP-Seq and similar large sequence
sets in terms of motifs correctly identified but much more strikingly in computational
resources required. The general ideas underlying these three methods are somewhat
similar. Initial candidate solutions are built by matching consensi (MDScan) or de-
generate consensi on the input sequences indexed with a suffix tree in Trawler to
speed up the search. Although less flexible than other consensus-based approaches
like Weeder, degenerate consensi anyway can capture significant motifs given the
high number of motif instances in the sequences. Significance then is assessed with
a third-order background model (MDScan), or more simply by comparing the counts
in the input to randomly selected background sequence sets, with z-scores (Trawler)
or a hypergeometric test (Amadeus). Finally, similar solutions are merged into more
complex oligo sets, which are modeled using a profile that is eventually further opti-
mized on the input sequences with MEME-like strategies.

Research on this topic also should take advantage of additional features that can
be associated with regions derived from ChIP-Seq. For example, because the number
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of tags defining a region is reported to be an indicator of the affinity of the TF for
the region [19], higher priority or weight should be given to those regions that are
more enriched in tags, as in MDScan for regions extracted by ChIP on Chip accord-
ing to microarray probe enrichment. This is something that can be done trivially by
applying existing methods to only a subset of the input sequences, but this factor
could be taken into account directly by the algorithms, and also the modeling of the
binding specificity of the TF with a profile (resulting from motif discovery algo-
rithms) should given a higher weight to high-affinity sites corresponding to the most
enriched regions. As a matter of fact, for some TFs significant improvements in the
reliability of descriptors seem to be attained by using different descriptors for high
and low-affinity sites [3]. Finally, the sites bound by the TF are more likely to be
located in the center of the region extracted by ChIP [19]: thus, adding positional
bias to sequence conservation in assessing the motifs somewhat should improve the
results.

20.5 CONCLUSIONS

Next-generation sequencing techniques have opened new avenues for research in
molecular biology and at the same time highlighted once more the key role that
bioinformatics play in modern genomics. In fact, apart from the initial sequencing
and the eventual validation of some predicted targets, virtually all steps of a ChIP-
Seq analysis are performed in silico. In this chapter, we gave an overview of the
problems deriving from the different phases of the pipeline, and without claiming
to be exhaustive, presented the ideas underlying the most widely used methods. If
we consider that next-generation sequencing is about four years old, and the first
pioneering articles on ChIP-Seq appeared just a couple of years ago, the large number
of works in this field that appeared in such a short time (including those that were
published in the weeks in which we were writing this chapter) is a clear proof of the
great interest this and similar fields of research have raised. Until the appearance of
third-generation sequencing or completely new amazing lab techniques, of course.
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