

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

ALGORITHMS IN
COMPUTATIONAL

MOLECULAR BIOLOGY

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

Wiley Series on

Bioinformatics: Computational Techniques and Engineering

A complete list of the titles in this series appears at the end of this volume.

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

ALGORITHMS IN
COMPUTATIONAL

MOLECULAR BIOLOGY
Techniques, Approaches

and Applications

Edited by

Mourad Elloumi
Unit of Technologies of Information and Communication

and University of Tunis-El Manar, Tunisia

Albert Y. Zomaya
The University of Sydney, Australia

A JOHN WILEY & SONS, INC., PUBLICATION

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

Copyright C© 2011 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
the author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information about our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-0-470-50519-9

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

To our families, for their patience and support.

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS

PREFACE xxxi

CONTRIBUTORS xxxiii

I STRINGS PROCESSING AND APPLICATION TO
BIOLOGICAL SEQUENCES 1

1 STRING DATA STRUCTURES FOR COMPUTATIONAL
MOLECULAR BIOLOGY 3
Christos Makris and Evangelos Theodoridis

1.1 Introduction / 3
1.2 Main String Indexing Data Structures / 6

1.2.1 Suffix Trees / 6
1.2.2 Suffix Arrays / 8

1.3 Index Structures for Weighted Strings / 12
1.4 Index Structures for Indeterminate Strings / 14
1.5 String Data Structures in Memory Hierarchies / 17
1.6 Conclusions / 20
References / 20

2 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR
PROBLEMS IN COMPUTATIONAL BIOLOGY 27
Patricia A. Evans and H. Todd Wareham

2.1 The Need for Special Cases / 27
2.2 Assessing Efficient Solvability Options for General Problems and

Special Cases / 28
2.3 String and Sequence Problems / 30
2.4 Shortest Common Superstring / 31

2.4.1 Solving the General Problem / 32
2.4.2 Special Case: SCSt for Short Strings Over Small Alphabets / 34
2.4.3 Discussion / 35

vii

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

viii CONTENTS

2.5 Longest Common Subsequence / 36

2.5.1 Solving the General Problem / 37
2.5.2 Special Case: LCS of Similar Sequences / 39
2.5.3 Special Case: LCS Under Symbol-Occurrence Restrictions / 39
2.5.4 Discussion / 40

2.6 Common Approximate Substring / 41

2.6.1 Solving the General Problem / 42
2.6.2 Special Case: Common Approximate String / 44
2.6.3 Discussion / 45

2.7 Conclusion / 46
References / 47

3 FINITE AUTOMATA IN PATTERN MATCHING 51
Jan Holub

3.1 Introduction / 51

3.1.1 Preliminaries / 52

3.2 Direct Use of DFA in Stringology / 53

3.2.1 Forward Automata / 53
3.2.2 Degenerate Strings / 56
3.2.3 Indexing Automata / 57
3.2.4 Filtering Automata / 59
3.2.5 Backward Automata / 59
3.2.6 Automata with Fail Function / 60

3.3 NFA Simulation / 60

3.3.1 Basic Simulation Method / 61
3.3.2 Bit Parallelism / 61
3.3.3 Dynamic Programming / 63
3.3.4 Basic Simulation Method with Deterministic State Cache / 66

3.4 Finite Automaton as Model of Computation / 66
3.5 Finite Automata Composition / 67
3.6 Summary / 67
References / 69

4 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE
SEQUENCES 73
Pavlos Antoniou and Costas S. Iliopoulos

4.1 Introduction / 73

4.1.1 Degenerate Primer Design Problem / 74

4.2 Background / 74
4.3 Basic Definitions / 76

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS ix

4.4 Repetitive Structures in Degenerate Strings / 79

4.4.1 Using the Masking Technique / 79
4.4.2 Computing the Smallest Cover of the Degenerate String x / 79
4.4.3 Computing Maximal Local Covers of x / 81
4.4.4 Computing All Covers of x / 84
4.4.5 Computing the Seeds of x / 84

4.5 Conservative String Covering in Degenerate Strings / 84

4.5.1 Finding Constrained Pattern p in Degenerate String T / 85
4.5.2 Computing λ-Conservative Covers of Degenerate Strings / 86
4.5.3 Computing λ-Conservative Seeds of Degenerate Strings / 87

4.6 Conclusion / 88
References / 89

5 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL
SEQUENCES 91
Eric Rivals, Leena Salmela, and Jorma Tarhio

5.1 Introduction / 91
5.2 Single Pattern Matching Algorithms / 93

5.2.1 Algorithms for DNA Sequences / 94
5.2.2 Algorithms for Amino Acids / 96

5.3 Algorithms for Multiple Patterns / 97

5.3.1 Trie-Based Algorithms / 97
5.3.2 Filtering Algorithms / 100
5.3.3 Other Algorithms / 103

5.4 Application of Exact Set Pattern Matching for Read Mapping / 103

5.4.1 MPSCAN: An Efficient Exact Set Pattern Matching Tool
for DNA/RNA Sequences / 103

5.4.2 Other Solutions for Mapping Reads / 104
5.4.3 Comparison of Mapping Solutions / 105

5.5 Conclusions / 107
References / 108

6 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES 113
Guillaume Blin, Maxime Crochemore, and Stéphane Vialette

6.1 Introduction / 113
6.2 Preliminaries / 114

6.2.1 Arc-Annotated Sequences / 114
6.2.2 Hierarchy / 114
6.2.3 Refined Hierarchy / 115

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

x CONTENTS

6.2.4 Alignment / 115
6.2.5 Edit Operations / 116

6.3 Longest Arc-Preserving Common Subsequence / 117

6.3.1 Definition / 117
6.3.2 Classical Complexity / 118
6.3.3 Parameterized Complexity / 119
6.3.4 Approximability / 120

6.4 Arc-Preserving Subsequence / 120

6.4.1 Definition / 120
6.4.2 Classical Complexity / 121
6.4.3 Classical Complexity for the Refined Hierarchy / 121
6.4.4 Open Problems / 122

6.5 Maximum Arc-Preserving Common Subsequence / 122

6.5.1 Definition / 122
6.5.2 Classical Complexity / 123
6.5.3 Open Problems / 123

6.6 Edit Distance / 123

6.6.1 Definition / 123
6.6.2 Classical Complexity / 123
6.6.3 Approximability / 125
6.6.4 Open Problems / 125

References / 125

7 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS 129
Bhaskar DasGupta, Ming-Yang Kao, and Ion Măndoiu

7.1 Introduction / 129
7.2 Test Set Problems: A General Framework for Several Barcoding

Problems / 130
7.3 A Synopsis of Biological Applications of Barcoding / 132
7.4 Survey of Algorithmic Techniques on Barcoding / 133

7.4.1 Integer Programming / 134
7.4.2 Lagrangian Relaxation and Simulated Annealing / 134
7.4.3 Provably Asymptotically Optimal Results / 134

7.5 Information Content Approach / 135
7.6 Set-Covering Approach / 136

7.6.1 Set-Covering Implementation in More Detail / 137

7.7 Experimental Results and Software Availability / 139

7.7.1 Randomly Generated Instances / 139
7.7.2 Real Data / 140
7.7.3 Software Availability / 140

7.8 Concluding Remarks / 140
References / 141

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xi

8 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES 143
Manolis Christodoulakis and Costas S. Iliopoulos

8.1 Introduction / 143
8.2 Preliminaries / 146

8.2.1 Strings / 146
8.2.2 Weighted Sequences / 147

8.3 Indexing / 148

8.3.1 Weighted Suffix Tree / 148
8.3.2 Property Suffix Tree / 151

8.4 Pattern Matching / 152

8.4.1 Pattern Matching Using the Weighted Suffix Tree / 152
8.4.2 Pattern Matching Using Match Counts / 153
8.4.3 Pattern Matching with Gaps / 154
8.4.4 Pattern Matching with Swaps / 156

8.5 Approximate Pattern Matching / 157

8.5.1 Hamming Distance / 157

8.6 Repetitions, Covers, and Tandem Repeats / 160

8.6.1 Finding Simple Repetitions with the Weighted Suffix Tree / 161
8.6.2 Fixed-Length Simple Repetitions / 161
8.6.3 Fixed-Length Strict Repetitions / 163
8.6.4 Fixed-Length Tandem Repeats / 163
8.6.5 Identifying Covers / 164

8.7 Motif Discovery / 164

8.7.1 Approximate Motifs in a Single Weighted Sequence / 164
8.7.2 Approximate Common Motifs in a Set of Weighted

Sequences / 165

8.8 Conclusions / 166
References / 167

9 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM
PROBLEM AND RELATED PROBLEMS 171
Sun-Yuan Hsieh, Chao-Wen Huang, and Hsin-Hung Chou

9.1 Introduction / 171
9.2 Definitions of Subgraph Isomorphism Problem and Related

Problems / 172
9.3 DNA Computing Models / 174

9.3.1 The Stickers / 174
9.3.2 The Adleman–Lipton Model / 175

9.4 The Sticker-based Solution Space / 175

9.4.1 Using Stickers for Generating the Permutation Set / 176
9.4.2 Using Stickers for Generating the Solution Space / 177

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xii CONTENTS

9.5 Algorithms for Solving Problems / 179

9.5.1 Solving the Subgraph Isomorphism Problem / 179
9.5.2 Solving the Graph Isomorphism Problem / 183
9.5.3 Solving the Maximum Common Subgraph Problem / 184

9.6 Experimental Data / 187
9.7 Conclusion / 188
References / 188

II ANALYSIS OF BIOLOGICAL SEQUENCES 191

10 GRAPHS IN BIOINFORMATICS 193
Elsa Chacko and Shoba Ranganathan

10.1 Graph theory—Origin / 193

10.1.1 What is a Graph? / 193
10.1.2 Types of Graphs / 194
10.1.3 Well-Known Graph Problems and Algorithms / 200

10.2 Graphs and the Biological World / 207

10.2.1 Alternative Splicing and Graphs / 207
10.2.2 Evolutionary Tree Construction / 208
10.2.3 Tracking the Temporal Variation of Biological

Systems / 209
10.2.4 Identifying Protein Domains by Clustering Sequence

Alignments / 210
10.2.5 Clustering Gene Expression Data / 211
10.2.6 Protein Structural Domain Decomposition / 212
10.2.7 Optimal Design of Thermally Stable Proteins / 212
10.2.8 The Sequencing by Hybridization (SBH) Problem / 214
10.2.9 Predicting Interactions in Protein Networks by

Completing Defective Cliques / 215

10.3 Conclusion / 216
References / 216

11 A FLEXIBLE DATA STORE FOR MANAGING
BIOINFORMATICS DATA 221
Bassam A. Alqaralleh, Chen Wang, Bing Bing Zhou, and Albert Y. Zomaya

11.1 Introduction / 221

11.1.1 Background / 222
11.1.2 Scalability Challenges / 222

11.2 Data Model and System Overview / 223

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xiii

11.3 Replication and Load Balancing / 227

11.3.1 Replicating an Index Node / 228
11.3.2 Answering Range Queries with Replicas / 229

11.4 Evaluation / 230

11.4.1 Point Query Processing Performance / 230
11.4.2 Range Query Processing Performance / 233
11.4.3 Growth of the Replicas of an Indexing Node / 235

11.5 Related Work / 237
11.6 Summary / 237
References / 238

12 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL
SEQUENCES 241
Ahmed Mokaddem and Mourad Elloumi

12.1 Introduction / 241
12.2 Alignment Algorithms / 242

12.2.1 Pairwise Alignment Algorithms / 242
12.2.2 Multiple Alignment Algorithms / 245

12.3 Score Functions / 251
12.4 Benchmarks / 252
12.5 Conclusion / 255
Acknowledgments / 255
References / 255

13 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND
STRUCTURAL MOTIF IDENTIFICATION 261
Sanguthevar Rajasekaran, Vamsi Kundeti, and Martin Schiller

13.1 Introduction / 261
13.2 Problem Definition of Local Structural Alignment / 262
13.3 Variable-Length Alignment Fragment Pair (VLAFP) Algorithm / 263

13.3.1 Alignment Fragment Pairs / 263
13.3.2 Finding the Optimal Local Alignments Based on the

VLAFP Cost Function / 264

13.4 Structural Alignment based on Center of Gravity: SACG / 266

13.4.1 Description of Protein Structure in PDB Format / 266
13.4.2 Related Work / 267
13.4.3 Center-of-Gravity-Based Algorithm / 267
13.4.4 Extending Theorem 13.1 for Atomic Coordinates in

Protein Structure / 269
13.4.5 Building VCOST(i,j,q) Function Based on Center of

Gravity / 270

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xiv CONTENTS

13.5 Searching Structural Motifs / 270
13.6 Using SACG Algorithm for Classification of New Protein

Structures / 273
13.7 Experimental Results / 273
13.8 Accuracy Results / 273
13.9 Conclusion / 274
Acknowledgments / 275
References / 276

14 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE
SEQUENCE ALIGNMENT PROGRAMS 277
Mohamed Radhouene Aniba and Julie Thompson

14.1 Introduction / 277
14.2 Clustal-ClustalV / 278

14.2.1 Pairwise Similarity Scores / 279
14.2.2 Guide Tree / 280
14.2.3 Progressive Multiple Alignment / 282
14.2.4 An Efficient Dynamic Programming Algorithm / 282
14.2.5 Profile Alignments / 284

14.3 ClustalW / 284

14.3.1 Optimal Pairwise Alignments / 284
14.3.2 More Accurate Guide Tree / 284
14.3.3 Improved Progressive Alignment / 285

14.4 ClustalX / 289

14.4.1 Alignment Quality Analysis / 290

14.5 ClustalW and ClustalX 2.0 / 292
14.6 DbClustal / 293

14.6.1 Anchored Global Alignment / 294

14.7 Perspectives / 295
References / 296

15 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY
SEARCHES IN LARGE DATASETS 299
Nadia Pisanti, Mathieu Giraud, and Pierre Peterlongo

15.1 Introduction / 299

15.1.1 Homologies and Large Datasets / 299
15.1.2 Filter Preprocessing or Heuristics / 300
15.1.3 Contents / 300

15.2 Methods Framework / 301

15.2.1 Strings and Repeats / 301
15.2.2 Filters—Fundamental Concepts / 301

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xv

15.3 Lossless filters / 303

15.3.1 History of Lossless Filters / 303
15.3.2 Quasar and swift—Filtering Repeats with Edit

Distance / 304
15.3.3 Nimbus—Filtering Multiple Repeats with Hamming

Distance / 305
15.3.4 tuiuiu—Filtering Multiple Repeats with Edit Distance / 308

15.4 Lossy Seed-Based Filters / 309

15.4.1 Seed-Based Heuristics / 310
15.4.2 Advanced Seeds / 311
15.4.3 Latencies and Neighborhood Indexing / 311
15.4.4 Seed-Based Heuristics Implementations / 313

15.5 Conclusion / 315
15.6 Acknowledgments / 315
References / 315

16 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC
ALIGNMENT-FREE DISTANCES FOR BIOLOGICAL
DATA MINING 321
Chiara Epifanio, Alessandra Gabriele, Raffaele Giancarlo, and Marinella Sciortino

16.1 Introduction / 321
16.2 Information-Theoretic Alignment-Free Methods / 323

16.2.1 Fundamental Information Measures, Statistical
Dependency, and Similarity of Sequences / 324

16.2.2 Methods Based on Relative Entropy and Empirical
Probability Distributions / 325

16.2.3 A Method Based on Statistical Dependency, via Mutual
Information / 329

16.3 Combinatorial Alignment-Free Methods / 331

16.3.1 The Average Common Substring Distance / 332
16.3.2 A Method Based on the EBWT Transform / 333
16.3.3 N -Local Decoding / 334

16.4 Alignment-Free Compositional Methods / 336

16.4.1 The k-String Composition Approach / 337
16.4.2 Complete Composition Vector / 338
16.4.3 Fast Algorithms to Compute Composition Vectors / 339

16.5 Alignment-Free Exact Word Matches Methods / 340

16.5.1 D2 and its Distributional Regimes / 340
16.5.2 An Extension to Mismatches and the Choice of the

Optimal Word Size / 342
16.5.3 The Transformation of D2 into a Method Assessing the

Statistical Significance of Sequence Similarity / 343

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xvi CONTENTS

16.6 Domains of Biological Application / 344

16.6.1 Phylogeny: Information Theoretic and Combinatorial
Methods / 345

16.6.2 Phylogeny: Compositional Methods / 346
16.6.3 CIS Regulatory Modules / 347
16.6.4 DNA Sequence Dependencies / 348

16.7 Datasets and Software for Experimental Algorithmics / 349

16.7.1 Datasets / 350
16.7.2 Software / 353

16.8 Conclusions / 354
References / 355

17 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES
AND DRUG MOLECULES 361
Varun Khanna and Shoba Ranganathan

17.1 Introduction / 361

17.1.1 Chemoinformatics and “Drug-Likeness” / 361

17.2 Molecular Descriptors / 363

17.2.1 One-Dimensional (1-D) Descriptors / 363
17.2.2 Two-Dimensional (2-D) Descriptors / 364
17.2.3 Three-Dimensional (3-D) Descriptors / 366

17.3 Databases / 367

17.3.1 PubChem / 367
17.3.2 Chemical Entities of Biological Interest (ChEBI) / 369
17.3.3 ChemBank / 369
17.3.4 ChemIDplus / 369
17.3.5 ChemDB / 369

17.4 Methods and Data Analysis Algorithms / 370

17.4.1 Simple Count Methods / 370
17.4.2 Enhanced Simple Count Methods, Using Structural

Features / 371
17.4.3 ML Methods / 372

17.5 Conclusions / 376
Acknowledgments / 377
References / 377

III MOTIF FINDING AND STRUCTURE PREDICTION 383

18 MOTIF FINDING ALGORITHMS IN BIOLOGICAL SEQUENCES 385
Tarek El Falah, Mourad Elloumi, and Thierry Lecroq

18.1 Introduction / 385

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xvii

18.2 Preliminaries / 386
18.3 The Planted (l, d)-Motif Problem / 387

18.3.1 Formulation / 387
18.3.2 Algorithms / 387

18.4 The Extended (l, d)-Motif Problem / 391

18.4.1 Formulation / 391
18.4.2 Algorithms / 391

18.5 The Edited Motif Problem / 392

18.5.1 Formulation / 392
18.5.2 Algorithms / 393

18.6 The Simple Motif Problem / 393

18.6.1 Formulation / 393
18.6.2 Algorithms / 394

18.7 Conclusion / 395
References / 396

19 COMPUTATIONAL CHARACTERIZATION OF
REGULATORY REGIONS 397
Enrique Blanco

19.1 The Genome Regulatory Landscape / 397
19.2 Qualitative Models of Regulatory Signals / 400
19.3 Quantitative Models of Regulatory Signals / 401
19.4 Detection of Dependencies in Sequences / 403
19.5 Repositories of Regulatory Information / 405
19.6 Using Predictive Models to Annotate Sequences / 406
19.7 Comparative Genomics Characterization / 408
19.8 Sequence Comparisons / 410
19.9 Combining Motifs and Alignments / 412

19.10 Experimental Validation / 414
19.11 Summary / 417
References / 417

20 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA 425
Federico Zambelli and Giulio Pavesi

20.1 Introduction / 425
20.2 Mapping Sequences on the Genome / 429
20.3 Identifying Significantly Enriched Regions / 434

20.3.1 ChIP-Seq Approaches to the Identification of DNA
Structure Modifications / 437

20.4 Deriving Actual Transcription Factor Binding Sites / 438

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xviii CONTENTS

20.5 Conclusions / 444
References / 444

21 APPROACHES AND METHODS FOR OPERON PREDICTION
BASED ON MACHINE LEARNING TECHNIQUES 449
Yan Wang, You Zhou, Chunguang Zhou, Shuqin Wang, Wei Du, Chen Zhang,
and Yanchun Liang

21.1 Introduction / 449
21.2 Datasets, Features, and Preprocesses for Operon Prediction / 451

21.2.1 Operon Datasets / 451
21.2.2 Features / 454
21.2.3 Preprocess Methods / 459

21.3 Machine Learning Prediction Methods for Operon Prediction / 460

21.3.1 Hidden Markov Model / 461
21.3.2 Linkage Clustering / 462
21.3.3 Bayesian Classifier / 464
21.3.4 Bayesian Network / 467
21.3.5 Support Vector Machine / 468
21.3.6 Artificial Neural Network / 470
21.3.7 Genetic Algorithms / 471
21.3.8 Several Combinations / 472

21.4 Conclusions / 474
21.5 Acknowledgments / 475
References / 475

22 PROTEIN FUNCTION PREDICTION WITH DATA-MINING
TECHNIQUES 479
Xing-Ming Zhao and Luonan Chen

22.1 Introduction / 479
22.2 Protein Annotation Based on Sequence / 480

22.2.1 Protein Sequence Classification / 480
22.2.2 Protein Subcellular Localization Prediction / 483

22.3 Protein Annotation Based on Protein Structure / 484
22.4 Protein Function Prediction Based on Gene-Expression Data / 485
22.5 Protein Function Prediction Based on Protein Interactome Map / 486

22.5.1 Protein Function Prediction Based on Local Topology
Structure of Interaction Map / 486

22.5.2 Protein Function Prediction Based on Global Topology
of Interaction Map / 488

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xix

22.6 Protein Function Prediction Based on Data Integration / 489
22.7 Conclusions and Perspectives / 491
References / 493

23 PROTEIN DOMAIN BOUNDARY PREDICTION 501
Paul D. Yoo, Bing Bing Zhou, and Albert Y. Zomaya

23.1 Introduction / 501
23.2 Profiling Technique / 503

23.2.1 Nonlocal Interaction and Vanishing Gradient Problem / 506
23.2.2 Hierarchical Mixture of Experts / 506
23.2.3 Overall Modular Kernel Architecture / 508

23.3 Results / 510
23.4 Discussion / 512

23.4.1 Nonlocal Interactions in Amino Acids / 512
23.4.2 Secondary Structure Information / 513
23.4.3 Hydrophobicity and Profiles / 514
23.4.4 Domain Assignment Is More Accurate for Proteins with

Fewer Domains / 514

23.5 Conclusions / 515
References / 515

24 AN INTRODUCTION TO RNA STRUCTURE AND
PSEUDOKNOT PREDICTION 521
Jana Sperschneider and Amitava Datta

24.1 Introduction / 521
24.2 RNA Secondary Structure Prediction / 522

24.2.1 Minimum Free Energy Model / 524
24.2.2 Prediction of Minimum Free Energy Structure / 526
24.2.3 Partition Function Calculation / 530
24.2.4 Base Pair Probabilities / 533

24.3 RNA Pseudoknots / 534

24.3.1 Biological Relevance / 536
24.3.2 RNA Pseudoknot Prediction / 537
24.3.3 Dynamic Programming / 538
24.3.4 Heuristic Approaches / 541
24.3.5 Pseudoknot Detection / 542
24.3.6 Overview / 542

24.4 Conclusions / 543
References / 544

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xx CONTENTS

IV PHYLOGENY RECONSTRUCTION 547

25 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM
LIKELIHOOD 549
Alexandros Stamatakis

25.1 Introduction / 549

25.1.1 Phylogenetic Inference / 550

25.2 Computing the Likelihood / 552
25.3 Accelerating the PLF by Algorithmic Means / 555

25.3.1 Reuse of Values Across Probability Vectors / 555
25.3.2 Gappy Alignments and Pointer Meshes / 557

25.4 Alignment Shapes / 558
25.5 General Search Heuristics / 559

25.5.1 Lazy Evaluation Strategies / 563
25.5.2 Further Heuristics / 564
25.5.3 Rapid Bootstrapping / 565

25.6 Computing the Robinson Foulds Distance / 566
25.7 Convergence Criteria / 568

25.7.1 Asymptotic Stopping / 569

25.8 Future Directions / 572
References / 573

26 HEURISTIC METHODS FOR PHYLOGENETIC
RECONSTRUCTION WITH MAXIMUM PARSIMONY 579
Adrien Goëffon, Jean-Michel Richer, and Jin-Kao Hao

26.1 Introduction / 579
26.2 Definitions and Formal Background / 580

26.2.1 Parsimony and Maximum Parsimony / 580

26.3 Methods / 581

26.3.1 Combinatorial Optimization / 581
26.3.2 Exact Approach / 582
26.3.3 Local Search Methods / 582
26.3.4 Evolutionary Metaheuristics and Genetic Algorithms / 588
26.3.5 Memetic Methods / 590
26.3.6 Problem-Specific Improvements / 592

26.4 Conclusion / 594
References / 595

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xxi

27 MAXIMUM ENTROPY METHOD FOR COMPOSITION
VECTOR METHOD 599
Raymond H.-F. Chan, Roger W. Wang, and Jeff C.-F. Wong

27.1 Introduction / 599
27.2 Models and Entropy Optimization / 601

27.2.1 Definitions / 601
27.2.2 Denoising Formulas / 603
27.2.3 Distance Measure / 611
27.2.4 Phylogenetic Tree Construction / 613

27.3 Application and Dicussion / 614

27.3.1 Example 1 / 614
27.3.2 Example 2 / 614
27.3.3 Example 3 / 615
27.3.4 Example 4 / 617

27.4 Concluding Remarks / 619
References / 619

V MICROARRAY DATA ANALYSIS 623

28 MICROARRAY GENE EXPRESSION DATA ANALYSIS 625
Alan Wee-Chung Liew and Xiangchao Gan

28.1 Introduction / 625
28.2 DNA Microarray Technology and Experiment / 626
28.3 Image Analysis and Expression Data Extraction / 627

28.3.1 Image Preprocessing / 628
28.3.2 Block Segmentation / 628
28.3.3 Automatic Gridding / 628
28.3.4 Spot Extraction / 628

28.4 Data Processing / 630

28.4.1 Background Correction / 630
28.4.2 Normalization / 630
28.4.3 Data Filtering / 631

28.5 Missing Value Imputation / 631
28.6 Temporal Gene Expression Profile Analysis / 634
28.7 Cyclic Gene Expression Profiles Detection / 640

28.7.1 SSA-AR Spectral Estimation / 643
28.7.2 Spectral Estimation by Signal Reconstruction / 644
28.7.3 Statistical Hypothesis Testing for Periodic Profile

Detection / 646

28.8 Summary / 647
Acknowledgments / 648
References / 649

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xxii CONTENTS

29 BICLUSTERING OF MICROARRAY DATA 651
Wassim Ayadi and Mourad Elloumi

29.1 Introduction / 651
29.2 Types of Biclusters / 652
29.3 Groups of Biclusters / 653
29.4 Evaluation Functions / 654
29.5 Systematic and Stochastic Biclustering Algorithms / 656
29.6 Biological Validation / 659
29.7 Conclusion / 661
References / 661

30 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC
GENE AND PATHWAY INFERENCE 665
Yu-Qing Qiu, Shihua Zhang, Xiang-Sun Zhang, and Luonan Chen

30.1 Introduction / 665
30.2 Condition-Specific Pathway Identification / 666

30.2.1 Gene Set Analysis / 667
30.2.2 Condition-Specific Pathway Inference / 671

30.3 Disease Gene Prioritization and Genetic Pathway Detection / 681
30.4 Module Networks / 684
30.5 Summary / 685
Acknowledgments / 685
References / 685

31 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN
CANCER STUDIES: ALGORITHMS AND METHODS 691
Radha Krishna Murthy Karuturi

31.1 Introduction / 691
31.2 Notations / 692
31.3 Differential Mean of Expression / 694

31.3.1 Single Factor Differential Expression / 695
31.3.2 Multifactor Differential Expression / 697
31.3.3 Empirical Bayes Extension / 698

31.4 Differential Variability of Expression / 699

31.4.1 F-Test for Two-Group Differential Variability Analysis / 699
31.4.2 Bartlett’s and Levene’s Tests for Multigroup Differential

Variability Analysis / 700

31.5 Differential Expression in Compendium of Tumors / 701

31.5.1 Gaussian Mixture Model (GMM) for Finite Levels of
Expression / 701

31.5.2 Outlier Detection Strategy / 703
31.5.3 Kurtosis Excess / 704

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xxiii

31.6 Differential Expression by Chromosomal Aberrations: The Local
Properties / 705

31.6.1 Wavelet Variance Scanning (WAVES) for Single-Sample
Analysis / 708

31.6.2 Local Singular Value Decomposition (LSVD) for
Compendium of Tumors / 709

31.6.3 Locally Adaptive Statistical Procedure (LAP) for
Compendium of Tumors with Control Samples / 710

31.7 Differential Expression in Gene Interactome / 711

31.7.1 Friendly Neighbors Algorithm: A Multiplicative
Interactome / 711

31.7.2 GeneRank: A Contributing Interactome / 712
31.7.3 Top Scoring Pairs (TSP): A Differential Interactome / 713

31.8 Differential Coexpression: Global MultiDimensional
Interactome / 714

31.8.1 Kostka and Spang’s Differential Coexpression
Algorithm / 715

31.8.2 Differential Expression Linked Differential
Coexpression / 718

31.8.3 Differential Friendly Neighbors (DiffFNs) / 718
Acknowledgments / 720
References / 720

VI ANALYSIS OF GENOMES 723

32 COMPARATIVE GENOMICS: ALGORITHMS AND
APPLICATIONS 725
Xiao Yang and Srinivas Aluru

32.1 Introduction / 725
32.2 Notations / 727
32.3 Ortholog Assignment / 727

32.3.1 Sequence Similarity-Based Method / 729
32.3.2 Phylogeny-Based Method / 731
32.3.3 Rearrangement-Based Method / 732

32.4 Gene Cluster and Synteny Detection / 734

32.4.1 Synteny Detection / 736
32.4.2 Gene Cluster Detection / 739

32.5 Conclusions / 743
References / 743

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xxiv CONTENTS

33 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS 749
Masud Hasan and M. Sohel Rahman

33.1 Introduction / 749
33.2 Preliminaries / 752
33.3 Sorting by Reversals / 753

33.3.1 Approaches to Approximation Algorithms / 754
33.3.2 Signed Permutations / 757

33.4 Sorting by Transpositions / 759

33.4.1 Approximation Results / 760
33.4.2 Improved Running Time and Simpler Algorithms / 761

33.5 Other Operations / 761

33.5.1 Sorting by Prefix Reversals / 761
33.5.2 Sorting by Prefix Transpositions / 762
33.5.3 Sorting by Block Interchange / 762
33.5.4 Short Swap and Fixed-Length Reversals / 763

33.6 Sorting by More Than One Operation / 763

33.6.1 Unified Operation: Doule Cut and Join / 764

33.7 Future Research Directions / 765
33.8 Notes on Software / 766
References / 767

34 COMPUTING GENOMIC DISTANCES: AN ALGORITHMIC
VIEWPOINT 773
Guillaume Fertin and Irena Rusu

34.1 Introduction / 773

34.1.1 What this Chapter is About / 773
34.1.2 Definitions and Notations / 774
34.1.3 Organization of the Chapter / 775

34.2 Interval-Based Criteria / 775

34.2.1 Brief Introduction / 775
34.2.2 The Context and the Problems / 776
34.2.3 Common Intervals in Permutations and the Commuting

Generators Strategy / 778
34.2.4 Conserved Intervals in Permutations and the

Bound-and-Drop Strategy / 782
34.2.5 Common Intervals in Strings and the Element Plotting

Strategy / 783
34.2.6 Variants / 785

34.3 Character-Based Criteria / 785

34.3.1 Introduction and Definition of the Problems / 785
34.3.2 An Approximation Algorithm for BAL-FMB / 787

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xxv

34.3.3 An Exact Algorithm for UNBAL-FMB. / 791
34.3.4 Other Results and Open Problems / 795

34.4 Conclusion / 795
References / 796

35 WAVELET ALGORITHMS FOR DNA ANALYSIS 799
Carlo Cattani

35.1 Introduction / 799
35.2 DNA Representation / 802

35.2.1 Preliminary Remarks on DNA / 802
35.2.2 Indicator Function / 803
35.2.3 Representation / 806
35.2.4 Representation Models / 807
35.2.5 Constraints on the Representation in R

2 / 808
35.2.6 Complex Representation / 810
35.2.7 DNA Walks / 810

35.3 Statistical Correlations in DNA / 812

35.3.1 Long-Range Correlation / 812
35.3.2 Power Spectrum / 814
35.3.3 Complexity / 817

35.4 Wavelet Analysis / 818

35.4.1 Haar Wavelet Basis / 819
35.4.2 Haar Series / 819
35.4.3 Discrete Haar Wavelet Transform / 821

35.5 Haar Wavelet Coefficients and Statistical Parameters / 823
35.6 Algorithm of the Short Haar Discrete Wavelet

Transform / 826
35.7 Clusters of Wavelet Coefficients / 828

35.7.1 Cluster Analysis of the Wavelet Coefficients of the
Complex DNA Representation / 830

35.7.2 Cluster Analysis of the Wavelet Coefficients of DNA
Walks / 834

35.8 Conclusion / 838
References / 839

36 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS 843
Ling-Yun Wu

36.1 Introduction / 843
36.2 Problem Statement and Notations / 844
36.3 Combinatorial Methods / 846

36.3.1 Clark’s Inference Rule / 846

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xxvi CONTENTS

36.3.2 Pure Parsimony Model / 848
36.3.3 Phylogeny Methods / 849

36.4 Statistical Methods / 851

36.4.1 Maximum Likelihood Methods / 851
36.4.2 Bayesian Methods / 852
36.4.3 Markov Chain Methods / 852

36.5 Pedigree Methods / 853

36.5.1 Minimum Recombinant Haplotype Configurations / 854
36.5.2 Zero Recombinant Haplotype Configurations / 854
36.5.3 Statistical Methods / 855

36.6 Evaluation / 856

36.6.1 Evaluation Measurements / 856
36.6.2 Comparisons / 857
36.6.3 Datasets / 857

36.7 Discussion / 858
References / 859

VII ANALYSIS OF BIOLOGICAL NETWORKS 865

37 UNTANGLING BIOLOGICAL NETWORKS USING
BIOINFORMATICS 867
Gaurav Kumar, Adrian P. Cootes, and Shoba Ranganathan

37.1 Introduction / 867

37.1.1 Predicting Biological Processes: A Major Challenge to
Understanding Biology / 867

37.1.2 Historical Perspective and Mathematical Preliminaries of
Networks / 868

37.1.3 Structural Properties of Biological Networks / 870
37.1.4 Local Topology of Biological Networks: Functional

Motifs, Modules, and Communities / 873

37.2 Types of Biological Networks / 878

37.2.1 Protein-Protein Interaction Networks / 878
37.2.2 Metabolic Networks / 879
37.2.3 Transcriptional Networks / 881
37.2.4 Other Biological Networks / 883

37.3 Network Dynamic, Evolution and Disease / 884

37.3.1 Biological Network Dynamic and Evolution / 884
37.3.2 Biological Networks and Disease / 886

37.4 Future Challenges and Scope / 887
Acknowledgments / 887
References / 888

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xxvii

38 PROBABILISTIC APPROACHES FOR INVESTIGATING
BIOLOGICAL NETWORKS 893
Jérémie Bourdon and Damien Eveillard

38.1 Probabilistic Models for Biological Networks / 894

38.1.1 Boolean Networks / 895
38.1.2 Probabilistic Boolean Networks: A Natural Extension / 900
38.1.3 Inferring Probabilistic Models from Experiments / 901

38.2 Interpretation and Quantitative Analysis of Probabilistic Models / 902

38.2.1 Dynamical Analysis and Temporal Properties / 902
38.2.2 Impact of Update Strategies for Analyzing Probabilistic

Boolean Networks / 905
38.2.3 Simulations of a Probabilistic Boolean Network / 906

38.3 Conclusion / 911
Acknowledgments / 911
References / 911

39 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS
WITH MODEL CHECKING 915
Dragan Bošnački, Peter A.J. Hilbers, Ronny S. Mans, and Erik P. de Vink

39.1 Introduction / 915
39.2 Preliminaries / 916

39.2.1 Model Checking / 916
39.2.2 SPIN and Promela / 917
39.2.3 LTL / 918

39.3 Analyzing Genetic Networks with Model Checking / 919

39.3.1 Boolean Regulatory Networks / 919
39.3.2 A Case Study / 919
39.3.3 Translating Boolean Regulatory Graphs into Promela / 921
39.3.4 Some Results / 922
39.3.5 Concluding Remarks / 924
39.3.6 Related Work and Bibliographic Notes / 924

39.4 Probabilistic Model Checking for Biological Systems / 925

39.4.1 Motivation and Background / 926
39.4.2 A Kinetic Model of mRNA Translation / 927
39.4.3 Probabilistic Model Checking / 928
39.4.4 The Prism Model / 929
39.4.5 Insertion Errors / 933
39.4.6 Concluding Remarks / 934
39.4.7 Related Work and Bibliographic Notes / 935

References / 936

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xxviii CONTENTS

40 REVERSE ENGINEERING OF MOLECULAR NETWORKS
FROM A COMMON COMBINATORIAL APPROACH 941
Bhaskar DasGupta, Paola Vera-Licona, and Eduardo Sontag

40.1 Introduction / 941
40.2 Reverse-Engineering of Biological Networks / 942

40.2.1 Evaluation of the Performance of Reverse-Engineering
Methods / 945

40.3 Classical Combinatorial Algorithms: A Case Study / 946

40.3.1 Benchmarking RE Combinatorial-Based Methods / 947
40.3.2 Software Availability / 950

40.4 Concluding Remarks / 951
Acknowledgments / 951
References / 951

41 UNSUPERVISED LEARNING FOR GENE REGULATION
NETWORK INFERENCE FROM EXPRESSION DATA:
A REVIEW 955
Mohamed Elati and Céline Rouveirol

41.1 Introduction / 955
41.2 Gene Networks: Definition and Properties / 956
41.3 Gene Expression: Data and Analysis / 958
41.4 Network Inference as an Unsupervised Learning Problem / 959
41.5 Correlation-Based Methods / 959
41.6 Probabilistic Graphical Models / 961
41.7 Constraint-Based Data Mining / 963

41.7.1 Multiple Usages of Extracted Patterns / 965
41.7.2 Mining Gene Regulation from Transcriptome Datasets / 966

41.8 Validation / 969

41.8.1 Statistical Validation of Network Inference / 970
41.8.2 Biological Validation / 972

41.9 Conclusion and Perspectives / 973
References / 974

42 APPROACHES TO CONSTRUCTION AND ANALYSIS OF
MICRORNA-MEDIATED NETWORKS 979
Ilana Lichtenstein, Albert Zomaya, Jennifer Gamble, and Mathew Vadas

42.1 Introduction / 979

42.1.1 miRNA-mediated Genetic Regulatory Networks / 979
42.1.2 The Four Levels of Regulation in GRNs / 981
42.1.3 Overview of Sections / 982

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTENTS xxix

42.2 Fundamental Component Interaction Research: Predicting
miRNA Genes, Regulators, and Targets / 982

42.2.1 Prediction of Novel miRNA Genes / 983
42.2.2 Prediction of miRNA Targets / 984
42.2.3 Prediction of miRNA Transcript Elements and

Transcriptional Regulation / 984

42.3 Identifying miRNA-mediated Networks / 988

42.3.1 Forward Engineering—Construction of Multinode
Components in miRNA-mediated Networks Using
Paired Interaction Information / 988

42.3.2 Reverse Engineering—Inference of MicroRNA Modules
Using Top-Down Approaches / 988

42.4 Global and Local Architecture Analysis in miRNA-Containing
Networks / 993

42.4.1 Global Architecture Properties of miRNA-mediated
Post-transcriptional Networks / 993

42.4.2 Local Architecture Properties of miRNA-mediated
Post-transcriptional Networks / 994

42.5 Conclusion / 1001
References / 1001

INDEX 1007

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

PREFACE

Computational molecular biology has emerged from the Human Genome Project as
an important discipline for academic research and industrial application. The expo-
nential growth of the size of biological databases, the complexity of biological prob-
lems, and the necessity to deal with errors in biological sequences require the de-
velopment of fast, low-memory requirement and high-performance algorithms. This
book is a forum of such algorithms, based on new/improved approaches and/or tech-
niques. Most of the current books on algorithms in computational molecular biology
either lack technical depth or focus on specific narrow topics. This book is the first
overview on algorithms in computational molecular biology with both a wide cov-
erage of this field and enough depth to be of practical use to working professionals.
It surveys the most recent developments, offering enough fundamental and technical
information on these algorithms and the related problems without overloading the
reader. So, this book endeavors to strike a balance between theoretical and practical
coverage of a wide range of issues in computational molecular biology. Of course,
the list of topics that is explored in this book is not exhaustive, but it is hoped that
the topics covered will get the reader to think of the implications of the presented
algorithms on the developments in his/her own field. The material included in this
book was carefully chosen for quality and relevance. This book also presents a mix-
ture of experiments and simulations that provide not only qualitative but also quan-
titative insights into the rich field of computational molecular biology. It is hoped
that this book will increase the interest of the algorithmics community in studying
a wider range of combinatorial problems that originate in computational molecular
biology. This should enable researchers to deal with more complex issues and richer
data sets.

Ideally, the reader of this book should be someone who is familiar with computa-
tional molecular biology and would like to learn more about algorithms that deal with
the most studied, the most important, and/or the newest topics in the field of com-
putational molecular biology. However, this book could be used by a wider audience
such as graduate students, senior undergraduate students, researchers, instructors,
and practitioners in computer science, life science, and mathematics. We have tried
to make the material of this book self-contained so that the reader would not have
to consult a lot of external references. Thus, the reader of this book will certainly
find what he/she is looking for or at least a clue that will help to make an advance in

xxxi

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xxxii PREFACE

his/her research. This book is quite timely, because the field of computational molec-
ular biology as a whole is undergoing many changes, and will be of a great use to
the reader.

This book is organized into seven parts: Strings Processing and Application to
Biological Sequences, Analysis of Biological Sequences, Motif Finding and Struc-
ture Prediction, Phylogeny Reconstruction, Microarray Data Analysis, Analysis of
Genomes, and Analysis of Biological Networks. The 42 chapters, that make up the
seven parts of this book, were carefully selected to provide a wide scope with min-
imal overlap between the chapters in order to reduce duplication. Each contributor
was asked that his/her chapter should cover review material as well as current devel-
opments. In addition, we selected authors who are leaders in their respective fields.

Mourad Elloumi and Albert Y. Zomaya

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTRIBUTORS

Bassam A. Alqaralleh, Faculty of IT, Al-Hussien Bin Talal University, Jordan.

Srinivas Aluru, Department of Electrical and Computer Engineering, Iowa State
University, Ames, IA, USA; and Department of Computer Science and Engineer-
ing, Indian Institute of Technology Bombay, Mumbai, India.

Mohamed Radhouene Aniba, Institute of Genetics and Molecular and Cellular Bi-
ology, Illkirch, France.

Pavlos Antoniou, Department of Computer Science, King’s College, London, UK.

Wassim Ayadi, Unit of Technologies of Information and Communication (UTIC)
and University of Tunis-El Manar, Tunisia.

Enrique Blanco, Department of Genetics, Institute of Biomedicine of the Univer-
sity of Barcelona, Spain.

Guillaume Blin, IGM, University Paris-Est, Champs-sur-Marne, Marne-la-Vallée,
France.

Dragan Bosnacki, Eindhoven University of Technology, The Netherlands.

Jérémie Bourdon, LINA, University of Nantes and INRIA Rennes-Bretagne-
Atlantique, France.

Carlo Cattani, Department of Mathematics, University of Salerno, Italy.

Elsa Chacko, Department of Chemistry and Biomolecular Sciences and ARC Cen-
tre of Excellence in Bioinformatics, Macquarie University, Sydney, Australia.

Raymond H. F. Chan, Department of Mathematics, The Chinese University of
Hong Kong, Shatin, Hong Kong, China.

Luonan Chen, Key Laboratory of Systems Biology, Shanghai Institutes for Biolog-
ical Sciences, Chinese Academy of Sciences, Shanghai, China.

Hsin-Hung Chou, Department of Information Management, Chang Jung Christian
University, Tainan, Taiwan.

Manolis Christodoulakis, Department of Electrical and Computer Engineering,
University of Cyprus, Nicosia, Cyprus; and Department of Computer Science,
King’s College London, London, UK.

xxxiii

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xxxiv CONTRIBUTORS

Adrian Cootes, Macquarie University, Sydney, Australia.

Maxime Crochemore, IGM, University Paris-Est, Champs-sur-Marne, Marne-la-
Vallée, France.

Bhaskar DasGupta, Department of Computer Science, University of Illinois at
Chicago, USA.

Amitava Datta, School of Computer Science and Software Engineering, The
University of Western Australia, Perth, Australia.

Erik P. de Vink, Eindhoven University of Technology, The Netherlands.

Wei Du, College of Computer Science and Technology, Jilin University,
Changchun, China.

Mohamed Elati, Institute of Systems and Synthetic Biology, Evry University -
Genopole, Evry, France.

Mourad Elloumi, Unit of Technologies of Information and Communication (UTIC)
and University of Tunis-El Manar, Tunisia.

Chiara Epifanio, Department of Mathematics and Applications, University of
Palermo, Italy.

Patricia A. Evans, Faculty of Computer Science, University of New Brunswick,
Fredericton, Canada.

Damien Eveillard, LINA, University of Nantes and INRIA Rennes-Bretagne-
Atlantique, France.

Tarek El Falah, Unit of Technologies of Information and Communication (UTIC)
and University of Tunis-El Manar, Tunisia.

Guillaume Fertin, LINA UMR CNRS 6241, University of Nantes, France.

Alessandra Gabriele, Department of Mathematics and Applications, University of
Palermo, Italy.

Jennifer Gamble, Vascular Biology Laboratory, Centenary Institute, Sydney,
Australia.

Xiangchao Gan, The Wellcome Trust Center for Human Genetics, University of
Oxford, UK.

Raffaele Giancarlo, Department of Mathematics and Applications, University of
Palermo, Italy.

Mathieu Giraud, LIFL, University of Lille 1 and INRIA Lille - Nord Europe,
Villeneuve d’Ascq, France.

Adrien Goëffon, LERIA, University of Angers, France.

Jin-Kao Hao, LERIA, University of Angers, France.

Masud Hasan, Department of Computer Science and Engineering, Bangladesh
University of Engineering and Technology (BUET), Dhaka, Bangladesh.

Peter A. J. Hilbers, Eindhoven University of Technology, The Netherlands.

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTRIBUTORS xxxv

Jan Holub, Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, Czech Republic.

Sun-Yuan Hsieh, Department of Computer Science and Information Engineering,
Institute of Medical Informatics, Institute of Manufacturing Information and Sys-
tems, National Cheng Kung University, Tainan, Taiwan.

Chao-WenHuang, Department of Computer Science and Information Engineering,
National Cheng Kung University Tainan, Taiwan.

Costas S. Iliopoulos, Department of Computer Science, King’s College London,
London, UK & Digital Ecosystems & Business Intelligence Institute, Curtin Uni-
versity, Perth, Australia.

Ming-Yang Kao, Department of Electrical Engineering and Computer Science,
Northwestern University, Evanston, IL, USA

Radha Krishna Murthy Karuturi, Computational and Systems Biology, Genome
Institute of Singapore.

Varun Khanna, Department of Chemistry and Biomolecular Sciences, and ARC
Centre of Excellence in Bioinformatics, Macquarie University Sydney, Australia.

Gaurav Kumar, Department of Chemistry and Biomolecular Sciences, Macquarie
University, Sydney, Australia

Vamsi Kundeti, Department of Computer Science and Engineering, University of
Connecticut, Storrs, USA.

Thierry Lecroq, LITIS, University of Rouen, France.

Yanchun Liang, College of Computer Science and Technology, Jilin University,
Changchun, China.

Jana Sperschneider, School of Computer Science and Software Engineering, The
University of Western Australia, Perth, Australia.

Alan Wee-Chung Liew, School of Information and Communication Technology,
Griffith University, Australia.

Christos Makris, Computer Engineering and Informatics Department, University
of Patras, Rio, Greece.

Ion Mandoiu, Computer Science & Engineering Department, University of
Connecticut, Storrs, CT, USA.

Ronny S. Mans, Eindhoven University of Technology, The Netherlands.

Ahmed Mokaddem, Unit of Technologies of Information and Communication
(UTIC) and University of Tunis-El Manar, Tunisia.

Giulio Pavesi, Department of Biomolecular Sciences and Biotechnology, Univer-
sity of Milan, Italy.

Pierre Peterlongo, INRIA Rennes Bretagne Atlantique, Campus de Beaulieu,
Rennes, France.

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

xxxvi CONTRIBUTORS

Nadia Pisanti, Dipartimento di Informatica, University of Pisa, Italy.

Yu-Qing Qiu, Academy of Mathematics and Systems Science, Chinese Academy
of Sciences, Beijing, China.

Mohammed S. Rahman, Department of Computer Science and Engineer-
ing, Bangladesh University of Engineering and Technology (BUET), Dhaka,
Bangladesh.

Sanguthevar Rajasekaran, Department of Computer Science and Engineering,
University of Connecticut, Storrs, USA.

Shoba Ranganathan, Department of Chemistry and Biomolecular Sciences, and
ARC Centre of Excellence in Bioinformatics, Macquarie University Sydney,
Australia and Department of Biochemistry, Yong Loo Lin School of Medicine,
National University of Singapore, Singapore.

Jean-Michel Richer, LERIA, University of Angers, France.

Eric Rivals, LIRMM, University Montpellier 2, France.

Céline Rouveirol, LIPN, UMR CNRS, Institute Galilée, University Paris-Nord,
France.

Irena Rusu, LINA UMR CNRS 6241, University of Nantes, France.

Leena Salmela, Department of Computer Science, University of Helsinki, Finland.

Martin Schiller, School of Life Sciences, University of Nevada Las Vegas, USA.

Marinella Sciortino, Department of Mathematics and Applications, University of
Palermo, Italy.

Eduardo Sontag, Department of Mathematics, Rutgers, The State University of
New Jersey, Piscataway, NJ, USA.

Jana Sperschneider, School of Computer Science and Software Engineering, The
University of Western Australia, Perth, Australia.

Alexandros Stamatakis, The Exelixis Lab, Department of Computer Science,
Technische Universität München, Germany.

Jorma Tarhio, Department of Computer Science and Engineering, Aalto Univer-
sity, Espoo, Finland.

Evangelos Theodoridis, Computer Engineering and Informatics Department,
University of Patras, Rio, Greece.

Julie Thompson, Institute of Genetics and Molecular and Cellular Biology,
Illkirch, France.

Mathew Vadas, Vascular Biology Laboratory, Centenary Institute, Sydney,
Australia.

Paola Vera-Licona, Institut Curie and INSERM, Paris, France.

Stéphane Vialette, IGM, University Paris-Est, Champs-sur-Marne, Marne-la-
Vallée, France.

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

CONTRIBUTORS xxxvii

Chen Wang, CSIRO ICT Centre, Australia.

Roger W. Wang, Department of Mathematics, The Chinese University of Hong
Kong, Shatin, Hong Kong, China.

Shuqin Wang, College of Computer Science and Technology, Jilin University,
Changchun, China.

Yan Wang, College of Computer Science and Technology, Jilin University,
Changchun, China.

H. Todd Wareham, Department of Computer Science, Memorial University of
Newfoundland, St. John’s, Canada.

Jeff C. F. Wong, Department of Mathematics, The Chinese University of Hong
Kong, Shatin, Hong Kong, China.

Ling-Yun Wu, Academy of Mathematics and Systems Science, Chinese Academy
of Sciences, Beijing, China.

Xiao Yang, Department of Electrical and Computer Engineering, Bioinformatics
and Computational Biology program, Iowa State University, Ames, IA, USA.

Paul D. Yoo, School of information Technologies, The University of Sydney,
Australia.

Federico Zambelli, Department of Biomolecular Sciences and Biotechnology, Uni-
versity of Milan, Italy.

Chen Zhang, College of Computer Science and Technology, Jilin University,
Changchun, China.

Shihua Zhang, Academy of Mathematics and Systems Science, Chinese Academy
of Sciences, Beijing, China.

Xiang-Sun Zhang, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing, China.

Xing-Ming Zhao, Institute of Systems Biology, Shanghai University, China.

Bing Bing Zhou, School of information Technologies, The University of Sydney,
Australia.

Chunguang Zhou, College of Computer Science and Technology, Jilin University,
Changchun, China.

You Zhou, College of Computer Science and Technology, Jilin University,
Changchun, China.

Albert Y. Zomaya, School of Information Technologies, The University of Sydney,
Australia.

P1: OTA/XYZ P2: ABC
fm JWBS046-Elloumi November 18, 2010 8:32 Printer Name: Sheridan

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

I
STRINGS PROCESSING

AND APPLICATION TO
BIOLOGICAL SEQUENCES

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1
STRING DATA STRUCTURES

FOR COMPUTATIONAL
MOLECULAR BIOLOGY

Christos Makris and Evangelos Theodoridis

1.1 INTRODUCTION

The topic of the chapter is string data structures with applications in the field of
computational molecular biology. Let � be a finite alphabet consisting of a set of
characters (or symbols). The cardinality of the alphabet denoted by |�| expresses
the number of distinct characters in the alphabet. A string or word is an ordered list
of zero or more characters drawn from the alphabet. A word or string w of length n is
represented by w[1 · · · n] = w[1]w[2] · · · , w[n], where w[i] ∈ � for 1 ≤ i ≤ n and
|w| denotes the length of w. The empty word is the empty sequence (of zero length)
and is denoted by ε. A list of characters of w, appearing in consecutive positions,
is called a substring of w, denoted by w[i · · · j], where i and j are the starting and
ending positions, respectively. If the substring starts at position 1, then it is called
a prefix, whereas if it ends at position n, then it is called a suffix of w. However,
an ordered list of characters of w that are not necessarily consecutive is called a
subsequence of w.

Strings and subsequences appear in a plethora of computational molecular biology
problems because the basic types of DNA, RNA, and protein molecules can be rep-
resented as strings—pieces of DNA as strings over the alphabet {A, C, G, T } (repre-
senting the four bases adenine, cytosine, guanine, and thymine, respectively), pieces
of RNA as strings over the alphabet {A, C, G, U } (with uracil replacing thymine),

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

3

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

4 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

and proteins as strings over an alphabet of 20, corresponding to the 20 amino acid
residues.

The basic string algorithmic problems that develop in computational molecular
biology are:

� Exact pattern matching: given a pattern P and a text T to locate the occurrences
of P into T

� Approximate pattern matching: given a pattern P , a text T , a similarity metric
distance function d(), and a threshold parameter k to locate all positions i and
j such that d(P, Ti ··· j) ≤ k

� Sequence alignment: given two string sequences, T1 and T2, try to find the
best alignment between the two sequences according to various criteria. The
alignment can be either local or global. A special case of this problem, which
has great biological significance, is the longest common subsequence prob-
lem in which we try to locate the longest subsequence that is common to both
sequences

� Multiple approximate and exact pattern matching in which more than two
strings are involved into the computation

� String clustering: given a set of stings, cluster them into a set of clusters accord-
ing to the distance between the involved strings; this problem has great biolog-
ical significance because DNA sequence clustering and assembling overlap-
ping DNA sequences are critical operations when extracting useful biological
knowledge

� Efficient implementation of indexing techniques for storing and retrieving in-
formation from biological databases

Besides these classical string algorithmic problems, there are also applications
that demand the processing of strings whose form deviates from the classical def-
inition. The most known category of such variations are the weighted strings that
are used to model molecular weighted sequences [54]. A molecular weighted se-
quence is a molecular sequence (a sequence of either nucleotides or amino acids)
in which in every position can be stored a set of characters each having a certain
weight assigned. This weight can model either the probability of appearance or the
stability of the character’s contribution to the molecular complex. These sequences
appear in applications concerning the DNA assembly process or in the modeling of
the binding sites of regulatory proteins. In the first case, the DNA must be divided
into many short strings that are sequenced separately and then are used to assemble
the sequence of the full string; this reassembling introduces a degree of uncertainty
that initially was expressed with the use of the “don’t care” character denoted as “∗,”
which has the property of matching against any symbol in the given alphabet. It is
possible, though, that scientists are able to be more exact in their modeling and de-
termine the probability of a certain character to appear at a position; j then a position
that previously was characterized as a wild card is replaced by a probability of ap-
pearance for each of the characters of the alphabet and such a sequence is modeled as

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.1 INTRODUCTION 5

a weighted sequence. In the second case, when a molecular weighted sequence mod-
els the binding site of a regulatory protein, each base in a candidate motif instance
makes some positive, negative, or neutral contribution to the binding stability of the
DNA–protein complex [37, 65], and the weights assigned to each character can be
thought of as modeling those effects. If the sum of the individual contributions is
greater than a threshold, then the DNA–protein complex can be considered stable
enough to be functional.

A related notion is the notion of an indeterminate or (equivalently in the scien-
tific literature) a degenerate string. This specific term refers to strings in which each
position contains a set of characters instead of a simple character; in these strings,
the match operation is replaced by the subset operation. The need for processing
efficiently such strings is driven by applications in computational biology cryptanal-
ysis and musicology [76, 45]. In computational biology, DNA sequences still may be
considered to match each other if letter A (respectively, C) is juxtaposed with letter
T (respectively, G); moreover, indeterminate strings can model effectively polymor-
phism in protein coding regions. In cryptanalysis, undecoded symbols can be mod-
eled as the set or characters that are candidates for the specific position, whereas in
music, single notes may match chords or a set of notes.

Perhaps the most representative application of indeterminate strings is haplotype
inference [42, 63]. A haplotype is a DNA sequence that has been inherited by one
parent. A description of the data from a single copy is called a haplotype, whereas a
description of the mixed data on the two copies is called a genotype. The underlying
data that form a haplotype is either the full DNA sequence in the region or, more com-
monly, is the values of only DNA positions that are single nucleotide polymorphisms
(SNPs). Given an input set D of n genotype vectors, a solution to the haplotype infer-
ence problem is a set of n pairs of binary strings one pair for each genotype; for any
genotype g, the associated binary vectors v1, v2 must be a “feasible resolution” of g
into two haplotypes that could explain how g was created. Several algorithms have
been proposed for the haplotype inference problem such as those based on the “pure
parsimony criteria,” greedy heuristics such as “Clarks rule,” Expectation Maximiza-
tion (EM)-based algorithms, and algorithms for inferring haplotypes from a set of
Trios [42, 63]. Indexing all possible haplotypes that can be inferred from D as well
as gathering statistical information about them can be used to accelerate these hap-
lotype inference algorithms. Moreover, as new biological data are being acquired at
phenomenal rates, biological datasets have become too large to be readily accessible
for homology searches, mining adequate modeling, and integrative understanding.
Scalable and integrative tools that access and analyze these valuable data need to be
developed. The new generation of databases have to (i) encompass terabytes of data,
often local and proprietary; (ii) answer queries involving large and complex inputs
such as a complete genome; and (iii) handle highly complex queries that access more
than one dataset. These queries demand the efficient design of string indexing data
structures in external memory; the most prominent of these structures are: the string
B-tree of Ferragina and Grossi [30], the cache oblivious string dictionaries of Brodal
and Fagerberg [15], the cache-oblivious string B-trees [14], and various heuristic
techniques for externalizing the suffix tree [28].

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

6 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

In the sequel, (i) we will present the main string indexing data structures (suffix
trees and suffix arrays), (ii) we will present the main indexing structures for weighted
and indeterminate strings, and (iii) we will present the main external memory string
indexing structures.

1.2 MAIN STRING INDEXING DATA STRUCTURES

In this subsection, we will present the two main string indexing structures, suffix trees
[92] and suffix arrays [67], and depict their special characteristics and capabilities.

1.2.1 Suffix Trees

The suffix tree is the most popular data structure for full string indexing, which was
presented by Weiner in 1973 [92]. It is considered the oldest and most studied data
structure in the area that, besides answering effectively to the pattern matching prob-
lem, can be used for the efficient handling of a plethora of string problems (see [41]
for a set of applications in the area of computational molecular biology). More for-
mally, the suffix tree STT of a text T is a compact digital search tree (trie) that
contains all suffixes of T as keys. It is assumed that before building the suffix tree,
the text T gets padded with an artificial character—the $ character, which does not
belong in the alphabet � from which T was formed. This assumption is used to
guarantee that every suffix is stored to a distinct leaf of the tree (that is, no suffix is a
prefix of another). The leaf of the tree that corresponds to the suffix Ti ···n$ stores the
integer i .

The suffix tree has the following structural properties that are induced by its defi-
nition:

� There are n leaves—a leaf for each suffix of T . The concatenation of the sub-
strings at the edges, which we traverse when moving from the root to the leaf
that stores i , forms the suffix Ti ···n .

� Consider two different suffixes of T , Ti ···n = xa and Tj ···n = xb, that share a
common prefix x . In the suffix tree, the two leaves that correspond to the two
suffixes have a common ancestor u for whom the concatenation of the sub-
strings at the edges that we traverse, moving from the root to the u, forms the
common prefix x . This also can be phrased in a different way. For every internal
node u of a suffix tree, all suffixes that correspond to the leaves of its subtree
share a common prefix x that is represented from the edges of the path from the
root to u. The substring that is created from the concatenation of the substrings
of the edges traversed when moving from the root to u is called the path label
of the node u.

A lot of sequential algorithms have been proposed for building a suffix tree in
linear time. The algorithms provided in [92, 70, 88] are based on the assumption that

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.2 MAIN STRING INDEXING DATA STRUCTURES 7

the strings have been formed from alphabets of constant size and basically are based
on similar concepts. On the other hand, and for large alphabets (where we cannot
ignore a time cost similar to its size), an elegant linear time algorithm has been
proposed in [27]. Finally, in [10, 43, 81] parallel algorithms have been presented for
the CRCW PRAM parallel model of computation.

Concerning implementation, a suffix tree STT for a string T of n characters will
have at most 2n − 1 nodes and 2n − 2 edges. The edges of a node can be stored
either in a linear list (unsorted or sorted according to the first character of the edge
label) or in an array of size |�|. In the first case (space-efficient implementation),
a node can be traversed in O(|�|) time, whereas in the second case, a node can be
transversed in O(1) time (though the space complexity for large alphabets is clearly
worse). Between these two extreme choices of implementation, we can choose other
alternatives as search trees or hash tables. The most efficient implementation, espe-
cially in the average case, is based in the use of a hash table. In [70], it the usage of
the hashing scheme of Lampson [61], is proposed which belongs to the class of hash
functions with chaining.

The suffix tree data structure can be extended to store the suffixes of more than
one strings. In this case, we talk about the generalized suffix tree. More formally, a
generalized suffix tree (GST) ({T1, T2, · · · Tk}) of a set of strings {T1, T2, · · · Tk} is the
compact trie that contains all suffixes of these strings as keys. For the construction
of a generalized suffix tree, we can use the known algorithms for constructing suffix
trees by superimposing the suffixes of different strings in the same structure; when
having completed the insertion of the suffixes for a string, the procedure is continued
for the next string by beginning from the root. A generalized suffix tree occupies
O(|T1| + |T2| + · · · + |Tk |) space, and it can be built in O(|T1| + |T2| + · · · + |Tk |)
time [41].

Concerning applications, let us consider the pattern matching problem and see
how the suffix tree deals with the specific problem. Consider a string T for which we
have built the suffix tree STT and suppose that we want to locate the positions within
it where a pattern P appears. By starting from the root of STT , we follow the path that
is defined by P . After the i-th step of this procedure, if we are at an internal node
and we have matched the i leftmost characters of P , then we follow the outgoing
edge that starts with the character Pi+1, whereas if we are at the interior of the edge,
then we test whether the next character at the edge is equal to Pi+1. If this traversal
from the root to the leaves finishes by matching successfully all |P| characters of the
pattern, then according to the aforementioned properties, the suffixes that correspond
to the subtree below the point where the pattern matching procedure ended, share the
pattern P as a common prefix. Hence, the requested pattern appears at the positions
that correspond to the leaves of that subtree. If the match procedure from the root to
the leaf finishes before accessing all characters of the pattern, then no suffixes of T
can have the pattern P as prefix; hence, the pattern does not appear anywhere inside
the text. As a conclusion and with the assumption that in every internal node the
edge that will be followed is being chosen in constant time, at most |P| comparisons
with the characters of the pattern are performed and the time complexity totals (|P| +
α), where α is the size of the answer.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

8 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

The suffix tree can answer to numerous other questions optimally besides per-
forming pattern matching efficiently. The interested reader can consult [41] and the
respective chapters in [72] and [3]. Some characteristic applications of the suffix tree
are the longest repeated substring and the longest common substring (LCS) prob-
lems. In the longest repeated substring problem, we seek the longest substring of
a text T that appears in T more than once. Initially, we built the suffix tree STT

in O(|T |) time, and then by performing a traversal of the nodes of the suffix tree,
we compute for every node the number of characters of the string from the root to
the node. Then, we locate the internal node with the label of maximum length; the
positions that are stored in the leaves of the subtrees below that node are the posi-
tions where the longest repeated substring appears. In the LCS problem, we search
for the longest common substring of two strings T1 and T2. Initially and in time
O(|T1| + |T2|), we construct the generalized suffix tree gST ({T1, T2}) of the two se-
quences. In this generalized tree, some leaves will store suffixes of the one string,
some of the other, and some will store suffixes of both strings. We traverse all nodes
of the tree, and we compute for every node the number of the characters from the root
to it; by a similar traversal, we mark the nodes in whose subtrees are stored leaves
of both strings. Then to get our reply, we simply have to select the internal marked
node with the path label of maximum length. Then the positions that correspond to
the leaves of the corresponding subtrees are the positions where the longest common
substring appears. With a similar linear time algorithmic procedure, we can locate
the longest common substring between a set of more than two strings.

Concluding the suffix tree, is the main and better representative for data structures
for full text indexing. The cost for this enhanced functionality is the extra space
complexity. There are cases in which the required space can be 25 times more than
the indexed data. This fact and the poor behavior when being transferred in secondary
memory restricts the use of suffix trees in applications that are limited in the main
memory of a computer system.

Optimizations of the suffix tree structure to face these disadvantages were un-
dertaken by McCreight [70] and more recently by Kurtz [62]. Kurtz reduced the
RAM required to around 20 bytes per input character indexed on the worst case and
to 10,1 bytes per input character on average. Compact encodings of the suffix tree
based on a binary representation of the text have been investigated by Munro and
Clark [20] Munro et al. [73] and Anderson et al. [7]. There are also other works
concerning efficient compression of the suffix tree; the interested reader should con-
sult [32, 38, 39, 73, 80] for further details on this interesting algorithmic area.

1.2.2 Suffix Arrays

The suffix arrays have been introduced in [67] and constitute the main alternative full
text indexing data structure as compared with the suffix tree. The main advantages
of the suffix array are its small memory requirements, its implementation simplicity,
and the fact that the time complexities for constructing and query answering are
independent from the size of the alphabet. Its main disadvantages are that the query
time is usually larger than the respective query time of the suffix tree and that the

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.2 MAIN STRING INDEXING DATA STRUCTURES 9

range of applications where it can be used is smaller than the range of applications
of the suffix tree.

More formally, a suffix array S AT for a string T of n characters is an array that
stores the suffixes of T in lexicographic order. That is, in every position i of the
suffix array, the starting position j of the suffix Tj ···n (S AT [i] = j) is stored in such
a way that the suffixes that are lexicographically smaller than Tj ···n are located in
positions smaller than i , whereas the suffixes that are lexicographically larger than
Tj ···n are located in positions larger than i . Hence, we get TS AT [1]···n <L TS AT [2]···n <L

· · · <L TS AT [n]···n where <L designates the lexicographic order. Because suffix arrays
store the suffixes of T lexicographically ordered they have the following property:
suppose that the suffixes, located at positions i, j , with i < j have a common prefix
x , that is LCP (S AT [i]···n, S AT [j]···n) = x . Then all suffixes TS AT [w]···n that are located in
positions i ≤ w ≤ j have x as a prefix.

Because the suffix array is basically an array of n elements without the need for
extra pointers, its space requirements are significantly smaller (in terms of constant
factors) from the respective space requirements that characterize the suffix trees.
However, the use of suffix array without extra information does not permit efficient
searching. To understand this concept, let us explain how the suffix tree can solve
the problem of exact pattern matching of a pattern P into a text T . To accomplish
the search, we need to locate two positions i, j with i ≤ j for which the follow-
ing holds: the first |P| characters of the suffixes at position j are lexicographically
smaller or equal from the pattern (that is TS AT [j]···S AT [j]+|P| ≤L P), and j is the max-
imum position with this property, whereas the first |P| characters of the suffix at
position i are lexicographically larger or are more equal than the pattern (that is
P ≤L TS AT [i]···S AT [i]+|P|) and i is smaller with that property. According to that, the
suffixes that correspond to positions i, j , and all intermediate positions have P as
a prefix. Consequently, the places where P appears in T can be located by finding
the two extreme positions i, j in the suffix array and then scanning the intermedi-
ate positions. To locate the extreme positions, a binary search needs to be executed
on the suffix array in which at each step of the search procedure, |P| comparisons
are needed and then the procedure moves right or left. Hence, the problem of pat-
tern matching by using the suffix arrays is solved in (|P| log n + α) time, where
α is the size of the answer. This time complexity can be reduced significantly to
(|P| + log n + α) if we use two more arrays of n − 2 elements containing precom-
puted information; with the help of these elements, it is possible in every repetition
of the binary search procedure, not to execute all |P| comparisons that correspond
to the middle of the active segment. In particular, suppose that the binary search
procedure is in an interval [L , R] of the suffix array, and we seek to compute the
value m = LCP(P, TS AT [M]···n) for the middle of the search interval. We suppose that
the values l = LCP(P, TS AT [L]···n) and r = LCP(P, TS AT [R]···n) have been computed
in a previous repetition of the binary search. The first remark that can be made is
that we do not have to perform all |P| comparisons from the beginning because
of the basic property of the suffix array m ≥ min{l, r}; hence, the comparisons can
continue from position m + 1, and hence, it is possible to save min{l, r} compar-
isons. However, despite this improvement, there are scenarios in which the order

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

10 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

of the total complexity does not change. Suppose now that we have as extra infor-
mation the longest common prefix of the suffixes of the left edge L of the search
interval, with the suffix at the middle and the longest common prefix of the right
edge R of the search interval with the suffix of the middle. Let us symbolize them
as x = LCP(TS AT [L]···n, TS AT [M]···n) and x ′ = LCP(TS AT [M]···n, S AT [R]···n), respectively.
Let us suppose that l ≥ r , and hence, we have the following, depending on whether x
is the longest common prefix of the left edge with the medium, or is largest, smaller,
or equal to l:

� If x > l, then because L has the first l characters equal to P and the first x equal
to the suffix at position M and it holds x > l, the l + 1-st character of the suffix
at position M does not match with the l + 1-st character of P . Hence, according
to the basic property of the suffix array, no common prefix exists with P to the
left side of M . Hence, we choose [M, R] as the new interval.

� If x < l, then because P matches with the l characters of L and with the x
characters of the middle suffix, we will have a nonmatching of the middle suffix
at position x + 1. Hence, a larger prefix of P must exist in the left interval, and
hence, we will choose [L , M] as the new search interval.

� If x equals l, then we cannot deduce that the longest common prefix with P is in
the left or the right interval. Hence, by a character to character comparison, we
extend the common prefix (if it can be extended) beyond the position l. If we
perform �h successful comparisons, then the common prefix of the suffix of M
with P will have length l + �h. The failure in matching at position l + �h + 1
guides us left or right depending on whether the character of the corresponding
position at P is lexicographically smaller or larger than the respective position
at the middle suffix.

Hence, every one of the O(log n) steps of the binary search either performs a
constant number of operations (cases x > l or x < l) or performs �h comparisons
(case x = l). The sum of comparisons in the last case does not exceed |P| because the
middle chosen element will be one of the extreme elements in the next repetition (its
value is continuously increasing). Hence, the problem of pattern matching is being
solved in (|P| + log n) time.

Concerning the needed space consumption, the improved time complexity is
achieved by using the LCP(TS AT [L]···n, TS AT [M]···n) and LCP(TS AT [M]···n, TS AT [R]···n)
values as precomputed information for every possible interval that can exist dur-
ing binary searching. The number of different intervals is n − 2 because the
role of middle elements can be played by all elements, except the first and
the last. Hence, one array stores the values of the left extreme for every pos-
sible middle element, whereas the other array stores the values of the right ex-
treme. The existing suffix array algorithms precompute in the arrays LCP[i] =
LCP(TS AT [i]···n, TS AT [i+1]···n) for i = 1 · · · n in linear time. By using the relationship
LCP(L , R) = min{LCP(L , M), LCP(M, R)} from this array, we can create the LCP

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.2 MAIN STRING INDEXING DATA STRUCTURES 11

values for all possible intervals of binary searching. Concluding the enhanced suffix
array construction occupies approximately 5n space (see also chapter 29 of [3]),
which is less than the space complexity of the suffix tree. The time to solve a pat-
tern matching problem is O(|P| + log n), which can be compared with the time re-
quired for the query replying of a suffix tree O(|�|P) (in the implementation that
is space effective) or O(|P|) (in the implementation that is time effective). The con-
struction algorithm that has been presented initially in [67] was not linear but needed
O(n log n) time. A linear time procedure can be envisaged by simply constructing (in
linear time) a suffix tree and then transforming it to the respective suffix array. This
transformation is possible by traversing lexicographically the suffix tree in linear
time and then computing the arrays LCP in linear time by nearest common ances-
tor queries. This procedure takes linear time but cancels the main advantage of the
suffix tree, which is the small space consumption. In 2003, three papers were pub-
lished [58, 75, 26] that describe a worst-case linear time construction of a suffix array
without the need of an initial construction of the respective suffix tree. Other algo-
rithms for constructing suffix arrays can be found in [17, 36, 47, 55, 68]. Moreover,
a recent line of research concerns compressed suffix arrays [46, 38, 39, 35].

Concerning applications, the main weakness of the suffix array in comparison
with the suffix tree data structure is that the range of application in which it can be
used is limited. To resolve this handicap, in [59], a method was presented that com-
bined the information of a suffix array with the LCP information, which simulates
the postorder traversal in the equivalent suffix tree of the string, thus providing the
so-called virtual suffix tree. This simulation (which was extended in [35] with a space
efficient variant) gives the ability for some of the suffix tree applications whose algo-
rithmic procedure is based in the bottom-up traversal of the suffix tree to be executed
with some extra changes in the suffix array.

The suffix array table is being traversed from left to right, and an auxil-
iary stack is being used. Initially, the stack contains the root and LCP[1] =
LCP(TS AT [1]···n, TS AT [2]···n) ≥ 0. If this value is equal to zero, then the two leftmost
leaf-suffixes have a minimum common ancestor in the root, and hence, during the
implicit postorder traversal, we process the first and then the second element. If
the value is greater than zero, then an internal node exists that is being inserted in
the stack. More generally, during step i , if LCP[i] = (TS AT [i]···n, TS AT [i+1]···n) is larger
than the depth of the node u at the top of the stack (that is, the length of the path label
L(u)), then between the i-th leaf/suffix and the next, a deeper node exists that will be
inserted in the stack; otherwise, the value LCP[i] is smaller than the depth of node u,
and the minimum common ancestor is higher in the path from u to the root. In this
case, the stack is emptied until a node is located with smaller depth, and the first case
is applied. Based on this described procedure, a node is inserted in the stack when
it is seen during the top-down traversal, whereas it is removed from the stack when
it is faced moving bottom up for the last time. Because in every step of the method,
we either add a node in the stack or we have several deletions from the stack, every
node is inserted and deleted from the stack once, and the whole procedure needs
O(n) time. In [1], other combinations of the suffix array with additional information

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

12 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

were provided (the so-called enhanced suffix array), and additional applications were
described.

1.3 INDEX STRUCTURES FOR WEIGHTED STRINGS

The notion of the weighted sequence extends the notion of a regular string by permit-
ting in each position the appearance of more than one character, each with a certain
probability. In the biological scientific literature weighted sequences also are called
position weight matrices (PWM). More formally, a weighted word w = w1w2 · · ·wn

is a sequence of positions with each position wi consisting of a set of couples, of the
form (s, πi (s)), with πi (s) being the probability of having the character s at position
i . For every position wi , 1 ≤ i ≤ n,

∑
πi (s) = 1.

For example, if we consider the DNA alphabet � = {A, C, G, T}, then the word
w = [(A,0.25), (C,0.5), (G,0.25), (T,0)][(A,1), (C,0), (G,0), (T,0)] [(A,1), (C,0), (G,0), (T,0)]
represents a word having three letters; the first one is either A,C,G with probabil-
ities of appearance of 0.25, 0.5, and 0.25, respectively; the second one is always
A, whereas the third letter is necessarily an A because its probability of presence
is equal to 1. The probability of presence of a subword either can be defined to be
the cumulative probability, which is calculated by multiplying the relative probabil-
ities of appearance of each character in every position, or it can be defined to be the
average probability.

There have been published works in the scientific literature [19, 5, 6, 54] con-
cerning the processing of string sequences; we will refer to these works giving more
emphasis to the structure presented in [54]. In [19], a set of efficient algorithms
were presented for string problems developing in the computational biology area.
In particular, assume that we deal with a weighted sequence X of length n and
with a pattern p of length m, then (i) the occurrences of p in X can be located
in O((n + m) log m) time and linear space; the solution works for both the multi-
plicative and the average model of probability estimation, although it can be ex-
tended also to handle the appearance of gaps; (ii) the set of repetitions and the set
of covers (of length m) in the weighted sequence can be computed in O(n log m)
time. In [6] and for the multiplicative model of probability estimation the prob-
lem of approximately matching a pattern in a weighted sequence was addressed.
In particular, two alternative definitions were given for the Hamming distance and
two alternative definitions for the edit distance in weighted sequences with the aim
of capturing the aspects of various applications. The authors presented algorithms
that compute the two versions of the Hamming distance in time O(n

√
m log m),

where the length of the weighted text is n, and m is the pattern length; the algo-
rithms are based in the application of nontrivial bounded divide-and-conquer al-
gorithms coupled with some insights on weighted sequences. The two versions of
the edit distance problem were solved by applying dynamic programming algorithm
with the first version being solved in O(nm) time and the other version in O(nm2)
time. Finally, the authors extended the notion of weighted matching in infinite al-
phabets and showed that exact weighted matching can be computed in O(s log2 s)

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.3 INDEX STRUCTURES FOR WEIGHTED STRINGS 13

time, where s is the number of text symbols with nonzero probability, and they also
proved that the weighted Hamming distance over infinite alphabets can be computed
in min(O(kn

√
s + s3/2 log2 s), O(s4/3m1/3 log s)), where m is the length of the pat-

tern. In [5], a different approach was followed, and a transformation was proved
between weighted matching and property matching in strings; the pattern matching
with properties (property matching for short) was introduced in the specific paper in
which pattern matching with properties involves a string matching between the pat-
tern and the text and the requirement that the text part satisfies some property. The
aforementioned reduction allows off-the-self solutions to numerous weighted match-
ing problems (some were not handled in the previously published literature) such as
scaled matching, swapped matching, pattern matching with swaps, parameterized
matching, dictionary matching, and the indexing problem. All presented results are
enabled by a reduction of weighted matching to property matching that creates an
ordinary text of length O(n(1

ε
)2 log 1

ε
) for the weighted matching problem of length

n and the desired probability of appearance ε. Based on this reduction, all pattern
matching problems that can be solved in ordinary text can have their weighted ver-
sions solved with the time degradation of the reduction.

Finally in [54], a data structure was presented for storing weighted sequences that
can be considered the appropriate generalization of the suffix tree structure to han-
dle weighted sequences. A resemblance exists between this structure and the work
related to regulatory motifs [71, 66, 83, 60] and probabilistic suffix trees [78, 82, 69].
Regulatory motifs characterize short sequences of DNA and determine the timing
location and level of gene expression, and the approaches extracting regulatory mo-
tifs can be divided into two categories: those that exploit word-counting heuristics
[57, 69] and those based on the use of probabilistic models [40, 48, 64, 79, 85, 87];
in the second category of approaches, the motifs are represented by position prob-
abilistic matrices, whereas the remainder of the sequences are represented by back-
ground models. The probabilistic or prediction suffix tree is basically a stochastic
model that employs a suffix tree as its index structure to represent compactly the
conditional probabilities distribution for a cluster of sequences. Each node of a prob-
abilistic suffix tree is associated with a probability vector that stores the probability
distribution for the next symbol given the label of the node as the preceding segment,
and algorithms that use probabilistic suffix trees to process regulatory motifs can be
found in [82, 69]. However, the probabilistic suffix tree is inefficient for efficiently
handling weighted sequences, which is why the weighted suffix tree was introduced;
however, it could be possible for a suitable combination of the two structures to be
effective to handle both problem categories.

The main idea behind the weighted suffix tree data structure is to construct the
suffix tree for the sequence incorporating the notion of probability of appearance for
each suffix; that is, for every suffix x[i · · · n], we store in a set of leaves labeled Si the
first l characters so that π (xi · · · xi+l−1) ≥ 1/k. In more detail, for every suffix start-
ing at position i , we define a list of possible weighted factors (not suffixes because
we may not eventually store the entire suffix) so that the probability of appearance
for each one of them is greater than 1/k; here, k is a user-defined parameter that is
used to denote substrings that are considered valid.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

14 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

The formal definition as provided in [54] is that the weighted suffix tree (WST)
of a weighted sequence S (denoted as WST(S)) is the compacted trie of all weighted
factors starting within each suffix Si of S having a probability of appearance greater
than 1/k. The leaf u of WST(S) is labeled with index i if L(u) = Si, j [i · · · n] and
π (Si, j [i · · · n]) ≥ 1/k, where j > 0 denotes the j-th weighted factor starting at posi-
tion i . L(u) denotes the path label of node u in WST(S) and results by concatenating
the edge labels along the path from the root to u. D(u) = |L(u)| is the string-depth
of u, whereas LL(u) is defined as the leaf list of the subtree below u. LL(u) = ∅ if u
is a leaf.

It can be proven that the time and space complexity of constructing a WST is
linear to the length of the weighted sequence.

The WST is endowed with most of the sequence manipulation capabilities of the
generalized suffix tree, that is:

� Exact pattern matching: Let P and T be the pattern and the weighted sequence,
respectively. Initially, the weighted suffix tree is built for T , and if the pattern
P is weighted, too, then it is broken into solid subwords; for each of these
subwords, the respective path is spelled by moving from the root of the tree
until an internal node is reached then all leaves descending from this node are
reported. The time complexity of the procedure is O(m + n + a), where m and
n are the sizes of the pattern and the text, respectively, and a is the answer size.

� Finding repetitions in weighted sequences: It is possible to compute all repe-
titions in a given weighted sequence, with each repetition having a probability
of appearance greater than 1/k; initially, the respective weighted suffix tree
is constructed, and then the weighed suffix tree is traversed with a depth-first
traversal, during which a leaf list is kept for each internal node. The elements
of a leaf list are reported if the size of the list exceeds two; in total, the problem
is solved in O(n + a) time, where n is the sequence length and a is the answer
size.

� Longest common substring of weighted sequences: The generalized weighted
suffix tree is built for two weighted sequences, w1 and w2, and then the internal
node with the greatest depth is located; the path label of this node corresponds
to the longest weighted subsequence of the two weighted strings. The time
complexity of the procedure is equal to O(n1 + n2), with n1 and n2 being the
sizes of w1 and w2, respectively.

1.4 INDEX STRUCTURES FOR INDETERMINATE STRINGS

Indeterminate or (equivalently in the scientific literature) degenerate strings are
strings that in each position contain a set of characters instead of a simple character.
The simplest form of indeterminate string is one in which indeterminate positions
can contain only a do-not-care letter that is a letter “∗,” which matches any letter
in the alphabet on which x is defined. In 1974, an algorithm was described [33] for
computing all occurrences of a pattern in a text where both the pattern and the text

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.4 INDEX STRUCTURES FOR INDETERMINATE STRINGS 15

can contain do-not-care characters, but although efficient in theory, the algorithm was
not useful in practice; the same remark also holds for the algorithms presented in [2].
In [11, 93], the shift-or technique (a bit-mapping technique for pattern matching) was
applied to find matches in indeterminate strings. In [51], an easily implemented av-
erage case O(n) time algorithm was proposed for computing all periods of every
prefix of a string with do-not-care characters. In [44], this work was extended by
distinguishing two forms of indeterminate match (“quantum” and “deterministic”)
and by refining the definition of indeterminate letters so that they can be restricted
to matching only with specified subsets of � rather than with every letter of �.
More formally, a “quantum” match allows an indeterminate letter to match with two
or more distinct letters during a single matching process, whereas a “deterministic”
match restricts each indeterminate letter to a single match.

These works were continued by researchers in [9, 8, 50, 52, 53, 76, 45], in which
a set of algorithms were presented for computing repetitive structures, computing
covers, computing longest common subsequences, and performing approximating
and exact pattern matching; some of them improved the aforementioned previous
constructions. From these structures, special emphasis should be given to the works
in [76] and [45] because they fell in the focus of interest of this chapter. In particular,
in [45], efficient practical algorithms were provided for pattern matching on inde-
terminate strings where indeterminacy may be determined either as “quantum” or
“deterministic”; the algorithms are based on the Sunday variant of the Boyer–Moore
pattern matching algorithm and are applied more generally to all variants of Boyer–
Moore (such as Horspool’s) that depend only on the calculation of the “rightmost
shift” array. It is assumed that � is indexed being essentially an integer alphabet.
Moreover, three pattern-matching models are considered in increasing order of so-
phistication: (i) the only indeterminate letter permitted is the do-not-care character,
whose occurrences may be either in the pattern or in the text, (ii) arbitrary indetermi-
nate letters can occur but only in the pattern, (iii) indeterminate letters can occur in
both the pattern and the text. In [76], and asymptotically faster algorithms were pre-
sented for finding patterns in which either the pattern or the text can be degenerate
but not both. The algorithms for DNA and RNA sequences work in O(n log m) time,
where n and m are the lengths of the text and the pattern, respectively. Efficient im-
plementations also are provided that work in O(n + m + n 	m/w
 + 	n/w
) time,
where w is the word size; as can be seen, for small sizes of the text and the pattern,
the algorithms work in linear time. Finally it also is shown how their approach can
be used to solve the distributed pattern matching problem.

Concerning indexing structures, there are some results that can be divided into
two categories, one based on the use of compressed tries and the other based on the
used of finite automata.

Concerning results in the first category in [63], the dictionary matching problem
was considered in which the dictionary D consists of n indeterminate strings and the
query p is a string over the given alphabet �. A string p matches a stored indeter-
minate string si if |p| = |si | and p[j] ∈ si [j] for every 1 ≤ j ≤ |p|. The goal is to
preprocess D for queries that search for the occurrence of pattern p in D and count
the number of appearances of p in D.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

16 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

Let m denote the length of the longest string in D and let D′ be the set of all
patterns that appear in D. For example, if D contains a single indeterminate string
cd{a, b}c{a, b}, then D′ = {cdaca, cdacb, cdbca, cdbcb}. The data structure is ba-
sically a compressed trie of D′ that can be constructed naively in O(|�|knm) time
and O(|�||D′|) space, assuming every s ∈ D has at most k locations in which
|s[i]| > 1. With this structure, a query time of O(|p|) can be supported for a pat-
tern p plus a time complexity equal to the size of the output. Using techniques pre-
sented in [22], the structure can be modified to solve the problem in O(nm log(nm) +
n(c1 log n)k+1/k!) preprocessing time, and O(m + (c2 log n)k log log n) query time
(c1 and c2 are constants); this approach is worse than the trie approach for small
values of �.

In [63], two faster constructions of the trie have been presented. The first
construction is based on the divide-and-conquer paradigm and requires O(nm +
|�|kn log n) preprocessing time, whereas the second construction uses ideas in-
troduced in [4] for text fingerprinting and requires O(nm + |�|kn log m) pre-
processing time. The space complexity is O(|�||D′|), and it can be reduced to
O(|D′|) by using the suffix tray [23] ideas. The query time becomes O(|p| +
log log |�|), and it is also possible by cutting the dictionary strings and con-
structing two tries to obtain O(nm + |�|kn + |�|k/2n log(min{n, m})) prepro-
cessing time at the cost of O(|p| log log |�| + min{|p|, log |D′|} log log |D′|) =
O(|p| log log |�| + min{|p|, log(|�|kn)} log log(|�|kn)) query time. The first two
constructions can calculate the number of appearances in D of each pattern in D′, a
knowledge that can be useful in a possible application of the structures to the Haplo-
type inference problem [63].

On the other hand, there are works based in the use of finite automata, which
are based in indexing small factors (that is, substrings of small size). Indexing of
short factors is a widely used and useful technique in stringology and bioinformat-
ics, which has been used in the past to solve diverse text algorithmic problems. More
analytically, in [90], the generalized factor automaton (GFA) was presented, which
has the disadvantage that it cannot be used to index large texts because, experimen-
tally, it tends to grow super-quadratically with respect to the length of the string.
Later in [91], the truncated generalized factor automaton (TGFA) was presented that
is basically a modification of GFA that indexes only factors with length not exceed-
ing a given constant k having at most a linear number of states. The problem with the
specific algorithm is that it is based on the subset construction technique and inherits
its space and time complexity that is a bottleneck of the algorithm when indexing
very long text because the corresponding large Nondeterministic Finite Automaton
needs to be determinized. Finally, in [34], an efficient on-line algorithm for the con-
struction of the TGSA was presented, which enables the construction of TGSAs for
degenerate strings of large sizes (order of Megabytes (MBs)). The proposed con-
struction works in O(n2) time, where n is the length of the input sequence. TGSA
has, at most, a linear number of states with respect to the length of the text and en-
ables the location of the list occ(u) of all occurrences of the given pattern u in the
degenerate text in time |u| + |occ(u)|.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.5 STRING DATA STRUCTURES IN MEMORY HIERARCHIES 17

1.5 STRING DATA STRUCTURES IN MEMORY HIERARCHIES

We consider string data structures in external memory [89]. The design of such
data structures is a necessity in the computational molecular biology area, as the
datasets in various biological applications and the accumulated data in DNA se-
quence databases are grown exponentially, and it is not possible to have them in
main memory; a characteristic number is provided in [74] where it is mentioned that
in the GenBank, the DNA sequence database has crossed the 100 Gbp (bp stands
for base pairs), with sequences from more than 165,000 organisms. The basic ex-
ternal memory model used to analyze the performance of the designed algorithms
is the two-level memory model; in this model, the system memory is partitioned
into a small but fast in access partition (the main memory with size M) and into a
(theoretically unbounded) secondary part (the disk). Computations are performed by
central processing unit (CPU) on data that reside in main memory while data transfer
between memory and disk take place in contiguous pieces of size B (the block size).

In string algorithmics, there are two lines of related research, one that focuses
on transferring the main-memory-tailored design of the suffix tree and/or suffix ar-
ray data structures to secondary memory and another that tries to envisage novel,
external-memory-tailored data structures with the same functionality as the suf-
fix tree.

In the first line of work, a plethora of published material exists dealing with the
externalization of the suffix tree: [49, 74, 86, 16, 49, 12, 13, 18, 21, 56, 84, 86] and
the suffix array [24, 25]. Most of these works suffer from various problems such as
nonscalability, nonavailability of suffix links (that are necessary for the implementa-
tion of various operations) and nontolerance to data skew, and a few are the works
that manage to face effectively these problems; from these works, we will present
briefly the approach in [74]. More specifically, the authors in [74] present TRELLIS,
an algorithm for constructing genome-scale suffix trees on disk with the following
characteristics: (i) it is an O(n2) time and O(n) space algorithm that consists of four
main phases—the prefix creation phase, the partitioning phase, the merging phase,
and the suffix link recovery phase; the novel idea of the algorithm lies in the use
of variable length prefixes for effective disk partitioning and in a fast postconstruc-
tion phase for recovering the suffix links; (ii) it can scale effectively for very large
DNA sequences with suffix links; (iii) it is shown experimentally that it outperforms
most other constructions because it is depicted as faster than the other algorithms
that construct the human genome suffix tree by a factor of 2–4 times; moreover, its
query performance is between 2–15 times faster than existing methods with each
query taken on the average between 0.01–0.06 seconds.

In the second line of research, string B-trees [30], cache oblivious string dictio-
naries [14], and the cache oblivious string B-tree [15] come into play.

The string B-tree [30] is an extension of the B-tree suitable for indexing strings
with a functionality equivalent to the functionality of the suffix tree. More ana-
lytically, assume that we have to process a set S of n strings with a total num-
ber of N characters and suppose that each of the strings is stored in a contiguous

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

18 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

sequence of disk pages and is represented by its logical pointer to the external
memory address of its first character. In the leaves of the string B-tree, we store
the logical pointers of the strings lexicographically ordered, and the leaves also are
linked together to form a bidirectional list. In every internal node v, we store as
search keys the leftmost and the rightmost string stored in each of the node’s chil-
dren. Hence, if v has k children ci , (1 ≤ i ≤ k) then the keys stored in v will be
Kv = {L(c1), R(c1), L(c2), R(c2), · · · , L(ck), R(ck)}, where L(ci) and R(ci) are the
leftmost and the rightmost keys stored in the child ci . The string B-tree in this form
can answer prefix queries for a query string P . The total number of disk accesses
will be O(|P|

B logB |S| log2 B) I/Os because (i) O(log2 B) accesses are needed in ev-
ery internal node for locating the proper subtree via binary search, (ii) in every binary
search step all characters of P will need to be loaded from the disk, and thus, a total of
O(|P|

B) disk I/O accesses are needed. The whole procedure is executed in every inter-
nal node moving from the root to the leaf, and hence, it is repeated O(logB |S|) times.

The time complexity of the aforementioned procedure can be reduced by organiz-
ing the elements stored in each node of the string B-tree as a Patricia trie. A Patricia
trie is a compact digital search tree (trie) that can store a set of k strings in O(k) space
as follows: (i) a compacted trie of O(k) nodes and edges is built on the k strings; (ii)
in each compacted trie node we store the length of the substring into it, and the sub-
string that normally would label each edge is replaced by its first character. This
construction gives the possibility to fit O(B) strings into one node independently of
the length of the strings and allows lexicographic searches by branching out from a
node without further disk accesses.

By using Patricia tries for storing the strings in internal nodes, we see that we do
not need binary search in each node, but it is possible to select the proper subtree
in O(|P|

B) I/Os, and hence, the total time complexity of disk accesses when moving
from the root to the leaf becomes O(|P|

B logB |S|) I/Os. The query time complexity
can be reduced further by a more careful search procedure that will take into ac-
count the observation that the longest common prefix that a query can have with
the keys of a node is at least equal to the longest common prefix between the query
and the keys stored in the parent of the node; in this case, the query time becomes
O(|P|

B + logB |S|) I/Os for completing the traversal from the root to the leaves. Con-
cerning dynamic operations to insert/delete a string T ′ a query initially is executed
for locating the appropriate leaf position among the leaves of the string B-tree. If
space exists for inserting the appropriate leaf, it is inserted; otherwise, the leaf gets
split, and the father node is updated with appropriate pointers. The rest of the in-
sertion and deletion procedure is similar to the balancing operations performed in
the traditional B-tree with the difference that in the worst case the balancing opera-
tions can be propagated until the root of the tree, and hence, the total number of disk
accesses will be bounded from above by O(|T ′|

B + logB |S|) I/Os.
The above lead to the following theorems:

Theorem 1.1 The string B-tree can store a set S of n strings with a total number
of N characters in O(n/B) space (the index) plus O(N/B) space (the characters

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.5 STRING DATA STRUCTURES IN MEMORY HIERARCHIES 19

of the string) so that the strings in S that have a query prefix P can be computed
in O(|P|

B + logB n + a
B) I/Os, where a is the size of the answer. To insert or delete a

string T ′ in S, O(|T ′|
B + logB n) I/Os are needed.

To use the string B-tree for efficient pattern matching, we should insert all suffixes
of the involved strings, because in this case, prefix matching with a given pattern
becomes equivalent to pattern matching with the given pattern. It can be proved that
the produced structure will have the following properties:

Theorem 1.2 The string B-tree can store a set S of n strings with a total number
of N characters in O(N/B) space (the index) plus O(N/B) space (the characters
of the string) so that the strings in S that contain a given query pattern P can be
computed in O(|P|+a

B + logB n) I/Os, where a designates the size of the answer. To
insert or delete a string of length m in S O(m logB(N + m)) I/Os are needed.

The specific structure has been improved with two other structures [14, 15] that
are valid for the cache oblivious model of computation. The cache-oblivious model
is a generalization of the two-level I/O model to a multilevel memory model, by
employing a simple trick: the algorithm is not allowed to know the value of B and
M , and thus, its functionality and working remains valid for any value of B and
M . In particular, in [15], a cache-oblivious string dictionary structure was presented
supporting string prefix queries in O(logB n + |P|/B) I/Os, where P is the query
string and n is the number of stored strings. The dictionary can be constructed in
O(Sort(N)) time where N is the total number of characters in the input, and Sort(N)
is the number of I/Os needed for comparison-based sorting. The input as in the string
B-tree can be either a set of strings to store or a single string for which all suffixes are
to be stored; moreover, if it is given as a list of edges of the appropriate tree, then it
also can accept a trie, a compressed trie, or a suffix tree. It is assumed that M ≥ B2+δ .
The aforementioned structure has the following two novel characteristics: (i) it uses
the notion of the giraffe tree that provides an elegant linear space solution to the path
traversal problem for trees in external memory; the giraffe trees permit the exploita-
tion of redundancy because parts the path in the trie may be stored multiple times but
with only a constant factor blowup in total space as the trie gets covered by them; (ii)
it exploits a novel way for decomposing a trie into components and subcomponents
based on judiciously balancing the progress in scanning the query pattern with the
progress in reducing the number of strings left as matching candidates.

The aforementioned contribution was improved in [14] where a cache-oblivious
string B-tree (COSB-tree) was presented that can search asymptotically optimal and
insert/delete nearly optimal and can perform range queries with no extra disk seeks.
An interesting characteristic of the structure is that it employs front compression
to reduce the size of the stored set. In particular for a set D, assume that we
denote by ||D|| the sum of key lengths in D and by front(D) the size of the
front-compressed D. The proposed structure has space complexity O(front(D))
and possesses the following performance characteristics: (i) insertion of a key k

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

20 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

requires O(1 + ||k||(log2 front(D))/B + logB N) memory transfers with high proba-
bility (w.h.p.), (ii) searches and successor/predecessor queries for a key k′ require an
optimal O(1 + ||k ′||/B + logB N) block transfers w.h.p. The result set Q is returned
in compressed representation and can be decompressed in additional O(||Q||/B)
memory transfers, which is optimal for front compression. Because COSB-trees,
store all keys in order on disk range, queries involve no extra disk seeks.

An important component of the COSB-tree of independent interest is the front-
compressed packed memory array (FC-PMA) data structure. The FC-PMA main-
tains a collection of strings D stored in order with a modified front compression. As
is shown in [14], the FC-PMA has the following properties: (i) for any ε, the space
usage of the FC-PMA can be set to (1 + ε) front(D) while enabling a string k to be
reconstructed with O(1 + ||k||/(εB)) memory transfers, (ii) inserting and deleting a
string k into a FCPMA requires O(||k||(log2 front(B))/(εB)).

The interested reader can find a nice exposition of some of these plus other struc-
tures in [77, 28].

1.6 CONCLUSIONS

String indexing algorithms and data structures play a crucial role in the field of com-
putational molecular biology, as most information is stored by means of symbol se-
quences. Storing, retrieving, and searching in this vast volume of information is a
major task to have several specific queries and problems being solved efficiently. In
this chapter, we have presented the main indexing structures in the area.

We conclude by noting that despite the great progress in the string indexing re-
search field in the last decade, the frontiers need to move a little bit further by means
of: (i) minimizing the volume of data with compression and searching in compressed
files, (ii) minimizing the extent of the indexing structures by compressing them,
too [29], (iii) building and placing the indexing structures cache obliviously to min-
imize the cache misses [31], and (iv) building the indexing structures efficiently in
parallel, using the model multiprocessor machines and operating systems.

REFERENCES

1. M. Abouelhoda, S. Kurtz, and E. Ohlebusch. Enhanced suffix arrays and applications.
In S. Aluro, editor, Handbook of Computational Molecular Biology. Chapman and Hall,
New York, 2006.

2. K. Abrahamson. Generalized string matching. SIAM J Comput, 16(6):1039–1051, 1987.

3. S. Aluru. Handbook of Computational Molecular Biology. Chapman and Hall, New York,
2006.

4. A. Amir, A. Apostolico, G.M. Landau, and G. Satta. Efficient text fingerprinting via
parikh mapping. J. Discrete Algorithm, 1(5–6):409–421, 2003.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

REFERENCES 21

5. A. Amir, E. Chencinski, C. Iliopoulos, T. Kopelowitz, and H. Zhang. Property matching
and weighted matching. Theor Comput Sci, pp. 298–310, 2006.

6. A. Amir, C. Iliopoulos, O. Kapah, and E. Porat. Approximate matching in weighted se-
quences. Combin Pattern Matching, pp. 365–376, 2006.

7. A. Andersson, N.J. Larsson, and K. Swanson. Suffix trees on words. CPM ’96: Proceed-
ings of the 7th Annual Symposium on Combinatorial Pattern Matching, London, UK,
1996, New York, pp. 102–115. Springer-Verlag.

8. P. Antoniou, M. Crochemore, C. Iliopoulos, I. Jayasekera, and G. Landau. Conservative
string covering of indeterminate strings. Proceedings of the 13th Prague Stringology Con-
ference (PSC 2008), Prague, Czech Republik, 2008.

9. P. Antoniou, C. Iliopoulos, I. Jayasekera, and W. Rytter. Computing repetitive structures in
indeterminate strings. Proceedings of the 3rd IAPR, International Conference on Pattern
Recognition in Bioinformatics (PRIB), Melborne, Australia, 2008.

10. A. Apostolico, C. Iliopoulos, G. Landau, B. Schieber, and U. Vishkin. Parallel construc-
tion of a suffix tree. Algorithmica, 3:347–365, 1988.

11. R. Baeza-Yates and G.H. Gonnet. A new approach to text searching. Commun ACM,
35(10):74–82, 1992.

12. S. Bedathur and J. Haritsa. Engineering a fast online persistent suffix tree construction.
Proceedings of the 20th International Conference on Data Engineering, Boston, MA,
2004, pp. 720–720.

13. S. Bedathur and J. Haritsa. Search-optimized suffix-tree storage for biological ap-
plications. IEEE International Conference on High Performance Computing, 2005,
pp. 29–39.

14. M.A. Bender, M. Colton, and B. Kuzsmaul. Cache-oblivious string b-trees. 25th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS06),
Chicago, IL, 2006, pp. 233–242.

15. G. Brodal and R. Fagerberg. Cache-oblivious string dictionaries. Proceedings of the Sev-
enteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Miami, Fl,
2006, pp. 581–590.

16. A.L. Brown. Constructing genome scale suffix trees. In Yi-Ping Phoebe Chen, editor,
Second Asia-Pacific Bioinformatics Conference (APBC2004), volume 29 of CRPIT. ACS,
Dunedin, New Zealand, 2004.

17. S. Burkhardt and J. Karkkainen. Fast lightweight suffix array construction and checking.
In Symposium on Combinatorial Pattern Matching, Springer Verlag, LNCS, New York,
2003.

18. C. Cheung, J. Yu, and H. Lu. Constructing suffix tree for gigabyte sequences with
megabyte memory. IEEE Trans Knowl Data Eng, 17(1):90–105, 2005.

19. M. Christodoulakis, C. Iliopoulos, L. Mouchard, K. Perdikuri, A. Tsakalidis, and
K. Tsichlas. Computation of repetitions and regularities on biological weighted se-
quences. J Comput Biol, 13(6):1214–1231, 2006.

20. D. Clark and I. Munro. Efficient suffix trees on secondary storage. Proceedings of the
7th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and
Applied Mathematics, 1996, pp. 383–391.

21. R. Clifford and M. Sergot. Distributed and paged suffix trees for large genetic databases.
Combinatorial Pattern Matching, 14th Annual Symposium, Michocan, Mexico, 2003,
pp. 70–82.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

22 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

22. R. Cole, M. Gottlieb, and L. Lewenstein. Dictionary matching and indexing with errors
and dont cares. Proceedings of the 36th Annual Symposium on Theory of Computing
(STOC), Chicago, Il, 2004, pp. 91–100.

23. R. Cole, M. Kopelowitz, and L. Lewenstein. Suffix trays and suffix trists: structures for
faster text indexing. Proceedings of the 33rd International Colloquium on Automata Lan-
guages and Programming(ICALP), Venice, Italy, 2006, pp. 358–369.

24. A. Crauser and P. Ferragina. A theoretical and experimental study on the construction of
suffix arrays in external memory. Algorithmica, 32:1–35, 2002.

25. R. Dementiev, J. Karkkainnen, J. Menhert, and P. Sanders. Better external memory suffix
array construction. Workshop on Algorithm Engineering and Experiments, 2005, pp. 86–
97.

26. D.K. Kim, J. Sim, H. Park, and K. Park. Linear time construction of suffix arrays. Pro-
ceedings of the 14th Annual Symposium on Combinatorial Pattern Matching, Michoacan,
Mexico, 2003, pp. 186–199.

27. M. Farach. Optimal suffix tree construction with large alphabets. 38th Annual Symposium
on the Foundations of Computer Science (FOCS), New York, 1997, pp. 137–143.

28. P. Ferragina. String search in external memory: Data structures and algorithms. In
S. Aluro, editor, Handbook of Computational Molecular Biology, Chapman & Hall, New
York, 2006.

29. P. Ferragina, R. Gonzalez, G. Navarro, and R. Venturini. Compressed text indexes: From
theory to practice. ACM J Exper Algorithmics, 13, 2008.

30. P. Ferragina and R. Grossi. The string b-tree: A new data structure for string search in
external memory and its applications. J ACM, 46(2):236–280, 1999.

31. P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. Vitter. On searching compressed
string collections cache-obliviously. Proceedings of the Twenty-Seventh ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, Vancouver, BC,
Canada, 2008, pp. 181–190.

32. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for
optimal succinctness and beyond. IEEE Symposium on Foundations of Computer Science,
pp. 184–196, 2005.

33. M.J. Fischer and M.S. Paterson. String-matching and other products. Technical Report,
Cambridge, MA, 1974.

34. T. Flouri, C. Iliopoulos, M. Sohel Rahman, L. Vagner, and M. Voracek. Indexing factors
in dna/rna sequences. BIRD, pp. 436–445, 2008.

35. G. Manzini. Two space saving tricks for linear time lcp array computation. In J. Gud-
mundssson, editor, Scandinavian Workshop on Algorithm Theory. Springer, New York,
2004.

36. G.H. Gonnet, R.A. Baeza-Yates, and T. Snider. New indices for text: Pat trees and pat ar-
rays. In B. Frakes and R.A. Baeza-Yates, editors, Information Retrieval: Data Structures
and Algorithms, Prentice Hall, Upper Saddle R, 1992.

37. G. Grillo, F. Licciuli, S. Liuni, E. Sbisa, and G. Pesole. Patsearch: A program for the
detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res,
31:3608–3612, 2003.

38. R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Experiments on
suffix arrays and trees. In ACM-SIAM Symposium on Discrete Algorithms, New Orleans,
LA, 2004, pp. 636–645.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

REFERENCES 23

39. R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching (extended abstract). Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing (STOC), ACM Press, New York, 2000,
pp. 397–406.

40. M. Gupta and J. Liu. Discovery of conserved sequence patterns using a stochastic dictio-
nary model. J Am Stat Assoc, 98:55–66, 2003.

41. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, Cambridge, UK, 1997.

42. D. Gusfield and S. Orzack. Haplotype inference. In S. Aluru, editor, Handbook of Com-
putational Molecular Biology, Chapman and Hall, New York, 2006.

43. R. Hariharan. Optimal parallel suffix tree construction. J Comput Syst Sci, 55(1):44–69,
1997.

44. J. Holub and W.F. Smyth. Algorithms on indeterminate strings. Proeedings of the 14th
Australasian Workshop on Combinatorial Algorithms, Seoul, Korea, 2003.

45. J. Holub, W.F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate strings.
J Discrete Algorithm, 6:37–50, 2006.

46. W. Hon, T.W. Lam, K. Sadakane, and W. Sung. Constructing compressed suffix arrays
with large alphabets. International Symposium on Algorithms and Computation, Kolkata,
India, 2006, pp. 505–516.

47. W. Hon, K. Sadakane, and W. Sung. Breaking a time-space barrier in constructing full-
text indices. IEEE Symposium on Foundations of Computer Science, 2003, pp. 251–
260.

48. J. Hughes, P. Estep, S. Tavazoie, and G. Church. Computational identification of cis-
regulatory elements associated with groups of functionally related genes in sacharomyces
cerevisae. J Mol Biol, 296:1205–1214, 2000.

49. E. Hunt, M. Atkinson, and R. Irving. A database index to large biological sequences.
VLDB ’01: Proceedings of the 27th International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers, San Francisco, CA, 2001.

50. C. Iliopoulos, I. Jayasekera, B. Melichar, and J. Supol. Weighted degenerated approx-
imate pattern matching. Proceedings of the 1st International Conference on Language
and Automata Theory and Applications, Tarragona, Spain, 2007.

51. C. Iliopoulos, M. Mohamed, L. Mouchard, W. Smyth, K. Perdikuri, and A. Tsakalidis.
String regularities with don’t cares. Nordic J Comput, 10(1):40–51, 2003.

52. C. Iliopoulos, M. Rahman, and W. Rytter. Algorithms for two versions of lcs problem for
indeterminate strings. International Workshop on Combinatorial Algorithms (IWOCA),
Newcastle, Australia, 2007.

53. C. Iliopoulos, M. Rahman, M. Voracek, and L. Vagner. Computing constrained longest
common subsequence for degenerate strings using finite automata. Proceedings of the
3rd Symposium on Algorithms and Complexity, Rome, Italy, 2007.

54. C.S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsakalidis.
The weighted suffix tree: An efficient data structure for handling molecular weighted
sequences and its applications. Fundamenta Informaticae, 71(2–3):259–277, 2006.

55. H. Itoh and H. Tanaka. An eficient method for in memory construction of suffix arrays.
Symposium on String Processing and Information Retrieval, 2006, pp. 81–88.

56. R. Japp. The top-compressed suffix tree: A disk-resident index for large sequences. Bioin-
formatics Workshop, 21st Annual British National Conference on Databases, 2004.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

24 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

57. L. Jensen and S. Knudsen. Automatic discovery of regulatory patterns in promoter regions
based on whole cell expression data and functional annotation. Bioinformatics, 16:326–
333, 2000.

58. J. Karkkainen and P. Sanders. Simple linear work suffix array construction. Proceedings
of 30th International Colloquium on Automata, Languages and Programming(ICALP),
Eindhoven, The Netherlands, 2003, pp. 943–955.

59. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-
preffix computation in suffix arrays and its applications. Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching, Jerusalem, Israel, 2001, pp. 181–192.

60. S. Keles, M. van der Laan, S. Dudoit, B. Xing, and M. Eisen. Supervised detection of
regulatory motifs in dna sequences. Statistical Applications in Genetics and Molecular
Biology, 2, 2003.

61. D.E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading MA, 1998.

62. S. Kurtz. Reducing the space requirement of suffix trees. Softw—Prac Exp, 29(13):1149–
1171, 1999.

63. G. Landau, D. Tsur, and O. Weimann. Indexing a dictionary for subset matching queries.
SPIRE, pp. 195–204, 2007.

64. C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton. Detect-
ing subtle sequence signals: A Gibbs sampling strategy for multiple alignment. Science,
262:208–214, 1993.

65. H. Li, V. Rhodius, C. Gross, and E. Siggia. Identification of the binding sites of regulatory
proteins in bacterial genomes. Genetics, 99:11772–11777, 2002.

66. Y. Liu, L. Wei, S. Batzoglou, D. Brutlag, J. Liu, and X. Liu. A suite of web-based pro-
grams to search for transcriptional regulatory motifs. Nucleic Acids Res, 32:204–207,
2004.

67. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM
J Comput, 25(5):935–948, 1993.

68. G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algo-
rithm. Algorithmica, 40:33–50, 2004.

69. L. Marsan and M.F. Sagot. Extracting structured motifs using a suffix tree- algorithms
and application to promoter concensus identification. RECOMB, pp. 210–219, 2000.

70. E.M. McCreight. A space-economical suffix tree construction algorithm. J Assoc Compu
Mach, 23(2):262–272, 1976.

71. A. McGuire, J. Hughes, and G. Church. Conservation of DNA regulatory motifs and
discovery of new motifs in microbial genomes. Nucleic Acids Res, 10:744–757, 2000.

72. D. Mehta and S. Sahni. Handbook of Data Structures and Applications. Chapman and
Hall, New York, 2005.

73. J. Munro, V. Raman, and S.S. Rao. Space efficient suffix trees. Proceedings of the 18th
Conference on Foundations of Software Technology and Theoretical Computer Science,
Springer-Verlag, London, UK, 1998, pp. 186–196.

74. B. Phoophakdee and M. Zaki. Genome-scale disk-based suffix tree indexing. Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, New York,
2007. ACM, pp. 833–844.

75. P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Combin Pat-
tern Matching, pp. 200–210, 2003.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

REFERENCES 25

76. M. Rahman, C. Iliopoulos, and L. Mouchard. Pattern matching in degenerate dna/rna
algorithms. Proceedings of the Workshop on Algorithms and Computation, pp. 109-120,
2007.

77. K. Roh, M. Crochemore, C. Iliopoulos, and K. Park. External memory algorithms for
string problems. Fundamenta Informaticae, 84(1):17–32, 2008.

78. D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic automata
with variable memory length. Mach Learn, 25:117–149, 1996.

79. D. Roth, J. Hughes, P. Esterp, and G. Church. Finding dna regulatory motifs within un-
aligned noncoding sequence clustered by whole genome mrna quantitation. Nat Biotech-
nol, 16:939–945, 1998.

80. K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J Algo-
rithms, 48(2):294–313, 2003.

81. S. Sahinalp and U. Vishkin. Symmetry breaking for suffix tree construction. 26th Annual
ACM Symposium on the Theory of Computing, Quebec, Canada, 1994, pp. 300–309.

82. Z. Sun, J. Yang, and J. Deogun. Misae: A new approach for regulatory motif extraction.
Proceedings of the IEEE Computational Systems Bioinformatics Conference, 2004.

83. M. Tadesse, M. Vannucci, and P. Lio. Identification of dna regulatory motifs using
bayesian variable selection suite. Bioinformatics, 20:2553–2561, 2004.

84. S. Tata, R. Hankins, and J. Patel. Practical suffix tree construction. 30th International
Conference on Very Large Data Bases, Ontario, Canada, 2004, pp. 36–47.

85. W. Thompson and C. Lawrence. Gibbs recursive sampler: Finding transcription factor
binding sites. Nucleic Acids Res, 31:3580–3585, 2003.

86. Y. Tian, S. Tata, R. Hankins, and J. Patel. Practical methods for constructing suffix trees.
VLDB J, 14(3):281–299, 2005.

87. M. Tompa and S. Sinha. A statistical method for finding transcription factor binding sites.
Proceedings Internatioanl Conference on Intelligent Systems in Molecular Biology, pp.
37–45, 2000.

88. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.

89. J.S. Vitter. Algorithms and Data Structures for External Memory. Publishers Inc.,
Hanover, USA, 2008.

90. M. Voracek, B. Melichar, and M. Christodoulakis. Generalized and weighted strings: Rep-
etitions and pattern matching. In String Algorithmics, KCL Publications, King’s College
London, 2004, pp. 225–248.

91. M. Voracek, V. Vagner, and T. Flouri. Indexing degenerate strings. Proceedings of Inter-
national Conference on Computational Methods in Science and Engineering. American
Mathematical Institute of Physics, 2007.

92. P. Weiner. Linear pattern matching algorithms. In 14th IEEE Annual Symposium on
Switching and Automata Theory, 1973, pp. 1–11.

93. S. Wu and U. Manber. Fast text searching: Allowing errors. Commun ACM, 35(10):83–91,
1992.

P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2
EFFICIENT

RESTRICTED-CASE
ALGORITHMS FOR

PROBLEMS IN
COMPUTATIONAL BIOLOGY

Patricia A. Evans and H. Todd Wareham

2.1 THE NEED FOR SPECIAL CASES

Many problems of interest, in computational biology as in other fields, have been
proven to be NP-hard and so cannot be solved efficiently in general unless P = NP
(the set of problems that can be solved nondeterministically in polynomial time). The
large sizes and increasingly massive quantities of data make problem tractability and
algorithm efficiency a critical concern for computational biology, and indeed, even
polynomial-time algorithms can have difficulty coping with the large amounts of
data typically encountered, necessitating the development of specialized algorithms
to deal with these situations and applications.

Although intractability results are certainly a formidable obstacle to solving such
problems and tend to lead researchers to use heuristics and approximations, the gen-
eral form of each problem that has been proven hard rarely resembles the problem as
it is applied. Reduction gadgets and constructions often describe data that does not
look like the relevant biological data, leaving open the possibility that special cases
that more closely resemble the intended application may be tractable.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

27

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

28 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

One key aspect that may lead to tractable special cases is that the data in bio-
logical problems often have characteristics that are small or limited in size. Lengths
in particular can be relatively short, such as the length of a substring representing
a motif and the length of a newly sequenced genome snippet. For genome data, the
alphabet is also very small, consisting of four bases (possibly with the addition of
wildcards or limited unknowns).

For cases in which one or more characteristics of the data are small, algorithms
for the tractable special cases can be identified using techniques from the theory of
parameterized complexity [15]. Parameterized complexity examines the tractability
of a problem relative to one or more parameter, characteristics of the problem that
potentially can be restricted to small values to provide an efficient algorithm for those
cases. Such fixed-parameter tractable algorithms can provide practical and accurate
results for otherwise intractable problems, and there is an extensive and expanding
set of techniques for designing and improving fixed-parameter algorithms [15, 42].

Intractability in the parameterized setting is determined by showing hardness for
one of the classes in the parameterized complexity W -hierarchy. Because the hard-
ness or tractability can be affected by the choice of parameters, analyzing the results
for the same problem with different parameters leads to insights about the effect
of these parameters on the difficulty of the problem and ultimately defines which
parameter-based special cases and related applications are tractable.

Not all special cases are defined by parameters. To make the problems tractable,
properties of input sequences and structures often need to be restricted to cases that
resemble biological data, which will change naturally depending on the application
being examined. In this chapter, we examine the relevant parameters and special
cases for several sequence and string problems applicable to computational biology
problems, namely Shortest Common Superstring (SCS), Longest Common Subse-
quence (LCS), and Common Approximate Substring (CAS). We present the differ-
ent known tractable and intractable variants of these problems, showing which re-
strictions lead to usable algorithms and also define those variants for which further
research is needed.

2.2 ASSESSING EFFICIENT SOLVABILITY OPTIONS FOR GENERAL
PROBLEMS AND SPECIAL CASES

Two basic questions must be addressed by a formal efficiency analysis of a compu-
tational problem:

1. Can the problem as given be solved efficiently?

2. If not, can particular restrictions of that problem be solved efficiently?

In this section, we will outline briefly how these questions can be answered using
techniques from the classical and parameterized theories of computational complex-
ity [15, 23].

In regards to the first question, we will adopt the common notion of effi-
ciency in computer science—namely, we will say that a computational problem is

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.2 ASSESSING EFFICIENT SOLVABILITY OPTIONS 29

(polynomial-time) tractable if it can be solved by an an algorithm whose worst-case
running time is bounded by some function nc, where n is the input size and c is a con-
stant.1 If no such algorithm exists, then the problem is (polynomial-time) intractable.
Super-polynomial time algorithms generally are considered impractical because they
have unrealistically long running times for all but small inputs.

We can establish polynomial-time tractability by simply giving an algorithm for
a problem that runs in polynomial time. Establishing polynomial-time intractability
typically is done by proving that the problem is at least as computationally difficult
as every problem in a class X of known intractable problems (i.e., the problem is
X-hard). For details of how this is done, the interested reader is referred to [23].2

If our problem of interest is polynomial-time intractable, then how might we show
that it is tractable (in some sense) under a particular restriction? There are two pos-
sible types of restrictions:

1. Structural restrictions (i.e., restrictions phrased in terms of structural properties
of the inputs given or outputs requested in the problem)

2. Parameterized restrictions (i.e., restrictions phrased in terms of the numerical
values of one or more aspects of the problem)

Structural restrictions can be addressed by defining new versions of the problem that
incorporate these restrictions and by assessing the polynomial-time tractability of
these new problems as described by. Parameterized restrictions require a new way
of thinking. As our problem is polynomial-time intractable, all algorithms solving
that problem run in super-polynomial time; however, if this time is super-polynomial
only in the aspects being restricted (whose values are assumed to be very small) and
polynomial in all other aspects of input size, then the resulting running time may in
practice be effectively polynomial and hence reasonable. Let us call such a set p of
one or more simultaneously restricted aspects of a problem � a parameter of �, and
denote the version of � restricted relative to p by 〈p〉-�.

This looser conception of tractability under parameterized restrictions is captured
by the following definition:

Definitio : A problem � is fixed-parameter tractable (fp-tractable) relative to a particu-
lar parameter p if � is solvable by an algorithm with running time bounded by f (p)nc,
where f is an arbitrary function, n is the input size, and c is a constant.

1Such running times often are stated in terms of O()-notation, where O(g(n)) is the set of functions f (n)
that are asymptotically upperbounded by g(n) (i.e., f (n) ≤ c × g(n)) for all n ≥ n0 for some constants c
and n0 (cf. Footnote 4).
2Ideally, we want to show X -hardness relative to an X such that P ⊂ X (i.e., X properly contains the class
P of polynomial-time solvable problems). However, we often only can show hardness for an X such that
P ⊆ X , and we have strong empirical support (though not mathematical certainty) that P �= X . This is
the case in this chapter in which all our polynomial-time intractability results are demonstrated by NP-
hardness, which is acceptable, as the conjecture P �= NP has very strong empirical support; again, the
interested reader is referred to [23] for details.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

30 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

If no such algorithm exists for � relative to p, then � is said to be fp-intractable rel-
ative to p (or, equivalently, 〈p〉-� is fp-intractable). Note that as a problem may
be fp-tractable relative to some parameters and fp-intractable relative to others,
fp-(in)tractability always must be stated relative to a parameter.

This is the conception of tractability underlying the theory of parameterized
computational complexity created by Downey and Fellows [15]. As in the case of
polynomial-time tractability, we show fp-tractability simply by giving an algorithm
for the problem with the required running time relative to the specified parameter (of-
ten by invoking specialized techniques [42]), and we show fp-intractability of a prob-
lem relative to a specified parameter by showing the problem-parameter combination
is hard relative to a class in the W-hierarchy = {W [1], W [2], . . . , W [P], . . . XP}.3
Again, as the details of how this is done need not concern us here, the interested
reader is referred to [15]. The class of fp-tractable problems is FPT.

In analyses of a problem’s complexity, intractability proofs (by virtue of their
generality and intricacy) often take center stage and are given the most attention.
However, it is worth remembering that our ultimate goal is to solve efficiently the
given problem or a useful restricted version of this problem. Given this, intractability
results assume their proper role—namely, delimiting which versions of a problem
cannot be solved efficiently, hence, both highlighting and allowing us to focus more
productively our energies on developing the best possible algorithms for versions of
the problem that can be solved efficiently.

2.3 STRING AND SEQUENCE PROBLEMS

Three central string-based problems in computational biology are:

1. Sequence Reconstruction: Given a set of sequence-fragments, we reconstruct
the original sequence.

2. Sequence Alignment: Given a set of sequences, we derive the best overall
global alignment of these sequence to highlight both corresponding and diver-
gent elements of these sequences.

3. Sequence Consensus: Given a set of sequences, we derive the best consen-
sus sequence, summarizing corresponding and divergent elements of these
sequences.

As genomic regions of interest range in size from several thousand (individual genes)
to millions or billions (whole genomes) of nucleotides in length and because current
technologies only can sequence regions less than 2000 nucleotides long reliably [47],
sequence reconstruction is a critical first step in any sequence-level genomic analysis.

3Analogous to Footnote 2, using such hardness results to establish fp-intractability is acceptable as the
conjecture FPT �= W [1] has strong empirical support, where FPT is the class of fp-tractable problem-
parameter combinations. The interested reader is referred to [15] for details.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.4 SHORTEST COMMON SUPERSTRING 31

Subsequent analysis of groups of two or more sequences often are based on sequence
alignments. For example, as random mutations that occur in functionally significant
regions of sequences are typically deleterious and thus will not be passed on to future
generations, highly similar regions in an alignment of sequences that have evolved
from a common ancestral sequence frequently are assumed to be of functional signif-
icance and thus can be used to unravel protein and regulatory functions in the cases
of coding and noncoding regions, respectively. Consensus sequences, in addition to
being concise summaries of corresponding regions in alignments, have their own
applications. For example, under certain notions of consensus, consensus sequences
specify short complementary strings that can bind to a specific region in each of a
given set of sequence, and are therefore potential universal primers for polymerase
chain reaction sequencing reactions or drug targets.

In the following sections, we will give overviews of both general and special-
case algorithms for the formal computational problems associated with each of these
problems—namely, Shortest Common Superstring (Section 2.4), Longest Common
Subsequence (Section 2.5), and Common Approximate Substring (Section 2.6).

2.4 SHORTEST COMMON SUPERSTRING

The most basic formal computational problem associated with sequence reconstruc-
tion is the following:

Shortest Common Superstring (SCSt)
Input: A set S = {s1, s2, . . . , sk} of strings over an alphabet |�|.
Output: The shortest string s ′ such that each string s ∈ S is a substring of s ′.

This problem is an idealization of actual sequencing under currently available tech-
nologies on several counts:

1. The DNA strand from which fragments originated typically is not known, and
fragments thus may be complementary and reversed relative to the coding
strand.

2. Errors may occur in determining the sequence of any fragment.

3. Depending on the genomic region being sequenced, repetitive sequence re-
gions may be collapsed together and hence not reconstructed correctly in any
shortest common superstring.

The first difficulty can be accommodated by requiring for each s ∈ S that either s or
rev(comp(s)) be a substring of s ′, where rev(s) returns the reversed version of string
s and comp(s) returns the base-complemented version of DNA or RNA string s (i.e.,
rev(ATTC) = CTTA, comp(ATTC) = TAAG, and comp(AUUC) = UAAG.) The sec-
ond difficulty can be accommodated by requiring that each s ∈ S match some sub-
string s ′′ of s ′ such that dst(s, s ′′) ≤ ε, where dst() is a distance function on pairs

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

32 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

of strings measuring the degree of error required to produce s from s′′ and ε is
an acceptable sequencing-error threshold. Denote the version of SCSt incorporat-
ing these modifications by SCSt-re. The third difficulty is much more problematic,
as it is a product of the parsimony assumption underlying the requirement that pro-
duced superstrings be the shortest possible. However, this difficulty, to a large extent,
can be eliminated by either including fragments in S that are long enough to span the
regions between repeats, or incorporating extra information about the ordering of
fragments on the genome; as such techniques are beyond the scope of this chapter,
the interested reader is referred to [48] and references for details.

In typical instances of DNA sequencing, the sequence-alphabet � =
{A, G, C, T } is of a small fixed size, the number of fragments k can be on the or-
der of thousands to millions, and the maximum fragment-length (denoted by n =
maxs∈S |s|) varies with the sequencing technology from fixed constants less than 10
to roughly 1000. This suggests that algorithms that are efficient relative to restricted
alphabet and/or fragment size would be of use. Known intractability results suggest
that polynomial-time efficiency in these cases is probably not possible, that is,

� SCSt is NP-hard when n = 3 or |�| ≥ 2 [22].
� SCSt-re is NP-hard when |�| = 4 or n = 15 [54, Theorem 7.2].

The intractability of SCSt holds even if (1) |�| = 2, and one of these symbols occurs
only three times in each s ∈ S or (2) n = 3 and each σ ∈ � occurs at most eight times
in the strings in S [36, 37] (see also [51]). Though it may be tempting to consider
solution-superstrings whose lengths are within a small multiplicative factor of the
length of the shortest superstring, it is known that such approximate superstrings
cannot be derived in polynomial time to an arbitrary degree of accuracy even for
|�| = 2 [8, 44, 52], and the best known polynomial-time approximation algorithm
only can guarantee solutions whose lengths are less than or equal to 2.5 × optimal
[50] (see also [30]), which is not practical. However, as we will discuss, there may
yet be acceptable exact algorithms for special cases.

In the remainder of this section, we will look at algorithms for solving the general
shortest common superstring problem (Section 2.4.1) and the special case in which
|�| and n are bounded simultaneously (Section 2.4.2).

2.4.1 Solving the General Problem

Courtesy of the NP-hardness results described, all exact algorithms for SCSt must
run in exponential time. There are two general strategies for such algorithms:

1. Enumerate all possible solution superstrings and check for each superstring if
it includes every s ∈ S as a substring; return the shortest such common super-
string.

2. Enumerate all possible solution superstrings generated by orderings of strings
in S that allow these strings to overlap; return the shortest such superstring.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.4 SHORTEST COMMON SUPERSTRING 33

Naive algorithms implementing these strategies have the following resource require-
ments:

� The longest possible solution superstring is simply a concatenation of all
strings in S and hence has length at most k × n; thus, there are

∑kn
1=n |�|i ≤

(kn − (n − 1))|�|kn = O(kn|�|kn) possible solution superstrings. As the in-
clusion of a string x as a substring in string y can be checked in O(|x | + |y|)
using a suffix-tree based algorithm [25, Section 7.1], the first strategy runs in
O(kn|�|kn × k(kn + n)) = O(|�|knk3n2) time and O(kn) space.

� The number of possible orderings of the strings in S is k! = O(kk). In any short-
est superstring based on such an ordering, a pair of adjacent strings in this order-
ing will have the maximum overlap possible (otherwise, the maximum overlap
potentially could be used to create a shorter superstring, which is a contradic-
tion). As the maximum overlap between two strings from S can be computed
in O(n) time, the second strategy runs in O(kkn) time and O(kn) space.

The actual (though not worst-case) run time of the second strategy can be improved
by exploiting the incremental manner in which solution superstrings are created in
this strategy. For example, a branch-and-bound algorithm such as that in [6] could
evaluate all orderings in a search tree in which each level adds the next string in
the generated ordering. In such a search tree, nodes generating superstrings longer
than the best seen so far can be pruned, potentially eliminating a large proportion of
orderings of S from even being considered. Alternatively, orderings could be encoded
implicitly in a directed edge-weighted complete graph whose vertices correspond to
the strings in S, and arcs (si , s j), 1 ≤ i, j,≤ k, have weight equal to the maximum
overlap of si with s j (which may be 0 if the strings do not overlap). Given such
an overlap graph, the shortest superstring can be derived by finding the maximum-
weight Hamiltonian path in this graph. Though this overlap graph algorithm for SCSt
is elegant, it requires more (specifically, O(k2n)) space; moreover, the running time is
still exponential, as the problem of finding maximum-weighted Hamiltonian paths is
NP-hard [23, Problem GT39].

Both of these strategies can be adapted (albeit at increased computational cost) to
handle the fragment reversal and sequencing errors difficulties associated with actual
sequencing. In the case of the first strategy, for each s ∈ S, both s and rev(comp(s))
can be checked against the solution superstring using the error-measure string-
comparison function dst(). Assuming a sequencing-error model allowing base sub-
stitutions, insertions, and deletions, dst() is pairwise edit distance, which can be com-
puted in in O(|x ||y|) time and O(|x | + |y|) space [25, Section 11]. The run-time and
space requirement increase is more dramatic in the case of the second strategy; not
only is the number of orderings of S increased by a factor of 2k (each string s in the
ordering is now either s or rev(comp(s))), but pairs of adjacent strings in the order-
ing can overlap in more than one way (as we must allow errors). Further increases
come from allowing errors in regions of strings that in s that do not overlap with
other strings, as well as coordinating errors when more than two strings overlap in
the solution superstring.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

34 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

In the case of the second strategy, it is possible to handle repeats using the ap-
proach proposed by Myers [40] in which an overlap graph is processed to create a
string graph in which each arc is either required (can be traversed at most once),
exact (must be traversed exactly once), or optional (can be traversed any number of
times). In such a string-graph, optional arcs allow fragments to be included more
than once in a solution superstring corresponding to a minimum-length walk that
respects all arc-constraints, hence, allowing repeats to be reconstructed. Though the
processing to create string graphs from overlap graphs can be done efficiently [40],
any algorithm implementing this approach is still exponential time because the prob-
lem of finding a minimum-length constraint-respecting walk in a string-graph is
NP-hard [35, Theorem 1].

2.4.2 Special Case: SCSt for Short Strings Over Small Alphabets

Interest in this special case first developed with the development of various technolo-
gies in the mid-1980s for rapidly assessing which subset S of the strings in a set C
of length-n DNA strings (n-mers) are present in a given DNA string (e.g., oligonu-
cleotide arrays and DNA chips). The hope was that given this information, it would
be possible to determine the sequences of short DNA strands (so-called sequencing
by hybridization (SBH)) faster than using conventional Sanger-based technologies.

There is, in fact, a linear-time algorithm for ideal SBH in which no n-mer in S
occurs more than once in the sequence s′ to be reconstructed, and all n-mers in s ′

have been read correctly (i.e., S is complete). This algorithm relies on a variant of
overlap graphs called de Bruijn graphs. In a de Bruijn graph, it is the arcs rather than
the vertices that correspond to the n-mers in S and the vertices are the set of (n − 1)-
mers that occur in the strings in S. In particular, there is an arc between vertices x
and y in a de Bruijn graph if there is an n-mer z in S such that x is the prefix (n − 1)-
mer of z and y is the suffix (n − 1)-mer of z. As S is complete and all n-mers in S
occur exactly once in s′, the sequence of s ′ can be reconstructed from any path in
the de Bruijn graph that uses each arc exactly once (i.e., an Euler path). Unlike the
computation of Hamiltonian paths through all vertices in an overlap graph, which
is NP-hard, the computation of Euler paths can be done in time linear in the size
of the graph. Hence, as the de Bruijn graph corresponding to a given set S can be
constructed in time linear in the size of S, the ideal SBH algorithm runs in linear time.

Early theoretical analyses of the occurrences of repeats in random DNA strings
suggested that sets C composed of complete sets of n-mers could be used to recon-
struct sequences with lengths up to

√
2 × 4n [1,16]). However, it has been difficult to

achieve this level of success because actual DNA sequence has statistical irregulari-
ties even in relatively short regions, and it has proven to be much more difficult than
expected for all n-mers in a given sequence to be detected reliably on DNA chips,
because of n-mer probe cross-hybridization and hybridization signal misreading.

The net effect of these problems is that the produced S not only may contain more
than one copy of an n-mer (i.e., S is a multiset), but that there may also be n-mers
in S that are not in s′ (positive errors) and n-mers in s ′ that are not in S (negative
errors). As we can no longer guarantee that all and only elements of s ′ are present

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.4 SHORTEST COMMON SUPERSTRING 35

in S, reconstructing s ′ as a shortest superstring of the strings in S is unacceptable.
The more reasonable approach, advocated by Błazewicz et al. [6, 7] is rather to look
for a superstring of length less than a specified threshold l that has the maximum
possible number of elements of S as substrings (note that the threshold is required
as different quantities simultaneously cannot be optimized in a problem). Błazewicz
et al. [6] give search-tree-based algorithms (analogous to the search-tree algorithm
for SCSt described in Section 2.4.1) for both this variant of SCSt and the variant
of SCSt incorporating only positive errors. These algorithms run in O(kknl) time
and O(min(kn, l)) space but perform much faster in practice (particularly so if only
positive errors are present). It is unlikely that algorithms with subexponential running
times will be found, as Błazewicz and Kasprzak subsequently have shown that both
of these variants of SCSt (as well as the variant incorporating only negative errors)
are NP-hard [7, Theorems 1 and 2].

A hybrid overlap-de Bruijn graph approach to dealing with the presence of
n-mer repeats in given sequence-fragments was proposed by Pevzner et al. [46]. In
this approach, conventional arbitrary-length sequence fragments are used to create
de Bruijn graphs relative to a specified length n by decomposing each sequence-
fragment into its associated set of overlapping n-mers. The sequence then is recon-
structed by finding a minimal superwalk in the de Bruijn graph that includes the
walks corresponding to each given sequence-fragment (note that these are walks in-
stead of paths because individual sequence-fragments may contain n-mer repeats).
No exact algorithm for solving this problem has yet been given in the literature. How-
ever, it is unlikely that a nonexponential time-exact algorithm exists, as the problem
of finding minimal superwalks in de Bruijn graphs has been shown to be NP-hard for
|�| ≥ 3 and any n ≥ 2 [35, Theorem 2].

2.4.3 Discussion

Table 2.1 summarizes known parameterized results for Shortest Common Super-
string, considering the number of fragments and the fragment length as potential
parameters together with different possible restrictions on the alphabet size. Though
some variants are fp-tractable, the running times of the best known algorithms for
these variants are still prohibitive in practice. Hence, all currently used assemblers
are based on heuristics [48].

Table 2.1 The parameterized complexity of Shortest
Common Superstring

Alphabet Size |�|
Parameter Unbounded Parameter Constant

– NP-hard �∈ XP NP-hard
k FPT FPT FPT
n �∈ XP �∈ XP NP-hard

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

36 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

Given the existence of the parameterized algorithms discussed, especially for mul-
tiparameter combinations such as 〈|�|, k〉-SCSt, further work needs to be done to
find faster and more useful algorithms within these regions of tractability. Future re-
search needs to focus on the special cases most suitable for sequence assembly prob-
lems, especially with the different characteristics (most notably the short read length
together with constant size alphabet, still NP-hard) produced by recent advances in
next-generation sequencing technology [48]. Additional special cases that incorpo-
rate errors, error rates, and how repeats are handled are also worthy of investigation
to find algorithms tailored to the current input data characteristics.

2.5 LONGEST COMMON SUBSEQUENCE

The most basic formal computational problem associated with sequence alignment
is the following:

Longest Common Subsequence (LCS)
Input: A set S = {s1, s2, . . . , sk} of strings over an alphabet |�|
Output: The longest string s′ such that s ′ is a subsequence of each string s ∈ S

This problem is an idealization of sequence alignment in that LCS contains all and
only exactly corresponding symbols in the given sequences in S and does not indi-
cate explicitly how symbols that do not match exactly can correspond. Hence, LCS
is a restricted case of the general sequence alignment problem in which any func-
tion may be used to evaluate the costs of aligning various symbol positions across
the sequences in S [45, Section 3]. As LCS also summarizes all and only the ex-
actly corresponding elements in the given sequences in S, LCS is a restricted case
of the general sequence consensus problem [14, Section 3]. Algorithms for LCS are
used occasionally directly for finding alignments and consensus sequences, [4, 43];
therefore, such algorithms and resource-usage lower bounds for LCS are also useful
to the extent that they apply to the various restricted sequence alignment and con-
sensus methods used in practice (e.g., sum-of-pairs (SP) alignment, tree alignment
see [25, section 14] and references).

In typical instances of DNA sequence alignment, the sequence-alphabet � =
{A, G, C, T } is of small fixed size; the number of sequences k to be aligned can
vary from two to several hundred, and the maximum sequence-length (denoted by
n = maxs∈S |s|) varies from several hundred to several million. Various situations
also require a variant of LCS in which the requested length of the derived common
subsequence is specified as part of the input; let us call this length l. This suggests
that algorithms that are efficient relative to restrictions on any of these parameters
would be of use. In the important case of pairwise alignment (i.e., k = 2) many
efficient quadratic time and space algorithms are known for both sequence align-
ment and LCS [5, 25]. However, when k � 2, known intractability results suggest

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.5 LONGEST COMMON SUBSEQUENCE 37

that under many restrictions, polynomial-time efficiency is probably not possible,
that is,

� LCS is NP-hard when |�| ≥ 2 [33].
� 〈k〉-LCS is W [t]-hard for t ≥ 1 [10, Theorem 2].
� 〈l〉-LCS is W [2]-hard [10, Theorem 3].
� 〈k, l〉-LCS is W [1]-complete [10, Theorem 1].
� 〈k, |�|〉-LCS is W [t]-hard for t ≥ 1 [9].
� 〈k〉-LCS is W [1]-hard when |�| ≥ 2 [47, Theorem 2].

Though it may be tempting to consider solution-subsequences whose lengths are
within a small multiplicative factor of the length of the longest subsequence, it is
known that such approximate subsequences cannot be derived in polynomial time
within any constant degree of accuracy unless P = NP [29]. However, as we will
discuss, there may yet be acceptable exact algorithms for special cases.

In the remainder of this section, we will look at algorithms for solving the general
longest common subsequence problem (Section 2.5.1) and the special cases in which
the given sequences are very similar (Section 2.5.2) or in which each symbol in |�|
occurs at most a constant number of times in each s ∈ S (Section 2.5.3).

2.5.1 Solving the General Problem

Courtesy of the NP-hardness result described, all exact algorithms for LCS must run
in exponential time. There are two general strategies for such algorithms:

1. Enumerate all possible strings of length m = mins∈S |s| (or, if it is given, l)
and check if each such string is a subsequence of every string in S; return the
longest such common subsequence.

2. Enumerate all possible ways in which individual symbol positions can be
matched exactly over all strings in S to generate common subsequences; re-
turn the longest such common subsequence.

Given that the longest common subsequence of two strings x and y can be com-
puted in O(|x ||y|) time and space [5, 25], the naive algorithm implementing the
first strategy runs in O(|�|mnm) = O(|�|nn2) (O(|�|lnl)) time and O(n2) (O(nl))
space. Algorithms implementing the second strategy depend on the data structures
used to store all possible matching generated subsequences for S. The two most
popular alternatives based on either dynamic programming tables or edit graphs are
described.

The second strategy typically is implemented as a dynamic programming algo-
rithm that encodes all possible matching generated subsequences in a k-dimensional
table T with

∏
s∈S |s| = O(nk) entries. Each dimension of T corresponds to one

of the strings s ∈ S and has range 0 to |s| and entry T [i1, i2, . . . , ik] contains the

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

38 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

length of the longest common subsequence of the strings up to these indices (i.e.,
s1[0..i1], s2[0..i2], . . . , sk[0..ik]), where sx [0..iy] is the substring of sx consisting of
the first i y symbols of sx . The values of each entry is specified by the recurrence

T [i1, i2, . . . , ik] =

⎧
⎪⎪⎨

⎪⎪⎩

0 if any ij = 0, 1 ≤ j ≤ k
T [i1 − 1, i2 − 1, . . . , ik − 1] + 1 if s1[i1] = s2[i2] = . . .

= sk[ik]
maxc∈C(i1,i2,...,ik) T [c] otherwise

where C(i1, i2, . . . , ik) is the set of k entry coordinate vectors generated by sub-
tracting one from each of the coordinate values in (i1, i2, . . . , ik) in turn. Note that
each time the second clause in the recurrence is invoked, a symbol match that is
potentially part of a longest common subsequence is established across all s ∈ S.
By applying this recurrence in a bottom-up manner, the table entries are filled in
until the value of entry T [|s1|, |s2|, . . . |sk |], the length of the longest common sub-
sequence of S, is computed at which point a traceback procedure is used to recon-
struct a (possibly nonunique) path of recurrence applications from T [0, 0, . . . , 0] to
T [|s1|, |s2|, . . . , |sk |] corresponding to a longest common subsequence of the strings
in S. As most k + 1 table entries must be consulted in the process of filling in a table
entry or reconstructing a path backward one step from a table entry, this algorithm
runs in O(knk + k2n) time and O(nk) space.

The second strategy also can be implemented as a path-finding algorithm relative
to an edit graph. An edit graph is essentially a directed acyclic graph corresponding to
the dynamic programming table described, such that there is a vertex for each entry
in the table, and there is an arc (x = T [i1, i2, . . . ik], y = T [j1, j2, . . . , jk]) if (1)
ih = jh − 1 for 1 ≤ h ≤ k and s1[j1] = s2[j2] = . . . = sk[jk] or (2) (i1, i2, . . . , ik) ∈
C(j1, j2, . . . , jk). As these two types of arcs correspond to the second and third
clauses, respectively, in the recurrence discriber, a straightforward weighting scheme
would be to assign arcs of the two types weights 1 and 0, respectively. Under this
scheme, a maximum-weight directed path in the edit graph with weight D between
the vertices corresponding to T [0, 0, . . . , 0] and T [|s1|, |s2|, . . . , |sk |] corresponds
to a longest common subsequence with length l = D (as each unit of weight cor-
responds to a symbol position that is matched across all strings in S). Though
such paths can be computed in polynomial time, the weighting-scheme often is re-
versed (i.e., the two types arcs are assigned weights 0 and 1, respectively, to take
advantage of faster shortest-path algorithms). Under this scheme, the analogous
shorted path of weight D corresponds to a longest common subsequence with length
l = ((

∑
s∈S |s|) − D)/k (as each unit of weight corresponds to symbol that must be

deleted in some string in S such that all strings in S can be converted to the longest
common subsequence) [3, p. 328]. The running time and space of edit graph-based
algorithms is slightly larger than that required by the dynamic programming algo-
rithm; however, as we will see below in Section 2.5.2, edit graphs have properties
that can be exploited when solving certain special cases of LCS.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.5 LONGEST COMMON SUBSEQUENCE 39

2.5.2 Special Case: LCS of Similar Sequences

This case is of interest when sequences that are very closely related (and hence very
similar) are compared. The simplest way to exploit such similarity is to assume
that the sequences are within a specified distance b of each other (i.e., at most, b
deletions are required in the given strings to convert them into the longest common
subsequence). If b is known in advance, then observe that the path in the dynamic
programming table corresponding to the longest common subsequence only passes
through entries within a b-width “band” surrounding the hypothetical diagonal ex-
tending from (0, 0, . . . , 0) that indicates all perfect matches across all sequences (this
is because each deletion can cause the path to diverge at most one unit outward from
this hypothesized 0-diagonal). Hence, it suffices to construct and operate on only
this part of the table, which consists of O(bnk−1) cells, reducing both time and space
required for the overall dynamic programming algorithm by an order of magnitude.
This algorithm, sketched in [27, Section 4], is a generalization of the band approach
to aligning a pair of sequences described in [12].

General LCS algorithms dynamically minimize the portion of the dynamic pro-
gramming table or edit a graph that is explored in response to similarity in the given
sequences and, hence, do not require that distance-threshold b be specified as input—
namely, the first (“lazy dynamic programming”) algorithm given in [28] and the
shortest-path edit graph-based algorithm in [3]. Both algorithms are generalizations
of the algorithms in [38,55], which essentially greedily construct a path in a dynamic
programming table or edit graph by starting at T [0, 0, . . . , 0] on the 0-diagonal and
iteratively traveling as far as possible along the current diagonal before skipping to
and resetting the current diagonal to the most promising (according to a distance-
estimate) of the closest diagonals until T [|s1|, |s2|, . . . , |sk |] is reached. The algo-
rithm in [28] runs in O(kn(n − l)k−1) time and space and the algorithm in [3] runs
in O(nDk−1) time and space (though the space can be reduced to O(kn + nDk−1) at
the cost of doubling the runtime [3, Section 4]).

The theoretical runtime savings of both these algorithms improves dramatically
as the similarity of the strings in S increases; however, there may be constant fac-
tors hidden by the asymptotic O-notation that boost actual run times. Experiments
reported in Barsky et al. [3] suggest that their algorithm has low run times even
for moderately similar strings, outperforming the general dynamic programming al-
gorithm for LCS described in Section 2.5.1 even when strings are as little as 50%
similar (i.e., l/n = 0.5 (cf. experiments reported in [28] which show their algorithm
only outperforms at 90% similarity or above)). That being said, it is important to
note that in the worst case in which the strings have no symbols in common and
there is no common subsequence (i.e., l = 0 and D = k), both these algorithms have
time complexities that are comparable with or even slightly worse than the general
dynamic programming algorithm for LCS.

2.5.3 Special Case: LCS Under Symbol-Occurrence Restrictions

This case is of interest when the strings being modeled are orders of homologous
genes on chromosomes in different organisms in which each organism has a small

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

40 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

number of copies (often one) of each type of gene; thus, |�| can be as large as n or
even O(kn) if there are genes unique to particular organisms (cf. |�| = 4 for DNA
sequences). Alignment of such gene-order sequences is useful in gene prediction
and certain genomic-level variants of evolutionary tree reconstruction (see [39] and
references).

Such gene-order sequences can be modeled by p-sequences [20]. A p-sequence
is a string s over an alphabet � in which each symbol in �| occurs at most once;
if every symbol in � occurs exactly once (i.e., s is a permutation of �), then s is a
complete p-sequence. Let p-LCS denote the special case of LCS in which all s ∈ S
are p-sequences. When all s ∈ S are complete p-sequences, p-LCS can be solved in
in O(kn(k + log n)) time [20, theorem 6].

It turns out that this polynomial-time solvability still holds for general p-
sequences and small sets of sequences in which each symbol in � is allowed to
occur at most some constant c > 1 times. Let us call a sequence in which each sym-
bol in � occurs at most o times a p(o)-sequence, and let p(o)-LCS denote the variant
of LCS that operates over p(o)-sequences for an o specified in the input; note that
p(1)-LCS is equivalent to p-LCS when o = 1 and to LCS when o = n.

To show these results, we can use any one of several LCS algorithms whose run
times are low when the number of occurrences of each symbol of � in each string of
S is small [2,26]. These algorithms restrict the portions of the dynamic programming
table that they explore by focusing on match points. A match point of a set S of k
strings is a vector (i1, i2, . . . , ik) such that s1[i1] = s2[i2] = . . . = sk[ik] (i.e., entries
in the dynamic programming table whose entries are filled in using the second clause
of the LCS recurrence given in Section 2.5.1). Note that match points correspond to
possible elements in a longest common subsequence. The algorithms in [26] and [2]
essentially encode sequences of match points (i.e., common subsequences), for S in
a search tree and a deterministic finite automaton, respectively, and find the longest
common subsequences by traversals of the graphs associated with these structures.
If P is the set of match points for a set S of strings, then the algorithm in [26]
runs in O(k|�||P|) time and O(|P|+kn|�|) space, and the algorithm in [2] runs in
O(kn|�| log n + |P|) time and O((k + |�|)n + |P|) space.

Observe that in a set S of k p(o)-sequences, there can be at most |�|ok match
points. Therefore, general p-LCS is solvable in polynomial time and p(o)-LCS is
solvable in polynomial time when k and o are small constants. That being said, it is
important to note that in the worst case in which all strings in S are length-n strings
over a single symbol (e.g., aaaaaaaa . . . aaa), |P| = O(nk) and both of these algo-
rithms have time-complexities that are comparable with or even slightly worse than
the general dynamic programming algorithm for LCS.

2.5.4 Discussion

Table 2.2 summarizes known parameterized results for Longest Common Subse-
quence, considering parameters of input sequence length, desired LCS length, and
number of input sequence, all with respect to different potential restrictions on the
alphabet size. The lone remaining open question is the parameterized complexity of

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.6 COMMON APPROXIMATE SUBSTRING 41

Table 2.2 The parameterized complexity of Longest Common Subsequence

Alphabet Size |�|
Parameter Unbounded Parameter Constant

– NP-hard �∈ XP NP-hard
k W [t]-hard for t ≥ 1 W [t]-hard for t ≥ 1 W [1]-hard
l W [2]-hard FPT FPT
n ??? FPT FPT

〈n〉-LCS, which would allow for many short sequences of unbounded alphabet to be
compared and their LCS found.

The previous subsections have demonstrated several exact albeit exponential-time
algorithms for LCS. Observe that even though some of these algorithms have very
low run times on particular special cases of LCS, all (with the exception of the
subsequence enumerate-and-check algorithm) have run times of O(nk) or greater in
the worst case. It is tempting to hope that so-called subexponential algorithms with
O(no(k)) running times4 (e.g., O(n

√
k), O(nlog log k)), exist for LCS. However, several

recent results make this extremely unlikely, that is,

� When � is an alphabet of fixed size, LCS is not solvable in f (k)no(k) time for
any function f unless the exponential time hypothesis is false [11].

� LCS is not solvable in f (l)no(l) time for any function f unless the exponential
time hypothesis is false [27, theorem 5].

Note that these results do not forbid exponential-time algorithms whose run
times have exponents that are functions of k and/or l and other parameters (e.g.,
O(n|�| log k), O(nlog k

√
l)), or have bases other than n (i.e., O(|�|k), O(kl)). However,

these results do suggest that dramatic improvements in general LCS algorithm run-
times will not be forthcoming from the current dynamic programming/edit graph
framework, and that future exact algorithm development efforts for LCS (and se-
quence alignment in general) should explore other options.

2.6 COMMON APPROXIMATE SUBSTRING

The most basic formal computational problem associated with sequence consensus
is the following:

Common Approximate Substring (CASub(dst))
Input: A set S = {s1, s2, . . . , sk} of k strings over an alphabet |�| and positive integers
l and d .

4In o()-notation, o(g(n)) is the set of functions f (n) that are asymptotically strictly less than g(n) (i.e.,
limn→∞ f (n)

g(n) = 0 (cf. Footnote 1)).

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

42 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

Output: The string s ′ of length l such that for every string s in S, there is an length l
substring s ′′ of s such that dst(s ′, s ′′) ≤ d .

dst() is a distance-measure function on pairs of strings. Here we will consider the
most common of such measures, Hamming distance and edit distance, and their
associated problems (CASub(H) and CASub(E)). In an optimization model, with
minimizing distance as the objective, the CASub problem also is known as closest
substring.

In typical instances of sequence consensus, the sequence-alphabet is of small
fixed size (i.e., has |�| = 4 for DNA and RNA sequences and |�| = 20 for pro-
tein sequences) the number of sequences k can vary from two to several hundred,
the requested substring length can vary from ≤ 25 to n, and the maximum sequence-
length (denoted by n = maxs∈S |s|) varies from several hundred to several million.
This suggests that algorithms that are efficient relative to restrictions on any of these
parameters would be of use. However, known intractability results suggest that under
many restrictions, polynomial-time efficiency is probably not possible, that is,

� CASub(H) is NP-hard when |�| ≥ 2 [21].
� 〈k, l, d〉-CASub(H) is W [1]-hard [18, Theorem 13]; see also [19, Theorem 1].
� 〈l, d〉-CASub(H) is W [2]-hard [18, Theorem 15].
� 〈k, |�|〉-CASub(H) is W [2]-hard [18, Theorem 20].
� 〈k, d〉-CASub(H) is W [1]-hard when |�| = 2 [34, Theorem 6.1].
� 〈k〉-CASub(H) is W [1]-hard when |�| = 2 [19, Theorem 2].

These hardness results also hold for the arbitrary edit distance cases (E) because
Hamming distance is still a potential edit distance. It also may be tempting to con-
sider solution substrings whose lengths are within a small multiplicative factor of the
length of the longest substring. Though such approximate substrings can be derived
in polynomial time within any constant degree of accuracy [31], the run times are
impractical for useful degrees of accuracy; moreover, it is not possible to reduce this
run time to make such schemes practical [53]. However, as we will discuss, there yet
may be acceptable exact algorithms for special cases.

In the remainder of this section, we will look at algorithms for solving the gen-
eral common approximate substring problem (Section 2.6.1) and the special case in
which all strings in S and the returned string are of the same length (Section 2.6.2).

2.6.1 Solving the General Problem

Because of the intractability results, all known exact algorithms run in exponential
time. Furthermore, the parameterized hardness results necessitate the inclusion of
either the input sequence length n or both the desired substring length l and the
alphabet size |�| in the parameter to have tractable results. Indeed, the number of
input sequences k has little effect on the problem’s hardness, though if limited, it can
be added to other parameters to yield a faster algorithm.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.6 COMMON APPROXIMATE SUBSTRING 43

Algorithmic strategies for exactly solving CASub are of three types:

1. Enumerate all |�|l strings of length l and check whether each such string is a
substring of every string in S; return the substring with the smallest maximum
distance from strings in S (or, potentially, all strings that appear in each string
in S).

2. Starting from a short string occurring as a substring of one of the strings in
S, consider it as a potential CASub result. Gradually modify this string (or
another starting string) to accommodate other substrings that are sufficiently
close to the developing result until a substring of all strings in S is found.

3. Combine techniques 1 and 2 first to develop gradually a potential common ap-
proximate substring and then search its close relatives to adapt it to accommo-
date other strings. This type of technique often can focus on a limited number
of nonidentical columns.

The naive search algorithm applying the first strategy solves 〈|�|, l〉-CASub(H) in
O(|�|l knl) time and O(kn) space [18, Theorem 10(1)]. The modification strategies
(strategies 2 and 3) produce a variety of results depending on how the substring is de-
veloped and how much of a neighborhood of the developing substring is considered.

For example, the develop center algorithm that implements the second strat-
egy [18, Theorem 10(2)] works by considering each substring of length l of an ar-
bitrary initial string as an instance C of a potential common approximate substring.
Because it could have up to d mismatches, all possible

(l
d

)
selections of d positions

in the substring are tried. For each combination, the d positions are replaced by a
special blocking character (�∈ �), with the remaining unblocked positions occurring
exactly in the developing substring. The other strings si in S are considered in turn;
if C is within distance d of a substring of si , then C can continue in its current
form. If instead there are no substrings of si within distance d from C , then all sub-
strings of si within distance 2d are considered, and new alternative substrings C ′

are created from C by substituting for a minimal number of blocked positions. This
process is repeated for each developing substring and each string si . If the develop-
ing process uses all of S for a developed substring, then it reports this substring as
a result.

This algorithm solves 〈n〉-CASub(H) in O(n2k
(l

d

)
(
(d

d/2

)
n)d) time [18, Theorem

10(2)]. Of particular note in this result is the complete absence of the alphabet size
|�| from the running time; the time is also only linearly dependent on the number of
input strings k, so it would be the most suitable for applications with a large number
of short input strings over an unrestricted (or less restricted) alphabet. It would not
be particularly appropriate for DNA or RNA sequences in which the alphabet is very
small.

Several different data organization techniques are used to enable algorithms to
find similar substrings efficiently and narrow the search of the string neighborhood
that they define. These searches often are dependent on the size N of a substring’s
neighborhood, where N = �d

i=1

(l
i

)
(|�| − 1)i . Suffix trees are used and traversed by

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

44 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

Sagot [49] to restrict motif search to O(lk2nN) time and O(lk2n) space. A modifica-
tion of suffix trees to allow errors is used to produce an approximate neighborhood
tree of common approximate occurrences by Evans and Smith [17] to enumerate all
possible CASub results in O(lknN) time and O(lkn) space.

Davilla et al. [13] introduce a set of related algorithms that organize their data in
lists of the neighboring strings that are kept in lexicographic order and intersected.
The neighborhoods are reduced by limiting the search to substrings that are within
distance 2d of each other because only those substrings can have a common neighbor
within distance d. This algorithm exploits the computer’s word length w as part of a
radix sort, and runs in O(kn2 + l

w
N S) time and O(kn2) space, where S is the sum,

over all k
2 pairs of consecutive input strings and of the number of substring pairs (one

from each string) that are within distance 2d. [13]. This algorithm also is extended
using a branch-and-bound approach to run more efficiently in practice.

Although these results are sufficient to resolve the parameterized complexity of
all parameter combinations and provide some different tradeoffs between the pa-
rameters, incorporating additional parameters greatly can improve the best known
running times for algorithms that solve the problem, and they can be exploited by
different data organization and search space-narrowing techniques. Marx [34] de-
veloped two different techniques for motif search using 〈|�|, n, d〉 as parameters,
with the second technique also including k as part of the parameter for additional
efficiency. Without limiting k, a common approximate substring can be found by
considering the substrings of strings in S that generate it by their identical posi-
tions; all length l substrings occurring in S are considered, and Marx proved that
considering only substring subsets of size ≤ log2 d + 2 are sufficient to generate any
possible common approximate substring (if one exists). The remaining positions in
the solution can be found through exhaustive search, yielding an algorithm that runs
in O(|�|d(log d+2)nlog d+O(1)) time [34, Theorem 2.3].

Ma and Sun reduce this running time by providing a O(kl + kd24d |�|dn�log d�+1)
time [32, Theorem 2] algorithm, which operates by repeatedly modifying an arbi-
trarily chosen substring, defining some positions as error-free and searching through
other possible characters for the remaining positions.

Faster techniques are possible if k is also limited and included in the parameter.
For this situation, Marx [34] builds a hypergraph with the l possible positions in a
substring as its vertices; a hyperedge is added for each substring s′

i , linking those
positions in that substring that are different from a selected base substring s′

1. Each
substring occurring in s1 is used in turn as the base substring for constructing such a
hypergraph. A common approximate substring can be found by considering all oc-
currences of half-covering subhypergraphs, which are constant in number and each
have a O(log log k) fractional cover number. Their enumeration then solves the prob-
lem in O((|�|d)O(kd)nO(log log k)) time [34, Theorem 4.5].

2.6.2 Special Case: Common Approximate String

For many applications of sequence consensus in computational biology, the entirety
of each input sequence needs to be covered by a full-length consensus sequence. This

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

2.6 COMMON APPROXIMATE SUBSTRING 45

restriction of l = n produces a well-investigated special case of CASub, Common
Approximate String (CAStr), better known by its optimization name Closest String.
As with CASub, CAStr can incorporate different distance measures including Ham-
ming distance (H) and edit distance (E). This restriction on the problem makes all
parameterized variants that include either d or k as a parameter tractable for CAStr
under Hamming distance despite the intractability of the corresponding CASub vari-
ants. Some intractability results, however, still hold, especially if an arbitrary edit
distance is to be used, that is

� CAStr(H) is NP-hard when |�| ≥ 2 [21].
� CAStr(E) is NP-hard when |�| ≥ 2 [41, Theorem 3]; result also holds under

arbitrary weighted edit distance [41, theorem 6]
� 〈k〉-CAStr(E) is W [1]-hard when |�| ≥ 2 [41, Theorem 3]; result also holds

under arbitrary weighted edit distance [41, theorem 6]

Though 〈d〉-CASub is W [1]-hard, the corresponding variant of CAStr is in FPT
for Hamming distance. Gramm et al. use a linear search tree to solve this problem in
O(kn + kdd+1) time [24, Theorem 1]. In this strategy, a consensus string is searched
for by repeatedly picking a string that is not sufficiently close to the current prospec-
tive solution and then modifying the solution to bring the string into the neighbor-
hood. They also show that 〈k〉-CAStr(H) is FPT by describing how to construct an
integer linear program with no more than B(k) × k variables, where B(k) < k! is
the kth Bell number. Although the running time grows very quickly with respect to
k, it is however linear with respect to the input size [24, Theorem 4]. Restricting l,
potentially useful for arbitrarily sized alphabets, has the effect of restricting d, so
CAStr(H) is thus fixed-parameter tractable for all parameters except |�| alone.

Adding |�| to the parameter enables a faster algorithm for those cases in which
the alphabet is small. Ma and Sun [32] use a similar technique for CAStr as they
do for CASub; indeed, the CAStr algorithm forms the basis for their CASub al-
gorithm that also needs to consider different substrings of the input strings. Elimi-
nating this need greatly simplifies the running time needed, making the result only
linearly dependent on the string length n, thus yielding an algorithm that runs in
O(nk + kd(16|�|)d) time [32, Corollary 1].

2.6.3 Discussion

Table 2.3 summarizes the known parameterized results for Common Approximate
Substring. Most work so far has focused on the Hamming distance versions of these
problems; these results should be used as a basis for further exploration of more
general edit distance, likely considering different restrictions on distance such as
metrics. The work of [32,34] also could be extended to find faster algorithms for the
variants known to be in FPT and for even faster algorithms when additional problem
aspects can be restricted and included in the parameter. Note, however, that there are
known limitations on such algorithm development, as there are no f1(k, d)no(log d)

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

46 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

Table 2.3 The parameterized complexity of Common
Approximate Substring

Alphabet Size |�|
Parameter Unbounded Parameter Constant

– NP-hard �∈ XP NP-hard
k W [2]-hard W [2]-hard W [1]-hard
d W [2]-hard W [1]-hard W [1]-hard
l W [2]-hard FPT FPT
n FPT FPT FPT

or f2(k, d)no(log log k) time algorithms for CASub(H) unless the exponential time hy-
pothesis fails [34, Corollary 6.8].

As for CAStr, CAStr(H) inherits FPT results from CASub(H) and has additional
FPT results for parameters that make CASub(H) intractable, completing CAStr(H)’s
parameterized complexity map. Many of these algorithms, however, have high expo-
nential functions of the parameter, so further development is needed to produce use-
ful algorithms. Examining CAStr relative to more general edit distances also should
produce interesting results.

2.7 CONCLUSION

The results outlined in the preceding sections show that fixed-parameter algorithms
and other special cases can solve problems that generally are considered intractable,
providing solutions that are consistent with the problems in computational biology
to which the theoretical problems are applied.

Parameterized results are usually only a starting point for research. Once a variant
has been shown to be in FPT for its parameter set, the algorithm usually can be made
more efficient through incorporating additional fixed-parameter techniques. The de-
velopment of better algorithms for Common Approximate Substring as described in
Section 1.6.1 is a good example of this type of work; these algorithms also show that,
when multiple characteristics of the problem are included in the parameter, different
approaches and their respective parameter tradeoffs may be more or less appropri-
ate depending on the parameter restrictions and values characteristic of the specific
applications. Regardless of such parameterized efforts, it is critical that work also
be done on restricted special cases characterized by structural restrictions because
some problem characteristics cannot be captured well or at all by parameterized
restrictions.

The work presented in this chapter demonstrates how application-focused prob-
lem analysis has been successful at finding tractable and useful special cases for
basic sequence problems. Given this success, this work should be continued for the
problems discussed here and, perhaps more importantly, extended to other problems
in computational biology.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

REFERENCES 47

REFERENCES

1. R. Arratia, D. Martin, G. Reinert, and M.S. Waterman. Poisson process approximation for
sequence repeats, and sequencing by hybridization. J Comput Biol, 3:425–464, 1996.

2. R. Baeza-Yates. Searching subsequences. Theor Comput Sci, 78:363–376, 1991.

3. M. Barsky, U. Stege, A. Thomo, and C. Upton. Shortest path approaches for the longest
common subsequence of a set of strings. Proceedings of the 7th International Symposium
on Bioinformatics and Bioengineering (BIBE’07), IEEE Computer Society, New York,
2007, pp. 327–333.

4. S. Bereg, M. Kubica, T. Walent, and B. Zhu. RNA multiple structural alignment with
longest common subsequences. J Combin Optim, 13(2):178–188, 2007.

5. L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence algo-
rithms. Proceedings of the 7th International Symposium on String Processing Information
Retrieval (SPIRE’00), IEEE Computer Society, New York, 2000, pp. 39–48.

6. J. Błazewicz, P. Formanowicz, M. Kasprzak, W.T. Markiwicz, and J. Weglarz. DNA se-
quencing with positive and negative errors. J Comput Biol, 6(1):113–123, 1999.

7. J. Błazewicz and M. Kasprzak. Complexity of DNA sequencing by hybridization. Theor
Comput Sci, 290:1459–1473, 2005.

8. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation of shortest
superstrings. J ACM, 41(4):630–647, 1994.

9. H.L. Bodlaender, R.G. Downey, M.R. Fellows, M.T. Hallett, and H.T. Wareham. Param-
eterized complexity analysis in computational biology. Comput Applic Biosci, 11(1):49–
57, 1885.

10. H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H.T. Wareham. The parameterized
complexity of sequence alignment. Theor Comput Sci, 147:31–54, 1994.

11. J. Chen, X. Huang, I. Kanj, and G. Xia. W-hardness linear FPT reductions: structural
properties and further applications. Proceedings of the 11th International Computing and
Combinatorics Conference (COCOON 2005), Lecture Notes in Computer Science no.
3595, Springer, New York, 2005, pp. 975–984.

12. K.M. Chao, W.R. Pearson, and W. Miller. Aligning two sequences within a specific diag-
onal band. Comput Applic Biosci, 8:481–487, 1992.

13. J. Davilla, S. Balla, and S. Rajesakaran. Fast and Practical Algorithms for Planted (l, d)
Motif Search. IEEE/ACM Trans Comput Biol Bioinform, 4(4):544–552, 2007.

14. W.H.E. Day and F.R. McMorris. The computation of consensus patterns in DNA se-
quences. Math Comput Model, 17:49–52, 1993.

15. R. Downey and M. Fellows. Parameterized Complexity. Springer, New York, 1999.

16. M. Dyer, A. Frieze, and S. Suen. The probability of unique solutions of sequencing by
hybridization. J Comput Biol, 1:105–110, 1994.

17. P.A. Evans and A.D. Smith. Toward optimal motif enumeration. Proceedings of the 8th
International Workshop on Algorithms and Data Structures (WADS 2003) Lecture Notes
in Computer Science no. 2748, Springer, New York, 2003, pp. 47–58.

18. P.A. Evans, A.D. Smith, and H.T. Wareham. On the complexity of finding common ap-
proximate substrings. Theor Comput Sci, 306:407–430, 2003.

19. M.R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif
search problems. Combinatorica, 26(2):141–167, 2006.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

48 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY

20. M.R. Fellows, M.T. Hallett, and U. Stege. Analogs & duals of the MAST problem for
sequences and trees. J Algorithm, 49:192–216, 2003.

21. M. Frances and A, Litman. On covering problems of codes. Theor Comput Syst, 30(2):
113–119, 1997.

22. J. Gallant, D. Maier, and J.A. Storer. On finding minimal length superstrings. J Comput
Syst Sci, 20:59–58, 1980.

23. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1999.

24. J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for Closest
String and related problems. Algorithmica, 37:25–42, 2003.

25. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, Cambridge, UK, 1997.

26. W.J. Hsu and M.W. Du. Computing a longest common subsequence for a set of strings.
BIT, 24:45–59, 1984.

27. X. Huang. Lower Bounds and Parameterized Approach for longest Common Subse-
quence. Proceedings of the 12th International Conference on Computing and Combi-
natorics (COCOON 2006), Lecture Notes in Computer Science no. 4112, Springer, New
York, 2003, pp. 136–145.

28. R.W. Irving and C.C. Fraser. Two algorithms for the longest common subsequence of
three (or more) strings. Proceedings of the 4th Annual Symposium on Combinatorial Pat-
tern Matching (CPM’93), Lecture Notes in Computer Science no. 644, Springer, New
York, 2003, pp. 214–229.

29. T. Jiang and M. Li. On the Approximation of Shortest Common Supersequences and
Longest Common Subsequences. SIAM J Comput, 24(5):1122–1139, 1995.

30. T. Jiang, M. Li, and Z.-z. Du. A note on shortest superstrings with flipping. Inf Process
Lett, 44:195–199, 1992.

31. M. Li, B. Ma, and L. Wang. On the Closest String and Substring Problems. J ACM, 49(2):
151–171, 2002.

32. B. Ma and X. Sun. More Efficient Algorithms for Closest String and Substring Problems.
Proceedings of the 12th Annual International Conference on Research in Computational
Biology (RECOMB 2008), Lecture Notes in Computer Science no. 4955, Springer, New
York, 2008, pp. 296–409.

33. D. Maier. The complexity of some problems on subsequences and supersequences. J
ACM, 25:322–336, 1978.

34. D. Marx. The Closest Substring problem with small distances. Proceedings of the 46th
Annual Symposium on Foundations of Computer Science (FOCS 2005), IEEE Computer
Society, 2005, pp. 1–10.

35. P. Medvedev, K. Georgiou, G. Myers, and M. Brudno. Computability of models for se-
quence assembly. Proceedings of the 7th International Workshop on Algorithms in Bioin-
formatics (WABI 2007), Lecture Notes in Computer Science no. 4645, Springer, New
York, 2007, pp. 289–301.

36. M. Middendorf. More on the complexity of common superstring and supersequence prob-
lems. Theor Comput Sci, 125:205–228, 1994.

37. M. Middendorf. Shortest common superstring and scheduling with coordinated starting
times. Theor Comput Sci, 191:205–214, 1998.

38. W. Miller and E.W. Myers. A file comparison program. Software—Pract Exp, 15(1):
1035–1040, 1985.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

REFERENCES 49

39. B.M.E. Moret, J. Tang, and T. Warnow. Reconstructing phylogenies from gene-content
and gene-order data. In O. Gascuel editor, Mathematics of Phylogeny and Evolution. Ox-
ford University Press, New York, 2004.

40. E.W. Myers. The fragment assembly string graph. Bioinformatics, 21(Sup2), ii79–ii85,
2005.

41. F. Nicolas and E. Rivals. Hardness results for the center and median string problems under
the weighted and unweighted edit distances. J Discrete Algorithm, 3:390–415, 2005.

42. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, New
York, 2006.

43. K. Ning, H. Kee Ng, and H. Wai Leong. Finding patterns in biological sequences by
longest common subsequences and shortest common supersequences. Proceedings of the
6th International Symposium on Bioinformatics and Bioengineering (BIBE’06), IEEE
Computer Society, New York, 2006, pp. 53–60.

44. S. Ott. Bounds for approximating shortest superstrings over an alphabet of size 2. Pro-
ceedings of the 25th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’99), Lecture Notes in Computer Science no. 1665, Springer, New York,
1999, pp. 55–64.

45. P.A. Pevzner. Multiple alignment, communication cost, and graph matching. SIAM J Appl
Math, 52:1763–1779, 1992.

46. P.A. Pevzner, H. Tang, and M.S, Waterman. An Eulerian path approach to DNA fragment
assembly. Proc Natl Acad Sci, 98:9748–9753, 2001.

47. K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest common su-
persequence and longest common subsequence problems. J Comput Syst Sci, 67:757–771,
2003.

48. M. Pop. Genome assembly reborn: recent computational challenges. Briefings Bioinf,
10(4):354–366, 2009.

49. M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. Pro-
ceedings of the Third Latin American Symposium on Theoretical Informatics Lecture
Notes in Computer Science no. 1390, Springer, New York, 1998, pp. 374–390.

50. Z. Sweedyk. A 2 1
2 -approximation algorithm for shortest superstring. SIAM J Comput,

29(3):954–986, 1999.

51. V.G. Timkovskii. Complexity of common subsequence and supersequence problems and
related problems. Cybernetics, 25:565–580, 1990; translated from Kibernetica, 25:1–13,
1989.

52. V. Vassileska. Explicit inapproximability bounds for the shortest common superstring
problem. Proceedings of the 30th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 2005), Lecture Notes in Computer Science no. 3618,
Springer, New York, 2005, pp. 793–800.

53. J. Wang, J. Chen, and M. Huang. An improved lower bound on approximation algorithms
for the Closest Substring problem.” Inf Process Lett, 107:24–28, 2008.

54. M.S. Waterman. Introduction to Computational Biology. Chapman and Hall, New York,
1995.

55. S. Wu, U. Manber, G. Myers, and W. Miller. An O(NP) sequence comparison algorithm.
Inf Process Lett, 35:317–323, 1990.

P1: OSO
c02 JWBS046-Elloumi December 2, 2010 9:36 Printer Name: Sheridan

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3
FINITE AUTOMATA IN
PATTERN MATCHING

Jan Holub

3.1 INTRODUCTION

Stringology is a part of computer science dealing with processing strings and se-
quences. It finds many important applications in various fields used by information
society. Biological sequences processing is one of the most important fields. How-
ever, the finite automata theory is a well-developed formal system used for a long
time in the area of compiler construction.

The chapter aims to show various approaches of the finite automata use in
stringology. The approaches are demonstrated on practical examples. Of course, it
is impossible to describe all approaches, as it would be out of scope of the chapter.
However, we would like to present basic approaches that the reader can modify and
combine to a given task.

The following four kinds of finite automata use were identified in the area of
stringology:

1. A direct use of deterministic finite automata (DFA)

2. A simulation of nondeterministic finite automata (NFA)

3. A use of finite automata as a model for computation

4. A composition of various automata approaches for particular subproblems

The direct use of DFA is used in case of pattern matching automata when a DFA is
built over the given pattern and then a text is given as an input to the DFA (the pattern

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

51

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

52 FINITE AUTOMATA IN PATTERN MATCHING

is preprocessed). One also can construct a DFA over a given text and a pattern is given
as an input of DFA, which is the case of factor automata (providing a complete index
of the text; the text is preprocessed). Which of these approaches is used depends on
the real task and what data we have in advance.

If the pattern matching DFA is too large, then one can use the NFA simulation.
Three simulation methods are presented: basic simulation method (BSM), bit paral-
lelism (BP), and dynamic programming (DP). BSM is a general simulation method
that works for any NFA. BP and DP improve running times of BSM in a special case
when NFA has a regular structure (like in pattern matching).

When an NFA is constructed for a given task and then determinized, the structure
of the resulting DFA can bring answers to some questions. Particularly, so-called
d-subsets are studied for identifying both exact and approximate repetitions.

More and more complicated problems appear in stringology. If we can decompose
such a complicated problem into simple subproblems and solve these subproblems
by automata approaches, then we can build the resulting solution as a composition
of solutions of the subproblems.

3.1.1 Preliminaries

Let � be a nonempty input alphabet, �∗ be the set of all strings over �, ε be the
empty string, and �+ = �∗ \ {ε}. If a ∈ �, then a = � \ {a} denotes a complement
of a over �. If w = xyz, x, y, z ∈ �∗, then x, y, z are factors (substrings) of w;
moreover, x is a prefix of w and z is a suffix of w.

NFA is a 5-tuple (Q, �, δ, q0, F), where Q is a set of states, � is a set of input
symbols, δ is a mapping Q × (� ∪ {ε}) �→ 2|Q|, q0 is an initial state, and F ⊆ Q is a
set of final (accepting) states. DFA is NFA, where δ is a mapping Q × � �→ Q.
We can extend δ to δ̂ mapping Q × �∗ �→ 2|Q| for NFA or Q × �+ �→ Q for
DFA, respectively. DFA (respectively, NFA) accepts a string w ∈ �∗ if and only
if δ̂(q0, w) ∈ F (respectively, δ̂(q0, w) ∩ F 	= ∅). The set of all strings accepted by
automaton M is the language of automaton denoted by L(M). For more details
see [3].

If P ⊆ Q, then for NFA, we define εCLOSURE(P) = {q ′ | q ′ ∈ δ̂(q, ε), q ∈
P} ∪ {P}. In other words, εCLOSURE(P) contains all states accessible from states
in P using only ε-transitions.

An active state of NFA, when the last symbol of a prefix w of an input string is
processed, denotes each state q, q ∈ δ̂(q0, w). At the beginning, only q0 is an active
state.

A depth of state q in NFA is the minimum number of moves that are needed to
get from an initial state q0 to this state q without using ε-transitions. A level of state
q in NFA is the minimum among the numbers of differences (errors) associated with
all final states reachable from q. In the figures of this chapter, the states of the same
depth are in the same column, and the states of the same level are in the same row.

An algorithm A simulates a run of an NFA; if ∀w, w ∈ �∗, then it holds that A
with given w at the input reports all information associated with each final state q f ,
q f ∈ F , after processing w if and only if q f ∈ δ̂(q0, w).

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3.2 DIRECT USE OF DFA IN STRINGOLOGY 53

Table 3.1 Basic classification of pattern matching algorithms using finite automata

Text

Not Preprocessed Preprocessed

Pattern Not Preprocessed Elementary algorithm Suffix, factor, and oracle
automata

Preprocessed Pattern matching automata Intersection of automata

For measuring the similarity of two strings v,w ∈ �∗, we use edit distance
D(v,w) defined as the minimum number of edit operations needed to convert v to
w. We distinguish three edit distances:

1. Hamming distance [18] DH , which allows the edit operation replace

2. Levenshtein distance [33] DL , which allows replace, insert, and delete

3. Damerau distance [15] (also called generalized Levenshtein distance) DD ,
which allows replace, insert, delete, and transpose. Each symbol of v can par-
ticipate at most in one edit operation transpose.

In exact string matching, one can look at the automata solutions used according
to a preprocessing text and/or pattern as shown in Table 3.1. When neither pattern
nor text is preprocessed, an elementary (naive) search is performed employing a lot
of comparisons. If we preprocess the pattern, then we get classical pattern matching
automaton running on the input text. On the other hand, if we preprocess the text,
then we get suffix, factor, or oracle automata. If we consider preprocessing both the
pattern and the text, then we get two automata (one for pattern, one for text) and
we try to find the so-called intersection automaton (approach number 4). The previ-
ously mentioned approaches can be applied also to the approximate string matching;
however, the complexity then rises.

3.2 DIRECT USE OF DFA IN STRINGOLOGY

3.2.1 Forward Automata

Traditional finite automata are accepting automata. They read whole input text w,
and then text w is accepted (verified) if the finite automaton reaches a final state.
In other words, w is in the set of strings (called language) accepted by the finite
automaton. In addition, pattern matching automaton (see Figure 3.1) has been de-
signed in stringology. It traverses the input text w and reports each location of
a given pattern p (i.e., the finite automaton accepts language L = {up | u ∈ �∗},
checking any prefix of w). So in each step, the pattern matching automaton checks
whether a final state is reached. The verification (accepting) automaton performs the
check only once at the end of the text traversal. From the biology point of view,

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

54 FINITE AUTOMATA IN PATTERN MATCHING

aa c
0 1 2 3

ā a

c

a

ā

ā ∩ c̄

Figure 3.1 DFA for the exact string matching (p = aca).

Σ

aa c
0 321

Figure 3.2 NFA for the exact string matching (p = aca).

the text may be a DNA sequence (alphabet � is then {a, c, g, t}), and the pattern
may be a gene we would like to find in the DNA sequence. The text and pattern
also may be build over the symbols representing amino acids. The alphabet is then
� = {g, a, v, l, i, p, f, y, c, m, h, k, r, w, s, t, d, e, n, q, b, z}.

One easily can construct an NFA first (see Figure 3.2) and transform it into the
equivalent DFA using the standard subset construction [26, 30]. The determinization
runs in time O(|QDFA||QNFA||�|), where |QNFA| and |QDFA| are numbers of states of
the NFA and the resulting DFA, respectively. The direct DFA construction algorithm
also exists [12] (see Algorithm 3.1), running in time O(m|�|), where m is the length
of the pattern.

Algorithm 3.1 (Construction of DFA for the exact string matching)
Input: Pattern p = p1 p2 . . . pm .
Output: DFA M accepting language L(M) = {wp | w ∈ �∗}.
Method: DFA M = ({q0, q1, . . . , qm}, �, δ, q0, {qm}), where the mapping δ is
constructed as follows:

for each a ∈ � do
δ(q0, a) ← {q0} /∗ self-loop of the initial state ∗/

endfor
for i ← 1, 2, . . . , m do

r ← δ(qi−1, pi)
δ(qi−1, pi) ← qi /∗ forward transition ∗/
for each a ∈ � do

δ(qi , a) ← δ(r, a)
endfor

endfor

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3.2 DIRECT USE OF DFA IN STRINGOLOGY 55

Σ

aa c
0 321

ΣΣ

Figure 3.3 NFA for the exact sequence matching (p = aca).

Well, the pattern does not need to be a solid string. One can consider pattern p =
p1 p2 . . . pm as a sequence. Thus, one searches for all occurrences of p in input text
w where any number of symbols are inserted between any adjacent pattern symbols
pi and pi+1. The NFA for exact sequence matching can be constructed easily from
the NFA for exact string matching by inserting a self loop labeled by � (matching
any symbol of alphabet) to any nonfinal state as shown in Figure 3.3. The self-loop
skips those inserted symbols.

In biology, when we search for genes, we actually search for a sequence of ex-
ons (coding sequences) while skipping introns (noncoding sequences) by self-loops
labeled by � labels. The NFA for a gene searching is shown in Figure 3.4. The gene
consists of three exons aca, tag, and gaa.

Another extension is approximate string matching in which we allow up to k er-
rors where k is given. The errors can be introduced by edit operations replace, delete,
insert, and transpose. Let us consider just replace, insert, and delete, which are the
base for the Levenshtein distance. The corresponding approximate string matching
NFA for pattern p is constructed as k + 1 copies (M0, M1, . . . , Mk) of exact string
matching automaton for pattern p: one for “no error” (level 0), one for “one error”
(level 1), . . . , one for “k errors” (level k). These k + 1 automata are connected by the
transitions representing edit operations.

Each transition for replace is labeled by symbol p j+1 (mismatching symbol p j+1

in pattern p) and leads from state q j of automaton Mi to state q j+1 of automa-
ton Mi+1, 0 ≤ i < k, 0 ≤ j < m; the depth j in the automaton (corresponding to
a pointer in the pattern) is increased as well as the minimum number of errors. Each
transition for insert is labeled by symbol p j+1 and leads from state q j of automaton
Mi to state q j of automaton Mi+1, 0 ≤ i < k, 0 < j < m; the minimum number of
errors is increased, but the depth in automaton remains the same. Each transition for
delete is labeled by ε and leads from state q j of automaton Mi to state q j+1 of au-
tomaton Mi+1, 0 ≤ i < k, 0 ≤ j < m; the depth in automaton is increased as well as
the minimum number of errors, but no symbol is read from the input.

aa c
0 1 2 3

Σ

gt a
4 5

Σ

ag a
6 7 8 9

Σ

Figure 3.4 NFA for the exact gene matching (gene has three exons aca, tag, and gaa).

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

56 FINITE AUTOMATA IN PATTERN MATCHING

1110

5 876

43210

p3 p4

p4p3p2

p2 p3 p4

p4p3p2p1

p4p3p1

p2 p3

p3

p4

p4

p2p2

9

Figure 3.5 NFA for the approximate string matching using Levenshtein distance (m = 4, k = 2).

The initial state of such automaton is the initial state of automaton M0. Inacces-
sible states of the resulting automaton are removed. The resulting NFA is shown in
Figure 3.5.

After the determinization of this NFA, the resulting DFA may have up to
(k + 1)!(k + 2)m−2 states [34]. This gives us the memory complexity of DFA and
its preprocessing time. The following DFA run then has the time complexity linear
with the size of the input text. However, if the DFA is too large, then one has to use
a NFA simulation described in Section 3.3.

The previous NFA has the same weights of all edit operations. If the weights are
different integers, then we just need to reconnect the corresponding transitions to
states of corresponding levels.

3.2.2 Degenerate Strings

In bioinformatics, some positions of DNA are not determined precisely, or we do not
care which symbol of a subset of alphabet is present. The position simply matches
more than one symbol of alphabet. In such cases, we talk about a degenerate sym-
bol. Special symbols for those degenerate symbols (e.g., H matches a, c, or t) are
introduced in [39]. A string containing one or more degenerate symbols is called
a degenerate string. It also is called an indeterminate or a generalized string. For
example, isoleucine is the amino acid encoded by triplet at H .

NFA can handle degenerate symbols very easily. Instead of having a single match-
ing transition, we introduce one transition for each matching symbol as shown in
Figure 3.6. We usually collapse the parallel transitions into one transition labeled
by several symbols. For exact indeterminite string matching, a sublinear algorithm
exists [24].

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3.2 DIRECT USE OF DFA IN STRINGOLOGY 57

Σ

t

ca t
1 2 30

a

Figure 3.6 NFA searching all occurrences of isoleucine (p = atH).

Σ

a, c, g, tc

t

4 5

30
t

21
a, g

t

Figure 3.7 NFA searching all occurrences of leucine.

A single degenerate string cannot be used for all amino acids. For example,
leucine is encoded as “ct N and t t R” (i.e., “ct{a, c, g, t} and t t{a, g}”). If we en-
code it as Y t N = {t, c}t{a, c, g, t}, then it also covers phenylalanine encoded as
t tY = t t{c, t}. Thus, when searching for occurrences, we have to specify the pattern
as “ct N or t t R.” NFA solves this problem very easily as well. Using Thompson’s
construction [43], we get the NFA shown in Figure 3.7.

The same degenerate string approach can be used when searching for an amino
acid pattern in an amino acid text. For example, as isoleucine and leucine have the
same chemical properties, we may not care which actually is found on a given posi-
tion of the pattern.

So far, all algorithms presented were constructing NFA first, then converting it
into DFA, and finally running the DFA over the text in time O(n) where n is the
length of the input text. The preprocessing time (NFA construction and determiniza-
tion) and space is linear with the pattern size. For approximate pattern matching, the
preprocessing time and space is worse, as already stated.

3.2.3 Indexing Automata

Another approach used in stringology is to preprocess the text and not the pattern;
we build an automaton for the input text and give the pattern as an input to the finite
automaton. This is the case of factor and suffix automata1 [9, 10, 14]. We build a
suffix or factor automaton for a given text w, and then in m steps, we figure out

1This kind of automaton also is called directed acyclic word graph (DAWG). However, then it is not clear
whether DAWG is the suffix or the factor automaton.

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

58 FINITE AUTOMATA IN PATTERN MATCHING

compactionminimization

aca

a

aca

ca

ca

a

aa

a

c

ac

a

ca

c

a ac

ca, aca

aca

a
a

c a

c

a ca

minimizationcompaction

suffix automaton suffix tree

compact suffix automaton

suffix trie

Figure 3.8 Relation among suffix trie, suffix tree, suffix automaton, and compact suffix au-
tomaton (p = caaca).

whether a given pattern p of length m is a factor (substring) of text w. Therefore, the
automaton also is called indexing automaton (or complete index) of the text. This
process is a very efficient full-text searching in a collection of documents in which
the documents are given in advance while the pattern is provided at the moment when
we want to know in which documents it is located.

The suffix automaton is the minimal DFA accepting all suffixes of a given string
w. The factor automaton is the minimal DFA accepting all factors of w. However, the
suffix automaton is a little bit simpler to construct, and it also can identify all factors
of w. Therefore, the suffix automaton is used in practice. The suffix automaton has
at most 2n − 1 states [12].

Suffix trie and suffix tree are other indexing automata that are less space efficient.
However, the most space efficient is compact suffix automaton. Their mutual relation
is shown in Figure 3.8.

The most efficiently implemented data structure for indexing an input text is the
suffix tree by Kurtz [32], suffix automaton by Balı́k [8], and compact suffix automa-
ton by Holub and Crochemore [21]. The implementations of suffix automaton and
compact suffix automaton are very close in space requirements—ranges about 1–5
bytes2 per input symbol. However, the implementation of suffix automaton [8] is

2The value depends on the type of the input text.

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3.2 DIRECT USE OF DFA IN STRINGOLOGY 59

c

c
0 421

a
5

a
3

ca

a

Figure 3.9 Factor oracle (p = caaca).

focused on the smallest space used (using some compression techniques), the imple-
mentation of compact suffix automaton [21] is focused on the speed of traversing.

The next section describes even more compacted automaton called factor ora-
cle [4] (Figure 3.9).

3.2.4 Filtering Automata

One can use pattern matching DFA as a filter. An example of such technique is factor
oracle [4]—an automaton build over an input text w of size n. The factor oracle is
smaller than the factor automaton. It has only n + 1 states. However, in addition to
all factors of input text w, it also accepts some other strings as a penalty for only
n + 1 states. Therefore, the answer “no” means the pattern p is not a factor of w, and
the answer “yes” means “maybe,” so it should be verified.

3.2.5 Backward Automata

Backward matching algorithms align the pattern at the first possible position in the
text and start to compare the pattern and the text backward. If a mismatch is found,
then the pattern is shifted further and a new comparison begins. Thus, these methods
can achieve a sublinear time.

The first algorithm using this approach was the Boyer-Moore algorithm [11].
There are many variants of the algorithm like the Boyer-Moore-Horspool [27] or
the Boyer-Moore-Sunday [42], which perform a pure comparison, and the following
shift is done according to the last aligned symbol or the symbol after, respectively.

The suffix automaton can be applied to a pattern in backward matching as well. In
backward DAWG matching algorithm (BDM) [13], the reversed suffix automaton is
constructed for reversed pattern. Running the automaton backward identifies possible
prefixes that influence the next shift of the pattern. Nondeterministic automaton for
BDM called BNDM (backward nondeterministic DAWG matching; see Figure 3.10)
[38] and backward oracle matching (BOM) algorithm [4] also work backward and
they are very efficient. They use the bit parallel NFA simulation technique discussed
in Section 3.3.2.

c

c

c

5 34 1
a

0
a

2

a
a

ca

Figure 3.10 BNDM automaton (p = caaca).

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

60 FINITE AUTOMATA IN PATTERN MATCHING

c
0 1 2 4

a
5

a
3

a c

Figure 3.11 KMP automaton (p = caaca).

3.2.6 Automata with Fail Function

For all aforementioned finite automata, the DFAs are used. If we construct NFA, then
we have to transform it to the equivalent DFA. A special kind of DFA also is used in
stringology. Knuth-Morris-Pratt (KMP) type automaton [29]3 is a special DFA ex-
tended by fail function (see Figure 3.11). KMP does not have all outgoing transitions
defined (it is called not completely defined automaton). If the automaton should use
an undefined transition, then the fail function is used to switch the automaton into
another state. The fail function is used until we reach a state with the required tran-
sition defined. In the worst case, the initial state is reached in which the transitions
are defined for all symbols of the input alphabet. KMP automaton is very memory
efficient, it needs memory linear to the length of the pattern. KMP automaton is used
for exact string matching for one pattern. Aho-Corasick (AC) type automaton [2] is
an extension of KMP for a finite set of patterns.

3.3 NFA SIMULATION

DFA cannot always be used. Theoretically, we can face up to an exponential increase
of number of states when determinizing NFA. If the resulting DFA cannot fit into
memory, then we have to search for another approach. Thus, the NFA simulation is
used. Instead of determinizing, we traverse the NFA in width-first order with a goal
to reach a final state. The basic simulation method [19, 20] was designed for that
purpose. It was implemented using bit vectors.

For NFA with a regular structure, we also can use other simulation methods called
bit parallelism and dynamic programming. They improve time and space complexi-
ties; however, they cannot be used for general NFA.

NFA simulation runs slower than DFA, but it requires less memory. NFA sim-
ulation also is used when determinization would take too much time with respect
to the length of input text. A resolution system [25] was developed that for a given
stringology task recommends the most suitable method (DFA or one of simulation
methods).

To speed up the BSM, the deterministic state cache was implemented [22]. It com-
bines advantages of both DFA run and NFA simulation as shown in Section 3.3.4.

Once we know how to simulate NFA efficiently, we can use this approach for
other stringology tasks like BNDM [38] and BOM [4] for exact pattern matching.

3KMP automaton [29] is an optimized version of the original Morris-Pratt (MP) automaton [36].

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3.3 NFA SIMULATION 61

3.3.1 Basic Simulation Method

The basic simulation method maintains a set S of active states during the whole
simulation process. At the beginning, only the state q0 is active, and then we
evaluate ε-transitions leading from q0: S0 = εCLOSURE({q0}). In the i-th step
of the simulation with text t = t1t2 . . . tn on input (i.e., ti is processed), we com-
pute a new set Si of active states from the previous set Si−1 as follows: Si =⋃

q∈Si−1
εCLOSURE(δ(q, ti)). In each step, we also check whether Si = ∅ then the

simulation finishes (i.e., NFA does not accept t) and whether Si ∩ F 	= ∅, then we
report that a final state is reached (i.e., NFA accepts string t1t2 . . . ti). If each final
state has an associated information, then we report it as well.

This simulation is implemented by using bit vectors as described in [19]. This
implementation runs in time O(n|Q|� |Q|

w
�) and space O(|�||Q|� |Q|

w
�), where w is a

length of used computer word in bits, |Q| is a number of states of NFA, and n is a
length of the input string.

3.3.2 Bit Parallelism

The bit parallelism [16, 40, 6] is a method that uses bit vectors and benefits from the
feature that the same bitwise operations (or, and, add, . . . etc.) over groups of bits
(or over individual bits) can be performed at once in parallel over the whole bit vector
(see Figure 3.12). The representatives of the bit parallelism are Shift-Or, Shift-And,
and Shift-Add algorithms.

The simulation using the bit parallelism will be shown in a Shift-Or algorithm
that uses for each level (row) l, 0 ≤ l ≤ k, of states one bit vector Rl (of size m).
Each state of the level then is represented by one bit in the vector. If a state is active,

1110

5 876

43210

p3 p4

p4p3p2

p2 p3 p4

p4p3p2p1

p4p3p1

p2 p3

p3

p4

p4

p2p2

9

R0

R2

R1

Figure 3.12 Bit parallelism uses one bit vector R for each level of states of NFA.

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

62 FINITE AUTOMATA IN PATTERN MATCHING

then the corresponding bit is 0; if it is not active, then the bit is 1. We have no bit
representing q0, because this state is always active. Formula (3.1) shows, how the
vectors Rl

i = [rl
1,i , r l

1,i . . . rl
m,i] in the i th step are computed.

rl
j,0 ← 0, 0 < j ≤ l, 0 ≤ l ≤ k

rl
j,0 ← 1, l < j ≤ m, 0 ≤ l ≤ k

R0
i ← shr(R0

i−1) or D[ti], 0 < i ≤ n

Rl
i ← (shr(Rl

i−1) or D[ti]) /∗ match ∗/

and (shr(Rl−1
i−1) or not D[ti]) /∗ replace ∗/

and shr(Rl−1
i) /∗ delete ∗/

and (Rl−1
i−1 or not shl(D[ti]) or V), /∗ insert ∗/

0 < i ≤ n, 0 < l ≤ k

(3.1)

In the formula, shr() (respectively, shl()) is the bitwise operation right (respec-
tively, left) shift, ‘or’ (respectively, ‘and’) is the bitwise operation OR (respectively,
AND), and not() is a bitwise operation that exchanges 0s and 1s.

At the beginning, only the states of εCLOSURE({q0}) are active; therefore, the
first l bits are 0 in each vector Rl

0. The transitions representing matching are the
only transitions leading to the states of level 0. To simulate these transitions, we shift
vector Rl

i−1 to the right4—it is represented by term shr(Rl
i−1). The operation shr()

inserts 0 at the beginning of the vector, which implements the self-loop of the initial
state. At this moment, all active states moved to the right, and we have to select only
those transitions, which are labeled by ti . For this selection, we use table D of mask
vectors. The table D is defined as follows: D[x] = [d1,x d2,x . . . dm,x], x ∈ �, where
d j,x = 0, if p j = x , or 1, otherwise. When we execute the bitwise operation or over
the shifted vector and the mask vector D[ti], 1s is inserted in the positions where
the transitions are not labeled by ti . Thus, 0 remains only in such a position that the
previous position contained 0, and there is a transition match labeled by ti connecting
these two positions.

The term shr(Rl−1
i−1) or not ((D[ti])) represents replace. In this case, we shift the

vector from the previous level l − 1. Then we have to select the transitions labeled
by ti . While in transition match, these transitions correspond to the positions match-
ing the pattern; in case of transition replace, these transitions correspond to the posi-
tions mismatching the pattern. Therefore, we use mask vector not (D[ti]).

The term shr(Rl−1
i) represents delete. In this case, we shift the new value of the

vector from the previous level l − 1. We do not use any mask vector because we
implement ε-transitions, which always apply. We use the new value of Rl−1 because
no input symbol is read when ε-transitions are executed.

The term Rl−1
i−1 or not (shl(D[ti])) or V represents insert. We take the previous

value of vector Rl−1. Because each such transition is labeled by p j (i.e., mismatching
the label of the transition match leading from the same state), we use mask vector

4In practice, the Shift-Or algorithm has the right and left shifts exchanged because of easier implementa-
tion when the vectors are too long and have to be divided into several computer words.

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3.3 NFA SIMULATION 63

Table 3.2 Matrix D for pattern
p = atggca

D a g c t � \ {a, g, c, t}
a 0 1 1 1 1
t 1 1 1 0 1
g 1 0 1 1 1
g 1 0 1 1 1
c 1 1 0 1 1
a 0 1 1 1 1

D[ti]. We have to exchange 0 and 1 in the vector, but in addition, we have to shift
this vector in the opposite direction than we usually shift the vectors. It is because
we do not shift vector Rl−1

i−1 (it is a vertical transition that does not change a position
in the pattern), we must get the corresponding bits to the correct positions in this
way. Vector V = [00 . . . 01] is used to prevent insert transitions leading into the final
states.

All these terms are connected by bitwise operation and, which adds up all states
arriving along all the transitions leading to the same state. If the last bit of vector Rl

is 0, then the final state of level l is active. In this case, it means that the pattern has
been found with at most l differences.

Example:
Let p = atggca, t = atcagcaagatggca, and k = 3. Matrix D is shown in Table 3.2,
and Table 3.3 shows the simulation process of NFA run.

With the knowledge how bit parallelism simulates corresponding NFA, we could
modify easily bit parallelism for other pattern matching tasks. One big advantage
of bit parallelism is that we can define matching matrix D for degenerate strings
without changing the time and space complexity of the algorithm.

3.3.3 Dynamic Programming

The basic simulation method described in [19, 20] maintains a set of active states
during the whole simulation process. Although in bit parallelism this set is repre-
sented by bit vectors, in dynamic programming, this set is represented by a vector
of integer variables. We divide all states into some subsets, and each of the subsets
is represented by one integer. The value of this integer then holds the information of
what states of the subset are active.

The simulation using the dynamic programming will be shown on the NFA for the
approximate string matching using the Levenshtein distance. This problem is defined
as a searching for all occurrences of pattern p = p1 p2 . . . pm in text t = t1t2 . . . tn ,
where the found occurrence x (substring of t) can have at most k differences. The
number of differences is given by the Levenshtein distance DL (p, x), which is de-
fined as the minimum number of edit operations replace, insert, and delete, that are
needed to convert p to x .

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

64 FINITE AUTOMATA IN PATTERN MATCHING

Table 3.3 Matrices Rl for the approximate string matching using the
Levenshtein distance (p = atggca, k = 3, and t = atcagcaagatggca)

R0 - a t c a g c a a g a t g g c a

a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
t 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
g 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
g 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

R1 - a t c a g c a a g a t g g c a

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0
g 1 1 0 0 1 0 1 1 1 0 1 0 0 1 1 1
g 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

R2 - a t c a g c a a g a t g g c a

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
g 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1
c 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 1
a 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0

R3 - a t c a g c a a g a t g g c a

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
a 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 0

Figure 3.13 shows the NFA constructed for this problem (m = 4, k = 2). The
horizontal transitions represent matching, the vertical transitions represent insert,
the diagonal ε-transitions represent delete, and the remaining diagonal transitions
represent replace. The self-loop of the initial state provides skipping the prefixes of
t located in front of the occurrences. Formula (3.2) simulates the run of the NFA in
Figure 3.13.

d j,0 ← j, 0 ≤ j ≤ m
d0,i ← 0, 0 ≤ i ≤ n
d j,i ← min(if ti = p j then d j−1,i−1 else d j−1,i−1 + 1,

if j < m and ti 	= p j+1 then d j,i−1 + 1, 0 < i ≤ n,

d j−1,i + 1), 0 < j ≤ m

(3.2)

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3.3 NFA SIMULATION 65

Figure 3.13 Dynamic programming uses for each depth of states of NFA one integer variable d.

In the dynamic programming for the approximate string matching using the Lev-
enshtein distance, there is for each depth j , 0 < j ≤ m, of NFA in each step i of the
run one integer variable d j,i that contains a level number of the topmost active state
in j th depth of NFA. Each value of di, j greater than k + 1 can be replaced by value
k + 1 and represents that there is no active state in j th depth of NFA in i th step of
the run.

The term d j−1,i−1 represents matching transition, the term d j−1,i−1 + 1 repre-
sents transition replace, the term d j,i−1 + 1 represents transition insert, and the term
d j−1,i + 1 represents transition delete.

The self-loop of the initial state is represented by setting d0,i ← 0, 0 ≤ i ≤ n.
Only the states reachable from q0 by ε-transitions are active at the beginning. Thus,
all transitions (paths) of the NFA are considered.

Each element dm,i ≤ k shows an occurrence of p with at most dm,i differences the
final state in level dm,i is active. An example of matrix D is shown in Table 3.4.

Table 3.4 Matrix D for pattern p = adbbca and text t = adcabcaabadbbca
using the Levenshtein distance

D — a d c a b c a a b a d b b c a

— 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
d 2 1 0 1 1 1 2 1 1 1 1 0 2 2 2 1
b 3 2 1 1 2 1 2 2 2 1 2 1 0 2 3 2
b 4 3 2 2 2 2 2 3 3 2 2 2 1 0 3 3
c 5 4 3 2 3 3 2 3 4 3 3 3 2 1 0 4
a 6 5 4 3 2 4 3 2 3 4 3 4 3 2 1 0

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

66 FINITE AUTOMATA IN PATTERN MATCHING

The matrix D can be compressed [17] using the property that (d j,i − d j−1,i−1) ∈
{0, 1}. The behavior of these simulation methods was studied with respect to chang-
ing the length of text, length of pattern, edit distance (Hamming, Levenshtein, and
Damerau distances), and pattern class (English text, DNA sequence, image, . . .).

3.3.4 Basic Simulation Method with Deterministic State Cache

There is a similarity between NFA simulation represented by BSM and NFA deter-
minization. Each configuration of set S of active states determines one state of the
equivalent DFA. In fact, BSM creates states of DFA with three basic differences:

1. BSM creates states of DFA in the processing phase,5 whereas NFA deter-
minization creates them in the preprocessing phase.

2. BSM creates only those states of DFA it really needs, whereas NFA deter-
minization creates all states of whole DFA.

3. BSM does not remember states of DFA. Once a new DFA states is computed,
the previous one is forgotten.

That leads to an idea to create something in between. The BSM was extended
by deterministic state cache (DSC) [22] where previously computed DFA states are
stored. The only DFA states that are need are computed. If the transition needed
during processing the input text is in DSC, then it is used; otherwise it is computed.
If the DSC is full, then some cache technique to free some space in DSC are used.
The BSM using DSC runs faster than original DSC but no faster than DFA.

The idea of on-the-fly construction of DFA originally was mentioned in [1], then
it was discussed in [7] for the approximate string matching using Hamming dis-
tance, in [37] for the approximate string matching using Levenshtein distance and
for the general problem in [31]. However, there was no practical implementation. In
addition, [22] adds not only the practical implementation but also the cache of the
deterministic states so that one can control the memory used.

3.4 FINITE AUTOMATON AS MODEL OF COMPUTATION

The finite automaton does not need to be run to solve some task. Even the construc-
tion of DFA can give us a solution. If we construct nondeterministic factor automa-
ton, where each state represents one position in the input text (the position would be
a number of the state), then by determinizing it by standard subset construction with
preserving these positions (stored in d-subsets), we get deterministic factor automa-
ton holding some extra information. For example, we easily can identify both exact
and approximate repetitions in the input text as shown in [35].

5While working on the input text.

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

3.6 SUMMARY 67

Another example is searching for all borders of the text by constructing an in-
tersection of prefix and suffix automata as shown in [41]. The border of the text is
a prefix, which is simultaneously a suffix of the text. As we know the automaton
model behind the computation, we easily can extend into searching for the approxi-
mate borders as also shown in [41].

3.5 FINITE AUTOMATA COMPOSITION

The task of approximate string matching is to find out if a given text t contains a pat-
tern p with some errors that are measured by an edit distance. Here, we decompose
the problem into two subproblems:

� Approximate pattern matching for pattern p
� Searching for all factors of text t

We build an approximate pattern matching automaton for pattern p (accepting
language of all strings within a given edit distance from p) and a factor automaton
for text t (accepting all factors of t). The resulting solution is then an intersection
automaton of the two automata (an automaton accepting intersection of the two lan-
guages). If we are interested only in the answer, then we do not need to construct
whole intersection automaton. The algorithm drives the intersection computation in
such a way so that the answer would be found as fast as possible. This approach then
was used in [23, 28].

A more complicated composition is presented in [5] in which the finite automata
approach was used to solve a DNA processing task. The task is to find common
motifs with gaps in a set of input strings. The approaches used are the factor au-
tomaton, the computation of automaton accepting the union of languages of given
automata, a subsequence automaton, and the computation of automaton accept-
ing the intersection of languages of given automata presented already in [23]. Al-
though other solutions of the problem require some limit of gaps (fixed gap, or
bounded gap, or bounded sum of gaps), this algorithm allows any gaps while keep-
ing the same time and space complexities like other algorithms requiring some limit
of gaps.

3.6 SUMMARY

Table 3.5 summarizes the automata algorithms described in this chapter. It shows
for each task (and method) whether pattern (P) and/or text (P) is preprocessed, the
section describing the method, the preprocessing time, the running time, and the
space required.

In the approximate pattern matching, the size of DFA (|QDFA|) is (k + 1)!(k +
2)m−2 [34]. The size |QNFA| of NFA for the approximate pattern matching is

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

Ta
b

le
3.

5
S

u
m

m
ar

y
o

f
au

to
m

at
a

al
g

o
ri

th
m

s

Ta
sk

P/
T

Se
ct

io
n

Pr
ep

ro
ce

ss
in

g
T

im
e

R
un

ni
ng

T
im

e
Sp

ac
e

E
xa

ct
pa

tte
rn

m
at

ch
in

g
(D

FA
)

P
3.

2.
1

O
(m

|�
|)

O
(n

)
O

(m
|�

|)
E

xa
ct

pa
tte

rn
m

at
ch

in
g

(S
A

)
T

3.
2.

3
O

(n
)

O
(m

)
O

(n
)

E
xa

ct
pa

tte
rn

m
at

ch
in

g
(K

M
P)

P
3.

2.
6

O
(m

)
O

(n
)

O
(m

)
E

xa
ct

pa
tte

rn
m

at
ch

in
g

(B
M

H
)

P
3.

2.
5

O
(m

)
O

(n
m

)∗
O

(m
)

E
xa

ct
pa

tte
rn

m
at

ch
in

g
(B

N
D

M
)

P
3.

2.
5

O
(m

)
O

(n
m

)∗
O

(m
)

E
xa

ct
pa

tte
rn

m
at

ch
in

g
(B

O
M

)
P

3.
2.

5
O

(m
)

O
(n

m
)∗

O
(m

)
A

pp
ro

xi
m

at
e

pa
tte

rn
m

at
ch

in
g

(D
FA

)
P

3.
2.

1
O

(|Q
D

FA
||Q

N
FA

||�
|)

O
(n

)
O

(|Q
D

FA
|.|�

|)
A

pp
ro

xi
m

at
e

pa
tte

rn
m

at
ch

in
g

(B
SM

)
P

3.
3.

1
O

(|Q
N

FA
||�

|�|Q
N

FA
|

w
�)

O
(n

|Q
N

FA
|�|Q

N
FA

|
w

�)
O

(|Q
N

FA
||�

|�|Q
N

FA
|

w
�)

A
pp

ro
xi

m
at

e
pa

tte
rn

m
at

ch
in

g
(B

P)
P

3.
3.

2
O

(|�
|�m w

�+
m

)
O

(n
k�

m w
�)

O
((

|�
|+

k
+

1)
�m w

�)
A

pp
ro

xi
m

at
e

pa
tte

rn
m

at
ch

in
g

(D
P)

P
3.

3.
3

O
(m

)
O

(n
m

)
O

(m
)

A
pp

ro
xi

m
at

e
pa

tte
rn

m
at

ch
in

g
(a

ut
om

at
a

in
te

rs
ec

tio
n)

T,
P

3.
5

O
(|Q

N
FA

|+
n)

O
((

k
+

1)
!(

k
+

2)
m

−k
+1

)
O

(|Q
N

FA
|+

n)

68

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

REFERENCES 69

(m + 1)(k + 1) − k(k+1)
2 . Machine word size w plays an important role in bit par-

allelism and bitwise implementation of BSM. If the bit vectors are longer than w,
then they have to be divided into several machine words. BMH, BNDM and BOM
(marked by ∗) run in O(nm) in the worst case but in sublinear time on average. Note
that the running time of the approximate string matching using automata intersection
does not depend on the length of input text.

REFERENCES

1. A.V. Aho. Pattern matching in strings. In R. Book, editor, Formal Language Theory:
Perspectives and Open Problems. Academic Press, London, U.K., 1980, pp. 325–347.

2. A.V. Aho and M.J. Corasick. Efficient string matching: an aid to bibliographic search.
Commun ACM, 18(6):333–340, 1975.

3. A.V. Aho, R. Sethi, and J.D. Ullman. Compilers—Principles, Techniques and Tools.
Addison-Wesley, Reading, MA, 1986.

4. C. Allauzen, M. Crochemore, and M. Raffinot. Factor oracle: A new structure for pattern
matching. In J. Pavelka, G. Tel, and M. Bartošek, editors, SOFSEM’99, Theory and Prac-
tice of Informatics, number 1725. Lecture Notes in Computer Science, Milovy, Czech
Republic, 1999. Springer-Verlag, Berlin, Germany, pp. 291–306.

5. P. Antoniou, J. Holub, C.S. Iliopoulos, B. Melichar, and P. Peterlongo. Finding common
motifs with gaps using finite automata. In O. H. Ibarra and H.-C. Yen, editors, Implemen-
tation and Application of Automata, number 4094. Lecture Notes in Computer Science.
2006, Springer-Verlag, Heidelberg, Germany, pp. 69–77.

6. R.A. Baeza-Yates and G.H. Gonnet. A new approach to text searching. Commun ACM,
35(10):74–82, 1992.

7. R.A. Baeza-Yates and G.H. Gonnet. Fast string matching with mismatches. Inf Comput,
108(2):187–199, 1994.

8. M. Balı́k. DAWG versus suffix array. In J.-M. Champarnaud and D. Maurel, editors, Im-
plementation and Application of Automata, number 2608. Lecture Notes in Computer
Science. 2003, Springer-Verlag, Heidelberg, Germany, pp. 233–238.

9. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen, and J. Seiferas. The
smallest automaton recognizing the subwords of a text. Theor Comput Sci, 40(1):31–55,
1985.

10. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnel. Complete in-
verted files for efficient text retrieval and analysis. J Assoc Comput Mach, 34(3):578–595,
1987.

11. R.S. Boyer and J.S. Moore. A fast string searching algorithm. Commun ACM, 20(10):
762–772, 1977.

12. M. Crochemore and C. Hancart. Automata for matching patterns. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, volume 2 Linear Mod-
eling: Background and Application. Springer-Verlag, Berlin, Germany, pp. 399–462,
1997.

13. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New York,
1994.

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

70 FINITE AUTOMATA IN PATTERN MATCHING

14. M. Crochemore and R. Vérin. Direct construction of compact directed acyclic word
graphs. In A. Apostolico and J. Hein, editors, Proceedings of the 8th Annual Symposium
on Combinatorial Pattern Matching, number 1264 Lecture Notes in Computer Science,
Aarhus, Denmark, 1997. Springer-Verlag, Berlin, Germany, pp. 116–129.

15. F. Damerau. A technique for computer detection and correction of spelling errors. Com-
mun ACM, 7(3):171–176, 1964.

16. B. Dömölki. An algorithm for syntactical analysis. Comput Ling, 3:29–46, 1964. Hungar-
ian Academy of Science, Budapest.

17. Z. Galil and K. Park. An improved algorithm for approximate string matching. In
G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors, Proceedings
of the 16th International Colloquium on Automata, Languages and Programming, num-
ber 372 Lecture Notes in Computer Science, Stresa, Italy, 1989. Springer-Verlag, Berlin,
Germany, pp. 394–404.

18. R.W. Hamming. Error detecting and error correcting codes. Bell Syst Tech J, 29(2):147–
160, 1950.

19. J. Holub. Simulation of Nondeterministic Finite Automata in Pattern Matching. PhD Dis-
sertation, Czech Technical University in Prague, Czech Republic, February 2000.

20. J. Holub. Bit parallelism—NFA simulation. In B.W. Watson and D. Wood, editors, Imple-
mentation and Application of Automata, number 2494 Lecture Notes in Computer Sci-
ence, Springer-Verlag, Heidelberg, Germany, 2002, pp. 149–160.

21. J. Holub and M. Crochemore. On the implementation of compact DAWG’s. In J.-M.
Champarnaud and D. Maurel, editors, Implementation and Application of Automata, num-
ber 2608 Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, Germany,
2003, pp. 289–294.

22. J. Holub and T. Kadlec. NFA simulation using deterministic state cache. In J. Chan, J. W.
Daykin, and M. S. Rahman, editors, London Algorithmics 2008: Theory and Practice.
College Publications, 2009. To appear.

23. J. Holub and B. Melichar. Approximate string matching using factor automata. Theor
Comput Sci, 249(2):305–311, 2000.

24. J. Holub, W.F. Smyth, and S. Wang. Hybrid pattern-matching algorithms on indetermi-
nate strings. In J. Daykin, M. Mohamed, and K. Steinhoefel, editors, London Stringology
Day + London Algorithmic Workshop 2006, King’s College London Series Texts in Al-
gorithmics, 2007, pp. 115–133.

25. J. Holub and P. Špiller. Practical experiments with NFA simulation. In L. Cleophas and
B. W. Watson, editors, Proceedings of the Eindhoven FASTAR Days 2004, TU Eindhoven,
The Netherlands, 2004, pp. 73–95.

26. J.E. Hopcroft and J.D. Ullman. Introduction to Automata, Languages and Computations.
Addison-Wesley, Reading, MA, 1979.

27. R.N. Horspool. Practical fast searching in strings. Softw—Pract Exp, 10(6):501–506,
1980.

28. S. Inenaga, H. Hoshino, A. Shinohara, M. Takeda, S. Arikawa, G. Mauri, and G. Pavesi.
On-line construction of compact directed acyclic word graphs. J Discrete Algorithm,
146(2):156–179, 2005.

29. D.E. Knuth, J.H. Morris, Jr, and V.R. Pratt. Fast pattern matching in strings. SIAM J
Comput, 6(2):323–350, 1977.

30. D.C. Kozen. Automata and Computability. Springer-Verlag, Berlin, Germany, 1997.

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

REFERENCES 71

31. S. Kurtz. Fundamental Algorithms for a Declarative Pattern Matching System. PhD Dis-
sertation, Technische Fakultt, Universitt Bielefeld, September 1995. Available as Report
95–03.

32. S. Kurtz. Reducing the space requirements of suffix trees. Softw—Pract Exp,
29(13):1149–1171, 1999.

33. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Sov Phys Dokl, 6:707–710, 1966.

34. B. Melichar. Space complexity of linear time approximate string matching. In J. Holub,
editor, Proceedings of the Prague Stringologic Club Workshop ’96, Czech Technical Uni-
versity in Prague, Czech Republic, 1996. Collaborative Report DC–96–10, pp. 28–36.

35. B. Melichar. Repetitions in text and finite automata. In L. Cleophas and B. W. Watson,
editors, Proceedings of the Eindhoven FASTAR Days 2004, TU Eindhoven, The Nether-
lands, 2004, pp. 1–46.

36. J.H. Morris, Jr and V.R. Pratt. A linear pattern-matching algorithm. Report 40, University
of California, Berkeley, CA, 1970.

37. G. Navarro. A partial deterministic automaton for approximate string matching. In
R. Baeza-Yates, editor, Proceedings of the 4th South American Workshop on String Pro-
cessing, Carleton University Press, Valparaiso, Chile, 1997, pp. 95–111.

38. G. Navarro and M. Raffinot. A bit-parallel approach to suffix automata: Fast extended
string matching. In M. Farach-Colton, editor, Proceedings of the 9th Annual Symposium
on Combinatorial Pattern Matching, number 1448 Lecture Notes in Computer Science,
Piscataway, NJ, 1998. Springer-Verlag, Berlin, Germany, pp. 14–33.

39. Nomenclature Committee of the International Union of Biochemistry (NC-IUB). Nomen-
clature for incompletely specified bases in nucleic acid sequences. recommendations
1984. Biochem J, 229:281–286, 1985.

40. R. K. Shyamasundar. A simple string matching algorithm. Technical report, Tata Institute
of Fundamental Research, India, 1976.

41. M. Šimůnek and B. Melichar. Borders and finite automata. In O. H. Ibarra and H.-C.
Yen, editors, Implementation and Application of Automata, number 4094 Lecture Notes
in Computer Science, Springer-Verlag, Heidelberg, Germany, 2006, pp. 58–68.

42. D.M. Sunday. A very fast substring search algorithm. Commun ACM, 33(8):132–142,
1990.

43. K. Thompson. Regular expression search algorithm. Commun ACM, 11:419–422, 1968.

P1: OSO
c03 JWBS046-Elloumi December 2, 2010 9:37 Printer Name: Sheridan

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

4
NEW DEVELOPMENTS IN

PROCESSING OF
DEGENERATE SEQUENCES

Pavlos Antoniou and Costas S. Iliopoulos

4.1 INTRODUCTION

Degenerate sequences are sequences that have several possible letters in some of their
positions. In terms of biological sequences, degenerate sequences can have more
than one base or amino acid in some positions. For example, in the DNA sequence
AG[CT]ACC[ACT]A, at position 3, we have either C or T, and in position 7 we can
have either A, C, or T.

The processing of these degenerate sequences presents problems that have inter-
ested researchers because of their direct applications in biology, cryptography, and
music. In music, for example, single nodes may match chords. In cryptography, un-
decoded symbols may match one of a specific set of letters in the alphabet [9].

In computational biology research, degenerate sequences have been used exten-
sively to represent polymorphisms in DNA/RNA sequences. These polymorphisms
in coding regions are caused by redundancy of the genetic code or polymorphism in
binding sites or plainly by errors and limitations of the sequencing equipment in bi-
ological labs. Additionally, biologists have been interested in degenerate sequences
especially for the problem of degenerate primer design in polymerase chain reaction
(PCR) sequences [17] .

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

73

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

74 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

4.1.1 Degenerate Primer Design Problem

PCR, is a process that amplifies a specific region of DNA to provide enough copies
of that region to be tested or sequenced. To use this PCR process, the biologists need
to know the exact sequences, which lie on either side of the region of interest. These
sequences are used to design two synthetic DNA oligonucleotides and are called
primers. Primers usually have a length around 20–30 base pairs [14].

The PCR primer sequences are often degenerate as some of their positions have
several possible bases. The degeneracy of a primer is the number of unique sequence
combinations it contains [14]. The primer design problem usually involves a set of
sequences for which we wish to design primers that can match as many of the se-
quences of the set as possible. For example, the primer P = T T [CG]C[ACT]G
covers all four of the following strings:

S1 = T T GC AG

S2 = T T CC AG

S3 = T T GCT G

S4 = T T GCCG

To find solutions for these problems associated with degenerate sequences, the
repetitive structures and properties that can be found in degenerate strings have been
the subject of research in string algorithms. In recent years, there were many algo-
rithms concerning degenerate strings, and the advances in this area provided solu-
tions in cryptography, music, and biology.

In this chapter, we will investigate and present new algorithms to find repetitive
structures in degenerate strings. We begin with the problem of finding local and
global covers and repetitive structures called seeds in the degenerate strings. We
present an algorithm for finding the smallest cover of the string x in O(n log n) time,
where n is the length of the string n. Subsequently, we extend this algorithm to find
all local and global covers of the string x and we extend the latter to compute the
seeds of the string.

Subsequently, we study the problem of finding local and global covers as well
as seeds in conservative degenerate strings. A conservative degenerate string is a
degenerate string in which the number of degenerate symbols in the positions of
the string (i.e., the nonsolid symbols), is bounded by a constant κ . We present an
algorithm for finding a conservative degenerate pattern p in a degenerate string x .
Furthermore, we present algorithms for computing conservative covers and seeds of
a degenerate string x .

4.2 BACKGROUND

As mentioned, in this chapter, we will investigate algorithms that find repetitive
structures in degenerate sequences. These structures include covers and seeds of the
strings.

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

4.2 BACKGROUND 75

Covers are considered common regularities in a string along with repetitions and
periods. They are periodically repetitive. A substring w of a string x is called a cover
of x if and only if x can be constructed by concatenations and superpositions of w.
A seed is an extended cover in the sense of a cover of a superstring of x .

Finding the regularities present in strings is not only interesting in string algo-
rithms, but it is also useful in many applications. These applications include molec-
ular biology, data compression, and computational music analysis. Regularities in
strings have been studied widely in the last 20 years. There are several O(n log n)
time algorithms for finding repetitions [6], in a string x , where n is the length of x .
Apostolico and Breslauer [2] gave an optimal O(log log n) time parallel algorithm for
finding all repetitions. The preprocessing of the Knuth–Morris–Pratt algorithm [13]
finds all periods of every prefix of x in linear time.

In many cases, it is desirable to relax the meaning of repetition. For instance, if we
allow overlapping and concatenations of periods in a string, then we get the notion of
covers. The notion of covers was introduced by Apostolico, Farach, and Iliopoulos
in [3] in which a linear-time algorithm to test superprimitivity was given. Moore and
Smyth in [15] gave linear-time algorithms for finding all covers of a string x .

An extension of the notion of covers, is that of seeds (i.e., covers of a superstring
of x). The notion of seeds was introduced by Iliopoulos, Moore, and Park [11] and
an O(n log n) time algorithm was given for computing all seeds of x . A parallel
algorithm for finding all seeds was presented by Berkman, Iliopoulos, and Park [5],
that requires O(log n) time and O(n log n) work.

In this chapter, we find these string regularities in degenerate strings. Figure 4.1
presents an example of a degenerate biological sequence in which in some positions,
we do not have only one base but may have up to four. That means that in those
particular positions, it is not clear which base resides there; in other words the base
in those positions is not determined.

An algorithm was described [8] for computing all occurrences of a pattern p
in a text string x , where both p and x are defined on the alphabet �∗, but al-
though efficient in theory, the algorithm was not useful in practice. Indeterminate
string pattern matching mainly has been handled by bit mapping techniques (ShiftOr
method) [4],[19]. These techniques have been used to find matches for a degenerate
pattern p in a string x [9] and the agrep utility [18] has been virtually one of the few
practical algorithms available for degenerate pattern matching.

In [9], the authors extended the notion of degenerate strings by distinguishing
two distinct forms of degenerate match (“quantum” and “deterministic”). Roughly
speaking, a “quantum” match allows a degenerate letter to match two or more dis-
tinct letters during a single matching process; a “determinate” match restricts each
degenerate letter to a single match [9].

In the area of biology, we can find the notion of conservative degenerate strings.
In biology, usually, the number of degenerate positions in a sequence is bounded nat-
urally by a constant value. Otherwise, we would have a cover of length 1 with just
a do not care symbol that corresponds to all letters of the alphabet �. Therefore, we
impose a constraint on the strings, which requires that the number of degenerate posi-
tions in a cover c is less than the constant, that is, a “conservative” cover. An example

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

76 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

0

1bi
ts

5′

-9

G
A
C
T

-8

A
C
T

-7 -6

C
A
T

-5 -4

C
T
A

-3

T

-2

G
T
C

-1

C
T
G

0TAG
C

1G
A
C

2C
A
G

3

3

A 4G
A
T

5 6T
G
A

7 8T
G
A

9T
C
G
A

1 gt at caccgccagt ggt at
2 at accact ggcggt gat ac
3 t caacaccgccagagat aa
4 t t at ct ct ggcggt gt t ga
5 t t at caccgcagat ggt t a
6 t aaccat ct gcggt gat aa
7 ct at caccgcaagggat aa
8 t t at ccct t gcggt gat ag
9 ct aacaccgt gcgt gt t ga
10 t caacacgcacggt gt t ag
11 t t acct ct ggcggt gat aa
12

2

t t at caccgccagaggt aa

Figure 4.1 A sequence logo of a biological degenerate sequence. Picture taken from [16].

of a sequence containing degenerate positions is shown in Figure 4.1, which depicts a
sequence logo of a degenerate sequence. The bottom logo is the consensus sequence
derived by the 12 sequences on top of it. If we look at the logo, then we can see that
position 1 is degenerate as we can have [TCAG] occurring, position 2 is degenerate
also having a possible occurrence of [TCA], position 3 is solid, nondegenerate, as in
that position, only A occurs.

This chapter is organized as follows. Section 4.3 presents the basic definitions and
notations used throughout this chapter. Section 4.4 presents linear-time algorithms to
find covers and seeds in degenerate strings, and section 4.5 presents algorithms for
finding repetitive structures in linear time for conservative degenerate strings. Finally,
section 4.6 presents some concluding remarks.

4.3 BASIC DEFINITIONS

A string is a sequence of zero or more symbols from the alphabet �. The set of all
strings over � is denoted by �∗. The length of a string x is denoted by |x |. The

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

4.3 BASIC DEFINITIONS 77

empty string, the string of length zero, is denoted by ε. The i-th symbol of a string x
is denoted by x[i].

A string w is a substring of x if x = uwv, where u, v ε �∗. We denote by x[i . . . j]
the substring of x that starts at position i and ends at position j . Conversely, x is
called a superstring of w. A string w is a prefix of x if x = wy for y ε �∗. Similarly,
w is a suffix of x if x = yw for y ε �∗.

We call a string w a subsequence of x (or x is a supersequence of w) if w is
obtained by deleting zero or more symbols at any positions from x . For example,
ace is a subsequence of aabcde f . For a given set S of strings, a string w is called a
common supersequence of S if w is a supersequence of every string in S.

The string xy is the concatenation of the strings x and y. The concatenation of
k copies of x is denoted by xk . For two strings x = x[1 . . . n] and y = y[1 . . . m]
such that x[n − i + 1 . . . n] = y[1 . . . i] for some i ≥ 1 (i.e., such that x has a suffix
equal to a prefix of y), the string x[1 . . . n]y[i + 1 . . . m] is a superposition of x and
y. We also say that x overlaps with y. A substring y of x is called a repetition in
x if x = uykv, where u, y, v are substrings of x and k ≥ 2, |y| �= 0. For example, if
x = aababab, then a (appearing in positions 1 and 2) and ab (appearing in positions
2, 4, and 6) are repetitions in x ; in particular, a2 = aa is called a square, and (ab)3 =
ababab is called a cube.

A nonempty substring w is called a period of a string x , if x can be written as
x = wkw′ where k ≤ 1 and w′ is a prefix of w. The shortest string of the periods of
x is called the period of x . For example, if x = abcabcab, then abc, abcabc, and
the string x itself are periods of x , whereas abc is the period of x .

A substring w of x is called a cover of x , if x can be constructed by concate-
nating or overlapping copies of w. We also say that w covers x . For example, if
x = ababaaba, then aba and x are covers of x . If x has a cover w �= x , then x is
quasiperiodic; otherwise, x is superprimitive.

A substring w of x is called a seed of x if w covers one superstring of x (this can
be any superstring of x , including x itself). For example, aba and ababa are some
seeds of x = ababaab.

A degenerate string is a sequence T = T [1]T [2] . . . T [n], where T [i] ⊆ � for
each i , and � is a given alphabet of a potentially large size. When a position of the
string is degenerate, and it can match more than one element from the alphabet �,
we say that this position has nonsolid symbol. If in a position, only one element
of the alphabet � is present, then we refer to this symbol as solid. A conservative
degenerate string, is a degenerate string in which its number of degenerate symbols
is bounded by a constant k.

Regular Expressions and Languages. Any subset of �∗ is a language on the
alphabet �. The regular expressions on an alphabet � and the regular languages they
describe are defined recursively as follows [7]:

1. 0 and 1 are regular expressions that recursively describe the empty set ∅
and{ε},

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

78 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

1
q0

0
q1q2

1 0

0,1

Figure 4.2 The transition diagram of a DFA accepting all strings that have a substring 01.

2. For every letter a ∈ �, a is a regular expression that describes the singleton
{a},

3. If x and y are regular expressions, respectively describing the regular lan-
guages X and Y , then (x) + (y), (x) × (y), and (x)∗ are regular expressions
that describe the regular languages X ∪ Y, X × Y, X∗, respectively.

A deterministic finite automaton (DFA), consists of the following [10]:

1. A finite set of states denoted Q
2. A finite set of input symbols often denoted �

3. A transition function denoted δ that takes as an argument a state and an input
symbol and returns a state

4. A start state one state of Q
5. A set of final states F , where F is a subset of Q.

A DFA can be represented as a five-tuple notation A = (Q, �, δ, q0, F), where
A is the name of the DFA, Q is its set of states, � is its set of input symbols, δ is its
transition function, q0 is its starting state, and F is its set of final states [10].

An example of a DFA is presented in Figure 4.2, which presents the transition
diagram of a DFA accepting all strings with a substring 01.

A nondeterministic finite automaton (NFA), has the ability to be in several states
at once, whereas the DFA for every pair of states and transition function exists at
most one receiving state exists [10].

The Aho-Corasick Automaton [1]. The Aho-Corasick Automaton for a given
finite set P of patterns is a deterministic finite automaton G accepting the sets of all
words containing a word of P as a suffix.

G = (Q, �, g, f, q0, F), where function Q is the set of states, � is the alphabet,
g is the forward transition, f is the failure link (i.e., f (qi) = q j), if and only if Sj is
the longest suffix of Si that is also a prefix of any pattern, q0 is the initial state, and
F is the set of final (terminal) states [1]. The construction of the Aho Corasick (AC)
automaton can be done in O(d)-time and space complexity, where d is the size of
the dictionary (i.e., the sum of the lengths of the patterns that the AC automata will
match).

Theorem 4.1 ([12]) Let a[1], . . . , a[n] be a doubly linked list. An algorithm exists
that preprocess the list a in such way that after several deletions in the list a, one
can find the nearest a[j] to the left of a[i] with a[j] ≤ a[i] in constant time.

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

4.4 REPETITIVE STRUCTURES IN DEGENERATE STRINGS 79

4.4 REPETITIVE STRUCTURES IN DEGENERATE STRINGS

4.4.1 Using the Masking Technique

To match efficiently character classes, we represent our strings as a sequence of four
bit masks. The alphabet for describing DNA sequences has four symbols, namely
{A, C, G, T}. We convert these single characters to represent the set of bit masks
{1000, 0100, 0010, 0001}.

For k characters, x1 . . . xk , we can represent the character set [x1 . . . xk] as follows:

M(x1) OR M(x2) OR . . . OR M(xk)

where M(xi) is the 4 bit mask of xi . Using this representation and the bitwise AND
operation, we can determine whether there is a match between characters or character
sets. Where a nonzero result would indicate a match, and a zero result would indicate
a mismatch.

For example, if we wanted to determine whether [AC] matched with [CG], then
we first would convert the character sets into the following four bit masks: [AC] =
1000 OR 0100 = 1100, [CG] = 0100 OR 0010 = 0110. We then perform a bitwise
AND operation on the four bit masks:1100 AND 0110 = 0100. Because we have
a nonzero result, we can conclude [AC] matched with [CG], as they have C as a
common symbol (the character representation of the resulting bit mask).

In the algorithms of this chapter, we will be applying bit masking to the degenerate
strings.

4.4.2 Computing the Smallest Cover of the Degenerate String x

The following algorithm finds the smallest cover û that covers the degenerate string
x . Assume that we have performed k-iterations. So far, we have built the following:

Position Array. We find all occurrences of substring û in x , and we denote the
occurrence of û at position Iµ as uµ. Then u1 is a prefix of x and |û| = k. Then
the cover û = uµ, 1 ≤ µ ≤ �. The starting positions of each substring u is noted in
the following array S:

S1 = {I1, I2, . . . Iµ−1, Iµ, Iµ+1 . . . I�}

Gap Array. The distances between the starting positions of consecutive uµ, uµ+1 is
denoted by gi and i is entered into a second array S2. Then the array S2 is as follows:

S2 = {g1, g2, . . . gµ−1, gµ, gµ+1 . . . g�}

Figure 4.3 presents the distances gi between the substrings u as arcs between the
substrings.

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

80 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

x

uµ

gµ

u1

g1

u3u2

g2

uµ+1
.......

Figure 4.3 Covering the string x with substring u.

Order Array. We create the array S3, which holds the elements of array S2 sorted
from smallest to largest. We also create a doubly linked list L , where for each element
gi in S2, we keep its Order (gi) according to S3. The reason we create this doubly
linked list is to be able to use Theorem 1. This theorem allows us to access any
element of S3 in constant time.

Testing. We apply a simple test to determine whether the substring û is a cover of
x . We check whether the largest element of S3, g� is smaller than k. If g� ≤ k, then
û is a cover of x .

If û is not a cover of x for |û| = k, then we continue by extending k by 1 and
solve the problem for |u| = k + 1. Accordingly, the distance allowed between the
substrings for them to be considered as covers also is increased to k + 1.

Main Steps. We extend the length of each uµ, 1 ≤ µ ≤ � by one character, to
length k + 1. So far, we have a series of prefixes of length k to check whether they
can be extended by one character. Let ui

k+1 denote the k + 1-th character of ui .

Step 4.1
We check to see whether the next character of the current substring is equal to the
next character of another substring (i.e., if ui

k+1 is equal to u j
k+1). This check can

be performed via the bit masking method for index i , which is a good method for
practical purposes without affecting the running time of the algorithm.

Let

ui1
k+1 = ui2

k+1 = . . . = uiτ
k+1

and let their starting positions

I = {i1, i2 . . . iτ }

Then, ûk = {a|a ∈ ui
k+1, i ∈ I } and û = û1û2 . . . ûk .

Step 4.2
Suppose in one position Iµ, uµ cannot be extended further without giving a mis-
match. This is illustrated in Figure 4.4 at the point marked by ×. But matching sub-
strings follow this unmatched substring. Therefore, we want to discard this uµ and

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

4.4 REPETITIVE STRUCTURES IN DEGENERATE STRINGS 81

i

x
u1

g1 g

.... x

g

µ−1 gµ

µ

ujuuµ−1 uµ

Figure 4.4 Extending the length of substring u from k to k + 1 to find a cover for string x. At the
position marked by a cross, substring u cannot be extended further without giving a mismatch.

cover the string with the rest of the substrings ui . We do this by first deleting Iµ from
S1. Then we delete and update the distances between gµ−1 and gµ+1 in S2.

S1 = {I1, I2, . . . Iµ−1,��Iµ, Iµ+1 . . . I�}
S2 = {g1, g2, . . . gµ−1,��gµ, gµ+1 . . . g�}

By keeping the linked list L and from Theorem 1, the corresponding distances
gµ−1 and gµ+1 in S2 can be found in constant time.

Step 4.3
We do a binary search and insert the distance gµ′ in its corresponding position in the
sorted set S2. This requires O(log n) time.

We test whether |g�| ≤ k + 1. If this equation is true, then û with |û| = k + 1 is a
cover of x .

Figure 4.4, shows an example of this operation. Arcs gµ−1 and gµ will be deleted
and will be replaced by gµ

′.

4.4.3 Computing Maximal Local Covers of x

The following algorithm finds maximal substrings of x , which are covered locally
by some nonextendable factor, û of x . As with Algorithm 4.4.2, we assume that we
have performed k-iterations. However, the algorithm varies in that we now not only
are concerned with u that is a prefix of x . We therefore are considering all factors
of x (starting with length two) as possible local covers of x . After k-iterations, we
would have created the following:

Position Array. We have a set of local covers {û(1), û(2), . . . , û(λ)} with |ûi | = k,
1 ≤ i ≤ λ. The starting positions of each substring û j is noted in an array S(j)

1 .

S(j)
1 = {I (j)

1 , I (j)
2 , . . . I (j)

µ−1}

We perform the following steps for each j , 1 ≤ j ≤ λ:

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

82 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

û û û û û
û û û û

1 2019 34

LC = (1, 18), (20, 34)

Figure 4.5 Example of LC array, supposing that û and û ′ are local covers.

Gap Array. The distances between the starting positions of consecutive û(j) sub-
strings are entered into a second array S(j)

2 . We denote the distances between consec-
utive u(j)

i -th and u(j)
i+1-th occurrences of û(j) as g(j)

i ; then the array S(j)
2 is as follows:

S(j)
2 = {g(j)

1 , g(j)
2 , . . . g(j)

µ , . . . g(j)
� }

Order Array. We create array S(j)
3 , which holds the elements of array S(j)

2 sorted
from smallest to largest. We also create a doubly linked list L , where for each element
g(j)

i in S(j)
2 , and we keep its Order (g(j)

i) according to S(j)
3 . As with Algorithm 4.4.2,

the doubly linked list is needed to use Theorem 1.

Local Covers. We create an array LC of local covers that have been detected up
to now in the algorithm. Each cover is stored as a set of pairs, (�(j)

l ,�
(j)
r), where

�
(j)
l and �

(j)
r are the left-most and right-most positions of the i-th local cover of x ,

respectively. Figure 4.5 shows an example of the local covers array.

Main Steps. We extend the length of each û j by one character to length k + 1. We
then partition the set S(j)

1 into sets to represent all possible extensions û j of length k +
1. The following steps are repeated until û cannot be extended any further. Figure 4.6
presents the extension for local covers, and Figure 4.7 presents the partition of the
set S.

Step 4.4
We check to see whether the next character of the current substring is equal to the
next character of another substring (i.e., if ui,(j)

k+1 is equal to uv, j
k+1). This check can

be performed via the bit masking method for index i , which is a good method for
practical purposes without affecting the running time of the algorithm.

Let

ui1,(j)
k+1 = ui2,(j)

k+1 = . . . = uiτ ,(j)
k+1

. . . .
a

û

I1

b
û

I2

b
û

I3

a
û

I4

c
û

I5

c
û

Il

Figure 4.6 Extension of û for local covers.

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

4.4 REPETITIVE STRUCTURES IN DEGENERATE STRINGS 83

S = I1, I2, I3, I4, I5, . . . , Il

Sû = I1, I4, . . .Sû = I2, I3, . . . Sû = I5, . . . , Il

Figure 4.7 Partitioning the set S.

and let their starting positions

I = {i1, i2 . . . iτ }

Then, û(j)
k = {a|a ∈ ui,(j)

k+1 , i ∈ I } and û j = û(j)
1 û(j)

2 . . . û(j)
k .

Step 4.5
Suppose in one position I (j)

µ , uµ,(j) cannot be extended further without giving a mis-
match, but matching substrings follow this unmatched substring. Therefore, we want
to discard this uµ and cover the string with the rest of the substrings ui . We do this by
first deleting I (j)

µ from S(j)
1 . Then we delete and update the distances between g(j)

µ−1

and g(j)
µ+1 in S(j)

2 .

S(j)
1 = {I (j)

1 , I (j)
2 , . . . I (j)

µ−1,�
�I (j)
µ , I (j)

µ+1 . . . I (j)
� }

S(j)
2 = {g(j)

1 , g(j)
2 , . . . g(j)

µ−1,�
�g(j)
µ , g(j)

µ+1 . . . g(j)
� }

By keeping the linked list L and from Theorem 4.1, the corresponding distances
g(j)

µ−1 and g(j)
µ+1 in S(j)

2 can be found in constant time.
The nonextendable occurrences, say uγ get a new set of data structures

S(γ)
1 , S(γ)

2 , S(γ)
3 , and LC.

Step 4.6
We now have to update the LC array. After the extension of û(j), two cases are pos-
sible:

Case 4.1 An occurrence of û(j) within a local cover cannot be extended by the
same character as all other occurrences of û(j) in the same local cover. In this case,

1. The local cover of length k is maximal

2. The local cover of length k + 1 will be split into two smaller local covers and
� updated accordingly (see Figure 4.8).

û û û û
û û û û

1 2019 3497

LC = {(1, 7), (9, 18), (20, 34)}

Figure 4.8 LC after removal of third occurrence of û ′ .

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

84 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

û û û û
û û û û

1 3497

LC = {(1, 7), (9, 34)}

Figure 4.9 LC after extension of u ′′′.

Case 4.2 An occurrence of û(j) can be extended beyond the end position of the

local cover to which it belongs. In this case, if the condition g′(j)
û ≤ k + 1 is met,

then the two local covers are joined together to make a larger local cover, and � is
updated accordingly (see Figure 4.9).

4.4.4 Computing All Covers of x

To find all covers of the string x , we slightly modify Algorithm 4.4.2. Instead of
stopping when we have g�, we continue increasing the length of u, until |u| = n − 1,
where n = |x |. During every iteration of the Main Step, if g� < |u|, then we output
u, as it is a cover of x .

4.4.5 Computing the Seeds of x

A substring w of x is called a seed of x if w covers one superstring of x (this can
be any superstring of x , including x itself). For example, aba and ababa are some
seeds of x = ababaab.

If a substring ui is a seed of a string x , then a superstring y, exists y = sxv,
|s| < |u| and |v| < |u|, which can be constructed by overlapping or concatenating
copies of the strings u1, u2, u3, . . . , u�.

By the definition of seeds, x[i . . . n] can be matched to any prefix of ui , and
x[1 . . . j] can be matched to any suffix of ui .

With the previous algorithm, we find the covers û of string x . Therefore, we ex-
tend the previous algorithm by one more test, which tests whether û is also a seed
of x .

We want to check whether cover û is also a seed of x . We would do this by
checking whether x[i . . . n] can be matched to any prefix of û, and whether x[1 . . . j]
can be matched to any suffix of û. In position I1, where we have the first occurrence
of û, u1, we test whether u1 is a suffix of x . Additionally, we test whether the last
occurrence of û, u�, is a prefix of x . If these two sentences are true, then the cover û
with the sequence of u1, u2 . . . u� of substrings is also a seed of x , as it can form a
superstring of x , as shown in Figure 4.10.

4.5 CONSERVATIVE STRING COVERING IN DEGENERATE STRINGS

In this section, we describe algorithms for finding string regularities in constrained
degenerate strings. Section 4.5.1 describes the algorithm for conservative pattern
matching. Additionally, Section 4.5.2 and Section 4.5.3 describe the algorithms for
computing conservative covers and seeds of a string, respectively.

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

4.5 CONSERVATIVE STRING COVERING IN DEGENERATE STRINGS 85

u1

u2u3 ui

û

ul

x

Figure 4.10 Finding seeds of string x.

4.5.1 Finding Constrained Pattern p in Degenerate String T

As a building step, here, we study the constrained pattern matching problem on
degenerate strings. The problem of constrained degenerate pattern matching is
defined as follows:

Input: We are given a pattern p of length m with at most κ nonsolid symbols, where
κ is a constant. We are given a degenerate string T , the text of length n.
Query: Find all occurrences of the pattern p in the text T , (i.e., find the positions in
T where the intersection of the pattern and the text is nonempty).

� EXAMPLE 4.1

We consider a pattern, p = A[CG]TA[AG] and text, T = GA[CG][CT]AG[AT]A
[AG][CT][AT]AG. Figure 4.11 shows the result of searching for p in t . It is shown
in the figure that p occurs in t starting at positions 2, 5, 8, and 9.

The algorithm works in two steps:

Step 4.7
Let the pattern p be p = P1 P2 . . . Pm . We built the Aho-Corasick automaton for
the dictionary of the prefixes of the pattern D = {π1π2 . . . πm,∀πi ∈ Pi , 1 ≤ i ≤ m}.
Note that |D| = ∏m

i=1 |Pi | < 2κ , as there are at most κ nonsolid symbols.

i 13121110987654321

t GA[AT][CT][AG]A[AT]GA[CT][CG]AG

Matches [AG]AT[CG]A
[AG]AT[CG]A

[AG]AT[CG]A
[AG]AT[CG]A

Figure 4.11 Pattern matching with p and t.

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

86 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

11

10

7

6

983

54210 GATCA

A

G

A

ATG

i 11109876543210

f(i) 131013100000

Figure 4.12 Aho-Corasick automata and its failure function for p.

Step 4.8
Assume that we have processed T [1, i]. At this point, we have a set, P , of prefixes
of the strings in the dictionary in the Aho-Corasick automaton. We now will perform
iteration i + 1. For each symbol τ occurring at T [i + 1], we try to extend each prefix
in P by that symbol τ , or we follow its failure link provided by the Aho-Corasick
automaton. Figures 4.12 and 4.13 present a part of the matching process for the
previous example.

Note that |P| is bounded by the maximum number of possible prefixes, which in
turn, is bounded by the size of the automaton. Thus, this method is linear.

4.5.2 Computing λ-Conservative Covers of Degenerate Strings

Here, we study another string regularity—a conservative covering of a degenerate
string with a fixed length cover. The λ-conservative cover problem is defined as
follows:

Input: We are given a conservative degenerate string t , of length n, a constant κ ,
which is the maximum number of nonsolid symbols allowed in a cover, and an inte-
ger λ, which is the length of the cover.
Query: Is there a conservative cover, c, of t of length λ?

i 6543210

t [AT]GA[CT][CG]AG . . .

P 0 {1 {} 2,3 {} 4,8 {} 5,9 {} 106, } { }8 . . .

Figure 4.13 Matches of prefixes of P in text t.

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

4.5 CONSERVATIVE STRING COVERING IN DEGENERATE STRINGS 87

t

T̂ T̃

Figure 4.14 The cover, c, covers the beginning and the end of T. Thus, T̂ and T̃ provide the
set of potential candidates.

Step 4.9
We consider the prefix, T̂ , of t of length λ (see Figure 4.14),

T̂ = T1 . . . Tλ

and the suffix, T̃ of t of length λ,

T̃ = Tn−λ+1, . . . Tn

We build the Aho-Corasick automaton for the dictionary

D = {t1 . . . tλ | ∀ ti ∈ Ti ∩ Ti+n−λ, 1 ≤ i ≤ λ}

Step 4.10
For each d ∈ D, we find all of its occurrences in T , parsing the text T through the
Aho-Corasick Automaton built in Step 4.9. If a word d occurs at position i , then we
set a flag L(i) = true. If the distance |i − j | of any two consecutive flags is less than
λ, then we have a cover

C1C2 . . . Cλ, where

Ci = {di , is the i-th letter of every word in D, 1 ≤ i ≤ λ}

The overall complexity of these two steps is linear.

4.5.3 Computing λ-Conservative Seeds of Degenerate Strings

Here we study yet another regularity, covering a degenerate string with a seed of a
given length. The λ-constrained seed problem is defined as follows:

Input: We are given a degenerate string t , of length n, a constant κ , which is the
maximum number of nonsolid symbols allowed in a seed and an integer λ, which is
the length of the seed. Figure 4.15 presents an example of a conservative seed, ŝ, a
seed of the string t .
Query: Is there a conservative seed, s, of t of length λ?

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

88 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

t

ŝpref
ŝ

ŝ
ŝ

ŝ

ŝ
ŝ

ŝsuff

Figure 4.15 Above, ŝ is a seed of the string t, where each ŝ contains at most κ nonsolid
symbols and is of length λ. Also, ŝpref and ŝsuff are a prefix and suffix of ŝ, respectively.

t

L1 L2

Figure 4.16 The positions of candidate seeds from lists L 1 and L 2.

Step 4.11
The first occurrence of the seed can be in any of the positions {1 . . . λ}. Figure 4.16
presents positions of candidate seeds. Thus, we consider the following strings of
length λ:

L1 = {T [1..λ], T [2..λ + 1], . . . , T [λ..2λ − 1]}

and all suffixes of string t of length λ:

L2 = {T [n − λ..n], T [n − λ − 1..n − 1], . . . , T [n − 2λ − 1]}

We build the Aho-Corasick automaton for the dictionary

D = {ti1 . . . tiλ |∀ti j , where ti j is the j-th symbol of T ∈ L1 ∪ L2}.

Step 4.12
For each d ∈ D, we find all of its occurrences in T , parsing the text T through the
Aho-Corasick Automaton built in Step 4.11. If a word d occurs at position i , then
we set a flag Ld (i) = true. If the distance |i − j | of any two consecutive flags in
Ld is less than λ, then d is a candidate for a seed. Let i1 and i2 be the first and
last occurrences of d in T . We check whether T [1, i1] is a suffix of d and whether
T [i2, n] is a prefix of d; if that is the case, then d is a seed. The overall complexity
of the algorithm is O(λn).

4.6 CONCLUSION

In this chapter, we have seen recent advances in algorithms for degenerate strings
that can be applied for computational biology problems. We have shown O(n log n)
algorithms for finding the smallest cover, local covers, and all covers of a string. We

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

REFERENCES 89

also have presented a O(n log n) algorithm for finding the seeds of a string. Addi-
tionally, we have shown O(n) algorithms for finding the smallest conservative cover,
λ-conservative local covers. We also have presented a O(λn) algorithm for finding
the λ-conservative seeds of a string. All algorithms we have used are easily adaptable
to allow the bit-matching techniques to be used to allow efficient implementations.

REFERENCES

1. A.V. Aho and M.J. Corasick. Efficient string matching: an aid to bibliographic search.
Commun ACM, 18(6):333–340, 1975.

2. A. Apostolico and D. Breslauer. An optimal O(log logn)-time parallel algorithm for de-
tecting all squares in a string. SIAM J Comput, 25(6):1318–1331, 1996.

3. A. Apostolico, M. Farach, and C.S. Iliopoulos. Optimal superprimitivity testing for
strings. Inf Process Lett, 39:17–20, 1991.

4. R. Baeza-Yates and G. Gonnet. A new approach to text searching. Commun ACM, 35:74–
82, 1992.

5. O. Berkman, C.S. Iliopoulos, and K. Park. The subtree max gap problem with application
to parallel string covering. Inf Comput, 123(1):127–137, 1995.

6. M. Crochemore. An optimal algorithm for computing the repetitions in a word. Inf Pro-
cess Lett, 12(5):244–250, 1981.

7. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University
Press, Cambridge, U.K., 2007.

8. M.J. Fischer and M.S. Paterson. String-matching and other products. Technical report,
Cambridge, MA, 1974.

9. J. Holub, W.F. Smyth, and S. Wang. Fast pattern-matching on indeterminate strings. J
Discrete Algorithm, 6(1):37–50, 2008.

10. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation (2nd Edition). Addison Wesley, Reading, MA, 2000.

11. C.S. Iliopoulos, D.W.G. Moore, and K. Park. Covering a string. Proceedings of the 4-th
Symposium on Combinatorial Pattern Matching, volume 684 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, 1993, pp. 54–62.

12. H. Imai and T. Asano. Dynamic orthogonal segment intersection search. J Algorithm,
8(1):1–18, 1987.

13. D.E. Knuth, J. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J Comput,
6(2):323–350, 1977.

14. C. Linhart and R. Shamir. The degenerate primer design problem: Theory and applica-
tions. J Comput Bio, 12(4):431–456, 2005.

15. D. Moore and W.F. Smyth. An optimal algorithm to compute all the covers of a string. Inf
Process Lett, 50(5):239–246, 1994.

16. M.C. Shaner, I.M. Blair, and T.D. Schneider. Sequence logos: A powerful, yet simple,
tool. In T.N. Mudge, V. Milutinovic, and L. Hunter, editors, Proceedings of the Twenty-
Sixth Annual Hawaii International Conference on System Sciences, Volume 1: Architec-
ture and Biotechnology Computing, IEEE Computer Society Press, New York, NJ, 1993,
pp. 813–821.

P1: OSO
c04 JWBS046-Elloumi December 2, 2010 9:39 Printer Name: Sheridan

90 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES

17. M.V.T. Flouri and L. Vagner. Indexing degenerate strings. Proceedings of International
Conference of Computational Methods in Sciences and Engineering, American Institute
of Physics, Melville, New York, 2007, pp. 1400–1403.

18. S. Wu and U. Manber. Agrep – a fast approximate pattern-matching tool. Proceedings
USENIX Winter 1992 Technical Conference, San Francisco, CA, 1992, pp. 153–162.

19. S. Wu and U. Manber. Fast text searching: Allowing errors. Commun ACM, 35(10):83–91,
1992.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5
EXACT SEARCH

ALGORITHMS FOR
BIOLOGICAL SEQUENCES

Eric Rivals, Leena Salmela, and Jorma Tarhio

5.1 INTRODUCTION

With the development of sequencing techniques, it has become easy to obtain the
sequence (i.e., the linear arrangement of residues [nucleotides or amino-acids]), of
DNA, RNA, or protein molecules. However, determining the function of a molecule
remains difficult and is often bound to finding a sequence similarity to another
molecule whose role in the cell is at least partially known. Then the biologist can
predict that both molecules share the same function and try to check this experimen-
tally. Functional annotations are transferred from one sequence to another provided
that their similarity is high enough. This procedure is also applied to molecule sub-
parts, whose sequences are shorter; such as protein domains, DNA/RNA motifs, and
so on.

Depending on the sequence lengths and the expected level of evolutionary relat-
edness, the sequence similarity can be found using alignment or pattern matching
procedures. A quest in bioinformatics has been to design more sensitive sequence
similarity searching methods to push further the limit or gray zone at which evo-
lutionary sequence similarity cannot be departed from random sequence similar-
ity [4,21]. These methods (e.g., profile hidden Markov Models) have provided, at the
expense of computing time, important improvements in functional annotations. How-
ever, it has soon become clear that in other frameworks, only high-level similarity

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

91

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

92 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

was sought, and speed rather than sensitivity was the major issue. Hence, researchers
have designed the following continuum of methods that can be classified according
to the level of allowed dissimilarity:

1. Full sensitivity alignment (Smith and Waterman algorithm [58]),

2. Fast similarity search programs (e.g., BLAST [4]),

3. Approximate pattern matching (e.g., BOWTIE [36]),

4. Near-exact and exact pattern matching (e.g., MPSCAN [53]).

For some everyday sequence manipulation tasks, the user needs exact pat-
tern matching programs (as available in large bioinformatic program suites like
EMBOSS) to find from which chromosome or where in a genome a given sequence
comes from; to find short nucleotidic motifs, like restriction or cleavage sites, in
long DNA sequences; to verify whether a distinguishing sequence motif really sep-
arates negative from positive instances (longer sequences). The latter happens when
designing oligonucleotides for gene expression arrays or multiple primers for multi-
plex polymerase chain reactions [50]. Even for exploring protein sequences, a server
has been launched that offers an exact search for short polymers in all sequences of
protein databanks [9]. In such frameworks, the need is for a single or multiple pattern
search for a few hundreds patterns, which can be solved easily by repetitively apply-
ing a single pattern matching program. Algorithmic solutions for these tasks will
be described in Section 5.2. However, pattern matching algorithms fail to become
popular among biologists for several reasons as follows:

� Most of them lack implementations capable of handling biological sequence for-
mats (which then requires to change the format).

� They lack a graphical interface or were not integrated in popular graphical se-
quence exploration package like the Genetics Computer Group (GCG) package.

� As BLAST [4] was used for similarity searching on a daily basis, it has become
the all-purpose tool for most sequence processing tasks, even when more adapted
solutions were available [15].

Since 2005, biology has experienced the revolution of high-throughput sequenc-
ing (HTS) because of the renewal of sequencing techniques (new technologies of-
ten are termed next generation sequencing) [43]. Because of the invention of par-
allel sequencing of multiple molecules on a single machine, the sequencing output
per run has grown by orders of magnitude compared with the traditional Sanger
technique and is expected to increase further [20]. This change does not only have
technological consequences. Experiments previously done by hybridization now are
performed preferentially by sequencing [10], because these techniques offer a much
deeper sampling and allow covering the whole genome. Hence, HTS now is exploited
to address surprisingly diverse biological questions of genome sequencing or rese-
quencing [5,43], transcriptomics [49,59], genomic variation identification or genome
breakpoint mapping [14], metagenomics [24], and epigenomics [12, 26]. To grasp

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5.2 SINGLE PATTERN MATCHING ALGORITHMS 93

how drastic the shift is, consider that one epigenomic census assay published in 2007
produced in one experiment an already amazing 1.5 million short read sequences of
27 base pairs (bp)1 each [27], whereas another assay published only one year later
delivered with the same technology 15 million sequences of 20 bp reads [12].

In all such applications, the first bioinformatic task is to map the short reads on
a reference genome sequence or on a large collection of DNA sequences. The goal
of mapping in transcriptomics, epigenomics, and other applications is to point out
chromosomic positions either transcribed [59], bound to a protein [27], or whose
three-dimensional conformation is altered by a protein [12]. Hence, further analy-
sis only considers those reads that mapped to a unique genomic positions. In other
frameworks, all mapped reads inclusive of those mapped at multiple positions pro-
vide important information to detect, for example, new copies of repeats in the sam-
pled genome. The number of (uniquely and/or multi-) mapped reads depends on the
read length, on the expected probability for a read to map on the genome, on the level
of sequence errors in the reads, as well as on the genetic differences between the cell
from which the reads were sequenced and that which provided the reference genome
sequence. The following approaches are possible: to map exactly or approximately
(up to a limited number of differences between the read and the genome sequences)
reads on the genome sequence. The choice between the two is not obvious because it
has been shown for instance that exact mapping with a shorter read length can yield
the same number of uniquely mapped reads than approximate matching allowing up
to two mismatches [53] and because all approximate mapping tools are not based on
the same algorithm [26,36,39,40,57]. If approximate mapping is used, then another
question is how to distinguish a difference resulting from genetic variation or from
sequence error in a match?

More practically, whether sequence quality information is provided aside the
reads themselves, often the complete read sequence cannot be exploited because of
low quality positions. Hence, either preprocessing with various parameters is ap-
plied to eliminate some positions, or multiple mappings with different parameters
are tested to optimize the mapping output. In any case, the number of reads to map
is so large that mapping efficiency and scalability, both in terms of time and to a less
extent of memory, becomes a major issue. In Section 5.4, we will discuss the com-
parison of exact versus approximate mapping approaches on these issues. Before
that, Section 5.2 presents efficient solutions for the single pattern matching problem,
whereas Section 5.3 details fast algorithms for multiple or set pattern matching.

5.2 SINGLE PATTERN MATCHING ALGORITHMS

We consider locating nucleotide or amino acid sequence patterns in a long biolog-
ical sequence called the text. We assume that the sequences are in the raw format.
We denote the pattern of length m by P = p0 p1 . . . pm−1 and the text of length n by

1A base pair is the length unit of a DNA/RNA sequence.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

94 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

T = t0t1 . . . tn−1. We also use C-like notations |, &, and, � to represent bitwise oper-
ations OR, AND, and left shift, respectively. The goal of the single pattern matching
problem is to find all occurrences of the pattern in the text (i.e., positions j such that
t j+i = pi for i = 0, 1, . . . , m − 1).

5.2.1 Algorithms for DNA Sequences

Most efficient string matching algorithms in the DNA alphabet are modifications of
the Boyer–Moore algorithm [11], which processes the text in windows of length m.
In each window, the characters are read from right to left, and when a mismatch with
the pattern is found, the window is shifted based on the text characters read. The
algorithm applies two shifting heuristics, match and occurrence. The match heuristic
assures that the matching suffix of the current window matches the pattern also after
the shift if it then is aligned with the pattern. The occurrence heuristic (also called
the bad character heuristic) determines the shortest possible shift such that either the
mismatching or the right-most character of the current window matches the pattern
after the shift. If no such shift is possible, then a shift of length m is taken. In most
modifications of the Boyer–Moore algorithm, only the occurrence heuristic is ap-
plied for shifting. The Boyer–Moore–Horspool algorithm [22] (BMH) is a famous
implementation of this simplification.

Because the DNA alphabet contains only four symbols, shifts based on one char-
acter are short on average. Therefore, it is advantageous to apply q-mers (or q-
grams), strings of q characters, for shifting instead of single characters. This tech-
nique was mentioned already in the original paper of Boyer and Moore [11, p. 772],
and Knuth et al. [34, p. 341] theoretically analyzed its gain. Zhu and Takaoka [65]
presented the first algorithm using the idea. Their algorithm uses two characters for
indexing a two-dimensional array. Later, Baeza-Yates [6] introduced another varia-
tion based on the BMH algorithm in which the shift array is indexed with an integer
formed from a q-mer with shift and add instructions.

For the DNA alphabet, Kim and Shawe-Taylor [32] introduced a convenient al-
phabet compression by masking the three lowest bits of ASCII characters. In addition
to the a, c, g, and t, one gets distinguishable codes also for n and u. Even the impor-
tant control code \n = LF has a distinct value, but \r = CR gets the same code as u.
With this method, they could use q-mers of up to six characters. Indexing of the shift
array is similar to that of Baeza-Yates’ algorithm.

With the DNA alphabet, the probability of an arbitrary short q-mer appearing
in a long pattern is high. This restricts the average shift length. Kim and Shawe-
Taylor [32] introduced a variation for the cases in which the q-mer in the text occurs
in the pattern. Then two additional characters are checked one by one to achieve a
longer shift.

In most cases, the q-mer that is taken from the text does not match with the last
q-mer of the pattern, and the pattern can be shifted forward. For efficiency, one can
apply a skip loop [23] in which the pattern is moved forward until the last q-mer of
the pattern matches with a q-mer in the text. The easiest way to implement this idea is
to place a copy of the pattern as a stopper after the text and artificially define the shift

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5.2 SINGLE PATTERN MATCHING ALGORITHMS 95

of the last q-mer of the pattern to be zero. Then the skip loop is exited when the shift
is zero. After a skip loop, the rest of the pattern is compared with the corresponding
text positions.

A crucial point for the efficiency of a q-mer algorithm is how q-mers are com-
puted. Tarhio and Peltola [61] presented a q-mer variation of BMH that applies a
skip loop. The algorithm computes an integer called a fingerprint from a q-mer. The
ASCII codes are mapped to the range of 4: 0 ≤ r [x] ≤ 3, where r [x] is the new
code of x , such that characters a, c, g, and t get different codes, and other possible
characters get, for example, code 0. In this way, the computation is limited to the
effective alphabet of four characters. The fingerprint is simply a reversed number
of base. A separate transformation table hi is used for each position i of a q-mer,
and multiplications are incorporated during preprocessing into the following tables:
hi [x] = r [x] × 4i . For q = 4, the fingerprint of x0 · · · x3 is

∑3
i=0 r [xi] × 4i , which

then is computed as

h0[x0] + h1[x1] + h2[x2] + h3[x3]

Recently, Lecroq [37] presented a related algorithm. Its implementation is based
on the Wu–Manber algorithm [63] for multiple string matching, but as suggested, the
idea is older [11, 65]. For q = 4, the fingerprint of x0 · · · x3 is

((((((x0 � 1) + x1) � 1) + x2) � 1) + x3) mod 256

SSABS [56] and TVSBS [62] were developed with biological sequences in mind.
SSABS is a Boyer–Moore-type algorithm. In the search phase, the algorithm verifies
that the first and last characters of the pattern match with the current alignment before
checking the rest of the alignment (or guard tests). TVSBS uses a 2-mer for calcu-
lating the shift, adopted from the Berry–Ravindran algorithm [8], which is a cross of
the Zhu–Takaoka algorithm and Sunday’s Quick Search algorithm [60]. Instead of
the two-dimensional shift table of Berry–Ravindran, TVSBS uses a hash function to
compute an index to a one-dimensional table. According to Kalsi et al. [28], SSABS
and TVSBS are not competitive with q-mer algorithms in the DNA alphabet.

We present one fast q-mer algorithm for DNA sequences in detail. It is SBNDM4
[19], a tuned version of backward nondeterministic DAWG matching (BNDM) by
Navarro and Raffinot [45]. BNDM is a kind of cross of the backward DAWG match-
ing algorithm (BDM) [16] and the Shift-Or [7] algorithm. The idea of BNDM is
similar to BDM, although instead of building a deterministic automaton, a nonde-
terministic automaton is simulated even without constructing it. The resulting code
applies bit-parallelism, and it is both efficient and compact. We present a pseudo
code2 for SBNDM4 as Algorithm 5.1. The code contains a skip loop so that a copy
of the pattern is placed to tn . . . tn+m−1 on line 3. The presented version outputs only
the number of matches. The matches can be reported by changing line 13.

2The conditional expressions of the while statements on lines 6 and 9 contain side assignments. Thus, the
operators = of these expressions are not relational operators but assignment operators.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

96 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

Algorithm 5.1
SBNDM4(P = p0 p1 . . . pm−1, T = t0t1 . . . tn−1)
1. for (i = 0; i < 256; i = i + 1) B[i] = 0
2. for (i = 0; i < m; i = i + 1) B[pm−i−1] |= (1 � i)
3. for (i = 0; i < m; i = i + 1) tn+i = pi

4. j = m − 1
5. while true
6. while not (d = ((B[t j] � 3) & (B[t j−1] � 2) & (B[t j−2] � 1) & B[t j−3]))
7. j = j + m − 3
8. pos = j
9. while (d = ((d � 1) & B[t j−4])) j = j − 1
10. j = j + m − 4
11. if j = pos
12. if (j ≥ n) return nmatch
13. nmatch = nmatch + 1
14. j = j + 1

SBNDM4 is very fast in practice. On x86 processors, one still can boost its per-
formance by using 16-bit reading [19]. In searching DNA patterns of 20 characters,
SBNDM4 with 16-bit reading is more than eight times faster than the classical
Boyer–Moore algorithm [19] (see also comparisons [28, 37, 61]). SBNDM4 works
for DNA patterns of up to 32 or 64 characters depending on the word size of the
processor. In practice, longer exact patterns are seldom interesting, but, for exam-
ple, Lecroq’s algorithm [37], with the divisor 4096 instead of 256, is good for them.
SBNDM4, like other variations of BNDM, also works for more general string match-
ing in which positions in the pattern or in the text represent character classes [46]
instead of single characters. So, for example, the standard IUB/IUPAC nucleic acid
codes [66] can be used with SBNDM4.

There are also algorithms [33, 51] for packed DNA. We decided to leave them
outside this presentation.

5.2.2 Algorithms for Amino Acids

In general, there is hardly any difference in performance when searching amino acid
or natural language patterns. So any good search algorithm for natural language is
also applicable to amino acids. In searching short patterns [19], SBNDM2, the 2-
mer variation of SBNMD4, is among the best. SBNDM2 is derived from SBNDM4
as follows: replace line 6 with

while not (d = ((B[t j] � 1) & B[t j−1]))

and on lines 7–10, replace m − 3 with m − 1, j − 4 with j − 2, and m − 4 with
m − 2, respectively.

As for SBNDM4, one still can boost the performance of SBNDM2 by using 16-bit
reading [19]. In searching patterns of five characters, SBNDM2 with 16-bit reading
is more than two times faster than the classical Boyer–Moore algorithm.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5.3 ALGORITHMS FOR MULTIPLE PATTERNS 97

5.3 ALGORITHMS FOR MULTIPLE PATTERNS

In this section, we consider exact searching of multiple patterns. More precisely, we
are given a text and r patterns, and we need to find all occurrences of all patterns in
the text. Here, we focus on algorithms that can be run on standard hardware. Some
attempts also have been made to implement standard set pattern matching algorithms
on specific parallel hardware to gain computing time [18].

5.3.1 Trie-Based Algorithms

Many algorithms for exact searching of multiple patterns are based on a data structure
called trie for storing the patterns. A trie is a tree in which each edge is labeled
with a character. Each node of the trie is associated with a string that is formed by
concatenating all the labels of the edges on the path from the root to the node. Given a
node in the trie, all edges to the children of this node have a different label. Figure 5.1
shows the trie storing the strings {acc, accg, att, cca, cgt}.

5.3.1.1 Aho–Corasick. The Aho–Corasick algorithm [2] builds as preprocess-
ing an automaton that recognizes the occurrences of all patterns. The preprocessing
starts by building the trie of the pattern set. We add an edge from the root to the root
for all those characters that do not yet have an outgoing edge from the root. The trie
then is augmented with failure links as follows. The failure link of a node N in the
trie points to a node that is associated with the longest possible suffix of the string

gc

ca

tc

1

tc

3

2

54

ta

g

Figure 5.1 An example trie storing the strings {acc, accg, att, cca, cgt}.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

98 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

gc

ca

c

1

tc

2

54

t

g

g,t

a

3

t

Figure 5.2 An example of the Aho–Corasick automaton for the patterns {acc, accg, att, cca,
cgt}. The dashed lines show the failure links. Failure links to the starting state of the automaton
have been omitted. The numbers inside the nodes show the values of the output function.

associated with the node N excluding the node N itself. Additionally, we associate
an output function with each node whose associated string is one of the patterns. The
output function outputs the identifier of the pattern. Figure 5.2 shows an example of
an Aho–Corasick automaton for the patterns {acc, accg, att, cca, cgt}.

The automaton is used for searching the text as follows. We start at the root node
of the trie. We read the text character by character, and for each character, we perform
the following actions. As long as there is no child node with an edge labeled with
the read character, we follow the failure link. Then we descend to the child with an
edge labeled with the read character. Finally, we output the identifiers returned by
the output function for the child node.

The Aho–Corasick automaton can be built in O(cM) time, where c is the size
of the alphabet and M is the total length of the pattern set (i.e., M = r × m if all
patterns are of length m). The searching phase takes O(n + occ) time, where occ is
the total number of occurrences of all patterns in the text.

5.3.1.2 Set Backward Oracle Matching. The set backward oracle match-
ing (SBOM) algorithm [3] builds an automaton that recognizes at least all factors
(i.e., substrings) of the reversed patterns. The automaton is built as shown in Algo-
rithm. 5.2. First we build a trie of the reversed patterns. Then we traverse the trie in
breath-first order and add some more edges between the nodes turning the trie into a

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5.3 ALGORITHMS FOR MULTIPLE PATTERNS 99

c

a

a

g

a

aag

Figure 5.3 An example of the SBOM automaton. The dashed lines show the supply links.

Algorithm 5.2
SBOM-preprocess (P1, . . . , Pr)
1. build-trie(Pr

1 , . . . , Pr
r)

2. set supply link of root to NULL
3. for each node N in the trie in breath first order
4. down = supply link of parent
5. c = the edge label from parent to N
6. while down �= NULL and

down does not have a child with edge label c
7. add an edge from down to N with label c
8. down = supply link of down
9. if down �= NULL
10. set supply link of N to the child of down with edge label c
11. else
12. set supply link of N to root

directed acyclic graph (DAG) that recognizes all factors of the reversed patterns. To
assist us in adding these new edges, we associate a supply link with each node. For
each node we then perform the pseudo code on lines 4–12 shown in Algorithm 5.2.
Figure 5.3 shows an example of the SBOM automaton built for patterns {aag, gac}.
As is shown, the automaton also recognizes some other strings, like caa, which are
not factors of the patterns.

This automaton then is used for searching the occurrences of the patterns as fol-
lows. Initially, we set the endpoint to the length of the shortest pattern. We then
read the characters of the text backward, starting at the endpoint character. For each
character, we make the corresponding state transition in the automaton. Whenever
we encounter a node associated with one of the patterns, we verify the read re-
gion character by character against the pattern. If there is no transition from the
current state with the read character, we can shift the endpoint forward and start the
backward scan again at the new endpoint. The length of the shift is 1 or m − j + 1,

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

100 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

where m is the length of the shortest pattern and j is the number of characters that
we have read—whichever is longer.

The SBOM automaton can be built in O(M) time, where M is the total length of
the pattern set. The worst-case searching time in SBOM is O(Mn), but on average,
SBOM does not inspect every character of the text.

5.3.2 Filtering Algorithms

Filtration aims at eliminating most positions that cannot match any given pattern
with an easy criterion. Then, verification checks whether the remaining positions
truly match a pattern. Thus, filtering algorithms operate in three phases. The pat-
terns first are preprocessed; in the second phase, we search the text with a filter-
ing method, and the candidate matches produced by the filtering are verified in the
third phase.

Here, we describe several algorithms that use a generalized pattern of charac-
ter classes for filtration [55]. Let us explain the filtration scheme with the following
example in which we have a set of three patterns of length m = 8: {P1, P2, P3} =
{accttggc, gtcttggc, accttcca}, and we set q to 5. The overlapping 5-mers (or 5-grams)
of each pattern are given in Figure 5.4. For a text window W of length 8 to match
P1, the substring of length q starting at position i in W must match the i-th q-
mer of P1 for all possible i and conversely. Now, we want to filter out windows
that do not match any pattern. If the substring starting at position i in W does not
match the i-th q-mer of neither P1, P2, nor P3, then we are sure that W cannot
match any patterns. Thus, our filtration criterion to eliminate surely any nonmatch-
ing window W is to find whether a position i exists such that the previous condition
is true.

{P1, P2, P3} = {accttggc; gtcttggc; accttcca}
(a)

1 2 3 4 5 6 7 8
P1 a c c t t g g c

a c c t t
c c t t g

c t t g g
t t g g c

1 2 3 4 5 6 7 8
P2 g t c t t g g c

g t c t t
t c t t g

c t t g g
t t g g c

1 2 3 4 5 6 7 8
P3 a c c t t c c a

a c c t t
c c t t c

c t t c c
t t c c a

(b)

[acctt, gtctt][ccttg, tcttg, ccttc][cttgg, cttcc][ttggc, ttcca]
(c)

Figure 5.4 (a) A set of three patterns of length m = 8. (b) The overlapping 5-mers starting at
position 1 to 4 (in very light gray, light gray, gray, dark gray, respectively) of each pattern. (c) The
generalized 5-mer pattern for the set of patterns.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5.3 ALGORITHMS FOR MULTIPLE PATTERNS 101

Given a set of patterns, the filtering algorithms build a single q-mer generalized
pattern (Figure 5.4c). A generalized pattern allows several symbols to match at a
position (like a position [DENQ] in a PROSITE pattern, which matches the symbols
D, E, N, and Q). However, here each q-mer is processed as a single symbol. Then, a
string matching algorithm that can handle classes of characters is used for searching
for occurrences of the generalized pattern in the text.

Various different algorithms can be used for implementing the filtering phase.
Subsequently we describe in more detail algorithms in which filtering is based on
the shift-or, BNDM, and Boyer–Moore–Horspool algorithms. A filtering algorithm
always requires an exact algorithm to verify the candidate matches. In principle, any
presented exact algorithm could be used for this purpose.

We recently have shown that the average time complexity of the filtering algo-
rithm based on the BNDM or Boyer–Moore–Horspool algorithm for searching r pat-
terns of length m in a text of length n over an alphabet of size c is O(n logc(rm)/m),
provided that q = �(logc(rm)) [53, 54]. As it was proved that the minimum time
required is �(n logc(rm)/m) [44], these algorithms are asymptotically optimal on
average.

5.3.2.1 Multipattern Shift-Or with q-Grams. The shift-or algorithm is ex-
tended easily to handle classes of characters in the pattern [1, 7], and thus, devel-
oping a filtering algorithm for multiple pattern matching is straightforward. The pre-
processing phase now initializes the bit vectors for each q-mer as follows. The i-th
bit is set to 0 if the given q-mer is included in the character class in the i-th po-
sition. Otherwise, the bit is set to 1. The filtering phase proceeds then exactly like
the matching phase of the shift-or algorithm. Given this scheme, it is clear that all
actual occurrences of the patterns in the text are candidates. However, there are also
false positives, as the generalized pattern also matches other strings than the original
patterns. We call this algorithm SOG (short for multipattern Shift-or with q-grams).

5.3.2.2 Multipattern BNDM with q-Grams. The second filtering algorithm is
based on the BNDM algorithm by Navarro and Raffinot [45]. This algorithm has been
extended to classes of characters in the same way as the shift-or algorithm. We call
the resulting multiple pattern filtering algorithm BG (short for BNDM with q-grams).
The bit vectors of the BNDM algorithm are initialized in the preprocessing phase
so that the i-th bit is 1 if the corresponding q-mer is included in the character class
of the reversed generalized pattern in position i . In the filtering phase, the matching
is then done with these bit vectors. As with SOG, all match candidates reported by
this algorithm must be verified.

5.3.2.3 Multipattern Horspool with q-Grams. The last of our algorithms uses
a Boyer–Moore–Horspool [22] type method for matching the generalized pattern
against the text. Strictly speaking, this algorithm does not handle character classes
properly. It will return all those positions in which the generalized pattern matches
and also some others. This algorithm is called HG (short for Horspool with q-grams).

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

102 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

5-mer tables:
4.3.2.1.
accctaccctaccctaccct
cccttcccttccctt
ccttacctta
cttaa

Figure 5.5 Data structures of the HG algorithm for the pattern “acccttaa”.

The preprocessing phase of HG constructs a bit table for each of the m − q + 1
positions in which a q-mer starts in the pattern. The first table keeps track of q-mers
contained in the character class of the first position of the generalized pattern, the
second table keeps track of q-mers contained in the character classes of the first and
the second position in the generalized pattern, and so on. Finally, the m − q + 1-st
table keeps track of characters contained in any character class of the generalized pat-
tern. Figure 5.5 shows the four tables corresponding to the pattern “acccttaa” when
using 5-mers.

These tables then can be used in the filtering phase as follows. First, the m − q +
1-st q-mer is compared with the m − q + 1-st table. If the q-mer does not appear in
this table, then the q-mer cannot be contained in the character classes of positions
1 . . . m − q + 1 in the generalized pattern, and a shift of m − q + 1 characters can be
made. If the character is found in this table, then the m − q-th character is compared
with the m − q-th table. A shift of m − q characters can be made if the character does
not appear in this table and, therefore, not in any character class in the generalized
pattern in positions 1, . . . , m − q. This process is continued until the algorithm has
advanced to the first table and found a match candidate there. The pseudocode is
shown as Algorithm 5.3. Given this procedure, it is clear that all positions matching
the generalized pattern are found. However, other strings also will be reported as
candidate matches.

Algorithm 5.3
HG-matcher(T = t0 . . . tn−1, n)
1. i = 0
2. while i ≤ n − m
3. j = m − q + 1
4. while true
5. if not qMerTable[j][ti+ j−1...i+ j+q−2]
6. i = i + j
7. break
8. else if j = 1
9. verify-match(i)
10. i = i + 1
11. break
12. else
13. j = j − 1

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5.4 APPLICATION OF EXACT SET PATTERN MATCHING FOR READ MAPPING 103

5.3.3 Other Algorithms

Other algorithms for searching multiple patterns include the Commentz–Walter algo-
rithm [17] with its variations, the Wu–Manber algorithm [63], and algorithms derived
from the Rabin–Karp algorithm [29] for a single pattern.

5.4 APPLICATION OF EXACT SET PATTERN MATCHING FOR READ
MAPPING AND COMPARISON WITH MAPPING TOOLS

Here, we concentrate on the question of set pattern matching and on its main cur-
rent application—read mapping on genomic sequences. In most frameworks, mil-
lions of reads that originate from a genome have been sequenced using HTS. A
read serves as a signature for a molecule or a chromosomic position. The goal
of mapping is to find for each different read the chromosomic position of origin
in the reference genome. As a read may be sequenced several times according to
its number of occurrences in the biological sample, the number of different reads
may be much smaller than the number of read sequences. For example, in a tran-
scriptomic assay in which 2 million reads were sequenced, the read set contains
� 440.000 elements [49]. As a read sequence can differ from the original chro-
mosomic sequence because of polymorphisms or sequence errors, read mapping
is often performed using approximate pattern matching, which allows a few mis-
matches and/or indels. For approximate mapping, either near-exact sequence similar-
ity search programs (BLAT [30], MEGABLAST [64], or SSAHA [48]) or mapping
tools (ELAND, TAGGER [25], RMAP [57], SEQMAP [26], SOAP [39], MAQ [38],
BOWTIE [36], and ZOOM [40]) are used. An alternative option when dealing with
short reads is to resort to exact set pattern matching, for which MPSCAN offers an
efficient solution [49, 53].

Because of the number of reads to match, repeated application of a single pattern
matching algorithm for each read would require an unaffordable computing time.
Hence, practically efficient solutions involve either

1. Indexing the reads in main memory and scanning the genome only once (or a
few times) for all reads (the solution chosen in MEGABLAST [64], SEQMAP
[26], and MPSCAN [53])

2. First preprocessing the genome to build an index and then loading the in-
dex in memory before searching each read one after the other (the approach
followed in SSAHA [48], BLAT [30], and in mapping tools like ELAND,
TAGGER [25], RMAP [57], SOAP [39], MAQ [38], BOWTIE [36])

5.4.1 MPSCAN: An Efficient Exact Set Pattern Matching Tool for
DNA/RNA Sequences

The program MPSCAN [49, 53] is an implementation of the exact multipattern
BNDM with q-grams algorithm presented in Section 5.3.2.2. It is specialized for

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

104 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

searching large sets of relatively short DNA/RNA patterns in large DNA/RNA
sequence files, and its interface is adequate for the purpose of mapping reads; it
handles file formats commonly used in biology, can search for the reverse comple-
mentary of the pattern, and so on.

Its correctness, which ensures it to yield for each read all text positions at which
that read matches the text, derives from that of the multipattern BNDM with q-grams
algorithm. The filtration efficiency depends on the parameter q. If we choose q =
�(logc(rm)), then MPSCAN is optimal on average.

For example, on an Intel Xeon CPU 5140 processor at 2.33 GHz with 8 GB main
memory, when searching 4 million 27 bp reads on the 247 Mbp of human chromo-
some 1, MPSCAN sets the parameter q to 13, uses 229 MB memory, and runs in 78
seconds.

5.4.2 Other Solutions for Mapping Reads

With HTS becoming more popular and the increase of sequencing capacity, the ques-
tion of mapping reads on a genome sequence is a crucial issue as well as a bottleneck.

At the HTS advent, an available solution was to use ultrafast similarity search
with BLAST-like programs, which were not designed for this purpose but for locally
aligning sequences that differ little (e.g., only because of sequencing errors). They
typically were intended to align expressed sequence tags on the human genome.
These programs are not adapted to short reads (below 60 bp) and because of in-
ternal limitations cannot handle millions of queries. Hence, both their sensitivity
and scalability are insufficient for the mapping application with short reads [53].
However, some users still resort to these tools because, unlike mapping tools, they
allow an unrestricted number of differences between the read and the genome
[31]. All these tools implement a filtration strategy that requires a substring of the
query sequence to match the genome either exactly [48, 64] or with at most one
mismatch [30].

Since the commercialization of HTS, plenty of commercial or free mapping tools
have been developed or published (cf. previous list); for instance, the ELAND soft-
ware is provided with the Illumina Solexa sequencer. As mentioned, the goal of map-
ping differs with the application, but it is often to find the best match for a read—the
match with the least differences and, if possible, unique. All mapping programs per-
form successive approximate pattern matching up to a limited number of differences.
Some tools can find matches with up to four mismatches and/or indels, but generally
a guarantee to find all matches (as required in the definition of approximate match-
ing) is given only up to one or two mismatches. This limitation makes sense to speed
the search and derives from the applied filtration scheme. All tools (except ZOOM)
use variants of the so-called partition into exact search (PEX) filter [46], which con-
sists of splitting the read in k + 1 adjacent pieces, knowing that at least one piece will
match exactly when a maximum of k errors are allowed. Many mapping programs
make it efficient by using 2-bit encoded sequences and/or an index of the genome
(e.g., MAQ, ELAND, BOWTIE, RMAP, or SOAP).

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5.4 APPLICATION OF EXACT SET PATTERN MATCHING FOR READ MAPPING 105

The program ZOOM exploits spaced seeds; it requires that a subsequence of a de-
fined form, instead of a substring, matches between the read and the genome [13,41].
The subsequence’s pattern of required matching positions and wild cards is intention-
ally designed depending on the expected match length and maximal number of differ-
ences [35]. The advantage of spaced seeds is their capacity to handle mismatches and
insertion/deletions (indels) and their increased sensitivity compared with substring-
based filtration [13,41]. Their main drawback is the difficulty of seed design; ZOOM
uses a conjunction of several seeds. Hence, sets of spaced seeds are designed specifi-
cally for a certain read/match length and a maximum number of allowed differences,
and different sets corresponding to different parameter combinations are hard coded
in ZOOM. All known formulations of the seed design problem are at least NP-hard
even for a single seed [35, 42, 47].

5.4.3 Comparison of Mapping Solutions

As already mentioned, many groups have developed and/or published their own map-
ping tools, and all tools, except MPSCAN, implement a solution-based on approxi-
mate pattern matching. However, to date, one lacks a comparative evaluation of the
sensibility of all these tools in various application frameworks. The intended ap-
plication makes a difference because, for example, identifying genomic variations
and multiple matching locations of a read provide useful information, whereas in
transcriptomics, one usually discards multimapped reads. Probing the sensitivity and
evaluating the sensitivity versus speed or memory balance is a difficult task, know-
ing that the programs differ in their notion of approximation (e.g., with or without
indels).

Here, we discuss the conclusions of a comparison on the less difficult task of
exact set pattern matching. We exclude the program ELAND because it is not free
for academics as well as MAQ, which does not accept parameters for searching only
exact read matches.

5.4.3.1 Speed, Memory Footprint, and Scalability. We compared RMAP,
SEQMAP, SOAP (versions 1 and 2), ZOOM, BOWTIE, and MPSCAN for searching
increasing read sets on the longest human chromosome (chromosome 1, 247 Mbp).
The public input datasets contains 6.5 million 27 bp reads, and we took subsets every
million reads (available on the GEO database under accession number GSM325934).
At the date of this comparison, this set belongs to the largest ones in terms of number
of different reads, and there is no available dataset of similar size with much longer
reads (say > 36 bp).

Figure 5.6 reports the running times in seconds on a logarithmic scale for search-
ing the subsets of 1, 2, . . . up to 6 and 6.5 million reads. Of course, the times do not
include the index construction time for those programs that use an index, which
is for example, hours for BOWTIE in the case of the complete human genome
[36, Table 5].

First, all tools can handle very large read sets, and their running times remain im-
pressive even if they degrade somehow with increasing read sets. Second, the com-
parison of ZOOM or MPSCAN compared with genome indexing tools like BOWTIE

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

106 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

 10

 100

 1000

 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

T
im

e
in

 s
ec

 (
lo

g
sc

al
e)

Number of searched patterns

 RMAP
 SEQMAP
 SOAP-v1
 SOAP-v2
 ZOOM
 BOWTIE
 MPSCAN

Figure 5.6 Comparison of mapping tools: Search times of RMAP, SEQMAP, SOAP (versions
1 and 2), ZOOM, BOWTIE, and MPSCAN in seconds (log scale) for increasing subsets of 27
bp reads. All tools behave similarly and offer acceptable scalability. MPSCAN remains the most
efficient of all and can be 10 times faster than tools like SEQMAP or RMAP. Times do not include
the index construction time.

or SOAP shows that high performance is not bound to a genome index, at least
for exact pattern matching. Knowing that the ZOOM algorithm also handles ap-
proximate matches with up to two mismatches or indels, it seems that it offers a
very satisfying solution compared with BOWTIE, which is limited to mismatches
and offers less guarantees. For exact pattern matching, the performance differences
can be large (10 times between MPSCAN and SOAP-v2 for 2 million reads), and
MPSCAN offers the fastest solution overall, even if it exploits only a 32-bit architec-
ture. However, MPSCAN time increases more when going from 4 to 5 million reads,
suggesting that for equal read length, a coarse-grain parallelization would improve
its performance.

To illustrate the low memory footprint of mapping tools that do not load a genome
index in RAM, we give the amount of RAM required by ZOOM, SEQMAP, and
MPSCAN for searching the complete human genome with 1 million sequences for 27
bp tags. ZOOM requires 17 minutes and 0.9 gigabytes, RMAP takes 30 minutes and
0.6 gigabytes, SEQMAP performs the task in 14 minutes with 9 gigabytes, whereas
MPSCAN needs < 5 minutes using 0.3 gigabytes. In contrast, the BOWTIE human
genome index, which is constructed using the Burrows–Wheeler Transform, takes at
least 1.4 gigabytes [36].

5.4.3.2 Exact Pattern Matching for Read Mapping. The read length influ-
ences the probability of a read to map on the genome and also its probability to map
once. The shorter the read, the higher the probability of mapping but the lower that

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

5.5 CONCLUSIONS 107

of mapping once. In many applications, reads mapping at unique genomic positions
are preferred. A rationale for the currently developed extension of read length is the
increased probability to map to a unique genomic location. On the human genome, a
length of 19 bp already brings the risk of mapping at random below 1%, and we have
shown recently that it already maximizes the number of uniquely mapped reads on
four real datasets [49]. Studying the sequence error position in the reads, we could
show that the error probability at one sequence position increases with the position
in the read for Illumina/Solexa data. Hence, an alternative to approximate mapping
is to perform exact matching using only a prefix (of an adequate length) of each read.

To evaluate this, we compared the result of approximate matching with full-length
reads with that of MPSCAN on read prefixes. ELAND searches the best read match
up to two mismatches, whereas we ran MPSCAN to search for exact matches of read
prefixes. The full-length reads are 34 bp. If one maps with MPSCAN the full-length
reads, 86% remain unmapped, and 11% are uniquely mapped. With at most two
mismatches, ELAND finds 14% of additional uniquely mapped reads with one or two
mismatches, whereas mapping the 20 bp prefix of each read with MPSCAN allows
mapping 25% of all reads at unique positions (14% more sites than with full-length
reads). Hence, both approaches yield a similar output, but exact matches represent
easier and more secure information than approximate matches. For the current rates
of sequencing errors and read lengths, exact matching is a suitable solution for read
mapping. Moreover, it allows us to estimate computationally the sequence error rate
without performing control experiments (cf. [49] for a more in-depth presentation),
which would be more difficult using approximate matching.

5.5 CONCLUSIONS

For pattern matching, q-gram-based algorithms and especially MPSCAN represent
the most efficient theoretical and practical solutions to exact set pattern matching
for huge pattern sets (greater than million patterns). Compared with known solutions
surveyed seven years ago in [46], which were reported to handle several hundred
thousands of patterns, MPSCAN provides more than an order of magnitude improve-
ment; it allows processing at astonishing speed pattern sets of several millions reads.
The second take-home message is that its filtration scheme can compete with ap-
proaches that use a text index.

Since 2005, the capacity of HTS is evolving continuously; biotechnological re-
search and development aim at reducing the quantity of biological extract, augment-
ing the sequencing capacity and quality, raising the read length, and even enlarging
the application fields. Despite the efforts for designing scalable and efficient map-
ping programs, it will remain a computational issue to let mapping solutions fit the
requirements of new HTS versions. This question is complex because read lengths
greater than 20 are not necessary to point out a unique position in a genome as large
as that of human [49].

An interesting conclusion is that different filtration schemes achieve impressive
efficiency and scalability but may be insufficient for tomorrow’s needs. The abundant

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

108 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

pattern matching literature still may contain other possible algorithms whose appli-
cations in this setup have not yet been evaluated. With the spread of multicore com-
puters, parallelization represents another future line of research.

Finally, we left aside the problem of mapping pairs of reads. In this framework,
two reads are sequenced for each targeted molecule, each at a different extremity.
The reads come in pairs, and the goal of mapping is to find one matching position
for each read such that the two positions are on the same chromosome and in an
upper bounded vicinity. In other applications, the pair relations are unknown, and
it then is required to find across the two sets of beginning and ending reads which
ones constitute a pair because they map on the same chromosome not too far from
another [52]. Some mapping tools like MAQ or ZOOM can solve read pair mapping
efficiently, whereas a predecessor of MPSCAN has been developed and applied in
the second framework [52].

REFERENCES

1. K. Abrahamson. Generalized string matching. SIAM J Comput, 16(6):1039–1051, 1987.

2. A.V. Aho and M.J. Corasick. Efficient string matching: An aid to bibliographic search.
Commun ACM, 18(6):333–340, 1975.

3. C. Allauzen and M. Raffinot. Factor oracle of a set of words. Technical Report 99-11,
Institut Gaspard-Monge, Universit de Marne-la-Vallée, 1999. (in French).

4. S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lip-
man. Gapped BLAST and PSI-BLAST: A new generation of protein database search pro-
grams. Nucleic Acids Res, 25(17):3389–3402, 1997.

5. J.-M. Aury, C. Cruaud, V. Barbe, O. Rogier, S. Mangenot, G. Samson, J. Poulain, V. An-
thouard, C. Scarpelli, F. Artiguenave, and P. Wincker. High quality draft sequences for
prokaryotic genomes using a mix of new sequencing technologies. BMC Genom, 9:603,
2008.

6. R.A. Baeza-Yates. Improved string searching. Soft—Pract Exp, 19(3):257–271, 1989.

7. R.A. Baeza-Yates and G.H. Gonnet. A new approach to text searching. Commun ACM,
35(10):74–82, 1992.

8. T. Berry and S. Ravindran. A fast string matching algorithm and experimental results.
Proceedings of the Prague Stringology Club Workshop ’99, Collaborative Report DC-99-
05, Czech Technical University, Prague, Czech Republic, 1999, pp. 16–28.

9. A.J. Bleasby, D. Akrigg, and T.K. Attwood. OWL – a non-redundant, composite protein
sequence database. Nucleic Acids Res, 22(17):3574–3577, 1994.

10. N. Blow. Transcriptomics: The digital generation. Nature, 458:239–242, 2009.

11. R.S. Boyer and J.S. Moore. A fast string searching algorithm. Commun ACM,
20(10):762–772, 1977.

12. A.P. Boyle, S. Davis, H.P. Shulha, P. Meltzer, E.H. Margulies, Z. Weng, T.S. Furey, and
G.E. Crawford. High-resolution mapping and characterization of open chromatin across
the genome. Cell, 132(2):311–322, 2008.

13. S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. Fundamenta Infor-
maticae, 56(1–2):51–70, 2003.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

REFERENCES 109

14. W. Chen, V. Kalscheuer, A. Tzschach, C. Menzel, R. Ullmann, M.H. Schulz, F. Erdogan,
N. Li, Z. Kijas, G. Arkesteijn, I.L. Pajares, M. Goetz-Sothmann, U. Heinrich, I. Rost,
A. Dufke, U. Grasshoff, B. Glaeser, M. Vingron, and H.H. Ropers. Mapping translocation
breakpoints by next-generation sequencing. Genome Res, 18(7):1143–1149, 2008.

15. J.M. Claverie and C. Notredame. Bioinformatics for Dummies. Wiley Publishing, Inc.,
New York, NY, 2003.

16. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New York,
1994.

17. B. Commentz-Walter. A string matching algorithm fast on the average. Proceedings of
the 6th Colloquium on Automata, Languages and Programming (ICALP’79), volume 71
of LNCS, pages 118–132. Springer-Verlag, Graz, Austria, 1979.

18. Y.S. Dandass, S.C. Burgess, M. Lawrence, and S.M. Bridges. Accelerating string set
matching in FPGA hardware for bioinformatics research. BMC Bioinformatics, 9(1):197,
2008.

19. B. Durian, J. Holub, H. Peltola, and J. Tarhio. Tuning BNDM with q-grams. Proceedings
of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX’09), pages
29–37. SIAM, 2009.

20. Editor. Prepare for the deluge. Nat Biotechnol, 26:1099, 2008.

21. D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University Press,
Cambridge, UK, 1997.

22. R.N. Horspool. Practical fast searching in strings. Soft—Pract Exp, 10(6):501–506, 1980.

23. A. Hume and D. Sunday. Fast string searching. Soft—Pract Exp, 21(11):1221–1248, 1991.

24. D.H. Huson, D.C. Richter, S. Mitra, A.F. Auch, and S.C. Schuster. Methods for compar-
ative metagenomics. BMC Bioinformatics, 10(Suppl 1):S12, 2009.

25. C. Iseli, G. Ambrosini, P. Bucher, and C.V. Jongeneel. Indexing strategies for rapid
searches of short words in genome sequences. PLoS ONE, 2(6):e579, 2007.

26. H. Jiang and W.H. Wong. SeqMap: mapping massive amount of oligonucleotides to the
genome. Bioinformatics, 24(20):2395–2396, 2008.

27. D.S. Johnson, A. Mortazavi, R.M. Myers, and B. Wold. Genome-wide mapping of in vivo
protein-DNA interactions. Science, 316(5830):1497–1502, 2007.

28. P. Kalsi, H. Peltola, J. Tarhio. Comparison of exact string matching algorithms for bi-
ological sequences. Proceedings of the 2nd International Conference on Bioinformatics
Research and Development (BIRD’08), volume 13 of Communications in Computer and
Information Science, Springer-Verlag, 2008, pp. 417–426.

29. R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algorithms. IBM J
Res Dev, 31(2):249–260, 1987.

30. W.J. Kent. BLAT—the BLAST-like alignment tool. Genome Res, 12(4):656–664, 2002.

31. P.V. Kharchenko, M.Y. Tolstorukov, and P.J. Park. Design and analysis of ChIP-seq ex-
periments for DNA-binding proteins. Nat Biotechnol, 26(12):1351–1359, 2008.

32. J.Y. Kim and J. Shawe-Taylor. Fast string matching using an n-gram algorithm. Soft—
Pract Exp, 24(1):79–88, 1994.

33. J.W. Kim, E. Kim, and K. Park. Fast matching method for DNA sequences. Proceedings
of the 1st International Symposium on Combinatorics, Algorithms, Probabilitic and Ex-
perimental Methodologies (ESCAPE’07), volume 4614 of LNCS, Springer-Verlag, 2007,
pp. 271–281.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

110 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES

34. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J Comput,
6(2):323–350, 1977.

35. G. Kucherov, L. Noé, and M. Roytberg. Multiseed lossless filtration. IEEE/ACM Trans
Comput Biol Bioinform, 2(1):51–61, 2005.

36. B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg. Ultrafast and memory-efficient
alignment of short dna sequences to the human genome. Genome Biol, 10(3):R25, 2009.

37. T. Lecroq. Fast exact string matching algorithms. Inf Process Lett, 102(6):229–235, 2007.

38. H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants
using mapping quality scores. Genome Res, 18(11):1851–1858, 2008.

39. R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: short oligonucleotide alignment pro-
gram. Bioinformatics, 24(5):713–714, 2008.

40. H. Lin, Z. Zhang, M.Q. Zhang, B. Ma, and M. Li. ZOOM! Zillions of oligos mapped.
Bioinformatics, 24(21):2431–2437, 2008.

41. B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homology search.
Bioinformatics, 18(3):440–445, 2002.

42. B. Ma and M. Li. On the complexity of the spaced seeds. J Comput Syst Sci, 73(7):1024–
1034, 2007.

43. M. Margulies, M. Egholm, W.E. Altman, S. Attiya et. al. Genome sequencing in micro-
fabricated high-density picolitre reactors. Nature, 437(7057):376–380, 2005.

44. G. Navarro and K. Fredriksson. Average complexity of exact and approximate multiple
string matching. Theor Comput Sci, 321(2-3):283–290, 2004.

45. G. Navarro and M. Raffinot. Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM J Experimental Algorithmics, 5(4):1–36, 2000.

46. G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical On-line
Search Algorithms for Texts and Biological Sequences. Cambridge University Press, Cam-
bridge, UK, 2002.

47. F. Nicolas and E. Rivals. Hardness of optimal spaced seed design. J Comput Syst Sci,
74(5):831–849, 2008.

48. Z. Ning, A.J. Cox, and J.C. Mulikin. SSAHA: A fast Search method for large DNA
databases. Genome Res, 11:1725–1729, 2001.

49. N. Philippe, A. Boureux, L. Bréhélin, J. Tarhio, T. Commes, and E. Rivals. Using reads to
annotate the genome: Influence of length, background distribution, and sequence errors
on prediction capacity. Nucleic Acids Res, 37(15):e104, 2009.

50. S. Rahmann. Fast large scale oligonucleotide selection using the longest common factor
approach. J Bioinformatics Comput Biol, 1(2):343–361, 2003.

51. J. Rautio, J. Tanninen, and J. Tarhio. String matching with stopper encoding and code
splitting. Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching
(CPM’02), volume 2373 of LNCS, Springer-Verlag, Fakuoka, Japan, 2002, pp. 42–52.

52. E. Rivals, A. Boureux, M. Lejeune, F. Ottones, O.P. Prez, J. Tarhio, F. Pierrat, F. Ruffle,
T. Commes, and J. Marti. Transcriptome annotation using tandem SAGE tags. Nucleic
Acids Res, 35(17):e108, 2007.

53. E. Rivals, L. Salmela, P. Kiiskinen, P. Kalsi, and J. Tarhio. MPSCAN: Fast localisation of
multiple reads in genomes. Proceedings of the 9th Workshop on Algorithms in Bioinfor-
matics (WABI’09), volume 5724 of LNCS, Springer-Verlag, 2009, pp. 246–260.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

REFERENCES 111

54. L. Salmela. Improved Algorithms for String Searching Problems. PhD dissertation, TKK
Research Reports in Computer Science and Engineering A, TKK-CSE-A1/09, Helsinki
University of Technology, 2009.

55. L. Salmela, J. Tarhio, and J. Kytöjoki. Multipattern string matching with q-grams. ACM
J Experimental Algorithmics, 11(1.1):1–19, 2006.

56. S.S. Sheik, S.K. Aggarwal, A. Poddar, N. Balakrishnan, and K. Sekar. A FAST pattern
matching algorithm. J Chem Inform Comput Sci, 44(4):1251–1256, 2004.

57. A.D. Smith, Z. Xuan, and M.Q. Zhang. Using quality scores and longer reads improves
accuracy of Solexa read mapping. BMC Bioinformatics, 9(1):128, 2008.

58. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J Mol
Bio, 147(1):195–197, 1981.

59. M. Sultan, M.H. Schulz, H. Richard, A. Magen, A. Klingenhoff, M. Scherf, M. Seifert,
T. Borodina, A. Soldatov, D. Parkhomchuk, D. Schmidt, S. O’Keeffe, S. Haas, M. Vin-
gron, H. Lehrach, and M.-L. Yaspo. A global view of gene activity and alternative splicing
by deep sequencing of the human transcriptome. Science, 321(5891):956–960, 2008.

60. D.M. Sunday. A very fast substring search algorithm. Commun ACM, 33(8):132–142,
1990.

61. J. Tarhio and H. Peltola. String matching in the DNA alphabet. Soft—Pract Exp,
27(7):851–861, 1997.

62. R. Thathoo, A. Virmani, S.S. Lakshmi, N. Balakrishnan, and K. Sekar. TVSBS: A fast
exact pattern matching algorithm for biological sequences. Curr Sci, 91(1):47–53, 2006.

63. S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Report TR-94-17,
Department of Computer Science, University of Arizona, Tucson, AZ, 1994.

64. Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning DNA
sequences. J Comput Bio, 7(1–2):203–214, 2000.

65. R.F. Zhu and T. Takaoka. On improving the average case of the Boyer–Moore string
matching algorithm. J Inf Process, 10(3):173–177, 1987.

66. IUPAC-IUB Joint Commission on Biochemical Nomenclature. Nomenclature and sym-
bolism for amino acids and peptides. Biochem. J., 219:345–373, 1984.

P1: OSO
c05 JWBS046-Elloumi December 2, 2010 9:40 Printer Name: Sheridan

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

6
ALGORITHMIC ASPECTS

OF ARC-ANNOTATED
SEQUENCES

Guillaume Blin, Maxime Crochemore, and Stéphane Vialette

6.1 INTRODUCTION

Structure comparison for RNA has become a central computational problem bear-
ing many computer science challenging questions. Indeed, RNA secondary structure
comparison is essential for (i) identification of highly conserved structures during
evolution (which always cannot be detected in the primary sequence because it is of-
ten unpreserved), which suggests a significant common function for the studied RNA
molecules, (ii) RNA classification of various species (phylogeny), (iii) RNA folding
prediction by considering a set of already known secondary structures, and (iv) iden-
tification of a consensus structure and consequently of a common role for molecules.

From an algorithmic point of view, RNA structure comparison first was consid-
ered in the framework of ordered trees [21]. More recently, it also has been consid-
ered in the framework of arc-annotated sequences [10]. An arc-annotated sequence
is a pair (S, P), where S is a sequence of RNA bases and P represents hydrogen
bonds between pairs of elements of S. From a purely combinatorial point of view,
arc-annotated sequences are a natural extension of simple sequences. However, using
arcs for modeling nonsequential information together with restrictions on the rela-
tive positioning of arcs allow for varying restrictions on the structure of arc-annotated
sequences.

Different pattern matching and motif search problems have been considered in
the context of arc-annotated sequences among which we can mention the longest

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

113

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

114 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES

arc-annotated subsequence (LAPCS) problem, the arc preserving subsequence (APS)
problem, the maximum arc-preserving common subsequence (MAPCS) problem,
and the edit-distance for arc-annotated sequence (EDIT) problem. This chapter is
devoted to presenting algorithmic results for these arc-annotated problems.

This chapter is organized as follows. We present basic definitions in Section 6.2.
Section 6.3 is devoted to the problem of finding a LAPCS between two arc-annotated
sequences, whereas we consider in Section 6.4 the restriction of deciding whether an
arc-annotated sequence occurs in another arc-annotated sequence, the so-called APS
problem. Section 6.5 is concerned with some variants of the longest arc-preserving
common subsequence problem. Section 6.6 is devoted to computing the edit distance
between two arc-annotated sequences.

6.2 PRELIMINARIES

6.2.1 Arc-Annotated Sequences

Given a finite alphabet �, an arc-annotated sequence is defined by a pair (S, P),
where S is a string of �∗ and P is a set of arcs connecting pairs of characters of S.
The set P usually is represented by set of pairs of positions in S. Characters that are
not incident to any arc are called free.

In the context of RNA structures, we have � = {A,C,G,U}, and S and P represent
the nucleotide sequence and the hydrogen bonds of the RNA structure, respectively.
Characters in S thus often are referred to as bases.

Relative positioning of arcs is of particular importance for arc-annotated se-
quences and is described completely by three binary relations. Let p1 = (i, j) and
p2 = (k, l) be two arcs in P that do not share a vertex. Define

the precedence relation (<) − p1 < p2 if i < j < k < l

the embedding relation (�) − p1 � p2 if i < k < l < j

the crossing relation (�) − p1 � p2 if i < k < j < l

Using arcs for modeling nonsequential information together with these relations
allows for varying restrictions on the complexity of arc-annotated sequences.

6.2.2 Hierarchy

The following five levels of arc structure initially have been considered in the foun-
dation work of Evans [9]:

Unlimited (Unlim) – no restriction at all

Crossing (Cros) – there is no character incident to more
than one arc

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

6.2 PRELIMINARIES 115

Nested (Nest) – there is no character incident to more
than one arc and no arcs are crossing

Chain (Chain) – there is no character incident to more
than one arc, no arcs are crossing and no arc embedded
into another

Plain – there is no arc

The induced hierarchy is described by the following chain of inclusion:

Plain ⊂ Chain ⊂ Nested ⊂ Crossing ⊂ Unlimited.

6.2.3 Refined Hierarchy

In [13], Guignon et al. extended the aforementioned hierarchy by introducing a new
refinement of the Nested level called Stem; no character is incident to more than
one arc, and given any two arcs, one is embedded in the other.

For providing a unified framework and as a next step toward a better understand-
ing of the inner complexity of the problems related to arc-annotated sequences,
Blin et al. [4] proposed to refine the hierarchy further following the example of
Vialette [22, 23] in the context of 2-intervals (a simple abstract structure for model-
ing RNA secondary structures). The refinement consists of splitting those models of
arc-annotated sequences into more precise relations between arcs, taking advantage
of the combinatorics induced by the relations <, �, and �.

Two arcs p1 and p2 are R-comparable for some R ∈ {<,�, �} if p1 Rp2 or p2 Rp1.
Let P be a set of arcs and R be a nonempty subset of {<,�, �}. The set P is R-
comparable if any two distinct arcs of P are R-comparable for some R ∈ R. An arc-
annotated sequence (S, P) is an R-arc-annotated sequence for a nonempty subset
R ⊆ {<,�, �} if P is R-comparable. By abuse of notation, we will write R = ∅ in
case P = ∅.

As a straightforward illustration of these definitions, most levels in the classical
hierarchy can be expressed in terms of a combination of the three relations; Plain
is described fully by R = ∅, Chain is described fully by R = {<}, Stem is de-
scribed fully by R = {�}, Nested is described fully by R = {<,�}, and Crossing
is described fully by R = {<,�, �}. The key point is to observe that this refine-
ment allows us to consider new levels for arc-annotated sequences, namely R = {�},
R = {<, �}, and R = {�, �}.

6.2.4 Alignment

Given two sequences S and T on a common alphabet �, we define an alignment
of S and T as a pair of sequences (S′, T ′) built from S and T on � ∪ {−} (− is
usually referred to as a gap) such that (i) |S′| = |T ′|, (ii) for any 1 ≤ i ≤ |S′|, either
S′[i] = T ′[i]
= − or exactly one of S′[i] and T ′[i] is a gap, and (iii) removing the
gaps from S′ or T ′ yields S or T , respectively).

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

116 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES

(a) (b) (c)

Figure 6.1 Illustration of a) sequences of alignment leading to a common subsequence which
is “lgrtihm,” b) an arc-preserving alignment of two arc-annotated sequences, and c) the resulting
common arc-annotated subsequence.

Let (S′, T ′) be an alignment of S and T . For any 1 ≤ i ≤ |S′| such that S′[i]
= −,
character S′[i] is said to be aligned with character T ′[i] if T ′[i]
= − and deleted oth-
erwise. Similarly, For any 1 ≤ i ≤ |T ′| such that T ′[i]
= −, character T ′[i] is said to
be aligned with character S′[i] if S′[i]
= − and inserted otherwise. An illustration
is given in Figure 6.1.

An alignment (S′, T ′) of two arc-annotated sequences (S, P) and (T, Q) is arc-
preserving if the arcs induced by (S′, T ′) are preserved (i.e., the arcs induced by the
aligned bases are preserved). In this context, the notion of common subsequence is
extended by including the common arcs—that is, the arcs that have been preserved
by the alignment.

6.2.5 Edit Operations

Following the example of stringology, when comparing two arc-annotated sequences
(S, P) and (T, Q), instead of computing an alignment, one might consider a set of
edit operations (together with their associate costs) that alter arc-annotated sequences
and seek for a minimal cost sequence according to these operations that leads from
(S, P) to (T, Q).

Formally, given a set of edit operations E and two arc-annotated sequences (S, P)
and (T, Q), an edit-script from (S, P) to (T, Q) refers to a series of nonoriented op-
erations of E transforming (S, P) into (T, Q). The cost of an edit-script from (S, P)
to (T, Q), denoted cost((S, P), (T, Q), E), is the sum of the costs of all operations
involved in the edit-script. The edit-distance between (S, P) and (T, Q) is the mini-
mum cost of an edit-script from (S, P) to (T, Q).

The classical approach is to consider a subset of the operations introduced in [15],
which can be divided into the following groups:

Substitution operations, inducing the renaming of characters in the arc-annotated
sequence:

match (wm : � → IR)

mismatch (wm : � → IR)

arc-match (wam : �4 → IR)

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

6.3 LONGEST ARC-PRESERVING COMMON SUBSEQUENCE 117

arc-mismatch (wam : �4 → IR) or

or

Deletion operations, inducing the deletion of characters and/or of arcs in the arc-
annotated sequence:

deletion (wd : � → IR)

arc-breaking (wb : �4 → IR)

arc-removing (wr : �2 → IR)

arc-altering (wa : �3 → IR) or

6.3 LONGEST ARC-PRESERVING COMMON SUBSEQUENCE

6.3.1 Definition

The LAPCS problem has been introduced by Evans [9] and is defined as follows:
given two arc-annotated sequences (S, P) and (T, Q), find an arc-preserving com-
mon subsequence of maximal length. The computational complexity of the LAPCS
problem has been studied in [9, 10, 17, 18, 14, 7], and the main results are summa-
rized in Tables 6.1, 6.2 and 6.3.

Table 6.1 LAPCS classical complexity with n = |S| and m = |T|
A × B LAPCS

Stem × Stem NP-complete – Blin et al. [7]
Chain × Chain

O(nm3) – Jiang et al. [17]
Nest × Chain
Nest × Nest NP-complete even for unary, c-fragment (with c > 2) and

c-diagonal (with c > 1) – Jiang [18]
Cros × Chain

NP-complete – Evans [9]
Cros × Nest
Cros × Cros NP-complete – Evans [9] but polynomial-time solvable for

1-fragment LAPCS(Crossing, Crossing) and 0-diagonal
LAPCS(Crossing, Crossing) [18]

Unlim × Chain

NP-complete – Evans [9]
Unlim × Nest
Unlim × Cros
Unlim × Unlim

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

118 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES

Table 6.2 LAPCS parameterized complexity with n = |S| and m = |T|
A × B LAPCS

Stem × Stem FPT when parameterized by the number of deletions – Alber
et al. [1]

Nest × Chain
FPT when parameterized by the bandwidth or the nesting
depth – Evans [9], FPT when parameterized by the number of
deletions – Alber et al. [1]

Nest × Nest

Cros × Chain FPT when parameterized by the bandwidth or the cutwidth –
Cros × Nest Evans [9], Jiang et al. [16]

Cros × Cros
W[1]-complete and FPT when parameterized by the bandwidth or
the cutwidth – Evans [9], Fixed Parameter Tractable (FPT) when
parameterized by the desired common subsequence length – Alber
et al. [1]

Unlim × Chain

W[1]-complete – Evans [9]
Unlim × Nest
Unlim × Cros
Unlim × Unlim

In the sequel, we use the notation LAPCS(A, B) to represent the LAPCS problem
in which the arc structure of S (or T) – namely P (or Q) – is of level A (or B),
respectively.

6.3.2 Classical Complexity

In [9], Evans proved that LAPCS(Chain, Chain) is polynomial-time solvable,
whereas both LAPCS(Unlimited, Plain) and LAPCS(Crossing, Plain) are non-
deterministic polynomial NP-complete (reductions from independent set). In [18],
Lin et al. proved that LAPCS(Nested, Nested) is NP-complete (reduction from in-
dependent set). Complementing these results, Jiang et al. [17] designed an O(nm3)
time algorithm for LAPCS(Nested, Chain) and LAPCS(Chain, Chain). Recently,

Table 6.3 LAPCS approximability

A × B LAPCS
Nest × Chain 2-approximable – Jiang et al. [16], PTAS for c-fragmented and
Nest × Nest c-diagonal cases [18]
Cros × Chain

MaxSNP-hard, 2-approximable – Jiang et al. [16]Cros × Nest
Cros × Cros

Unlim × Chain
Unlim × Nest Cannot be approximated within ratio nε for any
Unlim × Cros ε ∈ (0, 1

4) – [16]
Unlim × Unlim

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

6.3 LONGEST ARC-PRESERVING COMMON SUBSEQUENCE 119

Blin et al. [7] proved that LAPCS(Stem, Stem) is NP-complete (reduction from
3-SAT).

Lin et al. further investigated this last problem by studying restricted cases,
namely, c-fragmented, c-diagonal, and unary LAPCS(Nested, Nested). Given
two arc-annotated sequences that are divided into fragments of lengths exactly c
(the last fragment can have a length less than c), the c-fragment LAPCS problem
with c ≥ 1, is defined as the classical LAPCS problem with the extra constraint
that the allowed matches are those between fragments at the same location [14].
The c-diagonal LAPCS problem with c ≥ 0 is an extension of c-fragment LAPCS,
where character S[i] is allowed only to match a character in the range T [i − c,
i + c]. Lin et al. [18] showed the NP-hardnessof the c-fragment (with
c > 2) and c-diagonal (with c > 1) LAPCS (Nested, Nested) problem. They
also proved that the 1-fragment LAPCS(Crossing, Crossing) and 0-diagonal
LAPCS(Crossing, Crossing) are solvable in time O(n).

6.3.3 Parameterized Complexity

Considering the parameter l as being the desired length of common subse-
quence, Evans [9], using one of the previously-mentioned reductions for LAPCS
(Unlimited, Plain) and providing a reduction from Clique to LAPCS(Crossing,

Crossing), roved that both LAPCS(Unlimited, Plain) and LAPCS(Crossing,

Crossing) are W[1]-complete when parameterized by l. Moreover, Evans proved
in [10] that although LAPCS(Crossing, Crossing) is W[1]-complete, then the prob-
lem becomes fixed-parameter tractable when parameterized by the arc cutwidth. The
arc cutwidth [10] of an arc-annotated sequence is defined as the maximal number of
arcs that cross or end at any arbitrary position of the sequence. If both sequences
have their cutwidth bounded by some k, then the problem, as shown by Evans,
can be solved in O(9knm) time, where |S| = n and |T | = m. Evans also investi-
gated the parameterized complexity of the problem considering two other param-
eters: the bandwidth and the nesting depth. The bandwidth d of an arc-annotated
sequence (S, P) is defined by max(i, j)∈P {| j − i |} and its nesting depth s is equal to
max{|P ′|}, where P ′ ⊆ P such that for all (i, j) ∈ P ′, (k, l) ∈ P ′ does not exist with
i < k < j < l or i < j < k < l. Evans showed that if both sequences have their
nesting depth bounded by some s, then LAPCS(Nested, Nested) can be solved
in O(s24snm) time, where |S| = n and |T | = m. In case the arcs do not share
endpoints, both cutwidth and nesting depth are always no more than bandwidth.
Thus, Evans, was able to extend the previously mentioned results to the param-
eter d. Finally, one has to observe that if the complexity of the arc structure is
bounded by a logarithm of the maximal sequence length n, then LAPCS can be
solved in O(n2m) time even for Crossing type arc structures. Moreover, because the
cutwidth is equal to one for LAPCS(Chain, Chain), one can use the algorithm for
LAPCS(Crossing, Crossing) to solve this problem in O(nm) time.

Considering LAPCS(Nested, Nested), Alber et al. [1] designed an algorithm
that determines in time O(3.31k1+k2 n) whether an arc-preserving common sub-
sequence can be obtained by deleting (together with incident arcs) k1 characters

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

120 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES

from S and k2 from T , thereby proving that LAPCS(Nested, Nested) is fixed-
parameter tractable when parameterized by the number of deletions. Finally, Alber
et al. [1] showed that c-fragment LAPCS(Crossing, Crossing) and c-diagonal
LAPCS(Crossing, Crossing) parameterized by the length l of the desired common
subsequence are solvable in O((B + 1)l B + c3n) time, with B = c2 + 2c − 1 and
B = 2c2 + 7c + 2, respectively.

6.3.4 Approximability

Jiang et al. in [16] proved that LAPCS(Crossing, Crossing) admits a simple
2-approximation algorithm running in O(nm) time, whereas LAPCS(Unlimited,

Plain) cannot be approximated within ratio nε for any ε ∈ (0, 1
4), where n de-

notes the length of the longest input sequence. In the same paper, they proved that
LAPCS(Crossing, Plain) is MaxSNP-hard, thereby excluding a polynomial-time
approximation scheme (PTAS). Jiang et al. [18] proved that both c-fragmented and c-
diagonal LAPCS(Nested, Nested) have a PTAS. They also give a 4

3 -approximation
algorithm for the unary LAPCS(Nested, Nested) problem.

6.4 ARC-PRESERVING SUBSEQUENCE

6.4.1 Definition

The APS problem is a decision problem derived from LAPCS. Given two arc-
annotated sequences (S, P) and (T, Q) the APS problem asks whether (T, Q) is
the LAPCS of (S, P) and (T, Q) (i.e., (T, Q) is an arc-preserving subsequence
of (S, P)). The computational complexity of the APS problem has been studied
in [9, 11, 12, 14, 5, 4], and the main results are summarized in Tables 6.4 and 6.5.

In the following, we use the notation APS(A, B) to represent the APS problem
in which the arc structure of S (or T) – namely P (or Q) – is of level A (or B),
respectively.

Table 6.4 APS classical complexity with n = |S| and m = |T|
A × B APS

Chain × Chain
O(nm) – Guo et al. [11, 12]Nest × Chain

Nest × Nest
Cros × Plain NP-complete – Blin et al. [5, 4]
Cros × Chain

NP-complete – Guo et al. [11, 12]
Cros × Nest
Cros × Cros

NP-complete – Evans [9]
Unlim × Chain
Unlim × Nest
Unlim × Cros
Unlim × Unlim

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

6.4 ARC-PRESERVING SUBSEQUENCE 121

Table 6.5 APS classical refined complexity where n = |S| and m = |T|
A × B APS
{<} × ∅ O(n + m) Guo et al. [11]
{<} × {<}

Guo et al. [11, 12]{�} × ∗
{<,�} × ∗

{�} × ∅
O(nm2) – Blin et al. [5, 4]{�} × {�}

{<, �} × ∗
NP-complete – Blin et al. [5, 4], Guo [14], Evans [9]{�, �} × ∗

{<,�, �} × ∗

6.4.2 Classical Complexity

Guo proved in [14] that the APS(Crossing, Chain) problem is NP-hard. Guo et
al. observed in [11, 12] that the NP-completenessof the APS(Crossing, Crossing)
and APS(Unlimited, Plain) easily follows from LAPCS Evans’ work [9]. Further-
more, they gave an O(nm) time algorithm for the APS(Nested, Nested) problem.
This algorithm can be applied to easier problems such as APS(Nested, Chain),
APS(Nested, Plain), APS(Chain, Chain), and APS(Chain, Plain). Finally, Guo
et al. mentioned in [11, 12] that APS(Chain, Plain) can be solved in O(n + m)
time. Finally, Blin et al. [5, 4] proved that APS(Crossing, Plain) is NP-complete.

6.4.3 Classical Complexity for the Refined Hierarchy

In analyzing the computational complexity of a problem, we often are trying to define
the precise boundary between the polynomial and the NP-complete cases. Therefore,
as another step toward establishing the precise complexity landscape of the APS
problem, it is of particular interest to refine the classical complexity levels of the
APS problem to define precisely what makes the problem hard. To this aim, Blin
et al. [5, 4] used the framework introduced by Vialette [23] in the context of two-
intervals. As a consequence, the number of complexity levels rises from four (not
taking into account the Unlimited case) to eight.

On the positive side, Gramm et al. have shown that APS(Nested, Nested) is
solvable in O(nm) time [11, 12]. Another way of stating this result is to say that
APS({<,�}, {<,�}) is solvable in O(mn) time. According to the properties of the
refined hierarchy, that result may be summarized by saying that APS(R1, R2) for any
compatible R1 and R2 such that �/∈ R1 and �/∈ R2 is polynomial-time solvable.

Conversely, the NP-completenessof APS(Crossing, Crossing) has been proved
by Evans [9]. A simple reading shows that her proof is actually concerned with
{<,�, �}-arc-annotated sequences and, hence, actually proves that APS({<,�, �},
{<,�, �}) is NP-complete. Similarly, in proving that APS(Crossing, Chain) is
NP-complete [14], Guo actually proved that APS({<,�, �}, {<}) is NP-complete.

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

122 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES

Therefore, both APS({<,�, �}, {<,�}) and APS({<,�, �}, {<, �}) are NP-
complete.

In [5, 4], Blin et al. proved that both APS({�, �},∅) and APS({<, �},∅) are
NP-complete. They also gave a polynomial time algorithm to show that both
APS({�}, {�}) and APS({�}, ∅) problems can be solved in O(nm2) time. In other
words, they proved that the relation � alone does not imply hardness.

6.4.4 Open Problems

The refinement suggested by Blin et al. in [5, 4] shows that an APS problem be-
comes hard when one considers sequences containing {�, R}-comparable for some
R ⊆ {<,�, �}. Therefore, crossing arcs alone do not imply APS hardness. It is of
course a challenging problem to explore further the complexity of the APS problem,
especially the parameterized views, by considering additional parameters such as the
cutwidth or the depth of the arc structures.

6.5 MAXIMUM ARC-PRESERVING COMMON SUBSEQUENCE

6.5.1 Definition

The MAPCS problem was introduced by Blin et al. [3] as an intermediate model
for comparing arc-annotated sequences – lying between LAPCS and the EDIT (see
Section 6.6). The MAPCS problem is defined as follows: given two arc-annotated se-
quences (S, P) and (T, Q), and two functions fb : � → N

∗ and fa : �2 → N
∗, find

a common arc-annotated subsequence (U, R) that maximizes the following score
function:

∑
c∈U fb(c) + ∑

(c1,c2)∈R fa(c1, c2). In other words, the MAPCS problem
seeks to find a common subsequence whose score takes into account both the num-
ber of bases and arcs. The computational complexity of the MAPCS problem was
determined fully in [3], and the main results are summarized in Table 6.6.

Table 6.6 MAPCS* and MAPCS classical complexity for
n = |S| and m = |T|

A × B MAPCS∗ MAPCS
Chain × Chain O(nm) O(nm)

Nest × Chain O(n2m) O(nm3)
Nest × Nest O(n2m2)

NP-complete

Cros × Chain
O(n4 log3 n)

Cros × Nest
Cros × Cros NP-complete

Unlim × Chain
O(n4 log3 n)

Unlim × Nest
Unlim × Cros

NP-complete
Unlim × Unlim

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

6.6 EDIT DISTANCE 123

In the following, we use the notation MAPCS(A, B) to represent the MAPCS
problem where the arc structure of S (or T) – namely P (or Q) – is of level A (or B),
respectively.

6.5.2 Classical Complexity

In [3], Blin et al. first investigated two special cases of MAPCS, namely when one
allows function fa or fb to return to zero. They easily noticed that fa(x, y) = 0 for
all (x, y) ∈ �2 reduces to the LAPCS problems. They investigate the case fb(x) = 0
for all x ∈ �, problems called MAPCS∗, and proved that MAPCS∗(Chain,Chain)
can be solved in O(nm) time, MAPCS∗(Nested,Nested) in O(n2m2) time,
MAPCS∗(Nested,Chain) in O(nm2) time, and MAPCS∗(Unlimited,Nested)
in O(n4 log3 n) time, where n = |S| and m = |T |. They also proved that
MAPCS∗(Crossing,Crossing) is NP-complete by providing a reduction from
Clique.

They also completely investigated the complexity of MAPCS by proposing
an O(nm) and O(nm3) time algorithm for MAPCS (Chain,Chain) and MAPCS
(Nest,Chain) respectively, and by proving that both MAPCS (Nested,Nested) and
MAPCS (Crossing,Plain) are NP-complete.

6.5.3 Open Problems

As far as we know, neither the parameterized complexity nor the approximability of
MAPCS have been studied (except fa always returns to zero because it corresponds
to the LAPCS problems and inherits all its complexity results).

6.6 EDIT DISTANCE

6.6.1 Definition

Given two arc-annotated sequences, the EDIT problem is to find the edit-distance
between (S, P) and (T, Q). It has been studied extensively [15, 19, 13, 8, 6, 3, 2, 7]
(see Table 6.7 and 6.8).

6.6.2 Classical Complexity

Lin et al. proved in [19] that the problem EDIT (Crossing, Plain) is NP-complete,
and gave a (polynomial time) dynamic programming algorithm for the EDIT
(Nested, Plain) problem. Sankoff [20] previously had solved EDIT (Plain, Plain).

Blin et al. [8] proved that the LAPCS problem actually can be seen as a very
specific case of the EDIT problem. More precisely, any edit script of minimum cost
goes through a common subsequence of optimal score. This means that finding one
allows finding the other. Thus, LAPCS can be seen as a particular case of EDIT in
which the cost system for edit operations is the following: wr = 2wd = 2wa , and

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

124 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES

Table 6.7 EDIT classical complexity for n = |S| and m = |T|
A × B EDIT

Stem × Stem NP-complete – Blin et al. [7]
Chain × Chain

O(nm3) – Lin et al. [19]
Nest × Chain
Nest × Nest NP-complete – Jiang et al. [15] and Blin et al. [6]
Cros × Chain

NP-complete – Lin et al. [19]

Cros × Nest
Cros × Cros

Unlim × Chain
Unlim × Nest
Unlim × Cros
Unlim × Unlim

all substitution operations and arc-breakings are prohibited by an arbitrary high cost.
The main idea is to penalize deletion operations proportionally to the number of
bases that are deleted. This last result proved that the complexity of EDIT (Nested,
Nested) simply follows from the complexity of LAPCS(Nested, Nested). These
results were extended in [6] where the authors showed that only a very restricted
number of instances of EDIT (Nested, Nested) were shown to be NP-complete and
that the corresponding cost system needed to satisfy restrictions that can be discussed
biologically. Therefore, as another step toward establishing the precise complexity
landscape of the EDIT problem, they considered a more accurate class of instances—
but not overlapping with the one used in the proof from LAPCS – for determining
more precisely what makes the problem hard.

The authors want to point out another interesting result from Blin et al. [8]—
namely a unifying framework to express comparison of arc-annotated sequences
called Align. Indeed, Blin et al. showed that this hierarchy brings together most
comparison models for arc-annotated sequence and leads to the introduction of new
comparison models that are biologically relevant. In particular, they proposed two
polynomial time algorithms for the problem of comparing two Nested arc-annotated

Table 6.8 EDIT approximability for n = |S | and m = |T|
A × B EDIT

Nest × Nest max
{

2wa
wb+wr

,
wb+wr

2wa

}
-approximable – Lin et al. [19]

Cros × Chain

MaxSNP-hard – Lin et al. [19]

Cros × Nest
Cros × Cros

Unlim × Chain
Unlim × Nest
Unlim × Cros
Unlim × Unlim

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

REFERENCES 125

sequences, whereas corresponding algorithms considering the same set of edit oper-
ations in other formalisms are not polynomial time solvable. Because it did not only
rely on arc-annotated sequences, we decided not to include it in this contribution.

In [13], Guignon et al. introduced the notion of conservative edit distance and
mapping between two RNA stem-loops to design a polynomial-time algorithm for
comparing general secondary RNA structures using the full set of biological edit
operations introduced in [15]. This algorithm is based on a decomposition in stem-
loop-like substructures that are pairwised compared and used to compare complete
RNA secondary structures. As mentioned in [13], although in the very restrictive case
of conservative distance and mapping, the computation of the general edit distance is
polynomial-time solvable, it was not known whether the general (i.e., not conserva-
tive) edit distance between two stem-loops also can be computed in polynomial-time.
In [7], Blin et al. proved that the general edit distance is indeed NP-complete.

6.6.3 Approximability

Lin et al. proved in [19] that the problem EDIT (Crossing, Plain) is MaxSNP-hard.
They also showed that EDIT (Nested,Nested) has a polynomial-time approxima-
tion algorithm with ratio β = max{ 2wa

wb+wr
, wb+wr

2wa
}.

6.6.4 Open Problems

The approximation ratio of EDIT (Nested,Nested) depends on the respective values
of the parameters wa , wb, and wr . An interesting question is whether a polynomial-
time algorithm exists with constant approximation ratio.

REFERENCES

1. J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Towards optimally solving the longest
common subsequence problem for sequences with nested arc annotations in linear time.
In A. Apostolico and M. Takeda, editors, Proceedings of the 13th Annual Symposium on
Combinatorial Pattern Matching (CPM), Fukuoka, Japan, volume 2373 of Lecture Notes
in Computer Science, Springer, New York, 2002, pp. 99–114.

2. G. Blin, A. Denise, S. Dulucq, C. Herrbach, and H. Touzet. Alignment of RNA structures.
IEEE/ACM Trans Comput Biol Bioinform, 2008. To appear.

3. G. Blin, G. Fertin, G. Herry, and S. Vialette. Comparing RNA structures: Towards an
intermediate model between the edit and the lapcs problems. In Marie-France Sagot and
Maria Emilia Telles Walter, editors, 1st Brazilian Symposium on Bioinformatics (BSB’07),
volume 4643 of Lecture Notes in Bioinformatics, Angra dos Reis, Brazil, Springer-Verlag,
New York, 2007, pp. 101–112.

4. G. Blin, G. Fertin, R. Rizzi, and S. Vialette. What makes the arc-preserving subsequence
problem hard? Trans Comput Syst Biol, 2:1–36, 2005.

5. G. Blin, G. Fertin, R. Rizzi, and S. Vialette. What makes the arc-preserving subsequence
problem hard? In Proceedings of the International Workshop on Bioinformatics Research

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

126 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES

and Applications (IWBRA), volume 3515 of Lecture Notes in Computer Science, 2005,
pp. 860–868.

6. G. Blin, G. Fertin, I. Rusu, and C. Sinoquet. Extending the hardness of RNA secondary
structures. In Bo Chen, Mike Paterson, and Guochuan Zhang, editors, 1st International
Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodolo-
gies (ESCAPE’07), volume 4614 of LNCS, Hangzhou, China, Springer-Verlag, New York,
2007, pp. 140–151.

7. G. Blin, S. Hamel, and S. Vialette. Comparing RNA structures using a full set of bio-
logically relevant edit operations is intractable. Technical Report, Université Paris Est,
I.G.M., 2008. Electronic version: Preprint arXiv:0812.3946.

8. G. Blin and H. Touzet. How to compare arc-annotated sequences: The alignment hierar-
chy. In Fabio Crestani, Paolo Ferragina, and Mark Sanderson, editors, 13th String Pro-
cessing and Information Retrieval (SPIRE’06), volume 4209 of LNCS, Glasgow, UK,
Springer-Verlag, New York, 2006, pp. 291–303.

9. P. Evans. Algorithms and Complexity for Annotated Sequences Analysis. PhD dissertation,
University of Victoria, Melborne, Australia, 1999.

10. P. Evans. Finding common subsequences with arcs and pseudoknots. In M. Crochemore
and M. Paterson, editors, Proceedings of the 10th Annual Symposium Combinatorial Pat-
tern Matching (CPM), Warwick University, UK, volume 1645 of Lecture Notes in Com-
puter Science, Springer, New York, 1999, pp. 270–280.

11. J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated sequences.
In M. Agrawal and A. Seth, editors, Proceedings of the 22nd Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), Kanpur, India, volume 2556
of Lecture Notes in Computer Science, 2002, pp. 182–193.

12. J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated sequences.
ACM Trans Algorithm, 2(1):44–65, 2006.

13. V. Guignon, C. Chauve, and S. Hamel. An edit distance between RNA stem-loops. In
Mariano P. Consens and Gonzalo Navarro, editors, 12th International Conference SPIRE,
volume 3772 of Lecture Notes in Computer Science, 2005, pp. 335–347.

14. J. Guo. Exact Algorithms for the Longest Common Subsequence Problem for Arc-
Annotated Sequences. Master’s thesis, Univeristy of Tübingen, Tübingen, Germany,
2002.

15. T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA structures.
J Comput Biol, 9(2):371–388, 2002.

16. T. Jiang, G. Lin, B. Ma, and K. Zhang. The longest common subsequence problem for
arc-annotated sequences. J Discrete Algorithm, 2(2):257–270, 2004.

17. T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence problem
for arc-annotated sequences. In R. Giancarlo and D. Sankoff, editors, Proceedings of the
11th Annual Symposium on Combinatorial Pattern Matching (CPM), Montreal, Canada,
volume 1848 of Lecture Notes in Computer Science, Springer, New York, 2000, pp. 154–
165.

18. G. Lin, Z-Z. Chen, T. Jiang, and J. Wen. The longest common subsequence problem for
sequences with nested arc annotations. J Comput Syst Sci, 65(3):465–480, 2002. Special
issue on computational biology.

19. G. Lin, B. Ma, and K. Zhang. Edit distance between two RNA structures. RECOMB,
Montreal, Quebec, Canada, 2001, pp. 211–220.

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

REFERENCES 127

20. D. Sankoff and B. Kruskal. Time Warps, String Edits and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-Wesley, Reading, MA, 1983.

21. D. Shasha and K. Zhang. Simple fast algorithms for the editing distance between trees
and related problems. SIAM J Comput, 18(6):1245–1262, 1989.

22. S. Vialette. Pattern matching over 2-intervals sets. In A. Apostolico and M. Takeda, edi-
tors, Proceedings of the 13th Annual Symposium Combinatorial Pattern Matching (CPM),
Fukuoka, Japan, volume 2373 of Lecture Notes in Computer Science, Springer, New
York, 2002, pp. 53–63.

23. S. Vialette. On the computational complexity of 2-interval pattern matching problems.
Theor Comput Sci, 312(2–3):223–249, 2004.

P1: OSO
c06 JWBS046-Elloumi December 2, 2010 9:41 Printer Name: Sheridan

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

7
ALGORITHMIC ISSUES IN

DNA BARCODING
PROBLEMS

Bhaskar DasGupta, Ming-Yang Kao, and Ion Măndoiu

7.1 INTRODUCTION

In the outbreak of an epidemic, possibly as a result of biological warfare, there is an
urgent need to identify the pathogen or the family it belongs to as early as possible.
Armed with the identity of the pathogen or its family, and with prior knowledge of
how the pathogen typically is spread, decision makers efficiently can alert the general
public and first responders on how best to stave-off the invasion. Recent advances in
genomic technologies, including the availability of a whole genome sequence for nu-
merous pathogens and the improved sensitivity of a second generation of microarray-
based hybridization platforms, have opened the way for the development of highly re-
liable genomic-based pathogen detection systems. However, the development of such
a detection system appropriate for use by first responders still raises several challeng-
ing design issues. In addition to portability and cost-effectiveness, widespread use of
such systems requires rapid and reliable identification from minute amounts of ge-
netic material of mutated or artificially engineered unknown pathogens. At the same
time, these systems should provide comprehensive coverage of known or partially
known pathogens, robustness of the detection algorithms against malicious adver-
saries, and built-in support for easy updates of the set of recognized pathogens.

As a motivation to study a basic version of barcoding problems of interest in this
chapter, consider the following scenario. Classical approaches to pathogen detection

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

129

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

130 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS

are based on sequencing and direct microarray hybridization [16,24]. Although very
reliable, sequencing-based detection is practically applicable only when the num-
ber of candidate pathogens is small because it requires the ability to isolate very
few pathogen-specific DNA or RNA fragments. At the same time, direct microarray
hybridization does not scale well with the number of potential pathogens. Reliable
detection by this method requires as much as 10–20 arrayed probes per pathogen,
each 70 nucleotides long [24], thus limiting the coverage of a single microarray to at
most a few thousand pathogens. To overcome some of these difficulties, one employs
rapid and robust computational procedures to compute barcodes that produce short
signatures and thereby both reduce database size and optimize cost of designing the
hybridization array.

In this chapter, we survey several barcoding problems that have applications as
mentioned as well as in other areas, and we survey some key algorithmic techniques
used in the existing literatures for these problems. We assume that the reader is famil-
iar with the basic concepts of exact and approximation algorithms (e.g., see [6, 23]),
basic computational complexity classes such as polynomial time (P) and nondeter-
ministic polynomial (NP) [10, 13, 20], and basic notions of molecular biology such
as DNA sequences [12].

7.2 TEST SET PROBLEMS: A GENERAL FRAMEWORK FOR
SEVERAL BARCODING PROBLEMS

One of the test set problems was on the classic list of NP-complete problems given
by Garey and Johnson [10]; these problems develop naturally in many other appli-
cations. One can define a general framework for test set problems in the following
manner. We are given an universe of objects, family of subsets (“tests”) of the uni-
verse, and a notion of “distinguishability” of pairs of elements of the universe by a
collection of these tests. Our goal is to select a subset of these tests of minimum size
that distinguishes every pair of elements of the universe. To be precise, each of these
problems is obtained by fixing parameters in the general test set problem TS�(k) as
described subsequently (2X denotes the power set of a set X).

Definitio 7.1 (Problem TS�(k) with � ⊆ 2{0,1,2} and k being a positive integer)

Instance: (n,S) where S ⊂ 2{0,1,2,...,n−1}

Terminologies:
� A k-test is a union of at most k sets from S
� For a γ ∈ � and two distinct elements x, y ∈ {0, 1, 2, . . . , n − 1}, a k-test

T γ -distinguishes x and y if |{x, y} ∩ T | ∈ γ

Valid solutions: A collection T of k-tests such that
(∀x, y ∈ {0, 1, 2, . . . , n − 1} ∀γ ∈ �) x �= y
=⇒ ∃T ∈ T where T γ -distinguishes x and y

Objective: minimize |T |

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

7.2 TEST SET PROBLEMS: A GENERAL FRAMEWORK FOR SEVERAL BARCODING PROBLEMS 131

This framework captures several “barcoding-type” problems in a few areas in bioin-
formatics and biological modeling such as:

MinimumTest Collection Problem: This problem has applications in diagnostic
testing [10]. Here a collection of tests distinguishes two objects if a test from
the collection contains exactly one of them. In our previous formalism, this is
precisely TS{1}(1).

Condition Cover Problem: Karp et al. [15] considered a problem of verifying
a multioutput feedforward Boolean circuit as a model of biological pathways.
This problem can be phrased like the minimum test collection problem, except
that two elements are distinguished by a collection of tests if one tests contains
exactly one of them, and another contains both or none of them. Assuming
that the allowed perturbations are given as part of the input, this problem is
identical to TS{1},{0,2}(1).

String Barcoding Problem (SB�(k)): In the “basic” version of this problem cor-
responding to k = 1, first discussed by Rash and Gusfield [21], the universe
U consists of sequences (strings) over an alphabet �, and any string v ∈ �*
defines a test Tv consisting of a collection of strings from U in which v ap-
pears1. Because this chapter is significantly concerned with this basic version,
we write the problem definition explicitly for the convenience of the reader.
We are given a set S of sequences over some alphabet �. For a fixed set of m
“distinguisher” sequences
t = (t0, . . . , tm−1), the barcode code(s,
t) for each
s ∈ S is defined to be the Boolean vector (c0, c1, cm−1) where ci is 1 if ti is a
substring of s. We say that the set of distinguishers
t defines a valid barcode
if for any two distinct strings s, s ′ ∈ S, code(s,
t) is different from code(s ′,
t).
Then the basic version SB�(1) is defined as follows:

Instance: S ⊂ �*
Valid solutions: a set of distinguisher sequences
t defining a valid barcode
Objective: minimize |
t|

As an example, let � = {A, C, T, G} and S = {AAC, ACC, GGGG,
GTGTGG, TTTT}. Then, the set of four distinguishers
t = {A, CC, TTT, GT}
defines the set of valid barcodes for the input sequences in S as follows:

A CC TTT GT

AAC 1 0 0 0
ACC 1 1 0 0
GGGG 0 0 0 0
GTGTGG 0 0 0 1
TTTT 0 0 1 0

1�* is the standard notation of denoting the set of all possible strings formed by a concatenation of zero
or more symbols of �.

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

132 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS

The name “string barcoding” derives from the fact that the Boolean vector in-
dicating the occurrence (as a substring) of the tests from an arbitrary collection
of tests in a given input sequence is referred to as the “barcode” of the given
sequence with respect to this collection of tests. Motivations for investigating
these problems come from several sources, such as
� Database compression and fast database search for DNA sequences
� DNA microarray designs for efficient virus identification in which the im-

mobilized DNA sequences at an array element are from a set of barcodes

In general, for k > 1, a test can be defined by a set T of at most k strings and
u ∈ U passes test T is one of the strings in T that is a substring of u; such tests
may be feasible in practice as the one-string tests.

Minimum Cost Probe Set Problem with a Threshold r (MCP�(r)): This prob-
lem is very similar to string barcoding and was considered first by Borneman
et al. [3]. Denote by oc(x, y) the number of occurrences of x in y as a substring,
For a fixed set of m distinguisher sequences
t = (t0, t1, . . . , tm−1), an r -barcode
code(s,
t) for any sequence s is defined to be the vector (c0, c1, . . . , cm−1)
where ci = min{r, oc(ti , s)}. Given a set S of sequences over some alphabet �,

t defines a valid r -barcode if for any two distinct strings s, s ′ ∈ S, code(s,
t) is
different from code(s ′,
t). MCP�(r) now is defined as follows:

Instance: (r,S,P) where S,P ⊂ �*
Valid solutions: a set of distinguisher sequences
t ⊆ P defining a valid

r -barcode
Objective: minimize |
t|
This problem was used in [3] for minimizing the number of oligonucleotide
probes needed for analyzing populations of ribosomal RNA gene (rDNA)
clones by hybridization experiments on DNA microarrays; the probes are se-
lected from a prespecified set P . However, it also can be used in the context of
other string barcoding approaches in which the barcodes are integer-valued as
opposed to being Boolean.

7.3 A SYNOPSIS OF BIOLOGICAL APPLICATIONS OF BARCODING

Applications of barcoding techniques range from rapid pathogen identification in
epidemic outbreaks to point-of-care medical diagnosis to monitoring of microbial
communities in environmental studies (e.g., see [3, 21]). For example, genomic-
based identification of microorganisms such as viruses or bacteria is performed
by spotting or synthesizing on a microarray the Watson–Crick complements of
the distinguisher strings and then hybridizing to the array the fluorescently labeled
DNA extracted from the unknown microorganism. Under the assumption of per-
fect hybridization stringency, the hybridization pattern can be viewed as a string of
k zeros and ones, referred to as the barcode of the microorganism. By construc-
tion, the barcodes corresponding to the n microorganisms are distinct, and thus,

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

7.4 SURVEY OF ALGORITHMIC TECHNIQUES ON BARCODING 133

Multiple mixtures of
degenerate primers:

M1, M2, …, Mk

Selection of primers

Distinguishers
matched with antitagsSelection of

fingerprints

Selection of barcode
distinguishers

PCR Machine
Multiple multiplexPCR’s:

PCR1, PCR2,…,PCRk

Fingerprint
DNA array

Sample possibly
containing

several pathogens

Amplified DNA
sequences from sample

DNA array based
distinguisher/fingerprint

detection

Universal DNA
tag array

Pathogen
identification

Figure 7.1 A hypothetical architecture of FRPDS.

the barcode uniquely identifies any one of them. To improve identification robust-
ness, one also may require redundant distinguishability (i.e., at least m different
distinguishers for every pair of microorganisms, where m > 1 is some fixed con-
stant) and impose a lower bound on the edit distance between any pair of selected
distinguishers [21].

A hypothetical system implementing a high level architecture that meets the de-
sign criteria for a first responder pathogen detection system (FRPDS) using string
barcoding is shown schematically in Figure 7.1. Such a hypothetical system includes
the following three major components:

1. A component that provides rapid amplification of the collected genetic mate-
rial (e.g., degenerate oligonucleotide primer-based multiplex polymerase chain
reaction (PCR)).

2. A pathogen fingerprinting and/or barcoding component (say, built around uni-
versal DNA tag arrays).

3. Rapid and robust computational procedures to compute barcodes that produce
short signatures and thereby both reduce database size and optimize cost of
designing the hybridization array.

7.4 SURVEY OF ALGORITHMIC TECHNIQUES ON BARCODING

In this section, we survey several algorithmic methods used to solve the barcod-
ing problems. We then will discuss in more detail in the next two sections the set-
covering and information content algorithmic approach.

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

134 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS

7.4.1 Integer Programming

In [21], Rash and Gusfield discussed some experimental results for SB�(1) but left
open the exact complexity and approximability of this problem. Their algorithmic
approach is based on writing the problem as an integer program and then solving
it directly. Unfortunately, the run time of this approach does not scale well with
the number of microorganisms and the length of the genomic sequences (e.g., the
largest instance sizes reported in [21] have a total genomic sequence length of around
100, 000 bases). We will not discuss the integer programming formulation in more
detail because we will discuss heuristics based on set-covering methods in more de-
tail subsequently, and an integer programming formulation for set-covering problems
is well-known (e.g., see [23]).

7.4.2 Lagrangian Relaxation and Simulated Annealing

Borneman et al. [3] noted that the MCP�(r) problem was NP-complete assuming
that the lengths of the sequences in the prespecified set were unrestricted and dis-
cussed some experimental results for a few heuristics that they implemented. Their
algorithmic approach is based on a Lagrangian relaxation of the integer program-
ming formulation of set cover and simulated annealing approach.

7.4.3 Provably Asymptotically Optimal Results

In [2] Berman et al. were able to provide tight theoretical worst-case approximability
bounds for almost all of these problems. A summary of the results in [2] is as follows
(where � is the maximum length of any sequence in S, L is the total length of all
sequences in S, and ε and δ are constants):

� TS{1}(1) can be approximated to within a ratio of 1 + ln n in O(n2|S|) time
and cannot be approximated to within a ratio of (1 − ε) ln n assuming NP �=
DTIME(nlog log n).

� TS{1},{0,2}(1) can be approximated to within a ratio of 1 + ln 2 + ln n in
O(n2|S|) time and cannot be approximated to within a ratio of (1 − ε) ln n as-
suming NP �= DTIME(nlog log n).

� SB�(1) can be approximated to within a ratio of 1 + ln n in O(n3�2) time
and cannot be approximated to within a ratio of (1 − ε) ln n assuming NP �=
DTIME(nlog log n).

� MCP�(r) can be approximated to within a ratio of [1 + o(1)] ln n in O(n2|P| +
LP|) time and cannot be approximated to within a ratio of (1 − ε) ln n assum-
ing NP �= DTIME(nlog log n).

� TS{1}(nδ) cannot be approximated to within a ratio of nε assuming NP �= co-
randomized polynomial time (RP) for any 0 < ε < δ < 1.

� SB�(nδ) cannot be approximated to within a ratio of nε assuming NP �= co-RP
for any 0 < ε < δ < 1

2 .

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

7.5 INFORMATION CONTENT APPROACH 135

The provably optimal algorithmic approach in [2] uses an entropy-based algorithmic
approach that they term as the “information content” approach. Informally, this is a
greedy technique based on the information content of a partial solution; the notion
of information content is related directly to the Shannon information complexity
[1,22]. The greedy approach seeks to select an augmenting step for a partial solutions
that maximizes the new information content of the augmented partial solution as
compared with the partial solution. A key nontrivial step for applying this technique
is to define a suitable easy-to-compute measure of the information content of a partial
solution such that the monotonicity of this measure is ensured with respect to any
subset of an optimal solution. The next section defines the approach more precisely.

7.5 INFORMATION CONTENT APPROACH

In this section, we discuss the information content approach for TS{1} as designed
in [2] running in time O(n2|S|) with an approximation ratio of 1 + ln n. Notice that
the upper bound almost matches the lower bound stated in Section 7.4.3 for SB{0,1},
a special case of TS{1}.

For simplicity, we illustrate the approach for the problem TS{1}. In the following
definition and throughout the rest of this section we use T + T to denote T ∪ {T }.

Definitio 7.2 A set of tests T ⊆ S defines the following:

� An equivalence relation
T≡ on {0, 1, 2, . . . , n − 1} given by i

T≡ j if and only if
∀T ∈ T (i ∈ T ≡ j ∈ T)

� A set of permutations �T = {π ∈ (permutations of {0, 1, 2, . . . , n − 1}): ∀i ∈
[0, n − 1] i

T≡π (i)}
� entropy HT = log2 |�T |.
� information content of a T ∈ S with respect to T , I C(T, T) = HT − HT +T =

log2
|�T |

|�T +T | .

As an example, consider T = {{1, 2, 3, 4}, {1, 5, 6}} with n = 8. Then, the equiv-
alence classes of

T≡ are {1}, {2, 3, 4}, {5, 6}, {7, 8}, and HT = log2((3!)(2!)(2!)) ≈
4.585. This definition of entropy is somewhat similar (but not the same) to the one
suggested in [18]. Suppose that the equivalence relation

T≡ on {0, 1, 2, . . . , n − 1}
produces q equivalence classes of size s1, s2, . . . , sq . Then, the entropy suggested
in [18] is 1

n log2(�q
i=1ssi

i), whereas our entropy HT is log2(�q
i=1si !).

The information content heuristic (ICH) is the following simple greedy heuristic:

T = ∅
while HT �= 0 do

select a T ∈ S − T that maximizes I C(T, T)
T = T + T

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

136 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS

The correctness of ICH follows from the fact that HT = 0 implies that the equiv-
alence classes of

T≡ are n singleton sets {0}, {1}, . . . , {n − 1} and the fact that if
HT �= 0, then a T ∈ S \ T exists with I C(T, T) > 0 (otherwise, the problem in-
stance has no feasible solution).

To implement ICH, one iteratively maintains the equivalence classes of
T≡ as

sorted lists. We also precompute and store log2(i!) for each i ∈ [1, n]. Given a
specific T ∈ S − T , it is easy to compute in O(n) time the equivalence classes
of

T +T≡ from the equivalence classes of
T≡ because an equivalence class E of

T≡
is either an equivalence class of

T +T≡ , or it is partitioned into two equivalence
classes E1 = E ∩ T and E2 = E − E1 of

T +T≡ ; the first case contributes nothing to
I C(T, T), whereas the second case adds log2

(|E |
|E1|

)
to I C(T, T).

The performance guarantee of this approach is given by the following theorem
proved in [2] using a very careful amortized analysis.

Theorem 7.1 [2] The previous approach yields:

� for TS{{1}} an approximation ratio of 1 + ln n;
� for TS{{1},]{0,2}} an approximation ratio of 1 + ln 2 + ln n;
� for MCP�(r) an approximation ratio of 1 + ln n + ln log2(r ′ + 1), where r ′ =

min{r, n}.

7.6 SET-COVERING APPROACH

Methods based on this approach enable distinguisher selection based on whole
genomic sequences of hundreds of microorganisms of up to bacterial size on a well-
equipped workstation and can be parallelized easily to extend further the applicabil-
ity range to thousands of bacterial size genomes. Whole-genome-based selection is
beneficial in at least two significant ways. First, it simplifies assay design because
the DNA of the unknown pathogen can be amplified using inexpensive general-
purpose whole-genome amplification methods such as specialized forms of degen-
erate primer multiplex PCR [4] or multiple displacement amplification [9]. Second,
whole-genome-based selection results in a reduced number of distinguishers, often
very close to the information theoretic lower bound of �log2 n�.

Set-covering approaches are based on a simple greedy selection strategy; in
every iteration we pick a substring that distinguishes the largest number of not-
yet-distinguished pairs of genomic sequences. This selection strategy is an embod-
iment of the greedy set-cover algorithm (e.g., see [23]) for a problem instance with
O(n2) elements corresponding to the pairs of sequences. Hence, by a classical re-
sult of [5, 14, 17], the algorithm guarantees an approximation factor of 2 ln n for the
barcoding problem. Experimental results provided in [7, 8] show that our set-cover
greedy algorithm produces solutions of virtually identical quality to those obtained
by the information content heuristic.

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

7.6 SET-COVERING APPROACH 137

The set-cover greedy algorithm is extremely versatile and can be extended easily
to handle redundancy and minimum edit distance constraints as well as other bio-
chemical constraints on individual distinguisher sequences. Furthermore, the greedy
set-cover algorithm also can take into account genomic sequence uncertainties ex-
pressed in the form of degenerate bases. Although degenerate bases are ubiquitous
in genomic databases, previous works have not recognized the need to handle them
properly.

7.6.1 Set-Covering Implementation in More Detail

In this section, for simplicity, we present the implementation of the set-cover greedy
algorithm as provided in [7, 8] in the context of the basic version of the string bar-
coding problem only. Implementation modifications needed to handle the robust bar-
coding problem in its full generality are available in [8].

The implementation of the set-cover greedy algorithm has two main phases: a
candidate generation phase and a candidate selection phase.

In the candidate generation phase, a representative set of candidate distinguishers
is generated from the given genomic sequences. Essentially, they use an incremen-
tal algorithm for quickly generating a representative set of candidate distinguishers
and collecting all their occurrences in the given genomic sequences. For each gen-
erated candidate, we also compute the list of sequences with which the candidate
has perfect matches; this information is needed in the candidate selection phase. To
reduce the number of candidates, we avoid generating any substring that appears in
all genomic sequences, which typically eliminates very short candidates. For each
genomic sequence, we also make sure to generate only one of the substrings that
appear exclusively in that sequence; this optimization eliminates from consideration
most candidate distinguishers above a certain length. Unlike the suffix tree method
proposed by Rash and Gusfield [21], this approach may generate multiple candidates
that appear in the same set of k genomic sequences (for 1 < k < n). However, the
penalty of having to evaluate redundant candidates in the candidate selection phase is
offset in practice by the faster candidate generation time. Efficient implementation of
candidate elimination rules is achieved by generating candidates in increasing order
of length and using exact match positions for candidates of length l − 1 when gen-
erating candidates of length l. For each position p in the input genomic sequences,
we also maintain a flag to indicate whether the algorithm should evaluate candidate
substrings starting at p. The possible values for the flag are TRUE (the substring of
current length starting at p is a possible candidate), FALSE (we already have saved
the substring of current length starting at p as a candidate), or DONE (all candidates
containing as prefix the substring of current length starting at p are redundant, i.e.,
the position can be skipped for all remaining candidate lengths). Initially, all flags
are set to TRUE. The FALSE flags are reset to TRUE whenever we increment the
candidate length; however, we never reset DONE flags.

For every candidate length l, candidate evaluation proceeds sequentially over all
positions of the genomic sequences. Whenever we reach a position p whose flag is
set to TRUE, we use the list of matches for the substring of length l − 1 starting at p

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

138 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS

Input: Set C of candidate distinguishers
Output: Set D of selected distinguishers

D ← ∅; For every c ∈ C, ∆old (c) ← ∞
Repeat

∆∗ ← 0
For every c ∈ C with ∆old (c) > ∆∗ // Becausedo ∆(c,D) ≤ ∆old (c), c can be

ignored if ∆old (c) ≤ ∆∗

∆old (c) ← ∆(c,D)
If ∆(c, D) > ∆∗ then ∆∗ ← ∆(c,D); c∗ ← c

If ∆∗ > 0 then D ← D ∪ {c∗}
While ∆∗ > 0
Return D

Figure 7.2 The greedy candidate selection algorithm.

(or a linear time string matching algorithm if l is the minimum candidate length) to
determine the list of matches for the substring of length l starting at p, and set the flag
to FALSE for all positions in which these matches occur. If the substring of length
l starting at p has matches only within the source sequence, and we have already
generated a “unique” candidate for this sequence, then we discard the candidate and
set the flag of p to DONE.

A further speed-up technique is to generate candidate distinguishers from a strict
subset of the input sequences. Although this speedup potentially can affect solution
quality, experimental results show that the solution quality loss for whole-genome
barcoding is minimal, even when we generate candidates based on a single input
sequence, which corresponds to preassigning a barcode of all 1’s to this sequence.

After the set of candidates is generated, we select the final set of distinguishers
in the greedy phase of the algorithm (Figure 7.2). We start with an empty set of
distinguishers D. Although pairs of sequences are not yet distinguished by D, we
loop over all candidates and compute for each candidate c the number 	(c, D) of
pairs of sequences that are distinguished by c but not by D, then add the candidate c
with the largest 	 value to D.

Two sequences s and s ′ are distinguished by a candidate c if and only if exactly
one of s and s ′ appears in the list Pc of perfect matches of c, which is available
from the candidate generation phase. A simple method for computing 	 values is
to maintain an n × n symmetric matrix indicating which of the pairs of sequences
already are distinguished and then to probe the |Pc| × (n − |Pc|) entries in this matrix
corresponding to pairs (s, s′) with s ∈ Pc and s ′ /∈ Pc when computing 	(c, D). A
more efficient method is based on maintaining the partition defined on the set of
sequences by D. If the partition defined by D consists of sets S1, . . . , Sk , then we
can compute 	(c, D) in O(k + |Pc|) = O(n) time using the observation that

	(c, D) =
k∑

i=1

|Si ∩ Pc| × |Si \ Pc| (7.1)

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

7.7 EXPERIMENTAL RESULTS AND SOFTWARE AVAILABILITY 139

In addition to the fast partition-based computation, the implementation of the
greedy selection phase uses a lazy strategy for updating the 	 values, based on
the observation that they are monotonically nonincreasing during the algorithm (see
Figure 7.2). Thus, the efficient implementation of the greedy selection phase of the
algorithm combines a partition-based method for computing the coverage gain of
candidate distinguishers (this method first was proposed in the context of the infor-
mation content heuristic in [2]) with a “lazy” strategy for updating coverage gains.

7.7 EXPERIMENTAL RESULTS AND SOFTWARE AVAILABILITY

The authors in [7, 8] performed experiments on both randomly generated instances
and whole microbial genomes extracted from the National Center for Biotechnology
Information (NCBI) databases. Random test cases were generated from the uniform
distribution induced by assigning equal probabilities to each of the four nucleotide;
these test cases do not contain any nucleotides with degeneracy greater than 1. The
NCBI test case represents a selection of 29 complete microbial sequences, varying in
length between 490, 000 and 4, 750, 000 bases (more than 76 million bases in total).
All experiments were run on a PowerEdge 2600 Linux server with 4 Gb of RAM
and dual 2.8 GHz Intel Xeon central processing units (CPUs)—only one of which is
used by the sequential algorithms.

7.7.1 Randomly Generated Instances

As described in Section 7.6.1, there are two main phases in the algorithm: candidate
distinguisher generation and greedy candidate selection. Results were reported about
the average candidate selection CPU time for n random sequences of length 10,000
and redundancy 1, averaged over 10 instances of each size. Combining the two speed-
up techniques for this phase (partition-based coverage gain computation and lazy
update of candidate gains) results in more than two orders of magnitude reductions
in run time.

A further speedup technique is to generate candidate distinguishers from a select
subset of the input sequences. Although this speed-up potentially can affect solution
quality, the results showed that on large instances, the solution quality loss is mini-
mal even when we generate candidates based on a single input sequence; this corre-
sponds to preassigning a barcode of all 1’s to this sequence. The technique reduces
significantly both the memory requirement (which is proportional to the number of
candidates and the number of times they match input sequences) and the run time
required for candidate generation and greedy selection.

The quality of the solution in the simulations was as follows. The number of dis-
tinguishers returned by the set-cover greedy algorithm were reported for redundancy
varying between 1 and 20 on between 10 and 1,000 random sequences of length
10,000. These results were compared with the results obtained by the information
content heuristic results of [2] as well as the information theoretic lower bound of
�log2 n� for when the redundancy requirement is 1. The number of distinguishers

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

140 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS

returned by the set-cover greedy algorithm was virtually identical to that returned
by the information content heuristic, despite the latter one having a better approxi-
mation guarantee. Furthermore, the results for redundancy were within 50% of the
information theoretic lower bound for the range of instance sizes considered in this
experiment. The gap between the solutions returned by the algorithms and the lower
bound does increase with the number of sequences; however, it is not clear how much
of this increase is caused by degrading algorithm solution quality and how much is
caused by degrading lower bound quality.

7.7.2 Real Data

The algorithm was run on a set of 29 complete microbial genomic sequences ex-
tracted from NCBI databases [19]. Sequence lengths in the set vary between 490,000
bases and 4.75 million bases, with an average length of 2.6 million bases (more than
76 million bases total). In these experiments, we varied the redundancy requirement,
from 1 to 20. To see the effect of length and edit distance requirements on the number
of distinguishers, for each redundancy requirement, they computed both an uncon-
strained solution and a solution in which distinguishers must have a length between
15 and 40, and there should be a minimum edit distance of six between every two
selected distinguishers (these values are similar to those used in [21]). In all exper-
iments, they generated candidates based only on the shortest sequence of 490,000
bases.

Naturally, meeting higher redundancy constraints requires more distinguishers to
be selected. Additional length and edit distance constraints further increase the num-
ber of distinguishers, but the latter is still within reasonable limits. The length con-
straints reduce the number of candidates (from 1,775,471 to 122,478), which for low
redundancy values, has the effect of reducing greedy selection time. However, for
high-redundancy requirements, the reduction in number of candidates is offset by
the increase in solution size, and greedy selection becomes more time consuming
with length and edit distance than without (selection time grows roughly linearly
with solution size).

7.7.3 Software Availability

The implementation of the set-covering approach, which was named DNA-BAR,
can be used online through the web interface provided at http://dna.engr.uconn.edu/
software/DNA-BAR/. The open source C code, released under the GNU General
Public License, is also available at this address.

7.8 CONCLUDING REMARKS

In many practical pathogen identification applications, collected biological samples
may contain the DNA of multiple pathogens. This issue is considered to be par-
ticularly significant in medical diagnosis applications (e.g., see [11] for studies in

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

REFERENCES 141

detecting more than one human papilomavirus (HPV) genotype with a varying rate
of multiple HPV infections carried by the same HPV carrier). A significant future
research direction could be to develop extensions of the barcoding technique that re-
liably can detect multiple pathogens for a given bound on the number of pathogens
present.

ACKNOWLEDGMENTS

Bhaskar DasGupta was supported in part by NSF Grants IIS-0346973, IIS-0612044
and DBI-0543365. Ion Măndoiu was supported in part by NSF Grant DBI-0543365.
The authors also would like to thank all their collaborators in these research topics.

REFERENCES

1. Y.S. Abu-Mostafa, editor. Complexity in Information Theory. Springer Verlag, New York,
1986.

2. P. Berman, B. DasGupta, and M.-Y. Kao. Tight approximability results for test set prob-
lems in bioinformatics. J Comput Syst Sci, 71(2):145–162, 2005.

3. J. Borneman, M. Chrobak, G.D. Vedova, A. Figueora, and T. Jiang. Probe selection algo-
rithms with applications in the analysis of microbial communities. Bioinformatics, 1:1–9,
2001.

4. V.G. Cheung and S.F. Nelson. Whole genome amplification using a degenerate oligonu-
cleotide primer allows hundreds of genotypes to be performed on less than one nanogram
of genomic dna. PNAS, 93:14676–14679, 1996.

5. V. Chvátal. A greedy heuristic for the set covering problem. Mathematics of Operations
Research, 4:233–235, 1979.

6. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, Cambridge, MA, 2001.

7. B. DasGupta, K. Konwar, I. Mandoiu, and A. Shvartsman. DNA-BAR: Distinguisher Se-
lection for DNA barcoding. Bioinformatics, 21(16):3424–3426, 2005.

8. B. DasGupta, K. Konwar, I. Mandoiu, and A. Shvartsman. Highly scalable algorithms for
robust string barcoding. Int J Bioinformatics Res Appl, 1(2):145–161, 2005.

9. F.B. Dean, S. Hosono, et al. Comprehensive human genome amplification using multiple
displacement amplification. PNAS, 99:5261–5266, 2002.

10. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W.H. Freeman, New York, 1979.

11. B. Gharizadeh, M. Käller, P. Nyrén, A. Andersson, M. Uhlén, J. Lundeberg, and A.
Ahmadian. Viral and microbial genotyping by a combination of multiplex competitive
hybridization and specific extension followed by hybridization to generic tag arrays. Nu-
cleic Acids Res, 31(22), 2003.

12. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, Cambridge, UK, 1997.

13. D. Hochbaum. Approximation Algorithms for NP-hard Problems. PWS Publishers,
Boston, MA, 1996.

P1: OSO
c07 JWBS046-Elloumi December 2, 2010 9:42 Printer Name: Sheridan

142 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS

14. D.S. Johnson. Approximation algorithms for combinatorial problems. J Comput Syst Sci,
9:256–278, 1974.

15. R.M. Karp, R. Stoughton, and K.Y. Yeung. Algorithms for choosing differential gene
expression experiments. Proceedings of Lyon, France, Third Annual International Con-
ference on Computational Molecular Biology, 1999, pp. 208–217.

16. T.G. Ksiazek, D. Erdman, et al. A novel coronavirus associated with severe acute respi-
ratory syndrome. New Engl J Med, 348:1953–1966, 2003.

17. L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math, 13, 383–
390, 1975.

18. B.M.E. Moret and H.D. Shapiro. On minimizing a set of tests. SIAM J Sci Stat Comput,
6:983–1003, 1985.

19. NCBI Completed Microbial Genomes. http://www.ncbi.nlm.nih.gov/genomes/microbes/
complete.html.

20. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

21. S. Rash and D. Gusfield. String Barcoding: Uncovering Optimal Virus Signatures. Sixth
Annual International Conference on Computational Biology, Washington D.C., USA,
2002, pp. 54–261.

22. C.E. Shannon. Mathematical theory of communication. Bell Syst Tech J, 27:379–423,
1948.

23. V. Vazirani. Approximation Algorithms. Springer-Verlag, New York, 2001.

24. D. Wang, L. Coscoy, et al. Microarray-based detection and genotyping of viral pathogens.
PNAS, 99:15687–15692, 2002.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8
RECENT ADVANCES IN

WEIGHTED DNA
SEQUENCES

Manolis Christodoulakis and Costas S. Iliopoulos

8.1 INTRODUCTION

It is a well-known fact, referred to as “the first fact of biological sequence analysis”
[21], that biological sequences that are similar to each other tend to have similar two-
or three-dimensional structure and/or perform similar biological functions. This fact
indeed is used to infer the function of a given gene or protein by finding similar
sequences whose functionality already is known [35].

One of the most fundamental tools for visualising similarity between two se-
quences is the string alignment. Numerous pairwise alignment methods exist, in-
cluding the dot matrix analysis [19], various forms of dynamic programming—(e.g.,
the local alignment Smith–Waterman algorithm [40], and the Needleman–Wunsch
global alignment algorithm [34]) as well as heuristic methods (e.g., FASTA [30, 36]
and BLAST [2]).

Although the importance of pairwise sequence alignment cannot be overstated, it
seems that aligning more than two sequences concurrently can be even more helpful
in identifying similarities. Subsequences that are conserved among all (or, most) se-
quences and, therefore, possibly characterize all sequences at hand are easier to iden-
tify. Similar to pairwise alignments, several types of multiple alignments also exist,
like global alignments (e.g., ClustalW [42]) and local alignments (e.g., Dialign [33]).
Figure 8.1, shows a small portion of the alignment of a set of serine/arginine-rich

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

143

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

144 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

Figure 8.1 Part of a multiple alignment of the SC35 protein across species and alleles.

(SR) proteins SC35 across species and alleles, obtained by the implementation of
ClustalW available on the web [17].

Multiple alignments capture the essence of a family of related sequences, but as
such families grow larger, it is not easy to manipulate the whole alignment; one
needs some sort of representation for the family. Any such representation ought to
be easier to manipulate but still capable of revealing the conserved subsequences of
the sequences in the family. Three main types of representations exist for families of
aligned sequences, each with its own advantages and disadvantages.

The simplest form of representation is the consensus string, which is a string in
which each position records the nucleotide (or amino acid) that occurs more fre-
quently in that position of the multiple alignment. The simplicity in this model is
obvious, but it lacks recording important information, such as the variation in the
positions.

For this reason, regular expressions were introduced. In their least complex form,
regular expressions are sequences in which a position contains either a single symbol
if that symbol is conserved among the family or the set of all symbols that occur at
that position within the family. For instance, for the multiple alignment shown in
Figure 8.1 the regular expression would look like

G[ACG][ACT][CGT][AGT][ACT][-ACG]...

Regular expressions, or variations of them, are used widely in biological databases;
PROSITE [7, 8] for example, is a database that uses a more sophisticated form
of regular expression (called patterns), which allows for variable-size gaps, etc.
Regular expressions do record the various symbols occurring at each position of

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.1 INTRODUCTION 145

54321

A 0.0700.190.560
C 00.380.310.060
G 0.130.1900.381.00 · · ·
T 0.800.430.500
- 00000

Figure 8.2 Weighted sequence.

Figure 8.3 Sequence logo: a graphical representation of a weighted sequence.

the alignment, but they do not store any information regarding how conserved each
symbol is at each position.

Weighted sequences1 [20] were introduced as a means of overcoming the limi-
tations of consensus strings and regular expressions. A weighted sequence not only
records the various symbols occurring at each position but also a score or weight
associated with each symbol, which often corresponds to the relative frequency of
the symbol at the particular position. Weighted sequences can be visualized as a
matrix in which rows correspond to the symbols of the alphabet, columns corre-
spond to the positions of the sequence, and in the cells, the probabilities (relative
frequencies) of the symbols are stored. For example, Figure 8.2 shows the first
five positions of the weighted sequence that corresponds to the alignment shown in
Figure 8.1.

Alternatively, weighted sequences can be represented by sequence logos [39]. The
latter constitute graphical representations of weighted sequences in the following
manner: first, the symbols occurring at each position are drawn with size proportional
to their relative frequency for that particular position, and second, the overall height
of a column is drawn in proportion to the conservation at that position. Figure 8.3
shows the first five positions of the logo of our usual example, drawn with the web
tool weblogo [16].

In this chapter, we review existing algorithms to manipulate and efficiently extract
information from weighted sequences. More specifically, after formally introducing
the notions used throughout the chapter (Section 8.2), we study the problems of in-
dexing weighted sequences (Section 8.3), performing pattern matching (Section 8.4),

1Also known as sequence profiles, position weight matrices (PWMs), position frequency matrices (PFM),
or position specific score matrices (PSSM).

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

146 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

locating repetitive elements (Section 8.6), and discovering motifs (Section 8.7).
Finally, in Section 8.8 we conclude the chapter and describe open algorithmic prob-
lems on weighted sequences that still need to be addressed.

In all cases examined in this chapter, we assume that the main sequence, the “text,”
as we call it, is a weighted sequence and the pattern, or the repetitive elements or
motifs that are extracted, are regular (nonweighted) strings. Algorithmic problems
similar to the ones studied here, but where the pattern is itself a weighted sequence
and the text is either weighted or not is also interesting both algorithmically and in
terms of their applications in bioinformatics but are beyond the scope of this chapter.
For a review of such algorithms, the reader may refer to [37].

8.2 PRELIMINARIES

8.2.1 Strings

An alphabet is a nonempty finite set of symbols � = {a1, . . . , aσ }. The size of
�, denoted by |�|, is the number of distinct symbols in �, (i.e., σ). A string2

x = x[1] . . . x[n] over an alphabet � is a sequence of zero or more symbols
x[i] ∈ �. The string that contains zero symbols is known as the empty string and
is denoted by ε. The set of all strings over an alphabet � is denoted by �∗. The
length of a string x = x[1] . . . x[n], denoted by |x |, is the number of symbols in
x (i.e., n).

A string y is a substring (or a factor) of a string x if and only if strings u, v ∈ �∗

exist such that x = uyv. Similarly, y is said to be a prefix of x if and only if x = yv,
and y is said to be a suffix of x if and only if x = uy. y is called a subsequence of x
if y is obtained by deleting zero or more symbols at any positions from x .

Let x = x[1] . . . x[n] and y = y[1] . . . y[m]; x is said to overlap with y by i
symbols if a suffix of x equals a prefix of y, x[n − i + 1..n] = y[1..i], for i ∈
1 · . min(n, m).

A string y = y[1] . . . y[m] (m > 0) is said to be a repetition in a string x =
x[1] . . . x[n] if there are r ≥ 2 distinct positions j1, j2, . . . , jr ∈ 1 . . . n − m +
1 such that x[jq . . . jq + m − 1] = y, for all q ∈ 1 . . . r . Moreover, if there are
q1, q2, . . . , qs ∈ 1..r , q1 < q2 < . . . < qs , such that jql = jql−1 + m, for all l ∈ 1..s,
then x[jq1 .. jqs + m − 1] is called a tandem repeat or a run and can be written in short
x[jq1 .. jqs + m − 1] = ys .

A substring y of a string x is called a period of x if x = yk y′, where k ≥ 1 and
y′ is a (possibly empty) prefix of y.3 The shortest period of x is called the period
of x .

2Where it is not clear from the context, we will refer to strings as solid (or regular) strings to emphasize
that they are not weighted sequences (see Section 8.2.2).
3Note that the usual definition of the period of a string refers to the length of the string y, rather than y
itself. We prefer this definition here, however, because we will be interested in the string itself rather than
its length. Although, for solid strings, the period string can be deduced from the period length, in weighted
sequences this is not the case.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.2 PRELIMINARIES 147

8.2.2 Weighted Sequences

A weighted sequence is a sequence in which each position, instead of consisting of a
single symbol as in (solid) strings, it contains several symbols, each one associated
with a weight. Formally, for alphabet � = {a1, a2, . . . , aσ }, a weighted sequence
w = w[1] . . . w[n] over � is a sequence of vectors of size σ × 1, such that

w[i] =

⎛

⎜
⎜
⎜
⎜
⎝

πi (a1)

πi (a2)
...

πi (aσ)

⎞

⎟
⎟
⎟
⎟
⎠

for i ∈ 1..n

where πi (ah) represents the weight (or score) of the symbol ah , h ∈ 1..σ at position i
of w. Because weighted sequences in most cases are used to represent a set of aligned
sequences, the weight associated with each symbol represents the relative frequency
(or, in other words, the probability) of occurrence of the symbol at that particular
position. Thus, for every position i ∈ 1..n and every symbol ah ∈ �,

πi (ah) ∈ 0..1 and
σ∑

h=1

πi (ah) = 1

The previous definition suggests that a weighted sequence can be viewed as a
σ × n matrix, where columns represent the positions, i ∈ 1 . . . n, of the weighted
sequence, and rows represent the symbols in �. For this reason, a weighted sequence
often is called a position weight matrix.4

For example, consider � = {A, C, G, T}. Then the matrix

w =

⎛

⎜
⎜
⎜
⎝

1 2 3 4 5 6

0.30A 0.25A 0.00A 0.40A 0.80A 0.00A
0.00C 0.25C 1.00C 0.20C 0.05C 0.50C
0.20G 0.50G 0.00G 0.20G 0.10G 0.00G
0.50T 0.00T 0.00T 0.20T 0.05T 0.50T

⎞

⎟
⎟
⎟
⎠

(8.1)

represents a weighted sequence of length 6. Note that, for clarity, next to each prob-
ability, the symbol that corresponds to that probability is written. At position 1, the
probability of A is 30%, C is 0%, G is 20%, and T is 50%.

A symbol a is said to occur or match at position i of a weighted sequence
w = w[1] . . . w[n] if and only if πi (a) > 0. A string y = y[1] . . . y[m] occurs (or
matches) at position i of a weighted sequence w = w[1] . . . w[n] if and only if,
for all j ∈ 1 . . . m, y[j] occurs at position w[i + j − 1]; that is, if and only if

4When the weighted sequence is sparse, containing only a few symbols per position, storing a σ × 1
vector for each position is not practical. In such cases, each position can be represented by a set of pairs
of the form (a, πi (a)), thus storing only the symbols that have nonzero probability.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

148 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

πi+ j−1(y[j]) > 0, for all j ∈ 1 . . . m. We also say that y matches w at position i
or that y is a factor of w at position i . For example, y = ACTA occurs in the weighted
sequence w defined earlier, at position 2 because π2(A) = 0.25 > 0, π3(C) = 1 > 0,
π4(T) = 0.2 > 0, and π5(A) = 0.8 > 0. If the string y occurs at position 1 of w, then
it is called a prefix of w, whereas if it occurs at position n − m + 1 (thus ending at
position n), then it is called a suffix.

For every occurrence of the string y in w, we define the probability (or
weight/score) of that occurrence as follows:

�i (y) =
m∏

j=1

πi+ j−1(y[j])

For instance, for the weighted sequence (1.1)

�2(ACTA) = 0.25 × 1 × 0.2 × 0.8 = 0.04

If we interpret the πi ’s as scores, rather than probabilities, then other
matching measures may become interesting. For example, we could define the
matching weight as the maximum of the weights of the individual symbols,
max j∈1...m{πi+ j−1(y[j])}, or as their sum

∑
j∈1..m{πi+ j−1(y[j])}.

The computation of the weights of the matches plays an important role in distin-
guishing good, valid, matches from random ones. For this reason, algorithms dealing
with weighted sequences normally require the existence of a threshold probability k,
and any matches with a probability less than k are discarded.

8.3 INDEXING

The notion of indexing refers to preprocessing (usually large) input sequences to
speed up queries that will follow, like pattern matching or finding repetitions. In this
section, we present two indexing data structures, the weighted suffix tree (WST) and
the property suffix tree (PST), which both index maximal solid factors of a weighted
sequence. The great advantage of using such data structures is that they allow various
existing algorithms on solid strings to be applied transparently (or almost transpar-
ently) on weighted sequences.

8.3.1 Weighted Suffix Tree

The weighted suffix tree was introduced by Iliopoulos et al. [22, 23] as an effi-
cient data structure for computing different types of repetitions and regularities in
weighted sequences, whereas in [29], the authors extended its use to other applica-
tions, such as pattern matching and motif extraction.

For solid strings, the suffix tree is one of the most fundamental data structures.
Simply put, the suffix tree of a string is a compact trie of all suffixes of the string.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.3 INDEXING 149

Weiner [45] and McCreight [32] presented off-line linear-time algorithms to con-
struct the suffix tree, whereas more recently Ukkonen [43] devised an online linear-
time algorithm. For a given string x , the suffix tree is constructed on x$, where $ is
a unique symbol not occurring in x , to ensure that each suffix is associated with a
(unique) leaf of the suffix tree. It is clear that the number of suffixes in a string and
thus the number of leaves in the suffix tree is linear.

On the contrary, the number of (solid) suffixes in a weighted sequence can be in
the worst case exponential (|�|n for a weighted sequence of length n), and thus, a
suffix tree containing all the suffixes is impractical here. However, as discussed in
Section 8.2.2, we hardly ever are interested in factors of a weighted sequence with
very little probability of occurrence, and to accommodate this, we normally are given
a cut-off probability k. Consequently, the weighted suffix tree need not store suffixes
or factors with probability less than k.

Let w = w[1] . . . w[n] be a weighted sequence and let WST(w) denote its
weighted suffix tree. For every position i ∈ 1..n of w, a set Xi is constructed that
contains for every (solid) suffix that starts at position w[i], the longest prefix of it
that has a probability greater than or equal to k; let Xi, j denote the j-th suffix in
arbitrary ordering. A leaf v of WST(w) is labelled with index i if and only if a pre-
fix exists of one of the suffixes starting at position i , say Xi, j , whose probability is
greater than or equal to k. Notice that in contrast to regular suffix trees, a leaf of
the WST does not necessarily correspond to a suffix but rather to the longest prefix
of the particular suffix whose probability is greater than or equal to k. Interestingly,
in [29], it was proven that the size of Xi is bounded by O(|�|log k/ log(k

k−1)), which is
a constant (considering � and k as constants).

Figure 8.4 shows the weighted suffix tree of the weighted sequence

w =

⎛

⎜
⎜
⎜
⎝

1 2 3 4 5 6 7 8 9 10 11

1A 0A 0A 0A 0.5A 0A 0A 0.5A 0A 0A 0A
0C 1C 0C 0C 0.5C 0C 1C 0.3C 0C 0C 0C
0G 0G 0G 0G 0.0G 0G 0G 0.0G 0G 0G 0G
0T 0T 1T 1T 0.0T 1T 0T 0.2T 1T 1T 1T

⎞

⎟
⎟
⎟
⎠

with cut-off probability k = 0.25. Notice that, for instance, the suffix ATCCTTT, start-
ing at position 5 is not stored in the WST because its probability is 0.15.

The weighted suffix tree can be built in linear time in the following stages [29]:

Colouring. The weighted sequence is scanned, and all positions are marked with a
color according to the following criteria5:

� A position i is marked as black, if πi (a) < 1 − k for all a ∈ �; these positions
are called branching positions because more than one symbol occurring at this
position may have probability k or more.

5There is an implicit assumption that k < 0.5 here; when k ≥ 0.5 the coloring process is even simpler as
there will be no branching positions.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

150 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

Figure 8.4 Example of a weighted suffix tree [29].

� A position i is marked as gray, if one a ∈ � exists such that πi (a) ≥ 1 − k;
in these positions, although several symbols occur, only one of them eventually
“survives” because only one symbol can have a probability greater than or equal
to k and thus can contribute to a substring with a probability of at least k.

� A position i is marked as white, if there exists one a ∈ � such that πi (a) = 1;
these are called solid positions, as they contain only one symbol.

A list B of all black positions is maintained in increasing order of i .

Generation. In this stage, all substrings of w with a probability of at least k are
generated. For every position i ∈ 1 . . . n, a list of substrings starting from i is main-
tained; each substring is associated with two probability values—a value π ′, which is
the actual probability of the particular substring, and a temporary value π ′′, which is
computed by considering all grey positions as white (thus ignoring the probabilities
of the gray symbols). The idea at this stage is for every position i to extend the list of
substrings generated in the previous position by adding a single symbol at their end
every time a white or grey position is met and by creating new substrings every time
a black position is met. The generation of new substrings stops whenever a black
position is met and the probability π ′′ is less than k. Notice that the actual substrings
may be shorter, as π ′ may have reached the k limit earlier.

Construction. All substrings generated in the previous stage now are used to build
a generalized suffix tree. As explained earlier, some substrings generated may be
longer than the actual substrings to be inserted in the WST because grey positions
were considered as white. To correct this, the substrings that are actually longer are
pruned to their correct size in the suffix tree.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.3 INDEXING 151

The weighted suffix tree has various applications, among which are pattern match-
ing, finding repetitions and covers, computing the longest common substring, and
extracting motifs, as will be shown in the following sections.

8.3.2 Property Suffix Tree

Amir et al. [3, 4] recently devised the property suffix tree (PST), an indexing data
structure for property matching on solid strings and showed that it can be built on
weighted sequences, too after some preprocessing.

A property of a string x = x[1] . . . x[n] is a set of intervals

P = {(sh, fh)|sh, fh ∈ 1..n and sh ≤ fh}

In the pattern matching problem, a property can be used to limit the matches of the
pattern, only to those occurring within the intervals of the given property. Formally,
given a text x = x[1] . . . x[n] and a pattern y = y[1] . . . y[m], y matches x[i.. j] with
property P if y matches x[i.. j] and (sh, fh) ∈ P exists such that i ≥ sh and j ≤ fh .

Before describing the PST, a few definitions [4] are in place. For a position i of
a string x = x[1] . . . x[n], let end (i) denote the largest fh such that (sh, fh) ∈ P
and i ∈ sh . . . fh; end(i) = N I L if no such fh exists. Consider the suffix tree of
x , ST(x), and for a node u of ST(x), let SP

u denote the maximal set of locations
{i1, . . . , i�} ⊆ {1, . . . , n} such that, for every i j ∈ SP

u , the following two conditions
hold: (i) the leaf of ST(x) that corresponds to the suffix i is a descendant of u, and (ii)
if end(i j) �= N I L , then end(i j) − i j > |label(u)|, where label(u) denotes the label
on the path from the root to u. That is, for every node u, a list is maintained of all
suffixes prefixed by label(u) that occur within an interval large enough to fit u. If v

is the parent node of u in ST(x), then it can be established easily that SP
u ⊆ SP

v . If
leaf(i) denotes the leaf node of ST(x) that corresponds to x[i..n], then the path from
the root to leaf(i) can be split into two subpaths: (i) the path consisting of all nodes
u for which i ∈ SP

u , and (ii) the path of all nodes u for which i /∈ SP
u . Finally, if v

is the deepest node in the first path, then let loc(i) either denote the node v, when
end(i) − i = |label(v)| − 1 or end(i) = N I L , or otherwise loc(i) denotes the edge
that connects the two paths.

The PST is then the suffix tree of x modified so that every suffix x[i . . . n] is
moved up to loc(i). Initially, a normal suffix tree of x is constructed [32,43,45]. Then,
for every suffix x[i . . . n], loc(i) is identified, and for every node v (for every edge
e), a list suf(v) (suf(e)) is maintained of all positions i with loc(i) = v (loc(i) = e).
Then ST(x) is scanned and each node u is marked if either suf(u) is not empty or
u is connected to an edge e with suf(e) nonempty, or u is an ancestor of a marked
node. All nodes that are not marked at the end of this process are deleted from the
tree, and nonbranching paths in the remaining tree are compressed. This process can
be performed in O(n log |�| + n log log n) time.

The PST can be applied to weighted sequences as follows. The weighted se-
quence w = w[1] . . . w[n] is preprocessed in a similar manner as in the construction
of the WST (Section 8.3.1); positions are marked as solid (white), leading (grey), and

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

152 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

branching (black). Then, leading positions are considered as solid, and maximal (in
length) factors with probability greater than or equal to k are identified. The number
of such factors in w, as well as their total length is proved again in [4] to be linear.
Finally, all these (extended) maximal factors are concatenated into one solid string,
and the probability of each is maintained separately. Then a PST can be built on this
solid string with property P defined on intervals (sh, fh) such that the probability
of the factor starting at position sh and ending at fh is at least k, and this factor is
maximal (extending to the left or right would yield probability less than k). Because
the total length of the extended factors is linear, the PST of a weighted sequence can
be built in O(n log |�| + n log log n) time.

It should be noted that, in the following sections, whenever we demonstrate how
the WST can be used to solve a problem in weighted sequences, the PST can be
applied equally well.

8.4 PATTERN MATCHING

The pattern matching problem, in its simplest form, can be defined as the problem of
locating all occurrences of a given string, the pattern, within a usually longer string,
the text. Numerous variants of this problem exist, such as allowing gaps between
the symbols, allowing do-not-care symbols in either the text or the pattern (or both),
and so on. For solid strings, there are literally hundreds of algorithms for all types of
pattern matching (see, for instance, [15, 21, 41] for an overview).

The problem of exact pattern matching on weighted sequences is defined formally
as follows: given a string y = y[1] . . . y[m] (the pattern), a weighted sequence w =
w[1] . . . w[n] (the text), and a constant k ∈ 0..1, compute the set, I, of positions in
w where y occurs with a probability of at least k

I = {i ∈ 1 · · · n| �i (y) ≥ k}

8.4.1 Pattern Matching Using the Weighted Suffix Tree

Similar to the traditional suffix trees, the weighted suffix tree can be used to perform
pattern matching on weighted sequences. The algorithm is simple; first the WST is
built from the weighted sequence w for the given threshold probability k. Then, start-
ing from the root of the WST, the pattern y is spelt out following the corresponding
path on the tree. If a leaf is reached before the pattern has been spelt out completely,
then there is no occurrence of y in w with probability at least k. On the other hand, if
a node v is reached, then there is an occurrence of y in all positions i that are stored
in the leaves in the subtree rooted at v (or v itself if v is a leaf). The running time of
this algorithm is O(n) for preprocessing the weighted sequence and is O(m + |I|)
for locating occurrences of the pattern, where |I| denotes the number of occurrences
of y in w with probability at least k.

Clearly, this algorithm is beneficial when the same weighted sequence is searched
repeatedly for different patterns. However, it must be noted that the time to construct

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.4 PATTERN MATCHING 153

and the size of the WST is heavily based on the choice of the threshold probability
k; it is crucial, therefore, that k is a small constant. Otherwise, the time and space
cost is prohibitive. Moreover, if the value of k varies across different queries, then a
new WST must be built for each such k, making this algorithm impractical for these
cases.

8.4.2 Pattern Matching Using Match Counts

In this section, we present an alternative algorithm [11] for the pattern matching
problem, which although slower than the previous one, has the advantage of not
depending on the value of k. The algorithm operates in two stages; it first locates all
positions of w that match y, regardless of their probability; then, the probabilities of
the matches are computed, and positions i with �i (y) < k are discarded.

At the heart of the algorithm lies the match count problem [21]. For a weighted
sequence w = w[1] . . . w[n] and a string y = y[1] . . . y[m], the match count prob-
lem can be defined as follows: compute vector M(w, y), such that M(w, y)[i], for
i ∈ 1 . . . n, is the number of symbols of y that match with symbols in w, when y[1] is
aligned with w[i]. Clearly, the positions, i , for which M(w, y)[i] = |y| are precisely
the positions where y matches w.

The problem can be tackled by considering |�| subproblems, one for each symbol
a ∈ �. Let Ma(w, y) be a vector such that Ma(w, y)[i] denotes the number of as
of w that match with as of y, when y[1] is aligned with w[i], for i ∈ 1 . . . n. It is
straightforward to see that

M(w, y) =
∑

∀a∈�

Ma(w, y)

To compute each Ma(w, y), two bit vectors, ȳa and w̄a , are constructed in which the
i-th position is 1 if a occurs in y[i] and w[i], respectively, and 0 otherwise. Then,
the number of matches for the symbol a, when y[1] is aligned with position w[i] can
be computed as follows:

Ma(w, y)[i] =
m∑

j=1

ȳa[j] × w̄a[i + j − 1]

where w̄a[i + j] is considered to be zero for all i + j > n. But this sum of products
is nothing more than the vector correlation of ȳa and w̄a and thus can be computed
in O(n log m) time using the fast fourier transform (FFT) [13].

At the second stage, the probabilities of the occurrences are computed, using an
algorithm similar to that of stage one and the observation that

�i (y) =
m∏

j=1

πi+ j−1(y[j]) ≥ k if and only if
m∑

j=1

log(πi+ j−1(y[j])) ≥ log k

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

154 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

Specifically, we construct new vectors ŷa and ŵa such that

ŷa[j] =
{

1 if y[j] = a

0 otherwise
ŵa[i] = log(πi (a))

for all j ∈ 1 . . . m and i ∈ 1 . . . n. Then, similarly to stage one, the sums of the proba-
bilities of the symbols of y for each possible alignment of y with w can be computed
by performing |�| FFTs as follows:

M̂(w, y) =
∑

∀a∈�

M̂a(w, y) where M̂a(w, y)[i] =
m∑

j=1

ŷa[j] × ŵa[i + j − 1]

The vectors M(w, y) and M̂(w, y) can be used in conjunction to identify all oc-
currences of y in w with a probability greater than or equal to k. The running time
of this algorithm is O(|�|n log m) because at each stage, |�| vector correlations are
performed with the use of fast fourier transform. If the number of occurrences iden-
tified in stage one is less than (n log m)/m, then stage two can be skipped, and the
probabilities can be computed straightforwardly in O(n log m) time (thus avoiding
|�| FFTs, which are costly operations).

8.4.3 Pattern Matching with Gaps

This section is concerned with the problem of pattern matching with gaps—
allowing gaps between occurrences of successive symbols of the pattern y in the
weighted sequence w. Formally, given a string y = y[1] . . . y[m], a weighted se-
quence w = w[1] . . . w[n], a constant k ∈ 0 . . . 1, and a constant α, the α-bounded
pattern matching with gaps problem is to find all positions i1 ∈ 1 . . . n such that po-
sitions i2, i3, . . . , im exist for which

� πi j (y[j]) > 0, for all j ∈ 1 . . . m
�

∏m
j=1 πi j (y[j]) ≥ k

� i j − i j−1 − 1 ≤ α, for all j ∈ 2 . . . m

For example, let y = TGA,

w =

⎛

⎜
⎜
⎜
⎝

1 2 3 4 5 6

0.30A 0.25A 0.00A 0.40A 0.80A 0.00A
0.00C 0.25C 1.00C 0.20C 0.05C 0.50C
0.20G 0.50G 0.00G 0.20G 0.10G 0.00G
0.50T 0.00T 0.00T 0.20T 0.05T 0.50T

⎞

⎟
⎟
⎟
⎠

k = 0.05, and α = 1. Then y occurs in w at position 1, with α-bounded gaps, because

�1(y) = π1(T) × π2(G) × π4(A) = 0.5 × 0.5 × 0.4 = 0.1 ≥ k

Notice the gap (of size 1) between the occurrences of y[2] and y[3].

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.4 PATTERN MATCHING 155

The pattern matching with gaps problem is tackled in [11]. The idea behind this
algorithm is to use dynamic programming to locate continuously increasing prefixes
of y in w, allowing gaps between the occurrences of the symbols of y in w. Two
dynamic programming tables are used, one for finding the occurrences and one for
computing the probabilities of these occurrences. As it is more natural for this al-
gorithm, it is reporting the ending positions of occurrences rather than the starting
positions. Moreover, notice that because of the gaps, it is possible that two or more
occurrences of y end at the same position i in w. The algorithm is only considering
for each position i in w, at most one occurrence of y ending at i ; if two or more such
occurrences exist, then only the one with the maximum probability will be consid-
ered, provided that its probability is larger than or equal to k.

Let D be an (n + 1) × (m + 1) matrix. D[i, j], for i ∈ 1 . . . n and j ∈ 1 . . . m,
indicates whether there is an occurrence of y[1 . . . j] ending at position i of w, al-
lowing gaps of size at most α and with probability larger than or equal to k. In
particular, D[i, j] will contain �, if � is the last (rightmost) position of w where the
j-th prefix of y ends, with adequate probability and without violating the gap in-
variant; D[i, j] = −1 otherwise. The base conditions for D are D[i, 0] = i , for all
i ∈ 0 . . . n, and D[0, j] = −1 for all j ∈ 1 . . . m.

The value of D[i, j], for i ∈ 1 . . . n and j ∈ 1 . . . m, is determined by the follow-
ing three cases:

1. y[j] matches w[i] and the previous prefix y[1 . . . j − 1] ends at a position
i ′ < i of w such that i − i ′ − 1 ≤ α. In this case, the gap between y[j − 1]
and y[j] (if there was such a gap) is closed. Note that, for this case to be true,
one more condition has to be satisfied: the probability of y[1 . . . j] must be at
least k. We defer the discussion of the probabilities until later in this section.

2. There is no occurrence of y[j] in w[i], but the same prefix y[1 . . . j] ends at
some position i ′ < i such that i − i ′ ≤ α, and thus, the gap between y[j] and
y[j + 1] can be extended (or opened, if it did not exist already).

3. None of the aforementioned conditions is true, and therefore, there cannot be
a match of y[1 . . . j] ending at position i .

These three cases are summarized in the following recurrence relation:

D[i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j,

if y[j] occurs in w[i] and
D[i − 1, j − 1] ≥ 0 and
i − D[i − 1, j − 1] − 1 ≤ α and
max(L[i − 1, j − 1]) · πi (y[j]) ≥ k

D[i − 1, j],
if previous case does not hold and

i − D[i − 1, j] − 1 < α

−1, otherwise

(8.2)

where L[i, j] denotes the (maximum) probability of y[1 . . . j] ending at position i
of w.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

156 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

Recall that more than one occurrence of y[1.. j] might exist ending at (or before)
position i of w. Consequently, each L[i, j] should be a data structure able to store
at most α probabilities, �i−α+1,�i−α+2, . . . ,�i , where �h , h ∈ i − α + 1 . . . i ,
denotes the maximum probability among the probabilities of the occurrences of
y[1 . . . j] that end precisely at position h (and not before), provided that this prob-
ability is greater than or equal to the cut-off probability k. Moreover, two adjacent
cells L[i − 1, j] and L[i, j] should have the same values with the following excep-
tions:

� The first element of L[i − 1, j], the maximum probability of the occurrences
ending at position i − α (if any such occurrence exists), should not appear in
L[i, j] because this element is no longer satisfying the gap invariant.

� A new element, the maximum probability of the occurrences ending at posi-
tion i (if any such occurrence exists), must be inserted into L[i, j]. This can be
computed by multiplying πi (y[j]) with the maximum probability of the occur-
rences of y[1 . . . j − 1] ending at (or before) position i − 1.

Following these observations on the properties of L , it was established in [11]
that if no trace-back of the dynamic programming is required, then a column-wise
computation of L (and D) would allow a single data structure, L , to be used per
column, and so, at iteration i of the algorithm, L is simply updated from that of
iteration i − 1. In this case, a heap-ordered queue [18] can be used for L , which
supports the update of L from one iteration to the next in constant time.

If, on the other hand, trace-back is required, to identify the actual occurrences of
y in w, then at iteration i (for a given j) the whole list L[i − 1, j] must be copied
into L[i, j], and possibly, its head and tail must be updated as explained. In this case,
a simplified version of a persistent list [26] can be used, which supports amortized
constant time of the computation of L[i, j] from L[i − 1, j].

The running time of the algorithm is O(mn), assuming that no trace-back is re-
quired, because there are mn iterations, and at each iteration (i, j), the computation
of D[i, j] and the update of L[i, j] (from L[i − 1, j]) can be performed in constant
time.

8.4.4 Pattern Matching with Swaps

A swap in a string is the interchange of two symbols appearing in consecutive po-
sitions. A string y ′ is a swapped version of a string y = y[1] . . . y[m] if and only if
y′ is derived from y by interchanging some symbols appearing in consecutive posi-
tions in y (y ′[j] = y[j + 1] and y ′[j + 1] = y[j]), where each position j of y can
participate in at most one swap operation. The pattern matching with swaps problem
is that of locating all positions i in a weighted sequence w = w[1] . . . w[n] in which
any swapped version of the pattern y occurs with probability k or more.

This problem has been addressed in [47] by combining the techniques presented
in [22, 23, 29] for building the weighted suffix tree with the algorithms presented

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.5 APPROXIMATE PATTERN MATCHING 157

in [5] for solving the swap-matching problem in solid strings. In particular, first all
(solid) factors of w with a probability of at least k are identified, using the steps
described in Section 8.3.1. The number of such factors is proven to be O(n) for a
fixed value of k. Next these factors are concatenated to a long (solid) string x , and
the starting positions (within this new string) of the factors are stored in a separate
array. In this way, both the pattern, y, and the new text, x , are solid strings, and
therefore, the overlap matching [5] technique can be applied to find all matches with
swaps.

The preprocessing step of extracting the maximal factors takes O(n) time. There-
fore, the running time of this algorithm is dominated by the overlap match algorithm,
which takes O(n log m log σ), where σ = min(m, |�|).

8.5 APPROXIMATE PATTERN MATCHING

Approximate pattern matching refers to locating factors of a weighted sequence w

that are similar, rather than identical, to a given pattern y. The notion of similarity can
be defined via a distance function, which computes how dissimilar two strings are;
the larger the distance, the smaller the similarity. The distance between two strings
can be viewed as the number of errors that supposedly transformed one string to the
other. In many cases, a maximum distance d is provided as input to the problem so
that only approximate occurrences with distance at most d are located.

Amir et al. [6] devised algorithms for the approximate pattern matching problem
on weighted sequences under the hamming distance [46] and briefly addressed the
problem under the edit distance [28]. Because of space limitations, we only cover
the former here.

8.5.1 Hamming Distance

The Hamming distance between two equal-length6 strings is defined as the minimum
number of substitutions that are necessary to transform one string into the other.
In solid strings, the Hamming distance is symmetric in the sense that it does not
make a difference whether the error is assumed to occur in the text or in the pattern.
However, when comparing a solid string with a weighted sequence this is not the
case; depending on whether the errors are assumed to occur in the weighted sequence
or in the string, the definition of the distance function differs, with consequences for
the approximate pattern matching algorithms. Here, both cases are examined.

8.5.1.1 Hamming Distance when Errors Occur in the Text. Consider a
string y = y[1] . . . y[m] and an equal-length weighted sequence w = w[1] . . . w[m].
The Hamming distance, under the assumption that the string is error-free, and thus,
all errors occur in the weighted sequence, can be defined as the minimum number of
positions in w that must be substituted by a single symbol (i.e., with probability 1)

6The Hamming distance is defined only on strings of equal length.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

158 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

so that that y matches w with a probability of at least k. From this definition, it is
clear that if one substitutes at most m positions in w with the corresponding symbols
from y, then y will match w regardless of how close to 1 k is.

The approximate pattern matching problem when using the Hamming distance
with errors in the weighted sequence can be defined as follows: given a weighted
sequence w = w[1] . . . w[n], a string y = y[1] . . . y[m] and a constant k ∈ 0 . . . 1,
identify for each position i ∈ 1..n − m + 1 of w the minimum number of errors, di ,
that must be substituted in w for y to match with the substring w[i . . . i + m − 1] of
w with a probability greater than or equal to k.

The first step to solve this problem is to transform the input as follows:

� A string w′ = w′[1] . . . w′[|�|n] of nonpositive integers is constructed from
w, where |�| consecutive positions of x correspond to one position of w as
follows:

w′[(i − 1)|�| + h] = log πi (ah), for all h ∈ 1..�

In simple words, for every position i of w, the logarithms of the probabilities
of all symbols are written one after the other

� A string y′ = y′[1] . . . y′[|�|m] of bits is constructed from y as follows:

y ′[(i − 1)|�| + h] =
{

1, if y[i] = ah

0, otherwise

� A new threshold probability is defined k′ = log k

With this transformation in place, the approximate pattern matching prob-
lem can be reduced to the ignored mask bits problem, which is defined as fol-
lows: given a string w′ = w′[1] . . . w′[|�|n] of nonpositive integers, a string y′ =
y′[1] . . . y′[|�|m] of bits and a nonpositive constant k′, find for every location
i ′ ∈ 1..|�|n the minimum number, di ′ , of bits in y′ that must change from 1 to 0
so that

∑m
j=1 w′[i ′ + j]y′[j] ≥ k ′. Then the minimum distance, di , for the i th posi-

tion of the original sequence w is simply di =
di ′/|�|�.
The algorithm that solves the ignored mask bits problem [6] uses divide-and-

conquer to split the input into subproblems that can be tackled by two special cases
(i) the bounded alphabet case in which the size of the alphabet of w′ is bounded, and
(ii) the bounded relevant numbers case in which the number of elements in w′ that
are greater than k ′ is bounded. The former problem can be solved in O(rn log m)
time, where r is the upper bound on the size of the alphabet, and the latter in O(ns)
time, where s is the maximum number of elements larger than k ′ in any substring
of w′ of length m. The divide-and-conquer algorithm sorts the text elements and
then splits them into r blocks of size at most 2|�|m

r each. In this way, the bounded
alphabet algorithm and the bounded relevant numbers algorithm are applied on each

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.5 APPROXIMATE PATTERN MATCHING 159

block. To achieve optimal time, the number of blocks, r , is proven [6] to be

r =
√

m

log m
= m

√
m log m

which yields overall running time

O(rn log m + n
m

r
) = O(n

√
m log m)

8.5.1.2 Hamming Distance when Errors Occur in the Pattern. The Ham-
ming distance between y and w, when errors are assumed to occur in y, can be
defined as the minimum number of symbols in y that must be substituted by other
symbols for y to match w with probability at least k. In contrast to the previous def-
inition of the Hamming distance, here it might be the case that y cannot match w

even if all m symbols of y are substituted.
Let y and w be of length m and consider the probability of y occurring at w[1] as

less than k

�1(y) =
m∏

j=1

π j (y[j]) < k

The aim is to substitute as few symbols from y as possible, until �1(y) ≥ k. Clearly,
if a symbol y[j] is to be substituted, then it will be replaced by the symbol with the
maximum probability at position j of w (i.e., max|�|

h=1(π j (ah))). To find the minimum
number of such positions j to be substituted, one has to order the positions according
to the gain each of them offers to the overall probability �1(y). The gain for substi-
tuting y[j] is the ratio of the maximum probability at position j of w divided by the
probability of the symbol being replaced

max|�|
h=1(π j (ah))

π j (y[j])
(8.3)

Consequently, it suffices to sort the input sequences in decreasing order of their ra-
tio (8.3) and keep substituting symbols from y in this order until �1(y) ≥ k. As
highlighted in [6], substituting a symbol y[j] with a new symbol a is equivalent to
substituting, at position j , in the weighted sequence the probability π j (y[j]) with
π j (a).

The algorithm for solving the approximate pattern matching problem, under
the Hamming distance function with errors in the pattern, sorts the weighted se-
quence according to the ratio (8.3) and then splits it into O(m√

m log m
) blocks of size

O(
√

m log m), similar to the algorithm that considers errors in the text. Then, for
each location i , the probabilities are computed O(m√

m log m
) times as follows: In the

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

160 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

first iteration, the probabilities are computed without any substitutions in the text; in
the second iteration, the probabilities are computed having substituted the element
with the highest gain ratio in each group; . . . ; in the j-th iteration, the probabilities
are computed having substituted the j − 1 elements with the highest gain ratio. Each
calculation can be done in O(n log m) time using FFT; thus, the overall running time
is O(n

√
m log m).

8.6 REPETITIONS, COVERS, AND TANDEM REPEATS

In this section, we examine algorithms for locating repetitive elements in weighted
sequences—that is, factors that occur two or more times within a weighted sequence.
Again, various definitions are adopted according to the underlying assumptions on
what constitutes a repetition.

Consider two occurrences of a factor y = y[1] . . . y[m] in a weighted sequence
w = w[1] . . . w[n], such that the distance between the two occurrences is less than
m; in contrast to solid strings, here the two occurrences do not necessarily overlap
with each other. The following example illustrates this:

w =

⎛

⎜
⎜
⎜
⎝

1 2 3 4 5 6

0.30A 0.25A 0.20A 0.40A 0.80A 0.00A
0.00C 0.25C 0.80C 0.20C 0.20C 0.50C
0.20G 0.50G 0.00G 0.20G 0.00G 0.00G
0.50T 0.00T 0.00T 0.20T 0.00T 0.50T

⎞

⎟
⎟
⎟
⎠

(8.4)

y = ACC occurs at positions 1 and 2; however, the two occurrences do not overlap
with each other: Rather, they are making use of different symbols for some of the
common positions; specifically at position 2, the first occurrence is using C, whereas
the second uses A.

Depending on what the weighted sequence, or the repetitions themselves, repre-
sent, this “anomaly” might or might not be acceptable. For this reason, the following
types of repetitions were defined in [9]:

� Simple repetitions are repetitions in which “borderless” overlaps are allowed.
� Strict repetitions introduce the extra restriction that distinct occurrences should

be using the same symbol for every common position in w.

The same distinction applies to covers. Recall that a cover of length � is a repeti-
tion whose consecutive occurrences are no more that � distance from each other, and
the first (last) occurrence starts (ends) at the first (last) position of w (thus “covering”
w). Therefore, simple and strict covers can be defined similarly. For instance, in the
previous weighted sequence, the string ACC is a simple cover (occurs at positions 1,
2, and 4) whereas ACAC is a strict cover (occurs at positions 1 and 3) and the two
occurrences do overlap with each other.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.6 REPETITIONS, COVERS, AND TANDEM REPEATS 161

In this section, we present the algorithms for locating repetitions in a weighted
sequence. Currently, the only linear time algorithm is based on the use of the
weighted suffix tree (see Section 8.6.1). However, because of the inherent draw-
backs associated with the WST, such as the large size and the dependence on k,
alternative algorithms have been discovered, which, although they do not achieve
the optimal asymptotic running time, in practice they likely to perform better;
these are presented in Sections 8.6.2–8.6.5. These algorithms are not perfect ei-
ther, their main drawback being that they compute repetitions of prespecified
length only.

8.6.1 Finding Simple Repetitions with the Weighted Suffix Tree

The asymptotically optimal running time for this problem was achieved by Iliopou-
los et al. [22], in which the authors used the weighted suffix tree [29] to find
the repetitions. The algorithm works as follows: once the WST of weighted se-
quence w = w[1] . . . w[n] is built (see Section 8.3.1), it is traversed bottom-up, and
at each internal node v, the factors that are stored in the leaves under v are re-
ported. The number of factors in the WST is linear, and thus, the running time is
also linear.

8.6.2 Fixed-Length Simple Repetitions

The problem of finding all simple repetitions of a weighted sequence is defined as
follows: given a weighted sequence w = w[1] . . . w[n], a constant k ∈ 0 . . . 1, and
an integer m ∈ 1 . . . n − 1 identify, for every length-m factor y that occurs at least
twice in w, the set Iy of positions where y occurs in w with a probability greater
than or equal to k.

Christodoulakis et al. [10, 12] devised an algorithm for this problem based on
ideas first presented in [27] for finding repetitions in solid strings. The idea is to
split the positions of the input sequence into equivalence classes; two positions that
belong to the same equivalence class contain the same factor of length m in which m
is a prespecified constant. Then, equivalence classes of factors of increasing length
are computed by combining equivalence classes for smaller factors that already have
been computed.

Formally, equivalence classes are defined as follows: Two positions i and j of
a weighted sequence w = w[1] . . . w[n] are m equivalent (m ∈ 1 . . . n and i, j ∈
1 . . . n − m + 1) (written i Em j) if and only if at least one solid string y exists of
length m that occurs at both positions i and j with a probability greater than or equal
to k.

The relation Em , is called an equivalence relation and is represented as a vector,
Em[1 . . . n − m + 1], of sets of integers; the set Em[i] consists of the integers that
represent the equivalence classes of the factors of length m that start at position i and
have a probability of at least k.

When dealing with solid strings, every position i ∈ 1 . . . n − m + 1 contains pre-
cisely one factor of length m. For weighted sequences, on the other hand, any position

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

162 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

may contain more than one symbol; thus, more than one factor of length m can oc-
cur at the same position with probability greater than or equal to k. Consequently, a
single position i of a weighted sequence may belong to more than one equivalence
class.

To solve the problem of locating repeated substrings of length m over a weighted
sequence w, the algorithm proceeds as follows; it first computes the equivalence
relation Ed :

1. Scan w to construct relation E1.

2. Construct Em from smaller equivalence relations that already have been com-
puted, using the principles of binary multiplication (binary decomposition of
d) (e.g., combine E1 with itself to get E2, E2 with itself to get E4, E4 with E1

to get E5, and so on).

Then, by a single scan through Em , one can identify all equivalent positions and thus
all repetitions of length m.

The first step, constructing E1, is straightforward; scan w, and for each symbol at
position i ∈ 1 . . . n, insert into E1[i] the integer (equivalence class) that represents
this symbol. The second step, which is performed repeatedly and is used to construct
new equivalence relations from existing ones, is explained next.

Given two equivalence relations, Em1 and Em2 , m2 ≤ m1, the relation Em , where
m = m1 + m2, can be constructed using the following observation:

i Em j if and only if i Em1 j and i + m1 Em2 j + m1 (8.5)

To implement efficiently the construction of Em , two sets of stacks are used:
P(1), . . . , P(em1) and Q(1), . . . , Q(em2), where em1 and em2 represent the number
of distinct equivalence classes in Em1 and Em2 , respectively.

1. Sort vector Em1 using the P-stacks: run through Em1 , and for each equivalence
class y at each position i , push (i, πi (y)) into P(y). This step sorts the positions
according to the equivalence classes of length m1.

2. Resort using the Q-stacks: pop each P(y) until it is empty. As posi-
tion (i, πi (y)) is popped from P(y), push (i, πi (y)πi+m1 (x)) onto Q(x),
x ∈ Em2 [i + m1], provided that i + m1 ≤ n − (m1 + m2 − 1) and πi (y) ×
πi+m1 (x) ≥ k. That is, resort the positions of Em1 according to the factors of
length m2 that occur m1 positions to the right.

3. Construct Em : pop each Q-stack until empty. Let c (initially set to 1) denote the
current equivalence class. As each (i, πi (y)πi+m1 (x)) is popped from a given
stack Q(x), store c in the set Em[i]. c is incremented every time a new factor
y is popped out of Q(x) or if y is the first factor popped out of Q(x).

The process of combining two equivalence relations to build a larger one takes
O(n) time, provided that the input weighted sequence is drawn from a bounded-size

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.6 REPETITIONS, COVERS, AND TANDEM REPEATS 163

alphabet. This is a consequence of the fact that the number of factors occurring at any
position with probability k or more is constant, as discussed in Section 8.3.1. Because
this process is repeated log m times, the overall running time of the algorithm is
O(n log m).

8.6.3 Fixed-Length Strict Repetitions

Strict repetitions are similar to, but slightly more restricted than, their simple coun-
terparts. We now are looking for sets of positions such that no two occurrences of
the same factor occur in overlapping positions without the occurrences themselves
overlapping. Formally, given a weighted sequence w = w[1] . . . w[n], a constant
k ∈ 0 . . . 1, and an integer m ∈ 1 . . . n − 1, identify for every length m simple rep-
etition y in w, a set I ′

y ⊆ Iy of positions in which y occurs in w with a probabil-
ity greater than or equal to k such that, for every pair of positions i, i ′ ∈ I ′

y , either
|i − i ′| ≥ m or m − | j − j ′| is the length of a border of y.

To identify which occurrences of a simple repetition form a strict repetition, one
must discover whether any two occurrences of a factor use the same symbols at all
their overlapping positions (if any). This can be done by simply computing the bor-
ders of the factor under question and by checking whether the right-most occurrence
begins at a position that corresponds to a (right) border of the factor.

Consequently, the algorithm presented in Section 8.6.2, must be modified so
that, together with an equivalence relation Em , a list Fm of all equivalence classes
and factors they correspond to are stored. Initially, the factor list F1 of factors
of length 1 (single symbols) is built by a simple scan in w. Then, two equiv-
alence relations Em1 and Em2 are combined, and their factor lists Fm1 and Fm2

are concatenated. Finally, once all simple repetitions are found, as in the algo-
rithm of Section 8.6.2, their occurrences are tested to see whether they over-
lap to identify strict repetitions. The running time of the updated algorithm is
O(nm), because now the border arrays [1] of O(n) factors of length m must be
computed.

8.6.4 Fixed-Length Tandem Repeats

The problem of finding tandem repeats in weighted sequences is defined as follows:
given a weighted sequence w = w[1] . . . w[n], a constant k ∈ 0 . . . 1, and an integer
m ∈ 1 . . . n − 1, identify for every length m simple repetition y in w, all sets I ′′

y ⊆ Iy

of positions in which y occurs in w with probability greater than or equal to k such
that, for every pair of positions i, i ′ ∈ I ′′

y with i < i ′, i ′ = i + m.
The algorithms for simple repetitions (Section 8.6.2) can be extended easily to

locate tandem repeats of length m. The time consumed to construct Em is O(n log m),
whereas scanning Em to identify tandem repeats takes linear time, because there is a
constant number of factors for every position of w, and each is only accessed once.

In [24], a different algorithm was presented for the same problem, which was
based on Crochemore’s algorithm [14] for finding tandem repeats in solid strings.
However, this algorithm later was proved [10] to run in O(n2) time.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

164 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

8.6.5 Identifying Covers

It is straightforward to see that covers can be identified by checking whether the
occurrences of each repetition “cover” the whole of w. Therefore, to locate all length
m covers, it suffices to:

1. Find all length m repetitions, y, and the corresponding positions of occurrence,
Iy , using one of the algorithms presented in the previous sections

2. Identify which of these factors have an occurrence at position 1 of w and an-
other occurrence at position n − m + 1; all other factors can be discarded as
they certainly do not “cover” the whole of w

3. For each y selected scan Iy and check whether the distance between consecu-
tive occurrences of yh is always less than or equal to d

Steps 2 and 3 can be applied in O(n) time; thus, the overall running time is dominated
by the algorithm used in step 1 to locate the repetitions.

8.7 MOTIF DISCOVERY

In biological sequences, motifs are repeating factors in a sequence or set of sequences
that have some important biological role. Similar to repetitions, which we examined
in the previous section, the exact string of the motif is unknown at first; however,
other information about the motif is normally available, which helps distinguish mo-
tifs from other random repetitions. For instance, the minimum number of occurrences
of the motif in a sequence or set sequences might be known in advance, or the struc-
ture of the motif might be known. Moreover, often the repeated factors of a motif are
not identical, because of mutations or errors from the sequencing equipment.

8.7.1 Approximate Motifs in a Single Weighted Sequence

Iliopoulos et al. [25] considered the problem of locating approximate motifs in a
weighted sequence using the Hamming distance. More specifically, the problem they
addressed was to identify the factors (motifs), y, of a given weighted sequence w =
w[1] . . . w[n] that have the following properties:

1. |y| = m ≥ 2

2. The probability of occurrence of each approximate occurrence of y is at least
k ∈ 0 . . . 1

3. The Hamming distance between the identified motif y and its approximate
occurrences in w is at most e

4. There are at least q ≥ 2 approximate occurrences of y in w, and no two occur-
rences overlap with each other

where m, q, e, and k are prespecified constants.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

8.7 MOTIF DISCOVERY 165

The algorithm initially constructs the WST of w. Then, following a process sim-
ilar to that of [38], all motifs of length m are identified on the WST, starting from
length one and iteratively extending the current model by one symbol either with
a match or by considering a mismatch if the limit e already has not been reached.
The difference of this algorithm from that of [38] is that overlapping positions have
to be filtered out according to the last constraint set earlier.

Let L = {v1, v2, . . . , v|L|} denote the set of all internal nodes of the WST with
path label of length m. For each node v ∈ L , a sorted list, vm of all leaves under v is
maintained, using van Emde Boas trees [44]. Let L ′ = {vi1, vi2 , . . . , vi j }, L ′ ⊆ L , be
the set of nodes that constitute a candidate motif y (i.e., nodes whose label is within
distance e from y). The last property of the motif, to have at least q occurrences, can
be verified easily at this stage by simply summing the number of leaves under all
nodes in L ′,

∑ j
h=1 |vm

ih
|.

Checking whether the occurrences overlap can be done as follows: scan the leaves
of all nodes in L ′ to identify the one with the smallest position of occurrence, i ; next,
find the first location, i ′, such that i ′ ≥ i + |y| + 1; and so on, until at least q such
occurrences are identified.

Once the WST is constructed, building L and the associated lists vm for all
nodes of L can be done in linear time because the lists are disjoint, and they con-
sist of integers in the range 1 . . . n. The process of identifying nonoverlapping oc-
currences can be performed in O(q|L| log log n) time because the lists are stored
as van Emde Boas trees. Consequently, the total running time of the algorithm is
O(nV 2(e, m)q log log n), where V (e, m) is the number of motifs of length m with at
most e Hamming distance errors (mismatches).

8.7.2 Approximate Common Motifs in a Set of Weighted Sequences

Generalizing the approximate motifs problem to more than one weighted se-
quence yields the following problem: given a set of weighted sequences W =
{w1, w2, . . . , wN }, identify the motifs, y, that have the following properties:

1. |y| = m ≥ 2

2. The probability of occurrence of each approximate occurrence of y is at least
k ∈ 0 . . . 1

3. The Hamming distance between the identified motif y and its approximate
occurrences in weighted sequences of W is at most e

4. Approximate occurrences of y occur in at least q ≥ 2 distinct sequences
from W

where m, q, e, and k are prespecified constants.
The algorithm for this problem is very similar to that of Section 8.7.1. A general-

ized weighted suffix tree is constructed from the set of weighted sequences W , and
occurrences can be checked for whether they overlap in the same manner as in Sec-
tion 8.7.1. The main difference is the mechanism that is necessary here for checking
that the motif occurs in at least q weighted sequences (condition 4). An integer array

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

166 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

uv of length q is maintained for each node v to store the index i , of the weighted
sequence, wi , in which an occurrence of the candidate motif has been found. As
soon as this vector gets full, then q occurrences have been found in distinct weighted
sequences and any other occurrences are ignored from this point on. The process of
filling these arrays is described next.

The suffix tree is traversed in a post-order manner. To compute the vector uv of
a node v, either of the following suffices (i) find a child, v′ of v whose vector uv′ is
already full, or (ii) merge the arrays of all children of v omitting repetitive entries.
Because any node v has at most |�| children, this process can be accomplished in
O(|�|q) time (or O(q), because |�| is a constant). Repeating the process for each
of the O(nN) nodes in the generalized WST, and for each of the V (e, m) motifs of
length m, the total running time becomes O(nNqV (e, m)).

8.8 CONCLUSIONS

Sequence alignment today is one of the major tools for identifying potential struc-
tural and/or functional similarities between DNA sequences. With the rapid growth
of data in the last 15 years, the importance of effectively storing representations
of this data and efficiently extracting information from them has become immense.
Weighted sequences were introduced to fulfill this role and are perhaps one of the
most advanced (in terms of the amount of information they hold) models for repre-
senting whole sets of aligned sequences.

In this chapter, we provided an overview of the most recent advances in the re-
search field of weighted sequences and more specifically in the cases in which the
text is weighted and the pattern, or the repetitions and motifs sought for, are solid
strings. We covered the problems of indexing, pattern matching (exact and approxi-
mate), repetition finding, and motif extraction. These problems have been the subject
of research for at least 30 years as far as solid strings are concerned but only recently
have received large attention for weighted sequences. Algorithmically, weighted se-
quences pose a great challenge as the existing, well-studied, algorithms for solid
strings rarely can be applied directly.

Despite the growing number of research outcomes on this field, still numerous
open problems need to be addressed. In the topic of indexing, for example, a more
space-efficient data structure would be beneficial, especially given the already large
size of weighted sequences (perhaps, a weighted suffix array to mimic its counter-
part in solid strings); of equal importance would be the ability for this data struc-
ture to be independent of the threshold probability or at least capable to get up-
dated dynamically every time the threshold changes. Similarly, in the field of pat-
tern matching, there is an endless list of possible definitions of a match, especially
if errors are permitted; it would be interesting to elaborate on the application of
other distance functions, such as the edit distance, for example, or even to devise
new distance functions more appropriate for the weighted nature of the weighted
sequences. Regarding repetitions and motif extraction, different applications de-
mand different models, and the ability to incorporate extra information regarding

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

REFERENCES 167

the structure of the repetitive elements helps distinguish significant sequences from
random ones.

Although most research on weighted sequences has focused on their biological
applications, it should be noted that model weighted sequences can fit easily into
other contexts too. Very recently, Makris et al. [31] have used weighted suffix trees
to model the navigation history of users in a web site, aiming to predict the usage of
each web page on the site.

REFERENCES

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, MA, 1974.

2. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. A basic local alignment
tool. J Mol Bio, 215:403–410, 1990.

3. A. Amir, E. Chencinski, C.S. Iliopoulos, T. Kopelowitz, and H. Zhang. Property matching
and weighted matching. In Moshe Lewenstein and Gabriel Valiente, editors, Proceedings
of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009
of Lecture Notes in Computer Science, Springer, Barcelona, Spain, 2006, pp. 188–199.

4. A. Amir, E. Chencinski, C.S. Iliopoulos, T. Kopelowitz, and H. Zhang. Property matching
and weighted matching. Theor Comput Sci, 395(2–3):298–310, 2008.

5. A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching. In Pro-
ceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
Society for Industrial and Applied Mathematics. Philadelphia, PA, 2001, pp. 279–288.

6. A. Amir, C.S. Iliopoulos, O. Kapah, and E. Porat. Approximate matching in weighted
sequences. In Moshe Lewenstein and Gabriel Valiente, editors, Proceedings of the 17th
Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009 of Lecture
Notes in Computer Science, Springer, Barcelona, Spain, 2006, pp. 365–376.

7. A. Bairoch. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acid Res,
20:2013–2018, 1992.

8. A. Bairoch and P. Bucher. PROSITE: recent developments. Nucleic Acid Res, 22:3583–
3589, 1992.

9. M. Christodoulakis. Regularities on Fixed and Weighted Sequences. PhD dissertation,
Department of Computer Science, King’s College London, 2005.

10. M. Christodoulakis, C.S. Iliopoulos, L. Mouchard, K. Perdikuri, A. Tsakalidis, and K.
Tsichlas. Computation of repetitions and regularities of biologically weighted sequences.
J Computat Bio, 13(6):1214–1231, 2006.

11. M. Christodoulakis, C.S. Iliopoulos, L. Mouchard, and K. Tsichlas. Pattern matching on
weighted sequences. In Katia S. Guimarães and Marie-France Sagot, editors, Proceed-
ings of the Algorithms and Computational Methods for Biochemical and Evolutionary
Networks (CompBioNets). King’s College London, 2004, pp. 17–30.

12. M. Christodoulakis, C.S. Iliopoulos, K. Tsichlas, and K. Perdikuri. Searching for regular-
ities in weighted sequences. In Theodore Simos and George Maroulis, editors, Proceed-
ings of the International Conference of Computational Methods in Sciences and Engi-
neering (ICCMSE), Lecture Series on Computer and Computational Sciences, 2004, pp.
701–704.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

168 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES

13. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms, 2nd
edition. The MIT Press, Boston, MA, 2001.

14. M. Crochemore. An optimal algorithm for computing the repetitions in a word. Inf Pro-
cess Lett, 12(5):244–250, 1981.

15. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, Inc., New York,
NY, 1994.

16. G.E. Crooks, G. Hon, J.-M. Chandonia, and S.E. Brenner. WebLogo: A sequence logo
generator. Genome Res, 14:1188–1190, 2004.

17. European Bioinformatics Institute (EMBL-EBI). ClustalW. http:// www.ebi.ac.uk/
clustalw/.

18. H. Gajewska and R.E. Tarjan. Deques with heap order. Inf Process Lett, 22(4):197–200,
1986.

19. A.J. Gibbs and G.A. McIntyre. The diagram, a method for comparing sequences. Eur. J
Biochem, 16(1):1–11, 1970.

20. M. Gribskov, A.D. McLachlan, and D. Eisenberg. Profile analysis: Detection of distantly
related proteins. Proc Natl Acad Sci, 84:4355–4358, 1987.

21. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, Cambridge, MA, 1997.

22. C.S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsakalidis.
Computing the repetitions in a weighted sequence using Weighted Suffix Trees. European
Conference on Computational Biology (ECCB), Posters’ Track, 2003, pp. 539–540.

23. C.S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsakalidis.
Efficient algorithms for handling molecular weighted sequences. In J.J. Levy, E.W. May,
and J.C. Mitchell, editors, Exploring New Frontiers of Theoretical Informatics. Kluwer
Academic Publishers, New York, 2004, p. 265.

24. C.S. Iliopoulos, L. Mouchard, K. Perdikuri, and A. Tsakalidis. Computing the repetitions
in a weighted sequence. In M. Šimánek, editor, Proceedings of the 8th Prague Stringology
Conference (PSC). 2003, pp. 91–98.

25. C.S. Iliopoulos, K. Perdikuri, E. Theodoridis, A. Tsakalidis, and K. Tsichlas. Motif ex-
traction from weighted sequences. 11th International Conference String Processing and
Information Retrieval (SPIRE), volume 3246, Padova, Italy, 2004, pp. 286–297.

26. H. Kaplan, C. Okasaki, and R.E. Tarjan. Simple confluently persistent catenable lists.
SIAM J Comput, 30(3):965–977, 2000.

27. R.M. Karp, R.E. Miller, and A.L. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. Proceedings of the Fourth Annual ACM Symposium on Theory
of Computing (STOC), ACM, New York, NY, 1972, pp. 125–136.

28. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Sov Phys Dokl, 10:707–710, 1966.

29. C.S. Liopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, and A. Tsakalidis.
The weighted suffix tree: An efficient data structure for handling molecular weighted
sequences and its applications. Fundamenta Informaticae, 71(2,3):259–277, 2006.

30. D.J. Lipman and W.R. Pearson. Rapid and sensitive protein similarity searches. Science,
227:1435–1441, 1985.

31. C. Makris, Y. Panagis, E. Theodoridis, and A.K. Tsakalidis. A web-page usage prediction
scheme using weighted suffix trees. In Nivio Ziviani and Ricardo A. Baeza-Yates, editors,
Proceedings of the 14th International Symposium on String Processing and Information

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

REFERENCES 169

Retrieval (SPIRE), volume 4726 of Lecture Notes in Computer Science, 2007, pp. 242–
253.

32. E.M. McCreight. A space-economical suffix tree construction algorithm. J ACM,
23(2):262–272, 1976.

33. B. Morgenstern, A. Dress, and T. Werner. Multiple DNA and protein sequence alignment
based on segment-to-segment comparison. Proc Natl Acad Sci, 93:12098–12103, 1996.

34. S.B. Needleman and C.D. Wunsch. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. J Mol Biol, 48:443–453, 1970.

35. W.R. Pearson. Effective protein sequence comparison. Meth Enzymol, 266:227–258,
1996.

36. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. In
Proc Natl Acad Sci, 85:2444–2448, 1988.

37. C. Pizzi and E. Ukkonen. Fast profile matching algorithms – a survey. Theor Comput Sci,
395(2–3):137–157, 2008.

38. M.-F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. Pro-
ceedings of the 3rd Latin American Symposium on Theoretical Informatics (LATIN), vol-
ume 1380 of Lecture Notes in Computer Science, Springer, New York, 1998, pp. 374–390.

39. T.D. Schneider and R.M. Stephens. Sequence logos: A new way to display consensus
sequences. Nucleic Acids Res, 18:6097–6100, 1990.

40. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J Mol
Biol, 147:195–197, 1981.

41. W.F. Smyth. Computing Patterns in Strings. Addison-Wesley, Reoding, MA, 2003.

42. J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: Improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting, positions-
specific gap penalties and weight matrix choice. Nucleic Acid Res, 22:4673–4680, 1994.

43. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

44. P. van Emde Boas. Preserving order in a forest in less than logarithmic time. Inf Process
Lett, 6(3):80–82, 1977.

45. P. Weiner. Linear pattern matching algorithms. Proceedings of the 14th Annual Sympo-
sium on Switching and Automata Theory, 1973, pp. 1–11.

46. R.W. Hamming. Error detecting and error correcting codes. Bell Syst Tech J, 29(2):147–
160, 1950.

47. H. Zhang, Q. Guo, and C.S. Iliopoulos. String matching with swaps in a weighted se-
quence. Proceedings of International Symposium on Computational and Information Sci-
ences (CIS), Shanghai, China, 2004.

P1: OSO
c08 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9
DNA COMPUTING FOR

SUBGRAPH ISOMORPHISM
PROBLEM AND RELATED

PROBLEMS

Sun-Yuan Hsieh, Chao-Wen Huang, and Hsin-Hung Chou

9.1 INTRODUCTION

A DNA is a polymer made up of a sequence of subunits known as nucleotides.
Distinct nucleotides are detected only with their bases, which come from adenine,
guanine, cytosine, and thymine, abbreviated A, G, C, and T, respectively. A DNA
strand is essentially a sequence of four types of nucleotides detected by one of four
bases they contain [28]. DNA-based computing [24], or more generally molecular
computing, is a computational paradigm that uses DNA molecules as information
storage media. The techniques of molecular biology, such as polymerase chain re-
action (PCR), gel electrophoresis, and enzymatic reactions, can be used as computa-
tional operators for copying, sorting, and splitting/concatenating the information in
the DNA molecules, respectively [1].

Through the progress in molecular biology, it is now possible to produce about
1018 DNA strands contained in a test tube [28]. We can use each DNA strand to
represent a piece of information. Primitive biological operations can be employed to
operate 1018 pieces of information simultaneously. It has the same computing power
as 1018 processors running in parallel. Accordingly, DNA-based computing can pro-
vide a huge parallelism for dealing with the intractable problems in the real world.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

171

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

172 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

Feynman [14] first proposed DNA-based computation in 1961, but his idea was
not implemented by experiment for a few decades. Adleman [1] was the first re-
searcher who succeeded in solving the Hamiltonian path problem by properly ma-
nipulating DNA strands as the input instance of the problem in a test tube. Next,
Lipton [21] demonstrated the power of DNA-based computing using the Adleman
techniques to solve the satisfiability problem. After that, many researchers studied
computational hard problems using the Adleman–Lipton model [17, 23, 29, 22, 13,
27, 3, 4, 5, 6, 7, 16, 8]. A few years later, Roweis et al. [26] proposed the concept of
sticker for enhancing the Adleman–Lipton model. Since then, several nondetermin-
istic polynomial (NP)-complete problems were solved using the Adleman–Lipton
model with stickers [26, 25, 9, 10, 18, 11, 19, 20]. The NP-complete problems solved
using the Adleman–Lipton model further include the traveling salesman problem, the
dominating set problem, the vertex cover problem, the maximum clique problem,
the maximum independent set problem, the three-dimensional matching problem,
the knapsack problem, the set packing problem, the subset sum problem, the set
cover problem, and so on.

This chapter describes a DNA-based graph encoding scheme that can be used to
solve the subgraph isomorphism problem and related problems [20] in the Adleman–
Lipton model with stickers using a polynomial number of basic biological opera-
tions. Theoretically, the subgraph isomorphism problem, which is known to be an
NP-complete problem [15], is a common generalization of many important graph
problems including finding Hamiltonian paths, cliques, matchings, girth, and short-
est paths. Variations of the subgraph isomorphism problem also have been used to
model varied practical problems such as molecular structure comparison, integrated
circuit testing, and microprogrammed controller optimization [12].

This chapter is organized as follows. In Section 9.2, we introduce the graph iso-
morphism problem, the subgraph isomorphism problem, and the maximum common
subgraph problem. In Section 9.3, we detail the Adleman–Lipton model with stick-
ers. In Section 9.4, we present DNA-based algorithms to generate the solution space
for the graph problems. In Section 9.5, complete algorithms for the subgraph isomor-
phism problem, graph isomorphism problem, and the maximum common subgraph
problem are presented, respectively. In Section 9.6, we provide DNA sequences for
experiments using our algorithms. Conclusions are given in Section 9.7.

9.2 DEFINITIONS OF SUBGRAPH ISOMORPHISM PROBLEM AND
RELATED PROBLEMS

Without loss of generality, we only consider undirected simple graphs (i.e., graphs
without loops and multiple edges) throughout this chapter. We denote the vertex and
edge sets of a graph G by V (G) and E(G), respectively. The numbers of edges in
G is called the size of G. A graph G′ is a subgraph of G, denoted by G′ ⊆ G,
if V (G ′) ⊆ V (G) and E(G ′) ⊆ E(G). Given two graphs G and H , we say “G is

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9.2 DEFINITIONS OF SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS 173

1 2

3 4
G

1 a

3 4
G

b c
H

Figure 9.1 An example of the subgraph isomorphism problem in which G′ is the subgraph of
G and G′ is isomorphic to H.

isomorphic to H ,” written G ∼= H , if a one-to-one and onto function exists, then it
is called an isomorphism from G to H , φ : V (G) → V (H) so that (u, v) ∈ E(G) if
and only if (φ(u), φ(v)) ∈ E(H). The definitions of the graph isomorphism problem,
the subgraph isomorphism problem, and the maximum common subgraph problem
are described as follows.

Definitio 9.1 Given two graphs G and H, the graph isomorphism problem is
defined to determine whether G is isomorphic to H.

Notice that the graph isomorphism problem is currently still unknown to be in P
or in NP-complete [15].

Definitio 9.2 Given two graphs G and H, respectively, called source graph and
target graph, the subgraph isomorphism problem is defined to determine whether
there is a subgraph of the source graph G isomorphic to the target graph H.

� EXAMPLE 9.1

In Figure 9.1, G is a source graph and H is a target graph. G contains a subgraph
G′ isomorphic to H with an isomorphism φ: V (G ′) → V (H) defined by φ(1) =
a, φ(3) = b, and φ(4) = c.

Definitio 9.3 Given two graphs G and H, the maximum common subgraph prob-
lem is defined to find a subgraph of G with maximum size that is isomorphic to a
subgraph of H.

� EXAMPLE 9.2

In Figure 9.2, G ′ and H ′ are a pair of maximum isomorphic subgraphs of graphs G
and H , respectively, with an isomorphism φ: V (G ′) → V (H ′) defined by φ(1) =
a, φ(2) = b, φ(3) = c, and φ(4) = d.

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

174 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

Figure 9.2 An example of the maximum common subgraph problem in which G′ and H ′ are a
pair of maximum isomorphic subgraphs of graphs G and H, respectively.

9.3 DNA COMPUTING MODELS

In this section, we introduce the model we adopt—the Adleman–Lipton model with
stickers.

9.3.1 The Stickers

The stickers model [2, 24, 26] employs two basic groups of single-stranded DNA
molecules in its representation of a bit string. In short, the model involves a
long single memory strand and several sticker strands or stickers as indicated (see
Figure 9.3). A memory strand is a single-stranded DNA with n bases. It is divided
into k nonoverlapping substrands, each of which has m bases (i.e., n = km). Each
sticker has m bases and is complementary to exactly one of the k substrands in the
memory strand. During a course of computation, each substrand is identified as a
Boolean variable and is considered “on” (1) or “off” (0) as to whether its corre-
sponding sticker is annealed or not: If a sticker is annealed to its matching region on
a given memory strand, then the bit corresponding to that particular region is on for
that strand. If no sticker is annealed to a region, then that region’s bit is off. Each
memory strand along with its annealed stickers (if any) represents one bit string.

Figure 9.3 Illustration of the stickers model that encodes 10101010. Note that the memory
strand consists of eight eight-basis-long subsections. Each subsection is defined as 1 by an-
nealing a sticker and defined as 0 by annealing no sticker.

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9.4 THE STICKER-BASED SOLUTION SPACE 175

A memory complex is the term defined as a memory strand in which part of the sub-
strands is annealed by the matching stickers, such that the computational information
can be carried in a binary format along the memory complex.

9.3.2 The Adleman–Lipton Model

A set is a group of distinct unordered objects. Different from a set, a multiset is a
group of unordered objects that allows an object to occur more than once. In the
Adleman–Lipton model [1], a tube is a multiset of DNA strands over an alphabet set
{A, G, C, T}. Given tubes, one can perform the following operations:

1. Extract(T, S): Given a tube T and a short single strand of DNA, say S, the op-
eration produces two tubes (T, S)+ and (T, S)−, where (T, S)+ consists of all
molecules of DNA in T such that each contains S as a substrand, and (T, S)−

consists of all molecules of DNA in T that do not contain S. Finally, the tube
T becomes empty.

2. Merge(T1, T2): Given tubes T1 and T2, the operation is to pour two tubes into
one, without any change in the individual strands.

3. Detect(T): Given a tube T , the operation returns “yes” if tube T contains at
least one DNA molecule. Otherwise, it returns “no.”

4. Amplify(T, T1, T2): Given a tube T , the operation produces two tubes T1 and
T2 such that T1 and T2 contain the “original copy of those molecules in T ,” and
then tube T becomes empty after this operation.

5. Read(T): Given a tube T , the operation is to describe a single molecule con-
tained in T . Moreover, the operation can give an explicit description of exactly
one of them even if T contains many different molecules, each encoding a
different set of bases.

6. Append(T, S): Given a tube T and a short DNA strand S, the operation ap-
pends S onto the end of every strand in T .

9.4 THE STICKER-BASED SOLUTION SPACE

Given the set {1, 2, . . . , n}, a linear arrangement of these n integers is called an
n-permutation. The set of all n-permutations is called the n-permutation set, denoted
by P(n). In the remainder of this chapter, we label the vertices of any n-vertex graph
as integers from 1 to n. The first step of our strategy is to generate the solution space
using DNA strands in which each DNA strand contains the graph information includ-
ing an n-permutation of the vertex labels and its corresponding adjacency relation.
Next, we check whether a desired solution exists in the solution space for decision.

To indicate the position of any item in an n-permutation, we attach the position
symbol in front of each item of the n-permutation. For example, 3-permutation 213
is represented by “p12p21p33,” where symbol pi denotes position i .

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

176 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

In our algorithm, integers and positions are represented by their binary represen-
tations using stickers. We define seven symbols represented by 15-base stickers to
encode the information into DNA strands:

� x0 (x1): binary bit 0 (1) for representing integers of permutations
� p0 (p1): binary bit 0 (1) for representing positions
� y0 (y1): binary bit 0 (1) for representing adjacency relation of two vertices
� ‖: separator symbol

For example, 3-permutation 213 is encoded as “p0 p1 ‖ x1x0 ‖ p1 p0 ‖ x0x1 ‖
p1 p1 ‖ x1x1 ‖.” Such representation is called the DNA-representation of 213. For
short, we use BI (i) and BP (p) to denote the DNA representation of integer i and
position p, respectively.

9.4.1 Using Stickers for Generating the Permutation Set

With repetition of elements allowed, a sequence with n elements of {1, 2, . . . , n} is
called an n-sequence. The set of all possible n-sequences is called the n-sequence set,
denoted by S(n). For example, S(2) = {11, 12, 21, 22}. Notice that an n-permutation
is also an n-sequence. Thus, the n-permutation set is a subset of the n-sequence set,
that is, P(n) ⊂ S(n). There is a simple recursive way to generate S(n) by appending
all integers one by one and digit by digit, which is presented in Algorithm 9.1. In this
algorithm, we insert the position symbols to the n-sequences for efficient indexing
in the successive algorithms.

Algorithm 9.1
Sequence Generation(n) {

Input: A nonnegative integer n.

Output A tube Tσ containing the n-sequence set.

1:Initially, tube Tσ contains only one DNA strand that is a pure
strand without any encoding.

2: for i = 1 to n
3: Append(Tσ , “BP (i) ‖ ”)
4: for j = 1 to 	log2(n + 1)

5: Amplify(Tσ , T0, T1)
6: Append(T0, “x0”)
7: Append(T1, “x1”)
8: Tσ := Merge(T0, T1)
9: end for

10: Append(Tσ , “ ‖ ”)
11: end for

}

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9.4 THE STICKER-BASED SOLUTION SPACE 177

Lemma 9.1 Algorithm 9.1 correctly generates S(n) and takes �(n log n) Append,
Amplify, and Merge operations.

Proof: Without loss of generality, we assume that n is an integer of the power
of 2. Proved by induction on i , when i = 1, it is easy to verify that Tσ contains
DNA strands of “BP (1) ‖ BI (x) ‖” for 0 ≤ x ≤ 2	log2(n+1)
. Assume that Tσ con-
tains S(n − 1) when i = n − 1. When i = n, “BP (i) ‖” is first appended to all
(n − 1) sequences. In the j for-loop, we append each possible integer, with bi-
nary bit length 	log2(n + 1)
, to all (n − 1) sequences in S(n − 1). Thus, S(n) is
generated.

The number of operations can be obtained directly from the algorithm.

In Algorithm 9.2, the n-permutation set is generated by removing the n-sequences
that are not n-permutations from the given n-sequence set.

Algorithm 9.2
Permutation Generation(n) {

Input: A nonnegative integer n.

Output: A tube Tπ containing the n-permutation set.

1:Call Sequence Generation(n) to generate a tube Tπ containing the
n-sequence set.

2: for i = 1 to n
3: Extract(Tπ , “BI (i)”)
4: Tπ := (Tπ , “BI (i)”)+
5: end for

}

Lemma 9.2 Algorithm 9.2 correctly generates P(n) and takes �(n) Extract oper-
ations.

Proof: Because an n-permutation is also an n-sequence, and an n-sequence contains
all elements in {1, 2, . . . , n} it must be an n-permutation, the claim follows. The
number of operations can be obtained directly from the algorithm.

9.4.2 Using Stickers for Generating the Solution Space

After generating the n-permutation set of the given n-vertex graph G, for each per-
mutation, we encode the adjacency relation of G to be appended to the corresponding
DNA strand in parallel, which is presented in Algorithm 9.3. Because the graphs we
considered are undirected, the adjacency matrices of the graphs are symmetric. Thus,
the entries in the upper triangle of the adjacent matrix of G are enough to represent
the adjacency relation of G. That is, there are n(n−1)

2 15-base stickers y1 y2 . . . y n(n−1)
2

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

178 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

appended to every n-permutation α1α2 . . . αn DNA strand based on the following two
rules:

Rule 9.1 The n(n−1)
2 15-base stickers y1, y2, . . . , y n(n−1)

2
represent the adjacency re-

lation of n(n−1)
2 pairs of vertices (α1, α2), (α1, α3), . . ., (α1, αn−1), (α2, α3), (α2, α4),

. . ., (α2, αn−1), . . ., (αn−2, αn−1), (αn−2, αn), and (αn−1, αn), respectively. For 1 ≤
i < j ≤ n, the adjacency relation of (αi , α j) is represented by yk , where k = n(i −
1) − (i)(i−1)

2 + (j − i).

Rule 9.2 For k = n(i − 1) − (i)(i−1)
2 + (j − i),

yk =
{

y1 if αi and α j are adjacent

y0 if αi and α j are not adjacent.
(9.1)

Algorithm 9.3
Solution Space(G, n) {

Input: A graph G and a positive integer n that is the number of
vertices in G.

Output: A tube Tad j contains all n-permutations associated with
the adjacency relation of G.

1:Tad j := Permutation Generation(n);
2:k = 0;
3: for p = 1 to n − 1
4: for q = i + 1 to n
5: for i = 1 to n
6: for j = 1 to n
7: if i �= j
8: Ta := (Extract(Tad j , “BP (p) ‖ BI (i)”))−;
9: Ti := (Extract(Tad j , “BP (p) ‖ BI (i)”))+;

10: Tb := (Extract(Ti , “BP (q) ‖ BI (j)”))−;
11: Ti, j := (Extract(Ti , “BP (q) ‖ BI (j)”))+;
12: k = k + 1;
13: if vertex i is adjacent to vertex j in G then
14: Append(Ti, j , “BP (k) ‖ y1 ‖ ”);
15: else
16: Append(Ti, j , “BP (k) ‖ y0 ‖ ”);
17: end if
18: Tadj := Merge(Ti, j ,Merge(Ta , Tb));
19: end if
20: end for
21: end for
22: end for
23: end for
24: end for

}

Lemma 9.3 After executing, Algorithm 9.3 consists of all n-permutations associ-
ated with the adjacency relation of G, satisfying Rules 1 and 2.

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9.5 ALGORITHMS FOR SOLVING PROBLEMS 179

Proof: In the algorithm, we use the indices p and q to represent positions and the
indices i and j to represent the labels of vertices. All pairs of vertices described in
Rule 9.1 are considered sequentially. From lines 7–10, we extract all DNA strands in
which vertex i is located at position p and vertex j is located at position q from Ti, j .
From lines 11–17, if the vertex i is adjacent (respectively, nonadjacent) to the vertex
j , then sticker representing 1 (respectively, 0) will be appended to all DNA strands
in Ti, j . Therefore, Rule 9.2 also holds.

Lemma 9.4 Algorithm 9.3 takes �(n4) Extract, Append, and Merge operations.

Proof: It follows directly from the algorithm.

9.5 ALGORITHMS FOR SOLVING PROBLEMS

In this section, we present DNA-based algorithms for solving the subgraph isomor-
phism problem, the graph isomorphism problem, and the maximum common sub-
graph problem based on biological operations in the Adleman–Lipton model and the
solution space of stickers in the sticker-based model.

9.5.1 Solving the Subgraph Isomorphism Problem

After executing Algorithm Solution Space(G, n), each DNA strand in the result tube
of the solution space consists of two parts, an n-permutation string P and the ad-
jacency string Y with respect to P . We call PY the string representation of G. For
convenience, we write string representations without the position and separator sym-
bols.

Lemma 9.5 Given two n-vertex graphs G and H, if a pair of string representations
exists PY and P ′Y ′ of G and H, respectively, such that Y = Y ′, then G is isomorphic
to H.

Proof: Suppose P = α1α2 . . . αn , P ′ = α′
1α

′
2 . . . α′

n , Y = ye y2 . . . y n(n−1)
2

, and
Y ′ = y′

1 y′
2 . . . y′

n(n−1)
2

. Recall that each adjacency bit yk is decided by the adjacency

relation of the pair of vertices (αi , α j) at determined positions i and j such
that k = n(i − 1) − (i)(i−1)

2 + (j − i). Because Y = Y ′, we have that yi = y′
i for

1 ≤ i ≤ n(n−1)
2 . Thus, we can obtain an isomorphism φ from {α1, α2, . . . , αn}

to {α′
1, α

′
2, . . . , α

′
n} such that φ(αp) = α′

p for 1 ≤ p ≤ n and (αi , α j) ∈ E(G)
(i.e., yk = 1) if and only if (α′

i , α
′
j) ∈ E(H) (i.e., y′

k = 1) for 1 ≤ i < j ≤ n. By
definition, G is isomorphic to H .

Let s = b1b2 . . . bn and s′ = b′
1b′

2 . . . b′
n be two binary strings of the same length.

We say “s is an overlay string of s ′” if the following property is satisfied: for 1 ≤ i ≤

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

180 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

Figure 9.4 An example of the subgraph isomorphism problem in which G3 is the subgraph of
G1, and G3 is isomorphic to G2.

n, if b′
i = 1, then bi = 1. For example, 1011 is an overlay string of 1010, but 1011 is

not an overlay string of 1110.

Lemma 9.6 Given two n-vertex graphs G and H, if a pair of string representations
exists PY and P ′Y ′ of G and H, respectively, such that Y is an overlay string of Y ′,
then G contains a subgraph isomorphic to H.

Proof: Because each bit in the adjacency string represents the existence of an edge,
it is clear that any subgraph G ′ of G with V (G ′) = V (G) and E(G ′) ⊆ E(G) must
have a string representation P−Y − such that P− = P and Y is an overlay string
of Y −. Because Y is an overlay string of Y ′, a subgraph G ′ of G exists with string
representation PY ′. By Lemma 9.5, G ′ is isomorphic to H .

� EXAMPLE 9.3

In Figure 9.4, G1 and G2 are five-vertex graphs. The string representations of
G1 and G2 are PY = 12345 1111101101 and P ′Y ′ = 1′2′3′4′5′ 1001101101, re-
spectively. Obviously, Y is an overlay string of Y ′. We can find a subgraph G3

of G1 constructed by removing the edges (1,3) and (1,4) from G1 with the string
representations PY ′ = 12345 1001101101. Because the adjacency strings of G2

and G3 are the same, it follows that G2
∼= G3 by Lemma 9.5. An isomorphism

exists, φ:V (G2) → V (G3) such that φ(1′) = 1, φ(2′) = 2, φ(3′) = 3, φ(4′) = 4,
and φ(5′) = 5.

A vertex with degree 0 is called an isolated vertex. Given an m-vertex graph H and
an integer n > m, we define the n-extension graph of H as the graph H+

n such that
E(H+

n) = E(H) and V (H+
n) = V (H) ∪ Ve, where Ve is a set of isolated vertices,

called pseudovertices, labeled from m + 1 to n.

Lemma 9.7 Given an n-vertex graph G and an m-vertex graph H for m < n, if a
pair of string representations exists PY and P+Y + of G and H+

n (the n-extension

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9.5 ALGORITHMS FOR SOLVING PROBLEMS 181

G

1

5 2

4 3

H5
+ H

4'

3' 2' 1'

4'

3' 2' 1'

5 '

G'

1

5 2

3

Figure 9.5 G and H are five-vertex and four-vertex graphs, respectively. The graph G′ is a
subgraph of G, which is isomorphic to H .

graph of H), respectively, such that Y is an overlay string of Y +, then G contains a
subgraph isomorphic to H.

Proof: By Lemma 9.6, we have that G contains a subgraph isomorphic to H+
n . Sup-

pose G ′ is a subgraph of G, which is isomorphic to H+
n . Then an isomorphism

φ exists in which V (G ′) → V (H+
n). Let Ve be the set of pseudovertices in H+

n and
V ′

e be the vertex subset of V (G ′) that maps to Ve by φ. Because the pseudovertices
in H+

n are isolated vertices, it follows that the vertices in V ′
e are also isolated ver-

tices in G ′. Then we can construct graph G ′′ by removing the vertices in V ′
e from

G ′. That is, V (G ′′) = V (G ′) \ V ′
e and E(G ′′) = E(G ′). G ′′ is obviously also a sub-

graph of G. Let us consider a mapping φ′ in which (V (G ′) \ V ′
e) → (V (H+

n) \ Ve)
(i.e., φ′ : V (G ′′) → V (H)). Because E(G ′) = E(G ′′) and E(H+

n) = E(H), we have
that φ′ is an isomorphism from G ′′ to H . Thus, the claim follows.

� EXAMPLE 9.4

In Figure 9.5, G and H are five-vertex and four-vertex graphs, respectively. Let
P ′Y ′ = 1′2′3′4′ 001011 be a string representation of H . Let H+

n be a 5-extension
graph of H by adding one pseudovertex 5′. The string representation of H+

n with
respect to the five-permutation 1′2′3′4′5′ is P+Y + = 1′2′3′4′5′ 0010010100. Let
us consider the string representation PY = 35124 0011111100 of G with re-
spect to the five-permutation 35124. Clearly, Y is an overlay string of Y +. By
Lemma 9.7, G has a subgraph isomorphic to H . For example, G ′ is a subgraph of
G isomorphic to H .

Let G be the source graph with n vertices and H be the target graph with m
vertices. Notice that n ≥ m. We first generate all n-permutations associated with
the adjacency relations of G by Algorithm 9.3. Next, we construct the n-extension
graph H+

n of H . Finally, we check in parallel whether an n-permutation exists
whose corresponding adjacency string is an overlay string of the adjacency string
of H+

n .

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

182 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

Algorithm 9.4
Solving Subgraph Isomorphism(G, H, n, m) {

Input: (1) G is the source graph and H is the target graph.
(2) n is the number of vertices of G.
(3) m is the number of vertices of H.

Output: All isomorphisms from G′ to H for all subgraphs G ′ of G
that are isomorphic to H. If no such subgraph exists,
then it outputs the message that "G contains no subgraph
isomorphic to H."

1:Call Solution Space(G, n) to generate Tad j;
2:H+ is the n-extension graph of H by adding n − m pseudovertices
labeled from m + 1 to n;

3: for i = 1 to m − 1
4: for j = i + 1 to m
5: if vertex i and vertex j are adjacent in H+
6: k = n(i − 1) − (i)(i−1)

2 + (j − i);
7: Extract(Tadj, ”BP (k) ‖ y1”);
8: Tad j := (Tadj, ”BP (k) ‖ y1”)+;
9: end if

10: end for
11: end for
12: if Detect(Tadj) ="yes"
13: Read(Tadj);
14: else
15: Output "G contains no subgraph isomorphic to H";
16: end if

}

� EXAMPLE 9.5

Let us consider two graphs G and H shown in Figure 9.6. The adja-
cency string of H+

4 = 110100. After executing the algorithm Solving Subgraph
Isomorphism(G, H, 4, 3), tube Tadj = {1234 110111, 1324 110111, 2134

111101, 2314 111110, 2341 111110, 2431 111101, 3124 111101, 3214 111110,
3241 111110, 3421 111101, 4231 110111, 4321 110111}. By applying Read
operations in line 13, we obtain 12 DNA strands. This implies that G

H G

2

1

3

4

1'

3' 2'

4'1'

3' 2'

H4
+

Figure 9.6 G and H are four-vertex and three-vertex graphs, respectively. H+
4 is a 4-extension

graph of H.

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9.5 ALGORITHMS FOR SOLVING PROBLEMS 183

Table 9.1 Twelve isomorphisms are obtained
from the string representations of strands in Tadj
and the adjacency string of H +

4

π V (G ′) → V (H)

π1 : π1(1) = 1′, π1(2) = 2′, π1(3) = 3′

π2 : π2(1) = 1′, π2(3) = 2′, π2(2) = 3′

π3 : π3(2) = 1′, π3(1) = 2′, π3(3) = 3′

π4 : π4(2) = 1′, π4(3) = 2′, π4(1) = 3′

π5 : π5(2) = 1′, π5(3) = 2′, π5(4) = 3′

π6 : π6(2) = 1′, π6(4) = 2′, π6(3) = 3′

π7 : π7(3) = 1′, π7(1) = 2′, π7(2) = 3′

π8 : π8(3) = 1′, π8(2) = 2′, π8(1) = 3′

π9 : π9(3) = 1′, π9(2) = 2′, π9(4) = 3′

π10 : π10(3) = 1′, π10(4) = 2′, π10(2) = 3′

π11 : π11(4) = 1′, π11(2) = 2′, π11(3) = 3′

π12 : π12(4) = 1′, π12(3) = 2′, π12(2) = 3′

contains subgraphs G ′ that are isomorphic to H . Moreover, 12 isomorphisms
π1, π2, . . . , π12 : V (G ′) → V (H) are obtained, and they are shown in Table 9.1.

Theorem 9.1 Algorithm 9.4 solves the subgraph isomorphism problem and takes
�(|E(H)|) Extract operations, excluding the operations for generating the permuta-
tions.

Proof: The correctness of this algorithm follows from Lemma 9.5.

9.5.2 Solving the Graph Isomorphism Problem

Because a graph is a subgraph of itself, we easily can revise Algorithm 9.4 to the
algorithm for solving the graph isomorphism problem as follows:

Algorithm 9.5
Solving Graph Isomorphism(G, H, n, m) {

Input: (1) G and H are two graphs.
(2) n is the number of vertices of G.
(3) m is the number of vertices of H.

Output: All isomorphisms from G to H if G is isomorphic
to H. If G is not isomorphic to H, then it outputs the
message that "G is not isomorphic to H."

1: if n �= m;
2: Output "G is not isomorphic to H";
3: else
4: Call Solution Space(G, n) to generate Tad j;
5: for i = 1 to n − 1
6: for j = i + 1 to n

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

184 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

7: if vertex i and vertex j are adjacent in H
8: k = n(i − 1) − (i)(i−1)

2 + (j − i);
9: Extract(Tadj,"BP (k) ‖ y1");

10: Tadj := (Tadj,"BP (k) ‖ y1")+;
11: end if
12: end for
13: end for
14: if Detect(Tadj) ="yes"
15: Read(Tadj);
16: else
17: Output "G is not isomorphic to H";
18: end if
19: end if

}

Theorem 9.2 Algorithm 9.5 solves the graph isomorphism problem and takes
�(|E(H)|) Extract operations, excluding the operations for generating the permuta-
tions.

Proof: The correctness of this algorithm follows from Lemma 9.7.

9.5.3 Solving the Maximum Common Subgraph Problem

Let s = b1b2 . . . bn and s ′ = b′
1b′

2 . . . b′
n be two binary strings of the same length. We

define the match number of s and s ′ as the number of matched bits so that bi = b′
i = 1

for 1 ≤ i ≤ n. For example, the match number of 101100 and 101010 equals two and
the matched bits are underlined.

Lemma 9.8 Let G and H be two n-vertex graphs, and PY and P ′Y ′ be two string
representations of G and H, respectively. Suppose that the match number of Y and
Y ′ equals t . Then G and H have a common subgraph of size t .

Proof: Let YM be the string obtained by the Boolean “and” operation on Y and
Y ′ with match number t . Obviously, Y and Y ′ are both overlay strings of YM .
Thus, PYM and P ′YM are two string representations of subgraphs of G and H ,
respectively. By Lemma 9.5, we have that these two subgraphs are isomorphic
because they have the same adjacency string. Because YM has t adjacency bits of 1,
the size of the common subgraph is equal to t .

According to Lemma 9.8, we propose an edge-based algorithm to solve the maxi-
mum common subgraph problem. Let G and H be two considered graphs with n and
m vertices, respectively. Without loss of generality, we assume that n ≥ m. In the al-
gorithm, there are |E(H)| stages. In each stage, we classify the permutation strands
of G into a set of tubes Ti by checking the adjacency bit corresponding to an edge of
H , where tube Ti carries the permutation strands with at least i matched adjacency
bits. After all adjacency bits corresponding to E(H) are checked, the tube Ti with

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9.5 ALGORITHMS FOR SOLVING PROBLEMS 185

maximum index carries all permutation strands with maximum matched adjacency
bits. Then we can obtain a subgraph and an isomorphism by the positions appended
after the adjacency string of each strand in the result tube.

Algorithm 9.6
Solving Maximum Common Subgraph(G, H, n, m) {

Input: G and H are two graph with n and m vertices, respectively,
where n ≥ m.

Output: All maximum subgraphs of H that are isomorphic to some
subgraphs of G.

1:Initial the tube index t = 0;
2:Call Solution Space(G, n) to generate T0;
3:H+

n is the n-extension graph of H by adding n − m pseudovertices
labeled from m + 1 to n

4: for i = 1 to m − 1
5: for j = i + 1 to m
6: if vertex i and vertex j are adjacent in H+
7: k = n(i − 1) − (i)(i−1)

2 + (j − i);
8: Extract(Tt , “BP (k) ‖ y1”);
9: if Detect((Tt , “BP (k) ‖ y1”)+) = “yes”

10: Take a new tube Tt+1 := (Tt , “BP (k) ‖ y1”)+;
11: Append(Tt+1, “BP (k) ‖ ”);
12: end if
13: for p = t − 1 down to 0
14: Extract(Tp, “BP (k) ‖ y1”);
15: Tp+1 := (Tp, “BP (k) ‖ y1”)+;
16: Append(Tp+1, “BP (k) ‖ ”);
17: Tp := (Tp, “BP (k) ‖ y1”)−;
18: end for
19: t = the maximum index of the tubes;
20: end if
21: end for
22: end for
23: Read(Tt);

}

� EXAMPLE 9.6

Let us consider two graphs G and H shown in Figure 9.7. The adjacency
string of H+

4 = 110100. After executing the Algorithm 9.6, tube T2 = { 1234
100101 BP (1) BP (4), 1324 010110 BP (2) BP (4), 2134 110001 BP (1) BP (2),
2314 110010 BP (1) BP (2), 2341 101100 BP (1) BP (4), 2431 011100 BP (2)
BP (4), 3124 011100 BP (2) BP (4), 3214 101100 BP (1) BP (4), 3241 110010
BP (1) BP (2), 3421 110001 BP (1) BP (2), 4231 010110 BP (2) BP (4), 4321
100101 BP (1) BP (4) }, tube T1 = { 1243 100011 BP (1), 1342 001110 BP (4),
1423 010011 BP (2), 1432 001101 BP (4), 2143 101001 BP (1), 2413 011010
BP (2), 3142 011010 BP (2), 3412 101001 BP (1), 4123 001101 BP (4), 4132
010011 BP (2), 4213 001110 BP (4), 4312 100011 BP (1) }, and tube T0 = ∅.

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

186 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

H G

2

1

3

4

H4

1'

3' 2'

4'

+

1'

3' 2'

Figure 9.7 G and H are four-vertex and three-vertex graphs, respectively. H+
4 is a four-

extension graph of H.

By applying Read operations on the strands in T2, we obtain 12 isomorphisms
π1, π2, . . . , π12; V (G ′) → V (H ′) are obtained, where G′ and H ′ are subgraphs
of G and H , respectively, and they are shown in Table 9.2.

Theorem 9.3 Algorithm 9.6 solves the maximum common subgraph problem and
takes �(|E(H)|2) Extract and Append operations, excluding the operations for gen-
erating the permutations.

Proof: Suppose H ′ is a maximum common subgraph of H with G. It follows that
the n-extension graph of H ′, H+′

n is also a subgraph of the n-extension graph of H ,
H+

n . Assume that PhYh , and PhY ′
h are the string representations of H+

n and H+′
n ,

respectively. By Lemma 9.7, we have that Yh is an overlay string of Y ′
h . Suppose G ′

is a subgraph of G isomorphic to H ′. Because G ′ is a subgraph of G, the n-extension
graph of G ′,G+′

n is also a subgraph of G. Assume that PgYg and PgY ′
g are the string

representations of G and G+′
n , respectively. By Lemma 9.7, we have that Yg is also

Table 9.2 Twelve isomorphisms are
obtained from the string representations of
strands in T2 and the adjacency string of H +

4

π V (G ′) → V (H ′)

π1 : π1(1) = 1′, π1(2) = 2′, π1(3) = 3′

π2 : π2(1) = 1′, π2(3) = 2′, π2(2) = 3′

π3 : π3(2) = 1′, π3(1) = 2′, π3(3) = 3′

π4 : π4(2) = 1′, π4(3) = 2′, π4(1) = 3′

π5 : π5(2) = 1′, π5(3) = 2′, π5(4) = 3′

π6 : π6(2) = 1′, π6(4) = 2′, π6(3) = 3′

π7 : π7(3) = 1′, π7(1) = 2′, π7(2) = 3′

π8 : π8(3) = 1′, π8(2) = 2′, π8(1) = 3′

π9 : π9(3) = 1′, π9(2) = 2′, π9(4) = 3′

π10 : π10(3) = 1′, π10(4) = 2′, π10(2) = 3′

π11 : π11(4) = 1′, π11(2) = 2′, π11(3) = 3′

π12 : π12(4) = 1′, π12(3) = 2′, π12(2) = 3′

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

9.6 EXPERIMENTAL DATA 187

an overlay string of Y ′
g . Because G ′ and H ′ are isomorphic, it derives that Y ′

g = Y ′
h .

Thus, the strand with string representation PgYg will be contained in the tube with
maximum index after the execution of Algorithm 9.6. That is, Algorithm 9.6 can
find a maximum common subgraph of G and H . The number of operations can be
obtained directly from the algorithm.

9.6 EXPERIMENTAL DATA

In our experiment, we used a unique value sequence, a 15-base DNA sequence, to
implement each symbol of {x0, x1, y0, y1, p0, p1, ||} in our algorithms. A library se-
quence is a concatenation of value sequences for representing an instance in the so-
lution space. DNA molecules that carry library sequences are named library strands.
A library is a tube containing library strands, and the probe used for separating the
library strands have sequences complementary to the value sequences.

In DNA-based computation, there are errors in the separation of the library
strands. To make the computation reliable, sequences must be designed to ensure that
the following two conditions hold: one is that library strands have little secondary
structure that might inhibit intended probe–library hybridization and the other is that
the design must exclude sequences that might encourage unintended probe–library
hybridization. To help achieve the goals, good sequences were generated to satisfy
the following seven constraints defined by Braich et al. [2].

1. Library sequences contain only As, Ts, and Cs.

2. All library and probe sequences have no occurrence of five or more consecutive
identical nucleotides (i.e., no runs of more than 4 As, 4 Ts, 4 Cs or 4 Gs occur
in any library or probe sequences).

3. Every probe sequence has at least four mismatches with all 15-base alignment
of any library sequence (except for with its matching value sequence).

4. Every 15-base subsequence of a library sequence has at least four mismatches
with all 15-base alignment of itself or any other library sequence.

5. No probe sequence has a run of more than seven matches with any eight
base alignment of any library sequence (except for with its matching value
sequence).

6. No library sequence has a run of more than seven matches with any eight base
alignment of itself or any other library sequence.

7. Every probe sequence has four, five, or six Gs in its sequence.

We used BioPython, a python package for computational molecular biology, to
generate good DNA sequences that are suitable for running our algorithms in the
laboratory. The package and its documents can be downloaded from the web site
http://biopython.org/. Moreover, we built a web server at http://algorithm.csie.ncku.
edu.tw:18080/DNA/ to generate DNA sequences satisfying the constraints. In our

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

188 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

Table 9.3 DNA sequences for solving the graph problems

Sticker DNA sequence G-C ratio DeltaS DeltaH Tm

x0 CCTATACCCATACCC 53.33 313.73 108.9 38.08
x1 CCCATATACACCTCA 46.66 313.33 108.7 37.87
p0 TTAACATCTCCTATT 26.66 308.63 104.8 30.80
p1 CTCCTCCACCCTAAT 53.33 310.13 108.6 40.45
y0 CTAAATCCATACCTC 40.0 320.13 109.3 33.62
y1 TCTTCCTCTCAAATC 40.0 317.73 109.4 35.98
‖ ATACCACTATACCAA 33.33 307.53 105.3 33.23

system, the seven constraints are optional. After the constraints are selected, the sys-
tem will generate new DNA sequences that satisfy the selected constraints. The DNA
sequences generated for the algorithm using our system are described in Table 9.3.
Our system also can compute the G-C ratio, DeltaH, DeltaS, and melting temperature
Tm . G-C ratio is the percentage of G or C in its sequence. Enthalpy and entropy are
two properties for thermodynamics. Enthalpy comes from its greek meaning “heat
inside,” and entropy is a measure of the disorder of a system. DeltaH is defined as
the enthalpy change, and DeltaS is the entropy change. The melting temperature is
defined as the temperature at which half of all duplexes are denatured.

9.7 CONCLUSION

In this chapter, we have presented DNA-based algorithms for solving the subgraph
isomorphism problem, the graph isomorphism problem, and the maximum common
subgraph problem based on biological operations in the Adleman–Lipton model and
the solution space of stickers in the sticker-based model. Our algorithms provide a
DNA-based graph encoding scheme to these graph problems. The algorithms can
be performed in a fully automated manner in a laboratory. Furthermore, we have
developed a web server to generate good DNA sequences for generating the solution
space of the graph problems. It ensures the presented algorithms have a low rate of
errors for hybridization.

REFERENCES

1. L.M. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266:1021–1024, 1994.

2. R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, M. Leonard, and
L.M. Adleman, Solution of a satisfiability problem on a gel-based DNA computer. Pro-
ceedings of the Sixth International Conference on DNA Computation (DNA 2000), Lec-
ture Notes in Computer Science, volume 2054, 2001, pp. 27–42.

3. M. Guo, M. Ho, and W.L. Chang. Fast parallel molecular solution to the dominating-
set problem on massively parallel bio-computing. Parallel Comput, 30(9–10):1109–1125,
2004.

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

REFERENCES 189

4. M. Ho, W.L. Chang, M. Guo, and L. T. Yang. Fast parallel solution for set-packing and
clique problems by DNA-based computing. IEICE Trans Inf Syst, E-87D(7):1782–1788,
2004.

5. M. Guo, W.L. Chang, and M. Ho, J. Lu, and J. Cao. Is optimal solution of every NP-
complete or NP-hard problem determined from its characteristic for DNA-based comput-
ing. BioSystems, 80(1):71–82, 2005.

6. W.L. Chang, M. Guo, and J. Cao. Using Sticker to solve the 3-dimensional matching
problem in molecular supercomputers. IJHPCN, 1(1/2/3):128–139, 2004.

7. W.L. Chang. Fast parallel DNA-based algorithms for molecular computation: The set-
partition problem. IEEE Trans Nanobiosci, 6(1):346–353, 2007.

8. W.L. Chang and M. Guo. Solving the set cover problem and the problem of exact 3 cover
by 3-sets in the Adleman-Lipton model. Biosystems, 72(3):263–275, 2003.

9. W.L. Chang, M. Guo, and M. (Shan-Hui) Ho. Solving the set-splitting problem in
sticker-based model and the AdlemanVLipton model. Future Generation Comput Syst,
20(5):875–885, 2004.

10. W.L. Chang, M. Guo, and M. (Shan-Hui) Ho. Molecular solutions for the subset-sum
problem on DNA-based supercomputing. Biosystems, 73(2):117–130, 2004.

11. W.L. Chang, M. Guo, and M. (Shan-Hui) Ho. Fast parallel molecular algorithms for DNA-
based computation: factoring integers. IEEE Trans Nanobiosci, 4(2):149–163, 2005.

12. D. Eppstein. Subgraph Isomorphism in planar graphs and related problems. Tech. Re-
port 94-25, Department of Information and Computer Science, University of California,
Irvine, CA, 1994.

13. D. Faullhammer, A.R. Cukras, R.J. Lipton, and L.F. Landweber. Molecular computation:
RNA solutions to chess problems. Proc Natl Acad Sci USA, 97:1385–1389, 2000.

14. R.P. Feynman. In Minaturization, D.H. Gilbert, editor, Reinhold, New York, 1961, pp.
282–296.

15. M.R. Garey and D.S. Johnson. Computers and Intractability - A Guide to the Theory of
NP-completeness. W.H. Freeman, New York, 1979.

16. S.D. Gillmor, P.P. Rugheimer, and M.G. Lagally. Computing with DNA on surfaces. Surf
Sci, 500:699–721, 2002.

17. F. Guarnieri, M. Fliss, and C. Bancroft. Making DNA add. Science, 273:220–223, 1996.

18. M. Guo, M. (Shan-Hui) Ho, and W.L. Chang. Fast parallel molecular solution to the
dominating-set problem on massively parallel bio-computing. Parallel Comput, 30:1109–
1125, 2004.

19. S.Y. Hsieh and M.-Y. Chen. A DNA-based solution to the graph isomorphism problem
using Adleman-Lipton model with stickers. Appl Math Comput, 197(2):672–686, 2008.

20. S.Y. Hsieh, C.W. Huang, and H.H. Chou. A DNA-based graph encoding scheme with its
applications to graph isomorphism problems. Appl Math Comput, 203(2):502–512, 2008.

21. R.J. Lipton. DNA solution of hard computational problems. Science, 268:542–545, 1995.

22. Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, R.M. Corn, and L.M. Smith. DNA computing
on surfaces. Nature, 403:175–179, 2000.

23. Q. Ouyang, P.D. Kaplan, S. Liu, and A. Libchaber. DNA solution of the maximal clique
problem. Science, 278:446–449, 1997.

24. G. Pǎun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing Paradigms,
Springer-Verlag, Berlin, Germany, pp. 117–149.

P1: OSO
c09 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

190 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS

25. M.J. Perez-Jimenez and F. Sancho-Caparrini. Solving Knapsack problems in a sticker
based model, 2nd Annual Workshop on DNA Computing, DIMACS: series in Discrete
Mathematics and Theoretical Computer Science, American Mathematical Society, Prov-
idence, RI, 2001, pp.161–171.

26. S. Roweis, E. Winfree, R. Burgoyne, N.V. Chelyapov, M.F. Goodman, P.W.K. Rothe-
mund, and L.M. Adleman. A sticker based model for DNA computation. Proceed-
ings of the Second Annual Worksop on DNA Computing, DIMACS: Series in Discrete
Mathematics and Theoretical Computer Science, American Mathematical Society, 1996,
pp. 1–29.

27. K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya.
Molecular computation by DNA hairpin formation. Science, 288:1223–1226, 2000.

28. R.R. Sinden. DNA Structure and Function. Academic Press, New York, 1994.

29. S-Y. Shin, B-T. Zhang, and S-S. Jun. Solving travelling salesman problems using molec-
ular programming. Proceedings of the 1999 Congress on Evolutionary Computation
(CEC99), Volume 2, 1999, pp. 994–1000.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

II
ANALYSIS OF BIOLOGICAL

SEQUENCES

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10
GRAPHS IN

BIOINFORMATICS

Elsa Chacko and Shoba Ranganathan

10.1 GRAPH THEORY—ORIGIN

Graph theory emerged in 1736 when Euler addressed the problem of walking across
the seven bridges of Königsberg without crossing any bridge twice [1]. Euler used
the benefits of graph theory to conclude that it was impossible to walk through the
city crossing each bridge only once. A century later, graphs were applied to recre-
ational mathematical problems [2] such as the Knight’s Tour and the Icosian Game
[3]. Representing graphs in the form of dots and lines emerged out of 19th century
chemistry, with the introduction of the term graph into both the chemical and math-
ematical literature by Sylvester [4], with a molecule represented by the connectivity
between its constituent atoms. Since then, graphs have been applied successfully to
diverse areas such as chemistry, operations research, computer science, electrical en-
gineering, and drug design. More recently, graph theory has been used extensively
to address biological problems. After a brief introduction to graph theory and the
generic solution set commonly applied to several fields, we present select recent ap-
plications of significance in bioinformatics.

10.1.1 What is a Graph?

A graph is a set of nodes or vertices connected by a set of links, connections, or
edges. This is represented mathematically as G = (V, E), where V represents the
vertices and E represents the edges [5]. Two vertices are said to be adjacent if there
is an edge connecting them.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

193

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

194 GRAPHS IN BIOINFORMATICS

1

6

5

4

3

2

1

3

4

5

2 6

5

6

4

3

2

1

a
f

e

d
c

b

(a) (c) (b) (d)

Figure 10.1 Types of graphs. (a) Directed graph. All edges are directed. (b) Undirected graph.
No edges are directed. (c) Complete graph. Every vertex is connected to every other vertex with
exactly one edge. (d) Example of a generic graph. Here, a walk defines the path from one vertex
to another (e.g., a-b-c-d-e); a trail is a walk with no repeated edges, (e.g., a-b-c-f-e-c-d), a path is
a trail with no repeated vertices (e.g., a-b-c-e-d), a circuit is a closed trail (e.g., a-b-c-f-e-c-d-e-a),
and a cycle is a closed path (e.g., a-b-c-d-e-a).

10.1.2 Types of Graphs

Graphs either can be directed or undirected. In a directed graph (digraph), each
element of E (edges) is an ordered pair (a,b). An ordered pair implies that
(a,b) �= (b,a) unless a = b, where a and b are elements of the set of vertices
V , a being the initial vertex and b being the terminal vertex of an edge [5].
In other words, a directed graph is simply a graph whose edges have a spe-
cific direction. A loop is an edge that starts and ends at the same node. Fig-
ure 10.1a depicts a directed graph with V = {1, 2, 3, 4, 5, 6}. The edge set is
E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1), (5, 4), (1, 1)}. Vertex 1 carries a loop,
whereas vertices 4 and 5 have multiple edges between them. In an undirected graph,
the edges do not have directionality. Each edge, {a, b}, is an element of the set E ,
such that {a, b} = {b, a}. Figure 1b shows an undirected graph that has the same
set of vertices as the directed graph (Figure 1a). However, in the undirected graph,
E = {{1, 2}, {2, 3}, {3, 4}, {4, 5},{5, 6}, {6, 1}, {1, 1}}. Although there are mul-
tiple edges between the vertices 4 and 5, both are represented in the edge list as
{4, 5} because {4, 5} = {5, 4}, making them redundant. Because of this redundancy
reduction, undirected graphs usually end up with fewer edges than directed graphs
with the same number of nodes.

Graphs also either can be simple or complex. A graph in which there are no self
loops and only one edge between two vertices is called a simple graph, whereas
all others are called multigraphs [6]. A road map and a flowchart are examples of
multigraphs. A graph in which every vertex is connected to every other vertex with
exactly one edge is called a complete graph (Figure 1c).

10.1.2.1 Walks, Trails, Paths, and Cycles. Translocating from one vertex
to another vertex along an edge is called a walk. The number of edges making up
the walk defines the length of the walk. If no edges occur more than once, then the
walk becomes a trail. A path is a special representation of a trail with no vertex
being repeated. A walk in which the initial vertex is the same as the final vertex

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.1 GRAPH THEORY—ORIGIN 195

b

a

c

e

d

f

b

a

c

e

d

f

(a) (b)

Figure 10.2 Types of graphs. (a) Connected graph. (b) Two-component disconnected graph.

is called closed. A cycle is a closed path, whereas a circuit is a closed trail [7].
In Figure 10.1d, the traversal, a-b-c-d-e is one example for a walk through the
graph. The walk a-b-c-f-e-c-d is a trail, as none of the edges are repeated. However,
a-b-c-e-d is a path because none of the vertices have been repeated. The walk,
a-b-c-f-e-c-d-e-a is a circuit, whereas a-b-c-d-e-a is a cycle, although both have the
same initial and terminal nodes. In general, the terms path and trail refer to a walk
through a given graph.

A graph in which there is a path from every vertex to every other vertex is a
connected graph. Figure 10.2a represents a connected graph, despite the fact that
vertex a is not directly connected to vertex b. a-f-e-d-c-b is a path from vertex a to
vertex b. On the other hand, Figure 10.2b represents a disconnected graph, as there
is no path from node a to node f .

A graph with no cycles is acyclic (Figure 10.3a), whereas a digraph with no cycles
is a directed acyclic graph (DAG; Figure 10.3b). On the other hand, a graph that has
at least one cycle is called a cyclic graph (Figure 10.3c).

A weighted graph has values associated with its edges (edge-weighted) or vertices
(vertex-weighted). If the graph is directed, it would then be called a weighted directed
graph [5]. Undirected graphs also can have weights associated with them. Figure
10.4 shows a weighted undirected graph in which each edge is associated with a
number, representing the weight of the edge.

If v is the vertex of an undirected graph, then the degree of v is the number of
edges connected to it. If v is a directed graph, then the out-degree of v is the number
of edges commencing at v, whereas the in-degree of v is the number of edges ter-
minating at v. A regular graph is a graph in which all vertices have equal degrees.

c

b

a

d

f

e

c

b

a

d

f

e

c

b

a

d

f

e

(a) (b) (c)

Figure 10.3 Types of graphs. (a) Acyclic graph. (b) Directed acyclic graph. (c) Cyclic graph.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

196 GRAPHS IN BIOINFORMATICS

10

b d

a

c

e

5
2

3

1

6

Figure 10.4 Weighted graph. Every edge has a value associated with it.

A vertex in a directed graph is balanced if its in-degree equals its out-degree [7].
In Figure 10.1b, the degree of the vertex 4 is three. In Figure 10.1a the in-degree of
the vertex 4 is two and the out-degree is one. Vertex 6 in Figure 10.1a is balanced
because its in-degree is equal to its out-degree.

10.1.2.2 Eulerian Graph. Eulerian graphs are based on Euler’s theorem, which
stemmed from the concept that no walking tour of the seven bridges of Königsberg
can be designed such that each bridge is traversed exactly once. Figure 10.5a shows
the seven bridges of Königsberg and Figure 10.5b shows the graphical representation
of these seven bridges. The four land masses are represented as nodes (A, B, C, D),
and the bridges connecting the land masses are represented as edges. An Eulerian
path, trail, or walk through a graph is a path whose edge list contains each edge
of the graph exactly once [5]. If the graph is a circuit/cycle, then it is an Eulerian
circuit or Eulerian cycle/tour. An Eulerian graph is a graph with an Eulerian path.

C

A

B D

D

A

B

CRiver

(a)

(d)(c)(b)

C

A

B D

C

A

B D

Figure 10.5 Eulerian and Hamiltonian paths. (a) Schematic diagram of the seven bridges of
Königsberg. (b) Graphical representation of the seven bridges of Königsberg. All vertices have
odd degrees and therefore do not satisfy the condition for an Eulerian graph. This is, however,
a Hamiltonian graph, and the path A-B-C-D is a Hamiltonian path. (c) Adding a second edge
A-C makes the graph in Figure 10.5a Eulerian. Only vertices B and D have odd degrees. The
path B-C-B-A-C-A-D-C-D is an Eulerian path. (d) A directed Eulerian graph. The in-degree of
every vertex is equal to its out-degree. This is also a Hamiltonian graph with D-A-B-C-D being a
Hamiltonian circuit.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.1 GRAPH THEORY—ORIGIN 197

An undirected graph is Eulerian if and only if it is connected and has either zero or
two vertices with an odd degree. If no vertices have an odd degree, then the graph
has an Eulerian circuit.

It can be observed from Figure 10.5b that the seven bridges of Königsberg have
odd degrees on all vertices (three on A, B, and D and five on C), and therefore, this
graph is not Eulerian. However, adding one more edge between the vertices A and
C makes the degrees of A and C even (Figure 10.5c) [5]. This new graph now has
only two vertices with odd degrees (B and D), and therefore, it is possible to find an
Eulerian path by starting at one of the two odd-degree nodes, such as B-C-B-A-C-A-
D-C-D. In a directed graph, if the in-degree of every vertex is equal to its out-degree,
then it is sure to have an Eulerian circuit. In Figure 10.5d, the in-degree is the same as
the out-degree for every node, and A-B-C-D-C-B-A-C-A-D-A is an Eulerian circuit.

10.1.2.3 Hamiltonian Graphs. The next interesting problem in graphs is to
find a path in which each node is visited only once. Hamilton defined graphs in
which each node is visited exactly once now are known as Hamiltonian graphs.
The vertex list of a Hamiltonian path through a graph contains each vertex exactly
once. A circuit fulfilling this criterion is a Hamiltonian circuit. A Hamiltonian graph
is one that has a Hamiltonian path [8]. The path A-B-C-D in Figure 10.5b is a
Hamiltonian path, whereas the path D-A-B-C-D in Figure 10.5d is a Hamiltonian
circuit.

10.1.2.4 Subgraphs and Cliques. A subgraph is a smaller portion of the
original graph. Every vertex and edge of the sub-graph is a member of the ver-
tex and edge list, respectively, of the main graph. For a graph G = (V,E), a sub-
graph is defined as S = (V’, E’), where V’ is a subset of V and E’ is a subset
of E . Figure 10.6a is a subgraph of the complete graph in Figure 10.1c. We can
see that in the subgraph, some edges and vertices are missing, thereby making it a
smaller version of the original graph. In an undirected graph, a clique is a subgraph

4

3
5

2

1
(a)

4

3

2

1
(b)

Figure 10.6 Subgraphs and cliques. (a) A subgraph of the graph in Figure 10.1c. It is evident
that the edge list of the graph in (a) is a subset of the edge list of the graph in Figure 10.1c.
However, the vertex list is the same for both graphs. (b) A complete subgraph of (a) in which
every vertex is connected to every other vertex. This subgraph is a clique of size 4. Vertex 5 in
(a) is absent.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

198 GRAPHS IN BIOINFORMATICS

(a) (b)

Figure 10.7 Trees and forests. (a) A tree. The graph is connected but undirected. (b) A forest
of trees. Each separate component of the forest is connected and is a tree.

C = (V’, E’), comprising pairwise edges. In other words, the subgraph C is a com-
plete graph. The size of a clique is measured by the number of vertices it contains
[9]. Figure 10.6b is a complete subgraph of the graph in Figure 10.6a and is thus a
clique of size four.

10.1.2.5 Trees, Forests and Spanning Trees. A connected graph that has
no self-loops or cycles is called a tree. A forest is an undirected graph whose com-
ponents are all connected. Figure 10.7a is a tree and Figure 10.7b is a forest. It
can be seen that a forest is a disconnected graph whose individual components
are connected. In a tree, if there is a unique path from a particular vertex to every
other vertex, then this special node is considered distinguished and is referred to as
a root.

A tree with a distinguished vertex is a rooted tree. The level of a vertex in a rooted
tree is the number of edges that separates the vertex from the root. In Figure 10.8, A,
C, D, E and F are child nodes of the root vertex B. D is a parent of both G and H,
whereas B and D are ancestors of G. G and H are descendents of D. Any vertex that
does not have descendents is called a leaf (A, C, E, F, G, and H in Figure 10.8). The
vertices D, G, and H form a subtree of B. Vertices E, F, A, and C are also subtrees
with only one node each. A binary tree has only two subtrees for any vertex at each
level.

A spanning tree, T = (V, E’) of the graph, G = (V, E) is a tree that connects all
vertices of G such that E’ is a minimum subset of E required to connect every vertex

A

B

C

D E F

HG

Figure 10.8 A rooted tree. Vertex B is the root node.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.1 GRAPH THEORY—ORIGIN 199

4

3

2

1

4

3

2

1

4

3

2

1

Figure 10.9 Three possible trees with three edges are shown, with spanning trees shown in
dotted lines. It is possible to find many spanning trees for the same graph.

in V [5]. Figure 10.9 shows three different possibilities of spanning trees (dotted
lines) for the graph in Figure 10.6b. As the number of vertices and edges increases,
it is almost impossible to find all possible spanning trees for a given graph, without
the aid of a computer.

10.1.2.6 Networks and Flows. A network is a weighted digraph that contains
two distinguished vertices called the source and the sink. The maximum rate of flow
through any edge is called its capacity, and it is this information that the weight func-
tion of the network contains. The flow through a network can be defined as a function
f such that the amount of information passing through any edge is nonnegative and
is not larger than its capacity [5]. For each vertex other than the source or the sink,
the amount of information going into the vertex is equal to the amount of informa-
tion leaving the vertex. Figure 10.10a shows a network in which s is the source and
t is the sink. Figure 10.10b represents one flow through the network (dotted lines)
from source to sink. The amount of flow along each edge is represented as the first
number and the capacity of the edge is the second number. The flow along an edge
should always be less than or equal to the capacity of the edge. There can be many
other flows through a given network from source to sink.

0/1 0/2
0/5

3/6

0/10

3/3

e

t

c

a

s
5

2

6

10

1

3

e

t

c

a

s

(b)(a)

Figure 10.10 Network, flow, and capacity. (a) Each network has a source s and a sink t.
Every edge has a weight associated with it that is called the capacity of the edge. (b) s-c-t is
one of the many flows through the network starting at the source and ending at the sink. The
flow from the source to the sink is 3.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

200 GRAPHS IN BIOINFORMATICS

10.1.3 Well-Known Graph Problems and Algorithms

Graphs are a convenient way of representing the relationship between entities, and
therefore, there has been a lot of innovation in finding new algorithms to represent
different problems in everyday life. A few of these algorithms have been discussed
in this chapter.

10.1.3.1 The Traveling Salesman Problem (TSP). The notion of the travel-
ing salesman problem (TSP) originated from the situation of a salesman who wants
to minimize the distance that he travels to visit all his customers. In other words, a
traveling salesman problem is a Hamiltonian path in which the sum of the weights of
the edges is a minimum. It is possible to find numerous Hamiltonian paths through
a given graph; however, to identify the minimum cost or optimum solution, an ex-
haustive check to find the cost of every possible path is required. As the number of
vertices in a graph increases, this method becomes nearly impossible to determine
manually. Harnessing computational power to find the optimal solution has resulted
in the optimal TSP solution to be calculated within a few hours for 1000 cities and
in a few seconds for 100 cities [10]. Many heuristic algorithms have been developed
to find a path or circuit that is closest to the optimal one. One such algorithm is the
closest neighbor algorithm. This algorithm starts at any random vertex a and visits
the closest neighbor that has not been visited previously. At each vertex, the next
vertex to be visited is such that the distance from the current vertex to the next unvis-
ited vertex is the smallest available one. In the completely connected and weighted
graph in Figure 10.11, the TSP problem [5] has been solved using the closest neigh-
bor algorithm. Vertex a is selected randomly as the first node. The possible traversals
from a include a-c, with weight five, a-b, with weight six, and a-d, with weight eight.
As five is the smallest of the three, a-c is selected as the first edge. The next choice
is either c-b (six) or c-d (seven). c-b is thus the selected route. The two subsequent
visits from b are either to a or d. As vertex a is already visited, the only choice is to
travel to d and then to a to complete the circuit. The final path covering all vertices
has been shown in dotted lines (a-c-b-d-a) with a cost of 29.

However, if checked carefully, we can find another circuit (a-b-c-d-a) in this graph
that has a smaller cost of 27. It is not always possible to find an optimal solution with

6

8

6
10

7

5
d c

a

b

Figure 10.11 The TSP has been solved for the given graph using the closest neighbor algo-
rithm. Vertex a is selected randomly. The nearest node to a is node c. The nearest node to c is
b and the nearest node to b that is not visited is d. Finally, the circuit is completed by travelling
back to node a (starting node). The edges traversed from each node is shown in dotted lines.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.1 GRAPH THEORY—ORIGIN 201

the closest neighbor algorithm. Therefore, we have to try and find a closest neighbor
circuit in a graph such that the ratio of the cost of the closest neighbor path (Ccn) to
that of the optimal path (Copt) is as close to 1 as possible. If Ccn

Copt
is ∼ 1, then that

algorithm is considered good [5].

10.1.3.2 The Minimal Spanning Tree Problem (MST). For a weighted, con-
nected and undirected graph, G = (V, E, w), where V is the vertex list, E is the edge
list and w is the list of weights associated with the edges, a Minimum spanning tree
(MST) is T = (V , E’), where E’ is a subset of E , such that there are no cycles in
T , but every vertex is connected. The sum of the weights of each edge in the span-
ning tree (E ′) should be as small as possible [8]. In other words, a spanning tree of
a connected graph G also can be defined as a minimal set of edges of G that con-
nects all vertices. Two commonly used approaches to find minimal spanning trees are
Kruskal’s algorithm and Prim’s algorithm. Both these algorithms generate the same
minimal spanning tree for a given graph. In total, we will have to find n–1 edges to
find a minimal spanning tree for a graph with n vertices [6].

10.1.3.2.1 Kruskal’s Algorithm. In Kruskal’s algorithm [11], a given graph first
is broken down into a forest that consists of n components, where n is the number
of the vertices of the given graph. Each component in the forest consists of only one
node and nothing else. Next, an edge with the smallest weight is selected such that
the selected edge does not create a loop, and it does not connect vertices that belong
to the same tree. This edge is added to the new list of edges for the spanning tree.
This procedure is continued until all vertices are visited, resulting in only one tree.
At every step of the algorithm, two different trees of the forest are connected to make
a bigger tree. Therefore, from smaller trees in our forest, we end up with a tree that
is the minimal spanning tree [12].

By applying the Kruskal’s algorithm to the graph in Figure 10.12a we can obtain
the minimal spanning tree in Figure 10.12b (dotted lines). Of the two edges A-E and
B-E, with weights of only two (the smallest weight in the graph), let A-E be selected.
The next shortest arc that does not form a cycle is B-E, and is added to the tree.
E-C with a weight of three then is added to the new edge list followed by E-G. The
subsequent smallest weight is five between nodes B and A. This edge is not selected
as it forms a cycle, B-E-A-B. The edge, B-C, has a weight of six but is ignored, as B
and C are already part of the same tree. The next edge selected is B-D, with a weight
of seven. The only vertex left to connect is F, which is connected to either C with a
cost of eight or G with a cost of 11. We select F-C, which is the smaller of these two
cost values. Therefore, the final spanning tree has six edges, connects all vertices,
and has a total cost of 26. It is also important to note that the total number of edges
in a spanning tree is one less than the number of nodes in the given graph.

10.1.3.2.2 Prim’s Algorithm. Jarnı́k (1930), Prim (1957), and Dijkstra (1959) are
believed to have developed this algorithm independently, although it is attributed to
Prim in current literature [12]. As discussed earlier, for a given connected weighted

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

202 GRAPHS IN BIOINFORMATICS

2

6

25
8

7

11
4

3

F

B

C

E

G

D

A

(a) (b)

F

B

C

E

G

D

A
2

2

8

7

4

3

Figure 10.12 Applying Kruskal’s algorithm. (a) A weighted connected undirected graph. (b)
The minimal spaning tree for the graph obtained by applying the Kruskal’s algorithm. Edges A-E
(2), B-E (2), E-C (3), E-G (4), B-D (7), and C-F (8) constitute the minimum spanning tree, of
weight 26. The same minimal spanning tree is obained by applying Prim’s algorithm with any
vertex chosen as the starting point.

graph G = (V, E, w), a minimal spanning tree is defined as T = (V, E’). Prim’s
algorithm finds the minimal spanning tree T as follows:

1. Chose an arbitrary vertex, say x , from V and add this to Vnew. So Vnew = {x}.
No matter which vertex is selected, the solution will be the same.

2. Select an edge (x, y) so that x is a member of Vnew and y is an unvisited vertex
that has the least weight. If there are multiple edges with the same weight, then
choose arbitrarily but consistently.

3. Add this newly visited vertex to Vnew and the edge (x, y) to Enew.

4. Repeat steps 2 and 3 until Vnew = V.

In short, the algorithm works by choosing a random starting node and building a
tree by selecting at every stage the shortest available edge starting from any of the
already visited vertices that can extend the tree to an additional node [6].

Figure 10.12b represents the minimal spanning tree obtained by applying Prim’s
algorithm to the graph in Figure 10.12a. We have selected A as the first node in Vnew.
There are two possible edges that can be selected from A, namely A-E (2) and A-B
(5), where the values in the brackets represent their respective costs. A-E has the
minimum cost, and therefore, this edge is chosen and is added to the edge list, and
E is added to Vnew. The next edge chosen can be any connected to A or E. E-B (2)
is subsequently selected. Thereafter, E-C (3) is the least weighted edge among the
different edges possible from the already visited vertices A, E, and B. Next, the edge
E-G (4) is chosen. Although the next smallest edge available is A-B (5), this edge is
ignored as both A and B are already in Vnew. The same argument holds for edge B-C.
So, the next edge selected is B-D (7). The only node left to be connected is F , which
is linked to C (8) or to G (11). We chose C-F , as this has a smaller weight than F-G.
The resulting MST is identical to the one obtained from Kruskal’s approach.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.1 GRAPH THEORY—ORIGIN 203

5
2

6

10

1

3

e

t

c

a

s

Figure 10.13 Shortest path through the graph from the source to the sink is s-e-t that has a
weight of six.

10.1.3.3 The Shortest Path Problem. The shortest path problem involves
finding a path between two given vertices such that the sum of the weights of its
edges is a minimum [13]. One of the most important approaches to solve this prob-
lem is Dijkstra’s algorithm. An everyday example is finding the quickest way to get
from one location to another on a road map. In this case, the vertices represent loca-
tions, and the edges represent segments of road and are weighted by the time needed
to travel each segment. Figure 10.13 shows the shortest path (dotted lines) through a
connected and weighted graph from the source, s to the sink, t .

10.1.3.3.1 Dijkstra’s Algorithm. Dijkstra’s algorithm, developed in 1959 [14],
can be applied to solve the single-source shortest path problem for a graph with non-
negative edge costs, resulting in the shortest path tree. For a given source vertex (s)
in the graph, the algorithm finds the path with the least cost between s and every
other vertex.

The node that we start with is called an initial node. Dijkstra’s algorithm first
assigns arbitrary initial distance values to each node and then attempts to improve
these values iteratively [6].

1. Select an initial node and assign a distance value of zero to it. Assign a distance
of infinity to all other nodes.

2. Mark the initial node as current (white) and all other nodes as unvisited.

3. For the current node, calculate the distance to all its unvisited nodes from the
initial node. If this distance is less than the previously recorded distance, then
overwrite the distance.

4. Mark the current node as visited (grey) after considering all its neighbors. A
visited node will not be checked again; its distance recorded now is final and
minimal.

5. Set the unvisited node with the smallest distance from the current node as the
next current node and repeat steps 3–5.

Figure 10.14 shows an example of Dijkstra’s algorithm being carried out. a is the
initial node, and d is the final node, in a graph with five vertices (Figure 10.14a). First,
node a is assigned a distance value of 0 and marked as the current node, whereas all

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

204 GRAPHS IN BIOINFORMATICS

2

4

6

3

7

1

3

2

6

3

7

1

4

3

2

6

3

7

1

4

3

0

a
b

d

e c

Initial node

Final node

2

6

3

7

1

4

3

a
b

d

e c

2

6

3

7

1

4

3 1*2*

6*

0

a
b

d

e c

8*

12*

4*

0

a
b

d

e c

6*

12

4

0

a
b

d

e c

(a) (c) (b)

(e)(d)

Figure 10.14 Using Dijkstra’s algorithm to find the shortest path. (a) The initial node is node
a, and the final node is node d. (b) The initial node (white) is assigned a distance value of 0,
and all other nodes are assigned a distance value of ∞. (c) Node a is marked as visited (grey)
after calculating the distance to all unvisited neighboring nodes e, c, and b (marked with *). c
is set as the next current node (white). (d) Node c is marked as visited (grey) after calculating
the distance to all unvisited neighboring nodes e, d, and b. Note that the distance to node b has
been overwritten as the new distance value is less than six (the previous value on b). e is set as
the next current node (white), as it is the unvisited node with the smallest distance from node c.
(e) Node e is marked as visited after calculating the distance to the only unvisited neighboring
node d. The shortest path to d from a (initial node) therefore, is a-e-d with a distance value
of six.

other nodes are assigned distance values of infinity (Figure 10.14b). Node a has three
neighbors: b, c, and e. The distances to the three nodes b, c, and e are calculated as
the weights of the interconnecting edge, and the infinity value is replaced by the
current values of six, one, and two, respectively (Figure 10.14c). Node a is then
marked as visited, and node c, which is closest to node a, is marked as the new
current node, with four neighboring nodes, a, e, d, and b (Figure 10.14d). Because
a is already marked as visited, this node is ignored and the distance values to the
remaining three nodes are calculated from a by summing up the distance a-c and the
distance between c and each of its other neighbors.

Applying this formula, the distance from a to e through c is a-c (1) + c-e (3)
= 4. The distance value of e is not overwritten as the new distance value of e is
4 > 2, the existing value on e. But the distance from a to b through c is a-c (1) + c-b
(3) = 4, less than the previously recorded value of six. So we replace six with the
newly obtained distance value for b. Similarly, the distance from a to d through c
is eight. The nearest node to c is e, based on its weight, making it the next current

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.1 GRAPH THEORY—ORIGIN 205

0/5

1/2

3/6

1/10

1/1

3/3

e

t

c

a

s

Figure 10.15 Maximal flow network for the graph in Figure 10.13. The first value shown on
each edge is the actual flow through the network, and the second value is the edge’s capacity.
The flow from the source s to nodes a and c is 1 and 3, respectively, resulting in the total flow
leaving the source being 4. The total flow entering the sink t is also therefore 4. The edges
participating in the maximal flow are shown in dotted lines.

node. The new distance value for d (six) is smaller than the previous value (eight)
and therefore is replaced with the new value. Thus, the shortest path from a to d has
a weight of six (dotted lines) in Figure 10.14e.

10.1.3.4 The Maximal Flow Problem. The maximal flow problem involves
maximizing the amount of information that passes through a network [6]. This is
the same as finding the flow with the largest possible value in any given network.
Figure 10.15 shows the maximal flow network for the graph in Figure 10.15. There
are two values represented on the edge in a network; the first value being the actual
flow f through the edge, and the second value being the capacity c. Several algo-
rithms are available to calculate the maximal flow in a directed graph in which each
edge has a defined capacity. One such algorithm is the Ford–Fulkerson algorithm.

10.1.3.4.1 Ford–Fulkerson Algorithm. The Ford–Fulkerson algorithm, pub-
lished in 1956 [15], computes the maximum flow in a network. To describe the
Ford–Fulkerson algorithm, we need to define residual networks and augmentation
paths [16]. If the flow f along an edge a-b in a given network is less than the ca-
pacity c of the edge, then there is a forward edge a-b with a capacity equal to the
difference of the capacity and the flow (= c- f), known as the residual capacity. If
the flow is positive, then there is a backward edge, b-a with a capacity equal to the
flow (= f) on a-b. An augmenting path links the source to the sink in the residual
network and helps to increase the flow in a network. In an augmenting path, the edges
can point the wrong way when compared with the real network. The minimum flow
possible from source to sink in the given network is determined first. Then a residual
network of this graph is found to check whether there is an augmentation path in this
residual network. If there is a path, then more flow is directed along this path. The
process is continued untill no augmentation path is available in the residual network
from source to sink.

In Figure 10.16a, there are a few different paths from the source s, to the sink t .
Let us select the path s-a-e-t. The capacity of the edges s-a, a-e, and e-t are two,
ten, and one, respectively. We select the smallest capacity (one) along this path and

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

206 GRAPHS IN BIOINFORMATICS

 1

 1 1

0/5
1/2

0/6

1/10

1/1

0/3

e

t

c

a

s

0/5
1/2

3/6

1/10

1/1

3/3

e

t

c

a

s

(a) (b)

(c) (d)

5

 6

9

1

3

1 e

t

c

a

s

3

1
1

5

 3

9

1

3

e

t

c

a

s

Figure 10.16 Using the Ford–Fulkerson algorithm to find the maximal flow for a network from
source s to sink t. (a) A flow of 1 is directed along s-a-e-t. (b) The residual network Figure
10.16a. As s-a in the orginal network has a flow of 1, the forward edge s-a in the residual network
has a capacity of 1 (difference of capacity(2) and flow (1)). The flow is positive from s to a. So
the backward edge a-s is equal to the actual flow (1) through the edge. Likewise, the forward
edge a-e has a capacity of 10 − 1 = 9 the backward edge e-a has a capacity of 1. The forward
edge e-t has a capacity of 0 as flow-capacity on this edge is zero. Edges s-c, s-e, and c-t also
have backward edges with capacity zero as flow = 0 on these edges. There is an augmentation
path (s-c-t) from s to t in this residual path. (c) A flow of 3 (minimum capacity of the edges
involved) is directed along the augmentation path, thereby increasing the flow from 1 to 4. (d)
Residual network of Figure 10.16c. There is no available augmentation path in this residual
network from s to t. The maximal flow through the network is 4.

direct this amount of flow through that path as depicted in Figure 10.16a. There-
fore, in the residual network (Figure 10.16b), edge s-a has a forward and backward
flow of capacity one. The forward edge s-a has a capacity of one (difference of ca-
pacity (two) and flow (one)). As the flow is positive from s to a in Figure 10.16a,
the backward edge a-s is equal to the actual flow (1) through the edge. Likewise,
the forward edge a-e has a capacity of 10 − 1 = 9 the backward edge e-a has a
capacity of one. The forward edge e-t has a capacity of zero, as flow is equal to
capacity on this edge. Edges s-c, s-e and c-t have backward edges with capacity
zero, as flow equals to zero on these edges in Figure 10.16a. We can see clearly
from Figure 10.16b that there is an augmentation path (s-c-t) from s to t in this
residual network. A flow of three (minimum capacity of the edges involved) is di-
rected along the augmentation path, thereby increasing the flow from one to four
(Figure 10.16c). There is clearly no augmentation path present in the new resid-
ual network (Figure 10.16d) from s to t . Therefore, the maximal flow through the
network is four.

The veracity of this algorithm can be validated by using the max-flow min-cut
theorem [17]. The theorem states that the maximum flow in a network is equal to the

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.2 GRAPHS AND THE BIOLOGICAL WORLD 207

minimum cut of the network. A cut in a flow network is the set of edges such that if
they are removed, then there is no path from the source to the sink. The capacity of a
cut is equal to the sum of the capacities of the every edge in the cut. In Figure 10.15,
s-a, s-e, and c-t together represent a cut with capacity 10. Similarly, e-t and c-t can
be another cut with capacity four. By exhaustively determining every possible cut,
we can see that the smallest possible cut for the graph in Figure 10.15 has a capacity
of four. According to the max-flow min-cut theorem, the maximum flow through the
network should be 4 for the graph. This is exactly the same value for maximum flow
that we found using the Ford–Fulkerson algorithm in Figure 10.16.

10.2 GRAPHS AND THE BIOLOGICAL WORLD

The data explosion in biology in recent years [18] can be attributed to the sequenc-
ing and annotation of several genomes, coupled with the advances in high-throughput
experimental screening techniques. We now have data on genomes, transcriptomes,
proteomes, and interactomes along with genes, proteins, transcription factors, path-
ways, and regulatory networks. Bioinformatics, the application of computational
techniques to analyze the information associated with biomolecules on a large scale,
now has established itself firmly as a discipline in molecular biology and encom-
passes a wide range of subject areas from structural biology and genomics to gene
expression studies [19]. The language of graph theory offers a mathematical abstrac-
tion for the description of various relationships involved in molecular biology [20].
We present here recent bioinformatics applications of graph theory that proved their
utility in analyzing large datasets.

10.2.1 Alternative Splicing and Graphs

Alternative Splicing (AS) is a fundamental mechanism that leads to complexity in
higher eukaryotes. The introns in the pre-mRNA are removed in a process called
splicing, and the exons are coupled in varying combinations. This can change the
composition of the primary transcript. A single gene therefore can generate several
unique transcripts by combining exons and introns in different combinations because
of the phenomenon of AS. It is critical to conduct an indepth study on AS because
the disruption of AS is associated with many diseases such as cardiovascular, cancer,
and neurodegenerative disorders [21]. Analyses also have shown that up to 15%
of all point mutations causing human genetic diseases result in an mRNA splicing
defect [22], providing a link between AS events and inherited genetic diseases.

Splicing graphs facilitate the systematic study of alternatively spliced genes of
higher eukaryotes by generating graphs for the compact visual representation of
transcript diversity from a single gene. Lee et al. [23] have developed a database
of Drosophila melanogaster genes (DEDB), with alternative splicing information
of all transcripts developing from each gene organized as a splicing graph. Their
study used DAGs; (Figure 10.3b) to represent the transcripts, which were clustered
based on overlapping genomic positions. Splicing graphs were constructed using

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

208 GRAPHS IN BIOINFORMATICS

these clusters of transcripts. In each cluster, exons and introns that had identical start
and end positions were merged into nodes and connections, respectively to form
the complete splicing graph. Lee et al. [23] suggested that by condensing all splice
variants into a single graph, where each splice variant is a path through the graph,
users quickly can establish the types and effects of various alternative splicing events
present in the gene. The splicing graphs provided an efficient platform to break down
the graphs further and identify the various alternative splicing events within the same
genes. This group has discussed eight alternative splicing events in which the exons
in a gene either are included or excluded from the transcripts in varying combina-
tions leading to different patterns within the transcripts and also suggested that by
using this method to represent transcripts, users can pick up bifurcations that denote
alternative splicing events far quicker than for the traditional approach of presenting
separate transcripts, wherein the user has to deduct AS events by visual analysis.

The Alternative Splicing Graph Server (ASGS) [21] is another approach to depict
transcripts from a single gene as a splicing graph. Unlike the approach of Lee et al.
[23] in which the first transcript was used as a reference to define AS events for all
other transcripts, ASGS attempts to identify the path most traversed in the splicing
graph. For a given set of transcripts, ASGS identifiesdistinct exons as the most com-
monly occurring exons at a genomic location so that all other exons are classified as
variable exons. AS events therefore are defined with respect to these distinct exons.
Figure 10.17 shows the use of directed acyclic graphs to represent exons and introns
used by ASGS.

10.2.2 Evolutionary Tree Construction

The construction of an evolutionary tree is a very challenging problem in computa-
tional biology and has been studied extensively by many researchers. Korostensky
and Gonnet [10] have applied the traveling salesman problem algorithm to recon-
struct a correct evolutionary tree by defining a phylogenetic tree T = (V, E) as a
binary connected acyclic graph, where the vertices are denoted as V and the edges
as E . For a given set of protein sequences, their method constructs a tree with a
minimum score, representing evolution measured in point accepted mutation (PAM)

(a) Transcripts

2 1 4 3

1

1

3 5 4

4 3 6

(b) Splicing Graph

2 1 43

5

6

Figure 10.17 An alternative splicing graph generated using ASGS. (a) Transcript structure of
a single gene. The exons (black) are nodes and the introns (dotted lines) are edges. (b) The
splicing graph representation of the gene. The distinct exons are shown in black and the variant
exons are in grey.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.2 GRAPHS AND THE BIOLOGICAL WORLD 209

u

x

BA EC D

v

w

Figure 10.18 Traversal of evolutionary tree in a circular order. The dotted lines represent the
traversal. Evey edge is traversd exactly twice.

distances [10]. Their tree constructing algorithm, CircTree takes as input the PAM
distances of the pairwise alignments as well as the circular order of the optimal tree
calculated with a TSP algorithm. The circular order C(T) for a set of sequences
S ={s1, . . . , sn} is defined as any tour through a tree T (S) in which each edge is tra-
versed exactly twice, and each leaf is visited once. Figure 10.18 shows the traversal
of a tree in a circular order along the dotted lines from A-B-C-D-E-A. It traverses all
edges exactly twice and, thus, weighs all edges of the evolutionary tree equally.

Korostensky and Gonnet [10] were able to reconstruct a correct evolutionary tree
if the error for each distance measurement was smaller than x

2 , where x is the shortest
edge in the tree. For datasets with large errors, a dynamic programming approach was
used to reconstruct the tree. The group carried out simulations with real data, and
their studies showed that the algorithm produced good results compared with other
established algorithms developed by Fitch and coworkers [24] and the ProbModel
approach [25], especially for smaller trees.

10.2.3 Tracking the Temporal Variation of Biological Systems

A common approach to studying the behavior of naturally dynamic biological sys-
tems and phenomena is to sample individuals, tissues, or other relevant units at inter-
vals throughout the chronological progression of the system under study [26], known
as a time series. The temporal progress of biological systems can be measured by us-
ing well-characterized time series as benchmarks. Temporal variation data also can
be used as diagnostic tools for assessing and treating diseases [26]. Magwene et al.
used modifications of a minimal spanning tree calculated from a weighted undirected
graph to estimate temporal orderings of biological samples from unordered sets of
sample elements [26]. This technique was applied to an artificial dataset as well as
to several gene expression datasets derived from DNA microarray experiments.

First a graph was constructed such that the vertices represent the sample observa-
tions, and the weights on edges are pairwise dissimilarities. Then, a minimum span-
ning tree Gmst = {V, Emst} of the complete weighted graph G was found. This was
taken to be the best estimate of the ordering if the minimum spanning tree obtained
was a path and it had no branches.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

210 GRAPHS IN BIOINFORMATICS

When Gmst is not a path, the diameter path noise ratio, branch distribution, and
sampling intensity were calculated. A noisy sample has numerous edges dangling
from the diameter path, leading to these edges and the nodes they connect, forming
branches. The diameter path noise ratio was calculated as the ratio of the number
of points on branches to the total number of points. If the distribution of points on
branches (known as the branch distribution) was uniform, then the branch points
were truly noisy. If they were not uniform, then relatively long branches may repre-
sent signal rather than noise. The sampling intensity was calculated using the ratio of
the average segment length to the total length of the diameter path. When the sam-
pling seemed to be relatively intense for a relatively uniform diameter path branch
distribution, the diameter path gave an estimate of the ordering.

A data structure called the PQ-tree was used to summarize all uncertainties of
path variations if the diameter path sampling intensity ratio was large and the di-
ameter path branch distribution seemed to be nonuniform with a few long branches
coming off the diameter path. A secondary condition of the shortest path ordering
was applied to the variations of the paths. Each of the Xshortest paths that were
consistent with the PQ-tree were reported, where X is a user-defined value.

This algorithm worked for both artificial and experimental datasets from bacterial
and yeast gene expression studies. As the natural geometric characterization pro-
vided by minimum spanning trees are free of a priori distributional assumptions,
this approach can be applied to any dataset using a variety of dissimilarity measures.

10.2.4 Identifying Protein Domains by Clustering Sequence
Alignments

Protein domains are regarded as compact, independent units [27] that can fold sep-
arately [28] and perform a specific biological function in the living cell. Two pro-
teins with similar domains exhibit similar functions, so that the identification of
the functional domains of a protein serves as a means of protein annotation and
classification [29].

The currently available tools for searching the enormous biological sequence
databases result in inordinately long result files from which it is often difficult to
glean biologically relevant functional information [30]. Weak but biologically sig-
nificant homologies can be missed by not being able to identify many interesting re-
lationships buried in numerous alignments in the output files. To parse such database
similarity search output files, Guan and Du [30] algorithmically have classified
matching sequences into clusters, where each of these clusters represents similarity
to a different region of the query sequence, thereby extracting domain information.
They construct a graph with sequences representing vertices and the distance be-
tween two sequences as edges. A small distance value is assigned to two sequences
matching the same region of the query sequence and a greater distance to sequences
matching different regions of the query sequence. For a query sequence of length
n, the vector C = c1c2 . . . cn represents the similarity of a database sequence to the
query sequence in a search output, where ci = 1 if the sequences are similar and
ci = 0 if they are dissimilar. The distance between two sequences is defined as the

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.2 GRAPHS AND THE BIOLOGICAL WORLD 211

distance between their vector representations (Ci and C j), with small values if C
values are close to 1 and vice versa.

Prim’s algorithm was used to find the MST in this connected graph. In a minimum
spanning tree, if an edge is removed, separating the MST into two subtrees, then
the two subtrees are still MSTs, with respect to the complete subgraphs formed by the
nodes contained in the two subtrees [30]. First, the algorithm finds the edge with the
longest distance in the tree and separates the tree by removing the edge if the two
resulting subtrees differ by a constant D,

D <
d(Ci , C j)

n

where d(Ci , C j) is the difference between the vector representation of two se-
quences, n is the length of the query sequence, and the number of nodes in each
subtree is ≥ M, where M is a user-defined parameter. The use of M helps to intro-
duce some control over the cluster size (minimum cluster size) and limits the number
of nodes that the clusters should have. The algorithm repeats this step until no more
subtrees can be separated. Based on the constants D and M , the algorithm classifies
the sequences into several clusters. Guan and Du [30] observed that coarse clustering
(high values of D and M) reveal the main domains, whereas fine clustering (lower
D and M) reveals weak and distantly related domains.

10.2.5 Clustering Gene Expression Data

Functional relationships of genes in a biological process can be studied using gene
expression data clustering. The problem of clustering genes with associated expres-
sion patterns over some time series and under different conditions requires efficient
methods to interpret the observed expression data. Xu et al. [31] have suggested new
methods to represent a set of multidimensional gene expression data as a minimal
spanning tree using Kruskal’s algorithm. They suggested that the simple structure of
a tree facilitates the efficient implementation of rigorous clustering algorithms. Also,
an MST-based clustering does not depend on the detailed geometric shape of a clus-
ter and can overcome many problems faced by classical clustering algorithms. These
clustering algorithms have been implemented in the software, Expression Data Clus-
tering Analysis and VisualizATiOn Resource (EXCAVATOR), for testing on three
datasets with encouraging results.

To obtain the best possible results, different clustering problems may need
different objective functions [31]. Within the MST framework, Xu et al. have dis-
cussed three different objective functions, and their clustering algorithms partition
a tree into K subtrees, where K is any integer greater than zero. The first objective
function is to partition an MST into K subtrees so that the total edge-distance of all
K subtrees is minimized, and it captures the perception that two data points with a
short edge-distance should belong to different clusters and hence be cut. The second
algorithm, attempts to partition the MST into K subtrees so that the total distance
between the center of each cluster and its data points are minimized. In the third

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

212 GRAPHS IN BIOINFORMATICS

algorithm, data points around the best representatives from the dataset were grouped
together. Here, the best representatives are not preselected. Instead, they are the
result of the optimization process that attempts to partition the tree into K subtrees.
The K representatives are selected simultaneously in such a way that they optimize
the objective function.

The results obtained from all the three clustering algorithms were virtually identi-
cal for the gene expression data in the budding yeast, Sacchromyces cerevisiae. Both
the Euclidean distance and the correlation distance were used as distance measures.
The program determined that a four-way clustering gives the most natural number of
clusters for this problem, and these results are concordant with the annotated analysis
outcomes of Eisen et al. [32].

10.2.6 Protein Structural Domain Decomposition

With the number of protein structures in the Protein Data Bank (PDB) increasing at
an exponential rate, there is an urgent need to develop reliable and efficient methods
for identifying the underlying protein structural domains in each structure. Domain-
Parser has been developed by Xu et al. [33] to solve this domain decomposition
problem. Each residue of a protein is represented as a node and the relationship be-
tween residues as edges with a nonnegative capacity depending on the type of the
contact, thereby reducing this to a network flow problem. Any edge that has a zero
capacity corresponds to a nonexistent edge. The capacity of an edge is defined to
reflect the packing between the two residues under consideration.

By finding a minimum cut of the network and minimizing the total cross-edge
capacity using the classical Ford–Fulkerson algorithm, Xu et al. could solve the two-
domain decomposition problem, and by iteratively solving a sequence of two-domain
problems, a multidomain decomposition problem was worked out. This algorithm
requires a source and a sink, and to avoid a trivial and incorrect partition, two groups
of nodes are selected as the source and the sink rather than choosing two nodes from
the network representation of the protein as the source and the sink. At the outset,
all interesting source–sink networks are listed for a given network. Subsequently, for
each source–sink network, Xu et al. have enumerated all the minimum source–sink
cuts by applying the Picard–Queyranne algorithm [33] based on the residual network
of the Ford–Fulkerson algorithm. Different partitions are calculated and ranked using
global parameters in the post–processing step.

The DomainParser program has been tested on a commonly used test set of 55
multidomain protein structures. The decomposition results are 72% in agreement
with the literature on both the number of decomposed domains and the assignments
of residues to each domain, which compare favorably with other existing programs.
On the subset of two-domain proteins, the program assigned 96.7% of the residues
correctly.

10.2.7 Optimal Design of Thermally Stable Proteins

Making a protein more structurally and functionally stable at higher temperatures
makes it advantageous for many industrial and laboratory settings [34]. A more stable

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.2 GRAPHS AND THE BIOLOGICAL WORLD 213

protein permits higher process temperatures, which can reduce the risk of microbial
contamination and increase both reaction rates and reactant solubility [35, 36]. Mu-
tating specific amino acids to improve explicitly properties of the protein structure by
rational or structure-based design is one among the many approaches that have been
developed [34]. Directed evolution, which endeavors to accelerate natural evolution
in a laboratory setting, is another major innovation in this direction. A computational
approach in which data from sequence databases are used is yet another method for
making more thermally stable proteins [37, 38].

Bae et al. [39] used measures of local structural entropy (LSE) to design more
thermally stable proteins. They called this novel approach improved configurational
entropy (ICE). Chan et al. [38] examined structures deposited in the Protein Data
Bank (PDB) to see how often particular amino acid tetramers (four consecutive
amino acids from the protein sequence) appeared in protein secondary structures
to derive a value for LSE, with a higher LSE value attributed to a tetramer occur-
ring in several kinds of structures compared with one that is restricted to a single
secondary structure. Chan et al. [38] observed a correlation between LSE and pre-
viously published differences of thermal stability for thermophilic proteins and their
mesophilc homologues. Bae et al. [39] incorporated LSE as part of ICE and used
it successfully to select amino acids from closely homologous proteins that mini-
mized the total structural entropy for the target sequence. To solve efficiently the
LSE minimization problem, Bannen et al. [34] modeled it as a shortest path network
optimization problem. A protein sequence of length n is decomposed into an ordered
sequence of nodes in a network to construct a network representation. A tetramer
was used to label each node with directed edges connecting the nodes, thereby rep-
resenting each sequence of length n with a path of length n − 3. Each node la-
bel also was prefixed with its “stage,” which is the position of its first amino acid
in the protein sequence. For example, the protein sequence MERLTG can be rep-
resented as Source→(1,M,E,R,L)→(2,E,R,L,T)→(3,R,L,T,G)→Sink. The entropy
values derived by Chan et al. [38] that correspond to the tetramer at the destination
represents the values for each edge. The source node with weights equal to the en-
tropies for the tetramers of all the first-stage nodes and a sink node are two other
important nodes in this network. A protein sequence of the same length as the orig-
inal sequence can be arrived at, by finding a path through the network from source
to sink [34]. The amino acid at each position is chosen from position-specific amino
acid conservation in a multiple sequence alignment of homologous sequences. By
finding the shortest path through this network from source to sink, Bannen et al.
were able to find the optimal sequence using Dijkstra’s algorithm to solve this short-
est path problem. The optimal string is retrieved from the shortest path by strip-
ping out the node stage numbers and merging the tetramers along the path, thereby
eliminating overlaps.

Compared with a simple brute force approach, the shortest path problem using
Dijkstra’s algorithm improves computational efficiency [34]. With two sequences
that are 67% identical and 4800 amino acids long, the shortest path approach gener-
ates a graph about the same size as two sequences that are 400 amino acids long and
share 0% sequence identity (∼6500 nodes) and the shortest path algorithm calculates

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

214 GRAPHS IN BIOINFORMATICS

Path leads to sequence ATGCAGGTCC(a) (b)

S = { ATG, AGG, TGC, TCC, GTC, GGT, GCA, CAG }

Path leads to sequence ATGGCAGTCC

Figure 10.19 Using Hamiltonian paths to reconstruct sequences. Different reconstructions for
the same given spectrum S lead to the sequences (a) ATGCAGGTCC and (b) ATGGCAGTCC.

the overall minimum in less than a second [34]. The overall minimum is found in 26
hours for a graph with ∼2 million nodes [34], proving the scalability of the algorithm
even in extreme situations.

10.2.8 The Sequencing by Hybridization (SBH) Problem

Although a DNA array provides information regarding all strings of length t for
an unknown gene sequence, it does not provide information about their positions
in the sequence [40]. The t-mer composition, or the spectrum, Spectrum(s, t) for a
string s of length n, is the multiset of (n − t + 1) t-mers in s [40]. If t = 3 and s =
TATGGTGC, then Spectrum(s,t) = {TAT, ATG, TGG, GGT, GTG, TGC}. The pri-
mary obstacle of applying DNA arrays for sequencing is the inaccuracy in inter-
preting hybridization data to distinguish between perfect matches and highly stable
mismatches [40].

This Sequencing By Hybridization (SBH) problem can be reduced to a Hamilto-
nian path problem. To construct the graph, a vertex is introduced for every t-mer in
the Spectrum(s, t), and two vertices are connected by a directed edge if those two
vertices overlap [40]. There is a one-to-one correspondence between paths that visit
each vertex of H exactly once and DNA fragments represented by the Spectrum(s, t).
Oftentimes, it is possible to find more than one Hamiltonian path for a given spec-
trum, and each of these paths corresponds to different reconstructions. Figure 10.19
shows two such possible paths through a given spectrum. It is clearly shown that the
reconstructed sequences are different in both cases. This approach is therefore not
very practical when the overlap graph is large.

Another approach is to reduce the SBH problem to an Eulerian path problem [37]
in which every edge is visited exactly once. In this new graph, the edges represent the
respective t-mers from the Spectrum(s, t). A graph is built on all (t-1)-mers, rather
than on the set of all t-mers. A (t-1)-mer node v is joined by a directed edge with
a (t-1)-mer node w, if the spectrum contains a t-mer where v is the prefix and w

is the suffix of that respective t-mer [37]. For a given spectrum, Spectrum(s, t) =
{ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}, (t-1)-mers and the directed
edges between them are shown in Figure 10.20. Figure 10.20a is the graph represen-
tation of this spectrum. The sequence can be reconstructed from this graph by finding
an Eulerian path. The two possible Eulerian paths through the graph (Figure 10.20a)

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

10.2 GRAPHS AND THE BIOLOGICAL WORLD 215

AT

TG

GG

GT CG

GC
CA

ATGGCGTGCA

AT

TG

GG

GT CG

GC
CA

ATGCGTGGCA

AT

TG

(a)

(b) (c)

GG

GT CG

GC
CA

Graphical representation for the given sequence

Figure 10.20 Sequencing by hybridization as an Eulerian path problem. (a) Graph repre-
sentation of the spectrum S = {ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}. Two nodes
AT and TG are connected with a directed edge from AT to TG if there is a 3-mer such that its
prefix is AT and its suffix is TG. Eulerian paths though the graph (a) producing the sequence (b)
ATGGCTGCA and (c) ATGCGTGGCA.

are presented (Figure 10.20b and Figure 10.20c). Although finding an Eulerian path
may seem as difficult as finding a Hamiltonian path, Jones and Pevzner [40] have
stated that finding an Eulerian path can be implemented in time linear in the number
of edges in the graph. Furthermore, they have suggested that in a balanced graph,
it is possible to find more than one Eulerian path and then combine these different
paths into one to obtain the single path.

10.2.9 Predicting Interactions in Protein Networks by Completing
Defective Cliques

Identification of the complete set of interactions among proteins in a cell is a funda-
mental problem in modern biology [41,42]. The experimental techniques available
are either small-scale or large-scale experimental methods. For a given set of pro-
teins, small-scale techniques such as coimmunoprecipitation recognize the interac-
tions between a pair of proteins at a time [43–46]. Large-scale techniques like yeast
two-hybrid and tandem affinity purification (TAP) tagging, on the other hand, locate
numerous interacting pairs in a single experiment [47–50].

Yu et al. [9] propose using a graph-based method to represent a protein interaction
network. Proteins are represented as vertices and pairs of interacting proteins are
connected by edges. The matrix model interpretation of the results of these large-
scale experiments reveals that two proteins interacting with the same protein cluster
are likely to interact with each other, leading to a predicted interaction [9]. Using
defective cliques to carry forward their algorithm, they observed that if nonadjacent
vertices P and Q are both adjacent to every vertex in a clique K , then it is likely that

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

216 GRAPHS IN BIOINFORMATICS

P and Q are adjacent to each other [9]. P , Q, and K then form a defective clique.
Their algorithm searches for these special defective cliques in protein interaction
graphs and predicts interactions that complete these defective cliques, resulting in
full cliques.

The algorithm first identifies all cliques in a network and finds pairs of cliques
overlapping on all but one node each. Then, edges between the overlapping and
the nonoverlapping nodes, in each of these pairs are predicted, and the new node is
added to the network. The efficiency of the algorithm is improved by looking for
partial overlaps of maximal cliques (a clique that is not contained in any other clique
in the graph) that differ in more than one node.

Yu et al. [9] applied their clique completion method to a large-scale experimental
dataset of the protein interaction network of S. cerevisiae obtained by Bader and
Hogue [51], with excellent results.

10.3 CONCLUSION

Graph theory has a wide range of applications in bioinformatics, represented by DNA
fragment assembly, protein domain decomposition, evolutionary tree construction,
visualization techniques for alternative splicing, identification of structural domains,
and clustering sequence alignments. In light of the many methodologies described
in this chapter, it is evident that the key algorithms of graph theory can be applied
successfully to address various biological problems. With the advent of a systems
biology approach to deciphering biological processes, we expect graph theoretical
methods to be applied extensively in the future.

REFERENCES

1. N. Biggs, E. Lloyd, and R. Wilson. Graph Theory. Oxford University Press, New York,
1986.

2. Graph theory. Encyclopedia Britannica Online, 2009. http://www.britannica.com/
EBchecked/topic/242012/graph-theory.

3. J.H. Barnett. Early Writing on Graph Theory: Hamiltonian Circuits and The Icosian
Game. http://www.math.nmsu.edu/hist projects/Hamilton-Barnett.pdf.

4. J.J. Sylvester. Chemistry and algebra. Nature, 17:284, 1878.

5. A. Doerr and K. Levasseur. Applied Discrete Structures for Computer Science. Galgotia
Publications Pvt. Ltd., New Delhi, India, 2000.

6. J. Gross and J. Yellen. Graph Theory and Its Applications. CRC Press, Boca Raton, FL,
2000.

7. K. Thulasiraman and M.N.S. Swamy. Graphs: Theory and Algorithms. Wiley, New York,
1992.

8. W.T. Tutte and C.S.J.A. Nash-Williams. Graph Theory. Cambridge University Press, New
York, 2001.

9. H. Yu, A. Paccanaro, V. Trifonov, and M. Gerstein. Predicting interactions in protein
networks by completing defective cliques. Bioinformatics, 22(7):823–829, 2006.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

REFERENCES 217

10. C. Korostensky and G.H. Gonnet. Using traveling salesman problem algorithms for evo-
lutionary tree construction. Bioinformatics, 16(7):619–627, 2000.

11. J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc Am Math Soc, 7(1):48–50, 1956.

12. R. Campos and M. Ricardo. A fast algorithm for finding minimum routing cost spanning
trees. Comput Network, 52(17):3229–3247, 2008.

13. D.P. Bertsekas. A simple and fast label correcting algorithm for shortest paths. Networks,
23(7):703–709, 1992.

14. E.W. Dijkstra. A note on two problems in connexion with graphs. Numer Math, 1:269–
271, 1959.

15. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introductions to algorithms. MIT
Press and McGraw-Hill, Boston, MA, 2001.

16. L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Can J Math, 8:399–404,
1956.

17. L. Eugene. Combinatorial Optimization: Networks and Matroids. Oxford University
Press, New York, 1976.

18. L.D. Stein. Integrating biological databases. Nat Rev Genet, 4(5):337–345, 2003.

19. N.M. Luscombe, D. Greenbaum, and M. Gerstein. What is bioinformatics? an introduc-
tion and overview. Yearbook of Medical Informatics, 2001.

20. W. Huber, V.J. Carey, L. Long, S. Falcon, and R. Gentleman. Graphs in molecular biology.
BMC Bioinformatics, 8(6):S8, 2007.

21. D. Bollina, B.T.K. Lee, T.W. Tan, and S. Ranganathan. ASGS: An alternative splicing
graph web service. Nucleic Acids Res, 34:W444–W447, 2006.

22. M. Krawczak, J. Reiss, and D.N. Cooper. The mutational spectrum of single base-pair
substitutions in mRNA splice junctions of human genes: causes and consequences. Hum
Genet, 90(1–2):41–54, 1992.

23. B.T.K. Lee, T.W. Tan, and S. Ranganathan. DEDB: a database of Drosophila
melanogaster exons in splicing graph form. BMC Bioinformatics, 5:189, 2004.

24. W.M. Fitch and E. Margoliash. The construction of phylogenetic trees. Science,
155(760):279–284, 1967.

25. G.H. Gonnet and S.A. Benner. Probabilistic ancestral sequences and multiple alignments.
Fifth Scandinavian Workshop on Algorithm Theory, Reykjavik, Iceland, pp. 380–391,
1996.

26. P. Magwene, P. Lizardi, and J. Kim. Reconstructing the temporal ordering of biological
samples using microarray data. Bioinformatics, 19(7):842–850, 2002.

27. J.S. Richardson. The anatomy and taxonomy of protein structure. Adv Protein Chem,
34:167–339, 1981.

28. D.B. Wetlaufer. Nucleation, rapid folding, and globular intrachain regions in proteins.
Proc Natl Acad Sci U S A, 70(3):697–701, 1973.

29. H. Hegyi and M. Gerstein. The relationship between protein structure and function: a
comprehensive survey with application to the yeast genome. J Mol Biol, 288(1):147–164,
1999.

30. X. Guan and L. Du. Domain identification by clustering sequence alignments. Bioinfor-
matics, 14:783–788, 1998.

31. Y. Xu, V. Olman, and D. Xu. Clustering gene expression data using a graph-theoretic ap-
proach: an application of minimum spanning tree. Bioinformatics, 18(4):536–545, 2002.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

218 GRAPHS IN BIOINFORMATICS

32. M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Bostein. Cluster analysis and display of
genome-wide expression pattern. Proc Natl Acad Sci U S A, 95:14863–14868, 1998.

33. Y. Xu, D. Xu, and H.N. Gabow. Protein domain decomposition using a graph-theoretic
approach. Bioinformatics, 17(3):1091–1104, 2000.

34. R.M. Bannen, V. Suresh, G.N. Phillips Jr. S.J. Wright, and J.C. Mitchell. Optimal design
of thermally stable proteins. Bioinformatics, 24(20):2339–2343, 2008.

35. V.G. Eijsink, A. Bjørk, S. Gåseidnes, R. Sirevåg, B. Synstad, B. van den Burg, and G.
Vriend. Rational engineering of enzyme stability. J Biotechnol, 113(1–3):105–120, 2004.

36. P. Turner, G. Mamo, and E.N. Karlsson. Potential and utilization of thermophiles and
thermostable enzymes in biorefining. Microb Cell Fact, 6:9, 2007.

37. M. Lehmann and M. Wyss. Engineering proteins for thermostability: The use of se-
quence alignments versus rational design and directed evolution. Curr Opin Biotechnol,
12(4):371–375, 2001.

38. C.H. Chan, H.K. Liang, N.W. Hsiao, M.T. Ko, P.C. Lyu, and J.K. Hwang. Relationship
between local structural entropy and protein thermostability. Proteins, 57(4):684–691,
2004.

39. E. Bae, R.M. Bannen, and G.N. Phillips Jr. Bioinformatic method for protein thermal
stabilization by structural entropy optimization. Proc Natl Acad Sci U S A, 105(28):9594–
9597, 2008.

40. N.C. Jones and P.A. Pevzner. Introduction to bioinformatics algorithms. MIT Press, Cam-
bridge, MA, 2004.

41. R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N.J. Krogan, S. Chung, A. Emili, M. Snyder,
J.F. Greenblatt, and M. Gerstein. A Bayesian networks approach for predicting protein–
protein interactions from genomic data. Science, 302(5644), 449–453, 2003.

42. E.M. Marcotte, M. Pellegrini, H.L. Ng, D.W. Rice, and T.O. Yeates. Detecting
protein function and protein–protein interactions from genome sequences. Science,
285(5438):751–753, 1999.

43. G.D. Bader, I. Donaldson, C. Wolting, B.F. Ouellette, T. Pawson, and C.W. Hogue.
BIND–the biomolecular interaction network database. Nucleic Acids Res, 29(1):242–245,
2001.

44. H.W. Mewes, D. Frishman, U. Guldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Mor-
genstern, M. Münsterkötter, S. Rudd, and B. Weil. MIPS: A database for genomes and
protein sequences. Nucleic Acids Res, 30(1):31–34, 2002.

45. I. Xenarios, L. Salwı́nski, X.J. Duan, P. Higney, S.M. Kim, and D. Eisenberg. DIP, the
database of interacting proteins: A research tool for studying cellular networks of protein
interactions. Nucleic Acids Res, 30(1):303–305, 2002.

46. Y. Xia, H. Yu, R. Jansen, M. Seringhaus, S. Baxter, D. Greenbaum, H. Zhao, and M.
Gerstein. Analyzing cellular biochemistry in terms of molecular networks. Annu Rev
Biochem, 73:1051–1087, 2004.

47. A.C. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M.
Rick, A.M. Michon, C.M. Cruciat, M. Remor, C. Höfert, M. Schelder, M. Brajenovic,
H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch,
S. Bastuck, B. Huhse, C. Leutwein, M.A. Heurtier, R.R. Copley, A. Edelmann, E. Quer-
furth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster,
G. Neubauer, and G. Superti-Furga. Functional organization of the yeast proteome by
systematic analysis of protein complexes. Nature, 415(6868):141–147, 2002.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

REFERENCES 219

48. Y. Ho, A. Gruhler, A. Heilbut, G.D. Bader, L. Moore, S.L. Adams, A. Millar, P. Taylor,
K. Bennett, K. Boutilier, L. Yang, C. Wolting, I. Donaldson, S. Schandorff, J. Shew-
narane, M. Vo, J. Taggart, M. Goudreault, B. Muskat, C. Alfarano, D. Dewar, Z. Lin,
K. Michalickova, A.R. Willems, H. Sassi, P.A. Nielsen, K.J. Rasmussen, J.R. Andersen,
L.E. Johansen, L.H. Hansen, H. Jespersen, A. Podtelejnikov, E. Nielsen, J. Crawford, V.
Poulsen, B.D. Sørensen, J. Matthiesen, R.C. Hendrickson, F. Gleeson, T. Pawson, M.F.
Moran, D. Durocher, M. Mann, C.W. Hogue, D. Figeys, and M. Tyers. Systematic identi-
fication of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature,
415(6868):180–183, 2002.

49. T. Ito, K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara,
and Y. Sakaki. Toward a protein–protein interaction map of the budding yeast: A compre-
hensive system to examine two-hybrid interactions in all possible combinations between
the yeast proteins. Proc Natl Acad Sci U S A, 97(3):1143–1147, 2000.

50. P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V.
Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover,
T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J.M. Rothberg.
A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae.
Nature, 403, 623–627, 2000.

51. G.D. Bader and C.W. Hogue. Analyzing yeast protein–protein interaction data obtained
from different sources. Nat Biotechnol, 20(10), 991–997, 2002.

P1: OSO
c10 JWBS046-Elloumi December 2, 2010 9:43 Printer Name: Sheridan

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11
A FLEXIBLE DATA STORE

FOR MANAGING
BIOINFORMATICS DATA

Bassam A. Alqaralleh, Chen Wang, Bing Bing Zhou, and
Albert Y. Zomaya

11.1 INTRODUCTION

With the abundance of scientific data in recent years, how to manage them effectively
becomes a challenging problem. Data produced by scientific activities often evolve
quickly and are too dynamic to have broadly agreed metadata structures. Bioinfor-
matics data belong to this category. The advances of high-throughput genome se-
quencing and gene expression profiling technologies produce huge amounts of data.
They are open for new interpretations, and the interpretations may change when new
discoveries are made. The research community use data annotation heavily to record
these interpretations. In a certain time frame, there could be a burst of annotations on
certain data. Traditional database systems do not provide enough flexibility in man-
aging such kinds of data. There are efforts to build new data management systems.
A promising one is to allow data to be stored freely in any format and to index these
data using small pieces of structured information so that data can be retrieved through
these indexes. This technique has been attempted in social networking sites like flickr
and del.icio.us, which allows users to annotate pictures and bookmarks flexibly. The
structures of these annotations are as simple as tags and key-value pairs. The simplic-
ity has advantage in usability but raises challenges for the accuracy of data search. It
is therefore not sufficient for indexing bioinformatics data. In this chapter, we inves-
tigate the use of a multidimensional indexed data store to tackle this problem.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

221

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

222 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

Multidimensional indexing is important to a variety of data-centric applica-
tions, ranging from sequence matching, to protein structure matching, and to spatial
databases [19]. In a multidimensional indexing scheme, a data element is indexed us-
ing multiple keys selected from the data element’s attribute list. A query containing
the indexed keys therefore can locate the target data element quickly via the index.

11.1.1 Background

Multidimensional indexing and spatial query processing have been studied exten-
sively in centralized systems. In many of these methods, the data space is divided
hierarchicaly into smaller subspaces (regions), such that the higher level data space
contains the lower level subspaces and acts as a guide in searching. Among these
various spatial index structures [3, 11], R-tree [8] and its variations (R*-tree [2],
R+-tree [13], etc.) are used widely in the industry and research communities. The
R-tree is a multidimensional extension of the B+-tree. In R-trees, each spatial data
object is represented by a minimum bounding rectangle (MBR), which is used to
store the leaf node data entries.

R-trees efficiently can answer various types of multidimensional queries, espe-
cially range query. Given a query window q, a range query retrieves all objects inside
or intersecting q. Range query answering starts from the root level of the R-tree. For
any MBR intersecting the query window, its subtrees are explored recursively. If a
leaf entry is encountered, then all objects whose bounding range intersects the query
window are examined [8]. Figure 11.1 shows two-dimensional space with some data
objects, and Figure 11.2 shows its corresponding R-tree.

11.1.2 Scalability Challenges

The scalability of a data management system includes two aspects: scaling up incre-
mentally as data grow in size and scaling up incrementally as demands for these data
and data indexes grow.

R4 R5

R6 R11

R10

R12R3

R7 R2

R9
R8

R1

Figure 11.1 Data rectangles.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11.2 DATA MODEL AND SYSTEM OVERVIEW 223

R1 R2 R3

R4 R5 R6 R7 R8 R9 R10 R11 R12

Figure 11.2 R-tree.

Recently, Internet companies, such as Google (Mountain View, CA) and Amazon
(Seattle, WA) built large-scale data centers for scaling up their applications. These
data centers often consist of tens of thousands of commodity personal computers
(PCs). Their data management systems can deal with structured data (e.g., Amazon
system has a key-value store (Dynamo) [20], and Google cluster supports a sparse
sorted map (Bigtable) [21]). Data with simple structures are convenient to partition,
and these systems often scale up data storage through partitioning data and storing
partitions incrementally in available nodes. However, they leave the access scalability
to applications to handle. The replication mechanisms in these systems often only
serve for high availability and fault-tolerance purpose. When a dataset is requested
heavily, the application using the dataset has to deal with the scalability itself. It is
difficult for individual applications to handle this when the dataset is shared. Existing
systems lack of a systematic approach for addressing this issue.

In this chapter, we propose a data model that allows multidimensional data index-
ing in a data store. The data model is flexible and expressive for bioinformatics data
annotation and indexing. It is also convenient to build a scalable data store to support
this data model. We detail the mechanisms used for constructing a self-organizing
data store in this chapter. The mechanism is scalable for both data storage and access
request processing.

The rest of the chapter is organized as follows: Section 11.2 describes the data
model and the system architecture supporting this data model; Section 11.3 intro-
duces the algorithms for scaling up the system in a self-organized manner; Section
11.4 presents the simulation results; Section 11.5 summarizes related work, and Sec-
tion 11.6 summarizes the chapter.

11.2 DATA MODEL AND SYSTEM OVERVIEW

In our system, a structured data item is represented as a set of tuples in the format (at-
tribute, type, value). For example, a protein sequence can be represented as follows:

{(gene bank ID, string, “gi : 1000344”),

(db source, string, “locus CEU34596 accession U34596.1”),

(length, int, 570)}.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

224 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

D0
(*attribute_0:value_0,
*attribute_1:value_1,

other_attributes:values)

D1
(*attribute_0:value_2
*attribute_1:value_3,

other_attributes:values)

D2
(*attribute_1:value_5,

other_attributes:values)

Dm
(*attribute_2:value_6,
*attribute_3:value_7,
*attribute_4:value_8,

other_attributes:values)

...

Attribute_n:date

Attribute_2:string

Attribute_1:string

Attribute_0:int

Figure 11.3 An example of bio-data representation using the proposed data model.

We assume all attributes are defined in the same namespace. A subset of attributes
can be used to index data items (e.g., gene bank ID can be used to keep track the
location where the data item is stored). This index can be recorded in the following
form:

(gi:1000344, node x:uid)

in which uid is the unique key corresponding to the data item. The unique key is
generated using a collision resilient hash function like MD5 or SHA-1. When a data
item is indexed using more than one attribute, it becomes a multidimensional indexed
data item.

Data items often have an overlapped attribute set and are indexed using a com-
mon subset of attributes. Figure 11.3 shows such an example. The table on the left
is the attribute set used by all data items and D0, D1, and Dm denote different data
items. D0 and D1 are indexed using (attribute 0, attribute 1) (indexing attributes
are marked with “*”). D2 is indexed using (attribute 1), and Dm is indexed using
(attribute 2, attribute 3, and attribute 4). Note, D2 also can be treated as mul-
tidimensional indexed by adding unconstrained attributes to it (e.g., it can share the
same index repository with D0 and D1 by allowing attribute 0 to anything).

In general, the same indexing attribute set forms an index repository. The repos-
itory can be identified by hashing the concatenated attribute set using the same col-
lision resilient hash function mentioned. The output of the hash function is used to
map the repository to a physical node. The mapping is done using a distributed hash
table (DHT) algorithm Pastry [14] in our system.

Figure 11.4 shows our system architecture. Based on the role a node may play
in answering a client query, the nodes in our system can be classified into three
categories: routing nodes, index nodes, and data nodes.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11.2 DATA MODEL AND SYSTEM OVERVIEW 225

node(a0,

Index node(a2)

Query requests DHT

D0

Index
node(a0, a1)

D1 D2 D3 D4 D5

Data nodes

Figure 11.4 The system architecture (index nodes and data nodes are part of the DHT overlay).

Each node in the system can be a routing node. A node forwards messages ac-
cording to the Pastry algorithm.

An index node stores the multidimensional indexes (R-trees) of a certain type of
data. An index node is addressable in the DHT network via the hash value of the
concatenated keys in its index, for example, the following query:

Q1 = (select * from Overlay where a0 = x and a1 = y)

will be directed to a node whose identification (ID) is closest to h(a0||a1), where h is
a collision resilient function and || is concatenation.

A data node stores the actual data. A piece of data has an ID generated from its
content, and this ID is used to map the data to a target storage node. To maintain the
data locality, the ID of the tuple is generated using a locality sensitive hash function
so that similar data are stored close to each other in the DHT overlay.

To insert a data element (a0 : v0, a1 : v1, ..., an : vn) indexed using an attribute set
(ai , ai+1, ..., ai+m) to the system, we may use an inserting statement in the following
syntax:

insert (a0 : v0, a1 : v1, . . . , an : vn) indexedBy (ai , ai+1, . . . , ai+m)

The insertion process is described as follows:

� Step 1
A client submits the insertion request to any node in the overlay network.

� Step 2
The DHT node that receives the request, denoted by Ne, calculates the
data ID using a locality sensitive hash function (LSH) as follows: d =
lsh(ai ||ai+1|| . . . ||ai+m ||vi ||vi+1|| . . . ||vi+m).

� Step 3
Ne sends a data insertion request to the data node with an ID closest to d. If the
request is accepted, then the data is sent to that data node, denoted by Nd .

� Step 4
If the request is rejected, then Ne recalculates the data ID as d =
lsh(ai ||ai+1||...||ai+m ||vi ||vi+1||...||vi+m ||r), where r is a random number. Ne

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

226 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

repeats Step 3 untill the request is accepted by a data node. A data node rejects
the data insertion request mainly because of its storage capacity. If no data node
accepts the request after a predefined maximum number of attempts, then Ne
declares the insertion failed and returns an “out of space” error message to the
client.

� Step 5
Ne locates the index node by calculating the hash ID from the index keys: I =
h(ai ||ai+1|| . . . ||ai+m), where h is a collision resilient hash function, and then
forwards an indexing request (I, (ai : vi , ai+1 : vi+1, . . . , ai+m : vi+m), Nd) to
the index node NI .

� Step 6
NI inserts the data index to its R-tree and notifies Ne. A data element also can
be indexed by multiple indexes, such as,

insert (a0 : v0, a1 : v1, . . . , an : vn) indexedBy (ai , ai+1, . . . , ai+p),

(a j , a j+1, . . . , a j+q)

Step 5 and 6 repeat if multiple indexes present in the insert statement.
� Step 7

Ne returns success to the client.

The indexing mechanism supports two types of queries; one is a point query in which
a query statement contains known values of some attributes; the other is a range query
in which a query statement specifies the value range of some attributes. In both cases,
a query is submitted to any DHT node and is forwarded to an index node based on
the attributes in the query. The index node returns the IDs of qualified data and their
locations (i.e., the data node IDs). The DHT node then gets data from those data
nodes, assembles the results for range queries, and returns the results to the client.
The process is illustrated in Figure 11.5.

Each index/data node maintains a first come first serve (FCFS) queue for incom-
ing query/data-fetch requests. The queue is lossless, as it does not drop queuing

Client

Submit query

Results

((X,IDs-X), (Y, IDs-Y)) = getDataLocations(query)

X.getData(IDs)

Y.getData(IDs)

DHT routing node Index node Data node X Data node Y

Figure 11.5 The query resolving process.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11.3 REPLICATION AND LOAD BALANCING 227

requests. To ensure quality of service, a queue is associated with a predefined value
called capacity. The capacity is defined as the number of queries the node can process
in a certain time frame. When the capacity is reached, the node is considered over-
loaded, and the requests coming subsequently may suffer a long delay. To reduce
the queue length, requests may be forwarded to a node that can serve the request.
When such a node cannot be found, our system replicates the content of the over-
loaded node to a lightly loaded node. The query serving capacity increases once the
new replica is created, and therefore, the load on the overloaded node will decrease
gradually.

11.3 REPLICATION AND LOAD BALANCING

The data in our system can be diverse, and the access to these data is dynamic.
It is difficult to allocate nodes for data storage in a static manner. When demands
increase, both index nodes and data nodes in our system can expand themselves in
a self-organized manner. This is done through replication by dynamically recruiting
nodes in the overlay to host their replicas.

Nodes storing the same data form a content distribution network for the data. In its
simplest form, the content distribution network of a data ID is fully connected, and
load information is exchanged periodically along these links so that the forwarding
destination can be obtained easily. When the data hosted by a node is popular, it is
likely that the queue size is close to or over the capacity most of the time. When all
nodes in a content distribution network are overloaded, the network will be expanded
by creating new replicas. The new replica node is selected from available nodes in
the underlying network. Each node in the system autonomously can create replicas
of its local data objects. The whole system is organized in a decentralized manner.
Each node makes a replication decision by itself.

Our replication and load balancing mechanism intends to achieve the following
goals:

1. To improve query service quality in terms of queuing time, traveling time, and
response time

2. To optimize the number of replicas needed for serving queries to a hot content
by balancing the load among existing content nodes that host this data item

Replicating and load balancing are implemented on a simple protocol we first intro-
duced in [22]. The protocol is summarized in Figure 11.6. There are three types of
messages in the protocol:

1. Messages used by an overloaded content node to recruit new replica node

2. Messages used to forward queries to lightly loaded nodes

3. Messages used by a node to update other nodes with its current workload. This
is the information used for load balancing

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

228 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

client

query 1

query 2

Random
node selection Replication Request Msg

result

Random
node selection

Data preparation

Overloaded node
candidate replica node

A
candidate replica node

B

Replication Request Response Msg(Reject)

Replication Request Msg

CDN Request Response Msg(Accept)

CDN Data Distribution Msg

CDN Node Join Msg

Query Forward Msg(query1, query2)

Load Updating Msg

Replica creation

Figure 11.6 Illustration of replica management protocol.

An overloaded node may send a replication request to multiple candidate nodes
simultaneously, but only one that accepts the request is selected at a time to replicate
the highly requested data.

11.3.1 Replicating an Index Node

As all queries to a certain type of data go through a particular index node, the node
can be overwhelmed easily. Replication of an index node includes the following
steps:

� Step 1
Mark the start of snapshot taking for the R-tree of the overloaded node.

� Step 2
Create a temporary queue to hold the incoming insert/update requests.

� Step 3
Create the snapshot. During this step, only query requests are processed in the
index node.

� Step 4
After the snapshot is taken, allow the processing of insert/update requests on
the index node; meanwhile, replicate the snapshot to a selected lightly-loaded
node.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11.3 REPLICATION AND LOAD BALANCING 229

� Step 5
Forward the insert/update requests in the temporary queue to the replica node.

� Step 6
Delete the temporary queue when it is empty.

After these steps, the new index node is ready to use, and incoming queries can
be forwarded to the new node for processing through the load balancing mechanism.
The subsequent insert/update requests are forwarded immediately to replica nodes
to update the replicas. The mechanism implements a relaxed consistency, and there
is a small window that replicas are in different states. Our choice is based on the
assumption that the arrival rate of insert/update requests is much lower than that of
the query requests. This is realistic in our target problem domain in which queries
can tolerate data inconsistency in a short time frame within a predefined freshness
bound. However, our replication mechanism can be configured to support strong data
consistency when needed. This only requires modifications in Steps 2 and 3 to hold
the incoming query requests in the temporary queue before the snapshot is taken.
The drawback is the increase of response time of the queries in the temporary queue.

On the other hand, a DHT routing node caches the locations of nodes that answer
queries passing through it. By doing so, the subsequent query to the same type of
data may be directed to a replica of an indexing node, and it avoids going through
the original index node. This further can reduce the workload of the original index
node.

To balance the load on replicas, our system requires each replica node to update
its queue length to other replica nodes when the change exceeds a predefined per-
centage. Each replica node therefore can forward requests to the least-loaded node
when its own load exceeds a predefined threshold. As our load-updating mechanism
does not guarantee the load information fresh enough, there is a chance that a replica
node is no longer lightly loaded when a forwarded request arrives. In this case, the
request is forwarded further to another lightly loaded node based on the node’s local
information. A request is forwarded like this until a predefined maximum forwarding
hops is reached. The query will be inserted into the request queue in the last node
it visits. When this occurs, the whole content distribution network for the data in-
dex is likely to be overloaded. The last hop node of the request will elect itself to
expand the content distribution network by recruiting new replica node to join. The
candidate node is selected randomly from the DHT ID space.

11.3.2 Answering Range Queries with Replicas

Range queries seek nodes with data regions that intersect the query region. Because
many MBRs (minimum bounding rectangles) may intersect with a given query re-
gion, the index node may return the locations of multiple data nodes for answering a
range query. As a result, the response time of the query is determined by the slowest
data node that stores the data intersecting the data region in the query.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

230 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

With the self-organized replication mechanism, we effectively can reduce the
chance that an overloaded node becomes the bottleneck for answering range queries.
As each index/data node creates replica to keep the length of its request queue lower
than a predefined threshold, the difference in request queue lengths among data nodes
selected to answer a range query is bounded by the threshold of these queues. As a
result, it is unlikely that the range query answering takes a long time waiting for a
slow data node.

11.4 EVALUATION

We run extensive simulations to evaluate our mechanism. Our simulator uses FreeP-
astry to construct the underlying DHT network, which consists of 1000 nodes in
total.

We generate 100,000 data objects randomly in multidimensional space (two- and
three-dimensional) and publish them on the overlay by indexing data values on these
dimensions. The length of each dimension is 1000 units. We randomize the index
processing time between 10 ms and 20 ms, and the data processing time between 40
ms and 60 ms. The setting is based on the data access time in common database sys-
tems. The query forwarding delay between two nodes is set to 2 ms. The capacity of
each node (query queue length), including indexing node and data node, is set to 10.

11.4.1 Point Query Processing Performance

We used a two-dimensional space without overlapped regions to investigate the cost
of point queries. Point query cost is measured by the number of routing hops and
response time. Queries are generated using two different distributions to simulate
different access patterns. In the first one, clients search for data points uniform and
randomly distributed in data space. The data points in a two-dimensional space are
illustrated in Figure 11.7. In the second one, clients search for data points that are

1000

900

800

700

600

500

400

300

200

100

0
0 200 400 600 800 1000

Figure 11.7 Illustration of data points of 1000 queries (uniform distributed).

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11.4 EVALUATION 231

1000

800

600

400

200

0
0 200 400 600 800 1000

Figure 11.8 Illustration of data points of 1000 queries (zipf distribution with α = 1.0).

distributed in the data space according to Zipfian, or zipf distribution, as shown in
Figure 11.8. Zipf distribution creates a high access load toward a few data nodes
(hotspots). We use 30,000 queries to feed the system. Queries arrive in the system in
a Poisson process.

11.4.1.1 Response Time. Figrue 11.9 shows the average query response time
under a different query arrival rate. As expected, queries to skewed data points in-
cur a higher average response time than those to uniformly distributed data points.
This is because skewed queries easily can overwhelm nodes hosting popular data
and therefore trigger the creation of more replicas. The cost of creating additional
replicas results in a longer average query response time. One may notice that in

Average response time vs. query arrival rate

T
im

e
(m

s)

Mean query arrival rate (query/second)

500

450

400

350

300

250

200

150

100

50

0

5000 10000 15000 20000 25000

Skewed

Uniform

30000

Figure 11.9 Average query response time under different workload – point query, 30000
queries.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

232 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

Utilization of index replicas

U
ti

liz
at

io
n

Mean query arrival rate (query/second)

100%

80%

60%

40%

20%

0%
500 1000 2000 3000 4000 5000

Figure 11.10 Utilization of index replicas under different workload.

Figure 11.9, the average response time for queries of uniformly and randomly dis-
tributed data points keeps increasing, whereas the average response time for queries
of skewed data points quickly becomes stable. This can be explained by the number
of nodes involved in query answering. When workload is low, queries are answered
by more nodes in a “uniform” case than in a “skewed” case. The replica creation
speed is slower in “uniform” than in “skewed.” When the workload becomes high,
queries overwhelms most data nodes, even for nonskewed queries, and incur increas-
ing replica creation cost.

11.4.1.2 Node Utilization. We measure how load is balanced among replicas by
comparing the node utilization of each replica. The node utilization is calculated as
the percentage of busy time in the node’s lifetime.

The lifetime of a node is between its creating time and the time when the system
finishes processing the last query.

Figure 11.10 shows the average utilization of index content nodes is greater than
80%. When the query arrival rate increases, the average utilization slightly decreases.
This is mainly because of the increasing cost of query forwarding and load updating
among replica nodes. On the other hand, our self-organizing mechanism can avoid
creating unnecessary replicas, as there is no significant decrease in the average node
utilization.

Figure 11.11 shows the standard deviation of the replica utilizations of index
nodes, which directly reflects how imbalanced the load is among replicas of an in-
dex node. As the query arrival rate increases, the difference between replica nodes
increases; however, the difference is generally very small.

Figure 11.12 and Figure 11.13 measure the load balancing among replicas of
data nodes. The load among replicas of data nodes is not as balanced as that among
replicas of the index node. There are two factors contributing to this:

1. The load on a data node is affected by the performance of the index node that
dispatches queries to it

2. More data nodes are involved in answering queries in the data layer

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11.4 EVALUATION 233

Standard deviation of utilization of index
node replicas

Mean query arrival rate (query/second)

0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

500 1000 2000 3000 4000 5000

Figure 11.11 The standard deviation of utilization of replicas of an index node.

11.4.2 Range Query Processing Performance

In range query experiments, we compose range queries by selecting the central data
points of queries in multidimensional data space according to uniform random dis-
tribution. The sizes of query windows (the area has equal edge length) are set to be
0.25%, 1%, and 2% of the total area size.

Our range query experiments are designed to observe how a content distribution
network grows and how it performs when it becomes stable. To achieve this, we feed
the simulator two groups of queries with queries arriving at the same rate in each
group. The first group consists of 10,000 queries. These queries make the content
distribution network grow to a size capable of serving queries in a satisfactory re-
sponse time. The second group also consists of 10,000 queries. These queries are
used to measure the query serving quality when the content distribution network is
built. The following results are collected during the stable phase.

1000

100%

80%

60%

40%

20%

0%
5000 10000

Mean query arrival rate (query/second)

Avg. Data node utilization under different query arrival rate

U
ti

liz
at

io
n

15000 20000

Figure 11.12 Utilization of data node replicas under different workload: uniformly distributed
point queries.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

234 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

Standard deviation of data node utilization under different
query arrival rate

Mean query arrival rate (query/second)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1000 5000 10000 15000 20000

Figure 11.13 The standard deviation of utilizations of data node replicas: in uniformly dis-
tributed point queries.

11.4.2.1 Response Time. Figure 11.14 and 11.15 show the average query re-
sponse under different query arrival rates and different query window sizes.

We can see that the response time is affected by query window size. This is be-
cause a bigger query window overlaps more MBRs in an R-tree, and more nodes
therefore are involved in answering a query.

Figures 11.14 and 11.15 also show that query response time is not sensitive to the
change of query arrival rate, which reveals the good scalability of our mechanism.
One also may find that the dimensionality does not affect the response time much by
comparing Figure 11.14 and Figure 11.15.

Avg. query response time vs. query arrival rate - 2D

Mean query arrival rate (query/second)

T
im

e
(m

s)

0

100

200

300

400

500

600

5000 10000 15000 20000

0.25%
1%
2%

Figure 11.14 Average query response time for a two-dimensional query with 10,000 queries.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11.4 EVALUATION 235

Avg. query response time vs. query arrival rate - 3D

Mean query arrival rate (query/second)

T
im

e
(m

s)

0

100

200

300

400

500

600

5000 10000 15000 20000

0.25%
1%
2%

Figure 11.15 Average query response time for a three-dimensional query with 10,000 queries.

11.4.2.2 Node Utilization. We measured the node utilization distribution. Fig-
ure 11.16 shows that the overall node utilization in the range query test is lower than
that in the point query test. This is because the overlapping of query windows makes
the distribution of requests among nodes slightly uneven, but we can see only about
10% of nodes are underutilized in our experiment.

11.4.3 Growth of the Replicas of an Indexing Node

We visualize the replica creating process for an index node in Figure 11.17 and
Figrue 11.18. Figure 11.17 plots how the replica number of an indexing node grows

Distribution of data node utilization

Load (percentage of capacity)

C
o

n
te

n
t

n
o

d
es

(Query arrival rate: 10K Q/S, window size: 0.25%)

60%

50%

40%

30%

20%

10%

0%
0–20% 20–40% 40–60% 60–80% 80–100%

Figure 11.16 Distribution of data node utilization.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

236 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

5000 Q/S
2000 Q/S

100
#

N
o

d
es

Number of processed queries

80

60

40

20

0 0 500

1000

2000

3000

4000

5000

10000

20000

30000

40000

50000

60000

100000

Replica number change of an index node

Figure 11.17 The change of replica number of an index node.

along with the number of queries processed. Figure 11.18 plots how this process af-
fects the query-answering performance. We test this under two different workloads.
These figures show that when the replica creation completes and its capacity can
serve queries at the given arrival rates, the response time decreases, and the query
service quality falls below the predefined threshold (10 queries in the queue in this
case).

At the beginning of the test, the queuing time increases rapidly until a replica is
created and starts to serve queries. It is important to mention that the replica growth
pattern of indexing nodes is not affected by the type of queries (i.e., range or point
queries). The replica growth pattern is not affected by query distribution in a point
query case either. The experiment shows that our mechanism enables the system to
scale up in a self-organizing manner.

5000 Q/S
2000 Q/S

400

T
im

e
(m

s)

Number of processed queries

300

200

100

0 0 500

1000

2000

3000

4000

5000

10000

20000

30000

40000

50000

60000

100000

Query processing time in an index node

Figure 11.18 Index query queuing time vs. number of processed queries.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

11.6 SUMMARY 237

11.5 RELATED WORK

Our data model is related to work on flexible metadata management in social net-
working sites. Yu et al. [24] proposes a generic data model for tags and data at-
tributes. Differing from their effort on clustering tags and attributes, our focus is
scalability of storing and accessing flexibly indexed data.

Multidimensional indexing, including low- and high-dimensional indexing, has
received extensive attention in the context of centralized databases [2, 5, 6, 8, 13].
Adapting these methods to the peer-to-peer (P2P) systems encounters four challeng-
ing issues: distribution, dynamism, data evolution, and decentralization [10]. There
are efforts on partitioning multidimensional data [10, 16] in a P2P environment. As
the multidimensional data in our data model contain only location information of the
actual data and data indexes are distributed according to index types, an index node in
our mechanism does not need to store much information, and therefore, partitioning
an R-tree is not of our concern.

Compared with work on supporting range query in a DHT network [1, 4, 12, 15,
17, 18], our approach simply uses R-trees to store range information and maps these
trees to DHT nodes corresponding to the attribute set they represent. Our replication
mechanism effectively can overcome the single point of failure problem by creating
additional replicas at the time an index node is created.

Our mechanism bears some similarities to the Google file system (GFS) [23],
which uses a centralized server to store metadata of data chunks distributed in a
Google cluster. It differs from GFS in the following aspects:

1. There are many index nodes in our systems, and an index node is only respon-
sible for data indexed using a certain attribute set.

2. The replicas of an index node are managed in a self-organizing manner in our
mechanism.

Our data store deals with scalability of data storage and data access simultane-
ously. There are few approaches to this. In the context of multidimensional indexing
schemes, Jagadish et al. [9] attempt to address both problems based on migrating
partial data from a node. This is inadequate in highly skewed data access distribu-
tions. In such cases, a single popular data value can make the node heavily loaded;
transferring this value to another peer node only transfers the problem but does not
solve. Therefore, the problem should be addressed better using replication of popular
values to distribute the access load among the peers storing such replicas.

11.6 SUMMARY

In this chapter, we discussed how to manage effectively fast evolving scientific data.
We described a flexible data store for managing distributed scientific data. To man-
age data annotations, which form an important part of bioinformatics data, our data

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

238 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA

store supports a multidimensional data indexing scheme. The data indexing model
is unique because of its flexibility and its support by a underlying self-organized
system. The scalability of the data store is addressed through data partitioning and
replication. The replication decision is made by each node based on local informa-
tion, and the load-balancing among replicas is achieved in a decentralized manner.
Our extensive simulations showed that the data store scales on demand for both data
storing and accessing.

REFERENCES

1. J. Aspnes and G. Shah. Skip graphs. Proceeding of the 14th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Baltimore, MD, 2003, pp. 384–393.

2. N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and
robust access method for points and rectangles. SIGMOD, conference, Atlantic City, NJ,
1990, pp. 322–331.

3. J.L. Bentley. Multidimensional binary search trees used for associative searching. Com-
mun ACM, 18(9):509–517, 1975.

4. H. Jagadish, B.C. Ooi, and Q.H. Vu. BATON: A balanced tree structure for peer-to-peer
networks. VLDB, conference, Trondheim, Norway, 2005, pp. 661–672.

5. E. Bertino, B.C. Ooi, R. Sacks-Davis, K. Tan, J. Zobel, B. Shidlovsky, and B. Canta-
nia. Indexing Techniques for Advanced Database Applications. Kluwer Academics, New
York, 1997.

6. C. Bohm, S. Berchtold, D.A. Keim. Searching in high-dimensional spaces: Index struc-
tures for improving the performance of multimedia databases. ACM Comput Surv,
33(3):322–373, 2001.

7. A. Mondal, K. Goda, and M. Kitsuregawa. Effective load-balancing via migration and
replication in spatial grids. DEXA, conference, Prague Czech Republic, 2003, pp. 202–
211.

8. A. Guttman. R-trees: A dynamic index structure for spatial searching. SIGMOD, confer-
ence, Boston, MA, 1984, pp. 47–57.

9. H.V. Jagadish, B.C. Ooi, Q.H. Vu, R. Zhang, and A. Zhou. VBI-Tree: A peer-to-
peer framework for supporting multi-dimensional indexing schemes. ICDE, conference,
Atlanta, GA, 2006.

10. P. Ganesan, B. Yang, and H. Garcia-Molina. One torus to rule them all: multidimensional
queries in P2P systems. Proceedings of the Seventh International Workshop on the Web
and Databases (WebDB 2004), Paris, France, 2004, pp. 19–24.

11. V. Gaede and O. Gunther. Multidimensional access methods. ACM Comput Surv, 30(2),
1998, pp. 170–231.

12. O.D. Sahin, A. Gupta, D. Agrawal, and A.E. Abbadi. A peer-to-peer framework for
caching range queries. ICDE, Boston, MA, 2004, pp. 165–176.

13. T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for multi-
dimensional objects. VLDB, Brighton, England, 1987, pp. 507–518.

14. A. Rowstron and P. Druschel. Pastry: scalable, decentralized object location and routing
for large-scale peer-to-peer systems. Proceedings of Middleware, Heidelberg, Germany,
2001, pp. 329–350.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

REFERENCES 239

15. A. Gupta, D. Agrawal, and A.E. Abbadi. Approximate range selection queries in peer-to-
peer systems. CIDR, conference, Asilomar, CA, USA, 2003.

16. C. Zhang, A. Krishnamurthy, and R.Y. Wang. Skipindex: towards a scalable peer-to-peer
index service for high dimensional data. Technical Report, Princeton University, 2004.

17. T. Pitoura, N. Ntarmos, and P. Triantafillou. Replication, load balancing and efficient
range query processing in DHTs. EDBT, Munich, Germany, 2006, pp. 131–148.

18. A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram. P-Tree: A P2P index for
resource discovery applications. WWW, New York, NY, 2004, pp. 390–391.

19. Y.J. Kim and J.M. Patel. Rethinking choices for multi-dimensional point indexing: mak-
ing the case for the often ignored quadtree. CIDR, Asilomar, CA, 2007, pp. 281–291.

20. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value
store. SOSP, Stevenson, WA, 2007, pp. 205–220.

21. F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A.
Fikes, and R.E. Gruber. Bigtable: A distributed storage system for structured data. OSDI,
Seattle, WA, 2006, pp. 205–218.

22. C. Wang, B.A. Alqaralleh, B.B. Zhou, F. Brites, and A.Y. Zomaya. Self-organizing con-
tent distribution in a data indexed DHT network. P2P, Cambridge, England, 2006, pp.
241–248.

23. S. Ghemawat, H. Gobioff, and S-T. Leung. The Google file system. SOSP, Bolton Land-
ing, NY, 2003, pp. 29–43.

24. B. Yu, G. Li, B.C. Ooi, and LZ. Zhou. One table stores all: Enabling painless free and
easy data publishing and sharing. CIDR, Asilomar, CA, 2007, pp. 142–153.

P1: OSO
c11 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

12
ALGORITHMS FOR THE

ALIGNMENT OF
BIOLOGICAL SEQUENCES

Ahmed Mokaddem and Mourad Elloumi

12.1 INTRODUCTION

Bioinformatics is a science dedicated to the automatic processing of information
related to biological macromolecules (i.e., DNA, RNA, and proteins). These macro-
molecules are coded by strings called biological sequences. Every character in a
string codes a constituent of the macromolecule. DNA, RNA, and proteins can be
coded by sequences in which every character is in {A, T, C, G}, {A, U, C, G},
and {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}, respectively.
Among the most studied problems in bioinformatics is the comparison of biological
sequences in order to identify similar substrings, occuring in the same order, in these
sequences. This operation makes a very important contribution in the analysis of bi-
ological macromolecules. In fact, it can reveal information about shared functions of
biological macromolecules, coming from several different organisms, by the identi-
fication of regions that are shared by the sequences coding these macromolecules.
These regions, which have been conserved during evolution, often play an important
structural or functional role and, consequently, shed light on the mechanisms and
the biologic processes in which these macromolecules participate. In addition, the
comparison of biological sequences permits the detection of functional regions. It is
also used in evolutionary studies to analyze relationships that exist between species
and establish whether two, or several, macromolecules are homologous (i.e., have a

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

241

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

242 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

common biological ancestor) and to reconstruct the phylogenetic tree that links them
to this ancestor. Another application of the comparison of biological sequences is the
prediction of secondary/tertiary structures by comparing the sequences of biological
macromolecules with known secondary/tertiary structures to those with unknown
ones. The comparison of biological sequences also facilitates the classification of
these sequences in different families according to the shared similar regions. The
comparison of biological sequences can be achieved via aligning these sequences;
it consists in optimizing the number of matches between the characters occurring in
the same order in each sequence. We distinguish two main classes of alignments:

1. Global alignments: A global alignment involves the alignment of entire se-
quences. Global alignments are suitable when the sequences to compare are
closely related.

2. Local alignments: A local alignment involves the alignment of portions of
sequences. Local alignments are suitable when the sequences to compare are
distantly related.

Although optimal algorithms exist for the alignment of two sequences, also called
pairwise alignment, the problem of aligning more than two sequences, also called
multiple alignment, is Nondeterministic Polynomial (NP)-complete [14,29].

12.2 ALIGNMENT ALGORITHMS

In the next subsection, we present pairwise alignment algorithms.

12.2.1 Pairwise Alignment Algorithms

There are two types of pairwise alignment algorithms: pairwise global alignment
algorithms and pairwise local alignment ones. Let us begin with pairwise global
alignment algorithms.

12.2.1.1 Pairwise Global Alignment Algorithms. There are two main ap-
proaches to construct a pairwise global alignment:

The Dynamic programming approach [6,7]: The most used dynamic program-
ming algorithm for pairwise global alignment is the one of Needleman and
Wunsch [58]. By using this algorithm, the construction of a pairwise global
alignment of two sequences S1 and S2, with respective lengths m and n, is
performed in two steps:

1. During the first step, we construct a matrix M of size mn, and we initialize it
by using a substitution matrix (e.g., Percent Accepted Mutations (PAM) [21],
Blocks Substitution Matrix (BLOSUM) [38]). Then, we transform matrix M
by adding scores line by line, starting by the rightmost lower cell and ending

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

12.2 ALIGNMENT ALGORITHMS 243

Table 12.1 Gap penalties, where k is the number of
successive gaps, and a, b, and c are constants

Linear gap penalty P = ak
Affine gap penalty P = ak + c
Logarithmic gap penalty P = b log(k) + c
Logarithmic-affine gap penalty P = ak + b × log(k) + c

by the leftmost upper one, by using the following equation:

M[i, j] = se(i, j) + max(M[x, y]) (12.1)

where x = i + 1 and j < y ≤ n or i < x ≤ m and y = j + 1, and se(i, j) is
the score between the character at position i in S1 and the one at position j in
S2. We also can incorporate in the equation a gap penalty. A gap is a character
(e.g., −), inserted in aligned sequences so that aligned characters are found in
front of each other. It is sufficient to subtract from the calculation of every sum
a penalty according to their position. So, equation (12.1) becomes:

M[i, j] = se(i, j) + max

⎛

⎜
⎝

M[i + 1, j + 1],

M[x, j + 1] − P,

M[i + 1, y] − P

⎞

⎟
⎠ (12.2)

where i + 2 < x ≤ m and j + 2 < y ≤ n, and P is a gap penalty.
The gap penalty P can have several possible forms. Examples of gap penalties
are given in Table 12.1.

2. During the second step, we establish a path in the matrix, called maximum
scores path, which leads to an optimal pairwise global alignment. The con-
struction of this path is achieved by starting from the cell that contains the
maximum score in the transformed matrix, which corresponds normally to
the leftmost upper cell and allows three types of possible movements (see
Figure 12.1):

(i) Diagonal movement: This movement corresponds to the passage from a
cell (i, j) to a cell (i + 1, j + 1).

(ii) Vertical movement: This movement corresponds to the passage from a cell
(i, j) to a cell (i + 1, j).

(iii) Horizontal movement: This movement corresponds to the passage from a
cell (i, j) to a cell (i, j + 1).

The time complexity of the algorithm of Needleman and Wunsch is O(mn).
Other dynamic programming algorithms for pairwise global alignment exist,
such as the one of Huang and Chao [40] and NGILA [16].

The Anchoring approach: Pairwise global alignment algorithms that adopt this
approach operate as follows: First, they search for identical or similar regions
in the two sequences by using different techniques such as suffix trees and dot

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

244 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

Figure 12.1 Backtracking in a two-dimensional matrix.

matrices or by using a local alignment algorithm such as CHAOS [13]. These
regions are called anchors. Then, they form the final alignment by chaining the
anchors identified in the previous step. Finally, they align the regions situated
between the anchors by using a standard dynamic programming algorithm or
by applying the same procedure, by recursive calls, or by combining both.
Compared with the dynamic programming approach, the anchoring approach
is economic in memory space, especially when applied to long sequences.

Among the pairwise global alignment algorithms that adopt the anchoring
approach, we can cite MUMMER [22], AVID [10], which uses suffix trees to
detect anchors, GLASS [5], LAGAN [12], which uses the CHAOS algorithm
[13], and ACANA [41].

12.2.1.2 Pairwise Local Alignment Algorithms. There are two main ap-
proaches to construct a pairwise local alignment:

The Dynamic programming approach: The most used dynamic programming al-
gorithm for pairwise local alignment is the one of Smith and Waterman [77].
The main difference with the algorithm of Needleman and Wunsch [58] is that
any cell of the matrix M can be considered as a starting point for the calcu-
lation of the scores and that any score that becomes lower than zero stops the
progression of the calculation of the scores. The associated cell is then reini-
tialized to zero and can be considered as a new starting point. That implies
that the selected system of scores has negative scores for bad associations that
can exist between the characters of the sequences. The equation used for the
calculation of each score during the transformation of the initial matrix is as

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

12.2 ALIGNMENT ALGORITHMS 245

follows:

M[i, j] = max

⎛

⎜
⎜
⎜
⎝

se(i, j) + M[i + 1, j + 1],

se(i, j) + max(M[x, j + 1] − P),

se(i, j) + max(M[i + 1, y] − P),

0

⎞

⎟
⎟
⎟
⎠

(12.3)

where i + 2 < x ≤ m and j + 2 < y ≤ n, se(i, j) is the score between the
character at position i in S1 and the one at position j in S2, P is a gap penalty,
and m and n are the lengths of the sequences S1 and S2 to align, respectively.

The time complexity of the algorithm of Smith and Waterman is O(mn).

The Seeding approach: Pairwise local alignment algorithms that adopt this ap-
proach use a hashing function to define a seed and use it as a model to detect
alignments. A seed is a substring made-up by characters that can be contigu-
ous or not and defined on a precise alphabet. A seed is characterized by its
extent, which represents the length of the substrings that can be covered by the
seed, and by its weight, which represents the number of characters that must
appear simultaneously in the seed and in the substrings covered by the seed.
These characters are called matches. A seed can be represented either by a set
{i, i, i, . . . }, where i is a position of a match, or by a substring defined on alpha-
bets like {#, -},{#, @, -} or {0,1}, where “#” or “1” represents a match, “-” or
“0” represents a joker character, and “@” represents the characters associated
with the following substitutions (“G” with “C” or “A” with “T”).

The seeding approach is based on the notion of filtering: It involves, first, the
deletion of the zones that have no possibility of participating in the final local
alignment and, second, the conservation of the positions that verify the seed.

The principle of the seeding approach first comprises defining the seed
used for filtering then, detecting in every sequence the positions of the regions
that verify the seed. Among pairwise local alignment algorithms that adopt
the seeding approach, we cite FASTA [64], BLAST [1], PATTERNHUNTER
[53], CHAOS [13], YASS [59], and BLASTZ [73]. Table 12.2 lists discussed
pairwise alignment softwares.

12.2.2 Multiple Alignment Algorithms

In the next subsection, we present multiple alignment algorithms. There are two main
types of multiple alignment algorithms: multiple global alignment algorithms and
multiple local alignment ones. However, there are also algorithms that combine local
and global alignment.

12.2.2.1 Multiple Global Alignment Algorithms. There are four main ap-
proaches to construct a multiple global alignment:

The Dynamic programming approach: A possible exact dynamic programming
algorithm for the multiple global alignment problem is a generalization of the

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

246 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

Table 12.2 Pairwise alignment softwares

Software Type Approach Link

ACANA [41] Global Anchoring http://biomedempire.org
AVID [10] Global Anchoring http://baboon.math.berkeley.edu/

avid supplementary/avid.html
BLAST [1] Local Seeding http://www.ebi.ac.uk/Tools/blast/
CHAOS [13] Local Seeding http://www.cs.toronto.edu/∼brudno/chaos/
FASTA [64] Local Seeding http://www.ebi.ac.uk/Tools/fasta/
LAGAN [12] Global Anchoring http://genome.lbl.gov/cgi-bin/VistaInput?

align pgm=lagan&num seqs=2
MUMMER [22] Global Anchoring http://mummer.sourceforge.net/
NGILA [16] Global Dynamic http://scit.us/projects/ngila/

Programming
YASS [59] Local Seeding http://bioinfo.lifl.fr/yass/yass.php

pairwise global alignment algorithm of Needleman and Wunsch [58]. Mul-
tiple global alignment algorithms that are based on a dynamic programming
approach operate in two steps:

1. During the first step, they fill a matrix M of size L N , where N is the number
of the sequences and L is the maximal length of a sequence.

2. Then, during the second step, they make a backtracking in the matrix M to
construct a maximal score path that corresponds to an optimal alignment (see
Figure 12.2).

Figure 12.2 Backtracking in a three-dimensional matrix.

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

12.2 ALIGNMENT ALGORITHMS 247

An exact dynamic programming algorithm for the multiple global alignment prob-
lem is exponential in computing time and in memory space. A heuristic dynamic
programming algorithm has been developed and implemented in the Measurement
Systems Analysis (MSA) software [52]. The MSA software can handle only a few
short sequences and is not often used in practice.

The Progressive approach: By using the progressive approach, we construct a
multiple alignment in a gradual manner. First, we construct alignments for
each pair of sequences in the set of N sequences to align by using a pairwise
alignment algorithm. Then, we assign to each pairwise alignment a score by
using a score function. Finally, we construct the final multiple alignment by
using an algorithm based on the pairwise alignments obtained. The two most
similar sequences are aligned then; at each iteration, we align the aligned se-
quences with another sequence chosen according to precise criteria. Hence, we
gradually align larger and larger sets of sequences until all the N sequences are
aligned.

The progressive approach is the most used multiple global alignment ap-
proach, and several algorithms have been proposed. These algorithms differ
according to the following criteria:

1. The pairwise alignment algorithm (dynamic programming, anchoring)

2. The score function or the distance between a pair of sequences (score [14,61],
substitution matrix [21,38], . . .)

3. The order of merging sequences in the final alignment (guide tree [78,71], . . .)

4. The method of aligning sequences during the multiple alignment stage (align-
ing profiles [34], aligning alignments [44,45,94], . . .)

Multiple global alignment algorithms adopting the progressive approach are fast,
simple to implement, and require a small memory space. However, they present two
major drawbacks:

1. The restriction of only comparing two sequences at a time rather than compar-
ing all sequences simultaneously does not enable taking into consideration the
common characters to a set of sequences.

2. The constructed alignment depends on the order in which the sequences are
aligned and on the chosen score.

Among multiple global alignment algorithms adopting the progressive approach,
we cite the one of Feng and Doolitle [31], CLUSTALW [85], T-COFFEE [62],
DBCLUSTAL [86], MAVID [11], KALIGN [48], PRALINE [75], SPEM [97],
EXPRESSO [3], PSALIGN [83], COBALT [63], PROMALS [67], and GRAMA-
LIGN [70].

To address the drawbacks of the progressive approach, a stage of refinement of the
multiple global alignments often is applied. Multiple global alignment algorithms

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

248 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

adopting the progressive approach that apply a refinement stage are called hybrid
algorithms. Different strategies of refinement have been developed (e.g., the iterative
construction of the guide tree until the stabilization of this tree, or the division of the
guide tree in subtrees followed by the alignment of the sequences of each subtree,
separately, and the integration of the obtained alignments).

Hybrid algorithms include MULTALIN [20], PRRP [36], MULTI-LAGAN [13],
MUSCLE [28], PROBCONS [25], MAFFT [43], and MSAID [54].

The Iterative approach: Algorithms adopting this approach construct an initial
alignment, then during each iteration, they perform a set of modifications on
the current alignment to construct a new one. The iterations are repeated un-
til convergence (i.e., no improvement can be made on the current alignment).
Several ways have been described to modify an alignment [92]:

1. A disruption such as an insertion/deletion of one or more gaps is made in the
alignment.

2. One or more sequences are excluded from the initial alignment. The remaining
sequences are realigned, and finally, the new alignment is aligned with the
excluded sequences.

3. The alignment is divided into two groups, then each group is aligned sepa-
rately, and finally, the two alignments are aligned.

4. The alignment is divided into two groups, then a profile is constructed for each
alignment, and finally, the two profiles are aligned.

The iterative approach is especially suitable for stochastic algorithms such
as genetic algorithms and simulated annealing ones. It can improve the quality
of an alignment but needs more computing time than the progressive approach.

Multiple global alignment algorithms adopting the iterative approach also
can incorporate Hidden Markov Models (HMM). Among these algorithms, we
cite HMMER [26], SAM [42], SATCHMO [27], and FSA [9]. The time com-
plexities of SAM and SATCHMO are, respectively, O(L2 N K) and O(L2 N 2 +
L N 3), where N is the number of the sequences, L is the length of a sequence,
and K is the number of the iterations.

Other multiple global alignment algorithms adopting the iterative approach
include SAGA [60] and QOMA [96].

The Divide-and-conquer approach: The multiple global alignment algorithms
that adopt this approach process the sequences to align simultaneously. By us-
ing these algorithms we operate in three steps. First, we choose a position in
each sequence, which subdivides the sequence into two smaller ones: a prefix
and a suffix. We thus obtain two new families of sequences: the family of pre-
fixes and the family of suffixes. Then, we reiterate recursively this operation on
the new families until we obtain small sequences that can be aligned optimally.
Finally, the alignment of the initial sequences is obtained by concatenating the
alignments of the small ones.

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

12.2 ALIGNMENT ALGORITHMS 249

The drawback of the divide-and-conquer approach is that the choice of the
division positions in each sequence has an influence on the construction of the
alignements of the generated families of prefixes and suffixes.

Multiple global alignment algorithms that adopt the divide-and-conquer ap-
proach include DCA [80] and a-µALIGN [30]. The time complexity of a-
µALIGN is O(N 2L2(log(L))2), where N is the number of the sequences and
L is the length of the longest sequence.

A new category of multiple global alignment algorithms, called constrained mul-
tiple alignment algorithms, tries to improve the biological significance of an align-
ment by integrating structural and/or functional information, extracted from different
biological databases, or by using programs of comparison of secondary/tertiary struc-
tures. Several techniques have been proposed to improve the biological significance
of an alignment, among which, we mention:

1. Alignment of significant motifs extracted from biological databases in each se-
quence. The remainder of the sequences is aligned by using one of the methods
described earlier

2. Construction of a multiple global alignment by using local structural alignment
of secondary/tertiary structures

Constrained multiple alignment algorithms include DBCLUSTAL [86], FMA-
LIGN [17], PRALINE [75], SPEM [97], EXPRESSO [3], MUMMALS [66],
PSALIGN [83], HSA [95], COBALT [63], and PROMALS [67].

12.2.2.2 Multiple Local Alignment Algorithms. There are two main ap-
proaches to construct a multiple local alignment:

1. Dynamic programming approach: A possible exact dynamic programming al-
gorithm for the multiple local alignment problem is a generalization of the
pairwise local alignment algorithm of Smith and Waterman [77]. An exact
dynamic programming algorithm for the multiple local alignment problem is
exponential in computing time and in memory space.

2. Motif finding approach: Multiple local alignment algorithms adopting this ap-
proach are based on the search of motifs in the set of sequences to align. These
algorithms are generally statistical ones. The algorithms adopting the mo-
tif finding approach include MACAW [74], MATCHBOX [23], GIBBS [50],
MEME [4], and GLAM [32].

Other multiple local alignment algorithms have been defined and are based on
other techniques. Among these algorithms, we mention DIALIGN [56], which is
based on the use of dotplots to extract common fragments in each pair of sequences,
TSUKUBA-BB [39], which is based on a branch-and-bound approach, POA [51],
which is based on a graph representation of an alignment, CHAOS/DIALIGN [13],

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

250 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

which is based on the CHAOS algorithm to search for similar regions and the DI-
ALIGN principle of consistency, and Align-m [91].

Let us note that there are algorithms that refine multiple alignments to improve
the quality of these alignments and to make them more meaningful. Among these
algorithms, we mention:

1. RASCAL [88]: The RASCAL algorithm operates in two steps. During the first
step, it analyzes the initial multiple alignment by localizing the well-aligned
regions by using the Mean Distance (MD) score. Then, during the second step,
it detects the badly aligned regions and realigns them.

2. REFINER [18]: The REFINER algorithm realigns each sequence with the pro-
file of the alignment of the remaining sequences. The displacement of blocks
in the sequences is allowed under the condition that a block does not contain
any gaps. Convergence is obtained when all iterations are applied or when no
improvement is observed in the alignment.

3. RF [92]: The RF algorithm is based on an approach similar to the one on which
REFINER is based but without any condition on the blocks. The iterations are
stopped if convergence is obtained or if the number of the iterations reaches
2N 2, where N is the number of the sequences.

Table 12.3 lists discussed multiple alignment software.

12.3 SCORE FUNCTIONS

A score function, or objective function, is a function that assigns to an alignment
a score that reflects its quality or significance. The alignment that has the maximal
score is considered to be an optimal alignment. Score functions thus optimize math-
ematical scores and do not necessarily reflect a biological significance. The most
widely used score functions are:

1. Sum of pairs [14]: The Sum of Pairs (SP) score is used by most alignment
softwares. The SP score corresponds to the sum of the scores for all pairs of
characters in the alignment and is defined by the following equation:

SP(A) =
L∑

i=1

∑

1<k< j<N

s(wk[i], w j [i]) (12.4)

where wk[i] and w j [i] are the characters in the sequences k and j that are in
the i th column of the alignment A, L is the length of the alignment A, and s is
the score for aligning a pair of characters.

2. Weighted sum of pairs [35]: The Weighted Sum of Pairs (WSP) score is a
variant of the SP score that assigns a weight to each sequence according to
its importance in the alignment. This weight depends on the relationships

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

Ta
b

le
12

.3
M

u
lt

ip
le

al
ig

n
m

en
t

so
ft

w
ar

es

So
ft

w
ar

e
Ty

pe
A

pp
ro

ac
h

L
in

k

C
L

U
ST

A
L

W
[8

5]
G

lo
ba

l
Pr

og
re

ss
iv

e
w

w
w

.c
lu

st
al

.o
rg

/
C

O
B

A
LT

[6
3]

G
lo

ba
l

Pr
og

re
ss

iv
e

ft
p:

//f
tp

.n
cb

i.n
lm

.n
ih

.g
ov

/p
ub

/a
ga

rw
al

a/
co

ba
lt

D
B

C
L

U
ST

A
L

[8
6]

G
lo

ba
l

Pr
og

re
ss

iv
e

ft
p:

//f
tp

-i
gb

m
c.

u-
st

ra
sb

g.
fr

/p
ub

/D
bC

lu
st

al
D

C
A

[8
0]

G
lo

ba
l

D
iv

id
e-

an
d-

C
on

qu
er

ht
tp

://
bi

bi
se

rv
.te

ch
fa

k.
un

i-
bi

el
ef

el
d.

de
/d

ca
/s

ub
m

is
si

on
.h

tm
l

D
IA

L
IG

N
[5

6]
L

oc
al

M
ot

if
Fi

nd
in

g
ht

tp
://

bi
bi

se
rv

.te
ch

fa
k.

un
i-

ie
le

fe
ld

.d
e/

di
al

ig
n/

su
bm

is
si

on
.h

tm
l

E
X

PR
E

SS
O

[3
]

G
lo

ba
l

Pr
og

re
ss

iv
e

ht
tp

://
w

w
w

.tc
of

fe
e.

or
g

FS
A

[9
]

G
lo

ba
l

It
er

at
iv

e
ht

tp
://

or
an

gu
ta

n.
m

at
h.

be
rk

el
ey

.e
du

/f
sa

G
L

A
M

[3
2]

L
oc

al
M

ot
if

Fi
nd

in
g

ht
tp

://
m

em
e.

sd
sc

.e
du

/m
em

e4
/c

gi
-b

in
/g

la
m

2.
cg

i
G

ra
m

al
ig

n
[7

0]
G

lo
ba

l
Pr

og
re

ss
iv

e
ht

tp
://

bi
oi

nf
o.

un
l.e

du
/G

ra
m

A
lig

n.
ht

m
l

H
M

M
E

R
[2

6]
G

lo
ba

l
It

er
at

iv
e

ht
tp

://
hm

m
er

.ja
ne

lia
.o

rg
K

A
L

IG
N

[4
8]

G
lo

ba
l

Pr
og

re
ss

iv
e

ht
tp

://
w

w
w

.e
bi

.a
c.

uk
/T

oo
ls

/k
al

ig
n/

M
A

FF
T

[4
3]

G
lo

ba
l

Pr
og

re
ss

iv
e/

It
er

at
iv

e
ht

tp
://

al
ig

n.
bm

r.k
yu

sh
u-

u.
ac

.jp
/m

af
ft

/o
nl

in
e/

se
rv

er
M

A
T

C
H

B
O

X
[2

3]
L

oc
al

M
ot

if
Fi

nd
in

g
ht

tp
://

w
w

w
.f

un
dp

.a
c.

be
/s

ci
en

ce
s/

bi
ol

og
ie

/b
m

s/
m

at
ch

bo
x

su
bm

it.
sh

tm
l

M
A

V
ID

[1
1]

G
lo

ba
l

Pr
og

re
ss

iv
e

ht
tp

://
ba

bo
on

.m
at

h.
be

rk
el

ey
.e

du
/m

av
id

M
E

M
E

[4
]

L
oc

al
M

ot
if

Fi
nd

in
g

ht
tp

://
m

em
e.

sd
sc

.e
du

/m
em

e4
/c

gi
-b

in
/m

em
e.

cg
i

M
SA

[5
2]

G
lo

ba
l

D
yn

am
ic

Pr
og

ra
m

m
in

g
ht

tp
://

xy
lia

n.
ig

h.
cn

rs
.f

r/
m

sa
/m

sa
.h

tm
l

M
U

LT
A

L
IN

[2
0]

G
lo

ba
l

Pr
og

re
ss

iv
e/

It
er

at
iv

e
ht

tp
://

bi
oi

nf
o.

ge
no

to
ul

.f
r/

m
ul

ta
lin

/m
ul

ta
lin

.h
tm

l
M

U
LT

I-
L

A
G

A
N

[1
2]

G
lo

ba
l

It
er

at
iv

e
ht

tp
://

la
ga

n.
st

an
fo

rd
.e

du
/la

ga
n

w
eb

/in
de

x.
sh

tm
l

M
U

M
M

A
L

S
[6

6]
G

lo
ba

l
Pr

og
re

ss
iv

e/
It

er
at

iv
e

ht
tp

://
pr

od
at

a.
sw

m
ed

.e
du

/m
um

m
al

s/
m

um
m

al
s.

ph
p

M
U

SC
L

E
[2

8]
G

lo
ba

l
Pr

og
re

ss
iv

e/
It

er
at

iv
e

ht
tp

://
w

w
w

.d
ri

ve
5.

co
m

/m
us

cl
e

PL
A

SM
A

[2
4]

G
lo

ba
l

Pr
og

re
ss

iv
e

ht
tp

://
ge

no
w

eb
1.

ir
is

a.
fr

/S
er

ve
ur

-G
PO

/o
ut

ils
ac

ce
s.

ph
p3

?i
d

sy
nd

ic
=

25
9&

la
ng

=
en

PS
A

L
IG

N
[8

3]
G

lo
ba

l
Pr

og
re

ss
iv

e
ht

tp
://

fa
cu

lty
.c

s.
ta

m
u.

ed
u/

sh
sz

e/
ps

al
ig

n
PR

A
L

IN
E

[7
5]

G
lo

ba
l

Pr
og

re
ss

iv
e

ht
tp

://
w

w
w

.ib
i.v

u.
nl

/p
ro

gr
am

s/
pr

al
in

ew
w

w
PR

O
B

C
O

N
S

[2
5]

G
lo

ba
l

Pr
og

re
ss

iv
e/

It
er

at
iv

e
ht

tp
://

pr
ob

co
ns

.s
ta

nf
or

d.
ed

u/
in

de
x.

ht
m

l
PR

O
M

A
L

S
[6

7]
G

lo
ba

l
Pr

og
re

ss
iv

e
ht

tp
://

pr
od

at
a.

sw
m

ed
.e

du
/p

ro
m

al
s/

pr
om

al
s.

ph
p

PR
R

P/
PR

R
N

[3
6]

G
lo

ba
l

Pr
og

re
ss

iv
e/

It
er

at
iv

e
ht

tp
://

pr
rn

.h
gc

.jp
SA

G
A

[6
0]

G
lo

ba
l

It
er

at
iv

e
ht

tp
://

w
w

w
.tc

of
fe

e.
or

g/
Pr

oj
ec

ts
ho

m
e

pa
ge

/s
ag

a
ho

m
e

pa
ge

.h
tm

l
SA

T
C

H
M

O
[2

7]
G

lo
ba

l
It

er
at

iv
e

ht
tp

://
w

w
w

.d
ri

ve
5.

co
m

/lo
bs

te
r/

in
de

x.
ht

m
SP

E
M

[9
7]

G
lo

ba
l

Pr
og

re
ss

iv
e

ht
tp

://
sp

ar
ks

.in
fo

rm
at

ic
s.

iu
pu

i.e
du

/S
of

tw
ar

es
-S

er
vi

ce
s

fil
es

/s
pe

m
.h

tm
T-

C
O

FF
E

E
[6

2]
G

lo
ba

l
Pr

og
re

ss
iv

e
ht

tp
://

w
w

w
.tc

of
fe

e.
or

g

251

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

252 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

between the sequences. The WSP score of an alignment is given by the
following equation:

WSP(A) =
L∑

i=1

∑

1<k< j<N

p j pks(wk [i], w j [i]) (12.5)

where p j and pk are the weights of the sequences j and k, respectively.

3. Entropy: The entropy defines the frequencies of appearance of each charac-
ter in each column of the multiple alignment. Thus, the entropy of a multiple
alignment is the sum of the entropies of each column and is defined by:

E(A) = −
∑

i

∑

x

px,i log px,i (12.6)

where px,i is the number of occurrences of character x in the i th column.

4. Consensus: The computation of the consensus score requires the construction
of the consensus sequence of the multiple alignment. The consensus sequence
is made by taking from each column of the multiple alignment the most fre-
quent character in the column. The consensus score is the sum of the scores
between each sequence Si , 1 ≤ i ≤ N , of the multiple alignment and the con-
sensus sequence Sc:

Consensus(A) =
N∑

i=1

s(Si , Sc) (12.7)

where s is the distance between Si , 1 ≤ i ≤ N , and Sc.
Other scores have been proposed such as Coffee [61], Al2co [65], Normd [87],
Divaa [69], Mumsa [49], and Confind [76].

12.4 BENCHMARKS

To evaluate the performances of an alignment algorithm, reference alignments have
been constructed in a manual, or automatic, way with the help of biologists and
have been grouped to form benchmarks. A benchmark generally includes a ratio for
comparing alignments, built by an alignment algorithm, with reference alignments
found in the benchmark. For example, we have:

1. Column Score (CS) [84] that represents the ratio between the number of cor-
rectly aligned columns and the total number of columns in the core blocks (i.e.,
the regions whose alignments are known).

2. Sum-of-Pairs Score (SPS) [84] that represents the ratio between the number of
correctly aligned pairs of characters and the total number of pairs of characters
in the core blocks.

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

12.4 BENCHMARKS 253

Other scores to compare multiple alignments include overlap score [47], cline
score and shift score [19], and mean opinion score (MOS) [49].

The most used benchmarks include:

1. BALIBASE [89]: This benchmark is the first benchmark dedicated to protein
multiple alignment algorithms and contains several accurate reference align-
ments. The alignments are constructed based on the superposition of proteins
tertiary structures and manual improvement of the results. These alignments
are grouped in different categories according to the nature of the set of the se-
quences used. Thus, each reference set represents a different alignment prob-
lem. For example, reference 1 contains small alignments of sequences with dif-
ferent sizes, whereas reference 2 is made up of families of sequences aligned
with one, two, or three orphan sequences.
BALIBASE uses the CS and SPS scores as criteria for assessment.
No alignment algorithms give the best result for all references of BAL-
IBASE, but there are algorithms such as PROBCONS, MUSCLE, MAFFT,
and T-COFFEE that have good performances.

2. PREFAB [28]: This benchmark is made up of 1932 multiple alignments con-
structed automatically as follows: The tertiary structures of two sequences are
aligned using two different superposition methods. A set of 50 homologous
sequences then is extracted from databases, and a multiple alignment is con-
structed for the whole set of sequences.
A test alignment is evaluated by using the Q score, which is similar to the SP
score of BALIBASE.

3. SABMARK [90]: This benchmark contains families of sequences extracted
from the SCOP database [57] of protein structures. It is made up by two sets,
Twilight and Superfamily. These sets contain sequences classified according to
the SCOP database. The sequences of Twilight are 0–25% identical, whereas
those of Superfamily are 25–50% identical.
Every pair of sequences in every set is aligned by superposing their tertiary
structures. SABMARK compares the multiple alignments by comparing each
pair of sequences in the alignment rather than the complete multiple align-
ment. Pairs of sequences are extracted from the test alignment, and then each
of them is compared with the corresponding pair in the reference alignment.
To compare alignments, SABMARK uses the average of the scores of several
reference alignments. SABMARK uses the fd score, that is identical to the
SP score [84] of BALIBASE, and the fm score (i.e., the modeler’s score [72])
that represents the ratio between the number of the correctly aligned pairs of
characters and the length of the generated alignment.

4. OXBENCH [68]: This benchmark is constructed automatically using known
tertiary structures and different alignment methods. So the result can be biased
when we compare alignment algorithms based on the same approach used for
the construction of the benchmark. OXBENCH is made up by three subsets:

a. The first one, called master, contains 218 alignments of protein domains
of 2 to 122 sequences whose tertiary structures are known.

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

254 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

b. The second one, called full, contains all sequences whose domains are rep-
resented in master.

c. Finally, the last one, called extended, is made up by the sequences of mas-
ter in addition to other homologous sequences.

Several scores are implemented in OXBENCH for the assessment of the align-
ments, such as the CS score and the position-shift score.

5. IRMBASE and DIRMBASE [82]: These benchmarks use the same scores
as BALIBASE and are dedicated to assessing multiple local alignment al-
gorithms. IRMBASE contains alignments of random synthetic sequences
classified in three references and constructed by integrating motifs in
the random sequences. These motifs are constructed by using ROSE
[81]. DIRMBASE simulates DNA sequences, whereas IRMBASE simulates
protein ones.

6. HOMSTRAD [79]: Although this database originally was not designed as a
benchmark, it often has been used as such. It contains 1032 alignments of
protein sequences representing different structures and grouped in homologous
families.

7. DNA PREFAB [15]: This benchmark contains alignments of DNA sequences
extracted from different databases.

8. BRALIBASE [33]: This benchmark is the first benchmark used to assess RNA
alignment algorithms. It contains alignments of families of noncoding RNA
sequences, such as 5S rRNA and tRNA. These sequences are extracted from
the RFAM database [37].

Several studies have been conducted to compare different multiple alignment al-
gorithms using different benchmarks and different score functions. Among these
studies, we mention [84,47,8]. All these studies show that there are no align-
ment algorithms that are efficient for all alignment problems, and the choice of
the most efficient alignment algorithm depends on the nature and the number of
the sequences to align. Table 12.4 lists the popular benchmarks and where to
find them.

Table 12.4 Alignment benchmarks

Benchmark Link

BALIBASE [89] http://www-bio3d-igbmc.u-strasbg.fr/balibase/
BRALIBASE [33] http://projects.binf.ku.dk/pgardner/bralibase/
HOMSTRAD [79] http://www-cryst.bioc.cam.ac.uk/ homstrad//
IRMBASE and http://dialign-t.gobics.de/main

DIRMBASE [82]
PREFAB [28]: http://www.drive5.com/muscle/prefab.htm
OXBENCH [68] http://www.compbio.dundee.ac.uk/Software/Oxbench/oxbench.htm
SABMARK [91] http://bioinformatics.vub.ac.be/databases/content.html

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

REFERENCES 255

12.5 CONCLUSION

Sequence alignment is an efficient way to compare biological sequences. It involves
the identification of similar substrings in these sequences. Alignment algorithms can
be classified according to the type of alignment they perform: either global or local
alignment. The alignment of two sequences is called pairwise alignment, whereas
the alignment of more than two sequences is called multiple alignment.

The multiple alignment problem is NP-complete, and several approaches have
been developed to deal with this problem in a polynomial time: the progressive ap-
proach, the iterative approach, and the divide-and-conquer approach.

Each approach presents advantages and drawbacks, and the choice of an approach
and an algorithm depends on the nature of the sequences to align and the goal of the
alignment.

Because most alignment algorithms are heuristic, the evaluation of alignment
quality is crucial. The quality of a given alignment is judged by using score func-
tions that assign a score that reflects alignment accuracy and significance and that
allows the user to differentiate between different alignments of the same set of se-
quences. The accuracy of an alignment algorithm is measured by using benchmarks
that contain reference alignments specifically constructed with the help of biological
knowledge. The benchmarks also contain tools for comparing the reference align-
ments and the results obtained by different alignment algorithms.

Although multiple alignment has been the subject of extensive research, none of
the existing alignment algorithms is perfect, and the construction of accurate align-
ments for numerous complex or distantly related sequences remains a problem that
requires new work to meet the new requirements and expectations of the biologists.

The implementation of intelligent systems, such as the ALEXSYS [2] expert sys-
tem, which automatically chooses a suitable algorithm of alignment for a given set
of sequences, represents a potential solution and a better alternative to the standard
algorithms. The integration of supplementary information, (e.g., structural or func-
tional information) to guide the alignment should improve such systems further.

ACKNOWLEDGMENTS

We are grateful to Dr. Julie Thompson, of the Institut de Génétique et de Biolo-
gie Moléculaire et Cellulaire, Strasboug France, for her valuable comments on the
manuscript.

REFERENCES

1. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool, J Mol Biol, 215:403–410, 1990.

2. M.R. Aniba, S. Siguenza, A. Friedrich, F. Plewniak, O. Poch, A. Marchler-Bauer, and
J.D. Thompson. Knowledge-based expert systems and a proof-of-concept case study for

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

256 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

multiple sequence alignment construction and analysis. Briefings Bioinformatics, 10:11–
23, 2009.

3. F. Armougom, S. Moretti, O. Poirot, S. Audic, P. Dumas, B. Schaeli, V. Keduas, and
C. Notredame. Expresso: Automatic incorporation of structural information in multiple
sequence alignments using 3D-Coffee. Nucleic Acids Res, 34:W604–W608, 2006.

4. T.L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using
expectation maximization. Mach Learn, 21(1/2):51–80, 1995.

5. S. Batzoglou, L. Pachter, J. Mesirov, B. Berger, and E.S. Lander. Human and mouse gene
structure: Comparative analysis and application to exon prediction. Genome Res, 10:950–
958, 2000.

6. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

7. R. Bellman and S. Dreyfus. Applied Dynamic Programming. Princeton University Press,
Princeton, NJ, 1962.

8. G. Blackshields, I.M. Wallace, M. Larkin, and D.G. Higgins. Analysis and comparison of
benchmarks for multiple sequence alignment. In Silico Biol, 6:0030, 2006.

9. R.K. Bradley, A. Roberts, M. Smoot, S. Juvekar, J. Do, C. Dewey, I. Holmes, and L.
Pachter. Fast statistical alignment. PLoS Comput Biol, 5(5):2009.

10. N. Bray, I. Dubchak, and L. Pachter. AVID: A Global Alignment Program. Genome Res,
13:97–102, 2003.

11. N. Bray and L. Pachter. MAVID: Constrained ancestral alignment of multiple sequences.
Genome Res, 14:693–699, 2004.

12. M. Brudno, C. Do, G. Cooper, M. Kim, E. Davydov, E.D. Green, A. Sidow, and S. Bat-
zoglou. LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple alignment of
genomic DNA, Genome Res, 13:721–731, 2003.

13. M. Brudno, M. Chapman, B. Göttgens, S. Batzoglou, and B. Morgenstern. Fast and sen-
sitive multiple alignment of large genomic sequences. BMC Bioinformatics, 4:2003.

14. H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology. SIAM
J Appl Math, 48(5):1073–1082, 1988.

15. H. Carroll, W. Beckstead, T. O’Connor, M. Ebbert, M. Clement, Q. Snell, and D. Mc-
Clellan. DNA reference alignment benchmarks based on tertiary structure of encoded
proteins. Bioinformatics, 23(19):2648–2649, 2007.

16. R.A. Cartwright. Ngila: global pairwise alignments with logarithmic and affine gap costs.
Bioinformatics, 23(11):1427–1428, 2007.

17. S. Chakrabarti, N. Bhardwaj, P.A. Anand, and R. Sowdhamini. Improvement of alignment
accuracy utilizing sequentially conserved motifs. BMC Bioinformatics, 5:167–188, 2004.

18. S. Chakrabarti, C.J. Lanczycki, A.R. Panchenko, T.M. Przytycka, P.A. Thiessen, and
S.H. Bryant. Refining multiple sequence alignments with conserved core regions. Nucleic
Acids Res, 34:2598–2606, 2006.

19. M.S. Cline, R. Hughey, and K. Karplus. Predicting reliable regions in protein sequence
alignments. Bioinformatics, 18(2):306–314, 2002.

20. F. Corpet. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res,
16(22):10881–10890, 1988.

21. M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change in pro-
teins. In Atlas of Protein Sequence and Structure. National Biomedical Research Founda-
tion, Washington, DC: 345–358, 1978.

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

REFERENCES 257

22. A.L. Delcher, A. Phillippy, J. Carlton, and S.L. Salzberg. Fast algorithms for large-scale
Genome alignment and comparison. Nucleic Acids Res, 30(11):2478–2483, 2002.

23. E. Depiereux and E. Feytmans. MATCHBOX: A fundamentally new algorithm for the
simultaneous alignment of several protein sequences. CABIOS, 8(5):501–509, 1992.

24. V. Derrien, J.M. Richer, and J.K. Hao. PLasMA: un nouvel algorithme progressif pour
l’alignement multiple des séquences, Proc. Premières Journées Francophones de Pro-
grammation par Contraintes (JFPC’05): 39–48, 2005.

25. C.B. Do, M.S. Mahabhashyam, M. Brudno, and S. Batzoglou. PROBCONS: Probabilistic
consistency-based multiple sequence alignment. Genome Res, 15:330–340, 2005.

26. S.R. Eddy. Multiple alignment using hidden markov models. Proceedings of the Interna-
tional Conference on Intelligent Systems for Molecular Biology, Cambridge, UK: 114–
120, 1995.

27. R.C. Edgar and K. Sjolander. SATCHMO: sequence alignment and tree construction using
hidden Markov models. Bioinformatics, 19(11):1404–1411, 2003.

28. R.C. Edgar. MUSCLE: multiple sequence alignment with high accuracy high throughput.
Nucleic Acids Res, 32(5):1792–1797, 2004.

29. I. Elias. Settling the intractability of multiple Alignment. J Computat Biol, 13(7):1323–
1339, 2006.

30. M. Elloumi and A. Mokaddem. An Algorithm for Multiple and Global Alignments. Pro-
ceedings of the 2nd International Conference on Bioinformatics Research and Develop-
ment, BIRD’08 Vienna, Austria, Communications in Computer and Information Science
(CCIS), Springer-Verlag, Berlin, Heidelberg, Germany: 479–488, 2008.

31. D.F. Feng and R.F. Doolittle. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. J Mol Biol, 25(4):351–360, 1987.

32. M.C. Frith, U. Hansen, J.L. Spouge, and Z. Weng. Finding functional sequence elements
by multiple local alignment. Nucleic Acids Res, 32(1):189–200, 2004.

33. P.P. Gardner, A. Wilm, and S. Washietl. A benchmark of multiple sequence alignment
programs upon structural RNAs. Nucleic Acids Res, 33:2433–2439, 2005.

34. O. Gotoh. Further improvement in methods of group-to-group sequence alignment with
generalized profile operations. CABIOS, 10:379–387, 1994.

35. O. Gotoh. A weighting system and algorithm for aligning many phylogenetically related
sequences. Comput Appl Biosci, 11:543–551, 1995.

36. O. Gotoh. Significant improvement in accuracy of multiple protein sequence alignments
by iterative refinement as assessed by reference to structural alignments. J Mol Biol,
264(4):823–838, 1996.

37. S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S.R. Eddy. RFAM: an RNA
family database. Nucleic Acids Res, 31(1):439–441, 2003.

38. S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc Natl Acad Sci U S A, 89(22):10915–10919, 1992.

39. P. Horton. TSUKUBA BB: a branch and bound algorithm for local multiple se-
quence alignment. Proceedings of the 11th Annual Symposium on Combinatorial Pattern
Matching, CPM’00, (Montréal, Canada), Lecture Notes in Computer Science (LNCS),
Springer-Verlag, Berlin, Heidelberg, Germany: 84–98, 2000.

40. X. Huang and K.M. Chao. A generalized global alignment algorithm. Bioinformatics,
19(2):228–233, 2003.

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

258 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

41. W. Huang, D.M. Umbach, and L. Li. Accurate anchoring alignment of divergent se-
quences. Bioinformatics, 22(1):29–34, 2006.

42. K. Karplus, C. Barrett, and R. Hughey. Hidden markov models for detecting remote pro-
tein homologies. Bioinformatics, 14(10):846–856, 1998.

43. K. Katoh, K. Kuma, H. Toh, and T. Miyata. MAFFT version 5: Improvement in accuracy
of multiple sequence alignment. Nucleic Acids Res, 33(2):511–518, 2005.

44. J. Kececioglu and W. Zhang. Aligning alignments. Proceedings of the 9th Symposium on
Combinatorial Pattern Matching, CPM’98 (New Jersey, USA), Lecture Notes in Computer
Science (LNCS), Springer-Verlag, Berlin, Heidelberg, Germany: 189–208, 1998.

45. J. Kececioglu and D. Starrett. Aligning alignments exactly. Proceedings of the 8th ACM
Conference on Research in Computational Molecular Biology, RECOMB’04, San Diego,
CA: 85–96, 2004.

46. T. Lassman, O. Frings, and L.L. Sonnhammer. KALIGN2: high-performance multiple
alignment of protein and nucleotide sequences allowing external features. Nucleic Acids
Res, 37(3):858–865, 2009.

47. T. Lassman and L.L. Sonnhammer. Quality assessment of multiple alignment programs.
FEBS Lett, 529:126–130, 2002.

48. T. Lassman and L.L. Sonnhammer. KALIGN: An accurate and fast multiple sequence
alignment algorithm. BMC Bioinformatics, 6:298, 2005.

49. T. Lassman and L.L. Sonnhammer. Automatic assessment of alignment quality. Nucleic
Acids Res, 33:7120–7128, 2005.

50. C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A. Neuwald, and F.J.C. Wootton.
Detecting subtle sequence signals : A GIBBS sampling strategy for multiple alignment.
Science, 262:208–214, 1993.

51. C. Lee, C. Grasso, and M.F. Sharlow. Multiple sequence alignment using partial order
graphs. Bioinformatics, 18(3):452–464, 2002.

52. D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for multiple sequence alignment.
Proc Natl Acad Sci U S A, 86:4412–4415, 1989.

53. B. Ma, T. John, and M. Li. PATTERNHUNTER: faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, 2002.

54. Z. Min, F. Weiwu, Z. Junhua, and C. Zhongxian. MSAID: multiple sequence alignment
based on a measure of information discrepancy. Comput Biol Chem, 29:175–181, 2005.

55. K. Mizuguchi, C.M. Deane, T.L. Blundell, and J.P. Overington. HOMSTRAD: a database
of protein structure alignments for homologous families. Protein Sci, 7:2469–2471, 1998.

56. B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment approach to mul-
tiple sequence alignment. Bioinformatics, 15(3):211–218, 1999.

57. A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classifica-
tion of proteins database for the investigation of sequences and structures. J Mol Biol,
247:536–540, 1995.

58. S.B. Needleman and C.D. Wunsch. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. J Mol Bio, 48(1):443–453, 1970.

59. L. Noé and G. Kucherov. YASS: enhancing the sensitivity of DNA similarity search,
Nucleic Acids Res, 33(2):540–543, 2005.

60. C. Notredame and D. Higgins. SAGA: sequence alignment by genetic algorithm. Nucleic
Acids Res, 24:1515–1524, 1996.

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

REFERENCES 259

61. C. Notredame, L. Holm, and D.G. Higgins. COFFEE: an objective function for multiple
sequence alignments. Bioinformatics, 14(5):407–422, 1998.

62. C. Notredame, D. Higgins and J. Heringa. T-COFFEE: A novel method for multiple se-
quence alignments. J Mol Biol, 302:205–217, 2000.

63. J.S. Papadopoulos and R. Agarwala. COBALT: constraint-based alignment tool for mul-
tiple protein sequences. Bioinformatics, 23(9):1073–1079, 2007.

64. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proc
Natl Acad Sci U S A, 85:2444–2448, 1988.

65. J. Pei and N.V. Grishin. Al2co: Calculation of positional conservation in a protein se-
quence alignment. Bioinformatics, 17(8):700–712, 2001.

66. J. Pei and N.V. Grishin. MUMMALS: Multiple sequence alignment improved by
using hidden Markov models with local structural information. Nucleic Acids Res,
34(16):4364–4374, 2006.

67. J. Pei and N.V. Grishin. PROMALS: Towards accurate multiple sequence alignments of
distantly related proteins. Bioinformatics, 23(7):802–808, 2007.

68. G.P. Raghava, S.M. Searle, P.C. Audley, J.D. Barber, and G.J. Barton. OXBENCH: a
benchmark for evaluation of protein multiple sequence alignment accuracy. BMC Bioin-
formatics, 4:2003.

69. D.J. Rodi, S. Mandava, and L. Makowski. Divaa: analysis of amino acid diversity in
multiple aligned protein sequences. Bioinformatics, 20(18):3481–3489, 2004.

70. D.J. Russell, H.H. Out, and K. Sayood. Grammar-based distance in progressive multiple
sequence alignment. BMC Bioinformatics, 9:2008.

71. N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol Biol Evol, 4:406–425, 1987.

72. J.M. Sauder, J.W. Arthur, and R.L. Dunbrack. Large-scale comparison of protein se-
quence alignments with structural alignments. Proteins, 40:6–22, 2000.

73. S. Schwartz, J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison, D. Haussler,
and W. Miller. Human-mouse alignments with BLASTZ. Genome Res, 13:103–107,
2003.

74. G.D. Schuler, S.F. Altschul, and D.J. Lipman. A workbench for multiple alignment con-
struction and analysis. Proteins, 9:180–190, 1991.

75. V.A. Simossis and J. Heringa. PRALINE: A multiple sequence alignment toolbox that
integrates homology-extended and secondary structure information. Nucleic Acids Res,
33(2):289–294, 2005.

76. J.A. Smagala, E.D. Dawson, M. Mehlmann, M.B. Townsend, R.D. Kuchta, and K.L.
Rowlen. Confind: a robust tool for conserved sequence identification. Bioinformatics,
21(24):4420–4422, 2005.

77. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
J Molecular Biol, 147:195–197, 1981.

78. P. Sneath and R. Sokal. Numerical Taxonomy, Freeman, San Francisco, CA: 230–234,
1973.

79. L.A. Stebbings and K. Mizuguchi. HOMSTRAD: recent developments of the Homolo-
gous Protein Structure Alignment Database. Nucleic Acids Res, 32, D203–D207, 2004.

80. J. Stoye. Multiple sequence alignment with the divide-and-conquer method. Gene,
211:GC45–GC56, 1998.

P1: OSO
c12 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

260 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES

81. J. Stoye, D. Evers, and F. Meyer. ROSE: generating sequence families. Bioinformatics,
14(2):157–163, 1998.

82. A.R. Subramanian, J. Weyer-Menkhoff, M. Kaufmann, and B. Morgenstern. DIALIGN-T:
an improved algorithm for segment-based multiple sequence alignment. BMC Bioinfor-
matics, 6: 2005.

83. S.H. Sze, Y. Lu, and Q. Yang. A polynomial time solvable formulation of multiple se-
quence alignment. J Comput Bio, 13:309–319, 2006.

84. J.D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple se-
quence alignment programs. Nucleic Acids Res, 27(13):2682–2690, 1999.

85. J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTALW: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position specific
gap penalties and weight matrix choice. Nucleic Acids Res, 22(22):4673–4680, 1994.

86. J.D. Thompson, F. Plewniak, J.C. Thierry, and O. Poch. DBCLUSTAL: rapid and reliable
global multiple alignments of protein sequences detected by database searches. Nucleic
Acids Res, 28(15):2919–2926, 2000.

87. J.D. Thompson, F. Plewniak, R. Ripp, J.C. Thierry, and O. Poch. Towards a reliable ob-
jective function for multiple sequence alignments. J Mol Biol, 314:937–951, 2001.

88. J.D. Thompson, J.C. Thierry, and O. Poch. RASCAL: Rapid scanning and correction of
multiple sequence alignments. Bioinformatics, 19(9):1155–1161, 2003.

89. J.D. Thompson, P. Koehl, R. Ripp, and O. Poch. BALIBASE 3.0: latest developments of
the multiple sequence alignment benchmarks. Proteins, 61:127–136, 2005.

90. I. Van Walle, I. Lasters, and L. Wyns. SABMARK: a benchmark for sequence alignment
that covers the entire known fold space. Bioinformatics, 21(7):1267–1268, 2005.

91. I. Van Walle, I. Lasters, and L .Wyns. Align-m: a new algorithm for multiple alignment
of highly divergent sequences. Bioinformatics, 20(9):1428–1435, 2004.

92. I.M. Wallace, O. O’Sullivan, and D.G. Higgins. Evaluation of iterative alignment algo-
rithms for multiple alignments. Bioinformatics, 21(8):1408–1414, 2005.

93. L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J Comput Biol,
1:337–348, 1994.

94. T.J. Wheeler and J.D. Kececioglu. Multiple alignment by aligning alignments. Bioinfor-
matics, 23(13):559–568, 2007.

95. X. Zhang and T. Kahveci. A New Approach for alignment of Multiple Proteins. Pac Symp
Biocomput: 339–350, 2006.

96. X. Zhang and T. Kahveci. QOMA: quasi-optimal multiple alignment of protein se-
quences. Bioinformatics, 23(2):162–168, 2007.

97. H. Zhou and Y. Zhou. SPEM, Improving multiple sequence alignment with sequence
profiles and predicted secondary structure. Bioinformatics, 21(18):3615–3621, 2005.

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

13
ALGORITHMS FOR LOCAL
STRUCTURAL ALIGNMENT
AND STRUCTURAL MOTIF

IDENTIFICATION

Sanguthevar Rajasekaran, Vamsi Kundeti, and Martin Schiller

13.1 INTRODUCTION

A protein is characterized by both the amino-acid sequence and the three-
dimensional (3-D) structure of the underlying atoms. Although it is a common prac-
tice of the biologists to use sequence similarity among different proteins to identify
any conserved regions during the evolution, it has been proven that the 3-D struc-
tures of the proteins are conserved more fundamentally than the sequence during the
evolution. Even though two given proteins may not exhibit much of a sequence ho-
mology, the structural similarity between them might account for similar properties.
Proteins with a similar structure might have similar properties [10]. This is the mo-
tivation behind the study of the structural alignment problem in a manner similar to
that of the sequence alignment problem [4].

The structural alignment problem has received immense attention in the past few
decades, especially with the increasing number of tertiary structures available in the
Protein Data Bank (PDB) [1]. Given two proteins P1 and P2, the problem of struc-
tural alignment is to find a highly similar substructure Ssub between P1 and P2. The
number of known protein structures has increased drastically from 10,000 in 1999 to
45,000 in 2007. This growth makes manual structural alignment almost impossible,

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

261

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

262 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL

and hence, we need algorithms that can yield almost similar accuracy as manual
alignment and are very fast.

Almost all existing algorithms perform structural alignment based on the back-
bone of the protein. For any two given proteins, these algorithms try to find the
correspondence between the Cα atoms on the backbone along with the transforma-
tion matrices R (rotational) and T (translational) that will transform one protein to
the other minimizing the interatomic distance between the corresponding Cα atoms
(see e.g., [3], [7], [5], [8], and [6]). All these algorithms share a common flavor that
consists of two major steps. The first step consists of identifying small structurally
similar regions between the two protein back bones. These are known as alignment
fragment pairs (AFPs). In the next step, a subset of these AFPs is identified that
essentially forms the alignment between the two structures. In all these algorithms,
the AFPs are identified by sliding a window of constant size along the backbone of
the protein. However, we feel that using a constant size window in identifying the
AFPs is too restrictive, especially when we want to improve the accuracy of struc-
tural classification. In this work, we add an extra degree of freedom in the form of
variable length alignment fragment pairs (VLAFPs) and present a generalized al-
gorithmic framework for structural alignment. Our framework is independent of the
scoring schemes used to score the AFP’s. Another important fact is that all existing
algorithms only consider the global structural alignment between the two proteins
P1 and P2 rather than the local alignment. Local structural alignment can be very
effective in the identification of structural motifs.

Our contributions are three fold. First, we introduce a new idea of using VLAFPs
in structural alignment; second, we provide new scoring schemes based on center
of gravity (CG) to identify structurally similar AFPs; and finally, we address the
problem of identifying structural motifs with our algorithm.

The organization of the chapter is as follows. In Section 13.2, we define the local
structural alignment problem. In Section 13.3 we introduce our VLAFP framework.
In Section 13.4 we show how we can use center-of-gravity-based scores to identify
highly structurally similar AFPs. Section 13.5 describes how the VLAFP framework
can aid in the identification of structural motifs. Section 13.6 describes how we can
classify the proteins based on the VLAFP framework and the center of gravity scor-
ing scheme.

13.2 PROBLEM DEFINITION OF LOCAL STRUCTURAL ALIGNMENT

Input: Input are two protein structures P1 = (a1,1, a1,2, a1,3, . . .) and P2 =
(b1,1, b1,2, b1,3, . . .), where ai, j represents the j-th atom of the i-th residue of P1,
and bp,q represents the q-th atom in the p-th residue of P2. In fact, ai, j and
bp,q have information about the location of the corresponding atoms. For instance,
ai, j = (X j , Y j , Z j) and bp,q = (Xq , Yq , Zq).
Output: Define the correspondence between P1 and P2 as C1,2 = ((ap,q, br,s),
(am,n, bk,l), . . .) (i.e., specify which atom of P1 corresponds to which atom of P2).
The local structural alignment problem is to find a correspondence (C1,2) between P1

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

13.3 VARIABLE-LENGTH ALIGNMENT FRAGMENT PAIR (VLAFP) ALGORITHM 263

and P2 along with a rotation matrix R and a translation matrix T such that when we
apply R and T to one set of coordinates (ap,q, am,n, . . .), we end up with the other set
(br,s, bk,l, . . .). The optimization version of this problem is to find a correspondence
C1,2 such that |C1,2| is maximal.

13.3 VARIABLE-LENGTH ALIGNMENT FRAGMENT PAIR (VLAFP)
ALGORITHM

The existing algorithms for structural alignment share a common flavor that consists
of two major steps. The first step consists of identifying small structurally similar
regions between the two protein back bones (AFPs). In the next step, a subset of
these AFPs is identified. This subset forms the alignment between the two structures.
The following sections will give a brief overview of these steps and the details about
our Variable-Length Alignment Fragment Pair Algorithm.

13.3.1 Alignment Fragment Pairs

AFPs in the first step of the existing algorithms are identified by sliding a win-
dow W of constant size along the protein backbones. Let B1 = c1

α1c1
α2 . . . c1

αn be
the backbone of protein P1, and similarly, let B2 = c2

α1c2
α2 . . . c2

αm be the backbone
of protein P2. The backbones B1 and B2 now are transformed into two sequences
W1 = w1

1w
1
2 . . . w1

n−k+1 and W2 = w2
1w

2
2 . . . w2

m−k+1, where k is the size of the win-
dow W and w1

i = c1
αi c

1
α(i+1) . . . c1

α(i+k−1), w2
j = c2

α j c
2
α(j+1) . . . c2

α(j+k−1). The Align-

ment Fragment Pairs are defined as AFP(i, j) = (w1
i , w

2
j), and each of these AFPs

is associated with a normalized cost function COST(i, j) ∈ [0, 1]. If COST(p,q) ≤ ε

(for some appropriate threshold value ε), then it indicates that the structure of the
c − α atoms in windows w1

p and w2
q have very similar structures. In contrast, if

COST(p,q) > ε, then the AFP at (p, q) is not structurally similar. A careful analy-
sis of the algorithms CE [8], DALI [7], TM-Align [17], and PSIST [3] reveals that
these algorithms only differ in the cost functions associated with the AFPs. For ex-
ample, DALI and CE use a pairwise c − α distance matrix to compute COST(i, j). CE
also combines some extra statistical information into the cost function. PSIST uses
the bond angle information among the c − α atoms within each window. TM-Align
uses the TM-score [16] as its cost function.

All existing algorithms work with constant size AFPs. Using constant size AFPs
is too restrictive in the identification of good local alignments among the back bones
of the proteins, especially in the presence of noise in estimating the coordinates of
c − α atoms during X-ray crystallography. For example, consider an AFP at (i, j)
of constant size k. Let COST(p,q) > ε. The cost of the same AFP at (i, j) with a
different size k + γ may be under the threshold of ε. Another good example for
the need of VLAFPs is the presence of variable length secondary structure elements
that consists of helices and sheets. An important fact to note is that these secondary
structure elements are not always of the same size (in terms of the residues). It is

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

264 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL

possible that a helix structure may consist of eight residues in one structure and may
consist of 12 residues in another structure. Therefore, the use of constant size AFPs
may not yield a good alignment. For example, if we assume that the size of any
AFP is fixed to be eight then a helix structure of 12 residues could be matched only
partially either at the start of the helix or at the fourth position, thus making the local
alignment only partial. However, if we allow the AFPs to take variable length such
that 2 ≤ |W | ≤ 8, then we clearly can produce an alignment of size 4 + 8 and could
match the 12 residue helix exactly. To address such drawbacks with constant size
AFPs, we present a much general idea of VLAFPs. The extra degree of freedom is
added in the form of an extra variable into the VLAFP cost function which is defined
as follows.

VCOST(i, j, q) =
⎧
⎨

⎩

Cost of aligning a fragment of size “q”
at position “i” in P1 and at
position “j” in P2

VCOST(i, j, q) ∈ [0, 1] Normalized VLAFP Cost
k1 ≤ q ≤ k2 Range of the VLAFP variable “q”

Our core noniterative dynamic programming framework is independent of any
VCOST function. In the later sections, we introduce a new VCOST function based
on center of gravity.

13.3.2 Finding the Optimal Local Alignments Based on the VLAFP
Cost Function

With the definition of the VLAFP cost function in the previous section, we now
describe our dynamic programming framework for finding the local structural align-
ments among the structures. The aim of this dynamic programming formulation is to
find the longest contiguous sequence of VLAFPs such that the cost of each VLAFP
is under the threshold ε. Details of the dynamic programming formulation follow.
We define the dynamic programming subproblem in the form of VLCS. Variables i
and j refer to the indices of the residues in the protein backbones of corresponding
proteins.

VLCS(i, j) =
⎧
⎨

⎩

Longest contiguous sequence of VLAFPs
in the backbones of P1 and P2 ending at
the i-th and j-th residues, respectively

In our algorithm, we need a two-step initialization. Because the minimum length of
the VLAFP is k1, pairs of the kind (i, j) with i < k1 and j < k1 are not of interest.

VLCS(i, j) = 0
1 ≤ (i, j) ≤ k1 − 1

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

13.3 VARIABLE-LENGTH ALIGNMENT FRAGMENT PAIR (VLAFP) ALGORITHM 265

In the second initialization step, we consider the first k1 residues from protein P1

and check whether we can align these residues to any part of the protein P2 based
on the cost function VCOST as follows. This initialization is similar to the standard
sequence alignment initialization.

VLCS(k1, j) =
{

k1 IF VCOST(k1, j) ≤ ε

0 ELSE
1 ≤ j ≤ |P2|

The core dynamic programming computation is based on the following equations:

QLCS(i, j, q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q + VLCS(i − q, j − q)
IF VCOST(i, j, q) ≤ ε

0
ELSE

k1 + 1 ≤ i ≤ |P1|,
k1 + 1 ≤ j ≤ |P2|

VLCS(i, j) =
{

max {QLCS(i, j, q)}
k1 ≤ q ≤ k2

k1 + 1 ≤ i ≤ |P1|,
k1 ≤ j ≤ |P2|

Final answer required =
⎧
⎨

⎩

max {VLCS(i, j)}
1 ≤ i ≤ |P1|
1 ≤ j ≤ |P2|

After the end of the computation, we end up with the length of the longest contiguous
sequence of VLAFPs such that the cost of each VLAFP is within a threshold ε. Along
with this, we also can compute the exact position in P1 and P2 where this sequence
starts. So our VLAFP framework has the following two major steps to compute the
local structural alignment:

� Compute the VCOST(i, j, q) function on the backbones of the proteins.
� Compute local structural alignment, which is equivalent to finding a contiguous

sequence of VLAFPs in P1 and P2 such that the cost of each VLAFP is under
a threshold ε.

A pseudocode of the core dynamic programming frame work is illustrated in
Algorithm 13.1. Clearly, VCOST(i, j, q) should be such that it takes a value close to
0 for highly structurally similar AFPs and a value close to 1 for structurally dissim-
ilar AFPs. In the next sections, we introduce a new VCOST function based on the
center of gravity that has these desired properties.

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

266 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL

Algorithm 13.1 Core VLAFP Algorithm to compute local structural alignments

INPUT : VCOST,|P1|,|P2|
OUTPUT: Length of optimal local alignment and its location
Initialize VLCS
MaxLen = 0
for i = k1 to |P1| do

for j = k1 to |P2| do
CurrentMax = 0
for q = k1 to k2 do

if VCOST(i, j, q) ≤ ε then
if VLCS(i − q, j − q) + q > CurrentMax then

CurrentMax = VLCS(i − q, j − q) + q
end

end
end
VCLS(i, j) = CurrentMax
if CurrentMax > MaxLen then

MaxLen = CurrentMax
StartPosition1 = i − CurrentMax + 1
StartPosition2 = j − CurrentMax + 1

end
end

end
return (MaxLen,StartPosition1,StartPosition2)

13.4 STRUCTURAL ALIGNMENT BASED ON CENTER OF
GRAVITY: SACG

One of the ideas that we propose in this work is that of using the sorted distances from
the center of gravity to identify AFPs. One of the advantages of using the center of
gravity is that we can perform structural alignment not only at the c − α level but also
including the side chains. Our main goal is to use the algorithms in this section to
identify highly structurally similar AFPs and build a VCOST function and then apply
the VLAFP algorithm to compute the local structural alignment. Before presenting
the details, we provide a summary of how exactly the structure of any protein is
described in the PDB file format [1].

13.4.1 Description of Protein Structure in PDB Format

The PDB file for a protein structure is a text description of the 3-D-coordinates
of the atoms/residues in the protein. The file consists of a linear list Lpdb of atoms
that are a part of the protein and the corresponding 3-D coordinates of each atom.
Lpdb = (a1,1, a1,2, a1,3, . . ., ai, j . . .), where ai, j is the j-th atom in residue i . It
is noteworthy that the list Lpdb is partially ordered with respect to the residue

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

13.4 STRUCTURAL ALIGNMENT BASED ON CENTER OFGRAVITY: SACG 267

numbers (i.e., ap,q < am,n ⇐⇒ (p < m)). Although there is an ordering among
the residues, the atoms within a reside may not follow any order. If L1

pdb and L2
pdb

are two PDB structure instances of the same protein, then the ordering of the atoms
within each residue may be different (though the residues themselves will be in the
same order). As an example the atoms in the first residue of L1

pdb may be ordered
as (a1,2, a1,1, a1,5, a1,4, a1,3, . . .), but the atoms in the same residue of L2

pdb may
be ordered as (a1,5, a1,1, a1,2, a1,4, a1,3, . . .). This variation is mainly because of
different frames of reference during X-ray crystallography. The variation of the
ordering of the atoms within the same residue makes structural alignment algorithms
that consider the sidechain conformations nontrivial. In the next sections, we will
see how our algorithms overcome this ordering issue when side-chain conformations
are considered.

13.4.2 Related Work

The problem of checking whether two point sets (in two-dimensional [2D] or 3-D)
are rigidly transformable from one to the other is a well-studied problem in compu-
tational geometry. This problem is known as geometric congruence. Several algo-
rithms for exact geometric congruence were given in [11], [12], [13], and [15]. All
these algorithms solve the exact geometric congruence in O(n log n) time. There is
also a more general version of the geometric congruence known as the ε-congruence.
In this version, we are required to determine whether two given point sets of the
same cardinality are rigidly transformable from one to the other within a tolerance
of ε. The ε-congruence problem can be solved in time O(n8) deterministically (see,
e.g., [13]). The problem of ε-congruence is related closely to the substructure iden-
tification problem, but a run time of O(n8) may not be practical. In the literature of
structural alignment of proteins, several iterative dynamic programming-based algo-
rithms have been proposed (see, e.g., [6] and [14]). However, there are several issues
on the convergence of these algorithms. In these algorithms, the correspondence be-
tween the atoms is changed in every iteration, and hence, it is possible for these
algorithms never to converge to an optimal solution. In our algorithm, we first find
the substructures that are highly similar, and we will not change this correspondence
throughout the algorithm and finally use the VLAFP framework in Section 13.3 to
find the longest common substructure among the protein structures.

13.4.3 Center-of-Gravity-Based Algorithm

If P1 and P2 are two given proteins with n residues each, a simple algorithm to find
the correspondence between P1 and P2 will take O(n!) time. The key idea behind our
structural alignment algorithm based on center of gravity is based on the following
theorem.

Theorem 13.1 Given two 3-D pointsets S1 and S2 each of size n, with S1 =
{(x1

1, y1
1, z1

1), (x1
2, y1

2, z1
2), . . .} and S2 = {(x2

1, y2
1, z2

1), (x2
2, y2

2, z2
2), . . .},

we can check whether S1 is a rigid transformation of S2 in O(n log n) time and O(n)
space.

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

268 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL

This directly follows from the Atkinson’s algorithm (exact geometric congruence)
(see [11]). The proof is based on a very simple fact that the relative position (from any
of the points in the point set) of the center of gravity of a set of 3-D points remains
unchanged when these 3-D points are transformed by any rigid transformation. The
CG for a 3-D point set is defined as follows:

S1 = {(x1, y1, z1), (x2, y2, z2), . . .};
XCG =

∑n
i=1 xi

n
; YCG =

∑n
i=1 yi

n
; ZCG =

∑n
i=1 zi

n

If the relative position of the CG with respect to any of the points in the point set
changes because of a transformation, then the transformation is not rigid. We use
this fact and compute the Euclidean distance of each point from (XCG, YCG, ZCG).
Let this distance for the i-th point be di

cg.

di
cg =

√
(XCG − xi)2 + (YCG − yi)2 + (ZCG − zi)2.

Once we compute di
cg , we sort these distances and create a distance vector V1

cg for
the point set S1. Similarly, we create a vector V2

cg for S2 and compare whether V1
cg

and V2
cg are the same. If the distance vectors are the same, then we find the convex

hulls of the point sets and check whether the hulls are the same. This can be done in
O(n log n) time, and hence, the entire algorithm runs in O(n log n) time.

Theorem 13.1 readily yields an algorithm for structural alignment. Although in
Theorem 13.1, we mentioned that we also need to find the convex hulls and check
whether the hull are the same, in practice just using the sorted distance vectors from
the center of gravity seems to be sufficient (see Algorithm 13.2).

Algorithm 13.2 algorithm to check whether pointsets S1 and S2 are rigidly trans-
formable

INPUT : Pointsets S1, S2

OUTPUT: True if S1 can be transformed (rigidly) to S2

(X1, Y 1, Z 1) = COMPUTE CG(S1);
(X2, Y 2, Z 2) = COMPUTE CG(S2);
for i ← 1 to n do

V 1[i] = √
(X1 − x1

i)2 + (Y 1 − y1
i)2 + (Z1 − z1

i)2;
V 2[i] = √

(X2 − x2
i)2 + (Y 2 − y2

i)2 + (Z2 − z2
i)2;

end
SORT(V 1);
SORT(V 2);
if V 1==V 2 then

return true;
else

return false;
end

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

13.4 STRUCTURAL ALIGNMENT BASED ON CENTER OFGRAVITY: SACG 269

13.4.4 Extending Theorem 13.1 for Atomic Coordinates in Protein
Structure

Algorithm 13.2 returns true if an exact rigid transformation (R, T) exists, which
when applied to the point set S1, will give S2 or vice-versa. But in the context of pro-
tein structures in which there is a considerable noise while measuring the coordinates
during X-ray crystallography, exact rigid transformations may not be meaningful.
We need an algorithm that can take the coordinates of the protein substructures and
determine whether one substructure can be transformed approximately into another
substructure using some rigid transformation. Keeping this in mind, we extend the
exact version of the algorithm based on Theorem 13.1. We define weighted distance
(Wi, j) between two sorted vectors Vi and Vj (each of length n) as follows:

Wi, j =
n∑

k=1

(n − k) ×
√

(Vi [k] − Vj [k])2

We also define an approximation threshold ε whose value is proportional to n. The
typical value of ε is 1.8 for n = 20. We have determined the value of ε from several
experimental runs of our program. Algorithm 13.3 incorporates these definitions,
and it can detect whether two given atomic coordinate sets (from protein structures)
P1 and P2 can be transformed approximately from one to the other, with an error
of ε. Algorithm 13.3 is much faster and simpler than the O(n8) algorithm of [13].
As our experimental data indicate, the accuracy of Algorithm 13.3 is very good. Al-
gorithm 13.3 can be very effective in checking whether two sets of atoms have the
same structure, but our main intention is to compute the local structural alignment

Algorithm 13.3 Algorithm to check whether atomic coordinates P1 and P2 are
approximately transformable

INPUT : Pointsets P1 and P2; ε

OUTPUT: True if P1 can be transformed (approx) to P2

(X1, Y 1, Z1) = COMPUTE CG(P1);
(X2, Y 2, Z2) = COMPUTE CG(P2);
for i ← 1 to n do

V 1[i] = √
(X1 − x1

i)2 + (Y 1 − y1
i)2 + (Z1 − z1

i)2;
V 2[i] = √

(X2 − x2
i)2 + (Y 2 − y2

i)2 + (Z2 − z2
i)2;

end
SORT(V 1);
SORT(V 2);
W1,2 = ∑n

k=1(n − k) ∗
√

(V 1[k] − V 2[k])2 ;
if W1,2 ≤ ε then

return true;
else

return false;
end

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

270 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL

among the protein backbones. This is where we seek the help of our VLAFP frame-
work presented in Section 13.3. We use Algorithm 13.3 to build a cost function
VCOST(i, j, q) and apply the VLAFP algorithm on top of this cost function, thus
obtaining the required local structural alignment. Section 13.4.5 gives more details
on building this cost function.

13.4.5 Building VCOST(i,j,q) Function Based on Center of Gravity

We define VCOST(i, j, q) for a fragment pair of length q at indices i and j in the
protein backbones of P1 and P2 as follows. Let W 1q

i = {a1
i , a1

i+1, . . . , a1
i+q−1} be

the atoms in the fragment corresponding to protein P1 at index i in the backbone.
Similarly, we can define W 2q

j corresponding to protein P2. The pair (W 1q
i , W 2q

j) is
an AFP of size q. Let (CG1x , CG1y, CG1z) be the center of gravity for the set of
atoms in W 1q

i and (CG2x , CG2y, CG2z) be the center of gravity for the set of atoms
in W 2q

j . The cost function VCOST(i, j, q) is defined as follows:

d1
k = (x1

k − CG1x)2 + (y1
k − CG1y)2 + (z1

k − CG1z)2, 1 ≤ k ≤ q

d2
k = (x2

k − CG1x)2 + (y2
k − CG1y)2 + (z2

k − CG1z)2, 1 ≤ k ≤ q

V 1 = Sorted distance vector of d1
k , 1 ≤ k ≤ q

V 2 = Sorted distance vector of d2
k , 1 ≤ k ≤ q

DAFP(i, j, q) = ∑q
k=1(V 1[k] − V 2[k])2

VCOST(i, j, q) = DAFP(i, j, q)
√

DAFP(i, j, q)2 + q2

Once we have the normalized cost function VCOST we then can apply the
VLAFP dynamic programming framework (see Algorithm 13.1) to compute the lo-
cal structural alignment. Figure 13.1 illustrates the outcome of the VLAFP local
alignment between 1C2N and 1COT PDB structures based on the center of grav-
ity VCOST function. Also Figure 13.2 displays the local alignment between 1HIJ
and IITI. The local alignments are marked in red. We refer to the combination of
the center-of-gravity-based VCOST function with VLAFP framework as structural
alignment based on center of gravity (SACG).

13.5 SEARCHING STRUCTURAL MOTIFS

Finding structural patterns among the protein structures is of immense interest for
biologists, who often look for structural patterns including the side-chain conforma-
tions [9]. No existing algorithms addresses this issue of identifying structurally sim-
ilar patterns including the side-chain conformations. Biologists often want to search
for a part of the protein structure (substructure) in the existing proteins in the PDB.
Finding similar substructures including the side chains is a more difficult problem

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

13.5 SEARCHING STRUCTURAL MOTIFS 271

Figure 13.1 Local structural alignment between 1C2N and 1COT using our SACG algorithm.

Figure 13.2 Local structural alignment between 1HIJ and IITI using our SACG algorithm.

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

272 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL

because of the ordering of the atoms on the side chains is not necessarily fixed. The
ordering of side chain atoms in the PDB file for the same structure can vary from
experiment to experiment.

Our algorithms to identify similar substructures easily can address this ordering
issue because we use the sorted distances from the center of gravity as a signature
to identify the substructure. The problem with different ordering of the atoms will
not affect our algorithm. Algorithm 13.3 can be used readily to identify structural
motifs including the side chains. Biologists can supply the list of 3-D coordinates of
the atoms (in any order) to Algorithm 13.3. The algorithm then creates a sorted dis-
tance vector (dsig) for that set of 3-D coordinates and search the entire PDB database
to identify the regions that have signatures similar to dsig. All regions that have a
signature close to dsig can be potential structural motifs. Figure 13.3 shows the real
substructures (Tyrosine phosphorylated substrates [9]) found by Algorithm 13.3. We
have got these regions by taking a subset of atomic coordinates from a known YXN
motif and searched the entire PDB database for regions having a signature similar to
the atoms in YXN motif and identified the regions in 1C86, 1LAR, 2H4V, 2GJT, and
2NV5, as shown in Figure 13.3.

2H4V 2NV5

1LAR1C86 2GJT

Figure 13.3 Tyrosine phosphorylated substrates (XYXNX motifs) identifed by Algorithm 13.3
in 1C86, 1LAR, 2H4V, 2GJT, and 2NV5.

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

13.8 ACCURACY RESULTS 273

13.6 USING SACG ALGORITHM FOR CLASSIFICATION OF NEW
PROTEIN STRUCTURES

An important problem in structural alignment is to predict accurately protein struc-
tures from the PDB that are close to a newly discovered protein structure Pnew. This
can be addressed easily by computing all pairwise local structural alignments be-
tween the new protein Pnew and existing proteins in the PDB database and by rank-
ing all alignments according to the length of the local structural alignment and the
normalized costs. We have used our VLAFP framework to perform the local struc-
tural alignments and ranked the proteins based on length (number of residues) and
the cost(VCOST) of the alignment.

13.7 EXPERIMENTAL RESULTS

We provide two sets of experimental data. The first set covers all experimental
data related to the classification accuracy of the SACG algorithm, and the second
set contains the experimental data related to the structural motif search. The al-
gorithm was implemented in C, and the entire source code and all datasets/results
can be downloaded from http://trinity.engr.uconn.edu/~vamsik/VAFP_
ALGO/. The program was run on a 1GB (RAM), 1.3 GHZ intel processor linux
machine.

13.8 ACCURACY RESULTS

Our dataset is the same standard dataset used by PSIST [3] and other algorithms like
Progress and geometric hashing. Please see [3] for additional details of the dataset.
The dataset consisted of 181 superfamilies, and each of the superfamilies had at least
10 protein structures. The proteins are chosen in such a way that there is less than
30% of sequence homology between any two proteins from the same superfamily.
The superfamilies are based on structural classification of proteins (SCOP) [2] clas-
sification. So our database consists of around 2000 proteins. The query sample is a
sample of 176 proteins selected randomly from these 2000 proteins. PSIST used the
same sample size. Once the sample is selected, we run our algorithm (SACG) and
PSIST and classify the results based on the most frequently occuring superfamily and
class in the top 20 ranked proteins. The results indicate that our algorithm achieves
an average accuracy of 84.09% (superfamily) and 86.93 % (class). See Table 13.1
for additional details. Table 13.2 and Table 13.3 show the results of the top-ranked
proteins for query proteins 1c2n and 1hsm using our algorithm.

Experimental results in searching for structural motifs

Now we illustrate practical results in identifying a functional structural motif (Tyro-
sine phosphorylated substrate) in some PDB structures. We started with 1C86, which
has a functional motif between atoms (348 and 392) (please refer to the PDB file of
protein 1C86). We make the atom list from 348 to 392 in 1C86 as S1 and apply our

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

274 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL

Table 13.1 Accuracy comparison between PSIST and SACG

Correct Correct Accuracy Accuracy
Algorithm (SF) (Class) Top-K (SF) (Class)

PSIST 120 129 K = 20 68.18% 73.29%
CG ALGO 148 153 K = 20 84.09% 86.93%

Algorithm 13.3. We found that 1LAR, 2GJT, 2NV5, and 2H4V (see Table 13.4) have
highly similar substructures (Tyrosine phosphorylated substrate) to the one in 1C86
between atoms 348 and 392. Please see Table 13.3 for the actual locations of this in
the PDB files. Please refer to Figure 13.3 for 3-D-visualization of these substructures.

13.9 CONCLUSION

In this chapter, we have introduced a new idea of using variable length alignment
fragment pairs in performing local structural alignment among the proteins. We also
showed how to use the VLAFP framework to classify proteins and search for struc-
tural motifs. In addition, we have introduced a new scoring function based on center

Table 13.2 Top scored proteins for query pdb1c2n sf(46626) cl(46456) with SACG. ’*c*’
indicates that the class of query matches the class of the corresponding protein

Match Length Cost pdb-id Superfamily (sf) Class (cl)

c 44 24.13 pdb1mbj- 46689 46456
c 34 21.99 pdb2bby- 46785 46456
c 40 26.39 pdb1jtb- 47699 46456
c 46 31.96 pdb1hsn- 47095 46456
c 36 25.84 pdb1nhm- 47095 46456
c 32 23.05 pdb1mbe- 46689 46456

37 26.80 pdb2cjo- 54292 53931
c 35 25.40 pdb1uxd- 47413 46456
c 36 26.39 pdb1aab- 47095 46456
c 39 28.69 pdb1mbk- 46689 46456

40 29.54 pdb1eot- 54117 53931
c 37 27.86 pdb1etd- 46785 46456
c 46 35.43 pdb1nhn- 47095 46456

47 36.75 pdb1e09-A 55961 53931
c 47 38.05 pdb2new- 48695 46456

45 36.70 pdb1bt7- 50494 48724
c 50 41.15 pdb1gjt-A 46997 46456

32 26.90 pdb4ull- 50203 48724
c 37 31.49 pdb1a2i- 48695 46456
c 47 40.16 pdb1wjd-B 46919 46456
c 47 40.57 pdb1wjd-A 46919 46456

+ve cl classification (46456) occurs 16 times, −ve sf classification (47095) occurs four times.

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

13.9 CONCLUSION 275

Table 13.3 Top scored proteins for query pdb1hsm sf(47095) cl(46456) using SACG.
’*c*sf’ indicates both class and superfamily of the query matches with the
corresponding protein

Match Length Cost pdb-id Superfamily (sf) Class (cl)

*c*sf 168 72.65 pdb1hsn- 47095 46456
c 33 19.64 pdb2bby- 46785 46456

31 19.40 pdb2cjo- 54292 53931
*c*sf 145 95.48 pdb1nhm- 47095 46456
c 38 26.18 pdb1ba5- 46689 46456
c 38 28.57 pdb1edj- 46997 46456
c 39 30.66 pdb1wtu-B 47729 46456

*c*sf 127 102.17 pdb1nhn- 47095 46456
*c*sf 107 86.43 pdb1hmf- 47095 46456
*c*sf 110 89.27 pdb1hme- 47095 46456

33 27.14 pdb1bc6- 54862 53931
35 29.19 pdb1grx- 52833 51349
42 35.98 pdb2cjn- 54292 53931

c 37 31.73 pdb1tnt- 46785 46456
41 35.81 pdb1mit- 54654 53931

*c*sf 52 46.02 pdb1hma- 47095 46456
c 36 32.18 pdb1bqv- 47769 46456
c 46 41.35 pdb1hue-A 47729 46456
c 42 38.25 pdb1mbg- 46689 46456
c 35 31.92 pdb1bdc- 46997 46456

33 30.16 pdb1svq- 55753 53931

+ve cl classification (46456) occurs 15 times, +ve sf classification (47095) occurs six times.

Table 13.4 Regions having tyrosine phosphorylated
substrate found by Algorithm 13.3

Protein(PDB-ID) Region(start-end)

1LAR Residue 383 to 425
2GJT Residue 427 to 472
2NV5 Residue 430 to 470
2H4V Residue 440 to 486

of gravity. Experimental results indicate that using the VLAFP framework can pro-
duce better local structural alignments compared with using constant size AFPs.

ACKNOWLEDGMENTS

This research has been supported in part by NIH Grant 1R01GMO79689-01A1, NSF
Grant ITR-0326155 and NSF Grant 0829916.

P1: OSO
c13 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

276 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL

REFERENCES

1. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. The protein data bank. Nucleic Acids Res, 28:235–242,
2000.

2. A.G. Murzin, S.E. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classifica-
tion of proteins database for the investigation of sequences and structures. J Mol Biol,
247:536–540, 1995.

3. F. Gao and M.J. Zaki, PSIST: indexing protein structures using suffix trees. Proceedings
of the IEEE Computational Systems Bioinformatics Conference, Standford, CA, 2005.

4. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. J Mol Biol, 215(3):403–410, 1990.

5. G.H. Cohen. ALIGN: A program to superimpose protein coordinates, accounting for in-
sertions and deletions. J Appl Crystallogr, 1997.

6. M. Gerstein and M. Levitt. Using iterative dynamic programming to obtain accurate pair-
wise and multiple alignments of protein structures. Proceedings of the Fourth Interna-
tional Conference on Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park,
CA, 1996, pp. 59–67.

7. L. Holm and C. Sander. Protein structure comparison by alignment of distance matrices.
J Mol Biol, 233:123–138, 1993.

8. I.N. Shindyalov and P.E. Bourne. Protein structure alignment by incremental combinato-
rial extension (CE) of the optimal path. Protein Eng 11(9):739–747, 1998.

9. K.H. Kirsch, M. Kensinger, and H. Hanafusa. A p130Cas tyrosine phosphorylated sub-
strate domain decoy disrupts v-Crk signaling. BMC Cell Biol, 2002.

10. M.J. Betts, G. Agarwal, and R.B. Russell. Exon structure conservation despite low se-
quence similarity: a relic of dramatic events in evolution?. EMBO J, 20(19):5354–5360,
2001.

11. M.D. Atkinson. An optimal algorithm for geometric congruence. J Algorithm, 8:159–172,
1987.

12. M.J. Atallah. Checking similarity of planar figures. Int J Comput Inform Sci, 13:279–290,
1984.

13. H. Alt, K. Melhorn, H. Wagener, and E. Welzl. Congruence, similarity, and symmetries
of geometric objects. Discrete Comput Geom, 3:237–256, 1988.

14. T. Akutsu. Protein structure alignment using dynamic programming and iterative im-
provement. IEICE Trans Info Syst, E78–D(0):1996.

15. T. Akutsu. Algorithms for determining the geometrical congruity in tow and three dimen-
sions. Proceedings of the 3rd. International Symposium on Algorithms and Computation,
Nagoya, Japan, 1992.

16. Y. Zhang and J. Skolnick. Scoring function for automated assessment of protein structure
template quality. Proteins, 57:702–710, 2004.

17. Y. Zhang and J. Skolnick. TM-align: A protein structure alignment algorithm based on
TM-score. Nucleic Acids Res, 33:2302–2309, 2005.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14
EVOLUTION OF THE
CLUSTAL FAMILY OF

MULTIPLE SEQUENCE
ALIGNMENT PROGRAMS

Mohamed Radhouene Aniba and Julie Thompson

14.1 INTRODUCTION

One of the cornerstones of modern bioinformatics is the comparison or alignment
of protein sequences. Multiple alignments are used to compare a set of sequences,
either to estimate their overall similarity or to identify locally conserved motifs. As
such, classical string-matching algorithms have been applied to the problem as well
as many other algorithms, such as dynamic programming, hidden Markov Models,
genetic algorithms, and so on. Nevertheless, it is important to keep in mind that the
sequences analyzed in biology represent biological molecules (DNA, RNA, or pro-
tein) having unique three-dimensional (3-D) structures and specific functions. They
act in complex networks, interacting with other molecules in a stable or transitory
way within a changing cellular environment.

By placing the sequence in the framework of the overall family, multiple align-
ments not only identify important structural or functional motifs that have been con-
served during evolution but also can highlight particular nonconserved features re-
sulting from specific events or perturbations [32, 15]. As a consequence, multiple
sequence comparison or alignment has become a fundamental tool in many differ-
ent domains in modern molecular biology, from evolutionary studies to prediction of

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

277

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

278 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

two-dimensional (2-D) of 3-D structure, molecular function, intermolecular interac-
tions, and so on.

Numerous multiple alignment programs are now available, using a wide variety
of different algorithms. Many of these methods are described in detail in the chap-
ter 12 “multiple alignment algorithms,” and here we will concentrate on one specific
suite of programs: the Clustal family (www.clustal.org). Clustal is the oldest of the
programs still in wide use today, having been first distributed by post on floppy disks
in the late 1980s. It originally was written in Microsoft Fortran for MS-DOS and
ran on IBM-compatible personal computers (PCs) as four separate executable pro-
grams, Clustal1–Clustal4 [11, 12]. These programs later were rewritten in C and
merged into a single program, ClustalV [13], that was distributed for VAX/VMS,
Unix, Apple Macintosh, and IBM-compatible PCs.

The original Clustal was designed to perform multiple alignments of large num-
bers of amino acid or nucleotide sequences efficiently. The method was based on first
deriving a phylogenetic tree from a matrix of all pairwise sequence similarity scores,
obtained using a fast pairwise alignment algorithm. Then the multiple alignment was
achieved from a series of pairwise alignments of clusters of sequences following the
branching order of the tree. The method was sufficiently fast and economical with
memory to be implemented easily on a microcomputer, and yet the results obtained
were comparable with those from packages requiring mainframe computer facilities.

The Clustal programs in use today derive from ClustalW [27], which incorporated
several enhancements to take into account the nature of the molecules under study
and to facilitate the analysis of the relationships between sequence, structure, func-
tion, and evolution. These programs have been amended and added to many times
since 1994 to increase functionality and to increase sensitivity. The user friendliness
also was enhanced greatly by the addition, in 1997, of a graphical user interface [28].
By the late 1990s, ClustalW and ClustalX had become the most widely used multiple
alignment programs. They were able to align medium-sized datasets very quickly and
were easy to use. Today, ClustalW and ClustalX continue to be very widely used, in-
creasingly on websites. The EBI Clustal site (www.ebi.ac.uk/clustalw) literally gets
millions of multiple alignment jobs per year.

Development is ongoing, with the latest major release of ClustalW 2.0 and
ClustalX 2.0 in 2007 [14]. Once again, the programs were completely rewritten, this
time in C++ with a simple object model to make it easier to maintain the code and,
more importantly, to make it easier to modify or even replace some alignment algo-
rithms. This complete redesign now is facilitating the latest evolution of the Clustal
software, away from a single isolated algorithm toward a more integrated, cooper-
ative system combining different, complementary algorithms, and additional infor-
mation other than the sequence itself.

14.2 CLUSTAL-CLUSTALV

The first Clustal program was written by Des Higgins in 1988 [11] and was designed
specifically to work efficiently on personal computers, which at that time, had feeble

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.2 CLUSTAL-CLUSTALV 279

Figure 14.1 The basic progressive alignment procedure in Clustal.
The algorighm is illustrated using a set of five immunoglobulin-like domains. The sequence
names are from the Swissprot or protein Data Bank and are as follows (PDB) databases: IHNF:
human cell adhesion (CD2) protein, CD2 HORSE: horse cell adhesion protein, CD2 RAT: rat cell
adhesion protein, MYPS HUMAN: human myosin-binding protein, and IWIT: rematode twitchin
muscle protein.

computing power by today’s standards. It combined a memory-efficient dynamic
programming algorithm [19] with the progressive alignment strategy [6, 26], which
exploits the fact that homologous sequences are related evolutionarily. A multiple se-
quence alignment is built up gradually using a series of pairwise alignment following
the branching order in a phylogenetic tree. An example using five immunoglobulin-
like domains is shown in Figure 14.1.

The next sections describe the different stages of this progressive multiple align-
ment approach in more detail.

14.2.1 Pairwise Similarity Scores

The first step involves the calculation of similarity scores for each pair of sequences
to be included in the multiple alignment. The scores are calculated from fast align-
ments generated by the method of [33]. These are “hash” or “word” or “k-tuple”
alignments carried out in three stages. First, every fragment of sequence of length k
(for proteins, the default length is one residue; for DNA, it is two bases) is marked

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

280 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

in both sequences, and all k-tuple matches between the two sequences are identified.
This is similar to a dot-matrix plot between the two sequences, with each k-tuple
match represented by a dot. The next step is to find those diagonals in the plot with
the most matches and mark all diagonals within a specific window size of each top
diagonal. This process defines the diagonal regions in the plot where the regions
of similarity most likely will lie. Finally, the head-to-tail arrangement of k-tuple
matches from these diagonal regions is found that gives the highest score. The score
is defined as the number of exactly matching residues in this alignment, minus a “gap
penalty” for every gap that was introduced.

Several options are provided that can be modified by the user to optimize the
similarity score calculation depending on the set of sequences to be aligned:

– K-tuple size: the length of “words” to be matched. Increasing this parameter
increases the speed of the calculation, whereas decreasing it leads to improved
sensitivity

– Gap penalty: the number of matching residues that must be found to introduce
a gap

– Number of top diagonals: The number of best diagonals in the dot-matrix plot
that are considered. Decreasing this parameter leads to increased speed, whereas
increasing it improves sensitivity

– Window size: The number of diagonals around each “top” diagonal that are con-
sidered. Decreasing this parameter leads to increased speed, whereas increasing
it improves sensitivity

– Scoring method: The similarity scores for each pair of sequences may be ex-
pressed as raw scores (number of identical residues minus a “gap penalty” for
each gap) or as a percentage of the shorter sequence length.

14.2.2 Guide Tree

Once the similarity scores have been calculated for each pair of sequences, the next
step is to create a “guide tree” or dendogram, which will be used to determine the
order of alignment in the final progressive alignment step.

The original Clustal and ClustalV programs used a simple bottom-up data clus-
tering method to build the tree, known as the unweighted pair grouping method with
arithmetic means (UPGMA) [25]. This is a form of cluster analysis, and the end re-
sult is a representation of the sequence similarity as a hierarchy. An example for six
sequences is shown in Figure 14.2.

Each row in the dendogram represents the joining together, or grouping, of two or
more sequences. For N sequences, there are N-1 groupings; hence, there are five rows
in Figure 14.2 for six sequences. The first number in each row is the similarity score
for the grouping. The last six digits in the line show which sequences are grouped,
where each sequence is represented by one digit. At each step, all sequences with
the digit “1” are joined to all sequences with digit “2” (sequences with digit “0” are
not excluded). Thus, the hierarchy progresses from the top down, joining more and

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.2 CLUSTAL-CLUSTALV 281

Figure 14.2 An example dendogram is used as a guide tree in Clustal.
An example dendogram is shown for six sequences, named A-F. The meaning of the different
columns is explained in the text.

more sequences until all are joined together. For example, in the first row, sequence
B joins sequence C at a similarity level of 91% identity; next, sequence D joins the
previous grouping of B plus C at a level of 72%, and so on. The other three columns
of numbers are a pointer to the row from which the “1” sequences last were joined
(or zero if there is only one of them), a pointer to the row in which the “2” sequences
last were joined, and the total number of sequences joined in this line.

14.2.3 Progressive Multiple Alignment

The final stage in the alignment progress is the progressive multiple alignment of
all sequences. First, the two sequences with the largest similarity score are aligned.
Then, all sequences are aligned gradually from the closest to the most distant follow-
ing the order of grouping specified in the dendogram.

14.2.4 An Efficient Dynamic Programming Algorithm

At each alignment stage (corresponding to a row in the dendogram), a dynamic pro-
gramming algorithm is used to align two sequences, a single sequence with a group
of sequences, or two groups of sequences. The dynamic programming algorithm
for aligning two sequences S1 and S2, with residues a1,. . . ,aM and b1,. . . ,bN, re-
spectively, optimizes a so-called sum-of-pairs score and can be summarized by the
following recursion:

Hi, j =
⎧
⎨

⎩

Hi−1, j−1 + Ci, j

max
{

Hi−k, j − (GOP + k × GEP)
}

max
{

Hi, j−l − (GOP + l × GEP)
}

⎫
⎬

⎭

where Ci, j is the comparison matrix score for aligning residues ai and b j , GOP is
the gap opening penalty, and GEP is the gap extension penalty for extending a gap
by one residue. The residue comparison matrix and gap penalties are described in
more detail subsequently. The alignment of two groups of sequences (or profiles) is
a simple extension of the algorithm in which the score for aligning two positions is
simply the average score for aligning each pair of residues in the respective profiles.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

282 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

Figure 14.3 Schematic outline of the Myers and Miller algorithm.
Steps involved in finding an optimal alignment between two sequences, S1 and S2. Sequence
S1 is of length M and has residues denoted a1,. . . aM. Sequence S2 is of length N and has
residues b1,. . . bN. Steps 1–4 are repeated until all residues have been aligned.

To calculate the optimal alignment in linear time and space, Clustal uses the algo-
rithm of [19], which is a very memory efficient variation of Gotoh’s algorithm [8].
This recursive algorithm delivers an optimal alignment by first dividing sequence S1
in half then finding the best residue in sequence S2 to align with this midpoint. Pairs
of residues are found recursively on both sides of the midpoint, until all residues in
sequence S1 are aligned. Figure 14.3 provides an outline of the algorithm for the
alignment of two sequences.

The Myers and Millers algorithm calculates an optimal alignment with space re-
quirements of O(M + N) and time O(MN), where M and N are the lengths of the two

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.2 CLUSTAL-CLUSTALV 283

sequences. The alignment is considered “optimal” if it gives the best sum-of-pairs
score for the aligned residues depending on the parameters used. Unfortunately, for
any given set of sequences, the best parameters that will give a biologically “correct”
alignment are generally unknown, and in practice, it is normally necessary to test a
certain number of parameter combinations. Clustal provides menu options that can
be selected by the user to modify the most important parameters, namely the residue
comparison matrix and the gap opening and extension penalties:

– Residue comparison matrix: The simplest matrix assigns a score for each pair of
identical residues that are aligned. This is known as the identity matrix. For ex-
ample, for alignments of nucleotide sequences, the identity matrix would assign
the same score to a match of the four classes of bases, ACGT, and 0 for any mis-
match. When the sequences to be aligned are closely related, this usually will
find approximately the correct solution. However, for more divergent sequences
(sharing less than 25–30 % identity), the scores given to nonidentical, but sim-
ilar, residues become more important. Therefore, more sophisticated matrices
have been developed for both DNA and protein sequences. These matrices can
be stored in a text file and input to Clustal if required. To continue the nucleotide
sequence example, transitions (substitution of A-G or C-T) happen much more
frequently than transversions (substitution of A-T or G-C), and it is often desir-
able to score these substitutions differently. More complex matrices also exist
in which matches between ambiguous nucleotides are scored whenever there
is any overlap in the sets of nucleotides represented by the two symbols being
compared. For protein sequences, the matrices generally take into account the
biochemical similarities between residues and/or the relative frequencies with
which each amino acid is substituted by another. Widely used matrices include:
the point accepted mutation (PAM) matrices [34], the Blosum matrices [10], or
the Gonnet matrices [4]. Other more specialized matrices also have been devel-
oped (e.g., for specific secondary structure elements [16] or for the comparison
of particular types of proteins, such as transmembrane proteins [21].

– Gap opening and extension penalties: One of the first gap scoring schemes
for the alignment of two sequences charged a fixed penalty for each residue
in either sequence aligned with a gap in the other. Thus, the cost of a gap is
proportional to its length. Alignment algorithms implementing such length-
proportional gap penalties are efficient, although the resulting alignments
often contain numerous short insertions or deletions that are not biologically
meaningful. To address this problem, Clustal uses linear or “affine” gap
costs [1] that define a gap insertion or “gap opening” penalty in addition to
the length-dependent or “gap extension” penalty. The goal is to mimic the
biological processes or constraints that are thought to regulate the evolution of
DNA or protein sequences. Thus, a smaller number of long gaps is preferred
over many short ones. Fortunately, algorithms using affine gap costs are only
slightly more complex than those using length-proportional gap penalties,
requiring only a constant factor more space and time.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

284 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

14.2.5 Profile Alignments

As mentioned earlier, the progressive algorithm gradually builds up a multiple align-
ment by aligning larger and larger groups of sequences. At each step, a pairwise
alignment is performed involving two sequences, a single sequence with a group of
sequences, or two groups of sequences. The alignment of groups of sequences (oth-
erwise known as profiles) is achieved by an extension of the algorithm developed
by [9]. Profile alignments are a simple extension of sequence–sequence alignments
in which the score for matching residues is replaced by a score for matching posi-
tions in the profiles. This score is defined as the mean comparison matrix score of all
residues in one alignment versus all those in the other. For example, if we consider
two alignments with M and N sequences, respectively, then the score at any position
is the average of the M × N scores of the residues compared separately. Any gaps
that are introduced are inserted in all sequences in the alignment at the same position.

This alignment strategy works well when the sequences to be aligned are of dif-
ferent degrees of divergence. Pairwise alignment of closely related sequences can
be performed very accurately. By the time the more distantly related sequences are
aligned, important information about the variability at each position is available from
those sequences already aligned. Unfortunately, this greedy approach works less well
when the sequences do not have a smooth evolutionary distribution or when all se-
quences are very divergent.

14.3 CLUSTALW

The most important risks regarding the progressive multiple alignment are, first,
the choice of inappropriate alignment parameters and, second, the possibility that
a wrong alignment at the initial stages may be amplified in subsequent steps. These
problems led to the development of a new version of the program, ClustalW [27],
which introduced several improvements to minimize the risks.

14.3.1 Optimal Pairwise Alignments

The initial pairwise sequence comparisons are performed using an optimal dynamic
programming algorithm [20] with a residue comparison matrix and two gap penalties
(for opening or extending gaps) rather than the more approximative k-tuple method
used originally. The pairwise similarity scores then are defined as the percentage of
identities in the optimal alignment compared with the number of residues aligned
(gap positions are excluded).

14.3.2 More Accurate Guide Tree

The guide tree in ClustalW is built using another phylogenetic tree construc-
tion method called neighbour-joining (NJ) [24]. The algorithm is shown briefly in
Figure 14.4.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.3 CLUSTALW 285

Figure 14.4 Outline of the neighbour-joining algorithm.
The construction of the tree is shown for six sequences, numbered 1–6. X and Y represent
potential nodes in the tree. The initial steps in the construction are shown in (a) and (b). The tree
shown in (c) is the final neighbour-joining tree.

Although the NJ method is less efficient than the UPGMA method used in the
original Clustal version, it has been tested extensively and usually finds a tree that is
close to the optimal tree. As input, the method requires pairwise sequence distance
scores rather than similarities. Therefore, the percentage similarity scores calculated,
are converted to distances by dividing by 100 and subtracting from 1.0 to give the
number of differences per site.

14.3.3 Improved Progressive Alignment

14.3.3.1 Automatic Parameter Choice. During the progressive multiple
alignment, different residue comparison matrices are used depending on the diver-
gence of the sequences to be aligned. Some matrices are more appropriate for align-
ing closely related sequences, whereas others work better at greater evolutionary
distances. In ClustalW, a matrix is selected automatically depending on the distance
between the two sequences or groups of sequences to be compared. These distances
are obtained directly from the guide tree. In addition, suitable gap opening and ex-
tension penalties are selected automatically. Initially, two gap penalties are used: a
GOP, which gives the cost of opening a new gap of any length, and a GEP, which

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

286 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

gives the cost of every item in a gap. The software then automatically attempts to
choose appropriate gap penalties for each sequence alignment, depending on the fol-
lowing factors:

– Dependence on the weight matrix. It has been shown [13] that varying the
gap penalties used with different weight matrices can improve the accuracy
of sequence alignments. ClustalW uses the average score for two mismatched
residues (i.e., off-diagonal values in the matrix) as a scaling factor for the GOP.

– Dependence on the similarity of the sequences. First, the percent identity of the
two (groups of) sequences to be aligned is estimated from the pairwise align-
ment. This then is used to increase the GOP for closely related sequences or to
decrease it for more divergent sequences on a linear scale.

– Dependence on the lengths of the sequences. The scores for sequence align-
ments increase with the length of the sequences whether the alignment is opti-
mal or not. Therefore, we use the logarithm of the length of the shorter sequence
to increase the GOP with sequence length. Using these three modifications, the
initial GOP calculated by the program is:

GOP – [GOP + log[min(N,M)]} × (average residue mismatch score) × (per
cent identity scaling factor), where N and M are the lengths of the two
sequences.

– Dependence on the difference in the lengths of the sequences. The GEP is mod-
ified depending on the difference between the lengths of the two sequences to
be aligned. If one sequence is much shorter than the other, then the GEP is in-
creased to inhibit too many long gaps in the shorter sequence. The initial GEP
calculated by ClustalW is:

GEP – GEP × [1.0 + log(N/M)], where N and M are the lengths of the two
sequences.

14.3.3.2 Position-Specific Gap Penalties. In most dynamic programming
applications, the initial gap opening and extension penalties are applied equally at
every position in the sequence, regardless of the location of a gap, except for ter-
minal gaps, which usually are allowed at no cost. In ClustalW, position-specific gap
penalties are incorporated to encourage the opening of gaps at specific positions
(Figure 14.5), such as regions already containing gaps (often corresponding to loops
in the 3-D structure) rather than conserved regions (such as regular secondary struc-
tures).

The local gap penalty modification rules are applied in a hierarchical manner.
The exact details of each rule are given below. First, if there is a gap at a position,
then the gap opening and gap extension penalties are lowered; the other rules do
not apply. This makes gaps more likely at positions where there are already gaps.
If there is no gap at a position, then the gap opening penalty is increased if the

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.3 CLUSTALW 287

Figure 14.5 Calculation of variable gap penalties.
The gap opening penalties are plotted for an example alignment. Two sequence segments
with hydrophilic residues are underlined. The lowest penalties are observed at the ends of the
alignment, the hydrophilic segments, and the three positions with gaps in the alignment. The
highest values correspond to the positions to each side of the two gaps. The remaining variation
is caused by the residue-specific gap penalties.

position is within eight residues of an existing gap. This discourages gaps that are too
close together. Finally, at any position within a run of hydrophilic residues, then the
penalty is decreased. These runs usually indicate loop regions in protein structures.
If there is no run of hydrophilic residues, then the penalty is modified using a table of
residue-specific gap propensities (12). These propensities were derived by counting
the frequency of each residue at either end of the gaps in alignments of proteins of a
known structure (Figure 14.5).

– Lowered gap penalties at existing gaps. If there are already gaps at a position,
then the GOP is reduced in proportion to the number of sequences with a gap at
this position, and the GEP is lowered by a half. The new gap opening penalty is
calculated as:

GOP − GOP × 0.3 × (no. of sequences without a gap/no. of sequences).

– Increased gap penalties near existing gaps. If a position does not have any gaps
but is within eight residues of an existing gap, then the GOP is increased by:

GOP − GOP × t2 + [(8 − distance from gap) × 2]/8 j

– Reduced gap penalties in hydrophilic stretches. Any run of five hydrophilic
residues is considered to be a hydrophilic stretch. The residues that are to be
considered hydrophilic may be set by the user but are conservatively set to D,
E, G, K, N, Q, P, R, or S by default. If, at any position, there are no gaps and
any of the sequences has such a stretch, then the GOP is reduced by one third.

– Residue-specific penalties. If there is no hydrophilic stretch and the position
does not contain any gaps, then the GOP is modified by the propensity of the
residues at this position to be found next to gaps [22].

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

288 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

Figure 14.6 Sequence weight calculation.
The sequence weights are calculated based on the branch lengths in the guide tree. The branches
along the path from a sequence to the root are said to be owned by the sequence, and the order
of a branch is defined by the number of sequences that own the branch. The sequence weight
then is defined as the sum of the branch lengths divided by the order of the branch. For example,
the weight for sequence “seq1” is (3.0/1 + 2.0/2 + 0.7/3) = 4.2.

14.3.3.3 Weighted Profile Alignments. As described, to align two groups of
sequences (profiles), we need to calculate a score for matching each position in the
first profile with each position in the second profile. To correct for unequal sampling
of sequences, weights are introduced into the profile alignments. Suppose we have
two profiles, P1 and P2, with M and N sequences, respectively. The score for aligning
any position in P1 with another position in P2 is defined as follows:

i=M∑

i=0

j=N∑

j=0
C(ai , b j) × Wi × W j

M × N

where C is the comparison matrix score, ai is the residue in the i-th sequence in P1,
b j is the residue in the j-th sequence in P2, and Wi is weight for sequence i .

The weighting scheme is designed to down-weight closely related sequences
and to up-weight the most divergent ones. The weights are calculated based on the
lengths of the branches in the guide tree (Figure 14.6).

14.3.3.4 Divergent Sequences. The most divergent sequences (most different
on average from all other sequences) are usually the most difficult to align correctly.
It is sometimes better to delay the incorporation of these sequences until all of the
more easily aligned sequences are merged first. This may give a better chance of
correctly placing the gaps and matching weakly conserved positions against the rest
of the sequences. A choice is offered to set a cut off (default is 30% identity or less
with any other sequence) that will delay the alignment of the divergent sequences
until all of the rest have been aligned.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.4 CLUSTALX 289

Figure 14.7 ClustalX graphical user interface.
Residues are colored according to the conservation observed at each position. Conservation
scores are plotted below the alignment. A high score indicates a highly conserved column, a low
score indicating a less well-conserved position. The white residues on a grey or black background
indicate the results of alignment quality analyses (see main text).

14.4 CLUSTALX

In the 1980s, a computer revolution occurred with the appearance of new operating
systems (e.g., MAC OS, Windows Microsoft, or UNIX X Windows) that had win-
dowing capacities and a graphical user interface (GUI). These systems made it much
easier to access information by exploiting graphical images in addition to simple
text. Clustal also profited from these new developments with the development of a
new user-friendly interface, ClustalX [28]. The software included novel algorithms
for alignment quality analysis and flexible strategies for the correction of the initial
alignment. Despite of the improvements introduced in ClustalW, a manual refine-
ment was still necessary for complex alignment problems to obtain a high-quality
alignment.

ClustalX displays the sequence alignment in a window (Figure 14.7) and a color
coding of the residues as well as the conservation scores plotted below the align-
ment are used to highlight motifs or conserved features. Pull-down menus provide
access to all options necessary at each stage of the multiple sequence alignment.
Furthermore, facilities are provided that allow the user to build up manually a multi-
ple alignment in difficult cases, using successive sequence–profile or profile–profile
alignments.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

290 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

14.4.1 Alignment Quality Analysis

Several methods are provided to analyze the quality of an alignment and to identify
low-scoring regions and outlier residues. These methods, in combination with the
facilities to realign specific regions of the alignment, provide flexible tools to detect
errors in the input sequences and the refinement of the multiple alignment.

14.4.1.1 Conservation Scores. The conservation scores plotted below the
alignment in the ClustalX window are calculated using an analogous approach to that
introduced by [31], who used a geometric analysis based on a continuous sequence
space to compare sequence weighting methods. Suppose we have an alignment of M
sequences of length N. Then, the alignment can be written as follows:

A1,1 A1,2 A1,3...........A1,N

A2,1 A2,2 A2,3...........A2,N

.

.

AM,1AM,2AM,3..........AM,N

Suppose we also define a residue comparison matrix C of size R × R, where R
is the number of residues. C(a, b) is the score for aligning residue a with residue
b, and the problem is to calculate a score for the conservation of the j th position
in the alignment. An R-dimensional space then is defined in which each column of
the alignment can be considered. For a specified position j in the alignment, each
sequence consists of a single residue that is assigned a point S in the space. For
sequence i , position j , the point S is defined as follows:

S =

⎡

⎢
⎢
⎣

C(1, Ai j)
C(2, Ai j)
...

C(R, Ai j)

⎤

⎥
⎥
⎦

We then calculate a consensus value X for the j-th position in the alignment. X is
defined as follows:

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R∑

i=1
Fi j×C(i, 1)

M
R∑

i=1
Fi j×C(i, 2)

M
...

R∑

i=1
Fi j×C(i, R)

M

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Fi, j is the count of residues i at position j in the alignment.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.4 CLUSTALX 291

Now, if S is the position of sequence i in the R-dimensional space, then we can
calculate the distance Di between each sequence residue i and the consensus posi-
tion X .

Di =
√
√
√
√

R∑

r=1

(Xr − Sr)2

where Xr is the r th dimension of position X , and Sr is the r-th dimension of posi-
tion S.

We define the quality score for the j-th position in the alignment as the mean of
the sequence distances Di :

Score =

M∑

i=1
Di

M

Finally, the scores are normalized by multiplying by the percentage of sequences that
have residues (and not gaps) at this position.

14.4.1.2 Exceptional Residues. Outlier residues are defined as those residues
in the column conservation calculations described, which are found a long way from
the consensus point (i.e., which have a large distance Di), thus, lowering the qual-
ity score for the column. For the j-th position in the alignment, only the sequences
that have a residue at this position (and not a gap) are considered. We then calcu-
late the upper and lower quartiles (the distances lying one-quarter of the way from
the top and bottom of the array, respectively) and the interquartile range (the dif-
ference between the two quartiles) of the distances Di for this set of sequences. A
residue Ai j is considered an exception if the sequence distance Di is greater than
(upper quartile + inter quartile range × scaling factor). The scaling factor can be
adjusted by the user to select the proportion of residue exceptions that will be high-
lighted in the alignment display.

14.4.1.3 Low-Scoring Segments. Given this alignment of M sequences of
length N and a residue exchange matrix, we can build a profile that is weighted
for sequence divergence. The weights are calculated directly from a neighbor join-
ing tree, using the “branch-proportional” method described earlier, which corrects
for unequal representation by down-weighting similar sequences and up-weighting
divergent ones. Each sequence is assigned a weight Wi . In the residue comparison
matrix C , the scores for common residue substitutions are positive, whereas rarer
substitutions are scored negatively. The profile P has a column of scores for each
position in the alignment. The column is of height R and consists of a score for each

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

292 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

residue in the matrix C . The profile score for residue r at position j in the alignment
is defined as follows:

P (r, j) =

M∑

i=1
C(r, Ai j) × Wi

M∑

i=1
Wi

For the j-th position in the i-th sequence the score Si j is defined as follows:

Si j = P(Ai j , j)

The low-scoring regions in the i-th sequence are found by summing the scores Si j

along the alignment in both the forward and the backward directions. The forward
phase can be described by the following recurrence relations:

Fj =
⎧
⎨

⎩

Fj−1 + Si j if Fj−1 + Si j < 0
0 if Fj−1 + Si j ≥ 0
0 if j = 0

Having found the regions in the sequence that have negative Fj scores, these regions
then are refined by removing those positions at the end of each segment that have a
positive profile score Si j .

In a similar way, the backward phase can be described as follows:

B j =
⎧
⎨

⎩

Bj+1 + Si j if B j+1 + Si j < 0
0 if B j+1 + Si j ≥ 0
0 if j = N + 1

The regions in the sequence that have negative B j scores again are refined by re-
moving those positions at the beginning of each segment that have a positive profile
score Si j . The calculation is repeated for each sequence compared with a profile for
all aligned sequences, except itself, and the low-scoring segments then are defined
as those positions for which both Fj and B j are negative.

14.5 CLUSTALW AND CLUSTALX 2.0

The developments described in the previous sections, mean that ClustalW and
ClustalX can be used to produce high-quality, reliable multiple alignments for many
real-world problems. Nevertheless, work to improve the software is ongoing, and
many enhancements have been introduced since the original publication of the al-
gorithms. For example, a faster implementation of the NJ algorithm now is used to
construct guide trees during the multiple alignment process and also to construct

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.6 DBCLUSTAL 293

phylogenetic trees based on the final alignment [5]. Major progress also has been
achieved with the development of parallel versions of ClustalW and ClustalX by
SGI and others, which show increased speeds and significantly reduce the time re-
quired for data analysis. The latest implementations of the software (versions 2.0)
were described in a recent publication, by [14]. The programs were rewritten com-
pletely in C++ with a simple object model to make it easier to maintain the code and,
more importantly, to make it easier to modify or even replace some of the alignment
algorithms. For example, this version of Clustal offers both the UPGMA and the
NJ methods for constructing the guide tree. Although the NJ tree is generally more
accurate, the algorithm is time-consuming for very large datasets. UPGMA repre-
sents a more efficient option, which is more suitable for large-scale, high-throughput
projects. The graphical interface in ClustalX 2.0 also was recoded using the portable
Qt GUI toolbox.

A major new feature included in this version is the ability to improve alignment
accuracy automatically using an iterative algorithm. Iteration is a quick and effective
method of refining alignments. A “remove first” iteration scheme, which optimizes
a weighted sum-of-pairs (WSP) score, has been included in this version of Clustal.
During each iteration step, each sequence is removed from the alignment in turn and
realigned. If the WSP score is reduced, then the resulting alignment is retained. The
iteration scheme can be used either to refine the final alignment or at each step in the
progressive alignment. Iterating during the progressive alignment is much more time
consuming, as there are 2N-3 nodes in the guide tree, but it also tends to result in
more accurate alignments.

14.6 DBCLUSTAL

Today, a new dimension is emerging, thanks to the systematic application of high-
throughput genomics technologies and the resulting complete genomes, transcrip-
tomes, proteomes, interactomes, and so on. This wealth of data provides unique
opportunities to study complex biological systems, but it also clearly requires the
development of algorithms and methodologies capable of handling the very large,
complex datasets and of providing reliable, automatic analyses.

The complexity of today’s multiple alignment problem has incited several re-
search teams to investigate combinations of different alignment algorithms and in-
corporation of biological information other than the sequence itself. For example, a
comparison of several local and global protein alignment methods based on the BAl-
iBASE benchmark [29] showed that no single algorithm was capable of constructing
accurate alignments for all test cases. In particular, it was shown that global align-
ment methods were more accurate for the alignment of sequences that were homol-
ogous along their full lengths, but the local methods were more successful at iden-
tifying conserved regions when the sequences were only partially related. A similar
observation was made in another study of RNA alignment programs [7], in which al-
gorithms that incorporated structural information outperformed pure sequence-based
methods for divergent sequences.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

294 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

To address these problems, a modified version of Clustal, called DbClustal [30],
was developed to allow the incorporation of local conservation information in the
global alignment in the form of anchor points between pairs of sequences. An an-
chor point describes a locally conserved motif that is shared between two sequences.
DbClustal reads an input file with a list of anchors in which each anchor is entered
on a single line with the following format:

seq: NAME1 NAME2 beg: R1 R2 len: L weight: W

where NAME1 and NAME2 are the names of the two sequences, 1 and R2 are the
first residues in the motif for sequences 1 and 2, respectively, L is the length of the
anchor, and W is the weight or score of the anchor.

14.6.1 Anchored Global Alignment

In the multiple alignment stage of Clustal, two sequences with residues a1,. . . , aM

and b1,. . . ,bN are compared, and the optimal alignment is selected with the best sum-
of-pairs score. The sum-of-pairs score is based on scores Si, j for aligning residues
ai and b j , and gap penalties for opening and extending a gap. In ClustalW, the score
Si, j is simply equal to the residue comparison matrix score Ci, j for the two residues.
The alignment of two groups of sequences (or profiles) is a simple extension of the
algorithm in which the score for aligning two residues is replaced by the score for
aligning two columns in the respective profiles.

The score for aligning two residues (or profile columns) has been modified further
in DbClustal to incorporate local anchors. During the progressive multiple alignment,
an M × N position-specific anchor matrix is calculated for each pair (or group) of
sequences to be aligned. For column i in the first group of sequences and column j
in the second group, the anchor matrix score Anchori j is:

Anchori, j = Max(0, Wk)

for all anchors containing any pair of residues in columns i , j , where Wk is the weight
defined in the anchor input file.

For a pair of sequences, the score for aligning residues Ai and B j is then defined
as follows:

Ci, j + Anchori, j

where Ci, j is the residue comparison matrix score for Ai and B j .
Similarly, the score for aligning two groups of sequences is defined as follows:

Pi, j + Anchori, j

where Pi, j is the profile-to-profile score for Ai and B j .
The penalties for opening and extending gaps remain the same.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

14.7 PERSPECTIVES 295

Figure 14.8 Schematic representation of the integration of Ballast anchors in DbClustal.
A theoretical query sequence is shown possessing two functional domains. This query is used
to perform a database search with the BlastP program. BlastP detects sequences sharing at
least one domain with the query sequence. The BlastP results then are processed by Ballast to
identify locally conserved motifs. Finally, the motifs are used as anchors for the DbClustal global
alignment.

The anchor points can be constructed from any local alignment algorithm, such as
Dialign [18] or the Ballast program [23]. Figure 14.8 illustrates this approach with
conserved motifs extracted from the top sequences detected by a BlastP database
search [2] using the Ballast program.

By combining the advantages of both global and local alignment methods into a
single system, DbClustal represents a significant step toward the automatic construc-
tion of high-quality alignments of large families of complex sequences, for example,
with large N/C-terminal extensions or internal insertions, or multiple structural or
functional domains.

14.7 PERSPECTIVES

Multiple alignment methods currently are evolving away from a single isolated al-
gorithm toward more cooperative systems based on the exploitation of additional
information (3-D structures, function, and evolution), and the development of the
Clustal family of alignment programs clearly will follow this trend. In this context,
the recent redesign of the code in an object-oriented language was aimed at facilitat-
ing the integration of novel algorithms in the field.

The potential of this approach was estimated in a recent study to test and evaluate
several more successful algorithms (Figure 14.9), which demonstrated that the exe-
cution time and the quality of the resulting multiple alignments could be improved

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

296 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

Figure 14.9 Evolution of the Clustal programs.
Creation and integration of alternative modules at each alignment stage: (A) pairwise dis-
tance calculation, (B) guide tree construction, (C) detection of local “anchors,” and (D) iterative
refinement.

significantly [3]. Future versions of Clustal undoubtedly will incorporate some, or
all, of these complementary algorithm, as well as other data mining composants, sta-
tistical analyses, and so on. The developments will allow us to create an integrated
system to test, evaluate, and optimize each step in the construction and subsequent
analysis of a multiple alignment.

REFERENCES

1. S.F Altschul and B.W Erickson. Optimal sequence alignment using affine gap costs. Bull
Math Biol, 48:603–616, 1986.

2. S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lip-
man. Gapped BLAST and PSI-BLAST: A new generation of protein database search pro-
grams. Nucleic Acids Res, 25:3389–3402, 1997.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

REFERENCES 297

3. M.R. Aniba, S. Siguenza, A. Friedrich, F. Plewniak, O. Poch, A. Marchler-Bauer, and
J.D. Thompson. Knowledge-based expert systems and a proof-of-concept case study for
multiple sequence alignment construction and analysis. Brief Bioinformatics, 10:11–23,
2009.

4. S.A. Benner, M.A. Cohen, and G.H. Gonnet. Empirical and structural models for inser-
tions and deletions in the divergent evolution of proteins. J Mol Biol, 229:1065–82, 1993.

5. R. Chenna, H. Sugawara, T. Koike, R. Lopez, T.J. Gibson, D.G. Higgins, and J.D. Thomp-
son. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res,
31, 3497–3500, 2003.

6. D.F. Feng and R.F. Doolittle. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. J Mol Evol, 25, 351–360, 1987.

7. P.P. Gardner, A. Wilm, and S. Washietl. A benchmark of multiple sequence alignment
programs upon structural RNAs. Nucleic Acids Res, 33:2433–9, 2005.

8. O. Gotoh. An improved algorithm for matching biological sequences. J Mol Biol,
162:705–8, 1982.

9. M. Gribskov, A.D. McLachlan, and D. Eisenberg. Profile analysis: detection of distantly
related proteins. Proc Natl Acad Sci USA, 84:4355–8, 1987.

10. S. Henikoff and J.G. Henikoff. Performance evaluation of amino acid substitution matri-
ces. Proteins, 17:49–61, 1993.

11. D.G. Higgins and P.M Sharp. CLUSTAL: a package for performing multiple sequence
alignments on a microcomputer. Gene, 73:237–244, 1988.

12. D.G. Higgins and P.M Sharp. Fast and sensitive multiple sequence alignments on a mi-
crocomputer. CABIOS, 5:151–153, 1989.

13. D.G. Higgins, A.J. Bleasby, and R. Fuchs. CLUSTAL V: improved software for multiple
sequence alignment. Comput Appl Biosci, 8:189–191, 1992.

14. M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam,
F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G.
Higgins. Clustal W and Clustal X version 2.0. Bioinformatics, 23:2947–2948, 2007.

15. O. Lecompte, J.D. Thompson, F. Plewniak, J. Thierry, and O. Poch. Multiple alignment
of complete sequences (MACS) in the post-genomic era. Gene, 270:17–30, 2001.

16. R. Luthy, A.D. McLachlan, and D. Eisenberg. Secondary structure-based profiles: use of
structure-conserving scoring tables in searching protein sequence databases for structural
similarities. Proteins, 10:229–39, 1991.

17. R. Luthy, I. Xenarios, and P. Bucher. Improving the sensitivity of the sequence profile
method. Protein Sci, 3:139-46, 1994.

18. B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: finding local similarities
by multiple sequence alignment. Bioinformatics, 14(3):290–4, 1998.

19. E.W. Myers and W. Miller. Optimal alignments in linear space. Comput Appl Biosci,
4:11–17, 1988.

20. S.B. Needleman and C.D. Wunsch. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. J Mol Biol, 48:443–453, 1970.

21. P.C. Ng, J.G. Henikoff, and S. Henikoff. PHAT: a transmembrane-specific substitution
matrix. Bioinformatics, 16:760–766, 2000.

22. S. Pascarella and P. Argos. Analysis of insertions/deletions in protein structures. J Mol
Biol, 224:461–71, 1992.

P1: OSO
c14 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

298 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS

23. F. Plewniak, J.D. Thompson, and O. Poch. Ballast: blast post-processing based on locally
conserved segments. Bioinformatics, 16:750–9, 2000.

24. N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol Evol Biol, 4:406–425, 1987.

25. P.H. Sneath and R.R. Sokal. In “Numerical taxonomy.” W.H. Freeman, San Francisco,
CA, 1973.

26. W.R. Taylor. A flexible method to align large numbers of biological sequences. J Mol
Evol, 28:161–169, 1988.

27. J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W: improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting, position-
specific gap penalties and weight matrix choice. Nucleic Acids Res, 22:4673–4680, 1994.

28. J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. The
CLUSTAL X windows interface: flexible strategies for multiple sequence alignment
aided by quality analysis tools. Nucleic Acids Res, 25:4876–4882, 1997.

29. J.D. Thompson, F. Plewniak, and O. Poch. BAliBASE: a benchmark alignment database
for the evaluation of multiple alignment programs. Bioinformatics, 15:87–8, 1999.

30. J.D Thompson, F. Plewniak, J.C Thierry, and O. Poch. DbClustal: rapid and reliable global
multiple alignments of protein sequences detected by database searches. Nucleic Acids
Res, 28:2919–2926, 2000.

31. M. Vingron and P.R. Sibbald. Weighting in sequence space: a comparison of methods in
terms of generalized sequences. Proc Natl Acad Sci USA, 90:8777–81, 1993.

32. C.R. Woese and N.R. Pace. Probing RNA structure, function and history by comparative
analysis. “The RNA World.” Cold Spring Harbor Laboratory Press, Cold Spring Harbor,
NY, 1993.

33. W.J. Wilbur and D.J. Lipman. Rapid similarity searches of nucleic acid and protein data
banks. Proc Natl Acad Sci USA, 3:726–30, 1983.

34. M.O. Dayhoff, R.M. Schwartz, B.C. Orcutt. A model of evolutionary change in proteins.
Atlas of Protein Sequence and Structure. National Biomedical Research Foundation: 345–
352, 1978.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

15
FILTERS AND SEEDS

APPROACHES FOR FAST
HOMOLOGY SEARCHES IN

LARGE DATASETS

Nadia Pisanti, Mathieu Giraud, and Pierre Peterlongo

15.1 INTRODUCTION

15.1.1 Homologies and Large Datasets

Homologies inside large sequences or a large set of sequences are the key to sev-
eral molecular biology studies. Similarities between genomic sequences are often
traces of common ancestry, and the study of distances between species teaches us
about the history of the evolution. Conserved elements between distant species are
genes, transcription factors binding sites, transposable elements, or other functional
elements.

Basically, homology-finding algorithms aim to detect in nucleic sequences more
or less similar fragments, called simply repeats. Such fragments can be found within
one sequence or in a set of several sequences. The selection pressure is not focused on
the only nucleic sequences; for proteins, comparisons on the proteic sequences are
often more relevant, and for RNA, the secondary structure can be more conserved
than the nucleic sequence [14]. Similarities between sequences are often a first step
to other more specific tools applied to the study of particular conserved elements.

On the other hand, the amount of data that biologists are dealing with are
growing exponentially. Another recent reason for this relies on next generation

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

299

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

300 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

sequencers [56]; they enable faster sequencing of DNA and with lower costs (several
orders of magnitude cheaper) than using the original Sanger et al. [54] method. These
recent sequencers open the way to new horizons in molecular biology. As claimed in
Mardis’ review [40], “an astounding potential exists for these technologies to bring
enormous change in genetic and biological research and to enhance our fundamen-
tal biological knowledge.” Extracting pertinent knowledge from these floods of data
requires to find similarities and patterns quickly and efficiently.

The exhaustive similarity search, implying dynamic programming [58], suffers
from a time bottleneck. If no heuristic is used, then finding similarities between se-
quences requires a time proportional to the product of their lengths. Such approaches
are difficult with large datasets. In practice, the exhaustive similarity search is re-
served for small datasets and when the application requires very precise results. On
larger datasets, similarities are found using preprocessing or heuristics through fil-
ters. Some filters have huge success; the most used tool in bioinformatics for se-
quences comparison in the last two decades, blast [2, 1], is based on a filtering
heuristics.

15.1.2 Filter Preprocessing or Heuristics

Filters approaches are based on the following idea: occurrences of an approximately
repeated fragment must share a certain number of short fragments that are exactly
conserved. The search of repeats thus shall focus on regions of high enough concen-
tration of these shared fragments. This idea can be used either for preprocessing data
(removing as much as possible portions that can not contain occurrences of repeats),
or as a heuristic (anchoring the search of the repeats using the so-called seeds).

In both cases, these approaches are powerful for quickly finding similarities with
full sensibility (without missing any information) or high sensibility (possibly miss-
ing some information). Since the early 1990s, seed-based filters have been developed
in two different directions. Lossless filters guarantee that no occurrence is missed
(typically exhibiting a seed-based condition that is proven to be necessary and that
it is easy to check), whereas lossy seed filters propose some seed models as a start-
ing point (and then explore the properties of those models to assess the sensitivity
performances of the filter).

Actually, lossless filters and lossy seed filters are highly related. The fundamental
idea of both approaches is to focus directly on sequences fragments that are likely to
provide a similarity, getting rid of useless computations that may be avoided. There
is no precise border between these two concepts.

15.1.3 Contents

Within various contexts, the authors of this chapter developed methods based on
lossless filters or on seed-based lossy filters. This chapter will present the lossless
filters and the seed-based approaches by describing a brief state-of-the-art process for
each method and by presenting the most recent works in these fields. The following
section gives some common definitions and introduces basic concepts.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

15.2 METHODS FRAMEWORK 301

15.2 METHODS FRAMEWORK

15.2.1 Strings and Repeats

We introduce here the terminology used in the forthcoming sections. A string is a
concatenation of zero or more symbols from an alphabet �. A string s of length
n on � is represented also by s[0]s[1] . . . s[n − 1], where s[i] ∈ � for 0 ≤ i < n.
The length of a string s is denoted by |s|. We denote s[i, j] the substring s[i]s[i +
1] . . . s[j] of s. In the following, we also use the notion of q-gram. A q-gram is a
word (a short string) of length q. If a q-gram occurs in two strings ω and ω′, then
this q-gram is said to be shared by ω and ω′.

We recall that the Hamming distance between two words of the same length is
the minimal number of substitutions needed to transform the first into the other,
whereas the edit distance between two words (not necessarily of the same length)
is the minimum number of substitutions, insertions and deletions to transform the
first into the other. We denote by dH (ω,ω′) (respectively, dE (ω,ω′)) the Hamming
distance (respectively, the edit distance) between the two strings ω and ω′.

A set of words whose pairwise Hamming distance or edit distance is bounded
by a given threshold is called an approximate repeat. To simplify the reading, in the
following, the term “repeat” will design an approximate repeat. A multiple repeat is a
repeat with at least three words. We focus on (L , r, d)-Hrepeat and (L , r, d)-Erepeat,
defined as follows:

Definitio 15.1 ((L , r, d)- Hrepeat) Given a set S of one or more input strings,
a length L > 0, an integer r ≥ 2, and a Hamming distance 0 ≤ d < L, we call
a (L , r, d)-Hrepeat a set {ω1, . . . , ωr } of r words of length L occurring in the se-
quences of S such that for all i, j ∈ [1, r], dH (ωi , ω j) ≤ d.

Definitio 15.2 ((L , r, d)-Erepeat) Given a set S of one or more input strings,
a length L > 0, an integer r ≥ 2, and an edition distance 0 ≤ d < L, we call a
(L , r, d)-Erepeat a set {ω1, . . . , ωr } of r words having a length of at least L − d
occurring in the sequences of S such that for all i, j ∈ [1, r], dE (ωi , ω j) ≤ d.

Both definitions can be used to study repeats inside one sequence (|S| = 1) or
between several sequences (|S| > 1). In the latter case, one also can enforce that the
r words occur over r distinct sequences (and thus one needs |S| ≥ r).

15.2.2 Filters—Fundamental Concepts

For finding multiple repeats, exhaustive methods based on dynamic programming
suffer from a theoretical time complexity in O(nr), where n is the size of each se-
quence and r is the number of sequences (or the number of repeats searched in a
unique sequence). Some optimizations based on string compression achieve a sub-
O(nr) complexity [10], but applications on large datasets remain very difficult. The
goal of filters thus is to reduce this factor n considerably by getting rid of almost

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

302 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

all the useless data that only would slow down the real search. Repeats then could
be sought in a much reduced dataset. Ideally, this dataset would contain only the
searched repeats. All filters start from the same observation that can be explained
with the simple Example 15.1: two similar words share at least a certain number of
q-grams.

� EXAMPLE 15.1 Shared q-Gram

Words ATAGGAT and ATATGAT are two words of length 7 with Hamming dis-
tance equal to 1 (one substitution position 4). Occurring in a set of sequences S,
they are occurrences of a (7,2,1)-Hrepeat. These two words share the 3-gram ATA
at position 0 and the 3-gram GAT at position 4.

Filters thus are meant as a preprocessing task to any algorithm that finds and
localizes repeats, and hence, they can be employed as a preliminary step to any tool
designed for finding repeats or an application using repeats.

With lossless filters, we refer to methods that filter the data ensuring that no frag-
ments that may contain a repeat are removed; there are no false negatives. In gen-
eral, however, there can be false positives; otherwise, there would be no difference
between a filter (required to be fast) and an exhaustive search (inevitably slow). Be-
sides the speed requirement, a filter is powerful if it is selective; that is, it leaves the
least amount of false positives.

On the other hand, lossy filters may produce false negatives; preprocessing data
with such filters may modify the final result. A good lossy filter must be as selective
as possible but also as sensitive as possible; that is, it generates the least amount of
false negatives, thus approaching the full sensitivity guaranteed by lossless filters.

Being lossless or lossy depends on the design of filter, but the same filter can be
used for distinct repeat models (the kind of repeats searched, their required length,
and their minimal frequency) and, hence, switching from lossless to lossy if the con-
ditions happen to require more speed over precision. For example, as shown in Ex-
ample 15.1, requiring to find at least two (possibly overlapping) 3-grams between
words of length 7 leads to a lossless filter for (7,2,1)-Hrepeats. This means that the
two members of any (7,2,1)-Hrepeat share at least two 3-grams. However, if the same
condition (at least two 3-grams shared) is used for filtering for (7,2,2)-Hrepeats, then
the filter become lossy. Its sensitivity can be measured; only 28.5% couples of words
{ω,ω′} with |ω| = |ω′| = 7 and dH (ω,ω′) ≤ 2 share at least two 3-grams. The filter
has thus a 28.5% sensibility.

Moreover, the computation of sensitivity and specificity also depends on the back-
ground probability model. The 28.5% sensibility of the previous filter was com-
puted on a Bernoulli model consisting of independent and identically distributed
nucleotides. Other more elaborated models better reflect the exact nature of biologi-
cal sequences.

Although some filters can be used as a generic preprocessing step to any tools that
finds repeats, specific filters thus are designed often for a particular repeat model and
probability model.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

15.3 LOSSLESS FILTERS 303

Table 15.1 Methods discussed in this chapter

Hamming distance Edit distance
(substitutions) (+ indels)

Lossless (sensitivity = 1) nimbus quasar, swift, tuiuiu
Lossy (sensitivity ≤ 1) spaced seeds, and their optimizations

In the following, we expose some recent filtering methods as summed up in
Table 15.1. Section 15.3 details lossless filters, and Section 15.4 details lossy seed
filters.

15.3 LOSSLESS FILTERS

For large or complex problem instances, lossless filters help to get exact solutions
that would have been otherwise prohibitive. They also speed up other heuristics.
This section presents a brief history of lossless filters as well as a description of
four of these filters. In all cases, the rationale first is to detect and prove a necessary
condition for a fragment to be part of a repeat and then to design a fast method that
checks this condition. To be as efficient as possible, the necessary condition should
be designed ad hoc for the kind of sought repeat. For example, it does matter whether
insertions and deletions are admitted; filters on Hamming or edit distance basically
only share the rationale we just described.

15.3.1 History of Lossless Filters

Already in 1987, filtering has been suggested as a screening task to speed exact
pattern matching algorithms; in [21], an efficient hash function was suggested for
these purposes. The first screening method explicitly designed for finding repeats
was suggested in [22] as an online algorithm that searches for “frequent elements”
in stream data; also in the latter case, the elements to be searched were exact, that
is, their occurrences all are required to be identical. The first time that a screening
was devised that took into account approximation was in [17] where up to a certain
number of mismatches are allowed (a bounded Hamming Distance is tolerated) but
only with the purpose of finding (approximate) occurrences of a given pattern inside
a given text.

Specifically aiming at computational biology applications, filtering has been em-
ployed successfully by several tools as a preprocessing to approximate pattern match-
ing tasks. The quasar (Section 15.3.2, [7]) method first applies a necessary condi-
tion for two strings to be similar then finds all matches that admit a given limited
number of edit operations. This necessary condition also has been used in swift [52]
to design a filter that is an evolution of quasar. The swift algorithm adds the use of
parallelograms in the necessary conditions (see Section 15.3.2). This approach leads
to faster and more selective tools.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

304 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

Both quasar and swift filters search for fragments of the text that fulfill a condi-
tion that can be seen as a requirement for two words to belong to a (L , 2, d)-Erepeats.
In this sense, they are both ancestors of nimbus (sections 15.3.3) and tuiuiu (Sec-
tion 15.3.4), filters for finding multiple repeats.

15.3.2 QUASAR and SWIFT—Filtering Repeats with Edit Distance

The necessary condition of quasar [7] and swift [52] tools can be embedded in
any tool, exact or heuristic, that preprocesses the search of long repeats that consist
of multiple occurrences with a limited number of insertions, deletions, and substitu-
tions. By long repeats, we refer to repeats whose length of each occurrence is about
50 nucleotides and more.

With respect to quasar, swift presents some improvements that lead to shorter
execution time and to more specific filtering.

15.3.2.1 Necessary Condition. quasar and swift apply the following condi-
tion to filter for (L , 2, d)-Erepeat. This condition was first introduced in [60].

Theorem 15.1 The minimum number of q-grams that words of an (L , 2, d)-
Erepeat must share is

p2 = L − q + 1 − qd

Thus, while filtering for finding (L , 2, d)-Erepeats, all sequence fragments of length
L that do not share at least p2 q-grams with another fragment are filtered out. Note
that q, user-defined, is thus one of the main parameter of such approaches.

15.3.2.2 QUASAR Implementation. The quasar tool slides a window w of
length L , checking whether in the sequence there is another fragment of length
at most L − d that shares at least p2 q-grams with w. For finding sets of shared
q-grams, the sequences are partitioned into blocks of size b ≥ 2L occurring at every
b position. Each such block overlaps by at least L characters with its predecessor.
Such an approach ensures that any occurrence of a word of an (L , 2, d)-Erepeat is
always totally contained in at least one such block. The q-grams of each block are
indexed using a suffix array. The sliding window is retained if it shares at least p2

q-grams with at least one such block.

15.3.2.3 SWIFT Implementation. swift is an evolution of quasar. The main
improvement relies on the use of restricted parallelograms that are a shaped area that
limits the space search of the shared q-grams. Figure 15.1 shows an example of such
a parallelogram. Should two strings w and w′ have an edit distance no greater than d,
then in the dynamic programming matrix used for computing their alignment within
the edit distance, there would be an optimal alignment consisting in a path making
at most d vertical or horizontal steps and, thus, involving at most d consecutive

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

15.3 LOSSLESS FILTERS 305

d

L + d

L

A

T

G

C

A

G

T

C

A

40

CGAT

A

T

12

11

10

C AT

54

GAC CATCA

53525150494847464544434241

30

3231

20

19

18

17

16

15

14

13

Figure 15.1 An example a (11, 2, 2)-repeat found using 2-grams. The shown parallelogram
defines portions of sequences in which shared 2-grams must be searched for filtering for finding
(11, 2, 2)-repeats.

diagonals. Because the matches caused by the mandatory q-grams shared by w and
w′ necessarily will belong to this path, they would be forced to be in an area restricted
by two diagonals that are d positions apart—a parallelogram.

In practice, searching shared q-grams in the area restricted to the parallelograms
is an elegant approach leading to major improvements. First, it enables increas-
ing the speed of computations by limiting the working space. Second, it increases
the specificity of the filter, avoiding false positives because of q-grams outside the
parallelograms.

15.3.3 NIMBUS—Filtering Multiple Repeats with Hamming Distance

The nimbus tool is based on the Hamming distance. It has been the first filter de-
signed directly for filtering while searching multiple repeats instead of repeats having
only two occurrences. The tool nimbus [49, 50] can be employed as a preprocessing
step to any tool that searches for long multiple repeats with mismatches or that per-
forms alignments based on the detection of such local repeats. Being a lossless filter,
this tool can be used as a preliminary step of both heuristics and exact methods.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

306 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

15.3.3.1 NIMBUS Necessary Condition. Nimbus uses the following condition
to filter for (L , r, d)-Hrepeats:

Theorem 15.2 The minimum number of nonoverlapping q-grams that words of an
(L , r, d)-Hrepeat must share is

pr =
⌊

L

q

⌋

− d − (r − 2) ×
⌊

d

2

⌋

Nimbus uses Theorem 15.2 and hence detects and removes all sequences frag-
ments of length in [L − d, L + d] that do not share at least pr q-grams with at least
r − 1 other fragments of length in [L − d, L + d]. For r = 2, the formula of Theo-
rem 15.2 coincides with Theorem 15.1.

We now give an insight of the proof. The full proof can be found in [49]. Let
us consider the hypothetical alignment of r words of length L of a (L , r, d)-Hrepeat.

Suppose d = 0 (words are all identical), then they share exactly
⌊

L
q

⌋
nonoverlapping

q-grams. Now, if d > 0, then the number of shared q-grams obviously decreases. In
the worst case scenario, every pair of the r strings has Hamming distance d. For
each position i in which there is a letter substitution between any pair of strings
(positions represented by an x in Figure 15.2), no shared q-gram can include that
position, meaning that up to q of them are excluded. Given that there are a total of
d × r (r − 1)/2 positions in which there is a mismatch, at worst q × d × r (r − 1)/2

q-grams are excluded, and thus, p′
r =

⌊
L
q

⌋
− (q × d × r (r − 1)/2) shared q-grams

must be left. This would be a very weak necessary condition for a filter.
Observing that the positions of the mismatches between pairs of strings must

necessarily overlap, the stronger bound of Theorem 15.2 is obtained. To see why the
positions of mismatches must overlap, let us consider the simple case of r = 3 strings
s1, s2, and s3, and d = 1. Let a be the position of the unique mismatch between s1

and s2, let b be that of the mismatch between s2 and s3, and let c be that between s1

and s3. Because s1[a] �= s2[a], then s3[a] cannot match with both, and thus, either
s3 mismatches with s1 at position a (and hence a = c), or it mismatches with s2

there, and therefore, a = b; summing up, column a either coincides with b or with
c. Moreover (and symmetrically), at position c, it must be that s1 has a mismatch

Figure 15.2 Words belonging to a (13, 3, 2)-Hrepeat share at least p3 nonoverlapping

3-grams with p3 =
⌊

13
3

⌋
− 2 − (3 − 2) ×

⌊
2
2

⌋
= 1. Indeed, a 3-gram GTA, for instance, is shared

by the three sequences. In this example, mismatches were spread every three characters. This
repartition is the most limiting case for the number of shared 3-grams.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

15.3 LOSSLESS FILTERS 307

with s2 or with s3, and hence, actually when d = 1, it must be that a = b = c; there
is a unique column that no q-gram can cross. Clearly, in the general case of r > 3
and d > 1, there are more than one position of mismatches, but the principles of the
mandatory concentration of mismatches positions into columns can be generalized.
Roughly speaking, for any d and r > 2, each new word contributes by around d/2
new columns containing a mismatch.

15.3.3.2 Multiple Sequences Versus a Single Sequence. It is worth notic-
ing that Theorem 15.2 does not depend on the repartition of repeat occurrences over
sequences. Thus, it applies either in the case of searching repeats occurring in a sin-
gle sequence or distributed over at least r sequences.

15.3.3.3 NIMBUS Implementation: Bifactor Array. Sets of shared q-grams
are searched efficiently thanks to bifactors. Given a sequence, a bifactor is simply
two substrings separated with a gap. Example 15.2 shows a bifactor. Each couple of
shared q-gram is a shared bifactor. The set of pr > 1 shared q-grams are detected by
finding a couple of shared q-grams A − B as shared bifactors. Then a second shared
bifactor B − C (starting by B) is searched. In case of success, the group of three
shared q-grams A − B − C is found and so on. To speed the detection of shared
bifactors, they are indexed in a specialized data structure called the bifactor array
described in [50].

� EXAMPLE 15.2 Bifactor

On the sequence TATATAGTAC, at position 1, occurs the bifactor ATA GTA,
with two substrings of length three separated by a gap of length two. Bifactors are
similar to spaced seeds that will be discussed in Section 15.4.2.

15.3.3.4 QUASAR and NIMBUS Implementations Differences. The algorithm
of nimbus deals with repeats having possibly more than two occurrences, whereas
quasar was designed for filtering for repeats having only two occurrences. More-
over, quasar does not check the order of the shared q-grams. As the edit and Ham-
ming distances do not allow inversions, the shared q-grams must have the same
repartition in each word of (L , r, d)-Hrepeats. Thus, the nimbus tool, in addition to
allowing the finding of repeats with more than two occurrences, applies in practice a
method with higher specificity.

15.3.3.5 Performance. Preprocessing with nimbus a dataset in which one wants
to find functional elements using a multiple local alignment tool such as Glam [16],
the overall execution time could be reduced from 7.5 hours (directly aligning with
glam only) to less than two minutes (filtering with nimbus and then aligning with
glam) [49].

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

308 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

15.3.4 TUIUIU—Filtering Multiple Repeats with Edit Distance

The tuiuiu [51] tool proposes to extend the filtration for (L , r, d)-Erepeat with r ≥
2. The approach uses a filtration condition framework based on the p2 number of
shared q-grams (Theorem 15.1).

With r ≥ 2, a necessary condition involving the number of q-grams that must be
shared by all r occurrences of the repeats would result as too weak here because,
when indels are allowed, the property of mismatch columns that concentrate does
not hold anymore. Therefore, the choice made in Tuiuiu actually was to design a
very strong necessary condition for two strings to be at most edit distance d and to
insert this checking in a suitable framework that detects fragments of the input data
that fulfill the requirement with respect to at least r − 1 other fragments belonging
to distinct input strings. Therefore, the contribution of the algorithm introduced in
Tuiuiu is twofold; first, a new necessary condition for (L , 2, d)-Erepeat is intro-
duced, which results in being stronger that previous ones; second, the framework
that extends the necessary condition to multiple repeats, which actually can be em-
ployed with any (L , 2, d)-Erepeat condition inside.

The necessary condition checked by tuiuiu is actually a series of three possible
levels of selectivity, resulting in as many versions of the filter. The first condition
(already introduced in [52]) requires that Theorem 15.2 holds with r = 2, and also
that in the alignment matrix of the two strings, these p2 = �L/q� − d q-grams result
in matches that lay in a parallelogram-shaped area (see Figure 15.1). The second
(further) condition that tuiuiu imposes is very simple; for w and w′ to be a (L , 2, d)-
Erepeat, the q-grams that they must share have to occur in w at distinct positions
(that is, at least p2 of them). This apparently trivial condition actually resulted in
giving a substantial contribution to the strength of the filter in that tuiuiu can check
it in negligible constant time, and it does increase the selectivity. For this reason, the
performances of the filter version that use this condition clearly outperform those
of the filter that uses the first condition only. The third and most stringent condition
additionally imposes that there is a set of p2 shared q-grams that occur in w and
w′ in the same order. This third condition, involving longest common subsequence
(LCS) computations, checks the conservation in the order of the shared q-grams. It
requires some extra time to be checked, but experiments showed evidence of the fact
that because this is done only for pairs of strings w and w′ that already survived the
previous conditions, the delay is limited. In practice, this most restrictive constraints
resulted in being worth using in many interesting applications, as, for example, while
using values of d larger than 10% of L .

The first is the fastest and less sensible and is, in practice, the same as that of
swift (the use of a parallelogram), except that it is used within the multiple repeats
filtering task. The second option introduces an extra requirement that leads to a more
selective tool while being still as fast as before (or actually sometimes even faster).
This condition actually could be itself a good filter for finding approximate matches
of a pattern into a text. The third choice results in the most selective filter but at a
time cost that experiments show to be often worth paying when the target task is
finding multiple repeats.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

15.4 LOSSY SEED-BASED FILTERS 309

To require that the repeat occurs in r distinct sequences, tuiuiu slides a window
over all input sequences. At each moment, it considers the window itself w and all
remaining sequences virtually divided into blocks that are candidate to contain w′.
For the first position of the window, it builds an index of all its q-grams and stores
how many of them belong to each block. For every new position of the window, up-
dating this information is very simple as w simply drops a q-gram and acquires a
new one. It is thus also easy to check, for each block, whether it has enough shared
q-grams. If for w, there are enough blocks that satisfy the retained, then w is con-
served; otherwise, w is filtered out.

Like nimbus, tuiuiu also supports a query in which there is a single input se-
quence, and the r occurrences of the repeat only are required to be distinct as they
all must belong to the same sequence.

15.3.4.1 Complexity and Parameters. In general (with p2 large enough,
see [51]), the average complexity is in

O

(
b + d

b
n2|�|−q

)

where n is the sum of the sequence lengths and b the thickness of parallelograms.
It is worth noting that q, the length of the q-grams, strongly influences the results
and the computation time. With a small q, computation is slow (a lot of shared ran-
domly q-grams), but the filter is very specific. On the other hand, a large value for q
increases the theoretical speed both because of the |�|−q term in the complexity but
also because only few large q-grams are shared randomly between sequences. How-
ever, with a larger q value, the filter becomes less selective. This is a result of the
decrease of the strength of the necessary condition on p2. In practice, as presented
in [51], applying tuiuiu on biological sequences with q = 6 presents a good balance
between specificity and execution time.

15.3.4.2 Success Story. tuiuiu was applied as a preprocessing step of a mul-
tiple alignment application (glam2 [15], an evolution of glam that allows indels and
is thus more suitable with edit distance), leading to an overall execution time (filter
plus alignment) on average of 63 and at best 530 times smaller than before (direct
alignment).

15.4 LOSSY SEED-BASED FILTERS

When dealing with weaker similarities, lossless filters become too difficult to be
implemented efficiently. As an example, when we search for (40, 2, 10)−Hrepeats
(that means a ≥ 75% similarity), Theorem 15.2 cannot ensure anything for q-grams
with q ≥ 4. In some homology studies between “distant” species, one frequently has
to look at similarity levels between 30% and 60%; for those kind of similarities, tools

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

310 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

Figure 15.3 During the filtering phase, a scan of the query sequence uses the index (here
with the key AAC) to identify all matching seeds. Here the first r = 3 seeds are shown. Then
the finishing phase get neighborhoods of the indexed sequence from the memory (one memory
access per position) and builds local alignments between this neighborhood and the one of the
query sequence. Here only the position 121 in the indexed sequence leads to a “good” local
alignment.

other than lossless filters must be designed. In this section, we explain seed-based
heuristics and detail some of their implementations.

15.4.1 Seed-Based Heuristics

As in lossless filters, the idea of seed-based heuristics is to anchor the detection
of similarities using matching short words or short subsequences occurring in both
compared sequences. The form of these words or subsequences is provided by a
pattern called a seed. A word that respects the seed is called a key. For instance,
MVK is one of the 203 possible keys for the seed of three consecutive characters on
the protein alphabet.

We now summarize the discussion made by the excellent survey of Brown ([5],
page 122). Seed-based alignment proceeds in three phases (Figure 15.3):

� Indexing phase: “indexing one or more of the sequences”—typically in O(n)
time, or at most O(kn) time, where n is the size of the indexed sequence and k
is the size of keys. For each key, all positions of the occurrences in the database
are stored.

� Filtering phase: “using the index to identify possible alignment seeds”—
typically, each position in the query is processed in O(1 + r) time, where r
is the number of matching seeds. Thus, this phase takes O(m + R) time, where
m is the size of the query and R is the total number of matching seeds.

� Finishing phase: “building local alignments from the seeds”—O(R), assuming
that most seeds are bad seeds (that are not extended into good alignments). To
be efficient, the finishing step usually begins by a fast alignment between the
query and the database on a small neighborhood around the seed match, then
proceeds to a full alignment if the fast alignment was above a given threshold.

In fact, if we leave out the constant terms and the O(m + n) time required to
read the sequences, a seed-based alignment algorithm runs in additional O(R) time;

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

15.4 LOSSY SEED-BASED FILTERS 311

the specificity of the filtering phase is crucial. Traditional BLAST seeds, noted as
###########, are contiguous 11-grams on nucleotides. Assuming the DNA se-
quences are random, R is approximately mn/411. With large genomes, this quantity
becomes too large.

15.4.2 Advanced Seeds

For the same number of detected good alignments (sensibility), how can it be pos-
sible to have less hits and thus to decrease R ? Instead of contiguous k-words, it is
more advantageous to use so-called spaced seeds that correspond to matches “with
gaps” between sequences and thus gapped diagonals in the dynamic programming
matrix. Hits of a spaced seed are less related than the hits of a contiguous word; for
a same specificity (number of hits), the sensitivity is better.

� EXAMPLE 15.3 Spaced Seeds

With the spaced seed ##-## of weight 4, the nucleic key AA-CT matches the
four strings AAACT, AACCT, AAGCT and AATCT. This seed is lossless on
(40, 2, 10)−Hrepeats: that means that all (40, 2, 10)−Hrepeats share at least a
gapped 4-gram shaped by ##-##. This is better than the contiguous 4-gram ####
that misses some (rare) alignments.

On (40, 2, 20)−Hrepeats, both seeds are lossy. On a Bernoulli model, the
spaced seed ##-## has now a sensibility of 86,8%, whereas the seed #### only
achieves a 79,8% sensibility. Sensibilities are computed with Iedera [27].

The idea of using spaced seeds for biological sequence comparisons first was
proposed in 2002 by Ma et al. [37] in the PatternHunter software. Following this
article, theoretical design and usage of better seeds became an active field of re-
search [6, 11, 32, 38], with extensions on vector seeds [3], protein seeds [4, 24], and
subset seeds [27, 53]. The most complete and recent survey of this domain is [5].

In all those seed models, one designs appropriate seeds according to sensitiv-
ity/selectivity criteria and the class of target alignments. Moreover, instead of using
a single seed, one can use several seeds simultaneously (so-called multiple seeds) to
improve further the sensitivity/selectivity trade-off.

15.4.3 Latencies and Neighborhood Indexing

15.4.3.1 Latencies for the Finishing Step. What exactly is stored during the
indexing phase? For each key, we want to remember the list of all its occurrences in
the database. In the usual offset indexing approach, depicted on Figure 15.3, an offset
of log N bits is stored for each seed position (where N is the size of the database).
The index size thus is equal to N × log N bits.

For each query position, each hit returned by the filtering phase leads to an iter-
ation of the finishing phase. This iteration accesses some neighborhood of the posi-
tions. These memory accesses are random, that is, unpredictable and noncontiguous.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

312 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

Figure 15.4 In the neighborhood indexing approach, for each key, a small neighborhood of
each key occurrence is stored redundantly in the index. Here L = 7 nucleotides are stored with
each position. The filtering phase needs one memory access (per key). The finishing phase does
not need any more additional access.

Such accesses are not cached efficiently and require high latencies [19]. This is es-
pecially true when using multiple seeds, for example, in the BlastP approach (on
average, 26 index look-ups for the Blosum-62 background distribution of amino
acids [48]).

15.4.3.2 Neighborhood Indexing. A way to reduce the computation time thus
is to avoid as far as possible such random memory accesses. In [48], a neighborhood
indexing approach was proposed. The idea is to store additionally, for each key oc-
currence, its left and right neighborhoods in the sequence (Figure 15.4). Thus, given
a position in the query and its corresponding key, all neighborhoods of this key oc-
currences in the database are obtained through a single memory access. There is no
need for further memory accesses to random positions in the original sequence. The
overall index size then is equal to N × (log N + αL) bits, where α is the number of
bits for coding a character (nucleotide or amino acid), and L is the total length of the
neighborhoods.

The main advantage of the neighborhood indexing is that it speeds the execution
time by a factor ranging between 1.5 and 2 over the offset indexing [48]. The actual
speed gain depends on the database length and on many implementation and archi-
tecture parameters (such as memory and cache sizes, cache strategies, and access
times) that will not be discussed here. An obvious drawback of the neighborhood
indexing is the additional memory it requires to store neighborhoods. Comparing the
two indexing schemes, the ratio between the overall index sizes of the neighborhood
indexing and the offset indexing is 1 + αL/ log N . Usual values for log N are be-
tween 20 and 40, and usual values for L are between between 2 × 20 and 2 × 200;
hence, this ratio is between 2 and 21.

15.4.3.3 Implementation Detail of the Neighborhood Indexing: Alpha-
bet Reduction. In [48], a reduction of this ratio for the proteic case is proposed.
The idea is is to use a reduced amino acid alphabet, and thus to reduce α. Grouping
amino acids was studied in several papers [8, 13, 33, 42]. Groups can rely on amino
acid physical-chemical properties or on a statistical analysis of alignments. For ex-
ample, the authors of [42] computed correlation coefficients between pairs of amino
acids based on the BLOSUM50 matrix and used a greedy algorithm to merge them.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

15.4 LOSSY SEED-BASED FILTERS 313

A branch-and-bound algorithm for partitioning the amino acids was proposed in [8].
An extreme application of the grouping gives alphabets with only two symbols. Li
et al. proposed in [33] the alphabet �2 = {CFYWMLIV, GPATSNHQEDRK}. Us-
ing this alphabet for amino acids divides the storage requirement per 5 but is, of
course, far less precise.

In [48], we showed that we could retrieve the original sensitivity by using longer
neighborhoods and keeping the original alphabet for the query string. We computed
rectangular BLOSUM matrices (ReBlosum, Example 15.4) that compare amino acid
groups (from the indexing alphabet) with actual amino acids (for the query string).
Our method applies on any amino acid partition. The best results were obtained with
Li’s �2 alphabet; with the same sensibility, 35% less memory is neeeded for a neigh-
borhood length of 2 × 32 instead of 2 × 11 amino acids when log N = 24.

� EXAMPLE 15.4 Alphabet Reduction

C F Y W M L I V G P

CFYWMLIV 4 4 3 4 3 4 4 3 −6 −6
GPATSNHQEDRK −4 −5 −4 −6 −3 −5 −5 −4 2 2

A T S N H Q E D R K

CFYWMLIV −2 −2 −4 −6 −4 −4 −6 −7 −5 −5
GPATSNHQEDRK 1 1 2 2 1 2 2 2 2 2

The ReBlosum matrix for comparison of Li’s alphabet �2 (indexing alphabet)
with the usual alphabet �20 (querying alphabet) computed on alignments with
62% identity. On a Bernoulli model, comparing a query of length 32 (on �20)
with an indexed neighborhood of length 32 (on �2) is as sensible as comparing a
query of length 11 (on �20) with a usual neighborhood on length 11 on �20 but
with a 35% memory reduction.

15.4.4 Seed-Based Heuristics Implementations

15.4.4.1 CPU Implementations. The first widely used implementations of
seed-based heuristics were Fasta [46] then Blast [1]. The Blast 2 implementation [2]
uses a double hit, allowing a greater sensibility.

PatternHunter [37], followed by PatternHunter 2 [31], are the reference papers for
the spaced seeds and the multiple seeds ideas. Another widely used tool, Blat [23],
allows one mismatch in a contiguous seed and, thus, is equivalent to a collection of
several spaced seeds. Yass [45, 44] is a comparison tool between nucleic sequences
that implements several optimisation to seeds, including multiple “transition con-
strained” seeds, favoring transition mutations between purines and between pyrim-
idines. Yass come with the Iedera tool [27] that designs and evaluates various types
of seeds.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

314 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

Figure 15.5 ORIS and PLAST seed-based indexing. As the two sequences are indexed, the
filtering phase is a simultaneous scan of both indexes. If the neighborhoods also are included in
the index, then here there is almost no more random access during both filtering and finishing
phases.

A really nice idea appeared in 2008 in ORIS and then PLAST [28, 43]. The idea
here is to build two indexes, one for each bank and then to scan simultaneously the
both indexes (Figure 15.5). The advantage of such an approach is that there is virtu-
ally no cache miss for seeds that are not extended further; all latencies are removed
even during the filtering step.

Seed-based heuristics are found in wider applications, for example, in ZOOM, a
read mapper for high-throughput sequencers [18].

15.4.4.2 Parallel Implementations. Instead of a serial implementation of a
seed-based heuristics, one can parallelize some parts of the computation. Fine-
grained parallelism can be realized either through vector single instruction multi-
ple data (SIMD) instructions or on specialized architectures (custom processors or
reconfigurable FPGA processors). Moreover, threads on a multicore architecture,
or clusters of any of the previous solutions can provide additional coarse-grained
parallelism.

� Blast-like seeds. The first hardware implementation of a seed-based heuris-
tic was done in 1993 on a custom processor with the BioSCAN archi-
tecture [57]. Several implementations on reconfigurable field-programmable
gate array (FPGA) processors have been developed independently since 2003
([9, 20, 26, 41], see [29] for a review). A cluster-enabled version of Blast was
proposed on message possing interface (MPI) [12, 59].

� Other heuristics. DASH [25] is an algorithm implemented on FPGA with a
better sensibility than BLAST. In 2006, [30] proposed an architecture designed
to proteic comparisons using seeds of three amino acids. We proposed the im-
plementation on subset seeds [27] on a FPGA architecture coupled with large
Flash memories [47]. The PLAST algorithm was designed especially for easy
parallelization, and several parallel versions are available [43].

Finally, the new many-cores architectures like graphic processing units (GPUs)
also can offer both levels of parallelism. Recently, numerous parallel GPU im-
plementations of regular Smith–Waterman dynamic programming were proposed

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

REFERENCES 315

[34, 35, 36, 39, 55]. Seed-based heuristics also could take benefit from those ar-
chitectures.

15.5 CONCLUSION

Sequence homologies are the key to molecular biology studies. Modeled by approxi-
mate repeats and approximate multiple repeats, the discovery of homologies remains
a difficult task suffering from time bottlenecks. Moreover, molecular biology studies
have to cope with datasets whose size grows exponentially. Today biologists often
must restrict the area of their research while looking for similarities into sequences
or between sequences. Some computations, in particular concerning the research of
similarities not limited to two occurrences, are simply unfeasible.

Given a similarity model, filters are methods permitting quick focus on sequences
fragments that may contain some repeats occurrences. Thus, after a filtering step,
programs designed for the similarity research may be applied to much smaller
datasets and find faster repeat occurrences. This chapter exposed two kind of fil-
ters. First, lossless filters that ensure that no occurrences of repeats may be filtered
out. Second, lossy seed filters that are heuristics that do not assure that no repeat
occurrences are missed after filtration.

Used as first steps of similarity research, lossless filters present the large advan-
tage that they do not modify the results quality. Although applied for the research of
multiple repeats, they can reduce computation time by several orders of magnitude.
However this kind of filter generally is limited to the research of well-conserved sim-
ilarities. On the other hand, lossy seed filters are methods widely used that provide
even faster results. This kind of filter may be used for finding similarities with a high
divergence rate. However, even if some approaches estimate the sensitivity of the
results, they cannot ensure finding 100% of the searched results.

Today, new sequencing techniques increase even the exponential rate of the flood
of data. New methods must be designed to improve further the similarity search still
working for increasing the sensitivity close to the full sensitivity.

15.6 ACKNOWLEDGMENTS

We are grateful to Julien Allali (Université Bordeaux 1) and Jérémie Bourdon (Uni-
versité de Nantes) for their comments on this chapter.

REFERENCES

1. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. J Mol Biol, 215(3):403–410, 1990.

2. S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lip-
man. Gapped BLAST and PSI-BLAST: A new generation of protein database search pro-
grams. Nucleic Acids Res, 25(17):3389–3402, 1997.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

316 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

3. B. Brejová, D. Brown, and T. Vinar. Vector seeds: An extension to spaced seeds. J Comput
Syst Sci, 70(3):364–380, 2005.

4. D. Brown. Optimizing multiple seeds for protein homology search. IEEE Trans Comput
Biol Bioinformatics, 2(1):29–38, 2005.

5. D.G. Brown. A survey of seeding for sequence alignment. In I. Mandoiu and A.
Zelikovsky, editor, Bioinformatics Algorithms: Techniques and Applications. Wiley-
Interscience, New York, 2008, pp. 126–152.

6. J. Buhler, U Keich, and Y. Sun. Designing seeds for similarity search in genomic DNA. J
Comput Syst Sci, 70(3):342–363, 2005.

7. S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vingron. q-gram
based database searching using a suffix array (QUASAR). Annual Conference on Re-
search in Computational Molecular Biology (RECOMB 99), Lyon, France, 1999, pp. 77–
83.

8. N. Cannata, S. Toppo, C. Romualdi, and G. Valle. Simplifying amino acid alphabets by
means of a branch and algorithm and substitution matrices. Bioinformatics, 18(8):1102–
1108, 2002.

9. C. Chang. BLAST implementation on BEE2. University of California at Berkeley, 2004.

10. M. Crochemore, G.M. Landau, and M. Ziv-Ukelson. A subquadratic sequence alignment
algorithm for unrestricted scoring matrices. SIAM J Comput, 32(6):1654–1673, 2003.

11. M. Csürös and B. Ma. Rapid homology search with two-stage extension and daughter
seeds. International Computing and Combinatorics Conference (COCOON 05), Kun-
ming, China, 2005, pp. 104–114.

12. A. Darling, L. Carey, and W. Feng. The design, implementation, and evaluation of mpi-
BLAST. ClusterWorld Conference and Expo (CWCE 2003), SanJose, CA, 2003.

13. R.C. Edgar. Local homology recognition and distance measures in linear time using com-
pressed amino acid alphabets. Nucleic Acids Res, 32(1):380–385, 2004.

14. A. Fontaine, A. de Monte, and H. Touzet. MAGNOLIA: multiple alignment of protein-
coding and structural RNA sequences. Nucleic Acids Res, 36(S2):W14–W18, 2008.

15. M.C. Frith, N.F.W. Saunders, B. Kobe, and T.L. Bailey. Discovering sequence motifs with
arbitrary insertions and deletions. PLoS Comput Biol, 4(5):e1000071, 2008.

16. M.C. Frith, U. Hansen, J.L. Spouge, and Z. Weng. Finding functionnal sequence elements
by multiple local alignement. Nucleic Acid Res, 32(1):189–200, 2004.

17. R. Grossi and F. Luccio. Simple and efficient string matching with k mismatches. Inf
Proces Lett, 33(3):113–120, 1989.

18. L. Hao, Z. Zefeng, Q.Z. Michael, M. Bin, and L. Ming. ZOOM! Zillions of oligos
mapped. Bioinformatics, 24(21):2431–2437, 2008.

19. J.L. Hennessy and D.A. Patterson. Computer Architecture, A Quantitative Approach.
Morgan Kaufmann, Burlington, MA, 2006.

20. A. Jacob, J. Lancaster, J. Buhler, and R. Chamberlain. FPGA-accelerated seed generation
in Mercury BLASTP. Annual IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM 07), Napa Valley, CA, 2007, pp. 95–106.

21. R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algorithms. IBM J
Res Dev, 31(2):249–260, 1987.

22. R.M. Karp, S. Shenker, and C.H. Papadimitriou. A simple algorithm for finding frequent
elements in streams and bags. ACM Trans Database Syst, 28:51–55, 2003.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

REFERENCES 317

23. W. James Kent. BLAST - the BLAST-like alignment tool. Genome Res, 12:656–664,
2002.

24. D. Kisman, M. Li, B. Ma, and W. Li. tPatternHunter: gapped, fast and sensitive translated
homology search. Bioinformatics, 21(4):542–544, 2005.

25. G. Knowles and P. Gardner-Stephen. A new hardware architecture for genomic and pro-
teomic sequence alignment. IEEE Computational Systems Bioinformatics Conference
(CSBC 04), Stanford, CA, 2004.

26. P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang, and J. Lancaster.
Biosequence similarity search on the Mercury system. IEEE International Conference on
Application-Specific Systems, Architectures and Processors (ASAP 04), Galvaston, TX,
2004.

27. G. Kucherov, L. Noé, and M. Roytberg. A unifying framework for seed sensitiv-
ity and its application to subset seeds. J Bioinformatics Comput Biol, 4(2):553–569,
2006.

28. D. Lavenier. Ordered index seed algorithm for intensive dna sequence comparison. IEEE
International Workshop on High Performance Computational Biology (HiCOMB 08),
Miami, FL, 2008.

29. D. Lavenier and M. Giraud. Reconfigurable Computing. Bioinformatics Applications.
Springer, New York, 2005.

30. D. Lavenier, L. Xinchun, and G. Georges. Seed-based genomic sequence comparison us-
ing a FPGA/FLASH accelerator. Field Programmable Technology (FPT 2006), Bangkok,
Thailand, 2006, pp. 41–48.

31. M. Li, B. Ma, D. Kisman, and J. Tromp. PaternHunter II: Highly sensitive and fast ho-
mology search. Genome Inform, 14:164–175, 2003.

32. M. Li, M. Ma, and L Zhang. Superiority and complexity of the spaced seeds. Symposium
on Discrete Algorithms (SODA 06), Miami, FL, 2006, pp. 444–453.

33. T.P. Li, K. Fan, J. Wang, and W. Wang. Reduction of protein sequence complexity by
residue grouping. Protein Eng, 16(5):323–330, 2003.

34. L. Ligowski and W. Rudnicki. An efficient implementation of Smith-Waterman algorithm
on GPU using CUDA, for massively parallel scanning of sequence databases. IEEE Inter-
national Workshop on High Performance Computational Biology (HiCOMB 09), Rome,
Italy, 2009.

35. W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig. GPU-ClustalW: Using graphics hard-
ware to accelerate multiple sequence alignment. IEEE International Conference on High
Performance Computing (HiPC 06), volume 4297 of Lecture Notes in Computer Science
(LNCS), 2006, pp. 363–374.

36. Y. Liu, D. Maskell, and B. Schmidt. CUDASW++: optimizing Smith-Waterman sequence
database searches for CUDA-enabled graphics processing units. BMC Res Notes, 2(1):73,
2009.

37. B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homology search.
Bioinformatics, 18(3):440–445, 2002.

38. D. Mak, Y. Gelfand, and G. Benson. Indel seeds for homology search. Bioinformatics,
22(14):e341–e349, 2006.

39. S.A Manavski and G. Valle. CUDA compatible GPU cards as efficient hardware accel-
erators for Smith-Waterman sequence alignment. BMC Bioinformatics, 9 Suppl 2:S10,
2008.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

318 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS

40. E.R. Mardis. Next-generation DNA sequencing methods. Annu Rev Genom Hum Genet,
9(1):387–402, 2008.

41. K. Muriki, K. Underwood, and R. Sass. RC-BLAST: Towards an open source hardware
implementation. IEEE International Workshop on High Performance Computational Bi-
ology (HiCOMB 05), Denver, CO, 2005.

42. L.R. Murphy, A. Wallqvist, and L. Ronald. Simplified amino acid alphabets for protein
fold recognition and implications for folding. Protein Eng, 13(3):149–152, 2000.

43. V.H. Nguyen and D. Lavenier. PLAST: Parallel local alignment search tool. BMC Bioin-
formatics, To appear.

44. L. Noé and G. Kucherov. Improved hit criteria for DNA local alignement. Bioinformatics,
5(149), 2004.

45. L. Noé and G. Kucherov. YASS: enhancing the sensitivity of DNA similarity search.
Nucleic Acids Res, 33:W540–W543, 2005.

46. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proc.
Natl. Acad. Sci., 85:3244–3248, 1988.

47. P. Peterlongo, L. Noé, D. Lavenier, G. Georges, J. Jacques, G. Kucherov, and M. Giraud.
Protein similarity search with subset seeds on a dedicated reconfigurable hardware. Par-
allel Biocomputing Conference (PBC 07), volume 4967 of Lecture Notes in Computer
Science (LNCS), 2007.

48. P. Peterlongo, L. Noé, D. Lavenier, V.H. Nguyen, G. Kucherov, and M. Giraud. Optimal
neighborhood indexing for protein similarity search. BMC Bioinformatics, 9(534), 2008.

49. P. Peterlongo, N. Pisanti, F. Boyer, A. Pereira do Lago, and M.-F. Sagot. Lossless filter for
multiple repetitions with hamming distance. J Discrete Algorithm, 6(3):497–509, 2008.

50. P. Peterlongo, N. Pisanti, F. Boyer, and M.-F. Sagot. Lossless filter for finding long mul-
tiple approximate repetitions using a new data structure, the bi-factor array. Interna-
tional Symposium on String Processing Information Retrieval (SPIRE 05), Buenos Aries,
Argentina, 2005, pp. 179–190.

51. P. Peterlongo, G.A.T. Sacomoto, A. Pereira do Lago, N. Pisanti, and M.-F. Sagot. Lossless
filter for multiple repeats with bounded edit distance. BMC Algorithm Mol Biol, 4(3),
2009. To appear.

52. K.R. Rasmussen, J. Stoye, and E.W. Myers. Efficient q-gram filters for finding all ε-
matches over a given length. J Comput Biol, 13(2):296–308, 2006.

53. M. Roytberg, A. Gambin, L. Noé, S. Lasota, E. Furletova, E. Szczurek, and G. Kucherov.
Efficient seeding techniques for protein similarity search. Proceedings of Bioinformatics
Research and Development (BIRD 08), volume 13 of Communications in Computer and
Information Science, 2008, pp. 466–478.

54. F. Sanger, S. Nicklen, and A.R. Coulson. DNA sequencing with chain-terminating in-
hibitors. Proc Ntl Acad Sci U S A, 74(12):5463–5467, 1977.

55. M.C Schatz, C. Trapnell, A.L. Delcher, and A. Varshney. High-throughput sequence
alignment using graphics processing units. BMC Bioinformatics, 8:474, 2007.

56. J. Shendure and H. Ji. Next-generation DNA sequencing. Nat Biotechnol, 26(10):1135–
1145, 2008.

57. R.K. Singh, S.G. Tell, C.T. White, D. Hoffman, V.L. Chi, and B.W. Erickson. A scal-
able systolic multiprocessor system for analysis of biological sequences. Symposium on
Research on Integrated Systems, Seattle, WA, 1993, pp. 168–182.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

REFERENCES 319

58. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J Mol
Biol, 147:195–197, 1981.

59. O. Thorsen, B. Smith, C.P. Sosa, K. Jiang, H. Lin, A. Peters, and W. Fen. Parallel genomic
sequence-search on a massively parallel system. International Conference on Computing
Frontiers (CF 07), Las Vegas, NV, 2007.

60. E. Ukkonen. Approximate string matching with q-grams and maximal matches. Theor
Comput Sci, 92(1):191–211, 1992.

P1: OSO
c15 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16
NOVEL COMBINATORIAL

AND INFORMATION-
THEORETIC ALIGNMENT-

FREE DISTANCES FOR
BIOLOGICAL DATA MINING

Chiara Epifanio, Alessandra Gabriele, Raffaele Giancarlo,
and Marinella Sciortino

16.1 INTRODUCTION

Sequence comparison plays a central role in many scientific areas [70] and, in par-
ticular, for computational molecular biology [41, 81]. In fact, biological molecules
can be seen as linear sequences of discrete units similar to linguistic representations,
despite their physical nature as a three-dimensional (3D) structure and the dynamic
nature of molecular evolution.

The problem of defining good mathematical functions to measure similarity be-
tween biological sequences is fundamental for their analysis. Indeed, a high simi-
larity among biological sequences, as measured by mathematical functions, usually
gives a strong indication of functional relatedness and/or common ancestry [41].
However, there is not a bijective correspondence between sequence and structure or
sequence and function because, in general, the converse of the previous statement is
not true.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

321

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

322 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

Classically, the notions of similarity and distance hinge on sequence alignment
[41]. Algorithmically, these methods usually are implemented by using dynamic pro-
gramming and target specific goals such as global and local alignments, with many of
their variants (e.g., [40, 41, 60, 72]). Because of their worst case superlinear running
time in the input parameters, these methods are considered inadequate for the anal-
ysis of long sequences in which one usually resorts to heuristic algorithms, such as
BLAST [13,14] and FASTA [64,65]. In case of protein alignment, all algorithms we
have mentioned so far use matrices point accepted mutation (PAM) [27] and blocks
of amino acid substitution matrix (BLOSUM) [42] as their scoring schemes [41].

Now that entire genomes are available, the sequence alignment approach no
longer is perceived as right for sequence comparison. In fact, it is not suitable to
measure events and mutations that involve very long segments of genomic sequences
because sequence alignment considers only local mutations of the genome. Actually,
the conservation of contiguity underlying alignment is at odds with genetic recom-
bination, which includes shuffling subgenomic DNA fragments. This is the case, for
instance, of orthologous regulatory sequences or no orthologous functionally related
sequences (such as cis-regulatory modules), which do not show any statistically sig-
nificant alignment. Moreover, with reference to proteomic sequences comparison,
the use of scoring matrices in the alignment-based methods shows limitations when
one has to deal with sequences with less than 20% sequence identity. Furthermore,
the growing mass of biological data makes impracticable the alignment-based ap-
proach both for running time and memory usage.

The need to overcome these critical limitations of alignment-based measures, in
whole or in part, has required the development of alternative approaches. The first
systematic organization of alignment-free measures, together with the name, was
given in the ground-breaking paper by Vinga and Almeida in [78].

Most of the alignment-free methods can be classified in accordance with well-
established paradigms. A first paradigm concerns information-theoretic approaches
that use classical information measures. The power of information measures is a
result of their ability to determine statistical dependence among sequences, which
in turn, may reveal biologically important relationships. Another paradigm regards
the use of techniques and notions from combinatorics on words. The third paradigm
collects methods that are based on the notion of subword composition of sequences
in which vectors of word frequencies of a given length are considered, whereas the
fourth paradigm focuses on counting the exact matches of words of a given length.

Within those paradigms, we have identified some representative methods that have
been introduced recently and that provide promising solutions for alignment-free
comparison and that will be the object of this chapter. Moreover, we also present
several domains of biological relevance in which experiments support the conclusion
that the methods performed here are indeed adequate. As for algorithm experimenta-
tion and engineering, we provide a kernel of datasets and publicly available software
libraries that can be used for benchmarking and comparative studies.

The remainder of the chapter is organized as follows: Section 16.2 presents some
recent and innovative alignment-free methods that make explicit use of information
measures, based on the notions of empirical relative entropy and empirical mutual

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.2 INFORMATION-THEORETIC ALIGNMENT-FREE METHODS 323

information between sequences. Section 16.3 is devoted to the presentation of some
combinatorial alignment-free methods chosen from the ones available in this class
for either having been used already for large-scale, genome-wide, studies or having
the potential to perform well in those studies. In Section 16.4 we describe some
alignment-free methods based on the notion of subword composition of sequences,
which, thanks to extensive experimentation, have become significant for biological
data mining. Section 16.5 presents some alignment-free word matches methods and,
in particular, the distance D2, which stands out for its mathematical elegance as
well as its usefulness and two generalizations of it. The first one is a straightforward
extension of D2 to approximate k-word matches, whereas the second one, nicknamed
D2z, is a variant of D2, which offers several advantages with respect to it.

Section 16.6 contains the main experimental contributions to the bioinformatic
area of the papers cited in Sections 16.2 to 16.5. In particular, we briefly present
the biological domains in which the distances described here have been applied.
Those domains are representative of the use of alignment-free distances in biological
investigations.

Moreover, Section 16.7 presents a kernel of datasets that seem to be the most used
for benchmarking purposes. Such datasets are of interest for comparative analysis of
similarity measures, as they are used for classification and phylogenetic studies. Fur-
thermore, we provide the most prominent publicly available software libraries that
one can use for benchmarking and comparative studies. The final section is devoted
to conclusions.

16.2 INFORMATION-THEORETIC ALIGNMENT-FREE METHODS

Shannon information theory often is perceived as being of interest for data commu-
nication and storage. However, it is also deeply related to classification, data mining,
and analysis. For many years, in computational biology and bioinformatics, the most
successful use of information theory has been for sequence analysis and, in par-
ticular, to measure the “deviation from randomness” of nucleotide and amino acid
sequences. Anyway, the power of information measures is because of their ability to
determine statistical dependence among sequences, which in turn, may reveal biolog-
ically important relationships. A homogeneous presentation of the role of informa-
tion theory and data compression in computational biology is given in [38]. It is also
natural that those techniques explicitly offer natural alignment-free methods for bio-
logical data analysis. Moreover, fundamental measures of information are also at the
very foundation of many other alignment-free methods. That is, the former are not
used explicitly to compute the latter, but they are connected conceptually to them. For
this reason, the first subsection is devoted to outline the relation between information
measures and “similarity” of sequences, via statistical dependency. The remaining
subsections are devoted to some recent and particularly innovative alignment-free
methods that make explicit use of information measures. In particular, the second
subsection presents two measures based on empirical relative entropy between se-
quences; the first one uses, in a novel way, the empirical version of entropy, whereas

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

324 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

the second introduces the use of Markov chains, learned from the two sequences for
which similarity is to be assessed to evaluate entropy. The third subsection is devoted
to an alignment-free method that is based on the notion of empirical mutual infor-
mation between sequences. The interesting novelty of that approach consists of the
introduction of a test to quantify the level of statistical significance of a dependency
between two sequences as quantified by an information measure.

16.2.1 Fundamental Information Measures, Statistical Dependency,
and Similarity of Sequences

Three basic concepts underlying Shannon information theory are certainly entropy,
relative entropy, and mutual information [25]. They are presented here in their gen-
erality, whereas Subsections 16.2.2 and 16.2.3 consider their empirical counterparts
as they are applied to the design of alignment-free methods.

The entropy of a random variable is a measure of its uncertainty. Technically, it
quantifies the amount of information (in bits) required on average to describe the
random variable. More precisely, given a discrete random variable X with alphabet
� and probability mass function p(x) = Pr{X = x}, x ∈ �, the entropy H (X) is
defined by

H (X) = −
∑

x∈�

p(x) log p(x)

Note that entropy is a functional of the probability distribution of X (i.e., it is
dependent only on the probabilities and not on the actual values taken by that random
variable).

The relative entropy or Kullback–Leibler distance is a measure of the distance
between two probability distributions. It is defined between two probability mass
functions p(x) and q(x) as

RE(p, q) =
∑

x∈�

p(x) log
p(x)

q(x)

The relative entropy is a measure of the inefficiency of assuming that the distribution
is q when the true distribution is p. It is always nonnegative and it is zero if and only
if p = q. It also can be interpreted as a quantification of how p is “distant” from q.
Technically, however, it is not a distance measure because it is not symmetric and
does not satisfy the triangle inequality.

Mutual information of two random variables X and Y is a measure of the amount
of information that the first variable has about the second one. It also can be seen as
a special case of the relative entropy of two probability distributions. Indeed, given
two random variables X and Y with a joint probability mass function p(x, y) and
marginal probability mass functions p(x) and p(y), the mutual information is the
relative entropy between the joint distribution and the product distribution p(x)p(y),

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.2 INFORMATION-THEORETIC ALIGNMENT-FREE METHODS 325

that is,

I (X, Y) = RE(p(x, y), p(x)p(y)) =
∑

x,y∈�

p(x, y) log
p(x, y)

p(x)p(y)

The following result is fundamental for the entire chapter:

Theorem 16.1 Given two random variables X and Y , I (X, Y) ≥ 0, with equality
if and only if X and Y are statistically independent.

The statement establishes a deep connection between statistical dependency of
random variables and an information measure; we can quantify the former by com-
puting the latter, with the following great practical impact. Statistical dependency
on real data can be determined only once that the probability distributions are es-
timated, usually a rather complex and error-prone procedure. When one resorts to
the assessment of statistical dependency via information measures, an entire world
of heuristic solutions becomes available, via the connection of information measures
to data compression and combinatorics on words. Finally, the estimation of statis-
tical dependency is fundamental for computational biology because the statistical
dependency among sequences commonly is accepted as an indication of biological
relatedness.

16.2.2 Methods Based on Relative Entropy and Empirical
Probability Distributions

Throughout this chapter, let A = a1a2 · · · an and B = b1b2 · · · bm denote two strings
over the alphabet �. Fix an integer k ≥ 1, which we refer to as the word size. More-
over, we refer to any string in �k as a k-word.

Consider string A and, for each k-word wi in �k , let nk,i be the number of oc-

currences of wi in A. Let {pk,i = nk,i/(|A| − k + 1)}|�|k
i=1 be the kth order empirical

probability distribution for the string A. The kth order empirical entropy of the string
A then is defined as

Hk (A) = −
|�|k∑

i=1

pk,i log(pk,i)

It is important to stress that there is an important difference between the entropy
defined in the probabilistic setting and its empirical counterpart. In fact, Shannon
entropy is an expected value taken on a set of strings, whereas empirical entropy is
defined “pointwise” for each string, and it can be used as a function of the string
structure without any assumption on the information source emitting the string.

Similarly, it is possible to extend the concept of relative entropy to empirical
probability distributions based on k-words. As a result, k-word empirical relative
entropy becomes a natural approach to measure dissimilarity between biological

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

326 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

sequences. As pointed out by Vinga and Almeida [78], the case k = 1 (i.e., the em-
pirical Kullback-Leibler distance), has been one of the first methods used in this area.
Apparently however, the case k > 1 has been studied experimentally only recently
by Wu et al. [85]. Technically, consider A and B and let {pA

k,i } and {pB
k,i } be their

k-word empirical probability distributions, respectively. The kth order empirical rel-
ative entropy between A and B is defined as

REk(A, B) =
|�|k∑

i=1

pA
k,i log2

(
pA

k,i

pB
k,i

)

To avoid an indefinite value when pB
k,i = 0, Wu et al. also suggest to modify that

formula by adding a unit to both terms of the probability ratio.

It is obvious that the representation of biological sequences by their empirical
probability distributions and information measures involves some trade-offs. When
k is small, one loses information about the sequences (i.e., even very dissimilar se-
quences can have probability distributions close to each other). On the other hand, as
k increases, k-word information measures suffer of the so-called finite sample effect
yielding degenerate results [38]; when k is large, we do not have enough substrings
in the strings to sample accurately the “true” probability distributions underlying the
strings. In particular, some word types that are present in one string may be absent
in the other. To date, no satisfactory solution to this problem is known, although one
common approach consists of grouping some k-words having frequencies up to a
particular threshold into one event, but this is accompanied by a loss of sequence
information.

Wang and Zheng [80] propose a novel method, referred to as Weighted Sequence
Entropy (WSE) that attempts to overcome the finite sample effect problem. Although
it is based on the classical empirical relative entropy, the two distributions involved
are {pA

k,i } and the arithmetical average value of distributions {pA
k,i } and {pB

k,i }. Wang
and Zheng also introduce two slight variations of that measure by assigning weights
to {pA

k,i } and {pB
k,i }. These variants are equivalent to the k-word relative entropy when

k is small but tend to avoid the degeneration when k increases. Some technical details
follow.

Consider the probability distributions {pA
k,i }, {(pA

k,i + pB
k,i)/2}, and their relative

entropy

RE1k(A, B) =
|�|k∑

i=1

pA
k,i log2

(
2pA

k,i

pA
k,i + pB

k,i

)

Because, by definition, RE1k (A, B) �= RE1k(B, A), to ensure the symmetry con-
dition, Wang and Zheng consider the sum d1(A, B) = RE1k(A, B) + RE1k(B, A).

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.2 INFORMATION-THEORETIC ALIGNMENT-FREE METHODS 327

By using the empirical information entropy, d1(A, B) can be rewritten as

d1(A, B) = 2H

(
A + B

2

)

− H (A) − H (B)

Notice that (A + B)/2 is a shorthand for the probability distribution {(pA
k,i +

pB
k,i)/2}. It is interesting to point out that the “averaging” method just outlined gener-

alizes to give weights to the probability distributions {pA
k,i } and {pB

k,i } as the following
two examples illustrate. Let

RE2k(A, B) =
R∑

i=1

pA
k,i log2

(
(n + m)pA

k,i

npA
k,i + mpB

k,i

)

RE3k(A, B) =
R∑

i=1

pA
k,i log2

(
(
√

n + √
m)pA

k,i√
n pA

k,i + √
m pB

k,i

)

Their corresponding distance measures are as follows:

d2(A, B) = (n + m)H

(
n A + m B

n + m

)

− nH (A) − m H (B)

d3(A, B) = (
√

n + √
m)H

(√
n A + √

m B√
n + √

m

)

− √
nH (A) − √

m H (B)

It is of interest to point out that, because d1, d2, and d3 are linear combinations
of empirical entropies, this approach has been nicknamed as the weighted sequence
entropy. Notice that none of the distances can have an indefinite value because they
are all nonnegative and bounded by 2, n + m, and

√
n + √

m, respectively.
In the case of short words sizes, Wang and Zheng show that their three revised ver-

sions of the classical empirical relative entropy perform as well as empirical relative
entropy in phylogenetic inferences. However, for large word sizes, their methods still
grant reliable phylogenetic inferences, whereas relative entropy returns degenerate
results because of the absence of some word types. Moreover, the authors compare,
with positive results, their new methods with other existing ones for the construc-
tion of phylogenetic trees, namely, Euclidean distance [18, 78], linear correlation
coefficient [32,66], cosine function [68,69,73,74], and information-based similarity
index [43].

Dai et al. [26] propose two other methods, whose novelty is to combine the statis-
tical information about k-words by deriving it both empirically and from a Markov
chain that supposedly represents well the salient features of a family of strings. The
rationale is that both k-word distributions and Markov models contain important in-
formation about strings, but they are of a different nature. In k-word distributions,
the probability of each word is dictated punctually by the string, whereas it is an

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

328 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

average, or the result of a training process on a set of strings, when one uses a
Markov chain.

The first two measures Dai et al. introduce, denoted rre.k.r and S1.k.r , extend
the concept of empirical relative entropy between strings to Markov chains of order
r . The other ones, denoted wre.k.r and S2.k.r , are defined starting from rre.k.r . In
particular, for these last two measures the probability of a k-word is computed by
multiplying the probability of that k-word, as predicted by a Markov chain of order
r , by the same probability obtained via the frequency of occurrence of that k-word
in the string. We provide some details next.

The revised relative entropy rre.k.r is an information measure between two
Markov chains Mr

A and Mr
B of order r . Each Markov chain is learned from A and B,

respectively. It is

rre.k.r (Mr
A, Mr

B) =
∑

w∈�k

∣
∣
∣
∣p(w|Mr

A) ln

(
2p(w|Mr

A)

p(w|Mr
A) + p(w|Mr

B)

)∣
∣
∣
∣

where p(w|Mr) denotes the probability of the k-word w = w1w2 · · ·wk as computed
via a Markov chain Mr of order r . In particular, for 0 ≤ r ≤ 2, p(w|Mr) can be
computed as follows

p(w|Mr) =

⎧
⎪⎨

⎪⎩

πw1πw2 · · ·πwk if r = 0

πw1 p(w1, w2)p(w2, w3) · · · p(wk−1, wk) if r = 1

πw1w2 p(w1w2, w3)p(w2w3, w4) · · · p(wk−2wk−1, wk) if r = 2

where p(i, j) is obtained from the state transition matrix of Mr . The vector πi =
p(w1 = Si) is the initial state probability distribution, with Si denoting the i th state
of Mr .

The symmetric form of rre.k.r , denoted by S1.k.r , is defined by

S1.k.r (Mr
A, Mr

B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Mr
A = Mr

B

∑
w∈�k p(w|Mr

A) ln

(
2p(w|Mr

A)

p(w|Mr
A) + p(w|Mr

B)

)

+

+∑
w∈�k p(w|Mr

B) ln

(
2p(w|Mr

B)

p(w|Mr
A) + p(w|Mr

B)

)

, else

Furthermore, Dai et al. present a statistical model, denoted by ξ = (M, W), that
contains probabilistic information from both Markov chains M and k-word distribu-
tions W . Let ξ r

A,k = (Mr
A, W A

k) and ξ r
B,k = (Mr

B, W B
k) be two probabilistic models of

A and B, respectively. The weighted relative entropy between those two probability

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.2 INFORMATION-THEORETIC ALIGNMENT-FREE METHODS 329

distributions is defined as

wre.k.r (ξ r
A,k, ξ

r
B,k) =

∑

w∈�k

∣
∣
∣
∣
∣
ϕ(w|ξ r

A,k) ln

(
2ϕ(w|ξ r

A,k)

ϕ(w|ξ r
A,k) + ϕ(w|ξ r

B,k)

)∣
∣
∣
∣
∣

where, for each 1 ≤ k ≤ min{n, m}, ϕ(w|ξ r
k) denotes the entry corresponding to the

k-word w under the statistical model ξ r
k . As already outlined, it can be computed

by multiplying p(w|Mr) as defined previously by the probability obtained via the
frequency of the k-word w in the string. Finally, the symmetric form of wre.k.r ,
denoted by S2.k.r , is defined by S2.k.r (ξ r

A,k, ξ
r
B,k) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ξ r
A,k = ξ r

B,k

(
∑

w∈�k ϕ(w|ξ r
A,k) ln

(
2ϕ(w|ξ r

A,k)

ϕ(w|ξ r
A,k) + ϕ(w|ξ r

B,k)

)

+

+∑
w∈�k ϕ(w|ξ r

B,k) ln

(
2ϕ(w|ξ r

B,k)

ϕ(w|ξ r
A,k) + ϕ(w|ξ r

B,k)

))

/|�k | + 2 ln 2, else

and it is proved to be a valid distance measure.
With the use of receiver operating characteristic (ROC) analysis, Dai et al. com-

pare the performance of their measures with respect to other existing ones. More
precisely, they first compare wre.k.r with some similarity measures based on align-
ment and k-word distributions, such as ClustalW, cosine of the angle, Euclidean dis-
tance, Pearson’s correlation coefficient, and empirical relative entropy. Then they
compare the measures wre.k.r and S2.k.r , based on Markov model plus k-word
distributions, with some others similarity measures based on Markov model, such
as D2 [55] and D2z [47] (see Section 16.5 for further details on these measures),
SimMM [67], rre.k.r , and S1.k.r . They show that wre performs better than other
alignment-based or alignment-free methods for similarity searches, whereas its sym-
metrical form S2.k.r has no significant improvement.

Because the measure S2.k.r can be seen as a statistical distance measure, they also
use it to construct phylogenetic trees. In this case, they show that the so obtained
trees are in good agreement with benchmark phylogenies, which indicates that the
distance S2.k.r is a good measure for phylogenetic analysis.

16.2.3 A Method Based on Statistical Dependency,
via Mutual Information

In the specialistic literature, there are plenty of alignment-free techniques based on
information-theoretic ideas that attempt to quantify the statistical correlation among
various parts of biomolecules, such as DNA, RNA, and proteins (see [38] and the
references therein). But none of them addresses the problem of how statistically

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

330 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

significant the computed dependency is. To the best of our knowledge, Aktulga
et al. [12] are the first to propose a solution to this problem via a methodology based
on the notion of mutual information. Indeed, they define a threshold function that
quantifies the level of significance of dependencies between strings. Such a func-
tion is connected to the probability of error (i.e., declaring two strings statistically
dependent when they are not and vice versa).

Consider again A and B and assume that the two strings come from possibly
different independent and identically distributed (iid) probability distributions. Re-
call that we denote by n the length of A and by m the length of B. We assume that
m > n. Consider now the following two possible scenarios that formalize the notions
of dependence and independence:

� Dependence: A and B are dependent (i.e., after having generated the sequence
A, an index j , 1 ≤ j ≤ m − n + 1, is chosen in an arbitrary way, and a word
B j+n−1

j = b j b j+1 · · · b j+n−1 of length n is generated as the output of a discrete
memoryless channel having input A). The rest of the symbol in B generate i.i.d.
according to its probability distribution.

� Independence: A and B are independent (i.e., the scenario of the previous point
does not hold).

To distinguish between the two scenarios, Aktulga et al. propose computing the
empirical mutual information between A and each factor of B of length n. For
each integer j , 1 ≤ j ≤ m − n + 1, let {p

A,B j

(i,l) } be the joint empirical distribution of

(A, B j+n−1
j) (i.e., p

A,Bj

(i,l) is the proportion of the n positions (a1, b j), (a2, b j+1),· · · ,
(an, b j+n−1)), where (at , b j+t−1) equals (si , sl), si ,sl in �. Similarly, let {pA

i } and

{q Bj

l } be the empirical distribution of A and B j+n−1
j , respectively. Hence, the em-

pirical mutual information I j (n) between A and B j+n−1
j is defined by applying the

classical definition of mutual information to the empirical distributions that have
been just defined as follows:

I j (n) =
|�|∑

i=1

|�|∑

l=1

p
A,B j

(i,l) log
p

A,Bj

(i,l)

pA
i q

B j

l

The interesting novelty of the approach proposed by Aktulga et al. consists in
the use of a statistical test to capture dependence between A and B. For this pur-
pose, they fix a threshold θ > 0 and compute the empirical mutual information I j (n)
between A and each factor B j+n−1

j of length n of B. So, if I j (n) > θ for some j ,
then the sequences A and B are declared dependent; otherwise, they are declared
independent. There are two kinds of errors this test can make: declaring that the two
strings are dependent when they are not and vice versa. Aktulga et al. provide two
asymptotic estimates for those two errors reported as follows:

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.3 COMBINATORIAL ALIGNMENT-FREE METHODS 331

� Independence: for a fixed threshold θ > 0 and large n, the probability of error
is

Pe,1 = Pr{declare dependence | independent strings} =
= Pr{I (n) > θ | independent strings} ≈ exp{−(θ ln 2)n}

� Dependence: if I is the true value of the mutual information, then for any fixed
threshold θ < I , and for large n, the probability of error is

Pe,2 = Pr{declare independence | dependent strings} =

= Pr{I (n) ≤ θ | dependent strings} ≈ exp

{

− (I − θ)2

2σ 2
n

}

where σ 2 is the variance of a given Gaussian distribution (see [12] for details).

For both probabilities of error to decay to zero for large n, the threshold θ needs to
be strictly between 0 and I . So it is necessary to have some prior information about
the value of I that indicates the desired level of dependence. In practice, however, it
is unreasonable to expect to be able to specify in advance the exact kind and level
of dependence one wishes to detect in the data. Because the probability of error of
the first kind P1,e only depends on θ (at least for large n), and because, in practice,
declaring false positives is much more undesirable than overlooking potential de-
pendence, in experiments, one can set an acceptably small false-positive probability
ε and then, based on it, compute the threshold θ by setting Pe,1 ≈ ε. For instance,
ε = 0.001.

Aktulga et al. present experimental results for the problem of detecting statistical
dependency between different parts in a DNA sequence that indicate the appropria-
teness of their method.

16.3 COMBINATORIAL ALIGNMENT-FREE METHODS

This section is devoted to the presentation of some combinatorial alignment-free
methods. From the ones available in this class, we have chosen to describe those
that either already have been used for large-scale, genome-wide, studies or that
have the potential to perform well in those studies. Indeed, as research moves to-
ward “system-wide” views of biology, phylogenetic reconstructions based on entire
genomes become increasingly important. Moreover, there are cases in which phy-
logenetic reconstruction based on traditional methods, as maximum likelihood or
maximum parsimony, seem to be of limited applicability. For instance, in the study
of viruses in which different families share very few genes.

The first subsection presents a distance that is based on computing the aver-
age lengths of maximum common substrings of two strings. The second subsection

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

332 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

presents a distance based on an extension to multisets of the well-known Burrows-
Wheeler Transform. The last subsection introduces a method that allows classifying
strings according to the local similarity of segments of a fixed length N that they
share.

16.3.1 The Average Common Substring Distance

This distance, introduced by Ulitsky et al. [76] and referred to as average common
substring (ACS), is deeply related to the Kullback-Leibler distance and has the great
potential to scale well to deliver phylogenies involving higher eukaryotic genomes.

Consider strings A and B. For any i , 1 ≤ i ≤ n, let l(i) be the length of the longest
substring of A starting at position i that occurs also in B and let

L(A, B) =
n∑

i=1

l(i)

n

The ACS distance is defined as

ACS(A, B) = d(A, B) + d(B, A)

2

where

d(A, B) = log m

L(A, B)
− log n

L(A, A)

Ulitsky et al. use suffix arrays [41] to compute ACS efficiently, which turns out
to be efficient enough to support large-scale experiments. Nevertheless, recall that
a suffix array [41] is an array of integers giving the starting positions of suffixes
of a string in lexicographical order. The fundamental and most expensive step for
its construction, in particular in terms of main memory, is the sorting of the suffixes.
Although there has been quite a bit of investigation on space-conscious indexing data
structures [31,59], none of the available techniques seem to scale well with sequence
lengths to grant phylogenetic reconstruction for genomes in the gigabases.

It can be shown [76] that ACS is related to the relative compressibility of two
Markov induced distributions. As argued by Ulitsky et al., if A and B are two strings
generated by a pair of Markovian distributions p and q, then d(A, B) converges to
D̃(q‖p) = −E p(log(q(X)), as the length of A and B goes to infinity.

To assess the performance of ACS, the authors compare it with some reference
methods [52,61,69] on benchmark datasets, reporting satisfactory results. Moreover,
they go a step further and show that ACS can be used to generate the genome phy-
logenomic forest for almost 2000 viruses and the proteome phylogenomic tree for
hundreds of species. For details on experiments, see Section 16.6.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.3 COMBINATORIAL ALIGNMENT-FREE METHODS 333

16.3.2 A Method Based on the EBWT Transform

Mantaci et al. [57] present a methodology that provides one of the first applications
of the well-known Burrows and Wheeler transform (BWT) [19] outside the realm of
data compression. Indeed, the authors define a new distance measure that is based on
an extension to multisets of the BWT. We first will describe the extended Burrows–
wheeler transform (EBWT) transform and the class of distances based on it. Given
two strings A and B, we say that

A 	ω B ⇔ Aω <lex Bω

where the relation <lex denotes the well-known lexicographic order and, for any
x ∈ �∗, xω is defined as xω = xxxx Although the 	ω order is defined on infinite
words, by using the Fine and Wilf Theorem [33], Mantaci et al. show that one can
decide the mutual 	ω ordering between A and B in linear time because only their
lengths up to |A| + |B| − gcd(|A|, |B|) matter.

Now fix two colors, R for red and W for white. The application γ defined by
γ (A) = R, γ (B) = W is the coloring of (A, B). Recalled that two words u and v

in �∗ are conjugates if u = xy and v = yx for some x, y ∈ �∗, it is possible to
extend the coloring γ to the set of all conjugates of A and B, Conj(A, B), as follows:
∀C ∈ Conj(A, B)

γ (C) =
{

R if C has been obtained as conjugate from A

W if C has been obtained as conjugate from B

Let M be the matrix with three columns and |A| + |B| rows in which for every
C ∈ Conj(A, B), each row is of the form (C, L(C), γ (C)), where L(C) denotes the
last letter of word C . Sort, now, rows in M by taking as sorting key the first compo-
nent of each row, using the 	ω order, and second sorting key the third component of
the triplets, γ (C), by considering R < W . The second and third columns of M , ML

and Mγ is what Mantaci et al. denote the γ or EBWT(A, B). Table 16.1 presents an
example.

The colored EBWT is used in [57] to define a class of distance measures between
strings. In fact, if A and B are two primitive strings and P is a parsing of Mγ , then
the distance of A and B associated to the parsing P is:

DP (A, B) =
∑

x∈P
|nx

R − nx
W |

where nx
R (or nx

W) counts the number of characters colored by R (or W) in the factor
x of Mγ , x’s being the blocks of the parsing.

Notice that a distance measure exists for each parsing of Mγ . These measures
are symmetric, but the property of identity of indiscernible does not age. In fact, if

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

334 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

Table 16.1 Table representing the matrix M corresponding
to the γ-EBWT(u, v), where u = abaababba and v = baabbaba.

i MC ML Mλ

1 aababbab b R
2 aabbabab b W
3 abaababb b R
4 abaabbab b W
5 ababaabb b W
6 ababbaba a R
7 abbabaab b R
8 abbababa a W
9 baababba a R
10 baabbaba a W
11 babaabab b R
12 babaabba a W
13 bababaab b W
14 babbabaa a R
15 bbabaaba a R
16 bbababaa a W

A = B, then it is sufficient to choose a parsing with blocks of odd length to obtain
DP (A, B) > 0.

An important property proved in [57] is that a connection exists between the dis-
tance defined by these authors and the k-tuple count Euclidean distance. Indeed,
for any positive integer k ≤ min{|A|, |B|}, it is possible to find a parsing P(k) of
Mγ (A, B), depending on k, such that DP(k) approximates Dk . In practice, the au-
thors give evidence that it is sufficient to choose a relatively “small” k (i.e., k = 10),
to obtain a good approximation.

Mantaci et al. also introduce another distance that represents a semimetric, being
symmetric and preserving the identity of indiscernible, but it not a metric because
the triangle inequality does not hold. This new distance, called the monotonic block
distance and denoted by DBW , is defined as the distance of A and B associated to the
monotonic block parsing M (i.e., to the parsing that decomposes the column ML of
EBWT in blocks made each by equal characters).

Experiments in [57] prove that this new distance is a very good measure for mi-
tochondrial genome phylogeny. Note that, as is stressed for the ACS distance, also
here the suffix sorting step is a computational bottleneck.

16.3.3 N-Local Decoding

Although most alignment-free methods known in the literature can be seen as a
global synopsis of two strings, Didier et al. [29] introduce a method that captures
local similarity of sequences. These definitions are deeply investigated in [24] in
which the authors stress the importance of the method.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.3 COMBINATORIAL ALIGNMENT-FREE METHODS 335

We first introduce the notion of local decoding and then the dissimilarity functions
one can define on that notion.

Let S = {A, B, C, . . .} be a set of sequences over the alphabet �. The j th site
of any string A in S, 1 ≤ j ≤ |A|, is defined as the pair σ = (A, j). By convention,
σ + c = (A, j + c), for 1 ≤ j + c ≤ |A|.

Given a positive integer N , the N-neighborhood of site σ = (A, j) is the set of
sites (A, mN) . . . (A, MN), where mN = sup{1, j − N + 1} and MN = inf{|A|, j +
N − 1} (i.e., the substring of A of length 2N − 1 centered in j and possibly truncated
at the ends of A). A string B of length N is in relative position l with respect to the
site σ = (A, j) if B matches exactly the substring of A beginning at position j − l.

Two sites σ and σ ′ are said to be directly related, σ �N σ ′, if and only if a string
B of length N exists at the same relative position in the N -neighborhoods of σ and
σ ′. This implies that σ and σ ′ have to be occupied by the same letter. Two sites σ and
σ ′ may be related directly to a third one σ ′′, even if they are not directly related. This
depends on the relative positions in the N -neighborhoods of the sites in which their
associated strings coincide. Anyway, σ , σ ′, and σ ′′ will be occupied by the same
letter.

It is natural to extend this definition as follows. Two sites σ and σ ′ are related
σ ∼N σ ′ if there is a chain of direct relations that links them. This transitive closure
represents an equivalence relation among the set of sites of S and induces on it a
partition, called the N-local decoding of S.

It is convenient to recall that a suffix tree data structure is a trie in which all
substrings of a given string are stored. An example is given in Figure 16.1. Its con-
struction takes linear time, and it can be stored in linear space. The interested reader
can find an excellent introduction to suffix trees and its applications in [41].

Didier et al. also present an algorithm for computing the N -local decoding of a
given set S. Their construction relies on that of the suffix tree associated to the string
obtained by catenating sequences of S through special symbols not belonging to the
alphabet �. Leaves in that suffix tree are indexed by the sites of S (and the external
symbols). A node of depth N is a common ancestor of two leaves σ and σ0 if they
are the starting site of a common word of length N (i.e., if σ �N σ ′). Therefore, the

$

i$

$

i

ssippi$

ppi$
ssippi$

ssippi$

p

s

i

si

ssippi$

ppi$

missis
sippi$

pi$
ppi$

Figure 16.1 Suffix tree of word mississippi$.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

336 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

described suffix tree yields a very fast procedure for the computation of the N -local
decoding.

Based on N -local decoding, it is possible to define two dissimilarity scores. Let
A and B be two strings, si be any character in both A and B, and nA

i (or. nB
i) be the

number of occurrences of si in A (or B). The similarity between A and B is given by
the quantity

sim(A, B) =
∑

si
min(n A

i , nB
i)

min(|A|, |B|)

that is, the ratio between the smallest number of occurrences of si in the two se-
quences and the length of the shorter sequence.

Now, let {AN , B N } represent the N -local decoding of {A, B}, the N-local dissim-
ilarity score between A and B is given by

distL N (A, B) = 1 − sim(AN , B N)

Moreover, by denoting with A[N] (or B[N]) the sequence of successive overlap-
ping strings of length N of A (or B), it is possible to define another distance, the
N-block dissimilarity score between A and B, as

distBN (A, B) = 1 − sim(A[N], B N])

Didier et al. evaluate the accuracy of these two dissimilarities over several
datasets. They obtain essentially the same results with respect to more realistic align-
ment methods. Moreover, they compare their results, in the case of N = 10, with the
ones obtained with another alignment-free method, the one by Pham and Zuegg [67].
This last dissimilarity, based on short words, shows lower correlation with the refer-
ence than distL10 and distB10. N -local decoding also has been applied to construct
trees for the subtyping of Human Immunodeficiency Virus (HIV) and Simian Im-
munodeficiency Virus (SIV) variants [28].

16.4 ALIGNMENT-FREE COMPOSITIONAL METHODS

In this section we describe some alignment-free methods based on the notion of sub-
word composition of sequences, which, thanks to extensive experimentation, have
become significant for biological data mining. The first subsection is devoted to illus-
trate the k-string composition approach, as described in [69]. The second subsection
is devoted to a generalization of that method introduced in [86]. It also briefly de-
scribes another variant [56] that is supposedly more robust and efficient in perform-
ing sequence comparison with respect to the previous methods. The third subsection
covers algorithmic issues relating to the efficient implementation of the method de-
scribed in Section 16.4.1.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.4 ALIGNMENT-FREE COMPOSITIONAL METHODS 337

16.4.1 The k-String Composition Approach

Qi et al. [69] propose a method to infer evolutionary relatedness of microbial or-
ganisms that is based on the k-word frequencies taken over the alphabet of amino
acids. They also show that the method can applied be successfully to phyloge-
netic studies of entire proteomes. Although analogous methods already had been
proposed with some success in the literature, the novelty of their approach is to
account for background letter probability distributions to factor out the amount of
information in a sequence caused by “evolutionary pressure” as opposed to ran-
dom processes. Moreover, the choice of the domain of application is also well
motivated. Indeed, the authors propose determining an evolutionary distance be-
tween two organisms by counting the olipeptide strings of a fixed length k in
the collection of their protein sequences. They observe that the mutation rates
are higher when one considers noncoding segments in the genomes. So, trans-
lated amino acid sequences from coding regions of DNA are considered more sig-
nificant to obtain phylogenetic relations. We now provide a formal definition of
their method.

Consider A and a k-word α = α1α2 . . . αk . The probability of occurrence of α in
A is

p(α) = f (α)

(n − k + 1)

where f denotes the number of occurrences of α in A.
When A is a biological sequence, the probability distribution induced by p over

�k accounts for random mutations as well as effective evolution. To emphasize the
selective diversification during evolution rather than the random mutations, the au-
thors propose to subtract a random background from p(α). That is done by consid-
ering the probability of appearance of a k-word in terms of (k − 1)-words, where the
probability of those latter are computed via a Markovian background model of order
k − 1. That is,

p0(α) = p(α1α2 . . . αk−1)p(α2α3 . . . αk)

p(α2α3 . . . αk−1)

Notice that the probability of a k-word now depends on the probability of words
of length k − 1 and k − 2, as generated by the background Markov model.

The difference between p and p0 gives the real information about the evolutionary
process. Now, for each k-word α, let

FA(α) =

⎧
⎪⎨

⎪⎩

p(α) − p0(α)

p0(α)
if p0 �= 0

0 otherwise

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

338 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

Next, fix an arbitrary order of the words in �k and refer to the i th word in it simply
as i . Finally, the composition vector (CV) for A is (FA(1), FA(2), . . . , FA(N)), where
N = |�|k .

Given two strings A and B and the respective CVs (FA(1), FA(2), . . . , FA(N))
and (FB(1), FB(2), . . . , FB(N)), the correlation between A and B is defined as
follows:

C(A, B) =
∑N

i=1 FA(i) × FB(i)

(
∑N

i=1 FA(i)2 × ∑N
i=1 FB(i)2)

1
2

(16.1)

Because C varies between −1 and 1, the distance between A and B is defined as
follows:

D(A, B) = 1 − C(A, B)

2

Qi et al. have used such a distance to build phylogenetic trees of 109 organisms.
Note that k is a parameter of the method, and in fact Qi et al. have studied how
the topology of the phylogenetic tree they build varies with k. Remarkably, their
experiments show that the topology of the tree exhibits less and less variation as k
increases. Moreover, for the taxa they examined, such a topology becomes stable for
k = 5 and 6.

16.4.2 Complete Composition Vector

This method, introduced in [86], integrates the strategy described in the previous
subsection and the notion of complete information set. The latter was proposed by Li
et al. [54] and consists of considering the occurrence probability p(α1α2 . . . αk) for
each k-word and for each k, 1 ≤ k ≤ n. Each of those probability distributions gives
the kth information set U k for the sequence A. The collection of all information sets
(U 1, U 2, . . . , U n) is referred to as the complete information set of A.

The introduction of the complete composition vector (CCV for short) is motivated
by a problem in the CV. Indeed, the subtraction stage disconnects the kth composi-
tion vector and the k − 1th one. The approach here provides the lost information
by using a collection of CVs (Uk1 , U k1+1, . . . , U k2), where k1 ≤ k2 are two a priori
fixed bounds on the word sizes. Those values are determined experimentally, and one
appropriate setting seems to be k1 = 3 and k2 = 7.

Given a word size range [k1, k2], for two strings A and B, the respective CCVs are
(Ak1 , Ak1+1, . . . , Ak2) and (Bk1 , Bk1+1, . . . , Bk2). The correlation C(A, B) between
A and B is defined as follows:

C(A, B) =
∑k2

j=k1

∑N
i=1 f j

i × g j
i

(
∑k2

j=k1

∑N
i=1(f j

i)2 × ∑k2
j=k1

∑N
i=1(g j

i)2)
1
2

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.4 ALIGNMENT-FREE COMPOSITIONAL METHODS 339

where f j
i and g j

i are the i th entry in the j th CVs of A and B, respectively. The
distance between A and B is defined as follows:

D(A, B) = − ln

(
1 + C(A, B)

2

)

The method has been applied to infer evolutionary information for several biological
datasets.

Although the CCV distance gives finer evolutionary information than its CV
counterpart, it requires nontrivial computational resources (i.e., both time and mem-
ory). To address that problem, an improved version of the CCV distance is provided
in [56]. The main improvement consists of constructing the CCVs by using the fre-
quencies of all k-words normalized via expectation and variance:

f (α) − E[f (α)]√
Var[f (α)]

It is somewhat unfortunate that such a suggested speed-up has very serious draw-
backs. In fact, the computation of expectation and variance are given for the case in
which the background model from which a random string is generated is iid. This
is a serious limitation because there is no account of the so-called “context depen-
dencies” within a string. Such a shortcoming can be solved with the use of a back-
ground Markov model, but in that case, the computation of expectation and variance
are highly nontrivial tasks, both mathematically and computationally, as briefly dis-
cussed in Section 16.5.1.

16.4.3 Fast Algorithms to Compute Composition Vectors

A straightforward computation of distances based on CVs takes time exponential
in k, severely limiting their application range. It is also fortunate, as noticed and
exploited by Apostolico and Denas [16], that those distances can be computed in time
linear in the length of the input sequences via the use of suffix tree data structures.
Apostolico and Denas compute a generalization of the CV distance in which all
k-words, up to a fixed length K , contribute to the distance. Because the algorithm is
a nearly standard application of suffix trees, we limit ourselves to mention its main
points.

A variant of a suffix tree is built in which all strings of length up to K are consid-
ered. This means that the tree is truncated at depth K . Intuitively, the computation
of the distance between two sequences A and B is done by considering their respec-
tive truncated suffix trees, drawn in different colors and then superimposed. Note that
only the strings occurring in both A and B contribute to the numerator of the distance
formula (see Formula (16.1)). Those words are exactly the ones that can be found on
paths and nodes bearing both colors. The words found on a path with only one color
contribute to only one sum appearing in the denominator (see Formula (16.1)). There
are also some words that do not appear in the sequences but could contribute to the

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

340 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

values of the composition vectors because their substrings of length k − 1 and k − 2
appear in either or both of A and B. Such words are referred to as chimeral words
in [16]. They are words of the form avb, where avb does not appear in the considered
sequence but both av and vb do. It is interesting to notice that chimeral words corre-
spond to a well-known combinatorial notion known as minimal forbidden words [58].
Besides the notion of chimeral words, also the notion of maximal and nonmaximal
word are of use. In particular, a word is maximal when it is impossible to extend it by
a character without losing some of its occurrences. The contribution of such words to
the distance between two sequences can be computed in linear time. Indeed, a word
is maximal if and only if it ends at a node of the truncated suffix tree. Its frequency
count can be computed in constant time, via a bottom-up visit of the tree. Therefore,
the contributions of maximal words to the composition vectors can be computed in
overall linear time. The case of nonmaximal words can be handled without increas-
ing that time complexity. Indeed, a nonmaximal word is a word terminating in the
middle of an arc of the suffix tree, and therefore, it has the same frequency count
as its shortest extension that is a maximal word. Also the case of chimeral words is
considered, and also in this case, the computation of the contribution given by those
words to the distance formula can be done in linear time.

16.5 ALIGNMENT-FREE EXACT WORD MATCHES METHODS

Among the plethora of alignment-free methods that have been developed, the one
nicknamed D2 stands out for its mathematical elegance as well as its usefulness.
Indeed, it is among the few measures that lends itself to rigorous mathematical stud-
ies, and it is a standard for Expressed Sequence Tag (EST) clustering and database
searches as well as ab initio discovery of cis-regulatory modules. The interested
reader can find references to both its introduction and its initial uses in [55], whereas
this section focuses on an outline of its main statistical properties and relevant ex-
tensions. The remainder of this section is organized as follows. The first subsection
formally defines D2 and presents some of its statistical properties useful for database
searches. Subsection 16.5.2 presents a generalization of D2 as well as a procedure to
determine experimentally the best word size k for its use. Although that procedure
has been proposed for D2, it is fully general and can be useful for other methods
based on k-words. Finally, Subsection 16.5.3 contains a variant of D2, referred to as
D2z, which offers several advantages with respect to D2. This new measure is a de
facto z-score indicating how many standard deviation units the computed value of
D2 is away from its expected value.

16.5.1 D2 and its Distributional Regimes

The D2 measure is defined as the number of k-word matches between the two se-
quences A and B, including overlaps. Formally it is expressed as follows:

D2(A, B) = �(i, j)∈I Y(i, j) (16.2)

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.5 ALIGNMENT-FREE EXACT WORD MATCHES METHODS 341

where Y(i, j) is an indicator variable equal to one if and only if the substring of
length k starting in position i of A is equal to the one starting in position j of B,
I = {(i, j) : 1 ≤ i ≤ n and 1 ≤ j ≤ m}, with n = n − k + 1 and m = m − k + 1.
D2 can be computed in linear time, with the use of a suffix tree [41], for any word
size. Let N A be the word count vector of A. It is obtained by listing, in lexicographic
order, the frequency counts f (α) of all k-words in �k . N B is defined analogously.
Then, it can be shown easily that D2(A, B) is equal to the inner product of those two
vectors.

For any similarity/distance function F between two strings to be a valuable tool
for biological data mining and, in particular, database searches, it is essential to have
associated it with methodologies that establish how “surprising” or “unusual” the
value F(A, B) is (i.e., whether it is significantly different than what one would expect
if A and B were correlated randomly). A good and well-known example is given
by the BLAST program in which the e value associated to an alignment indicates
how likely it is for that alignment to have occurred by chance. Unfortunately, those
methodologies are rare because of the mathematical difficulties associated with the
task of deriving them. In any case, a first step toward that goal, which for D2 is still
open, is to identify the distributional regime of F (i.e., when F is considered as a
random variable one would be interested to know, for instance, whether F behaves
according to a Poisson or a normal distribution. In regard to D2, investigation into
those issues has been initiated in [55], with additional results presented in [45]. A
summary follows.

Assume that the two sequences have been obtained by means of an iid background
model. Then, the following results hold:

(a) When the letter distribution is not uniform (i.e., all letters are not equiproba-
ble, and k > 2 logb n), the distribution of D2 has a compound Poisson asymp-
totic behavior, where b is a rather complex function of the letter probabilities
(see [55] for details).

(b) Again, when the letter distribution is not uniform and k < 1/6 logb n, the dis-
tribution of D2 has a normal asymptotic behavior.

(c) When the letter distribution is uniform and k = α logb n + C , 0 < α < 2 and
C constant, the distribution of D2 has a normal asymptotic behavior. We point
out, however, that there are example from Lippert et al. [55] showing that
for uniform letter distributions, the distribution of D2 is neither Poisson nor
normal.

Apart from the technical merit of the results just outlined, they also have a great
practical significance. Indeed, they indicate that as the word size changes, the beha-
vior of the random variable D2 changes, implying that significance tests on its value
must take into account the word size. It is unfortunate that no full characterization
of those distributional changes, as a function of k is yet available for D2. However,
there are experiments indicating that the “boundary” between the Poisson and the
normal distributional regimes (i.e., (a) and (b)), is close to k = 2 logb n [46].

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

342 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

16.5.2 An Extension to Mismatches and the Choice of the Optimal
Word Size

A straightforward extension of D2 to approximate k-word matches has been pro-
posed in [35]. Fix an integer t ≥ 0 and let

Dt
2(A, B) = �(i, j)∈I Y(i, j) (16.3)

where the notation is as in Equation (16.2), except that Y (i, j) is equal to one if and
only if the two substrings involved in the comparison have a Hamming distance of
at most t . The distributional regimes of Dt

2 have been studied in [35, 46]. In terms
of theoretic results, state of the art is far from an even partial characterization of the
distributional regimes of Dt

2 along the same lines of points (a)–(c) of the previous
subsection. However, with the use of Kolmogorv–Smirnov tests, experiments show
that Dt

2 is in good agreement with the normal distributions for various word sizes.
Foret et al. [35], in their investigation of the mathematical properties of Dt

2, also
proposed a methodology to estimate experimentally the optimal word size for the
use of Dt

2. That is, a method to estimate the value of k that would capture best the
similarity among sequences when evaluated by means of Dt

2. Although hardly dis-
cussed, such an estimation is a key step for most measures presented in this chapter.
As we bring to light here, it is fortunate that the method proposed by Foret et al. for
Dt

2 is general, elegant, and particularly simple. The following procedure presents it
in terms of a generic similarity function Fk , where k is a parameter of the function
indicating the word size it uses. It takes as input F , a “seed” string A0 of length n
and two integers g > 0 and kmax, whose role is specified in the procedure. It returns
Kopt, a (possibly singleton) set of word sizes for which F is “most discriminative.”

Algorithm 16.1 K-OPT (F, A0, g, kmax, Kopt)

1. Generate a gold standard dataset. Generate an increasing sequence of in-
tegers γi , 1 ≤ i ≤ g, in the range [1, 100]. Generate a set of sequences Ai ,
1 ≤ i ≤ g, such that each Ai is at Hamming distance � nγi

100� from A0, (i.e.,
A0 and Ai “differ” by γi %). Let RANK0 be a vector of length g such that
RANK0[i] = i (i.e., it is the ranking of the strings Ai according to their dis-
similarity from A0).

2. Compute dissimilarity rank vectors using F . For 1 ≤ k ≤ kmax, compute
Fk(A0, Ai), 1 ≤ i ≤ g, and sort that sequence in decreasing order. Store in
RANKk , the permutation of 1, 2, · · · , g so obtained.

3. Estimate kopt. For 1 ≤ k ≤ kmax, perform a Spearman rank correlation test be-
tween RANK0 and RANKk . Return as Kopt the set of values of k for which the
Spearman correlation with RANK0 is maximum.

A few remarks are in order. The seed sequence A0 either may be generated at
random, or it may be chosen as a good “representative” of a particular application
domain (e.g., coding regions). The value of g must be “large enough” so that the

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.5 ALIGNMENT-FREE EXACT WORD MATCHES METHODS 343

Spearman correlation test is reliable (small p-value). That is usually achieved for g
in the hundreds. Hamming distance can be substituted with any other kind of distance
to generate the gold standard dataset. For instance, for DNA sequences, Foret et al.
use the Kimura model of evolution [49] to produce a gold standard dataset from the
seed sequence of Human chromosome one. In practice, Algorithm 16.1 is really to
be used as a Monte Carlo sampling strategy in which, for various seeds and sequence
length, one tries to obtain a consensus set, possibly a singleton, Kopt.

The results reported by Foret et al. regarding Dt
2 show that Kopt is remarkably

stable across sequence length and t . For instance, a value of k = 7 seems to be the
best choice for t = 0 and sequence length in the range [400, 3000].

16.5.3 The Transformation of D2 into a Method Assessing the
Statistical Significance of Sequence Similarity

Despite the efforts to characterize the statistical properties of D2, the state of the art
gives only a partial picture with some serious limitations. For instance, all results
mentioned in the previous two subsections apply only to the iid case in which both
sequences are derived from the same memoryless probability distribution. Moreover,
there is no measure of how significant a computed value of D2 is.

To address those shortcomings, Kantorovitz et al. [47] have introduced a variant
of D2, referred to as D2z, which offers several advantages with respect to D2. First,
for significance analysis purposes, it is not necessary to assume that the two strings
involved in the comparison come from the same iid probability distribution. Indeed,
one can assume that the background models associated with the strings are two dif-
ferent Markov chains of finite order. Moreover, the new measure is a de facto z-score
indicating how many standard deviation units the computed value of D2 is away from
its expected value. Therefore, very low or very high values of D2z indicate that the
similarity of the two strings involved in the comparison is “surprising.” Formally:

D2z(A, B) = D2(A, B) − E[D2]

σ [D2]
(16.4)

where E[D2] and σ [D2] are the mean and standard deviation of D2 with respect to
two background probability models generating A and B, respectively.

For the D2z measures to have the formal rigor of a z-score, one needs to choose
background probability models so that D2 is distributed normally. For iid background
models, results outlined in Section 16.5.1 are useful here, although they do not cover
the entire range of word sizes. When the background models are Markov chains
of finite order, Kantorovitz et al. resorted to numeric simulations to show that even
when the length of the sequences is as short as 400, D2 approximates well the normal
distribution, even for finite-order Markov chains.

Another relevant aspect concerning D2z is the computation of its mean and vari-
ance. For iid, those formulas are easy to derive and lend themselves to efficient
computation via algorithms with time complexity quadratic in k. As for Markov
background models, both quantities can be computed in O(|�|k) time, although the

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

344 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

derivation of those algorithms involves some very sophisticated mathematical tech-
niques related to the computation of the expectation and variance of random strings.
We provide an outline next for the expectation only, limiting ourselves to mention
that the efficient algorithm for the computation of the variance makes key use of deep
approximation results concerning an infinite series of stochastic matrices because of
Kleffe and Borodovsky [50].

Let MA be a Markov chain of order one from which A is generated. Let pA
j (c)

be the probability that c occurs at position j of A. As justified in [50], one can
assume that pA

j (c) is independent of j (i.e., one can assume that MA has a character
stationary probability distribution pMA). Now, for any given word α, its probability
pA(α) of occurrence in A can be written as pMA (α1)pMA∗ (α), where pMA∗ (α) is the
same occurrence probability but conditioned on the first symbol being alpha1. Such
a probability can be computed from the state transition probability matrix of M A.
Using the same notation for B and linearity of expectation, the problem of computing
E(D2) can be reduced to that of computing E[Yi, j], as follows:

E[Yi, j] = Pr (Yi, j = 1) = �α∈�k pMA (α1)pMA∗ (α)pMB (α1)pMB∗ (α) (16.5)

One last remark is in order. For each string, its background Markov model is
learned from the string itself. That is done via maximum likelihood estimates of the
state transition probability matrix. Such an approach of deriving “locally” the back-
ground model for a string offers some advantages over a single model for when the
family of strings one needs to model does not have homogeneous statistical prop-
erties, as in the case of metazoan genomes that have great local variability in base
composition.

16.6 DOMAINS OF BIOLOGICAL APPLICATION

In this section, we briefly present the computational biology domains in which the
distances previously described have been applied. In fact, we believe that to eval-
uate the effectiveness of such measures for large-scale biological investigations, it
is important to show the biological contexts in which they have been experimen-
tally validated. Most biological datasets used in the experiments comprise proteomic
or genomic sequences, mitochondrial genomes and proteins, as summarized in the
following:

� Phylogeny: information theoretic and combinatorial methods [26,28,57,76,80]
� Phylogeny: compositional methods [16, 69, 86]
� CIS regulatory modules [26, 47]
� DNA sequence dependencies [12]

In the following subsections, we describe the main experimental contributions of
the cited papers.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.6 DOMAINS OF BIOLOGICAL APPLICATION 345

16.6.1 Phylogeny: Information Theoretic and Combinatorial Methods

Phylogeny via alignment-free methods has been the object of considerable investi-
gation (e.g., [15, 20, 22, 26, 28, 30, 52, 53, 57, 61, 69, 76, 80]). Among those methods,
here we concentrate on the ones we have examined in this chapter [26,28,57,76,80]
and that present phylogenetic trees generated by using either combinatorial or infor-
mation theoretic distances. For the convenience of reader is we group experiments
according to the nature of the datasets that have been used.

In the first part of the experimental assessment of the ACS measure, Ulitsky et al.
[76] use the same datasets of proteomic and genomic sequences of [61, 69]. The
datasets consist of sequences coming from 75 species and the reference phylogenetic
tree (the gold standard) is taken to be a maximum likelihood tree based on the small
ribosomal subunit rRNAs [23]. The Robinson–Foulds measure, a statistical standard
that indicates the “distance” between two trees, is used for evaluation. Ulitsky et al.
report that the trees obtained with the use of ACS are closer to the reference tree than
the ones obtained by other methods, in particular, the ones in [61,69]. It is interesting
to report that, for genomic sequences, the improvement of ACS compared with [69]
is only about 2%, whereas for proteomes, it is about 17%.

Mitochondrial genomes have been used extensively to assess the quality of phy-
logenetic methods. In particular, Ulitsky et al. use ACS on a set of mitochondrial
genomes of 34 mammalian species, which is the one previously used by Li et al. [52].
The results between the two methods are comparable but ACS is faster than the
method by Li et al.

Dai et al. extract a dataset of 29 mammalian species, of which five are rodents,
from the mithocondrial one studied in [52,61]. The phylogenetic tree constructed by
using their measure S2.k.r is consistent with biological knowledge and state of the
art [20, 52, 61]; in particular, marsupials and monotremes are grouped close to each
other as well as the five rodents. Three nonmurid rodents (squirrel, dormouse, and
guinea pig) are separated from murid rodents, whereas primates are related closely
to each other, and finally, ferungulates are grouped in a branch and clustered with
primates. Moreover, their method reconfirms the hypothesis of the grouping (rodents,
(primates, ferungulates)). These results confirm that S2.k.r can be considered another
efficient distance measure for mithocondrial phylogenetic analysis.

Finally, Mantaci et al. [57] also present experiments on phylogenies of mitochon-
drial genome. In particular, they use the mtDNA genomes of 20 mammals from
GenBank. The results they obtain are very close to the ones derived with other ap-
proaches [20, 52, 53, 61]. Also in this case, the resulting phylogeny confirms the hy-
pothesis of grouping of the placental mammals (rodents, (primates, ferungulates)).

Most methods described in this chapter become of very little use when the datasets
become large. A remarkable result by Ulitsky et al. is to show that ACS is a substan-
tial step forward for large phylogenetic studies. Indeed, they show that it is possible
to generate a reliable phylogenetic forest for a large dataset of viral genomes. In par-
ticular, they use 1865 viral genomes, whose superfamily is known for 1837 of them.
A study of the classification so obtained shows that their phylogenetic reconstruction
is mostly in agreement with the accepted taxonomy.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

346 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

Two other phylogenetic studies involving viruses are also worth mentioning.
Wang and Zheng [80] select 25 complete virus genomes, 12 coronaviruses from the
three isolated typical groups, 12 SARSCoV (severe acute respiratory syndrome coro-
navirus) strains and a torovirus. They construct phylogenetic trees using weighted
sequence entropy distances (d1, d2, d3) as well as some other classical distance mea-
sures (i.e., euclidean distance, the linear correlation coefficient, the cosine function,
and the information-based similarity index). Their experiments show that their dis-
tances are not inferior to those classical methods. Didier et al. [28] evaluate their
method on HIV and SIV. The tree topologies they obtain agree with those obtained
by a combination of standard methods present in the HIV Sequence Compendium.

Finally, Ulitsky et al. present a phylogenetic tree based on all existing proteomes
in the NCBI database, release 2006. The dataset that the authors consider consisted of
19 proteomes of Archea, 161 proteomes of Bacteria, and 11 proteomes of Eukaryota.
The ACS method leads to a tree in which the species are split up correctly in the three
main domains, except for two archean species that do not belong to their domain
branch. The method accuracy is good if considering genera, families, and classes,
whereas it decreases for higher taxonomyc groups.

16.6.2 Phylogeny: Compositional Methods

In this subsection, we present some experimental results concerning the alignment-
free compositional methods presented in Section 16.4. These methods, based on the
notion of subword composition of sequences, have become significant for biological
data mining thanks to extensive experimentation. In particular, they have been tested
extensively on protein sequences [16, 69, 86].

Wu et al. [86] apply their method to infer the phylogeny footprint of 64 verte-
brates, with 13 homologous proteins for each species, and 99 microbes. In particular,
they show that the constructed phylogeny on the first dataset is largely consistent
with the taxonomy tree. In fact, all perissodactyls, carnivores, cetartiodactyls, ro-
dents, primates, noneutherians, birds, reptiles, bony fish, and cartilaginous fish are
grouped together correctly. Concerning the second dataset, each of the 99 microbes
is represented by its complete set of protein sequences. By comparing the CCV-based
phylogeny and the taxonomy tree, they show that they are similar in most branches.

Qi et al. [69] use their distance to build phylogenetic trees of 109 organisms,
including 16 Archaea, 87 Bacteria, and 6 Eukaryota. Qi et al. study how the topology
of the phylogenetic tree they build varies with the parameter k. Remarkably, their
experiments show that the topology of the tree exhibits less and less variation as
k increases. Moreover, for the taxa they examine, such a topology becomes stable
for k = 5 and 6. In general, their phylogenetic trees support the small subunit (SSU)
rRNA “tree of life” in its overall structure and in many details. Moreover, even if their
trees and the SSU rRNA tree are based on nonoverlapping parts of the genomic data,
namely, the RNA segments and the protein-coding sequences, and they are obtained
by using entirely different ways of inferring distances between species, then they
lead to basically consistent results.

Apostolico and Denas [16] report experiments on a dataset that consists of two
Eukaryota, four Archea, of which two Euryarchaeota and two Crenarchaeota, four

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.6 DOMAINS OF BIOLOGICAL APPLICATION 347

Bacteria, of which three Proteobacteria and one Thermotogae. The distance com-
putations based on all k-words produce unreliable trees as soon as k > 7. At low
level taxa (i.e., lower levels of classification discrimination), trees based on fixed-
length k-words and maximal k-words are consistent, as they both correctly group
together Eukaryota, Proteobacteria, Euryarcheota, and Crenarchaeota. However, at
higher level taxa, the distance based on maximal k-words seems to be more stable.
In fact, it groups Euryarcheota and Crenarchaeota in all cases, whereas with fixed-
length k-mers, this holds only for k ≤ 9. All methods fail grouping Thermotogae
with Proteobacteria, a deficiency that might be attributable to the absence of other
organisms from the dataset.

Finally, Apostolico and Denas consider a sample dataset comprising seven Firmi-
cutes, one Fuso, one Thermotogae and one Aquificae. Even if their experiments are
on this limited dataset, it seems that their distances based on fixed-length k-words
perform well for moderate values of k, whereas it seems to loose stability with “dis-
tant” organisms and resolution with “close” ones for larger values of k.

16.6.3 CIS Regulatory Modules

Regulatory sequence comparison can prove vital for the ab initio discovery of cis-
regulatory modules (CRMs) with a common function. A CRM may be defined as
a contiguous noncoding sequence that contains multiple transcription factor bind-
ing sites and drives many aspects of gene expression profiles. If a set of coregulated
genes in a single species is given, then it is important to find in their upstream and
downstream regions (called “control regions”) the CRMs that mediate the common
aspect of their expression profiles. The control regions may be tens of Kbp long for
each gene (especially for metazoan genomes), whereas the CRMs to be discovered
are often only hundreds of bp long. One therefore must search in the control regions
for subsequences (the candidate CRMs) that share some functional similarity. The
CRM search algorithm thus requires a method that can discern functional similarity
among candidate CRMs based on their sequence similarity. Also, because the dif-
ferent CRMs are only functionally related, and not orthologous, it is useful that the
comparison method is alignment-free [47].

Papers in this chapter that make evaluations on functionally related regulatory
sequences are essentially [26,47]. Both papers contain experiments on the following
seven datasets, well studied by Gallo et al. [36] and accurately described in [47]:

� FLY BLASTODERM: 82 CRMs with expression in the blastoderm-stage em-
bryo of the fruitfly, Drosophila melanogaster

� FLY PNS: 23 CRMs (average length 998 bp) driving expression in the periph-
eral nervous system of the fruitfly

� FLY TRACHEAL: 9 CRMs (average length 1220 bp) involved in the regulation
of the tracheal system of the fruitfly

� FLYEYE: 17 CRMs (average length 894 bp) expressing in the Drosophila eye
� HUMAN MUSCLE: 28 human CRMs (average length 450) regulating muscle-

specific gene expression

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

348 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

� HUMAN LIVER: 9 CRMs (average length 201) driving expression specific to
the human liver

� HUMAN HBB: 17 CRMs (average length 453) regulating the HBB complex

Kantorovitz et al. perform extensive tests with the D2 z-score on the listed
tissue-specific families of known enhancers. Their results show that the D2 z-score
accurately can discriminate functionally related CRMs from unrelated sequence
pairs, and orthologous CRMs from orthologous nonregulatory noncoding sequences.
Moreover, they also compared the D2z with five other scores (euclidean distance,
empirical relative entropy, van Helden’s Poisson scores [77], Pearson’s correlation
coefficient, and cosine function). All scores are run with word lengths k = 5, 6. The
D2 z-score and the Poisson score are run with background models of Markov order
0, 1, 2. The authors report that the D2 z-score outperforms all other scores in each
of the datasets analyzed, with the Poisson score being the next best method in five
datasets.

Analogous experiments are presented in [26], in which Dai et al. make use of the
statistical measures they introduce to evaluate whether functionally or evolutionary
related sequence pairs are scored better than unrelated pairs of sequences randomly
chosen from the genome. They analyze the seven datasets described and compare
similarity measures that satisfy the symmetry condition. The measures they consider
are: S1.k.r , S2.k.r , euclidean distance, empirical relative entropy, D2, D2z, SimMM,
Pearson’s correlation coefficient, cosine function, and similarity measures based on
alignment, which are NeedlemanWunsch for global alignment or SmithWaterman
for local alignment. All statistical measures based on k-word distributions run with
k-word from two to eight, and the similarity measures based on Markov model run
with Markov order r from zero to two. The experiments on these seven datasets show
that S2.k.r performs significantly better than other measures in six experiments be-
cause it incorporates the k-word information into the Markov model directly. It is
important to point out that, because the different CRMs are only functionally re-
lated and not orthologous, the CRM search algorithm requires a method that can
discern functional similarity among candidate CRMs based on their sequence sim-
ilarity. ROC analysis on the seven datasets shows that the alignment-free methods
give better results than alignement-based ones in the evaluation of functionally re-
lated regulatory sequences.

16.6.4 DNA Sequence Dependencies

This subsection is devoted to describe some experimental results presented by Ak-
tulga et al. in [12]. The focus of their work is on the development of reliable and pre-
cise information-theoretic methods that determine whether two biological sequences
are statistically dependent or not.

They make two different kinds of experiments based on the application of the
empirical mutual information. More precisely, they first show that this notion can
be used effectively to identify statistical dependence between regions of the maize

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.7 DATASETS AND SOFTWARE FOR EXPERIMENTAL ALGORITHMICS 349

zmSRp32 gene [37], which belongs to a group of genes functionally homologous to
the human alternative splicing factor/splicing factor 2 (ASF/SF2). This gene may be
involved in alternative processing (splicing) of pre-mRNA transcripts. Second, the
authors show how this methodology can be applied to the problem of identifying
short tandem repeats (STRs) in genomic sequences, which represents an important
task in genetic profiling.

Concerning the first experiment, Aktulga et al. present their empirical findings for
the problem of detecting statistical dependency between different parts in a DNA se-
quence by making extensive numerical experiments carried out on certain regions of
the maize zmSRp32 gene. To understand and quantify the amount of correlation be-
tween different parts of this gene, they compute the mutual information between all
functional elements including exons, introns, and the 5′ untranslated region (5′UTR).
Their findings show the existence of a biological connection between the 5′UTR in
zmSRp32 and its alternatively spliced exons. The UTRs are multifunctional genetic
elements that control gene expression by determining mRNA stability and efficiency
of mRNA translation. Like in the zmSRp32 maize gene, they can provide multi-
ple alternatively spliced variants for more complex regulation of mRNA translation.
Therefore, they observe that the maize zmSRp32 5′UTR contains information that
could be used in the process of alternative splicing. This is stressed by the fact that the
value of the empirical mutual information between 5′UTR and the DNA sequences
that encode alternatively spliced elements is significantly greater than zero.

Concerning the second experiment, Aktulga et al. examine the performance of
empirical mutual information statistic on the problem of detecting STRs in genomic
sequences. STRs, usually found in noncoding regions, are made of back-to-back
repetitions of a sequence that is at least two bases long and is generally shorter than
15 bases. Their short lengths let STRs survive mutations well.

Many algorithms exist for the problem of detecting STRs in long DNA strings
with no prior knowledge about the size and the pattern of repetition [41]. These
algorithms mostly are based on pattern matching, and they all have high time com-
plexity. Moreover, when the query string is a DNA segment that contains many er-
rors resulting from mutations, the problem becomes even harder. To overcome these
limitations, the authors propose a statistical approach using an adaptation of their
method. More precisely, results in the paper prove that their methodology is very
effective at detecting the presence of STRs, although at first glance, it may seem
like it cannot provide precise information about their start-end positions and their
repeat sequences. Their method can be seen as an initial filtering step that has to be
combined with an exact pattern matching algorithm.

16.7 DATASETS AND SOFTWARE FOR EXPERIMENTAL
ALGORITHMICS

In this section, we present datasets that we believe to be of interest for comparative
analysis of similarity measures, as they are used for classification and phylogenetic
studies. Indeed, several benchmark datasets of nonhomologous protein structures

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

350 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

and genomes have been assembled in the last few years (e.g., [21, 71, 75, 84]), by
researchers in this area, but there is not a common line in the use of them. There-
fore, we limit our presentation to a kernel of datasets that seem to be used the most
for benchmarking purposes. Moreover, although most papers in this area report ex-
perimental results, there are very few publicly available software libraries that one
can use for benchmarking and comparative studies. We provide the ones that are
prominent in this area.

16.7.1 Datasets

Among several datasets of nonhomologous protein structures we have identified the
Chew-Kedem dataset, the guanine nucleotide-binding proteins (G-proteins), subsets
of the Clusters of Orthologus Groups (COG) database and the GH2 family. We also
have included in this presentation a benchmark dataset of 15 complete unaligned
mitochondrial genomes, referred to as the Apostolico dataset. Some details about
them are provided next.

Note that for datasets of protein structures, it is possible to consider several alter-
native representations for the structure. Besides the standard representation of amino
acid sequences in FASTA format [63], it is also possible to use a text file consisting
of the ATOM lines in the Protein Data Bank (PDB) entry for the protein domain, the
topological description of the protein domain as a TOPS string of secondary struc-
ture elements [34, 39, 82, 83], and the complete TOPS string with the contact map.
The TOPS model is based on secondary structure elements derived using DSSP [44]
plus the chirality algorithm of [83].

The Chew-Kedem dataset [21] is a de facto standard in this area as it has been used
as a benchmark in many studies related to this chapter (e.g., [51]). It consists of 36
protein domains drawn from PDB entries of three classes (alpha-beta, mainly-alpha,
mainly-beta), which are listed as follows.

� alpha-beta: 1aa900, 1chrA1, 1ct9A1, 1gnp00, 1qraA0, 2mnr01, 4enl01,
5p2100, 6q21A0, and 6xia00

� mainly beta: 1cd800, 1cdb00, 1ci5A0, 1hnf01, 1neu00, 1qa9A0, and 1qfoA0
� mainly alpha: 1ash00, 1babA0, 1babB0, 1cnpA0, 1eca00, 1flp00, 1hlb00,

1hlm00, 1ithA0, 1jhgA0, 1lh200, 1mba00, 1myt00, 2hbg00, 2lhb00, 2vhb00,
2vhbA0, 3sdhA0, and 5mbn00

The files of this dataset are provided at [6]. For the classification of protein do-
mains, CATH classification of proteins [62] is assumed to provide the gold stan-
dard [2].

Good benchmark datasets to assess the accuracy of similarity measures and clas-
sification algorithms in grouping protein sequences according to their functional an-
notation and biological classification are based on the phylogenetic classification of
proteins encoded in complete genomes. That is commonly referred to as the COGs
database [8]. The COGs were identified by comparing protein sequences encoded in

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.7 DATASETS AND SOFTWARE FOR EXPERIMENTAL ALGORITHMICS 351

complete genomes, representing major phylogenetic lineages. Each COG consists of
individual proteins or groups of paralogs from at least three lineages and thus corre-
sponds to an ancient conserved domain. Six randomly generated subsets of the COG
database were made available by Kelil et al. [48]. The FASTA files of these subsets
are provided at [8, 48]. The classification of the COG database [8] is taken to be the
gold standard.

Another family of proteins that has been used in a considerable number of pub-
lications and is a good reference classification is represented by the G-proteins
family. It is well known that G-proteins is a family of proteins “easy to align.”
From a biological point of view, G-proteins are a family of proteins involved in
second-messenger cascades, and they belong to the larger group of enzymes called
guanosine triphosphate (GTPases). G-proteins are so called because they function
as “molecular switches,” alternating between an inactive guanosine diphosphate
(GDP) and active GTP bound state, ultimately going on to regulate downstream
cell processes.

A dataset containing 381 protein sequences selected from the G-proteins and re-
ceptor activity-modifying proteins (RAMPs) family was made available by Kelil
et al. [48]. The FASTA files of these subsets are provided at [4, 48]. RAMPs are
a class of proteins that interact with and modulate the activities of several Class
B G-protein-coupled receptors (GPCRs) including the receptors for secretin, calci-
tonin (CT), glucagon, and vasoactive intestinal peptide (VIP). There are three dis-
tinct types of RAMPs, denoted RAMP1, RAMP2, and RAMP3, each encoded by
a separate gene. The classification is according to the GPCRIPDB Data Base (a
molecular-specific information system for GPCR interacting partners (G-proteins
and RAMPs) [5], and it is taken as the gold standard.

The glycoside hydrolase family 2 (GH2) is a multidomain protein family whose
members are known to be “hard to align.” In fact, no definitive multiple alignment
of this family is available yet. For this reason, it is a particularly challenging fam-
ily of sequences for multiple alignment algorithms. From a biological point of view,
the glycoside hydrolases are a widespread group of enzymes that hydrolyse the gly-
cosidic bond between two or more carbohydrates or between a carbohydrate and a
noncarbohydrate moiety. Among glycoside hydrolases families, the GH2 family in-
cludes enzymes that perform five distinct hydrolytic reactions. With respect to known
biochemical activities, we can distinguish among the following:

� beta-galactosidases
� beta-mannosidases
� beta-glucuronidases
� exo-beta-glucosaminidase
� mannosylglycoprotein endo-beta-mannosidase (in plants)

A dataset of 316 protein sequences belonging to the GH2 family selected from
the Carbohydrate-Active Enzymes (CAZy) database was made available by. Kelil
et al. [48]. The FASTA files of these subsets are provided at [9, 48]. The CAZy

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

352 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

Branch 2

Branch 3

Branch 4Branch 1

S
F_

16

SF
_1

7

SF_1
8

SF_19

SF_20

SF_21

SF_22

SF_23
SF_24
SF_25

SF_26S
F_27S

F
_28

S
F

_1
5

S
F

_14

S
F

_13

SF_12

SF_11

SF_10

SF_9

SF_8

SF_7

SF_6

SF_5

SF_4
SF

_3
S

F_
2

S
F

_1

Figure 16.2 The gold tree of the GH2 family.

database describes the families of structurally related catalytic and carbohydrate-
binding modules (or functional domains) of enzymes that degrade, modify, or cre-
ate glycosidic bonds. The phylogenetic tree shown in Figure 16.2 and given in
[48, Figure 6] is taken to be the gold standard according to the following division:

� Branch 1 corresponds to “β-galactosidases” activities
� Branch 3 corresponds to “β-mannosidase” activities
� Branch 4 corresponds to “β-glucuronidase” activities
� Branch 2 contains enzymes labeled as “putative β-galactosidases” in databases
� the subfamily SF − 8 includes 22 “exoglucosaminidase” and “endo-

mannosidase” activities
� the subfamily SF − 17 includes 19 sequences labeled “β-galactosidases” in

databases. Although the branch 1 “β-galactosidases” consist of five modules,
known as the “sugar binding domain,” the “immunoglobulin-like β-sandwich,”
the “(αβ)8-barrel,” the “β-gal small-N domain,” and the “β-gal small-C

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

16.7 DATASETS AND SOFTWARE FOR EXPERIMENTAL ALGORITHMICS 353

domain,” the members of subfamily 17 lack the last two of these domains,
which makes them more similar to “β-mannosidases” and “β-glucuronidases.”
These enzymes are distinct from those of branch 1, and their separate localiza-
tion is justified,

� the Subfamily SF − 28 contains a sequence that is a putative glycosyltrans-
ferase, and hence, it is not a member of GH2 family. In the phylogenetic tree in
Figure 16.2 this sequence is in the SF − 28 that is contained in branch 4.

The Apostolico dataset [15] consists of complete unaligned mitochondrial
genomes of the following 15 mammals from GenBank: human (Homo sapiens
[GenBank: V00662]), chimpanzee (Pan troglodytes [GenBank:D38116]), pigmy
chimpanzee (Pan paniscus [GenBank:D38113]), gorilla (Gorilla gorilla [Gen-
Bank:D38114]), orangutan (Pongo pygmaeus [GenBank:D38115]), gibbon (Hy-
lobates lar [GenBank: X99256]), sumatran orangutan (Pongo pygmaeus abelii
[GenBank:X97707]), horse (Equus caballus [GenBank:X79547]), white rhino
(Ceratotherium simum [GenBank:Y07726]), harbor seal (Phoca vitulina [Gen-
Bank:X63726]), gray seal (Halichoerus grypus [GenBank:X72004]), cat (Felis catus
[Gen- Bank:U20753]), finback whale (Balenoptera physalus [GenBank:X61145]),
blue whale (Balenoptera musculus [GenBank:X72204]), rat (Rattus norvegicus
[Gen- Bank:X14848]), and house mouse (Mus musculus [Gen- Bank:V00711]). The
dataset, in FASTA format, is provided in [6]. It is a standard for the assessment of
performance of similarity measures and phylogenetic algorithms. Although there is
no gold standard for the entire tree, biologists suggest the following grouping for this
case:

� Eutheria-Rodens: house mouse and rat
� Primates: chimpanzee, gibbon, gorilla, human, orangutan, pigmy chimpanzee,

and sumatran orangutan
� Ferungulates: blue whale, finback whale, gray seal, harbor seal, horse, and

white rhino

However, one can assume the NCBI Taxonomy [7] as the gold standard. For con-
venience of the reader, that tree is reported in Figure 16.3.

16.7.2 Software

As supplementary material to their fundamental paper on alignment-free methods
[78], Vinga and Almeida provided a Matlab library that implements some basic
methods mostly based on the evaluation of distances between vectors. For a string
A, each entry in its characteristic vector corresponds to a k-word w, and the value of
that entry corresponds to the number of occurrences of w in A. The software is avail-
able at [1]. A comparative study, as well as novel methods based on characteristic
vectors, is presented in [79].

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

354 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

Pan_paniscus

Pan_troglodytes

Gorilla_gorilla

Homo_sapiens

Pongo_pygmaeus_abeli

Hylobates_lar

Mus_musculus

Rattus_norvegicus

Halichoerus_grypus

Phoca_vitulina

Felis_catus

Balaenoptera_musculus

Balaenoptera_physalus

Ceratotherium_simum

Equus_caballus

Figure 16.3 The NCBI philogenetic tree of the Apostolico dataset.

As a supplementary contribution to their extensive study of the Universal Sim-
ilarity Metric (USM) as it applies to biological data mining [30], Ferragina et al.
provide an entire library of more than 20 data compression methods together with
software to compute the various incarnations of the USM via those compressors. The
entire system is available at [6]. Based on the USM, Barthel et al. [17] provide an
entire decision support system for the classification of proteins. The corresponding
web server, nicknamed Pro(CKSI), can be found at [11].

Apostolico and Denas provide both public software and a web service to eval-
uate distances between strings that are based on composition vectors [3]. Finally,
Kantorovitz et al. also provide a web server as well as a publicly available software
library for their D2 measure [10].

16.8 CONCLUSIONS

This chapter surveys some alignment-free distances between biological sequences,
chosen among the several ones in the specialistic literature, that are perceived as
representative of the novel techniques that have been devised in the past few years.
Given the availability of complete genomes of various organisms, sequence align-
ment is not suitable to measure events and mutations that involve longer segments
of genomic sequences because it considers only local mutations of the genome. Fur-
thermore, a major challenge is to define alignment-free distances that make use of
algorithms and structures able to handle the growing mass of biological data.

We have described some alignment-free methods, ranging from combinatorics to
information theory that have been applied to genomic sequences or that seem to be
scalable at the genomic level. In particular, we considered distances making explicit

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

REFERENCES 355

use of information measures, combinatorial-based measures, methods based on the
notion of subword composition, and finally, exact word matches methods. Moreover,
each approach has been validated experimentally on a collection of relevant biologi-
cal datasets, such as proteomic and genomic sequences, mitochondrial genomes, and
proteins. From those experimental results, it is possible to deduce that some methods
are efficiently scalable when the datasets become large and the sequences become
long. For the others, the genomic-wide experimentation seems to be within reach.

Finally, we presented some datasets for comparative analysis of similarity mea-
sures. Actually, several benchmark datasets of nonhomologous protein structures and
genomes have been collected in the last few years, but they are not largely used. So,
we provided a kernel of datasets that seem to be the most used for benchmarking
purposes. We also provided the most prominent publicly available software libraries
in this area that can be used for benchmarking and comparative studies.

REFERENCES

1. Alignment-Free Vinga and Almeida Library. http://bioinformatics.musc.edu/resources.
html.

2. CATH DataBase. http://www.cathdb.info/.

3. Galaxy/Laboratory for Bioinformatics-Padova. http://bcb.dei.unipd.it/.

4. GPCRIPDB: Information system for GPCR interacting proteins. http://www.gpcr.org.

5. GPCRIPDB: Information system for GPCR interacting proteins. http://www.gpcr.org/
GPCRIP/multali/multali.html.

6. Kolmogorov Library Supplementary Material Web Page. http://www.math.unipa.it/ raf-
faele/kolmogorov/datasets/.

7. NCBI Taxonomy. http://www.ncbi.nlm.nih.gov/Taxonomy/.

8. Phylogenetic classification of proteins encoded in complete genomes. http://www.ncbi.
nlm.nih.gov/COG/.

9. The carbohydrate-active enzymes (CAZy) database. http://www.cazy.org/.

10. The D2Z Web Site. http://veda.cs.uiuc.edu/cgi-bin/d2z/download.pl.

11. The ProCKSI-Server. http://www.procksi.net/.

12. H. Metin Aktulga, I. Kontoyiannis, L.A. Lyznik, L. Szpankowski, A.Y. Grama, and W. Sz-
pankowski. Identifying statistical dependence in genomic sequences via mutual informa-
tion estimates. EURASIP J Bioinformatics Syst Biol, 2007.

13. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment
search tool. J Mol Biol, 215:403–410, 1990.

14. S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J.
Lipman. Gapped blast and psiblast: A new generation of protein database search
programs. Nucleic Acids Res, 25:3389–3402, 1997.

15. A. Apostolico, M. Comin, and L. Parida. Mining, compressing and classifying with ex-
tensible motifs. Algorithm Mol Biol, 1:4, 2006.

16. A. Apostolico and O. Denas. Fast algorithms for computing sequence distances by ex-
haustive substring composition. Algorithms Mol Biol, 3(1):13, 2008.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

356 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

17. D. Barthel, J.D. Hirst, J. Blażewicz, E.K. Burke, and N. Kransnogor. ProCKSI: A decision
support system for protein (structure) comparison, knowledge, similarity and information.
BMC Bioinformatics, 8:416, 2007.

18. B.E. Blaisdell. A measure of the similarity of sets of sequences not requiring sequence
alignment. Proc Natl Acad Sci, 83:5155–5159, 1986.

19. M. Burrows and D.J. Wheeler. A block sorting data compression algorithm. Technical
report, DIGITAL System Research Center, 1994.

20. Y. Cao, A. Janke, P.J. Waddell, M. Westerman, O. Takenaka, S. Murata, N. Okada,
S. Pääbo, and M. Hasegawa. Conflict among individual mitochondrial proteins in resolv-
ing the phylogeny of eutherian orders. J Mol Evol, 47:307–322, 1998.

21. L.P. Chew and K. Kedem. Finding the consensus shape for a protein family. Algorithmica,
38:115–129, 2003.

22. R. Cilibrasi and P.M.B. Vitányi. Clustering by compression. IEEE Trans Inform Theory,
51(4):1523–1545, 2005.

23. J.R. Cole, B. Chai, T.L. Marsh, R.J. Farris, Q. Wang, S.A. Kulam, S. Chandra, D.M.
McGarrell, T.M. Schmidt, G.M. Garrity, and J.M. Tiedje. The ribosomal database project
(rdp-ii: Previewing a new autoaligner that allows regular updates and the new prokaryotic
taxonomy. Nucleic Acids Res, 31:442–443, 2003.

24. E. Corel, R. El Fegalhi, F. Gérardin, M. Hoebeke, M. Nadal, A. Grossmann, and C. De-
vauchelle. Local similarities and clustering of biologicalsequences: New insights from
n-localdecoding. The First International Symposium on Optimization and Systems Biol-
ogy (OSB07), Beijing, China, 2007, pp. 189–195.

25. T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, New York, 1991.

26. Q. Dai, Y. Yang, and T. Wang. Markov model plus-word distributions: A synergy that pro-
duces novel statistical measures for sequence comparison. Bioinformatics, 24(20):2296–
2302, 2008.

27. M.O. Dayhoff, R. Schwartz, and B. Orcutt. A model of evolutionary change in proteins.
In M.O. Dayhoff, editor, Atlas of Protein Sequence and Structure, volume 5 of National
Biomedical Research Foundation, Washington, DC, 1978, pp. 345–352.

28. G. Didier, L. Debomy, M. Pupin, M. Zhang, A. Grossmann, C. Devauchelle, and I. Lapre-
votte. Comparing sequences without using alignments: Application to hiv/siv subtyping.
BMC Bioinformatics, 2(8:1), 2007.

29. G. Didier, I. Laprevotte, M. Pupin, and A. Hénaut. Local decoding of sequences and
alignment-free comparison. J Comput Biol, 13(8):1465–1476, 2006.

30. P. Ferragina, R. Giancarlo, V. Greco, G. Manzini, and G. Valiente. Compression-based
classification of biological sequences and structures via the universal similarity metric:
experimental assessment. BMC Bioinformatics, 8, 2007.

31. P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes: From
theory to practice! ACM J Exp Algorithmics, 2008.

32. G. Fichant and C. Gautier. Statistical method for predicting protein coding regions in
nucleic acid sequences. Comput Appl Biosci, 3:287–295, 1987.

33. N.J. Fine and H.S. Wilf. Uniqueness theorem for periodic functions. Proc Am Math Soc,
16:109–114, 1965.

34. T.P. Flores, D.M. Moss, and J.M. Thornton. An algorithm for automatically generating
protein topology cartoons. Protein Eng Des Sel, 7:31–37, 1994.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

REFERENCES 357

35. S. Foret, M. Kantorovitz, and C. Burden. Asymptotic behaviour and optimal word size for
exact and approximate word matches between random sequences. BMC Bioinformatics,
7(Suppl 5):S21, 2006.

36. S.M. Gallo, L. Li, Z. Hu, and M.S. Halfon. EDfly: a regulatory element database for
rosophila. Bioinformatics, 22(3):381–383, 2006.

37. H. Gao, W.J. Gordon-Kamm, and L.A. Lyznik. Asf/sf2-like maize pre-mrna splicing
factors affect splice site utilization and their transcripts are alternatively spliced. Gene,
339(1-2):25–37, 2004.

38. R. Giancarlo, D. Scaturro, and F. Utro. Textual data compression in computational biol-
ogy: a synopsis. Bioinformatics, 25(13):1575–1586, 2009.

39. D.R. Gilbert, D.R. Westhead, N. Nagano, and J.M. Thornton. Motif-based searching in
tops protein topology databases. Bioinformatics, 15:317–326, 1999.

40. O. Gotoh. An improved algorithm for matching biological sequences. J Mol Biol,
162:705–708, 1982.

41. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, Cambridge, U.K., 1997.

42. S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc Natl Acad Sci U S A, 89:10915–10919, 1992.

43. A.C.-C. Yang S.-S. Hseu, H.-W. Yien, A. L. Goldberger, and C.-K. Peng. Linguistic anal-
ysis of the human heartbeat using frequency and rank order statistics. Phys Rev Lett,
90(10):108103, 2003.

44. W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pattern recog-
nition of hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–2637,
1983.

45. M.R. Kantorovitz, H.S. Booth, C.J. Burden, and S.R. Wilson. Asymptotic behavior of
k-word matches between two random sequences. J Appl Probab, 44:788–805, 2007.

46. M.R. Kantorovitz, C.J. Burden, and S.R. Wilson. Approximate word matches between
two random sequences. Ann Appl Probab, 18:1–21, 2008.

47. M.R. Kantorovitz, G.E. Robinson, and S. Sinha. A statistical method for alignment-free
comparison of regulatory sequences. ISMB/ECCB (Supplement of Bioinformatics), 2007,
pp. 249–255.

48. A. Kelil, S. Wang, R. Brzezinski, and A. Fleury. Cluss: Clustering of protein sequences
based on a new similarity measure. BMC Bioinformatics, 8:286, 2007.

49. M. Kimura. A simple method for estimating evolutionary rates of base substitu-
tions through comparative studies of nucleotide sequences. J Mol Evol, 16:111–120,
1980.

50. J. Kleffe and M. Borodovsky. First and second moment of counts of words in random
texts generated by markov chains. Comput Appl Biosci, 8(5):433–441, 1992.

51. N. Krasnogor and D.A. Pelta. Measuring the similarity of protein structures by means of
the universal similarity metric. Bioinformatics, 20(7).

52. M. Li, J. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang. An information-based
sequence distance and its application to whole mitochondrial genome phylogeny. Bioin-
formatics, 17(2):149–154, 2001.

53. M. Li, X. Chen, X. Li, B. Ma, and P. Vitányi. The similarity metric. IEEE Trans Inform
Theory, 50(12):3250–3264, 2004.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

358 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES

54. W. Li, W. Fang, L. Ling, J. Wang, Z. Xuan, and R. Chen. Phylogeny based on whole
genome as inferred from complete information set analysis. J Biol Phys, 28(3):439–447,
2002.

55. R.A. Lippert, H. Huang, and M.S. Waterman. Distributional regimes for the number of k-
word matches between two random sequences. Proc Natl Acad Sci U S A, 99(22):13980–
13989, 2002.

56. G. Lu, S. Zhang, and X. Fang. An improved string composition method for sequence
comparison. BMC Bioinformatics, 9(Suppl 6):S15, 2008.

57. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. A new combinatorial approach to
sequence comparison. Theor Comput Syst, 42(3):411–429, 2008.

58. F. Mignosi, A. Restivo, and M. Sciortino. Words and forbidden factors. Theor Comput
Sci, 273(1-2):99–117, 2002.

59. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Comput Surv, 39:2,
2007.

60. S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol, 48:443–453,
1970.

61. H.H. Otu and K. Sayood. A new sequence distance measure for phylogenetic tree con-
struction. Bioinformatics, 19(16):2122–2130, 2003.

62. F. Pearl, A. Todd, I. Sillitoe, M. Dibley, O. Redfern, T. Lewis, C. Bennett, R. Marsden,
A. Grant, D. Lee, et al. The cath domain structure database and related resources gene3d
and dhs provide comprehensive domain family information for genome analysis. Nucleic
Acids Res, 33(D):D247–D251, 2005.

63. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proc
Natl Acad Sci, 85(8):2444–2448, 1998.

64. W.R. Pearson. Rapid and sensitive sequence comparison with fastp and fasta. Meth Enzy-
mol, 183:63–98, 1990.

65. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison. Proc
Natl Acad Sci U S A, 85:2444–2448, 1988.

66. P. Petrilli. Classification of protein sequences by their dipeptide composition. Comput
Appl Biosci, 9(2):205–209, 1993.

67. T.D. Pham and J. Zuegg. A probabilistic measure for alignment-free sequence compari-
son. Bioinformatics, 20:3455–3461, 2004.

68. J. Qi, H. Luo, and B. Hao. Cvtree: A phylogenetic tree reconstruction tool based on whole
genomes. Nucleic Acids Res, 32:45–47, 2004.

69. J. Qi, B. Wang, and B.-I. Hao. Whole proteome prokaryote phylogeny without sequence
alignment: A k-string composition approach. J Mol Evol, 58:111, 2004.

70. D. Sankoff and J.B. Kruskal. Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-Wesley, Reading, MA, 1983.

71. M. Sierk and W. Person. Sensitivity and selectivity in protein structure comparison. Pro-
tein Sci, 13(3):773–785, 2004.

72. T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. J Mol
Biol, 147:195–197, 1981.

73. G.W. Stuart, K. Moffett, and S. Baker. Integrated gene and species phylogenies from
unaligned whole genome protein sequences. Bioinformatics, 18:100–108, 2002.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

REFERENCES 359

74. G.W. Stuart, K. Moffett, and J.J. Leader. A comprehensive vertebrate phylogeny using
vector representations of protein sequences from whole genomes. Mol Biol Evol, 19:554–
562, 2002.

75. B. Thiruv, G. Quon, S.A. Saldanha, and B. Steipe. Nh3d: A reference dataset of non-
homologous protein structures. BMC Struct Biol, 5:12, 2005.

76. I. Ulitsky, D. Burstein, T. Tuller, and B. Chor. The average common substring approach
to phylogenomic reconstruction. J Comput Biol, 13(2):336–350, 2006.

77. J. van Helden. Metrics for comparing regulatory sequences on the basis of pattern counts.
Bioinformatics, 20(3):399–406, 2004.

78. S. Vinga and J.S. Almeida. Alignment-free sequence comparison—a review. Bioinfor-
matics, 19(4):513–523, 2003.

79. S. Vinga, R. Gouveia-Oliveira, and J.S. Almeida. Comparative evaluation of word compo-
sition distances for the recognition of scop relationships. Bioinformatics, 20(2):206–215,
2004.

80. J. Wang and X. Zheng. WSE, a new sequence distance measure based on word frequen-
cies. Math Biosci, 215:78–83, 2008.

81. M.S. Waterman. Introduction to Computational Biology. Maps, Sequences and Genomes.
Chapman Hall, London, 1995.

82. D.R. Westhead, D.C. Hutton, and J.M. Thornton. An atlas of protein topology cartoons
available on the world wide web. Trends Biochem Sci, 23:35–36, 1998.

83. D.R. Westhead, T. Slidel, T. Flores, and J.M. Thornton. Protein structural topology: Au-
tomated analysis and diagrammatic representations. Protein Sci, 8(4):897–904, 1999.

84. J.M. Word, S.C. Lovell, T.H. LaBean, H.C. Taylor, M.E. Zalis, B.K. Presley, J.S. Richard-
son, and D.C. Richardson. Visualizing and quantifying molecular goodness-of-fit: Small-
probe contact dots with explicit hydrogen atoms. J Mol Biol, 285(4):1711–1733, 1999.

85. T.-J. Wu, Y.-C. Hsieh, and L.-A. Li. Statistical measures of dna sequence dissimilarity
under markov chain models of base composition. Biometrics, 57(2):441–448, 2001.

86. X. Wu, X.-F. Wan, G. Wu, D. Xu, and G. Lin. Phylogenetic analysis using complete
signature information of whole genomes and clustered neighbour-joining method. IJBRA,
2(3):219–248, 2006.

P1: OSO
c16 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

17
IN SILICO METHODS FOR

THE ANALYSIS OF
METABOLITES AND DRUG

MOLECULES

Varun Khanna and Shoba Ranganathan

17.1 INTRODUCTION

17.1.1 Chemoinformatics and “Drug-Likeness”

During the past decades, paralleling the exponential data flow from the -omic sci-
ences, there has been a steep rise in information technology approaches to organize
and mine the enormous data generated. Chemoinformatics [1, 2] belongs to a large
family of informatic sciences that include contemporary areas like bioinformatics
[3], immunoinformatics [4], biodiversity informatics [5], and biomedical informatics
[6]. Chemoinformatics is the application of information technology to address prob-
lems in the realm of chemistry and to tackle the massive chemical space, comprising
natural products, synthetic organic compounds, drugs, and toxins. At its inception,
chemoinformatics was restricted to the in silico drug discovery process [7]. Subse-
quently, the definition has been broadened to incorporate the storage, management,
and retrieval of chemical data, reaction and spectral analysis, visualization, simi-
larity and diversity analyses, virtual library design, molecular modeling, and struc-
ture activity/property relationships studies. Gasteiger [8], Leach and Gillet [9], and
more recently, Agrafiotis et al. [10] provide comprehensive accounts on chemoin-
formatics. The exponential growth of biological and chemical data has raised crucial

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

361

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

362 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

challenges for maintaining and searching the databases for knowledge mining. Struc-
ture representation, data handling, and searching of chemical databases are key as-
pects of chemoinformatics, with searching of chemical databases being particularly
significant in drug discovery programs [11].

The drug discovery and optimization process has undergone a rapid change in the
last two decades. With the discovery of two complementary technologies in the early
1990s, viz. high-throughput screening and combinatorial synthesis, pharmaceutical
companies now can synthesize and assay a vast number of compounds per target per
year [12]. However, an exhaustive search of chemical space is not feasible because
of the enormity of the task, as a conservative estimate of known small molecules is
of the order of 1060 [13]. As a result, an early in silico prediction of pharmacological
properties of potential drug candidates is becoming increasingly popular [14] to cut
down the time required to bring a drug into the market. Low-cost computational tech-
nologies, such as similarity searching by constructing pharmacophore models, diver-
sity oriented synthesis, and molecular modeling are finding widespread applications
in the drug discovery process. There also has been an increased effort to produce fo-
cused or directed libraries that are biased toward a specific target, structural class, or
known pharmacophore [15] over universal libraries, which are target-independent.

Subsequently, the concept of “drug-like” (DL) [16, 17] or “lead-like” [18]
molecules evolved and various models were developed to recognize DL compounds
from a diverse set of molecules [19]. Walters et al. [17] summarized “drug-likeness”
as the tendency of a molecule to contain functional groups and/or physical properties
consistent with the majority of known drugs. The credit for popularizing the concept
of DL substances goes to Lipinski, Murcko, and researchers at Pfizer and Vertex
[20], who performed a statistical analysis of 2200 drugs from the World Drug In-
dex (WDI). They established certain threshold values that seem to be valid for most
drugs known at that time. In 2008, Ertl et al. [21] introduced a similar measure called
Natural Product (NP)-likeness score to characterize a molecule and thereby distin-
guish it from drugs and synthetic compounds. Similarly, with the growing knowledge
of biochemical pathways and the cognate metabolites, several researchers have rec-
ommended metabolite-likeness [22, 23] as one of the main criteria for drug design.
Dobson et al. [22] compared different molecular properties among human metabo-
lites, drugs, and “predrugs” (precursor drug molecules) and concluded that although
metabolites are a distinct class of compounds, they share a significant percentage of
property space with drugs. They further suggested that metabolite-likeness may be
used as a filter for designing drugs that are functionally similar to metabolites, lead-
ing to better absorption, distribution, metabolism, elimination, toxicology (ADMET)
properties, which are critical for the delivery and uptake of drugs in vivo.

All drug discovery methods aim to identify properties or group of features, known
as descriptors that are necessary for designing drugs with reduced toxicity, improved
potency, selectivity, and bioavailability. Commonly used descriptors, data sources,
and methods available for chemoinformatics research with particular emphasis on
drug discovery are discussed in the following sections. Starting with the various
forms to represent chemical structures, we briefly survey the freely available and
most commonly used small molecule databases and then introduce the algorithms

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

17.2 MOLECULAR DESCRIPTORS 363

available for drug research. Current trends, future directions, and some key sugges-
tions that could solve existing problems are presented.

17.2 MOLECULAR DESCRIPTORS

The set of features or characteristics that describes a molecule to the best approxima-
tion are called molecular descriptors. Descriptors can be calculated using chemical
structure (conformations, configurations, and constitution) or the properties (physi-
cal, chemical, or biological) of the small molecules [24]. Classically, descriptors are
categorized into three groups based on complexity and encoded information.

17.2.1 One-Dimensional (1-D) Descriptors

One-dimensional (1-D) representations of a molecule generate the simplest known
descriptors that include physicochemical properties (log P and molecular weight),
count of chemical features (number of hydrogen bond donors and number of rotat-
able bonds), molecular codes, and so on.

17.2.1.1 Physicochemical Properties. The simplest types of descriptors are
calculated physicochemical properties of molecules (log P, atom counts, and molec-
ular weight). These often are referred to as whole molecule descriptors as they de-
scribe the properties of the complete molecule. The advantage of these descriptors
is that they are easily calculable and can be predicted based on molecular structure
alone [25].

17.2.1.2 Molecular Codes. Molecular codes are the descriptors calculated
from linear notations such as molecular formula, 1-D line notations such as Sim-
plified Molecular Input Line Entry Specification (SMILES) representation [26], the
International Union of Pure and Applied Chemistry (IUPAC) name, and more re-
cently, International Chemical Identifier codes (InChI) developed in collaboration
between IUPAC and NIST (National Institute of Standards and Technology) also are
characterized as 1-D descriptors.

17.2.1.2.1 Chemical Formula. A chemical formula is the most common means
to represent the chemical structure. Besides being compact and easy to interpret, it
conveys the chemical constituents and the number of atoms in a compound. However,
it does not give any information on connectivity, stereochemical configuration, or the
three-dimensional (3-D) coordinates, which are essential for advanced studies. For
example, vasicine (Figure 17.1) has C11H10N2O as its chemical formula, which only
provides details of atom composition and molecular mass.

17.2.1.2.2 1-D Line Notations. Linear notation provides the complete consti-
tution and connectivity of chemical compounds as a linear sequence of characters.
Among all available 1-D notations, SMILES has found widespread application in the

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

364 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

N

OH

N
1

Figure 17.1 Structure and SMILES format representation of vasicine. SMILES representation
can be calculated starting from the position 1 as pointed in the figure.

representation and exchange of chemical information over the Internet. The SMILES
format for vasicine is C1CN2CC3 CC CC C3N C2C1O, which can be calcu-
lated from Figure 17.1.

17.2.2 Two-Dimensional (2-D) Descriptors

The descriptors calculated from two-dimensional (2-D) representations are called
2-D descriptors and are grouped broadly into three types. Topological indices
(Wiener index, molecular connectivity index, and Kappa shape index), 2-D finger-
prints (dictionary-based and hash-based), and 2-D fragment descriptors (atom pairs
[APs], topological torsions, augmented atoms [AAs], and atom sequence). Typically,
the 2-D descriptors are related to the size, rigidity/flexibility, and the electron distri-
bution of the molecule.

17.2.2.1 Molecular Connectivity or Topological Indices. Topological in-
dices (TI) are single-value numerical quantities based on certain characteristics of a
molecular graph [27, 28] and encode molecular properties such as ring structure,
number of atoms, branching, heteroatom content, bond order, and overall shape.
They are easy to calculate and hence have found a widespread use among the
researchers.

17.2.2.2 2-D Fingerprint (Binary) Descriptors. 2-D fingerprint (binary de-
scriptor) is another commonly used descriptor for chemical database mining [29]. A
fingerprint is a string of binary characters encoding the information on the presence
or absence of substructures in a given molecule. Each binary character is called a bit.
These descriptors originally were designed for chemical substructure searching but
also have found application in similarity searching [30]. There are two types of bi-
nary descriptors described in the literature [31]: dictionary-based (dataset dependent)
and hash-based (dataset independent).

17.2.2.2.1 Dictionary-Based Binary Descriptors. Dictionary-based descrip-
tors are said to be dataset dependent because the reference substructure dictionary
contains the fragments from the dataset. For a given molecule x, the appropriate
bit is set to 1 (ON in Boolean algebra) when the substructure in x matches the

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

17.2 MOLECULAR DESCRIPTORS 365

OH

OH

O

(a)

F

X X

XX

X X X

XX

(b)

OH

NH2

HO
O

OH

NH2
OH

O
N
H

Figure 17.2 Dictionary-based fingerprint. Molecules A and B are compared against a reference
fingerprint dictionary.

fragment present in the dictionary or else it is set to 0 (OFF in Boolean algebra). In
Figure 17.2, molecule A comprises three substructures, namely benzene, alcohol,
and acid. Therefore, these bits will be set to 1 in the fingerprint.

A limitation of the dictionary-based approach is that every time the dataset
changes, a new dictionary based on these changes has to be created for comparison,
and the entire fingerprint database has to be recreated. As an example, a dictionary
used for DL molecules may not be suitable for comparing with an organometallic
compound database. The generation of substructure keys is a rate-limiting step; how-
ever, once these keys are generated, the comparison of bitstrings is very rapid using
one or more similarity metrics, such as Tanimoto, Treversky, Cosine, or Hamming
distance. Of all the similarity metrics proposed, perhaps Tanimoto still remains the
most popular coefficient. A list of commonly used metrics is given in Table 17.1, with
details of how each metric is calculated. Two examples of dictionary-based finger-
prints are the Barnard Chemical Information (BCI) fingerprints and the Molecular
Access System (MACCS) structural keys [8].

17.2.2.2.2 Hash-Based Binary Descriptors. To avoid the shortcomings of
dictionary-based fingerprints, hash-based fingerprints were proposed that eliminate
the need for predefined patterns. However, similar to dictionary-based structural
keys, these are binary in nature and are designed for database searching applica-
tions. The patterns are generated from the molecule itself, and the list of patterns
is exhaustive. For example, all possible connected linear paths of the atoms in the
molecule ranging from length zero to seven (typically) are considered to be patterns.
For pyrrole (shown in Figure 17.3), the patterns of length one are: H1 N2, N2 C3,
C3 C4, C4 C5, C5 C6, and C6 N2, whereas the patterns of length two are:
H1 N2 C3, N2 C3 C4, C3 C4 C5, C4 C5 C6, C5 C6 N2, C6 N2 H1,
and so on. The most commonly used hash-based fingerprints are Daylight and
UNITY [8].

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

366 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

Table 17.1 Most commonly used similarity coefficients with formulas

Coefficient Formula

Tanimoto/Jaccard c/(a + b − c)
Tversky c/(αa + βb + c)
Dice/ Sorenson/Czekanowski 2c/(a + b)
Cosine/Ochiai a/

√ (a.b)
Simpson a/min(a + b, a + c)
Hamming/Manhattan/City-block a + b − 2c

a - Number of bits on in molecule A.
b - Number of bits on in molecule B.
c - Number of bits on in both the molecules A and B.
d - Number of bits off in both the molecules A and B.
α,β - User-defined coefficients.

5

6

2

3

4

1

N
H

Figure 17.3 Numbering of pyrrole for showing the hashing scheme. Different patterns of path
one to seven can be calculated on the fly.

Recently, Scitegic pipeline pilot circular fingerprints [32] have become popular
and provide fingerprints with extended connectivity (ECFP) and functional connec-
tivity (FCFP). Initially, each atom is assigned a code based on its properties and
connectivity. With every iteration, each atom code is combined with the code of its
immediate neighbors to produce the next order code. This process is repeated un-
til the desired number of iterations has been achieved, typically to four iterations,
generating ECFP 4 or FCFP 4 fingerprints.

17.2.3 Three-Dimensional (3-D) Descriptors

Three-dimensional (3-D) descriptors provide information regarding the spatial dis-
tribution of atoms and chemical groups in a molecule that leads to the calculation
of molecular surfaces and volumes. In nature, molecular recognition occurs in 3-D,
and hence, it is intuitive to compare molecules using their 3-D characteristics. 3-D
descriptors require conformational properties to be taken into account and hence are
more computationally demanding than 1-D and 2-D descriptors.

17.2.3.1 Pharmacophoric Keys. Pharamacophoric features in the molecule
are atoms or substructures that are important for receptor bonding [33]. There
are usually three-point pharamacophoric keys containing three features hydrogen
bond donor (HBD), hydrogen bond acceptor (HBA), aromatic rings centers, or
hydrophobic centers) or four-point pharamacophoric keys containing four feature

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

17.3 DATABASES 367

combinations. Pharmacophoric keys are widely used 3-D descriptors in molecular
similarity and diversity analyses. Binary pharmacophoric keys also can be derived
for a molecule based on the presence or absence of a pharmacophore in a molecule.
The resulting fingerprints are similar to 2-D fingerprints, but their characteristics are
different [34].

17.2.3.2 Graphs. Graph matching algorithms also have been applied to obtain
3-D descriptors [35]. In 3-D graphs, nodes represent atoms and the interatomic dis-
tance between the atoms is represented by edges in the graph. In 3-D graph rep-
resentations, all nodes are connected to every other node by edges. The maximum
common subgraphs (MCS) can be calculated for similarity searching applications
using 3-D graph representations. However, the calculation of MCS between two 3-D
graphs is more time consuming and computationally intensive than 2-D graphs.

17.2.3.3 Other 3-D Descriptors. Other 3-D descriptors are based on molecular
shape and various field representations of a molecule such as steric, electrostatic,
or hydrophobic. The superposition of molecular shapes has been used widely as a
technique to understand ligand receptor binding and similarity calculations [36]. In
these techniques, molecular shape is modeled as the total volume of the compound
depicted as spheres [37], Gaussian [38], or other representations of densities such as
grid-based encoding [39].

17.3 DATABASES

Small molecule databases are essential to characterize novel natural or synthetic
compounds and predict their likely biological properties to cut down the biological
assays required to determine the properties of a lead compound and minimize toxi-
city. For several decades, small molecules were the proprietary data of drug compa-
nies. Today, large collaborative efforts to annotate the small molecules and analysis
software for chemical research [40] have been spearheaded in analogy to the related
field bioinformatics. The main publicly available small molecule databases relevant
to drug discovery and lead optimization are presented in Table 17.2, with a brief
summary of relevant freely available databases.

17.3.1 PubChem

PubChem [41] is a part of the National Institute of Health’s (NIH) “Molecular Li-
braries” initiative and is hosted by the National Center of Biotechnology (NCBI).
PubChem is organized as three linked subdatabases; PubChem Substance, Pub-
Chem Compound, and PubChem BioAssay. The PubChem Compound databases cur-
rently contain >19 million unique structures with computed properties. Searching
the database is possible using 1-D and 2-D descriptors described earlier. Each hit
provides information about chemical properties, chemical structure, bioactivity, and
links to various other related databases such as PubChem Substance and PubMed.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

Ta
b

le
17

.2
S

u
m

m
ar

y
o

f
re

le
va

n
t

p
u

b
lic

ly
av

ai
la

b
le

sm
al

lm
o

le
cu

le
d

at
ab

as
es

N
um

be
r

of
N

am
e

H
om

ep
ag

e
co

m
po

un
ds

Fo
rm

at
#

D
at

a
ty

pe

P
ub

C
he

m
pu

bc
he

m
.n

cb
i.n

lm
.n

ih
.g

ov
>

19
,0

00
,0

00
SD

F
Sm

al
lm

ol
ec

ul
e

C
he

m
D

B
cd

b.
ic

s.
uc

i.e
du

/in
de

x.
ht

m
>

5,
00

0,
00

0
SM

IL
E

S,
Sm

al
lm

ol
ec

ul
es

SD
F

or
m

ol
C

he
m

B
an

k
ch

em
ba

nk
.b

ro
ad

.h
ar

va
rd

.e
du

>
80

0,
00

0
Te

xt
Sm

al
lm

ol
ec

ul
es

C
he

m
ID

pl
us

ch
em

.s
is

.n
lm

.n
ih

.g
ov

/c
he

m
id

pl
us

>
37

0,
00

0
m

ol
Sm

al
lm

ol
ec

ul
es

N
C

I
ca

ct
us

.n
ci

.n
ih

.g
ov

/n
ci

db
2

26
0,

07
1

SD
F

To
xi

ci
ty

Su
pe

rT
ox

ic
bi

oi
nf

-s
er

vi
ce

s.
ch

ar
ite

.d
e/

su
pe

rt
ox

ic
>

60
,0

00
m

ol
To

xi
ci

ty
C

PD
B

ep
a.

go
v/

N
C

C
T

/d
ss

to
x/

in
de

x.
ht

m
l

>
15

00
SD

F
To

xi
ci

ty
H

M
D

B
hm

db
.c

a
>

68
00

SD
F

H
um

an
m

et
ab

ol
ite

s
D

ru
gB

an
k

dr
ug

ba
nk

.c
a

>
50

00
SD

F
D

ru
gs

C
hE

B
I

eb
i.a

c.
uk

/c
he

bi
18

,1
86

m
ol

B
io

lo
gi

ca
lly

re
le

va
nt

m
ol

ec
ul

es

#
SD

F-
St

ru
ct

ur
e

da
ta

fil
e.

368

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

17.3 DATABASES 369

17.3.2 Chemical Entities of Biological Interest (ChEBI)

Chemical Entities of Biological Interest (ChEBI) [42] is maintained by the European
Bioinformatics Institute. It focuses on “small” chemical substances made syntheti-
cally or produced naturally, which can affect living organisms. ChEBI relies on two
main sources for information: the Integrated Relational Enzyme Database (IntEnz)
with information on enzyme nomenclature and the Kyoto Encyclopedia of Genes
and Genomes Ligand COMPOUND database with information on metabolic com-
pounds and other chemical substances relevant to biological systems. ChEBI also
includes an ontological classification in which the relationship between entities and
their parent compounds has been specified. A 1-D search can be carried out against
ChEBI entries. Furthermore, each ChEBI entry is cross linked to the UniProt protein
database enabling access to known biological function of proteins.

17.3.3 ChemBank

ChemBank [43] is a comprehensive, online informatics system developed through
collaboration between the Broad Institute Chemical Biology Program of Harvard
and the Massachussetts Institute of Technology (MIT). The aim of the database is to
provide biologically relevant pharmacogenomics data and open-source tools to em-
power the global scientific community in understanding and treating of diseases. The
knowledge base stores the high-quality raw screening data and various measurements
derived from cells and other biological systems after treatment with small molecules.
Several analysis tools that allow studying the relationships among small molecules,
cell measurements, and cell states are being developed and updated continuously.

17.3.4 ChemIDplus

ChemIDPlus [44] is a web-based searchable system that provides access to structural
and chemical information for the chemical substances cited in the National Library
of Medicine (NLM) databases. Currently, ChemIDplus contain more 370,000 com-
pounds that can be searched by their 1-D properties and toxicity indicators such
as median lethal dose (LD50) and physicochemical properties like log P, molecu-
lar weight, and so on. 2-D similarity and substructure can be performed with user-
specified structures.

17.3.5 ChemDB

The ChemDB [45] is a highly annotated database that supports multiple molecular
formats. It is compiled from 150 different sources, which include commercial ven-
dors, catalogs, and publicly available repositories. Currently, the database contains
nearly 5 million commercially available small molecules. The chemical data includes
predicted or experimentally determined physicochemical properties such as molecu-
lar weight, H-bond donors, acceptors, and 3-D structure. The data is available in sev-
eral formats SMILES (1-D), 2-D graphs, 3-D coordinates (SDF or MOL format), and

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

370 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

in fingerprints. The database is searchable by text, SMILES, and physicochemical
properties. The tversky coefficient is applied for substructure or similarity searches.
ChemDB maintains a repository of datasets for machine-learning experiments and
also supports online tools for system biology and virtual screening programs.

17.4 METHODS AND DATA ANALYSIS ALGORITHMS

The necessity to classify DL substances from ordinary chemicals present in the vast
chemical space is of utmost importance [46]. In an effort to select DL molecules, sev-
eral methods besides quantitative structure activity relationship (QSAR) equations,
have been applied to optimize compound selection. Binary classification algorithms
such as decision trees and support vector machines frequently are applied to dis-
tinguish between DL and non-DL molecules. A variety of methods, ranging from
simple count to advanced knowledge-based methods, have been proposed.

17.4.1 Simple Count Methods

Simple count methods utilize molecular descriptors that are computed rapidly and
are thus highly popular. The most famous of these is Ro5 [16], proposed by Lipinski
et al. at Pfizer and Vertex. The “Pfizer rule,” or better known as the “rule of five”
(Ro5), derive guidelines for absorption and permeation of drug molecules and states
that a hit (lead) compound has a better chance of survival through the drug discovery
pipeline if its molecular weight (MW) is less than 500 (MW < 500), its log P is less
than equal to 5 (log P <5), it has five or fewer HBD sites (HBD <5) and a maximum
of 10 HBA sites (HBA < 10). Ro5 originally was designed as a guideline to pick DL
substances, but it has been used as a rule for distinguishing between DL and non-
DL compounds. Although Ro5 has dominated drug design, several current drugs do
not comply with Lipinski’s rule, with the majority of violations coming form natural
products, vitamins, and antibiotics. In one of the studies [47], it was shown that using
this criteria, only 66% of the compounds in the MDL Drug Data Report (MDDR)
database are classified as DL, whereas 75% of the theoretically non-DL compounds
from the Available Chemical Directory (ACD), in fact, were regarded as DL.

Similarly, from an analysis by Oprea et al. [48], new pharmaceutical substances
entering the market exhibit a higher molecular weight and an increased number of
hydrogen bond donors and acceptors than is suggested by Ro5, although if a com-
pound fails the Ro5 test, then oral bioavailability problems are likely. At the same
time, fulfilling Ro5 does not guarantee that a compound is DL. Moreover, Ro5 does
not consider toxicity and structural features, leading to drug failures. Analyses of the
failed drugs over past few years have shown that more than 90% of the setbacks are
a result of drug toxicity [49, 50].

17.4.1.1 Example Studies Using Simple Count Methods. Ghose et al.
[51] extended the concept of drug-likeness and carried out a broad analysis of seven

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

17.4 METHODS AND DATA ANALYSIS ALGORITHMS 371

different subsets of drugs in the Comprehensive Medicinal Chemistry (CMC)
database. These subsets included drugs for the central nervous system, cardiovas-
cular, cancer, inflammation, and infectious disease states molecules. A total of 6304
molecules were included in the study. Based on the calculated physicochemical prop-
erties, Ghose et al. determined qualifying ranges and preferred ranges that covered
80% and 50% of the database, respectively. Ranges were established for A logP
(−0.4 to 5.6), molar refractivity (40 to 130), molecular weight (160 to 480), and the
number of atoms (20 to 70).

A similar study was conducted by Oprea [52] who performed Pareto analysis (a
statistical technique that selects a limited number of tasks that account for signifi-
cant overall effect) on various drug-related databases. Oprea examined the property
distribution among several commercial databases including MACCS-II Drug Data
Report (MDDR), CMC, Current Patent Fast Alert, New Chemical Entities, and ACD
databases. The conclusions were that Ro5 does not distinguish between drugs and
nondrugs because the distribution of the Ro5 parameters does not differ significantly
between drugs and nondrugs. In addition to the Ro5 properties, Oprea also con-
sidered counts of ring bonds, rigid bonds, and rotatable bonds in his study, which
facilitated the discrimination of drugs and nondrugs.

17.4.2 Enhanced Simple Count Methods, Using Structural Features

Counting of substructures also has been employed by many researchers to distinguish
between DL and non-DL substances.

17.4.2.1 Substructure Analysis and Example Studies. Substructure anal-
ysis usually is performed to distinguish potentially useful compounds [53]. Bemis
and Murcko carried out an extensive study of CMC database to characterize molec-
ular skeletons and side chains that occur most frequently in drugs [54, 55].

Muegge et al. [56] has proposed a simple selection criteria for DL compounds
based on pharmacophore point filters based on the observation that nondrugs often
contain fewer functional groups than drugs. Therefore, a minimum count of well-
defined pharmacophoric points would distinguish successfully between DL and non-
DL compounds. Methods based on functional group filters including this method are
significantly less accurate than various machine learning (ML) methods described
later. Nevertheless, Muegge et al. were able to filter 66%–69% of the MDDR subset
and 61%–68% of the CMC subset as DL, whereas only 36% of ACD was found to
be DL.

Similarly, Zheng et al. [57] developed a chemical space filter by analyzing 50
structural and physicochemical properties on drug (MDDR and CMC) and nondrug
databases (ACD). Using molecular saturation-related descriptors and the proportion
of heteroatom in a molecule, both of which are molecular-size-dependent descriptors,
the developed filter was applied to the Chinese Natural Product Database (CNPD).
Their filter was reliable, as the entire CNPD was classified DL.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

372 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

17.4.3 ML Methods

During past few decades, several prediction methods have been developed to classify
DL and non-DL molecules. Methods dependent on learning algorithms for develop-
ing classification rules are called ML methods [58]. Essentially in a ML task, training
molecules are represented by n-dimensional vectors. These vectors define the point
in a chemical space describing the molecule, and an ML algorithm tries to classify
the object into distinct groups. In recent years, ML algorithms have gained popularity
for following reasons:

� Exponential increase in data generation (biological and chemical)
� Generally ML algorithms perform well in real-world problems
� Well suited for high-dimension data like microarray and images
� Sound mathematical foundations, computationally efficient, and scalability to

handle large datasets

ML algorithms are of two types based on supervised and unsupervised learning.

17.4.3.1 Supervised Classification (SC) Methods. In supervised learning,
we have a prior knowledge, even if only approximate, of the outcome for m samples
in the training set. We expect to find a hypothesis h, which closely resembles our
prior knowledge for the training set members, and then this hypothesis will serve
as a good model for the remaining members of the dataset, usually called the test
set. The most common examples of SC methods are discriminant analysis (linear
discriminant analysis [LDA] or quadratic discriminant [QDA]), support vector ma-
chines (SVMs), artificial neural networks [ANNs], and classification and regression
trees.

17.4.3.1.1 Neural Networks (NNs). Neural network [NN]-type algorithms are
based on nature inspired architecture. An ANN is an interconnected group of arti-
ficial neurons (programming constructs that mimic the properties of biological neu-
rons). The three components of an ANN are the input node, the output node, and
the neuron itself. The drawback of this type of network is that they are computation-
ally intensive and the sample size should be large. There are different types of NNs
available.

1. Feed forward neural networks (FFNNs): These are one of the simplest types of
artificial NN, with a unidirectional flow of information. There are no cycles or
loops involved, so that information flow is from input nodes to hidden nodes and
then to output nodes.

2. Kohonen Self-Organizing Maps (SOMs): This is one of the more computation-
ally intensive types of learning algorithm. The basic idea is to reduce the dimen-
sionality without losing useful information and to organize data on the basis of
similarity.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

17.4 METHODS AND DATA ANALYSIS ALGORITHMS 373

Margin hyperplane

Margin hyperplane

Optimal hyperplane

Figure 17.4 A schematic representation of a binary classification task. Two classes of com-
pounds are separated by calculating an optimal margin hyperplane.

3. Recurrent NN: Unlike feed forward NNs, recurrent NNs have a bidirectional
dataflow. Although a feed forward NN propagates data linearly, recurrent NN can
propagate data from later processing stages to earlier stages.

17.4.3.1.2 Support Vector Machines (SVMs). The support vector machine [59]
is a supervised learning algorithm that recently has received attention in chemoinfor-
matics because of its robust nature and binary classification ability. Several com-
parison studies have pointed that SVMs almost always outperform other contempo-
rary machine learning techniques and is the best method for classifying molecules
[60, 61]. In a typical SVM classification exercise, a training set belonging to two
different classes (toxic versus nontoxic or active versus inactive) is projected in a
chemical space using various descriptors, and an optimal hyperplane is derived that
will best separate the two classes. The basic idea of the SVM principle is easy to
interpret and can be understood from Figure 17.4. The disadvantage of using a clas-
sifier like SVM is that it does not rank the output, and therefore, it presents a risk of
eluding potential ligands that could be improved with minor modifications.

17.4.3.1.3 k-Nearest Neighbor Classifier (k-NN). The nearest neighbour
method is the simplest of the machine learning methods. This method classifies
an element by finding its k-closest neighbors and by choosing the more common
class among the k elements. Usually Euclidian distance is used as the distance met-
ric; however, for text classification, Hamming distance also can be used. The major
drawback of k-NN technique is that classes with more frequent examples tend to
dominate and hence can introduce a bias in prediction. In the past, k-NN has been

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

374 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

used to classify toxicity data and also has been used in various comparison studies
with NN, SVM, and other methods [62].

17.4.3.2 Unsupervised Classification (UC) Methods. In unsupervised
learning, we do not have any prior knowledge of the outcomes. Clustering and par-
titioning are the two most common examples of an unsupervised learning task.

17.4.3.2.1 Clustering. Clustering is a technique that tries to organize the vari-
ables into relatively homogenous groups called clusters, according to a defined dis-
tance measure. The clusters formed exhibit large intracluster similarity and interclus-
ter dissimilarity [63]. Therefore, the result of a cluster analysis would be the number
of heterogeneous groups with homogenous contents. One of the methods to choose
a diverse set of compounds from a molecular database is to cluster the compounds
present in the database and then select a representative compound from each clus-
ter. Clustering techniques are classified into two main categories, hierarchical and
nonhierarchical, based on the way the compounds are clustered. Hierarchical clus-
tering is the most common clustering approach in which the output is a hierarchy
(dendrogram) or a tree. Hierarchical clustering may follow top-down (divisive) or
bottom-up (agglomerative) approaches. In the top-down clustering approach, a sin-
gle large cluster is split down sequentially and recursively into smaller clusters until
each object is in its own singleton cluster. Conversely, bottom-up algorithms treat
each object as a singleton cluster at the beginning and successfully merge the clus-
ters together into a single cluster that contains all objects. The second class is non-
hierarchal clustering, and the most popular method of the class is the Jarvis-Patrick
Clustering algorithm. It involves the calculation of k nearest neighbors of each object
in the dataset. Once completed, two molecules are clustered if both of them are on
each other’s nearest neighbor list and share the k minimum number of neighbors be-
tween them. The advantage of this approach is its speed, but one problem associated
with this methodology is the tendency to produce too many singletons or too few
large clusters depending on the clustering criteria.

17.4.3.3 Example Studies. Some notable studies include the reports by Ajay
et al. [19], Sadowski and Kubinyi [64], Wagener and van Geerestein [65], Frimurer
et al. [47], Takaoka et al. [66], and Li and Lai [67]. A summary of the studies carried
out by these researchers is provided in Table 17.3.

Ajay et al. [19] used a Bayseian neural network (BNN) and a decision tree (c4.5)
to build the model for classifying drugs and non-DL molecules. In their study, the
training and test sets consisted of 3500 and 2000 compounds each from the CMC
and ACD databases, respectively. They used a set of seven one-dimensional and two-
dimensional fingerprint descriptors. The results suggest that BNN performed well on
all occasions when compared with the decision tree approach. Furthermore, the keys,
combined with 1-D descriptors, were the best performing combination than using any
single descriptor, with the ability to classify 90% of CMC and ACD compounds and
80% of MDDR compounds correctly.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

Ta
b

le
17

.3
S

u
m

m
ar

y
o

f
st

u
d

ie
s

co
n

d
u

ct
ed

in
p

as
t

d
ec

ad
e

fo
r

d
ru

g
,n

o
n

d
ru

g
cl

as
si

fi
ca

ti
o

n

%
of

dr
ug

s
%

of
no

nd
ru

gs
D

at
ab

as
es

D
at

ab
as

es
fo

r
co

rr
ec

tly
co

rr
ec

tly
M

et
ho

do
lo

gy
fo

r
dr

ug
s

no
nd

ru
gs

D
es

cr
ip

to
rs

pr
ed

ic
te

d
pr

ed
ic

te
d

A
ja

y
et

al
.[

19
]

B
ay

es
ia

n
ne

ur
al

ne
tw

or
k

(B
N

N
)

C
M

C
A

C
D

1-
D

,2
-D

(I
SI

S
K

ey
s)

90
%

(C
M

C
)

(8
0%

)
M

D
D

R
90

%
(A

C
D

)

Sa
do

w
sk

ia
nd

K
ub

in
yi

[6
4]

FF
N

N
W

D
I

A
C

D
G

ho
se

an
d

C
ri

pp
en

at
om

ty
pe

s
77

%
(W

D
I)

83
%

(A
C

D
)

W
ag

en
er

an
d

va
n

G
ee

re
st

ei
n

[6
5]

D
ec

is
io

n
tr

ee
s

W
D

I
A

C
D

G
ho

se
an

d
C

ri
pp

en
at

om
ty

pe
s

92
%

(W
D

I)
66

%
(A

C
D

)

Fr
im

ur
er

et
al

.[
47

]
FF

N
N

M
D

D
R

A
C

D
C

on
co

rd
at

om
ty

pe
s

88
%

88
%

L
ia

nd
L

ai
[6

7]
Pr

ob
ab

ili
st

ic
SV

M
W

D
I

A
C

D
E

C
FP

Sc
ite

gi
c

Pi
el

in
e

Pi
lo

t
93

%
(W

D
I)

—

375

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

376 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

Figure 17.5 Grid or cell-based selection. Similar molecules tend to fall in similar property space
and hence can be partitioned.

Wagener and van Geerestein [65] employed a step-by-step approach using deci-
sion tree algorithms. They found that 75% of all drugs can be predicted based on the
occurrence of six chemical groups. Likewise, the majority of unsuitable compounds
can be ruled out from further analysis based on the presence of specific chemical
groups that result in a substance being reactive, toxic, or difficult to synthesize. Sad-
owski and Kubinyi [64] used Ghose atom types as molecular descriptors, which
originally were developed for predicting log P. Their study included ∼38,000 DL
compounds taken from WDI and ∼169,000 non-DL compounds from ACD. A feed
forward NN approach was able to classify 83% of the ACD and 77% of the WDI
database.

Frimurer et al. [47] used the CONCORD atom type descriptors along with a feed
forward NN technique to classify DL and non-DL molecules. They were able to
classify correctly 88% of DL (MDDR) and non-DL (ACD) compounds. When com-
pared with the rule of five, their method performed significantly better in identifying
non-DL compounds.

17.5 CONCLUSIONS

As documented in this chapter, chemoinformatics is a rapidly growing field that
forms an important link between already established areas such as bioinformatics,
computational chemistry and emerging areas like metabolomics, chemogenomics,
and pharmacogenomics. Key areas of chemoinformatics like Molecular similarity
(MS) and molecular diversity (MD) analysis are widely accepted concepts in ratio-
nal drug design. MS lies at the core of all clustering techniques available, whereas
molecular diversity is concerned with exploring the structural coverage of the set
of molecules in the chemical space. MD lies at the heart of all approaches for

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

REFERENCES 377

compound selection and combinatorial library design. The present level of chemoin-
formatics understanding has already made it an effective tool in drug discovery and
development process.

The current structure and property databases provide a foundation for building in
silico models with reasonable accuracy. In silico models are used for large-scale vir-
tual screening tasks. Although there are various ML techniques available for model
building, not all are readily interpretable. There is thus extensive scope for improve-
ment in these methods. Moreover, methods and databases that predict metabolite-
likeness are more desirable to those that are restricted to drug-likeness. Furthermore,
to ensure the reliability of these models, the inherent redundancy of the datasets
should be taken into consideration because redundant datasets can lead to biased re-
sults. It is thus important to balance the data such that a particular class of compounds
is not overrepresented.

Also, a large proportion of current research effort is directed toward in silico mod-
eling of absorption, distribution, metabolism, and excretion properties of leads or
potential drug candidates. A variety of models are available for the prediction of
physicochemical properties such as log P, oral bioavailability and aqueous solubil-
ity, intestinal absorption, and blood-brain barrier penetration. There are some models
for metabolism but very few models for excretion and toxicity. Analysis of various
drug failure cases has revealed that more than 90% of the setbacks in drug discovery
programs are a result of toxicity. Lack of toxicity data could be one of the major
bottlenecks in the development of toxicity models. Hence, it is essential that freely
available toxic compound databases are developed to get better in silico toxicity mod-
els. We can expect further development in chemoinformatics approaches to facilitate
rational drug design for personalized medicine.

ACKNOWLEDGMENTS

Varun Khanna acknowledges the award of a Macquarie University Research Schol-
arship (MQRES).

REFERENCES

1. F. Brown. Editorial opinion: chemoinformatics - a ten year update. Curr Opin Drug
Discov Dev, 8(3):298–302, 2005.

2. J.F. Blake. Chemoinformatics - predicting the physicochemical properties of ‘drug-like’
molecules. Curr Opin Biotechnol, 11:104–107, 2000.

3. S. Ranganathan. Bioinformatics education - Perspectives and challenges. PLoS Comput
Biol, 1(6):447–448, 2005.

4. D.R. Flower, I.A. Doytchinova. Immunoinformatics and the prediction of immunogenic-
ity. Appl Bioinformatics, 1(4):167–176, 2002.

5. A. Sugden and E. Pennisi. Diversity digitized. Science, 289:2305–2305, 2000.

6. E.H. Shortliffe and J.J. Cimino. Biomedical Informatics: Computer Applications in
Health Care and Biomedicine (3rd edition). Springer, New York, 2006.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

378 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

7. F. Brown. Chemoinformatics: What is it and how does it impact drug discovery. Anny Rep
Med Chem 33:375–384, 1998.

8. J. Gasteiger. Handbook of Chemoinformtics. Form Data to Knowledge, Volumes 1–4,
Wiley-VCH Verlag GmbH, New York, 2003.

9. A.R. Leach and V.J. Gillet. An Introduction to Chemoinformatics. Dordrecht, Kluwer
Academic Publisher, 2003.

10. D.K. Agrafiotis, D. Bandyopadhyay, J.K. Wegner and H. Vlijmen. Recent advances in
chemoinformatics. J Chem Inform Model, 47:1279–1293, 2007.

11. M.A. Miller. Chemical database techniques in drug discovery. Nat Rev Drug Discov,
1(3):220–227, 2002.

12. M.A. Gallop, R.W. Barrett, W.J. Dower, S.P. Fodor, and E.M. Gordon. Applications of
combinatorial technologies to drug discovery. 1. Background and peptide combinatorial
libraries. J Med Chem, 37(9):1233–1251, 1994.

13. R.S. Bohacek, C. McMartin, and W.C. Guida. The art and practice of structure-based drug
design: a molecular modeling perspective. Med Res Rev, 16(1):3–50, 1996.

14. T.I. Oprea and H. Matter. Integrating virtual screening in lead discovery. Curr Opin Chem
Biol, 8(4):349–358, 2004.

15. E. Jacoby. A novel chemogenomics knowledge-based ligand design strategy - Application
to G protein-coupled receptors. Quant Struct-Act Relat, 20:115–123, 2001.

16. C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney. Experimental and computa-
tional approaches to estimate solubility and permeability in drug discovery and develop-
ment settings. Adv Drug Deliv Rev, 46(1-3):3–26, 2001.

17. W.P. Walters, A. Ajay, and M.A. Murcko. Recognizing molecules with drug-like proper-
ties. Curr Opin Chem Biol, 3(4):384–387, 1999.

18. T.I. Oprea, A.M. Davis, S.J. Teague, and P.D. Leeson. Is there a difference between leads
and drugs? A historical perspective. J Chem Inform Comput Sci, 41(5):1308–1315, 2001.

19. A. Ajay, W.P. Walters, and M.A. Murcko. Can we learn to distinguish between “drug-like”
and “nondrug-like” molecules? J Med Chem, 41(18):3314–3324, 1998.

20. W.L. Jorgensen. The many roles of computation in drug discovery. Science,
303(5665):1813–1818, 2004.

21. P. Ertl, S. Roggo, and A. Schuffenhauer. Natural product-likeness score and its application
for prioritization of compound libraries. J Chem Inform Model, 48(1):68–74, 2008.

22. P.D. Dobson, Y. Patel, and D.B. Kell. ’Metabolite-likeness’ as a criterion in the de-
sign and selection of pharmaceutical drug libraries. Drug Discov Today, 14(1-2):31–40,
2009.

23. S. Gupta and J. Aires-de-Sousa. Comparing the chemical spaces of metabolites and avail-
able chemicals: Models of metabolite-likeness. Mol Divers, 11(1):23–36, 2007.

24. N. Nikolova and J. Jaworska. Apporaches to measure chemical similarity—a review.
QSAR Comb Sci, 1006–1026, 2003.

25. B. Cuissart, F. Touffet, B. Cremilleux, R. Bureau, and S. Rault. The maximum com-
mon substructure as a molecular depiction in a supervised classification context: Experi-
ments in quantitative structure/biodegradability relationships. J Chem Inform Comput Sci,
45(5):1043–1052, 2002.

26. D. Weininger. Smiles, a chemical language and information-system .1. Introduction to
methodology and encoding rules. J Chem Inform Comput Sci, 28:31–36, 1988.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

REFERENCES 379

27. M. Randic. The connectivity index 25 years after. J Mol Graph Model, 20(1):19–35, 2001.

28. L.H. Hall and L.B. Kier. Issues in representation of molecular structure the development
of molecular connectivity. J Mol Graph Model, 20(1):4–18, 2001.

29. P. Willett. Similarity-based virtual screening using 2D fingerprints. Drug Discov Today,
11(23-24):1046–1053, 2006.

30. D.K. Agrafiotis. Diversity of Chemical Libraries. Encyclopedia of Computational Chem-
istry, volume 1:A-D: Wiley, New York, 1998, pp 742–761.

31. V.J. Gillet and P. Willett. Compound selection using measures of similarity and dissim-
ilarity, in C. Hansch, editor, Comprehensive Medicinal Chemistry II, Elsevier, Atlanta,
GA, 2007, pp. 167–192.

32. Pipeline Pilot SciTegic. http://accelrys.com/products/scitegic/.

33. S.D. Pickett, J.S. Mason, and I.M. McLay. Diversity profiling and design using 3D
pharmacophores: Pharmacophore-derived queries (PDQ). J Chem Inform Comput Sci,
36:1214–1223, 1996.

34. A.C. Good, S.J. Cho, and J.S. Mason. Descriptors you can count on? Normalized and
filtered pharmacophore descriptors for virtual screening. J Comput Aided Mol Des, 18(7-
9):523–527, 2004.

35. J.W. Raymond and P. Willett. Similarity searching in databases of flexible 3D struc-
tures using smoothed bounded distance matrices. J Chem Inf Comput Sci, 43(3):908–916,
2003.

36. C. Lemmen and T. Lengauer. Computational methods for the structural alignment of
molecules. J Comput Aided Mol Des, 14(3):215–232, 2000.

37. M. Petitjean. Geometric molecular similarity from volume based distance minimization:
Application to saxitoxin and tetrodotoxin. J Comput Chem, 16:80–90, 1995.

38. J.A. Grant and B.T. Pickup. A Gaussian description of molecular shape. J Phys Chem,
99:3503–3510, 1999.

39. S. Putta, C. Lemmen, P. Beroza, and J. Greene. A novel shape-feature based approach to
virtual library screening. J Chem Inform Comput Sci, 42:1230–1240, 2002.

40. P. Baldi. Chemoinformatics, drug design, and systems biology. Genome Inform, 16:281–
285, 2005.

41. C.P. Austin, L.S. Brady, T.R. Insel, and F.S. Collins. NIH Molecular Libraries Initiative.
Science, 306:1138–1139, 2004.

42. K. Degtyarenko, P. de Matos, M. Ennis, J. Hastings, M. Zbinden, A. McNaught, R. Al-
cantara, M. Darsow, M. Guedj, and M. Ashburner. ChEBI: A database and ontology for
chemical entities of biological interest. Nucleic Acids Res, 36:D344–350, 2008.

43. K.P. Seiler, G.A. George, M.P. Happ, N.E. Bodycombe, H.A. Carrinski, S. Norton, S.
Brudz, J.P. Sullivan, J. Muhlich, M. Serrano, P. Ferraiolo, N.J. Tolliday, S.L. Schreiber,
and P.A. Clemons. ChemBank: a small-molecule screening and cheminformatics resource
database. Nucleic Acids Res, 36:D351–359, 2008.

44. P.M. Liwanag, V.W. Hudson, and G.F. Hazard. ChemIDplus: An experimental public
chemical information and structure search system. Abstr Paper Am Chem Soc, 218:U361–
U362, 1999.

45. J. Chen, S.J. Swamidass, Y. Dou, J. Bruand, and P. Baldi. ChemDB: a public database of
small molecules and related chemoinformatics resources. Bioinformatics, 21:4133–4139,
2005.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

380 IN SILICO METHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES

46. M.C. Hutter. In silico prediction of drug properties. Curr Med Chem, 16:189–202, 2009.

47. T.M. Frimurer, R. Bywater, L. Naerum, L.N. Lauritsen, and S. Brunak. Improving the
odds in discriminating “drug-like” from “non drug-like” compounds. J Chem Inform
Comput Sci, 40:1315–1324, 2000.

48. T.I. Oprea, T.K. Allu, D.C. Fara, R.F. Rad, L. Ostopovici, and C.G. Bologa. Lead-like,
drug-like or “Pub-like”: How different are they? J Comput Aided Mol Des, 21:113–119,
2007.

49. D. Schuster, C. Laggner, and T. Langer. Why drugs fail–a study on side effects in new
chemical entities. Curr Pharm Des, 11:3545–3559, 2005.

50. J. Gut and D. Bagatto. Theragenomic knowledge management for individualised safety
of drugs, chemicals, pollutants and dietary ingredients. Expert Opin Drug Metab Toxicol,
1:537–554, 2005.

51. A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski. A knowledge-based approach in
designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualita-
tive and quantitative characterization of known drug databases. J Comb Chem, 1:55–68,
1999.

52. T.I. Oprea. Property distribution of drug-related chemical databases. J Comput Aided Mol
Des, 14:251–264, 1999.

53. R.P. Sheridan. Finding multiactivity substructures by mining databases of drug-like com-
pounds. J Chem Inform Comput Sci, 43:1037–1050, 2003.

54. G.W. Bemis and M.A. Murcko. The properties of known drugs. 1. Molecular frameworks.
J Med Chem, 39:2887–2893, 1996.

55. G.W. Bemis and M.A. Murcko. Properties of known drugs. 2. Side chains. J Med Chem,
42:5095–5099, 1999.

56. I. Muegge, S.L. Heald, and D. Brittelli. Simple selection criteria for drug-like chemical
matter. J Med Chem, 44:1841–1846, 2001.

57. S. Zheng, X. Luo, G. Chen, W. Zhu, J. Shen, K. Chen, and H. Jiang. A new rapid and
effective chemistry space filter in recognizing a druglike database. J Chem Inform Model,
45:856–862, 2005.

58. T.M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, Columbus,
OH, 1997.

59. V.N. Vapnik. The Nature of Statistics Learning Theory (Information Science and Statis-
tics). New York, Springer, 1995.

60. V.V. Zernov, K.V. Balakin, A.A. Ivaschenko, N.P. Savchuk, and I.V. Pletnev. Drug dis-
covery using support vector machines. The case studies of drug-likeness, agrochemical-
likeness, and enzyme inhibition predictions. J Chem Inform Comput Sci, 43:2048–2056,
2003.

61. E. Byvatov, U. Fechner, J. Sadowski, and G. Schneider. Comparison of support vector
machine and artificial neural network systems for drug/nondrug classification. J Chem
Inform Comput Sci, 43:1882–1889, 2003.

62. S.R. Amendolia, G. Cossu, M.L. Ganadu, B. Golosio, G.L. Masala, and G.M. Mura. A
comparative study of k-nearest neighbour, support vector machine and multi-layer per-
ceptron for thalassemia screening. Chemometr Intell Lab Syst, 69:13–20, 2003.

63. B.S. Everitt. Cluster Analysis. London, 1993.

64. J. Sadowski and H. Kubinyi. A scoring scheme for discriminating between drugs and
nondrugs. J Med Chem, 41:3325–3329, 1998.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

REFERENCES 381

65. M. Wagener and V.J. van Geerestein. Potential drugs and nondrugs: Prediction and iden-
tification of important structural features. J Chem Inform Comput Sci, 40:280–292, 2000.

66. Y. Takaoka, Y. Endo, S. Yamanobe, H. Kakinuma, T. Okubo, Y. Shimazaki, T. Ota,
S. Sumiya, and K. Yoshikawa. Development of a method for evaluating drug-likeness
and ease of synthesis using a data set in which compounds are assigned scores based on
chemists’ intuition. J Chem Inform Comput Sci, 43:1269–1275, 2003.

67. Q. Li and L. Lai. Prediction of potential drug targets based on simple sequence properties.
BMC Bioinformatics, 8:353, 2007.

P1: OSO
c17 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

III
MOTIF FINDING AND

STRUCTURE PREDICTION

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

18
MOTIF FINDING

ALGORITHMS IN
BIOLOGICAL SEQUENCES

Tarek El Falah, Mourad Elloumi, and Thierry Lecroq

18.1 INTRODUCTION

The motif finding problem consists in finding substrings that are more or less con-
served in a set of strings. This problem is a fundamental one in both computer sci-
ence and molecular biology. Indeed, when the concerned strings code biological
sequences (i.e., DNA, RNA, and proteins), extracted motifs offer biologists many
tracks to explore and help them to deal with challenging problems. Actually, a motif
generally represents an expression that characterizes a set of biological sequences
[4,13]. It generally codes a substructure and/or a biological function [8]. And hence,
on the one hand, a motif can help biologists to learn about the biological functions
of biological sequences and, consequently, can help them to understand the mech-
anisms of the biological processes in which these sequences are involved. On the
other hand, a motif common to a set of biological sequences can help biologists to
determine common biological ancestors to these biological sequences [14].

Despite many efforts, the motif finding problem remains a challenge for both
computer scientists and biologists. Indeed, on the one hand, the general version of
this problem is Nondeterministic Polynomial (NP)-hard [11], and on the other hand,
our incomplete and fuzzy understanding of several biological mechanisms does not
help us to provide good models for this problem.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

385

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

386 MOTIF FINDING ALGORITHMS IN BIOLOGICAL SEQUENCES

In the literature, several versions of the motif finding problem have been identi-
fied. In this chapter, we are interested in the following ones:

i. Planted (l, d)-Motif Problem (PMP)

ii. Extended (l, d)-Motif Problem (ExMP)

iii. Edited Motif Problem (EdMP)

iv. Simple Motif Problem (SMP)

Independently of the version of the motif finding problem, we can group motif
finding algorithms into two classes:

i. The first class is made up of pattern-based algorithms. By using these algo-
rithms, we try to identify the motif itself.

ii. The second class is made up of profile-based algorithms. By using these al-
gorithms, we try to identify not the motif itself but the position of the first
character of the motif in each string.

In this chapter, we make a survey of algorithms that address the most studied
versions of the motif finding problem, which are PMP, ExMP, EdMP, and SMP.

The rest of this chapter is organized as follows: In Section 18.2, we present some
preliminaries. In Sections 18.3–18.6, we survey algorithms for the PMP, the ExMP,
the EdMP, and SMP, respectively. Finally, in Section 18.7, we present the conclusion
for this chapter.

18.2 PRELIMINARIES

Let A be a finite alphabet; a string is a concatenation of elements of A. The length of
a string s, denoted by |s|, is the number of the characters that constitute this string. A
portion of a string s that begins at a position i and ends at a position j , 1 ≤ i ≤ j ≤
|s|, is called substring of s. When i = 1 and 1 ≤ j ≤ |s|, the corresponding substring
is called prefix of s, and when 1 ≤ i ≤ |s| and j = |s|, the corresponding substring
is called suffix of s.

The strings coding DNA, RNA, and proteins are built, respectively, from the al-
phabets {A, C, G, T}, {A, C, G, U}, and {A, C, D, E, F, G, H, I, K, L, M, N, P, Q,
R, S, T, V, W, Y}.

Let s and s’ be two strings of the same length; the Hamming distance between
s and s’, denoted by H (s, s’), is the number of the positions where s and s’ have
different characters.

The edit distance [6], denoted by Dσ,γ,δ(s, s’), between s and s’ is the minimum
cost of a sequence of edit operations (i.e., change of cost σ , insert of cost γ , and
delete of cost δ) that changes s into s’.

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

18.3 THE PLANTED (l, d)-MOTIF PROBLEM 387

18.3 THE PLANTED (l, d)-MOTIF PROBLEM

First, we present a formulation of this problem, and then we present algorithms that
address this problem.

18.3.1 Formulation

The PMP is defined as follows: Given a set of strings S = {S1, S2, . . . , Sn} over an
alphabet A, |S1| = |S2| = . . . = |Sn| = L , two integers l and d, 0 ≤ d < l < L , find
a string m, |m| = l, such that for each string Si , 1 ≤ i ≤ n, there exists a substring mi

of Si , |mi | = l, with H (mi , m) ≤ d [9,10]. The substring m is called planted (l, d)-
motif, and the substrings mi , 1 ≤ i ≤ n, are called planted (l, d)-variants of m.

Let us note that in other papers [8, 14, 5], the PMP is defined with H (mi , m) = d.
The PMP originates in molecular biology from the need to find transcription

factor-binding sites in genomic sequences.

18.3.2 Algorithms

Among pattern-based algorithms for the PMP, we mention algorithms Pattern-
Branching [9], Chin and Leung’s algorithm [1], PMS1, and PMS2 [10]. Among
profile-based algorithms for the PMP, we mention algorithm ProfileBranching [9].

18.3.2.1 PatternBranching. Algorithm PatternBranching [9] operates as fol-
lows: For each different substring m0 in S, it constructs iteratively a succession of
substrings m0, m1, m2, . . . , md , where m j+1 = BestNeighbor(m j) for 0 ≤ j ≤ d.
At each iteration, it scores the current substring m j , 0 ≤ j ≤ d, thanks to the score
H (m j , S) and compares this score with the highest score obtained so far.

Let us denote by hq (m j) the set of the substrings of length l that are at a Hamming
distance equal to q, 1 ≤ q ≤ d, from m j . And, for any string Si , 1 ≤ i ≤ n, of S,
let us denote by h(m j , Si) the minimum Hamming distance between m j and any
substring of length l of Si . So:

H (m j , S) =
n∑

i=1

h(m j , Si) (18.1)

BestNeighbor(m j) is an element p of h1(m j) with the lowest distance H (p, S).
Here is a pseudocode of algorithm PatternBranching:

Algorithm 18.1 PatternBranching (S, l, d)

Let m be an arbitrary substring of length l
for each different substring m0 in S do

for j : = 0 to d do
if H (m j , S) < H (m, S) then m: = m j endif
m j+1: = BestNeighbor(m j);

endfor
endfor
return m

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

388 MOTIF FINDING ALGORITHMS IN BIOLOGICAL SEQUENCES

In [9], the authors described algorithmic details to speed up this algorithm.
When experimented on strings coding DNA sequences (i.e., with the alphabet

A = {A, C, G, T}), PatternBranching achieves good results in finding subtle motifs
and succeeds in finding known biological ones. It would be good to experiment this
algorithm on sets of strings built from larger alphabets.

18.3.2.2 Chin and Leung’s. In [1], Chin and Leung developed a voting algo-
rithm to address the PMP. By adopting this algorithm, we operate as follows: Each
substring of length l in the strings of S gives one vote to each of its variants (i.e.,
substrings of length l that are at a Hamming distance equal to at most d from this
string), under the restriction that each substring of length l in the strings of S gets
at most one vote from each string. Hence, the substrings of length l that have got
exactly n votes are considered to be planted (l, d)-motifs.

The time complexity of this algorithm is O(nL((|A| − 1)l)d), and the memory
space complexity is O(L((|A| − 1)l)d + Ln), where A is the alphabet.

18.3.2.3 PMS1. Algorithm PMS1 [10] operates in four steps:

i. During the first step, it extracts the different substrings of length l from the
strings of S. Let us denote by Ci the set of the different substrings of length l
of Si , 1 ≤ i ≤ n.

ii. During the second step, for each set Ci , 1 ≤ i ≤ n, and each element m’ of
Ci , it generates all the variants of m’ (i.e., substrings of length l that are at a
Hamming distance equal to at most d from m’). Let us denote by C’i the set
of the different variants of the elements of Ci .

iii. During the third step, for each set C’i , 1 ≤ i ≤ n, it sorts the elements of C’i ,
and it eliminates the duplicates. Let Li be the sorted list obtained from C’i .

iv. Finally, during the fourth step, the substrings of length l that are in the intersec-
tion of all the lists Li ’s, 1 ≤ i ≤ n, are considered to be planted (l, d)-motifs.

The time complexity of algorithm PMS1 is O(nL2l(l
d)(|A| − 1)d). Furthermore,

according to Rajasekaran et al. [10], the PMP can be solved in a time O(nL(l
d)(|A| −

1)d l
w

), where w is the length of the computer word. A time O([nL + L(l
d)2(|A| −

1)2d] l
w

) is also achievable.

18.3.2.4 PMS2. Algorithm PMS2 [10] operates in four steps:

i. During the first step, it uses algorithm PMS1, for example, to solve the planted
(d + c, d)-motif problem for some appropriate value c, (d + c) < l. Let R be
the set of all the planted (d + c)-motifs found.

ii. During the second step, it chooses a string Sj , 1 ≤ j ≤ n, of S, and it generates
all the variants of all the motifs of R that are in Sj with a Hamming distance
equal to at most d. For every position i , 1 ≤ i ≤ L , in S j , let Li be the list of

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

18.3 THE PLANTED (l, d)-MOTIF PROBLEM 389

the motifs of R that are in Sj ,with a Hamming distance equal to at most d,
that start at position i .

iii. During the third step, for each position i in S j , let m’ be the substring of
length l of Sj starting at position i , m1 be an element of Li , and m2 be an
element of L (i+l)−(d+c). If the suffix of length 2(d + c) − l of m1 is equal to
the prefix of length 2(d + c) − l of m2, then it appends the suffix of length
l − (d + c) of m2 to m1 to get a substring m” of length l. If the Hamming
distance between m’ and m” is equal to at most d, then we include m” in the
list L of candidate solutions for the planted (l, d)-motif problem.

iv. Finally, during the last step, it checks whether any elements of L are correctly
planted (l, d)-motifs.

The steps i , ii and iii represent the first phase of the algorithm, whereas the last
step represents the second phase.

The time complexity of algorithm PMS2 is O(nL
∑d

i=0(d+c
i)(|A| − 1)i d+c

w
+

znLl + ∑L−l+1
i=1 |Li ||A|l−(d+c)l), where z is the number of the potential substrings

of length l extracted during the first phase and w is the length of the computer
word. If d ≤ � l

2�, then this complexity becomes O(nL(d+c
d)(|A| − 1)d d+c

w
+ znLl +

∑L−l+1
i=1 |Li ||A|l−(d+c)l).
Now, let us move to profile-based algorithms that address the PMP.

18.3.2.5 ProfileBranching. This algorithm is proposed by Price et al. [9]. It is
similar to the PatternBranching algorithm [9] but with the following changes:

i. Each different substring m0 in S is converted to a profile X (m0) as follows:
Let m0 be a substring then the profile X (m0) is defined as being a |A| × |m0|
matrix (xi j), where

a. A row i , 1 ≤ i ≤ |A|, represents the i th element of the alphabet A

b. A column j , 1 ≤ j ≤ |m0|, represents the j th character of m0

c. And xi j = 1
2 if the i th element of the alphabet A is equal to the j th char-

acter of m0 and xi j = 1
6 , else.

ii. The score H for substrings is replaced by an entropy score for profiles. This is
done as follows: Given a profile X = (xi j) and a substring m0 = m1

0 m2
0 ... ml

0,
let e(X, m0) be the log probability of sampling m0 from X ; that is:

e(X, m0) =
l∑

j=1

log(xord(mi
0) j) (18.2)

where ord(mi
0) is the order of mi

0 in the alphabet A.
Then, for each string Si , Si ∈ S, we define e(X, Si) as follows:

e(X, Si) = max {e(X, m0)|m0 is a substring of Si } (18.3)

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

390 MOTIF FINDING ALGORITHMS IN BIOLOGICAL SEQUENCES

Hence, the entropy score of X is:

e(X, S) =
∑

si ∈S

e(X, Si) (18.4)

The relative entropy of two profiles X and X ’ is defined as follows:

re(X ′, X) =
∑

i

x ′
i j log

(
x ′

i j

xi j

)

(18.5)

iii. The branching method is modified to apply to profiles.

iv. The top scoring profile is used as a seed to the Expectation Maximization (EM)
algorithm [2].

So, algorithm ProfileBranching operates as follows: For each different substring
m0 in S, it converts this substring to a profile X (m0) = X0; then it constructs itera-
tively a succession of profiles X0, X1, X2, . . . , Xd , where X j+1 = BestNeighbor(X j)
for 0 ≤ j ≤ d. At each iteration, a profile X j , 0 ≤ j ≤ d, is scored, thanks to the
entropy score e(X j , S), and compared with the top scoring profile X found so far.
Finally, it calls the EM algorithm [2] to converge on the top scoring profile X found.

Let us denote by Kq (X) the set of profiles obtained from a profile X by amplifying
the probabilities of q characters in q components of X to create a new profile X ’ =
(x’vw) with relative entropy equal to ρ, where ρ is an implicit parameter.

BestNeighbor(X j) is an element Y in K1(X j) with the highest entropy e(Y, S).
Here is a pseudocode of algorithm ProfileBranching:

Algorithm 18.2 ProfileBranching (S, l, d)

Let X be an arbitrary profile
for each different substring m0 in S do

X0: = X (m0)
for j : = 0 to d do

if e(X j , S) > e(X, S) then X : = X j endif
X j+1: = BestNeighbor(X j)

endfor
endfor
call the EM algorithm with X as a seed.
return the resulting profile

Like algorithm PatternBranching, algorithm ProfileBranching achieves good re-
sults in finding subtle motifs in strings coding DNA sequences.

Algorithm ProfileBranching runs about five times slower than algorithm Pattern-
Branching.

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

18.4 THE EXTENDED (l, d)-MOTIF PROBLEM 391

18.4 THE EXTENDED (l, d)-MOTIF PROBLEM

Let us first formulate this problem.

18.4.1 Formulation

The ExMP is defined as follows: Let S = {S1, S2, . . . , Sn} be a set of strings built
from an alphabet A, |S1| = |S2| = . . . = |Sn| = L , and let l and d be two integers,
0 ≤ d < l < L . Find a string m built from the alphabet A such that there exists at
least k substrings m1, m2, . . . , mk, |mi | = |m|, 1 ≤ i ≤ k, appearing in the strings of
S and any substring mi , 1 ≤ i ≤ k, differs from m in at most d positions over any
window of l characters, l ≤ |m| [14, 5]. The substring m is called extended (l, d)-
motif, and the substrings mi , 1 ≤ i ≤ k, are called extended (l, d)-variants of m.

The ExMP is defined to fix two main weaknesses in the PMP:

i. First, biologists seldom get a set of biological sequences in which each se-
quence contains a variant of the motif. This is due to experimental errors. They
usually get a set of biological sequences; not all of them contain variants.

ii. Second, biologists usually do not know the exact length of the motif. At best,
they only know the range for the length.

18.4.2 Algorithms

To the best of our knowledge, the only existing algorithms that address the ExMP are
pattern-based ones. In this section, we describe two algorithms, Styczynski et al.’s
algorithm [14] and exVote [5].

18.4.2.1 Styczynski et al.’s. Styczynski et al.’s algorithm [14] operates in two
phases:

i. During the first phase, called scan phase, it concatenates the strings of S in a
single string t , and then it constructs a symmetric matrix M of size N 2, where
N = n(L − |m| + 1) and |m| is a length supplied by the user, defined as fol-
lows: A row i or a column j represents the position in t of a substring of length
|m| that is not in overlap between two strings of S, and a cell M[i, j] repre-
sents the Hamming distance between the substring of length |m| that starts at
position i in t and the substring of length |m| that starts at position j . So, the
matrix M contains the pairwise Hamming distances between the substrings of
length |m| found in the set S. Actually, the matrix M represents a graph in
which a vertex represents a substring of length |m| in the set S and an edge
connecting two vertices expresses the fact that the Hamming distance between
the corresponding substrings is equal to at most 2d.

ii. During the second phase, called convolution phase, it basically clusters the
substrings of length |m|, extracted during the scan phase, to make motifs.

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

392 MOTIF FINDING ALGORITHMS IN BIOLOGICAL SEQUENCES

The clustering is made thanks to Tomita et al.’s optimal algorithm [16] for
finding all cliques in the graph represented by the matrix M .

Let us note that the whole approach adopted by this algorithm is similar to the
one adopted by algorithm Winnower [8].

The time complexity of this algorithm is O((nL)k+2.376) [5]. Of course, this algo-
rithm is far from being useful in practice. For example, for L = 600, n = 20, l = 14,
and d = 4, this algorithm takes more than three months of computing time [5].

18.4.2.2 exVote. Leung and Chin developed another algorithm, called exVote, to
address the ExMP [5]. This algorithm is based on the voting approach described in
[1] to address the PMP. To address the ExMP, each substring of length |m| in the
strings of S gives one vote to each of its variants (i.e., substrings of length |m| that
differ from this substring in at most d positions over any window of l characters,
l ≤ |m|) under the restriction that each substring of length |m| in the strings of S
gets at most one vote from each string. Hence, the substrings of length |m| that have
received at least k votes are considered to be extended (l, d)-motifs.

Algorithm exVote is of complexity O(nLσ (|m|, l, d)) in computing time, where
σ (|m|, l, d) is the number of the extended (l, d)-variants of a substring of length
|m|. When A = {A, C, G, T}, this number is always less than |A||m| = 4|m|. When
k ≈ n, which is usually much larger than |m|, the time complexity becomes then
O(nL|A||m|) = O(nL4|m|) and is much smaller than O((nL)k+2.376), which is the time
complexity of Styczynski et al.’s algorithm [14].

Algorithm exVote is of complexity O(|A||m| + nL) in memory space. When A =
{A, C, G, T}, this complexity becomes O(4|m| + nL), and it would not create much
of a problem when |m| is small. To handle large |m|, Leung and Chin describe tech-
niques to reduce the memory space complexity without increasing too much the time
complexity.

Algorithm exVote achieves good results by running faster than Styczynski et al.’s
algorithm [5].

In [5], a modified version of exVote is developed to process the Further Extended
(l, d)-Motif Problem (FExMP).

18.5 THE EDITED MOTIF PROBLEM

Let us formulate this problem.

18.5.1 Formulation

The EdMP is defined as follows: Let S = {S1, S2, . . . , Sn} be a set of strings, of
average length L and built from an alphabet A, and let l, d, and q be three integers;
find all the substrings of length l in S, called edited motifs, such that each substring
has at least q edited variants in at least q distinct strings of S. A substring s is an
edited variant of another substring s’ if Dσ,γ,δ(s, s’) ≤ d [12, 11, 15].

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

18.6 THE SIMPLE MOTIF PROBLEM 393

18.5.2 Algorithms

To the best of our knowledge, the only existing algorithms that address the EdMP are
pattern-based ones, they are Speller [12], Deterministic Motif Search (DMS) [11],
Edit Distance Motif Search (EDMS) EDMS1, and EDMS2 [15]. In this section, we
describe only Speller [12] and DMS [11].

18.5.2.1 Speller. Algorithm Speller [12] operates in two steps:

i. During the first step, called preprocessing step, it constructs a Generalized
Suffix Tree (GST) associated with the strings of S. This can be done via Ukko-
nen’s online linear algorithm [17].

ii. During the second step, called spelling step, for every substring m of length l
in the strings of S, it searches in the GST for the substrings of length l that are
at an edit distance of at most d from m. If at least q of the strings of S have
each one an edited variant of m, then m is an edited motif.

This algorithm is of complexities O(n2Lld |A|d) in computing time and O(n2 L
w

) in
memory space, where w is the length of the computer word.

18.5.2.2 DMS. Algorithm DMS [11] operates as follows: First, it extracts the dif-
ferent substrings of length l from the n strings of S. Then, for each substring m of
these substrings, it generates all the edited variants of m. This generation is made
thanks to Myers’s algorithm [7]. Then, for each edited variant of m, it determines the
list of the strings of S where this edited variant is a substring. Finally, it merges the
lists associated with the different edited variants of m into a single list. If the size of
this list is at least equal to q, then m is an edited motif.

This algorithm is of complexities O(n2Lld |A|d) in computing time and
O(nLld |A|d) in memory space. The memory space complexity can be reduced to
O(nLd + ld |A|d) [11].

18.6 THE SIMPLE MOTIF PROBLEM

Let us first formulate this problem.

18.6.1 Formulation

First, let us give some definitions related to this problem: A simple motif is a string
built from an alphabet A∪{?} that cannot begin or end with “?,” where “?” is a
wildcard character; it can be replaced by any character from A. The length of a
simple motif is the number of the characters that constitute this motif, including the
wildcard characters. The class of the simple motifs in which each simple motif is of
length u and has exactly v wildcard characters will be denoted by (u, v)-class.

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

394 MOTIF FINDING ALGORITHMS IN BIOLOGICAL SEQUENCES

Now let us formulate the SMP: Let S = {S1, S2, . . . , Sn} be a set of strings built
from an alphabet A and l > 0 be an integer; find all the simple motifs of length equal
to at most l with anywhere from 0 to �l|2� ?’s, and for each simple motif, give the
number of times it appears in the strings of S [11].

18.6.2 Algorithms

To the best of our knowledge, the only existing algorithms that address the SMP are
pattern-based ones. In this section, we present two algorithms, Simple Motif Search
(SMS) [11] and Teiresias [3]. Actually, algorithm Teiresias does not address the SMP
but addresses a problem close to the SMP.

18.6.2.1 SMS. Algorithm SMS [11] operates as follows:
For each (u, v)-class, 0 ≤ u ≤ l and 0 ≤ v ≤ �l/2�:

i. First, it extracts all the substrings of length u in the strings of S.

ii. Then, it sorts the substrings of length u extracted during the step i , only with
respect to the nonwildcard positions.

iii. Finally, it scans through the sorted list and counts the number of times each
simple motif appears.

The time complexity of this algorithm is O(ll/2 N), where N =
n∑

i=1
|Si |.

In [11], the authors implemented algorithm SMS both sequentially and in parallel.
In the sequential implementation on a Pentium 4, 2.4 Ghz machine with 1 GB RAM,
SMS takes around 7.25 hours.

18.6.2.2 Teiresias. As we said earlier, algorithm Teiresias [3] does not address
the SMP but addresses a problem that is close to the SMP. So, let us first give some
definitions related to this problem:

A simple motif has the same definition as in the SMP. A simple motif m is called
< l, d >-motif if every simple motif of m of length at least l contains at least d
characters belonging to A. An elementary < l, d > motif -is a substring of length l
that contains exactly d characters belonging to A. A simple motif m’ is said to be
more specific than a simple motif m if m’ can be obtained from m by changing one or
more ?’s of m into characters belonging to A and/or by adding one or more characters
belonging to A ∪ {?} to the extremities of m. A simple motif m is said to be maximal
if there is no simple motif m’ that is more specific than m and which appears in more
strings of S than m.

Now let us formulate the problem addressed by algorithm Teiresias: Let S =
{S1, S2, . . . , Sn} be a set of strings built from an alphabet A and l, d, and q be three
positive integers; find all the maximal < l, d >-motifs in S that occur in at least q
distinct strings of S.

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

18.7 CONCLUSION 395

Table 18.1 Synoptic table of some motif finding algorithms

Problems Algorithms Time Space

PMP PatternBranching [9]
ProfileBranching [9]

PMS1 [10] O(nL2l

(
l
d

)

(|A| − 1)d)

PMS2 [10] O

(

nL
d∑

i=0

(
d + c

i

)

(|A| − 1)i d + c

w
+

znLl +
L−l+1∑

i=1

|Li | |A|l−(d+c) l

)

ExMP Styczynski et al.’s [14] O((nL)k+2.376)
ExVote [5] O(nLσ (|m|, l, d)) O(|A||m| + nL)

EdMP Speller [12] O(n2Lld |A|d) O

(
n2 L

w

)

DMS [10] O(n2Lld |A|d) O(nLd + ld |A|d)
EDMS1, EDMS2 [15]

SMP SMS [11] O(ll/2 N)
Teiresias [3] Ω(ld N log(N))

Algorithm Teiresias operates in two steps.

i. During the first step, it identifies the elementary < l, d >-motifs in the strings
of S.

ii. Then, during the second step, it superposes overlapping elementary < l, d >-
motifs identified during the first step to obtain larger < l, d >-motifs. The
obtained < l, d >-motifs in S that are maximal and that occur in at least q
distinct strings of S are solutions to the addressed problem.

Algorithm Teiresias is of complexity Ω(ld N log(N)) in computing time, where

N =
n∑

i=1
|Si |.

Table 18.1 lists algorithms that address motif finding problems.

18.7 CONCLUSION

In this chapter, we have surveyed algorithms that address four versions of the motif
finding problem: The PMP, the ExMP, the EdMP, and the SMP.

Developing more efficient algorithms that address these versions and others is still
an ongoing problem.

P1: OSO
c18 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

396 MOTIF FINDING ALGORITHMS IN BIOLOGICAL SEQUENCES

REFERENCES

1. F.Y.L. Chin and H.C.M. Leung. Voting algorithm for discovering long motifs. Proceed-
ings of the Asia-Pacific Bioinformatics Conference: 261–272, 2005.

2. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. J Roy Statl Soc B, 39(1):1–38, 1977.

3. A. Floratos and I. Rigoutsos. On the time complexity of the TEIRESIAS algorithm. Re-
search Report RC 21161 (94582), IBM T.J. Watson Research Center, 1998.

4. M. Lapidot and Y. Pilpel. Comprehensive quantitative analyses of the effects of promoter
sequence elements on mRNA transcription. Nucleic Acids Res, 31(13):3824–3828, 2003.

5. H.C.M. Leung and F.Y.L. Chin. An efficient algorithm for the extended (l, d)-motif prob-
lem, with unknown number of binding sites. Proceedings of the Fifth IEEE Symposium
on Bioinformatics and Bioengineering (BIBE’05): 11–18, 2005.

6. V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Cybern Control Theory, 10(8):707–710, 1966.

7. E.W. Myers. A sublinear algorithm for approximate keyword searching. Algorithmica,
12(4/5):345–374, 1994.

8. P. Pevzner and S.H. Sze. Combinatorial approaches to finding subtle signals in DNA
sequences. Proceedings of the 8th International Conference on Intelligent Systems for
Molecular Biology: 269–278, 2000.

9. A. Price, S. Ramabhadran, and P.A. Pevzner. Finding subtle motifs by branching from
sample strings. Bioinformatics, 1(1):1–7, 2003.

10. S. Rajasekaran, S. Balla, and C.-H. Huang. Exact algorithms for planted motif problems.
J Comput Biol, 12(8):1117–1128, 2005.

11. S. Rajasekaran, S. Balla, C.H. Huang, V. Thapar, M. Gryk, M. Maciejewski, and M.
Schiller. High-performance exact algorithms for motif search. J Clin Monitor Comput,
19:319–328, 2005.

12. M.F. Sagot. Spelling approximate repeated or common motifs using a suffix tree. Pro-
ceedings of the Theoretical informatics Conference (Latin’98): 111–127, 1998.

13. J. Shapiro and D. Brutlag. FoldMiner: Structural motif discovery using an improved su-
perposition algorithm. Protein Sci, 13:278–294, 2004.

14. M.P. Styczynski, K.L. Jensen, I. Rigoutsos, and G.N. Stephanopoulos. An extension and
novel solution to the (l, d)-motif challenge problem. Genome Informatics, 15:63–71,
2004.

15. S. Thota, S. Balla, and S. Rajasekaran. Algorithms for motif discovery based on edit
distance. Technical Report, BECAT/CSE-TR-07-3, 2007.

16. E. Tomita, A. Tanaka, and H. Takahashi. An optimal algorithm for finding all the cliques.
IPSJ Technical Report of SIG algorithms, The University of Electro-Communications:
91–98, 1989.

17. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19
COMPUTATIONAL

CHARACTERIZATION OF
REGULATORY REGIONS

Enrique Blanco

19.1 THE GENOME REGULATORY LANDSCAPE

Genomes are genetic information repositories on each cell of a living being. Yeast
was the first eukaryote that was sequenced more than one decade ago [31]. Since
then, the sequence of many other genomes has been published, becoming publicly
available in most cases for the worldwide research community. We now can access
from our computer the human genome [80, 39] and the sequence, among others, of
the fruit fly [3], mouse [40], chicken [38], chimpanzee [70], cow [69], or rice [30, 41]
using any of the popular genome browsers [46, 37].

Once the sequence of nucleotides on each chromosome is assembled, one of the
initial tasks is to identify the catalogue of biological signals and regions that shape the
genome landscape [11]. Genes are units of hereditary information in the organism.
In response to variable internal and external conditions, cells increase or decrease
the activation of multiple genes, expressing different gene regulatory programs dur-
ing their lifetime. Protein-coding genes are translated into proteins, which perform
diverse biological functions in the organisms (see more about protein-coding genes
in [84]). Noncoding genes, such as those that give rise to microRNAs, are responsible
for other essential processes in cells (see [29] for a comprehensive gene taxonomy).

Gene transcription initiation is considered to be one important control point in
most gene regulatory programs. Multiple actors play specific roles during RNA

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

397

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

398 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

Proximal Promoter Core Promoter First Intron

Module1 Module2 Module3TSS

BS1 BS2 BS3 BS1 BS2 BS3 BS1 BS2 BS3 BS1 BS2

Figure 19.1 Components of gene regulatory regions.

polymerase II recruitment to initiate the synthesis of transcripts [5]. In eukaryotes,
chromatin is packaged into compact structures organized by specific proteins called
histones. Nucleosomes, the fundamental packaging units, are histone complexes with
DNA wrapping around. In a high regulatory level, gene transcription and nucleosome
positioning along the genome are intimately related. Access to gene regulatory re-
gions free of nucleosomes must be granted for the RNA polymerase II to permit the
transcription. Multiple chromatin remodelers are thought to imprint different modifi-
cations on the histones that constitute the nucleosomes. Such histone marks epigenet-
ically shape long chromosomal regions in the genome to become active or inactive
depending on the context (see more about the histone code on [45]). The existence
of chromosomal domains that favor coordinated regulation of gene groups results in
the nonuniform distribution of genes along the genome [49, 71, 13].

In a low regulatory level, gene transcription is governed locally in the promoter
regions. Promoters, as depicted in Figure 19.1, are functional regions inmediately
upstream from the transcription start site of genes (TSS) harboring different bind-
ing sites for multiple proteins. Transcription factors (TFs) are proteins guiding RNA
polymerase II in the recognition of the appropriate inititation site. Core promoter
region rules basal expression, whereas specific gene control actually is triggered by
a particular collection of TFs in the proximal promoter. Binding sites for transcrip-
tion factors (TFBSs) are highly variable short sequences (5–15 bp). Protein–protein
interactions between TFs, which might confer cooperative or competitive structures
such as composites or modules, are poorly known [83]. Although important efforts
are being carried out to standardize the construction of libraries [62, 81, 60], current
promoter databases still contain incorrect annotations.

Gene expression programs in eukaryotes are highly flexible. Thus, regulatory el-
ements can be found often in regions other than promoters (see Figure 19.1) such
as first introns [65] and enhancers [8]. Comprehensive characterization of gene reg-
ulatory regions therefore is difficult and complex, making necessary the integration
of different computational and experimental techniques to produce accurate descrip-
tions [82]. Using these approaches, several developmental gene regulatory networks
have been reconstructed successfully [36, 19]. Thus, substantial improvement in the
establishment of the catalogue of functional elements in the human genome was pub-
lished recently [17]. The availability of gene regulatory architecture maps offers great
promises in the elaboration of novel methods to tackle multiple genetic diseases [47].

This chapter briefly reviews the basic computational methods widely employed
to characterize regulatory regions, searching for TFBSs in genomic regions that

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.1 THE GENOME REGULATORY LANDSCAPE 399

Table 19.1 Selected bioinformatics resources to characterize regulatory regions

Genome browsers
Ensembl http://www.ensembl.org [37]
UCSC Genome Browse http://genome.ucsc.edu [46]

Promoter collections
EPD http://www.epd.isb-sib.ch [60]
DBTSS http://dbtss.hgc.jp [81]
RefSeq http://www.ncbi.nlm.nih.gov/RefSeq [62]

Regulatory catalogues
ABS http://genome.imim.es/datasets/abs2005 [10]
Jaspar http://jaspar.cgb.ki.se [15]
Oreganno http://www.oreganno.org [33]
Pazar http://www.pazar.info [61]
Transfac http://www.gene-regulation.com [53]

Promoter scanning
Match http://www.gene-regulation.com [43]
MatScan http://genome.imim.es/software/meta [12]
RSAtools http://rsat.ulb.ac.be/rsat [78]

Phylogenetic footprinting
Conreal http://conreal.niob.knaw.nl [7]
eShadow http://eshadow.dcode.org [57]
Footprinter http://genome.cs.mcgill.ca/cgi-bin/FootPrinter3.0 [9]
rVISTA http://rvista.dcode.org [52]
TF-Map alignment http://genome.imim.es/software/meta/index.html [12]

Motif finding
Gibbs sampler http://bayesweb.wadsworth.org/gibbs/gibbs.html [48]
Melina2 http://melina.hgc.jp [56]
Meme http://meme.sdsc.edu [4]

Composite prediction
DIRE http://dire.dcode.org [32]
Oppossum2 http://www.cisreg.ca/oPOSSUM [74]

Visualization tools
gff2ps http://genome.crg.es/software/gfftools/GFF2PS.html [2]
Pipmaker http://bio.cse.psu.edu/pipmaker [68]
VISTA http://pipeline.lbl.gov [54]
Weblogo http://weblogo.berkeley.edu [18]

potentially share similar regulatory mechanisms. First, different representations of
these biological signals are introduced. The algorithms that use such models to in-
fer binding sites in other regulatory sequences are described next. Particular focus
is given then to learn how to use evolutionary information to filter the initial set of
predictions. Finally, experimental methods that currently are used to validate compu-
tational predictions are enumerated briefly. Throughout the chapter, several methods
to visualize regulatory annotations are presented to the reader. A comprehensive list
of selected resources to analyze regulatory sequences is shown in Table 19.1.

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

400 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

19.2 QUALITATIVE MODELS OF REGULATORY SIGNALS

Biological signals are short genomic sequences recognized and processed by the
cellular machinery that governs the gene expression pathway. TFBSs are regulatory
signals located on gene regulatory regions. Because of the variability observed in
binding sites of the same TF (see Figure 19.2a), multiple representations have been
developed to capture common trends observed on these sequences. The information
about a signal class retrieved from input sequences is particularly useful to recognize
putative members of this class in other regulatory sequences.

Consensus sequences are the simplest model that can be derived from a multiple
sequence alignment of TFBSs (see Figure 19.2b). The consensus can be constructed
easily by selecting the nucleotide base more frequently appearing at each position
of the signal. The number of matches between the consensus and the candidate se-
quence can be used to evaluate how similar this site is to the signal class according
to the consensus definition. Unless the set of binding sites is uniform, consensus are
rather limited predictive models as no information about the variability at each posi-
tion is modeled [73]. To support some degree of ambiguity on a particular position,
the International Union of Pure and Applied Chemistry (IUPAC) extended genetic
alphabet of 15 elements allows for special symbols that code for multiple letters (see
Table 19.2).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 19.2 Predictive models of biological signals.

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.3 QUANTITATIVE MODELS OF REGULATORY SIGNALS 401

Table 19.2 IUPAC extended code

Symbol Letters Meaning

A A Adenine
C C Cytosine
G G Guanine
T T Thymine
R A or G puRine
Y C or T pYrimidine
M A or C aMino
K G or T Keto
S C or G Strong interaction (3 H-bonds)
W A or T Weak interaction (2 H-bonds)
B C or G or T not A, B follows A
D A or G or T not C, D follows C
H A or C or T not G, H follows G
V A or C or G not T (not U), V follows U
N A or C or G or T aNy

The extended genetic code defines, as depicted in Figure 19.2c, a limited set of
regular expressions. In general, regular expressions allow for more than one single
nucleotide on every position in the regulatory motif. Variability on a position usually
depends on the number of times a given nucleotide is observed there in the input
dataset (e.g., more than 30% of sequences present this feature). Regular expressions
define the motif in terms of subexpressions occurring zero or more times (*) or one
or more than one times (+) within the sequence that characterizes the binding sites.
The expression (A)*(TCT) + (A)*, for instance, denotes the set of sequences starting
by zero or more A symbols, followed by at least one occurrence of the submotif
TCT, finishing in zero or more A symbols again. As in consensus sequences, the
number of matches between the regular expression and the candidate site determines
the score of putative sequence. An overwhelming number of putative sequences can
be recognized, however, by a regular expression constructed from a particular set of
sites. Many of these combinations might not be present in the original input, though.
Because of the lack of quantitative information, consensus and regular expressions
are therefore more appropriate models to construct human-readable representations
of these sequences [73, 82].

19.3 QUANTITATIVE MODELS OF REGULATORY SIGNALS

Popular position weight matrices (PWMs)—also known as position-specific scoring
matrices (PSSMs)—are quantitative models that capture the numerical variability on
sets of binding sites. The first step to construct a PWM from a multiple sequence
alignment of binding sites is producing a position frequency matrix (PFMs). As
shown in Figure 19.2d, PFM profiles are two-dimensional arrays of values counting
the number of times each nucleotide is observed on a set of functional sites [72, 16].

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

402 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

Normalized PFMs, in which relative instead of absolute frequencies are calculated,
are tables of probabilities for each nucleotide along the characteristic motif. Let F
be a PFM, where F(b, i) indicates the number of counts of base b in position i of the
alignment. The normalized PFM P must be calculated from the frequency distribu-
tion as follows:

P(b, i) = F(b, i)
∑

A,C,G,T F(b, i)
(19.1)

Normalized PFMs represent the composition of a particular class of positive ex-
amples of binding sites. To produce PWMs, the initial model is compared with a
second description derived from negative examples that improve their discriminative
power. Random uniform distributions or background frequencies of each nucleotide
on the genome are typical examples of secondary models. Let Q be a table containing
the genome composition (e.g., frequency of each base). The PWM M that computes
the ratio between positive and negative models is therefore defined as follows:

M(b, i) = P(b, i)

Q(b)
(19.2)

For efficient computational analysis when using these models to predict putative
sites, weight matrices must be converted into log-likelihood ratios (see Figure 19.2e).
From a given PWM M , the log conversion is:

(b, i) = log M(b, i) = log
P(b, i)

Q(b)
= log P(b, i) − log Q(b) (19.3)

Pseudocounts are introduced in the matrix to prevent null values, correcting for
small sample sizes [82]. Let S be a table of pseudocounts, the normalized PFM must
be then recomputed:

P(b, i) = F(b, i) + S(b)
∑

A,C,G,T F(b, i) + S(b)
(19.4)

The amount of information available in a weight matrix can be expressed in terms
of entropy or in amount of uncertainty. Entropy is measured in bits per symbol for
each position of the signal (see [44] for a review of the topic). The uniform random
distribution of symbols in a motif results in maximum entropy (e.g., 2 bits in the
DNA alphabet). The information content H (i) in position i of the normalized PFM
P is defined as [66] follows:

H (i) = 2 +
∑

A,C,G,T

P(b, i) log2 P(b, i) (19.5)

Bias in the information content of a given position can be explained in biological
terms (e.g., binding energy of the DNA–protein interaction [73]). Most informative

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.4 DETECTION OF DEPENDENCIES IN SEQUENCES 403

positions constitute the core of the matrix (see boxed positions in Figure 19.2). In-
stead, the context around usually presents weaker conservation levels. Information
content can be depicted in a sequence logo, as in Figure 19.2f. The height of each
position in the motif is proportional to its information content; the higher the symbol,
the more conserved that position is in the motif [66].

PWMs are used to identify new sites that might belong to the same signal class.
Weights are used to score every position of the candidate according to its content.
Every position within the site is assumed to make an independent contribution to the
final score. Under the hypothesis that highly conserved positions are more relevant
for the biological activity of the binding site, any site that differs from the profile is
scored proportionally to the significance of the mismatching positions in the motif
[73]. The final score of a candidate site therefore indicates how similar the prediction
is to the profile constructed for this class of TFs. Let C be an input candidate of l
nucleotides and L M be a PWM of length l that represents a set of real binding sites.
The score S of such a putative site is computed as follows:

S(C) =
l∑

i=1

L M(C(i), i) (19.6)

The score S can be normalized into a value S′ between 0 and 1 using maximum
and minimum matrix scores (MaxS and MinS, respectively):

S′(C) = S(C) − MinS

MaxS − MinS
(19.7)

For sequences longer than the length of a given PWM, a window of this size
is slid over them in increments of one position to evaluate each putative binding
site (for further information see pattern-driven algorithms). When constructing the
matrix, the election of the appropriate length is usually arbitrary. PWMs typically
contain the maximum set of consecutive positions that show stronger conservation
in comparison to the context in the alignment of binding sites [73].

19.4 DETECTION OF DEPENDENCIES IN SEQUENCES

When using weight matrices, the contribution of each nucleotide to the biological
signal is supposed to be independent [73]. There are many documented cases, how-
ever, in which this assumption is not true [82]. Protein-coding regions, for instance,
are constituted of groups of three nucleotides (codons) that are translated into amino
acids. Dependencies between neighboring amino acids and bias in the codon usage
into proteins produce a nonuniform genomic composition in the coding sequence
of genes (see [34] for further details). Oligonucleotide composition in promoter re-
gions may be biased because of certain particular configurations of TFs (see more
about promoter identification in [25]). Nevertheless, current biological knowledge

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

404 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

about the existence of dependencies between positions in TFBSs is not particu-
larly abundant. To circumvent this, several works have been published on this area
(see [1] for a recent review). Oligonucleotide counts, Markov chains, and hidden
Markov models are alternative signal representations to model dependencies in these
sequences.

Markov chains are the most popular probabilistic model to capture dependencies
between consecutive symbols in biological sequences [21]. A Markov chain M ba-
sically is defined as a collection of states (X), each one denoting a combination of
one or more symbols. The probability of a certain symbol following another group
of k symbols is defined by the transition probability function (A) between two states
a and b as follows:

A(a, b) = P(xi = b|xi−1 = a) (19.8)

The beginning of the sequence is modeled for each state a as follows (I , is the
initial probability function):

I (a) = P(x1 = a) (19.9)

The probability of the input sequence S = s1 . . . sn to follow the model defined
by the Markov chain M (k = 1) is calculated as follows:

P(S|M) = P(x1 = s1)P(x2 = s2|x1 = s1) . . . P(xn = sn|xn−1 = sn−1)

= I (s1)A(s1, s2) . . . A(sn−1, sn)

= I (s1)�n
i=2 A(si−1, si)

(19.10)

This value represents the probability that a given sequence has been generated by
this model in which dependencies between symbols are incorporated. Similarly to
PWMs, positive and negative models are constructed for signal detection (negative
models can be calculated from the background frequency in the genome). Therefore,
the score in logarithmic terms of a candidate binding site S of n nucleotides using the
following predictive model that discriminates between positive and negative signals
(M+, M−) is:

log
P(S|M+)

P(S|M−)
= log

I +(s1)�n
i=2 A+(si−1, si)

I −(s1)�n
i=2 A−(si−1, si)

= (log I +(s1) + log
n∑

i=2

A+(si−1, si)) −

(log I −(s1) + log
n∑

i=2

A−(si−1, si))

= log I +(s1) − log I −(s1) +

log
n∑

i=2

(A+(si−1, si) − A−(si−1, si))

(19.11)

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.5 REPOSITORIES OF REGULATORY INFORMATION 405

AC T00794
XX
FA TBP
XX
SY TATA-binding protein; TATA-box-binding protein; TBP; TFIID; TFIIDtau.
XX
OS human, Homo sapiens
OC eukaryota; animalia; metazoa; chordata; vertebrata; tetrapoda;

mammalia; eutheria; primates
XX
SZ 339 AA; 37.7 kDa (cDNA), 38-43 kDa (SDS)
XX
SQ MDQNNSLPPYAQGLASPQGAMTPGIPLFSPMMPYGTGLTPQPIQNTNSLSILEEQQRQQQ
SQ QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAVAAAAVQQSTSQQATQGTSGQAPQ
SQ LFHSQTLTTAPLPGTTPLYPSPMTPMTPITPATPASESSGIVPQLQNIVSTVNLGCKLDL
SQ KTIALRARNAEYNPKRFAAVIMRIREPRTTALIFSSGKMVCTGAKSEEQSRLAARKYARV
SQ VQKLGFPAKFLDFKIQNMVGSCDVKFPIRLEGLVLTHQQFSSYEPELFPGLIYRMIKPRI
SQ VLLIFVSGKVVLTGAKVRAEIYEAFENIYPILKGFRKTT
XX
SC SwissProt #P20226
XX
FT 6 50 serine-/threonine-/proline-rich region 1 (18/45).
FT 55 95 glutamine-rich region (40/41).
FT 105 159 serine-/threonine-/proline-rich region 2 (30/55).
FT 157 273 essential for TAFII125 contact [18].
FT 160 245 PF00352; TBP.
FT 166 225 direct repeat I.
FT 202 272 contact region to PU.1, E1A (basic region) [37].
FT 202 272 contacts to PU.1, E1A.
FT 220 271 contact region to p53 [13].
FT 250 336 PF00352; TBP.
FT 256 319 direct repeat II.
FT 273 339 essential for TAFII250 contact [18].
XX
MX M00252 V$TATA_01.
XX
BS R03158 HS$DHFR_04; Quality: 6; DHFR, G000241; human, Homo sapiens.
BS R03167 HS$GFAP_02; Quality: 6; GFAP, G000267; human, Homo sapiens.
XX
RX PUBMED: 9241250.
RA Hardenbol P., Wang J. C., van Dyke M. W.
RT Identification of preferred hTBP DNA binding sites by the

combinatorial method REPSA
RL Nucleic Acids Res. 25:3339-3344 (1997).

AC M00252
XX
ID V$TATA_01
XX
DE cellular and viral TATA box elements
XX
BF T00796 TBP; Species: mouse, Mus musculus.
BF T00794 TBP; Species: human, Homo sapiens.
BF T00797 TBP; Species: fruit fly, Drosophila

melanogaster.
XX
PO A C G T
01 61 145 152 31 S
02 16 46 18 309 T
03 352 0 2 35 A
04 3 10 2 374 T
05 354 0 5 30 A
06 268 0 0 121 A
07 360 3 20 6 A
08 222 2 44 121 W
09 155 44 157 33 R
10 56 135 150 48 N
11 83 147 128 31 N
12 82 127 128 52 N
13 82 118 128 61 N
14 68 107 139 75 N
15 77 101 140 71 N
XX
BA 389 TATA box elements
XX
RX PUBMED: 2329577.
RA Bucher P.
RT Weight matrix descriptions of four eukaryotic

RNA polymerase II promoter elements derived
from 502 unrelated promoter sequences

RL J. Mol. Biol. 212:563-578 (1990).

Figure 19.3 Example of Transfac entries.

Multiple gene finding and promoter applications use this approach to predict bi-
ological signals [58]. Markov chains are not appropriate models to process larger
sequences, though. Even using a sliding window technique, Markov chains sharply
define the overlap between both positive and negative signals around a long re-
gion. Hidden Markov models (HMMs) are more sophisticated models in which such
boundaries are calculated precisely because of the use of probabilistic methods that
compute the optimal path of states when generating the input sequence (see [21] for
a comprehensive explanation on HMMs).

19.5 REPOSITORIES OF REGULATORY INFORMATION

Several repositories of known transcription regulatory signals have been published
(see Table 19.1 for further information). These resources contain information ex-
tracted from the literature about experimentally validated TFBSs (see Figure 19.3).
Transfac and Jaspar are catalogues of weight matrices constructed for different fam-
ilies of TFs to predict putative binding sites in other sequences (see stats as of June
2009 in Table 19.3). Transfac [53], which appeared more than two decades ago,
stores regulatory information classified on diffent TFs, sites, and matrices tables. Jas-
par [15] is another popular collection of predictive models derived from experimental

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

406 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

Table 19.3 Number of entries in different regulatory catalogues

Database TFs Sites Matrices Genes Reference

ABS 68 650 — 100 [10]
Jaspar 138 — 138 — [15]
Oreganno 465 14229 — 3853 [33]
Transfac 6133 7915 398 1504 [53]

publications that incorporates tools to compare matrices and predict TFBSs in se-
quences provided by users. ABS consists of a list of experimentally validated sites
that are conserved phylogenetically in human and mouse [10]. Accurate information
about the location on the genomes of such sites is particularly important to build
consistent benchmarks that instruct bioinformatics applications to find binding sites
correctly. Oreganno is another comprehensive database of regulatory annotations cu-
rated by human experts [33].

Because of the flexiblity of the TFs to recognize binding sites, there is a substantial
degree of redundancy in the available regulatory resources. A recent bioinformatics
analysis measured the similarity between matrices of several popular collections, re-
porting the existence of equivalence classes between PWMs of different TFs [67].
This redundancy partially might be caused by the small number of sites usually em-
ployed to construct these models [63].

19.6 USING PREDICTIVE MODELS TO ANNOTATE SEQUENCES

Successful recognition of regulatory signals is essential for the gene expression ma-
chinery in cells. Because of their small size, in comparison with promoter regions,
a computational search of signals using predictive models such as those introduced
in the previous section is necessary. Pattern-driven algorithms, relying on the use of
external repositories of binding sites, are the most important family of computational
approaches to characterize the set of binding sites located on promoter regions [14].
The complete protocol to identify TFBSs in regulatory regions is the following:

1. Construction of a catalogue of experimentally annotated sites of a given class

2. Modeling these examples to mask their variability without losing information

3. Detection of new sites in other sequences using the signal models

4. Inspection of predictions to identify modules or composites

To circumvent the complexity of the characterization problem, pattern-driven
methods scan unannotated promoter regions simultaneously using repositories for
several TFs. This search usually is performed with PWMs from external databases
such as Transfac or Jaspar (see [12] for example). A generic version of the pattern-
driven algorithm is:

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.6 USING PREDICTIVE MODELS TO ANNOTATE SEQUENCES 407

Algorithm 19.1
pattern driven algorithm

{
INPUT: S: sequence; M: signal model; T: integer;
OUTPUT: L: list of sites;

i = 1;
(* Apply the model on each window of length |M | *)
while (i ≤ |S| − |M | + 1) do
{

j = i + |M |;
(* Evaluate the current candidate with this model *)
score = M(Si, j);
(* Report the candidates above a quality threshold *)
if (score ≥ T)

{ AddCandidateList(Si, j,score,L); }
(* Evaluate next possible binding site *)
i = i + 1;

}
ReportCandidates(L);
return(L);

}

The computational cost is linear in terms of time being very efficient in the anal-
ysis of promoter regions, which are typically 500 to 1000 bp long (depending on
the species and the gene in question). Two aspects are critical when running pattern-
driven searches: the election of the signal models (M) and the threshold to filter out
false positives (T). The standard procedure to set an appropriate value consists of the
evaluation of these predictive models on a set of annotated TFBSs. According to the
percentage of true positive examples above a given value, users can set proper strin-
gent thresholds in future searches using these models. As the amount of information
on each set of TFBSs is variable, specific threshold values can be associated to every
predictive model.

Multiple applications implement variants of the basic pattern-driven strategy.
Most programs read sequences in Fasta and output predictions in several standard
formats. The Matscan program, which is part of the TF-map alignment suite [12],
can process the whole human genome in a few hours using multiple sets of PWMs
provided by the user. The output in general feature format (GFF) then can be pro-
cessed by other graphical applications such as gff2ps [2] to produce high-quality
representations of the predictions as shown in Figure 19.4. The RSA tools [78] im-
plement a comprehensive group of promoter characterization techniques, including
several pattern-driven programs that produce graphical outputs (see Figure 19.4).
Transfac and Jaspar databases provide rudimentary tools to scan promoter regions
with their own models of sites as well [53, 15].

Once the map of putative TFBSs is constructed for a given set of gene promoters,
accurate inspection of the relationships between predictions of different TF classes
(composition and distance of consecutive predictions) may be useful to reveal the
existence of composites or regulatory modules [26]. Research on this area is still in

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

408 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

0 100 200 300 400 500

0 100 200 300 400 500

HUMAN

SP1 CEBP TATA

MOUSE

SP1 CEBP TATA

Figure 19.4 Pattern-driven applications.

its infancy, despite several applications recently having produced promising results
in particular datasets [32, 74].

19.7 COMPARATIVE GENOMICS CHARACTERIZATION

Current methods to analyze a single regulatory region produce a huge number of
predictions because of the low specificity of signal models [76]. The availability of
many genomes promises, however, substantial improvement in the characterization
of gene promoter sequences. Transcription regulation and animal diversity are asso-
ciated intimately. Emerging evidence suggests that a more sophisticated elaboration
of the regulatory mechanisms can be the responsibility of variable organismal com-
plexity along the tree of life [51]. As functional sequences through evolution tend to
be more conserved than nonfunctional ones, which might accumulate mutations pro-
ducing no damage to the organism, interspecies comparisons can be extremely useful
to identify common regulatory sequences (see sequence conservation on functional
sites in Figure 19.5).

Tagle et al. [75] coined the term phylogenetic footprinting to describe the phy-
logenetic comparisons that reveal evolutionary conserved functional elements in ho-
mologous genomic regions. The election of the appropriate species to perform the

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.7 COMPARATIVE GENOMICS CHARACTERIZATION 409

Figure 19.5 Conservation in regulatory sequences.

comparisons is crucial for every gene in particular as every region of the genome
evolves at a different rate [22]. The existence of specific functional elements on
each genome also must be taken into account [20] when performing comparative
genomics. In the last years, phylogenetic footprinting has become very popular, be-
ing accepted as an interesting and efficient method to locate regulatory elements
(see [59, 82] for further information).

A distinct family of algorithms named sequence-driven methods approaches the
promoter characterization problem from a different perspective [14]. Sequence-
driven techniques do not rely on the use of a external dictionary of elements to rec-
ognize novel binding sites. Instead, this technique attempts to detect conserved pat-
terns in a set of sequences that are hypothetically coregulated (e.g., orthologous gene
promoters or coexpressed genes in microarrays). The protocol to identify TFBSs in
regulatory regions using sequence comparisons is as follows

1. Selection of species to perform comparisons

2. Construction of the dataset of orthologous regulatory sequences

3. Sequence comparison to extract the set of evolutionarily conserved regions

4. Analysis of conserved sequences with other predictive models

5. Report candidate binding sites according to their conservation level

There is no particular protocol to implement a comparative approach. A possible
sequence-driven algorithm that can be applied systematically to characterize pro-
moter regions might consist of these steps:

Algorithm 19.2
sequence driven algorithm

{
INPUT: S = S1 . . . Sn: list of sequences;

M = M1 . . . Mn: list of signal models;
T: integer;

OUTPUT: L: list of sites;

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

410 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

(* Perform the sequence comparison *)
A =Alignment(S1 . . . Sn);
(* Extract the conserved regions *)
R =ExtractRegions(S, A);
(* Analyze regions with predictive models *)
L =AnalyzeRegions(R, M, T);
(* Report the candidates *)
ReportCandidates(L);
return(L);

}

As multiple combinations of alignment methods and predictive models are possi-
ble to analyze regulatory regions, the computational cost of sequence-driven meth-
ods is highly variable. Conserved regions and multiple genome comparisons, how-
ever, usually are precomputed in most popular genome browsers (e.g., conservation
tracks in University of California—Santa Cruz (UCSC) Genome Browser [46] in
Figure 19.5).

19.8 SEQUENCE COMPARISONS

Sequences are symbolic representations of biological molecules encoding relevant
information about their structure, function, and evolution. Sequence comparisons,
which reveal the fraction that is similar, are one of the most important tools in molec-
ular biology. Strong sequence similarity usually is assumed to be a good marker
for common biological function conserved through evolution. As the number of
alignments between two or more sequences is very high, these comparisons must
be approached systematically using computational alignment methods. Phylogenetic
analyses to identify conserved biological features between distant species usually are
conducted using genome-wide alignment methods. These algorithms, basically iden-
tify local similarity regions between two genomes, using them as anchors to align the
interleaving regions (see [79] for a review).

Several applications produce graphical annotations of the genome alignments
(see Table 19.1). VISTA (visualization tool for alignment [54]), for instance, rep-
resents conservation scores along sequences as peaks indicating with different colors
whether the region is overlapping annotated genes or noncoding regions. The myc
gene in human and the comparison with orthologous forms in other vertebrates is
shown in Figure 19.6. The shadowed areas in the promoter of the gene are interest-
ing regions for further analysis. Using powerful genome-wide alignment methods,
the presence of ultraconserved elements in the genomes was reported recently. Such
consistent motifs might be playing important regulatory roles [6, 24].

Once the regulatory regions conserved throughout evolution are identified, motif
finding programs highlight common patterns on those locations. Pattern discovery is
a complex computational problem that cannot be solved optimally. Multiple alterna-
tives have been proposed in the last years to find overrepresented regulatory motifs

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.8 SEQUENCE COMPARISONS 411

Figure 19.6 Visualization of genomic regions in VISTA.

in unaligned sequences [56]. Most programs consist of iterative searches of common
words, relying on different heuristics to simulate the motif distribution along the in-
put sequences [14, 79]. Phylogenetic information can be incorporated into the motif-
finding algorithm to weight the relevance of the occurrences on each species [9].

Expectation maximization (EM) is one of the most popular variants of pattern
discovery techniques [4]. EM algorithms estimate the parameters of a probabilistic
model that might generate the input dataset of sequences. Such a model contains
two components: the occurrences of the motif on each sequence and the remaining
positions (background). A fitness function must be defined to assess the quality of
the model usually measuring how different the current motif is from the background.
EM methods perform an iterative search that refines the initial model until no im-
provement is observed in the fitness function. The motif is constructed initially from
random locations on each sequence. Several initial random points therefore must be
evaluated to prevent the fitness function to fall into a local maximum peak. EM algo-
rithms to search motifs of w nucleotides in genomics sequences are structured into
the following steps:

Algorithm 19.3
pattern discovery algorithm

{
INPUT: S = S1 . . . Sn: list of sequences; T: integer;
OUTPUT: M: signal model;

L: list of sites;

(* Choose random locations on each sequence *)
(* to build the initial model *)
InitializeModel(M,S);

i=1;
convergence = FALSE;
while (i ≤ MAXITERATIONS and convergence is FALSE) do
{

for each Si in S do
{

(* E-step: evaluate all candidates of length w *)
(* sliding a window along the sequence Si *)

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

412 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

Scores = EvaluateCandidates(Si,M);
(* M-step: update current model *)
(* to detect overrepresentations *)
M ′ = UpdateModel(M,Scores);

}
if (fitness(M′) ≤ fitness(M))
{ convergence=TRUE; }
else
{ M = M′; i=i+1; }

}

(* Identify occurences of this model in S *)
L = pattern driven(S,M,T);
ReportCandidates(L);
return(L);

}
The model M constructed during the iterative procedure can be used to identify

putative sites in the input sequences. Optimal motif width can be estimated prior to
running the algorithm in a range determined by the user (between 5 and 15 bp for
TFBSs) [4].

19.9 COMBINING MOTIFS AND ALIGNMENTS

A substantial reduction in the number of predictions can be achieved when phylo-
genetic footprinting is combined with predictive models. Searches of binding sites
using catalogues of regulatory information typically produce too many false pos-
itives [82]. However, when the search is confined to those regions reported to be
conserved evolutionarily, a dramatic reduction of candidate TFBSs is observed (see
Figures 19.4 and 19.7). Automatic annotation pipelines can perform binding sites
prediction with PWMs on conserved genomic regions [50, 52]. Manual inspection
of results still is recommended, though, to identify accurately regulatory sites for
further experimental validation [55]. As shown in Figure 19.7, initial predictions ob-
tained using PWMs for a given TF on a particular promoter can be combined with
motif finding on phylogenetically conserved regions in other species to filter candi-
date binding sites that must be validated in the wet lab.

Similar sequences tend to play similar functions. The opposite, however, is not
necessarily true. Often similar functions are encoded in higher order sequence
elements, and the relation between these and the underlying primary sequence may
not be univocal. As a result, similar functions are encoded frequently by diverse se-
quences. For instance, similar TFBSs can exhibit great variability at the sequence
level in different species. Consequently, promoter regions of genes with similar ex-
pression patterns may not show sequence similarity, even though they may be reg-
ulated by similar configurations of TFs. Several applications have been published
recently to overcome this inconvenience [12, 7, 35]. By representing a promoter
region in a new alphabet in which the different symbols denote binding sites for
different TFs, promoter comparisons can be performed in the appropriate level. For

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.9 COMBINING MOTIFS AND ALIGNMENTS 413

capricious MatScan Gfi 224 233 0.63 + . # AAAATCAGAT
capricious MatScan Gfi 459 468 0.77 + . # AAAATCAAAG (*)
capricious MatScan Gfi 464 473 0.66 - . # AAAATCTTTG
capricious MatScan Gfi 859 868 0.76 + . # ACAATCACAC

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

Capricious

HIT1 HIT2 HIT4

0 100 200 300 400 500 600 700 800 900 1000

Capricious

HIT3

D.melanogaster 438 TGGGGGGAGATAGGACTAATGGAAAATCAAAGATTTTCTT 478
D.simulans 413 AATGGAGAGATTGGACTAATGGAAAATCAAAGATTTTCTT 453
D.sechellia 414 AATGTAGAGATAGGACTAATGGAAAATCAAAGATTTTCTT 454
D.persimilis 926 AAGCATTTTCGAACTCTAATGGAAAATCAATTTAAAGCCC 966
D.virilis 546 AAGCAATTTTGAACTCTAATGGAAAATCAATTTAAAGCGC 586

Figure 19.7 Improving initial predictions using comparative genomics.

instance, the alignment of MMP13 promoter regions shown in Figure 19.8 does not
detect accurately the four TFBSs that have been validated experimentally accord-
ing to the literature. Instead, the alternative multiple TF map alignment, which is
based on comparisons using the TF alphabet, can recover the four sites in the same
promoters [12].

The following algorithm is a simplified version of the TF map alignment as intro-
duced in [12]. For every consecutive pair of TF matches in the TF-map alignment,
λ and µ penalties are evaluated to weight how many input binding sites are not in-
cluded in the current alignment and how similar the location of matches on each
original sequence is (positional conservation is assumed to denote biological func-
tion):

Algorithm 19.4
TFmap pairwise alignment algorithm

{
INPUT: S = S1, S2: list of sequences;

M = M1 . . . Mn: list of signal models;
T: integer;

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

414 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

OUTPUT:
A: TF-map alignment of sites;

(* Construct the TF-maps using a catalogue of models *)
Map1 = pattern driven(S1, M, T);
Map2 = pattern driven(S2, M, T);
(* Visit each site on both maps to find TF label matches *)
for each site si in Map1 do
{

for each site s j in Map2 do
{

if (TFlabel(si) = TFlabel(s j))
{

score = 0.0;
for each previous match (si ′ , s j ′) in A do
{

penalty1=computeλ(si , s j , si ′ , s j ′);
penalty2=computeµ(si , s j , si ′ , s j ′);
score’ = computeSimilarity(penalty1,penalty2);
if (score’ > score)
{ score = score’; }

}
registerMatch(si , s j , A,score);

}
}

}

ReportOptimalAlignment(A);
return(A);

}

19.10 EXPERIMENTAL VALIDATION

Once bioinformatics analysis identifies a set of solid predictions that characterize
gene promoter regions, additional biological validation is necessary to confirm the
location of functional TFBSs. In contrast to computational biology, experimental
validation of targets is expensive and time consuming. Candidates to be verified,
therefore, must be supported convincingly by different sources of evidence (predic-
tive models, motif finding, and evolutionary conservation). Numerous experimental
techniques can validate whether a binding site is bound by a given protein. The elec-
tion of the appropriate method depends on many variables: organism, tissue, gene,
or TF, in particular. In addition, some experiments are performed in vivo, whereas
others only can validate in vitro binding between protein and DNA. Confirmation
of predicted TFBSs in the wet lab can be performed through the following methods
(see [23] for a comprehensive review on this topic):

� DNA footprinting is a method to identify approximately the binding site of a
given TF on a fragment of genomic sequence [27]. The DNA molecule must

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

19.10 EXPERIMENTAL VALIDATION 415

Figure 19.8 Multiple TF map and sequence alignments.

be labeled radioactively at one end. It then is cleaved with a nuclease that
makes random single-stranded cuts. Once the DNA is denatured to separate
the two strands, the fragments from the labeled strand are separated on a gel
electrophoresis and detected by autoradiography. The pattern of bands from the
DNA molecules that were cut in presence of the DNA-binding protein is com-
pared with that of the same fragment without the TF. The part of the genomic
sequence bound by the protein is protected from cleavage so that the labeled
fragments overlapping the binding site will be missing, leaving a gap or foot-
print in the gel (see Figure 19.9a).

� Electrophoretic mobility shift assay (EMSA) or gel mobility shift electrophore-
sis is a common technique to determine whether one protein complex is capable
of binding to a given DNA sequence [28]. EMSA experiments are based on the
effect of a bound protein on the migration of DNA in an electric field. When
analyzed by gel electrophoresis, DNA molecules bound by TFs will move more
slowly through the gel than naked genomic sequences. Initially, a short DNA
fragment of specific length and sequence is labeled radioactively and mixed
with a cell extract. The mixture then is loaded onto a polyacrylamide gel for
running electrophoresis. When several sequence-specific proteins bind on a

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

416 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

without proteinwith protein
protected

footprinting

sample
control

+-

band shift

complex 1

complex 2

complex 3

free DNA

GENETFBS1 TFBS2

READS

PEAKS

(a) (b)

(c)

Figure 19.9 Experimental methods to validate predictions.

region, autoradiography reveals a series of DNA bands, each one with a specific
delay resulting from different protein complexes as shown in Figure 19.9b. The
precise binding site must be identified by competition using different oligonu-
cleotides on additional experiments.

� Chromatin immunoprecipitation (ChIP) or precipitation of an antigen out of a
solution using an antibody is a method used to determine which proteins bind
to a particular region on the chromatin of living cells [23]. First, proteins in
contact with the DNA are cross-linked to the chromatin and immobilized using
formaldehyde fixation. Then, chromatin is fragmented by sonication, and whole
protein-DNA complexes are immunoprecipitated using an antibody specific for
the protein in question. Finally, DNA molecules from such complexes can be
purified and their sequence can be determined by polymerase chain reaction
(PCR).

� Systematic evolution of ligands by exponential enrichment (SELEX) is a com-
binatorial technique to produce oligonucleotides that specifically bind to a tar-
get ligand [77]. First, a very large oligonucleotide library, which theoretically
contains all possible sequences of n nucleotides, is synthesized. The genomic
library is exposed next to the target ligand to remove those elements that do not
bind the protein by affinity chromatography. The remaining oligonucleotides
are amplified by reverse transcription PCR (RT-PCR) to prepare for subsequent
rounds of selection in which the stringency of the elution conditions is increased
to identify the tightest-binding sequences.

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

REFERENCES 417

� ChIP-on-chip (ChIP-chip) is a high-throughput technology that combines chro-
matin immunoprecipitation with microarrays [64]. DNA microarrays are ar-
rayed devices divided into series of spots, each one containing a genomic
fragment of interest that hybridizes to a cDNA sample under certain condi-
tions. Tiling microarrays, in which the whole genome is spotted, provide high-
resolution genome-wide maps. ChIP-on-chip devices are microarrays in which
the protein – DNA immunoprecipitated fragments are hybridized to determine
their location in the genome.

� ChIP-Sequencing (ChIP-Seq) is a recent high-throughput technology that com-
bines chromatin immunoprecipitation with ultra-sequencing machines [42].
Once ChIP fragments are obtained, genome sequencers drive massive sequenc-
ing of these short sequences in parallel. Next, computational analysis is re-
quired to map each read on the whole genome as shown in Figure 19.9c. The
precise map of binding sites for a given TF therefore can be reconstructed with
very high resolution.

19.11 SUMMARY

Computational identification of transcription regulatory elements is key to under-
stand the gene expression machinery. Multiple bioinformatics applications are avail-
able for users to characterize binding sites to transcription factors in gene promoter
regions. The sequence of regulatory signals is highly variable. Different approaches
to model them have been designed, weight matrices being the most popular ones
in the research community. Promoter regions initially are characterized using these
predictive models, which provide a preliminary annotation of TFBSs. Performing
comparative genomics, most predictions can be filtered out to define a solid set of
putative binding sites that are evolutionary conserved. The combination of predic-
tive models, sequence comparisons, and emerging high-throughput expression tech-
niques promises great improvements in the elucidation of gene regulatory networks.

REFERENCES

1. T. Abeel, Y. Van de Peer, and Y. Saeys. Toward a gold standard for promoter prediction
evaluation. Bioinformatics, 25:i313–i320, 2009.

2. J. F. Abril and R. Guigó. gff2ps: visualizing genomic annotations. Bioinformatics, 8:743–
744, 2000.

3. M.D. Adams, S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. Amanatides, S.E.
Scherer, P.W. Li, R.A. Hoskins, R.F. Galle, R.A. George, S.E. Lewis, S. Richards, M. Ash-
burner, S.N. Henderson, G.G. Sutton, J.R. Wortman, M.D. Yandell, Q. Zhang, L.X.
Chen, R.C. Brandon, Y.H. Rogers, R.G. Blazej, M. Champe, B.D. Pfeiffer, K.H. Wan,
C. Doyle, E.G. Baxter, G. Helt, C.R. Nelson, G.L. Gabor, J.F. Abril, A. Agbayani, H.J.
An, C. Andrews-Pfannkoch, D. Baldwin, R.M. Ballew, A. Basu, J. Baxendale, L. Bayrak-
taroglu, E.M. Beasley, K.Y. Beeson, P.V. Benos, B.P. Berman, D. Bhandari, S. Bolshakov,
D. Borkova, M.R. Botchan, J. Bouck, P. Brokstein, P. Brottier, K.C. Burtis, D.A. Busam,

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

418 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

H. Butler, E. Cadieu, A. Center, I. Chandra, J.M. Cherry, S. Cawley, C. Dahlke, L.B.
Davenport, P. Davies, B. de Pablos, A. Delcher, Z. Deng, A.D. Mays, I. Dew, S.M. Dietz,
K. Dodson, L.E. Doup, M. Downes, S. Dugan-Rocha, B.C. Dunkov, P. Dunn, K.J. Durbin,
C.C. Evangelista, C. Ferraz, S. Ferriera, W. Fleischmann, C. Fosler, A.E. Gabrielian, N.S.
Garg, W.M. Gelbart, K. Glasser, A. Glodek, F. Gong, J.H. Gorrell, Z. Gu, P. Guan, M. Har-
ris, N.L. Harris, D. Harvey, T.J. Heiman, J.R. Hernandez, J. Houck, D. Hostin, K.A. Hous-
ton, T.J. Howland, M.H. Wei, C. Ibegwam, M. Jalali, F. Kalush, G.H. Karpen, Z. Ke,
J.A. Kennison, K.A. Ketchum, B.E. Kimmel, C.D. Kodira, C. Kraft, S. Kravitz, D. Kulp,
Z. Lai, P. Lasko, Y. Lei, A.A. Levitsky, J. Li, Z. Li, Y. Liang, , X. Lin, X. Liu, B. Mattei,
T.C. McIntosh, M.P. McLeod, D. McPherson, G. Merkulov, N.V. Milshina, C. Mobarry,
J. Morris, A. Moshrefi, S.M. Mount, M. Moy, B. Murphy, L. Murphy, D.M. Muzny, D.L.
Nelson, D.R. Nelson, K.A. Nelson, K. Nixon, D.R. Nusskern J.M. Pacleb, M. Palazzolo,
G.S. Pittman, S. Pan, J. Pollard, V. Puri, M.G. Reese, K. Reinert, K. Remington, R.D.
Saunders, F. Scheeler, H. Shen, B.C. Shue, I. Siden-Kiamos, M. Simpson, M.P. Skupski,
T. Smith, E. Spier, A.C. Spradling, M. Stapleton, R. Strong E. Sun, R. Svirskas, C. Tector,
R. Turner, E. Venter, A.H. Wang, X. Wang, Z.Y. Wang, D.A. Wassarman, G.M. Wein-
stock, J. Weissenbach, S.M. Williams, T. Woodage, K.C. Worley, D. Wu, S. Yang, Q.A.
Yao, J. Ye, R.F. Yeh, J.S Zaveri, M. Zhan, G. Zhang, Q. Zhao, L. Zheng, X.H. Zheng,
F.N. Zhong, W. Zhong, X. Zhou, S. Zhu, X. Zhu, H.O. Smith, R.A. Gibbs, E.W. Myers,
G.M. Rubin, and J.C. Venter. The genome sequence of Drosophila melanogaster. Science,
287:2185–2195, 2000.

4. T.L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization to dis-
cover motifs in biopolymers. Proceedings of the 2nd International Conference on Intelli-
gent Systems for Molecular Biology (ISMB), 1994, pp. 28–36.

5. L.O. Barrera and B. Ren. The transcriptional regulatory code of eukaryotic cells—insights
from genome-wide analysis of chromatin organization and transcription factor binding.
Curr Opin Cell Biol, 18:291–298, 2006.

6. G. Bejerano, M. Pheasant, I. Makunin, S. Stephen, W.J. Kent, J.S. Mattick, and D. Haus-
sler. Ultraconserved elements in the human genome. Science, 304:1321–1325, 2004.

7. E. Berezikov, V. Guryev, R.H.A. Plasterk, and E. Cuppen. Conreal: Conserved regulatory
elements anchored alignment algorithm for identification of transcription factor binding
sites by phylogenetic footprinting. Genome Res, 14:170–178, 2004.

8. E.M. Blackwood and J.T. Kadonaga. Going to the distance: A current view of enhancer
action. Science, 281:60–63, 1998.

9. M. Blanchette and M. Tompa. Discovery of regulatory elements by a computational
method for phylogenetic footprinting. Genome Res, 12:739–748, 2002.

10. E. Blanco, D. Farre, M. Alba, X. Messeguer, and R. Guigó. ABS: A database of annotated
regulatory binding sites from orthologous promoters. Nucleic Acids Res, 34:D63–D67,
2006.

11. E. Blanco and R. Guigó. Predictive methods using DNA sequences. In A.D. Baxevanis
and B.F.F. Oullette, editors, Bioinformatics: A Practical Guide to the Analysis of Genes
and Proteins. John Wiley, New York, 2005, pp. 115–142.

12. E. Blanco, X. Messeguer, T.F. Smith, and R. Guigó. Transcription factor map alignments
of promoter regions. PLoS Comput Biol, 2:e49, 2006.

13. E. Blanco, M. Pignatelli, S. Beltran, A. Punset, S. Perez-Lluch, F. Serras, R. Guigó, and
M. Corominas. Conserved chromosomal clustering of genes governed by chromatin reg-
ulators in Drosophila. Genome Biol, 9:R134, 2008.

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

REFERENCES 419

14. A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the automatic dis-
covery of patterns in biosequences. J Comput Biol, 5:279–305, 1998.

15. J.C. Bryne, E. Valen, M.E. Tang, T. Marstrand, O. Winther, I. Piedade, A. Krogh, B.
Lenhard, and A. Sandelin. Jaspar, the open access database of transcription factor-binding
profiles: new content and tools in the 2008 update. Nucleic Acids Res, 36:D102–D106,
2008.

16. P. Bucher. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter
elements derived from 502 unrelated promoter sequences. J Mol Biol, 212:563–578, 1990.

17. The ENCODE Consortium. Identification and analysis of functional elements in 1% of
the human genome by the encode pilot project. Nature, 447:799–816, 2007.

18. G.E. Crooks, G. Hon, J.M. Chandonia, and S.E. Brenner. Weblogo: A sequence logo
generator. Genome Res, 14:1188–1190, 2004.

19. E.H. Davidson, J.P. Rast, P. Oliveri, A. Ransick, C. Calestani, C. Yuh, T. Minokawa,
G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C.T. Brown, C.B. Livi, P.Y. Lee,
R. Revilla, A.G. Rust, Z. Pan, M.J. Schilstra, P.J.C. Clarke, M.I. Arnone, L.Rowen, R.A.
Cameron, D.R. McClay, L. Hood, and H. Bolouri. A genomic regulatory network for
development. Science, 295:1669–1678, 2002.

20. E.T. Dermitzakis and A.G. Clark. Evolution of transcription factor binding sites in mam-
malian gene regulatory regions: Conservation and turnover. Mol Biol Evol, 7:1114–1121,
2002.

21. R. Durbin, S. Eddy, A. Crogh, and G. Mitchison. Biological Sequence Analysis: Prob-
abilistic Models of Protein and Nucleic Acids, 1st edition. Cambridge University Press,
1998.

22. L. Duret and P. Bucher. Searching for regulatory elements in human noncoding sequences.
Curr Opin Struct Biol, 7:399–406, 1997.

23. L. Elnitski, V.X. Jin, P.J. Farnham, and S.J. Jones. Locating mammalian transcription
factor binding sites: a survey of computational and experimental techniques. Genome
Res, 16:1455–1464, 2006.

24. P.G. Engstrom, S.J. Ho Sui, O. Drivenes, T.S. Becker, and B. Lenhard. Genomic reg-
ulatory blocks underlie extensive microsynteny conservation in insects. Genome Res,
17:1898–1908, 2007.

25. J.W. Fickett and A. Hatzigeorgiou. Eukaryotic promoter recognition. Genome Res, 7:861–
878, 1997.

26. J.W. Fickett and W.W. Wasserman. Discovery and modeling of transcriptional regulatory
regions. Curr Opin Biotechnol, 11:19–24, 2000.

27. D. Galas and A. Schmitz. DNAse footprinting: A simple method for the detection of
protein-DNA binding specificity. Nucleic Acids Res, 5:3157–3170, 1978.

28. M.M. Garner and A. Revzin. A gel electrophoresis method for quantifying the binding
of proteins to specific DNA regions: Application to components of the Escherichia coli
lactose operon regulatory system. Nucleic Acids Res, 9:3047–3060, 1981.

29. M.B. Gerstein, C. Bruce, J.S. Rozowsky, D. Zheng, J. Du, J.O. Korbel, O. Emanuelsson,
Z.D. Zhang, S. Weissman, and M. Snyder. What is a gene, post-ENCODE? history and
updated definition. Genome Res, 17:669–681, 2007.

30. S.A. Goff, D. Ricke, T. Lan, G. Presting, R. Wang, M. Dunn, J. Glazebrook, A. Ses-
sions, P. Oeller, H. Varma, D. Hadley, D. Hutchison, C. Martin, F. Katagiri, B.M. Lange,
T. Moughamer, Y. Xia, P. Budworth, J. Zhong, T.J. Miguel, U. Paszkowski, S. Zhang,

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

420 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

M. Colbert, W.L. Sun, L. Chen, B. Cooper, S. Park, T.C. Wood, L. Mao, P. Quail, R. Wing,
R. Dean, Y. Yu, A. Zharkikh, R. Shen, S. Sahasrabudhe, A. Thomas, R. Cannings,
A. Gutin, D. Pruss, J. Reid, S. Tavtigian, J. Mitchell, G. Eldredge, T. Scholl, R.M. Miller,
S. Bhatnagar, N. Adey, T. Rubano, N. Tusneem, R. Robinson, J. Feldhaus, T. Macalma,
A. Oliphant, and S. Briggs. A draft sequence of the rice genome (Oryza sativa L. ssp.
japonica). Science, 296:92–100, 2002.

31. A. Goffeau, B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F.Galibert, J.D.
Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Murakamiand, P. Philippsen,
H. Tettelin, and S.G. Oliver. Life with 6000 genes. Science, 274:546–567, 1996.

32. V. Gotea and I. Ovcharenko. Dire: Identifying distant regulatory elements of co-expressed
genes. Nucleic Acids Res, 36:W133–W139, 2008.

33. O.L. Griffith, S.B. Montgomery, B. Bernier, B. Chu, K. Kasaian, S S. Aerts, S. Ma-
hony, M.C. Sleumer, M. Bilenky, M. Haeussler, M. Griffith, S.M. Gallo, B. Giardine,
B. Hooghe, P. Van Loo, E. Blanco, A. Ticoll, S. Lithwick, E. Portales-Casamar, I.J. Don-
aldson, G. Robertson, C. Wadelius, P. De Bleser, D. Vlieghe, M.S. Halfon, W.Wasserman,
R. Hardison, C.M. Bergman, S.J.M. Jones, and The Open Regulatory Annotation Consor-
tium. Oreganno: An open-access community-driven resource for regulatory annotation.
Nucleic Acids Res, 36:D107–D113, 2008.

34. R. Guigó. DNA composition, codon usage and exon prediction. In M. Bishop, editor,
Genetic Databases., Academic Press, San Diego, CA, 1999, pp. 53–80.

35. O. Hallikas, K. Palin, N. Sinjushina, R. Rautiainen, J. Partanen, E. Ukkonen, and
J. Taipale. Genome-wide prediction of mammalian enhancers based on analysis of
transcription-factor binding affinity. Cell, 124:47–59, 2006.

36. C.T. Harbison, D.B. Gordon, T.I. Lee, N.J. Rinaldi, K.D. MacIsaac, T.W. Danford, N.M.
Hannet, J. Tagne, D.B. Reynolds, J. YOO, E.G. Jennings, J. Zeitlinger, D.K. Pokholok,
M. Kellis, P.A. Rolfe, K.T. Takusagawa, E.S. Lander, D.K. Gifford, E. Fraenkel, and
R.A. Young. Transcriptional regulatory code of a eukaryotic genome. Nature, 431:99–
104, 2004.

37. T.J.P. Hubbard, B.L. Aken, S. Ayling, B. Ballester, K. Beal, E. Bragin, S. Brent, Y. Chen,
P. Clapham, L. Clarke, G. Coates, S. Fairley, S. Fitzgerald, J. Fernandez-Banet, L. Gor-
don, S. Graf, S. Haider, M. Hammond, R. Holland, K. Howe, A. Jenkinson, N. Johnson,
A. Kahari, D. Keefe, S. Keenan, R. Kinsella, F. Kokocinski, E. Kulesha, D. Lawson,
I. Longden, K. Megy, P. Meidl, B. Overduin, A. Parker, B. Pritchard, D. Rios, M. Schus-
ter, G. Slater, D. Smedley, W. Spooner, G. Spudich, S. Trevanion, A. Vilella, J. Vogel,
S. White, S. Wilder, A. Zadissa, E. Birney, F. Cunningham, V. Curwen, R. Durbin, X. M.
Fernandez-Suarez, J. Herrero, A. Kasprzyk, G. Proctor, J. Smith, S. Searle, and P. Flicek.
Ensembl 2009. Nucleic Acids Res, 37:D690–D697, 2009.

38. International Chicken Genome Sequencing Consortium, ICGSC. Sequence and compara-
tive analysis of the chicken genome provide unique perspectives on vertebrate evolution.
Nature, 432:695–716, 2004.

39. International Human Genome Sequencing Consortium, IHGSC. Finishing the euchro-
matic sequence of the human genome. Nature, 431:931–45, 2004.

40. International Mouse Genome Sequencing Consortium, IMGSC. Initial sequencing and
comparative analysis of the mouse genome. Nature, 420:520–562, 2002.

41. J. Wang J. Yu, S. Hu, G.K. Wong, S. Li, B. Liu, Y. Deng, L. Dai, Y. Zhou, X. Zhang,
M. Cao, J. Liu, J. Sun, J. Tang, Y. Chen, X. Huang, W. Lin, C. Ye, W. Tong, L. Cong,

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

REFERENCES 421

J. Geng, Y. Han, L. Li, W. Li, G. Hu, X. Huang, W. Li, J. Li, Z. Liu, L. Li, J. Liu, Q. Qi,
J. Liu, L. Li, T. Li, X. Wang, H. Lu, T. Wu, M. Zhu, P. Ni, H. Han, W. Dong, X. Ren,
X. Feng X, P. Cui, X. Li, H. Wang, X. Xu, W. Zhai, Z. Xu, J. Zhang, S. He, J. Zhang,
J. Xu, K. Zhang, X. Zheng, J. Dong, W. Zeng, L. Tao, J. Ye, J. Tan, X. Ren, X. Chen,
J. He, D. Liu D, W. Tian, C. Tian, H. Xia, Q. Bao, G. Li, H. Gao, T. Cao, J. Wang,
W. Zhao, P. Li, W. Chen, X. Wang, Y. Zhang, J. Hu, J. Wang, S. Liu, J. Yang, G. Zhang,
Y. Xiong, Z. Li, L. Mao, C. Zhou, Z. Zhu, R. Chen, B. Hao, W. Zheng, S. Chen, W. Guo,
G. Li, S. Liu, M. Tao, J. Wang, L. Zhu, L. Yuan, and H. Yang. A draft sequence of the
rice genome (oryza sativa l. ssp. indica). Science, 296:79–92, 2002.

42. D.S. Johnson, A. Mortazavi, R.M. Myers, and B. Wold. Genome-wide mapping of in vivo
protein-DNA interactions. Science, 316:1497–1502, 2007.

43. A.E. Kel, E. Goessling, I. Reuter, E. Cheremushkin, V. Kel-Margoulis, and E. Wingender.
Match: a tool for searching transcription factor binding sites in DNA sequences. Nucleic
Acids Res, 31:3576–3579, 2003.

44. J.T. Kim, T. Martinetz, and D. Polanti. Bioinformatic principles underlying the informa-
tion content of transcription factor binding sites. J Theor Biol, 220:529–544, 2003.

45. T. Kouzarides. Chromatin modifications and their function. Cell, 128:693–705, 2007.

46. R.M. Kuhn, D. Karolchik, A.S. Zweig, T. Wang, K.E. Smith, K.R. Rosenbloom, B. Rhead,
B.J. Raney, A. Pohl, M. Pheasant, L. Meyer, F. Hsu, A.S. Hinrichs, R.A. Harte, B. Giar-
dine, P. Fujita, M. Diekhans, T. Dreszer, H. Clawson, G.P. Barber, D. Haussler, and W.J.
Kent. The UCSC genome browser database: update 2009. Nucleic Acids Res, 37:D755–
D761, 2009.

47. E.S. Lander and R.A. Weinberg. Genomics: Journey to the center of biology. Science,
287:1777–1782, 2000.

48. C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S Liu, A.F. Neuwald, and J.C. Wootton.
Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment.
Science, 262:208–214, 1993.

49. C. Pal L.D. Hurst and M.J. Lercher. The evolutionary dynamics of eukaryotic gene order.
Nat Rev Genet, 5:299–310, 2004.

50. B. Lenhard, A. Sandelin, L. Mendoza, P. Engstrom, N. Jareborg, and W.W. Wasserman.
Identification of conserved regulatory elements by comparative genome analysis. J Biol,
2:13, 2003.

51. M. Levine and R. Tijan. Transcriptional regulation and animal diversity. Nature, 424:147–
151, 2003.

52. G.G. Loots, I. Ovcharenko, L. Patcher, I. Dubchak, and E.M. Rubin. rVista for compar-
ative sequence-based discovery of functional transcription factor binding sites. Genome
Res, 12:832–839, 2002.

53. V. Matys, O.V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie,
I. Reuterand, D. Chekmenev, M. Krull, K. Hornischer, N. Voss, P. Stegmaier,
B. Lewicki-Potapov, H. Saxel, A.E. Kel, and E. Wingender. TRANSFAC and its mod-
ule TRANSCompel: Transcriptional gene regulation in eukaryotes. Nucleic Acids Res,
34:D108–D110, 2006.

54. C. Mayor, M. Brudno, J.R. Schwartz, A. Poliakov, E.M. Rubin, K.A. Frazer, L.S. Pachter,
and I. Dubchak. VISTA: Visualizing global DNA sequence alignments of arbitrary length.
Bioinformatics, 16:1046–1047, 2000.

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

422 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

55. M. Morey, S.K. Yee, T. Herman, A. Nern, E. Blanco, and S.L. Zipursky. Coordinate
control of synaptic layer specificity and rhodopsins in photoreceptor neurons. Nature,
456:795–809, 2008.

56. T. Okumura, H. Makiguchi, Y. Makita, R. Yamashita, and K. Nakai. Melina II: A web
tool for comparisons among several predictive algorithms to find potential motifs from
promoter regions. Nucleic Acids Res, 35:W227–W231, 2007.

57. I. Ovcharenko, D. Boffelli, and G. Loots. eShadow: A tool for comparing closely related
sequences. Genome Res, 14:1191–1198, 2004.

58. G. Parra, E. Blanco, and R. Guigó. Geneid in Drosophila. Genome Res, 10:511–515,
2000.

59. L.A. Pennacchio and E.M. Rubin. Genomic strategies to identify mammalian regulatory
sequences. Nat Rev Genet, 2:100–109, 2001.

60. R.C. Perier, V. Praz, T. Junier, C. Bonnard, and P. Bucher. The eukaryotic promoter
database (EPD). Nucleic Acids Res, 28:302–303, 2000.

61. E. Portales-Casamar, S. Kirov, J. Lim, S. Lithwick, M.I. Swanson, A. Ticoll, J. Snoddy,
and W.W. Wasserman. PAZAR: A framework for collection and dissemination of cis-
regulatory sequence annotation. Genome Biol, 8:R10, 2007.

62. K.D. Pruitt, T. Tatusova, and D.R. Maglott. NCBI reference sequences (refseq): A curated
non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids
Res, 35:D61–D65, 2007.

63. S. Rahmann, T. Muller, and M. Vingron. On the power of profiles for transcription factor
binding site detection. Stat Appl Genet Mol Biol, 2:7, 2003.

64. B. Ren, F. Robert, J.J. Wyrick, O. Aparicio, E.G. Jennings, I. Simon, J. Zeitlinger,
J. Schreiber, N. Nannett, E. Kanin, T.L. Volkert, C.J. Wilson, S.R. Bell, and R.A. Young.
Genome-wide location and function of DNA binding proteins. Science, 290:2306–2309,
2000.

65. J. Rohrer and M.E. Conley. Transcriptional regulatory elements within the first intron of
Bruton’s tyrosine kinase. Blood, 91:214–221, 1998.

66. T.D. Schneider and R.M. Stephens. Sequence logos: A new way to display consensus
sequences. Nucleic Acids Res, 18:6097–6100, 1990.

67. D.E. Schones, P. Sumazin, and M.Q. Zhang. Similarity of position frequency matrices for
transcription factor binding sites. Bioinformatics, 21:307–313, 2005.

68. S. Schwartz, Z. Zhang, K.A. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs, R. Hardi-
son, and W. Miller. Pipmaker—a web server for aligning two genomic DNA sequences.
Genome Res, 10:577–586, 2000.

69. Bovine Genome Sequencing and Analysis Consortium. The genome sequence of taurine
cattle: a window to ruminant biology and evolution. Science, 324:522–528, 2009.

70. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee
genome and comparison with the human genome. Nature, 437:69–87, 2005.

71. P.T. Spellman and G.M. Rubin. Evidence for large domains of similarly expressed genes
in the Drosophila genome. J Biol, 1:5, 2002.

72. R. Staden. Computer methods to locate signals in nucleic acid sequences. Nucleic Acids
Res, 12:505–519, 1984.

73. G.D. Stormo. DNA binding sites: Representation and discovery. Bioinformatics, 16:16–
23, 2000.

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

REFERENCES 423

74. S.J. Ho Sui, D.L. Fulton, D.J. Arenillas, A.T. Kwon, and W.W. Wasserman. oPOSSUM:
Integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res,
35:W245–W252, 2007.

75. D.A. Tagle, B.F. Koop, M. Goodman, J.L. Slightom, and D.L. Hess. Embryonic ε and γ

globin genes of a prosimian primate, nucleotide and amino acid sequences, developmental
regulation and phylogenetic footprints. J Mol Biol, 203:439–455, 1988.

76. M. Tompa, N.Li, T.L. Bailey, G.M. Church, B. De Moor, E. Eskin, A.V. Favorov, M.C.
Frith, Y. Fu, W.J. Kent, V.J. Makeev, A.A. Mironov, W.S. Noble, G. Pavesi, G. Pesole,
M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbogaert, Z. Weng,
C. Workman, C. Ye, and Z. Zhu. Assessing computational tools for the discovery of tran-
scription factor binding sites. Nat Biotechnol, 23:137–144, 2005.

77. C. Tuerk and L. Gold. Systematic evolution of ligands by exponential enrichment: RNA
ligands to bacteriophage t4 DNA polymerase. Science, 249:505–510, 1990.

78. J. Turatsinze, M. Thomas-Chollier, M. Defrance, and J. van Helden. Using RSAT to scan
genome sequences for transcription factor binding sites and cis-regulatory modules. Nat
protocol, 3:1578–1588, 2008.

79. A. Ureta-Vidal, L. Ettwiller, and E. Birney. Comparative genomics: Genome-wide analy-
sis in metazoan eukaryotes. Nat Rev Genet, 4:251–262, 2003.

80. J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, H.O. Smith,
M. Yandell, C.A. Evans, R.A. Holt, J.D. Gocayne, P. Amanatides, R.M. Ballew, D.H. Hu-
son, J.R. Wortman, Q. Zhang, C.D. Kodira, X.H. Zheng, L. Chen, M. Skupski, G. Sub-
ramanian, P.D. Thomas, J. Zhang, G.L. Gabor Miklos, C. Nelson, S. Broder, A.G. Clark,
J. Nadeau, V.A. McKusick, N. Zinder, A.J. Levine, R.J. Roberts, M. Simon, C. Slay-
man, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea,
A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington,
J. Abu-Threideh, E. Beasley, K Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chan-
dramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. Di Francesco, P. Dunn K. Eil-
beck, C. Evangelista, A.E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T.J.
Heiman, M.E. Higgins, R.R. Ji, Z. Ke, K.A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang,
X. Lin, F. Lu, G.V. Merkulov, N. Milshina, H.M. Moore, A.K. Naik, V.A. Narayan,
B. Neelam, D. Nusskern, D.B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun ad Z. Wang,
A. Wang, X. Wang, J. Wang, M. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan,
W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. Zhu, S. Zhao, D. Gilbert,
S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe,
D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver, A. Cen-
ter, M.L. Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson,
L. Doup, S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner,
S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline,
S. Koduru, A. Love, F. Mann, D. May, S. McCawley, T. McIntosh, I. McMullen, M. Moy,
L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon,
R. Rodriguez, Y.H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood,
E. Stewart, R. Strong, E. Suh, R. Thomas, N.N. Tint, S. Tse, C. Vech, G. Wang, J. Wet-
ter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri,
J.F. Abril, R. Guigo, M.J. Campbell, K.V. Sjolander, B. Karlak, A. Kejariwal, H. Mi,
B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato,
V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu,
J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y.H. Chiang, M. Coyne,

P1: OSO
c19 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

424 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS

C. Dahlke, A. Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire,
S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris,
J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan abd J. Kasha, L. Ka-
gan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel,
S. Murphy, M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peter-
son, W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith, A. Sprague, T. Stockwell,
R. Turner, E. Venter, M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu
X. The sequence of the human genome. Science, 291:1304–1351, 2001.

81. H. Wakaguri, R. Yamashita, Y. Suzuki, S. Sugano, and K. Nakai. DBTSS: Database of
transcription start sites, progress report 2008. Nucleic Acids Res, 36:D97–D101, 2008.

82. W.W. Wasserman and A. Sandelin. Applied bioinformatics for the identification of regu-
latory elements. Nat Rev Genet, 5:276–287, 2004.

83. T. Werner. Identification and functional modelling of DNA sequence elements of tran-
scription. Brief Bioinformatics, 1:372–380, 2000.

84. M.Q. Zhang. Computational prediction of eukaryotic protein-coding genes. Nat Rev
Genet, 3:698–709, 2002.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20
ALGORITHMIC ISSUES IN

THE ANALYSIS OF
CHIP-SEQ DATA

Federico Zambelli and Giulio Pavesi

20.1 INTRODUCTION

Researchers in biology and medicine nowadays have at their disposal enormous
amounts of data and information, which provide an unprecedented opportunity to
gain novel insights into the molecular basis of life and disease. The completion of
several genome projects has given the (almost) complete DNA sequence of human
and of several different organisms of interest, from viruses, to bacteria, to plants, to
animals. This, in turn, has permitted the large-scale annotation of genes and their
products, on the bricks of which life is built. Technologies like oligonucleotide mi-
croarrays, on the other hand, permit measuring the level of transcription of genes,
that is, when and how much a given gene is activated according to developmental
stage, cell cycle, external stimuli, disease, and so on. All in all, the emerging picture
is that gene expression, that is, the series of steps in which a DNA region is tran-
scribed into a RNA sequence, which in turn, is translated into a protein, is a process
finely modulated at every stage by the cell. Thus, only when the regulation of this
process also will be fully understood we will be able to obtain a complete picture of
the mechanisms acting inside every living cell.

The first step of gene expression, the transcription of a DNA region into a com-
plementary RNA sequence, is finely modulated and regulated by the activity of tran-
scription factors (TFs), which are proteins (or protein complexes) that in turn are

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

425

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

426 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

encoded by the genome. TFs bind DNA in a sequence-specific manner in the neigh-
borhood of the transcription start site of genes, or also in distal elements that are
brought by the three-dimension (3-D) arrangement of DNA close to the gene region,
with the overall effect of initiating the transcription process or, in some cases, of
blocking it. The transcription of the gene thus can be started only when the right
combination of TFs are bound to the DNA at the right time in its neighborhood [24].
To understand the complexity of this process suffices it to say that at least 10% of
the about 22,000 human genes can be estimated to have this function, that is, reg-
ulate the transcription of other genes, yielding an exponential number of possible
combinations and interactions.

Modern lab techniques allow for the large-scale identification of TF-DNA binding
sites on the genome with experiments that were simply impossible to perform just a
few years ago. A protein-DNA complex, like the genetic material comprising DNA
and proteins that condense to form chromosomes in eukaryotic cells is called chro-
matin. Chromatin immunoprecipitation (ChIP) [8] is a technique that allows for the
extraction from the cell nucleus of a specific protein-DNA chromatin complex, in our
case, a given TF bound to the DNA. First, the TF is cross-linked, that is, fixed to the
DNA. Then, a specific antibody that recognizes only the TF of interest is employed,
and the antibody, bound to the TF, which in turn is bound to the DNA, permits the
extraction and isolation of the chromatin complex. At this point, DNA is released
from the TF by reverse cross linking, and researchers have at their disposal the DNA
regions corresponding to the genomic locations of the sites that were bound in vivo,
that is, inside living cells. The experiment is performed on thousands of cells at the
same time to have a quantity of DNA suitable for further analysis and to have in the
sample a good coverage of all regions bound by the TF.

The next phase logically is the identification of the DNA regions themselves and
of their corresponding location in the genome, which in turn is made possible by
the availability of the full genomic sequences. Also for this step, technology has wit-
nessed dramatic improvements. From the identification of only predetermined candi-
date sites through polymerase chain reaction (PCR), the introduction of tiling arrays
has permitted the analysis of the extracted DNA on a whole-genome scale (ChIP on
Chip [44]) by using microarray probes designed to cover the sequence of a whole
genome. The recent introduction of novel and efficient sequencing technologies col-
lectively known as next-generation sequencing [35] has permitted moving this type
of experiment one step further by providing at reasonable cost perhaps the simplest
solution: to identify the DNA extracted by the cell, simply sequence the DNA itself
(ChIP Sequencing, or ChIP-Seq [40, 34], Figure 20.1). In this way, all limitations
derived from microarray technology can be overcome. These new sequencing sys-
tems can generate huge amounts of data. For example, the Illumina-Solexa system
can generate more than 50 million sequences of length 3050 nt in a single run tak-
ing less than three days. Using a different technology, the ABI-SOLiD system can
generate data at a similar rate. The Roche-454 system generates fewer but longer
sequences [35].

Without delving into technical details, two of the three sequencing platforms
just introduced are used nowadays for ChIP Seq: Illumina/Solexa and Solid which

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.1 INTRODUCTION 427

Figure 20.1 The ChIP-Seq workflow. A protein (red), bound to the DNA inside the cell nucleus
(1) is cross-linked (fixated) to the DNA, which is sheared into fragments (2). An antibody able to
recognize only the red protein is added and binds to the red protein (3). The antibody-protein-
DNA complex is isolated (4). DNA is separated from the red protein (reverse cross-linking, 5).
Finally, the DNA obtained is sequenced (6).

produce on a given sample a larger number of sequences although shorter than 454,
thus providing higher coverage of significant regions, as we will show later. Given
a double-stranded DNA fragment derived as just described, the machine determines
the nucleotide sequence at the beginning of either strand, moving from the 5′ to
the 3′ direction (see Figure. 20.2). For technical limitations, the sequencer cannot
determine the sequence of the complete region but only of a short fragment at its

5'

5'3'

3'

TF

Figure 20.2 Next-generation sequencing applied to a DNA region bound by a TF extracted by
chromatin immunoprecipitation. Sequencing proceeds in the 5′ to 3′ direction, starting from the
beginning of either strand and producing the sequence of either of the regions marked in red
(usually, 25–50 base pairs). In case paired end sequencing is performed, the sequence of both
the red regions is obtained simultaneously.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

428 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

beginning, in other words, of a prefix usually ranging from 25 to 40 base pairs in
ChIP-Seq applications. Thus, the output is a huge collection of millions of short
sequences (called reads or tags), which mark the beginning of either strand of the
DNA extracted from the cells. Recent developments also include the possibility of
sequencing the beginning of both strands at the same time, producing paired end
tags. As discussed, because before each region should have appeared more than once
in the DNA sample and also because of the amplification of the DNA prior to se-
quencing, we should have tags marking the ends of the DNA regions bound by the
TF appearing several times in the output. The overall number of sequence reads ob-
tained varies from experiment to experiment and depends on several factors like the
TF involved, sample preparation, experiment replicates, and so on. Suffice it to say
that it usually ranges from a few to 10–20 million.

Once the sequencing has been completed, the computational analysis of the data
can begin [40]. The usual workflow is shown in Figure. 20.3. First, the tags are

Chromatin
Immunoprecipitation

DNA sequencing

Tag mapping

Identification of significantly
enriched regions

Identification of transcription
factor binding sites

Modelling of the binding
specificity of the TF

Prediction of further targets

Experimental validation

Figure 20.3 The ChIP-Seq analysis pipeline. Analysis steps that are performed in silico are
highlighted in green.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.2 MAPPING SEQUENCES ON THE GENOME 429

mapped on the genome to recover their original location. Then, regions bordered by
tags on both ends (on opposite strands) in numbers high enough to represent a sig-
nificant enrichment and not experimental noise are singled out (also, when available,
with respect to a control experiment, aimed at producing some kind of random DNA
and thus a random background model). These are the regions likely to have come
from the sample because they are bound by the TF, and a genome-wide map of the
binding of the TF is available. Then, further analyses are nevertheless possible; for
example, because the regions extracted are longer than the actual binding sites for
the TF, the latter have to be identified within the regions themselves; sites identified
then can be employed to model the binding specificity of the TF to perform further in
silico predictions in different cell types or experimental conditions; TF binding data
can be crossed with expression data to understand better its activity in the regulation
of target genes; co-operating or competing TFs can be identified in different ways,
and so on.

20.2 MAPPING SEQUENCES ON THE GENOME

The first step of the analysis is the reassignment of the DNA fragments extracted on
their original location on the genome, often called tag mapping or read mapping. In
other words, each of the sequence tags produced has to be matched (or aligned) to
the genome to recover its original position. Although, at least in theory, this would
correspond to exact pattern matching, for which optimal and fast solutions already
exist, in practice, we can expect only a limited number of tags to map exactly on the
genome, mainly because of two reasons:

� Nucleotide polymorphisms: Although we have at our disposal a reference ge-
nomic sequence for several species of interest, in practice, the sequence of each
individual of the same species is different, more notably at single positions in
the genome (called simple nucleotide polymorphisms, or SNPs [6]). In other
words, we can find that a tag cannot be matched exactly anywhere on a genome
simply because the DNA sequence of the cells employed in the ChIP exper-
iment differs from the sequence of the same region in the reference genomic
sequence.

� Sequencing errors: A tag cannot be matched exactly anywhere on a genome
because its sequence has been determined wrongly in one or more nucleotides.

Hence, we have to deal with a problem of approximate pattern matching, in which
usually up to three substitutions are allowed on tags of 35–40 base pairs (bp). Also,
one should consider the possibility of insertions and/or deletions in either the tags or
the genome, for example, induced by the presence of stretches of the same nucleotide
that may cause technical problems in the sequencing process. Moreover, given the
nonuniform and repetitive nature of eukaryotic genomes, another factor that has to
be considered is that despite the fact that about 30 bp should be enough to guarantee

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

430 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

Figure 20.4 A typical example of the result of tag mapping on the human genome, allowing,
at most, two mismatches. Most tags do not match anywhere in the genome (NM in the second
column from the left). The first and the fourth have repeated matches with no substitutions (R0),
the first has three exact matches and the fourth has 204 exact, 255 with one mismatch, and 255
with two. Finally, we have two tags with a unique map, exact for the last one (U0, on chromosome
14, forward strand at hit pos coordinates), and one with one substitution (U1) at position 13
where a C on the tag (in red) matches an A on the genome.

a unique match on the genome, a single tag often can match different positions. A
typical example is shown in Figure. 20.4; some tags do not map anywhere on the
genome because of DNA contamination or sequencing artifacts; some map exactly
or approximately on different positions; some map uniquely on a single position.

All in all, the problem can be formalized in different ways: from approximate
pattern matching allowing only mismatches to approximate pattern matching also
allowing indels. That is, find all substrings of the genome within a maximum Ham-
ming distance or edit distance from the tag. Also, the output can range from the list
of tags that map uniquely on the genome to the list of all matches, optimal or sub-
optimal, for each tag. Also, suitable heuristics can be and have been introduced to
speed up the search. Often tags are accompanied by quality scores, which indicate for
each nucleotide how reliable the read performed by the sequencer can be. Thus, for
example, mismatches can be confined only to those tag nucleotides that are deemed
to be less reliable by the sequencer itself. Or, because less reliable base calls often
are located near the end of the sequence reads, one could require exact matching for
the beginning of the tags (say, the first half) and allow for mismatches in the rest
(say, the second half). Or, when the matching of some tags fails, the last bases can
be trimmed away (probably wrong or a sequencing artifact), and the matching can
be repeated for the shorter reads.

The main overall goal of research in this field is, intuitively, to obtain satisfactory
solutions in as little time and space as possible to avoid the requirement of expensive
dedicated hardware. As a result, many methods are based on the similar principles
and algorithms but differ in the programming tricks or ad hoc heuristics that have
been added to them, aimed at increasing their performance on real case studies at
the price of a little decrease in their reliability. Research in this field is booming
because next-generation sequencing is widely used in different applications well be-
yond ChIP-Seq from the sequencing or resequencing itself of genomes or transcrip-
tomes, to genotyping, to expression profiling, and so on. As a consequence, new

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.2 MAPPING SEQUENCES ON THE GENOME 431

mapping software or improved versions of older tools today appear on an almost
weekly basis and very often are released well before a publication fully describing
their algorithmic details. Thus, here we will confine ourselves to a description of
the general principles the most successful algorithms are based on, leaving to the
interested reader the task of keeping abreast with one of the hottest and most rapidly
growing fields of modern bioinformatics.

As mentioned before, a typical ChIP-Seq experiment on an organism like a human
or a mouse can produce 5–20 million tags, and this number is increased further to
hundreds of millions when, instead of selected regions of a genome, a whole genome
or transcriptome has been sequenced. Thus, the sheer size of the data makes the prob-
lem virtually impossible to be tackled without the indexing of the sequences. And,
as a matter of fact, all algorithms available for this step differ on whether they build
an index of the genome or the tags and on the indexing method applied. Although
the size of a genome like the human one is measured in billions of base pairs, on the
other hand the overall size of the set of tags to be mapped in a ChIP-Seq experiment
is in the millions or hundreds of millions. Thus, building an index for the genome
and matching the tags against the index will have the consequence of requiring more
memory space for the index but less time in the matching stage. Vice versa, index-
ing the tags and matching the genome against them has the consequence of reducing
the memory requirements at the price of longer matching time. The indexing of the
tags also has the benefit of being trivially scalable; in other words, if the available
memory is not sufficient to hold the index of the whole set of tags to be processed,
then the tags can be split into subsets, and each subset can be processed separately
(or in parallel, if several computing cores are available). The final result is just given
by merging the results obtained for each subset. Although clearly, the computation
time is increased, on the other hand, tools of this kind are suitable for standard state-
of-the-art personal computing equipment.

In general, approximate matching is based on the pigeon-hole principle. If we
have 10 pigeons living in nine holes, then we can be sure that one hole has at least
two pigeons living into it. Applied to our problem, suppose that we have to map a tag
of length 32 with up to two mismatches. The tag can be defined as the concatenation
of four strings of length eight: let A,B,C, and D be these four substrings. Then, at
least two substrings should match the genome exactly, and we have that at least one
of these strings matches the genome: AB, AXC, AXD, BC, BXD, and CD, where X
denotes a stretch of eight wildcard or do not care characters. Thus, if we want to build
an index for the genome, then we can index substrings of length 16, corresponding
to the AB, AXC, and AXD combinations and use these as seeds for the initial exact
matching stage. Alternatively, in the same situation, we can be certain that at least a
substring of length 11 will match exactly. Hence, we can index substrings of length
11 and employ them as initial matching seed. In both cases, once a seed has been
matched, it can be extended, allowing for mismatches and/or insertion and deletions.

The problem of mapping (or, in general, of aligning) sequences against a genome
was introduced well before the problem we are dealing with appeared. It had and
still has to be solved in any genome annotation project, for example for the map-
ping of RNAs or shorter expressed sequence tags (ESTs). Blast-like alignment tool

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

432 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

(BLAT) [20] was introduced exactly for this task and is based on the indexing of all
nonoverlapping k-mers (substrings of length k) in a given genome. The index usually
fits inside the random access memory (RAM) of inexpensive computers. Although
very efficient, BLAT was designed for a different flavor of the problem (longer se-
quences to be mapped, and the mapping can include large gaps to accommodate for
the intron-exon structure of the genes producing transcripts and/or accommodate for
a larger number of errors to permit cross-species mapping). Its application to short
tag mapping, which in turn implies using k-mers as short as eight base pairs and
higher error frequency does not yield satisfactory results in terms of computation
time and performance.

A 32 base pair tag-specific aligner called ELAND was developed in parallel with
the Solexa sequencing technology, and it is provided for free for research groups
that buy the sequencer. Probably the first tool introduced for this task, ELAND in-
dexes the tags with the tag-splitting strategy we introduced before (and in its original
version could map tags up to 32 nucleotides long), allowing only mismatches. It
still is reported to be one of the fastest and less memory-greedy pieces of software
available. Likewise, SeqMap [17] builds an index for the tags by using the longest
substring guaranteed to match exactly, and scans the genome against it. It includes
the possibility of introducing insertions and deletions for approximate matches.

ZOOM [29] again is based on the same principles as ELAND, with the differ-
ence being that tags are indexed by using spaced seeds that can be denoted with
a binary string. For example, in the spaced seed 111010010100110111, 1s mean a
match is required at that position, 0s indicate do not care positions. Only positions
with a 1 in the seed are indexed. The performance reported is faster than ELAND,
at the price of higher memory requirements. Short oligonucleotide alignment pro-
gram (SOAP) [28] was one of the first methods published for the mapping of short
tags in which both tags and genome first converted to numbers using 2-bits-per-base
encoding. Each tag then is compared with exclusive-OR to the genome sequence.
Then the value is used as a suffix to check a look-up table to know how many bases
are different. To have a tradeoff between memory usage and efficiency, SOAP uses
unsigned 3-bytes data type as the table element. To admit two mismatches, a read is
split into fragments as in ELAND, and x mismatches can exist in at most x of the
fragments at the same time. Mapping with either mismatches or indels is allowed
but not simultaneously. Because for technical reasons, reads always exhibit a much
higher number of sequencing errors at the 3’-end, which sometimes make them un-
alignable to the genome, SOAP iteratively can trim several base pairs at the 3’-end
and redo the alignment until hits are detected or until the remaining sequence is too
short for a specific match. All in all, the main drawback is the memory requirement,
which is reported to be greater than 10 Gb for a genome like human.

PASS [7] likewise is based on a data structure that holds in RAM the hash table
of the genomic positions of seed substrings (typically 11 and 12 bases) as well as an
index of precomputed scores of short words (typically seven and eight bases) aligned
against each other. After building the genomic index, the program matches each tag
performing three steps: (1) it finds matching seed words in the genome; (2) for ev-
ery match, it checks the precomputed alignment of the short flanking regions (thus

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.2 MAPPING SEQUENCES ON THE GENOME 433

including insertions and deletions); (3) if it passes step 2, then it performs an exact
dynamic alignment of a narrow region around the initial match. The performance is
reported to be much faster than SOAP but, once again, at the price of high memory
requirements (10s of gigabytes (Gb)) for the genomic index.

Once again, the Maximum Oligonucleotide Mapping (MOM) [10] algorithm has
two stages: first, searching for exactly matching short subsequences (seeds) between
the genome and tag sequences and, second, performing ungapped (allowing only
mismatches) extension on those seeds to find the longest possible matching sequence
with an user-specified number of mismatches. To search for matching seeds, MOM
creates a hash table of subsequences of fixed length k (k-mers) from either the
genome or the tag sequences and then sequentially reads the unindexed sequences
searching for matching k-mers in the hash table. The addition in MOM is that, like
in SOAP, tags that cannot be matched entirely given a maximum number of errors are
trimmed automatically at both ends, assuming that sequencing errors or artifacts ap-
pear at the beginning or at the end of the tags (the original version of SOAP trimmed
only the 3′ end, i.e., the suffixes). In this way, for each tag, it reports the maximal
length match within the short read satisfying the error parameters. The performance
reported is higher than SOAP in the number of tags successfully matched. Again,
more than 10 Gb of memory are needed for typical applications.

The space requirements of building a genomic index with a hash table can be
reduced by using more efficient strategies. A good (at least theoretically) perfor-
mance also is obtained by vmatch [1], which employs enhanced suffix arrays for
several different genome-wide sequence analysis applications. Bowtie [21] employs
a Burrows–Wheeler index based on the full-text minute-space (FM) index, which
has a reported memory requirement of only about 1.3 Gb for the human genome.
In this way, Bowtie can run on a typical desktop computer with 2 Gb of RAM. The
index is small enough to be precomputed and distributed together with the software.
However, if one or more exact matches exist for a tag, then Bowtie always reports
them, but if the best match is inexact, then Bowtie is not guaranteed in all cases to
find it. Also the very recent Burrows–Wheeler aligner (BWA) [25] is based on the
Burrows–Wheeler transform.

Mapping and Assembly with Quality (MAQ) [26] is one of the most success-
ful tools in this field, especially devised to take advantage of the nucleotide-by-
nucleotide quality scores that come together with the Solexa/Illumina tag sequences.
The general idea is that mismatches caused by errors in sequencing mostly should
appear at those positions in the tags that have a low quality score, thus are less reli-
able in the determination of the tag sequence. And, vice versa, those caused by single
nucleotide polymorphisms (SNPs) always should appear at the same position in the
genomic sequence. Mismatches thus are weighted according to their respective qual-
ity scores. For matching, MAQ builds multiple hash tables to index the tags and scans
the genomic sequence. By default, six hash tables are used, ensuring that a sequence
with two mismatches or fewer will be hit in an ELAND-like fashion. The six hash
tables correspond to six spaced seeds as in ZOOM. Given 8-bp reads, for example,
the six seeds would be 11110000, 00001111, 11000011, 00111100, 11001100, and
00110011, where nucleotides at 1’s are be indexed, whereas those at 0’s are not. By

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

434 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

default, MAQ indexes the first 28 bp of the reads, which typically are the most accu-
rate part. Very fast, MAQ on the other hand is based on several heuristics that do not
always guarantee finding the best match for a tag.

Sequence quality scores provided by Illumina also are employed by RMAP [53].
A cutoff for the base-call quality score is used to designate positions as either high-
quality or low-quality, depending on whether the quality score of the highest scor-
ing base at that position exceeds the cutoff. Low-quality positions always induce a
match (i.e., act as wild cards). To prevent the possibility of trivial matches, a quality-
control step eliminates reads with too many low-quality positions. CloudBurst [49]
is a RMAP-like algorithm that supports cloud computation using the open-source
Hadoop implementation of MapReduce (Google, Mountain View, CA) to parallelize
execution using multiple nodes.

All in all, the clear picture is that the research in the field of large-scale short
sequence mapping has boomed since 2007, when the first aligners were introduced.
The performance of the different methods can be measured according to different
parameters: time required, memory occupation, disk space, and in case of heuristic
mappers, the actual number of tags that have been assigned correctly to their original
position on the genome. In turn, the choice of a given method against another one
depends on how many tags have to be mapped and naturally to the specifics of the
computing equipment available. In our experience with ChIP-Seq experiments, in
which the number of tags available is limited (a few million) as compared with a
genome or transcriptome sequencing experiment (that can be as high as 100 times
more), we usually chose an exhaustive algorithm able to guarantee, given a set of
parameters, the optimal matching of every tag satisfying them (including trimming
in case of unsuccessful mapping at the first try) also because, as we briefly discuss in
the next section, the failure to map some tags can bias the results obtained from the
experiment.

20.3 IDENTIFYING SIGNIFICANTLY ENRICHED REGIONS

Once the mapping has been completed, at least in theory, one already should have
the final results of the experiment at his/her disposal. However, it is typical of a high-
throughput experiment to produce a lot of noise, which is increased and amplified at
each step, producing outputs like the one shown in Figure 20.4 where most tags do
not map anywhere, and some match at multiple positions. Thus, it is hardly a surprise
the fact that an experiment can be considered successful if about 20–25% of the tags
produced can be mapped uniquely on the reference genome. The remaining major-
ity of tags can be mapped on repetitive genomic regions or are simply experimental
error resulting from DNA contamination, sequencing artifacts, errors in sequencing,
and so on. And once the tags have been mapped on the genome, we are still far from
the ideal situation of having them bordering the original DNA regions. What we usu-
ally have are tags that seem to map everywhere, with no clear separation (at least,
for the human eye) of what are the regions derived from the original chromatin and
which are “random” tags produced in the process by experimental noise, sequencing

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.3 IDENTIFYING SIGNIFICANTLY ENRICHED REGIONS 435

artifacts, or sample contamination. Thus, the next step in the analysis is far from be-
ing trivial and consists of determining the DNA regions that are bordered by several
sequence tags sufficient to discriminate them from experimental noise.

A very efficient way to filter out noise is to conduct another experiment aimed at
the production of noise itself; in other words, if random genomic DNA was added
to the original experiment, then another experiment that produces only random DNA
from the same type of cell (the control experiment) should give the opportunity to
clean the result of the original one. The control experiment can be performed in
different ways, by using an antibody not specific for any TF or, if possible, by using a
cell in which the gene encoding the TF studied has been knocked out or silenced. An
ideal output is the one shown in Figure 20.5. A true positive region should correspond
to a genomic region that is bordered by several tags on both strands, and the tags on
the two ends should be at a distance typical of experiments of this kind, that is,

Figure 20.5 An ideal peak in a ChIP-Seq experiment that identifies a binding site for TF
FOXA3 shown within an UCSC genome browser window. FOXA3 reads are tags mapping on
the sense (orange) and antisense (blue) DNA strand, bordering a region of about 250 base pairs
corresponding to a FOXA3 binding site in the APOA2 promoter on human chromosome 1. Track
FOXA3 signal depicts how many times each base pair in the region is covered by extending the
tags in their respective direction, with a peak in the center of the region. Tracks “Input reads” and
“Input signal” are the corresponding data for the control experiment. Notice how tags defining
the peak in the center of the region are virtually absent from the control. Notice also how several
tags map on the rightmost part of the region visualized but not in such a number or with an
organization suitable to show a clear enrichment peak.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

436 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

about 200–300 bps. By plotting the number of tags falling in each genomic position,
the region thus should be bordered by two peaks, one made by tags on the positive
strand and one on the negative. Analogously, if one extends each tag by the estimated
length of the immunoprecipitated DNA fragments and plots how many times each
nucleotide of the genome is covered by an extended tag, then a significantly enriched
region should correspond to a single peak located in the middle of the region itself.
On the other hand, the same region also should not appear at least with the same
number of bordering tags or with the same height of the central peak in the control
experiment.

In the absence of the control experiment, the problem to be solved is to estimate
how many tags are sufficient to deem a region to be significantly enriched. Given t ,
the overall number of tags, and g, the size of the genome, if we assume that in a com-
pletely random experiment, each genomic region has the same probability of being
extracted and sequenced, then the probability of finding one tag mapping in a given
position is given by t/g. The same idea can be applied by dividing the genome into
separate regions (e.g., the chromosomes or chromosome arms) because for experi-
mental reasons, different regions can have different propensities at producing tags.
In this way, a global or region-specific local matching probability can be calculated
and, therefore, the expected number of tags falling into any genomic region of size
w. For this calculation, different statistical models can be employed, for example,
Poisson, negative binomial, or gamma distributions [62]. Finally, the significance of
tag enrichment is computed, by using sliding windows across the whole genome. If
a control experiment is available, then the number of tags it produced from a given
region can serve directly as background model.

Several peak-finding methods already have been published, including Find-
Peaks [12], F-Seq [5], SISSRS [19], QuEST [58], MACS [61], the ChipSeq Peak
Finder used in [18], ChIPDiff [60], and CisGenome [16], which encompasses a se-
ries of tools for the different steps of the ChIP-Seq analysis pipeline. Regardless of
the method used, false discovery rate estimates are calculated by these tools, based
on the level of enrichment (number of tags) at the site, either globally or locally,
compared with the background model used, for which in some cases a control ex-
periment explicitly is required. Moreover, because so far, most experiments did not
employ paired end tags as described in the introduction, some methods try and deter-
mine the original size of the DNA regions from the spacing of the tags on opposite
strands that were extracted from the ChIP. In other words, they try to make ends meet
guessing for each tag on a strand which could be the tag on the opposite strand mark-
ing the end of the original genomic region that was sequenced. This is usually done
by determining which tag distances seem to be overrepresented in the sample. Some
other methods, instead, simply leave this as a parameter to be set as input to the user.

The advantages and reliability of peak finding methods have yet to be fully ap-
preciated because most of them initially were devised for a single experiment, and
their portability to different organisms and/or experimental conditions is often not
straightforward. Moreover, with current tools, the choice of a significance or enrich-
ment threshold to discriminate real binding sites from background is often not clear
and left to users based on calculated false discovery rates, on the level of enrichment

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.3 IDENTIFYING SIGNIFICANTLY ENRICHED REGIONS 437

of the expected binding motif, and/or on prior knowledge about genomic regions
bound by the TF itself. That is, regions usually are ranked according to their en-
richment, and it is up to the user to draw a line and choose thresholds above which
regions can be considered to be significantly enriched. Threshold choice is especially
difficult for TFs because most bind at low affinity to numerous sites, and a neat sep-
aration for the number of tags necessary to define enriched regions typically is not
obtained. Moreover, some peaks could be missed because tags defining them map
ambiguously on different positions on the genome, and if only best unique matches
are kept, then the corresponding region does not contain enough tags to be deemed
significant, or one of its ends disappears because it falls within a repetitive genomic
region. Despite all these issues, several methods can be used to provide an argument
that sites are functional. For example, the expression of genes with or without an
associated site (thus regulated or not by the TF) can be compared. This can be con-
vincing if the activity of the TF is straightforward (i.e., the factor is a strong activator
or a strong repressor). However, this is often not the case, and TFs can act as both
activators and repressors within the same cell depending on the context of the site, or
have varying levels of effect, depending on other TFs cooperating with them. All in
all, the take-home message is that as always in bioinformatics but more importantly
in case like these, reliable results cannot be produced without knowledge of the un-
derlying biology; an over- or underestimation of the activity of a TF can produce
biased views or, much worse, a completely wrong picture.

20.3.1 ChIP-Seq Approaches to the Identification of
DNA Structure Modifications

So far, we have presented and discussed transcription regulation and ChIP-Seq from
the viewpoint of transcription factors. However, the activation of transcription is reg-
ulated by several additional factors, the most important of which, called epigenetic
regulation [15], depends on the structure of DNA itself. Inside cell nuclei, DNA is
wrapped around specific proteins called histones forming structures called nucleo-
somes. Once again, DNA and histones together form chromatin. And, if the DNA re-
gion corresponding to a gene is wrapped up so to prevent TFs and the transcriptional
mechanisms from contacting the DNA, then transcription simply does not start. DNA
structure and accessibility inside the cell nuclei can be modified by the cell itself
through posttranslational modifications of the histones like acetylation, methylation,
ubiquitylation, phosphorylation, and sumoylation or by remodeling of chromatin.
The result is that a previously unaccessible DNA region can become accessible or
vice versa.

ChIP-Seq opened new avenues of research also for these aspects of gene regula-
tion. In fact, ChIP can be used to extract from the cell histones that underwent some
given modification together with the DNA attached to them. If the histone modifi-
cation is associated with DNA unwrapping, then it permits the extraction of DNA
accessible to TFs and the transcriptional machinery and to have a genome-wide map
of active promoters/genes. As a matter of fact, the most successful applications of
ChIP-Seq so far have been related to epigenetic regulation (see e.g., [45]), perhaps

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

438 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

because the problem is somewhat easier to be dealt with than with TFs. The analysis
protocol is the same as we just described with TFs, with the difference in this case
being that we do not have TFs binding DNA with different affinities resulting in grey
areas of tag enrichment, as we discussed before. Rather, it is a yes or no decision, a
histone can be modified or not, and thus, the separation between signal and noise in
peak detection should be much clearer.

20.4 DERIVING ACTUAL TRANSCRIPTION FACTOR BINDING SITES

The actual DNA region bound by a TF (called Transcription Factor Binding Site,
or TFBS) is much smaller than the DNA fragment isolated by ChIP. TFBSs in fact
usually range in size from 8–10 to 16–20 nucleotides (small sequence elements of
this size also are called oligonucleotides, or oligos) [54, 23]. A further step in the
analysis thus is to recognize which are the actual TFBSs in the regions extracted to
have an idea of the binding specificity of the TF and to build descriptors suitable
for scanning genomic sequences for the identification of further sites in the absence
of experimental data. As briefly mentioned in the introduction, TFs bind the DNA
in a sequence-specific manner; but different from other DNA interacting proteins,
like restriction enzymes, they bind DNA sequences that are similar but not identical;
in other words, TF tolerate a certain degree of approximation in the DNA sequence
they bind. This has the effect of complicating the problem in an awesome way. An
example is shown in Figure 20.6. By comparing the different sites, one can notice
that they differ in a few positions (mismatches) as nearly always the situation with

Figure 20.6 Representing transcription factor binding site motifs. Given a set of sequences
bound by the same TF, we can represent the motif they form by a consensus (bottom left) with
the most frequent nucleotide in each position; a degenerate consensus, which accounts for
ambiguous positions where there is no nucleotide clearly preferred (N = any nucleotide; K = G
or T; M = A or C, according to IUPAC codes [39]); an alignment profile (right), which is converted
into a frequency matrix by dividing each column by the number of sites used.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.4 DERIVING ACTUAL TRANSCRIPTION FACTOR BINDING SITES 439

TFBSs. And we can notice how some positions are conserved strongly (i.e., the TF
does not seem to tolerate substitutions in those places, whereas in others any nu-
cleotide seems to do). Given a set of validated instances, the binding preference of
a given TF can be summarized and modeled. In the simplest form, we simply can
take, position by position, the most frequent nucleotide and build a consensus of
the sites. All oligos that differ from the consensus up to a maximum number of al-
lowed substitutions can be considered valid instances of binding sites for the same
TF. Clearly, this is an oversimplification that does not take into account the differ-
ent level of variability at different position of the sites. A more involved method is
to use degenerate consensi, which can be formalized, for example, by using regu-
lar expressions. Positions where there does not seem to be any preference for any
nucleotide are left undefined, and any nucleotide can match these; positions where
two or three nucleotides can be found with approximately the same frequency are
left ambiguous, and any of the ambiguous nucleotides are considered a valid match;
a single nucleotide is used only for the most conserved positions, which require a
single-nucleotide match. Finally, the most flexible and widely used way of building
descriptors for TF is to align the available sites and to build an alignment profile
representing the frequency with which each nucleotide appears at each position in
the sites. Thus, any candidate oligo can be aligned against the profile, and the corre-
sponding frequencies can be used to evaluate how well it fits the descriptor (rather
than a simple yes/no decision like with consensi) [54].

All in all, the problem can be defined informally as follows: given a set of DNA
sequences (the regions identified by the ChIP-Seq), find a set of oligos appearing in
all or most of the sequences (thus allowing for experimental errors and the presence
of false positives in the set) similar enough to one another to be instances of sites
recognized by the same TF. And, the same set of similar oligos should not appear
with the same frequency and/or the same degree of similarity in a set of sequences
selected at random or built at random with a generator of biologically feasible DNA
sequences. This set of similar and overrepresented oligos collectively build a motif
recurring in the input sequences.

This problem, generally described in literature as motif discovery, appeared well
before the introduction of large-scale techniques like Chip-Seq [42, 48]. The same
principles, in fact, apply to the analysis of gene promoter sequences; a set of genes
showing similar expression patterns should be coregulated to some extent by the
same TFs; because the latter usually bind DNA in the promoter region, by analyz-
ing promoter sequences from coexpressed genes, we should be able to identify as
overrepresented the sites recognized by the common regulators. Unfortunately, this
type of problem has proven itself to be one of the hardest in bioinformatics history
for several reasons [57]. When instead of a set of promoters the input is a set of se-
quences derived from a ChIP experiment, the problem seems to become easier, for
different reasons:

� The size of the sequence sets: A ChIP produces usually thousands of candidate
regions, whereas a typical promoter analysis of coexpressed genes is performed
on a few dozen sequences.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

440 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

� The length of the sequences: Sequences extracted from ChIP-Seq are usually
200–300 bp long, as opposed to promoters that usually are defined as 500–1000
bp long.

� The frequency with which binding sites for the same TF appears: In a ChIP-
Seq, they should appear in a very high percentage of the sequences examined,
whereas in a set of coexpressed genes, there is no guarantee for this. In the latter
case, in fact, a TF could regulate only a limited subset of the genes, and the
common pattern of expression observed could be a result of the simultaneous
action of several TFs.

All in all, what happens is that with ChIP-Seq, we have a somewhat cleaner input
sequence set (most sequences should contain what we are looking for), and more
redundant, because in thousands of sequences, we can expect to find several instances
of binding sites very similar to one another. In gene promoter analysis, the input set
is much less cleaner (there is no guarantee on how many sequences actually share
the same motif), the sequence set is much smaller (and thus, the different sites in
the sequences can be very different from one another), and the sequences are longer.
Thus, at least in theory, in ChIP-Seq, we can expect to obtain a clearer separation of
the signal (the motif) from random similarities.

Approaches to the problem mainly differ in these three points:

1. In how similar oligos forming a candidate motif are detected and in how the
motif they form is modeled

2. In the random background model used to assess the statistical significance of
the motifs

3. In the optimization strategy used to find the most significant motif

Given k input sequences of length n and a motif size m, by assuming that a motif
instance should appear in each sequence, we have (n − m + 1)k candidate solutions,
an exponential number of input sequences that, regardless of the significance or scor-
ing function used to evaluate the solutions, leads to a nondeterministic polynomial
(NP)-hard problem. Leaving aside the design of performance-guaranteed approxi-
mation algorithms [2], which produce solutions too far from the optimal one to be
biologically meaningful, different heuristics can be applied to the problem. And, as a
matter of fact, research on this field already has produced many different approaches
and methods. Here, for the sake of space, we will describe the general ideas in tack-
ling the problem in its more general definitions, which are the basis of tools most
widely used now in the analysis of ChIP-Seq data. First of all, one has to decide how
to model a solution. The most widely known algorithms can be split roughly into
consensus-driven and sequence-driven methods [42]. In the former, each set of oli-
gos is summarized by using a consensus, and all oligos differing from the consensus
up to a maximum number of mismatches can be considered a priori a valid motif
instance. Thus, the problem can be formalized as follows: for each of the 4m DNA
strings of reasonable size m (8–16 nucleotides), collect from the input sequences all

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.4 DERIVING ACTUAL TRANSCRIPTION FACTOR BINDING SITES 441

the approximate occurrences up to e mismatches, where e depends on the motif size
m. In other words, the problem becomes exhaustive approximate pattern matching.
Introduced in the early days of bioinformatics [13, 47, 59], this approach had been
abandoned because it is considered too time-consuming, because it requires enu-
merating an exponential (in the solution length) number of candidate solutions. The
application of indexing structures like suffix trees to the input sequence set never-
theless showed its feasibility, reducing its complexity to be exponential in the num-
ber of mismatches allowed [41, 36]. The search space can be trimmed further by
employing degenerate consensi to model the solutions and to tolerate mismatches
only in the degenerate positions, with a significant improvement in the time needed
for matching [50, 52]. Consensi can be ranked finally according to the number of
matches/degree of conservation of the matches. Conversely, the problem can be tack-
led by a combinatorial approach. Assuming, for example, that the TF should have one
site per input sequence, the problem becomes choosing from each sequence an oligo
so that the resulting motif yields the maximum score given a measure of significance
to be optimized. Exhaustive enumeration of all combinations is unfeasible; thus, ap-
proaches to this problem differ in the heuristics used to build initial solutions and in
the exploration of the search space. Here we briefly will describe the most successful
methods in the “one occurrence per sequence” mode, but each one can be adapted to
the discovery of motifs appearing only in a subset of the input sequences.

Consensus [14], one of the earliest methods, is based on a greedy algorithm. Se-
quences are processed one-by-one. The best solutions for two sequences are kept and
augmented by adding one oligo from the third sequence. Again, the best solutions
are kept and augmented with oligos from the fourth sequence, and so on, until all
sequences have been processed, and the remaining solutions contain one oligo per
input sequence. MEME [4] is an EM algorithm that is equivalent to performing a
local search; given an initial solution built with one oligo per input sequence, oligos
that fit the motif better than the existing ones are chosen and replace them building a
new solution. For time reasons, this step is not iterated until convergence but is per-
formed a limited number of times on numerous initial candidate solutions. Only the
highest scoring ones are finally further optimized until convergence. Several meth-
ods are based, with little differences, on the Gibbs sampling strategy first introduced
in [22]. The general idea is a Monte Carlo variation on the local search; instead
of choosing the oligo for replacement that best fits the current motif, each oligo in
the input sequences has a probability of being chosen to form a motif dependent
on its fitness with respect to the motif currently being optimized. Thus, suboptimal
optimization steps can be taken. The algorithm is usually very fast, obtaining rapid
convergence in a limited number of steps, resulting in its application in different tools
for the optimization of different significance functions [31, 33, 37, 38, 51, 55, 56].
Nested-MICA [9] employs a different optimization strategy, called Nested Sampling,
which claims to be “likely to find a globally optimal model (motif) in a single run,”
and uses a model based on the independent component analysis (ICA) framework to
learn motifs.

Although at the beginning, all methods mostly were tested and validated on
synthetic datasets, more recent assessments based on real case studies have been

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

442 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

introduced, some derived from ChIP experiments. The results have shown that the
real issue in this field seems not to be the strategy used to optimize a significance
function but rather on the choice itself of a suitable measure of significance able to
discriminate real motifs from random similarities. As mentioned before, any measure
should take into account at least two factors: how much of the motif is conserved
(how much the oligos forming it are similar to one another) and how unlikely the
same motif is to appear in a set of sequences chosen at random or built at random
with some sequence generator.

If a motif is modeled with a profile, then we can view the sequences as generated
by two different sources: the motif itself, which produces nucleotides with the prob-
ability equivalent to the frequencies of the nucleotides in each column of the profile,
and the background, which produces nucleotides according to some background dis-
tribution. If we assume that nucleotides in the input sequences are independent, that
is, the probability of finding a nucleotide in any position is not influenced by its
neighbors, then the overall conservation (similarity among the oligos) of the motif
and its distance from the background distribution thus can be measured by computing
the information content (or relative entropy) of the profile:

IC =
4∑

i=1

m∑

j=1

mi, j log
mi, j

bi

where mi, j is the entry in row i and column j of the profile (ranging from 0 to 1) and
bi is the expected frequency of nucleotide i in the input sequences (which in turn can
be estimated by using the genomic sequence of the organism studied or by the input
sequences themselves). Clearly, for each column j , we have that

∑4
i=1 mi, j = 1 and

∑4
i=1 bi = 1. It clearly is shown how this measure accounts for how much each col-

umn is conserved and how much the nucleotide frequencies obtained in the profile
differ from what would have been obtained by aligning oligos chosen at random.
This was, for example, the measure optimized in the first versions of Consensus,
MEME, and the Gibbs Sampler. For assessing the significance of motifs described
with consensi, the principle is the same; the probability of finding any oligo in the
input sequences can be computed as the product of the background probabilities for
each nucleotide of the oligo, and analogously, the probability of finding an approxi-
mate occurrence of the consensus with e substitutions is the sum of the probabilities
associated with the oligos within Hamming distance e from the consensus. Alter-
natively, the match count for a consensus in the input sequences can be compared
with the match count obtained in shuffled input sequences (i.e., consists of the same
nucleotides in a different order [36, 46]), which serves as expected count. Then, en-
richment in the input sequences can be computed with different statistical models
based on different background probability distributions.

In both approaches we just described, the weakest link is the independent assump-
tion. If we take any real DNA sequence, then we can observe that in most cases,
the expected number of times a given oligo appears in the sequence is significantly

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

20.4 DERIVING ACTUAL TRANSCRIPTION FACTOR BINDING SITES 443

higher or lower than the expected count that would be derived from the product of
nucleotide probabilities. Thus, significant improvements have been obtained by as-
suming that the probability of finding a nucleotide at any given position is influenced
by neighboring nucleotides as well. This can be done by modeling the background
with higher order Markov models. Intuitively, in a j th order Markov model, the prob-
ability of finding a nucleotide in a given position of an oligo depends on the j nu-
cleotides preceding it (the independent model is thus a 0 order Markov model). These
parameters can be estimated from available sequences; for example, a motif finding
tool for human promoter sequences can use a Markov model built from the analysis
of all available human promoter sequences. By augmenting the information content
score with a background rareness score based on the probability of finding at random
the oligos forming the motif computed with a 5th or 6th order Markov model, the
performance of profile-based methods was improved significantly (see e.g., [33]). In
the consensus-based method Weeder [43], the probabilities associated with oligos
up to length eight are computed directly from the oligo counts in all promoters of a
given genome and for longer oligos with a Markov model of the 7th order. Indeed,
research also has focused on finding the most suitable Markov model order for mo-
tif discovery [27]. NestedMICA [9] introduces mosaic background modeling. The
idea is to use four different higher order background models according to the overall
nucleotide composition of the input sequences, particularly for the content of C and
G nucleotides (corresponding to the presence or absence of CpG islands), reporting
good performance results.

As mentioned before, solutions to the problem applied to sequences derived from
ChIP-Seq and similar large-scale experiments benefit from the fact that the motif is
more redundant in the input set, both in number of occurrences and in the degree of
conservation. And, on the other hand, the large number of sequences to be processed
make combinatorial approaches demanding for computational resources. Perhaps
with these considerations in mind, algorithms that were devised for large-scale ChIP
experiments like MDScan [32] and the latest additions to the field (Trawler [11] and
Amadeus [30]) show superior performance on ChIP-Seq and similar large sequence
sets in terms of motifs correctly identified but much more strikingly in computational
resources required. The general ideas underlying these three methods are somewhat
similar. Initial candidate solutions are built by matching consensi (MDScan) or de-
generate consensi on the input sequences indexed with a suffix tree in Trawler to
speed up the search. Although less flexible than other consensus-based approaches
like Weeder, degenerate consensi anyway can capture significant motifs given the
high number of motif instances in the sequences. Significance then is assessed with
a third-order background model (MDScan), or more simply by comparing the counts
in the input to randomly selected background sequence sets, with z-scores (Trawler)
or a hypergeometric test (Amadeus). Finally, similar solutions are merged into more
complex oligo sets, which are modeled using a profile that is eventually further opti-
mized on the input sequences with MEME-like strategies.

Research on this topic also should take advantage of additional features that can
be associated with regions derived from ChIP-Seq. For example, because the number

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

444 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

of tags defining a region is reported to be an indicator of the affinity of the TF for
the region [19], higher priority or weight should be given to those regions that are
more enriched in tags, as in MDScan for regions extracted by ChIP on Chip accord-
ing to microarray probe enrichment. This is something that can be done trivially by
applying existing methods to only a subset of the input sequences, but this factor
could be taken into account directly by the algorithms, and also the modeling of the
binding specificity of the TF with a profile (resulting from motif discovery algo-
rithms) should given a higher weight to high-affinity sites corresponding to the most
enriched regions. As a matter of fact, for some TFs significant improvements in the
reliability of descriptors seem to be attained by using different descriptors for high
and low-affinity sites [3]. Finally, the sites bound by the TF are more likely to be
located in the center of the region extracted by ChIP [19]: thus, adding positional
bias to sequence conservation in assessing the motifs somewhat should improve the
results.

20.5 CONCLUSIONS

Next-generation sequencing techniques have opened new avenues for research in
molecular biology and at the same time highlighted once more the key role that
bioinformatics play in modern genomics. In fact, apart from the initial sequencing
and the eventual validation of some predicted targets, virtually all steps of a ChIP-
Seq analysis are performed in silico. In this chapter, we gave an overview of the
problems deriving from the different phases of the pipeline, and without claiming
to be exhaustive, presented the ideas underlying the most widely used methods. If
we consider that next-generation sequencing is about four years old, and the first
pioneering articles on ChIP-Seq appeared just a couple of years ago, the large number
of works in this field that appeared in such a short time (including those that were
published in the weeks in which we were writing this chapter) is a clear proof of the
great interest this and similar fields of research have raised. Until the appearance of
third-generation sequencing or completely new amazing lab techniques, of course.

REFERENCES

1. M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its appli-
cations to genome analysis. Proceedings of Algorithms in Bioinformatics, volume 2452,
2002, pp. 449–463.

2. T. Akutsu, H. Arimura, and S. Shimozono. On approximation algorithms for local multi-
ple alignment. Proceedings of RECOMB 2000 ACM, 2000, pp. 1–12.

3. G. Badis, M.F. Berger, A.A. Philippakis, S. Talukder, A.R. Gehrke, S.A. Jaeger, E.T.
Chan, G. Metzler, A. Vedenko, X. Chen, H. Kuznetsov, C.F. Wang, D. Coburn, D.E.
Newburger, Q. Morris, T.R. Hughes, and M.L. Bulyk. Diversity and complexity in DNA
recognition by transcription factors. Science, 324:1720–1723, 2009.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

REFERENCES 445

4. T.L. Bailey and C. Elkan. Fitting a mixture model by expectation maximization to dis-
cover motifs in biopolymers. International Conference of Intelligent Systems for Molecu-
lar Biology, volume 2, 1994, pp. 28–36.

5. A.P. Boyle, J. Guinney, G.E. Crawford, and T.S. Furey. F-seq: A feature density estimator
for high-throughput sequence tags. Bioinformatics, 24(21):2537–2538, 2008.

6. A.J. Brookes. The essence of snps. Gene, 234(2):177–186, 1999.

7. D. Campagna, A. Albiero, A. Bilardi, E. Caniato, C. Forcato, S. Manavski, N. Vitulo, and
G. Valle. Pass: A program to align short sequences. Bioinformatics, 25(7):967–968, 2009.

8. P. Collas and J.A. Dahl. Chop it, ChIP it, check it: The current status of chromatin im-
munoprecipitation. Front Biosci, 13:929–943, 2008.

9. T.A. Down and T.J. Hubbard. NestedMICA: Sensitive inference of over-represented mo-
tifs in nucleic acid sequence. Nucleic Acids Res, 33(5):1445–1453, 2005.

10. H.L. Eaves and Y. Gao. Mom: Maximum oligonucleotide mapping. Bioinformatics,
25(7):969–970, 2009.

11. L. Ettwiller, B. Paten, M. Ramialison, E. Birney, and J. Wittbrodt. Trawler: De novo
regulatory motif discovery pipeline for chromatin immunoprecipitation. Nat Methods,
4(7):563–565, 2007.

12. A.P. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge, and S.J. Jones. Find-
peaks 3.1: A tool for identifying areas of enrichment from massively parallel short-read
sequencing technology. Bioinformatics, 24(15):1729–1730, 2008.

13. D.J. Galas, M. Eggert, and M.S. Waterman. Rigorous pattern-recognition methods for
DNA sequences. Analysis of promoter sequences from escherichia coli. J Mol Biol,
186(1):117–128, 1985.

14. G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with statistically sig-
nificant alignments of multiple sequences. Bioinformatics, 15(7-8):563–577, 1999.

15. R. Jaenisch and A. Bird. Epigenetic regulation of gene expression: How the genome inte-
grates intrinsic and environmental signals. Nat Genet, 33 (Suppl):245–254, 2003.

16. H. Ji, H. Jiang, W. Ma, D.S. Johnson, R.M. Myers, and W.H. Wong. An integrated soft-
ware system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol, 26(11):1293–
1300, 2008.

17. H. Jiang and W.H. Wong. Seqmap: Mapping Massive amount of oligonucleotides to the
genome. Bioinformatics, 24(20):2395–2396, 2008.

18. D.S. Johnson, A. Mortazavi, R.M. Myers, and B. Wold. Genome-wide mapping of in vivo
protein-DNA interactions. Science, 316(5830):1497–1502, 2007.

19. R. Jothi, S. Cuddapah, A. Barski, K. Cui, and K. Zhao. Genome-wide identification of
in vivo protein-DNA binding sites from ChIP-seq data. Nucleic Acids Res, 36(16):5221–
5231, 2008.

20. W.J. Kent. BLAT–the BLAST-like alignment tool. Genome Res, 12(4):656–664, 2002.

21. B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol, 10(3):R25, 2009.

22. C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald, and J. C. Wootton.
Detecting subtle sequence signals: A Gibbs sampling strategy for multiple alignment.
Science, 262(5131):208–214, 1993.

23. B. Lemon and R. Tjian. Orchestrated response: A symphony of transcription factors for
gene control. Genes Dev, 14(20):2551–2569, 2000.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

446 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

24. M. Levine and R. Tjian. Transcription regulation and animal diversity. Nature,
424(6945):147–151, 2003.

25. H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler trans-
form. Bioinformatics, 25:1754–1760, 2009.

26. H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants
using mapping quality scores. Genome Res, 18(11):1851–1858, 2008.

27. N. Li and M. Tompa. Analysis of computational approaches for motif discovery. Algo-
rithm Mol Biol, 1(1):8, 2006.

28. R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: Short oligonucleotide alignment pro-
gram. Bioinformatics, 24(5):713–714, 2008.

29. H. Lin, Z. Zhang, M.Q. Zhang, B. Ma, and M. Li. ZOOM! zillions of oligos mapped.
Bioinformatics, 24(21):2431–2437, 2008.

30. C. Linhart, Y. Halperin, and R. Shamir. Transcription factor and microRNA motif dis-
covery: The amadeus platform and a compendium of metazoan target sets. Genome Res,
18(7):1180–1189, 2008.

31. X. Liu, D.L. Brutlag, and J.S. Liu. Bioprospector: Discovering conserved DNA motifs in
upstream regulatory regions of co-expressed genes. Pacific Symposium on Biocomputing,
2001, pp. 127–138.

32. X.S. Liu, D.L. Brutlag, and J.S. Liu. An algorithm for finding protein-DNA binding
sites with applications to chromatin-immunoprecipitation microarray experiments. Nat
Biotechnol, 20(8):835–839, 2002.

33. K. Marchal, G. Thijs, S. De Keersmaecker, P. Monsieurs, B. De Moor, and J. Vander-
leyden. Genome-specific higher-order background models to improve motif detection.
Trends Microbiol, 11(2):61–66, 2003.

34. E.R. Mardis. ChIP-seq: Welcome to the new frontier. Nat Methods, 4(8):613–614,
2007.

35. E.R. Mardis. The impact of next-generation sequencing technology on genetics. Trends
Genet, 24(3):133–141, 2008.

36. L. Marsan and M.F. Sagot. Algorithms for extracting structured motifs using a suffix tree
with an application to promoter and regulatory site consensus identification. J Comput
Biol, 7(3-4):345–362, 2000.

37. C. Narasimhan, P. LoCascio, and E. Uberbacher. Background rareness-based iterative
multiple sequence alignment algorithm for regulatory element detection. Bioinformatics,
19(15):1952–1963, 2003.

38. A.F. Neuwald, J.S. Liu, and C.E. Lawrence. Gibbs motif sampling: Detection of bacterial
outer membrane protein repeats. Protein Sci, 4(8):1618–1632, 1995.

39. Nomenclature Committee of the International Union of Biochemistry (NC-IUB). Nomen-
clature for incompletely specified bases in nucleic acid sequences. Recommendations
1984. Proc Natl Acad Sci U S A, 83(1):4–8, 1986.

40. P.J. Park. ChIP-seq: Advantages and challenges of a maturing technology. Nat Rev Genet,
10:669–680, 2009.

41. G. Pavesi, G. Mauri, and G. Pesole. An algorithm for finding signals of unknown length
in DNA sequences. Bioinformatics, 17(Suppl 1):S207–S214, 2001.

42. G. Pavesi, G. Mauri, and G. Pesole. In silico representation and discovery of transcription
factor binding sites. Brief Bioinformatics, 5(3):217–236, 2004.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

REFERENCES 447

43. G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole. Weeder web: Discovery of transcription
factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res,
32(Web Server issue):W199–W203, 2004.

44. S. Pillai and S.P. Chellappan. ChIP on chip assays: Genome-wide analysis of tran-
scription factor binding and histone modifications. Methods Mol Biol, 523:341–366,
2009.

45. A.G. Robertson, M. Bilenky, A. Tam, Y. Zhao, T. Zeng, N. Thiessen, T. Cezard, A.P.
Fejes, E.D. Wederell, R. Cullum, G. Euskirchen, M. Krzywinski, I. Birol, M. Snyder,
P.A. Hoodless, M. Hirst, M.A. Marra, and S.J. Jones. Genome-wide relationship between
histone h3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome
Res, 18(12):1906–1917, 2008.

46. S. Robin, J.J. Daudin, H. Richard, M.F. Sagot, and S. Schbath. Occurrence probability of
structured motifs in random sequences. J Comput Biol, 9(6):761–773, 2002.

47. J.R. Sadler, M.S. Waterman, and T.F. Smith. Regulatory pattern identification in nucleic
acid sequences. Nucleic Acids Res, 11(7):2221–2231, 1983.

48. G.K. Sandve and F. Drablos. A survey of motif discovery methods in an integrated frame-
work. Biol Direct, 1:11, 2006.

49. M.C. Schatz. Cloudburst: Highly sensitive read mapping with mapreduce. Bioinformatics,
25(11):1363–1369, 2009.

50. D. Shinozaki, T. Akutsu, and O. Maruyama. Finding optimal degenerate patterns in DNA
sequences. Bioinformatics, 19(Suppl 2):II206–II214, 2003.

51. R. Siddharthan, E.D. Siggia, and E. van Nimwegen. Phylogibbs: A Gibbs sampling motif
finder that incorporates phylogeny. PLoS Comput Biol, 1(7):e67, 2005.

52. S. Sinha and M. Tompa. Ymf: A program for discovery of novel transcription factor
binding sites by statistical overrepresentation. Nucleic Acids Res, 31(13):3586–3588,
2003.

53. A.D. Smith, Z. Xuan, and M.Q. Zhang. Using quality scores and longer reads improves
accuracy of solexa read mapping. BMC Bioinformatics, 9:128, 2008.

54. G.D. Stormo. DNA binding sites: Representation and discovery. Bioinformatics,
16(1):16–23, 2000.

55. G. Thijs, K. Marchal, M. Lescot, S. Rombauts, B. De Moor, P. Rouze, and Y. Moreau.
A Gibbs sampling method to detect overrepresented motifs in the upstream regions of
coexpressed genes. J Comput Biol, 9(2):447–464, 2002.

56. W. Thompson, E.C. Rouchka, and C.E. Lawrence. Gibbs recursive sampler: Finding tran-
scription factor binding sites. Nucleic Acids Res, 31(13):3580–3585, 2003.

57. M. Tompa, N. Li, T.L. Bailey, G.M. Church, B. De Moor, E. Eskin, A.V. Favorov, M.C.
Frith, Y. Fu, W.J. Kent, V.J. Makeev, A.A. Mironov, W.S. Noble, G. Pavesi, G. Pesole,
M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbogaert, Z. Weng,
C. Workman, C. Ye, and Z. Zhu. Assessing computational tools for the discovery of tran-
scription factor binding sites. Nat Biotechnol, 23(1):137–144, 2005.

58. A. Valouev, D.S. Johnson, A. Sundquist, C. Medina, E. Anton, S. Batzoglou, R.M. Myers,
and A. Sidow. Genome-wide analysis of transcription factor binding sites based on ChIP-
seq data. Nat Methods, 5(9):829–834, 2008.

59. M.S. Waterman, R. Arratia, and D.J. Galas. Pattern recognition in several sequences:
consensus and alignment. Bull Math Biol, 46(4):515–527, 1984.

P1: OSO
c20 JWBS046-Elloumi December 2, 2010 9:44 Printer Name: Sheridan

448 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA

60. H. Xu, C.L. Wei, F. Lin, and W.K. Sung. An HMM approach to genome-wide iden-
tification of differential histone modification sites from ChIP-seq data. Bioinformatics,
24(20):2344–2349, 2008.

61. Y. Zhang, T. Liu, C.A. Meyer, J. Eeckhoute, D.S. Johnson, B.E. Bernstein, C. Nussbaum,
R.M. Myers, M. Brown, W. Li, and X.S. Liu. Model-based analysis of ChIP-seq (MACS).
Genome Biol, 9(9):R137, 2008.

62. Z.D. Zhang, J. Rozowsky, M. Snyder, J. Chang, and M. Gerstein. Modeling ChIP se-
quencing in silico with applications. PLoS Comput Biol, 4(8):e1000158, 2008.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21
APPROACHES AND

METHODS FOR OPERON
PREDICTION BASED ON

MACHINE LEARNING
TECHNIQUES

Yan Wang, You Zhou, Chunguang Zhou, Shuqin Wang, Wei Du,
Chen Zhang and Yanchun Liang

21.1 INTRODUCTION

The concept of operon appeared for the first time in the theory about a protein regu-
latory mechanism proposed by Jacob and Monod. An operon represents a basic tran-
scriptional unit of genes in the complex biological processes of microbial genomes
[1]. Therefore, operon prediction is one of the most fundamental and important re-
search fields in microbial genomics [2].

Generally, an operon is a cluster of one or more tandem genes delimited by a
promoter and a terminator, and its structure is shown in Figure 21.1. They usually
have most of the same properties [3], which are very useful to identify an operon:

1. An operon consists of one or more genes on the same strand of a genomic
sequence.

2. Intergenic distances within an operon are generally shorter than the distances
of genes pairs without operons.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

449

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

450 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

promoter

g1 g2 g3 g4 g5

terminator

Figure 21.1 The structure of an operon: g2, g3, and g4 compose an operon.

3. Generally, several genes of an operon have a common promoter and termina-
tor, but the regions within an operon usually do not contain any promoter or
terminator.

4. Genes in an operon usually have related functions, and most belong to the same
functional category, such as a cluster of orthologus groups (COG) [4].

5. The genes in an operon as a functional unit tend to be found in more conserved
gene pairs and more similar phylogenetic profiles.

In the past several years, numerous effective methods for operon prediction have
been proposed. Through studying these methods, we find that:

1. Several operon databases currently are available on the Internet. These
databases contain information with varying levels of reliability and different
emphases, such as OperonDB [5], MicrobesOnline [6], ODB [7], RegulonDB
[8], DBTBS [9], DOOR [10], and so on.

2. One can use one or more features of genome information to identify an operon.
There are many different types of data to be used for operon prediction, includ-
ing experimental data and computational data. The experimental data mainly
includes gene expression data [11], metabolic pathways [12], and so on. The
computational data includes genes data [13], genes functional categories [4],
conserved gene pairs [14], phylogenetic profiles [15], and so on.

3. For the raw data, preprocessing often is necessary for data quality control and
is important to eliminate noise that may be caused by instrument limitations
and sampling errors.

4. There are many different kinds of methods for operon prediction, including
the methods using training regulations and nontraining. The methods using
training regulations include neural network [2], machine learning [16], and
so on. In addition, comparative genomics [3] and genetic algorithm [17] are
typical nontraining methods.

About the computational complexity, Zheng et al. [12] used theoretical evidence
to show that the functional clusters extracting algorithm, which uses graph matching,
costs exponential time. From the perspective of graph theory, the operon identifica-
tion problem is a nondeterminister polinomial (NP) hard problem. In other words,
there is no fast and rigorous algorithm for solving this problem.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.2 DATASETS, FEATURES, AND PREPROCESSES FOROPERON PREDICTION 451

21.2 DATASETS, FEATURES, AND PREPROCESSES FOR
OPERON PREDICTION

21.2.1 Operon Datasets

It is of great significance for operon prediction to provide researchers detailed and
effective information using query and statistical database-specific functions. Abun-
dant operon databases are currently available on the Internet already. These databases
contain information with varying levels of reliability and different emphases, such as
OperonDB [18], MicrobesOnline [6], ODB [7], RegulonDB [8], DBTBS [9], DOOR
[10], and so on. Here we will introduce six of the most popular operon databases
related to different species as well as the results of different forecasting methods and
manual experiments.

21.2.1.1 OperonDB. OperonDB, first released in 2001, is a database containing
the results of a computational algorithm for locating operon structures in micro-
bial genomes. Initially, the method was used to analyze 34 bacterial and archaeal
genomes and obtained more than 7600 pairs of genes that are highly likely to belong
to the same operon. The sensitivity of this method is 30–50% for the Escherichia coli
(E. coli) genome [16].

In 2008, OperonDB made great progress in both the size of the database and the
operon finding algorithm [18]. It had grown from 34 genomes in its initial release
to more than 500 genomes, and the method was redesigned to find operons with a
higher accuracy. For each conserved gene pair, the probability that the genes belong
to the same operon was estimated. The algorithm takes into account several alterna-
tive possibilities. One is that functionally unrelated genes may have the same order
simply because they were adjacent in a common ancestor. Other possibilities are that
genes may be adjacent in two genomes by chance alone or because of a horizontal
transfer of the gene pair.

Until now, OperonDB is updated regularly and currently contains operon predic-
tions for 843 bacterial and archaeal genomes, comprising the complete collection of
finished prokaryotic genomes available from GenBank. This number will increase
over time as more complete microbial genomes appear. All predictions can be down-
loaded in bulk, and the OperonDB software is available as free, open source software.
It is available at http://operondb.cbcb.umd.edu.

21.2.1.2 MicrobesOnline. The MicrobesOnline (http://www.microbesonline.
org) is a resource for comparative and functional genomics that serves the scien-
tific community for the analysis of microbial genes and genomes. The website was
created by the Virtual Institute for Microbial Stress and Survival (VIMSS), a depart-
ment of energy genomics; the Group Term Life insurance (GTL) project originally
was developed to aid in the analysis of the Environmental Stress Pathway Project
(ESPP) but has been open to the public since 2003 because of its broader utility to
the scientific community.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

452 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

Highlights of the MicrobesOnline website include operon and regulon predic-
tions, a multispecies genome browser, a multispecies Gene Ontology (GO) browser,
a comparative Kyoto Encyclopedia of Genes & Genomes (KEGG) metabolic path-
way viewer, a bioinformatics workbench for indepth sequence analysis, and gene
carts that allow users to save genes of interest for further study while they browse. In
addition, it provides an interface for genome annotation, which is freely available to
the scientific community [6].

21.2.1.3 Operon Database (ODB). Operon Database (ODB) is created by
Okuda S. of Kyoto University, Japan. ODB aims to collect the known operons in
multiple species and to offer a system to predict operons by user definitions [7].
The current version of ODB contains about 2000 known operon information in more
than 50 genomes and about 13,000 putative operons in more than 200 genomes. The
database collects as many operons as possible from as many organisms as possible.
This system integrates four types of associations: genome context, gene coexpres-
sion obtained from microarray data, functional links in biological pathways, and the
conservation of gene order across the genomes. The integration of known literature-
based information and genomic data are indicators of the genes that organize an
operon in biology, and the combination of these indicators allows researchers to pre-
dict operons that are more reliable. As for the system to predict operons, ODB pro-
vides candidates of operons based on the constrict conditions of user’s choice and
provide its prediction accuracy. ODB is accessible at http://odb.kuicr.kyoto-u.ac.jp/.

In ODB, known operons are collected if a region transcribed as an operon is con-
firmed by experiments such as Northern hypridyzation or a set of genes are proved
as an operon or a transcription unit in existing literature. Putative operons are defined
by ortholog genes and the location on the genome. Operon prediction is provided by
considering gene order on the genome of gene pairs obtained by combining “and” or
“or” logic operations of the intergenic distance, intergenic step, pathway, coexpres-
sion, and ortholog parameters. The prediction accuracy is calculated from the operon
pair, nonoperon pair, sensitivity, and specificity.

21.2.1.4 RegulonDB. RegulonDB (http://regulondb.ccg.unam.mx/index.jsp) is
a database that contains biological knowledge of the mechanisms that regulate the
transcription initiation in E. Coli knowledge on the organization of the genes, and
regulatory signals into operons in the chromosome [8]. The latest version of Regu-
lonDB is 6.3.

RegulonDB provides the information of terminators, promoters, transcription fac-
tor (TF) binding sites, transcriptional factors-conformation, active and inactive tran-
scription factor conformations, matrices alignments, transcription units, operons,
regulatory network interactions, Ribosome Binding Site (RBS), growth conditions,
gene – product, small RNAs, and transcription start sites experimentally determined
in the laboratory of Dr. Morett for users. There are also datasets through com-
putational predictions, such as promoter predictions, operon predictions based on

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.2 DATASETS, FEATURES, AND PREPROCESSES FOROPERON PREDICTION 453

(intergenic) distances, TF binding site predictions, transcription factor predictions,
riboswitch prediction, and attenuator prediction.

RegulonDB also provides tools for users such as genome zoom-tools, nebu-
lon tool, RegulonDB overviews, regular sequence analysis (RSA) tools, GETools,
RegulonDBTextpresso, promoter analysis tools, gene context tool, and genome
reviews.

21.2.1.5 DBTBS. DBTBS (http://dbtbs.hgc.jp) is a database of the upstream reg-
ulatory information of Bacillus subtilis. It recently was reorganized to show oper-
ons instead of individual genes as the building blocks of gene regulatory networks.
DBTBS now contains 463 experimentally known operons as well as their terminator
sequences if identifiable. In addition, 517 transcriptional terminators were identified
computationally [9].

Compared with RegulonDB, which has been constructed as a powerful but
slightly complicated relational database, DBTBS employs a simpler structure. It con-
sists of two interrelated parts: one named “Regulated Operons,” which is a list of
regulated genes. These genes are classified according to the functional category of
their gene products by SubtiList [19]. The other is “Transcription Factors,” a com-
pilation of experimentally characterized promoters in which the positions of known
binding sites of transcription factors, including sigma factors, are given with links to
PubMed reference information [20]. These positions are shown both in table format
and in a gif image. In addition, there is a third main part named “Predictions.” This
part contains four points; the first one is “predicted conserved hexameric motifs,” the
second one is “predicted terminators,” the third one is “predicted operons,” and the
last one is “predicted regulons.”

One notable feature of DBTBS is that overlapping binding sites can be perceived
more easily (core consensus regions also are featured with color).

21.2.1.6 Database of Prokaryotic Operons (DOOR). Database of prokary-
otic operons (DOOR) is an operon database developed by the Computational Sys-
tems Biology Lab (CSBL) at the University of Georgia. It contains computation-
ally predicted operons of all sequenced prokaryotic genomes. Currently, the DOOR
database contains operons for 675 complete archeal and bacterial genomes and pro-
vides several search capabilities to facilitate easy access and utilization of the infor-
mation stored in it [10].

The prediction algorithm was presented in 2007 by the same group [21], and
it has been consistently the best at all aspects including sensitivity and specificity
for both true positives and true negatives, and the overall accuracy reach is about
90% [22].

The database provides a search capability for users to find desired operons and
associated information through multiple querying methods and to find operons that
have similar composition and structure to a query operon. It also can predict cisreg-
ulatory motifs using motif-finding tools and includes operons for RNA genes. It is

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

454 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

worth mentioning that the database provides a wiki page (OperonWiki) to facilitate
interactions between users and the developer of the database.

21.2.2 Features

We can use one or more features of genome information to identify operons. Gen-
erally, using more types of features or properties may obtain a better effect if they
are used properly. Therefore, the feature selection of the data is correlated signif-
icantly to the process outcome. Normally, there are many different types of data
to be used for operon prediction, which mainly belong to the two categories of
experimental data and computational data. The experimental data mainly include
experimental evidence, such as gene microarray expression data, metabolic path-
ways, and so on. The computational data include genes data, intergenic spacing,
genes functional categories and relations, sequence elements, conserved gene pairs,
phylogenetic profiles, and so on. Operon prediction using features from experimen-
tal data can obtain high accuracies, but these methods generally are not applicable
for newly sequenced genomes. The prediction using features from computational
data cannot obtain an effect as good as experimental data, but they can be obtained
without experiment so that these methods are easily applicable to newly sequenced
genomes.

21.2.2.1 Intergenic Spacing. The distance between open reading frames
(ORFs) is a commonly used feature in the prediction of operons. Researches reported
that if two adjacent genes on the same strand belong to the same operon, then their
intergenic distance tends to be shorter. The intergenic distances between members
of the same operon are relatively small as compared with those of genes that do not
belong to the same operon. The property of intergenic distances is used frequently in
operon predictions [23].

In Figure 21.2, we can see that the intergenic distances of most within operon
(WO) pairs are between –10 bp and 20 bp, whereas the distances between transcrip-
tion unit borders (TUB) pairs are more than 100 bp. Two adjacent genes, which
belong to the same operons, were pairs of genes within operons; to the contrary, if
they belong to different operons, then they were transcription unit borders.

21.2.2.2 Conserved Gene Cluster

21.2.2.2.1 Conserved Gene Pairs. The definition of conserved gene pairs is
as follows: two adjacent genes A and B on the same DNA strand for which a ho-
mologous adjacent gene pair A′ and B′ can be found in another genome; like A is
homologous to A′, B is homologous to B′. If the similarity between A and A′ and B
and B′ are higher than the similarity between A and B, then the gene pair A and B is
a conserved gene pair for the comparative genome.

In Figure 21.3, we find that in Figure 21.3a, the gene pair A and B is a conserved
gene pair. In Figure 21.3b and Figure 21.3c, the gene pair of A and B is not a con-
served gene pair. In Figure 21.3d, gene pair A and B is on the same DNA strand, but

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.2 DATASETS, FEATURES, AND PREPROCESSES FOROPERON PREDICTION 455

-50 0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number of bases between two adjacent genes

F
re

qu
en

cy
 o

f
ad

ja
ce

nt
 g

en
e

pa
irs

WO pairs
TUB pairs

Figure 21.2 Frequency distribution of different intergentic distances.

the similarity between A and B is higher than that between A and A′ or B and B′.
Therefore, the gene pair of A and B is not a conserved gene pair. Operon prediction
using conserved gene pairs first appeared in p [24].

21.2.2.2.2 Phylogenetic Profile. The phylogenetic profile of a protein is a bi-
nary string, each bit of which represents the presence or absence of the protein in
the comparative genome. The phylogenetic profiles, which reflect similarity of ho-
mology, can provide certain information indicating gene functional categories and
metabolism pathways. one or zero, respectively, represents that the protein appears
or not in the comparative genome. The nth position of the binary string denotes
whether the gene in the nth organism appears.

The key issue of using phylogenetic profiles is how to measure the corelation
between two profiles. There are several profile distance measurements in some liter-
atures.

Hamming distance: The Hamming distance was proposed when the concept of
phylogenetic profile first was introduced [25]. It simply counts the number of
different bits between two profile strings.

Differential parsimony: This measure, which was introduced in [26], calculates
a differential parsimony in the historical evolution of two genes based on their
phylogenetic profiles.

Tree kernel: With a powerful mathematical framework embedded, a tree kernel
is proposed to analyze phylogenetic profiles [27].

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

456 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

A A′

(a) (b)

(c) (d)

B B′ B B′

B B′ B B′

A A′

High
homologous

High
homologous

High
homologous

High
homologous

High
homologous

High
homologous

High
homologous

L
o
w

G
E
N
O
M
E
2

G
E
N
O
M
E
2

G
E
N
O
M
E
1

G
E
N
O
M
E
1

G
E
N
O
M
E
1

G
E
N
O
M
E
1

G
E
N
O
M
E
2

G
E
N
O
M
E
2

H
I
G
H
E
R

H
I
G
H
E
R

L
o
w

High
homologous

Figure 21.3 Conserved gene pair and nonconserved gene pair.

21.2.2.3 Function Relation

21.2.2.3.1 COGs. The COGs provide a framework for the analysis of evolution-
ary and functional relationships among homologous genes from multiple genomes.
There are three major levels in COG function category [4]. The first level consists of
four categories: (i) information storage and processing, (ii) cellular processes, (iii)
metabolism, (iv) poorly characterized; the second level is a further refinement of the
first level, which has more detailed categories; the third level is COG category num-
bers. Genes in an operon usually have related functions, and most of them belong to
the same functional category, such as COG.

21.2.2.3.2 GO. GO provides three levels of biological functions: biological pro-
cess, molecular function, and cellular component. It is known that genes in the same

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.2 DATASETS, FEATURES, AND PREPROCESSES FOROPERON PREDICTION 457

aspartate family
amino acid

metabolic process

aspartate family
amino acid

biosynthetic process

amino acid
biosynthetic process

threonine metabolic
process

threonine
biosynthetic process

Gene_Ontology
0003673

biological_process
0008150

cellular process
0009987

metabolic process
0008152

biosynthetic process
0009058

nitrogen compound
metabolic process

Primary term
PART OF A

IS A
Parent terms

0006807

amine metabolic
process

0009308

nitrogen compound
biosynthetic process

0044271

amine biosynthetic
process

0009309
amino acid

metabolic process

0006520

carboxylic acid
metabolic process

0019752

amino acid and
derivative metabolic

process

0006519
organic acid

metabolic process

0006082

cellular metabolic
process

0044237
primary metabolic

process

0044238

cellular biosynthetic
process

0044249

Selected terms (0)

0008652

00090670006566

0009088

0009066

Figure 21.4 A GO term (GO:0009088).

operon are involved in the same or similar biological processes; hence, GO informa-
tion, in principle, should be helpful for operon prediction. We show a GO term in
Figure 21.4 as follows.

21.2.2.3.3 KEGG. The KEGG pathways are organized into four general cate-
gories (level 1): Metabolism, Genetic Information Processing, Environmental Infor-
mation Processing, and Cellular Processes. These categories are subdivided further
into level 2 and level 3 pathways. The authors of KEGG have used KEGG Orthology
(KO) terms to describe each pathway. Given a genome with annotated genes, one can
assign KO terms to each gene and determine directly which pathway is involved. We
show a KEGG term in Figure 21.5.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

458 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

Figure 21.5 A KEGG term (K00003).

21.2.2.4 Sequence Elements

21.2.2.4.1 Short DNA Motifs. To select the DNA motifs with the most discerning
power (between operon pairs and boundary pairs), they have counted the number of
occurrences for each DNA motif in the intergenic region of each gene pair. Dam et al.
[21] found that some DNA motifs often seem to be associated with the interoperonic
regions.

21.2.2.4.2 Length Ratio Between a Pair of Genes. The length ratio between a
pair of genes is calculated as the natural log of the length ratio of an upstream gene
and a downstream gene, or L = ln(li/ l j), j = i + 1, where li and l j are the length
of the genes.

21.2.2.4.3 Synonymous Codon Usage Biases (SCUB). Within the standard
genetic codes, all amino acids except Met and Trp are coded by more than one codon,
which is called synonymous codons. DNA sequence data from diverse organisms
show that synonymous codons for any amino acid are not used with equal frequency,
and these biases are a consequence of natural selection during evolution. The syn-
onymous codon usage biases (SCUB) also can be used to predict operons.

21.2.2.5 Experimental Evidence. Genes in the same operon should have
similar expression patterns, so several studies have used gene-expression data de-
rived from microarray experiments to predict operons. With the development of

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.2 DATASETS, FEATURES, AND PREPROCESSES FOROPERON PREDICTION 459

experiment technology, gene expression microarray experiments become increas-
ingly popular in eukaryote and prokaryote under different environmental conditions.
This makes microarray experiment data available. Microarray data represent the ex-
pression intensities of genes. The genes in an operon are transcribed at the same
level under many conditions, which means that the correlation coefficient of the ex-
pression value of genes in an operon should be equal to one in different microarray
experiments. Hence, we can predict whether the genes are in an operon according to
their correlation coefficient. Similar arguments have been verified by Sabatti et al.
[28].

21.2.3 Preprocess Methods

As we discussed in previous sections, many raw data and features can be used for
operon prediction. Therefore, preprocessing often is required for raw data cleaning
and missing values imputation, and it is important to eliminate the noise that may
be present in process measurements caused by instrument limitations and sampling
artifacts. In the following sections, we will introduce three preprocess methods that
are popular in this field.

21.2.3.1 Log Likelihood. For a typical prediction problem with many different
types of data, the relations between them must be identified. The Log-likelihood
formula is then defined as follows:

LL(WO|d(ga, gb)) = log
P(d(ga, gb)|WO)

P(d(ga, gb)|TUB)
(21.1)

where P(d(ga, gb)|WO) and P(d(ga, gb)|TUB) are the anterior probability that a
specific relation d(ga, gb) could be observed in WO genes pairs or TUB genes pairs,
respectively, and ga and gb are the property values observed for two adjacent genes.
LL(WO|d(ga, gb)) is the logarithm likelihood score, which expresses the probability
of an adjacent gene pair belonging to the same operons. Adjacent gene pairs with
higher log-likelihood scores are more likely to be WO pairs [2].

21.2.3.2 Entropy. Wang et al. [29] use the log-energy entropy to preprocess the
intergenic distances of WOs and TUBs by using Equation (21.2).

dentropy = log(d2
distance) (21.2)

Wang et al. [30] propose a local-entropy-minimization method for preprocess-
ing intergenic distance. Intergenic distance frequencies of known WO pairs and of
known TUB pairs are examined in the three aforementioned genomes. To obtain the
pair-scores according to the intergenic distances, all intergenic distance entropies are
calculated by using Equation (21.3):

E(d) = −p(d) log[p(d)] − [1 − p(d)] log[1 − p(d)] (21.3)

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

460 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

0 10 20 30 40 50 60 70 80
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
before Wavelet optimize
after Wavelet optimize

Figure 21.6 The effect of the wavelet transform optimization.

21.2.3.3 Wavelet Transform. The wavelet transform first was introduced into
bioinformatics research in 1996 and attracted abroad attention immediately. The
wavelet transform differs from the Fourier transform in that it allows the localiza-
tion of a signal in both time and frequency.

Du et al. [31] use the wavelet transform to optimize the log-likelihood scores of
intergenic distances, conserved gene pairs, and phylogenetic profiles. Because log-
likelihood scores are calculated based on probability measurements, they are likely
to contain much noise information. So the authors deal with these log-likelihood
scores using wavelet denoising and wavelet compression. The effect of the wavelet
optimization is shown in Figure 21.6.

21.3 MACHINE LEARNING PREDICTION METHODS FOR
OPERON PREDICTION

In this section, we will discuss the machine learning techniques involved in operon
prediction. There are many different kinds of methods for operon prediction, in-
cluding the methods using training regulations and nontraining. The methods using
training regulations include the hidden Markov model (HMM), linkage-clustering,
Bayesian classifier, Bayesian network, support vector machine (SVM), neural net-
work (NN) and so on. Comparative genomics and genetic algorithm are typical non-
training methods. The methods using training regulations can obtain high sensitivi-
ties and accuracies but with less adaptability. On the other hand, the adaptability of
the nontraining methods is good but cannot estimate the important degree of data in

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.3 MACHINE LEARNING PREDICTION METHODS FOROPERON PREDICTION 461

prediction. In the following, each method is described, and the recent approaches are
highlighted.

21.3.1 Hidden Markov Model

The hidden Markov model (HMM) is a statistical model that assumes that the mod-
eled system is a Markov process with an unobserved state. An HMM can be con-
sidered the simplest dynamic Bayesian network. Hidden Markov models especially
are known for their application in temporal pattern recognition such as speech, hand-
writing, gesture recognition, part-of-speech tagging, musical score following, partial
discharges, and bioinformatics.

Here is an example using E. coli oligonucleotide microarrays to assay transcript
expression of both ORFs and intergenic regions. Then use hidden Markov models to
analyze this expression data and estimate transcription boundaries of genes [32].

The transcript expression data is obtained using Affymetrix (Santa Clara, CA)
high-density oligonucleotide arrays. Each array contains 295,936 spots or probes.
Every E. coli ORF is assayed by a set of perfect match (PM) and mis-match (MM)
probe pairs, and each intergenic region, at least 40 base pairs in length, is assayed in
both orientations by a set of probe pairs.

Considering a set of T = 15 probes assaying an intergenic region upstream of
an ORF. Let O = O1, O2, . . . , OT, where Oj is the correlation coefficient of the
expression vector of probe j with the expression vector θ of the ORF, and let
I = I1, I2, . . . , IT, where Ij equals 1 if probe j assays the 5’ untranslated region
(UTR) of the gene and Ij equals 0 otherwise. If we knew the exact 5’UTR for
the gene, then we would know which of the T probes assayed the gene transcript
and which did not. However, we do not know which probes assay UTR regions for
the gene; rather we view this information as “hidden,” and the goal is to determine
the sequence I that maximizes the joint probability P(O, I). Furthermore, to expect
P(Ij = 1|Ij−1 = 0) to be near zero given that probe j-1 upstream of an ORF does not
assay part of the gene’s 5’UTR, we do not expect probe j farther upstream to assay
part of the gene’s 5’UTR. This dependency on previous “states” motivates our use
of HMMs.

Figure 21.7 shows a simple two-state HMM that can be characterized by three
sets of parameters, λ = (A, B, π). Initial probabilities are represented by π = {πx},
where πx is the probability of starting in state x. Transition probabilities are rep-
resented by A = {axy}, where axy is the probability of being in state y given
that the prior state was x. Emission probabilities are represented by B = {bx(r)},
where bx(r)i s the probability of generating or emitting the correlation coefficient
−1 ≤ r ≤ 1 in state x. The goal is to determine the most likely transcript boundary
of a gene given the correlation data upstream or downstream of the ORF.

Using a dynamic programming approach, the VITERBI Algorithm can determine
this optimal state sequence. This approach, however, relies on having a model for
the HMM with appropriate parameters for A, B, and π . The emission probabilities
B, may use the two smoothed distributions. The initial probabilities πand transi-
tion probabilities A train the HMM from a set of observation sequences using the

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

462 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

State 0:
Probe does

NOT
assay UTR

State 1:
Probe does
assay UTR

1 – a11

1 – a00
a11

a00

Figure 21.7 A two-state HMM. State 0 corresponds to a probe that assays a region, which is
not part of the gene’s UTR. State 1 corresponds to a probe that assays a region, which is part of
the gene’s UTR. The arrows represent the transitions between states.

segmental K-MEANS algorithm so that A and π are chosen to maximize P(O, I |λ).
Then implement two sets of HMMs: one for operon identification and the other for
5’UTR identification.

When extending the analysis to incorporate the expression of intergenic regions
using the HMM approach, the results correctly identified operon elements with 99%
specificity and 63% sensitivity. These results are based on 115 positive examples
of documented operon elements with intergenic regions greater than 40 base pairs
and where we can observe at least minimal transcript expression of the ORFs and
from 115 randomly chosen adjacent misoriented gene pairs as negative examples.
Furthermore, an additional 227 new operon elements were identified from the HMM
analysis.

The complexity of the hidden Markov model is related to the order of the Markov
models, for example, the order 0 Markov models, order 1 Markov models, and so on
until order m Markov models. An order 0 Markov model has no “memory,” and it is
equivalent to a multinomial probability distribution. An order 1 (first-order) Markov
model has a memory of size 1.

21.3.2 Linkage Clustering

Linkage clustering is a hierarchical clustering method using linkage criteria as the
measure of dissimilarity.

1. Single linkage clustering
Single linkage clustering specifies the distance between groups as the distance
between the closest pair of objects in different groups. See Figure 21.8 as an
example.

2. Complete linkage clustering
Complete linkage clustering specifies the distance between groups as the dis-
tance between the farthest pair of objects in different groups. See Figure 21.9
as an example.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.3 MACHINE LEARNING PREDICTION METHODS FOROPERON PREDICTION 463

Cluster B

Cluster A

Figure 21.8 Single linkage clustering.

3. Average linkage clustering
Average linkage clustering specifies the distance between groups as the aver-
age distance between the pair of objects in different groups. See Figure 21.10
as an example.

The average linkage hierarchical clustering algorithm has been employed to clus-
ter genes based on the similarity of their functional linkage profiles that use the
comparison metric depending on a centered correlation coefficient. The relationships
among gene expression patterns are represented by a tree, and the branch lengths of
the tree represent the degree of similarity between the gene profiles. The trp operon
were contained mostly in one branch of the gene tree. The clustering reflects both
bacterial operon organization and close chromosomal proximity of genes of related
function [33].

Cluster B

Cluster A

Figure 21.9 Complete linkage clustering.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

464 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

Cluster B

Cluster A

Figure 21.10 Average linkage clustering.

The sequential implementations of hierarchical clustering have a computational
complexity between O(N2) and O(N3) [33].

21.3.3 Bayesian Classifier

The Bayesian classifier is based on Bayes’ theorem. Its training process is a statis-
tical learning process, resulting in a corresponding classifier. The basic model is the
naı̈ve Bayesian classifier, which is a simple probabilistic classifier based on applying
Bayes’ theorem with strong (naive) independence assumptions. The formula of naı̈ve
Bayes is presented as follows:

Pr(O|D) = Pr(D|O) Pr(O)

Pr(D)
(21.4)

Where O is a random variable indicating whether a candidate actually is an operon,
and D represents the data available to make its determination.

The core of the task is to estimate the likelihood of the data of interest given the
two possible outcomes for O. Using the naı̈ve Bayes method, it makes the assumption
that features are independent of one another given the class and therefore make the
following approximation:

Pr(D|O) ≈
∏

i

Pr(Di |O) (21.5)

where Di is the ith feature.
We will use a specific example to interpret how to predict operons based on

Bayesian classification. Before representing the details, let us introduce the back-
ground of the problem first. The operon status of selected genes was derived from
RegulonDB with the following revisions: (i) leader peptides were removed from

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.3 MACHINE LEARNING PREDICTION METHODS FOROPERON PREDICTION 465

Table 21.1 Comparison of sensitivity and specificity of the different
operon prediction methods

Method Sensitivity Specificity

Correlation 0.82 0.70
Distance 0.84 0.82
Distance and correlation 0.88 0.88

the operon set because of transcriptional attenuation within the operon, which may
disrupt the coexpression pattern within the operon; (ii) operons with significant sec-
ondary promoters were deleted; (iii) new operons were added based on literature
data. This is the operon training set.

Then examine what extent the microarray data set contributes to the prediction
of operons beyond the prediction based on gene distance. To achieve this goal, they
used the Bayesian framework, which makes it particularly easy to update the current
knowledge on a pair of genes based on novel information.

Defining an overall noise considering all DOPkj across all experiments: Noise
SD = madk j (|DOPk j |)/

√
2. The ingredients of the Bayesian classification procedure

are the prior distributions and the likelihood f (r |OP) and f (r |NOP) (distribution of
correlation given the operon status). Estimating the functions f (r |OP) and f (r |NOP)
with the smooth densities is represented based on the previously described collection
of 604 operon pairs (OPs) and 151 nonoperon pairs (NOPs). As two different spec-
ifications of the prior distribution were considered, there are two sets of posterior
probabilities; one is based only on the expression correlation, Post(OP|r); the other
is based on both the distance and the expression correlation.

Then evaluate the correct classification rates for the 604 known OPs and 151
NOPs obtained when classifying as OPs all Potential Operon Pairs (POPs) for which
(i) Post(OP|r) > 0.5, (ii) Post(OP|d) > 0.5, or (iii) Post(OP|r ,d) > 0.5. To avoid
underestimating the error rate, a leave-one-out cross-validation procedure was used
so that each POP, in turn, is excluded from the training set; the likelihoods are reesti-
mated, and the status of the POP is predicted based on the newly evaluated decision
boundary. The calculated results of the percentage of correctly classified operons
(sensitivity of the operon prediction rule) and correctly classified nonoperons (speci-
ficity of the operon prediction rule) are shown in Table 21.1.

As a benchmark, the sensitivity and specificity of a uniform random classifica-
tion of an operon and a nonoperon are equal to 0.5. Hence, using the correlation of
expression values across microarray experiments produces a 64% increase in sensi-
tivity and a 40% increase in specificity. This classifier represents one of the current
standards for operon prediction; the fact that a comparable performance could be
obtained with array data is an indication that correlation between expression levels
indeed contains a considerable amount of information.

Then apply this prediction based on both microarray data and distance to the
completely POP set. The POPs in the E.coli genome (total 3024) comprise the

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

466 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

collection of all pairs of adjacent genes that are transcribed in the same direction
(including OPs, NOPs, and POPs of unknown status). The results of these predic-
tions are presented graphically in an expression correlation map of the entire E. coli
genome. The structure of the map is illustrated in Figure 21.11.

The purpose of a Bayesian model selection approach based on the model likeli-
hood is to tell us whether the increased complexity of a model with more param-
eters is justified by the data. However, the number of free parameters in a model
is only the simplest possible notion of complexity, which is called input complex-
ity and is denoted by C0. A much more powerful definition of model complexity
was given by Spiegelhalter et al. [34], who introduced the Bayesian complexity,
which measures the number of model parameters that the data can constrain:Cb =
−2(DKL(p, π) − D̂KL), where DKL(p, π) is the Kullback–Leibler (KL) divergence
between the posterior and the prior; The KL divergence measures the relative entropy
between the two distributions; D̂KL is a point estimate for the KL divergence.

This operon prediction approach is from one paper written by Sabatti et al. [28],
which explains it in more detail.

1.14 0.76 0.80 0.87 0.58 0.78 1.10 0.83 1.03 0.71 0.76 1.15 0.73 0.65

1.07 1.69 1.28 1.69 0.85 1.41 1.30 2.23 1.04 0.60 0.79 0.89 0.76 0.75

0.72 0.94 0.51

-0.03 0.48 0.92 0.85 0.84 0.81 0.93 0.28 -0.19

1.35 0.86 2.71 2.38 2.85 2.60 4.13 2.91 1.45 0.92 0.74

0.84 0.76 0.97 0.86 1.54 0.66 0.90 0.69 0.68 0.68 0.86 0.98 0.66 0.82

0.87
60.63

51.00

46.70

9.63

9.35

0.41

0.52

0.70 0.69 0.72 0.86 0.39 0.49 -0.11 0.37 0.65 0.82 0.21 0.21 -0.44

0.66 0.68 -0.02 -0.07

0.77 0.75 0.44 0.08 0.27 0.60 0.39 0.33 0.15

0.30 -0.53 -0.04 0.47 0.26 -0.29 0.16

0.58 0.63 -0.22 -0.11 -0.64 0.89 0.20 0.13 0.68 0.73 0.64 -0.63

0.70 0.63 0.69 0.84 1.62 2.10 0.66 0.86 0.84 0.79 1.30 0.81 0.69

ribH

cyoD

b2086

b2255

b2689

b2256 b2257 b2258 pmrD

gshA yqaB csrA oraA recA

TTNSD
Gene1

Correlation coefficient
Combine prediction
Distance prediction

Gene2
TTNSD

ygaD mltB srlA srlE srlB srlD gutMalaS

menE menC menB menD menF elaCelaAelaByfbB

gatR_1 tra5_4 gatD gatB gatA gatZ gatY b2097 b2099yegTgatCgatR_2b2088

cyoC cyoB cyoA ampG yajG bolA tig clpP clpX lon hupB yabU yabV

nusB thiL pgpA yajO dxS ispA xseB yajK thiJ apbA yajQ yajR cyoE

Figure 21.11 An example of a gene map. Each box represents a gene, the number in which
is the Total-To-Noise-Standard-Deviation (TTNSD) value for the corresponding gene. Between
the genes transcribed in the same direction is the correlation coefficient given. The first arrow
represents the predicted operon structure when both distance and microarray data are taken
into account. The second arrow represents the operon structure as it is predicted by distance
alone. On the left, an approximate minute count is given.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.3 MACHINE LEARNING PREDICTION METHODS FOROPERON PREDICTION 467

21.3.4 Bayesian Network

A Bayesian network is used to represent the joint probability distribution of a set of
random variables that exploits the conditional independence relationships among the
variables, often greatly reducing the number of parameters needed to represent the
full joint probability distribution. Also, the Bayesian network provids a powerful and
natural way to represent the dependencies that do exist.

Bockhorst et al. proposed a method with a Bayesian network to link many kinds
of observations such as spacer sizes, expression profiles, and codon usage [35]. Al-
though some methods like Bockhorst’s use correlations between only adjacent genes
on a single DNA strand, a pair of genes that are not immediately next to each other
can be an operon pair when the members of the operon are more than two. Therefore,
we mainly introduce a method proposed by Shimizu et al. for the operon prediction,
which uses correlations between not only adjacent but also distant genes on a DNA
strand [36].

As we know, any pair of genes that are adjacent to a single DNA strand can be
divided into two groups, OP or NOP. The prediction is to divide all pairs of adjacent
genes into predicted OPs and predicted NOPs. It is evaluated whether it is consis-
tent with the operon structures determined by biological experiments. Sensitivity
(correctly predicted OP/known OP) and specificity (correctly predicted NOP/known
NOP) are used as evaluation criteria. Then a Bayesian network model can be formu-
lated like in Figure 21.12 that is assumed to generate correlation of every gene pair.
zi, j is a hidden variable that takes 0 or 1, corresponding when the pair of genei and
gene j is NOP or OP, respectively. ri, j is the correlation coefficient between genei and
gene j , which is assumed to be generated randomly depending on zi, j . This genera-
tion process, p(ri, j

∣
∣zi, j), is determined beforehand using biologically known operon

r1,2 r2,3

r1,4
r2,5

r1,3Z1,2 Z2,3 Z3,4 Z4,5

Z3,5

Z2,5

Z2,4

r2,4

r3,4

r3,5

r4,5

r1,5

Z1,5

Z1,4

Z1,3

Figure 21.12 A Bayesian network model (left). Squares represent observable variables (ri,j),
and circles represent hidden variables (zi,j). An arrow stands for dependence. Hidden variables
have a hierarchical dependence structure. For example, if a pair of distant genes is OP, then any
pair of genes between the two genes is always OP. ri,j depends on the corresponding hidden
variable, zi,j , which means that the distribution of r is dependent on whether the pair is OP or
NOP.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

468 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

structures. The problem is to estimate the posterior distribution of zi, j for a given set
of ri, j calculated from microarray data. They used variational Bayes method to ap-
proximate the posterior probability, and the the new method is more effective than
the naive one according to some experiments.

Because the Bayesian network model has different structures, there is a study
to show that subsampling with network induction (SSML) cannot guarantee
monotonically faster inference with increasing network approximations; this results
because the network structure induced from approximate data (sampled from the
original network) has a high variance. In contrast, with edge deletion (ED), the trade-
offs of accuracy for faster inference are guaranteed to be monotonic. So, for several
large Bayesian Networks (BNs), ED can create approximate networks with order-of-
magnitude inference speed-ups with relatively little loss of accuracy [37].

21.3.5 Support Vector Machine

SVM, based on the statistical learning theory, can be used to solve a target classifica-
tion problem. It provides a better way to deal with several biological problems, such
as protein interactions and the accurate identification of alternatively spliced exons
[38].

With respect to the task of operon prediction, gene pairs fall into two classes:
WO pairs that are treated as positive data and TUB pairs that are treated as negative
data. The SVM should define a hyper plane to classify them yi(wT xi + b) ≥ 1. The
margin, denoting the distance of the hyper plane to the nearest of the WO and TUB
pairs, is 2/||ω|| and evaluates the classification ability of SVM [39]. For optimal
resolution of the data, the SVM analysis should arrive at an optimized hyper plane
with a maximal margin. It can be expressed as the following optimization problem:

{
min 1

2wT w

yi (wT w + b) ≥ 1, ∀i
(21.5)

By introducing Lagrange multipliers αi, the optimization problem converts into
a dual form that is a quadratic programming (QP) problem. Once a SVM is trained,
the decision function can be written as follows:

f (x) = sgn

(
N∑

i=1

yiαi x xi + b

)

(21.6)

In nonlinearly separable cases, the SVM technology introduces the slack variable
{ξi }N

i=1 to the definition of hyperplane.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.3 MACHINE LEARNING PREDICTION METHODS FOROPERON PREDICTION 469

SVM maps the input variable into a high-dimensional feature space with a kernel
function K (xi , x j). The decision function can be defined as

f (x) = sgn

(
N∑

i=1

yiαi K (xxi) + b

)

(21.7)

Wang et al. [29] apply the least-square support vector machine (LS-SVM) to
operon prediction of E. coli with different combinations of intergenic distance, gene
expression data, and phylogenetic profile.

Introduced to the problem of operon prediction, gene pairs can be classified into
two classes: WO pairs that take the role of positive data (class label +1) and TUB
pairs that take the role of negative data (class label –1). The vectors are the features
of the preprocessed data, which is Log-energy entropy intergenic distance, Hamming
distance of phylogenetic profiles, and denoised Pearson correlation coefficient of the
gene-expression data.

Operons are predicted in the E. coli K12 genome by LS-SVM, with 300 WO pairs
and 200 TUB pairs as the train sets and the other as the test sets. The best results of
the prediction were yielded from the combination of the entire feature as vectors in
the kernel of linear type, of which sensitivity, specificity, and accuracy were 90.73%,
93.54%, 92.34%, respectively. By comparing the results with library for support vec-
tor machines (Lib-SVM), joint predection of operons (JPOP), and Operon Finding
Software (OFS), it showed the LS-SVM method got the better results.

Zhang et al. [39] used the SVM approach to predict operons at the genomic level.
Four features were chosen as SVM input vectors: the intergenic distances, the num-
ber of common pathways, the number of conserved gene pairs, and the mutual infor-
mation of phylogenetic profiles. The analysis reveals that these common properties
are indeed characteristic of the genes within operons and are different from that of
nonoperonic genes. Jackknife testing indicates that these input feature vectors, em-
ployed with radial basis function (RBF) kernel SVM, achieve high accuracy.

The operons in E. coli K12 and B. subtilis are used commonly as benchmarks in
operon prediction. The SVM system used in this work is Lib-SVM. In this program,
gene features can be set as the input vectors for SVM.

All genes in a target genome can be grouped into clusters based on their orienta-
tion relative to flanking genes, Any two adjacent genes can be designated as a gene
pair, regardless of their orientation.

The process of operon prediction includes the following steps:

1. Cluster the genes in a genome

2. Eliminate genes that are located in single-gene clusters

3. Break down multigene clusters into potentialWO pairs

4. Extract features of candidate WO pairs

5. Identify true WO pairs and eliminate TUB pairs from candidate WO pairs

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

470 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

The SVM system accuracy was evaluated by two sets of benchmark operons:
E. coli and B. subtilis. Both sensitivity and specificity were higher than 80%, which
means the SVM achieved a good balance between the two measurements.

The complexity of the support vector machine is related to the type of kernel
function, for example, polynomial kernel, linear kernel, RBF kernel, Gaussian radial
basis function, hyperbolic tangent function, and so on. The complexity of SVM with
nonlinear function is higher than that with linear function.

21.3.6 Artificial Neural Network

Artificial neural network (ANN) is a nonlinear dynamic computational model that
tries to simulate the structure and/or functional aspects of biological neural networks.
It consists of an interconnected group of artificial neurons and processes information
using a connectionist approach to computation. In most cases, an ANN is an adaptive
system that changes its structure based on external or internal information that flows
through the network during the learning phase. It has many advantages such as self-
learning, self-adapting, and self-organizing capabilities. The neural cells in neural
work are an adaptive process unit, and it stores knowledge in the linkage of cells.
The weight in the linkage is modified by some kinds of rules such as the Hebb rule,
δ learning rule, and Widrow–Hoff learning rule.

Today, there are many kinds of neural network models such as the perceptron
model, back-propagation (BP) network model, self-organizing map (SOM) model,
recurrent network model, and hybrid network model.

The most commonly used model is BP network. It is a multilayer network, which
consists of input layer, output layer, and several hidden layers. BP network is a for-
ward network, and the training algorithm is a supervised back–forward algorithm. It
uses the gradient descent method to modify the weight of network and to minimize
the mean squared error (MSE) of network outputs and actual datasets. The principle
of the gradient descent method is to initialize a group of weights first and then calcu-
late the gradient of mean square error to weight and modify the weight; the algorithm
terminates when MSE minimizes to a certain limit. In detail, the algorithm can be
defined as follows.

Every node executes a nonlinear proceeding via weight input and gets its dynamic
outputs. The most commonly use sigmoid function is expressed as follows:

f (x) = 1

1 + e−x
(21.8)

For one process unit, if there are K training samples {xk}, the corresponding out-
put is {T k}, the weight of network is W , the MSE of this process unit isε, then

ε = 1

K

K∑

K=1

(W × X k − T k)2 (21.9)

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.3 MACHINE LEARNING PREDICTION METHODS FOROPERON PREDICTION 471

So ε is a function of weight W . Then it can modify the weight by the gradient
descent method:

W ∗ = W − η	ε (21.10)

where η is the step to control the pace of modifying weights, and 	ε is the gradient
of W .

A neural network is a uniform machine learning method, and it is successful when
implemented into operon prediction. There are many methods to predict operons
based on the neural network. The most famous program is JPOP [2], which classifies
each pair of consecutive genes as an “operonic” or an “nonoperonic” boundary based
on their intergenic distance, similarity between their phylogenetic profiles, and relat-
edness of their annotated functions from COGs [4]. Each of these sets of supporting
data is integrated using a NN to generate operon predictions.

21.3.7 Genetic Algorithms

A genetic algorithm (GA) is a search technique that has been used frequently in
calculations to find approximate solutions to optimization and search problems. The
primary steps are as follows:

1. Initialization
The encoding of individuals and the population size in an initial population
are considered depending on the actual problems. The common solution is
represented in binary as strings of 0s and 1s.

2. Selection
During each successive generation, a proportion of the existing population is
selected to breed a new generation using the fitness function, which depends
on the specific problem.

3. Reproduction
Given a pair of “parent” solutions, the “child” solutions are generated with
crossover and mutation.

1) Crossover:
The value of probability for crossover is important, and one choise is around
0.7. Crossover is performed by selecting a random gene along the chro-
mosomes and swapping all genes after that point. See Figure 21.13 as an
example.

Parent1

1011110

1011110 01010100010

10001011110 0010101

0010101 10001011110

01010100010

Parent2

Child2Child1

Figure 21.13 Crossover.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

472 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

100101010011000110

100101 1 10011000110

Before

After

Figure 21.14 Mutation.

2) Mutation:
Mutation is performed with a very low probability because the mutation
rarely appears in nature, and it is commonly 0.001. See Figure 21.14 as an
example.

3) Termination:
The generational process is repeated until a termination condition is satis-
fied. There are some common terminating conditions such that a solution is
found that satisfies minimum criteria, the number of generations exceed a
fix value, and so on.

A fuzzy guided genetic algorithm has been employed to predict operon. This
method used a genetic algorithm to evolve an initial population, which presents a
putative operon map of a genome. Each putative operon is scored using intuitive
fuzzy rules, and a high accuracy of prediction can be obtained [17]. A modified ge-
netic algorithm using the fitness function based on four kinds of genome information
has been employed to predict an operon. The genome information includes inter-
genic distance, COG gene functions, metabolic pathway, and microarray expression
data [30].

The computational complexity of the genetic algorithm is O (t × m × n), where
t is the generation, m is the population size, and n is the objective size [40].

21.3.8 Several Combinations

All methods we mentioned use only one algorithm through machine learning to pre-
dict operons. Operons also can be predicted through combining several algorithms.
This method, which is introduced as an example of algorithms combination, pre-
dicted operons in Pyrococcus furiosus by combining the results from three existing
algorithms using a NN. These algorithms use intergenic distances, phylogenetic pro-
files, functional categories, and gene-order conservation in their operon prediction.

Because no genome-wide operons in P. furiosus have been determined experi-
mentally, the program was benchmarked using operons from E. coli and B. subtilis,
which have been validated experimentally. The true positive (TP) set in E. coli are
the transcriptional unit gene pairs extracted from the RegulonDB database. A neg-
ative dataset is generated as follows: two adjacent genes in the same direction are
considered as a true negative (TN) gene pair if they are not transcriptionally coex-
pressed (i.e., not in the same transcriptional unit). In addition, only gene pairs with
confidence measures from all three prediction programs can be considered when
generating the TP and TN sets.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

21.3 MACHINE LEARNING PREDICTION METHODS FOROPERON PREDICTION 473

The details of the algorithm beginning with pathway assignment is described as
follows.

Genes within the same operon generally encode proteins that function in the
same metabolic pathway or biological process. As such, scores have been gener-
ated from the pathway information collected from the KEGG database [41]. The
KEGG (prokaryotic) pathways are organized into four general categories (level 1):
Metabolism, Genetic Information Processing, Environmental Information Process-
ing, and Cellular Processes. These categories are subdivided further into level 2
and level 3 pathways. The authors of KEGG have used KO terms to describe each
pathway.

Once the ORFs are assigned KO annotation, the KEGG pathways can be inferred
directly. A KEGG pathway score of 1, 2, or 3 was assigned to a gene pair if they
share the same level 1, level 2, or level 3 pathway, respectively. The higher the score,
the higher the chance the two gene products are in the same pathway, and hence, it
is more likely that the two genes belong to the same operon.

Another input to the NN-based predictor is an intergenic distance-based log-
likelihood score defined by Equation 21.11. This score for a gene pair is computed
as the log ratio between the probability that their distance belongs to the distance
distribution of the TP set and the probability that distance belongs to the distance
distribution of the TN set.

LL(d(ga, gb)) = ln
P(d(ga, gb)|TPgenepair)

P(d(ga, gb)|TNgenepair)
(21.11)

Score Normalization
Normalization of the confidence scores of the three prediction programs is

necessary to ensure that the dynamic range of the individual programs does
not influence the performance of the ANN. For each program, the prediction
confidence measure for each gene pair was extracted and normalized to be-
tween 0 and 1, where a value >0.5 indicates that the corresponding gene pair
belongs to the same operon. The GO similarity score, KEGG pathway scores
and log-likelihood score, of intergenic distance also were normalized linearly
into the range [0, 1].

Neural Network Training
The idea of ANN is to train a set of parameters to give a desired output tar-

get (t), for a given input data (x). In this approach, the authors present the
confidence measures from each of the three prediction programs, x = [xi]
for i = 1, 2, 3 to a feedforward network architecture (Figure 21.15). Vari-
ous combinations of GO similarity, KEGG pathway, and intergenic distance
scores also were tested as additional inputs into the NN-based predictor. The
desired output target is 0/1 {1 = “gene pair in an opero”, 0 = “gene pair not in
an operon”}. The training algorithm optimizes the weights W = [wi]T and a
bias, b, of the network during the training (supervised learning) phase to mini-
mize the error between the network output, a, and the desired output, t , on the

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

474 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

JPOP

Inputs

+

Neuron
Click on image to enlarge

Neural network operon
prediction results

x1
w1

w2 n

b

f(.)
a

a = f (Wx+b)

w3
x2

x3

OFS

VIMSS

Figure 21.15 Schematic illustration of a one-layer NN architecture with three inputs from
existing programs. The confidence values xi of each operon prediction program are inputs into
a neuron consisting of a summation unit and a transfer function, f , to produce an output a.

training data. The network architecture parameters are (i) the transfer function
(f), (ii) the number of neurons, and (iii) the number of layers.

This approach for operon prediction is proposed by Tran et al. [42], which is
described herein as integrating the strengths of existing prediction algorithms that
use various sequence features such as codon usage and intergenic distance, conserved
gene-order, and phylogenetic profiles of genes.

21.4 CONCLUSIONS

Operons are critical to the reconstruction of regulatory networks at the whole genome
level. They can provide highly useful information for characterizing or constructing
the regulatory network in a microbial genome. A better operon prediction result is
more powerful for predicting regulon, pathway, and regulatory network.

In this chapter, we introduced six operon databases with comprehensive operon
information, including dataset size, data source, prediction method if necessary, and
so on. We also generated the features that are most popular in operon prediction
methods today and the general methods to prepare the data. Then eight machine-
learning algorithms for operon prediction are described for the readers who are in-
terested in computational algorithms solving the problems of operon identification.

We hope this chapter is helpful for readers to learn about operon prediction
quickly and is convenient to use it as a handbook. Furthermore, there are still lots
of work that needs to be done in the operon prediction research field in the fu-
ture, such as how to improve the prediction accuracy and integrate operon prediction
software into some platforms for comparative analyses of prokaryotic genomes, and
so on.

Because of the author, there might be some errors in this chapter. Please contact
us and we will correct it in the future. For more detail about topics covered in this
chapter, please refer to the citations in the reference section.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

REFERENCES 475

21.5 ACKNOWLEDGMENTS

This chapter would have not been written without the constant support and help from
several colleagues and students throughout the years. We should especially thank
Professor Ying Xu from Georgia University for his good advice and suggestions.
We also should thank adjunct professor Yanxin Huang and students Xiumei Wang,
Fangxun Sun, and Zhichao Lian for their effort and contribution to this chapter.

The chapter improved a great deal after the careful reading and the serious com-
ments and suggestions. We are greatly indebted to Ying Sun, Juexin Wang, Zhongbo
Cao, Chunbao Zhou, and Huan Yang, for their efforts to push this chapter from a
draft into the final edition.

Also, all work in this chapter was supported by the NSFC (60673023, 60703025,
60803052, 10872077); the National High-Tech R&D Program of China (863) (grant
2007AA04Z114, 2009AA02Z307); the Science-Technology Development Project
from Jilin Province of China (20080708, 20080172); the project of 200810026,
20091021 support by Jilin University, and “211” and “985” project of Jilin
University.

REFERENCES

1. J.Z. Zhou, D.K. Thompson, Y. Xu, and J.M. Tiedje. Microbial Functional Genomics.
Wiley-LISS, New York, 2004.

2. X. Chen, Z.C. Su, Y. Xu, and T. Jiang. Computational prediction of operons in syne-
chococcus sp. WH8102 [J]. Gen Informatics, 15(2):211–222, 2004.

3. X. Chen, Z. Su, B. Palenit, Y. Xu, and T. Jiang. Operon prediction by comparative ge-
nomics: An application to the synechococcus sp. WH8102 genome [J]. Nucleic Acids
Res, 32(7):2147–2157, 2004.

4. R.L. Tatusov, E.V. Koonin, and D.J. Lipman. A genomic perspective on protein families.
Science, 278:631–637, 1997.

5. M.D. Ermolaeva, O. White, S.L. Salzberg. Prediction of operons in microbial genomes.
Nucleic Acids Res, 29:1216–1221, 2001.

6. E.J. Alm, K.H. Huang, M.N. Price, R.P. Koche, K. Keller, I.L. Dubchak, and A.P. Arkin.
The microbesonline web site for comparative genomics. Genome Res, 15(7):1015–1022,
2005.

7. S. Okuda, T. Katayama, S. Kawashima, S. Goto, and M. Kanehisa. ODB: A database
of operons accumulating known operons across multiple genomes. Nucleic Acids Res,
34(Special Issue):D358–D362, 2006.

8. A.M. Huerta, H. Salgado, D. Thieffry, and J. Collado-Vides, RegulonDB: A database on
transcriptional regulation in Escherichia coli. Nucleic Acids Res, 26(1):55–59, 1998.

9. Y. Makita, M. Nakao, N. Ogasawara, and K. Nakai. DBTBS: Database of transcriptional
regulation in Bacillus subtilis and its contribution to comparative genomics. Nucleic Acids
Res, 32:D75–D77, 2004.

10. F.L. Mao, P. Dam, J. Chou, V. Olman, and Y. Xu. DOOR: A database for prokaryotic
operons. Nucleic Acids Res, 37:D459–D463, 2009.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

476 APPROACHES AND METHODS FOR OPERON PREDICTION BASED

11. C. Sabatti, L. Rohlin, and M.K. Oh. Co-expression pattern from DNA microarray experi-
ments as a tool for operon prediction. Nucleic Acids Res, 30(13):2886–2893, 2002.

12. Y. Zheng, J.D. Szustakowski, L. Fortnow, R.J. Roberts, and S. Kasif. Computational iden-
tification of operons in microbial genomes. Genome Res, 12:1221–1230, 2002.

13. H. Salgado, G. Moreno-Hagelsieb, T.P. Smith, and J. Collado-Vides, Operons in Es-
cherichia coli: Genomic analyses and predictions. Proc Natl Acad Sci, 97(12):6652–6657,
2000.

14. M.D. Ermolaeva, O. White, S.L. Salzberg. Prediction of operons in microbial genomes.
Nucleic Acids Res, 29(5):1216–1221, 2001.

15. M. Pellegrini, E.M. Marcotte, M.J. Thomopson, D. Eisenberg, and T.O. Yeates. Assigning
protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc
Natl Acad Sci, 96(8):4285–4288, 1999.

16. D.M. Ermolaev, O. White, and S.L. Salzberg. Prediction of operons in microbial
genomes[J]. Nucleic Acids Res, 29(5):1216–1221, 2001.

17. E. Jacob, R. Sasikumar, and K.N.R. Nair. A fuzzy guided genetic algorithm for operon
prediction [J]. Bioinformatics, 21(8):1403–1407, 2005.

18. M. Pertea, K. Ayanbule, M. Smedinghoff, and S.L. Salzberg. OperonDB: A comprehen-
sive database of predicted operons in microbial genomes. Nucleic Acids Res, 37:D479–
D482, 2009.

19. I. Moszer, P. Glaser, and A. Danchin. SubtiList: A relational database for the Bacillus
subtilis genome. Microbiology, 141:261–268, 1995.

20. D.L. Wheeler, C. Chappey, A.E. Lash, D.D. Leipe, T.L. Madden, G.D. Schuler,
T.A. Tatusova, and B.A. Rapp. Database resources of the national center for biotech-
nology information. Nucleic Acids Res, 28:10–14, 2000.

21. P. Dam, V. Olman, K. Harris, Z. Su, and Y. Xu. Operon prediction using both genome-
specific and general genome information. Nucleic Acids Res, 35:288–298, 2007.

22. R.W. Brouwer, O.P. Kuipers, and S.A. Hijum. The relative value of operon predictions.
Brief Bioinform, 9(5):367–375, 2008.

23. H. Salgado, G. Moreno-Hagelsieb, T.P. Smith, and J. Collado-Vides. Operons in Es-
cherichia coli: Genomic analyses and predictions, Proc Natl Acad Sci, 97(12):6652–6657,
2000.

24. M.D. Ermolaeva, O. White, and S.L. Salzberg. Prediction of operons in microbial
genomes [J]. Nucleic Acids Res, 29(5):1216–1221, 2001.

25. M. Pellegrini, E.M. Marcotte, M.J. Thomopson, D. Eisenberg, and T.O. Yeates. Assigning
protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc
Natl Acad Sci, 96(8):4285–4288, 1999.

26. D.A. Liberles, A. Thoren, G. Heijne, and A. Elofsson. The use of phylogenetic profiles of
gene predictions. Curr Genom, 3(3):131–137, 2002.

27. J.P. Vert. A tree kernel to analyze phylogenetic profiles. Bioinformatics, 18(9):276–284,
2002.

28. C. Sabatti, L. Rohlin, and M.K. Oh. Co-expression pattern from DNA microarray experi-
ments as a tool for operon prediction [J]. Nucleic Acids Res, 30(13):2886–2893, 2002.

29. X.M. Wang, W. Du, Y. Wang, C. Zhang, C.G. Zhou, S.Q. Wang, and Y.C. Liang. The
application of support vector machine to operon prediction. Second International Confer-
ence on Future Generation Communication and Networking, FGCN ’08, volume 3, 2008,
pp. 59–62.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

REFERENCES 477

30. S.Q. Wang, Y. Wang, W. Du, F.X. Sun, X.M. Wang, Y.C. Liang, and C.G. Zhou. A multi-
approaches-guided genetic algorithm with application to operon prediction. Artif Intell
Med, 41:151–159, 2007.

31. W. Du, Y. Wang, S.Q. Wang, X.M. Wang, F.X. Sun, C. Zhang, C.G. Zhou, C.Q. Hu, and
Y.C. Liang. Operon prediction by GRNN based on log-likelihoods and wavelet transform.
Dynam Continuous, Discrete Impulsive Syst, A Suppl, Adv Neural Networks, 14(S1):323–
327, 2007.

32. B. Tjaden, D.R. Haynor, S. Stolyar, C. Rosenow, and E. Kolker. Identifying operons and
untranslated regions of transcripts using Escherichia coli RNA expression analysis. Bioin-
formatics, 18(90001):S337–S344, 2002.

33. S.M. Lin and K.F. Johnson. Methods of Microarray Data Analysis II. Kluwer Academic
Publishers, Waltham, MA, 2002.

34. D.J. Spiegelhalter, N.G. Best, B.P. Carlin, and A. van der Linde. Bayesian measures of
model complexity and fit (with discussion). J Roy Stat Soc, B, 64:583–639, 2002.

35. J. Bockhorst, M. Craven, D. Page, J. Shavlik, and J. Glasner. A Bayesian network ap-
proach to operon prediction. Bioinformatics, 19(10):1227–1235, 2003.

36. H. Shimizu, S. Oba, and S. Ishii. Operon prediction by DNA microarray: An approach
with a bayesian network model. Gen Informatics, 14:310–311, 2003.

37. A. Santana and G. Provan. An analysis of bayesian network model-approximation tech-
niques. Proceedings of the European Conference on AI, 2008, pp. 851–852.

38. B.P. Westover, J.D. Buhler, J.L. Sonnenburg, and S.I. Gordon. Operon prediction without
a training set. Bioinformatics, 21(7):880–888, 2005.

39. G.Q. Zhang, Z.W. Cao, Q.M. Luo, Y.D. Cai, and Y.X. Li. Operon prediction based on
SVM. Comput Biol Chem, 30(3):233–240, 2006.

40. C.A. Ankenbrandt. An extension to the theory of convergence and a proof of the time
complexity of genetic algorithms. Foundations of Genetic Algorithms, 1991, pp. 53–68.

41. M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res, 28:27–30, 2000.

42. T.T. Tran, P. Dam, Z.C. Su, F.L. Poole, M.W. Adams, G.T. Zhou, and Y. Xu. Operon
prediction in Pyrococcus furiosus. Nucleic Acids Res, 35(1):11–20, 2007.

P1: OSO
c21 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

22
PROTEIN FUNCTION

PREDICTION WITH
DATA-MINING TECHNIQUES

Xing-Ming Zhao and Luonan Chen

22.1 INTRODUCTION

One of the most challenging problems in the postgenomic era is to annotate un-
characterized proteins with biological functions. In past decades, a huge amount of
protein sequences were accumulated in public databases. However, the pace at which
proteins are annotated is far behind the one at which protein sequences accumulate.
Currently, about 25% of genes remain uncharacterized for the well-studied Saccha-
romyces cerevisiae, whereas only about 20% of genes are not annotated for Homo
sapiens. It would be time consuming and expensive to determine the functions of all
proteins in a lab. Computational biology that uses data mining techniques provides
an alternative way to predict functions of proteins based on their sequences, struc-
tures, gene expression profiles, and so on. For instance, a straightforward way is to
apply PSI-blast [1] and FASTA [63] to find homologous proteins and transfer their
annotations to the target protein in which the proteins with similar sequences are
assumed to carry out similar functions. However, the alignment-based methods may
not work well when the sequence similarity between known proteins and the query
protein is very low (e.g., below 30%). Under the circumstances, the alignment-free
methods provide an alternative solution to this problem by using data-mining tech-
niques [37, 47, 90, 98], in which the alignment-free methods can detect the remote
homologies of the target protein efficiently. In addition to sequences, structures have
been exploited for protein annotation [18, 52] because the structures are believed to

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

479

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

480 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

be more conservative than the corresponding sequences, and proteins with similar
structures are assumed to have similar functions [5].

Recently, with the advance in high-throughput biotechnologies, such as yeast two-
hybrid systems [21] and microarray expression profiles [29], a large amount of bi-
ological data have been generated. These data are rich sources for deducing and
understanding protein functions. Accordingly, many computational methods have
been developed for protein function prediction based on these high-throughput data.
For example, the protein-protein interaction (PPI) data are used for protein annota-
tion [94] with the assumption that interacting proteins have similar functions, and
gene expression profiles are used with the assumption that genes with similar ex-
pression profiles usually carry out similar functions, and so on.

To facilitate the understanding of protein functions, various databases are con-
structed for protein annotation with distinct definitions on protein function. For ex-
ample, enzyme classification presents a nomenclature for enzymes by classifying
enzymes into different groups. In the classification, each enzyme is associated with
at most four numbers denoted as the enzyme commission (EC) number in which the
more numbers, the more specifically the EC number describes the function of the
enzyme. For instance, EC 1.1 represents “Acting on the CH-OH group of donors,”
EC 1.1.1 means “With nicotinamide adenine dinucleotide (NAD) or nicotinamide
adenine dinucleotide phosphate (NADP) as acceptor,” and EC 1.1.1.1 implies “al-
cohol dehydrogenase.” Another widely used database is Gene Ontology (GO) [3],
in which each protein can be described in three categories including molecular func-
tion, biological process, and cellular component. Table 22.1 lists the popular function
annotation databases that have been used widely for protein annotation in literature.

In this chapter, we aim to describe the computational methods for protein func-
tion prediction in a comprehensive manner, especially from the perspective of data-
mining. In particular, we describe data-mining techniques that can predict protein
functions based on various data, including protein sequences, structures, gene ex-
pression profiles, protein-protein interactions, and integration of different data. Given
different biological data, we present a comprehensive framework on protein annota-
tion based on data-mining techniques. Note that this chapter aims to summarize re-
cent developments on protein function prediction and is by no means comprehensive
because of the rapid evolvement of the field.

22.2 PROTEIN ANNOTATION BASED ON SEQUENCE

22.2.1 Protein Sequence Classification

Given an unknown protein, the most straightforward way to predict its possible func-
tions is to align it against a reference database, such as NCBI RefSeq [68], with pop-
ular methods such as PSI-BLAST [1]. After getting the best hit for the target protein,
it is reasonable to assume that the target protein has similar functions as its best hit if
they have high sequence identity (e.g., ≥ 90%). However, there is no safe sequence
similarity threshold that can guarantees that two proteins have the same function.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

22.2 PROTEIN ANNOTATION BASED ON SEQUENCE 481

Table 22.1 Popular biological databases for protein annotation

Database Description

COG Clusters of orthologous groups (COG)
http://www.ncbi.nlm.nih.gov/COG/index.html

Enzyme
Nomenclature

Recommendations of the Nomenclature Committee of the International
Union of Biochemistry and Molecular Biology on the Nomenclature
and Classification of Enzymes by the Reactions they Catalyse
http://www.chem.qmul.ac.uk/iubmb/enzyme/

Funcat An annotation scheme for the functional description of proteins from
prokaryotes, unicellular eukaryotes, plants and animals
http://mips.gsf.de/projects/funcat

Gene Ontology A controlled vocabulary to describe gene and gene product attributes
http://www.geneontology.org/

HAMAP High-quality automated and manual annotation of microbial proteomes
http://www.expasy.org/sprot/hamap/

KEGG A complete computer representation of the cell, the organism,
http://www.genome.jp/kegg/

SCOP A detailed and comprehensive description of the structural and
evolutionary relationships between all proteins whose structures are
known
http://scop.mrc-lmb.cam.ac.uk/scop/

TIGRFAMs Protein families based on hidden Markov models and the biosphere
http://www.tigr.org/TIGRFAMs/

Uniprot The most comprehensive catalog of information on proteins
http://www.ebi.uniprot.org/index.shtml

In particular, the sequence similarity approach fails if it is difficult to find a hit in
the reference database for the target protein with high sequence identity. It has been
found that it is difficult to detect the homology relationship if the sequence identity
between any pair of sequences is less than 40%.

Under the circumstance, there are many data-mining methods that have been pro-
posed to detect the homology relationship without sequence alignment, which usu-
ally is referred to as protein sequence classification. Figure 22.1 shows the flowchart
of protein sequence classification using data-mining techniques. In protein sequence
classification, all characterized proteins are classified into different families in ad-
vance according to their structures and functions. Accordingly, one classifier is con-
structed for each protein family. The unknown protein will be classified into one
of the known families according to its sequence content and therefore is annotated
with functions corresponding to the family. Recently, various data-mining techniques
(e.g., support vector machines [SVMs] [37, 47, 98] and neural networks [26]) have
been applied successfully to protein sequence classification and have shown superi-
ority to other methods.

The data-mining techniques for protein sequence classification differ in either pro-
tein representations or classifiers used. Generally, to employ data-mining techniques
for protein sequence classification, each protein should be represented as a feature

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

482 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

Classifier 1 Classifier 2 Classifier n

Unknown protein

Protein
Family n

Protein
Family 2

Protein
sequences

Protein
Family 1

Figure 22.1 Schematic overview of protein sequence classification.

vector. In literature, several methods have been developed for protein descriptions.
For example, k-mer composition is one widely used description of proteins by tak-
ing into account amino acid composition and order information [93, 98]. In k-mer
composition, a sliding window of length k is moved along the protein sequence, and
the frequency of the k-mer word is recorded in which the number of k-mer words
is 20k . For example, there are 400 words for each protein sequence if a 2-mer com-
position is considered. The k-mer composition is used widely because of its sim-
plicity and usefulness. Other methods also are developed to describe proteins based
on physical and chemical properties of amino acids (e.g., hydrophile and hydropho-
bicity [37]). Furthermore, alignment profiles taking into account evolutionary infor-
mation also are used to detect homology, for example, sequence profiles [50] and
the kernel method using pairwise sequence alignment [48]. Saigo et al. proposed
new kernels for strings adapted to biological sequences, namely local alignment
kernels, to detect protein homology [74]. Rangwala and Karypis proposed a new
similarity between pairs of proteins using profile-to-profile scoring schemes [70].
Ben-Hur and Brutlag proposed a new method using motif composition for feature
extraction [9]. Lingner and Meinicke introduced a feature vector representation for
protein sequences based on distances between short oligomers and showed good per-
formance [49]. Most recently, Damoulas and Girolami proposed a single multiclass
kernel machine that informatively combines the distinct feature groups for protein
homology detection [24]. Because the dimensionality of the protein vectors gener-
ated is usually very high, more computation cost may be introduced and the perfor-
mance of predictor is degraded at the same time. Several techniques are presented to
reduce dimensionality and noise, such as latent semantic analysis [27], SVD [69, 92],
and chi-square feature selection [20].

In the data-mining approaches described, protein sequence classification is treated
as a multiclass classification problem that usually is reduced to a set of binary

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

22.2 PROTEIN ANNOTATION BASED ON SEQUENCE 483

classification problems in which one classifier is designed for each class. The pro-
teins in one class are seen as positive examples, whereas those outside the class are
seen as negative examples [47, 48]. However, the imbalance problem will result in
this case because the number of proteins in one class is usually much smaller than
that of proteins outside the class. As a result, the imbalanced data cause classifiers
to tend to overfitt and to perform poorly on the minority class. Despite the consid-
erable success, existing methods tend to misclassify the examples in the minority
class (positive examples in this case), especially when the data are highly imbal-
anced. Under the circumstance, Zhao et al. [97] proposed a new sampling technique
that uses both oversampling and undersampling to balance the data. Furthermore,
an ensemble classifier was constructed for protein sequence classification in which
the classifiers trained in a different feature space are combined together to improve
prediction accuracy.

22.2.2 Protein Subcellular Localization Prediction

Generally, proteins are transported to specific compartments in a cell to function
properly. Figure 22.2 shows several typical subcellular localizations in a cell. These
subcellular localizations can provide insights into protein functions. Recently, vari-
ous data-mining methods have been developed for protein subcellular localization
prediction in which different types of protein descriptions are explored such as
amino acid composition (AA) and amino acid pair composition (pAA). For instance,
SubLoc [17] used SVM and sequence features to obtain high prediction accuracy.
Nakashima and Nishikawa [59] used pAA, and Chou [22] used pseudoamino acid
composition (PseAA) for prediction. PSORT [36] used various sequence features

ER

Mitochondria

Golgi

Cytoskeleton

Plasma membraneIntra-cellular
Inter-cellular

Nucleus

Figure 22.2 Some typical subcellular localizations in one cell.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

484 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

to predict protein localization sites in eukaryotic cells. TargetP [30] used artificial
neural networks (ANN) and a N-terminal sequence to predict subcellular localiza-
tions. Furthermore, protein motifs or domains also have been useful for subcellu-
lar localization prediction. Mott et al. [56] used cooccurrence of domain families
to predict protein cellular localization. Scott et al. [77] used a similar idea of mo-
tif cooccurrence and developed a Bayesian network localization predictor. Park and
Kanehisa [62] used motif-like gapped amino acid composition (GapAA) and found
it useful as a feature of proteins in distinct compartments.

Except for sequence composition data, other information also has been found
useful for subcellular localization prediction. Cai and Chou [14] integrated different
information, including pseudoamino acid composition, gene ontology information,
and domain composition for subcellular localization prediction. SherLoc integrated
text and protein sequence data and got high prediction accuracy. BaCelLo [66] used
N-terminal, C-terminal, amino acid composition, and a sequence alignment profile
to predict subcellular localizations. Tamura and Akutsu [83] used alignment of block
sequences to improve prediction accuracy. Despite the success of different meth-
ods, it is difficult to say which is better. Liu et al. [51] presented a metapredictor
by combining strengths of multiple available predicting programs, thereby obtaining
high prediction accuracy. Chang et al. [16] developed a probabilistic latent seman-
tic analysis method for gram-negative bacteria. Lee et al. [46] integrated various
information including protein interaction network, gene ontology, hydrophobicity,
side-chain mass and domain composition, and improved prediction accuracy signifi-
cantly. However, most methods described do not consider the imbalance problem in
protein subcellular localization prediction in which proteins of target compartment
generally are regarded as positive samples, whereas those outside are regarded as
negative samples, and the number of negative samples is usually much larger than the
one of positive samples. Furthermore, distinct features contribute differently to the
prediction, and therefore, feature selection may improve prediction accuracy. Most
recently, Zhao and Chen developed a balanced and ensemble classifier that can im-
prove subcellular localization prediction significantly [100]. Later, the approach was
applied successfully to predict protein subcellular localizations for pathogen fungus
Fusarium graminearum [101].

22.3 PROTEIN ANNOTATION BASED ON PROTEIN STRUCTURE

Although protein sequence can help to predict functions of unknown proteins, it has
been found that protein structure is more conservative than protein sequence and
is therefore helpful for predicting protein function. Today, some public databases
deposit protein structures, such as Protein Data Bank (PDB) [10] and Structural
Classification of Proteins (SCOP) [53]. Similar to sequence-based methods, one can
infer the function of an unknown protein by comparing its structure with those of
known proteins. In general, two proteins share functions if they have similar struc-
tures. Several structural alignment methods have been developed, such as DALI [35],

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

22.4 PROTEIN FUNCTION PREDICTION BASED ON GENE EXPRESSION DATA 485

CATHEDRAL [72], and SAMO [18]. Despite the success of structure in predicting
protein function, it has been found that two proteins may have distinct functions
even though they have very similar structures [6]. On the other hand, two proteins
may perform the same function even though they have very different structures [91].
In other words, it is never safe to conclude that two proteins have the same function
if they have similar structures.

Because proteins function by interacting with each other, protein surface area
through which proteins interact provides insights into the relationship between
protein structure and function [39]. Therefore, the function of one known protein
can be transferred to an uncharacterized protein, between which there is a matched
surface area. In literature, several methods have been developed to analyze protein
surfaces, such as CASTp [11] and eF-Site [42]. Most recently, Liu et al. proposed
a new method to predict protein function by constructing a pocket similarity net-
work [52] in which the pockets are surface patterns defined in the CASTp database.
The numerical results demonstrate that the pocket similarity network not only is ef-
fective for identifying remote homologues but also reveals direct links between small
surface patterns and GO functions.

22.4 PROTEIN FUNCTION PREDICTION BASED ON GENE
EXPRESSION DATA

In the last decade, gene expression data generated by microarray technologies are
proven useful for elucidating gene function in which genes sharing similar functions
tend to coexpress. Therefore, many data-mining methods including both supervised
and unsupervised approaches have been used to predict protein functions based on
gene expression. Generally, gene expression data are organized as a matrix in which
each gene is denoted by a vector (row) and each condition by an attribute (column).
In supervised methods, the functions of some genes are known in advance and act
as class labels for corresponding vectors representing genes. The other genes remain
unlabeled, and the data-mining techniques are used to assign a label to them. Brown
et al. [13] applied SVMs to predict the functions of a yeast genes based on gene ex-
pression data. The numerical experiments demonstrate the promising effectiveness
of SVMs in protein function prediction. Mateos et al. [55] uszed multilayer percep-
trons (MLP) to predict protein functions of a yeast genome under 96 function classes.
By analyzing the performance of the MLP classifier, the authors showed that the per-
formance of the classifier is affected not only by the learning technique but also by
the nature of the data. Later, Ng and Tan [60] combined multiple datasets for learn-
ing with SVMs and presented a strategy to select the most informative data sets for
learning individual classes. Recently, Pandey and Kumar [61] presented a modified
k-nearest neighbor learning algorithm for protein annotation based on gene expres-
sion data in which the similarity between functional classes is taken into account. The
results demonstrate that the incorporation of interrelationships between functional
classes substantially improves the performance of function prediction algorithms.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

486 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

In unsupervised methods, it is assumed that no label is known in advance. The
unsupervised techniques, especially clustering methods, group genes that coexpress
in various conditions with the idea that genes with similar expression profiles share
common regulatory mechanisms and functions. For example, Raychaudhuri et al.
used principal component analysis to identify gene expression signatures from gene
expression data [71]. Tavazoie et al. used k-means approach to cluster gene expres-
sion data [85]. Other clustering methods, such as hierarchical clustering [29] and
self-organizing maps [82], also are used widely to predict gene function by cluster-
ing gene expression data. Recently, biclustering methods also are used to find pat-
terns of coregulated genes in which coregulated genes are assumed to share similar
functions [8, 67]. Unlike the clustering methods described, biclustering techniques
discover coregulated genes not only over genes but also over conditions (samples).
Therefore, this technique can discover patterns ignored by other methods.

22.5 PROTEIN FUNCTION PREDICTION BASED ON PROTEIN
INTERACTOME MAP

In a cell, proteins function by interacting with each other, and PPIs thereby pro-
vide an alternative way to protein function prediction. Therefore, it is reasonable to
assume that interacting proteins share common functions (i.e., “Guilt by Associa-
tion” rule). Several methods have been proposed to predict protein functions based
on protein interactome. These approaches can be grouped into two categories (i.e.,
function prediction based on local and global topology structures of interaction map
respectively, which will be addressed in detail below).

22.5.1 Protein Function Prediction Based on Local Topology
Structure of Interaction Map

A straightforward way to predict the function of an unknown protein using pro-
tein interaction is to transfer the function of its direct interaction partners that have
been annotated to the target protein (see Figure 22.3a). Schwikowski et al. [76]
annotated an unknown protein with the functions occurring most often for its in-
teraction partners, which is called the majority rule method in literature. Unfortu-
nately, the majority rule method will not work if there are no annotations for the
direct interaction partners of the target protein (see Figure 22.3b). To handle this
problem, Hishigaki et al. [34] defined the neighborhood of a protein with a radius
of r . For an unknown protein, the functional enrichment in its r -neighborhood is in-
vestigated with a χ2 test, and the top ranking functions are assigned to the unknown
proteins (see Figure 22.3b). This approach alleviates the limitations of the majority
rule method to some extent.

In addition to the neighborhood of the protein of interest, the shared neighbor-
hood of a pair of proteins also are considered recently. Chua et al. [23] defined
the functional similarity between a pair of proteins by considering the direct and
indirect neighbors of the target protein pair. Samanta and Liang [75] defined the

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

22.5 PROTEIN FUNCTION PREDICTION BASED ON PROTEIN INTERACTOME MAP 487

1

(a)

1 (b)

Figure 22.3 Predicting the function of protein 1 based on protein-protein interactions in which
different colors denote different functions, and nodes without any color denote uncharacterized
proteins. (a) Annotating protein 1 based on the information of its direct interaction partners, where
protein 1 is annotated with a function represented by blue; (b) Annotating protein 1 based on its
interaction neighborhood information, and protein 1 is annotated with a function represented by
blue.

probability of two proteins sharing common functions with a hypergeometric model.
Deng et al. [25] developed a Markov random field (MRF) model for protein function
prediction based on information from both interaction and noninteraction partners.
Kirac et al. [43] presented a model that considers the annotations in the paths leading
to the target protein in the PPI network. This model is implemented using the proba-
bilistic suffix tree data structure, and the results are better than other neighborhood-
based methods.

The methods described are actually generative models that construct a model with
only positive samples (i.e., annotated proteins) whereas the proteins outside of the
target functional class usually are seen as negative samples. However, this may be
not true because each protein usually is annotated with multiple functions. Although
some proteins are not annotated with the target function currently, they actually may
have the function. Furthermore, the imbalanced problem will develop if all proteins
outside of the functional class are seen as negative samples, which will degrade the
performance of the classifier [97]. Recently, Zhao et al. [96] proposed a new algo-
rithm to define the negative samples in protein function prediction. In detail, the one-
class SVMs and two-class SVMs are used as the core learning algorithm to find the
representative negative samples so that the positive samples hidden in the unlabeled
data can be best recovered. The experiments demonstrate that with the negative sam-
ples generated, the performance of prediction methods is improved compared with
other methods defining negative samples [15].

In addition, some clustering methods are developed to cluster the protein in-
teractome according to its topology and identify some modules including protein

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

488 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

complex in which proteins belonging to the same module generally share common
function. Bader and Hogue [4] proposed the molecular complex detection algorithm
(MCODE) to predict complexes in a PPI network. Pereira-Leal et al. [65] applied the
Markov clustering (MCL) [31] algorithm to predict complexes in the PPI network.
The authors showed that pathways also can be inferred from the hierarchical net-
work of modular interactions. King et al. [41] proposed the restricted neighborhood
search clustering (RNSC) algorithm to partition the PPI network into clusters based
on a cost function that is used to evaluate the partitioning. The authors showed that
the RNSC algorithm outperforms the MCODE algorithm. Later, Dunn et al. [28]
used the edge-betweenness clustering to predict complexes in a PPI network. Re-
cently, a study [12] compared different clustering methods for complex prediction in
the PPI network. The authors compared four methods: RNSC, SPC [81], MCODE,
and MCL. With a set of known complexes in the PPI network, they examined the
performance of the four methods in detecting complexes in perturbed PPI networks.
The authors showed that the MCL algorithm is more robust compared with others.

22.5.2 Protein Function Prediction Based on Global Topology
of Interaction Map

The methods described explore only local topology structure of protein interaction
map, which may not work if there are no annotations for all neighbors of the target
protein (e.g., Figure 22.3b). On the other hand, the global topology information may
improve prediction accuracy. Zhou et al. [103] predicted protein function using the
shortest path distance between a pair of genes based on gene expression data. Later,
Arnau et al. [2] used the shortest path length among proteins as a similarity mea-
sure for hierarchical clustering. Vazquez et al. [89] proposed a new global method to
annotate a protein considering the topology of the whole network. A function is as-
signed to an unknown protein so that the number of the same annotations associating
with its neighbors is maximized by minimizing the score function:

E = −
∑

i, j

Ji jδ(σi , σ j) −
∑

i

hi (σi) (22.1)

where Ji j is the element of the adjacency matrix of the interaction network, δ(σi , σ j)
is the discrete δ function, and hi (σi) is the number of partners of protein i anno-
tated with function σi . The simulated annealing is employed to minimize the score
function. Later, Karaoz et al. [40] developed a similar method by assigning a state
su ∈ {0, 1} to an unknown protein u to maximize the score function

∑
(u,v)∈E susv ,

where u and v are nodes in the PPI network, and (u, v) ∈ E means there is an in-
teraction between protein u and protein v. The optimization problem is handled by
employing a discrete Hopfield network in which only one function is considered
each time.

Recently, another method proposed by Nabieva et al. [58] also formulates the
annotation problem as a global optimization problem in which a unique function is

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

22.6 PROTEIN FUNCTION PREDICTION BASED ON DATA INTEGRATION 489

assigned to an unknown protein to minimize the cost of edges connecting proteins
with different assignments. In detail, they formulated the optimization problem as
an integer linear program (ILP) model. In the ILP model, each protein annotated
with the target function in the PPI network is regarded as the source of functional
flow. By simulating the spread of this functional flow through the network, each
unknown protein gets a score for having the function based on the amount of flow
that it received.

22.6 PROTEIN FUNCTION PREDICTION BASED ON
DATA INTEGRATION

Although various kinds of high-throughput data can give hints about protein func-
tions, many high-throughput data are notorious for the noise in the data and the
specificity for scale. Recently, integration of different types of biological data for
protein function prediction is becoming a popular trend and is expected to improve
prediction accuracy. There are many ways to comb different kinds of data sources
for protein annotation, including the Bayesian network, kernel methods, and so on.

Troyanskaya et al. [87] developed a Multisource Association of Genes by Inte-
gration of Clusters (MAGIC) system in which the Bayesian network is employed to
integrate different types of high-throughput biological data. The inputs of the system
are gene-gene relationship matrices established on different high-throughput data.
The numerical results demonstrate that MAGIC improves prediction accuracy com-
pared with microarray analysis alone. Chen and Xu [19] also developed a Bayesian
model to integrate different kinds of data sources including protein-protein interac-
tion, microarray data, and protein complex data. In their methods, two prediction
models are presented (i.e., local prediction and global prediction). In the local pre-
diction model, the probability of protein x having function F is defined as:

G(F, x) = 1 −
m∏

i=1

(1 − P(S|Di)) (22.2)

where m is the total number of high-throughput data sources, and P(S|Di) is the
probability that two genes have the same function given data Di , which is defined as
follows:

P(S|Di) = 1 −
n∏

j=1

(1 − Pj (S|Di)) (22.3)

where n is the total number of interaction partners given Di , and Pj (S|Di) is the
probability that the interacting pair j have the same function. In the local prediction
method, only immediate interaction partners are considered and thereby may lead to
local optimal solutions. Therefore, a global prediction model is presented by using

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

490 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

the Boltzmann machine to characterize the global stochastic behavior of the network.
The authors showed that the global model outperforms other existing methods.

Lanckriet et al. [44] developed a kernel method for data fusion. They first con-
structed a kernel matrix Ki for each data source i and then combined all kernel
matrices in the following linear form:

K =
m∑

i=1

µi Ki (22.4)

where m is the total number of kernel matrices. The coefficients µi are estimated
via a semidefinite program (SDP). The authors showed that the kernel fusion method
outperforms the MRF method [25]. Recently, Zhao et al. [95] constructed a func-
tional linkage graph from different types of data with the shortest path distance as the
similarity measure and then employed SVMs to annotate proteins. Tsuda et al. [88]
proposed a kernel method by combining multiple protein networks in which the
combination weights are obtained by convex optimization. Barutcuoglu et al. [7]
provided another way to integrate different types of data for protein function pre-
diction. They combined different types of data into one vector by concatenating all
feature vectors for one gene. With the data available, they trained a SVM classifier
for each functional class. Furthermore, a Bayesian net is constructed to combine the
outputs of the classifiers considering the functional taxonomy.

Hanisch et al. [33] constructed a distance function by combining information
from gene expression data and biological networks. Based on the distance function,
a joint clustering of genes and vertices of the network is performed. Segal et al. [78]
described a probabilistic model that is learned from the data using the expectation
maximization (EM) algorithm to detect pathways from gene expression and pro-
tein interaction data. Tornow and Mewes [86] calculated the correlation strength of
a group of genes considering the probability of these genes belonging to the same
module in a different network. The rational behind the method is that the group
of genes with a significant correlation strength in different networks have a high
probability that they perform the same function. Tanay et al. [84] presented an inte-
grative framework Statistical-Algorithmic Method for Bicluster Analysis (SAMBA)
for various kinds of data including protein interaction, gene expression, phenotypic
sensitivity, and transcription factor (TF) binding. The authors proved the effective-
ness of SAMBA by predicting the functions of >800 uncharacterized genes. Later,
Massjouni et al. [54] constructed a functional linkage network (FLN) from gene ex-
pression and molecular interaction data and propagated the functional labels across
the FLN to predict precisely the functions of unlabelled genes. Shiga et al. [80] pro-
posed a hidden modular random field model for protein annotation by combining
gene expression data and gene network.

Generally, proteins in the same pathway share a common function. Therefore, it
is possible to annotate proteins by identifying components that belong to the same
pathway. Most recently, Zhao et al. proposed a novel integer linear programming

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

22.7 CONCLUSIONS AND PERSPECTIVES 491

(ILP) model to predict signaling pathways by integrating PPI and gene expression
data. The ILP model for uncovering a signaling pathway is described as follows:

Minmize{xi ,yi j } S = −
|V |∑

i=1

|V |∑

j=1

wi j yi j + λ

|V |∑

i=1

|V |∑

j=1

yi j (22.5)

Subject to yi j ≤ xi , (22.6)

yi j ≤ x j , (22.7)
|V |∑

j=1

yi j ≥ 1, if i is either a starting or ending protein, (22.8)

|V |∑

j=1

yi j ≥ 2xi , if i is not a starting or ending protein, (22.9)

xi = 1 , if i is a protein known in signaling pathway, (22.10)

xi ∈ {0, 1}, i = 1, 2, · · · , |V |, (22.11)

yi j ∈ {0, 1}, i, j = 1, 2, · · · , |V |, (22.12)

where wi j is the weight of edge E(i, j) in the undirected weighted network G, xi is
a binary variable for protein i to denote whether protein i is selected as a compo-
nent of the signaling pathway, and yi j is also a binary variable to denote whether the
biochemical reaction represented by E(i, j) is a part of the signaling pathway. λ is
a positive penalty parameter to control the trade-off between the signaling pathway
weight and size, and |V | is the total number of proteins in the PPI network. The con-
straint

∑|V |
j yi j ≥ 2xi is to ensure that xi has at least two linking edges once it is se-

lected as a component of the signaling pathway, whereas the constraint
∑|V |

j yi j ≥ 1
means that each starting protein or ending protein has at least one link to or from
other proteins. These two constraints ensure that the components in the subnetwork
are as connected as possible. The constraints yi j ≤ xi and yi j ≤ x j mean that if and
only if proteins i and j are selected as the components of signaling pathway, then
the biochemical then reaction denoted by the edge E(i, j) should be considered.
Equation (22.22.10) is the condition for any protein known involved in the signaling
pathway (e.g., from the experiment results or literature). The results on yeast MAPK
signaling pathways demonstrate the predictive power of the ILP model.

22.7 CONCLUSIONS AND PERSPECTIVES

Protein function prediction has been an active field in computational biology in the
past years. Despite the numerous computational methods that have been developed,
it is still a difficult task to annotate uncharacterized proteins precisely. It is not trivial

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

492 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

to say which method is better than others while predicting protein functions, and it
is usually difficult for the newcomers to determine which method should be used
to predict the functions of unknown proteins. Therefore, a systematic comparison
of different methods is needed. By comparing the prediction methods with golden
standard dataset (e.g., GO [3] and MIPS Funcat [73]) it may provide advice to the
newcomer about which methods should be used for a specific dataset. For instance,
it has been shown [79] that the supervised method (e.g., majority rule) [76] generally
performs better than the unsupervised method (e.g., MCODE) [4]. However, choos-
ing an appropriate method involves many factors and should be conducted carefully.
Generally, the supervised methods perform best if there are sufficient training data
available. The unsupervised methods generally are regarded as the final choice. On
the other hand, different prediction methods have been proposed for different data
and functional schemas. For example, some methods perform well in one case but
badly in another case. One possible solution is to construct metaservers by combining
a set of best-performing prediction methods. Recently, several groups, from which
popular protein prediction methods come, participated in a competition of predicting
the function of Mus musculus proteins [64]. Diverse and independently developed
computational approaches for predicting protein function are compared on the same
real data. Surprisingly, no method always can perform better than the others through
the competition. Some methods perform best when the number of samples is limited,
whereas some perform best for certain functions. The performance of these methods
make it clear that different methods can complement each other, and one should try
different approaches while predicting the function of a new protein. Although, nu-
merous computation methods are available for protein annotation.

Currently, most existing computation methods consider one function each time.
In other words, the biological functions are treated independently. As pointed out
recently by several works [45, 61, 7], the biological functions are not independent of
each other, and the incorporation of correlations among functions can improve sig-
nificantly the performance of prediction methods. Therefore, the correlation among
functions should be taken into account by the methods developed in the future. An-
other possible alternative to annotate uncharacterized proteins is to explore their do-
main contents. Protein domains are structural and functional units of proteins, and
thereby the functions of domains can provide insights into protein functions. There
are some public databases for proteins domains available, such as Pfam [32] and In-
terPro [38]. Recently, Zhao et al. presented a framework for predicting the functions
of protein domains [99]. With these annotated domains, it becomes easy to annotate
corresponding proteins in which these domains are located.

Generally, most prediction methods described focus on single data sources (e.g.,
PPI or gene expression data). However, the PPI data is notorious for false positives
and incompleteness. One possible solutions is to reconstruct the PPI network by
removing spurious edges and adding biologically valid ones. On the other hand, the
correlation coefficients among genes generally are used as the similarity measures for
proteins pairs in which genes that have high correlations are assumed to have similar
functions. The problem is that the correlation coefficients cannot capture the func-
tional linkages among proteins in some cases. For example, the correlations among

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

REFERENCES 493

all proteins are very high or very low. One possible solutions is to used the higher
order statistics to capture the functional linkages as suggested in [102]. Although the
integration of different kinds of data has been used for protein annotation and has
shown promising results, the diverse kinds of data sources should be combined care-
fully. Which kinds of data should be combined? Does the integration of all kinds of
data really improve prediction accuracy? As mentioned in [57], different data have
their own specific structure. In some cases, the combination of different kinds of data
adds noise to existing data and degrade the performance of the prediction method.
Therefore, the nature of the data should be taken into account while developing new
prediction methods. On the other hand, new effective data fusion methods are needed
in the future for protein annotation.

Despite the limitations of existing computational methods and the noise lying in
the high-throughput data, protein annotation is a promising and active research field.
With the rapid advance in biotechnology, more biological data with high quality
and reliability will be expected. Accordingly, the prediction accuracy of function
prediction methods will be improved. Although many computational methods have
been developed, there is still much room for improvement. The scientists in the data-
mining field are expected to develop more reliable prediction methods and to make
them accessible to the biologists.

REFERENCES

1. S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman.
Gapped BLAST and PSI-BLAST: A new generation of protein database search pro-
grams. Nucleic Acids Res, 25:3389–3402, 1997.

2. V. Arnau, S. Mars, and I. Marn. Iterative cluster analysis of protein interaction data.
Bioinformatics, 21:364–378, 2005.

3. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis,
K. Dolinski, S.S. Dwight, J.T. Eppig, et al. Gene ontology: Tool for the unification of
biology the gene ontology consortium. Nat Genet, 25:25–29, 2000.

4. G. Bader and C. Hogue. An automated method for finding molecular complexes in large
protein interaction networks. BMC Bioinformatics, 4:2, 2003.

5. D. Bandyopadhyay, J. Huan, J. Liu, J. Prins, J. Snoeyink, W. Wang, and A. Tropsha.
Structure-based function inference using protein family-specific fingerprints. Protein
Sci, 15:1537–1543, 2006.

6. G.J. Bartlett, N. Borkakoti, and J.M. Thornton. Catalysing new reactions during evolu-
tion: Economy of residues and mechanism. J Mol Biol, 331:829–860, 2003.

7. Z. Barutcuoglu, R.E. Schapire, and O.G. Troyanskaya. Hierarchical multi-label predic-
tion of gene function. Bioinformatics, 22:830–836, 2006.

8. A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene-
expression data: The order-preserving submatrix problem. J Comput Biol, 10:373–384,
2003.

9. A. Ben-Hur and D. Brutlag. Remote homology detection: A motif based approach.
Bioinformatics, 19:i26–33, 2003.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

494 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

10. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. The Protein Data Bank. Nucleic Acids Res, 28:235–242,
2000.

11. T. Binkowski, S. Naghibzadeh, and J. Liang. Castp: Computed atlas of surface topogra-
phy of proteins. Nucleic Acids Res, 31:3352–3355, 2003.

12. S. Brohee and J. van Helden. Evaluation of clustering algorithms for protein-protein
interaction networks. BMC Bioinformatics, 7:488, 2006.

13. M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W. Sugnet, T.S. Furey, J.M. Ares,
and D. Haussler. Knowledge-based analysis of microarray gene-expression data by using
support vector machines. Proc Natl Acad Sci U S A, 97:262–267, 2000.

14. Y. Cai and K. Chou. Predicting subcellular localization of proteins in a hybridization
space. Bioinformatics, 20:1151–1156, 2004.

15. R.J. Carter, I. Dubchak and S.R. Holbrook. A computational approach to identify genes
for functional RNAs in genomic sequences. Nucleic Acids Res, 29:3928–3938, 2001.

16. J.M.M. Chang, E.C.Y.C. Su, A. Lo, H.S.S. Chiu, T.Y.Y. Sung, and W.L.L. Hsu. Psldoc:
Protein subcellular localization prediction based on gapped-dipeptides and probabilistic
latent semantic analysis. Proteins, 72(2):693–710, 2008.

17. H. Chen, N. Huang, and Z. Sun. SubLoc: A server/client suite for protein subcellular
location based on SOAP. Bioinformatics, 22:376–377, 2006.

18. L. Chen, L.Y. Wu, Y. Wang, S. Zhang, X.S. Zhang. Revealing divergent evolution, iden-
tifying circular permutations and detecting active-sites by protein structure comparison.
BMC Struct Biol, 6:18, 2006.

19. Y. Chen and D. Xu. Global protein function annotation through mining genome-scale
data in yeast Saccharomyces cerevisiae. Nucleic Acids Res, 32:6414–6424, 2004.

20. B.Y.M. Cheng, J.G. Carbonell, and J. Klein-Seetharaman. Protein classification based
on text document classification techniques. Proteins, 58:955–970, 2005.

21. C. Chien, P. Bartel, R. Sternglanz, and S. Fields. The two-hybrid system: A method to
identify and clone genes for proteins that interact with a protein of interest. Proc Natl
Acad Sci U S A, 88:9578–9582, 1991.

22. K. Chou. Prediction of protein cellular attributes using pseudoamino acid composition.
Proteins, 43:246–255, 2001.

23. H.N. Chua, W.K. Sung, and L. Wong. Exploiting indirect neighbours and topologi-
cal weight to predict protein function from protein-protein interactions. Bioinformatics,
22:1623–1630, 2006.

24. T. Damoulas and M.A. Girolami. Probabilistic multiclass multi-kernel learning: On pro-
tein fold recognition and remote homology detection. Bioinformatics, 24:1264–1270,
2008.

25. M. Deng, K. Zhang, S. Mehta, T. Chen, and F. Sun. Prediction of protein function using
protein-protein interaction data. J Comput Biol, 10:947–960, 2003.

26. C.H. Ding and I. Dubchak. Multiclass protein fold recognition using support vector ma-
chines and neural networks. Bioinformatics, 17:349–358, 2001.

27. Q.W. Dong, X.L. Wang, and L. Lin. Application of latent semantic analysis to protein
remote homology detection. Bioinformatics, 22:285–290, 2006.

28. R. Dunn, F. Dudbridge, and C. Sanderson. The use of edge-betweenness clustering to in-
vestigate biological function in protein interaction networks. BMC Bioinformatics, 6:39,
2005.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

REFERENCES 495

29. M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad Sci U S A, 95:14863–14868, 1998.

30. O. Emanuelsson, H. Nielsen, S. Brunak, and von G. Heijne. Predicting subcellular local-
ization of proteins based on their n-terminal amino acid sequence. J Mol Biol, 300:1005–
1016, 2000.

31. A.J. Enright, C.A. Van Dongen, and Q. Sand. An efficient algorithm for large-scale
detection of protein families. Nucleic Acids Res, 30:1575–1584, 2002.

32. R.D. Finn, J. Tate, J. Mistry, P.C. Coggill, S.J. Sammut, H.R. Hotz, G. Ceric,
K. Forslund, S.R. Eddy, E.L.L. Sonnhammer, and A. Bateman. The Pfam protein fami-
lies database. Nucleic Acids Res, 36:D281–D288, 2008.

33. D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological networks
and gene-expression data. Bioinformatics, 18:S145–S154, 2002.

34. H. Hishigaki, K. Nakai, T. Ono, A. Tanigami, and T. Takagi. Assessment of prediction
accuracy of protein function from protein–protein interaction data. Yeast, 18:523–531,
2001.

35. L. Holm and C. Sander. Dali/FSSP classification of three-dimensional protein folds.
Nucleic Acids Res, 25:231–234, 1997.

36. P. Horton, K. Park, T. Obayashi, N. Fujita, H. Harada, C. Adams-Collier, and K. Nakai.
Wolf psort: Protein localization predictor. Nucleic Acids Res, 35:D314–D316, 2007.

37. D.S. Huang, X.M. Zhao, G.B. Huang, and Y.M. Cheung. Classifying protein sequences
using hydropathy blocks. Pattern Recogn, 39:2293–2300, 2006.

38. S. Hunter, R. Apweiler, T.K. Attwood, A. Bairoch, A. Bateman, D. Binns, P. Bork,
U. Das, L. Daugherty, L. Duquenne et al. InterPro: The integrative protein signature
database. Nucleic Acids Res, 37:D211–215, 2009.

39. S. Jones and J. Thornton. Analysis of protein-protein interaction sites using surface
patches. J Mol Biol, 272:121–132, 1997.

40. U. Karaoz, T.M. Murali, S. Letovsky, Y. Zheng, C. Ding, C.R. Cantor, and S. Kasif.
Whole-genome annotation by using evidence integration in functional-linkage networks.
Proc Natl Acad Sci U S A, 101:2888–2893, 2004.

41. A.D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based cluster-
ing. Bioinformatics, 20:3013–3020, 2004.

42. K. Kinoshita, J. Furui, and H. Nakamura. Identification of protein functions from a
molecular surface database, ef-site. J Struct Funct Genomics, 2:9–22, 2002.

43. M. Kirac, G. Ozsoyoglu, and J. Yang. Annotating proteins by mining protein interaction
networks. Bioinformatics, 22:e260–e270, 2006.

44. G.R. Lanckriet, M. Deng, N. Cristianini, M.I. Jordan, and W.S. Noble. Kernel-based data
fusion and its application to protein function prediction in yeast. Biocomputing 2004,
Proceedings of the Pacific Symposium Hawaii, USA. ISBN 981-238-598-3, pp. 300–
311.

45. H. Lee, Z. Tu, M. Deng, F. Sun, and T. Chen. Diffusion kernel-based logistic regression
models for protein function prediction. OMICS: J Int Biol, 10:40–55, 2006.

46. K. Lee, H.Y. Chuang, A. Beyer, M.K. Sung, W.K. Huh, B. Lee, and T. Ideker. Protein
networks markedly improve prediction of subcellular localization in multiple eukaryotic
species. Nucleic Acids Res, 36:e136, 2008.

47. C.S. Leslie, E. Eskin, A. Cohen, J. Weston, and W.S. Noble. Mismatch string kernels for
discriminative protein classification. Bioinformatics, 20:467–476, 2004.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

496 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

48. L. Liao and W.S. Noble. Combining pairwise sequence similarity and support vector
machines for remote protein homology detection. RECOMB ’02: Proceedings of the
Sixth Annual International Conference on Computational Biology. ACM, New York,
2002, pp. 225–232.

49. T. Lingner and P. Meinicke. Remote homology detection based on oligomer distances.
Bioinformatics, 22:2224–2231, 2006.

50. B. Liu, X. Wang, L. Lin, Q. Dong, and X. Wang. A discriminative method for protein
remote homology detection and fold recognition combining top-n-grams and latent se-
mantic analysis. BMC Bioinformatics, 9:510, 2008.

51. J. Liu, S. Kang, C. Tang, L.B. Ellis, and T. Li. Meta-prediction of protein subcellular
localization with reduced voting. Nucleic Acids Res, 35:e96, 2007.

52. Z. Liu, L.Y. Wu, Y. Wang, X.S. Zhang, and L. Chen. Predicting gene ontology functions
from protein’s regional surface structures. BMC Bioinformatics, 8:475, 2007.

53. L. Lo Conte, B. Ailey, T.J.P. Hubbard, S.E. Brenner, A.G. Murzin, and C. Chothia.
SCOP: A structural classification of proteins database. Nucleic Acids Res, 28:257–259,
2000.

54. N. Massjouni, C.G. Rivera, and T.M. Murali. VIRGO: Computational prediction of gene
functions. Nucleic Acids Res, 34:W340–W344, 2006.

55. A. Mateos, J. Dopazo, R. Jansen, Y. Tu, M. Gerstein, and G. Stolovitzky. Systematic
learning of gene functional classes from DNA array expression data by using multilayer
perceptrons. Genome Res, 12:1703–1715, 2002.

56. R. Mott, J. Schultz, P. Bork, and C.P. Ponting. Predicting protein cellular localization
using a domain projection method. Genome Res, 12:1168–1174, 2002.

57. C.L. Myers and O.G. Troyanskaya. Context-sensitive data integration and prediction of
biological networks. Bioinformatics, 23:2322–2330, 2007.

58. E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole-proteome predic-
tion of protein function via graph-theoretic analysis of interaction maps. Bioinformatics,
21:i302–310, 2005.

59. H. Nakashima and K. Nishikawa. Discrimination of intracellular and extracellular pro-
teins using amino acid composition and residue-pair frequencies. J Mol Biol, 238:54–61,
1994.

60. S.K. Ng and S.H. Tan. On combining multiple microarray studies for improved func-
tional classification by whole-dataset feature selection. Genome Informatics, 14:44–53,
2003.

61. G. Pandey and V. Kumar. Incorporating functional inter-relationships into algorithms for
protein function prediction. ISMB Satellite Meeting on Automated Function Prediction,
2007.

62. K. Park and M. Kanehisa. Prediction of protein subcellular locations by support vec-
tor machines using compositions of amino acids and amino acid pairs. Bioinformatics,
19:1656–1663, 2003.

63. W.R. Pearson and D.J. Lipman. Improved tools for biological sequence comparison.
Proc Natl Acad Sci U S A, 85:2444–2448, 1988.

64. L. Pena-Castillo, M. Tasan, C. Myers, H. Lee, T. Joshi, C. Zhang, Y. Guan, M. Leone, A.
Pagnani, W. Kim, et al. A critical assessment of mus musculus gene function prediction
using integrated genomic evidence. Genome Biol, 9:S2, 2008.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

REFERENCES 497

65. J.B. Pereira-Leal, A.J. Enright, and C.A. Ouzounis. Detection of functional modules
from protein interaction networks. Proteins, 54:49–57, 2004.

66. A. Pierleoni, P.L. Martelli, P. Fariselli, and R. Casadio. BaCelLo: A balanced subcellular
localization predictor. Bioinformatics, 22:e408–416, 2006.

67. A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. Buhlmann, W. Gruissem, L. Hen-
nig, L. Thiele, and E. Zitzler. A systematic comparison and evaluation of biclustering
methods for gene-expression data. Bioinformatics, 22:1122–1129, 2006.

68. K.D. Pruitt, T. Tatusova, and D.R. Maglott. NCBI Reference Sequence (RefSeq): A
curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic
Acids Res, 33:D501–504, 2005.

69. R. Rakotomalala and F. Mhamdi. Combining feature selection and feature reduction for
protein classification. SMO’06: Proceedings of the 6th WSEAS International Conference
on Simulation, Modelling and Optimization. World Scientific and Engineering Academy
and Society, Stevens Point, WI, 2006, pp. 444–451.

70. H. Rangwala and G. Karypis. Profile-based direct kernels for remote homology detection
and fold recognition. Bioinformatics, 21:4239–4247, 2005.

71. S. Raychaudhuri, J.M. Stuart, R.B. Altman. Principal components analysis to summarize
microarray experiments: application to sporulation time series. Pacific Symposium on
Biocomputing Pacific Symposium on Biocomputing, 2000, pp. 455–466.

72. O.C. Redfern, A. Harrison, T. Dallman, F.M. Pearl, and C.A. Orengo. Cathedral: A fast
and effective algorithm to predict folds and domain boundaries from multidomain pro-
tein structures. PLoS Comput Biol, 3:e232, 2007.

73. A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko,
U. Guldener, G. Mannhaupt, M. Munsterkotter, et al. The FunCat, a functional anno-
tation scheme for systematic classification of proteins from whole genomes. Nucleic
Acids Res, 32:5539–5545, 2004.

74. H. Saigo, J.P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string
alignment kernels. Bioinformatics, 20:1682–1689, 2004.

75. M.P. Samanta and S. Liang. Predicting protein functions from redundancies in large-
scale protein interaction networks. Proc Natl Acad Sci U S A, 100:12579–12583,
2003.

76. B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in
yeast. Nat Biotechnol, 18:1257–1261, 2000.

77. M.S. Scott, D.Y. Thomas, and M.T. Hallett. Predicting subcellular localization via pro-
tein motif co-occurrence. Genome Res, 14:1957–1966, 2004.

78. E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein inter-
action and gene expression data. Bioinformatics, 19:i264–i272, 2003.

79. R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Mol
Syst Biol, 3:88, 2007.

80. M. Shiga, I. Takigawa, and H. Mamitsuka. Annotating gene function by combining ex-
pression data with a modular gene network. Bioinformatics, 23:i468–i478, 2007.

81. V. Spirin and L.A. Mirny. Protein complexes and functional modules in molecular net-
works. Proc Natl Acad Sci U S A, 100:12123–12128, 2003.

82. P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E.S. Lan-
der, and T.R. Golub. Interpreting patterns of gene-expression with self-organizing maps:

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

498 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES

Methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A,
96:2907–2912, 1999.

83. T. Tamura and T. Akutsu. Subcellular location prediction of proteins using support vec-
tor machines with alignment of block sequences using amino acid composition. BMC
Bioinformatics, 8:466, 2007.

84. A. Tanay, R. Sharan, M. Kupiec, and R. Shamir. Revealing modularity and organi-
zation in the yeast molecular network by integrated analysis of highly heterogeneous
genomewide data. Proc Natl Acad Sci U S A, 101:2981–2986, 2004.

85. S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, and G.M. Church. Systematic de-
termination of genetic network architecture. Nat Genet, 22:281–285, 1999.

86. S. Tornow and H.W. Mewes. Functional modules by relating protein interaction net-
works and gene expression. Nucleic Acids Res, 31:6283–6289, 2003.

87. O.G. Troyanskaya, K. Dolinski, A.B. Owen, R.B. Altman, and D. Botstein. A Bayesian
framework for combining heterogeneous data sources for gene function prediction (in
Saccharomyces cerevisiae). Proc Natl Acad Sci U S A, 100:8348–8353, 2003.

88. K. Tsuda, H. Shin and B. Scholkopf. Fast protein classification with multiple networks.
Bioinformatics, 21:ii59–ii65, 2005.

89. A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function
prediction from protein-protein interaction networks. Nat Biotechnol, 21:697–700,
2003.

90. S. Vinga and J. Almeida. Alignment-free sequence comparison-a review. Bioinformatics,
19:513–523, 2003.

91. J.C. Whisstock and A.M. Lesk. Prediction of protein function from protein sequence and
structure. Q Rev Biophys, 36:307–340, 2003.

92. C. Wu, S. Shivakumar, H.P. Lin, S. Veldurti, and Y. Bhatikar. Neural networks for molec-
ular sequence classification. Math Comput Simul, 40:23–33, 1995.

93. C.H. Wu, G. Whitson, J. McLarty, A. Ermongkonchai, and T. Chang. Protein classifica-
tion artificial neural system. Protein Sci, 1:667–677, 1992.

94. S. Zhang, G. Jin, X.S. Zhang, and L. Chen. Discovering functions and revealing mecha-
nisms at molecular level from biological networks. Proteomics, 7:2856–2869, 2007.

95. X.M. Zhao, L. Chen and K. Aihara. Gene function prediction with the shortest path in
functional linkage graph. Lect Notes Oper Res, 7:68–74, 2007.

96. X.M. Zhao, L. Chen, and K. Aihara. Gene function prediction using labeled and unla-
beled data. BMC Bioinformatics, 9:57, 2008.

97. X.M. Zhao, L. Chen, and K. Aihara. Protein classification with imbalanced data. Pro-
teins, 70:1125–1132, 2008.

98. X.M. Zhao, Y. Cheung, and D.S. Huang. A novel approach to extracting features from
motif content and protein composition for protein sequence classification. Neural Net-
works, 18:1019–1028, 2005.

99. X.M. Zhao, Y. Wang, L. Chen, and K. Aihara. Protein domain annotation with integra-
tion of heterogeneous information sources. Proteins: Structure, Function, Bioinformat-
ics, 72:461–473, 2008.

100. X.M. Zhao and L. Chen. A new balanced ensemble classifier for predicting fungi pro-
tein subcellular localization based on protein primary structures. The 2nd International
Conference on BioMedical Engineering and Informatics (BMEI’09), 2009.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

REFERENCES 499

101. C. Sun, W. Tang, L. Chen, and X.M. Zhao. Protein Subcellular Localization Prediction
for Fusarium graminearum. The 3rd International Symposium on Optimization and Sys-
tems Biology, 2009, pp. 254–260.

102. X. Zhou, M.C.J. Kao, H. Huang, A. Wong, J. Nunez-Iglesias, M. Primig, O.M. Apari-
cio, C.E. Finch, T.E. Morgan, and W.H. Wong. Functional annotation and network re-
construction through cross-platform integration of microarray data. Nature Biotechnol,
23:238–243, 2005.

103. X. Zhou, M.C.J. Kao, and W.H. Wong. From the cover: Transitive functional annotation
by shortest-path analysis of gene-expression data. Proc Natl Acad Sci U S A, 99:12783–
12788, 2002.

P1: OSO
c22 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

23
PROTEIN DOMAIN

BOUNDARY PREDICTION

Paul D. Yoo, Bing Bing Zhou, and Albert Y. Zomaya

23.1 INTRODUCTION

The accurate delineation of protein domain boundaries is an important step for the
prediction of protein structure, function, evolution, and design. Because a single do-
main spans an entire polypeptide chain or a subunit of such a chain, domains provide
one of the most useful sources of information for understanding protein function,
analysis based on domain families, and the study of individual proteins [1, 2].

Proteins comprise smaller building blocks, which are called “domains” or “mod-
ules.” These building blocks are distinct regions in a three-dimensional (3D) struc-
ture resulting in protein architectures assembled from modular segments that have
evolved independently [3]. The modular nature of proteins has many advantages, of-
fering new cooperative functions and enhanced stability. For example, new proteins,
such as chimeric proteins, can be created because they consist of multifunctional
domains [4]. The search method for templates used in comparative modeling can
be optimized by delineating domain boundaries because the templates are classified
based on domains [5]. Domain boundary prediction can improve the performance of
threading methods by enhancing their signal-to-noise ratio [6] and, for homologous
domains, plays a key role in reliable multiple sequence alignment [7].

During the past three decades, numerous methods using the 3D coordinates of a
protein structure have been proposed for more accurately delineating domain bound-
aries [8]. However, in recent literature, there has been a major demand for fully au-
tomated approaches to identify domains in globular proteins from one-dimensional

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

501

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

502 PROTEIN DOMAIN BOUNDARY PREDICTION

(1D) atomic coordinates [9, 10]. This demand has significantly grown over recent
years because genome and other sequencing projects have produced a flux of DNA
and protein sequence data [11]. Most recent sequence-based methods have been built
based on various machine learners because of their widely known learning ability.

DOMpro [12] uses evolutionary information (gene-exon shuffling), secondary
structure, and solvent accessibility information with a recursive neural network;
CHOPnet [13] uses evolutionary information, amino acid composition, and amino
acid flexibility analyzed with a neural network; SnapDRAGON [14] predicts do-
main by using an ab initio protein folding method; DomSSEA [15] uses predicted
secondary structure; Nagarajan and Yona’s [16] method is based on analyzing mul-
tiple sequence alignments from a database search, position-specific physiochemi-
cal properties of amino acids, and predicted secondary structures analyzed with
a neural network; SSEP-Domain [17] predicts domains by combining information
of secondary structure element alignments, profile–profile alignments, and pattern
searches; Armidillo [18] uses amino acid composition to predict domain boundaries;
DomCut [19] uses a linker index deduced from a dataset of domain/linker segments;
PRODO [20] uses a neural network method; and DomainDiscovery [21] uses support
vector machines (SVMs) from sequence information including a domain linker in-
dex. These methods only can be successful in identifying domains if the sequence has
detectable similarities to other sequence fragments in databases or when the length
of unknown domains do not substantially deviate from the average of known pro-
tein structures. Many of these methods focus exclusively on predicting boundaries
for two-domain chains. The overall accuracy of sequence-based methods has been
reported in the range of 50–70% for single-domain proteins and considerably less
(<40%) when limited to multidomain proteins [18, 22].

Many automated systems have shown reasonable improvements because they
successfully have captured the information of a single molecule or of neighboring
residues involving short-range (local) interactions. However, at the same time, their
limitations in the exploitation of information from long-range (nonlocal) interactions
have been observed [23–26]. These limitations are related to model overfitting and
the weak signal-to-noise ratio associated with nonlocal interactions, which lead to
the problem of the “vanishing gradient.”

In this chapter, we introduce the novel interrange interaction integrated approach
for protein domain boundary prediction with a brief overview of relevant literature.
Our novel approach involves (i) the design of modular kernel algorithm, which can
exploit effectively the information of nonlocal interactions, and (ii) the development
of a novel profile that can provide suitable information to the algorithm. One of the
key features of this profiling technique is the use of multiple structural alignments
of remote homologues to create extended sequence profiles and combines the struc-
tural information with suitable chemical information that plays an important role in
protein stability. This profile can capture the sequence characteristics of an entire
structural superfamily and extend a range of profiles generated from sequence simi-
larity alone. The chapter proceeds as follows: Section 23.2 summarizes the literature
on protein data encoding and profiling and introduces our novel Evolutionary and
Hydrophobicity profile (EH-profile). Section 23.3 introduces a new modular kernel

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

23.2 PROFILING TECHNIQUE 503

approach for the effective exploitation of nonlocal information as well as the issues in
the vanishing gradient problem. Section 23.4 looks at the overall architecture of the
novel interrange interaction integrated approach. Section 23.5 concludes the chapter.

23.2 PROFILING TECHNIQUE

A protein sequence contains the 20 letters of the amino acid alphabet. For example,
A = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. Statistical machine-
learning methods cannot process a direct representation of nucleic or amino acid
sequences. Thus, it is inevitable to use a suitable sequence encoding method for the
classifiers to recognize underlying regularities of amino acids [27–30].

Orthogonal encoding (also known as the binary representation and the distributed
method) is one of the most commonly used amino acid encoding methods in the
past decade. In orthogonal encoding, each letter is represented by a 20-dimensional
binary vector indicating the presence of a particular amino acid type [31]. The 20
standard amino acids are ordered 1 through 20, and the i th amino acid has the binary
codeword of 20 bits with the i th bit set to “1” and all others set to “0,” for i =
1, 2, . . . , 20 [32]. For example, Alanine is expressed by 100000000000000000000,
and “Cysteine” is expressed by 01000000000000000000. One advantage is that it
does not introduce any artificial correlations between the amino acids [33]. However,
because the dimension of residue vector increases rapidly as n increases, it may lead
to a large computational cost and to model complexity (a typical input window of 13
residues requires 567 = (21 × (2 × 13 + 1) input layers and connecting weights),
and recognition bias. Thus, it can cause poor performance of the classifiers [34–36].

The BLOSUM62 matrix is a more popularly used encoding method in recent
years. It originally was designed by Henikoff and Henikoff [37] and also is known as
an evolutionary information/profile. This is a measure of difference between two
distantly related proteins. The blocks are found in multiple sequence alignment,
and they are assumed to be of functional importance within related proteins. The
BLOSUM62 indicates the matrix, calculated from observed substitutions between
proteins that share 62% sequence identity or less. It has shown its superiority in de-
tecting similarities in distant sequences, and this is the matrix used by default in
most recent alignment applications such as BLAST and PSI-BLAST [38]. In the
last decade, several machine-learning-based systems have used evolutionary profiles
that contain homology information from sequence alignments and showed a striking
improvement.

To construct the novel EH-profile, we use one effective hydrophobicity infor-
mation (SARAH1 scale) in addition to the evolutionary information generated by
PSI-BLAST. Several researchers selected hydrophobicity as the main feature among
many other physicochemical properties for protein structure prediction (such as po-
larity, charge, or size) [39–41]. Several recent studies reported that the level of
phosphorylation affect protein’s hydrophobicity significantly or vice versa [42, 43].
Hydrophobicity is a major factor in protein stability. The “hydrophobic effect” plays
a fundamental role in the spontaneous folding of proteins. It can be expressed as

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

504 PROTEIN DOMAIN BOUNDARY PREDICTION

Table 23.1 Hydrophobicity scale: nonpolar → polar distribution of amino acids chains,
pH7 (kcal/mol)

Amino Acid Feature Value Amino Acid Feature Value

1 I 4.92 11 Y –0.14
2 L 4.92 12 T –2.57
3 V 4.04 13 S –3.40
4 P 4.04 14 H –4.66
5 F 2.98 15 Q –5.54
6 M 2.35 16 K –5.55
7 W 2.33 17 N –6.64
8 A 1.81 18 E –6.81
9 C 1.28 19 D –8.72

10 G 0.94 20 R –14.92

the free energy (kilocalories per mole) of transfer of amino acid side chains from
cyclohexane to water. The amino acids with positive values of free energy in trans-
ferring cyclohexane to water are hydrophobic, and the ones with negative values are
hydrophilic [39]. Table 23.1 shows hydrophobicity scales, and the hydrophobicity
matrix can be formulated using the following function.

Given:

Amino Acid[] = {C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V, . . .} and

Hydrophobicity Index[] = {1.28,−5.54,−6.81, 0.94,−4.66, 4.92, 4.92,−5.55,

2.35, 2.98, 4.04,−3.40,−2.57, 2.33,−0.14, 4.04, . . . },

hydrophobicity matrix[i][j] = abs(hydrophobicity index[i] − hydrophobicity index[j])

20

where the denominator 20 is used to convert the data range into [0,1]. The hydropho-
bicity matrix [3][4] means the absolute value of the difference of the hydrophobicity
indices of two amino acids E (–6.81) and G (0.94). With the range adjustment, we
obtain 0.2935.

For structure/function families and the classification of protein sequences, various
hydrophobicity scales were examined thoroughly by David [44]. He reported the ef-
fectiveness of each hydrophobicity scale and concluded that the Rose scale [45] was
superior to all others when used for protein structure prediction. The Rose scale is
correlated to the average area of buried amino acids in globular proteins (Table 23.2).
However, Korenberg et al. [46] pointed out several key drawbacks with the Rose
scale. For example, because it is not a one-to-one mapping, different amino acid se-
quences can have identical hydrophobicity profiles; the scale covers a narrow range
of values while causing some amino acids to be weighted more heavily than others.
To overcome these problems, the SARAH1 scale—five bits “state” representation for
amino acid—was introduced by Korenberg et al.

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

23.2 PROFILING TECHNIQUE 505

Table 23.2 Rose hydrophobocity scale

Amino Acid Feature Value Amino Acid Feature Value

1 A 0.74 11 L 0.85
2 R 0.64 12 K 0.52
3 N 0.63 13 M 0.85
4 D 0.62 14 F 0.88
5 C 0.91 15 P 0.64
6 Q 0.62 16 S 0.66
7 E 0.62 17 T 0.70
8 G 0.72 18 W 0.85
9 H 0.78 19 Y 0.76

10 I 0.88 20 V 0.86

SARAH1 assigns each amino acid a unique five-bit signed code, where exactly
two bits are nonzero. SARAH1 ranks 20 possible amino acids according to the Rose
hydrophobicity scale. Each amino acid is assigned a five-bit code in descending order
of the binary value of the corresponding code. One of the benefits of using the five-
bit code is that the complexity of the classifier can be reduced significantly and can
arrange these numbers in 32 possible ways (25 = 32). If the representations with no
or all 1s, and those with one or four 1s are removed, then exactly 20 representations
are left. This leaves just enough representation to code for the 20 amino acids. For a
window size of 5, a residue vector has 5 × 11 = 55 dimensions, which leads to less
model complexity than the residue vector using widely used orthogonal encoding
(20 × 11 = 220 dimensions) [47].

The resulting scale in Table 23.3, where the right-half is the negative mirror im-
age of the left-half, is referred to as SARAH1. The 10 most hydrophobic residues
are positive, and the 10 least hydrophobic residues are negative. Korenberg et al.
indicated that although these scales carry information about hydrophobicity, scales
similarly can be constructed to embed other chemical or physical properties of the
amino acids such as polarity, charge, α-helical preference, and residue volume.

Table 23.3 SARAH1 Scale

Amino Acid Binary Code Amino Acid Binary Code

1 C 1,1,0,0,0 11 G 0,0,0,–1,–1
2 F 1,0,1,0,0 12 T 0,0, –1,0, –1
3 I 1,0,0,1,0 13 S 0,0, –1, –1,0
4 V 1,0,0,0,1 14 R 0, –1,0,0, –1
5 L 0,1,1,0,0 15 P 0, –1,0, –1,0
6 W 0,1,0,1,0 16 N 0, –1, –1,0,0
7 M 0,1,0,0,1 17 D –1,0,0,0, –1
8 H 0,0,1,1,0 18 Q –1,0,0, –1,0
9 Y 0,0,1,0,1 19 E –1,0, –1,0,0

10 A 0,0,0,1,1 20 K –1, –1,0,0,0

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

506 PROTEIN DOMAIN BOUNDARY PREDICTION

23.2.1 Nonlocal Interaction and Vanishing Gradient Problem

In a protein structure prediction problem, existing large kernel algorithms such as
neural networks have performed well; however, they also have shown several limi-
tations especially when dealing with nonlocal interactions in amino acids. The main
difficulty with this class of neural networks is from the lack of generally efficient
algorithms for solving numerical optimization. In particular, error minimization is
known to fail in the presence of nonlocal interactions [48,49]. Interesting remedies
to this vanishing gradient have been suggested in the literature [50,51]; however,
their effectiveness in realistically large-scale supervised learning tasks has not been
elucidated so far.

To overcome this limitation, one should be able to minimize the problem of
the “vanishing gradient” [48,49]. For nonlocal interaction, residues that are close
in space (3D strucure) occupy distant positions in the sequence. At each sequence
position, the model may receive important structural information needed at distantly
located sequences. Therefore, it must deal with long-term dependencies, which leads
to the problem of the vanishing gradient. The vanishing gradient addresses the char-
acteristics of nonchaotic dynamic systems that the gradient of states, with respect
to previous states, vanishes exponentially with the temporal distance between these
states. This feature of nonchaotic systems results from the fact that initial conditions
do not have a large influence over later states. Therefore, nonchaotic systems are
prevented from learning to store information over time.

This new modular approach to neural networks combines several methods and
procedures to exploit effectively nonlocal information. The first step was to develop
a modular kernel model and train it to predict domain boundaries of proteins with an
EH-profile. Within this model, each kernel has a learning ability capable of bridging
intervals of time even for noisy, incompressible input sequences, without the loss of
a short-time-lag capability. Its architecture enforces constant error flow (thus, nei-
ther exploding nor vanishing) through internal states of units. Being modular, this
approach requires several small networks to cooperate and communicate with each
other to obtain the complete map of intermolecular interactions.

These networks comprise modules that can be categorized both according to their
distinct structure and to their functionality, which are integrated together via an inte-
grating unit. With functional categorization, each module is a neural network, which
carries out a distinctly identifiable subtask. This approach allows different types of
learning algorithms (these can be neural network based or otherwise) to be combined
in a seamless fashion. Through the use and integration of the best-suited learning al-
gorithms for a given task, there is a distinct improvement in artificial neural network
learning. As with other modular learning systems, the main advantages include ex-
tendibility, incremental learning, continuous adaptation, economy of learning and
relearning, and computational efficiency.

23.2.2 Hierarchical Mixture of Experts

This approach incorporates the hierarchical mixture of experts (HME), a well-known
tree-structured model for regression and classification based on soft probabilistic

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

23.2 PROFILING TECHNIQUE 507

splits of the input space [52]. In this model, the distribution of target variables is
given by a mixture of component distributions in which the components, as well
as the mixing coefficients, are conditioned on the input variables. The component
distributions are referred to as experts, whereas mixing coefficients are controlled
by gating distributions. Values for the parameters of this model can be set using an
efficient EM algorithm to predict maximum likelihood [52]. The resulting model au-
tomatically will perform a soft partitioning of the dataset into groups corresponding
to different regions of input space and simultaneously fit separate models (corre-
sponding to the mixture components) to each of those groups.

The fundamental concept behind the probabilistic interpretation of this network is
that a paralinguistic mapping of input vectors x (t) to output vectors y(t) in the dataset
can be subdivided into a sequence of nested decisions, generating a probabilistic
tree. For a particular input vector x (t), values generated by the gating networks are
assumed to be multinomial probabilities that select one of the connected expert net-
works. A sequence of decisions starts from the top node influenced by the probability
distributions of the intermediate gating networks. The process eventually ends at a
specific terminal expert network.

HME describes a conditional probability distribution over a vector t of target
variables conditioned on a vector x of inputs. Consider the case of functional map-

ping learning of the type �Y = f
(

�X
)

based on training dataset T = (
x (t), y(t)

)
,

t = 0, . . . , n with �X = {x1, x2, . . . , xn} and a corresponding desired response �Y =
{y1, y2, . . . , yn}. All networks, both experts and gating, receive the same input vector
at the t th time instant, x (t). However, although the gating networks use this input to
compute confidence level values for the outputs of the connected expert networks,
the expert networks themselves use the input to generate an estimate of the desired
output value. The outputs of the gating networks are scalar values and are a partition
of unity at each point in the input space (i.e., a probability set). Thus, consider the
two-layered binary branching HME; each of the expert neural networks (i, j) pro-
duces outputs yi j from the input vector x (t) according to the following relationship:

yi j = f
(

x (t), �Wi j

)

where f is a neural network mapping using input x (t) and its corresponding weight
matrix �Wi j . The input vector x (t) is considered to have an additional constant value to
allow for network bias. The gating networks are generally linear. Because they per-
form multidirectional classification among the expert networks, the nonlinear output
is chosen to be a softmax (short for soft maximum). The outputs of the gating network
gi at the top level are computed according to:

gi
eςi

∑
k eςk

with ςi = �V T
i x (t)

where �Vi is the weight matrix associated with gating network gi . Because of the
special form of the softmax being nonlinear, the gi ’s are positive and sum up to one

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

508 PROTEIN DOMAIN BOUNDARY PREDICTION

for each input vector x (t). They can be interpreted as the local conditional probability
in that an input vector x (t) lies in the affiliated partitioned subregion of the associated
expert network. The lower level gating networks compute their output activations
similar to the top level gating network according to the following expression:

g j |i = eςi j

∑
k eςik

with ςi j = �V T
i j x (t)

The output activations of the expert networks are weighted by the gating net-
works’ output activations as they proceed up the tree to form the overall output
vector. Specifically, the output of the i th internal node in the second layer of the
tree is:

yi =
∑

j

g j |i yi j

whereas the output at the top level node is:

y(t) =
∑

i

gi yi

Because both the expert and the gating networks compute their activations as
functions of the input �X , the overall output of the architecture is a nonlinear function
of the input.

23.2.3 Overall Modular Kernel Architecture

In this experiment, we use Benchmark 3 dataset. Benchmark 3 is a newly devel-
oped comprehensive dataset for benchmarking structure-based domain-identification
methods. Benchmark 3 is similar to the dataset published by Holland et al. [53]; it
contains proteins of known structures for which three methods (e.g., CATH [54] and
SCOP [55]) agree on the assignment of the number of domains. The dataset consists
of 271 polypeptide chains, 106 one-domain chains (39.1%), 108 two-domain chains
(39.9%), 45 three-domain chains (16.6%), seven four-domain chains (2.6%), and
five-domain chains (1.9%). Also, 44 chains were removed from the Benchmark 2,
as the overlap between the domains was below 90%. The dataset is nonredundant
in a structural sense; each combination of topologies occurs only once per dataset.
Sequences of protein chains are taken from the Protein Data Bank (PDB) [56].
The secondary-structure information and solvent accessibility are predicted for each
chain in Benchmark 3, using SSpro [57] and ACCpro [58]. Evolutionary information
for each chain is obtained using the position-specific scoring matrix (PSSM), which
was constructed using PSI-BLAST.

Our modular approach contains three main components. First, given amino acid
sequences, PSI-BLAST was used to generate PSSMs with an e-value threshold, for
the inclusion of 0.001 and six search iterations of a nonredundant (nr) sequence

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

23.2 PROFILING TECHNIQUE 509

database. The PSSM has 20 × N elements, where N is the length of the target se-
quence, and each element represents the log likelihood of a particular residue substi-
tution based on a weighted average of BLOSUM62 matrix scores for a given align-
ment position in the template. Second, SARAH1 scales were computed from the
amino acid chains in the Benchmark 3 dataset and combined with the PSSM. The
EH-profile, which contains PSSMs and SARAH1 scales, all were normalized to fall
in the interval [–1, 1] using the following algorithm:

pn = 2 × (p − minp)/(maxp − minp) − 1

where p is an R × Q matrix of input vectors, minp is an R × 1 vector contain-

ing minimums for each p, and maxp is R × 1 vector containing maximums for
each p.

Third, our modular kernel model used the resulting profile and performed its clas-
sification tasks. As discussed, we adopted a seven-fold cross-validation scheme for
its evaluation. With the threshold T, the final predictions were simulated from the
raw output generated by HME. During the postprocessing of the network output be-
cause the network generates raw outputs with many local peaks, we again adopted
Liu and Rost’s [13] method to filter the raw outputs. First, we determined the thresh-
old for each network output according to the length (L) of the protein and to the
distribution of raw output values for all residues in that protein. We compiled the
92nd percentile of the raw output T1 and set the threshold T to:

T =
⎡

⎣
max(T1, 60) for L ≤ 100
max(T1, 30) for L ≤ 200
T1 for L > 200

T was set to the threshold that divides domain boundaries and others. If the value
of a residue was above the threshold, then the residue was regarded as a domain
boundary. Second, we assigned the central residue as a domain boundary if three or
more residues were predicted as a domain boundary. And all parameters for these
filters were developed using the validation set alone.

The performance of each model was measured by the fractions of true nega-
tive and true positive (TNf: the proportion of true negative data correctly predicted
and TPf: the proportion of true positive data correctly predicted), the sensitivity
(Sn: the proportion of correctly predicted domain boundary residues with respect
to the total positively identified residues), the specificity (Sp: the proportion of in-
correctly predicted boundary residues with respect to the total number of domain
boundary residues), correlation-coefficient (Cc: an equal balance between positive
and negative predictions, between –1 and 1), and accuracy (Ac: the proportion of
true-positive and true-negative residues with respect to the total positive and nega-
tive residues). Cc reflects a situation in which a method, that predicts every residue to
be positive shows a prediction accuracy of 100% in detecting positive boundaries but

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

510 PROTEIN DOMAIN BOUNDARY PREDICTION

0% accuracy for negative residues. Hence, a high value of Cc means that the model
is regarded as a more robust prediction system.

Sn = TP

TP + FN′ Sp = TN

TN + FP′ Ac = TP + TN

TP + FP + TN + FN′

and

Cc = (TP × TN) − (FN × FP)√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

The stepwise procedure we have performed can be summarized as follows:

1. Data collection, building Benchmark 3 and preprocessing datasets

2. Profile construction, such as PSSM, Sarah1, and EH-profile

3. A hold-out method to divide the combined dataset into seven subsets (training
and testing sets)

4. The information obtained in steps 2 and 3 were combined and normalized to
fall in the interval [–1, 1] to be fed into networks

5. Target levels were assigned to each profile

(a) Positive (1) for domain boundary residues and negative (–1) for nonbound-
ary residues

6. Model training on each set to create a model

7. Simulation of each model on the test set to obtain predicted outputs

8. Postprocessing to find predicted domain boundary locations

The procedure from steps 6 through 8 was performed iteratively until we obtained
the most suitable kernel and the optimal hyperparameters for HME for the Bench-
mark 3 dataset.

23.3 RESULTS

To see the suitability of our proposed approach in domain boundary prediction, we
have chosen the most widely adopted machine-learning models and profiles for
comparison. Our experiment has three consecutive steps. First, we compare the
performance of our modular neural network HME with two other well-regarded
machine-learning models in protein domain boundary prediction, transductive SVM
and multilayered perceptron (MLP). Second, in the model comparison, the effec-
tiveness of hydrophobicity information presented in the EH-profile is tested thor-
oughly and compared with widely known evolutionary profile, PSSM generated by
PSI-BLAST [16]. Last, the performance of our modular kernel approach (MKA)
that consists of an HME model and an EH-profile is compared with widely known
protein domain boundary predictors.

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

23.3 RESULTS 511

Table 23.4 Predictive performance of machine-learning models

Correlation-
Models TNf TPf Sensitivity Specificity Coefficient (Cc) Accuracy

HMEHE 0.77 ± 0.015 0.79 ± 0.026 0.78 ± 0.002 0.78 ± 0.012 0.56 ± 0.016 0.78 ± 0.015
HMEPSSM 0.74 ± 0.019 0.74 ± 0.018 0.75 ± 0.010 0.73 ± 0.045 0.48 ± 0.023 0.74 ± 0.016
SVMHE 0.71 ± 0.008 0.73 ± 0.010 0.70 ± 0.003 0.74 ± 0.017 0.44 ± 0.011 0.72 ± 0.020
SVMPSSM 0.71 ± 0.004 0.67 ± 0.008 0.65 ± 0.012 0.72 ± 0.006 0.37 ± 0.007 0.69 ± 0.003
MLPHE 0.69 ± 0.009 0.72 ± 0.012 0.61 ± 0.027 0.75 ± 0.019 0.40 ± 0.013 0.70 ± 0.025
MLPPSSM 0.67 ± 0.017 0.71 ± 0.032 0.61 ± 0.013 0.76 ± 0.027 0.37 ± 0.022 0.68 ± 0.011

Mean testing data ± standard deviation was obtained using the analysis of variance test using optimal
settings for each model.

We adopted a seven-fold cross-validation scheme for the model evaluation in
which random dataset selection and testing was conducted seven times. When mul-
tiple random training and testing experiments were performed, a model was formed
from each training sample. The estimated prediction accuracy is the average of the
prediction accuracy for the models, derived from the independently and randomly
generated test divisions. In our preliminary experiments [59], we tested five different
window sizes (3, 7, 11, 19, and 27) for each model and found that the window size of
11 is the most suitable for our experiments. (A window size of 11 means 23 amino
acids with the boundary residue located at the center of the window.)

Table 23.4 summarizes confusion matrices for each test model. As indicated,
the standard deviation for each model is insignificant, suggesting reasonable per-
formance consistency. The average accuracy over three models for an EH-profile is
about three percentage points better than an evolutionary profile. This proves our hy-
pothesis that the hydrophobicity information used in an EH-profile provides suitable
information as it performs key roles for protein stability. Clearly, an EH-profile is
more useful than the widely known evolutionary profile for protein domain boundary
prediction. More importantly, the performance of HME with an EH-profile showed
the best predictive performance (Ac: 0.78). With an evolutionary profile, it also out-
performed other models in Sn, Cc, and Ac. The modular approach used in HME
improved its predictive performance by effectively capturing the information from
nonlocal interactions. In other words, it is more resistant to model overfitting, and
the weak signal-to-noise ratio associated, which lead to the problem of vanishing
gradient.

Finally, our MKA that comprises the HME model and an EH-profile and two
other well-known predictors were evaluated on the Benchmark 3 dataset. DOMpro
[12] uses evolutionary information (gene-exon shuffling), secondary structure, and
solvent accessibility information with a recursive neural network. DOMpro is trained
and tested on a curated dataset derived from the CATH database. It achieved a sensi-
tivity and specificity of 71% and 71%, respectively, in the CAFASP4 and was ranked
among the top ab initio domain predictors. DomNet [59] is a recently introduced
machine-learning algorithm that uses a novel compact domain profile (CD-profile).
It outperformed nine other machine-learning methods on the Benchmark 2 dataset.
DomNet is trained with an interdomain linker-region index, secondary structure, and

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

512 PROTEIN DOMAIN BOUNDARY PREDICTION

Table 23.5 Accuracy of domain boundary placement on the Benchmark 3 dataset

Predictors 1-Domain (39.1%) 2-Domain (39.9%) 3-Domain and More (21%) Avg. Ac

MKA 82.1% 50.9% 31.5% 77.9%
DomNet 83.0% 54.3% 21.0% 78.6%
DOMpro 79.2% 48.1% 29.8% 74.2%

relative solvent accessibility information with a CD-profile. The CD-profile uses ad-
ditional structural information from a conserved-domain database [60] because con-
served domains contain conserved sequence patterns or motifs, which allows for
their detection in polypeptide sequences. Hence, the PSSMs in a conserved domain
database can be useful to find remote homology.

Table 23.5 shows the accuracies obtained by each predictor on the Benchmark 3
dataset. MKA correctly predicted 86 of all 106 targets for one-domain chains and
showed 82.1% accuracy. The accuracy of MKA was 0.9 percentage points less than
DomNet in one-domain prediction. In two-domain prediction, DomNet still per-
formed better as it predicted 113 of all 208 chains correctly. However, with three-
domain and more chains, only MKA correctly predicted with more than 30% accu-
racy. Its accuracy in this category was 10.5 and 11.7 percentage points higher than
DomNet and DOMpro, respectively. This means MKA more consistently captures
information from an EH-profile and eventually leads to model stability and robust-
ness. Although it is well acknowledged that the model stability is a more important
factor than the learning bias in predictive performance [61], several important issues
should be taken into account to improve the performance of the proposed MKA. This
will be discussed in the following section.

23.4 DISCUSSION

Although many machine-learning-based domain predictors have been developed,
they have shown limited capability for multidomain proteins. Our approaches used
in MKA were shown to be effective for multidomain proteins. The two experiments
confirmed our hypothesis that MKA efficiently captures nonlocal interaction infor-
mation while preserving accurate data modeling in domain-boundary prediction.
However, as its prediction accuracy reaches only about 40% for multidomain and
82% for one-domain proteins, there is still much room for improvement. Some areas
of possible improvement are discussed in this section.

23.4.1 Nonlocal Interactions in Amino Acids

As historical summaries have shown [31], many researchers have built successful
secondary structure predictors using machine learners such as feed-forward neural
networks and support vector machines with local input windows of 9–15 amino
acids [62–65]. Over the years, the performance has improved steadily by about

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

23.4 DISCUSSION 513

1% per year. This improvement was possible because of increased training data and
several additional techniques including (i) output filers to cleanup predictions, (ii)
input profiles associated with homologous sequence alignments, and (iii) predictor
ensembles. The main weakness of these approaches resides in the researchers’ use
of a local window that cannot capture nonlocal information such as that presented in
β-sheets. This is partially corroborated because the β-sheet class always shows the
weakest performance results. Substantially increasing the input window’s size, how-
ever, does not seem to improve the performance. As long as we fully cannot capture
information about the interaction of remote sequence positions, efficient learning for
the long-range dependencies does not seem possible. The learner is given only a set
of inputs and a serial order relation for them and must solve a difficult credit assign-
ment problem to identify the interacting positions.

Our modular kernel approach using HME architecture consists of comparatively
simple experts (specialists neural) and gating networks, organized in a tree struc-
ture. The basic functional principle behind this structure is the well-known technique
called “divide and conquer.” This technique solves complex problems by dividing
them into simpler problems for which solutions can be obtained easily. These par-
tial solutions then are integrated to yield an overall solution to the whole problem.
Its architecture enforces constant error flow (thus, neither exploding nor vanishing)
through internal states of units.

Many gradient-based machine learners solve their classification problem (i.e.,
function approximation) by explicitly hard splitting the input space into subregions,
such that only one single ‘expert’ is contributing to the overall output of the model.
The “hard splits” of the input space make algorithms to be variance increasing, espe-
cially for higher dimensional input spaces where data is distributed sparsely. In con-
trast, HME architecture uses a soft splitting approach to partition the input space in-
stead of hard splitting, as is the case in statistical models, allowing the input data to be
present simultaneously in multiple subregions. In this case, many experts may con-
tribute to the overall output of the network, which has a variance decreasing effect.

23.4.2 Secondary Structure Information

In the literature, protein secondary-structure information has been used widely for
domain-boundary prediction, as it was shown to be useful for increasing predic-
tion accuracy. Most interdomain regions consist of loops, whereas β-strands tend
to form sheets that constitute the core of protein domains. The α-helices and
β-sheets in proteins are relatively rigid units, and therefore, domain boundaries rarely
split these secondary structure elements. The mutations at the sequence level can ob-
scure the similarity between homologs. However, their secondary-structure patterns
remain more conserved because changes at the structural level are less tolerated.
The secondary-structure-alignment methods used in this study aim to exploit these
conserved features to locate domain regions within secondary-structure strings. We
obtained the secondary-structure information by one of the widely known secondary-
structure predictors called SSpro [57]. However, there is one significant limitation;
the best predictor still cannot reach the upper boundary of prediction accuracy. The

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

514 PROTEIN DOMAIN BOUNDARY PREDICTION

best secondary-structure predictors show only about 75–80% accuracy. Clearly, the
incorrectly predicted secondary structures are highly likely to lead to the incorrect
delineation of domain boundaries. Although the predicted secondary information
seems to be useful for current approaches, it may not be ideal if one attempts to
reach better than 80% accuracy.

23.4.3 Hydrophobicity and Profiles

For prediction or classification tasks, it is well-known that finding the right fea-
tures or information plays key roles in improving model performance. Our profiling
method based on the assumption that hydrophobicity, a major factor in protein sta-
bility with a suitable homology information, can provide better information for its
computational leaner proved to be successful. However, many more issues need to
be investigated, as indicated in various alignments studies [31–34]. One of the exam-
ples is human intervention in the adjustment of automatic alignment. As is believed
widely, domain expert intervention at (i) fold identification and (ii) readjustments
multiple alignment levels significantly can improve its accuracy. In the literature,
therefore, research to develop more biologically realistic profiles actively has been
reported. This should prevent the current limitations of automated methods by allow-
ing domain experts to interact with the computation to control the quality of analysis
at processing stages.

23.4.4 Domain Assignment Is More Accurate for Proteins
with Fewer Domains

In general, the prediction accuracy of sequence-based methods has been far smaller
(<50%) for multidomain proteins. For example, Liu and Rost’s [13] experiments on
CATH and SCOP assigned domains to random subsets of 1187 proteins of known
high- resolution structure and less than 10% sequence homology; they showed cor-
rect prediction of the number of domains (single and multi) in 69% of the cases.
However, the accuracy for multidomain cases alone was only 38%. For the two
continuous-domain proteins, the average accuracy of dbp prediction in different val-
idation runs was 46–51% considering a prediction to be correct if it were in ±20
residues interval of the CATH- and SCOP-assigned boundaries.

Joshi [22] discussed the main reasons for the problems in deciphering the mul-
tidomain protein structures and his possible solutions. With experimental data, al-
though the structure within a domain is fixed, the relative positioning of two domains
within the same chain can vary. For this reason, and because protein structural do-
mains are independent folding units, it is unusual to find single crystal structures
containing more than one domain. Similarly, protein modeling by database search-
ing, sequence alignment, and/or phylogenic analysis is performed better on a single
domain rather than on a multidomain polypeptide. Hence, in most cases, the number
of domains in a protein first should be identified to determine the locations of such
domains on the primary chain before embarking on a standard method of protein-
structure/function determination. The identification of linker regions connecting two

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

REFERENCES 515

distinct domains is also useful in finding domain-boundary locations; accordingly,
several domain-boundary predictors employing domain linker information, such as
DomCut and DomainDiscovery, showed a reasonably better predictive performance
in domain-boundary prediction.

23.5 CONCLUSIONS

Our approach adopted modular HME that leverages evolutionary and hydrophobic-
ity information in the form of profiles and also used predicted secondary structure
and relative solvent accessibility. This was demonstrated in the three consecutive
experiments in this study. The novel EH-profile that combines homology informa-
tion with hydrophobicity from the SARAH1 scale was successful in providing more
structural and chemical information. In addition, the modular approach adopted in
HME proved to be effective in capturing information from nonlocal interactions.
Each gradient-memory-based model in HME showed a learning ability to bridge
time intervals at some level in the nonlocal interaction environment (this is the case
of noisy and incompressible input sequences), without much loss of a short time
lag capability. With the newly built Benchmark 3 dataset, our approach showed its
usefulness, especially for multidomain chains.

The experimental result on the Benchmark 3 dataset is encouraging; however,
more work is need to extend it to a broader range of applications. Thus, we currently
are developing a novel interactive (human-in-the-loop) profiling that can provide
information from more distantly related homology. Considering difficult modeling
cases, our modeling approach with human-in-the-loop profiling techniques seems to
be an extremely promising stepping stone toward fully automated modeling. These
approaches will be suitable for the exploitations of interresidue and homology in-
formation because it is based on more biologically realistic objective functions or
scoring models. For example, automated alignments can be used as a starting point;
however, the best sequence alignment of tertiary structures comes from careful hu-
man intervention. In addition, the algorithm will be modified further to have an in-
telligent and adaptive learning ability that senses changes in the environment and
situation as human experts continually optimize the profiles. This ability, of course
will aid significantly in the identification of potential problems (i.e., critical points)
during the computation and then enable the incorporation of different methods and
other available information from various sources to execute more effective decisions.

REFERENCES

1. R.R. Copley, T. Doerksa, I. Letunica, and P. Borka. Protein domain analysis in the era of
complete genomes. FEBS Lett, 513:129–134, 2002.

2. M. Levitt and C. Chothia. Structural patterns in globular proteins. Nature, 261:552–558,
1976.

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

516 PROTEIN DOMAIN BOUNDARY PREDICTION

3. L. Kong and S. Ranganathan. Delineation of modular proteins: Domain boundary pre-
diction from sequence information. Briefings Bioinformatics, 5(2):179–192, 2004.

4. M. Suyama and O. Ohara. DomCut: Prediction of inter-domain linker regions in amino
acid sequences. Bioinformatics, 19(5):673–674, 2003.

5. B. Contreras-Moreira and P.A. Bates. Domain fishing: A first step in protein comparative
modelling. Bioinformatics, 18:1141–1142, 2002.

6. S.J. Wheelan, A. Marchler-Bauer, and S.H. Bryant. Domain size distributions can predict
domain boundaries. Bioinformatics, 16:613–618, 2000.

7. J. Gracy and P. Argos. DOMO: A new database of aligned protein domains. Trends
Biochem Sci, 23:495–497, 1998.

8. S. Veretnik and I.N. Shindyalov. Computational Methods for Domain Partitioning in Pro-
tein Structures in Computational Methods for Protein Structure and Modeling. Springer-
Verlag, New York, 2006.

9. I. Friedberg, L. Jaroszewski, Y. Ye, and A. Godzik. The interplay of fold recognition
and experimental structure determination in structural genomics. Curr Opin Struct Biol,
14:307–312, 2004.

10. R.L. Marsden, T.A. Lewis, and C.A. Orengo. Towards a comprehensive structural cover-
age of completed genomics: a structural genomics viewpoint. BMC Bioinformatics, 8:86,
2007.

11. P.D. Yoo, B.B. Zhou, and A.Y. Zomaya. Machine learning techniques for protein sec-
ondary structure prediction: an overview and evaluation, J Curr Bioinformatics, 3(2):74–
86, 2008.

12. J. Cheng, M. Sweredoski, and P. Baldi. DOMpro: Protein domain prediction using pro-
files, secondary structure, relative solvent accessibility, and recursive neural networks.
Data Min Knowl Discov, 13(1):1–10, 2006.

13. J. Liu and B. Rost. Sequence-based prediction of protein domains. Nucleic Acids Res,
32(12):3522–3530, 2004.

14. R.A. George and J. Heringa. SnapDRAGON: A method to delineate protein structural
domains from sequence data. J Mol Biol, 316:839–851, 2002.

15. R.N. Marsden, L.J. McGuffin, and D.T. Jones. Rapid protein domain assignment from
amino acid sequence using predicted secondary structure. Protein Sci, 11:2814–2824,
2002.

16. N. Nagarajan and G. Yona. Automatic prediction of protein domains from sequence in-
formation using a hybrid learning system. Bioinformatics, 20:1335–1360, 2004.

17. J.E. Gewehr and R. Zimmer. SSEP-Domain: Protein domain prediction by alignment of
secondary structure elements and profiles. Bioinformatics, 22(2):181–187, 2006.

18. M. Dumontier, R. Feldman, H.J. Yao, and C.W.V Hogue. Armidillo: Doamin boundary
prediction by amino acid composition. J Mol Biol, 350:1061–1073, 2005.

19. M. Suyama and O. Ohara. DomCut: Prediction of inter-domain linker regions in amino
acid sequences. Bioinformatics, 19(5):673–674, 2003.

20. J. Sim, S.Y. Kim, and J. Lee. PRODO: Prediction of protein domain boundaries using
neural networks. Proteins, 59:627–632, 2005.

21. A.R. Sikder and A.Y. Zomaya. Improving the performance of DomainDiscovery of pro-
tein domain boundary assignment using inter-domain linker index. BMC Bioinformatics,
7(Suppl 5):S6, 2006.

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

REFERENCES 517

22. R.R. Joshi. A decade of computing to traverse the labyrinth of protein domains. Curr
Bioinformatics, 2:113–131, 2007.

23. P. Baldi and G. Pollastri. A machine learning strategy for protein analysis. Intell Syst
Biol, 17(2):28–35, 2002.

24. P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri. Exploiting the past and the
future in protein secondary structure prediction. Bioinformatics, 15(1):937–946, 1999.

25. M. Punta and B. Rost. PROFcon: Novel prediction of long-range contacts. Bioinformat-
ics, 21(13):2960–2968, 2005.

26. J. Chen and N.S. Chaudhari. Cascaded bidirectional recurrent neural networks for protein
secondary structure prediction. IEEE Trans Comput Biol Bioinformatics, 4(4):572–582,
2007.

27. J.R. Green, M.J. Korenberg, R. David, and I.W. Hunter. Recognition of adenosine
triphosphate binding sites using parallel cascade system identification. Ann Biomed Eng,
31:462–470, 2003.

28. J.T. Wang, Q. Ma, D. Shasha, and C.H. Wu. Application of neural networks to biological
data mining: A case study in protein sequence classification. Proceedings of the 6th ACM
SIGKDD International Conference, KDD, 2000, pp. 305–309.

29. G. White and W. Seffens. Using a neural network to backtranslate amino acid sequences.
EJB, 7:157–182, 1998.

30. N. Zavaljevski, F.J. Stevens, and J. Reifman. Support vector machines with selective
kernel scaling for protein classification and identification of key amino acid positions.
Bioinformatics, 18(5):689–696, 2002.

31. P. Baldi and S. Brunak. Bioinformatics-the Machine Learning Approach. MIT Press,
Cambridge, MA, 1998.

32. B. Zhang, C. Zhihang, and Y.L. Murphey. Protein secondary structure prediction using
machine learning. Proc IEEE Conf on Neural Networks, 1:532–537, 2005.

33. S. Akkaladevi, A.K. Katangur, S. Belkasim, and Y. Pan. Protein secondary structure
prediction using neural network and simulated annealing algorithm. Engineering in
Medicine and Biology Society 26th Annual International Conference, 2:2987–2990,
2004.

34. K. Lin, A.C.W. May, and W.R. Taylor. Amino acid encoding schemes from protein
structure alignments: Multi-dimensional vectors to describe residue types. J Theor Biol,
216:361–365, 2002.

35. R. Lohmann, G. Schneider, D. Behrens, and P. Wrede. A neural network model for
the prediction of membrane-spanning amino acid sequences. Protein Sci, 3:1597–1601,
1994.

36. Z.R. Yang and K.C. Chou. Bio-support vector machines for computational proteomics.
Bioinformatics, 20:735–741, 2004.

37. S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.
Proc Nat Acad Sci, 89:10915–10919, 1992.

38. S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman.
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.
Nucleic Acids Res, 25(17):3389–3402, 1997.

39. H. Hu and Y. Pan. Improved protein secondary structure prediction using support vector
machine with a new encoding scheme and an advanced tertiary classifier. IEEE Trans
nanobioscience, 3(4):265–271, 2004.

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

518 PROTEIN DOMAIN BOUNDARY PREDICTION

40. H. Kim and H. Park. Protein secondary structure prediction based on an improved support
vector machines approach. Protein Eng, 16:553–560, 2003.

41. M.J. Korenberg, R. David, I.W. Hunter, and J.E. Solomon. Automatic classification of
protein sequences into structure/function groups via parallel cascade identification: A
feasibility study. Ann Biomed Eng, 28(7):803–811, 2000.

42. H.H. Jang, S.Y. Kim, S.K. Park, H.S. Jeon, Y.M. Lee, J.H. Jung, S.Y. Lee, H.B. Chae,
Y.J. Jung, K.O. Lee, et al. Phosphorylation and concomitant structural changes in hu-
man 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular
chaperone functions. FEBS Lett 580(1):351–355, 2006.

43. C. Li, H.R. Ibrahim, Y. Sugimoto, H. Hatta, and T. Aoki. Improvement of functional
properties of egg white protein through phosphorylation by dry-heating in the presence
of pyrophosphate. J Agric Food Chem, 52(18):5752–5758, 2004.

44. R. David. Applications of Nonlinear System Identification to Protein Structural Predic-
tion. Master’s Thesis, MIT, Cambridge, MA 2000.

45. G.D. Rose, A.R. Geselowitz, G.J. Lesser, R.H. Lee, and M.H. Zehfus. Hydrophobicity
of amino acid residues in globular proteins. Science, 229:834–838, 1985.

46. M.J. Korenberg, R. David, I.W. Hunter, and J.E. Solomon. Automatic classification of
protein sequences into structure/function groups via parallel cascade identification: A
feasibility study. Ann Biomed Eng, 28(7):803–811, 2000.

47. B. Zhang, C. Zhihang, and Y.L. Murphey. Protein secondary structure prediction using
machine learning. Proc. IEEE Conf on Neural Networks, 1:532–537, 2005.

48. S. Hochreiter, Y. Bengio, P. Frasconi, and S. Schmidhuber. Gradient flow in recurrent
nets: The difficulty of learning long-term dependencies. In S.C. Kremer and J.F. Kolen,
editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press, Piscat-
away, NJ, 2001.

49. Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Trans Neural Networks, 5(2):157–166, 1994.

50. S. Hochreiter, and J. Schmidhuber. Long shot-term memory. Neural Comput, 9:1735–
1780, 1997.

51. F. Gers, N. Schraudolph, and J. Schmidhuber. Learning precise timing with LSTM recur-
rent networks. Mach Learn Res, 3:115–143, 2002.

52. M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Comp, 6:181–214, 1994.

53. T.A. Holland, S. Veretnik, I.N. Shindyalov, and P.E. Bourne. Partitioning protein struc-
tures into domains: Why is it so difficult? J Mol Biol, 361(3):562–590, 2006.

54. F.M.G. Pearl, D. Lee, J.E. Bray, I. Sillitoe, A.E. Todd, A.P. Harrison, J.M. Thornton, and
C.A. Orengo. Assigning genomic sequences to CATH. Nucleic Acids Res, 28(1):277–
282, 2000.

55. A. Andreeva, D. Howorth, S.E. Brenner, T.J. Hubbard, C. Chothia, and A.G. Murzin.
SCOP database in 2004: Refinements integrate structure and sequence family data.
Nucleic Acids Res, 32:D226–D229, 2004.

56. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindylov,
and P.E. Bourne. The Protein Data Bank. Nucleic Acids Res, 28:235–242, 2000.

57. G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of protein sec-
ondary structure in three and eight classes using recurrent neural networks and profiles.
Proteins, 47:228–235, 2002.

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

REFERENCES 519

58. G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio. Prediction of coordination number and
relative solvent accessibility in proteins. Proteins, 47:142–153, 2002.

59. P.D. Yoo, A. Sikder, J. Taheri, B.B. Zhou, and A. Zomaya. DomNet: Protein domain
boundary prediction using enhanced general regression network and new profiles. IEEE
Trans Nanobioscience, 7(2):172–181, 2008.

60. A. Marchler-Bauer, J.B. Anderson, P.F. Cherukuri, C. DeWeese-Scott, L.Y. Geer,
M. Gwadz, S. He, D.I. Hurwitz, J.D. Jackson, Z. Ke, et al. CDD: A conserved domain
database for protein classification. Nucleic Acids Res, 33:D192–D196, 2006.

61. T.G. Dietterich and G. Bakiri. Machine learning bias, statistical bias and statistical vari-
ance of decision tree algorithms. Technical Report, Department of Computer Science,
Oregon State OR, University, Corvallies, 1995.

62. B. Rost and C. Sander. Combining evolutionary information and neural networks to pre-
dict protein secondary structure. Proteins, 19(1):55–72, 1994.

63. D.T. Jones. Protein secondary structure prediction based on position-specific scoring ma-
trices. J Mol Biol, 292(2):195–202, 1999.

64. K. Ginalski, A. Elofsson, D. Fischer, and L. Rychlewski. 3D-jury: A simple approach to
improve protein structure predictions. Bioinformatics, 19(8):1015–1018, 2003.

65. J. Sim, S.-Y. Kim, and J. Lee. PRODO: Prediction of protein domain boundaries using
neural networks. Proteins, 59:627–632, 2005.

P1: OSO
c23 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24
AN INTRODUCTION TO
RNA STRUCTURE AND

PSEUDOKNOT PREDICTION

Jana Sperschneider and Amitava Datta

If 10% of protein fold researchers switched to RNA, the problem could be solved in one
or two years.

—Tinoco and Bustamante, 1999 [39]

24.1 INTRODUCTION

For nearly a century, the view most researchers had on RNA did not reach beyond
the central dogma of molecular biology: DNA is transcribed to messenger RNA,
which in turn is translated to proteins. Consequently, RNA was seen solely as the
passive carrier of genetic information from DNA to proteins and not much else. In
the 1980s, the field of RNA experienced major turbulences with the discovery of
the ability of RNA to act as a catalyst. Numerous noncoding RNAs that are not
translated to proteins have been discovered, and the prevailing view among scientists
is that these functional RNAs no longer have to hide behind proteins. Unlike DNA
with its famous double helix structure, RNA exhibits diverse three-dimensional folds
and is an extremely versatile molecule. For example, RNA is known to take part in
translational regulation, intron splicing, and gene expression. Novel functional RNAs
are discovered continuously, and many more breakthroughs in this exciting area can
be expected in the foreseeable future.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

521

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

522 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

One of the central paradigms in molecular biology states that structure is related
strongly to function. Laboratory structure prediction is intricate and costly. There-
fore, computational structure prediction from sequence is one of the holy grails in
bioinformatics. The most critical point in structure prediction is defining a reason-
able computational model for the underlying complex biological folding processes. It
is no trivial task to achieve a good balance between computational feasibility and re-
alistic biological modeling. RNA folding is a complex process that is driven by base
pair formation, loop entropy, temperature, and contact with other macromolecules
and metal ions. To make things even more complicated, certain types of RNA have
been found to adopt alternative conformations. However, the game is not necessarily
lost. The main driving force in RNA folding allows for computational prediction; a
continuous pairing of complementary bases stabilizes RNA structures through hy-
drogen bonds, resulting in a so-called secondary structure.

In the following sections, we will introduce algorithms for RNA structure pre-
diction given a single sequence. Prediction of the consensus structure for several
related RNA sequences is another challenge that will not be covered here. Com-
parative information can improve greatly structure prediction; however, existing
algorithms are expensive computationally and need a reliable set of homologous
sequences [15].

24.2 RNA SECONDARY STRUCTURE PREDICTION

RNA primary structure is a single-stranded chain of nucleotide monomers. Each nu-
cleotide consists of a five-carbon sugar, a phosphate, and one of the four different
bases: adenine (A), cytosine (C), guanine (G), or uracil (U). The phosphate is at-
tached to the third and fifth carbon in the sugar, forming a backbone with certain
directionality. By convention, an RNA sequence is written as the succession of its
bases in 5′ to 3′ direction. Complementary bases can form so-called canonical base
pairs (C,G), (A,U), or (G,U) through hydrogen bonding (Figure 24.1).

The structure that forms through base pairing of the primary sequence is called
the secondary structure. Formally, an RNA secondary structure is defined as a set
of base pairs in which each base is paired at most once. Given an RNA sequence
S = S1 . . . Sn with Si ∈ {A, C, G, U}, its secondary structure R is the set of base
pairs

R = {
(i, j) | 1 ≤ i < j ≤ n ∧ Si and S j form a base pair

}
(24.1)

with the property that for all base pairs (i, j), (i ′, j ′) ∈ R the following holds:

i = i ′ ⇔ j = j ′ (24.2)

However, base pairing is not the only force in secondary structure formation. Many
bases remain unpaired and form unstructured regions, which are referred to as loops.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.2 RNA SECONDARY STRUCTURE PREDICTION 523

5′

3′

P

P

3′

5′
P

P

G

A

C

U

Figure 24.1 RNA consists of a sugar-phosphate backbone with bases A, C, G, or U attached
to the first carbon in the sugar. Complementary bases form pairs through stable hydrogen bonds.
The pair (C,G) forms three hydrogen bonds, whereas (A,U) exhibits two.

The secondary structure for an RNA sequence can be decomposed into structure
elements, as shown in Figure 24.2. Secondary structure elements typically are defined
through their closing base pair (i.e., the bond with largest distance). The following
describes variations of secondary structure elements:

� Two or more consecutive base pairs are called a helix or stem.
� A loop with one closing base pair is called a hairpin loop.
� A loop with two closing base pairs that interrupt one strand of a helix is called

a bulge loop.

5 3

Hairpin loop

Bulge loop

Internal loop

Hairpin loop

Multiloop

Helix

A C

G

G

A

GU

G

CU
A

A

U

G G A C

G

U

A U

U G C C G C

U C A U
A

C

U

GC

A A

GGUA

U

A

C

U

G U

Figure 24.2 Secondary structure elements in an RNA structure.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

524 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

5 3
ACGGAGUGCUAAUGGACGUAUUGCCUCAGCUACUGCAAGGUAUACUGU

Figure 24.3 Secondary structure elements as noncrossing intervals on the line.

� A loop with two closing base pairs that interrupt both strands of a helix is called
an internal loop.

� A loop with one closing base pair and two or more interior base pairs is called
a multiloop.

One major restriction commonly is imposed on RNA secondary structures. The set
of base pairs R has to form a noncrossing or nested structure such that for every two
base pairs (i, j), (k, l) ∈ R with i < k the following holds:

i < j < k < l or i < k < l < j (24.3)

The structure displayed in Figure 24.2 also can be drawn in a more abstract way as a
set of paired intervals on the line. This representation emphasizes that all occurring
secondary structure elements are noncrossing (Figure 24.3).

However, crossing base pairs are important as they may result in the formation
of a functional structure element, a so-called pseudoknot. Therefore, a noncrossing
structure R also is called free of pseudoknots. Despite their abundance, pseudoknots
are for the most part neglected in computational RNA structure prediction as they
significantly increase computational runtime. We will introduce practical structure
prediction algorithms including pseudoknots in Section 24.3.

24.2.1 Minimum Free Energy Model

Complementary base pairing is the key to RNA secondary structure formation with
the goal to minimize the free energy of the system. Out of the exponential num-
ber of possible structures, an RNA molecule will fold into the one with minimum
free energy. The free energy change �G always is determined by both enthalpic
and entropic forces. In RNA structures, enthalpic terms develop from consecutive
base pairs (stabilizing forces), and entropic terms develop from unstructured regions
(destabilizing forces).

Today, the most popular and robust model for RNA structure prediction is the min-
imum free energy (MFE) model. It includes free energy parameters for helices and
loops that have been derived experimentally from synthetically constructed oligori-
bonucleotides [42, 26]. This empirical energy model commonly is referred to as the
nearest-neighbor model. In a helix, the free energy is determined by the sum of the

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.2 RNA SECONDARY STRUCTURE PREDICTION 525

i

i + 1

j

j − 1

(a)

i j

(b)

i

i + 1

j

j

(c)

i

i

j

j

(d)

i j

i1

j1

i2

j2

(e)

Figure 24.4 RNA structure elements defined by the closing base pair (i, j): (a) helix; (b) hairpin
loop; (c) bulge loop; (d) internal loop; and (e) multiloop.

nearest-neighbor parameters for the stacked base pairs. The loop entropy parameters
depend on the type of loop, the closing base pairs, and length. In the nearest-neighbor
model, each secondary structure element is defined through its closing base pair (i, j)
(Figure 24.4). Each structure element has a specific energy function assigned to it as
follows:

� A helix or stem with stacked base pairs (i, j) and (i + 1, j − 1) has free energy
eS(i, j).

� A hairpin loop with closing base pair (i, j) has free energy eH (i, j).
� A bulge or internal loop with closing base pairs (i, j) and (i ′, j ′) has free energy

eL(i, j, i ′, j ′).
� A multiloop with one closing base pair (i, j) and k interior base pairs

(i1, j1), . . . , (ik, jk) has free energy eM(i, j, i1, j1, . . . , ik , jk).

A given RNA structure R can be decomposed into the set of structure elements de-
fined through their closing bonds. Let E R

i, j be the free energy of a structure element
in R closed by base pair (i, j). The overall free energy E(R) for an RNA structure R
is estimated by summing the energy parameters for each structure element in R:

E(R) =
∑

(i, j)∈R

E R
i, j (24.4)

This can be done for two reasons. First, each structure element is defined uniquely
through its closing bond (i, j). Second, the free energy of a loop is assumed to be
independent from all other loops in the nearest-neighbor model.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

526 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

The nearest-neighbor energy model is used widely in algorithms for RNA sec-
ondary structure prediction from sequence. The key concept that allows for an ef-
ficient dynamic programming algorithm is that the energy of a structure element is
self-contained, and the underlying energy model is additive. However, it should be
emphasized that it is only an approximation of the underlying complex RNA folding
process in vivo. An algorithm always is limited by the underlying model. Therefore,
improving the free energy parameters surely will lead to better prediction results in
the future.

� EXAMPLE 24.1

A toy example for the minimum free energy calculation under the nearest-
neighbor model is shown in Figure 24.5. The values are taken from the set of
free energy parameters often referred to as the Turner parameters [42, 26].

24.2.2 Prediction of Minimum Free Energy Structure

Computational RNA structure prediction started to develop in 1980 with a dynamic
programming algorithm for calculating the structure with a maximum number of
base pairs [28]. This obvious oversimplification of the folding process soon was
overcome with the integration of free energy minimization and the nearest-neighbor
energy model into a dynamic programming approach [44]. This pioneering work is
still the most popular method for RNA structure prediction because of computational
efficiency and mathematical correctness in regard to the underlying energy model.

For a given RNA sequence, how can we calculate a structure with minimum free
energy? An exponential number of possible structures in the search space makes

∆G = −1.4 − 2.1 − 2.2 + 1.4 − 2.1 + 6.2 + 1.0 − 1.0 − 2.5 − 3.3 + 2.3 − 3.4 + 3.6

= −3.5kcal
mol

at 37◦C

5 3
A C

G

G

A

GU

G

CU
A

A

U

G G A C

G

U

A U

U G C C G C

U C A U
A

C

U

GC

A A

GGUA

U

A

C

U

G U

+1.0

−1.4

−2.1

−2.2

+1.4

−2.1

+6.2

+2.3

−3.4−1.0

−2.5

−3.3

+3.6

Figure 24.5 The overall free energy for an RNA structure is the additive sum of free energy
values for the secondary structure elements.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.2 RNA SECONDARY STRUCTURE PREDICTION 527

finding a minimum free energy structure by naive enumeration impossible. How-
ever, the Bellman principle allows for an efficient calculation: calculate the optimal
solution for a structure from already computed optimal solutions for smaller sub-
structures. The underlying energy model is based on the additivity of free energy
values for secondary structure elements and consequently allows for dynamic pro-
gramming. This enables us to compute a secondary structure with minimum free
energy for a given RNA sequence in O(n3) time and O(n2) space. The algorithmic
procedure based on [44] is described as follows:

Input: RNA sequence S = S1 . . . Sn with Si ∈ {A, C, G, U }.
Output: Secondary structure R with minimum free energy given as a set of base
pairs R = {

(i, j) | 1 ≤ i < j ≤ n ∧ Si and S j form a base pair
}
.

At the heart of the algorithm lies the computation of two possible scenarios for each
subsequence S = Si . . . Sj using the matrices W (i, j) and V (i, j).

� W (i, j) holds the free energy for the optimal secondary structure on the se-
quence S = Si . . . Sj .

� V (i, j) holds the free energy for the optimal secondary structure on the se-
quence S = Si . . . Sj closed by base pair (i, j). If (i, j) is not a valid base pair,
then V (i, j) = ∞.

24.2.2.1 Matrix V(i, j). The recursion scheme for matrix V (i, j) is related di-
rectly to the set of possible secondary structure elements. The structure element with
minimum free energy closed by base pair (i, j) is either a helix, hairpin loop, bulge
loop, internal loop, or multiloop. The recursion scheme for V (i, j) is as follows:

V (i, j) = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eS(i, j) + V (i + 1, j − 1)

eH (i, j)

V L(i, j)

V M(i, j)

(24.5)

Here, two matrices V L(i, j) and V M(i, j) are introduced for the computation of
bulge loops, internal loops, and multiloops with the requirement that i and j are base
paired. For bulge and internal loops, one has to search for the best interior base pair
(i ′, j ′). Therefore, the following recursion holds:

V L(i, j) = min
i<i ′< j ′< j

i ′−i+ j− j ′>2

{
eL(i, j, i ′, j ′) + V (i ′, j ′)

}
(24.6)

For a multiloop with a closing base pair (i, j), one has to find the opti-
mal k interior base pairs (i1, j1), . . . , (ik, jk) that minimize the energy function
eM(i, j, i1, j1, . . . , ik, jk). However, this obviously requires exponential runtime.
Therefore, a simplified affine energy function is employed. The free energy of a

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

528 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

multiloop is approximated as follows using the number of unpaired nucleotides in
the loop, the number of interior base pairs in the loop, and constants a, b, and c. The
parameters a, b, and c describe the offset penalty, interior base pair penalty, and free
base penalty, respectively.

eM(i, j, i1, j1, . . . , ik, jk) =
a + bk + c

(
i1 − i − 1 + j − jk − 1 + ∑k−1

l=1 (il+1 − jl − 1)
) (24.7)

This modified energy function is the basis for an efficient calculation of matrix
V M(i, j). The calculation for matrix V M(i, j) demands that the multiloop consists
of at least two parts and the offset penalty a is added.

V M(i, j) = min
i+1<k≤ j−1

{W M(i + 1, k − 1) + W M(k, j − 1) + a} (24.8)

We need to ensure that the two parts W M(i + 1, k − 1) and W M(k, j − 1) contain at
least one helix each. Remember that a multiloop is defined to have one closing base
pair and two or more interior base pairs. This means that matrix W M(i, j) needs to
produce at least one interior base pair through its recursion scheme. Therefore, the
initialization is as follows: W M(i, i) = ∞. In the calculation for W M(i, j), the parts
of the multiloop recursively are cut down to the interior base pairs, and the penalties
are added accordingly.

W M(i, j) = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W M(i + 1, j) + c

W M(i, j − 1) + c

mini<k≤ j {W M(i, k − 1) + W M(k, j)}
V (i, j) + b

(24.9)

24.2.2.2 Matrix W(i, j). Let us look at the subsequence S = Si . . . Sj again. So
far only structure elements with a closing base pair (i, j) have been covered. How-
ever, three more cases can occur:

� Base i remains unpaired.
� Base j remains unpaired.
� Bases i and j are paired but not with each other.

These cases are captured in the following recursion equations.

W (i, j) = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W (i + 1, j)

W (i, j − 1)

V (i, j)

mini<i ′< j−1
{
W (i, i ′) + W (i ′ + 1, j)

}

(24.10)

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.2 RNA SECONDARY STRUCTURE PREDICTION 529

We initialize W (0, 0) = 0. The final result can be read from W (1, n), and the mini-
mum free energy structure is recovered through a traceback step.

24.2.2.3 Recursion Scheme. The overall recursion scheme is displayed in Fig-
ure 24.6 and follows the notion of recursive diagrams used in [32, 11]. Here, a solid
curved line between two bases indicates that they must form a base pair. A dashed
curved line between two bases does not enforce them to pair. Shaded areas for ma-
trix V (i, j) denote a part of the sequence for which the secondary structure has been
determined. Note that matrix V L(i, j) is not shown explicitly; instead it has been
incorporated into the recursions for V (i, j).

24.2.2.4 Time and Space Analysis. For finding the minimum folding energy,
one needs to compute matrix entry W (1, n). The corresponding structure is recovered
through a traceback step. This requires filling of all four matrices W (i, j), V (i, j),
V L(i, j), and W M(i, j), which have n2 entries each. As discussed before, the cal-
culation of multiloops in W M(i, j) is reduced to O(n3) time because of the affine
energy function. Another critical part is the calculation of matrix V L(i, j). Here, one
needs to minimize over two biologically plausible positions i ′ and j ′, which leads to
a runtime of O(n4). However, certain internal loop energy assumptions allow for a
reduction of runtime of O(n3) [25]. Using these techniques, the overall time require-
ment is O(n3) using O(n2) space.

=

W(i, j) i unpaired j unpaired i and j pairbase bifurcation

i j i 1+ j i j − 1 i j i i j

=

V(i, j) Helix MultilooploopInternalloopHairpin
penaltyAdd a

i j i 1+ j − 1 i j i i jj i 1+ k j − 1

=

WM(i, j) i unpaired
penaltyAdd c

j unpaired
penaltyAdd c

bifurcation i and j pairbase
penaltyAdd b

i j i 1+ j i j − 1 i k j i j

Figure 24.6 Recursion scheme for the matrices used in the dynamic programming algorithm.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

530 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

24.2.2.5 Summary. Dynamic programming is today the most popular method
for RNA structure prediction given a single sequence. However, minimum free en-
ergy folding under the nearest-neighbor model has its strengths and weaknesses,
which are discussed in the following:

� The dynamic programming algorithm returns the correct mathematical solution
for the underlying energy model. It is a very fast method and is therefore fea-
sible for long sequences. However, the predicted minimum free energy struc-
ture might not be the native one. The nearest-neighbor energy parameters are
only approximate, and inaccuracies lead to unreliable predictions, especially
for longer sequences.

� Pseudoknots are important parts of RNA structures; however, secondary struc-
ture prediction methods often neglect them. The dynamic programming method
for minimum free energy folding cannot accommodate pseudoknots under the
same time and space requirements.

� Some RNAs are capable of forming alternative structures; therefore, prediction
of a single minimum free energy structure is often inadequate.

The average accuracy of minimum free energy folding for a diverse set of sequences
shorter than 700 nucleotides was reported to be about 70% in [26]. Researchers
should be aware of the downsides of minimum free energy folding and ideally seek
experimental verification. However, this is not always feasible, and thus, we will look
at other computational techniques. The following section will deal with calculation
of the partition function for improved prediction results through examination of the
folding ensemble. Section 24.3 will examine how to include pseudoknots in RNA
structure prediction.

24.2.3 Partition Function Calculation

The prediction of a structure with minimum free energy not only suffers from inac-
curacies of the underlying energy model, but it also is designed to return only one
optimal solution. Given a sequence, there is an exponential number of possible struc-
tures in the search space. Surprisingly, near-optimal structures within say 10% of the
computed minimum free energy are abundant. The suboptimal structure space should
not be neglected for two reasons. First, the correct result might be found among the
suboptimal solutions as a result of approximate energy parameters. Second, a close
examination of the structure space can lead to conclusions about well-defined regions
and prediction reliability.

Instead of an infeasible examination of the suboptimal structure space, we want to
answer the following question: Given an RNA sequence S with the set of all possible
RNA structures R = {R1, . . . , Rm}, what is the probability pi for the formation of
structure Ri with free energy E(Ri)? In particular, we are interested in the proba-
bility distribution −→p = (p1, . . . , pm). There is no knowledge about the distribution
except that there are m states. When estimating a probability distribution without any

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.2 RNA SECONDARY STRUCTURE PREDICTION 531

additional information, we want to choose the one with maximum uncertainty (i.e.,
maximum entropy). This returns the most unbiased probability distribution. The level
of uncertainty is expressed by the following famous Shannon entropy formula:

H
(−→p) = −

∑

i

pi log pi (24.11)

The uniform probability distribution pi = 1
m maximizes the entropy under the side

condition

∑

i

pi = 1 (24.12)

For the set of all possible RNA structures R = {R1, . . . , Rm} with probability dis-
tribution −→p = (p1, . . . , pm), there is one additional constraint we can include. The
expected value for the energy at equilibrium is:

< E >=
∑

i

pi E(Ri) = constant (24.13)

Taking the side condition and this additional constraint, we get the maximum entropy
for the following probability distribution:

pi = e−E(Ri)/kT

Q
(24.14)

This probability distribution is referred to as the Boltzmann distribution with Boltz-
mann constant k and temperature T . Q is the partition function, defined as the
weighted sum over the set of all possible structures R = {R1, . . . , Rm}:

Q =
∑

i

e−E(Ri)/kT (24.15)

The probability of a given structure Ri with free energy E(Ri) is proportional to
e−E(Ri)/kT in equilibrium at temperature T . To calculate explicitly the probability of
a structure Ri for a set of possible structures, the partition function Q needs to be
known. In general, partition function calculation using direct enumeration over all
possible states of the system is infeasible. However, for RNA structures, the partition
function can be determined explicitly. Here, the formula for calculation of energy
E(Ri) for structure Ri in the nearest-neighbor energy model is used (Section 24.2.1).

E(Ri) =
∑

(i, j)∈Ri

E Ri
i, j (24.16)

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

532 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

With these additive terms, one can rewrite the partition function calculation as fol-
lows:

Q =
∑

i

e−E(Ri)/kT =
∑

i

∏

(i, j)∈Ri

e−E
Ri
i, j /kT (24.17)

The number of terms increases exponentially with the sequence length. The key con-
cept for efficient partition function calculation is a restructuring of terms so that
dynamic programming can be applied. The same principle as in MFE folding is
used (i.e., the additive energy function based on the set of secondary structure ele-
ments [44]). However, the recursion scheme differs because it is well known that
there are redundancies in the dynamic programming algorithm. For the partition
function calculation, each structure element must be handled exactly once. If we
count the same state more than once then the partition function will be wrong. An
elegant and efficient way for computing the full equilibrium partition function for
noncrossing RNA secondary structure was introduced in [27]. The algorithmic de-
tails are described as follows:

Input: RNA sequence S = S1 . . . Sn with Si ∈ {A, C, G, U }.
Output: Full equilibrium partition function Q for S defined as the Boltzmann
weighted free energy sum over the set of all possible secondary structure elements.
From the partition function Q, probabilities for structure elements and base pairs can
be derived.

Following the dynamic programming principle, the algorithm starts with subse-
quences of length one and continues with subsequences of increasing lengths. The
solution for a subsequence is assembled from already computed solutions for smaller
subsequences. The main consideration is that every state must be handled exactly
once. Therefore, we need to find a slightly different recursion scheme for calculat-
ing the partition function Q as the one used in MFE folding. The full equilibrium
partition function Q over subsequence S = Si . . . Sj can be expressed through the
following equation:

Qi, j = 1 +
∑

k,l,
i≤k<l≤ j

Qi,k−1 Qb
k,l (24.18)

where, Qb
i, j represents the partition function over subsequence S = Si . . . Sj with

the requirement that (i, j) is a valid base pair. Decomposition of structures accord-
ing to the last base pair guarantees that no structure element is counted twice in the
Boltzmann weighted free energy sum. The recursions for Qb

i, j must cover all possi-
ble structure elements (helix, hairpin loop, bulge and internal loop, and multiloop).
For the detailed equations, we refer the reader to the original papers [27] and [11]. A
visualization of the matrices is shown in Figure 24.7 following the diagrams used
in Section 24.2.2 [11]. Overall, the partition function calculation using dynamic
programming takes O(n4) time and O(n2) space and considers all possible secondary

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.2 RNA SECONDARY STRUCTURE PREDICTION 533

=

Qi,j empty pairsmoreorOne
(k, l)pairlastwith

i j i j i lk j

=

Qb
i,j Helix withMultilooploopInternalloopHairpin

(k, l)pairlast

i j i 1+ j − 1 i j i iʹ jjʹ i lk j

=

Qm
i,j pairOne k, l pairsmoreorOne

(k, l)pairlastwith

i j i lk j i lk j

Figure 24.7 Recursion scheme for the matrices used in the dynamic programming algorithm
for partition function calculation. Matrix Qm

i,j describes the multiloop calculation.

structures. With certain internal loop restrictions as in MFE folding, run time can be
reduced to O(n3) [27, 25, 11].

24.2.4 Base Pair Probabilities

The partition function calculation for RNA structures is a powerful tool for folding
space statistics in equilibrium. In contrast to prediction methods that return a struc-
ture with minimum free energy (and only few suboptimal solutions within a certain
energy range), the partition function considers the ensemble of all possible struc-
tures. As introduced earlier, the equilibrium probability of a given structure Ri with
free energy E(Ri) is proportional to e−E(Ri)/kT at temperature T . Furthermore, one
can derive probabilities for substructures from the partition function, in particular
base pair probabilities.

Given base pair (i, j), its probability p(i, j) is defined as the sum of probabilities
for all structures Rl ∈ R that contain base pair (i, j):

p(i, j) =
∑

Rl	(i, j)

e−E(Rl)/kT

Q
(24.19)

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

534 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

It is important to note that base pair probabilities are not independent. Therefore, it
is wrong simply to multiply base pair probabilities to compute the probability of a
structure element. The probability for a helix, hairpin loop, bulge loop, internal loop,
or multiloop must be calculated using the partition function.

Base pair probabilities also have been used to determine whether a structured
region is well defined [22]. The most robust measure is the positional entropy Sk for
a base k:

Sk = −
∑

i

p(i,k) log p(i,k) (24.20)

where, p(i,i) is the probability that base i does not form a pair with any other base:

p(i,i) = 1 −
∑

j
=i

p(i, j) (24.21)

Regions with a high positional entropy form many alternative structures and are not
well defined. Positional entropy values can be used to assess the reliability of a pre-
dicted secondary structure.

Base pair probabilities p(i, j) for a sequence S conveniently are represented in a
symmetric n × n matrix. The entry (i, j) contains the probability that bases i and j
form a base pair. For visualization, a so-called probability dot plot is common. The
probability dot plot is a concise representation of the ensemble folding statistics. In
dot plots, the upper triangle displays base pair probabilities, whereas the lower trian-
gle contains a square for each base pair which belongs to the minimum free energy
structure (Figure 24.8). In the upper triangle, the size of the squares is proportional
to the base pair probabilities. The tool RNAfold from the Vienna RNA Package pro-
duces such a base pair probability dot plot in a PostScript file [20].

� EXAMPLE 24.2

The Vienna RNAfold web server was used for the structure prediction of an exam-
ple transfer RNA (tRNA) [20]. The results are shown in Figure 24.8. The structure
is returned in dot bracket notation, which represents unpaired and paired posi-
tions. The probability dot plot displays base pair probabilities in the upper right
triangle and the minimum free energy structure in the lower left triangle. Alter-
natively, one can use the famous mfold web server for minimum free energy
folding [43]. It supports the prediction of suboptimal structures, however, without
the use of a partition function calculation.

24.3 RNA PSEUDOKNOTS

Things become intricate when crossing structure elements come into play. A struc-
ture R is called crossing or overlapping if it contains at least two base pairs

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.3 RNA PSEUDOKNOTS 535

1

26

44

74
G
G
G
C
U
A
U

GCUC
G A G C

C
A

C
C

C G
G
G
U
G

G
C

U
G

A
U

C
A

G
CA

U
A
G
C
C
C

U
AAGU

U
G
G

U U A G

C
U
G

A U
A
A

A G
G
U
C

U
U
C

GAA
U

A

GGGCUAUUAGCUCAGUUGGUUAGAGCGCACCCCUGAUAAGGGUGAGGUCGCUGAUUCGAAUUCAGCAUAGCCCA
(((((((..((((.........)))).(((((.......))))).....(((((.......)))))))))))).

Figure 24.8 An example structure prediction for a tRNA sequence. The dot bracket notation
is shown at the top, and the secondary structure is visualized in the lower left using the Pseu-
doViewer software [19]. The probability dot plot is shown on the right and can be used to judge
the reliability of the predicted minimum free energy structure.

(i, j), (k, l) ∈ R with i < k, which fulfill i < k < j < l. The notion of crossing
base pairs is important as these may result in the formation of a functional struc-
ture element, a so-called pseudoknot (Figure 24.9). In RNA structures, pseudoknots
form when bases within a loop region pair with complementary unpaired bases
outside the loop. This results in two pseudoknot helices or stems S1 and S2 and
three pseudoknot loops L1, L2, and L3. It is important to note that the two pseu-
doknot loops L1 and L3 are not equivalent from a thermodynamic viewpoint. Loop
L1 spans across the major groove of stem S2, and loop L3 spans across the mi-
nor groove of stem S1 (Figure 24.9b). Therefore, it is safe to assume that the loop
entropies for L1 and L3 are not equivalent stereochemically. It is still an open ques-
tion how to model the crucial stem-loop correlations as there is little experimen-
tal data on pseudoknot thermodynamics, and progress only has been made recently
[6, 7, 8].

Formally, pseudoknots can be described as secondary structures (i.e., a set of
crossing and noncrossing base pairs). However, they often are attributed to tertiary
structure in the literature because of the hierarchical two-step process assumed to aid
in their formation [39]. In the following sections, we will introduce pseudoknots in
more detail and describe practical prediction methods from the literature.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

536 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

5

3

C

G

C

U

C

A

A

C
U C

A

U

G

G

A

G

C

G C A A

G
A

C

G

A

C

A

U
G

A
G

(a)

S1

L1

S2

L2

L3

5

3

C

G

C

U

C G

A

G

C

G

G

U

A

C

U

C G

A

G

U

A

C

A

A

A

C A

A

G

A

C

G

(b)

5 3

S1 S2

L1 L3

S1 S2

CGCUCAACUCAUGGAGCGCAAGACGACAUGAG

(c)

Figure 24.9 Structure of a pseudoknot. (a) Unpaired bases in a hairpin loop bond with com-
plementary unpaired bases outside the loop. (b) The resulting pseudoknot has two stems and
three loops. Loop L 2 at the junction of the two stems has zero nucleotides in this example. This
can lead to extra stability resulting from coaxial stacking of the stems. (c) The pseudoknot can
be drawn as crossing intervals on the line.

24.3.1 Biological Relevance

Pseudoknots first were identified in 1982 but received only little interest over the
following decade [31]. However, in the last couple of years, numerous pseudoknot
features and roles started to unravel. Recent studies on RNA emphasize the fact that
pseudoknots are essential structures in many biological processes and viruses [3, 16].
A few selected examples will be given here, for two excellent reviews on the diversity
of pseudoknots; see [36] and [4].

Many pseudoknots are found in RNA viruses where they exhibit various func-
tions. They are of high medical research interest, as many viruses use them for in-
fecting the host cell. For example, pseudoknots have been found to be involved in
translation initiation at viral and cellular internal ribosome entry sites (IRESs) [3].
IRES is a highly structured stretch of RNA sequence located in the 5′-untranslated
region (UTR), which mimics the capped structure for ribosome recruitment. There-
fore, most protein factors required for conventional translation initiation no longer
are needed, which is a particular advantage in a competitive host cell environment.

After translation initiation, reprogramming can take place on the mRNA level.
During translation, a ribosome is forced to switch to one of the alternative read-
ing frames. Especially, viruses use programmed –1 ribosomal frameshift to produce
more than one protein from overlapping open reading frames in a single mRNA [16].
RNA frameshifting pseudoknots have been studied extensively because of the impact

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.3 RNA PSEUDOKNOTS 537

of devastating viruses (e.g., severe acute respiratory syndrome (SARS)) and some
nuclear magnetic resonance (NMR) solution structures are available [17].

In positive-strand RNA viruses, the 3′-UTR can form a tRNA-like structure (TLS)
instead of a standard mRNA poly(A) tail. Coaxially stacked pseudoknots mimic a
tRNA cloverleaf structure. These pseudoknots are assumed to be involved in transla-
tion and viral genome replication [12].

Another class of pseudoknots has been discovered in a multifunctional type of
RNA: bacterial transfer-messenger RNA (tmRNA). Ribosomes can stall during pro-
tein synthesis as a result of mRNAs without a stop codon. Dual tRNA and mRNA, so-
called tmRNA, perform a rescue process called trans-translation. The broken mRNA
is liberated from the paused ribosome, and the incomplete polypeptide gets marked
as a degradation target. In general, bacterial tmRNAs consist of a tRNA-like struc-
ture, a mRNA-like structure, and four pseudoknots [16].

Pseudoknots also have been found in catalytically active RNAs, for example, in
ribozymes. Some ribozymes comprise long-range interactions, double pseudoknots,
or kissing interactions to support a complex three-dimensional folding for catalytic
activity. One well-studied example is the hepatitis delta virus (HDV) ribozyme. The
HDV is a human pathogen causing severe illness. The HDV genome features a cat-
alytic component for self-cleaving. This ribozyme is essential for viral replication, as
it cuts RNA transcripts into unit lengths. The 72-nucleotide genomic HDV ribozyme
is the fastest known naturally occurring self-cleaving RNA and features a nested
double pseudoknot configuration [13].

24.3.2 RNA Pseudoknot Prediction

Pseudoknots commonly occur in RNA and perform essential functions as part of cel-
lular transcription machinery, regulatory processes, and viral replication. Therefore,
including pseudoknots in structure prediction is relevant for a deeper understanding
of RNA functions and moreover for antiviral drug design. Contrary to their bio-
logical importance, the vast majority of RNA structure prediction methods simply
exclude pseudoknots altogether. Dynamic programming algorithms for RNA sec-
ondary structure prediction cannot accommodate pseudoknots. Recall that in a pseu-
doknot, there will be at least one crossing base pair that violates the assumption
of autonomous subproblems. From a computer scientists point of view, including
a crossing structure element like the pseudoknot dampens the optimism of solving
the RNA structure prediction problem. It has been shown that the general predic-
tion of pseudoknots under a simple energy model is a nondeterministic polynomial
(NP)-complete problem [24]. Therefore, an exact polynomial time algorithm under
the (even more complicated) minimum free energy model does not exist (unless P =
NP). Three routes in the literature can be taken to include pseudoknots in structure
prediction (Figure 24.10), and they are:

� Complex dynamic programming for the prediction of structures including re-
stricted sorts of pseudoknots

� Heuristic algorithms for the prediction of structures including pseudoknots
� Pseudoknot detection for finding pseudoknots in a sequence

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

538 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

Input sequence
5 3GCUUCCAGGAUACCGGUUGCUAAGGAUCACCAAGCUUCGC

Heuristic ApproachesDynamic Programming Pseudoknot Detection

Structure with

pseudoknots

MFE structure with

pseudoknots
Pseudoknots

Figure 24.10 Three main approaches in RNA pseudoknot prediction.

Another popular approach for RNA structure prediction are kinetic folding simula-
tions. However, we will not elaborate on the details and rather refer the reader to
reviews as in [14, 34].

24.3.3 Dynamic Programming

Dynamic programming algorithms for pseudoknot prediction need to employ a re-
stricted class of pseudoknots to achieve reasonable run time. However, the pseudo-
knot classes that are predicted by dynamic programming often cannot be predefined
clearly. They only are given implicitly through the complex recursion scheme and
therefore remain ambiguous in many cases. Here, we present several dynamic pro-
gramming algorithms and sketch the corresponding pseudoknot target class. A hier-
archy of pseudoknot classes will be described, according to [10].

24.3.3.1 Rivas and Eddy (1999). The dynamic programming algorithm
pknots comprises the most general class of pseudoknots [32]. We will not present
the recursion scheme in detail because it consists of many more matrices and re-
cursion equations than the algorithm presented in Section 24.2.2. The main idea is
the use of gap matrices to describe pseudoknots (for details, see [32]). Gap matrices
are the foundation for the overall recursion scheme, which is complex and powerful.
However, the exact class of pseudoknot configurations that can be folded remains
elusive. The algorithm can predict some nonplanar configurations, such as the two
pseudoknots shown in Figure 24.11. On the other hand, not all nonplanar pseudo-
knots are covered through the recursion scheme (e.g., the group II intron [10]). There
are also some planar pseudoknots that pknots cannot predict [24]. An implementa-
tion is available that runs in O(n6) time and O(n4) space and is only feasible for
sequences shorter than 150 nucleotides.

24.3.3.2 Akutsu (2000). This dynamic programming algorithm for the more
restricted class of simple recursive pseudoknots demands O(n5) time and O(n3)

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.3 RNA PSEUDOKNOTS 539

5 3

(a)

5 3

(b)

Figure 24.11 Two examples of nonplanar pseudoknots where (b) is the double pseudoknot
structure for the α operon mRNA in Escherichia coli [38]. A nonplanar pseudoknot cannot be
drawn in the plane without intersections of arcs.

space [2]. The class of simple recursive pseudoknots is contained fully in the pknots
recursion scheme and therefore is a proper subset [24]. A simple pseudoknot in an
RNA sequence S forms if there are positions Si0 , Sj ′

0
, Sj0 , Sk0 with i0 < j ′

0 < j0 < k0

for which the following holds:

� Each participating base pair (i, j) satisfies either i0 ≤ i < j ′
0 ≤ j < j0 or j ′

0 ≤
i < j0 ≤ j ≤ k0.

� If participating base pairs (i, j) and (i ′, j ′) satisfy either i < i ′ < j ′
0 or j ′

0 ≤
i < i ′, then j ′ < j .

This class can be extended to simple recursive pseudoknots. Here, further secondary
structure elements or pseudoknots are allowed within the loop regions. It is clear
that simple (recursive) pseudoknots belong to the class of planar pseudoknots (Fig-
ure 24.12). However, they are only a subset as there are planar pseudoknots that are

i0

j0

j0

k0

5 3
i0 j0 j0 k0

Figure 24.12 Structure of a simple pseudoknot. The interval representation shows that the
base pairs in the upper (or lower) half are not allowed to cross; therefore, simple (recursive)
pseudoknots are a subset of planar pseudoknots.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

540 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

i j

g

g

i j

p
=

Figure 24.13 Pseudoknot recursion scheme used in NUPACK. A pseudoknot p for subsequence
Si . . . Sj is constructed with two gap matrices g. Recursive internal structures or pseudoknots are
allowed in the loops.

not included in the definition of simple recursive pseudoknots [24]. One should note
that under a very simple energy model, the computation time of this algorithm can
be reduced to O(n4) [2].

24.3.3.3 Dirks and Pierce (2003). The dynamic programming algorithm
NUPACK can predict a more restricted class of pseudoknots, which is defined im-
plicitly through the recursion scheme [11]. It takes O(n5) time and O(n4) space.
One should note that the high space requirements stem from the included partition
function calculation. Basically, a pseudoknot is constructed through two gap matrices
with possible recursive structures (Figure 24.13). Gap matrices may contain interior
loops or even multiloops. This class is a proper subset of the simple recursive pseu-
doknots defined by Akutsu [2] and therefore is a proper subset of the class by Rivas
and Eddy [32].

24.3.3.4 Lyngsø and Pedersen (2000). In this work, a restricted class of pseu-
doknots is proposed [23]. The algorithm handles only a subset of the simple recursive
pseudoknots defined by [2]; however, it has the same time and space requirements.
Here, a pseudoknot consist of four parts, where opposing subsequences are allowed
to form pseudoknot-free secondary structures. This class of pseudoknots is described

i

j

k

l

i j lk

j lk i

Figure 24.14 An abstract model for a class of pseudoknots is shown [23]. Here, the sequence
is divided into four parts. Si . . . Sj and Sk . . . Sl (Sj . . . Sk and Sl . . . Si) are called opposing
subsequences. The opposing subsequences are allowed to form arbitrary secondary structure
elements. The crossing interaction for the pseudoknot is achieved through a combination of the
four parts. Note that the sequence is drawn as a circle, and one of the four parts can extend over
the sequence end (shown as black line).

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.3 RNA PSEUDOKNOTS 541

5 3

Figure 24.15 Canonical simple recursive pseudoknots with two crossing stems and possi-
ble secondary structure elements or pseudoknots in the three loop regions. Canonical simple
recursive pseudoknots are a proper subset of the class described in [11].

in a rather abstract manner (Fig. 24.14). It may not be obvious from first sight, but it
includes kissing hairpins; however, recursive pseudoknots are not allowed.

24.3.3.5 Reeder and Giegerich (2004). The predefined class of canonical
simple recursive pseudoknots is the target for pknotsRG, a dynamic programming
algorithm, which runs in O(n4) time using O(n2) space [29]. A simple recursive
pseudoknot is defined as in [2] and allows internal secondary structures or pseudo-
knot formation in each of the three loop regions (Figure 24.15). Note that base pair-
ing between different loops is not allowed. Furthermore, the following canonization
rules are introduced:

1. No bulges or internal loops are allowed in the stems. Therefore, both strands
in a stem must have the same length.1

2. The two crossing pseudoknot stems must have the maximum number of possi-
ble base pairs.

3. If the two crossing, maximal pseudoknot stems compete for a base pair, then
the boundary is fixed at an arbitrary point between them.

24.3.4 Heuristic Approaches

Apart from dynamic programming, heuristic approaches have been developed for
RNA structure prediction including pseudoknots. Early methods comprise Monte
Carlo simulations [1], genetic algorithms [18, 40], stochastic context-free gram-
mars [5], and maximum weighted matching (MWM) based on graph theory [37].
In a folding graph, vertices correspond to bases and edge weights to base pair scores.
The folding with overall maximum edge weights can be found in O(n3) time and
O(n2) space. As the underlying energy model is very simple and neglects loop en-
tropies, prediction accuracy strongly depends on the base pair score reliability. With
a meaningful alignment as a prerequisite, MWM leads to good results. However,
the method has low prediction accuracy for ab initio structure prediction. Elaborated
stochastic folding simulations are performed in KineFold [41]. Run time is relatively
high; therefore, this kinetic approach is restricted to short sequences.

Recent heuristic methods attempt to model the RNA folding pathway by itera-
tively adding promising stems from a candidate pool to the structure [33, 30, 9]. The

1Note that this rule has been relaxed to accommodate bulge loops with one nucleotide [29].

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

542 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

final result can contain pseudoknots of any type. However, there are a few pitfalls
regarding this approach. First, most commonly, the candidate stems are selected us-
ing simple base pair maximization. Such a procedure only takes into account the
local stabilizing forces of base pairing, yet no loop entropies or interaction of stems.
Second, a greedy stem adding procedure often fails in practice.

24.3.5 Pseudoknot Detection

A different route is followed in pseudoknot search programs. Here, one attempts to
identify possible pseudoknot candidates in a sequence as a first step. From this can-
didate pool, sequence fragments can be analyzed regarding their pseudoknot folding
potential. Pseudoknot detection is computationally efficient and easily can incorpo-
rate more sophisticated energy rules for pseudoknots. Detection of pseudoknots must
be distinguished clearly from RNA structure prediction including pseudoknots. Pseu-
doknot detection is a self-contained step without simultaneous secondary structure
prediction aimed to return only pseudoknots. If pseudoknots can be detected with
high accuracy, then the remaining sequence can be folded efficiently using state-of-
the-art secondary structure prediction programs in O(n3) time and O(n2) space.

HPknotter is such a detection tool for pseudoknots based on structural matching
and dynamic programming verification [21]. It relies on the observation that if pre-
sented with a sequence fragment exactly harboring a pseudoknot, then dynamic pro-
gramming methods can fold it into the correct structure with high base pair accuracy.
HPknotter can improve RNA secondary structure prediction including pseudoknots.
However, it suffers from a high number of returned false positive pseudoknots. A
more refined heuristic pseudoknot detection tool is KnotSeeker [35]. It uses a hybrid
sequence matching and free energy minimization approach to perform a screening of
the primary sequence. Short sequence fragments are selected as possible candidates
that may contain pseudoknots and are verified using an existing dynamic program-
ming algorithm and a minimum weight independent set calculation.

24.3.6 Overview

Dynamic programming algorithms for RNA structure prediction including pseudo-
knots have been studied in detail, and several methods exist (Table 24.1). Practical

Table 24.1 Dynamic programming algorithms for pseudoknot prediction

Reference Time Space Pseudoknot Class Implementation

Rivas and Eddy (1999) O(n6) O(n4) Broad pknots
Akutsu (2000) O(n5) O(n3) Simple recursive —
Lyngsø and Pedersen

(2000) O(n5) O(n3) Restricted simple recursive —
Dirks and Pierce (2003) O(n5) O(n4) Restricted simple recursive NUPACK
Reeder and Giegerich

(2004) O(n4) O(n2) Canonical simple recursive pknotsRG

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

24.4 CONCLUSIONS 543

Table 24.2 Selected heuristic methods for pseudoknot prediction and detection

Name Description

MWM Comparative or ab initio matching in folding graph
ILM Comparative or ab initio iterative stem adding procedure
HotKnots Iterative stem adding procedure with suboptimal scenarios
HPknotter Pseudoknot search tool based on structural matching
KnotSeeker Pseudoknot search tool based on RNA folding

run time only can be achieved by restricting the class of predictable pseudoknots
or by employing a very simple energy model (such as base pair maximization).
However, too many restrictions are not desirable, and therefore, most algorithms
are computationally very expensive. The main advantage of dynamic programming
algorithms is their consistence with the minimum free energy model for secondary
structure elements. However, for pseudoknots, they typically employ an oversimpli-
fied energy model. This is done for two reasons. First, not many experiments have
been done on pseudoknot thermodynamics and stem-loop correlations [8]. Second,
a simplified pseudoknot energy model often is easier to integrate in the dynamic
programming framework. Similar to multiloops, the free energy of a pseudoknot is
estimated by an initiation penalty, the stabilizing helix free energies, and a penalty for
each unpaired nucleotide in the loops. This approximation can lead to poor results,
especially for longer sequences.

Heuristic methods for pseudoknot prediction are generally more efficient than
dynamic programming (Table 24.2). A major disadvantage is that unlike dynamic
programming, there is generally no guarantee of finding a solution with minimum
free energy. On the other hand, heuristic methods tend to have a flexible framework
and better efficiency than dynamic programming. For example, some methods can
include comparative information [37, 33]. As a concluding remark, most heuristic
methods simply have adopted the oversimplified pseudoknot energy model also used
in dynamic programming. In practice, this is a major disadvantage as it contributes
to poor prediction results for longer sequences.

Heuristic pseudoknot detection is a promising approach still under development
(Table 24.2). The detection of pseudoknots is very fast and practical, and therefore is
suited for structure prediction of long RNA sequences. The algorithmic framework
allows easy integration of sophisticated energy rules during pseudoknot candidate
verification. There is no guarantee of finding the overall minimum free energy struc-
ture. However, after pseudoknot detection, the remaining sequence can be folded
using state-of-the-art MFE prediction algorithms.

24.4 CONCLUSIONS

Computational RNA structure prediction has come a long way in the last 20 years.
We gave a brief overview of the fundamental dynamic programming algorithm for
RNA structure prediction. Current trends in the literature are an improvement of

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

544 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

the energy model, examination of the suboptimal folding space, and the inclusion
of pseudoknots in algorithmic predictions. It is behind the scope of this chapter to
cover all aspects in depth; therefore, emphasis was laid on pseudoknots because of
their biological relevance. This chapter will benefit computer scientists looking for
an introduction to RNA structure prediction with pseudoknots. Last, but not least,
we hope to give biologists insight into what is happening behind the scences of the
prediction tools they use.

REFERENCES

1. J.P. Abrahams, M. van den Berg, E. van Batenburg, and C. Pleij. Prediction of RNA
secondary structure, including pseudoknotting, by computer simulation. Nucleic Acids
Res, 18(10):3035–3044, 1990.

2. T. Akutsu. Dynamic programming algorithms for RNA secondary structure prediction
with pseudoknots. Discrete Appl Math, 104(1-3):45–62, 2000.

3. I. Brierley, R.J. Gilbert, and S. Pennell. RNA pseudoknots and the regulation of protein
synthesis. Biochem Soc Trans, 36(4):684–689, 2008.

4. I. Brierley, S. Pennell, and R.J. Gilbert. Viral RNA pseudoknots: versatile motifs in gene
expression and replication. Nat Rev Microbiol, 5(8):598–610, 2007.

5. L. Cai, R.L. Malmberg, and Y. Wu. Stochastic modeling of RNA pseudoknotted struc-
tures: a grammatical approach. Bioinformatics, 19:i66–i73, 2003.

6. S. Cao and S.J. Chen. Predicting RNA pseudoknot folding thermodynamics. Nucleic
Acids Res, 34(9):2634–2652, 2006.

7. S. Cao and S.J. Chen. Predicting structures and stabilities for H-type pseudoknots with
interhelix loops. RNA, 15(4):696–706, 2009.

8. S.J. Chen. RNA folding: Conformational statistics, folding kinetics, and ion electrostatics.
Annu Rev Biophys, 37:197–214, 2008.

9. X. Chen, S. He, D. Bu, F. Zhang, Z. Wang, R. Chen, and W. Gao. FlexStem: Improving
predictions of RNA secondary structures with pseudoknots by reducing the search space.
Bioinformatics, 24(18):1994–2001, 2008.

10. A. Condon, B. Davy, B. Rastegari, S. Zhao, and F. Tarrant. Classifying RNA pseudoknot-
ted structures. Theor Comput Sci, 320(1):35–50, 2004.

11. R.M. Dirks and N.A. Pierce. A partition function algorithm for nucleic acid secondary
structure including pseudoknots. J Comput Chem, 24(13):1664–1677, 2003.

12. T.W. Dreher and W.A. Miller. Translational control in positive strand RNA plant viruses.
Virology, 344(1):185–197, 2006.

13. A.R. Ferre-D’Amare, K.H. Zhou, and J.A. Doudna. Crystal structure of a hepatitis delta
virus ribozyme. Nature, 395(6702):567–574, 1998.

14. C. Flamm and I.L. Hofacker. Beyond energy minimization: approaches to the kinetic
folding of RNA. Monatsh. Chem., 139(4):447–457, 2008.

15. P.P. Gardner and R. Giegerich. A comprehensive comparison of comparative RNA struc-
ture prediction approaches. BMC Bioinformatics, 5(140):2004.

16. D.P. Giedroc and P.V. Cornish. Frameshifting RNA pseudoknots: Structure and mecha-
nism. Virus Res, 139(2):193–208, 2009.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

REFERENCES 545

17. D.P. Giedroc, C.A. Theimer, and P.L. Nixon. Structure, stability and function of RNA
pseudoknots involved in stimulating ribosomal frameshifting. J Mol Biol, 298(2):167–
185, 2000.

18. A.P. Gultyaev, F.H. van Batenburg, and C.W. Pleij. The computer simulation of RNA
folding pathways using a genetic algorithm. J Mol Biol, 250(1):37–51, 1995.

19. K. Han and Y. Byun. PSEUDOVIEWER2: Visualization of RNA pseudoknots of any
type. Nucleic Acids Res, 31(13):3432–3440, 2003.

20. I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, and P. Schuster. Fast
folding and comparison of RNA secondary structures. Monatsh Chem, 125(2):167–188,
1994.

21. C.H. Huang, C.L. Lu, and H.T. Chiu. A heuristic approach for detecting RNA H-type
pseudoknots. Bioinformatics, 21(17):3501–3508, 2005.

22. M. Huynen, R. Gutell, and D. Konings. Assessing the reliability of RNA folding using
statistical mechanics. J Mol Biol, 267(5):1104–1112, 1997.

23. R.B. Lyngsø and C.N. Pedersen. Pseudoknots in RNA secondary structures. Proceedings
of the 4th Annual International Conference on Computational Molecular Biology, 2000,
pp. 201–209.

24. R.B. Lyngsø and C.N. Pedersen. RNA pseudoknot prediction in energy-based models. J
Comput Biol, 7(3-4):409–427, 2000.

25. R.B. Lyngsø, M. Zuker, and C.N.S. Pedersen. Fast evaluation of internal loops in RNA
secondary structure prediction. Bioinformatics, 15(6):440–445, 1999.

26. D.H. Mathews, J. Sabina, M. Zuker, and D.H. Turner. Expanded sequence dependence of
thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol,
288(5):911–940, 1999.

27. J.S. McCaskill. The equilibrium partition function and base pair binding probabilities for
RNA secondary structure. Biopolymers, 29(6-7):1105–1119, 1990.

28. R. Nussinov and A.B. Jacobson. Fast algorithm for predicting the secondary structure of
single-stranded RNA. Proc Natl Acad Sci U S A, 77(11):6309–6313, 1980.

29. J. Reeder and R. Giegerich. Design, implementation and evaluation of a practical pseudo-
knot folding algorithm based on thermodynamics. BMC Bioinformatics, 5:104, 2004.

30. J. Ren, B. Rastegari, A. Condon, and H.H. Hoos. HotKnots: Heuristic prediction of RNA
secondary structures including pseudoknots. RNA, 11(10):1494–1504, 2005.

31. K. Rietveld, R. Van Poelgeest, C.W. Pleij, J.H. Van Boom, and L. Bosch. The tRNA-
like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and
similarities with canonical tRNA. Nucleic Acids Res, 10(6):1929–1946, 1982.

32. E. Rivas and S.R. Eddy. A dynamic programming algorithm for RNA structure prediction
including pseudoknots. J Mol Biol, 285(5):2053–2068, 1999.

33. J. Ruan, G.D. Stormo, and W. Zhang. An iterated loop matching approach to the predic-
tion of RNA secondary structures with pseudoknots. Bioinformatics, 20(1):58–66, 2004.

34. P. Schuster. Prediction of RNA secondary structures: From theory to models and real
molecules. Rep Prog Phys, 69(5):1419–1477, 2006.

35. J. Sperschneider and A. Datta. KnotSeeker: Heuristic pseudoknot detection in long RNA
sequences. RNA, 14(4):630–640, 2008.

36. D.W. Staple and S.E. Butcher. Pseudoknots: RNA structures with diverse functions. PLoS
Biol, 3(6):e213, 2005.

P1: OSO
c24 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

546 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION

37. J.E. Tabaska, R.B. Cary, H.N. Gabow, and G.D. Stormo. An RNA folding method capable
of identifying pseudoknots and base triples. Bioinformatics, 14(8):691–699, 1998.

38. C.K. Tang and D.E. Draper. Unusual mRNA pseudoknot structure is recognized by a
protein translational repressor. Cell, 57(4):531–536, 1989.

39. I. Tinoco and C. Bustamante. How RNA folds. J Mol Biol, 293(2):271–281, 1999.

40. F.H. van Batenburg, A.P. Gultyaev, and C.W. Pleij. An APL-programmed genetic algo-
rithm for the prediction of RNA secondary structure. J Theor Biol, 174(3):269–280, 1995.

41. A. Xayaphoummine, T. Bucher, F. Thalmann, and H. Isambert. Prediction and statistics of
pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc Natl
Acad Sci U S A, 100(26):15310–15315, 2003.

42. T.B. Xia, J. SantaLucia, M.E. Burkard, R. Kierzek, S.J. Schroeder, X.Q. Jiao, C. Cox, and
D.H. Turner. Thermodynamic parameters for an expanded nearest-neighbor model for
formation of RNA duplexes with Watson-Crick base pairs. Biochemistry, 37(42):14719–
14735, 1998.

43. M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic
Acids Res, 31(13):3406–3415, 2003.

44. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences using ther-
modynamics and auxiliary information. Nucleic Acids Res, 9(1):133–148, 1981.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

IV
PHYLOGENY

RECONSTRUCTION

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25
PHYLOGENETIC SEARCH

ALGORITHMS FOR
MAXIMUM LIKELIHOOD

Alexandros Stamatakis

25.1 INTRODUCTION

The reconstruction of phylogenetic (evolutionary) trees from molecular sequence
data is a comparatively old problem in bioinformatics, given that Joe Felsenstein’s
seminal paper [12] on computing the maximum likelihood (ML) score on trees al-
ready was published in 1981 (i.e., almost 30 years ago). However, significant ad-
vances in wet lab molecular sequencing technologies, such as, for instance, the
introduction of 454 sequencers [53], are generating a highly challenging and un-
precedented molecular data flood. Although a plethora of challenging problems exist
regarding the implementation, numerical stability, and parallelization of the phylo-
genetic likelihood function (PLF) on emerging parallel architectures, the design of
new search algorithms is equally challenging and can even yield more impressive
performance improvements than high-performance computing (HPC) methods.

The PLF typically consumes more than 95% of overall execution time in all state-
of-the art likelihood-based phylogeny programs. Algorithmic design for phylogeny
reconstruction therefore can be regarded as trying to minimize the number of invo-
cations of the PLF while maximizing the likelihood score of the tree that is returned
by the search algorithm. Ideally, algorithmic design and HPC implementations of
the PLF should be conducted simultaneously because specific heuristics may require
dedicated or appropriately adapted implementations and parallelizations of the PLF.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

549

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

550 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

Because parallel computing is outside the scope of this chapter, I will focus entirely
on the design of search algorithms and will make an attempt to separate PLF imple-
mentation issues from abstract algorithmic ideas to the largest possible extent.

As already mentioned, the driving force behind algorithmic development is the
rapid molecular data accumulation. In fact, the phyloinformatics community faces a
continuous struggle to keep up with the rapid speed of data accumulation and provide
ever more scalable and powerful analysis tools (i.e., we just try to keep pace with data
accumulation).

Memory footprints of more than 50 gigabytes (Gb), just to compute the likelihood,
on a single, fixed tree as well as resource requirements exceeding 2 million central
processing unit (CPU) hours simply to conduct a comprehensive and thorough real-
world ML analysis on a single, large, phylogenomic dataset are becoming the norm
rather than the exception. Although these datasets can be analyzed already via an
admittedly rather brute-force approach on supercomputers using RAxML [58, 41],
algorithmic innovations represent an often more elegant solution. In addition, al-
gorithmic solutions that require less computational resources will allow significantly
more users to conduct large-scale phylogenetic analyses (i.e., will enable “large-scale
phylogenetic inference for the masses”).

In the present chapter, I will attempt to review the underlying concepts as well as
current developments, and describe some novel experimental work on search conver-
gence criteria as well as the efficient computation of the PLF at a purely algorithmic
level. I also will outline potential future developments and challenges.

This chapter is organized as follows: In Section 25.1.1, I briefly will introduce
the field of phylogenetic inference and its applications to medical and biological re-
search. In the following Section 25.2, I will outline the basic computational steps
required to compute the PLF. In the subsequent Section 25.3, I will discuss two al-
gorithmic methods to accelerate the PLF and assess their applicability to modern
phylogenetic inference problems. Thereafter, I will outline the impact of distinct
alignment shapes on the design of future search algorithms (Section 25.4). In Sec-
tion 25.5, I will summarize the general search mechanisms that are used and also
survey the refinements thereof in some of the currently most widely used tools for
phylogenetic inference under ML. In the following Section 25.6, I will outline data
structures and algorithms for efficient computation of the Robinson-Foulds topolog-
ical distance [47] that are a prerequisite for building the novel ML search conver-
gence criterion that is described in the subsequent Section 25.7. I will conclude in
Section 25.8 with an overview of future algorithmic challenges for the design of
ML-based search algorithms.

25.1.1 Phylogenetic Inference

The goal of phylogenetic inference consists of reconstructing the evolutionary his-
tory of a set of n present-day organisms from their respective molecular sequence
data. Those n organisms (also called taxa) may be represented by a concatenation
of molecular data from various genes or even the whole genome. Thus, the molecu-
lar sequence representing one taxon may consist of a mixture of DNA, protein, and

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.1 INTRODUCTION 551

even morphological or binary characters. A phylogenetic tree, or simply a phylogeny,
usually is represented as an unrooted binary tree, where the n present-day taxa are
located at the leaves of the tree, and the inner nodes represent extinct common an-
cestors.

The input data for a phylogenetic analysis under maximum likelihood consists of
a “good” multiple sequence alignment of the n taxa (i.e., by insertion of gaps) or,
essentially, nucleotide insertion and deletion events; all sequences in the input data
will have the same length m after the alignment step. Although simpler methods also
exist for alignment-free tree reconstruction, they have been shown to be generally
less accurate [25, 26] than alignment-based methods. Alignments that comprise se-
quence data from several genes are called multigene or phylogenomic alignments. A
simple example for a multiple sequence alignment of DNA data for the human, the
mouse, the cow, and the chicken is expressed as follows:

Cow ATGGCATATCCCA-ACAACTAGGATTCCAAGA----ACATCA
Chicken ATGGCCAACCACTCCCAACTAGGCTTTC-AGACGCCTCA-CC
Human ATGGCACAT---GCGCAAGTAGGTCTAC-AGACGCTACT-CC
Mouse ATGG----CCCATTCCAACTTGGTCTACAAGACGCCACATCC

An open issue, especially within the context of real-world analyses, is the def-
inition of what a “good” multiple sequence alignment actually is because no ob-
jective criterion is available to judge alignment quality. In a recent Science paper,
Loytynoja and Goldman challenged the established view of how a “good” alignment
should look [33] by arguing in favor of a phylogeny-aware view of the alignment pro-
cess. In addition, as tree reconstruction, the multiple sequence alignment problem is
a computationally hard problem by itself. Because this chapter mainly focuses on
the computational aspects of phylogenetic inference, we will just assume that the
alignment is given, although the problems of phylogenetic inference and multiple
sequence alignment should be solved simultaneously in an ideal world. Current ap-
proaches [75, 15, 46] for simultaneous inference of alignments and trees are still too
slow and too resource-intensive for practical purposes, especially when we consider
current input data growth.

It is important to note that provided any biologically meaningful optimality crite-
rion to score a given tree topology, such as ML or maximum parsimony (MP) [14],
the underlying optimization problem for finding the optimal tree is nondeterminis-
tic polynomial (NP)-hard [16, 48]. The number of distinct alternative unrooted tree
topologies for n taxa is

∏n
i=3(2i − 5) [10]. Although a vast amount of literature exists

covering heuristic search algorithms for the ML optimization problem (see [37] for
an overview), they all rely on repeatedly executing the likelihood function to explore
the tree space, which represents the main computational and memory bottleneck.

Phylogenetic trees have many important applications in medical and biologi-
cal research. Current state-of-the-art ML phylogeny programs such as PAML [77],
PHYML [22], PAUP∗ [71], GARLI [78], RAxML [58], IQPNNI [34], TREE-
FINDER [29], or likelihood-based Bayesian programs such as MrBayes [49], Phy-
loBayes [30], or BEAST [8] have accumulated more than 20,000 citations to date.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

552 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

Phylogenies can be used, for example, to infer the evolutionary history of Pappi-
lomaviruses that are associated with cervical cancer [20], to disentangle the evolu-
tionary history of Acer [21] (maple trees), or to analyze bacterial communities in
permafrost soils [17]. A recent phylogenomic study in Nature improved the accu-
racy of the animal tree of life [9], whereas another recent study in Science assessed
the rates of evolution (essentially the speed of evolution) and their association to life
history in flowering plants [54].

25.2 COMPUTING THE LIKELIHOOD

As already mentioned, the input for a phylogenetic analysis under ML consists of a
multiple sequence alignment with n sequences (also denoted as taxa or tips) and m
alignment columns. The branch length values on the tree that are returned by ML
essentially represent the relative time of evolution between nodes in the tree. Here,
we initially will only consider how to compute the likelihood on a fixed, given, tree
topology.

Apart from the tree topology, one also requires several ML model parameters.
One important parameter is the instantaneous nucleotide substitution matrix Q,
which contains the transition probabilities for time dt between nucleotide characters
(4 × 4 matrix, states: A, C, G, T), or for instance amino acid (20 × 20 matrix)
characters. The transition probability matrix for time (branch length) t then is com-
puted as P(t) = eQt and can be obtained via a respective Eigenvector/Eigenvalue
decomposition.

Note that, various models also exist to accommodate RNA secondary structure
information (i.e., models that allow to group together RNA data columns and hence
let them evolve together in the respective RNA alignment). For secondary structure,
six-state (6 × 6 Q-matrix), 7-state, and 16-state models (for a summary see [52])
exist. Recently, 61-state Codon models (see, e.g., [19]) for protein-coding genes,
which group together triplets of DNA characters, also have received considerable
attention. The computational complexity for computing the likelihood of a single
column is directly proportional to the square of the number of states (e.g., O(42) for
DNA data or O(202) for protein data).

Using DNA as an example, in addition to the Q matrix, we also need the prior
probabilities of observing the nucleotides (e.g., πA, πC , πG, πT) for DNA data,
which either can be determined empirically from the alignment or be obtained via an
ML estimate. We also need the α shape parameter that forms part of the � model [76]
of rate heterogeneity. The � model accounts for the biological fact that different
columns in the alignment evolve at different speeds. Although the � model is well
established and the de-facto standard, computationally much more efficient ways ex-
ist to incorporate rate heterogeneity, such as the CAT (rate heterogeneity with per site
rate CATegories) approximation of rate heterogeneity [57]. Finally, one also requires
the 2n − 3 branch lengths in the unrooted tree topology.

Given all these parameters, to compute the likelihood of a fixed unrooted binary
tree topology, initially one needs to compute the entries for all internal probability

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.2 COMPUTING THE LIKELIHOOD 553

vectors (located at the inner nodes) that contain the probabilities P(A), P(C), P(G),
and P(T) of observing an A, C, G, or T at each site/column c (c = 1 . . . m) of the
input alignment at a specific inner node. Those probability vectors are computed
bottom-up from the tips toward a virtual root that can be placed into any branch of
the tree. Irrespective of the placement of the virtual root, one always will obtain the
same likelihood score.

This important property of ML holds if the nucleotide substitution model is time-
reversible (i.e., evolution occured in the same way if followed forward or backward
in time). The most commonly used and general model for DNA substitution is the
general time reversible (GTR) model [72] of nucleotide substitution. However, math-
ematical frameworks also exist for comparatively efficient and more realistic nonre-
versible substitution models [4]. The procedure described for computing the likeli-
hood also is known as the Felsenstein pruning algorithm [12].

As already mentioned, every probability vector entry �L(c) at position c (c =
1 . . . m) at the tips and at the inner nodes of the tree topology, contains the four
probabilities P(A), P(C), P(G), and P(T) of observing a nucleotide A, C, G, or T,
at a specific column c of the input alignment. The probabilities at the tips (leaves) of
the tree for which observed data (e.g., the DNA sequences of the currently living or-
ganisms under study) is available are set to 1.0 for the observed nucleotide character
at the respective position c, (e.g., for the nucleotide A: �L(c) = [1.0, 0.0, 0.0, 0.0]).
Given a parent node k, and two child nodes i and j (with respect to the virtual
root), their probability vectors �L (i) and �L (j), the respective branch lengths leading
to the children bi and b j , and the transition probability matrices P(bi), P(b j), the
probability of observing an A at position c of the ancestral (parent) vector �L (k)

A (c) is
computed as follows:

�L (k)
A (c) =

(
T∑

S=A

PAS(bi)�L (i)
S (c)

) (
T∑

S=A

PAS(b j)�L (j)
S (c)

)

(25.1)

The transition probability matrix P(b) for a given branch length b is obtained
from Q via P(b) = eQb. Once the two probability vectors �L (i) and �L (j) to the left
and right of the virtual root (vr) have been computed, the likelihood score l(c) for
an alignment column c (c = 1...m) can be calculated as follows, given the branch
length bvr between nodes i and j :

l(c) =
T∑

R=A

(

πR �L (i)
R (c)

T∑

S=A

PRS(bvr)�L (j)
S (c)

)

(25.2)

The overall score then is computed by summing over the per-column log-
likelihood scores as indicated in Equation 25.3.

LnL =
m∑

c=1

log(l(c)) (25.3)

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

554 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

An important property of the likelihood function is the assumption that sites
evolve independently (i.e., all entries c of the probability vectors �L can be computed
independently). This property represents the main source of fine-grain parallelism in
the PLF (see, e.g., [41, 67, 68, 65, 66, 45]).

To compute the maximum likelihood value on a fixed tree topology, all individual
branch lengths as well as the substitution rates in the Q matrix and the α shape
parameter of the � distribution also must be optimized via an ML estimate. For the
Q matrix and the α shape parameter, the most common approach in state-of-the-art
ML implementations consists of using Brent’s algorithm [5]. A key computational
issue is that to evaluate changes in Q or α, the entire tree needs to be retraversed (i.e.,
a full tree traversal needs to be conducted from the leaves toward the virtual root to
correctly recompute the likelihood under the modified model parameters). For the
optimization of branch lengths, the Newton-Raphson method commonly is used. To
optimize the branches of a tree, the branches are visited repeatedly and optimized
one by one until the achieved likelihood improvement (or branch length change) is
smaller than some predefined ε. Because the branch length is optimized with respect
to the likelihood score, the Newton-Raphson method only operates on a single pair
of probability vectors �L (i), �L (j) that are located at either end of the branch that is
being optimized. The Newton-Raphson method requires the computation of the first
and second derivative of the likelihood function. Because we intend to maximize
the likelihood function, we need to determine the root of the first derivative of the
likelihood function. Evidently, when a branch of the tree is updated, this means that
several probability vectors �L in the tree are affected by this change and hence need
to be recomputed to maintain a state that is consistent with the new branch length
configuration.

An important implementation issue is the assignment of memory space for the
probability vectors to inner nodes of the tree. Two alternative approaches exist; a
separate vector can be assigned to each of the three outgoing branches of an inner
node (PHYML uses this approach), or only one vector can be assigned to each in-
ner node (GARLI, RAxML, and MrBayes, among others, deploy this technique). In
the latter case, which is significantly more memory-efficient, the probability vectors
always maintain a rooted view of the tree (i.e., they are oriented toward the current
virtual root of the tree). In the case that the virtual root then is relocated to a differ-
ent branch (for instance, to optimize the respective branch length), a certain number
of vectors, for which the orientation to the virtual root has changed by rerooting
the tree, need to be recomputed. If the tree is traversed in an intelligent way (e.g.,
for branch length optimization or subtree rearrangements (see Section 25.5)), then
the number of probability vectors that will need to be recomputed after relocations
of the virtual root can be minimized. An example for this type of data organiza-
tion is provided in Figure 25.1. RAxML also uses this type of rooted probability
vector organization to handle large-scale alignments because current phylogenomic
datasets can require more than 100 Gb of main memory under the � model of rate
heterogeneity, even when using this efficient organization of the inner (ancestral)
vectors.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.3 ACCELERATING THE PLF BY ALGORITHMIC MEANS 555

Virtual Root

Virtual Root

re−locate virtual root

re−compute
re−locate and

Probability Vector

Inner Node

cyclic list
of pointers

double links
for pointers
and branch lengths

Orientation
towards

root

Figure 25.1 Rooted organization of the probability vectors at inner nodes. This figure also
shows the linked cyclic list of pointers at inner nodes and the double links between nodes.

25.3 ACCELERATING THE PLF BY ALGORITHMIC MEANS

25.3.1 Reuse of Values Across Probability Vectors

Some efforts have been reported [64, 63, 44] to accelerate the PLF by algorithmic
means (i.e., by detection and reuse of previously computed vector elements p at a
position q, where q > p, of a vector �L). If we look at Equation 25.1 again and con-
sider computing all entries c at once, then we may denote the left and right part as:
�L ′(i) = P(bi) × �L (i) and �L ′(j) = P(b j) × �L (i) (i.e., a dense matrix–matrix multipli-
cation of the transition probability matrix with the probability vector). The vector
�L (k) then is obtained by the element-wise multiplication of the entries in vectors �L ′(i)

and �L ′(j). Clearly, the computations are dominated by the dense matrix–matrix mul-
tiplications. If we now consider the entries of vector �L ′(i), for instance, then we can
observe that two vector columns p and q of the respective subtree that are rooted
at node i will have the same entries if the nucleotide data at the leaves for the two
columns p and q is identical. Thus, instead of recomputing the entries at q, we may
just copy them from position p in the same vector. The underlying concept is outlined
in Figure 25.2.

Although this represents an interesting problem, also with respect to data struc-
tures that will help to keep track of identical column patterns in subtrees, several
hardware-related and practical considerations actually have driven us to abandon

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

556 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

A
C
G
T
T

A
C
G
T
T

A
A
T
C

A
A
T
C

Node i

Node j

branch b_i P(b_i) branch b_ j P(b_ j)

p q sr

L^(i)

L^(j)

L^(j)’L^(i)’

L^(k)

identical columns in subtree
of node i identical columns in subtree

of node j

copy values from
position p

copy values from
position r

identical
values

identical
values

p q

r s

Node k

Figure 25.2 Reusing values across probability vectors based on identical alignment patterns
in respective subtrees.

completely these ideas in the current RAxML release. There are several reasons for
not using this technique; first, these methods induce a form of irregular data accesses
that may significantly perturb cache-efficiency compared with the straightforward
linear computation of the probability vector entries. Thus, although we are saving
floating point operations, we may encounter a significantly larger amount of cache
misses. Second, an implementation of the PLF will require irregular accesses across
a probability vector in the horizontal direction, which will yield the parallelization
of the PLF at a fine-grained level (see [65, 41, 66]). This process is very difficult
because the computation of columns p and q may not be independent from each
other any more. Third, for these methods to be applicable, one must assume that all
columns evolve under the same evolutionary model (i.e., the CAT model of rate het-
erogeneity [57], a mixture model [31], or a partitioned model where ML parameters
are estimated independently for different parts of the alignment are not used). In the
case that vector entries p and q at a node i have the same column pattern in the sub-
alignment induced by the subtree rooted at i but are assigned different evolutionary
models because they have been assigned to different genes or rate categories, the
values at positions p and q will not be identical. The use of partitioned and mixed
models as well as of the CAT approximation represent the rule, rather then the ex-
ception in real-world phylogenetic analyses. Therefore, these algorithmic methods
will probably not be of relevance for future search algorithms and PLF implementa-
tions. A potentially more promising algorithmic technique to accelerate the PLF is
presented in the following section.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.3 ACCELERATING THE PLF BY ALGORITHMIC MEANS 557

25.3.2 Gappy Alignments and Pointer Meshes

A current trend in phylogenetics goes toward phylogenomic alignments (i.e., align-
ments that consist of a concatenation of many genes (100–1000 genes), with rela-
tively few taxa (50–200 taxa)). An important property that characterizes these align-
ments is their gappiness (i.e., a large part of the alignment, typically 50–95%, con-
sists of gaps, or more precisely undetermined characters). Given two genes, G0 and
G1 that contain a total of n taxa, we usually will not have a gene sequence for both
genes available for every taxon (i.e., for some taxa, we only will have sequences for
G0 and for others only for G1). The missing gene sequence in a taxon of a multigene
datasets then is filled with undetermined characters that are mathematically exactly
identical to gaps in the standard implementation of the ML function that is used in
programs such as GARLI, MrBayes, IQPNNI, RAxML, and so on. Figure 25.3 pro-
vides an example for such a gappy multigene dataset with some missing sequence
data in each gene.

Given the way gaps are modeled under ML, we can observe that adding a taxon
that consists entirely of gaps to a tree at an arbitrary branch will not change its like-
lihood. If we conduct a partitioned analysis of the multigene dataset outlined in Fig-
ure 25.3, and we also apply a per-partition (per-gene) estimate of branch lengths,
then we observe the following: For a given tree t that comprises all five taxa, we may
compute the overall likelihood as LnL = LnL(t |G0) + LnL(t |G1), where LnL(t |Gi)
is the likelihood of the tree t for gene Gi restricted to the taxa for which we actually
have sequence data available in gene i . In Figure 25.3, this means that we need to
add the likelihoods of two three-taxon trees instead of two five-taxon trees for genes
G0 and G1 under the standard implementation. This allows us to save a significant
amount of floating point operations and also a significant amount of memory space
for ancestral probability vectors. This memory footprint reduction is proportional to
the gappiness of the respective alignment. For details and respective performance
data, please refer to [65].

The key challenge consists of designing rapid methods to extract the subtrees
induced by genes from the comprehensive tree t and maintaining the data structures
outlined in Figure 25.1 in a consistent state. This is both an algorithmic as well as
a software engineering challenge because of the high complexity of this approach.
We currently can read in and score trees (i.e., optimize all ML model parameters

Missing Data

Aligned Sequence Data

Taxon 0

Taxon 2
Taxon 1

Taxon 3
Taxon 4

Gene 1Gene 0

Figure 25.3 A gappy multigene alignment.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

558 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

except the tree topology) in RAxML by using appropriate static pointer meshes for
representing and navigating through the per-gene subtrees (see [65] for details).

However, conducting actual searches with subtree pruning regrafting (SPR)
moves (see Sections 25.5 and 25.5.1) means that we need to update dynamically
those complex pointer meshes and require an efficient mechanism to derive quickly
whether a specific SPR move induces a change on each individual per-gene sub-
tree. We believe that this can be accomplished via a provably correct rule set that
will allow to update dynamically the pointer mesh. Although the currently ongoing
implementation is rather complicated and error-prone, we believe that this will rep-
resent an important mechanism to further accelerate phylogenetic inferences. This
assumes of course, that phylogenomic datasets will remain gappy, which also de-
pends on future developments in wet lab sequencing techniques, but it seems likely
that the community will be facing these gappy alignments for at least another 5 years.

25.4 ALIGNMENT SHAPES

An important consideration for the design of search algorithms is to take the actual
alignment shape into account (i.e., whether one intends to analyze a datasets with
many taxa and few genes or few genes and many taxa).

The two aforementioned large-scale phylogenetic studies [9, 54] point toward a
fundamental problem that will need to be tackled in the future; the phylogenomic
study [9] contains less than 100 taxa but 150 genes; an ongoing follow-up study [24]
even comprises approximately 1000 genes. The study by Smith and Donoghue [54]
is based on two datasets with less than ten genes but more than 4000 and 13,000
taxa, respectively. The datasets used in those two representative studies have signif-
icantly distinct shapes that impact algorithm design, scalability, as well as appropri-
ate parallelization strategies. Here, I introduce the term “well-shaped” alignments
for few-taxa/many-gene input datasets and “badly shaped” for many-taxa/few-gene
datasets (see Figure 25.4). Evidently, badly shaped datasets are harder to analyze al-
gorithmically and also are more difficult to parallelize than well-shaped alignments.
In well-shaped datasets, we have, despite their gappiness (see Section 25.3.2), a large
amount of data available to infer the evolutionary relationships among relatively few
taxa (i.e., the signal in the data is strong). This means that multiple searches for the
best-scoring ML tree on distinct starting trees will yield trees that are related closely
to each other in terms of their topological distance (see Section 25.6).

In contrast, badly shaped alignments exhibit a plethora of likelihood peaks that
can not be distinguished from each other via statistical significance tests (i.e., exhibit
a “rough” likelihood surface with many likelihood peaks) and have large topological
distances between each other (see also Section 25.7.1). This phenomenon also has
been observed for studies on simulated datasets [36, 3], which clearly show that re-
construction accuracy increases with an increasing number of sites in the alignment.
Thus, although it may be sufficient to infer the best-known ML tree for a well-shaped
alignment, for a badly shaped alignment, one preferably should sample as many trees
as possible from the “rough” likelihood surface and then summarize the information
contained in those trees appropriately.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.5 GENERAL SEARCH HEURISTICS 559

few taxa

few genes

many taxa

"badly−shaped"

"well−shaped"

hard to parallelize

easy to parallelize

many genes

Figure 25.4 Badly shaped and well-shaped input alignments.

As an example we will consider 20 ML trees produced by respective RAxML
searches on two datasets, one with 125 taxa and 34 genes (well-shaped) and one
single-gene dataset with 7764 taxa (badly shaped). The average relative topological
distance between all pairs of 20 trees for the 125 taxon dataset was 0.5%, whereas the
average topological distance between all pairs of 20 trees for the single-gene dataset
was 33.80%.

The above example shows that we most likely will need to design specialized
search algorithms that can handle more appropriately well-shaped and badly shaped
alignments.

25.5 GENERAL SEARCH HEURISTICS

Initially, I will outline some basic search strategies that are used. Most modern search
algorithms, such as GARLI, RAxML, IQPNNI, or PHYML, start their search for a
best-known likelihood tree (the maximum likelihood tree is unknown because the
problem is NP-hard) on a comprehensive starting tree (i.e., a tree that contains all
taxa). Such comprehensive starting trees can be obtained via some of the simpler
and thereby less compute-intensive methods, for instance, via [14] MP or neighbor
joining [50] (NJ). Sometimes random trees also are used as starting trees; however,
the likelihood of a random starting tree is typically significantly lower than that of a
reasonable starting tree obtained via MP or NJ. Thus, the use of reasonable starting
trees can help to save a considerable amount of time in the inference process as
outlined in Figure 25.5 for two tree inferences with RAxML on a 101 taxon single-
gene DNA dataset under the GTR+� model. The MP starting tree has a significantly
better initial likelihood than the random starting tree and requires more than 30%
less time for the search to converge.

An advantage of MP starting trees over NJ starting trees is that for obtaining
MP starting trees, a randomized stepwise addition order algorithm can be used to

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

560 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

MP search
converges search

converges

RANDOM

−78000

−76000

−74000

−72000

−70000

−68000

−66000

−64000

−62000

 450 400 350 300 250 200 150 100 50 0

Lo
g

Li
ke

lih
oo

d

Time (seconds)

"RANDOM_TREE"
"MP_TREE"

Figure 25.5 Log likelihood over time plot for an ML analysis of a 101 taxon DNA dataset with
RAxML using a maximum parsimony and a random starting tree.

generate a set of topologically distinct starting trees. Thus, one can conduct several
searches to find the best-scoring/best-known ML tree by using distinct MP starting
trees. Except for well-shaped alignments, searches on distinct starting trees typically
will yield distinct ML trees. The advantage of this approach is that the enormous tree
space can be explored more thoroughly as shown in Figure 25.6.

NJ Tree

MP Trees

Maximum Likelihood Tree

Tree Space

good trees

bad trees

Tree searches

Figure 25.6 Exploration of tree space under maximum likelihood using a neighbor joining
starting tree and a set of randomized stepwise addition MP starting trees.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.5 GENERAL SEARCH HEURISTICS 561

Because the stepwise addition algorithm is an important algorithm that also can
be used for building comprehensive starting trees under ML as implemented, for
example, in fastDNAml [39], I briefly will outline it. Given a set of n taxa, one
initially selects three taxa at random and builds the only possible unrooted binary
tree of size three. Then, one of the remaining n − 3 taxa from the set is selected
again at random and inserted into the tree of size three as follows: the new taxon is
inserted (and removed again) into every branch of the current tree of size three, and
the respective MP or ML score of the thereby obtained tree of size four is computed.
The best of the three resulting trees of size four then is kept, and the fifth taxon
once again is selected at random from the remaining n − 4 taxa. This fifth taxon then
is inserted into all 2k − 3 branches of the current tree (i.e., into all 2 × 4 − 3 = 5
branches of the tree of size four). This procedure is continued until all taxa have
been added to the tree. Thus, the stepwise addition algorithm can produce distinct
starting trees for distinct sequence addition orders depending on the strength of the
signal in the data. In the specific RAxML implementation, we also execute some
further MP-based topological optimizations on the comprehensive tree. Extensive
computational experiments have shown that this yields slightly better run times than
just using the MP stepwise addition tree and then immediately applying ML-based
topology optimization.

Once the comprehensive starting tree has been computed, one can start optimizing
the ML score of the comprehensive tree by applying topological alteration mecha-
nisms. This means that the topology of the currently best-scoring tree is altered, and
then the likelihood of the new topology is evaluated. If a simple hill-climbing ap-
proach is used, then one may keep the newly generated topology if it has a better
score and continue applying topological changes until no better tree can be found.

The three basic alteration mechanisms that are used are: nearest neighbor inter-
changes (NNI), subtree pruning and re-grafting (SPR), and tree bisection reconnec-
tion (TBR). A detailed description of NNI and TBR operators as well as a more
detailed description of the stepwise addition algorithm can be found on pages 42–47
of [55] (available at http://wwwkramer.in.tum.de/exelixis/pubs/PHD.pdf). Because
SPR moves are the most commonly used technique in present state-of-the art algo-
rithms, I will outline this technique in more detail.

SPR moves are mostly used in ML search algorithms because they represent a
good trade-off between the radicality/power of the topological change and the com-
putational cost of scoring the altered tree topology (i.e., the number of floating-point
operations required to score the tree generated by a SPR move).

Given a tree, one can select a subtree that will be rearranged within the currently
best tree via an application of SPR moves. Initially, this subtree will be pruned from
the tree, and the branches of the thereby obtained smaller tree will need to be reopti-
mized under ML. To save some time, one also simply may reoptimize the branch at
which the subtree was pruned. Then, one can start reinserting the pruned subtree into
neighboring branches around the branch from which it was pruned originally. Those
reinsertions either can be conducted up to branches that have a prespecified distance
of nodes away from the original pruning position by using a so-called rearrangement
setting or rearrangement radius. Alternatively, a pruned subtree can be inserted into

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

562 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

ST6

ST4

ST3

ST3

ST5

ST4

ST3

ST5

ST4

ST3

ST5

ST4

ST6

ST6

ST6

ST6

ST6

+1
+1

+2

+2

prune subtree
rearrangement radius

of 1

rearrangement radius
of 2

ST2

ST1

ST5

ST3

ST5

ST4

ST1

ST2

ST2

ST1
ST6 ST3

ST4

ST5

ST2

ST1

ST2

ST1

ST2

ST1

subtrees

Figure 25.7 Example for SPR moves applied to a subtree ST6 in a phylogenetic tree.

all branches of the tree it was pruned from. Evidently, the value of the rearrangement
parameter has an impact on execution times as well as on the likelihood scores of the
final trees (i.e., there is a trade-off between speed and accuracy with respect to the
rearrangement radius).

An example for the application of the SPR technique to a subtree ST6 is provided
in Figure 25.7. SPR moves can be applied systematically to trees as follows: Given
a current best-scoring tree, one can generate a list of all possible subtree roots in that
tree. Thereafter, one can try to apply SPR moves to all subtrees within the current best
tree, and once all of them have been executed, simply conduct the SPR move again
that returned the largest likelihood improvement and thereby obtain a better tree.
Alternatively, if a SPR move applied to a specific subtree already yields an improved
likelihood score, then one immediately can keep the tree that was generated by the
SPR move on the specific subtree and then execute the remaining SPR moves on the
already modified tree. The latter technique is used in one form or the other in most
modern search algorithms.

The systematic application of SPR moves to all possible subtrees in a given tree
is called an SPR or rearrangement cycle. A computational challenge inherent to this
approach is that, one would need to reoptimize all branch lengths in that tree to obtain
the maximum likelihood score of the rearranged tree. Therefore, programs such as
GARLI, RAxML, or PHYML use lazy SPR techniques, which are outlined in the
following section.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.5 GENERAL SEARCH HEURISTICS 563

25.5.1 Lazy Evaluation Strategies

As already mentioned, SPR moves are computationally significantly more expensive
than, for instance, NNI moves, but they also yield trees with significantly better like-
lihood scores on real-world datasets (see [62, 58]). Therefore, additional measures
need to be taken to accelerate SPR moves further. By now, a well-established tech-
nique consists of applying so-called lazy SPR moves. Lazy SPR moves are based
on the rationale that branch lengths in a tree constructed via an SPR move only will
change to a larger degree in an area that is close to the insertion point of the sub-
tree that is being rearranged. Thus, it may suffice to readapt a few branch lengths
that are in the vicinity of the insertion branch. In RAxML, this is implemented in a
straightforward way by reoptimizing the three branches that are adjacent to the in-
sertion position of the subtree that is being rearranged (see Figure 25.8). In addition,
to save even more floating point operations, this lazy insertion comes in two flavors:
fast lazy insertion in which simply good guesses for the three branch lengths are
used and slow lazy insertions in which the three branch lengths are optimized via the
standard Newton-Raphson procedure. The fast lazy optimization is used during the
initial SPR cycles of RAxML (i.e., to “get the big picture right”), whereas the slow
and more thorough optimization is used for the latter SPR cycles to “get the details
right”.

GARLI uses a more sophisticated technique by reoptimizing branches located
in an area around the insertion point. This area is determined dynamically (i.e., the
algorithm moves away from the insertion position and optimizes branch lengths until
the branch length change is smaller than a certain threshold value).

Although these lazy evaluation procedures only yield approximate instead of max-
imum likelihood scores for the candidate trees that are constructed via the SPR tech-
nique, those scores then can be used to identify a set of “good” candidate topologies.
Trees with approximate likelihood scores can be sorted by their scores, and thus,
only a small fraction of promising trees needs to be assessed more thoroughly via
exhaustive branch length optimization. For details, please refer to [62, 58] and [78]
for the GARLI algorithm. Similar techniques also have been proposed for lazy SPRs

Subtree being rearranged Subtree being rearranged

b1: = sqrt(b) b2: = sqrt(b)

b3: = 0.9

b: original branch length

fast insertions slow insertions

Newton−Raphson
Procedure

b3

b1 b2

Figure 25.8 Example of lazy local fast and slow branch length reoptimization in RAxML.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

564 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

in PHYML [27] and there also have been some experiments using maximum par-
simony, which is computationally significantly cheaper than ML, to prescore SPR-
generated trees [61].

25.5.2 Further Heuristics

In a continuous strive to keep up with data accumulation, further heuristics recently
have been integrated into RAxML [59] that are, however, not RAxML-specific (i.e.,
they also could be used in other phylogenetic inference tools). The so-called likeli-
hood cutoff heuristics allow for a reduction in the number of lazy SPR moves that
are executed by omitting the computation of SPR moves that do not seem promising.
The implementation of this technique yielded additional speed-ups of approximately
a factor of two while returning equally good likelihood scores. The underlying idea
consists of omitting subtree insertions into parts of the tree that do not seem to im-
prove the likelihood score. This technique is outlined in Figure 25.9. Given a large
rearrangement radius, of, for example, ten nodes, one only initially can consider the
approximate likelihood scores of subtree insertions at a distance of one node from
the original pruning position. The comparison of the score for those four alternative
placements of the candidate subtree may provide an indication in which of the four
directions (four branches) the likelihood may improve. Thus, for example, one can
skip a further descent into a subtree that yields the worst of the four approximate

rearrangement distance

prune subtree

compute approximate
likelihood score

if score is under
a certain threshold

omit further
descent into this
subtree

Figure 25.9 Avoiding SPR descent into nonpromising parts of the tree via the likelihood cutoff
technique.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.5 GENERAL SEARCH HEURISTICS 565

likelihood scores and thereby avoid the computation of numerous lazy subtree re-
arrangements within that subtree. The decision, whether to descend further into a
specific subtree is based on a dynamic threshold value. This value has been tuned on
many real-world datasets and works well in practice. For further details, please refer
to [59].

25.5.3 Rapid Bootstrapping

Another important issue with respect to program performance and inference times for
real-world phylogenetic analyses are bootstrap analyses. The phylogenetic bootstrap
procedure in phylogenetics was proposed by Joe Felsenstein in [13], and the general
Bootstrap procedure was proposed by B. Efron in 1979 [11].

The phylogenetic bootstrap procedure works as follows: given an input alignment
with m columns/sites, we randomly draw m columns from the original alignment to
assemble a bootstrapped replicate alignment with a slightly different column compo-
sition. Typically, one will generate between r = 100 to r = 1000 bootstrap replicates
from the original alignment. On each of the r replicates, one usually applies the same
ML search algorithm as applied to the original alignment and thereby will obtain a
set of r bootstrapped trees. Those r trees then are used either to build a majority rule
consensus tree of some flavor (see [28] for some alternative ways to build consensus
trees) that roughly corresponds to computing an average. Alternatively, one can use
the r bootstrapped trees to compute support values for the branches (bipartitions see
Section 25.6) of the best-known ML tree on the original alignment (i.e., simply count
how often a bipartition of the ML tree also is contained in the bootstrapped trees).

Thus, the major computational burden does not consist of “just” computing a ML
tree but of conducting 100–1000 such searches on the respective bootstrap replicates.
Typically, biologists need to make available phylogenetic trees with some form of
support values (e.g., bootstrap values or Bayesian posterior probabilities), to publish
their evolutionary analyses. To solve this major computational bottleneck, we have
developed a “quick and dirty” version of the RAxML search algorithm that is tar-
geted at rapid computation of bootstrap replicates. This essentially can be regarded
as algorithmic tuning of the underlying algorithms, by reusing trees or model param-
eters from previously generated replicates and reducing the number of SPR cycles
per replicate. The accuracy of those approximate algorithms then was assessed thor-
oughly via computational experiments on numerous real-world benchmark datasets.
For details on the algorithmic design and the respective performance assessment,
please refer to [60].

Because the inference of support values generally is recognized as a computa-
tional bottleneck, alternative approaches to solving this problem have been sug-
gested (e.g., the approximate likelihood ratio test [aLRT [2]] that proposes a sta-
tistical framework for rapid computation of support values). The resampling of the
estimated log likelihood (RELL) method also has been proposed as a means for
accelerating the computation of support values [74], but our own (unpublished)
experiments have shown that it is very difficult to deploy RELL for computing sup-
port values on large-scale datasets.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

566 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

25.6 COMPUTING THE ROBINSON FOULDS DISTANCE

The efficient computation of the Robinson Foulds (RF) metric [47] is not only im-
portant for comparing phylogenetic trees with each other but also for integrating the
ML search convergence criterion described in the following Section 25.7 and the
bootstrap convergence criteria outlined in [42]. The main computational challenge
is the design of efficient methods to extract, maintain, and operate on lists that con-
tain all nontrivial bipartitions (splits) induced by a collection of trees. Apart from
computing the RF distances, such lists of bipartitions also are required for comput-
ing consensus trees [28] or implementing convergence assessment mechanisms for
Bayesian inference programs [38]. Although the theoretically optimal algorithm is
well described [7], important technical details often are not considered and rarely are
assessed experimentally, such as, for example, the choice of the hash function.

A nontrivial bipartition is a cut of a tree at an inner branch (i.e., a branch that
does not lead to a tip), into two disjoint sets of taxon labels, where each set contains
2 ≤ i ≤ n − 2 taxon labels, and n is the number of taxa in the tree. Because the sets
induced by trivial bipartitions (i.e., cuts/splits at branches that lead to a leave in a
tree and contain 1 and n − 1 taxon labels, respectively), are contained in all possible
trees, they do not carry any useful information about the actual tree topology and
are hence discarded. Because an unrooted binary tree with n leaves contains 2n − 3
branches and n branches thereof lead to leaves, a tree of size n therefore induces
n − 3 nontrivial bipartitions.

A bipartition can be represented by two presence/absence bit vectors bL , bR of
length n, where every bit denotes the presence/absence of a taxon in the subtree to
the left (bL) and to the right (bR) of the branch that is being cut. Clearly, bL is the
bit-wise complement of bR . Because of this property, it suffices either to store bL or
bR . To ensure consistency of this choice between bR and bL and to avoid computa-
tional overhead for checking whether two bit vectors are bit-wise complements of
each other, one may choose always to store the bit vector that contains (or does not
contain) a specific taxon (e.g., the first taxon in the input alignment). This is impor-
tant to ensure consistency among bipartitions extracted from two distinct trees, t1, t2,
because otherwise, a bipartition that is shared between the trees may be stored as bL

for t1 and as its complement bR for t2.
Let us now consider how to extract efficiently bipartitions from an unrooted tree

that already is stored in memory (i.e., we do not discuss how to read in efficiently in
trees in the standard NEWICK format [see http://evolution.genetics.washington.edu/
phylip/newicktree.html] from file). The algorithm for efficient computation of the
bipartitions at each inner branch is conceptually very similar to Felsenstein’s pruning
algorithm for computing the ML score on a tree and relies on a rooted view of the
unrooted tree. Initially, we will assign bit vectors of length n to all 2n − 2 nodes
of the tree and initialize the bipartition vectors at the tips (i.e., just set the bit that
corresponds to the respective taxon number). Thereafter, we place a virtual root into
the branch that leads to the first taxon in the input alignment and recursively compute
all bipartition vectors bottom-up toward the virtual root via a depth-first traversal.
Keep in mind that all inner bipartition vectors will be oriented toward the virtual root

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.6 COMPUTING THE ROBINSON FOULDS DISTANCE 567

of the tree. Every time we compute the bipartition vector at an inner node that is
connected to another inner node, we can store directly the bipartition in a hash table.
This means that we always are storing only those bipartitions that do not contain the
selected taxon and thereby ensure consistency. The complexity of this operation is
O(n2) because we need to compute n − 3 bipartition vectors and the computation of
each bipartition vector is a for loop over n bits. However, in practice 32, 64, or even
128 (if simple sharing extensions (SSE)-vectorized code is used) bit vector entries
can be computed in one CPU cycle such that a more accurate approximation for the
number of instructions is, for example, n × (n/32).

Given this efficient method for extracting bipartitions from trees, we now can con-
sider the appropriate data structure for storing these bipartitions. The use of a hash
table is straightforward and represents an efficient choice. However, the question is
how to select a hash function for the hash key, which in our case, is simply the bi-
partition vector. The use of universal hash functions [6] as advocated in some more
theoretical papers [70, 69, 1] may not represent the optimal choice. First, because
the computation of a universal hash function given a bit vector of length n is slow,
and second universal hash functions only work well when hash keys equally are dis-
tributed randomly [6], which may not be the case for hash keys that are induced by a
hierarchical data structure such as a tree.

We have assessed experimentally several highly tuned open-source hash func-
tions that are nicely summarized at http://burtleburtle.net/bob/hash/doobs.html by
adopting an algorithmic engineering approach [35]. In addition to this collection of
hash functions, we also tested a phylogeny-specific hash key proposed by Pattengale
et al. [43]. This method takes advantage of the tree structure and works as follows:
as hash keys, we use 32- or 64-bit integer values instead of full-length bipartition
bit vectors. Initially, each taxon will be assigned a random unsigned 64-bit integer
number. Then, the hash numbers for the bipartitions also are computed bottom up
toward the virtual root by performing a bit-wise exclusive or on the respective child
vectors. This procedure can be integrated conveniently into the depth-first traversal
that is used to compute the bipartition vectors. Extensive tests on large collections of
trees have revealed that this method slightly outperforms all other tested hash func-
tions in terms of speed and generates approximately the same amount of collisions
that are resolved by chaining in the current RAxML implementation.

If we want to compute the RF distance, then we also need to keep track of which
tree in the tree collection contained a bipartition that is stored in the hash table. For
this, we deploy a presence/absence bit vector of length x , where x is the number of
trees. Hence, if we add an entry to the hash table and the respective slot is already oc-
cupied, then we initially need to compare the bipartition vector (or list of bipartition
vectors) in that slot with the bipartition vector to be added. If it matches one of the
stored bipartition vectors, then we simply set the respective bit for the tree number
to one, otherwise we resolve by chaining.

The mechanisms described now can be deployed to store all nontrivial bipartitions
of a set of x trees that contain n taxa. The Robinson Foulds distance is defined as the
number of bipartitions that are unique to one of the two trees but not both. If x = 2,
then we need to look at all valid entries of the hash table and increment a counter by

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

568 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

Taxon 4
00001

Taxon 3
00010

Taxon 2
00100Taxon 1

01000

Taxon 0
10000

R2

R4

R3

virtual root

00011

00010 OR 00001

00111

00100 OR 00011

table at
insert into hash insert into hash

non−trivial bipartitions

R0 32− or 64−bit random
number

bipartition
vector

R1

R4 XOR R3 XOR R2

table at R4 XOR R3

:=:=

orientation
towards virtual
root

Figure 25.10 Outline of the procedure to extract bipartitions efficiently and generate bipartition
hash numbers on an unrooted binary tree.

one if the bit vector that contains the trees that generated the specific bipartition has
one bit set to zero (i.e., 01 or 10).

If we need to compute all pair-wise RF distances between a collection of x trees,
then the tree presence/absence bit vector needs to be analyzed as follows: If a bit i is
set to 1, then we need to find all other bits j �= i that are set to zero and increment
the respective pair-wise RF distance between i and j by one. The complexity of this
operation is O(x2) and can dominate the run times (75–80% of total execution time)
for large collections of trees (e.g., on 10,000 trees with 2000 taxa each). The specific
RAxML implementation scales on trees of up to 37,000 taxa.

The procedure to extract bipartitions and generate hash numbers for bipartitions
is outlined in Figure 25.10.

25.7 CONVERGENCE CRITERIA

Convergence criteria also can be seen as an algorithmic means to avoid unnecessary
use of computational resources. The goal of these criteria is only to perform as many
computations as necessary to achieve a certain accuracy level.

A question that comes up within the context of bootstrap analyses (see Sec-
tion 25.5.3) is how many bootstrap replicates r actually are required to obtain stable
support values. Although Hedges discusses this issue for phylogenetics in a theoret-
ical [23] context, we have proposed an empirical approach that takes into account

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.7 CONVERGENCE CRITERIA 569

the variability in the phylogenetic signal of different input dataset shapes. As may be
expected, well-shaped alignments require less bootstrap replicates than badly shaped
alignments to achieve stable support values. A detailed description of bootstrap con-
vergence criteria is provided in [42]. Although these criteria allow for only conduct-
ing as many ML searches on bootstrap replicates as necessary and thereby help to
economize on computational resources, one also may need to reconsider convergence
properties of single, stand-alone ML searches as described in the following section.

25.7.1 Asymptotic Stopping

One common problem inherent to ML-based searches is that of asymptotic conver-
gence of the log-likelihood score over time. Initially, the search algorithm will gener-
ate significant improvements in likelihood scores, but thereafter, it will reach a phase
of slow asymptotic convergence that consumes the largest portion of execution time
and only yields insignificant improvements in likelihood scores. This phenomenon
is particularly extreme for badly shaped alignments. As already mentioned, one of
the key characteristics of multiple ML searches (e.g., on 100 randomized stepwise
addition MP starting trees) on such badly shaped alignments is that they typically
yield several ML trees that can not be distinguished statistically from each other.
This means that they are not significantly different from each other based on stan-
dard statistical significance tests (see [18] for a summary of such tests). Hence, one
most likely will need to infer rapidly a large collection of equally “good” ML trees
that then will need to be summarized by appropriate consensus tree techniques.

Given the prolegomena, it is not clear whether we really require the small im-
provements in the likelihood score that are obtained during this asymptotic conver-
gence phase. It may be preferable to compute rapidly a larger number of ML trees
and then summarize them via consensus techniques. In a current large-scale study on
real data, we found that on an alignment with six genes and 37,831 taxa the 25 ML
trees we had computed showed an average pair-wise RF distance of approximately
20%, whereas the trees could not be distinguished statistically from each other by
their ML scores.

An example for asymptotic convergence behavior is outlined in Figure 25.11 for
a single-gene dataset with 1303 base-pairs (sites) and 34,584 taxa analyzed under
GTR+� using 16 threads on an AMD Barcelona multicore system. The plot shows
two plateaus before the final asymptotic convergence phase, which are a result of the
algorithmic design of RAxML (the transition from SPR cycles with fast insertion to
slow insertion, see Section 25.5.1), that is, those plateaus are predictable. The graph
clearly shows that, if the tree search is stopped early during the final asymptotic
convergence phase or convergence plateau, then around 70% of total execution time
can be saved.

In the following paragraphs, I briefly will describe a novel convergence crite-
rion for RAxML searches that has been tested empirically on 12 single-gene (i.e.,
badly shaped) real-world datasets, comprising 1288–4114 taxa. The criterion only is
applied to SPR cycles that use the slow lazy insertion method for subtrees (see Sec-
tion 25.5.1). The convergence criterion works as follows: For two successive cycles

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

570 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

Algorithmic Plateaus

Convergence Plateau

−2.388e+06

−2.386e+06

−2.384e+06

−2.382e+06

−2.38e+06

−2.378e+06

−2.376e+06

−2.374e+06

−2.372e+06

 350000 300000 250000 200000 150000 100000 50000 0

Lo
g

Li
ke

lih
oo

d

Time(seconds)

"34584_taxa_1303_bp"

Figure 25.11 Log-likelihood improvement over time for a single-gene DNA dataset with 34,584
taxa and 1303 base pairs. Phylogenetic search under the GTR+� model using the current devel-
opment version of RAxML. The analysis was conducted with 16 threads on an AMD Barcelona
multicore system with 16 cores and 128 Gb of main memory. Memory footprint of this analysis
is 7.5 Gb.

of slow lazy SPR moves ci , ci+1, we keep track of the respective best-scoring trees
ti , ti+1 produced by those cycles. We stop the ML search, if RF (ti , ti+1) < 1% (i.e.,
if the topological distance between the trees produced by two successive SPR cycles
is small). Evidently, there is a danger of stopping searches too early and obtaining
trees with bad likelihood scores.

To assess the accuracy, or rather the loss of accuracy, caused by this convergence
rule, we inferred 40 ML trees on the same set of MP starting trees for all 12 align-
ments with (denoted as STOP) and without (denoted as FULL) the stopping crite-
rion. We conducted 960 tree searches using the Pthreads-based version of RAxML
on a four-core Intel Core-2 Quad system running at 2.83 GHz under the GTR +
CAT approximation of rate heterogeneity [57]. For all collections of trees, we then
computed the likelihood scores under the standard GTR + � model of rate hetero-
geneity. In Table 25.1 we indicate the likelihood score for the best out of the 40 trees
for searches using the stopping rule (column: LnL-STOP) and full searches (col-
umn: LnL-FULL). We also indicate the average log likelihood of all 40 trees for the
stopped (column: Avg. LnL-STOP) and full searches (column: Avg. LnL-FULL). As
can be derived from this table, the best and average likelihood scores obtained by the
algorithm with the stopping rule are only slightly worse than those obtained by the
full algorithm.

In Table 25.2, we indicate the execution times in hours for the STOP method
(STOP Time(hrs)) and the FULL method (FULL Time (hrs)) as well as the respec-
tive speedup achieved by using the stopping criterion (Speed-up). Finally, we also
indicate the RF distance between the respective best trees obtained by each method.
The STOP method achieves an average speedup of 1.76. This means that in the time

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

25.7 CONVERGENCE CRITERIA 571

Table 25.1 Best and average likelihood scores returned by 40 distinct ML searches
using the full search algorithm (FULL) and the search algorithm with stopping
criterion (STOP)

Taxa LnL-STOP LnL-FULL Avg. LnL-STOP Avg. LnL-FULL

1288 −395,860.48 −395,849.25 −396,020.61 −396,016.14
1481 −197,409.81 −197,409.88 −197,589.92 −197,577.66
1604 −167,336.65 −167,312.87 −167,381.09 −167,372.03
1908 −149,595.77 −149,595.79 −149,626.61 −149,622.75
2000 −364,871.78 −364,856.96 −364,925.20 −364,894.23
2200 −179,613.35 −179,609.35 −179,631.02 −179,627.14
2308 −449,803.17 −449,803.32 −449,910.36 −449,898.68
2586 −162,917.75 −162,897.54 −162,973.47 −162,957.46
2843 −143,187.96 −143,180.69 −143,227.51 −143,218.72
2884 −173,644.22 −173,643.32 −173,685.98 −173,678.72
3564 −389,749.24 −389,738.73 −389,894.42 −389,848.05
4114 −325,512.71 −325,426.77 −325,662.86 −325,605.34

required to infer 40 trees using the FULL method, 70 trees could be inferred via
the STOP method. Thus, given the preceding arguments, we believe that the same
amount of computational resources can be used in a more efficient way by inferring
more trees, albeit with slightly worse likelihood scores. This will help to explore
better the likelihood surface. Finally, we also computed the RF distance between the
respective best-scoring trees returned by FULL and STOP. Despite the apparently
small and insignificant differences in likelihood scores, the topological distances be-
tween the trees are surprisingly high.

To investigate further this phenomenon, we computed the average pairwise RF-
distances between all 40 trees obtained via the FULL method and all 40 ML trees
obtained via the STOP method. In Figure 25.12, we plot those average distances over

Table 25.2 Execution times, speed-ups, and RF distance between respective best trees
for the full algorithm and the algorithm with stopping rule

Taxa STOP Time(hrs) FULL Time (hrs) Speed-up RF Distance

1288 12.32 21.41 1.74 2.3
1481 17.25 21.64 1.25 1.2
1604 11.86 18.84 1.59 16.6
1908 14.09 22.65 1.60 2.7
2000 20.92 43.30 2.07 23.4
2200 18.17 27.54 1.52 12.4
2308 20.29 35.25 1.74 0.6
2586 22.58 45.35 2.01 18.4
2843 28.48 51.06 1.79 4.3
2884 25.89 44.87 1.73 1.2
3564 56.22 107.63 1.91 2.9
4114 41.44 89.51 2.16 30.7

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

572 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 4500 4000 3500 3000 2500 2000 1500 1000

A
ve

ra
ge

 R
F

di
st

an
ce

 in
 %

Number of Taxa

"FULL"
"STOP"

Figure 25.12 Average pair-wise RF distances between the 40 distinct ML trees inferred by the
full method and the method with ML convergence criterion.

the number of taxa. Although there seems to be a large dataset-dependent variation
with respect to the RF distances, this plot demonstrates that the values obtained in
Table 25.2 are representative of the distances that may occur between trees that do not
have significantly different likelihood scores on badly shaped alignments. Overall,
the proposed method seems to provide a useful means and a better way to allocate
and use computational resources for exploration of the tree space of badly shaped
alignments.

25.8 FUTURE DIRECTIONS

As has been mentioned frequently in this chapter, algorithmic techniques for phylo-
genetic inference under ML will have to evolve with or rather be adapted to align-
ment shapes.

With respect to well-shaped alignments and because of the strength of the phy-
logenetic signal contained in these, it may be worthwhile to assess whether equally
accurate trees can be obtained, for example, by using simpler and less computational
as well as memory-intensive methods such as NJ or MP. One also may consider to
apply less radical/exhaustive topological moves under ML to such datasets. More-
over, one should not neglect issues that are associated with parallel computing and
the multicore revolution. Large multicore nodes with 16–32 cores and even super-
computers such as the IBM BlueGene/L [40] may be required to handle the largest
and most challenging phylogenomic analyses. Unfortunately, algorithm design is-
sues and parallelization problems can not be separated entirely from each other.
Thus, algorithmic design also should take into consideration future supercomputer
architectures. Because of the constant increase in CPU count, scalability of current

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

REFERENCES 573

methods will be limited by Amdahl’s law. Thus, it will be highly beneficial to design
algorithms that can scale easily on several thousands of processors. A major algo-
rithmic and software engineering challenge will consist of conducting tree searches
under the adapted ML method described in Section 25.3.2. An implementation of
searches under this method will contribute significantly to keeping pace with the
data accumulation.

Overall, the design of phylogenetic search algorithms seems to have evolved more
into a discipline of trade-off engineering (i.e., we need to answer the question of how
we can exploit best a limited amount of computational resources to achieve the most
accurate results). Examples for such an engineering approach to phylogenetics are
the bootstopping and ML search stopping criteria that are described in Section 25.7.

With respect to badly shaped alignments, a huge need also seems to exist
for novel algorithmic approaches, aside from the fact that parallelization is also
significantly more challenging. For example, within the framework of the Na-
tional Science Foundation funded plant tree of life cyberinfrastructure project
(see http://chac.iplantcollaborative.org/documents/iptol.pdf), we intend to analyze a
badly shaped alignment of approximately 500,000 taxa comprising all species of the
green plants. Although RAxML currently can handle datasets up to 50,000–60,000
taxa, new algorithmic approaches will be required to handle the lack of signal in
these datasets and sufficiently sample the rough likelihood surface. One may think
about a reassessment of likelihood ratchet techniques [73], simulated annealing al-
gorithms [56, 51], or the zoom-in/zoom-out technique that was introduced in the
PhyNav program [32], which allows for a significant reduction of the number of taxa
in the tree.

Therefore, despite the fact that phylogenetics have come of age, the wet lab se-
quencing and multicore revolutions offer many fascinating challenges that wait to be
addressed and solved.

REFERENCES

1. N. Amenta, F. Clarke, and K. StJohn. A linear-time majority tree algorithm. Lect Notes
Comput Sci, 2812:216–227, 2003.

2. M. Anisimova and O. Gascuel. Approximate likelihood-ratio test for branches: A fast,
accurate, and powerful alternative. Syst Biol, 55(4):539–552, 2006.

3. O.R.P. Bininda-Emonds, S.G. Brady, M.J. Sanderson, and J. Kim. Scaling of accuracy in
extremely large phylogenetic trees. Pacific Symposium on Biocomputing, 2000, pp. 547–
558.

4. B. Boussau and M. Gouy. Efficient likelihood computations with nonreversible models of
evolution. Syst Biol, 55(5):756–768, 2006.

5. R.P. Brent. Algorithms for Minimization Without Derivatives. Prentice Hall, Englewood
Cliggs, NJ, 1973.

6. J.L. Carter and M.N. Wegman. Universal classes of hash functions (Extended Abstract).
Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, ACM, New
York, 1977, pp. 106–112.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

574 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

7. W.H.E. Day. Optimal algorithms for comparing trees with labeled leaves. J Classif,
2(1):7–28, 1985.

8. A.J. Drummond and A. Rambaut. BEAST: Bayesian evolutionary analysis by sampling
trees. BMC Evol Biol, 7(214):1471–2148, 2007.

9. C.W. Dunn, A. Hejnol, D.Q. Matus, K. Pang, W.E. Browne, S.A. Smith, E. Seaver,
G.W. Rouse, M. Obst, G.D. Edgecombe, M.V. Sorensen, S.H.D. Haddock, A. Schmidt-
Rhaesa, A. Okusu, R.M. Kristensen, W.C. Wheeler, M.Q. Martindale, and G. Giribet.
Broad phylogenomic sampling improves resolution of the animal tree of life. Nature,
452(7188):745–749, 2008.

10. A.W.F. Edwards, L.L. Cavalli-Sforza, V.H. Heywood, and J. McNeill. Phenetic and phy-
logenetic classification. Publ Systemat Assoc, 6:67–76, 1963.

11. B. Efron. Bootstrap methods: another look at the kackknife. Ann Stat, 7:1–26, 1979.

12. J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach.
J Mol Evol, 17:368–376, 1981.

13. J. Felsenstein. Confidence limits on phylogenies: An approach using the bootstrap. Evo-
lution, 39(4):783–791, 1985.

14. W.M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science, 155(3760):
279–284, 1967.

15. R. Fleissner, D. Metzler, and A.V. Haeseler. Simultaneous statistical multiple alignment
and phylogeny reconstruction. Syst Biol, 54:548–561, 2005.

16. L.R. Foulds and R.L. Graham. The Steiner problem in phylogeny is NP-complete. Adv
Appl Math, 3(43-49):299, 1982.

17. L. Ganzert, G. Jurgens, U. Munster, and D. Wagner. Methanogenic communities in
permafrost-affected soils of the laptev sea coast, siberian arctic, characterized by 16s rrna
gene fingerprints. FEMS Microbiol Ecol, 59(2):476–488, 2007.

18. N. Goldman, J.P. Anderson, and A.G. Rodrigo. Likelihood-based tests of topologies in
phylogenetics. Syst Biol, 49(4):652–670, 2000.

19. N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for protein-
coding DNA sequences. Mol Biol Evol, 11(5):725–736, 1994.

20. M. Gottschling, A. Stamatakis, I. Nindl, E. Stockfleth, A. Alonso, L. Gissmann, and I.G.
Bravo. Multiple evolutionary mechanisms drive papillomavirus diversification. Mol Biol
Evol, 2007.

21. G.W. Grimm, S.S. Renner, A. Stamatakis, and V. Hemleben. A nuclear ribosomal DNA
phylogeny of acer inferred with maximum likelihood, splits graphs, and motif analyses of
606 sequences. Evol Bioinformatics Online, 2:279–294, 2006.

22. S. Guindon and O. Gascuel. A simple, fast, and accurate algorithm to estimate large phy-
logenies by maximum likelihood. Syst Biol, 52(5):696–704, 2003.

23. S.B. Hedges. The number of replications needed for accurate estimation of the bootstrap
P value in phylogenetic studies. Mol Biol Evol, 9(2):366–369, 1992.

24. A. Hejnol, M. Obst, A. Stamatakis, M. Ott, G.W. Rouse, G.D. Edgecombe, P. Martinez,
J. Baguna, X. Bailly, U. Jondelius, M. Wiens, W.E.G. Müller, E. Seaver, W.C. Wheeler,
M.Q. Martindale, G. Giribet, and C.W. Dunn. Rooting the bilaterian tree with scalable
phylogenomic and supercomputing tools. 2009. To appear.

25. T.H. Ogden and M.S. Rosenberg. Multiple sequence alignment accuracy and phylogenetic
inference. Syst Biol, 55:314–328, 2006.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

REFERENCES 575

26. M. Höhl and M.A. Ragan. Is multiple sequence alignment required for accurate inference
of phylogeny? Syst Biol, 56(2):206–221, 2007.

27. W. Hordijk and O. Gascuel. Improving the efficiency of SPR moves in phylogenetic tree
search methods based on maximum likelihood. Bioinformatics, 21(24):4338–4347, 2005.

28. L.S. Jermiin, G.J. Olsen, K.L. Mengerson, and S. Easteal. Majority-rule consensus of phy-
logenetic trees obtained by maximum-likelihood analysis. Mol Biol Evol, 14(12):1296,
1997.

29. G. Jobb, A.V. Haeseler, and K. Strimmer. TREEFINDER: A powerful graphical analysis
environment for molecular phylogenetics. BMC Evol Biol, 4, 2004.

30. N. Lartillot, S. Blanquart, and T. Lepage. PhyloBayes. v2. 3, 2007.

31. N. Lartillot and H. Philippe. A Bayesian mixture model for across-site heterogeneities in
the amino-acid replacement process. Mol Biol Evol, 21(6):1095–1109, 2004.

32. S.V. Le, H.A. Schmidt, and A.V. Haeseler. PhyNav: A novel approach to reconstruct large
phylogenies. Proceedings of GfKl Conference, 2004.

33. A. Loytynoja and N. Goldman. Phylogeny-aware gap placement prevents errors in se-
quence alignment and evolutionary analysis. Science, 320(5883):1632, 2008.

34. B.Q. Minh, L.S. Vinh, A.V. Haeseler, and H.A. Schmidt. pIQPNNI: Parallel recon-
struction of large maximum likelihood phylogenies. Bioinformatics, 21(19):3794–3796,
2005.

35. B.M.E. Moret. Towards a discipline of experimental algorithmics. Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Chal-
lenges: Papers Related to the DIMACS Challenge on Dictionaries and Priority Queues
(1995-1996) and the DIMACS Challenge on Near Neighbor Searches (1998-1999), 2002,
p. 197.

36. B.M.E. Moret, U. Roshan, and T. Warnow. Sequence-length requirements for phyloge-
netic methods. Lect Notes Comput Sci, 2452:343–356, 2002.

37. D.A. Morrison. Increasing the efficiency of searches for the maximum likelihood tree in
a phylogenetic analysis of up to 150 nucleotide sequences. Syst Biol, 56(6):988–1010,
2007.

38. J.A.A. Nylander, J.C. Wilgenbusch, D.L. Warren, and D.L. Swofford. AWTY(are we there
yet?): A system for graphical exploration of MCMC convergence in Bayesian phyloge-
netics. Bioinformatics, 24(4):581, 2008.

39. G.J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek. fastDNAml: A tool for construc-
tion of phylogenetic trees of DNA sequences using maximum likelihood. Bioinformatics,
10(1):41–48, 1994.

40. M. Ott, J. Zola, S. Aluru, A.D. Johnson, D. Janies, and A. Stamatakis. Large-scale phylo-
genetic analysis on current HPC architectures. Sci Program, 16(2-3):255–270, 2008.

41. M. Ott, J. Zola, S. Aluru, and A. Stamatakis. Large-scale maximum likelihood-based phy-
logenetic analysis on the IBM bluegene/L. Proceedings of IEEE/ACM Supercomputing
Conference 2007 (SC2007), 2007.

42. N.D. Pattengale, M. Alipour, O.R.P. Bininda-Emonds, B.M.E. Moret, and A. Stamatakis.
How many bootstrap replicates are necessary? Proceedings of RECOMB2009, 2009. To
appear.

43. N.D. Pattengale, E.J. Gottlieb, and B.M.E. Moret. Efficiently computing the Robinson-
Foulds metric. J Comput Biol, 14(6):724–735, 2007. PMID: 17691890.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

576 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD

44. S.L.K. Pond and S.V. Muse. Column sorting: Rapid calculation of the phylogenetic like-
lihood function. Syst Biol, 53(5):685–692, 2004.

45. F. Pratas, P. Trancoso, A. Stamatakis, and L. Sousa. Fine-grain parallelism for the phylo-
genetic likelihood functions on multi-cores, Cell/BE, and GPUs. 2009. To appear.

46. B. Redelings and M. Suchard. Joint Bayesian estimation of alignment and phylogeny.
Syst Biol, 54(3), 2005.

47. D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Math Biosci,
53(1-2):131–147, 1981.

48. S. Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is
hard. IEEE/ACM Trans Comput Biol Bioinform, 3(1):92–94, 2006.

49. F. Ronquist and J.P. Huelsenbeck. MrBayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics, 19(12):1572–1574, 2003.

50. N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol Biol Evol, 4:406–425, 1987.

51. L.A. Salter and D.K. Pearl. Stochastic search strategy for estimation of maximum likeli-
hood phylogenetic trees. Syst Biol, 50(1):7–17, 2001.

52. N.J. Savill, D.C. Hoyle, and P.G. Higgs. RNA sequence evolution with secondary struc-
ture constraints: Comparison of substitution rate models using maximum-likelihood
methods. Genetics, 157:399–411, 2001.

53. J. Shendure and H. Ji. Next-generation DNA sequencing. Nat Biotechnol, 26(10):1135–
1145, 2008.

54. S.A. Smith and M.J. Donoghue. Rates of molecular evolution are linked to life history in
flowering plants. Science, 322(5898):86–89, 2008.

55. A. Stamatakis. Distributed and Parallel Algorithms and Systems for Inference of Huge
Phylogenetic Trees Based on the Maximum Likelihood Method. PhD thesis, Technische
Universität München, Germany, October 2004.

56. A. Stamatakis. An efficient program for phylogenetic inference using simulated an-
nealing. Proceedings of IPDPS2005, HICOMB Workshop, Denver, Colorado, April
2005.

57. A. Stamatakis. Phylogenetic models of rate heterogeneity: A high performance computing
perspective. Proceedings of IPDPS2006, HICOMB Workshop, Rhodos, Greece, April
2006.

58. A. Stamatakis. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics, 22(21):2688–2690, 2006.

59. A. Stamatakis, F. Blagojevic, C.D. Antonopoulos, and D.S. Nikolopoulos. Exploring new
search algorithms and hardware for phylogenetics: RAxML meets the IBM cell. J VLSI
Sig Proc Syst, 48(3):271–286, 2007.

60. A. Stamatakis, P. Hoover, and J. Rougemont. A rapid bootstrap algorithm for the RAxML
web servers. Syst Biol, 57(5):758–771, 2008.

61. A. Stamatakis, T. Ludwig, and H. Meier. A fast program for maximum likelihood-based
inference of large phylogenetic trees. Proceedings of 19th ACM Symposium on Applied
Computing (SAC2004), 2004, pp. 197–201.

62. A. Stamatakis, T. Ludwig, and H. Meier. RAxML-III: A fast program for maximum
likelihood-based inference of large phylogenetic trees. Bioinformatics, 21(4):456–463,
2005.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

REFERENCES 577

63. A. Stamatakis, T. Ludwig, H. Meier, and M.J. Wolf. Accelerating parallel maximum
likelihood-based phylogenetic tree calculations using subtree equality vectors. Proceed-
ings of IEEE/ACM Supercomputing Conference 2002 (SC2002), 2002.

64. A. Stamatakis, T. Ludwig, H. Meier, and M.J. Wolf. AxML: A fast program for sequential
and parallel phylogenetic tree calculations based on the maximum likelihood method.
Proceedings of 1st IEEE Computer Society Bioinformatics Conference (CSB2002), 2002,
pp. 21–28.

65. A. Stamatakis and M. Ott. Efficient computation of the phylogenetic likelihood func-
tion on multi-gene alignments and multi-core architectures. Phil Trans R Soc B Biol Sci,
363:3977–3984, 2008.

66. A. Stamatakis and M. Ott. Exploiting fine-grained parallelism in the phylogenetic like-
lihood function with MPI, Pthreads, and OpenMP: A performance study. In M. Chetty,
A. Ngom, and S. Ahmad, editors, PRIB, volume 5265 of Lecture Notes in Computer Sci-
ence, Springer, New York, 2008, pp. 424–435.

67. A. Stamatakis and M. Ott. Load balance in the phylogenetic likelihood kernel. Proceed-
ings of ICPP 2009, 2009. To appear.

68. A. Stamatakis, M. Ott, and T. Ludwig. RAxML-OMP: An efficient program for phyloge-
netic inference on SMPs. PaCT, 2005, pp. 288–302.

69. S.J. Sul, G. Brammer, and T.L. Williams. Efficiently computing arbitrarily-sized
Robinson-Foulds distance matrices. Proceedings of the 8th International Workshop on
Algorithms in Bioinformatics, Springer, New York, 2008, pp. 123–134.

70. S.J.I.N. Sul and T.L. Williams. A randomized algorithm for comparing sets of phyloge-
netic trees. Proceedings of the 5th Asia-Pacific Bioinformatics Conference: Hong Kong,
15-17 January 2007, Imperial College Pr, 2007, p. 121.

71. D.L. Swofford. PAUP∗: Phylogenetic Analysis using Parsimony (∗ and other methods),
version 4.0b10. Sinauer Associates, 2002.

72. S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences.
In American Mathematical Society: Lectures on Mathematics in the Life Sciences, 17:57–
86, 1986.

73. R.A. Vos. Accelerated likelihood surface exploration: The likelihood ratchet. Syst Biol,
52(3):368–373, 2003.

74. P.J. Waddell, H. Kishino, and R. Ota. Very fast algorithms for evaluating the stability of
ML and Bayesian phylogenetic trees from sequence data. Genome Informatics Series,
2002, pp. 82–92.

75. W. Wheeler, L. Aagesen, C.P. Arango, J. Faivovich, T. Grant, C. D’Haese, D. Janies, W.L.
Smith, A. Varon, and G. Giribet. Dynamic Homology and Phylogenetic Systematics: A
Unified Approach using POY. American Museum of National History, 2006.

76. Z. Yang. Maximum likelihood phylogenetic estimation from DNA sequences with vari-
able rates over sites. J Mol Evol, 39:306–314, 1994.

77. Z. Yang. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol,
24(8):1586, 2007.

78. D. Zwickl. Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biolog-
ical Sequence Datasets under the Maximum Likelihood Criterion. PhD thesis, University
of Texas at Austin, April 2006.

P1: OSO
c25 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

26
HEURISTIC METHODS
FOR PHYLOGENETIC

RECONSTRUCTION WITH
MAXIMUM PARSIMONY

Adrien Goëffon, Jean-Michel Richer, and Jin-Kao Hao

In this chapter, we explain how metaheuristics like local search, genetic, and memetic
algorithms are used for phylogenetic reconstruction using maximum parsimony. We
review some main concepts used to improve the search of a good solution that are
inherited from the operational research and combinatorial optimization communities.

26.1 INTRODUCTION

Maximum parsimony (MP) is a character-based approach that relies on the work of
the german entomologist Willy Hennig (1913–1976). Although Hennig’s work has
generated significant controversy, the principles that underlie what was later called
cladistics laid the basis for a convenient and powerful method for the analysis of
molecular data with the use of computers. For more details about the early history of
MP methods, see [9] (p. 136).

Cladistics, also referred to as phylogenetic systematics, can be viewed as a phi-
losophy of classification that arranges organisms only by their order of branching
in an evolutionary tree. The leaves of the tree are labeled with the operational taxo-
nomic unit (OTU) of the problem also called taxa (singular: taxon). Ideally, the trees

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

579

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

580 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

S1 S2 S4S3 S1 S2 S4S3

Figure 26.1 Two tree topologies for a binary rooted tree of four sequences.

(or cladograms) that result from an MP analysis show the evolution of synapomor-
phies (derived character states inherited from the most common ancestor) between
species. Many different cladograms can exist for a given set of taxa, but the MP
criterion imposes to choose the ones with the fewest changes.

26.2 DEFINITIONS AND FORMAL BACKGROUND

26.2.1 Parsimony and Maximum Parsimony

With parsimony methods, each position (or site) in the multiple alignment is con-
sidered separately. First note that there are different parsimony optimality criteria
known as Fitch, Wagner, Camin-Sokal, Dollo, or weighted parsimony. Those cri-
teria determine the number of changes of a substitution from one site to another
(see [9]). In the remaining sections of this chapter, we only are interested in Fitch
(or unweighted) parsimony for which all substitutions are given the same weight of
one unit.

In the general case, the input of the problem is a multiple alignment compris-
ing n DNA sequences of length m expressed over an alphabet �, where � =
{−, A, C, G, T,?}1 consists of four nucleotides, the gap symbol –, and eventually,
the missing character symbol: ?. The second input of the problem is a binary rooted
or unrooted tree whose leaves are labeled with the sequences of L . Other nodes of
the tree, called internal nodes, have two descendants (see Figure 26.1). We then can
define two problems respectively called small and large parsimony problems.

Definitio 26.1 (Small parsimony problem) Given a multiple alignment of length
m of a set L of n sequences and a tree T whose leaves are labeled with sequences of
L, find the parsimony score of T .

To compute the overall cost (or score) of a tree (also known as tree length), Fitch’s
algorithm [11] gradually moves back from the leaves to the root and computes hy-
pothetical ancestral taxa. This often is referred to as the first-pass of the algorithm
(see Algorithm 26.4 for a more practical description). At each position of an internal
node, a set of bases is assigned. If two descendants x and y of an internal node v have

1It is also possible to use protein sequences with a 20-letter alphabet of amino acids.

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

26.3 METHODS 581

GAA

A
G

GC

C
G

A
C
G

A
G

+1

+1

+1

(a) first-pass from leaves to root (b) affection after second-pass

GAA

GC

A

C

A

A

Figure 26.2 First pass and affectation after second pass for a tree of score three under Fitch’s
optimality criterion.

some bases in common, then they are assigned to the internal node Lv = Lx ∩ L y .
Otherwise, all bases of both descendants are assigned to the parent Lv = Lx ∪ L y ,
and a cost of one unit is added to the overall score of the tree (see Figure 26.2).
The second pass of the algorithm, which starts from the root and reaches the leaves,
enables researchers to assign one nucleotide for a site if many possibilities exist to
obtain a hypothetical tree. However, only the first pass is sufficient to obtain the
parsimony score.

Definitio 26.2 (Large parsimony problem or maximum parsimony problem)
Given a mulitple alignment of length m of a set L of n sequences, find the most
parsimonious tree T (i.e., a tree with minimum parsimony score).

The score of a tree can be computed in polynomial time [11]. A rooted binary tree
of n leaves has n − 1 internal nodes; thus, the complexity of the small parsimony
problem is O(n × m). Indeed, we need to compute the hypothetical sequences of
n − 1 internal nodes to obtain the score of parsimony. However, the search for an
optimal tree is computationally intractable; the large parsimony problem is extremely
difficult to solve because it is equivalent to the nondeterministor polynomial (NP)-
complete Steiner problem in a hypercube [12]. This is why, as we shall see later on,
heuristics methods constitute the main alternative to obtain near-optimal trees with
reasonable computation time [21, 36].

26.3 METHODS

26.3.1 Combinatorial Optimization

A combinatorial optimization problems consist of finding the best object, also called
the optimum or optimal solution s�, in a finite (or possibly countably infinite) set of
objects called solutions. This class of problems is generally NP-complete [15], which
roughly means that the computing time needed by an algorithm to find an optimal

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

582 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

solution would increase exponentially with the size of the problem to solve. Because
of the importance of these problems, many algorithms have been developed. These
algorithms are of twofold:

� Exact algorithms are guaranteed to find the best solution but might need expo-
nential computation time; they try to optimize the search by ignoring configu-
rations that can be identified as inappropriate during the search.

� Approximate methods trade optimality for efficiency by examining an appro-
priate subset of the solutions to find a good near optimal solution.

26.3.2 Exact Approach

26.3.2.1 Exhaustive Enumeration. The simplest algorithm that can be de-
signed to find the most parsimonious tree(s) is to generate all possible trees and
compute their parsimony scores. However, tree searches are extremely difficult be-
cause the number of possible trees grows exponentially with the number of taxa (see
Table 26.1).

26.3.2.2 Branch and Bound. A first alternative to tackle the complexity of
MP is the branch and bound (B&B) algorithm [23]. We first generate a tree, not
necessarily optimal, and compute its parsimony score, which will serve as an upper
bound. We then start the construction of a new tree, initially empty, and add a new
taxon at each iteration. Each new taxon is put on all possible branches of the previous
trees and generates a set of new trees, which are put in a list. The trees that have
a parsimony score greater than the upper bound are withdrawn from the list. The
main drawback of the B&B algorithm is that the list of trees is too important for the
algorithm to be efficient, which is why the algorithm only can be applied on a set of
less than 20 taxa.

26.3.3 Local Search Methods

Because of the amount of trees to evaluate and the inefficiency of exact methods, it
is preferable to use approximate approaches for inferring large phylogenetic trees.

Table 26.1 Number of unrooted and rooted binary trees

Number of Taxa Number of Unrooted Trees Number of Rooted Trees

10 2.0e + 06 3.4e + 07
20 2.2e + 20 8.2e + 21
30 8.6e + 36 4.9e + 38
40 1.3e + 55 1.0e + 57
50 2.8e + 74 2.7e + 76
80 2.1e + 137 3.4e + 139
n

∏n
i=3(2i − 5)

∏n
i=2(2i − 3)

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

26.3 METHODS 583

Local search (LS) uses iterative improvements to seek for solutions of better qual-
ity [25]. A LS algorithm consists of four essentials parts:

� A search space S comprising a set of candidate solutions
� An evaluation function f (s) of a solution s ∈ S, also called fitness function to

assess the quality of a solution
� A neighborhood function N (s) ⊂ S to define for each solution a subset of so-

lutions that can be obtained by slightly modifying the current solution
� A transition strategy to accept or reject a neighboring solution

Typically, a LS algorithm (see algorithm 26.1) starts from an initial solution s
and then iteratively replaces the current solution by a neighbor s′ ∈ N (s) of better
quality until no improving neighbor can be found. This process sometimes is called
a replication in the MP literature and a descent for the optimization community. The
replacement of the current solution favors neighbors of better quality with the intent
to improve progressively the quality of the solution.

Algorithm 26.1
descent (S, f, N)

s := choose or generate an initial solution ∈ S
for a given number of iterations i do
find s′ ∈ N (s) such that f (s′) < f (s) or return s
s := s′
end for
return s

In the case of MP, the search space is the set of all possible binary (rooted or
unrooted) trees, and the fitness function is the parsimony score of a tree. The search
for the most parsimonious tree is then a minimization problem. A solution s1 is better
than s2 if f (s1) < f (s2), and the solution s2 is said to be of lower quality than s1.

26.3.3.1 Generation of the Initial Solution. We can generate an initial so-
lution by two means. We either can generate a solution by randomly selecting taxa
that are put on any branch of the generated tree or use an approximate method called
stepwise addition. The stepwise addition, also known as Wagner trees, is close to
the B&B algorithm but only keeps track of one most parsimonious tree. Each new
taxon is inserted on all possible branches but only the tree that gives the best score
is retained. The order in which the taxa are added successively plays an important
role and the method generally will produce suboptimal trees. Trees obtained by B&B
generally provide final solutions of better quality than trees generated through a ran-
dom process.

26.3.3.2 The Local Optimum Problem. The main drawback of LS is that it
often can get stuck in a local optimum, namely, a solution that is not the optimal so-
lution s� but that is locally better than its neighbors. More formally, a local optimum
s� is such that ∀s′ ∈ N (s�), f (s�) ≤ f (s ′) and f (s�) > f (s�).

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

584 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

To escape from a local optimum, several techniques have been designed. Some
techniques allow the selection of neighbors of same or lower quality than the cur-
rent solution, whereas others modify the evaluation function or perturb the current
solution. For example:

1. The side-walk descent allows us to choose improving or equivalent neighbors
during a certain number of iterations contrary to a pure descent algorithm,
which only accepts strictly improving neighbors; this less restrictive condition
allows escape from a local optimum and provides more randomness to the
process.

2. The random walk is a similar process that offers the possibility to accept dete-
riorating neighbors (i.e., of lower quality) with a given probability.

3. The well-known simulated annealing method (see section 26.3.3.4) is a spe-
cific random walk with a nonconstant probability to accept neighbors of lower
quality depending on the importance of the deterioration as well as the progress
of the search.

The noising techniques can modify either the current solution or the fitness func-
tion for a given number of iterations. The modification of the current solution is
known as the iterated local search (ILS) [29], whereas the modification of the fitness
function applied to MP is known as the parsimony ratchet [36, 26]. When a local
optimum s� is reached, the ratchet noises the evaluation function; the weights of a
proportion of the characters (10–15%) can be increased or some characters can be
eliminated. A second descent is performed from s� using the noising evaluation func-
tion f ′. Actually, s� is generally not a local optimum in (S, f ′), so the configuration
is improved in this new search space (but deteriorated if we consider the initial fitness
function). The solution s ′ obtained from a descent using f ′ is the starting point of a
new LS process with the use of the initial score function f . This process is repeated
during a fixed number of iterations.

26.3.3.3 Neighborhoods. For the MP problem different neighborhoods have
been conceived that are identified under the term branch-swapping. They greatly
influence the search for the best solution and are briefly recalled here.

26.3.3.3.1 Traditional Neighborhoods. Three complementary neighborhoods
are traditionally used in phylogenetic reconstruction—NNI, SPR, and TBR (see Fig-
ure 26.3). Depending on the context and the community, these acronyms denominate
either the local search algorithm that uses the related neighborhood or only the neigh-
borhood function.

� NNI [46] consists in swapping two subtrees that are separated by a branch.
This is a small neighborhood because each tree of n leaves has (2n − 6)
NNI neighbors [42] (n − 3 internal branches and two possible swaps for each
branch). An extension to NNI has been proposed by [13, 14] into a parametric

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

26.3 METHODS 585

A

D C

B A B

C D

A

B

D

C

E

D

F

G

D E

F

GAB

C

B

C

A

NNI

TBR

SPR

tree
clipped

re–root
insert

insert
root

D E

F

GAB

C

B

C

A

E

D

F

G

Figure 26.3 Traditional neighborhoods for NNI, SPR, TBR.

neighborhood p-ECR (Edge-Contaction-and-Refinements), which shuffles p
adjacent branches. In particular, 1-ECR is equivalent to NNI.

� A subtree pruning regrafting (SPR) move [45] cuts a branch and creates two
separate trees: the clipped tree and the residual tree. The clipped tree then can
be regrafted on each branch of the residual tree to obtain a new topology. We
can generate 2 × (n − 3) × (2n − 7) SPR rearrangements [1]. A particular case
of SPR that moves only one leave in the tree is called STEP (Single Step).

� TBR (Tree Bisection Reconnection) [45] is a larger neighborhood that breaks
the tree into two subtrees and reconnects the rerooted clipped tree to any branch
of the residual tree. The number of TBR neighbors depends on the tree topol-
ogy, but it is at least equal to (2n − 3) × (n − 3)2.

An important property is that these three neighborhoods are related: NNI ⊆ SPR
⊆ TBR, and have three distinct levels of complexity, respectively: O(n), O(n2), and
O(n3). At least one of these neighborhoods is used in every phylogenetic reconstruc-
tion software based on branch swapping.

The complexity of the LS algorithm thus mainly depends on the complexity of the
neighborhood. For example, LS + SPR has a worst complexity of O(i × n3 × m):
The complexity of the construction of a tree is O(n × m), and the complexity of SPR
is O(n2). Finally, i is the number of iterations of the LS algorithm.

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

586 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

26.3.3.3.2 Variable Neighborhoods. A neighborhood affects two main factors
of an LS algorithm: the quality of the solutions found and the computation time. A
small complexity neighborhood like NNI enables performing a quick search and is
time scalable with the size of instances. When the number of taxa is increased, the
size of the search space only grows linearly. The main drawback is that the current
solution does not undergo enough modifications, and there is a high probability of
observing a premature convergence to a local optimum of poor quality. For a large-
size neighborhood like TBR, the number of neighbors to evaluate makes the search
more computationally intensive, but the improvements can be important. It follows
that SPR, as a medium-size neighborhood, often is used by descent algorithms as it
permits obtaining solutions of better quality than NNI with less computation time
than TBR.

Based on the observation that the size of a neighborhood influences the search,
[32] has introduced the notion of Variable Neighborhood Search (VNS). The princi-
ple of the VNS metaheuristics is to use successively different neighborhoods during
a descent by starting from a small-size neighborhood until the search is stuck in a
local optimum; then one uses a neighborhood of larger size to allow important mod-
ifications of the current solution.

For example, an application of VNS to MP was proposed by Ribeiro and Vianna
[40] with the use of two neighborhoods: SPR and 2-SPR (where l-SPR is the com-
position of l SPR transformations). The algorithm starts with a SPR descent and
switches to 2-SPR when a local optimum is found. They obtained good results de-
spite an important computation time. In practice, l does not exceed 2 because the
l-SPR neighborhood with a size of O(n2l

) rapidly becomes too large.

26.3.3.3.3 Progressive Neighborhood. Based on the observation that important
topological modifications of the tree only are performed at the beginning of the de-
scent, the authors of [19] have proposed a progressive neighborhood (PN), which
contrary to VNS, starts with a medium size neighborhood (SPR) and is reduced it-
eratively to NNI. Results show that PN needs a smaller number of iterations than
traditional SPR searches to obtain solutions of the same quality by limiting the eval-
uation of nonpertinent configurations. Recently, PN has been used by [37] to find
consensus trees of high quality.

To make the neighborhood evolve, a topological distance on trees is defined in
[19] that enables to building a distance matrix for a set of taxa given a tree topology.
This distance also is used to control the size of the neighborhood (i.e., the distance
between a pruned edge and its inserted edge is at most equal to a given limit).

Definitio 26.3 (Topological distance) Let i and j be two taxa of a tree T . The
topological distance δT (i, j) between i and j is defined as the number of edges of the
path between parents of i and j , minus one if the path contains the root of the tree.

For example, on Figure 26.4, A and B have the same parent f , so δT (A, B) = 0,
and δT (A, D) = 3 because the number of edges between f and g is 4 (f ↔ k ↔

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

26.3 METHODS 587

B
C
D
E
F

A B C D E
0
1 1
3 3 2
3 3 2 0
2 2 1 1 1

δT

A B

f

k

Tree T

D E

F

j
h

g
C

Distance

Figure 26.4 Example of topological distance δT.

j ↔ h ↔ g), and as we pass through the root node k, we decrease the value by one
unit. Note that for the topological distance, we consider trees as unrooted, which
is why we remove one unit when passing through the root node. The progressive
neighborhood based on the topological distance was implemented in the software
Hydra [19]. The process used in Hydra to reduce the size of the neighborhood takes
into account a parameter M , which corresponds to a maximum number of LS iter-
ations. A parameter d is introduced to control the size of the neighborhood and is
defined as the maximal distance between a pruned edge and the edge where it is
reinserted (i.e., distance δ between their two descendant nodes). As such, changing d
leads to neighborhoods of different sizes that are explored with a descent algorithm.

26.3.3.4 Other LS Algorithms. Several other LS algorithms can be used to
solve the MP problem. Among them, we can distinguish the following:

Tabu search (TS) [17] is a kind of descent-ascendant method for which a neighbor
can be chosen to replace the current solution even if it does not improve the fitness
function. To avoid the problem of possible cycling and to allow the search to over-
come the local optimum problem, TS introduces the notion of Tabu list—a short-term
memory that maintains a selective history of previously encountered solutions. The
size of the Tabu list t t , called Tabu tenure, prevents a solution to be reconsidered for
the next t t iterations. Yu-Min et al. [48] have applied TS to solve MP.

Simulated annealing (SA) [5, 27], like TS, accepts suboptimal solutions but with
a certain probability. The principle of SA is inspired from annealing in metallurgy—
a technique that involves heating and controlled cooling of a material to increase the
size of its crystals and reduce their defects. By analogy with this physical process,
at each iteration, the current solution is replaced by a random neighbor chosen with
a probability that depends on the difference between the fitness function value and a
global parameter T (called the temperature). The temperature is decreased gradually
during the process such that the current solution changes almost randomly at the
beginning of the search, and only improving solutions are accepted toward the end
of the search. The software LVB [4] is an application of SA to MP.

The metaheuristic greedy randomized adaptive search procedure (GRASP)
[10, 38] can be considered a hybridization between a greedy construction method
(here stepwise addition) and an LS mechanism. At every p iteration, GRASP re-
considers previous choices by improving the current (and incomplete) tree by local

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

588 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

search. If p = 1, then an LS operation follows each taxon insertion. Generally, these
LS stages are relatively short, and a complete LS is done at the end of the proce-
dure (when all taxa are inserted). Moreover, LS stages allow consideration of more
randomness in the greedy part. Ribeiro and Vianna have applied a GRASP+VNS
heuristic and obtained results of good quality on a set of benchmarks [2, 40].

26.3.4 Evolutionary Metaheuristics and Genetic Algorithms

Evolutionary algorithms (EA) [24, 31] represent another family of metaheuristics.
Among them, genetic algorithms (GA) are based on a population of constant size
of candidate solutions that undergo an evolution process with the use of operators
named crossover, mutation, and selection. The aim of the population is to explore
different interesting areas of the search space to diversify the search. The crossover
operator aims to create new candidate solutions (offspring) by combining two or
more solutions (parents). The mutation operator locally alters offspring by introduc-
ing randomness and consequently favoring diversity. Finally, the selection operator
determines, which offspring will survive and reproduce. Different selection strategies
exist like the roulette-wheel selection [3] or the tournament selection [20] for which
the best individual is chosen after randomly picking n individuals. If an offspring
survives, then it replaces one of the individuals of the population.

Algorithm 26.2
Genetic-Algorithm (S, f, N , x)

P := { choose or generate n individuals ∈ S }
for a given number of crossovers x do

p, q := select-parents(P)
r := crossover(p, q) // r is the offspring of p and q
mutation(r)
if selection(r) then
replace(P, r)

end if
end for

26.3.4.1 GA Related Problems. It is now widely acknowledged that genetic
operators like crossover and mutation should be tailored to the target problem to
integrate problem-specific constraints and thus improve the search.

The literature describes several evolutionary algorithms for phylogenetic recon-
struction: for instance [28, 30], for the maximum likelihood problem [6, 7, 33, 39]
for the MP problem, and [8] for distance-based phylogenetic approaches. Note that
conventional subtree crossover operators used in tree-based genetic programming are
not directly applicable here.

Most of these tree crossover operators follow the subtree cutting and regrafting
strategy. More precisely, given two parents, a subtree first is selected from one parent
(the donor). Then the leaves of this subtree are deleted from the other parent (the
receiver), leading to an intermediate tree. The final child tree is obtained by regrafting
the subtree from the donor on a merge point of the intermediate tree. Obviously,

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

26.3 METHODS 589

A B C D E F A C B D E F

B D A C E F

donorreceiver

B D E F

child

1. cut

2. remove leaves A, C
3. regraft

Figure 26.5 Cut and regraft example.

exchanging the donor and receiver allows for obtaining a second child. Figure 26.5
shows an example with six taxa, where the subtree (A, C) is removed from the donor
and reinserted in the receiver.

One can observe that with such a crossover strategy, only partial information is
transmitted from the parents to the offspring. In the example given in Figure 26.5,
a subtree with two leaves (out of six) of the donor tree is passed on to the child. In
one sense, only a small portion of information of the donor is transmitted, whereas
a larger portion of information related to the four other taxa of the donor tree is
lost during the crossover operation. To ensure a global combination and transmis-
sion of information during crossover operations, [18] introduces a specific operator
based on the notion of topological distance between two leaves. The two parents are
transformed into distance matrices, which are combined by using arithmetic oper-
ators to obtain an offspring matrix. From the offspring matrix, a tree is generated
using a distance method (e.g., unweighted pair group method with arithmetic mean
[UPGMA] or neighbor joining [NJ]). This operator named distance-based informa-
tion preservation crossover (DiBIP) will be described in the next section.

Tree-fusing [22] is another example of a crossover operator. Given two parent
trees, this technique selects an improving tree among the population of valid trees
constituted by exchanging subtrees between the parents.

Another crucial point to keep in mind is the importance of the diversification of the
population. If the individuals are too close, then the search only will focus on one area
of the search space. Generally, solutions of optimization problems are represented as
vectors of values, but in the case of MP, the solutions are trees; although it is easy to
compare vectors, it is less obvious to compare trees.

26.3.4.2 Distance-Based Information Preservation Crossover. DiBIP
crossover is based on the notion of topological distance (see Definition 26.3) and
aims to preserves common properties of parents in terms of topological distance

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

590 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

between taxa. By common, we mean that two taxa that are close (respectively, far)
in both parents should stay close (respectively, far) in the child.

The general approach (see Algorithm 26.3) can be summarized as follows: (i)
calculate a distance matrix for each parent tree, (ii) combine the matrices of the
two parents to get a third matrix, and (iii) create a child tree from this new matrix.
T1 and T2 represent the input trees (parents), � is a tree-to-distance operator that al-
lows obtaining a distance matrix from a tree, ⊕ is a matrix operator that allows com-
bining two distance matrices to produce a new distance matrix, and � is a distance-
to-tree operator that constructing a tree given a distance matrix. The three operators
�, ⊕, and � represent the three steps to transform two parent trees into one child
that preserves topological properties shared by both parents.

Algorithm 26.3
function DiBIP(T1, T2, δT , �, ⊕, �)
Di := �(Ti) for (i = 1, 2)
D∗ := D1 ⊕ D2

T ∗ := �(D∗)
return T ∗

This general scheme results in several comments; first, the distance measure ide-
ally should be correlated to the evolutionary changes between taxa. For instance, two
taxa separated by few evolutionary changes should have a smaller distance than two
taxa separated by many changes. For example, the Hamming distance is not appro-
priate here because this metric is totally independent of tree topologies.

Second, to preserve common properties of the parents during the crossover oper-
ation, a valid matrix operator ⊕ should meet some specific requirements meaningful
to the MP problem to help transmit properties shared by both parents to the child. For
instance, if a pair of taxa (A, B) is closer than another pair (C, D) in both parents,
then this property should be conserved by the crossover process and be transmitted
to the resulting child. The arithmetic mean is a simple valid operator, even if it is
possible to favor closeness or distant relations with the parametric operator given
by (D1 ⊕ D2)(i, j) = α. min{D1(i, j), D2(i, j)} + (1 − α). max{D1(i, j), D2(i, j)},
with α ∈ [0, 1].

Although the resulting distance matrix consists of topological distances and not
evolutionary ones, a simple clustering algorithm like UPGMA is well-adapted to
provide a child tree. It ensures aggregating taxa that are close in parents (depending
on the selected ⊕ operator instantiation).

To illustrate this technique, we provide an example with two parents (see Fig-
ure 26.6) for which we compute topological matrices D1 and D2 (see Figure 26.7).
For simplicity’s sake, we use the addition operator to combine the two parent matri-
ces into the child matrix D∗ (see Figure 26.8).

26.3.5 Memetic Methods

A memetic or hybrid algorithm (MA) is the combination of a GA helped by an LS
improver [34]. Each time a new individual is generated by the GA, it is submitted

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

26.3 METHODS 591

Parent 1 : T1 Parent 2 : T2
D

I

A

K

J

B

L

N

G

C

M

F

E

H

M

B

F

L

J

K

A

E

D

H

C

G

I

N

Figure 26.6 Example of input trees T1 and T2 for the DiBIP crossover.

D1 A B C D E F G H I J K L M N

A - B
B 6 - C
C 5 3 - D
D 1 5 4 - E
E 5 5 4 4 - F
F 5 5 4 4 2 - G
G 5 3 0 4 4 4 - H
H 5 5 4 4 0 2 4 - I
I 0 6 5 1 5 5 5 5 - J
J 5 1 2 4 4 4 2 4 5 - K
K 2 4 3 1 3 3 3 3 2 3 - L
L 7 1 4 6 6 6 4 6 7 2 5 - M
M 5 5 4 4 2 0 4 2 5 4 3 6 - N
N 7 1 4 6 6 6 4 6 7 2 5 0 6 -

D2 A B C D E F G H I J K L M N

A - B
B 8 - C
C 4 6 - D
D 1 7 3 - E
E 0 8 4 1 - F
F 9 1 7 8 9 - G
G 4 6 0 3 4 7 - H
H 2 6 2 1 2 7 2 - I
I 6 4 4 5 6 5 4 4 - J
J 7 1 5 6 7 2 5 5 3 - K
K 4 4 2 3 4 5 2 2 2 3 - L
L 9 1 7 8 9 0 7 7 5 2 5 - M
M 6 2 4 5 6 3 4 4 2 1 2 3 - N
N 6 4 4 5 6 5 4 4 0 3 2 5 2 -

Figure 26.7 Topological distance matrices of T1 and T2.

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

592 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

D∗ = D1 + D2

A B C D E F G H I J K L M N

A - B
B 14 - C
C 9 9 - D
D 2 12 7 - E
E 5 13 8 5 - F
F 14 6 11 12 11 - G
G 9 9 0 7 8 11 - H
H 7 11 6 5 2 9 6 - I
I 6 10 9 6 11 10 9 9 - J
J 12 2 7 10 11 6 7 9 8 - K
K 6 8 5 4 7 8 5 5 4 6 - L
L 16 2 11 14 15 6 11 13 12 4 10 - M
M 11 7 8 9 8 3 8 6 7 5 5 9 - N
N 13 5 8 11 12 11 8 10 7 5 7 5 8 -

Child : T ∗ = Λ(D∗)
M

F

B

L

J

N

H

E

D

A

K

I

C

G

Figure 26.8 Topological distance matrix of child and tree that results from UPGMA for the
DiBIP crossover.

to an LS improvement. In Algorithm 26.2, the mutation then is followed by a de-
scent that starts with r . MA alternates intensification (local search) and diversifica-
tion (crossover) stages. Despite the fact that MA are more computationally intensive,
they tend to provide solutions of better quality than GA. For example, Hydra [19] is
an implementation of an MA.

26.3.6 Problem-Specific Improvements

Different techniques that are specific to MP have been developed to improve the
search or decrease the computation time needed to obtain a tree of minimum score.

26.3.6.1 Divide and Conquer Methods. For example, sectorial search (SS)
[22] is a special kind of tree rearrangement that focuses on sectors (subtrees) of a

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

26.3 METHODS 593

tree. SS is based on the divide and conquer principle in which subtrees can be an-
alyzed more quickly than the overall tree. Sectors are analyzed separately, and if
a better configuration is found, then it will replace the previous one. Three differ-
ent kinds of SS have been defined in [22]: random for which sectors are selected
randomly, consensus-based, and mixed. Experiments show that a sector should have
between 35 and 55 nodes to obtain significant improvements. Another family of
divide-and-conquer methods are the disc-covering methods (DCM) [35, 44]: DCM1
can be considered an attempt to produce overlapping clusters to minimize the intra-
cluster diameter and produce good subproblems. Nevertheless, the structure induced
by the decomposition is often poor. DCM2 improves DCM1, but the subproblems
obtained tend to be too large. Finally, DCM3 uses a dynamically updated guide tree
to direct the decomposition. It then enables focusing the search on the best parts of
the search space.

26.3.6.2 Multi-Character Optimization. The most time-consuming function
in a search algorithm is the function of Fitch (see Algorithm 26.4). This function
takes as input two taxa t1 and t2. The output is the hypothetical taxon t3 and the
number of changes observed that contributes to the parsimony score. Remember that
the sum of all changes of the overall tree constitutes the parsimony score.

We can implement this function by taking full advantage of some relevant fea-
tures offered by modern ×86 processors. More precisely, the core of modern ×86
processors has a SSE (single instruction multiple data [SIMD] streaming extension)
unit that enables vectorizing the code. The vectorization of the code means applying
the same operation on different data at the same time. Intel and AMD processors
offer a set of 8 SSE registers of 128 bits long on a 32-bit architecture. If we repre-
sent a nucleotide with one byte, then a SSE register can store and handle 16 bytes
(nucleotides) at a time.

To perform efficiently the union and intersection of Algorithm 26.4, each char-
acter is represented by a power of two, from 20 = 1 (–) to 24 = 16 (T), except
for ?, which can represent any other character, and then is coded by the value
31 = 1 + 2 + · · · + 16. The union can be performed by the binary-OR (|) and the in-
tersection by the binary-AND (&). The vectorization of Fitch’s function gives a 90%
improvement on Intel Core 2 Duo processors, whereas other architectures (Pentium
II/III/4, Pentium-M, Athlon 64, and Sempron) provide 70–80% improvement. This
improvement then enables dividing the overall computation time of a program by a
factor of three to four. A first pseudocode was given in [43] for PowerPC processors
and recently [41] was released the code for Intel and AMD processors. Finally, note
that the most recent processors (Intel Core i5 or i7 and AMD Phenom) introduce
the SSE4.2 instruction set that contains the POPCNT (POPulation CouNT) instruc-
tion, which counts the number of bits set to one in a general purpose register. This
instruction is used essentially to determine the number of changes that occur when
one performs the union between x[i:i+15] and y[i:i+15]. By replacing the im-
plementation of POPCNT by the native SSE4.2 instruction, the experiments we have
carried out show an overall improvement of 95% (on an Intel Core i7 860 processor)
compared with the basic implementation.

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

594 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

Algorithm 26.4
function fitch(v, x, y : array[1..m] of character) : integer

changes := 0
for i := 1 to m do
v[i] := x[i] ∩ y[i] // Lv = Lx ∩ L y

if (v[i] == 0) then
v[i] := x[i] ∪ y[i] // Lv = Lx ∪ L y

changes := changes + 1
end if

end for
return changes

26.3.6.3 Fast Character Optimization Techniques. A set of methods [21,
16, 43, 47] fall into the category of fast character optimization techniques (i.e., a
set of shortcuts that helps decrease the computation time by not recalculating the
whole tree each time a SPR or TBR modification is applied). Those techniques are
particularly effective when an important number of SPR or TBR neighbors has to be
evaluated. For Fitch’s parsimony, characters are considered as unordered and multi-
state; they can transform from one state to another independently. As a consequence,
an unrooted tree may be rooted on any branch with no modification of the parsimony
score, which means there is a potential root node for any branch.

In [21], Goloboff proposed a method for the indirect calculation of the parsimony
score which uses two passes. This method needs only to compare the root of the
clipped tree with the potential root of the target tree to obtain the score of a potential
new tree for a SPR search. Gladstein [16] also proposed an algorithm that is exact
and correct. In [47], a two-pass algorithm is described that has the same complexity
of Goloboff’s and is faster than the incremental method of Gladstein.

26.4 CONCLUSION

Because of its inherent complex structure, the resolution of the large maximum par-
simony problem can be achieved efficiently by means of optimization techniques.

Table 26.2 gives an overview of the complexity of the different methods described
throughout this chapter, where n represents the number of taxa and m represents the
number of sites of each taxa. For local search, i represents the number of iterations
of the search. For genetic algorithms, p is the size of the population, X is the num-
ber of crossovers and cross, mut, sel are the complexity of the crossover, mutation,
and selection operations, respectively. The last term LS is the complexity of the LS
method used to improve a solution.

Local search methods are the standard resolvers for the maximum parsimony
problem and are used widely. Genetic algorithms can obtain results of better qual-
ity than LS only if the crossover, mutation, and selection operators are tailored to the
problem. Finally, memetic algorithms, as a combination of GA and LS, are the meth-
ods that can achieve results of very good quality, but they are often more time con-
suming compared to an LS. A lot of other techniques, like the ratcheting technique

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

REFERENCES 595

Table 26.2 Complexity of methods

Method Complexity

Exhaustive O(nn × m)
Branch and bound O(nn × m)
Stepwise O(n3 × m) or O(n4 × m)
LS+NNI O(i × n2 × m)
LS+SPR O(i × n3 × m)
LS+TBR O(i × n4 × m)
GA O(p × n × m) + X × (cross + mut + sel)
MA O(p × n × m) + X × (cross + mut + sel + LS)

or sectorial search, are also very useful to escape from local optimum or to improve
the overall tree locally.

New tools like the topological distance and the DiBiP crossover show that new
approaches can help design clever techniques to help solve the MP problem more
effectively and to reach solutions of higher quality.

REFERENCES

1. B.L. Allen and M. Steel. Subtree transfer operations and their induced metrics on evolu-
tionary trees. Ann Combinator, 5(1):1–15, 2001.

2. A.A. Andreatta and C.C. Ribeiro. Heuristics for the phylogeny problem. JHEU, 8:429–
447, 2002.

3. J.E. Baker. Reducing bias and inefficiency in the selection algorithm. Proceedings of the
Second International Conference on Genetic Algorithms and their Application (ICGA2),
1987, pp. 14–21.

4. D. Barker. Parsimony and simulated annealing in the search for phylogenetic trees. Bioin-
formatics, 20:274–275, 2004.

5. V. Cerny. A thermodynamical approach to the travelling salesman problem: An efficient
simulation algorithm. J Optim Theory Appl, 45:41–51, 1985.

6. C.B. Congdon. Gaphyl: An evolutionary algorithms approach for the study of natural
evolution. Proceedings of the 6th Joint Conference on Information Science, 2002.

7. C.B. Congdon and K.J. Septor. Phylogenetic trees using evolutionary search: Initial
progress in extending gaphyl to work with genetic data. Proceedings of the 2003 Congress
on Evolutionary Computation, 2003, pp. 320–326.

8. C. Cotta and P. Moscato. Inferring phylogenetic trees using evolutionary algorithms. Lect
Notes Comput Sci, 2439:720–729, 2002.

9. J. Felsenstein. Inferring Phylogenies. Sinauer Associates, 2003.

10. T.A. Feo and M.G.C. Resende. Greedy randomized adaptative search procedures. J
Global Optim, 6:109–133, 1995.

11. W. Fitch. Towards defining course of evolution: Minimum change for a specified tree
topology. Syst Zool, 20:406–416, 1971.

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

596 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MP

12. L.R. Foulds and R.L. Graham. The steiner problem in phylogeny is np-complete. Adv
Appl Math, 3:43–49, 1982.

13. V. Ramachandran, G. Ganapathy, and T. Warnow. Better hill-climbing searches for parsi-
mony. Proceedings of the Third International Workshop on Algorithms in Bioinformatics
(WABI), 2003, pp. 245–258.

14. V. Ramachandran, G. Ganapathy, and T. Warnow. On contract-and-refine transformations
between phylogenetic trees. SODA, 2004, pp. 900–909.

15. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, 1979.

16. D.S. Gladstein. Efficient character optimization. Cladistics, 13:21–26, 1997.

17. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston, MA, 1997.

18. A. Goëffon, J.-M. Richer, and J.K. Hao. A distance-based information preservation tree
crossover for the maximum parsimony problem. Lect Notes Comput Sci, 4193:761–770,
2006.

19. A. Goëffon, J.-M. Richer, and J.K. Hao. Progressive tree neighborhood applied to the
maximum parsimony problem. IEEE/ACM Trans Comput Biol Bioinform, 5(1):136–145,
2008.

20. D.E. Goldberg and K. Deb. A Comparative Analysis of Selection Schemes Used in Genetic
Algorithms. Morgan Kaufmann, New York, 1991, pp. 69–93.

21. P.A. Goloboff. Character optimization and calculation of tree lengths. Cladistics, 9:433–
436, 1993.

22. P.A. Goloboff. Analyzing large data sets in reasonable times: Solutions for composite
optima. Cladistics, 15:415–428, 1999.

23. M.D. Hendy and D. Penny. Branch and bound algorithms to determine minimal evolu-
tionary trees. Math Biosci, 59:277–290, 1982.

24. J.H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor, 1975.

25. H.H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, New York, 2004.

26. I. Horovitz. A report on one day symposium on numerical cladistics. Cladistics, 15:177–
182, 1999.

27. S. Kirkpatrick, C. Gellat, and M. Vecchi. Optimization by simulated annealing. Science,
220:671–680, 1983.

28. P.O. Lewis. A genetic algorithm for maximum-likelihood phylogeny inference using nu-
cleotide sequence data. Mol Biol Evol, 15(3):277–283, 1998.

29. H.R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In: F. Glover and G.
Kochenberger (Eds). Handbook of Metaheuristics. Kluwer Academic, Boston, MA, 2002.

30. H. Matsuda. Protein phylogenetic inference using maximum likelihood with a genetic
algorithm. Pacific Symposium on Biocomputing, 1996, pp. 512–536.

31. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1998.

32. N. Mladenović and N.P. Hansen. Variable neighborhood search. Comput Oper Res,
24:1097–1100, 1997.

33. A. Moilanen. Searching for most parsimonious trees with simulated evolutionary opti-
mization. Cladistics, 15(3):39–50, 1998.

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

REFERENCES 597

34. P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and
F. Glover, editors, New Ideas in Optimization, McGraw-Hill, Maidenhead, Berkshire,
England, UK, 1999, 219–234.

35. L. Nakhleh, U. Roshan, K. St John, J. Sun, and T. Warnow. Designing fast converging
phylogenetic methods. Bioinformatics Suppl, 17:190–198, 2001.

36. K.C. Nixon. The parsimony ratchet, a new method for rapid parsimony analysis. Cladis-
tics, 15:407–414, 1999.

37. S. Pirkwieser and G.R. Raidl. Finding consensus trees by evolutionary, variable neighbor-
hood search, and hybrid algorithms. Proceedings of Generic and Evolutionary Computa-
tion Conference (GECCO’08), 2008.

38. M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptative search procedures. In
F. Glover and G. Kochenberger editors, Handbook of Metaheuristics. Kluwer Academic,
Boston, MA, 2003.

39. C.C. Ribeiro and D.S. Vianna. A genetic algorithm for the phylogeny problem using an
optimized crossover strategy based on path-relinking. Proceedings of 2nd Bresil Work-
shop on Bioinformatics, 2003, pp. 97–102.

40. C.C. Ribeiro and D.S. Vianna. A grasp/vnd heuristic for the phylogeny problem using a
new neighborhood structure. Int Trans Oper Res, 12:1–14, 2005.

41. J.-M. Richer. Three new techniques to improve phylogenetic reconstruction with maxi-
mum parsimony. Technical Report, LERIA, 2008.

42. D.F. Robinson. Comparison of labeled trees with valency three. J Combin Theor, 11:105–
119, 1971.

43. F. Ronquist. Fast fitch-parsimony algorithms for large data sets. Cladistics, 14:387–400,
2000.

44. U. Roshan, B.M.E. Moret, T.L. Williams, and T. Warnow. Rec-i-dcm3: A fast algorithmic
technique for reconstructing large phylogenetic trees. Proceedins of IEEE Computational
Systems Bioinformatics Conference (CSB 04), 2004, pp. 98–109.

45. D.L. Swofford and G.J. Olsen. Phylogeny reconstruction. In: D. M. Hillis and G. Moritz
(eds). Molecular Systematics, Sinauer Associates, 1990, 411–501.

46. M.S. Waterman and T.F. Smith. On the similarity of dendograms. J Theor Biol, 73:789–
800, 1978.

47. M. Yan and D.A. Bader. Fast character optimization in parsimony phylogeny reconstruc-
tion. Technical Report TR-CS-2003-53, University of New Mexico, Albuquerque, NM,
2003.

48. L. Yu-Min, F. Shu-Cherng, and T.L. Jeffrey. A tabu search algorithm for maximum parsi-
mony phylogeny inference. Eur J Oper Res, 176(3):1908–1917, 2007.

P1: OSO
c26 JWBS046-Elloumi December 2, 2010 9:50 Printer Name: Sheridan

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27
MAXIMUM ENTROPY

METHOD FOR
COMPOSITION

VECTOR METHOD

Raymond H.-F. Chan, Roger W. Wang, and Jeff C.-F. Wong

27.1 INTRODUCTION

In the past few decades, a large volume of molecular sequences has been collected,
from which the evolution and traits of the related living organisms are investigated.
These sequences all look simple; for instance, the DNA sequence, no matter how
long it is, contains only four different nucleotides A, C, G, and T, so it is not surpris-
ing that on the surface, these sequences themselves cannot tell us much. To reveal
the hidden information, the use of the so-called sequence comparison is an essen-
tial tool. Sequence comparison methods can be divided into two main categories:
alignment-based [15, 17, 36, 37, 42, 50] and alignment-free [25, 28, 40, 43, 52].

The alignment-based methods use the dynamic programming (DP) method to
“align” the sequences and then find the similarity and dissimilarity after the align-
ment. To compare two sequences of length n by any alignment-based method, both
the computational cost and the memory requirement are O(n2) [54]. Because of the
accuracy of the DP method, the alignment-based methods are used widely for ana-
lyzing gene sequences. However, different gene sequences may give different evo-
lutionary results. For instance, based on the 16rRNA sequences, birds, which more
closely are related to crocodilians, were grouped with mammals [56]. In addition,

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

599

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

600 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

based on the gene sequences for MHG-CoA reductase, Archaeoglobus fulgidus—a
definite archaean—was assigned into the bacteria group [14]. Today, with the advent
of sequence techniques, whole genome sequences generally have been accepted as
excellent tools for the study of species differences and of evolution [16]. However,
aligning the whole genomes is a very challenging problem because every species
has its own gene content and gene order, and we do not know which two genes can
be truly aligned. Furthermore, as the length of the genome sequences are usually
very long, it is impossible to align the genome sequences because of the cost of the
computational time and the memory requirement.

The alignment-free methods, in turn, are developed for overcoming the difficulty
of the analysis of the whole genome phylogeny. They can be divided into three
classes:

� The gene content method [43]
� The Data compression method [24]
� The composition vector (CV) method [25, 40]

For the gene content method, the distance between two species is defined by their
number of common genes divided by the total number of genes in the genome se-
quences. The data compression method uses the distance between the compressed
information from the genome sequences as the distance between the species. For the
CV method, the composition vector first is constructed for each species based on its
whole genome sequence, and the distance between the composition vectors is used
as the distance between species. In this chapter, we only will shed some light on the
CV method.

The CV method was proposed by Hao et al. [25] for the phylogeny of bacteria, and
it was very successful. The CV method generally consists of four steps as follows:

1. Construct the frequency vectors — Different methods for constructing the fre-
quency vectors are discussed based on the different types of biological se-
quences that are input.

2. Construct the composition vectors — The composition vectors are constructed
with each entry being the signal-to-noise ratio. Several kinds of models are
introduced for estimating the noise.

3. Compute the distance between composition vectors — Several distance mea-
sures are introduced and analyzed.

4. Build the phylogenetic trees — We use the neighbor-joining method to draw
the phylogenetic trees.

As we will see below, there is a link between the maximum entropy optimiza-
tion and some existing denoising formulas. Maximum entropy is being used increas-
ingly as a general and powerful technique for making the classification of species
through the biological sequences from noise itself when the data in the signal is ob-
scured by noise and bias (e.g., [26]). Entropy can be justified in information–theoretic

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.2 MODELS AND ENTROPY OPTIMIZATION 601

terms. Not only will we present some denoising formulas and suggest which one is
optimal but we also will introduce several models for the CV method and show that
the CV method also can be applied successfully for phylogenetic analysis of tetra-
pod, hepatitis B virus (HBV), mammal, and chorophlast. We even show that the CV
method can provide some reasonable results in which the alignment methods failed
(see Example 1).

This chapter is divided into four sections. Section 27.1 gives the introduction. Sec-
tion 27.2 includes the general formulation of the CV method. Section 27.3 presents
the results using the CV method with different denoising formulas and compares
them with other existing results. Section 27.4 gives the concluding remarks.

27.2 MODELS AND ENTROPY OPTIMIZATION

In Section 27.2.1, a list of formal definitions for the biological terms is introduced.
In Section 27.2.2, two of the most common denoising formulas in literature are
revisited—those advocated by Hao et al.’s formula [25, 40] and Yu et al.’s for-
mula [58]. In particular, under the framework of the constrained optimization prob-
lem with the maximum entropy approach, we provide three new denoising formulas
by means of the CV method (cf. (27.14), (27.16), and (27.17)). Based on the angle-
based distance approach, various types of distance formulas also are introduced in
Section 27.2.3. Phylogenetic tree construction is described in Section 27.2.4.

27.2.1 Definitions

Definitio 27.1 Consider a molecular sequence (DNA/RNA sequence or peptide/
amino acid sequence) of length N. Any consecutive k molecules within the sequence
are called a k-string, where 1 ≤ k ≤ N.

Definitio 27.2 The observed frequency f (α1α2 · · ·αk) of a k-string α1α2 · · ·αk is
defined as

f (α1α2 · · ·αk) = g(α1α2 · · ·αk)

N − k + 1
(27.1)

where g(α1α2 · · · αk) is the number of times that α1α2 · · ·αk appears in the sequence.

Let us define the frequency vector for the gene sequence and genome sequence,
respectively.

Definitio 27.3 For a gene sequence, whether a DNA sequence or a RNA sequence,
there are 4k possible k-strings. A vector is constructed with the frequency defined in
(27.1) for each entry and is called the frequency vector.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

602 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

Consider the following nucleotide sequence that consists of A, C, G, and T
such that

GACTACTACT

Set k = 3 and N − k + 1 = 8. The total number of possible different 3-string se-
quences is then 43, and the frequency vector is given as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (AAA)
f (AAC)

...
f (ACT)

...
f (CTA)

...
f (GAC)

...
f (TAC)

...
f (TTG)
f (TTT)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

43

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
...

3/8
...

2/8
...

1/8
...

2/8
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It is worth mentioning that a window of the length of k-string is used that slides it
through the sequences by shifting one window at a time to look for the frequencies
of each k-string.

There are three kinds of sequences available from the whole genome sequence:

1. The whole DNA sequence — For the whole DNA sequence, the frequency of
appearance of a k-string also is defined in (27.1).

2. The protein-coding DNA sequences

Definitio 27.4 For the protein-coding DNA sequences, the observed fre-
quency of a k-string α1α2 · · ·αk in the whole sequence is defined as [40]

f (α1α2 · · ·αk) =

m∑

j=1
g j (α1α2 · · ·αk)

m∑

j=1
(N j − k + 1)

(27.2)

where m is the number of protein-coding gene sequences from the whole
genome, g j (α1α2 · · ·αk) is the number of times that α1α2 · · ·αk appears in the

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.2 MODELS AND ENTROPY OPTIMIZATION 603

j th DNA sequence, and N j is the length of the j th DNA sequence. A frequency
vector then is constructed with each entry containing all frequencies defined
in (27.2).

3. The amino acid sequences of all protein-coding sequences — For the amino
acid sequences of all protein-coding sequences, the frequency vector can be
constructed similarly, with each entry defined in (27.2). A vector of length 20k

then is constructed.

27.2.1.1 Signal-to-Noise Ratio. It generally is accepted that the phylogenetic
signals in the biological sequence data often are obscured by noise and bias [10]. The
relation between the signal and the noise can be formulated as a single mathematical
formula, referred to as the composition vector. Given M molecular sequences, M
frequency vectors of the same length |�|k were defined earlier, where

|�| =
{

4, if the sequence is the DNA/RNA type
20, if the sequence is the peptide/amino acid type

(27.3)

Definitio 27.5 For each f (α1α2 · · ·αk), the frequency of appearance of the k-
string α1α2 · · · αk defined in (27.1), we will estimate its noise and denote it by
q(α1α2 · · · αk). Then the composition vector of one species is the |�|k-vector, where
each nonzero entry equals

f (α1α2 · · ·αk) − q(α1α2 · · ·αk)

q(α1α2 · · ·αk)

the signal-to-noise ratio of the k-string α1α2 · · ·αk .

27.2.2 Denoising Formulas

Let us review some existing denoising formulas for removing noises in the phyloge-
netic signals.

27.2.2.1 Hao et al.’s Formula. Given any molecular sequence, Hao et al.
[25, 40] employed the following formula:

qHao(α1α2 · · · αk) =
⎧
⎨

⎩

f (α1 · · ·αk−1) f (α2 · · ·αk)

f (α2 · · ·αk−1)
, if f (α2 · · ·αk−1) �= 0

0, otherwise
(27.4)

to estimate the noise of the k-string α1 · · ·αk , where f (u) is the frequency of appear-
ance of any string u in the sequence. To find the noise of the k-string by (27.4), using
the (k − 2)th order Markov assumption (together with the joint and conditional prob-
ability) [34], the appearance frequencies of the (k − 1) string and the (k − 2) string
are established. If the denominator in (27.4) f (α2 · · ·αk−1) is zero, then it means

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

604 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

that the (k − 2) string does not appear in the sequence. Obviously the (k − 1) strings
α1 · · · αk−1 and α2 · · ·αk also will not appear in the sequence, and then

f (α1 · · ·αk−1) = f (α2 · · ·αk) = 0

When this degeneracy case happens, one simply can let

qHao(α1 · · ·αk) = 0

Formula (27.4) is derived from the observed frequency f (·) that represents the
probability. It was Brendel et al. [4] in 1986 who originally introduced (27.4) for
revealing the functional and evolutionary relatedness of word sequence. Hao et al.
[25, 40] used formula (27.4) for the phylogenetic analysis of prokaryotes based on
whole genome sequences.

27.2.2.2 Yu’s Formula. Given any molecular sequence, Yu et al. [58] proposed
the following formula:

qYu(α1α2 · · ·αk) = f (α1) f (α2 · · ·αk) + f (α1 · · ·αk−1) f (αk)

2
(27.5)

to find the noise of the k-string α1α2 · · ·αk , where f (u) is the appearance frequency
of any string u in the sequence. A salient feature of (27.5) is that it takes the av-
erage of the sum of two independent events with respect to f (α1) f (α2 · · ·αk) and
f (α1 · · · αk−1) f (αk).

Formula (27.5) is taken from the observed frequency f (·) that represents the prob-
ability. Application of (27.5) was common in the area of complex and dynamic sys-
tems (e.g., [57]). Yu et al. [58] used formula (27.5) for the phylogenetic analysis of
prokaryotes, chloroplasts, and other phylogenetic problems based on whole genome
sequences.

27.2.2.3 Establishing Denoising Formulas Using the Maximum Entropy
Principle. For the sake of simplicity, we only consider DNA/RNA sequences in our
formulation, but the amino acid sequences can be used in a similar fashion.

Let us consider the following constraints [26]:

{
q(vA) + q(vC) + q(vG) + q(vT) = f (v)

q(Av) + q(Cv) + q(Gv) + q(Tv) = f (v)
(27.6)

where q(·) is the frequency to be maximized from the entropy when the observed
frequency f (v) for all (k − 1) strings v are given. The solution of the optimiza-
tion problem, is (27.4). We assume that the noises of the k-strings are related to
(27.6) (i.e., q(vA) + q(vC) + q(vG) + q(vT) and q(Av) + q(Cv) + q(Gv) + q(Tv)

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.2 MODELS AND ENTROPY OPTIMIZATION 605

are known functions of v), and we assume that the two sums are not identical to
each other because their values can be changed and will lead to different denoising
formulas as we will see later on.

27.2.2.4 Formulation of the Optimization Problem. Let us propose our
noise model as follows: The noise q(·) of the 4k’s k-strings satisfies

{
q(vA) + q(vC) + q(vG) + q(vT) = l(v)

q(Av) + q(Cv) + q(Gv) + q(Tv) = r (v)
(27.7)

where l(v) and r (v) are given nonnegative numbers for each (k − 1) string v, and
the right-hand sides of (27.7) are obtained from the observed frequencies of any
given sequence. Note that in (27.7), depending on the choice of (k − 1) strings, there
are (2 × 4k−1) constraints and 4k unknowns. Thus, when the number of constraints is
fewer than the number of unknowns, the system is underdetermined, and the solution
is not unique.

To obtain the unique q(u), we maximize their entropy. More precisely, let qi ≡
q(ui) be the noise of the k-string ui ; then we obtain qi by solving the following
constrained maximisation problem:

maximize −
4k∑

i=1
qi log qi

subject to

{
qi satisfies (27.7)
qi ≥ 0 for all i

(27.8)

We note that −qi log qi is the entropy of qi .

27.2.2.5 Solution of the Optimization Problem. According to Pevzner [39],
the best k-string for a sequence of length N is log4

[N (N−1)
2

]
. Thus, if N = 1000, then

the best k-string is about 10. Hence the optimization problem (27.8) will have about
1 million unknowns, and it is seemingly difficult to solve such a constraint problem.
However, we have the following useful result.

Lemma 27.1 For k ≥ 2, the problem (27.8) is decoupled into 4k−2 subproblems of
size 8-by-16 each.

Proof:

� Let us first see the structure/pattern of the coefficient matrix in (27.8) when
k = 3. The other choice of k can be used similarly. As shown in Figure 27.1,
the matrix is sparse and binary (containing 0 and 1 only), and the nonzero
entries can be divided into two categories; the nonzero entries located on the

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

606 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

0 10 20 30 40 50 60

0

5

10

15

20

25

30

nz = 128

Figure 27.1 The pattern of the coefficient matrix in (27.8).

“diagonal part” of the matrix form one category, whereas the rest of the nonzero
entries form the other category. To decouple these two categories, one simply
rearranges the order of the equations:

– Put the original odd-order equations first

– Locate the even-order equations later
The pattern of the new coefficient matrix is shown in Figure 27.2.

� In Figure 27.2, there are only four unknown variables q1, q2, q3, and q4 in the
first row, and these four variables also are contained, respectively, in four other

0 10 20 30 40 50 60

0

5

10

15

20

25

30

nz = 128

Figure 27.2 The pattern of the coefficient matrix after the permutation.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.2 MODELS AND ENTROPY OPTIMIZATION 607

rows of the matrix: rows 17–20. After carefully examining these four rows, we
find that the following 16 variables

q16∗(i−1)+ j , ∀ i, j = 1, 2, 3, 4

will not be found anywhere else but totally are contained in the following eight
constraints, given in ascending order:

Constraint : 1, 5, 9, 13, 17, 18, 19, 20

These eight constraints clearly are divorced from other constraints. Moreover,
the 3-strings are contained in these eight constraints if and only if they can be
written in the following form

LAR, ∀ L, R ∈ {A, C, G, T}

Similarly, three groups of eight constraints are formed if and only if we also
have the following cases:

LCR, ∀ L, R ∈ {A, C, G, T}
LGR, ∀ L, R ∈ {A, C, G, T}
LTR, ∀ L, R ∈ {A, C, G, T}

Now we conclude that the original system can be decomposed into four sub-
systems (see Figure 27.3), and the 3-strings are contained in each subsystem if
and only if the 3-strings can be written in any of the four forms.

With this idea, we now consider the general formulation of the equality con-
straints when k ≥ 3. Let us rewrite the k-strings in the left-hand side of (27.7)

0

5

10

15

20

25

30

0 10 20 30
nz = 128

40 50 60

Figure 27.3 The figure for the decoupling of the permuted coefficient matrix.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

608 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

as LwR, where w is a (k − 2) string. By exhausting different combinations of
L and R, we obtain a system of the following constraints for each w:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(AwA) + q(AwC) + q(AwG) + q(AwT) = l(Aw)

q(CwA) + q(CwC) + q(CwG) + q(CwT) = l(Cw)

q(GwA) + q(GwC) + q(GwG) + q(GwT) = l(Gw)

q(TwA) + q(TwC) + q(TwG) + q(TwT) = l(Tw)

q(AwA) + q(CwA) + q(GwA) + q(TwA) = r (wA)

q(AwC) + q(CwC) + q(GwC) + q(TwC) = r (wC)

q(AwG) + q(CwG) + q(GwG) + q(TwG) = r (wG)

q(AwT) + q(CwT) + q(GwT) + q(TwT) = r (wT)

(27.9)

From (27.9), one notices that the right-hand side cannot be set arbitrarily but
must satisfy

l(Aw) + l(Cw) + l(Gw) + l(Tw) =
∑

L ,R∈{A,C,G,T}
q(LwR)

= r (wA) + r (wC) + r (wG) + r (wT)

(27.10)

Inspection of (27.9) also indicated that for each w, a decoupled system is
formed. In fact, for each wi , the unknowns q(Lwi R) for different L and R
only can occur in the constraints (27.9) for that particular wi , and never will
occur in the constraints for w j , j �= i . This is because Li wi Ri never can be
equal to L j w j R j for any possible Li , L j , Ri , and R j . Obviously, the objec-
tive function in (27.8) already is decoupled for each wi , as each term in the
objective function involves only one q(Lwi R). Hence, we observe that the
optimization problem (27.8) can be decoupled into 4k−2 subproblems of
the form (27.9).

Problem (27.8) now can be solved readily. To solve the subproblems, let us rewrite
them as follows:

maximize −
4∑

i, j=1

pi j log pi j

subject to

⎧
⎪⎨

⎪⎩

pi1 + pi2 + pi3 + pi4 = li , i = 1, 2, 3, 4

p1 j + p2 j + p3 j + p4 j = r j , j = 1, 2, 3, 4

pi j ≥ 0, i, j = 1, 2, 3, 4

(27.11)

where pi j are the unknowns q(LwR) to be sought in (27.9).

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.2 MODELS AND ENTROPY OPTIMIZATION 609

Theorem 27.1 [8] The solution to (27.11) is

pi j =
{ li r j

σ
, if σ �= 0

0, if σ = 0
(27.12)

where σ ≡ l1 + l2 + l3 + l4 = r1 + r2 + r3 + r4 (cf. (27.10)).

27.2.2.6 Denoising Formulas. In this section, we derive some new denoising
formulas that maximize the entropy. Two approaches are introduced:

1. The first approach is to apply existing formulas such as (27.4) and (27.5) in
the left-hand side of (27.9) to derive the right-hand-side functions l(·) and r (·),
respectively.

2. The second approach is to apply existing formulas directly to the right-hand
side of (27.9).

For the first approach, two formulas are obtained.

Corollary 27.1 [8] For any 1-strings Y and Z and any (k − 2)-string w,

q(YwZ) = f (Yw) f (wZ)

f (w)
(27.13)

Formula (27.13) is identical to (27.4). Thus, we formally have proved the claim
in [26] that formula (27.4) satisfies the maximum entropy principle.

Let us examine Yu et al.’s formula (27.5) to see whether a new denoising formula
can be derived.

Corollary 27.2 [8] For any 1-strings Y and Z and any (k − 2)-string w,

q(YwZ) = 1

4σ

[

f (Yw) + f (Y)
∑

R

f (wR)

][

f (wZ) + f (Z)
∑

L

f (Lw)

]

(27.14)

where

σ = 1

2

[
∑

L

f (Lw) +
∑

R

f (wR)

]

This formula, which satisfies the maximum entropy principle, is different from
(27.5).

Our second approach to create new formulas stem from the following observation.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

610 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

Lemma 27.2 [8] For all (k − 1)-strings w and 1-strings L and R, let l(Lw) =
αq(Lw) and r (wR) = βq(wR), where α and β are treated as normalization con-
stants to fulfill the equality condition of (27.10). Then by (27.12),

q(LwR) = q(Lw)q(wR)

q(w)
(27.15)

To obtain two other new formulas, all we have to do is, to substitute formulas
(27.4) and (27.5) into the right-hand side of (27.15). One can check easily that
(27.15) satisfies (27.10).

Corollary 27.3 [8] Let w be YxZ, where x is a (k − 4) string, and Y and Z are
1-strings. Then by using Hao et al.’s formula (27.4), (27.15) becomes

q(LYxZR) =

⎧
⎪⎪⎨

⎪⎪⎩

f (LYx) f (YxZ) f (x) f (YxZ) f (xZR)
[

f (Yx)
]2[

f (xZ)
]2 if f (Yx) f (xZ) �= 0

0, otherwise
(27.16)

Corollary 27.4 [8] Let w be YxZ, where x is a (k − 4) string, and Y and Z are
1-strings. Then by using Yu et al.’s formula (27.5), (27.15) becomes

q(LYxZR) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[f (L) f (YxZ) + f (LYx) f (Z)][f (Y) f (xZR) + f (YxZ) f (R)]

2[f (Y) f (xZ) + f (Yx) f (Z)]

if f (Y) f (xZ) + f (Yx) f (Z) �= 0

0, otherwise
(27.17)

We remark that only nucleotide sequences were considered here. The decoupled
constraint matrices of the optimization problem are thereby of size (2 × 4k−1) by 4k .
If amino acid sequences are considered, then the decoupled systems will be of size
(2 × 20k−1) by 20k . However, denoising formulas still can be derived similarly, and
their forms will be the same.

As observed, different right-hand-side functions l(v) and r (v) in (27.9) provide
different denoising formulas. In this work, we provide two approaches for defin-
ing them. For the four datasets tested in this work, formula (27.16) and formula
(27.17) each have their own merits. We note that only Hao et al.’s formula (27.4)
and Yu et al.’s formula (27.5) were used in constructing the right-hand sides. One
may use other existing formulas to construct new denoising formulas via our two
approaches.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.2 MODELS AND ENTROPY OPTIMIZATION 611

27.2.3 Distance Measure

Let n = 4k be the length of the composition vector, and S be the set of composition
vectors. To find the evolutionary distance between two species A and B, we will
compute the distance d(a,b) between their composition vectors a = (ai)n

i=1 and b =
(bi)n

i=1 ∈ S, respectively. This distance then is used to represent the distance between
their corresponding species. Assume the reciprocal of the length of the composition
vector is computable, and assume there are no composition vectors c and d in S

such that

c = −d (27.18)

This assumption is reasonable, as (27.18) rarely will occur in real applications (e.g.,
see (27.21)).

Once the conversion of sequences into frequency vectors was established, a va-
riety of distances d(a,b) were calculated immediately. In the following, we will
introduce some angle-based distance measures, which are used widely in practice
[3, 25, 40, 47, 48, 52, 53]. We remark that those distances must satisfy the following
conditions:

1. Nonnegativity 0 ≤ d(a,b) < +∞ for all a and b ∈ S

2. Identity of indiscernibles d(a,b) = 0 if and only if a = b
3. Symmetry d(a,b) = d(b, a) for all a and b ∈ S

But the “triangle inequality” of the “metric distance”

d(a,b) ≤ d(a, c) + d(c,b), ∀a,b, c ∈ S, (27.19)

is not required for those distances.

27.2.3.1 Angle-Based Distance. To measure the distance between the compo-
sition vectors a and b ∈ S, it is common to employ the cosine of their angle defined
as follows [2]:

cos θ = aTb
‖a‖ × ‖b‖ (27.20)

where ‖ · ‖ is the Euclidean vector norm (i.e., ‖a‖ =
√∑n

i=1(ai)2).
Stuart et al. [47, 48] were the first to introduce the angle distance for the phyloge-

netic analysis. A formula is given by

dStuart(a,b) = − log

(
1 + cos θ

2

)

= − log

[
1

2

(

1 + aTb
‖a‖ · ‖b‖

)]

(27.21)

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

612 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

Formula (27.21) is a distance on the set S. Using the Cauchy–Schwarz inequality, one
can show that dStuart satisfies the first and the second conditions of a distance. More-
over, dStuart satisfies the third condition. Because of characteristics of the logarithm
function, dStuart(a,b) can be sufficiently large if the angle between a and b is large
enough. For this reason, this distance can be used for the phylogenetic analysis of the
dataset in which the species are far away from each other. In fact, formula (27.21)
has been applied successfully for the phylogenetic analysis of whole genomes of
bacteria and vertebrates [45, 46, 47, 48, 55].

Hao et al. [25, 40] proposed the following formula:

dHao(a,b) = 1 − cos θ

2
= 1

2

(

1 − aTb
‖a‖ × ‖b‖

)

(27.22)

One can verify that this measure is a distance satisfying the three conditions. Because
the cosine value computed by (27.20) varies between −1 and 1, the function value
dHao(a,b) is normalized to the interval (0, 1). Formula (27.22) is used widely and
has achieved great success in the phylogenetic analysis of whole genomes of bacteria,
viruses, and vertebrates [11, 12, 20, 21, 29, 40, 58].

Although Hao et al.’s distance is defined based on the cosine of the angle, it has a
close relationship with the Euclidean distance. To see how it works, let us take two
vectors c and d ∈ R

2. The angle θ is a one-to-one mapping of the following vector:

c
‖c‖ − d

‖d‖

Moreover, for the length of this vector, we have, by the law of cosines, [6] that

∥
∥
∥
∥

c
‖c‖ − d

‖d‖
∥
∥
∥
∥

2

= 2 − 2 cos θ

Generally, we have the following property for Hao et al.’s distance (27.22). Given
any vectors a and b ∈ S, their Hao et al.’s distance relates to the Euclidean distance
between their normalized vectors a

‖a‖ and b
‖b‖ as follows:

dHao(a,b) = 1

4

∥
∥
∥
∥

a
‖a‖ − b

‖b‖
∥
∥
∥
∥

2

(27.23)

It can be observed from (27.23) that Hao et al.’s distance is the square of a Eu-
clidean distance and thereby does not satisfy the triangle inequality. If the triangle
inequality further is required for the distance, then we can define

dNUD(a,b) = 1

2

∥
∥
∥
∥

a
‖a‖ − b

‖b‖
∥
∥
∥
∥ (27.24)

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.2 MODELS AND ENTROPY OPTIMIZATION 613

(i.e., the Euclidean distance between their normalized vectors). This distance satisfies
all conditions of a “metric distance,” and is the square root of Hao et al.’s distance.
In addition, we directly can use the angle to measure the distance. Define

dangle(a,b) = 1

π
arccos

(aTb
‖a‖ × ‖b‖

)
(27.25)

We see

dangle(a,b) ∈ (0, 1)

for all vectors a, b ∈ S, and dangle(a,b) is a “metric distance.” Newly defined dis-
tances (27.24) and (27.25) will be tested on more realistic datasets (e.g., see Sec-
tion 27.3.4).

27.2.4 Phylogenetic Tree Construction

Given the molecular sequences for any n species C1, C2, · · ·, Cn , n ≥ 4, we construct
their frequency vectors, and then the composition vectors c1, c2, · · ·, cn . The distance
di j , i, j = 1, 2, · · · , n, between any two composition vectors ci and c j can be ob-
tained by the angle-based distance measure described in Section 27.2.3. A distance
matrix consists of the collection of the pairwise distances for all n species and is
given by

C1 C2 C3 · · · Cn

C1

C2

C3
...
Cn

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 d12 d13 · · · d1n

d21 0 d23 · · · d2n

d31 d32 0 · · · d3n
...

...
...

. . .
...

dn1 dn2 dn3 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Any distance-based phylogenetic tree construction method may be employed to
build the tree, for instance, the Fitch–Margoliash (FM) method [19], the unweighted
pair group method with arithmetic mean method (UPGMA) [51], the neighbor-
joining (NJ) method [41], and so on. It is worth mentioning that the FM method is
not feasible when the number of species is larger than 100, and the information about
the branch length of the tree is not available if the UPGMA method is used. In this
work, all trees will be drawn by the NJ method. This algorithm is available in several
software packages, for instance, PHYLIP [18], SPLITSTREE [27], MEGA [49], and
so on.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

614 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

27.3 APPLICATION AND DICUSSION

Four worked examples are given. Until otherwise stated, for the purpose of distance
measurement, Equation (27.23) is used throughout all computational experiments.
All figures are produced by MEGA and SPLITSTREE.

27.3.1 Example 1

The phylogenetic relationship among tetrapods has been discussed widely in the
area of phylogeny and evolution. One early topic was whether birds are related more
closely to crocodilians or to mammals. Based on the traditional classification and
the results that stemmed from a large amount of molecular, morphological, and pale-
ontological data, birds are thought to be grouped with crocodilians. However, many
studies based on 18S rRNA sequences supported the grouping of birds and mam-
mals [56]. Using the CV method without denoising and with each of the five denois-
ing formulas, every taxa were grouped to their corresponding amphibian, reptile,
bird, or mammal clade. However, inspection of Figure 27.4 indicated that with the
denoising formula (27.16), the bird and reptile clades were grouped together, and
the two oryctolaguses of the mammal clade are well grouped. When the CV method
was used without denoising, or with the denoising formulas (27.4), (27.5), (27.14),
or (27.17), birds were grouped with mammals, and the two oryctolaguses were not
grouped together. For further discussion, see [9].

27.3.2 Example 2

The characteristics of HBV genotype C subgroups in Hong Kong and their relation-
ship with HBV genotype C in other parts of Asia were investigated by Chan et al. [7].
The full genome nucleotide sequences of 49 HBV genotype C isolated from Hong
Kong local patients, together with 69 published HBV genotype C and 12 well-known
HBV nongenotype C first were collected.

The multiple sequence alignment method [50] was used to align those sequences
and the distance matrix then was obtained. One phylogenetic tree, called the “NJ
tree,” thereby was constructed by the NJ method [41, 49]. In their NJ tree, the HBV
genotype C were divided into two subgroups:

� The genotype Ce
� The genotype Cs

Using the CV method without denoising, or with any denoising formula (27.4),
(27.5), (27.14), or (27.17), respectively, every HBV of a different genotype was
grouped correctly to its corresponding genotype subgroup. In particular, the 49 geno-
type C isolated from Hong Kong were separated identically into two subgroups,
genotype Ce and genotype Cs, where 39 isolates (∼ 80%) belonged to the genotype
Cs subgroup, and 10 isolates (∼ 20%) belonged to the genotype Ce subgroup. Using

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.3 APPLICATION AND DICUSSION 615

Figure 27.4 The CV tree (k = 10) based on the 18S rRNA dataset of tetrapods analyzed by
Xia et al. [56].

(27.13), (27.14), and (27.17), the phylogenetic tree is the same. The CV tree with
denoising formulas (27.14) was shown in Figure 27.5.

27.3.3 Example 3

In our third set of computational experiments, we have applied two denoising for-
mulas (27.14) and (27.17) to the set of 20 complete mtDNA sequences, including
six primates, eight ferungulates (artiodactyls + cetaceans + perissodactyls + carni-
vores), two rodents, and three outgroups (marsupials and monotremes), which is the
same set of species as, for exampley, [5].

The phylogenetic relationship among mammals has been a long-standing problem
in the area of phylogeny and evolution. Using (27.14) and (27.17), the phylogenetic
tree is the same. Figure 27.6 shows the phylogenetic trees calculated by (27.17) with

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

616 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

Figure 27.5 The CV tree (k = 11) based on the dataset of complete nucleotide sequences of
HBV analyzed by Chan et al. [7].

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

27.3 APPLICATION AND DICUSSION 617

Figure 27.6 The CV tree (k = 14) based on the dataset of complete mtDNA sequences of a
mammal analyzed by Cao et al. [5].

k = 14. The result of (27.17) is identical to the one done in [5]. In Figure 27.6, four
trees among primates, ferungulates, rodents, and the outgroup are well grouped using
the CV method.

27.3.4 Example 4

In our last computational experiments, we applied a denoising formula (27.17) to the
set of 34 choroplast genomes (or complete protein genome sequences), including two
archaea, seven chlorophyte s.l., eight eubacteria, three eukaryote, one glaucophyte,
four rhodophyte s.l., and nine seed plants, which is the same set of species as [12, 58].

Figure 27.7 shows the phylogenetic trees calculated by (27.17) with k = 6. The
result of (27.17) mostly agrees with the one in [58]. Some salient features of Fig-
ure 27.7 can be summarized as follows:

� Based on the widely accepted endosymbiotic theory that chloroplasts sprang
from a cyanobacteria-like ancestor [22, 23, 33], all the chloroplast genomes
yield a clade branched in the domain of eubacteria and are diverged from a
most recent common ancestor at cyanobacteria. Our denoising formula can
identify cyanobacteria as the most closely related prokaryotes of chloroplasts,
even though massive gene transfering from the endosymbiont to the nucleus of
the host cell was found [30, 31, 32].

� The chloroplasts are divided into two major clades:

1. The green plants sensu lato, or chlorophytes s.l. [38] include all taxa with
a chlorophyte chloroplast, both primary and secondary endosymbioses in
origin.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

618 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

Zea

Triticum

Oryza

Spinacia
Lotus Oenothera

Nicotiana

Arabidopsis

Pinus
Chaetosphaeridium

Marchantia

Psilotum
Mesostigma

Nephroselmis

Chlorella

Euglena

Cyanidium

Cyanophora

Guillardia

PorphyraOdontella
Nostoc

Synechocystis
Mycobacterium

Rickettsia
Helicobacter

Neisseria

Chlamydophila

Borrelia

Caenorhabditis

Arabidopsis

Saccharomyces

Sulfolobus
Archaeoglobus

Chlorophyte s.l.

Seed plants

Archaea

Eukaryote

Eubacteria

Rhodophyte s.l.

Glaucophyte

Figure 27.7 The CV tree (k = 6) based on the dataset of complete protein genome sequences
of a choroplast analyzed by Yu et al. [58].

2. The glaucophyte Cyanophora and members of rhodophytes s.l. refer to
rhodophytes (or red algae, Cyanidium, and Porphyra in the tree) and their
secondary symbiotic derivatives (the heterokont Odontella and the cryot-
phyte Guillarida).

� Inspection of Figure 27.7 shows that Cyanophora is mixed into rhodophytes
s.l.. These findings have been reported in [13, 44], despite the fact that the
glaucophyte (Cyanophora is grouped into glaucophyte) represents the earliest
branch in chloroplast evolution with the green plants s.l. and rhodophytes s.l.
as sister taxa [1, 31, 32, 35]

� In chlorophyte s.l., the green algae (i.e., chlorella, Mesostigma, and
Nephroselmis) and euglena are basal to that lineage, and the seed plants clus-
ter together as a derived group. But, the relationships among the other taxa
(i.e., Marchantia, Psilotum, and Chaetosphaeridium) deviate slightly from our

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

REFERENCES 619

traditional understanding, probably because of limited taxon sampling in these
primitive green plants [58].

� Similar to the result of [12], chlorella is connected between euglena and a clade
of Mesostigma and Nephroselmis.

As a check, different distance formulas (27.21), (27.23), (27.24), and (27.25) were
used, and the results of each formula showed no sizable differences. In addition, they
yielded the same phylogenetic tree.

27.4 CONCLUDING REMARKS

In this chapter, one kind of alignment-free method, namely, the CV method, was
introduced. Compared with the multiple sequence alignment methods that are em-
ployed widely, the CV method has several advantages. For instance, it can be used
for phylogenetic analysis of whole genome sequences of bacteria, viruses, and so
on [12, 40, 58], in which the sequence alignment methods all failed. Our denoising
formulas worked well in the classification of HBV, mammal, and chloroplast. As a
systematic method for studying the classification of species, no scoring matrix or gap
penalty [54] was required by the CV method. For computing the distance between
two species, its operation cost is O

(
N log N

)
, and the memory requirement is O(N),

where N is the length of the longer sequence. With the development of sequence
techniques, more and more complete genome sequences are available, and these ad-
vantages are becoming more important or even necessary for sequence comparison
methods.

The method described in this work has been written in MATLAB for the prepa-
ration of input data and in FORTRAN 90 for the rest of the numerical compu-
tations. The program is distributed by R.W. Wang and J.C.-F. Wong and can be
obtained by an anonymous ftp from our ftp website at the following website:
http://www.math.cuhk.edu/∼jwong. For example, the current version of the pro-
gram allows a maximum of 34 library species to be analyzed on 64-byte machines
(compilers).

REFERENCES

1. J. Adachi, P.J. Waddell, W. Martin, and M. Hasegawa. Plastid genome phylogeny and a
model of amino acid substitution for proteins encoded by chloroplast DNA, J Mol Evol,
50:348–358, 2000.

2. M.W. Berry, Z. Drmac, and E.R. Jessup. Matrices, vector spaces, and information re-
trieval. SIAM Rev, 41:335–362, 1999.

3. B.E. Blaisdell. A measure of the similarity of sets of sequences not requiring sequence
alignment. Proc Natl Acad Sci, 83:5155–5159, 1986.

4. V. Brendel, J.S. Beckmann, and E.N. Trifonov. Linguistics of nucleotide sequences: Mor-
phology and comparison of vocabularies. J Biomol Struct Dyn, 4:11–20, 1986.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

620 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

5. Y. Cao, A. Janke, P.J. Waddell, M. Westerman, O. Takenaka, S. Murata, N. Okada,
S. Paabo, M. Hasegawa. Conflict among individual mitochondrial proteins in resolving
the phylogeny of eutherian orders. J Mol Evol, 47:307–322, 1998.

6. J. Casey. A Treatise on Spherical Trigonometry: And Its Application to Geodesy and
Astronomy with Numerous Examples. Longmans, Green, and Company, London, UK,
1889.

7. H.L.Y. Chan, C.H. Tse, E.Y.T. Ng, K.S. Leong, K.H. Lee, S.K.W. Sui, and J.J.Y. Song.
Epidemiological and virological characteristics of 2 subgroups of Hepatitis B virus geno-
type C. J Infect Dis, 191:2022–2032, 2005.

8. R.H. Chan, T.H. Chan, and R.W. Wang. Composition vector method based on maximum
entropy principle for sequence comparison. Research ReportMATH-09-05 (367), Depart-
ment of Mathematics, The Chinese University of Hong Kong.

9. R.H. Chan, T.H. Chan, and R.W. Wang. Composition vector method based on maximum
entropy principle for sequence comparison. To appear.

10. R.L. Charlebois, R.G. Beiko, and M.A. Ragan. Microbial phylogenomics: Branching out.
Nature, 421:217, 2003.

11. K.H. Chu, C.P. Li, and J. Qi. Ribosomal RNA as molecular barcodes: A simple correlation
analysis without sequence alignment. Bioinformatics, 22:1690–1710, 2006.

12. K.H. Chu, J. Qi, Z.G. Yu, and V. Anh. Origin and phylogeny of chloroplasts: A simple
correlation analysis of complete genomes. Mol Biol Evol, 21:200–206, 2004.

13. J. De Las Rivas, J.J. Lozano, and A.R. Ortiz. Comparative analysis of chloroplast
genomes: Functional annotation, genome-based phylogeny, and deduced evolutionary
patterns. Genome Res, 12:567–583, 2002.

14. W.F. Doolittle. Phylogenetic classification and the universal tree. Science, 284:2124–
2128, 1999.

15. R.C. Edgar. MUSCLE: Multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res, 32(5):1792–1797, 2004.

16. J.A. Eisen and C.M. Fraser. Phylogenomics: Intersection of evolution and genomics. Sci-
ence, 300:1706–1707, 2003.

17. D.F. Feng and R.F. Doolittle. Progressive sequence alignment as a prerequisite to correct
phylogenetic trees. J Mol Evol, 25:351–360, 1987.

18. J. Felsenstein. PHYLIP (phylogeny inference package) version 3.5c. http://evolution
.genetics.washington.edu/phylip.html.

19. W.M. Fitch and E. Margoliash. Construction of phylogenetic trees. Science, 155:279–284,
1967.

20. L. Gao and J. Qi. Whole genome molecular phylogeny of large dsDNA viruses using
composition vector method. BMC Evol Biol, 7:1–7, 2007.

21. L. Gao, J. Qi, H. Wei, Y. Sun, and B.L. Hao. Molecular phylogeny of coronaviruses
including human SARS-CoV. Chin Sci Bull, 48:1170–1174, 2003.

22. M.W. Gray. The endosymbiont hypothesis revisited. Int Rev Cytol, 141:233–357, 1992.

23. M.W. Gray. Evolution of organellar genomes. Curr Opin Genet Dev, 9:678–687, 1999.

24. S. Grumbach and F. Tahi. Compression of DNA sequences. Data Compression Confer-
ence. IEEE Computer Society Press, Sbowbird, Utah.

25. B.L. Hao, J. Qi, and B. Wang. Prokaryotic phylogeny based on complete genomes without
sequence alignment. Mod Phys Lett B, 2:1–4, 2003.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

REFERENCES 621

26. R. Hu and B. Wang. Statistically significant strings are related to regulatory ele-
ments in the promoter regions of Saccharomyces cerevisiae. Physica A, 290:464–474,
2001.

27. D.H. Huson and D. Bryant. Application of phylogenetic networks in evolutionary studies.
Mol Biol Evol, 23(2):254–267, 2005.

28. M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang. An information-
based sequence distance and its application to hole mitochondrial genome phylogeny.
Bioinformatics, 17:149–154, 2001.

29. G. Lu, S. Zhang, and X. Fang. An improved string composition method for sequence
comparison. BMC Bioinformatics, 9(Suppl 6):S15, 2008.

30. W. Martin and R.G. Herrmann. Gene transfer from organelles to the nucleus: How much,
what happens, and why? Plant Physiol, 118:9–17, 1998.

31. W. Martin, B. Stoebe, V. Goremykin, S. Hansmann, M. Hasegawa, and K.V. Kowallik.
Gene transfer to the nucleus and the evolution of chloroplasts. Nature, 393:162–165,
1998.

32. W. Martin, T. Rujan, E. Richly, A. Hansen, S. Cornelsen, T. Lins, D. Leister, B. Stoebe,
M. Hasegawa, and D. Penny. Evolutionary analysis of Arabidopsis, cyanobacterial, and
chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in
the nucleus. Proc Natl Acad Sci U S A, 99:12246–12251, 2002.

33. G.I. McFadden. Chloroplast origin and integration. Plant Physiol, 125:50–53, 2001b.

34. S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability, Springer-Verlag,
London, UK, 1993.

35. D. Moreira, H. LE Guyader, and H. Ppilippe. The origin of red algae and the evolution of
chloroplasts. Nature, 405:69–72, 2000.

36. S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol, 48:443–453,
1970.

37. C. Notredame, D.G. Higgins, and J. Heringa. T-Coffee: A novel method for fast and ac-
curate multiple sequence alignment. J Mol Biol, 302(1):205–217, 2000.

38. J.D. Palmer and C.F. Delwiche. The origin and evolution of plastids and their genomes.
In D.E. Soltis, P.S. Soltis, and J.J. Doyle, editors, Molecular Systematics of Plants II DNA
Sequencing. Kluwer, London, UK, 1998, pp. 345–409.

39. P.A. Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press,
Cambridge, MA, 2000, p. 75.

40. J. Qi, B. Wang, and B.L. Hao. Whole proteome prokaryote phylogeny without sequence
alignment: A k-string composition approach. J Mol Evol, 58(1):1–11, 2004.

41. N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol Biol Evol, 4(4):406–425, 1987.

42. T.F. Smith and M.S. Waterman. Identification of common molecular sequences. J Mol
Biol, 147:195–197, 1981.

43. B. Snel, P. Bork, and M.A. Huynen. Genome phylogeny based on gene content. Nat
Genet, 21:108–110, 1999.

44. V.L. Stirewalt, C.B. Michalowski, W. Loffelhardt, H.J. Bohnert, and D.A. Bryant. Nu-
cleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol
Rep, 13:327–332, 1995.

P1: OSO
c27 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

622 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD

45. G.W. Stuart and M.W. Berry. A comprehensive whole genome bacterial phylogeny using
correlated peptide motifs defined in a igh dimensional vector space. J Bioinform Comput
Biol, 1(3):475–493, 2003.

46. G.W. Stuart and M.W. Berry. An SVD-based comparison of nine whole eukaryotic
genomes supports a coelomate rather than ecdysozoan lineage. BMC Bioinformatics,
5:204, 2004.

47. G.W. Stuart, K. Moffett, and S. Baker. Integrated gene and species phylogenies from
unaligned whole genome protein sequences. Bioinformatics, 62:100–108, 2002.

48. G.W. Stuart, K. Moffett, and J.J. Leader. A comprehensive vertebrate phylogeny using
vector representations of protein sequences from whole genomes. Mol Biol Evol, 19:554–
562, 2002.

49. K. Tamura, J. Dudley, M. Nei, and S. Kumar. MEGA4: Molecular evolutionary genetics
analysis (MEGA) software version 4.0. Mol Biol Evol, 24:1596–1599, 2007.

50. J.D. Thompson, D.G. Higgins, and T.J. Gibson. Clustal W: Improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Res, 22(22):4673–4680, 1994.

51. UPGMA Software. http://pubmlst.org/software/analysis/start/manual/upgma.shtml.

52. S. Vinga and J. Almeida. Alignment free sequence comparison-a review. Bioinformatics,
19:513–523, 2003.

53. J. Wang and X. Zheng. WSE, a new sequence distance measure based on word frequen-
cies. Math Biosci, 215:78–83, 2008.

54. M.S. Waterman. Introduction to Computational Biology: Maps, Sequences and Genomes.
Chapman and Hall, New York, 1995.

55. X. Wu, X.F. Wan, G. Wu, D. Xu, and G. Lin. Phylogenetic analysis using complete signa-
ture information of whole genomes and clustered Neighbor-Joining method. J Res Appl,
2:219–248, 2006.

56. X. Xia, Z. Xie, and K.M. Kjer, 18S ribosomal RNA and tetrapod phylogeny. Syst Biol,
52:283–295, 2003.

57. H.M. Xie. Grammatical Complexity and One-dimensional Dynamical Systems. World
Scientific, Singapore, 1996.

58. Z.G. Yu, L.Q. Zhou, V. Anh, K.H. Chu, S.C. Long, and J.Q. Deng. Phylogeny of prokary-
otes and chloroplasts revealed by a simple composition approach on all protein sequences
from whole genome without sequence alignment. J Mol Evol, 60:538–545, 2005.

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

V
MICROARRAY

DATA ANALYSIS

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28
MICROARRAY GENE

EXPRESSION
DATA ANALYSIS

Alan Wee-Chung Liew and Xiangchao Gan

28.1 INTRODUCTION

Research in life science, in particular, the study of the genetic codes in living organ-
isms, has reached its epic with the sequencing of the full human genome. With the
availability of the vast number of genetic sequences, the next major challenge is to
study gene activity or gene function. Important insights into gene function can be
gained by gene expression profiling. Gene expressing profiling is the process of de-
termining when and where particular genes are expressed. For example, some genes
are turned on (expressed) or turned off (repressed) when there is a change in exter-
nal conditions or stimuli. In multicellular organisms, gene expressions in different
cell types is different during different developmental stages in life. Even within the
same cell type, gene expressions are dependent on the cell cycle the cells are in.
DNA mutation may alter the expression of certain genes, which causes illness such
as abnormal tumor growth or cancer. Furthermore, the expression of one gene often
is regulated by the expression of another gene. A detailed analysis of all this infor-
mation will provide an understanding about the networking of different genes and
their functional roles.

In the past, genes and their expression profiles are studied one at a time. How-
ever, this method is inadequate for the holistic study of the complete genome of an
organism because the expressions of different genes are generally interdependent.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

625

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

626 MICROARRAY GENE EXPRESSION DATA ANALYSIS

Microarray technology, which allows massively parallel, high-throughput profiling
of gene expression in a single hybridization experiment, has emerged as a powerful
tool for genomic research [19, 26]. By using an array containing many DNA sam-
ples, scientists can determine, in a single experiment, the expression levels of tens
of thousands of genes within a cell by measuring the amount of mRNA bound to
each site on the array. Besides the enormous scientific potential of DNA microarrays
in the study of gene expressions, gene regulations, and interactions, they also have
very important applications in pharmaceutical and clinical research. For example, by
comparing the ways in which genes are expressed in a normal and in a diseased or-
gan, scientists might be able to identify the genes and hence the associated proteins
that are part of the disease process. Researchers then could use that information to
synthesize drugs that interact with these proteins, thus reducing the disease’s effect
on the body.

28.2 DNA MICROARRAY TECHNOLOGY AND EXPERIMENT

DNA Microarrays are small, solid supports onto which sequences from tens of thou-
sands of different genes are immobilized at fixed locations. The supports usually are
made of glass microscope slides but also can be silicon chips or nylon membranes.
The DNA is spotted or synthesized directly onto the support.

In spotted microarrays, the probes are oligonucleotides, cDNA, or small frag-
ments of polymerase chain reaction (PCR) products that correspond to mRNAs. The
probes are synthesized prior to the deposition on the array surface and then are “spot-
ted” onto the glass using an array of fine pins or needles controlled by a robotic arm.
In this chapter, we will concentrate our discussion on the spotted microarray.

In oligonucleotide microarrays, the probes are short sequences designed to match
parts of the sequence of known or predicted open reading frames. Oligonucleotide
arrays are produced by synthesizing short oligonucleotide sequences directly onto
the array surface instead of depositing intact sequences. Sequences may be longer
(60-mer probes such as the Agilent [Santa Clara, CA] design) or shorter (25-mer
probes produced by Affymetrix [Santa Clara, CA]) depending on the desired pur-
pose. One technique used to produce oligonucleotide arrays is photolithographic
synthesis (Agilent and Affymetrix) on a silica substrate in which light and light-
sensitive masking agents are used to build a sequence one nucleotide at a time across
the entire array [24]. Each applicable probe is unmasked selectively prior to bathing
the array in a solution of a single nucleotide, then a masking reaction takes place,
and the next set of probes is unmasked in preparation for a different nucleotide ex-
posure. This process is repeated until the probes are constructed fully.

In a two-channel microarray experiment, two samples of cRNA, which are re-
versed transcribed from mRNA purified from cellular contents, are labeled with dif-
ferent fluorescent dyes (usually cyanine3 (Cy3) and cyanine5 (Cy5)) to constitute
the cDNA targets. The two cDNA targets then are hybridized onto a cDNA microar-
ray. If a target contains a cDNA whose sequence is complementary to the DNA
probe on a given spot, then that cDNA will hybridize to the spot where it will be

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.3 IMAGE ANALYSIS AND EXPRESSION DATA EXTRACTION 627

Poly-I-Iysine
Modified Glass

DNA Probe

Flow chart of cDNA microarray technique

cDNA
(Cy3)

cDNA
(Cy5)Spotting

Pattern
Discovery

Data
Analysis

Image
Analysis

Scanned
Images

Scanning

Immobilization
Hybrilization

Total
RNA/
mRNA

Mix

1:1

Normal Sample
(control)

Treated Sample
(target)

Target cDNA
(flurescene labeled)

RT RT

Printed DNA Chip Hybridized DNA Chip

Hybridization

Figure 28.1 Left: A schematic of the cDNA microarray technique. Right: The steps involved in
a cDNA microarray experiment.

detectable by its fluorescence. Spots with more bound targets will fluoresce more
intensely.

Once the cDNA targets have been hybridized to the array and any loose targets
have been washed off, the array is laser scanned to determine how much of each
targets is bound to each spot. The hybridized microarray is scanned for the red wave-
length (at approximately 635 nm for Cy5) and the green wavelength (at approxi-
mately 530 nm for Cy3), which produces two sets of images typically in 16-bits iff
format. The ratio of the two fluorescence intensities at each spot indicates the rela-
tive abundance of the corresponding DNA sequence in the two cDNA samples that
are hybridized to the DNA probe on the spot. By examining the expression ratio
of each spots in the Cy3 and Cy5 images, gene expression study can be performed.
Figure 28.1 shows a schematic of the cDNA microarray technique (left) and the steps
in performing a cDNA microarray experiment (right).

28.3 IMAGE ANALYSIS AND EXPRESSION DATA EXTRACTION

The goal in image analysis is to quantify automatically each spot giving information
about the relative extent of hybridization of the two cDNA samples. However, this is
a nontrivial task because of the poor contrast between spots and background, and the
many contaminations or artifacts resulting from the hybridization procedures such
as irregular spot shape and size, dust on the slide, large intensity variation within
spots and background, and nonspecific hybridization. Accurate extraction of the gene
expression data from the microarray image is important because it will impact the
quality of the downstream data analysis.

A microarray image typically will contain N × M blocks, where each block will
contain p × q spots. The N × M blocks on each array are printed simultaneously by
repeatedly spotting the slide surface with N × M print tips. The relative placement
of adjacent blocks therefore is determined by the spacing between adjacent print tips.
Adjacent spots inside each block are separated during printing by slightly offsetting

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

628 MICROARRAY GENE EXPRESSION DATA ANALYSIS

the print tips after each spotting. These spots must be segmented individually from
the background to compute the expression ratio. Microarray image analysis generally
involves several steps: (i) block segmentation in which each block within a microar-
ray image is delineated, (ii) gridding in which the location of each spot within a block
is determined, and (iii) spot extraction in which each spot is segmented and its inten-
sity value is determined. Subsequently, we briefly outline the main steps involved in
microarray image analysis in our algorithm called GENEICON [16].

28.3.1 Image Preprocessing

The input microarray images consist of a pair of 16-bit images in tiff format. For
computational efficiency, a spot segmentation algorithm usually operates on a single
image. Let X denote the composite image obtained from R (Cy5) and G (Cy3), then
X can be computed as follows:

X = ⌊
0.5 × (G ′ + (median(G′)/median(R′))R′)

⌋
(28.1)

where G ′ = √
G, R′ = √

R, and � � denotes rounding to the nearest integer in the
range [0–255].

28.3.2 Block Segmentation

As the blocks in a microarray image are arranged in a rigid pattern, and each of the
blocks in a microarray image is surrounded by regions void of any spots, an effective
method for block segmentation is through an analysis of the vertical and horizontal
image projection profiles. In GENEICON, the projection profiles are obtained from
an adaptively binarized image. By performing analysis on the projection profiles,
accurate block segmentation can be achieved (see Figure 28.2).

28.3.3 Automatic Gridding

The gridding strategy in GENEICON consists of first locating the good quality spots
(called guide spots) and then inferring the geometry of the grid from these spots. To
account for the variable background and spot intensities, a novel adaptive threshold-
ing technique based on mathematical morphology is used to detect the guide spots.
After the guide spots are found, global rotation is compensated for, and the correct
grid parameters are estimated based on the spatial arrangement of the guide spots.
Figure 28.3 shows an example of automatic gridding of a block in a microarray
image.

28.3.4 Spot Extraction

Spot segmentation involves finding a circle that separates the spot from the
background. The spot segmentation task consists of three steps: (i) background

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.3 IMAGE ANALYSIS AND EXPRESSION DATA EXTRACTION 629

Figure 28.2 The segmentation of a microarray image into blocks.

equalization for intensity variation in the subregion defined by the gridding, (ii) sta-
tistical intensity modeling and optimum thresholding of the subregion, and finally,
(iii) finding the best-fit circle that segments the spot. A spot is assumed present if the
ratio of the median intensity between the tentative spot pixels and the background
pixels is larger than a preset value or when a guide spot is present within the subre-
gion. When a spot is present, the intensity distribution of the pixels within the sub-
region is modeled using a two-class Gaussian Mixture Model to find the optimum

(a) (b) (c) (d)

Figure 28.3 (a): A block of spots from a microarray image shown as RGB color image, where
the green component is given by Cy3, the red component is given by Cy5, and the blue component
is set to zero. (b): The corresponding composite image. (c): The guide spots found. (d): Grid
generated from the guide spot image.

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

630 MICROARRAY GENE EXPRESSION DATA ANALYSIS

Figure 28.4 cDNA Microarray spot segmentation results.

threshold. Once the subregion is thresholded, a best-fit circle is computed for the
final spot segmentation. Figure 28.4 presents some spot segmentation examples for
blocks of different spot densities and qualities from different microarray images.

28.4 DATA PROCESSING

Once the spots in a microarray image are extracted, the intensity value of each spot
can be obtained and the log ratio (i.e., M = log2 R/G), which indicates the differ-
ential expression of the two DNA samples, can be computed. However, before the
expression data can be subjected to further analysis, some preprocessing of the raw
intensity data is needed. The data processing steps usually involve (i) background
correction, (ii) data normalization, and (iii) data filtering.

28.4.1 Background Correction

Background correction aims to remove from the spot’s measured intensity a con-
tribution not caused by the specific hybridization of the target to the probe. This
contribution could result from nonspecific hybridization and stray fluorescence on
the slide. Different approaches, ranging from simple subtraction of local background
intensity to sophisticated statistical correction have been proposed [15].

28.4.2 Normalization

The purpose of normalization is to adjust for any bias that results from variation
in the microarray process rather than from biological differences between the RNA
samples. Position variation on a slide may develop because of differences between
the print tips on the arrayer, variation over the course of the print run, or nonunifor-
mity in the hybridization. Another common variation is the red-green bias resulting
from the differences between the labeling efficiencies of the two dyes, the fluorescent
properties of the two dyes, and the scanner settings. It is necessary to normalize the
spot intensities before any subsequent analysis is carried out.

The most widely used within-slide normalization method assumes that the red-
green bias is constant on the log-scale across the slide. The log ratios are corrected by
subtracting a constant c to get the normalized values Mnorm = log2(R/G) − c. The
constant c usually is estimated from the mean or the median log ratios value over a

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.5 MISSING VALUE IMPUTATION 631

subset of the genes assumed to be expressed not differentially [4]. However, the im-
balance in the red and green intensities is usually not constant across the spots within
and between the slides and can vary according to overall spot intensity, location on
the slide, slide origin, and possibly other variables. More sophisticated normaliza-
tion methods such as loess normalization are available to account for these depen-
dencies [29, 33]. Additionally, housekeeping genes can be used as control spots for
normalization.

28.4.3 Data Filtering

Not all data extracted from a microarray experiment are useful. Some expression
ratios might be unreliable because of the poor quality of the spots and usually are
discarded prior to subsequent data analysis. Finally, the expression ratios usually are
log transformed (base 2 log) prior to further analysis such as clustering. The log
transform renders the k-fold change in ratio value symmetrical around the nondiffer-
entially expressed ratio of 1.

28.5 MISSING VALUE IMPUTATION

Gene expression microarray experiments usually suffered from the missing values
problem. It is not uncommon to find microarray data with up to 90% of genes af-
fected by missing values [22]. Missing values occur for various reasons, including
hybridization failures, artifacts on the microarray, insufficient resolution, and image
noise and corruption [32]. Missing values have an important implication for subse-
quent data analysis. For example, the inability of many cluster algorithms to process
the missing values means that profiles containing missing values often are discarded.
However, instead of ignoring gene expression profiles containing missing values,
such missing values often can be estimated from the data.

Reliable estimation of missing values is important. If an erroneous missing value
imputation is performed, then gene expressions containing a high number of miss-
ing values can be assigned to the wrong cluster in subsequent cluster analysis. The
most common method to deal with missing values is simply replacing them with
zeros or with the average of the expression profile. Such simple estimation tech-
niques, however, made very crude use of the available knowledge within the data.
Current research demonstrated that missing values estimation can be improved sig-
nificantly by exploiting the correlation between data. Many advanced missing value
imputation algorithms have been proposed recently, such as the K -nearest neighbors
method (KNNIMPUTE), the singular value decomposition method (SVDIMPUTE)
[31], least-square imputation (LSIMPUTE) [2], Bayesian principle component anal-
ysis (BPCA) [21], local least-square imputation (LLSIMPUTE) [14], and Gaussian
mixture imputation (GMCIMPUTE) [22]. These algorithms can perform well de-
pending on the characteristics of the data. For example, KNNIMPUTE performs
better on nontime series data or noisy time series data, whereas SVDIMPUTE works
well on time series data with a low noise level and with a strong global correlation

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

632 MICROARRAY GENE EXPRESSION DATA ANALYSIS

0

1

0.8

0.6

0.4

0.2

−0.2

−0.4

−0.8

−0.6

0

20 40 60 80 100 120
−1

Figure 28.5 The gene expression profile of Smc3 in Spellman et al.’s experiment. The syn-
chronization loss is significant.

structure. LLSIMPUTE has the best performance when a strong local correlation ex-
ists in the data. The BPCA method is suitable when a global structure is dominant in
the data. LSIMPUTE tries to exploit adaptively both the global and the local struc-
ture in the data. However, all these algorithms do not consider biological constraints
related to the microarray experiments.

For microarray data, the phenomenon of synchronization loss in the gene expres-
sion experiments for time series data has been known for some time [1]. Cyclic
systems, such as the cell cycle [30] and circadian clock [23] play a key role in many
biological processes. Microarray experiments that study these systems usually are
carried out by synchronizing a population of cells. Synchronization is achieved by
first arresting cells at a specific biological life point and then by releasing cells from
the arrest so that all cells are at the same point when the experiment begins [12, 30].
However, even if cells are synchronized perfectly at the beginning of the experiment,
they do not remain synchronized forever [1]. For example, yeast cells seem to remain
relatively synchronized for two cycles [30], whereas wild type human cells lose their
synchronization very early [28] or halfway through the first cycle depending on the
arresting method. This causes the peak expression value to be lower and the lowest
expression value to be higher in subsequent cycles for most cyclic genes. A typical
gene expression profile with synchronization loss is given in Figure 28.5. We see
that because of the loss of synchronization, the peaks and troughs decrease in mag-
nitude with time. As a consequence, the average signal power in the successive cycle
decreases significantly. Table 28.1 quantitatively shows the decrease of the average
signal energy of four datasets in Spellman et al.’s experiment.

In [11], we propose a set theoretic framework based on the projection onto con-
vex sets (POCS) for missing data imputation called POCSIMPUTE, which takes into

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.5 MISSING VALUE IMPUTATION 633

Table 28.1 The decrease of average signal energy resulting from synchronization loss
for four datasets in Spellman et al.’s experiment. Note that because the signal of
Elutriation is available only for one cycle, we compare the average signal energy for the
first half cycle and the second half cycle

Average Signal Average Signal
No. of Sampling No. of Complete Energy for Energy for

Dataset Points Genes First Cycle Second Cycle

CDC28 17 1383 352.78 288.73
CDC15 24 4381 846.28 834.57
Alpha factor 18 4489 474.58 306.24
Elutriation 14 5766 898.48 435.32

consideration this biological phenomenon of synchronization loss. POCS allows us
to incorporate different types of a priori knowledge about missing values into the
estimation process. The main idea of POCS is to formulate every piece of prior
knowledge into a corresponding convex set and then use a convergence-guaranteed
iterative procedure to obtain a solution in the intersection of all these sets. Our impu-
tation method captures localized gene-wise correlation in the gene expression data
by constructing a convex set based on local least-square regression using the K -most
correlated genes. We capture the array-wise variation by using the principal compo-
nent analysis (PCA) method. In the PCA method, the dominant array-wise variation
of the entire dataset is summarized by a few principle components, which can be
viewed as representing independent cellular states across all genes. Finally, to take
advantage of the phenomenon of synchronization loss in microarray experiments, we
constrain the vector length of the missing values to be bound by the vector length of
the observed values within the same cycle.

The POCS method provides a very flexible framework to incorporate all
a priori information to get an optimal solution. Regardless of whether it is a con-
sistent problem, the convergence of the algorithm is guaranteed. For gene expression
data, which is noisy and with imprecise prior information, this tolerance to impre-
cision is very important. Another useful feature of our POCSimpute algorithm is
its adaptivity in finding a good solution. Suppose we have correlation information
between genes and between samples, and these two pieces of information are mod-
eled as two convex sets Cu and Cv , respectively. In one dataset, the first piece of
information may be more reliable than the second. In another dataset, it may be the
opposite. This situation is depicted in Figure 28.6. When the information is more
reliable, the corresponding convex set will be smaller in range. Because POCS al-
ways converges to the intersection, the final solution always will be dominated by
the smaller set while still satisfying the constraint imposed by the less reliable set. In
this manner, a good solution that makes a wise trade-off between different prior in-
formation can be obtained. Experiments have shown that our algorithm can achieve
a significant reduction of error compared with some available algorithms on the
test data.

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

634 MICROARRAY GENE EXPRESSION DATA ANALYSIS

Cu
CuY0

Y0

Ŷ

Ŷ

Cv Cv

Figure 28.6 Left: In a data dominated by gene-wise correlation, the final solution is dominated
by Cu. Right: In a data dominated by array-wise correlation, the final solution is dominated
by Cv.

28.6 TEMPORAL GENE EXPRESSION PROFILE ANALYSIS

Time-series whole-genome expression data are a particularly valuable source of
information because they can describe a dynamic biological process such as the
cell cycle or metabolic process [7, 30]. They allow the determination of regu-
latory relationships between the expressions of different genes. Such a relation-
ship could lead to a better understanding of the gene networking process within
a cell.

A pairwise comparison of gene expression profiles has been proposed to identify
pairs of genes that have direct regulatory relationships. Among the various pairwise
comparison approaches, a correlation-based method is perhaps the most popular one.
This method determines whether two genes have a regulatory relationship by check-
ing the global similarity between their expression profiles using the Pearson correla-
tion measure [9]. However, it does not take into account the fact that there is often
a time delay before the regulator gene product can exert its influence on the target
gene. Such a time delay can degrade significantly the performance of the method.
The correlation method also strongly favors global similarity over more localized
similarities resulting from conditional regulatory relationships.

If the expression of gene A varies periodically at a constant frequency, then we
expect the expression of gene B to be varying more or less at the same frequency.
This frequency of variation, however, may not be observed easily from the two
time series expression profiles as a result of noise and other factors. In addition, if
gene B is under the influence of both gene A and gene C (a “two-regulating-one”
situation) and if the expression profiles of these influencing genes are varying at
different frequencies, then the relationship between gene A and gene B may not
be observed easily from their time series profiles. This would cause problem for a
correlation-based similarity comparison.

In [34], we propose a spectral component correlation approach for measuring the
correlation between time-series expression data and use the results to infer the poten-
tial regulatory relationships between genes. Our technique summarizes the essential
features of an expression pattern by means of a frequency spectrum estimated by

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.6 TEMPORAL GENE EXPRESSION PROFILE ANALYSIS 635

autoregressive modeling. Specifically, the pattern x [n] is decomposed into a set of
damped sinusoids of different frequencies,

x [n] =
∑M

i=1
xi [n] =

∑M

i=1
αi exp(σi n) cos (ωi n + φi) (28.2)

so that each sinusoid xi [n] can be considered separately during the analysis. The pa-
rameters αi , σ i , ωi , and φi are the amplitude, damping factor, normalized frequency,
and phase angle, respectively, of spectral component i . The correlation of x[n] with
y[n] then can be reformulated as a sum of the component-wise correlations between
each spectral component,

x [n] ◦ y [n] =
∑

i

∑

j

√
Exi Eyj

Ex Ey
xi [n] ◦ y j [n] (28.3)

where ◦ denotes the correlation operation and E represents either the total energy
of a sequence or the energy of a particular component. Such a component-wise cor-
relation provides more insight into the regulatory relationship. For instance, for the
“two-regulating-one” situation, correlation between the expression profiles of gene
A and gene B may not be strong enough to suggest their relationship because of the
presence of spectral components in gene B induced by gene C. However, the spectral
components of gene B resulting from gene A would exhibit strong correlations to
gene A’s expression profile.

Transcriptional regulation can involve activation or inhibition. In the activation
process, the product of gene A affects the transcription process of gene B such that
the production rate for gene B increases. On the other hand, the inhibition pro-
cess involves gene A’s product decreasing the production of gene B. In [34], we
use the spectral component correlation algorithm to analyze the alpha-synchronized
yeast cell-cycle dataset from [30]. We could detect many regulatory pairs that were
missed by the traditional correlation method as a result of a weak correlation value.
Figure 28.7 shows two known activation pairs. The first one involves genes
YLR256W and YPR191W, and the second one involves genes YBR240C and
YPL258C. As is shown, the two genes in each regulatory pair do not have similar
expression patterns, and their correlation coefficients are –0.1491 and –0.1127 for
the first and second pairs, respectively. However, the lowest frequency components
in each pair have closely matched spectral characteristics. These lowest frequency
components identify the general variations for the profiles, and the time lags between
the activators and activatees clearly are revealed.

The spectral component correlation method allows us to identify strongly oscil-
latory but time-shifted expression pairs by using only the spectral magnitude infor-
mation and ignoring the phase information. Figure 28.8(a) shows the expression pro-
files and spectrums for an activation pair involving genes YAL040C and YER111C.
These two patterns strongly oscillate at around 0.76 rad/s but still have a relatively
low correlation value of –0.3885 because of the time lag between them and be-
cause of other unmatched components. The spectral magnitude plot (the top plot in

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

636 MICROARRAY GENE EXPRESSION DATA ANALYSIS

0

0 2 4 6 8 10

Expression Patterns

12 14 16
−1

1

0

0 2 4 6 8 10

Expression Patterns

12 14 16
−1

1

0

0 2 4 6 8 10 12 14 16
−0.5

0.5

0

0 2 4 6 8 10 12 14 16
−0.6

0.6

0

0 2 4 6

YPR191W

YLR256W YBR240C

YPL258C

Time samples Time samples
8 10 12 14 16

−0.4

0.4

0

0 2 4 6 8 10 12 14 16
−0.5

0.5

Figure 28.7 Left: Known activation regulation involving genes YLR256W and YPR191W.
Right: Known activation regulation involving genes YBR240C and YPL258C. In both the left and
right panels, the top graph shows the gene expression profiles for the regulatory pairs, whereas
the middle and bottom graphs show each of the expression profiles with their corresponding
lowest frequency components.

Figure 28.8(c)) shows that their dominant components are closely matched with each
other. Note that the spectral component for gene YAL040C at frequency of 3.1416
rad/s is not considered dominant because of its large decay factor (see bottom plot
in Figure 28.8(c)). Figure 28.8(b) shows an inhibition regulation involving genes
YBR049C and YGR254W. A careful examination of the dominant component’s
phase angle in these gene pairs suggests that the activatee has a phase lag within
0◦ to 180◦ relative to the activator’s phase angle, whereas the inhibitee has a phase-
lead within 0◦ to 180◦ relative to the inhibitor’s phase angle.

The spectral component correlation method allows us to neglect certain irrele-
vant components that otherwise may corrupt the correlation between the two pat-
terns. Numerous known regulations with weak correlations are caused by such irrel-
evant components. For example, the components at 0.7248 rad/s for gene YAL040C
and at 0.8066 rad/s for gene YER111C (see Table 28.2) clearly dominate over other
components. The component-wise correlation with phase alignment using just this
component is 0.7665. Compared with the original correlation value of –0.3885,
the component-wise correlation strongly suggests the similarity between the two
patterns.

When the component-wise correlation analysis is applied to all 439 known reg-
ulations in the alpha-synchronized yeast cell-cycle dataset, the results indicated that
223 out of 343 activation pairs and 55 out of 96 inhibition pairs have a component-
wise correlations score greater than 0.5 (see Table 28.3). In contrast, the traditional
correlation method only can detect 36 activation pairs and 5 inhibition pairs. Several
of visually dissimilar expression pairs are observed to have very similar dominant
frequency components. For example, among those 307 pairs with traditional correla-
tion coefficients of less than 0.5, 196 of them have component-wise correlation coef-
ficients greater than 0.5. Furthermore, 60 out of these 196 pairs have component-wise

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.6 TEMPORAL GENE EXPRESSION PROFILE ANALYSIS 637

0

0 2 4 6 8 10

Expression Patterns

12 14 16
−2

2

0

0 2 4 6 8 10

Expression Patterns

12 14 16
−1

1

0

0 2 4 6 8 10 12 14 16
−1.1

1.1

0

0 2 4 6 8 10 12 14 16
−0.9

0.9

0

0 2 4 6

YPR111C

YLR040C YBR049C

YPL254W

Time samples Time samples

(a) (b)

8 10 12 14 16
−1.4

1.4

0

0 2 4 6 8 10 12 14 16
−0.5

0.5

0

−4 −3 −2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

Frequency Characteristics

Magnitude

Phase

Damping factor

Magnitude

Phase

Damping factor

0

2

0

−4

4

−2

Normalized angular frequency

(c)

−4

0

0.5

−4 −3 −2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

−4 −3 −2 −1 0 1 2 3 4

Frequency Characteristics

0

1

0

−4

4

−1

Normalized angular frequency

(d)

−2

0

Figure 28.8 (a) Known activation regulation involving genes YAL040C and YER111C. The
dominant frequency components for these two genes are plotted in the middle and the bot-
tom graphs. Although they both strongly oscillate at a frequency around 0.76 rad/s, the time
lag together with other unmatched components makes them have a low correlation value of
–0.3885. (b) Known inhibition regulation involving genes YBR049C and YGR254W with a corre-
lation coefficient of –0.3226. The dominant frequency components for this gene pair are plotted
in the middle and bottom graphs. (c) Frequency characteristics for the regulatory gene pair
YAL040C and YER111C. The dominant frequencies for these two profiles are 0.7248 rad/s and
0.8066 rad/s, respectively. (d) Frequency characteristics for the regulatory gene pair YBR049C
and YGR254W. The dominant frequencies are 0.6395 rad/s and 0.6271 rad/s, respectively.

correlation coefficients greater than 0.9, and the expression patterns in each of these
pairs strongly oscillate at almost identical frequencies. The spectral component cor-
relation method allows the hidden component-wise relationships between two ex-
pression profiles to be revealed, which otherwise are hidden in the traditional corre-
lation analysis.

A strength of the spectral component correlation method is its ability to de-
tect regulatory relationships involving multiple genes. For regulations involving a
single gene being regulated simultaneously by two or more genes with different

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

638 MICROARRAY GENE EXPRESSION DATA ANALYSIS

Table 28.2 Estimated frequency components for expression profiles of genes YAL040C
and YER111C in which components with strong correlation are highlighted

YAL040C YER111C

i σi ωi αi ϕi σi ωi αi ϕi

1 –1.5993 0.0000 0.8670 3.1416 –0.0203 0.8066 0.5167 –2.5294
2 –0.0047 0.7248 0.3177 –0.0226 –0.2575 1.2087 0.2854 –2.8483
3 –0.0729 1.5913 0.1697 –2.3890 –0.3592 1.5766 0.1318 –2.6949
4 –0.1313 3.0256 0.2068 0.6806 –0.0869 2.6468 0.1626 –0.0445
5 –3.1281 3.1416 1.1970 0.0000 — — — —

expression frequencies, we can identify them by checking for regulators’ frequen-
cies from the expression profile of the gene being regulated. Figure 28.9 shows two
known activation regulations with the common gene YPR120C as an activatee. It
reveals that the first regulation has its expression profiles correlated at a frequency of
around 1.48 rad/s, whereas the second regulation has its profiles correlated at around
0.76 rad/s. Table 28.4 lists eight “n-regulating-one” activation sets identified using
the spectral component correlation method.

To see how the spectral component correlation method can be used to infer causal
relationship, the genes YBR240C and YAL040C are used as references to find all

Table 28.3 Results for the two correlation methods applied to all 439 known regulatory
pairs in the alpha-synchronized yeast cell-cycle dataset. (a) Statistics for the 343
activation pairs. (b) Statistics for the 96 inhibition pairs

Traditional Traditional
a Correlation < 0.5 Correlation > 0.5 Total

Component-wise
111 9 120

Correlation < 0.5

Component-wise
196 27 223

Correlation > 0.5

Total 307 36 343

Traditional Traditional
b Correlation <–0.5 Correlation >–0.5 Total

Component-wise
1 40 41

Correlation >–0.5

Component-wise
4 51 55

Correlation <–0.5

Total 5 91 96

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.6 TEMPORAL GENE EXPRESSION PROFILE ANALYSIS 639

YGR274C >> YPR120C YAL040C >> YPR120C

YGR274C

(a) (b)

(c) (d)

YAL040C

YPR120C YPR120C

0

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

−1

1

0

0 2 4 6 8 10 12 14 16
−2

2

0.5

–4 –3 –2 –1 0 1 2 3 4
0

1

4

–4 –3 –2 –1 0 1 2 3 4
0

2

0

–4 –3 –2 –1 0 1 2 3 4
–4

0.5

0

–0.5

0 2 4 6 8 10 12 14 16

1

0

1

–1

0 2 4 6 8 10 12 14 16

1.1

0

–1.1

0 2 4 6 8 10 12 14 16

1

0

–1

4

0

–4
–4

–3 –2 –1 0 1 2 3 4

4

Figure 28.9 Two activation regulations with gene YPR120C as an activatee. (a) Activation
regulation with gene YGR274C as an activator. (b) Activation regulation with gene YAL040C
as an activator. (c) Correlated frequency components for the first pair. (d) Correlated frequency
components for the second pair.

other genes in the Filkov’s dataset [10], which has a component-wise correlation
coefficient of greater than 0.7. There are 55 out of 288 genes for YBR240C and 59
out of 288 genes for YAL040C that satisfy this threshold. These two sets of genes
with their scores are shown in Figure 28.10, and their oscillatory properties clearly
are revealed when they are arranged such that their phase is in descending order.
Within these genes, one known activation regulation of gene YBR240C is contained
in the first set and three for gene YAL040C are contained in the second set. Note that
genes below the reference gene have their phases lag by 0◦ to 180◦ relative to the
reference gene’s phase, and they can be considered as potential activated candidates.
On the other hand, genes above the reference gene have their phases lead by 0◦ to
180◦, and they can be considered potential inhibited candidates. If we look at the
known activatees for the two examples shown in Figure 28.10, then we see that they
all are located below their corresponding activators.

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

640 MICROARRAY GENE EXPRESSION DATA ANALYSIS

Table 28.4 Various activation regulation sets. Each set contains a common activatee,
which has two different correlated frequency components

Traditional Component-Wise Activator Activatee
Activator Activatee Correlation Correlation Frequency Frequency

YKL109W YGL167C 0.2877 0.9237 0.6505 0.6842
YLR433C YGL167C 0.1980 0.5287 1.3502 1.6359
YHR079C YJL034W –0.6594 0.9894 0.7063 0.7205
YPL085W YJL034W 0.2717 0.6120 1.7581 1.9513
YKL109W YLL041C 0.3792 0.9917 0.5339 0.5230
YBL021C YLL041C 0.2586 0.9564 1.3748 1.3725
YGL237C YLL041C –0.4687 0.8484 0.6456 0.5230
YOR358W YLL041C 0.3800 0.8008 1.2639 1.3725
YLR182W YLR286C –0.1208 0.8984 1.1082 1.0378
YLR071C YLR286C 0.0349 0.6662 0.3324 0.4353
YLR131C YLR286C –0.2762 0.6535 0.5338 0.4353
YEL009C YOR202W 0.0554 0.9276 1.2653 1.1670
YRL082C YOR202W 0.6075 0.8912 0.3199 0.3517
YEL009C YPR035W –0.3737 0.9541 1.2653 1.2241
YFL021W YPR035W –0.2153 0.9002 0.4095 0.3662
YGR274C YPR120C 0.4075 0.8541 1.5266 1.4566
YAL040C YPR120C –0.4331 0.7288 0.7248 0.8120
YLR256W YPR191W –0.1491 0.9173 0.7762 0.7295
YGL237C YPR191W –0.7333 0.8821 0.6456 0.7295
YBL021C YPR191W –0.2231 0.7569 1.3748 1.4294
YOR358W YPR191W 0.0937 0.7209 0.6227 0.7295
YKL109W YPR191W 0.2663 0.6254 0.5339 0.7295

28.7 CYCLIC GENE EXPRESSION PROFILES DETECTION

Oscillation results in genetic and metabolic networks as a result of various modes of
cellular regulation. These rhythmic processes occur at all levels of biological orga-
nization with widely varying periods. Well-known examples of biological rhythms
include cell division [20, 25, 30] and circadian rhythms [6, 27]. Rhythmic cellular
processes are regulated by different gene products and can be measured through a se-
ries of DNA microarray experiments. If the expression patterns of a group of genes
are measured over several time points, then we obtain a time series gene expression
profile describing the rhythmic behaviors of the genes under study.

A well-known set of gene expression time series datasets is that of the yeast
(Saccharomyces cerevisiae) from Spellman et al. [30]. In this set of data, the
genome-wide mRNA levels for 6178 yeast open reading frames are monitored
simultaneously using several different methods of synchronization including an
alpha-factor-mediated G1 arrest, which covers approximately two cell-cycle peri-
ods with measurements at 7 minute intervals for 119 minutes with a total of 18 time
points, a temperature-sensitive cdc15 mutation to induce a reversible M-phase arrest
(24 time points taken every 10 minutes covering approximately 3.5 cell-cycle

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.7 CYCLIC GENE EXPRESSION PROFILES DETECTION 641

Figure 28.10 Genes in the Filkov’s dataset have component-wise correlation coefficients,
relative to gene YBR240C (left) and gene YAL040C (right), greater than 0.7. The known activation
regulations with genes YBR240C and YAL040C as activators are highlighted.

periods), a temperature-sensitive cdc28 mutation to arrest cells in G1 phase re-
versibly (17 time points taken every 10 minutes covering approximately 2 cell-cycle
periods), and finally, an elutriation synchronization to produce the elutriation dataset
of 14 time points taken every 30 minutes covering approximately 1 cell-cycle period.
Figure 28.11 shows some periodic (top panel) and random (bottom panel) profiles
from this dataset.

The detection of gene expression profiles that exhibit cyclic behavior is a difficult
problem for several reasons. First, a gene expression time series profile usually con-
tains few time points. It is not uncommon to see expression profiles that are less than
10 time points long. Second, the number of cycles within a profile is usually low.
For example, the 14-time-point elutriation dataset of Spellman et al. [30] contains
only one cell-cycle. Third, gene expression data usually contains a lot of missing
values, and these missing values usually need to be estimated from the dataset in
advance. Fourth, the time points do not need to be spaced at regular intervals, re-
sulting in the problem of detecting periodicity in unevenly sampled time series data.
Finally, gene expression data is notoriously noisy. Recently, we have proposed sev-
eral effective computational techniques to detect periodic expression profiles based
on: (i) singular spectrum analysis (SSA) and autoregressive (AR)-based spectral

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

O
R

F
=

Y
M

R
00

3W

(c
)

(d
)

(c
)

(d
)

O
R

F
=

Y
H

L0
11

C
O

R
F

=
Y

E
R

16
9W

O
R

F
=

Y
D

R
22

4C

O
R

F
=

Y
JL

15
0W

(a
)

1

0.
5 0

–0
.5 –1

–1
.5 –1

–0
.8

–0
.6

–0
.4

–0
.2

–0
.6

–0
.4

–0
.2

–0
.3

–0
.2

–0
.10.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7 0

0.
2

0
20

40
60

80
10

0

0
20

40
60

80
10

0
20

40
60

80
10

0

12
0

0
20

40
60

80
10

0
12

0
0

20
40

60
80

10
0

12
0

14
0

16
0

0
50

–1

–0
.50

0.
51

10
0

15
0

20
0

25
0

30
0

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6 0

–0
.40

0.
2

0.
4

–0
.2

–0
.40

0.
2

0.
4

–0
.2

–0
.6

–0
.4

–0
.20.
2

0.
4

0.
6 0

0
20

40
60

80
10

0
0

20
40

60
80

10
0

(b
)

(a
)

(b
)

O
R

F
=

Y
K

L0
65

W
O

R
F

=
Y

N
L3

32
W

O
R

F
=

Y
N

L1
54

C

F
ig

u
re

28
.1

1
Le

ft
pa

ne
l:

hi
gh

ly
pe

rio
di

c
ex

pr
es

si
on

pr
ofi

le
s.

R
ig

ht
pa

ne
l:

ra
nd

om
pr

ofi
le

s
fr

om
ye

as
td

at
as

et
s

of
S

pe
llm

an
et

al
.[

30
].

P
ro

fil
es

(a
)t

hr
ou

gh
(d

)c
or

re
sp

on
d

to
th

e
al

ph
a,

cd
c1

5,
cd

c2
8,

an
d

el
ut

ria
tio

n
da

ta
se

ts
,r

es
pe

ct
iv

el
y.

T
he

th
in

cu
rv

es
in

th
e

fig
ur

e
ar

e
th

e
in

te
rp

ol
at

ed
pr

ofi
le

s
w

ith
th

e
m

is
si

ng
va

lu
es

fil
le

d
in

.T
he

x-
ax

is
sh

ow
s

th
e

tim
e

po
in

ts
,a

nd
th

e
y-

ax
is

sh
ow

s
th

e
m

ea
su

re
d

ex
pr

es
si

on
va

lu
es

.

642

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.7 CYCLIC GENE EXPRESSION PROFILES DETECTION 643

estimation (SSA-AR), (ii) spectral estimation of short, unevenly sampled profiles
by signal reconstruction, and (iii) statistical hypothesis testing for periodic signal
detection. These techniques have enabled us to identify reliably short, periodically
expressed gene profiles that are involved in the cell-cycle process.

28.7.1 SSA-AR Spectral Estimation

In [8], we proposed a parametric spectral estimation technique for short time series
profiles based on SSA and AR modeling. The AR model for a time series s(n) is
given by

s(n) = −
P∑

p=1

aps(n − p) + u(n)

where ap is the AR coefficients, P is the order of the AR model, and u(n) is a
white-noise sequence. The AR model-based power spectrum estimation allows better
frequency resolution to be obtained by fitting a relatively high order AR model to the
data sequence. However, the AR spectrum is sensitive to noise. When the signal-
to-noise ratio is low, the accuracy of the parameter estimation would be reduced
substantially. Using a higher order AR model to improve the frequency resolution
also would induce the appearance of spurious peaks. To remedy this problem, we
proposed preprocessing the profiles using SSA to extract the underlying trend from
the short and noisy time series.

SSA performs a singular value decomposition (SVD) on the trajectory matrix
obtained from the original time series. Let each expression profile be a time series
{s1, s2, . . . , sn, . . . , sN }, and the trajectory matrix X M,K can be obtained from the
original series by sliding a window of length M(M ≤ N/2), K = N − M + 1,

X M,K = (xi j = si+ j−1) =

⎡

⎢
⎢
⎢
⎣

s1 s2 · · · sK

s2 s3 · · · sK+1
...

... · · · ...
sM sM+1 · · · sN

⎤

⎥
⎥
⎥
⎦

(28.4)

The singular values of the SVD of the matrix R = X X T then can be grouped into two
separate components: a trend component and a noise component. With the proper
selection of singular values, the trend curve that represents the dominant spectral
component can be reconstructed from the original expression profile. Using SSA
and AR, periodic profiles can be detected as the reconstructed profiles that exhibit
strong dominant frequency in the AR spectrum (i.e., those that satisfy a power ratio
threshold).

The SSA-AR spectral estimation-based technique is applied to the expression data
of the IDC of Plasmodium falciparum. The data contains the expression profiles
of 5080 oligonucleotides measured at 46 time points spanning 48 hours during the
IDC with one-hour time resolution for the HB3 strain [3]. Figure 28.12 shows the

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

644 MICROARRAY GENE EXPRESSION DATA ANALYSIS

0.5
AR spectrum without SSA prefiltering
AR spectrum with SSA prefiltering

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5

Normalized frequency

A
R

 p
ow

er
 s

pe
ct

ru
m

2 2.5 3

Figure 28.12 The AR spectra of the expression profile of DHFR-TS with and without SSA
filtering.

AR spectrum of one oligonucleotide dihydrofolate reductase-thymidylate synthase
(DHFR-TS) in this dataset before and after SSA preprocessing. One can see that
spurious spectra are suppressed after SSA filtering. By using this method, we could
detect 4496 periodic profiles. Compared with Bozdech et al. [3], an additional 777
periodic oligonucleotides are detected using our algorithm.

Because the function of a gene is related to the initial phase of its expression
profile, we have ordered the expression profiles of the 4496 periodic oligonucleotides
according to their peak time points of expression profiles as in Figure 28.13. The
phaseogram shows a continuous cascade of gene expressions, which correspond to
the developmental stages throughout the IDC (i.e., ring, trophozoite, and schizont
stages). According to the sharp transitions of ring-to-trophozoite (at the 17-h time
point), trophozoite-to-schizont (at the 29-h time point), and schizont-to-rings stages
(at the 45-h time point), the 4496 periodic genes could be categorized into four stages
based on the peak time points of their expression profiles. Table 28.5 compares the
classification results of the oligonucleotides assigned to these stages by our method
with those in Bozdech et al. [3]. As is shown, more genes can be identified using our
method.

28.7.2 Spectral Estimation by Signal Reconstruction

In many microarray time series data, the microarray experiments are not carried out
at regular sampling intervals [5, 30]. Moreover, missing values are a common oc-
currence in microarray data. Time series profiles with missing values can be viewed
as unevenly sampled. The unevenly sampled profiles make spectral analysis a chal-
lenging task. In [17], we proposed a new spectral estimation algorithm for unevenly

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.7 CYCLIC GENE EXPRESSION PROFILES DETECTION 645

Figure 28.13 The phaseogram of the transcriptome of the IDC of P. falciparum. 4496 genes
are ordered along the y-axis in the order of the time of their peak expression.

sampled gene expression data. The method is based on signal reconstruction in a
shift-invariant signal space in which a direct spectral estimation procedure is devel-
oped using the B-spline basis.

Let V (φ) be the shift-invariant signal space

V (φ) = { f : f (x) =
∑

k∈Z
ckφ(x − k)} (28.5)

where the coefficients {ci } are related to the choice of basis function φ. If φ is chosen
to be the B-spline interpolating functions, then we obtain an explicit formulation of

Table 28.5 Classification Results of Oligonucleotides in Three
Different Stages

Stages Our Method Bozdech et al. [3]

Ring/early trophozoite 1970 1563
Trophozoite/early schizont 1524 1296
Schizont 709 625
Early ring 293 235

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

646 MICROARRAY GENE EXPRESSION DATA ANALYSIS

the power spectrum density (PSD) as

Pxx (ω) = 1

A2 − A1

∣
∣
∣
∣
∣
∣

A2+�−1∑

k=A1−�+1

cke−i2πωk �

φ(ω)

∣
∣
∣
∣
∣
∣

2

(28.6)

where φ̂(ω) = [
sin (πω)

/
πω

]N+1
. Our method allows the PSD of an unevenly sam-

pled signal to be computed directly. Because the periodogram of a microarray time
series profile from a periodically expressed gene must contain a peak corresponding
to its dominant frequency, we can perform a statistical test on the PSD to determine
whether a time series profile is periodic or random. We applied the method on the
gene expression dataset of P. falciparum and showed that it gives a good estimate of
the number of periodic genes.

28.7.3 Statistical Hypothesis Testing for Periodic Profile Detection

The problem of deciding whether a time series is random or periodic can be cast as a
statistical decision problem using hypothesis testing. Given a time series y of length
N , the periodogram I (ω) is first computed as follows:

I (ω) = 1

N

∣
∣
∣
∣
∣

N∑

n=1

yne− jωn

∣
∣
∣
∣
∣

2

ω ∈ [0, π] (28.7)

and I (ω) is evaluated at the discrete normalized frequencies ωl = 2πl/N , l =
0, 1, . . . , a, where a = [(N − 1)/2] and [x] denotes the integer part of x . If a time se-
ries has a significant sinusoidal component with frequency ωk , then the periodogram
will exhibit a peak at that frequency ωk . An exact test of the significance of the spec-
tral peak can be done using the Fisher g-statistic g = maxl I (ωl)

/∑a
l=1 I (ωl).

Under the Gaussian noise assumption, the exact distribution of the g-statistic un-
der the null hypothesis (that the spectral peak is insignificant) is given by

P(g > x) =
b∑

k=1

(−1)k−1 a!

k!(a − k)
(1 − kx)a−1 (28.8)

where b is the largest integer less than 1/x and x is the observed value of the
g-statistic. Equation (28.28.8) yields a p-value that allows us to test whether a given
time series behaves like a random sequence. A large value of g indicates a strong
periodic component and leads us to reject the null hypothesis.

Although the exact distribution of the Fisher g-statistic is available analytically,
we found that care must be taken when applying it in practice. Figure 28.14 shows
the exact distribution and the empirical distribution for signal length N = 10. The
deviation from the exact distribution can be seen clearly. Nevertheless, for the larger
value of N (i.e., N > 40), no significant deviation can be observed.

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

28.8 SUMMARY 647

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

x

P
(g

>
x)

0.6 0.7 0.8 0.9 1

Figure 28.14 Empirically computed distribution (dashed curve) versus theoretical distribution
(solid curve) for a short length signal (N = 10).

In [18], we performed a series of experiments with simulated signals to investi-
gate the statistical power of the Fisher test as a function of noise distribution, signal
length, signal-to-noise ratio, and the false discovery rate. We found that the devia-
tion from the theoretical null distribution can be significant when the signal length
is shorter than 40 time points. Moreover, when the signal does not cover an integer
number of periods, a significant drop in the statistical power of the test was ob-
served. In this case, a much longer signal is needed for the test to return a reliable
result. These findings indicate that in high likelihood, the number of periodic gene
expression profiles can be underestimated severely for a short length signal (40
time points) as is the case for many publicly available gene expression datasets. Al-
though our study shows that the Fisher test may be unreliable for a short signal, the
Fisher g-statistic, on the other hand, has been observed to provide a useful ranking of
periodic signals. Strongly periodic signals are found to rank highly, whereas random
sequences have a low ranking. In [17], we use this ranking to discover the periodic
gene expression profiles in the P. falciparum dataset by analyzing the trend of the
sorted g-statistic (see Figure 28.15) and showed that the number of periodic profiles
in the complete dataset should be around 3700 to 4000, a result in agreement with
several published results [3, 13].

28.8 SUMMARY

Microarray technology has made possible the profiling of gene expressions of the
entire genome in a single hybridization experiment. By studying the expression

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

648 MICROARRAY GENE EXPRESSION DATA ANALYSIS

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1000 2000 3000 4000

sorted profiles

5000 6000 7000

G
-s

ta
tis

tic

Figure 28.15 Sorted g-statistic values of P. falciparum. There is a change in the trend of the
ranked g-statistic values at around the 4000 sorted profiles, indicating that two classes of profiles
(i.e., periodic/aperiodic) are present in the dataset.

profiles of many genes, scientists can gain important insights into gene functions and
their interaction in many cellular processes. In this chapter, we present an overview
of microarray technology, microarray image analysis and data extraction, and time
series gene expression profile analysis. First, we give a brief description of microar-
ray technology and describe how the expression ratio data can be extracted from
microarray images. We then discuss how the ratio data are processed prior to sub-
sequent analysis. Because gene expression data usually suffer from a missing value
problem, missing value imputation is an important preprocessing step in gene expres-
sion data analysis. We describe an imputation technique called POCSIMPUTE that
can use gene-wise and array-wise correlation as well as the biological phenomenon
of synchronization loss in microarray experiments. Temporal gene expression pro-
files obtained from performing a series of microarray experiments in discrete time
points are valuable in the study of dynamic biological process such as the cell cycle
or gene regulation. We describe our work in detecting gene regulatory relationships
based on pair-wise spectral component correlation analysis of time series gene ex-
pression profiles. Finally, we present several approaches that we have developed in
detecting cyclic gene expression profiles.

ACKNOWLEDGMENTS

We are grateful to Professor Richard Mott for his valuable comments on the
manuscript, and to Professor Mourad Elloumi for some interesting discussions.

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

REFERENCES 649

REFERENCES

1. Z. Bar-Joseph, S. Farkash, D.K. Gifford, I. Simon, and R. Rosenfeld. Deconvolving
cell cycle expression data with complementary information. Bioinformatics, 20:i23–i30,
2004.

2. T.H. Bø, B. Dysvik, and I. Jonassen. LSimpute: Accurate estimation of missing values in
microarray data with least squares method. Nucleic Acids Res, 32:e34, 2004.

3. Z. Bozdech, M. Llinas, B.L. Pulliam, E.D. Wong, J.C. Zhu, and J.L. DeRisi. The tran-
scriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS
Biology, 1:1–16, 2003.

4. Y. Chen, E.R. Dougherty, and M.L. Bittner. Ratio-based decisions and the quantitative
analysis of cDNA microarray images. J. Biomed Optic, 2:364–374, 1997.

5. S. Chu, J.L. DeRisi, M.B. Eisen, J. Mulholland, D. Botstein, P.O. Brown, I. Herskowitz.
The transcriptional program of sporulation in budding yeast. Science, 282:699–705, 1998.

6. S.K. Crosthwaite. Circadian clocks and natural antisense RNA. FEBS Lett, 567:49–54,
2004.

7. J.L. DeRisi, V.R. Lyer, and P.O. Brown. Exploring the metabolic and genetic control of
gene expression on a genomic scale. Science, 278:680–686, 1997.

8. L. Du, S. Wu, A.W.C. Liew, D.K. Smith, and H. Yan. Spectral analysis of microarray
gene expression time series data of Plasmodium Falciparum. Int J Bioinform Res Appl,
4(3):337–349, 2008.

9. M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Botstein. Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad Sci U S A, 95:14863–14868, 1998.

10. V. Filkov, S. Skiena, and J. Zhi. Analysis techniques for microarray time series data.
J Comp Biol, 9(2):317–330, 2002.

11. X. Gan, A.W.C. Liew, and H. Yan. Microarray missing data imputation based on a set the-
oretic framework and biological consideration. Nucleic Acids Res, 34(28.5):1608–1619,
2006.

12. A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz,
D. Botstein, and P.O. Brown. Genomic expression programs in the response of yeast cells
to environmental changes. Mol Biol Cell, 11:4241–4257, 2000.

13. E.F. Glynn, J. Chen, A.R. Mushegian. Detecting periodic patterns in unevenly spaced
gene expression time series using Lomb–Scargle periodograms. Bioinformatics, 22:310–
316, 2006.

14. H. Kim, G.H. Golub, and H. Park. Missing value estimation for DNA microarray gene
expression data:local least squares imputation. Bioinformatics, 21:187–198, 2005.

15. C. Kooperberg, T.G. Fazzio, J.J. Delrow, and T. Tsukiyama. Improved background cor-
rection for spotted DNA microarrays. J Comp Biol, 9(28.1):55–66, 2002.

16. A.W.C. Liew, H. Yan, and M. Yang. Robust adaptive spot segmentation of DNA microar-
ray images. Pattern Recogn, 36(28.5):1251–1254, 2003.

17. A.W.C. Liew, J. Xian, S. Wu, D. Smith, and H. Yan. Spectral estimation in unevenly sam-
pled space of periodically expressed microarray time series data. BMC Bioinformatics,
8:137, 2007.

18. A.W.C. Liew, N.F. Law, X.Q. Cao, and H. Yan. Statistical power of Fisher test for the
detection of short periodic gene expression profiles. Pattern Recogn, 42(28.4):549–556,
2009.

P1: OSO
c28 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

650 MICROARRAY GENE EXPRESSION DATA ANALYSIS

19. D.J. Lockhart and E.A. Winzeler. Genomics, gene expression and DNA arrays. Nature,
405:827–846, 2000.

20. J.M. Mitchison. Growth during the cell cycle. Int Rev Cytol, 226:165–258, 2003.

21. S. Oba, M. Sato, I. Takemasa, M. Monden, K. Matsubara, and S. Ishii. A Bayesian missing
values estimation method for gene expression profile data. Bioinformatics, 19:2088–2096,
2003.

22. M. Ouyang, W.J. Welsh, and P. Georgopoulos. Gaussian mixture clustering and imputa-
tion of microarray data. Bioinformatics, 20:917–923, 2004.

23. S. Panda, M.P. Antoch, B.H. Miller, A.I. Su, A.B. Schook, M. Straume, P.G. Schultz, S.A.
Kay, J.S. Takahashi, and J.B. Hogenesch. Coordinated transcription of key pathways in
the mouse by the circadian clock. Cell, 109:307–320, 2002.

24. A.C. Pease, D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, and S.P. Fodor. Light-
generated oligonucleotide arrays for rapid DNA sequence analysis. PNAS, 91:5022–5026,
1994.

25. G. Rustici, J. Mata, K. Kivinen, P. Lió, C.J. Penkett, G. Burns, J. Hayles, A. Brazma,
P. Nurse, and J. Bähler. Periodic gene expression program of the fission yeast cell cycle.
Nat Genet, 36:809–817, 2004.

26. M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science, 270:467–470, 1995.

27. U. Schibler and F. Naef. Cellular oscillators: Rhythmic gene expression and metabolism.
Cur Opin Cell Biol, 17(28.2):223–229, 2005.

28. K. Shedden and S. Cooper. Analysis of cell-cycle-specific gene expression in human cells
as determined by microarrays and double-thymidine block synchronization. Proc Natl
Acad Sci U S A, 99:4379–4384, 2002.

29. G.K. Smyth and T.P. Speed. Normalization of cDNA microarray data. Methods, 31:265–
273, 2003.

30. P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown,
D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of
the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 9:3273–
3297, 1998.

31. O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein,
and R.B. Altman. Missing values estimation methods for DNA microarrays. Bioinformat-
ics, 17:520–525, 2001.

32. Y.H. Yang, M.J. Buckley, S. Dudoit, and T.P. Speed. Comparison of methods for image
analysis in cDNA microarray data. Technical Report 584, Department of statistics, UC
Berkeley, 2000.

33. Y.H. Yang, S. Dudoit, P. Luu, D.M. Lin, V. Peng, J. Ngai, and T.P. Speed. Normalization
for cDNA microarray data: A robust composite method addressing single and multiple
slide systematic variation. Nucleic Acids Res, 30(28.4):e15, 2002.

34. L.K. Yeung, L.K. Szeto, A.W.C. Liew, and H. Yan. Dominant spectral component anal-
ysis for transcriptional regulations using microarray time-series data. Bioinformatics,
20(28.5):742–749, 2004.

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

29
BICLUSTERING OF
MICROARRAY DATA

Wassim Ayadi and Mourad Elloumi

29.1 INTRODUCTION

One of the main challenges in computational molecular biology is the design of effi-
cient algorithms capable of analyzing biological data, like microarray data. Analysis
of gene expression data obtained from microarray experiments can be made through
biclustering. Indeed, gene expression data are usually represented by a data matrix
M (see Table 29.1), where the ith row represents the ith gene, the jth column repre-
sents the jth condition and the cell mi j represents the expression level of the ith gene
under the jth condition.

In general, subsets of genes are coexpressed only under certain conditions but
behave almost independently under others. Discovering such coexpressions can be
helpful to discover genetic knowledge such as genes annotation or genes interaction.
Hence, it is very interesting to make a simultaneous clustering of rows (genes) and
of columns (conditions) of the data matrix to identify groups of rows coherent with
groups of columns (i.e., to identify clusters of genes that are coexpressed under clus-
ters of conditions, or clusters of conditions that make clusters of genes coexpress).
This type of clustering is called biclustering [9]. A cluster made thanks to a bicluster-
ing is called bicluster. Hence, a bicluster of genes (respectively conditions) is defined
with respect to only a subset of conditions (respectively genes). Thus, a bicluster is a
subset of genes showing similar behavior under a subset of conditions of the original
expression data matrix. Let us note that a gene/condition can belong to more than
one bicluster or to no bicluster.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

651

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

652 BICLUSTERING OF MICROARRAY DATA

Table 29.1 Gene expression data matrix

Condition1 · · · Condition j · · · Conditionm

Gene1 m11 · · · m1 j · · · m1m

· · · · · · · · · · · · · · · · · ·
Genei mi1 · · · mi j · · · mim

· · · · · · · · · · · · · · · · · ·
Genen mn1 · · · mnj · · · mnm

In other words, a bicluster can be defined as follows: Let I = {1, 2, . . . , n} be a
set of indices of n genes, J = {1, 2, . . . , m} be a set of indices of m conditions, and
M(I, J) be a data matrix associated with I and J . A bicluster associated with the
data matrix M(I, J) is a couple (I ′, J ′) such that I ′ ⊆ I and J ′ ⊆ J .

Actually, biclustering is a special case of clustering. Indeed, in biclustering, genes
are clustered according to their expression levels under several conditions, not nec-
essarily all the conditions. Although in clustering, genes are clustered according to
their expression levels under all the conditions. Similarly, in biclustering, conditions
are clustered according to the expression levels of several genes not necessarily all
the genes.

The biclustering problem can be formulated as follows: Given a data matrix M ,
construct a bicluster Bopt associated with M such that:

f (Bopt) = max
B∈BC(M)

f (B) (29.1)

where f is an objective function measuring the quality (i.e., degree of coherence) of
a group of biclusters and BC(M) is the set of all the possible groups of biclusters
associated with M .

Clearly, biclustering is a highly combinatorial problem with a search space size
O(2|I |+|J |). In its general case, biclustering is Nondeterministic Polynomial (NP)-
hard [9, 22].

29.2 TYPES OF BICLUSTERS

A bicluster can occur in one of the following cases:

1. A bicluster with constant values is a bicluster in which all the values are equal
to a constant c:

mi j = c (29.2)

2. Bicluster with constant values on rows or columns:
� A bicluster with constant values on rows is a bicluster in which all the values

can be obtained by using one of the following equations:

mi j = c + ai (29.3)

mi j = cai (29.4)

where c is a constant and ai is the adjustment for the row i , 1 ≤ i ≤ n.

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

29.3 GROUPS OF BICLUSTERS 653

� A bicluster with constant values on columns is a bicluster in which all the
values can be obtained by using one of the following equations:

mi j = c + b j (29.5)

mi j = cb j (29.6)

where c is a constant and b j is the adjustment for the column j , 1 ≤ j ≤ m.

3. A bicluster with coherent values is a bicluster that can be obtained by using
one of the following equations:

mi j = c + ai + b j (29.7)

mi j = cai b j (29.8)

4. A bicluster with linear coherent values is a bicluster in which all the values can
be obtained by using the following equation:

mi j = cai + b j (29.9)

5. A bicluster with a coherent evolution is a bicluster in which all the rows (re-
spectively columns) induce a linear order across a subset of columns (respec-
tively rows).

29.3 GROUPS OF BICLUSTERS

A group of biclusters can occur in one of the following cases [22]:

1. A single bicluster (Figure 29.1(a))

2. An exclusive rows and columns group of biclusters (Figure 29.1(b))

3. A nonoverlapping group of biclusters with a checkerboard structure (Figure
29.1(c))

4. An exclusive rows group of biclusters (Figure 29.1(d))

5. An exclusive columns group of biclusters (Figure 29.1(e))

6. A nonoverlapping group of biclusters with a tree structure (Figure 29.1(f))

7. A nonoverlapping nonexclusive group of biclusters (Figure 29.1(g))

8. An overlapping group of biclusters with a hierarchical structure (Figure
29.1(h))

9. An arbitrarily positioned overlapping group of biclusters (Figure 29.1(i))

A natural way to visualize a group of biclusters consists in assigning a different
color to each bicluster and of reordering the rows and the columns of the data matrix
so that we obtain a data matrix with colored blocks in which each block represents a
bicluster.

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

654 BICLUSTERING OF MICROARRAY DATA

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Legend:

: Biclusters

Figure 29.1 Possible structures of a group of biclusters in a data matrix.

29.4 EVALUATION FUNCTIONS

An evaluation function is an indicator of the coherence degree of a bicluster in a data
matrix. There are several evaluation functions of a bicluster [2, 3, 8, 9, 13, 17, 34].
The most popular evaluation function is the Mean Squared Residue (MSR) func-
tion (EMSR) proposed in [9] (Equation 29.10). It is used by several algorithms like
[2, 6, 8, 12, 24, 37, 39]. EMSR represents the variance of a particular subset of rows
under a particular subset of columns with respect to the coherence.

EMSR(I ′, J ′) =
∑

i∈I ′, j∈J ′(mi j − mi J ′ − mI ′ j + mI ′ J ′)2

|I ′||J ′| (29.10)

where m I ′ J ′ is the average over the whole bicluster, mI ′ j is the average over the
column j , and mi J ′ is the average over the row i .

A low (respectively high) EMSR value (i.e., close to 0 [respectively higher than
a fixed threshold]) indicates that the bicluster is strongly (respectively weakly) co-
herent. If a bicluster has a value of EMSR lower than a given threshold δ, then it is
called δ−bicluster. However, the EMSR function is deficient to assess certain types
of biclusters [1, 28, 34].

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

29.4 EVALUATION FUNCTIONS 655

Angiulli et al. [2] and, Divina and Aguilar-Ruiz [13] propose using EMSR, the row
variance ERV, and the volume EV of a bicluster. The row variance ERV is defined as
follows:

ERV(I ′, J ′) =
∑

i∈I ′, j∈J ′ (mi j − mi J ′)2

|I ′||J ′| (29.11)

Biclusters that contain genes with large changes in their expression values under dif-
ferent conditions are characterized by high values of the row variance. It follows that
the row variance can be used to guarantee that a bicluster captures genes exhibiting
coherent trends under some subset of conditions.

The volume EV(I ′, J ′) of a bicluster (I ′, J ′) is used to maximize the size of this
bicluster. It is defined by:

EV(I ′, J ′) = |I ′||J ′| (29.12)

Das et al. [11] propose finding the maximum-sized bicluster that does not exceed
a certain coherence constraint. The coherence is expressed as an MSR score. Hence,
Das et al. try to maximize the volume EV(I ′, J ′) (Equation 29.12) and to find biclus-
ters with a value of EMSR lower than a given threshold δ, δ ≥ 0 (Equation 29.10).

Teng and Chan [34] propose the Average Correlation Value (ACV) function,
EACV. It is defined by the following equation:

EACV(I ′, J ′) = max

{ ∑

i∈I ′

∑

j∈I ′
ri j − |I ′|

|I ′|(|I ′|−1) ,

∑

k∈J ′

∑

l∈J ′
rkl − |J ′|

|J ′|(|J ′ |−1)

}

(29.13)

where ri j (i �= j) is the Pearson’s correlation coefficient associated with the row
indices i and j in the bicluster (I ′, J ′) [26], and rkl (k �= l) is the Pearson’s correlation
coefficient associated with the column indices k and l in the bicluster (I ′, J ′).

A high (respectively low) EACV value (i.e., close to 1 [respectively close to 0])
indicates that the bicluster is strongly (respectively weakly) coherent. However, the
performance of the EACV function decreases when noise exists in the data matrix [8].

Cheng et al. [8] propose using the EACV and EMSR functions. A bicluster with a
high coherence has a low EMSR value and a high EACV value.

Ayadi et al. [3] propose the Average Spearman’s Rho (ASR) function, EASR. It is
defined by the following equation:

EASR(I ′, J ′) = 2 max

{ ∑

i∈I ′

∑

j∈I ′, j≥i+1

ρi j

|I ′|(|I ′|−1) ,

∑

k∈J ′

∑

l∈J ′,l≥k+1

ρkl

|J ′|(|J ′ |−1)

}

(29.14)

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

656 BICLUSTERING OF MICROARRAY DATA

where ρi j (i �= j) is the Spearman’s rank correlation associated with the row indices i
and j in the bicluster (I ′, J ′) [19], and ρkl (k �= l) is the Spearman’s rank correlation
associated with the column indices k and l in the bicluster (I ′, J ′).

Let us note that the values of the Spearman’s rank correlation belong to [−1. .1].
A high (respectively low) Spearman’s rank correlation value (i.e., close to 1 [respec-
tively close to –1]) indicates that the two vectors are strongly (respectively weakly)
coherent [19]. So, the values of the EASR function belong also to [–1. .1]. Hence,
a high (respectively low) EASR value (i.e., close to 1 [respectively close to –1]) in-
dicates that the bicluster is strongly (respectively weakly) coherent. Furthermore, it
has been shown that Spearman’s rank correlation is less sensitive to the presence of
noise in data. Since the EASR function is based on Spearman’s rank correlation, EASR

is also less sensitive to the presence of noise in data.

29.5 SYSTEMATIC AND STOCHASTIC BICLUSTERING ALGORITHMS

As we mentioned in the introduction of this chapter, the biclustering problem is NP-
hard [9, 22]. There are several heuristic algorithms to construct a group of biclusters
close to the optimal one.

We distinguish two main classes of biclustering algorithms: systematic search
algorithms and stochastic search algorithms, also called metaheuristic algorithms.

By using a systematic search algorithm, we adopt one of the following ap-
proaches:

1. Divide-And-Conquer (DAC) approach: By adopting this approach, we start
with a bicluster representing the whole data matrix then we partition this ma-
trix in two submatrices to obtain two biclusters. We reiterate recursively this
process until we obtain a certain number of biclusters verifying a certain num-
ber of properties. The advantage of this approach is that it is fast; however,
its biggest disadvantage is that it may ignore good biclusters by partitioning
them before identifying them. Representative examples of algorithms adopt-
ing this approach are given by Dufiy and Quiroz [14], Hartigan [17] and Prelic
et al. [29].

2. Greedy Iterative Search (GIS) approach: By adopting this approach, at each
iteration, we construct submatrices of the data matrix by adding/removing a
row/column to/from the current submatrix that maximizes/minimizes a cer-
tain function. We reiterate this process until no other row/column can be
added/removed to/from any submatrix. This approach presents the same ad-
vantage and the same disadvantage of the previous approach. Representative
examples of algorithms adopting this approach are given by Ben-Dor et al. [5],
Cheng et al. [8], Cheng and Church [9], Liu and Wang [21], Teng and Chan
[34], and Yang et al. [37, 38].

3. Biclusters Enumeration (BE) approach: By adopting this approach, we identify
all the possible groups of biclusters to keep the best one. It is clear that the

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

29.5 SYSTEMATIC AND STOCHASTIC BICLUSTERING ALGORITHMS 657

advantage of this approach is that it enables obtaining the best solution, and
its disadvantage is that it is costly in computing time and in memory space.
Representative examples of algorithms adopting this approach are given by
Ayadi et al. [3], Liu and Wang [20], Okada et al. [27] and Tanay et al. [32].

By using a stochastic search algorithm, we adopt one of the following approaches:

1. Neighborhood Search (NS) approach: By adopting this approach, we start with
an initial solution that can be either a cluster, a bicluster, or the whole matrix.
Then, at each iteration, we try to improve this solution by adding and/or re-
moving some neighbor genes/conditions to minimize/maximize a certain func-
tion. The difference with the systematic greedy search algorithms is that if we
delete, for example, one neighbor gene/condition, then we can later add this
neighbor to the solution if it improves this solution. The advantage of this ap-
proach lies in the ability to control the running time. Indeed, when the quality
of a solution tends to improve gradually over time, the user can stop the exe-
cution at a chosen time. The disadvantage of this approach is that the search
may stop even if the best solution found by the algorithm is not optimal. Rep-
resentative examples of algorithms adopting this approach are given by Bryan
et al. [7], and Dharan and Nair [12].

2. Evolutionary Computation (EC) approach: By adopting this approach, we try
to use the principle of the nature evolutionary process. By using such algo-
rithms, we start from an initial population of solutions (i.e., clusters, biclus-
ters, or the whole matrix), and then, we measure the quality of each solution
of the population by an evaluation mechanism. We select several solutions to
produce new solutions by recombination and mutation operators. This process
ends when the stop condition is verified. The main advantage of the algorithms
adopting this approach is that they are less apt to get trapped in local optima
compared with the algorithms that proceed from point to point in the solution
space. However, their main disadvantage is their inability to guarantee global
optimality. Actually, these algorithms do not always recognize the optimum
even after they find it. A representative example of algorithms adopting this
approach is given by Divina and Aguilar-Ruiz [13].

3. Hybrid (H) approach: By adopting this approach, we try to combine both the
neighborhood search approach and the evolutionary approach. Indeed, this ap-
proach enables us to benefit from the power of both the neighborhood search
approach and the evolutionary approach. Representative examples of algo-
rithms adopting this approach are given by Bleuler et al. [6], Gallo et al. [15]
and Mitra and Banka [24].

Table 29.2 is a synoptic table of biclustering algorithms, where

� n is the number of genes
� m is the number of conditions

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

658 BICLUSTERING OF MICROARRAY DATA

Table 29.2 Synoptic table of biclustering algorithms

Reference Approach Time

Prelic et al. [29] DAC O(nmβ min{n, m})
Angiulli et al. [2] GIS O(µCu[(1 − pr)(n + m) + pr])
Ben-Dor et al. [5] GIS O(nm3l)
Cheng and Church [9] GIS O(mn)
Cheng et al. [8] GIS O(n2m4(nlog(n) + mlog(m)))
Liu and Wang [21] GIS O(nm(n + m)2)
Teng and Chan [34] GIS
Ayadi et al. [3] BE O(2nm2n2)

Tanay et al. [32] BE O((n2d+n)log r+1
r

(rd)
)

Wang et al. [35] BE
Bryan et al. [7] NS
Dharan and Nair [12] NS O(mn(m + n))
Divina and Aguilar-Ruiz [13] EC
Bleuler et al. [6] H
Gallo et al. [15] H
Mitra and Banka [24] H

� l is the number of the best partial models of order
� Cu is the cost of computing the new residue and the new row variance of the

bicluster after performing a move
� pr is a user-provided probability that the algorithm is allowed to execute a

random move
� d is the bounded degree of gene vertices in a bipartite graph G whose two sides

correspond to the set of genes and the set of conditions
� r is the maximum weight edge in the bipartite graph G
� β is the number of biclusters that are not contained entirely in any other biclus-

ter
� µ is the maximum number of times that a flip can be done

We now present briefly some biclustering tools that are publicly available for
microarray data analysis.

1. GEMS [36] is a web server for biclustering of microarray data. It is based
on a Gibbs sampling paradigm [31]. GEMS is available at http://genomics10
.bu.edu/terrence/gems/.

2. BICAT [4] is a biclustering analysis toolbox that is used mostly by the
community and contains several implementations of biclustering algorithms
like the Order Preserving SubMatrix (OPSM) algorithm [5], Cheng and
Church’s algorithm [9], the Iterative Signature Algorithm (ISA) [18], the

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

29.6 BIOLOGICAL VALIDATION 659

XMOTIF algorithm [25] and the BIMAX algorithm [29]. BICAT is available
at http://www.tik.ee.ethz.ch/sop/bicat.

3. BIVISU [8] is a biclustering algorithm based on Parallel Coordinate (PC) for-
mulation. It can visualize the detected biclusters in a two-dimensional set-
ting by using PC plots. BIVISU is available at http://www.eie.polyu.edu.hk/
nflaw/Biclustering/index.html.

4. Bayesian BiClustering model (BBC) [16] is a biclustering algorithm based
on the Monte Carlo procedure. BBC is available at http://www.people.fas
.harvard.edu/junliu/BBC/.

5. BICOVERLAPPER [30] is a visual framework that supports:

– Simultaneous visualization of one or more sets of biclusters

– Visualization of microarray data matrices as heatmaps and PC

– Visualization of transcription regulatory networks

– Linkage of different visualizations and data to achieve a broader analysis of
an experiment results

BICOVERLAPPER is available at http://vis.usal.es/bicoverlapper/.

6. E-CCC-BICLUSTERING [23] is a biclustering algorithm that can find
and report all the maximal contiguous column coherent biclusters with
approximate expression patterns. E-CCC-BICLUSTERING is available at
http://kdbio.inesc-id.pt/software/e-ccc-biclustering.

29.6 BIOLOGICAL VALIDATION

Biological validation can evaluate qualitatively the capacity of an algorithm to ex-
tract meaningful biclusters from a biological point of view. Assessing the biological
meaning of the results of a biclustering algorithm is not a trivial task because general
guidelines do not exist in the literature on how to achieve this task. Several authors
use artificial datasets to validate their approaches. However, an artificial scenario is
inevitably biased regarding the underlying model and only reflects certain aspects of
biological reality. To assess statistically a group of genes biclusters, we can use Gene
Ontology (GO) annotation [10]. Unfortunately, GO annotation enables validating just
subsets of genes but not subsets of genes under subsets of conditions.

In GO, genes are assigned to three structured, controlled vocabularies (i.e., on-
tologies, that describe genes products in terms of associated biological processes,
components, and molecular functions in a species-independent manner). Users mea-
sure the degree of enrichment (i.e., p-values) by using a cumulative hypergeometric
distribution that involves the probability of observing the number of genes from a
particular GO category (i.e., biological processes, components, and molecular func-
tions) within each bicluster. Statistical significance is evaluated for the genes in each
bicluster by computing p-values, which indicate how well they match with the dif-
ferent GO categories. Let us note that a smaller p-value, close to 0, is indicative of a
better match [33].

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

660 BICLUSTERING OF MICROARRAY DATA

The Gene Ontology Consortium (GOC) [10] (http://www.geneontology.org) is in-
volved in the development and application of the GO. We present examples of web-
tools related to GOC as follows:

1. GO Term Finder (http://db.yeastgenome.org/cgi-bin/GO/goTermFinder)
searches for significant shared GO terms, or parents of GO terms, used to
annotate genes products in a given list.

2. FuncAssociate (http://llama.med.harvard.edu/cgi/func/funcassociate) is a
web-based tool that accepts as input a list of genes and returns a list of GO
attributes that are over-underrepresented among the genes of the input list.
Only those over-underrepresented genes are reported.

3. GENECODIS (http://genecodis.dacya.ucm.es/) is a web-based tool for the
functional analysis of a list of genes. It integrates different sources of infor-
mation to search for annotations that frequently cooccur in a list of genes and
ranks them according to their statistical significance.

The microarray datasets presented in Table 29.3 are such that each experimental
condition corresponds to a patient presenting a kind of pathology. For example, the
Leukemia dataset discriminates patients affected by either Lymphoblastic or Myeloid
leukemia. Thus, we do not know the biological coherence between genes, although
we know the medical classification of conditions. In this case, we can evaluate the
ability of an algorithm to separate the samples according to their known classifica-
tion. To this end, we can compute the number of columns labeled with the same class
and belonging to the same bicluster. Obviously, the higher the number of columns in

Table 29.3 Microarray datasets used to evaluate biclustering algorithms

Nbr. Nbr.
Dataset Genes Conditions Website

Arabidopsis thaliana 734 69 http://www.tik.ethz.ch/sop/bimax/
Colon rectal cancer 2000 62 http://microarray.princeton.edu/

oncology/affydata/index.html
Colon tumor 2000 62 http://sdmc.lit.org.sg/GEDatasets/

Datasets.html
Human lymphoma 4026 96 http://arep.med.harvard.edu/biclustering/
Leukemia 7129 72 http://sdmc.lit.org.sg/GEDatasets/

Datasets.html
Lung cancer 12,533 181 http://sdmc.lit.org.sg/GEDatasets/

Datasets.html
Ovarian cancer tumor 15,154 253 http://sdmc.lit.org.sg/GEDatasets/

Datasets.html
Prostate cancer 12,600 136 http://sdmc.lit.org.sg/GEDatasets/

Datasets.html
Saccharomyces cerevisiae 2993 173 http://www.tik.ethz.ch/sop/bimax/
Yeast cell cycle 2884 17 http://arep.med.harvard.edu/biclustering/

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

REFERENCES 661

a bicluster labeled with the same class label, the higher its biological quality. In fact,
this means that many patients with the same diagnosis are grouped together with re-
spect to a subset of genes; thus, we could induce that those genes probably have a
similar functional category and characterize the majority class of patients.

29.7 CONCLUSION

In this chapter, we have reviewed biclustering algorithms of microarray data. Advan-
tages and disadvantages of these algorithms are reported.

Although biclustering of microarray data has been the subject of a large research,
noone of the existing biclustering algorithms are perfect, and the construction of bi-
ologically significant groups of biclusters for large microarray data is still a problem
that requires a continuous work.

Biological validation of biclustering algorithms of microarray data is one of the
most important open issues. So far, there are no general guidelines in the literature
on how to validate biologically a biclustering algorithm.

REFERENCES

1. J.S. Aguilar-Ruiz. Shifting and scaling patterns from gene expression data. Bioinformat-
ics, 21:3840–3845, 2005.

2. F. Angiulli, E. Cesario, and C. Pizzuti. Random walk biclustering for microarray data.
J Inform Sci: 1475–1497, 2008.

3. W. Ayadi, M. Elloumi, and J.K. Hao. A biclustering algorithm based on a bicluster enu-
meration tree: Application to DNA microarray data, 2:2009.

4. S. Barkow, S. Bleuler, A. Prelic, P. Zimmermann, and E. Zitzler. Bicat: A biclustering
analysis toolbox. Bioinformatics, 22(10):1282–1283, 2006.

5. A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene ex-
pression data: The order-preserving submatrix problem. RECOMB ’02: Proceedings of
the Sixth Annual International Conference on Computational Biology. ACM, New York:
49–57, 2002.

6. S. Bleuler, A. Prelic, and E. Zitzler. An ea framework for biclustering of gene expression
data. Proceedings of Congress on Evolutionary Computation: 166–173, 2004.

7. K. Bryan, P. Cunningham, and N. Bolshakova. Application of simulated annealing to the
biclustering of gene expression data. IEEE Trans Inform Tech Biomed, 10(3):519–525,
2006.

8. K.O. Cheng, N.F. Law, W.C. Siu, and A.W. Liew. Identification of coherent patterns in
gene expression data using an efficient biclustering algorithm and parallel coordinate vi-
sualization. BMC Bioinformatics, 9(210):1282–1283, 2008.

9. Y. Cheng and G.M. Church. Biclustering of expression data. Proceedings of the Eighth In-
ternational Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo
Park, CA: 93–103, 2000.

10. Gene Ontology Consortium. Gene ontology: Tool for the unification of biology. Nat
Genet, 25:25–29, 2000.

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

662 BICLUSTERING OF MICROARRAY DATA

11. R. Das, S. Mitra, H. Banka, and S. Mukhopadhyay. Evolutionary biclustering with corre-
lation for gene interaction networks. PReMI, LNCS: 416–424, 2007.

12. A. Dharan and A.S. Nair. Biclustering of gene expression data using reactive greedy ran-
domized adaptive search procedure. BMC Bioinformatics, 10(Suppl 1):S27, 2009.

13. F. Divina and J.S. Aguilar-Ruiz. A multi-objective approach to discover biclusters in mi-
croarray data. GECCO ’07: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation. ACM, New York: 385–392, 2007.

14. D. Dufiy and A. Quiroz. A permutation based algorithm for block clustering. J Classif,
(8):65–91, 1991.

15. C.A. Gallo, J.A. Carballido, and I. Ponzoni. Microarray biclustering: A novel memetic
approach based on the pisa platform. EvoBIO ’09: Proceedings of the 7th European Con-
ference on Evolutionary Computation, Machine Learning and Data Mining in Bioinfor-
matics. Springer-Verlag, Berlin, Germany: 44–55, 2009.

16. J. Gu and J.S. Liu. Bayesian biclustering of gene expression data. BMC Genom,
9(Suppl 1):S4, 2008.

17. J.A. Hartigan. Direct clustering of a data matrix. J Am Stat Assoc, 67(337):123–129, 1972.

18. J. Ihmels, S. Bergmann, and N. Barkai. Defining transcription modules using large-scale
gene expression data. Bioinformatics, 13:1993–2003, 2004.

19. E.L. Lehmann and H.J.M. D’Abrera. Nonparametrics: Statistical Methods Based on
Ranks, revised edition. Englewood Cliffs, NJ, Prentice-Hall: 292–323, 1998.

20. J. Liu and W. Wang. Op-cluster: Clustering by tendency in high dimensional space. IEEE
Int Conf Data Mining: 187–194, 2003.

21. X. Liu and L. Wang. Computing the maximum similarity bi-clusters of gene expression
data. Bioinformatics, 23(1):50–56, 2007.

22. S.C. Madeira and A.L. Oliveira. Biclustering algorithms for biological data analysis: A
survey. IEEE/ACM Trans Computat Biol Bioinform, 1(1):24–45, 2004.

23. S.C. Madeira and A.L. Oliveira. A polynomial time biclustering algorithm for finding
approximate expression patterns in gene expression time series. Algorithm Mol Biol, 4:
2009.

24. S. Mitra and H. Banka. Multi-objective evolutionary biclustering of gene expression data.
Pattern Recogn, 39(12):2464–2477, 2006.

25. T.M. Murali and S. Kasif. Extracting conserved gene expression motifs from gene expres-
sion data. Pac Symp Biocomput, 8:77–88, 2003.

26. J.L. Myers and D.W. Arnold. Research Design and Statistical Analysis. Routledge, New
York, 2003.

27. Y. Okada, K. Okubo, P. Horton, and W. Fujibuchi. Exhaustive search method of gene
expression modules and its application to human tissue data. In IAENG Int J Comput Sci,
34:1–16, 2007.

28. B. Pontes, F. Divina, R. Giráldez, and J.S. Aguilar-Ruiz. Virtual error: A new measure for
evolutionary biclustering. In E. Marchiori, J.H. Moore, and J.C. Rajapakse, editors, Evo-
lutionary Computation, Machine Learning and Data Mining in Bioinformatics, volume
4447 of Lecture Notes in Computer Science. Springer, New York: 217–226, 2007.

29. A. Prelic, S. Bleuler, P. Zimmermann, P. Buhlmann, W. Gruissem, L. Hennig, L. Thiele,
and E. Zitzler. A systematic comparison and evaluation of biclustering methods for gene
expression data. Bioinformatics, 22(9):1122–1129, 2006.

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

REFERENCES 663

30. R. Thern, R. Santamara, and L. Quintales. A visual analytics approach for understanding
biclustering results from microarray data. BMC Bioinformatics, 9:2008.

31. Q. Sheng, Y. Moreau, and B. De Moor. Biclustering microarray data by gibbs sampling.
Bioinformatics, 19:II196–II205, 2003.

32. A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene
expression data. Bioinformatics, 18:S136–S144, 2002.

33. S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, and G.M. Church. Systematic deter-
mination of genetic network architecture. Nat Genet, 22:281–285, 1999.

34. L. Teng and L. Chan. Discovering biclusters by iteratively sorting with weighted correla-
tion coefficient in gene expression data. J Signal Process Syst, 50(3):267–280, 2008.

35. H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity in large data
sets. SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data. ACM, New York, NY: 394–405, 2002.

36. C.J. Wu and S. Kasif. Gems: A web server for biclustering analysis of expression data.
Nucleic Acids Res, 33:W596–W599, 2005.

37. J. Yang, H. Wang, W. Wang, and P. Yu. Enhanced biclustering on expression data. BIBE
’03: Proceedings of the 3rd IEEE Symposium on BioInformatics and BioEngineering.
IEEE Computer Society, Washington, DC: 321–327, 2003.

38. Y.H. Yang, S. Dudoit, P. Luu, D.M. Lin, V. Peng, J. Ngai, and T.P. Speed. Normalization
for cdna microarray data: A robust composite method addressing single and multiple slide
systematic variation. Nucleic Acids Res, 30:1–12, 2002.

39. Z. Zhang, A. Teo, B.C. Ooi, and K.L. Tan. Mining deterministic biclusters in gene ex-
pression data. IEEE International Symposium on Bioinformatic and Bioengineering: 283–
290, 2004.

P1: OSO
c29 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30
COMPUTATIONAL MODELS
FOR CONDITION-SPECIFIC

GENE AND PATHWAY
INFERENCE

Yu-Qing Qiu, Shihua Zhang, Xiang-Sun Zhang, and Luonan Chen

30.1 INTRODUCTION

High-throughput experimental data such as protein–protein interaction [49, 57],
gene expression [11], and ChIP-chip data [48], are now explored widely to study
the complicated behaviors of living organisms from various aspects at a molecular
level. For example, DNA microarrays provide us with a key step toward the goal
of uncovering gene function on a global scale and biomolecular networks pave the
way for understanding the whole biological systems on a systematic level [28, 69].
These studies are very important because proteins do not function in isolation but
rather interact with one another and with various molecules (e.g., DNA, RNA, and
small molecules) to form molecular machines (pathways, complexes, or functional
modules). These machines shape the modular organization of biological systems,
represent static and dynamic biological processes, and transmit/respond to intra-
and extracellular signals. In other words, modules are basic functional building
block of biological systems that have been observed in various types of network
data including protein–protein interaction networks, metabolic networks, transcrip-
tional regulation networks, and gene coexpression networks [63]. In contrast to in-
dividual components, it has been recognized that modules as well as biomolecular

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

665

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

666 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

networks are ultimately responsible to the forms and functions of living organisms,
and also can also reasonably explain the causes of various phenotypes.

In real biological systems, although some genes (e.g., house-keeping genes),
are expressed constitutively under various conditions and tissues to carry out basic
cellular process for growth and sustenance, most genes or pathways are actually
active only under defined conditions (e.g., specific time and tissue). These condition-
specific modules are important to uncover the molecular functional mechanism in
different development stages. Moreover, their identification can give insights into
understanding human diseases.

Although protein interaction networks or pathways are available for many or-
ganisms based on accumulated protein interaction data, it is still a difficult task to
identify condition-specific genes, pathways, or modules corresponding to the chang-
ing conditions and environments in living cells. To decipher these biological mech-
anisms, a single type of experimental data only provides limited information. For
example, protein-protein interaction data only tell of possible interactions among
proteins rather than when and where they interact. On the other hand, gene expres-
sion experimental data could profile genes’ dynamic functional behavior. Therefore,
combining network data with microarray data provides a powerful way to study spe-
cific expression patterns, active modules, or even disease-related pathways under
different conditions. Additionally, phenotype similarity networks derived from liter-
ature mining and other sources of data are also useful for phenotype specific gene or
disease gene prediction, as well as module network construction.

How to integrate these heterogeneous data to elucidate biological mechanisms is
an essential and challenging problem in computational biology and systems biology.
In this chapter, we surveyed computational approaches for identifying condition-
specific genes, pathways, or modules. Two kinds of approaches are introduced in
detail. One is to combine gene expression data with prior-known pathway informa-
tion, and the other is to integrate gene expression data and large-scale biological
interaction networks. We will extend the survey for highly related topics including
genetic-related pathways identification and typical disease gene and pathway predic-
tion (prioritization) by integrating various experiments and text mining information.
To interpret the relationship of modules in a high level, the concept of a modular
network in which nodes are modules also was introduced briefly.

30.2 CONDITION-SPECIFIC PATHWAY IDENTIFICATION

The expression changes of genes reflect their activities in the transcriptional level. In
different biological processes or conditions such as disease or nondisease, condition-
specific genes and pathways are likely to be expressed differentially. By using this
important cue, many computational methods for identifying condition-specific path-
ways have been proposed. The underlying methodologies can be classified into two
classes (see Figure 30.1). By integrating known gene sets (derived from pathway
database, groups of genes with similar functions, etc.), gene set analysis methods use
statistical methods to detect the sets of genes that have significant expression changes

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.2 CONDITION-SPECIFIC PATHWAY IDENTIFICATION 667

Figure 30.1 Pipeline of condition-specific pathway identification methods.

in different conditions. The consistent expression pattern of groups of genes that may
be ignored by analyzing genes individually can be captured by these methods. How-
ever, because literature confirmed that pathways are far from covering all cellular
molecular mechanisms, gene set analysis methods cannot discover new pathways.
Thus, other types of condition-specific pathway inference methods are presented
by integrating the biomolecular interaction networks and gene expression data to
discover subnetworks that show significant expression changes or active behaviors.
These subnetworks can be biological complexes, signaling pathways, or group of
genes with similar functions, and so on, and the within interactions can explain the
cooperation between member genes. Finally, the identified condition-specific path-
ways or modules can be used for making biological conclusions and proposing new
biological hypotheses. We will survey the highly related methods in the following
sections.

30.2.1 Gene Set Analysis

Microarray data are often used to identify differentially expressed genes. Many meth-
ods such as t-test and SAM (significance analysis of microarrays) [61] have been
developed to evaluate the expression change level of each gene between two groups
of samples. These methods usually choose genes which shows significant expression
changes than an arbitrary selected threshold to form a gene list for further biological
interpretation, such as Gene Ontology (GO) terms or pathways enrichment analysis.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

668 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

A major drawback of this kind of method is that the choice of threshold greatly
affects the biologic conclusions [44]. Moreover, the subtle but coherent expression
changes that often occur in a pathway are discarded [7, 10]. And these methods all
are based on the assumption of independence among genes which increases false
positive prediction.

To overcome these problems, gene set analysis methods were proposed [40].
Rather than scoring a single gene, such methods evaluate the differential expres-
sion level of predefined gene sets such as pathways, GO categories, or functional
modules detected by computational methods. As illustrated in [38], a set of genes
with moderate but coordinated expression changes was identified by the gene set
analysis method but failed to be recognized by the individual gene analysis methods
because genes function in concert rather than in isolation. Functionally related genes
often display a coordinated expression profiles to achieve a specific function in a cell.
Thus, even weak expression changes in individual genes gathered to a large gene set
can show a significant macrochange in gene set level.

The principle of gene set analysis methods are illustrated in Figure 30.1. The func-
tionally related gene set is collected from databases such as GO [14], KEGG [30],
and GenMAPP [15]. Using the preprocessed gene expression data, one designed
statistic is evaluated for each gene set, which measures the expression deviation from
the null hypothesis of no association with the phenotype. The statistical significance
(or p-value) for each gene set is evaluated by permuting sample or gene labels be-
cause analytical distribution of the statistic is often difficult to obtain. Meanwhile the
multiple testing adjustment has to be used to correct p-values of each gene set to re-
duce the false positive rate. Finally, the gene sets with high significance are reported
as biologically relevant pathways for further biological interpretation.

The gene set analysis methods are inspired by the work of Mootha et al. [38],
who proposed a method named gene set enrichment analysis (GSEA). They applied
GSEA to a gene expression dataset of human normal and diabetes tissues and suc-
cessfully identified a set of genes involved in oxidative phosphorylation whose ex-
pression coordinately altered in human diabetic muscle. The changes are subtle at the
level of individual genes so that they are ignored by individual gene analysis method.
The approach of GSEA ranks genes based on the signal-to-noise ratio and then uses
the Kolmogorove–Smirnov statistic as a scoring function to represent the relative
enrichment of differentially expressed genes in each gene set. The significance of
the entire dataset is calculated in two ways after the sample permutation. The first
is to count the number of sample permutations for which a gene set with a better
score than the observed is found. The second is to count the number of gene sets that
have a better score than a given threshold for the real dataset and permuted datasets.
The first one assigns p-values to each gene set, whereas the second one assigns p-
values only to the entire dataset. Because of its high performance and user-friendly
desktop application and website, GSEA is currently the most popular method for
gene set analysis. Later, Subramanian et al. [58] made a direct improvement to the
Kolmogorov–Smirnov statistic via weighting each gene using its correlation with
phenotypes to prevent gene sets clustered in the middle of the ordered gene list from
getting high scores.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.2 CONDITION-SPECIFIC PATHWAY IDENTIFICATION 669

Table 30.1 Tools for gene set analysis

Name Statistical Methods URL

ADGO z-score http://array.kobic.re.kr/ADGO
ALLEZ z-score http://www.stat.wisc.edu/newton/
ASSESS Sample randomization http://people.genome.duke.edu/jhg9/assess/
CATMAP Gene randomization http://bioinfo.thep.lu.se/catmap.html
ERMINEJ Wilcoxon rank-sum test http://www.bioinformatics.ubc.ca/ermineJ/
EU.GENE. Fisher’s exact test http://www.ducciocavalieri.org/bio/

.ANALYZER Eugene.htm
FATISCAN Fisher’s exact test; http://fatiscan.bioinfo.cipf.es/

Hypergeometric test
FUNCLUSTER Fisher’s exact http://corneliu.henegar.info/FunCluster.htm
GAZER z-score; permutation http://integromics.kobic.re.kr/GAzer/

index.faces
GENETRAIL Fisher’s exact test; http://genetrail.bioinf.uni-sb.de/

hypergeometric test;
sample randomization;

GLOBALTEST Sample randomization http://bioconductor.org/packages/
2.0/bioc/html/globaltest.html

GOAL Gene randomization http://microarrays.unife.it
GO-MAPPER Gaussian distribution; http://www.gatcplatform.nl/gomapper/

EQ-score index.php
GOTM Hypergeometric http://www.gotm.net/
GSA Sample randomization http://www-stat.stanford.edu/ tibs/GSA/
GSEA Sample randomization; http://www.broad.mit.edu/gsea/

Kolmogorov-Smirnov test
JPROGO Fisher’s exact test; http://www.jprogo.de/

Kolmogorov-Smirnov test;
t-test;
unpaired Wilcoxon’s test

MAPPFINDER z-score http://www.genmapp.org
MEGO z-score http://www.dxy.cn/mego/
PAGE z-score From the author (kimsy@kribb.re.kr)
PLAGE Sample randomization http://dulci.biostat.duke.edu/pathways/
SAFE Sample randomization http://bioconductor.org/packages

/2.0/bioc/html/safe.html
SAM-GS Sample randomization http://www.ualberta.ca/Byyasui/

homepage.html
T-PROFILER t-test http://www.t-profiler.org/

Besides GSEA, various gene set analysis methods have been proposed (Table
30.1) in recent years. MAPPFINDER [20] employs an approach based on differen-
tially expressed gene hit-counting and the hypergeometric distribution to score gene
sets. Permutations and multiple testing corrections are used to provide statistically
significant gene sets. Efron and Tibshirani [21] introduced five statistics and tested
on five simulated examples. They found that the maxmean statistic is the only method

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

670 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

with consistently low p-values in all situations. Barry et al. [5] proposed signifi-
cance analysis function and expression (SAFE), which extends GSEA to cover mul-
ticlass, continuous, and survival phenotypes and couples with more statistic options
including Wilcoxon rank sum, Kolmogorov–Smirnov, and hypergiometric statistic.
GLOBALTEST [24] proposed by Goeman et al. employs a scoring test based on
a random-effect logistic model fitted for each gene set and subsequently extends it
to multiclass, continuous, and survival phenotypes and allows for covariate adjust-
ments. FATISCAN [1] uses the segmentation test approach, which consists of the se-
quential applications of a Fisher’s exact test over the contingency tables formed with
ordered gene lists. This method does not depend on the original data from which the
ranking of the list is derived and can be applied to any type of ranked genome-scale
data. Dinu et al. [18] pointed out problems of GSEA and extended a widely used
single gene analysis method (SAM [61]) to gene set analysis (SAM-GS). They em-
ployed the L2 norm of the vector of the SAM statistics corresponding to the genes in
the gene set as a statistic for further analysis.

Three types of null hypothesis are behind these different methods [23, 40, 60].
The first one assumes the same level of association of a gene set with the given
phenotype as the complement of the gene set (Q1 or competitive). FATISCAN [1],
CATMAP [10], and ERMINEJ [33] adopt a Q1 assumption. The second one as-
sumes that there is no gene within a gene set associated with the phenotype (Q2 or
self-contained). GLOBALTEST [24], SAFE [5], and SAM-GS [18] belong to the Q2
type. The third one is implemented by GSEA and states that none of the gene sets
considered is associated with the phenotype (Q3). However, methods based on dif-
ferent null hypothesis may not lead to the same scientific conclusions. In a study of
p53 wild-type versus mutant cancer cell lines [17], the self-contained methods iden-
tified many gene sets linked to p53 that are missed by competitive methods. Goeman
and Bülmann [23] strongly opposed the testing of competitive null hypotheses with
the use of gene sampling methods because of its unreasonable statistical indepen-
dence assumption across genes. Based on a simulation study, Nam and Kim [40]
recommended that these three type of methods should be used according to the goal
of specific studies. If the purpose is to find gene sets relatively enriched with dif-
ferentially expressed genes then a competitive method based on Q1 should be used.
On the other hand, if the purpose is to find gene sets clearly separated between the
two sample groups, then a self-contained method based on Q2 should be selected. In
a general case, the Q3-based approach GSEA can avoid the clear drawbacks of the
other methods and should be suggested.

Another debatable issue is about how to compute the p-value. There are two types
of permutation test methods with respect to gene and sample randomization, for es-
timating the null hypothesis distribution. As pointed out by Goeman and Bühlman
[23], gene randomization does not consider the correlation structures among func-
tionally related genes and reverses the role of samples and genes in classical statis-
tical tests. On the other hand, sample randomization requires a certain number of
samples to make statistical inferences that are not applicable in many cases, such as
time course data. Moreover, sample randomization-based methods often output too
many gene sets as significant [60]. Therefore, Tian et al. [60] suggested that both

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.2 CONDITION-SPECIFIC PATHWAY IDENTIFICATION 671

Table 30.2 Database of functional groups of genes

Name Gene Set Categories URL

ASSESS Cytogenetic, pathway, motif http://people.genome.duke.edu/∼
jhg9/assess/genesets.shtml

ErmineJ GO http://www.bioinformatics.ubc.ca/
microannots/

GAzer GO, composite GO, InterPro, pathways, http://integromics.kobic.re.kr/
transcription factor binding site (TFBS) GAzer/document.jsp

GSA Tissue, cellular processes, chromosome http://www-stat.stanford.edu/∼tibs
arms, cancer module, 5Mb /GSA/
chromosomal tiles, cytobands

MSigDb Cytobands, curated pathways, computed http://www.broad.mit.edu/gsea/
msigdb/msigdb index.html

PLAGE Kyoto Encyclopedia of Genes and Genomes http://dulci.biostat.duke.edu/
(KEGG) and BioCarta pathways pathways/misc.html

methods should be applied because the null hypotheses of them are different but
complementary to each other.

The gene set database constructed by different methods are also important data
sources for biological research (see Table 30.2). The known functional gene groups
are collected based on diverse sources of biological knowledge such as GO, cyto-
genetic bands, pathways, cis-acting regulatory motifs, coregulated genes, and com-
putational predicted gene modules. It should be noted that because the biological
knowledge is incomplete, the gene set database contains limited functional gene sets
that affects the performance of the gene set analysis methods.

30.2.2 Condition-Specific Pathway Inference

By integrating a microarray experiment dataset and prior established biologic
knowledge, gene set analysis approaches can identify phenotype- or disease-related
differentially expressed gene sets. These methods can reveal subtle but coordinated
gene expression changes within a pathway. However, a major drawback is that they
cannot discover new pathways correlated to phenotypes or diseases that have no
records in pathway databases. To identify pathways’ or modules’ response to pheno-
types, diseases, or changing conditions, many computational methods [9, 19, 26, 29,
39, 46, 47, 62, 71] have been developed by integrating protein–protein interaction,
protein-DNA interaction, or metabolic networks with gene expression data (see
Table 30.3). From a systematic perspective, genome-wide scanning functional path-
ways can overcome the limitation of local analysis and capture the cellular activities
globally.

The principle of these methods is to model the phenotype related or condition-
specific pathways or modules as connected subnetworks in the biomolecular interac-
tion networks with significant expression changes between different conditions (i.e.,
the active regions of the network). This type of methods generally include two steps

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

672 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

Table 30.3 Methods of inferring condition-specific pathways

Ref. Scoring Methods Search Methods Network Types

[29] Gene based Simulated annealing Protein–protein interaction,
Protein–DNA interaction

[53] Gene, interaction based EM algorithm Protein–protein interaction
[9] Gene based Greedy search Gene Ontology relation,

Metabolic interaction
[56] Gene based Greedy search Protein–protein interaction,

Transcriptional regulatory,
Literature mined

[35] Interaction based Enumerating and ranking Protein–protein interaction
[12] Interaction based Hueristic algorithms Protein–protein interaction,

Metabolic reactions,
Coexpression in regulons

[47] Gene based Heuristic algorithm BioCarta pathways
[51] Interaction based Randomized algorithm Protein–protein interaction
[26] Interaction based Simulated annealing Protein–protein interaction
[39] Gene based Greedy search Protein–protein interaction
[65] Gene, interaction based ICM algorithm KEGG transcriptional

pathways
[34] Gene based Simulated annealing Protein–protein interaction
[13] Gene based Heuristic algorithm Protein–protein interaction
[43] Interaction based Integer linear programming Protein–protein interaction,

Protein–DNA interaction
[6] Interaction based Enumerating and ranking Protein–protein interaction
[2] Interaction based Combine optimization Protein–protein interaction
[62] Gene based Approximation algorithms Protein–protein interaction
[64] Gene, interaction based Nonlinear programming Protein–protein interaction
[19] Gene based Integer linear programming Protein–protein interaction
[50] Gene based Heuristic algorithm KEGG pathway
[71] Interaction based Integer linear programming Protein–protein interaction
[46] Gene based Mixed integer programming Protein–protein interaction

(see Figure 30.1). In the first step, a scoring scheme to evaluate a module’s active
level is adopted based on each gene’s or interaction’s active level obtained from gene
expression data. A different scoring function describes the different features of path-
ways. The gene-based scoring function emphasizes the expression changes of genes
in a specific biological process, whereas the interaction-based methods focus on the
specific cooperative patterns among proteins. Meanwhile, the group-based scoring
function and the probabilistic model consider the active level both of genes and in-
teractions to measure condition-specific pathways. In the second step, a search pro-
cedure is implemented to find the active pathways from a molecular interaction net-
work such that the nodes in the active pathway are connected in the network. Unfor-
tunately, this procedure is a nondeterministic polynomial (NP)-hard problem as was
proved in [29]. Several fast heuristic methods are proposed to deal with this problem
(e.g., simulated annealing and greedy search), which often easily get stuck at a local

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.2 CONDITION-SPECIFIC PATHWAY IDENTIFICATION 673

optimal solution. Recently, several exact mathematic programming approaches were
developed for finding condition-specific pathways. In terms of the scoring function,
we can classify these methods into gene, interaction, group and probability-based
methods, and according to the searching algorithms, they can divided into heuris-
tic and mathematical programming-based methods. Here, we focus on the scoring
function because different scoring functions define pathways with different charac-
teristics; meanwhile, the heuristic search approaches are discussed. Particularly, the
mathematical programming-based search methods are introduced separately because
of its novelty and efficiency.

30.2.2.1 Gene-Based Methods. The concept of active pathways is firstly in-
troduced by Ideker et al. [29]. An active pathway means a connected region of a
network that shows significant changes in expression over particular subsets of con-
ditions. They designed a scoring scheme based on genes’ activity to model the active
subnetworks. Each gene’s active level is measured by a z-score zi = �−1(1 − pi),
where �−1 is the inverse normal cumulated distribution function, and pi is the sig-
nificant p-value from the single gene expression change analysis that represents the
significant level of differential expression. For a subnetwork A of k genes, an aggre-
gated z-score is defined as follows:

zA = 1√
k

∑

i∈A

zi

This score is independent to subnetwork size and standard normal distributed. By
comparing it with the background distribution, the z-score is further adjusted as

sA = z A − µk

σk

where the µk and σk is the mean and standard deviation of randomly sampled gene
sets of size k by the Monte Carlo approach, respectively. The corrected score sA

measures the level at which the score z A of a subnetwork is higher than the expected
score corresponding to a random set of genes. Then the problem of identifying ac-
tive subnetworks is to find the highest scoring subnetworks. The authors provided a
proof that finding the maximal scoring connected subnetwork is an NP-hard problem.
Thus, they designed a simulated annealing approach for this optimization problem.
Each gene in the network is associated with an “active/inactive” state, and the ac-
tive subnetwork is induced by the active nodes. An arbitrary temperature is set to
a high degree initially and decreases gradually at each iteration. At each iteration,
the configuration of the state is changed randomly, and the score of the highest scor-
ing active component is calculated. The new configuration is retained if the change
increases the score. Otherwise, it is accepted with a probability from high to low
along with the temperature. The iteration terminated until the temperature decreased
to zero and then output the active subnetworks. The application of this procedure
(JACTIVEMODULES) on yeast data identified significant subnetworks with good

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

674 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

correspondence to known regulatory mechanisms. This method has been imple-
mented as a plug-in of the popular biomolecular network analysis software CY-
TOSCAPE [54]. Besides, Liu et al. [34] extended this method by applying Fisher’s
test to refine the results of the method to identify subnetworks related to type 2 di-
abetes mellitus. Other authors [56, 47, 3] implemented the similar scoring function
but with heuristic search methods for the same goal.

In contrast to this continuous manner, some methods adopted a discrete scor-
ing function to measure the activity of a subnetwork. Breitling et al. [9] proposed a
method to evaluate a gene’s active level based on the rank of genes computed accord-
ing to their differential expression level. Then they searched active subnetworks by
iteratively extending subnetworks, which are initially from the local minima nodes,
by including the neighboring nodes with the next highest rank. The extension pro-
cess is terminated when there is no outside neighboring node with a rank lower than
the previously defined value. This heuristic method was applied to the classic yeast
diauxic shift experiment data with GO and metabolic network information and iden-
tified several processes related to the yeast starvation response. In [62], focusing
on the clinical case-control gene expression data, the authors introduced a bipartite
graph including the case nodes representing case samples and the protein–protein
interaction network in which genes are connected to the case nodes if they are ex-
pressed differentially in the case samples. The goal is to find a connected subnet-
work with the smallest possibility in which a large proportion of genes are expressed
differentially. This is a set cover problem in combinatorial optimization. Several ap-
proximation algorithms are implemented for getting the best subnetworks compared
with randomly generated networks. On real disease data, the resulted dysregulated
pathways are compact and enriched with hallmarks of the diseases. This method is
robust to the outliers and has only two parameters, which both are with intuitive
biological interpretations.

This kind of approach is computationally efficient because of its heuristic search-
ing strategies and the additive scoring function. In practical implementation, it is
suitable for when the active pathway has significant expression changes in each gene.
However, heuristic approaches cannot guarantee identifying the global optimal scor-
ing subnetworks. Some often output large high-scoring networks, which may be dif-
ficult to interpret. Additionally, the underlying assumption of the gene-based scoring
function is that genes in an active subnetwork are independent, and the correlations
among them are not considered in the scoring function.

30.2.2.2 Interaction-Based Methods. Different from gene-based method,
Guo et al. proposed an interaction-based method to extract active subnetworks re-
sponsive to conditions. The active level of a subnetwork is measured by the activity
of interactions among proteins. The inactive interactions among the active proteins
involved in the results of vertex-based methods are discarded. This method assigns a
responsive score for each interactions in the network:

S(e12) = Cov(X1, X2) = Corr(X1, X2)std(X1)std(X2)

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.2 CONDITION-SPECIFIC PATHWAY IDENTIFICATION 675

where e12 denotes the interaction between genes 1 and gene 2, Corr(X1, X2) is the
Pearson correlation coefficient of the expression profiles of the two genes, std(X1)
and std(X2) are the standard deviations of the expression profiles. The score for a
connected subnetwork A = (V, E) is defined as follows:

T (A) =
∑

e∈E

S(e)

To eliminate the effect of T by the number of the edges, the standardized score is
defined as follow

S(A) = T (A) − avgk

stdk

where avgk and stdk are the mean and the standard deviation of randomly sampled
subnetworks of k edges, respectively. The numerical validation results show that
the scores of subnetworks with different number of edges roughly follow the same
distribution and are generally comparable. Similar to [29], the simulated annealing
approach is used to find the maximal scoring subnetwork by iteratively altering the
active state of each edge to the best configuration. The method was applied to human
prostate cancer data and to yeast cell cycle data and efficiently can capture relevant
protein interaction behaviors under the investigated conditions.

By integrating more known information, several interaction scoring methods [35,
2, 51, 6] have been developed for detecting signaling transduction networks between
the known membrane receptor proteins and the transcription factor proteins, which
can explain the molecular response mechanism of cells to the extracellular stimuli.
Liu and Zhao [35] proposed a method for predicting the order of signaling path-
way components via a score function that integrates protein–protein interaction data
and gene expression data. All pathways whose molecular components are permuted
are ranked according to the coexpression level or false negative rate of involved in-
teractions. Only using the protein–protein interaction information, Scott et al. [51]
applied an efficient method—color coding—for finding signaling paths and trees in a
protein interaction network in which interactions are weighted by reliability based on
experimental evidence. By randomly assigning colors to each protein, finding paths
and trees starting from the receptor or a predefined protein set can be achieved by
a dynamic programming with linear time complexity. To eliminate the bias resulted
from false positives in the protein–protein interaction data, Bebek and Yang [6] com-
bine the network with microarray expression, protein subcellular localization, and
sequence information to weigh the interactions. They suggested a framework for
identifying signalling pathways from biologically significant pathway segments.

The interaction-based methods model the active pathways as cascades of respon-
sive interactions and can uncover the exact molecular interaction mechanism re-
sponse to the phenotype or environmental conditions. They can be applied to tempo-
ral gene expression data to find specific biological process related subnetworks [26],
whereas the node-based methods cannot. However, the protein–protein interaction

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

676 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

and gene expression data obtained from a high-throughput experiment contain a lot
of noise that may affect the results of these methods. In addition, they also suffer
from the problems of local optimum caused by the inefficient searching methods,
and the enumerative strategies are computationally intensive [51].

30.2.2.3 Group-Based Methods. Following the ideal of Ideker et al. [29],
Nacu et al. [39] proposed a new method that employs a different type of scoring
function. The new scoring function is based on averaging expression profiles of all
genes, not on the averaging score of each gene in a subnetwork. For a subnetwork
including k genes, its group expression is calculated as follows:

Sj =
k∑

i=1

Xi j

where Xi j is the expression level for gene i on array j . The activity measurement of
the subnetwork is defined as the t-statistic:

f (S) = µi1 − µi0
√

σ 2
i1/n1 + σ 2

i0/n0

where the mean and standard deviation µi1 and σi1 are for the set {Sj }, where j is a
case, and µi0 and σi0 are for {Sj }, where j is a control. This scoring function takes
into account the correlation structure among genes that are ignored by the methods
based on averaging testing statistics of individual genes. The high-scoring subnet-
work are extracted from the whole network by a greedy search procedure that starts
with a seed node and picks a node such that the new subnetwork has a maximal
score in each step until the subnetwork size is to a predefined number or until other
stopping criterions are met. This method was applied to human cancer and immune
system data and retrieved several known and potential pathways.

In [13], Chuang et al. proposed a method for finding breast cancer metastasis-
related subnetwork biomarkers. For a given subnetwork, its active score vector a′ is
derived by a z-transform from the normalized gene expression values over samples.
The discriminative or active score is defined as the mutual information between a′

and the sample label vector c,

S =
∑

x1∈a′

∑

x2∈c

p(x1, x2)log
p(x1, x2)

p(x1)p(x2)

A greedy search is performed to identify candidate subnetworks with local maximal
scores. Using the subnetwork as features, a logistic regression model was trained for
classifying the metastasis and nonmetastasis tumors. In the two case studies on breast
cancer data, the subnetwork markers are reproducible and achieve high classification
accuracy.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.2 CONDITION-SPECIFIC PATHWAY IDENTIFICATION 677

The group-based scoring function considered the correlation among all genes in
the subnetworks. It may be more precise to consider the correlation according to
the topological structure of a network. The concept of a network biomarker provides
many insights into the biological mechanisms by mining information from biomolec-
ular interaction networks.

30.2.2.4 Probabilistic Models. In [53], Segal et al. proposed an unified proba-
bilistic model to identify pathways with two properties. One is that genes in a path-
way exhibit a similar gene expression profile, and the other is that the protein prod-
ucts of the genes often interact with each other. The combined model defines a joint
distribution over the hidden variables C = {c1, ..., cn} as follows:

P(C, X |E) = 1

Z

⎛

⎝
n∏

i=1

P(ci)
m∏

j=1

P(Xi j |ci)

⎞

⎠

⎛

⎝
∏

ei j ∈E

�2(ci , c j)

⎞

⎠

where X represents the gene expression profiles, E represents the protein–protein in-
teractions, Z is a normalizing constant that ensures that P adds up to 1. The hidden
variable ci ∈ C represents the cluster to which gene i belongs to. Given the number
of cluster k, the variable ci is associated with a multinormial distribution with pa-
rameters � = {θ1, . . . , θk}. P(Xi j |ci) is the conditional probability distribution that
represents the probability of observing an expression value Xi j at the j th condi-
tion of the expression profile of gene i , assuming gene i belongs to cluster ci . The
model assumes that P(Xi j |ci) follows a Gaussian distribution N (µci j , σ

2
ci j). Each

pair of genes i and j that interact in E are associated with a compatibility potential
�2(ci , c j) in which �2(ci , c j) = α if ci = c j and �2(ci , c j) = 1 otherwise, where α

is a parameter and required to be greater than or equal to 1. Finally, this probabilistic
model is learned by an EM algorithm [16]. The results on yeast data show that this
method can uncover coherent functional groups and biologically significant protein
complexes.

Other probabilistic models, such as the Markov random field model [65] and the
mixture model [50], also are employed for identifying disease-related genes and sub-
networks. All former probabilistic methods use the structural information of the in-
teraction networks to capture the dependency of differential expression patterns for
genes in the network. They are both based on the theoretical rigorous probabilistic
model that has good theoretical properties. However, there are still some problems
for practical purpose. For example, real biological data may not follow the predefined
probability distributions used in these models, the parameters are hard to estimate,
and the computational cost is high for large-scale networks.

30.2.2.5 Mathematical Programming Methods. The powerful mathemati-
cal programming methods have been well developed in the operational research field
in the past 60 years. As a typical optimization problem for extracting active path-
ways, mathematical programming can be a promising tool to solve it. Qiu et al. [46]
proposed a new computational method to detect condition-specific pathways or to

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

678 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

identify differentially expressed pathways via the integration of gene expression and
interactomic data in a sophisticated and efficient manner. The signal-to-noise ratio
measuring a differentially expressed level is implemented as the active score for
each gene. The active level of a subnetwork is defined as the mean of the active
scores of the involved genes. Then, given a predefined root gene, the active subnet-
work connecting the root gene is extracted from the molecular interaction network
by the following mixed integer linear programming model:

max
1

R

n∑

i=1

ti xi

s.t.
∑

j

y1 j = R − 1

∑

j

y ji −
∑

j �=1

yi j = xi , i = 2, . . . , n

yi j ≤ (R − 1)xi , i, j = 1, . . . , n

xi ∈ {0, 1}, i = 1, 2, . . . , n

where ti represents the active score, xi represents whether gene i is selected (xi = 1)
or not (xi = 0) into the subnetwork; the root gene is labeled as 1, yi j are dummy
variables representing the flow between selected nodes, R is a predefined constant,
which is the size of the active subnetwork, and n is the total number of proteins in
the network. The constraints ensure the connectivity of the selected nodes, which
is a major advantage of the proposed method. Consider each gene in the network
as the root genes; the subnetworks with a maximal active score can be identified.
To select the significant ones among them, the density distributions of the scores of
the identified subnetworks are estimated using a nonparameter kernel density estima-
tion method, and a percentile is calculated to distinguish the significant subnetworks.
Finally, all significant subnetworks are mapped to the original network to generate
an integrated differentially expressed pathway. The results on yeast and human data
demonstrate that this method is more accurate and robust than the simulated anneal-
ing based approach.

The same as the previous approach emphasizing the connectivity of members in
the condition-specific pathway, Dittrich et al. [19] proposed an exact approach to
identify functional modules in protein–protein interaction networks. By considering
the distribution of the experimentally derived p-values corresponding to an expres-
sion change of genes as a mixture of a noise and a signal component [45], each gene
is scored by an additive likelihood ratio of signal to noise. The active score of a sub-
network is given by the sum of scores of all involved genes. Then, a combinatorial
optimization method [36] for the prize-collecting Steiner tree problem was used to
find the maximal scoring subnetworks. This approach can obtain exact solutions even
when the network includes 2034 nodes. Applied to the lymphoma microarray data,
this method found several modules, and one of them is associated biologically with
proliferation overexpressed in the aggressive activated B-cell (ABC) subtype.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.2 CONDITION-SPECIFIC PATHWAY IDENTIFICATION 679

Considering the interactions in the pathways, Wang and Xia [64] suggested an
optimization framework to identify condition-specific subnetworks, which are en-
riched with condition-specific genes and interactions between them. A continuous
optimization model is designed as follows:

max
∑

i

∑

j

wi j xi x j + λ
∑

i

fi xi

s.t. xβ

1 + xβ

2 + · · · + xβ
n = 1

xi ≥ 0, i = 1, 2, · · · , n

where wi j represents the weight of interactions between genes, xi can be interpreted
as whether the i th node is included in the condition specific subnetwork, and fi

represents the association level between the gene and specific conditions. The first
term in the objective function measures the interconnectivity within the subnetwork,
whereas the second term measures the degree of association between the subnetwork
nodes and the specific condition. The constraints regulate the number of nodes in the
final subnetworks by parameter β. Because the continuous optimization problem is
easier to solve, this approach is fast and has been applied to identify type 2 diabetes-
related subnetworks.

Recently, mathematical programming methods were applied to identify signaling
transduction networks [71, 2, 43]. Zhao et al. [71] proposed a integer linear program-
ming model by integrating protein–protein interaction and gene expression data as
follows:

min −
n∑

i=1

n∑

j=1

wi j yi j + λ

n∑

i=1

n∑

j=1

yi j

s.t. yi j ≤ xi

yi j ≤ x j

n∑

j=1

yi j ≥ 1, if i is either a starting or ending protein

n∑

j=1

yi j ≥ 2xi , if i is not a starting or ending protein

xi = 1, if i is a protein known in the signaling pathway

xi ∈ {0, 1}, i = 1, 2, . . . , n

yi j ∈ {0, 1}, i, j = 1, 2, . . . , n

where wi j is the weight of interaction, which is the confidence score of the inter-
action or the expression correlation coefficient based on gene expression data, and
xi and yi j are binary variables to denote whether protein i and the interaction are
selected as a component of the signaling pathway, respectively. The first term of

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

680 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

the objective function aims to find a maximal weighted pathway, whereas the sec-
ond term is used to control the size of the pathway. A tradeoff exists between the
two terms, which can be balanced by the parameter λ. The starting proteins and
ending proteins are receptors and transcription factors, respectively. The solution is
obtained by a relaxed linear programming algorithm. The numerical results on yeast
mitogen-activated protein kinase (MAPK) signaling pathways demonstrate that the
proposed model can efficiently uncover pathways, and the prediction results were in
high agreement with the current biological knowledge.

The mathematical programming methods significantly enhance the searching pro-
cedure by guaranteeing the optimality of solutions in a general case without signif-
icantly increasing the computational complexity. The solution space of the mathe-
matical programming model can be interpreted as polyhedra in a high-dimensional
space. Theoretical analysis of these results often leads to new insights into under-
standing the original problems [19]. As a typical optimization problem, some well-
studied models and algorithms can also be applied to identify active pathways from
high-throughput data.

Considering phenotype association in the sequence level, many methods mod-
eling genetic pathways are proposed. In [68], by integrating genetic and gene ex-
pression data into the protein–protein network, a flow-based algorithm is proposed
to reveal cellular pathways responding to alpha-synuclein toxicity. By examining
more than 150 distinct stimuli, the author found that differentially expressed genes
and genetic hits, genes whose individual manipulation alters the phenotype of stim-
ulated cells, are consistently disparate. The identified sparse subnetworks connect-
ing genetic hits to the differentially expressed genes can explain the relationship
between alpha-synuclein toxicity and basic cellular pathways. Using a similar net-
work flow model, Suthram et al. [59] presented an approach called eQED to iden-
tify the causal factors responsible for the observed expression changes. The candi-
date casual genes first are obtained from the analysis of the expression quantitative
trait loci (eQTLs). The eQED use the protein–protein interaction network to pro-
vide regulatory pathways from the casual gene to the differentially expressed genes.
In another research work [4], single nucleotide polymorphisms (SNPs) association
scores are mapped onto the proteins of human protein interaction networks. Sub-
networks containing a higher proportion of genes associated with the disease than
expected by chance are extracted. The implementation of this approach on multi-
ple sclerosis data first identified neural pathways related to multiple sclerosis. In
summary, the genetic pathways can uncover the relationship of genetic interaction
by information flow between proteins that cannot be detected in the transcription
level. It is easy to see that the network flow model is used widely for pathway
modeling because it is an efficient mode to guarantee the connectivity and is easy
to solve.

This section surveys the present methods for inferring condition-specific path-
ways. Many of these methods are implemented and can be downloaded as soft-
ware (Table 30.4). All these methods are not restricted on the type of molecular
interaction networks. Thereby, they also can be applied to other types of networks
such as metabolic, transcription regulation networks to extract high related regions

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.3 DISEASE GENE PRIORITIZATION AND GENETIC PATHWAY DETECTION 681

Table 30.4 Softwares for inferring condition-specific pathways

Software Year Ref. URL

JACTIVEMODULES 2002 [29] http://chianti.ucsd.edu/cyto web/plugins
GIGA 2004 [9] http://www.biomedcentral.com/content/

supplementary/1471-2105-5-100-S1.exe
TOPNET 2004 [56] http://www.biosolveit.de/topnet/
GXNA 2007 [39] http://stat.stanford.edu/ serban/gxna
GNEA 2007 [34] from the author upon request
SPINE 2007 [43] http://cs.tau.ac.il/ roded/SPINE.html
NET-SYNTHESIS 2007 [2] http://www.cs.uic.edu/ dasgupta/network-synthesis/
HEINZ 2008 [19] http://www.planet-lisa.net
MMG 2008 [50] http://www.dcs.shef.ac.uk/ guido/software.html
MILPS 2009 [46] http://zhangroup.aporc.org/YuqingQiu

corresponding to the conditions or phenotypes. Meanwhile, the new identified
condition-specific pathways can be included in the gene set database to alleviate
the limitations of gene set analysis methods caused by the incompleteness of known
functional gene sets. Obviously, the well-established statistics adopted in single gene
and gene set analysis methods can be considered to be incorporated into the mathe-
matical programming method. However, scoring functions may become more com-
plicated, and thereby more difficult to solve because of the NP-hard nature of this
problem even for simple scoring functions. Hence, designing an accurate and easy
methodology for solving this problem is still an important direction.

30.3 DISEASE GENE PRIORITIZATION AND GENETIC
PATHWAY DETECTION

The condition-specific pathway identification methods can uncover the gene’s func-
tion and relationship between them. The ultimate goal is to find the most likely genes
that could be verified by experiment, especially for disease. Deciphering genes asso-
ciated with specific diseases is an important task to discover the genetic mechanism
in the molecular level and has a potential role in biomedical research.

Traditional DNA sequence-based gene-disease association analysis approaches,
such as linkage analysis or association studies [8], successfully have identified dis-
ease associated chromosomal regions, each of which contains hundreds of genes.
Experimental examination of causative mutations for all these genes is time con-
suming and expensive. It is often impossible to identify the correct disease gene by
inspecting of the list of genes within the region. On the other hand, various “omics”
data and other data sources, such as protein–protein interaction, protein structure,
GO functional data, gene expression data, as well as published literatures, are gen-
erated and cumulated in the postgenomic era. Computational methods to mine these
data for disease pathways identification and candidate disease prioritization become
important topics. Hence, we extend the condition-specific pathway identification to

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

682 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

the latest development of disease gene prioritization and other highly related genetic
pathway detection issues in this section.

Besides a small part of genetic diseases that are contributed by single genes, most
common genetic disorders have a complex inheritance and may result from variants
in many genes, each contributing only weak effects to the disease. By various bio-
logical experiments, many disease genes have been validated and are recorded in the
Online Mendelian Inheritance in Man (OMIM) database [27]. The studies [25, 41]
on the properties of known disease genes pointed out the modularity nature of the
disease genes that are phenotypically similar diseases and often are caused by func-
tionally related genes (as shown in Figure 30.2). A biological module of disease
genes responsible for a specific disease could be a protein complex, a biological path-
way, or a subnetwork of biomolecular interaction networks. With this understanding,
a vast amount of disease gene prediction methods are proposed by integrating var-
ious information, such as biomolecular interaction networks, phenotype similarity
networks, and so on. For a particular disease, candidate genes are ranked based on
their similarity to the known genes related to the disease for further experimental
examination.

Using the protein–protein interaction network or gene functional linkage network,
candidate gene prioritization simply can be done by searching for direct neighbors of
known disease genes [42] or by calculating the shortest path between candidates and
know disease proteins [22]. In contrast to these local similarity measures, global

Figure 30.2 A gene-phenotype network. In this hypothetical example, some diseases in the
phenotype network have known causative genes, and some genes are related phenotypically to
one or more disease. But some diseases lack identified causative gene(s). If the known causative
genes functionally are closely related, then candidate genes (gene a and b) can be hypothesized
to be corresponding to disease because of their close functional relationships to the known
genes of the phenotypically related diseases.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

30.3 DISEASE GENE PRIORITIZATION AND GENETIC PATHWAY DETECTION 683

network similarity measures—random walk and diffusion kernel—are proposed
[31]. The random walk on graphs is defined as an iterative walker’s transition from
its current node to a randomly selected neighbor starting at a given source node. A
variant of random walk that is used for disease gene ranking is defined in [31] as
follows:

pt+1 = (1 − r)W pt + r p0

where W is the column-normalized adjacency matrix of the graph and pt is a vector
in which the i th element holds the probability of being at node i at time step t . The
initial probability vector p0 is constructed such that equal probabilities are assigned
to the known disease protein, with the sum probabilities equal to 1. Candidate genes
are ranked according to the values in the steady-state probability vector p∞. Another
similarity measurement—diffusion kernel K —of a network is defined as

K = e−βL

where β controls the magnitude of the diffusion. The matrix L is the Laplacian of the
graph, defined as D − A, where A is the adjacency matrix of the interaction network
and D is a diagonal matrix containing the nodes’ degrees. The rank for each gene j
is assigned in accordance with its score defined as follows:

score(j) =
∑

i ∈ disease genes

Ki j

In the simulated test examples [31], candidate genes are selected from the simulated
linkage intervals of 100 genes surrounding the disease gene. The global measures
achieved an area under the receiver operating characteristic (ROC) curve of up to
98% and significantly outperform local distance measures methods.

By integrating the phenotype similarity network, phenotype-gene association
data, and protein–protein interaction networks, computational models [32, 66] have
been developed for interpreting the relationship between disease gene modules and
phenotypes and, furthermore, for predicting unknown disease genes. In [32], Lage
et al. proposed a Bayesian model for prioritizing protein complexes that are predicted
from the protein–protein interaction network. Each candidate gene is ranked by the
phenotype similarity score of the complex containing it. The assumption underly-
ing this model is that mutations in different members of a protein complex lead to
similar (or identical) disorders. Thus, a protein likely is to be involved in the molec-
ular pathology of a disorder if it is in a high-confidence complex in which some
proteins are known to be associated with similar disorders. In another work, Wu
et al. [66] suggested that the modularity of disease genes indicates a positive correla-
tion between gene–gene relationship and phenotype–phenotype similarity. They pro-
posed a regression model that explains the phenotype similarity by gene closeness in
the molecular interaction network and then uses the correlation between phenotype

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

684 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

similarities and gene closeness to predict disease genes. Because there is still no
causative gene identified for some diseases, integration of phenotype data can pro-
vide novel genes implicated in the diseases.

The modular nature of disease genes as well as the idea that directly or indirectly
interacting proteins cause similar disorders are important in elucidating the molecu-
lar mechanism of human genetical disorders and uncovering related genes. Although
integration of heterogeneous data can greatly improve the accuracy of candidate gene
prioritization and pathway identification, the available biological data, such as high-
throughput experimental data, are incomplete and noisy. Additionally, the measure of
biological information such as the similarity of phenotypes do not have a standard to
evaluate quantitatively. The integration framework can alleviate the noise and make
more robust and reliable prediction and identification.

30.4 MODULE NETWORKS

Modules are the building blocks of biological molecular interaction networks in a
high level. The activity of a cell is organized as a network of interacting modules,
such as condition-specific pathways, groups of genes of the same cellular functions,
and sets of genes coregulated to respond to different conditions. Experimental evi-
dence [67] has showed that modules are assembled to enable coordinated and com-
plex functions. The identification of modules and the intermodule relationships en-
ables the understanding of cellular behavior.

The first stage of the analysis of a module network is to identify modules and then
analyze the relationship between them. Many computational methods have been pro-
posed based on the protein–protein interaction networks or gene expression data. The
biomolecular network based approaches [55, 70, 69] define modules as subnetworks
that are connected densely within themselves but are connected sparsely with the rest
of the network. The identified modules correlate well with protein complexes iden-
tified experimentally and tend to contain proteins with similar functions. Another
kind of approach uses the gene expression data [37] for extracting modules that are
groups of genes with similar expression profiles. The motivation behind this strat-
egy is the assumption that coexpressed genes are coordinately regulated. However,
a functionally unrelated gene also could have a similar expression behavior. Much
prior knowledge, such as regulator–target gene interaction and known pathways, can
be integrated with expression data to reveal the module networks. For instance, Segal
et al. [52] present a probabilistic method for identifying regulatory modules and the
regulation programs among them from gene expression data coupled with regulator
data. They implemented their method on yeast expression data and obtained func-
tionally coherent modules and their correct regulators. As mentioned in the previ-
ous sections, single source data have limitations because they contain many false
positives and are incomplete. Integrating protein–protein interaction data with gene
expression data or another kind of data can identify more reliable modules.

Another possible way is to employ the condition-specific pathway identification
methods for this problem and then construct more reliable condition-specific mod-
ule networks for special conditions. The analysis of the condition-specific module

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

REFERENCES 685

network can shed light on the cooperation of modules related to specific condition
and uncover specific cooperative mechanisms. For example, the yeast MAPK and
high osmolarity glycerol (HOG) pathways were connected by the Ste11 gene. The
Ste11 crosstalks between these two pathways were proved by literatures. More quan-
titatively, the dynamic analysis of module networks can elucidate the molecular op-
erations within the modules and the cooperations between the modules along with
time or in different conditions, which will provide insights into the prediction and
manipulation and eventually into the understanding of the cell activities in vivo.

30.5 SUMMARY

In this chapter, we surveyed the topics highly related with condition-specific pathway
identification. The key methods include gene set analysis methods that integrate gene
expression data and known functional gene set and condition-specific pathway infer-
ence methods by combining gene expression data with molecular interaction data.
The gene set analysis methods are useful for high lighting known pathways with spe-
cific conditions but are constrained by the gene set database and cannot identify new
pathways. The second kind of method can uncover condition-specific pathways from
the biomolecular interaction networks and have promising applications in uncovering
unknown interacting mechanisms. The extending survey on genetic pathway identi-
fication and disease gene prioritization studies enlarge the applications surveyed in
the chapter, and the module network analysis can advance the understanding of bio-
logical systems in a global view.

ACKNOWLEDGEMENTS

This work is supported partially by the National Natural Science Foundation of China
under Grant No. 60873205, No. 10801131, by the Beijing Natural Science Founda-
tion under Grant No. 1092011, by the Innovation Project of Chinese Academy of
Sciences, kjcs-yw-s7 and by the Ministry of Science and Technology, China under
Grant No. 2006CB503905.

REFERENCES

1. F. Al-Shahrour, L. Arbiza, H. Dopazo, J. Huerta-Cepas, P. Minguez, D. Montaner, and
J. Dopazo. From genes to functional classes in the study of biological systems. BMC
Bioinformatics, 8(1):114, 2007.

2. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E. Sontag, A. Zelikovsky, and K. West-
brooks. A novel method for signal transduction network inference from indirect experi-
mental evidence. J Computat Biol, 14(7):927–949, 2007.

3. S. Bandyopadhyay, R. Kelley, and T. Ideker. Discovering regulated networks during
HIV-1 latency and reactivation. Pacific Symposium on Biocomputing, Volume 11, 2006,
pp. 354–366.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

686 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

4. S.E. Baranzini, N.W. Galwey, J. Wang, P. Khankhanian, R. Lindberg, D. Pelletier,
W. Wu, B.M.J. Uitdehaag, L. Kappos, Gene MSA Consortium. Pathway and network-
based analysis of genome-wide association studies in multiple sclerosis. Hum Mol Genet,
18(11):2078–2090, 2009.

5. T.W. Barry, B.A. Nobel, and A.F. Wright. Significance analysis of functional categories in
gene expression studies: A structured permutation approach. Bioinformatics, 21(9):1943–
1949, 2005.

6. G. Bebek and J. Yang. Pathfinder: Mining signal transduction pathway segments from
protein-protein interaction networks. BMC Bioinformatics, 8(1):335, 2007.

7. Y. Ben-Shaul, H. Bergman, and H. Soreq. Identifying subtle interrelated changes in func-
tional gene categories using continuous measures of gene expression. Bioinformatics,
21(7):1129–1137, 2005.

8. D. Botstein and N. Risch. Discovering genotypes underlying human phenotypes: Past
successes for mendelian disease, future approaches for complex disease. Nat Genet,
33(3s):228–237, 2003.

9. R. Breitling, A. Amtmann, and P. Herzyk. Graph-based iterative group analysis enhances
microarray interpretation. BMC Bioinformatics, 5(1):100, 2004.

10. T. Breslin, P. Edén, and M. Krogh. Comparing functional annotation analyses with
Catmap. BMC Bioinformatics, 5:193, 2004.

11. P.O. Brown and D. Botstein. Exploring the new world of the genome with dna microar-
rays. Nat Genet, 21(1 Suppl):33–7, 1999.

12. L. Cabusora, E. Sutton, A. Fulmer, and V.C. Forst. Differential network expression during
drug and stress response. Bioinformatics, 21(12):2898–2905, 2005.

13. H.Y. Chuang, E. Lee, Y.T. Liu, D. Lee, and T. Ideker. Network-based classification of
breast cancer metastasis. Mol Syst Biol, 3(140), 2007.

14. The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology. Nat
Genet, 25:25–29, 2000.

15. K.D. Dahlquist, N. Salomonis, K. Vranizan, S.C. Lawlor, and B.R. Conklin. GenMAPP,
a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet,
31(1):19–20, 2002.

16. A.P. Dempster, N.M. Laird, D.B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. J Roy Stat Soc, 39(1):1–38, 1977.

17. I. Dinu, D.J. Potter, T. Mueller, Q. Liu, J.A. Adewale, S.G. Jhangri, G. Einecke, S.K.
Famulski, P. Halloran, and Y. Yasui. Gene-set analysis and reduction. Brief Bioinform,
10(1):24–34, 2009.

18. I. Dinu, J. Potter, T. Mueller, Q. Liu, A. Adewale, G. Jhangri, G. Einecke, K. Famulski,
P. Halloran, and Y. Yasui. Improving gene set analysis of microarray data by SAM-GS.
BMC Bioinformatics, 8(1):242, 2007.

19. T.M. Dittrich, W.G. Klau, A. Rosenwald, T. Dandekar, and T. Muller. Identifying func-
tional modules in protein-protein interaction networks: an integrated exact approach.
Bioinformatics, 24(13):i223–231, 2008.

20. S.W. Doniger, N. Salomonis, K.D. Dahlquist, K. Vranizan, S.C. Lawlor, B.R. Conklin.
MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression
profile from microarray data. Genome Biol, 4(1):R7, 2003.

21. B. Efron and R. Tibshirani. On testing the significance of sets of genes. Ann Appl Stat,
1(1):107–129, 2007.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

REFERENCES 687

22. L. Franke, H. Bakel, L. Fokkens, E.D. de Jong, M. Egmont-Petersen, and C. Wijmenga.
Reconstruction of a functional human gene network, with an application for prioritizing
positional candidate genes. Am J Hum Genet, 78(6):1011–1025, 2006.

23. J.J. Goeman and P. Bühlmann. Analyzing gene expression data in terms of gene sets:
methodological issues. Bioinformatics, 23(8):980–987, 2007.

24. J.J. Goeman, A.S. van de Geer, F. de Kort, and C.H. van Houwelingen. A global test for
groups of genes: testing association with a clinical outcome. Bioinformatics, 20(1):93–99,
2004.

25. K.I. Goh, M.E. Cusick, D. Valle, B. Childs, M. Vidal, and A.L. Barabasi. The human
disease network. Proc Natl Acad Sci U S A, 104(21):8685, 2007.

26. Z. Guo, Y. Li, X. Gong, C. Yao, W. Ma, D. Wang, Y. Li, J. Zhu, M. Zhang, D. Yang, et al.
Edge-based scoring and searching method for identifying condition-responsive protein
protein interaction sub-network. Bioinformatics, 23(16):2121, 2007.

27. A. Hamosh, A.F. Scott, J.S. Amberger, C.A. Bocchini, and V.A. McKusick. Online
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic
disorders. Nucleic Acids Res, 33(Suppl 1):D514–517, 2005.

28. L.H. Hartwell, J.J. Hopfield, S. Leibler, and A.W. Murray. From molecular to modular
cell biology. Nature, 402(Supp 6761):C47, 1999.

29. T. Ideker, O. Ozier, B. Schwikowski, and A.F. Siegel. Discovering regulatory and sig-
nalling circuits in molecular interaction networks. Bioinformatics, 18(Suppl 1):233–240,
2002.

30. M. Kanehisa, S. Goto, M. Hattori, K.F. Aoki-Kinoshita, M. Itoh, S. Kawashima,
T. Katayama, M. Araki, and M. Hirakawa. From genomics to chemical genomics: new
developments in KEGG. Nucleic Acids Res, 34(Database Issue):D354, 2006.

31. S. Köhler, S. Bauer, D. Horn, and P.N. Robinson. Walking the interactome for prioritiza-
tion of candidate disease genes. Am J Hum Genet, 82(4):949–958, 2008.

32. K. Lage, E.O. Karlberg, Z.M. Størling, P.Í. Ólason, A.G. Pedersen, O. Rigina, A.M.
Hinsby, Z. Tümer, F. Pociot, N. Tommerup, et al. A human phenome-interactome net-
work of protein complexes implicated in genetic disorders. Nat Biotechnol, 25(3):309–
316, 2007.

33. H.K. Lee, W. Braynen, K. Keshav, and P. Pavlidis. ErmineJ: Tool for functional analysis
of gene expression data sets. BMC Bioinformatics, 6(1):269, 2005.

34. M. Liu, A. Liberzon, S.W. Kong, W.R. Lai, P.J. Park, and K. Kerr. Network-based anal-
ysis of affected biological processes in type 2 diabetes models. PLoS Genet, 3(6):e96,
2007.

35. Y. Liu and H. Zhao. A computational approach for ordering signal transduction pathway
components from genomics and proteomics data. BMC Bioinformatics, 5(1):158, 2004.

36. I. Ljubić, R. Weiskircher, U. Pferschy, G.W. Klau, P. Mutzel, and M. Fischetti. An al-
gorithmic framework for the exact solution of the prize-collecting Steiner tree problem.
Math Program, 105(2):427–449, 2006.

37. D.J. Miller, Y. Wang, and G. Kesidis. Emergent unsupervised clustering paradigms with
potential application to bioinformatics. Front Biosci, 13:677, 2008.

38. V.K. Mootha, C.M. Lindgren, K.F. Eriksson, A. Subramanian, S. Sihag, J. Lehar,
P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, et al. PGC-1alpha-responsive
genes involved in oxidative phosphorylation are coordinately downregulated in human
diabetes. Nat Genet, 34(3):267–73, 2003.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

688 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE

39. S. Nacu, R. Critchley-Thorne, P. Lee, and S. Holmes. Gene expression network analysis
and applications to immunology. Bioinformatics, 23(7):850, 2007.

40. D. Nam and S.Y. Kim. Gene-set approach for expression pattern analysis. Brief Bioinform,
9(3):189–197, 2008.

41. M. Oti and H.G. Brunner. The modular nature of genetic diseases. Clinl Genet, 71(1):1–
11, 2007.

42. M. Oti, B. Snel, M.A. Huynen, and H.G. Brunner. Predicting disease genes using protein–
protein interactions. J Med Genet, 43(8):691–698, 2006.

43. O. Ourfali, T. Shlomi, T. Ideker, E. Ruppin, and R. Sharan. SPINE: A framework for
signaling-regulatory pathway inference from cause-effect experiments. Bioinformatics,
23(13):i359–366, 2007.

44. K.H. Pan, C.J. Lih, and N.S. Cohen. Effects of threshold choice on biological conclusions
reached during analysis of gene expression by DNA microarrays. Proc Natl Acad Sci
U S A, 102(25):8961–8965, 2005.

45. S. Pounds and W.S. Morris. Estimating the occurrence of false positives and false neg-
atives in microarray studies by approximating and partitioning the empirical distribution
of p-values. Bioinformatics, 19(10):1236–1242, 2003.

46. Y.Q. Qiu, S. Zhang, X.S. Zhang, and L. Chen. Identifying differentially expressed path-
ways via a mixed integer linear programming model. IET Syst Biol, 3(6):475-486, 2009.

47. D. Rajagopalan and P. Agarwal. Inferring pathways from gene lists using a literature-
derived network of biological relationships. Bioinformatics, 21(6):788–793, 2005.

48. B. Ren, F. Robert, J.J. Wyrick, O. Aparicio, E.G. Jennings, I. Simon, J. Zeitlinger,
J. Schreiber, N. Hannett, E. Kanin, et al. Genome-wide location and function of DNA
binding proteins. Science, 290(5500):2306–2309, 2000.

49. J.F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li, G.F. Berriz,
F.D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, et al. Towards a proteome-scale map
of the human protein-protein interaction network. Nature, 437(7062):1173–1178, 2005.

50. G. Sanguinetti, J. Noirel, and C.P. Wright. MMG: A probabilistic tool to identify sub-
modules of metabolic pathways. Bioinformatics, 24(8):1078–1084, 2008.

51. J. Scott, T. Ideker, M.R. Karp, and R. Sharan. Efficient algorithms for detecting signaling
pathways in protein interaction networks. J Comput Biol, 13(2):133–144, 2006.

52. E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Mod-
ule networks: identifying regulatory modules and their condition-specific regulators from
gene expression data. Nat Genet, 34(2):166–176, 2003.

53. E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interac-
tion and gene expression data. Bioinformatics, 19(Suppl 1):264–272, 2003.

54. P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin,
B. Schwikowski, and T. Ideker. Cytoscape: a software environment for integrated models
of biomolecular interaction networks. Genome Res, 13(11):2498, 2003.

55. R. Sharan, I. Ulitsky, and R. Shamir. Network-based prediction of protein function. Mol
Syst Biol, 3(1):88, 2007.

56. F. Sohler, D. Hanisch, and R. Zimmer. New methods for joint analysis of biological net-
works and expression data. Bioinformatics, 20(10):1517–1521, 2004.

57. U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F.H. Brembeck, H. Goehler, M. Stroedicke,
M. Zenkner, A. Schoenherr, S. Koeppen, et al. A human protein-protein interaction net-
work: a resource for annotating the proteome. Cell, 122(6):957–968, 2005.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

REFERENCES 689

58. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette,
A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, et al. Gene set enrichment analysis:
a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl
Acad Sci U S A, 102(43):15545–15550, 2005.

59. S. Suthram, A. Beyer, R.M. Karp, Y. Eldar, and T. Ideker. eQED: an efficient method for
interpreting eQTL associations using protein networks. Mol Syst Biol, 4(1):162, 2008.

60. L. Tian, A.S. Greenberg, W.S. Kong, J. Altschuler, S.I. Kohane, and J.P. Park. Discovering
statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A,
102(38):13544–13549, 2005.

61. G. V. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied to
the ionizing radiation response. Proc Natl Acad Sci U S A, 98(9):5116–5121, 2001.

62. I. Ulitsky, R.M. Karp, and R. Shamir. Detecting disease-specific dysregulated pathways
via analysis of clinical expression profiles. Lect Notes Comput Sci, 4955:347, 2008.

63. X. Wang, E. Dalkic, M. Wu, and C. Chan. Gene module level analysis: identification to
networks and dynamics. Curr Opin Biotech, 19(5):482–491, 2008.

64. Y. Wang and Y. Xia. Condition specific subnetwork identification using an optimization
model. Proceedings of 2nd International Symposium on Optimization and Systems Biol-
ogy, Lecture Notes in Operations Research, volume 9, 2008, pp. 333–340.

65. Z. Wei and H. Li. A Markov random field model for network-based analysis of genomic
data. Bioinformatics, 23(12):1537–1544, 2007.

66. X. Wu, R. Jiang, M.Q. Zhang, and S. Li. Network-based global inference of human dis-
ease genes. Mol Syst Biol, 4(1):184, 2008.

67. I. Yanai, L.R. Baugh, J.J. Smith, C. Roehrig, S.S. Shen-Orr, J.M. Claggett, A.A. Hill,
D.K. Slonim, and C.P. Hunter. Pairing of competitive and topologically distinct regulatory
modules enhances patterned gene expression. Mol Syst Biol, 4(1):163, 2008.

68. E. Yeger-Lotem, L. Riva, L.J. Su, A.D. Gitler, A.G. Cashikar, O.D. King, P.K. Auluck,
M.L. Geddie, J.S. Valastyan, D.R. Karger, et al. Bridging high-throughput genetic and
transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat Genet,
41(3):316–323, 2009.

69. S. Zhang, G. Jin, X.-S. Zhang, and L Chen. Discovering functions and revealing mecha-
nisms at molecular level from biological networks. Proteomics, 7(16):2856–2869, 2007.

70. S. Zhang, X. Ning, and X.S. Zhang. Identification of functional modules in a PPI network
by clique percolation clustering. Comput Biol Chem, 30(6):445–451, 2006.

71. X.M. Zhao, R.S. Wang, L. Chen, and K. Aihara. Uncovering signal transduction networks
from high-throughput data by integer linear programming. Nucleic Acids Res, 36(9):e48,
2008.

P1: OSO
c30 JWBS046-Elloumi December 2, 2010 9:45 Printer Name: Sheridan

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31
HETEROGENEITY
OF DIFFERENTIAL

EXPRESSION IN CANCER
STUDIES: ALGORITHMS

AND METHODS

Radha Krishna Murthy Karuturi

31.1 INTRODUCTION

Cancer is an uncontrolled growth of abnormal cells evading apoptosis. It is a result
of the failure of cell cycle control and apoptosis functions combined with an in-
creased proliferation activity. Tumor formation and its progression to cancer causes
major complex changes to the cells’ maps of genome, transcriptome, and pathway
regulation [10, 34, 35]. For example, the genomes of cancer cells, compared with
that of normal cells, contain extra copies of some chromosomal segments as a re-
sult of duplication, translocation, and deletion of some regions of the genome [34,
35]. Erratic genomic changes and cell cycle regulation lead to different pathways
being activated and different sets of genes coming into play in defining the state
of the cells. The changes depend on many factors related to the patient such as the
genetic makeup and the stage of the tumor. For example, Grade3 tumors will have
many more structural variations (amplifications and deletions) in their genomes and
a stronger expression of proliferation associated genes compared with Grade1 tu-
mors. Estrogen receptor (ER)+ tumor progression may be facilitated by different

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

691

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

692 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

transcription factors and pathways compared with ER– tumors. Similarly, p53+ tu-
mors grow potentially because of deregulation of the pathways downstream of p53,
whereas the p53– tumors grow because of the deregulation of the different pathways
[4]. DNA mythelation also has been observed frequently causing some important
apoptotic genes silenced leading to aberrant cell growth. All these factors lead to dif-
ferent transcriptional programs in different patients suffering from the same cancer.
These transcriptional programs need to be analyzed appropriately to understand the
underlying biology of the tumor origin and growth.

High-throughput technologies such as microarrays [27, 28] have made the simul-
taneous profiling of mRNA (expression) levels of all genes in the cells of a tumor
sample feasible. The technological shift from measuring single gene expression to
all-genes’ expression has facilitated a major shift in identifying the genes involved
in the origin and progression of tumors leading to a comprehensive understanding of
the involvement of different pathways in cancers. The available data may be of cell
lines or tumors with control samples or tumors without control samples. The number
of samples also may range from the tens to hundreds.

The diversity of the sample composition of the datasets and genome-wide pro-
filing of mRNA levels combined with diverse mechanisms of cancer progression
requires orthogonal analytical approaches to extract important information about the
relevant changes to the maps of genome, transcriptome, and the regulation of various
pathways.

A variety of approaches have been proposed in the literature to elicit the biology
of tumor formation and progression from different types of gene expression data.
They analyze each gene separately or gene sets. They include assessing the differ-
ential expression in mean, differential variance of expression, differential expres-
sion in genomic localization, differential expression using gene–gene interactome,
and differential coexpression. The chapter is aimed at describing these approaches
to identify differential expression in tumors along with a brief description of a few
appropriate methods available, but not meant to be a comprehensive survey of the
methods, for each approach.

31.2 NOTATIONS

Throughout the chapter, we will be dealing with microarray data measuring the ex-
pression of M genes among N tissue (tumor or normal) samples. Following are the
notations and the definitions used to describe the methods and the algorithms for a
variety of differential expression analyses.

K Total number of sample groups in the study (i.e., k ∈ {1,2, . . . ,
K })
>1 for supervised analysis
= 1 for unsupervised analysis

nk Number of samples in group Gk = {p j / j = 1, 2, . . . , nk}

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.2 NOTATIONS 693

N Total number of samples in the study

=
K∑

k=1

nk

Xi jk Expression of gene gi in sample p j in group Gk

Xi j is used instead if K = 1, mainly in unsupervised analyses
mik Sample mean of expression of gene gi in group Gk over all nk

samples

= 1

nk

nk∑

j=1

Xi jk

mi Sample mean of expression of gene gi over all N samples in the
study

= 1

N

K∑

k=1

nk∑

j=1

Xi jk

σ 2
ik Sample variance of expression of gene gi in group Gk over all nk

samples

= 1

nk − 1

nk∑

j=1

(Xi jk − mik)2

σ 2
i Sample pooled variance of expression of gene gi over all K groups

= 1

N − K

K∑

k=1

(nk − 1)σ 2
ik

Ri jk Rank of Xi jk among all N samples for a particular gene gi

Rik Rank sum of all nk samples in group Gk of gene gi =
nk∑

j=1

Ri jk

N(v/µ,σ 2) Normally distributed random variable v with mean µ and

variance σ 2 = 1√
2πσ 2

e
−(v−µ)2

2σ2

X2(v/d) Chi-square distributed random variable v with d degrees of

freedom =
⎧
⎨

⎩

1

2d/2�(d/2)
v(d/2)−1e−v/2

0

f or x > 0
f or x ≤ 0

where �(.) is a gamma function
F(v/d1, d2) F-distributed random variable v with d1 and d2 degrees of freedom

= 1

vB(d1
/

2, d2
/

2)

√
dd1

1 dd2
2 vd1

(d1v + d2)d1+d2
where B(.) is a beta function

Medik Median of the expression of gene gi in group Gk over all nk

samples
Medi Median of the expression of gene gi over all N samples

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

694 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

MADik Median absolute deviation of the expression of gene gi in
group Gk over all nk samples = 1.4826 × Median {|Xi jk−
Medik |/| j =1,2, . . . nk}

MADi Median absolute deviation of the expression of gene gi over
all N samples

p-value The probability that an observed statistic or its extreme can
be a result of chance alone. Let the statistic v follows a distri-
bution with probability density function f (v/θ), and θ is the
parameter vector of the distribution. Then the p-value of v =

η is

∞∫

η

f (v/θ)dv

Q1ik , Q2ik

Q3ik , IQRik

}
First, second, and third quartiles of the expression of gi in Gk ,
respectively
Q2ik = Medik ; IQRik is interquartile range = Q3ik − Q1ik

DE Differentially expressed
Non-DE Nondifferentially expressed
Normality
Assumption

}
The random variable x is assumed to follow a normal distri-
bution with mean µ and variance σ 2

∪ Set union
|D| Cardinality of the set D (i.e., number of elements in the set D)
|x | Absolute value of a real valued number x

= x if x ≥ 0
− x if x < 0

iid independent and identically distributed
U (x) Step function

= 1 if x > 0
0 if x ≤ 0

x ← y The value of x is replaced by that of y. y may be function of
x itself.

31.3 DIFFERENTIAL MEAN OF EXPRESSION

The traditional way of identifying genes relevant to a given cancer is by measuring
the change of their mRNA levels in tumor tissues compared with the reference tis-
sues and choosing the significantly changed genes, which are called differentially
expressed. It has been of great focus even in the era of microarrays and sequencing,
especially in the context of biomarker discovery. Several statistical procedures are
available to identify differentially expressed genes (e.g., t-test, Analysis of Variance
[ANOVA], linear modeling, and their empirical Bayes versions significance analysis
of microarrays [SAM] and linear models for microarray data [LIMMA] etc.)

The expression of a gene may be differentially influenced by different factors and
their levels. Though the approaches used for a multifactor multilevel differential ex-
pression analysis are also applicable to two-level single factor analysis, well-tailored

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.3 DIFFERENTIAL MEAN OF EXPRESSION 695

2
G1

ex
p

re
ss

io
n

1

5 10 15

Sample No

20

0
−1

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

G2

ex
p

re
ss

io
n

5 10 15

Sample No

20

−0
.5

4

G3

ex
p

re
ss

io
n 3

5 10 15

Sample No

20
2

1

2

G4

ex
p

re
ss

io
n

1

5 10 15

Sample No

20

0
−1

−2

Figure 31.1 Expression of a DE gene among four groups of samples (G1, G2, G3, and G4).
Each circle is one sample, the black line indicates true expression, and the grey line indicates the
estimated expression. Although G2 and G4 have same expression, their estimates are different.
They are different from the remaining two groups. These differences among G1 . . . G4 need to
be tested.

methods that may yield better sensitivity and specificity are available for special
cases. Hence, we will present separately the methods available for two-level single
factor analysis, multilevel single factor analysis, and multifactor analysis.

31.3.1 Single Factor Differential Expression

In a single factor differential expression analysis, the factor is discrete or continu-
ous valued. The factor could be ER status (ER+ vs. ER–, a two-level factor), p53
mutation status (p53+ vs. p53–, a two-level factor), histological grade of the tumor
(Grade1, Grade2, and Grade3, a multilevel factor), treatment response (continuous
valued in terms of dosage), or any other factor of interest. If the expression of a gene
is significantly different in any level of the factor relative to the other levels, then the
gene will be declared as differentially expressed (see Figure 31.1).

31.3.1.1 Two-Level Single Factor Differential Expression Analysis. A
two-level differential expression in mean can be handled by two-group differential
expression analysis using the t-test [13] and the Mann–Whitney–Wilcoxon test [39].
Each level of the factor is treated as a group.

T-test measures the ratio (Ti) of the estimate of the differential mean of expression
and its standard deviation.

Ti = mi2 − mi1

σie

√
ne ∼ t(Ti/n2 + n1 − a)

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

696 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

where σie is the standard deviation of the random variable mi2 − mi1; it will be equal
to the standard deviation of the tested group (σi2) if mi1 is a constant reference (usu-
ally 0) or to the pooled variance (σ 2

i) if mi1 is an estimate from a random group of
n1 samples. Similarly, ne is the effective number of samples used in the test; ne = n2

if mi1 is a constant reference, and 1/ne = 1/n2 + 1/n1 if mi1 is estimated from a
reference group of size n1. The statistic Ti , follows the central t-distribution with
n2 + n1 − a degrees of freedom, where a = 1 for a constant mi1 and a = 2 for an
estimated mi1. T -test is mainly useful under normality assumption in both G1 and
G2 with a smaller number of samples in each level.

The Mann–Whitney–Wilcoxon test is a nonparametric test; it is particularly pow-
erful if the data does not obey the normality assumption and if n1 and n2 are large
enough. The test is based on the distribution of the ranks of the samples between
two groups instead of their values. The Mann–Whitney–Wilcoxon test statistic zi for
gene gi is

zi = ξi − mξi

σξi

∼ N(zi/0, 1)

where

ξi = min

(

Ri1 − n1(n1 + 1)

2
, Ri2 − n2(n2 + 1)

2

)

mξi = n1n2

2
; σξi =

√
n1n2(n1 + n2 + 1)

12

31.3.1.2 Multilevel Single Factor Differential Expression Analysis in
Mean. Although the t-test or Mann–Whitney–Wilcoxon test can be used for mul-
tilevel differential expression analysis by exploring all possible pairs, K (K − 1)/2,
of groups. It is not optimal because of the K (K − 1)/2 tests needed for each gene.
Therefore, multilevel differential expression in mean (as in grade analysis) can be
handled by using ANOVA (or one-way ANOVA) [13] and the Kruskal–Wallis tests
[13]. They test whether at least one pair of µiks (the true expression) is different
using a single test.

ANOVA requires a gene’s expression to follow a normality assumption in each
group with the same underlying variance. The ANOVA statistic, AFi , measures the
ratio of variance of the group means to the pooled variance of all groups put together
as follows:

AFi = S2
1i/(K − 1)

σ 2
i

∼ F(AFi/K − 1, N − K)

where

S2
1i =

K∑

k=1

nk (mik − mi)
2

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.3 DIFFERENTIAL MEAN OF EXPRESSION 697

AFi follows the F distribution with (K − 1, N − K) degrees of freedom un-
der null hypothesis that µ1 = µ2 = µ3 = · · · = µK (i.e., expected value of S2

1i ,
E(S2

1i),= 0).
The Kruskal–Wallis test is a nonparametric test for multigroup differential ex-

pression analysis. Similar to the Mann–Whitney–Wilcoxon test, the Kruskal–Wallis
test uses ranks to test the null hypothesis. The ties are resolved by taking the mean
of the range of the ranks of the tied values. The Kruskal–Wallis test statistic, Hi , for
gi is

Hi =
{

12

N (N + 1)

K∑

k=1

R2
ik

nk

}

− 3(N + 1) ∼ X2(Hi/K − 1)

Hi follows X2-distribution with K − 1 degrees of freedom.

31.3.2 Multifactor Differential Expression

Tumor samples can be represented by a vector of attributes such as ER status, grade,
p53 mutation status, and treatments received. A simple two-group analysis on one
factor may not give complete picture of the effects of various factors because of
their confounding and interaction. For example, as in Figure 31.2, let the tumors

B1

E2

E2

DM

DM

Variance of E2

New variance of E2 New variance of DM

Variance of DM

B1 B2 B2

Correction for
the effect of B

Expression

Expression

D
e
n
s
i
t
y

D
e
n
s
i
t
y

E2

Figure 31.2 Illustration of the additive effects of two factors on gene expression. The top
and bottom figures show distributions of its expression in each treatment (E2 and DM) before
and after correcting for the effects of the factor B. Adjustment for B gives much lower vari-
ance in both treatments, which gives better power to identify differential expression between
treatments.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

698 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

belong to two levels of factor B (B1 and B2) in each level of the treatment (E2 and
DM) received. The top figure shows the distribution of the expression (density plots)
of a gene for two treatments; it can be seen easily that the variations of measurements
are large from the influence of factor B. The bottom figure shows the same measure-
ments, but with the adjustment for the effects of B, there is much lower variation
leading to a potential increase in the power of the tests.

To deal with such a complex data, a meaningful analysis would involve all factors
together (a multivariate approach). Linear models and generalized linear models [40]
are useful to decipher the individual effects of the tumor attributes on the change in
the expression levels of a gene. Note that all samples here are treated to belong to
one group and the sample attributes (e.g., ER status, p53 status, PR status, etc.) are
treated as factors in the model.

For example, Miller et al. [4] used a linear model to identify p53 mutation specific
changes in the expression of nearly 30,000 genes using a cohort of >250 tumors. The
expression of a gene is modeled as a combination of tumor grade, ER status, and p53
mutation status as shown in the following equation.

Xi j ∼ G j + E R j + p53 j + εi j

where N(εi j/0, s2
i), G j (grade) ∈ Grade1, Grade2, Grade3}, ER j (ER status) ∈

{ER+, ER−}, and p53 j (p53 status) ∈ {p53+, p53−}.
εi j is error and it is assumed to be iid and normally distributed with mean 0 and

variance s2
i . The least-squares minimization procedure is used to estimate the coef-

ficients of the factors. The statistical significance of the estimated parameters of the
linear model may be evaluated using the ANOVA procedure. The genes were ranked
by the coefficient of the factor p53 status, and the top genes were selected to have
been affected by p53 mutation specifically.

The multivariate approach is also useful to distinguish microarray batch effects
from the actual factor effects. To achieve it, batch is used as a factor in the linear
model as in COMBAT [37]. One may use generalized linear models if the errors are
not distributed normally but belong to one of the members of the exponential family
of distributions.

31.3.3 Empirical Bayes Extension

All of the above procedures were extended to include empirical bayes analysis. The
error variance has been assumed to follow an inverse X2 distribution with mean
s2

o . The test statistics have been modified to accommodate the prior and are included
in the packages such as SAM [6] and LIMMA [25]. They also have been included in
the corresponding modified null distribution to estimate the statistical significance.
Both SAM and LIMMA estimate the parameters of the prior from the data itself. The
details have been omitted because of space limitation, interested readers can refer to
the respective manuals for details.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.4 DIFFERENTIAL VARIABILITY OF EXPRESSION 699

31.4 DIFFERENTIAL VARIABILITY OF EXPRESSION

A gene deregulated in cancer does not necessarily demonstrate a significant unidi-
rectional change in its mRNA levels in the tumor samples group. But, the change
may be different in different tumor samples as the maps of a genome, transcriptome,
and proteome of a tumor may not be same as the other tumors. This leads to different
control mechanisms, and the genes may be regulated tightly in normal tissues but
loosely or nonregulated in tumor tissues. In other words, the tightness of the control
of a gene’s expression changes from one group of tissues to another, and a change
in the average level of expression may not be significant. This observation has led to
the idea of identifying genes with differential variability in their expression [15] (see
Figure 31.3).

31.4.1 F-Test for Two-Group Differential Variability Analysis

Each gene gi can be tested for its differential variability using an F-test [13] on the
equality of variances by testing SF1i and SF2i for two different alternative hypotheses
σ 2

i1 > σ 2
i2 and σ 2

i2 > σ 2
i1, respectively.

SF1i = σ 2
i1/σ

2
i2 ∼ F(SF1i/n1 − 1, n2 − 1)

SF2i = σ 2
i2/σ

2
i1 ∼ F(SF2i/n2 − 1, n1 − 1)

SNorm
2 = 0.1

SDisease
2 = 1

0

0
1

0

E
xp

re
ss

io
n

−1
−2

20

Normal

40 60 80

Sample No
100 0

0
1

0

E
xp

re
ss

io
n

−1
−2

20

Disease

40 60 80

Sample No
100

Figure 31.3 Illustration of differential variability of expression of a gene between normal and
disease tissues. The expression has a variance of 0.1 in normal tissues, whereas it is 1, 10-fold
higher, in disease tissues. Note that the average expression level is 0 in both groups.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

700 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

A gene is said to be differentially variable if either SF1i or SF2i is significant.
They follow the F-distribution with (n1 − 1, n2 − 1) and (n2 − 1, n1 − 1) degrees of
freedom respectively.

Ho et al. [15] proposed modifications to this procedure for robustness to outliers.
One variation is removing outliers in both groups. For each gene gi , in each group,
all Xi jks falling outside the range [Q1i − 1.5IQRi , Q3i + 1.5IQRi] are removed, and
the F-test is conducted using the remaining Xi jks. The other approach is to replace
σik by MADik that is, SF1i and SF2i will change to

SF1i = MAD2
i1/MAD2

i2 ∼ F(SF1i/n1 − 1, n2 − 1)

SF2i = MAD2
i2/MAD2

i1 ∼ F(SF2i/n2 − 1, n1 − 1)

31.4.2 Bartlett’s and Levene’s Tests for Multigroup Differential
Variability Analysis

Because of the multiple testing involved, similar to the use of the t-test for multigroup
differential expression testing, the F-test also is not recommended for multigroup
differential variability analysis. Several tests, which do not require multiple testing,
have been proposed in the statistics literature to test for differential variability among
multiple groups. They test whether any two of the K groups have differential vari-
ance using a single test. Two of the most well-known tests are from Bartlett and
Levene.

Bartlett’s test [13, 39] assumes normality of the data in each group. It is a modifi-
cation of the corresponding likelihood ratio test designed to make the approximation
to the X2 distribution better. Bartlett’s differential variability test statistic for gi , V B

i
is

V B
i =

(N − K) ln(σ 2
i) −

∑K

k=1
(nk − 1) ln(σ 2

ik)

1 + 1

3(K − 1)

(∑K

k=1

(
1

nk − 1

)

− 1

N − K

) ∼ X2(V B
i /K − 1)

The Bartlett’s test statistic V B
i follows a X2 distribution with K − 1 degrees of

freedom.
Levene’s test [39] does not require a normality assumption of the underlying data

unlike Bartlett’s test. Levene’s test measures a ratio (V L
i) for gi of the variance of the

average absolute deviations to the pooled variance of the absolute deviations from
the respective group means. It also can be described as conducting one-way ANOVA
as in Section 31.3.1 on the absolute deviations Zi jk = |Xi jk − mik |, which can be
written as follows:

V L
i = 1

K − 1

K∑

k=1

nk (mik(Z) − mi (Z))2

σ 2
i (Z)

∼ F(V L
i /K − 1, N − K)

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.5 DIFFERENTIAL EXPRESSION IN COMPENDIUM OF TUMORS 701

where mik(Z), mi (Z), and σ 2
i (Z) are the definitions similar to that of mik , mi , and σ 2

i
but on Z instead of X . V L

i follows the F distribution with (K – 1, N – k) degrees of
freedom. Levene’s test can be more robust against outliers if we used the improve-
ment shown in the Brown–Forsythe test [39]. It is different from Leven’s test in the
definition of Zi jk , which is modified as Zi jk = |Xi jk − Medik |. Improvements pro-
posed by Ho et al. for a two-group case can be employed in Bartlett’s and Levene’s
tests as well.

31.5 DIFFERENTIAL EXPRESSION IN COMPENDIUM OF TUMORS

The heterogeneity of tumors is of great interest in cancer studies. The knowledge of
genetic differences that lead to the heterogeneity of tumors can be highly useful in the
prognosis and treatment. To elicit such knowledge, we need to profile the gene ex-
pression in a compendium of tumors obtained through clinical trials or retrospective
studies. This type of data lacks in replicates and control samples. Another important
aspect of such data is that the number of subgroups defined by different genes could
be different, and it is interesting to a researcher to discover all possible subgroups
of the tumors. Unsupervised analysis or class discovery is preferred, as it requires
discovery of inherent groups defined by different genes. The distribution of samples
into the subgroups also changes from one gene to another gene, and it may be on
either of the extremes—equidistribution of samples versus a skewed distribution of
samples among the groups. There is no universal methodology to identify such genes
in a compendium of profiles in an unsupervised analysis framework. Therefore, the
genes that can delineate various subgroups of tumors are identified by different sta-
tistical techniques. We present three important techniques to identify genes that may
help in class discovery. The fundamental idea is to test for nonnormality of the ex-
pression of a gene under Gaussian noise assumption [9, 16].

31.5.1 Gaussian Mixture Model (GMM) for Finite Levels
of Expression

As finite discrete levels of expression of a gene and Gaussian distributed noise are
assumed, we can model each gene’s expression data by Gaussian mixture model
(GMM) [12]. Gaussian Mixture Modeling approximates the distribution of a given
data by a convex combination of a finite number of Gaussians. For example, the
pdf fi (x) of gi can be approximated by a mixture of Ki Gaussians with �iks as the
mixing proportions:

fi (x) ≈
Ki∑

k=1

�ikN(x/µik, σ
2
ik);

Ki∑

k=1

�ik = 1; �ik ≥ 0

The parameters (�ik, µik, σ
2
ik) are estimated using the expectation maximization

(EM) [12, 26] algorithm by minimizing the negative log likelihood (OK i) over the

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

702 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

set of observations {Xi1, Xi2 . . . Xi N }.

OKi = −
N∑

j=1

log(fi (Xi j))

The parameters of all Ki Gaussians along with the mixing parameters are esti-
mated by alternating between the expectation (E) step and the maximization (M)
step.

E step:
In the E step, the association of Xi j to the kth Gaussian (γi jk) is estimated

γi jk = p(k/Xi j) = {
�ikN(Xi j/µik, σ

2
ik)

} ÷
{

Ki∑

l=1

�ilN(Xi j/µil , σ
2
il)

}

M step:
Based on the association (γi jk) estimated in the E step, the parameters of the Ki

Gaussians are estimated in the following sequence:

�ik = 1

N

N∑

j=1

γi jk ; µik = 1

N�ik

N∑

j=1

γi jk Xi j ; σ
2
ik = 1

N�ik

N∑

j=1

γi jk(Xi j−µik)2

The model complexity parameter Ki is chosen using Akaike information criterion
(AIC) [29] or Bayesian information criterion (BIC) [30] criterion commonly used in
competitive nonnested model selection. The number of parameters in a Ki -GMM
for gi with all �ik > 0 is 3Ki − 1, as only Ki − 1 mixing parameters need to be
estimated from the data. The AIC and BIC procedures are

AIC: K opt
i = arg min

Ki ∈1,..,N
6Ki − 2 + 2OKi

BIC: K opt
i = arg min

Ki ∈1,..,N
(3Ki − 1) ln(N) + 2OKi

Once the model is estimated using K opt
i , the data can be discretized by defin-

ing boundaries (biks) based on minimal error criterion between two consecutive
Gaussians. The boundary bik between kth and (k + 1)th Gaussians (µik �= µi(k+1))
for a gene gi is obtained by solving the following equation: �ikN(x/µik , σ

2
ik) −

�i(k+1)N(x/µi(k+1), σ
2
i(k+1)) = 0

The number K opt
i can be different for different genes (i.e., the tissues may be

divided into a different number of subgroups based on the gene under consideration).
All genes whose K opt

i = 1 will be considered as nondifferentially expressed genes as
they fail to separate the samples into more than one group under Gaussian noise
assumption.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.5 DIFFERENTIAL EXPRESSION IN COMPENDIUM OF TUMORS 703

31.5.2 Outlier Detection Strategy

If the number of tumors in which a gene is differentially expressed in a compendium
of tumors is small (i.e., <10%) then the GMM idea may not work well, especially
with fewer samples, and qualify it to be a non-DE gene. Such a situation can be
handled by the outlier detection strategy under Gaussian noise assumption. Although
several methods have been available in the statistics literature to identify outliers, the
most commonly used method is the mi ± 3σi rule:

Upper outliers (DUi) and lower outliers (DLi) for gi are identified using the fol-
lowing rules, see Figure 31.4:

DUi = {
Xi j/Xi j ≥ mi + rσi

}
; DLi = {

Xi j/Xi j ≤ mi − rσi
}

; r > 0,

Di = DUi ∪ DLi

Robust versions of these rules also have been adopted as one may incorrectly
estimate the mean of the underlying reference distribution (shown by the peak in
Figure 31.4) from a skewed overexpression or repression and also overestimate the
variance of the underlying reference distribution owing to the presence of outliers.
We can replace the mean (mi) by the median and standard deviation (σi) by MADi ,
which changes these rules to

DUi = {
Xi j/Xi j ≥ Medi + rMADi

}
; DLi = {

Xi j/Xi j ≤ Medi − rMADi
}

; r > 0

Di = DUi ∪ DLi

Median
Median+3MADMedian-3MAD

Lower Outliers

0.4

0.3

0.2

0.1

0.0

–10 –5 0
Expression

D
en

si
ty

5 10

Upper Outliers

Figure 31.4 Outlier detection strategy. For a given expression distribution, sample median and
MAD are calculated, and the samples falling outside the range [Median – 3MAD, Median +
3MAD] are declared to be outliers in which the gene is differentially expressed.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

704 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

Finally, the genes with at least |Di |/N > q ∈ [0,1] of outliers will be considered
to be expressed differentially.

31.5.3 Kurtosis Excess

Some differentially expressed genes may not be identified if neither their expres-
sion is distinct enough between the different subgroups of tumors they define nor
their distribution fits the outlier strategy. To test for differential expression in such
circumstances, one may use Kurtosis excess, or simply Kurtosis, as a measure of dif-
ferential expression [16, 17, 18]. Kurtosis measures the peakedness of the probability
distribution of a gene’s expression compared with its tails. For a normally distributed
data, it is 0, and it will be <0 for fat-tailed distributions such as uniform distribution
and mixture distributions.

Kurtosis [31] is defined as the ratio of the fourth cumulant (C4) to the square of
the second cumulant (C2). It is equal to the ratio of the fourth central moment (λ4)
to the square of the second central moment (i.e., σ 2) of the probability distribution
minus three.

Kurt(Xi) = C4(Xi)

C2
2(Xi)

= λ4(Xi)

σ 4
i (Xi)

− 3

Given the expression of a gene in a set of samples representing the whole popu-
lation of patients of a certain cancer, the unbiased estimation of the kurtosis of gene
expression is given by the ratio of unbiased estimators of the fourth and second cu-
mulants as in the following equation:

Kurt(Xi) = N − 1

(N − 2)(N − 3)

(

(N + 1)
P4(Xi)

P2
2 (Xi)

− 3(N − 1)

)

where P4(Xi), P2(Xi) = σ 2
i are the fourth and second sample central moments, re-

spectively, of gi .
A gene is qualified to be expressed differentially if its kurtosis is sufficiently

<0 under Gaussian noise assumption. The panel of plots in Figure 31.5 shows four
different distributions. The first one is for a non-DE gene as its Kurtosis = 0, whereas
the remaining represent DE genes with the varying number of divisions they create
for the samples whose Kurtosis <0.

The test to check whether Kurt(X) < 0 (i.e., whether the gene with expression
sample Xi is differentially expressed), we can use Fisher’s cumulant test [13] by
measuring T Kurt

i , which follows the standard normal distribution, and a one-tail test
is sufficient for our purpose as we are interested only in one alternative hypothesis
Kurt(Xi) < 0.

T Kurt
i = Kurt(Xi)(N/24)0.5 ∼ N(0, 1)

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.6 DIFFERENTIAL EXPRESSION BY CHROMOSOMAL ABERRATIONS 705

(a)

–4 –2

Expression

Expression

0 2 4 –4–6 –2

Expression

0 2 4 6

–5–10

Expression

0 5–5 0 5 10

No DE, Kurtosis = 0 DE (2 levels), Kurtosis = –1.3

DE (3 levels), Kurtosis = –1.33DE (3 levels), Kurtosis = –1.1

(b)

0.
00

0.
05

0.
10

0.
15

0.
20

de
ns

ity

0.
00

0.
04

0.
08

0.
12

de
ns

ity

0.
0

0.
1

0.
2

0.
3

0.
4

de
ns

ity

0.
00

0.
04

0.
08

0.
12

de
ns

ity

(c) (d)

Figure 31.5 Nonnormality and Kurtosis excess. The panel of plots shows expression distri-
butions of four different genes. (a) Distribution of a non-DE gene’s expression and its Kurtosis
excess is 0. (b) Distribution of expression of a differentially expressed gene that divides samples
into two groups as seen by two modes; its kurtosis excess is –1.3. Similar observations follow
for the remaining two genes in plots (c) and (d).

Prior to the application of GMM, Kurtosis can be used to decide whether to fit
GMM to speed up the modeling and identification steps by reducing the number of
genes to be evaluated.

31.6 DIFFERENTIAL EXPRESSION BY CHROMOSOMAL
ABERRATIONS: THE LOCAL PROPERTIES

Amplifications and deletions of chromosomal segments are common in tumors. They
reflect in the transcriptome as induction and repression of the respective genes. As
they are localized on chromosomes, the genes in such segments are expected to be
expressed or repressed coordinately. This localized coordinated change of expression
is critical to identify them from expression data.

Several researchers [7, 21, 36] have shown such a concordance between genomic
amplifications and coordinated localized overexpression belonged to the amplified
loci. For example, Pollack et al. [21] have shown it on breast cancer (see Figure
31.6). The heat maps of expression and copy number variations for whole Chr17

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

706 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

Figure 31.6 Demonstration of the relationship between genomic amplification and localized co-
ordinated induction of expression of the genes in the respective region. Shown are the heatmaps
of expression (left) and copy number variation (CNV) (right) data from chr17. Probes are ordered
by their genomic location for both expression as well as CNV heatmaps. The order of tumors
is also the same in both heatmaps. Three regions can be observed with amplification, and the
genes in them are expressed coordinately. (Pollack et al. [21]).

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.6 DIFFERENTIAL EXPRESSION BY CHROMOSOMAL ABERRATIONS 707

with the genes arranged by their chromosomal position and the samples were in
the same order in both heat maps. It shows a correlation between overexpression and
amplification, and it also shows the coordinated changes on proximally located genes
in a subset of samples.

The genomic amplification or deletion maps are, in general, tumor specific. But,
several regions of the map may be recurrent in several tumors which are of biological
significance. The recurrence frequency of amplifications/deletions is usually small
(<50%) and it depends on the locus and tumor. For example, amplification of a
1Mb region on 17q12 encompassing 30 genes including erythroblastic leukemia viral
oncogene homolog 2 (ERBB2) recurs at a frequency of 20–30% in breast tumors [7]
and it is absent in liver tumors [23]. Whereas, amplification of 20q13 occurs in 12%
of primary breast tumors and in 11–39% of liver metastases of colorectal cancer. The
frequency also changes with the stage of the tumor [24]. The loci of interest are the
recurrently amplified/deleted ones. The challenge to identify them is a result of their
low frequency of recurrence, below 30% typically, and the length of the amplified
segment may change from tumor to tumor for a given locus. Moreover, the data may
not include control samples or may contain only a few samples for the analysis as in
the case of individual cell lines.

An appropriate choice of the methodology will be made based on the type of
data. The general principle followed by any algorithm is sliding window analysis
(see Figure 31.7). The genes are arranged in their chromosomal order, and each
chromosome is analyzed separately. Overexpression/repression analysis is carried

Genes Mapped to Chromosome Location

T

u

m

o

r

s

Sliding

Window

(W)

Method

Aberration

Score

(Y)

Aberrations

Chromosome Location

Gene

Expression

Matrix

Significance

Threshold

(Thr)

Figure 31.7 Illustration of the generic approach to identify genomic aberrations from expression
data. An expression matrix is generated for each chromosome. Genes are ordered by their
location on the chromosome, and tumors can be in any arbitrary order. For each location on the
chromosome, a submatrix of W genes with all tumors is derived, and the method � is applied,
which gives an aberration score Y for that location. The plot of Y versus the location shows
peaks that are indicative of aberrations and the peaks above a threshold Thr are declared to be
significant aberrations.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

708 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

out on each window of genes of the chromosome. As a result, a plot of the coor-
dinated changed expression-related measure, aberration score (Y), is obtained. The
peaks above a certain significance threshold (Thr) in the plot indicate the aberrant
genomic regions. The peaks in this plot show the respective aberrations. The higher
the peak value Y , the higher the confidence of aberration around the locus. Finally,
an aberration is reported at a peak with a range that covers a contiguous region with
Y > Thr with the center at the peak.

False discovery rates (FDR) are used to assess the statistical significance of the
selected peaks by estimating the proportion of false positives from the total number
of significant windows. The number of false positives at a given Thr is estimated by
the permutation procedure. The data is randomized for their genomic location, and
the same procedure is applied. The false discovery rate of windows in the rejection
region (>Thr) is defined as FDR = L rnd/L , where L is the number of aberrant regions
in the actual data scan and L rnd is the number of regions falsely called aberrant in the
permuted data scan.

The following discussion on various methods (�) refers only to amplifications. It
is also applicable to deletions, as the detection methodologies are the same for both
amplifications and deletions.

31.6.1 Wavelet Variance Scanning (WAVES) for
Single-Sample Analysis

Wavelet analysis [32] converts a spatial or temporal domain data into its frequency
domain data using so-called wavelet basis functions. A wavelet function ψ(x/u, s)
is a 0-mean function with position parameter u and scale parameter s:

ψ(x/u, s) = 1√
s
ψ

(
x − u

s

)

+∞∫

−∞
ψ(x/u, s)dx = 0

The wavelet coefficient of f (x),Wf (u,s), at scale s and position u is computed by
correlating f (x) with ψ(x /u,s) as follows:

W f (u, s) =
+∞∫

−∞
f (x)ψ*(x/u, s)dx

where ψ*(x /u,s) is the complex conjugate of ψ(x /u,s). Wavelet coefficients are ob-
tained by varying the wavelet scale s at each position of u. Wavelet analysis is unique
in the sense that different scale parameters are used at every location to deal with the
accuracy-resolution dilemma. Aggarwal et al. [20] have employed wavelet analy-

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.6 DIFFERENTIAL EXPRESSION BY CHROMOSOMAL ABERRATIONS 709

sis to find coordinately expressed localized genes in several cell lines using Morlet
wavelets, which are sine waves modulated by Gaussian curves.

ψ(x/u, s) = π
−1
4 ei6(x−u)/s+(x−u)2/2s2

The wavelet coefficients at different scales are estimated in each window (W). To
estimate the continuous wavelet transform, the scales are chosen to be 1, 2, 4, 8, 16,
and 32 with four logarithmic subdivisions within each interval of two consecutive
scales, resulting in 21 scales. The aberration score Yu at position u is defined as
follows:

Yu =
21∑

i=1

|W f (u, si)|2
si

The underlying fundamental is that no localized expression results in near-zero
wavelet coefficients irrespective of the scaling (i.e., near-zero Yu), whereas local-
ized coordinated expression results in nonzero wavelet coefficients for some scales
leading to positive Yu.

31.6.2 Local Singular Value Decomposition (LSVD) for
Compendium of Tumors

The problem of identifying localized coexpression, in a compendium of tumors can
be posed as a localized biclustering problem [7]. The expression data was discretized
using the following outlier strategy: Xi j ← 1 if Xi j ∈ DUi , Xi j ← −1 if Xi j ∈ DLi ,
and Xi j ← 0 otherwise. To detect amplifications, Xi j ← 0 if Xi j < 0 and vice versa.
The biclustering problem, especially for a single bicluster, can be solved using sin-
gular value decomposition (SVD) [33].

SVD of a given W × N matrix Apc decomposes it into a product of three matri-
ces Upc,
pc, and Vpc (i.e., Apc = Upc ×
pc × V pT

c). U pc and Vpc are W × W
and N × N matrices, respectively, whereas
pc is a W × N diagonal matrix. The
column vectors of Upc and Vpc are the eigen vectors of ApcApT

c and ApT
c Apc, re-

spectively whereas the diagonal elements of
pc are the respective eigen values.
The largest eigen value is called the principal eigen value (denoted by λpc), and the
respective eigen vectors are called the principal eigen vectors. The eigen weight of
tumor Tj from Apc, is denoted by Tpcj , and it is defined as the absolute of the j th
component of the principal eigen vector of the matrix ApT

c Apc. Similarly, the eigen
weight of a gene gi from Apc is denoted by Gpci and is the absolute of the i th compo-
nent of the principal eigen vector of the matrix ApcApT

c . The absolute of the principal
eigen value λpc is the measure of the strength of the bicluster.

For example, the gene expression matrix on the left of the Figure 31.8 is analyzed
with SVD, and reordering the tumors in the descending order of their eigen weights
(from left to right) gives the matrix shown on the right. The shaded region is the

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

710 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

Figure 31.8 Illustration of the application of SVD to identify a bicluster from an expression
matrix (the left heatmap). Application of SVD and reordering the tumors by their eigen weights
(obtained from the principal eigen vector) reveals the bicluster in the heat map on right (the
shaded region).

bicluster, which is a localized coordinated overexpression of a few genes on a few
samples.

To improve the contrast between strong biclusters and weak or random biclus-
ters, SVD on (ApcApT

c)3 is computed to find λpc. The eigen weights of tumors and
genes are obtained from the principal eigen vectors of (ApT

c Apc)4 and (ApcApT
c)4,

respectively. Now, λpc is taken to be the ratio of the fourth root of the principal eigen
value of (ApcApT

c)4 to N 4; the eigen weights of genes and tumors are the fourth root
of the respective components of the principal eigen vectors of (ApcApT

c)4/N 4 and
(ApT

c Apc)4/N 4, respectively.
As λpc denotes the level of bicluster, which in turn represents the level of the

localized recurrent coordinated overexpression of the genes in the window of W at
position pc, the aberration score Ypc = λpc, and the principal eigen value resulted
in the application of the SVD on the corresponding W × N matrix Apc at pc, hence,
the name Local SVD (LSVD) (i.e., localized application of SVD in the chromosomal
order).

31.6.3 Locally Adaptive Statistical Procedure (LAP) for Compendium
of Tumors with Control Samples

Although LSVD can be applied for any compendium of tumors by ignoring the sam-
ple labels, it may be appropriate to exploit the sample label information to explore the
localized coordinated expression of genes especially for N < 20. The locally adap-
tive statistical procedure (LAP) is specially designed for such a labeled data. The
LAP procedure [14] converts the expression of genes on a compendium of tumors
with control samples into a one-dimensional plot of differential expression scores
(di for gi) obtained based on SAM analysis as in Section 31.3. Hence, LAP is appli-
cable to any tumor data with two or more groups.

The di statistics are sorted and smoothed over the chromosomal coordinate, ob-
taining for each locus a smoothed statistic, which is the aberration score Yu. The

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.7 DIFFERENTIAL EXPRESSION IN GENE INTERACTOME 711

LAP procedure employs smoothing based on a local variable bandwidth kernel es-
timator, the lokerns function [38]. Lokern comprises a function that automatically
estimates the optimal bandwidths iteratively. Polynomial kernels and boundary ker-
nels are used with a fast and stable updating algorithm for kernel smoothing.

31.7 DIFFERENTIAL EXPRESSION IN GENE INTERACTOME

The gene interactome is defined as a gene–gene correlation structure obtained from
the expression data under consideration or under other biological knowledge. The
structure is either a directed or undirected graph with each node representing a gene
and edges representing interaction defined based on a response variable (e.g., sample
type, survival outcome, etc). Such a structure is useful to define differential expres-
sion of a gene in the context of the other genes. Several methods based on a variety of
interactions have been proposed in the literature. Here, we present three approaches:
(i) the friendly neighbors (FNs) algorithm based on multiplicative interaction,
(ii) the GENERANK algorithm based on contributing interaction defined using Gene
Ontology (GO) and pathway databases, and (iii) the top scoring pairs (TSP) method
and its generalization weighted top scoring pairs method based on differential inter-
action.

31.7.1 Friendly Neighbors Algorithm: A Multiplicative Interactome

The friendly neighbors algorithm [1] generates a graph of gene–gene interactions
based on a single group data. A pair of genes (ga,gb) are said to be interacting or
correlated if |S(ga ,gb/Gk)| ≥ Thr ∈ [0.5,1]; S(ga ,gb/Gk) is Kendall’s correlation
between ga and gb.

S(ga,gb/Gk) = 1

nk

nk∑

j=1

U ((Xajk − mak) × (Xbjk − mbk))

Now the interactome in group Gk is a set of coexpressed pairs, Int(Gk)

Int(Gk) = {(ga,gb)/|S(ga,gb/Gk)| ≥ Thr ∈ [0.5, 1]}

Based on this definition of interactome, each gene can be assigned a score of
importance in Gk as the number of pairs or interactions it participates in Int(Gk). In
other words, the statistic of importance (FNs statistic) of a gene is the number of the
other genes coexpressed with it in the data. For example, as shown in Figure 31.9, g1

has four neighbors within its vicinity defined in the similarity space and the similarity
threshold Thr, but g2 has only one neighbor indicating that g1 is more likely to be a
responsive gene compared with g2. Note that the gene itself may not show any trend
of up regulation or down regulation in Gk.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

712 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

Similarity Space

Likely Responsive Gene

Unlikely Responsive Gene

g1

g2

Thr

Thr

Figure 31.9 Illustration of the friendly neighbors algorithm. In a predefined similarity space, a
vicinity or neighborhood is defined for a given threshold Thr for each gene and the number of
genes falling within the neighborhood, the FNs, is the score of the gene under consideration. The
gene with more FNs is considered to be a likely responsive and important gene. For example,
g1 is more likely to be a responsive gene compared with g2 in this illustration.

31.7.2 GeneRank: A Contributing Interactome

GENERANK [22] is a generalization of the friendly neighbors algorithm in which
the interactome could be the correlation/multiplicative interactome or interactome
defined by GO categories and pathways. Differential expression in mean is key to
the analysis in GENERANK, as it assumes that there are some consistently differ-
entially expressed (in mean) genes between groups. We can call this interactome a
contributing interactome because it is defined based on certain predefined biological
knowledge, and the interaction of genes is for contributing each other in defining
differential expression. For example, as in the interactome in Figure 31.10, the DE

High differential expression

No differential expression

Edge in the network

Figure 31.10 Illustration of the GENERANK algorithm. Grey circle shows the gene whose
differential expression is to be evaluated. The genes connected to it are shown in black circles,
which are highly differentially expressed. Because of the interaction between them, the gene in
Grey is declared to be differentially expressed.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.7 DIFFERENTIAL EXPRESSION IN GENE INTERACTOME 713

of genes shown by the black circles contributes to defining the differential expres-
sion of the gene shown in the grey circle. The genes with connections to genes of a
high differential expression carry greater significance than genes with connections to
genes of a low differential expression.

Each gene is given an initial score of (1 − d)exi , where exi is the absolute value of
the expression change for gi , and d is the parameter ∈ [0,1]. Let r [l]

j denote the score
of g j after lth iteration and the initial score r [0] = ex/||ex||1, where ||ex||1 denotes
the vector 1–norm of the vector of exi s. Then r [l]

j , the convex combination of the
gene’s expression and the expression of the contributing genes in the lth iteration, is
expressed as follows:

rl
j = (1 − d)ex j + d

M∑

i=1

wi j r
l−1
i

degi

; 1 ≤ j ≤ M

where wi j = 1 if gi is connected to g j , and wi j = 0 otherwise.
The extreme parameter values d = 0 and d = 1 represent ranking by pure ex-

pression level and pure degree respectively. Hence changing the value of d allows
interpolation between these two extremes.

31.7.3 Top Scoring Pairs (TSP): A Differential Interactome

Differential interactome is generated in the TSP algorithm [19], and it is defined
based on the change in paired differential expression (DiffS) between genes (ga ,gb)
from one group to the other group.

DiffS(ga,gb/G1,G2) =
∣
∣
∣
∣
∣
∣

1

n1

n1∑

j=1

U
(
Xaj1 − Xbj1

) − 1

n2

n2∑

j=1

U
(
Xaj2 − Xbj2

)
∣
∣
∣
∣
∣
∣

The differential interactome DiffInt is

DiffInt(G1,G2) = {(ga,gb)/DiffS(ga,gb|G1,G2) > Thr ∈ [0, 1]}

As shown in the equation, a differential interactome is defined for a pair of groups.
Two genes are considered to be interacting if their pair-wise differences in one group
are consistent in one direction compared with the other group. The DiffInt(G1,G2)
generates features to generate classifiers as illustrated in Figure 31.11. The expres-
sion of g1 (black curve) and g2 (grey curve) in groups G1 and G2 are shown. In G1,
the expression of g1 is less than that of g2 in eight of 10 samples (80%). In contrast,
in G2, g1 has a lower expression than g2 in only five out of 10 tumors (50%). Note
that neither gene may have significant nonzero expression in any of the groups G1

and G2. But, their difference can serve as a useful feature for classification of the
samples into groups G1 and G2.

Luo et al. [11] have generalized the DiffS (ga ,gb/G1,G2) score by taking into
account the case of unequal n1 and n2. The modified DiffS(ga ,gb/G1,G2) uses

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

714 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

3
1

0

E
xp

re
ss

io
n

−2

2

G2

Sample No

2
−1

4 6 8 10

3
1

0

E
xp

re
ss

io
n

2

G1

Sample No

2
−1

4 6 8 10

Figure 31.11 Illustration of the differential interactome. The expression of two genes in two
sample groups (G1 and G2) is shown by grey and black curves. The grey curve is above the
black curve for 80% of the samples in G1, whereas it is only 50% in G2. Therefore, the difference
between the two is a potential feature to distinguish the samples into groups G1 and G2 (i.e., if
Xaj 1 − Xbj 1 < 0, then pj , likely belongs to G1).

weights λknk for each term, resulting in DiffSM (ga ,gb/G1,G2,λ1,λ2), hence, the name
weighted TSP (WTSP).

DiffSM (ga,gb/G1,G2, λ1, λ2) =
∣
∣
∣
∣
∣
∣
λ1

n1∑

j=1

U
(
Xaj1 − Xbj1

) − λ2

n2∑

j=1

U
(
Xaj2 − Xbj2

)
∣
∣
∣
∣
∣
∣

DiffSM minimizes the cost of misclassification. If λk = 1, then it mini-
mizes the misclassification rate by the differential feature Xaj − Xbj . Moreover,
DiffS(ga ,gb/G1,G2) can be derived from DiffSM (ga ,gb/G1,G2,λ1,λ2) if λk is chosen
to be 1/nk (i.e., DiffSM (ga ,gb/G1,G2,λ1 = 1/n1,λ2 = 1/n2) = DiffS(ga ,gb/G1,G2)).

31.8 DIFFERENTIAL COEXPRESSION: GLOBAL
MULTIDIMENSIONAL INTERACTOME

Differential coexpression is a phenomenon observed when a set of genes are well
controlled by a biological mechanism in one set of tissues such as normal, and the
control is lost in the other set of tissues such as tumors. The gene set demonstrates

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.8 DIFFERENTIAL COEXPRESSION: GLOBAL MULTIDIMENSIONAL INTERACTOME 715

2.
0

1.
5

1.
0

0.
5

0.
0

–0
.6

–0
.4

–0
.2

0.
0

0.
2

0.
4

–0
.5

–1
.0

5 10 15 20 5 10 15 20

E
xp

re
ss

io
n

E
xp

re
ss

io
n

Sample No Sample No

Normal Disease

Figure 31.12 Illustration of differential coexpression. Left: coexpression of a gene set in normal
samples. Right: no coexpression of the same gene set in disease samples (e.g., tumors). It can
be noted that differential coexpression may not result in differential expression.

a high level of coexpression in the first set of tissues because of tight regulation and
because of a relatively poor level of coexpression as a result of loss of regulation in
the disease samples, (see Figure 31.12).

A variety of formulations have been proposed that differ in the conceptual and
mathematical definition of differential coexpression. Three algorithms to identify
differentially coexpressed gene sets are discussed here.

31.8.1 Kostka and Spang’s Differential Coexpression Algorithm

Kostka and Spang [3] pioneered the idea of differential coexpression. The differential
error of two linear models fit is the basis of quantifying differential coexpression, and
a stochastic downhill search algorithm (we call it the KS algorithm) was proposed to
identify significantly differentially coexpressed gene sets.

The formulation is for K = 2; the first group is for normal samples, and the sec-
ond group is for diseased samples. The task is to find a subset of genes I that have
a high differential coexpression pattern from M genes. To find such an I , the KS
algorithm used the ratio of sum squared errors resulting from fitting linear models
for both sets of Gk (k = 1, 2). Specifically, the linear model of expression on I genes
in sample group Gk is expressed as follows:

Xijk = µk + β jk + τik + εi jk

εijk ∼ N(0, σ 2
ik); 1 ≤ i ≤ I, 1 ≤ j ≤ nk and 1 ≤ k ≤ 2

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

716 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

Xijk is modeled as a summation of the following factors: µk is the effect of group
(overall effect) Gk ; τik, is the effect of gene gi in Gk ; β jk is the effect of sample p jk

in Gk ; εijk, an random error or residual of gi in p jk . Based on this model, Kostka
and Spang obtained the mean of the squared residuals for scoring a set of I genes
Ek(DIxJk) (also referred as Ek) as follows:

Ek = 1

(I − 1) (nk − 1)

I,nk∑

i=1, j=1

(
Xijk − τ̂ik − β̂ jk + µ̂k

)2

β̂ jk = 1

I

I∑

i=1

Xijk; τ̂ik = 1

nk

nk∑

j=1

Xijk

µ̂k = 1

I nk

I∑

i=1

nk∑

j=1

Xijk = 1

nk

nk∑

j=1

β̂ jk = 1

I

I∑

i=1

τ̂ik

where τ̂ik , β̂ jk, µ̂k are the estimates of τik , β jk , −µk , respectively. A group of genes
with a low score Ek is highly expressed in group Gk . The KS statistic S(I) is the
ratio of Ek’s,

S(I) = E1/E2

The statistic evaluates how tightly the I genes are correlated in one group com-
pared with the other group. A set of genes with a distinguished low score S(I) are
coexpressed in group one but not in group two. But to take into account the ef-
fect of the size of I on the statistical significance of S(I), the S(I) has been aug-
mented with a regularization term including |I | with a regularization parameter α.
With this addition, a set of differentially coexpressed genes can be obtained by min-
imizing the score S(I) over I . The algorithm starts with an initial random set of
I . The iterative stochastic downhill search procedure either eliminates a gene from
I or adds new gene to I . The gene gh to be added to I provides locally a maxi-
mum improvement in the score �S(I) = S(I + gh) − S(I). Similarly, the gene gg

to be removed from I also provides locally a maximum improvement in the score
�S(I) = S(I − gg) − S(I). The algorithm iterates until I is not changeable. The
recommended choice for α is 0.5, although it is arbitrary.

But, before application of the algorithm on a real data, Kostka and Spang have
normalized the data as follows:

Xijk ← Xijk − mik

σik
(Eq35)

Li and Karuturi [8] have shown that the squared inverse of the unregularized
(i.e., no α term) KS statistic (E1/E2)2 on a normalized data (Eq35) follows doubly

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.8 DIFFERENTIAL COEXPRESSION: GLOBAL MULTIDIMENSIONAL INTERACTOME 717

noncentral F-distribution.

J2 − 1

J1 − 1

σ 2
F1

σ 2
F2

1

S2(I)
∼ F

(

1, 1,
µ2

F2(I − 1)

σ 2
F2/(J2 − 1)

,
µ2

F1(I − 1)

σ 2
F1/(J1 − 1)

)

They have shown that optimal α, αopt, can be estimated by maximizing the sta-
tistical significance of the set instead of the regularized KS statistic on the standard
normalized data, that is,

αopt = arg max
α

(− log(Pα))

On a simulated data, αopt varied for different choices of noise variance in the
simulation as shown in the Figure 31.13. Low noise variance simulation allows for
broad choices of α, whereas the medium noise has its αopt < 0.4.

They also have proposed improving the performance of the algorithm by prefilter-
ing the genes using the FNs algorithm on group 1 in which I is coexpressed. Let ST

denote the set of FNs statistics of all genes in the dataset for a given Thr, the lower
bound of the rejection region of the FNs statistic may be chosen as

median(ST) + max(MAD(ST), I e/3)

where I e is the expected number of coexpressed genes in group 1. This rule will filter
out 50 to ∼100% of the noncontributing genes.

After having chosen genes with an FNs statistic above the threshold, the KS
algorithm is applied on the selected set of genes instead of the entire set M . The

3

2.5

2

1.5

1

0.5

0
0 0.2 0.4

High Noise
Medium Noise
Low Noise

lo
g

(–
lo

g
p

-v
al

u
e)

0.6 0.8 1

Parameter Alpha

Figure 31.13 Selection of αopt. The graph shows the log of –log of the p-value of the set
obtained by the given α. αopt is chosen to be the one that gives the highest significance. The
graph has three plots for different noise levels in the simulation.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

718 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

application of the KS algorithm still is required because the gene set output by FNs
may contain false positives, especially when n1 is small or when noise variance is
higher.

The objective optimal choices of Thr and I e, Thropt and I e
opt, are made using the

similar criterion as in case of αopt, that is,

Thropt = arg max
T

(− log(PT))

I e
opt = arg max

I e
(− log(PI e))

Because the choices of α, T , and I e may not be chosen independently, we can
select an optimal combination of α, T , and I e by choosing the optimal triplet
(α,T ,I e)opt.

31.8.2 Differential Expression Linked Differential Coexpression

In contrast to Kostka and Spang, Preito et al. [5] have proposed a formulation that
especially takes into account the differential expression linked to differential coex-
pression, which allows for coordinated differential variability in I (i.e., no standard-
ization unlike in Kostka and Spang’s approach). Their procedure also is based on the
same linear model formulation as used in Kostka and Spang’s idea. The genes that do
not show a minimum differential expression between the groups are filtered out, and
the remaining genes were explored to elicit I that minimizes S(I). Another major
difference is that Prieto et al.’s algorithm outputs a series of I s.

The basic idea of the algorithm, similar to Kostka and Spang’s, is to allow a pro-
gressive selection of groups with an increasing score from a minimal initial value
that may correspond to the nondifferential coexpression.

31.8.3 Differential Friendly Neighbors (DiffFNs)

Differential friendly neighbors (DiffFNs) [2], unlike the approaches proposed by
both Kostka and Spang and Preito et al., does not discount either the differential
coexpression or the covariance of genes in the definition of a set for differential co-
expression.

DiffFNs is an extension of the friendly neighbors algorithm to two-group data.
The DiffFNs formulation defines a gene to be significant if it significantly gains or
loses correlated genes (FNs) from one set of samples to the other set.

X ijk is discretized into one of the {–1, 1} as follows:

X ijk ← 2U

(

X ijk − mi1 + mi2

2

)

− 1

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

31.8 DIFFERENTIAL COEXPRESSION: GLOBAL MULTIDIMENSIONAL INTERACTOME 719

Then the similarity between two genes ga and gb in group Gk is defined as
follows:

�abk = 1

nk

nk∑

j=1

(
2U

(
Xajk × Xbjk

) − 1
)

�abk measures the proportion of samples in which both genes have the same di-
rection of expression from their overall mean (mi1 + mi2)/2 (i.e., �abk = 1 if both
genes have the same direction of expression [positive correlation], �abk = −1 if they
have exactly the opposite direction of expression [negative correlation], and it will
be close to 0 if they are unrelated).

Then, based on the thresholds 1 > T1 > T2 > 0, a gene pair (ga ,gb) is classified
into one of the categories shown in Table.

�ab2 ≥ T 1 �ab2 ≤ −T 1 �ab2 ∈ [−T 2,T 2]

�ab1 ≥ T 1 NC P2N Pl

�ab1 ≤ −T 1 N2P NC Nl

�ab1 ∈ [−T 2,T 2] Pg Ng NC

where NC is no change in the relationship, Pg, Ng are gain of positive and nega-
tive correlations, respectively, Pl, Nl are loss of positive and negative correlations,
respectively, and P2N, N2P are the flip of correlations from positive to negative and
negative to positive respectively.

These correlation gain/loss (Pg, Pl, Ng, and Nl) define a graphical structure of
the changed coexpression. The genes with the most changes in correlations with the
other genes from G1 to G2 or the most neighbors in changed coexpression graph are
selected to be coexpressed differentially.

For example, from Figure 31.14, the gene in the top graph has six neighbors in
normal tissues but lost five of them in tumor tissues as shown by the broken lines.
In contrast, the gene shown in the bottom graph lost only one out of five neighbors
from normal to tumor tissues. This implies that the gene in the top graph is more
important compared with the gene in the bottom graph.

The algorithm defines base genes as the genes that exhibit the most changes
in correlations and the neighborhood genes that demonstrate changed correlation
with a base gene. The base genes are filtered out further based on the neighbor-
hood reduction strategy. A base gene is eliminated if 70% of its neighborhood is
covered by any of the base genes of a better score thus eliminating the redun-
dant base genes and resulting in unique neighborhoods. Each base gene along with
its neighborhood now is considered to be one set of a differentially coexpressed
gene set.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

720 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

Normal (G)1 Tumor (G)2

Important Gene
(5 relationships lost)

Unimportant Gene
(1 relationship lost)

Figure 31.14 Illustration of the differential friendly neighbors algorithm. It shows two genes
and their neighborhoods formed by their FNs in normal and tumor groups. The top one shows a
loss of five FNs from normal to tumor groups, whereas the bottom one shows a loss of only one
FN. By the DiffFNs algorithm, the gene in the top is more important, and it could be a base gene.

ACKNOWLEDGMENTS

I thank Lance Miller and Edison T Liu who introduced me to the fascinating field
of cancer biology. I thank my colleagues Yew Kok Lee, Max Fun and Huaien Luo
for their valuable suggestions on the manuscript. The research was supported by the
Genome Institute of Singapore and the Agency for Science Technology and Research
(A*STAR).

REFERENCES

1. R.K.M. Karuturi and V.B. Vega. Friendly neighbours method for unsupervised determi-
nation of gene significance in time-course microarray data’. Proceedings of the Inter-
national Conference on Bioinformatics and Bio-Engineering (BIBE), Taichung, Taiwan,
2004.

2. R.K.M. Karuturi, S. Wong, W-K. Sung, and L.D. Miller. Differential friendly neigh-
bours algorithm for differential relationships-based gene selection and classification us-
ing microarray data. Proceedings of the 2006 International Conference on Data Mining
(DMIN’06), Las Vegas, NV, 2006.

3. D. Kostka and R. Spang. Finding disease specific alterations in the co-expression of
genes. Bioinformatics, 20:i194–i199, 2004.

4. L.D. Miller, J. Smeds, J. George, V.B. Vega, S. Klaar, P. Hall, Y. Pawitan, A. Ploner,
L. Vergara, E.T-B. Liu, et al. An expression signature for p53 status in human breast
cancer predicts mutation status, transcriptional effects and patient survival’. Proc Natl
Acad Sci U S A, 102:13550–13555, 2005.

5. C. Prieto, M.J. Rivas, J.M. Sanchez, J. Lopez-Fidalgo, and J. De Las Rivas. Algorithm
to find gene expression profiles of deregulation and identify families of disease-altered
genes. Bioinformatics, 22(9):1103–1110, 2006.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

REFERENCES 721

6. V.G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied to
the ionising radiation response. Proc Natl Acad Sci U S A, 98(9):5116–5121, 2001.

7. J. Zhang, X. Liu, A. Datta, K.R. Govindarajan, W. Leong Tam, J. Han, J. George, C.W.
Wong, K. Ramnarayanan, T.Y. Phua, et al. RAB11FIP1/RCP is a novel breast cancer
promoting gene with Ras activating function. J Cline Invest, 119(8):2171–2183, 2009.

8. H. Li and R. Krishna Murthy Karuturi. Significance analysis and improved discovery of
disease specific differentially co-expressed gene sets in microarray data. Int J Data Min
Bioinform. To appear.

9. S.S. Hoon, Y. Yiting, L.C. Ho, K.R. Krishna M, W. Vanaporn, T. Apichai, C.H. Hoon,
C. Ong, P.S. Suppiah, G. Tan, et al. The core and accessory genomes of urkholde-
ria pseudomallei: Implications for human melioidosis, PLoS Pathog, 4(10):e1000178,
2008.

10. J. Tan, L. Zhuang, X. Jiang, K.R.K. Murthy, and Q. Yu. ASK1 is a direct target of
E2F1 and contributes to histone deacetylase inhibitor-induced apoptosis through a posi-
tive feedback regulation on E2F1 apoptotic activity. J Biol Chem, 281(15):10508–10515,
2006.

11. H. Luo, Y. Sudibyo, and K.R.K. Murthy. Weighted top Score Pair Method for Gene Se-
lection and Classification, in the LNBI of Pattern Recognition in Bioinformatics (PRIB).
Oxford University Press, Melbourne, Australia.

12. C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, New
York, 1995.

13. G.K. Kanji. 100 Statistical Tests. Sage, Thousand Oaks, CA, 2006.

14. A. Callegaro, D. Basso, and S. Bicciato. A locally adaptive statistical procedure (LAP)
to identify differentially expressed chromosomal regions. Bioinformatics, 22(21):2658–
2666, 2006.

15. J.W. Ho, M. Stefani, C.G. dos Remedios, and M.A. Charleston. Differential variabil-
ity analysis of gene expression and its application to human diseases. Bioinformatics,
24(13):i390–i398, 2008.

16. A.E. Teschendorff, A. Naderi, N.L. Barbosa-Morais, C. Caldas. PACK: Profile analy-
sis using clustering and kurtosis to find molecular classifiers in cancer. Bioinformatics,
22(18):2269–2275, 2006.

17. I.K. Kitsas, L.J. Hadjileontiadis, and S.M. Panas. Discrimination of single and multiple
human transmembrane proteins using kurtosis and morphological analysis. Conf Proc
IEEE Eng Med Biol Soc, 2008:1351–1354, 2008.

18. L. Li, A. Chaudhuri, J. Chant, and Z. Tang. PADGE: Analysis of heterogeneous patterns
of differential gene expression, Physiol Genoms, 32(1):154–159, 2007.

19. A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, and D. Geman. Simple decision rules for
classifying human cancers from gene expression profiles. Bioinformatics, 21(20):3896–
3904, 2005.

20. A. Aggarwal, D.L. Guo, Y. Hoshida, S.T. Yuen, K.M. Chu, S. So, A. Boussioutas,
X. Chen, D. Bowtell, H. Aburatani, et al. Topological and functional discovery in a gene
co-expression meta-network of gastric cancer. Canc Res, 66:232–241, 2006.

21. J.R. Pollack, T. Sørlie, C.M. Perou, C.A. Rees, S.S. Jeffrey, P.E. Lonning, R. Tibshirani,
D. Botstein, A.L. Børresen-Dale, and P.O. Brown. Microarray analysis reveals a major
direct role of DNA copy number alteration in the transcriptional program of human breast
tumors. Proc Natl Acad Sci U S A, 99(20):12963–12968, 2002.

P1: OSO
c31 JWBS046-Elloumi December 2, 2010 9:46 Printer Name: Sheridan

722 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES

22. J.L. Morrison, R. Breitling, D.J. Higham, and D.R. Gilbert. GeneRank: Using search en-
gine technology for the analysis of microarray experiments. BMC Bioinformatics, 6:233,
2005.

23. A. Altimari, M. Fiorentino, E. Gabusi, E. Gruppioni, B. Corti, A. D’Errico, and W.F.
Grigioni. Investigation of ErbB1 and ErbB2 expression for therapeutic targeting in pri-
mary liver tumours. Dig Liver Dis, 35(5):332–338, 2003.

24. J.G. Hodgson, K. Chin, C. Collins, and J.W. Gray. Genome amplification of chromosome
20 in breast cancer. Breast Canc Res Treat, 78:337–345, 2003.

25. G.K. Smyth. Linear models and empirical Bayes methods for assessing differential ex-
pression in microarray experiments. Stat Appl Genet Mol Biol, 3(1):3, 2004.

26. A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. J Roy Stat Soc. S B, 39(1):1–38, 1977.

27. J.C. Barrett and E.S. Kawasaki. Microarrays: The use of oligonucleotides and cDNA for
the analysis of gene expression. Drug Discov, 8:134–141, 2003.

28. M. Schena, R.A. Heller, T.P. Theriault, K. Konrad, E. Lachenmeier, and R.W. Davis.
Microarrays: biotechnology’s discovery platform for functional genomics. Trends
Biotechnol, 16:301–306, 1998.

29. H. Akaike. A new look at the statistical model identification. IEEE Trans Automat Contrl,
19(6):716–723, 1974.

30. G.E. Schwarz. Estimating the dimension of a model. Ann Stat, 6(2):461–464, 1978.

31. D.N. Joanes and C.A. Gill. Comparing measures of sample skewness and kurtosis. J. Roy
Stat Soc D, 47(1):183–189, 1998.

32. C. Torrence and G.P. Compo. A practical guide to wavelet analysis. Bull Am Meteorol
Soc, 79:61–78, 1998.

33. G. Strang. Introduction to Linear Algebra, Section 6.7. 3rd edition. Wellesley-Cambridge
Press, Wellesley, MA, 1998.

34. D.G. Albertson, C. Collins, F. McCormick, and J.W. Gray. Chromosome aberrations in
solid tumors. Nat Genet, 34:369–376, 2003.

35. K. Rennstam, S.M. Ahlstedt, B. Baldetorp, P.O. Bendahl, A. Borg, R. Karhu, M. Tanner,
M. Tirkkonen, and J. Isola. Patterns of chromosomal imbalances defines subgroups of
breast cancer with distinct clinical features and prognosis. A study of 305 tumors by
comparative genomic hybridization. Canc Res, 63:8861–8868, 2003.

36. E. Hyman, P. Kauraniemi, S. Hautaniemi, M. Wolf, S. Mousses, E. Rozenblom,
M. Ringner, G. Sacter, O. Momi, and A. Elkahloun, et al. Impact of DNA amplifica-
tion on gene expression patterns in breast cancer. Canc Res, 62:6240–6245, 2002.

37. W.E. Johnson, C. Li, and A. Rabinovic. Adjusting batch effects in microarray expression
data using empirical Bayes methods. Biostatistics, 8(1):118–127, 2007.

38. E. Herrmann. Local bandwidth choice in kernel regression estimation. J Graph Comput
Stat, 6:35–54, 1997.

39. Wikipedia: The free encyclopedia. http://en.wikipedia.org/wiki/Main Page.

40. A.J. Dobson. An Introduction to Generalized Linear Models, 2nd edition. Chapman &
Hall, New York, 2008.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

VI

ANALYSIS OF GENOMES

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32
COMPARATIVE GENOMICS:

ALGORITHMS AND
APPLICATIONS

Xiao Yang and Srinivas Aluru

32.1 INTRODUCTION

“Comparative genomics” is a constantly evolving term that refers to intra- or inter-
species comparisons. It involves but is not restricted to the research areas of ortholog
assignment, synteny detection, gene cluster detection, multiple genome alignment,
rearrangement analysis, ancestral genome reconstruction, and gene or speciation tree
construction. We consider the first three as the “upstream” problems, whereas the
rest as the “downstream” problems because the solutions of the former typically are
used as inputs to the latter. However, the advance of new algorithmic approaches
makes this distinction more ambiguous as they can consider multiple problems con-
currently.

The long-term goal of comparative genomics is to understand evolution. From a
microlevel, researchers want to understand how nucleotide sequences evolve (e.g.,
rate of point mutations), and from a macrolevel, how genes, regulatory elements,
and networks, or metabolic pathways evolve (e.g., gene insertions, fusions, the func-
tional change of pathway resulting from gene losses, etc.) More specifically, thanks
to evolution, comparing multiple genomes better reveals functional elements in a
genome [36, 18]: the discovery of genes and other functional units, such as tran-
scription factor biniding sites, siRNAs, and so on. Because functional elements tend
to be subjected to negative selection, conserved elements among different genomes

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

725

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

726 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

with properly chosen evolutionary distances are likely to share similar functions. In
addition, comparative genomics is used for studying the genome structure, nucleotide
composition, and coding strategy among different species, families, or, genus. These
goals are tackled by different research areas mentioned earlier, and each of them will
be described briefly in the following.

The ortholog assignment amounts to the functional assignment of genes, although
the original definition of ortholgs [23] has little to do with gene functionality. The
sharing of similar functionalities between two genes in different species provides a
strong biological evidence of their orthologous relationship. One of the major bi-
ological applications of orthologs assignment is to predict the functions of genes
in a newly sequenced genome by comparing them with genes in a well-annotated
genome in which a new gene is assigned the same function as its orthologous part-
ner. At the same time, nonorthologous genes, resulting from duplication events, are
differentiated. Computationally, assigning orthologs among multiple genomes is re-
quired for several downstream analysis. For instance, phylogenetic tree construction
uses a single gene family in which the member genes need to form an ortholog group
to correctly reflect speciation; most rearrangement studies rely on an input consisting
of a one-to-one gene correspondence between two genomes as the result of ortholg
assignment.

As a step further, synteny detection tries to find related genomic regions among
multiple genomes. Despite the evolutionary changes over time, genomic regions with
the same origin could be inferred by sequence conservation or, at a higher level, by
a set of orthologous genes with spacial proximities. On the other hand, the conser-
vation on the genomic region level is superior in inferring orthologs to the conser-
vation at the gene level. Hence, ortholog assignment in syntenies has a higher re-
liability [13]. Similarly, gene cluster detection—identifying a set of closely located
genes—as the candidate for a functional unit, shared by multiple microbial genomes,
could use the results of ortholog assignment as the input, or the resulting gene clus-
ters could be used as the input to an ortholog assignment problem.

Multiple genome alignment at the nucleotide level amounts to multiple sequence
alignment on the whole genome scale in which involved genomes have to be sim-
ilar enough for sequence alignment to reflect biological meaning. Point mutations
(e.g., synonymous change) could be discovered from the alignment. However, among
highly diverged or repetitive genomes, sequence alignment is no longer an appropri-
ate approach. In this case, higher level of genome representations (e.g., conserved
sequences, exons, genes, or syntenies) [51, 8, 19, 20], are used. But the optimization
goal and how to deal with such complications remain to be open problems.

Multiple genome alignment is closely related to rearrangement analysis, which
is usually studied along with ancestral genome reconstruction. One of the clear opti-
mization goals in rearrangement analysis is to convert one genome into another using
the parsimonious rearrangement operations (typically genomic inversions, translo-
cations, fissions, and fusions). Genomes under rearrangement studies are usually re-
quired to comprise of nonrepetitive units (e.g., one gene per family). This could be
realized by ortholog assignment or by multiple genome alignment, which results in
a multiway matching of basic units across genomes.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32.3 ORTHOLOG ASSIGNMENT 727

The aim of ancestral genome reconstruction (e.g., [7, 10, 40, 11, 27]) is to in-
fer the nucleotide sequence or gene order for the lowest common ancestor of extant
genomes in the speciation tree and, while doing so, to recover the order of evolution-
ary events. Once this goal is fulfilled, it is not hard to see that solutions for most other
problems described earlier will be straightforward. Although multiple optimization
problems could be defined, many existing methods rely on rearrangement analysis
because the ancestral genome is naturally defined as a median genome such that the
summation of the pairwise evolutionary distance between the ancestor and each of
the extant genomes is minimized, based on either the breakpoint or on the rearrange-
ment distance.

To limit the scope, we will only address the three upstream problems and leave the
rest to the other chapters. The outline of this chapter is as follows: in Section 32.2, we
provide some general notations, followed by a discussion of orthologs assignment
in Section 32.3. We combine coverage of both synteny and gene cluster detection
problems in Section 32.4 because both lines of research use very similar approaches.
Conclusions follow in the last section.

32.2 NOTATIONS

To be consistent, we introduce some general notations, which will be used throughout
the chapter.

Let G = {G1, G2, . . . , G |G|} be a set of genomic sequences, where |G| denotes the
cardinality of G, and each Gi (1 ≤ i ≤ |G|) could be a chromosomal segment, a chro-
mosome, or a genome. Unless specified otherwise, each genomic sequence Gi will
be delineated by a sequence of genes (or genetic markers): Gi = (gi1, gi2, . . . , gini),
where ni is the number of genes in Gi . We use a lower case letter with superscript or
subscript to denote a gene if its genomic location does not need to be specified (e.g.,
g and g′).

Given two genes g and g′, let s(g, g′) denote their sequence similarity score,
which is defined by a user-specified function, and let ts be the threshold. For any
two genes gi j , gik (1 ≤ j, k ≤ ni) on the same genomic segment Gi , let dg(gi j ,
gik) = |k − j | − 1 denote their relative gene distance (i.e., the number of genes be-
tween gi j and gik), and let dp(gi j , gik) be their physical distance in bases.

Let U be the universal gene set. Any two genes g, g′ ∈ U belong to the same gene
family if s(g, g′) ≥ ts . Let � = {1, 2, . . . , |�|} be the set of all gene family labels
in U , and define function f : U → � to map genes to their respective gene family
labels.

32.3 ORTHOLOG ASSIGNMENT

We first introduce several terms regarding the evolutionary relationships between
two genes [38, 55]. Two genes are homologs if their sequence similarity is above
a given threshold. Homologs are divided into two types: orthologs—genes related

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

728 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

1g 1gʹ
0h

2g

0g

1h 2g ʹ
1h ʹ 0i

Figure 32.1 Examples of genes with different evolutionary relationships: homologs, orthologs
(main orthologs), and paralogs (in-paralogs and out-paralogs). A solid line denotes a genomic
segment in which a gene on the segment is shown as a rectangle. Solid arrows represent
speciations, and dotted arrows denote duplications.

through speciation with similar functions1—and paralogs—genes related through
duplication, which may or may not have the same function. Paralogs are classified
further into two subtypes: in-paralogs—paralogs that developed after speciation—
and out-paralogs—paralogs that developed before speciation.

An example is given in Figure 32.1 showing these different relationships; g0 is
an ancestral gene, which gives rise to an orthologous gene pair, g1 and g′

1, after
speciation. The gene h0, duplicated from g′

1, is also orthologous to g1 by definition.
To differentiate the order of inception, g1 and g′

1 are termed main orthologs. Genes
g′

1 and h0 are in-paralogs with regard to g1. The second speciation results in g2 and h1

on one genomic segment and in g′
2 and h′

1 on the other. Because the speciation event
comes after duplication, g2 and h1 are out-paralogs with respect to g′

2 and h′
1, and

vice versa. Likewise, h1 is orthologous to both h′
1 and i0 but forms main orthologs

with the former. All genes are homologs in the figure.
A major goal of ortholog assignment among multiple genomes is to character-

ize proteins with unknown functions. For instance, to annotate a newly sequenced
genome, a gene could be assigned the same function as its orthologous genes in
a known species. Among other applications, orthologs are used in many phyloge-
netic algorithms to infer gene or speciation trees; and to make the rearrangement
analysis tractable, ortholog assignment between two genomes is typically required.
However, ortholog assignment in multiple genomes is a challenge because of several
complications: point mutations make orthologs dissimilar on a sequence level, and
frequent gene losses and duplications make it impossible to differentiate paralogs
and orthologs using sequence similarity, as well as other forces such as horizontal
gene transfer, gene fusions, and so on.

Numerous algorithms (e.g., [63, 55, 62, 39, 13, 17, 67, 16, 24, 25]) have been
developed to identify orthologous genes among multiple genomes. We classify
them into three types, which are based on sequence similarity, phylogeny, and

1Adapted from the original definition by Fitch [23], which has no functional similarity requirement.
Orthologs could not be verified biologically without this requirement.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32.3 ORTHOLOG ASSIGNMENT 729

rearrangement. Note that the boundaries of these classifications are not absolute,
and some methods take into consideration multiple criteria.

Sequence similarity quantification is usually adopted to establish rough homol-
ogous relationships between all pairs of genes in which the method used need not
be very precise but relatively fast. For instance, BLAST is a popular choice. More
accurate and time-consuming methods could be used such as pairwise sequence
alignment. Ortholog clustering methods based on phylogeny rely on more delicate
sequence similarity functions between genes (e.g., multiple sequence alignment) fol-
lowed by a tree construction method (e.g., parsimony or maximum likelihood), using
alignment results. This tends to be more time consuming, especially on gene fami-
lies with a large number of genes. Methods based solely on sequence similarity or
phylogeny share the same assumption that local mutations of genes correctly reflects
evolution so that orthologous genes tend to be more similar to each other than to other
genes on different genomes. When this assumption does not hold (e.g., frequent gene
duplications and losses in plant genomes), ortholog gene assignment based on posi-
tional information on genomes as well as adjacent gene content is considered more
reliable (e.g., rearrangement-based approach).

32.3.1 Sequence Similarity-Based Method

A sequence similarity-based method could be generalized to a gene based approach
graph in which each vertex in the graph denotes a gene, and genes connected by an
edge have a high similarity score (≥ ts). Typically, the similarities between two genes
are determined empirically based on BLAST outputs using two criteria: e-values of
high scoring pairs (HSPs) and the ratio between alignment length and the length of
the compared sequences. Then, a clustering algorithm is applied to the gene graph in
which the resulting clusters denote orthologs groups.

Given two genomes Gi and G j , gik and g jl are termed reciprocal best hits
(RBHs) if

s(gik , g jl) = max
1≤l ′≤n j

(s(gik, g jl ′))

s(g jl, gik) = max
1≤k ′≤ni

(s(g jl, gik ′))

where the scoring function is given by BLASTing the second gene against the first
one in the function. Note that the need to use BLAST twice for comparing two genes
is a result of the asymmetric score function used by BLAST. RBHs are typically used
to infer orthologs between two genomes.

We describe several popular algorithms using the above ideas. The Clusters of
Orthologs Groups (COG) [63] is one of the first widely used ortholog classification
databases that compare genes in bacteria, archaea, and eukaryotes. After applying
all-vs-all BLAST comparisons to establish the pairwise gene similarities between
any two genomes, a gene graph could be created with each edge representing RBHs.
Then, the clustering step is to identify cliques with a minimum size of three under

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

730 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

the assumption that clusters with this size are likely preserving similar functions
in different species. Nevertheless, it is necessary to identify orthologs between just
two genomes, which could not be accommodated by COG. To achieve this goal,
INPARANOID [55] was developed, whose results serve as a benchmark that most
newly developed algorithms are compared with.

The major contribution of INPARANOID is to classify in-paralogs in each
genome, which are co-orthologs for genes with the same function in another genome.
Given two genomes Gi and G j , the gene graph consists of two types of edges: (i)
all-vs-all BLAST self-comparisons (Gi vs. Gi and G j vs. G j) result in the edges
connecting genes with a high similarity score within each genome; (ii) all-vs-all
BLAST comparisons of genes between Gi and G j result in edges connecting genes
with RBHs. Genes connected by RBH edges are candidates of main orthologs. Under
the assumption that in-paralogs are more similar to each other than to their orthol-
ogous counterparts, genes g and g′ connected by a type (i) edge are classified as
in-paralogs if their similarity score is higher than a type (ii) edge connecting g or g′,
if any.

A more sophisticated clustering algorithm is described in [67]. The initial input of
multiple genomes G is modeled as a multipartite graph G = (V, E), where vertex set
V denotes genes, and edges only connect genes gi j and glk if i �= l and s(gi j , glk) ≥
ts . An ortholog clustering step on this graph follows, which takes into consideration
two criteria: (i) similarities between genes within and outside the target cluster, and
(ii) phylogenetic relationships between genomes. These are measured quantitively in
the following linkage scoring function:

π (gi j , C) =
|G|∑

l=1,l �=i

dphy(Gi , Gl)(
nl∑

k=1,glk∈C

s(gi j , glk) −
nl∑

k=1,glk /∈C

s(gi j , glk)) (32.1)

where dphy(Gi , Gl) denote the phylogenetic distance between genomes Gi and Gl ,
and C is the targeting ortholog cluster. The first and the second summations cap-
ture the within gene cluster similarities and the outside gene cluster similarities,
respectively. The optimization problem is to identify a cluster C∗, which maxi-
mizes function F(C) = ming∈C π (g, C) for any g ∈ C , with C being a subset of
all genes.

It can be proven that using function F , there exists a unique gene cluster C∗ such
that C∗ maximizes function F , and F(C∗) ≥ F(C ′) for any C ′ ⊃ C∗. Based on this
observation, to identify C∗, we could start with all genes as the initial cluster then
iteratively remove genes contributing the lowest scores (defined by Equation 32.1)
to the cluster until all genes are removed or the score of the newly generated cluster
equals to zero. Let Hi be the cluster generated in the i th iteration and H be the set of
all clusters generated by the above algorithm (A), then:

C∗ = argmax
Hi ∈ H

F(Hi) (32.2)

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32.3 ORTHOLOG ASSIGNMENT 731

Naturally, the following algorithm (B) identifies all ortholog gene clusters in the
input until all genes are removed (or stop until no cluster has size ≥ 2).

1. Apply algorithm A to the input G.

2. Update G by removing all genes from C∗.

Algorithm B partitions the input data into a set of orthologous gene clusters
{C1, C2, . . . , Cm}, satisfying F(C1) > F(C2) > . . . F(Cm). With an efficient data
structure, the overall running time of O(|E | + |V |) is achieved.

32.3.2 Phylogeny-Based Method

If the mutation rates of gene sequences in different species correctly reflect the tim-
ing of speciation, then the phylogeny-based method could be the most intuitive ap-
proach for inferring gene orthology because the gene tree should be consistent with
the speciation tree. However, this assumption may not hold true because of gene
duplications and losses [13], and the quality of phylogenetic tree inference worsens
along with the divergence of genomic sequences regardless of this assumption.

The solution of the following problems control the quality of the phylogeny-based
method:

� Gene family construction: to identify the candidate genes that will be used for
phylogenetic tree construction. It is necessary to use a stringent threshold for
determing gene similarity because genes belonging to different gene families
could share the same domains. This step typically generates a pairwise distance
matrix of genes.

� Multiple sequence alignment: to infer point mutations that different genes
within the same family went through. The solution of this nondeterministic
polynomial (NP)-complete problem provides an overall picture of gene se-
quence evolution. To improve the quality of the final tree, many refined align-
ment methods are used such as T-COFFEE [42] and MUSCLE [22], which take
consideration protein secondary structure.

� Phylogenetic tree construction: to establish evolutionary relationships among
genes. Two categories of methods are used, distance based (e.g., neighbor-
joining tree) and character-based (e.g., maximum likelihood tree). The former
only needs a pairwise distance matrix regardless of how it is derived. However,
the latter requires the results from multiple sequence alignment; hence, it is
more time-consuming.

� Tree evaluation: to assess the significance of the tree compared with a ran-
dom tree, typically using a bootstrap technique. For instance, Storm et al. [62]
used a sampling with replacement strategy on the columns of a multiple se-
quence alignment to generate new random alignments with the same number
of columns. By applying the same tree construction methods on these random
alignments, a support value is derived for the original tree.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

732 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

Though refined multiple sequence alignments and character-based methods are
considered to yield better results in practice, they are time consuming and are limited
to a small number of sequences. Recent development of parallelization strategies
[46, 74] is underway to address these problems.

32.3.3 Rearrangement-Based Method

There are multiple functions to calculate the distance between two genomes (e.g.,
the breakpoint distance—the number of times in which two genes are adjacent on
one genome but not on the other—and the reversal distance—the minimum number
of genomic inversions needed to transform one genome to the other). Efficient algo-
rithms have been developed to tackle these problems (e.g., [1, 4, 10, 31, 35, 58, 68]).
Although these methods are typically used for studying genome rearrangement and
ancestral genome reconstruction, they have been useful in studying ortholog assign-
ment in two closely related genomes.

However, evolutionary complications such as gene duplications and losses prevent
the direct applicability of these methods to resolve the ortholog assignment problem
because two genomes under rearrangement studies are required to have an equal
number of genes with a one-to-one correspondence. Therefore, the rearrangement
analysis methodology needs be modified for ortholog assignment.

Exemplar gene identification [56] between two genomes is one of the first direct
applications of rearrangement analysis. This also could be considered as the main
ortholog assignment problem. The optimization goal is to identify an ortholog as-
signment that minimizes a chosen distance between two genomes (e.g., breakpoint
distance). In this particular problem, an exact branch-and-bound algorithm is used
to enumerate all possible one-to-one gene matching between two genomes. During
enumeration, the minimum distance maintained as the bound to filter unnecessary
exploration of some branch of the spanning tree helps expedite the process.

A series of algorithms [16, 24, 25] have been developed to identify main orthologs
and in-paralogs using sequence similarity as well as the genomic rearrangement in-
formation in pairwise or among multiple genomes.

We briefly discuss the ideas behind the basic algorithm, termed SOAR [24],
then present its workflow. Bacause the main rationale of the extended algorithms,
MSOAR [24] and MultiMSOAR [25], remains the same, we will describe their im-
provements over the basic algorithm.

SOAR is based on the idea of sorting signed permutations by reversals [1, 31, 35].
It defines a variant of this optimization problem, termed signed reversal distance
with duplicates (SRDD), to accommodate gene duplications. Given two genomes G1

and G2, if a matching exists between genes in G1 and G2, then any efficient algo-
rithm listed above could be used to calculate their reversal distance. The optimization
problem SRDD is used to identify such a matching between G1 and G2, which are
permutations with redundant numbers (i.e., duplicated genes) such that the reversal
distance between G1 and G2 based on this matching is the minimum among all pos-
sible matchings. Supposedly, this matching gives an ortholog assignment between
G1 and G2.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32.3 ORTHOLOG ASSIGNMENT 733

SRDD is proven to be NP-complete. Therefore, SOAR approximates the solution
of SRDD and reduces the complexity of the problem in three stages, in which the
approximation of SRDD in each stage is within a bounded distance to the optimum
solution.

� Stage 1. Local ortholog assignment. For example, if g1i is a duplicated
gene, whereas g1,i−1 and g1,i+1 are unique, and there exits a matching
g2, j−1, g2, j , g2, j+1 in G2 corresponding to g1,i−1, g1,i , g1,i+1, then this match-
ing gives a local ortholog assignment between the corresponding three gene
pairs.

� Stage 2. Coarse-grained partitioning. If a set of genes occur in both G1 and
G2 in the same order and orientation, then two genomic regions spanned by
this gene set is likely orthologous. Because the larger the gene set, the more
confidence we will have to infer their orthologous relationship, the goal is to
find a minimum number of such gene sets that partitions both G1 and G2.

� Stage 3. Fine-grained matching. Stage 2 does not guarantee a unique assign-
ment between duplicated genes in G1 and G2, and hence, further analysis is
needed. Borrowing from the idea of the approach to convert one genome to
another by cycle decomposition in a breakpoint graph [31], the result from the
former step is converted to a breakpoint graph, and the goal is to maximize the
number of cycles in the graph by removing intergenome edges.

Because both problems in stages 2 and 3 are NP-complete, heuristic algorithms are
used. After fulfilling these steps, G1 could be transformed to G2 with reversal oper-
ations, which defines a one-to-one gene correspondence (i.e., orthologs assignment).

The main idea remains the same in MSOAR (i.e., to find a sequence of parsimo-
nious operations to transform one genome into another), in which the transformation
itself defines the ortholog assignment. Two types of operations are considered: du-
plications and rearrangement events, which could be approximated by reversals.

Algorithmically, several changes and additions of SOAR have been accommo-
dated in MSOAR to consider in-paralogs and to handle multichromosomal genomes:

1. Two new suboptimal rules have been added in stage 1 to improve the run time.

2. Derive a maximum gene matching between two genomes, used as the input of
stage 2, and ignore the rest of the genes.

3. Multiple chromosomes of a genome are concatenated in random order, to be
converted to a pairwise comparison problem. Convert the two genomes to
a breakpoint graph, remove intergenome edges to maximize the number of
cycles, and minimize the number of paths with two endpoints in the same
genome.

4. In-paralogs are identified as the duplicated genes that are not involved in the
matching.

MSOAR gives a solution to a main orthologs assignment between a pair of
genomes, which could be invoked (n

2) times to derive the pairwise main orthologs

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

734 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

across n genomes. The assignment of main orthologs in more than two genomes,
referred to as main orthologs clusters, is addressed in MULTIMSOAR.

Initial ortholog clusters are created by single linkage clustering using pairwise or-
tholog assignment. Initial clusters could be divided into two types: nonambiguity and
ambiguity clusters. A nonambiguity cluster—each genome contributes at most one
gene—is defined as a main ortholog cluster. In an ambiguity cluster—two or more
genes in the cluster belong to the same genome—MultiMSOAR attempts to identify
a multiway matching as the solution of ortholog assignment, and duplicated genes
not in the matching are regarded as in-paralogs. To initiate the matching problem,
dummy genes are introduced in each of the ambiguity cluster so that the number of
genes from each genome involved in the cluster are the same. Because even the three-
matching problem is NP-complete, a heuristic multiway matching solver is used.

32.4 GENE CLUSTER AND SYNTENY DETECTION

The term synteny has gained new meanings from genetics study to comparative ge-
nomics study [50]. In genetics, a synteny refers to multiple genes on the same chro-
mosome whether or not they are genetically linked. In comparative genomics, how-
ever, no rigorous definition exists of what forms a synteny, neither biologically nor
computationally. We roughly outline the existing usages of “synteny” in comparative
genomics in the following two contexts:

� C1: large-scale genomic alignment [20, 44, 51]. Because sequence align-
ment dealing with whole genomes are difficult to handle, identification of
syntenies—smaller genomic regions with a high sequence similarity—help re-
duce the complexity of the overall problem, and the resulting syntenies serve
as the input to the follow-up analysis such as whole genome alignment.

� C2: derive evolutionarily related genomic regions in multiple genomes using
genetic markers [65, 12, 29, 28, 30, 71, 59]. A genetic marker could be a gene or
a piece of DNA sequence or even a single nucleotide polymorphism (SNP) with
a known location on a chromosome, which is associated with some specific
trait. A synteny refers to a set of genomic regions sharing similar marker set in
proximate locations.

C1 is limited to closely related genomes so that on the primary sequence level,
they are similar enough such that meaningful alignments could be generated; mean-
while, enough divergence is needed to differentiate conserved components from
“junk DNA segments”2. However, local genomic similarity does not directly reveal
their evolutionary relationships if they are from repetitive regions. Moreover, it is
typically the case that unique conserved region shared by two genomes are usually
functional components (e.g., exons), that could be used as genetic markers; therefore,

2Diverged genomes could be compared with different metrics (e.g., [15]).

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32.4 GENE CLUSTER AND SYNTENY DETECTION 735

we interleave the meaning of synteny from C1 and give the following definition to
reflect evolution:

Definitio 32.1 A synteny is a set of extant genomic regions, which evolved from
the same genomic region of an ancestral genome after speciation or large-scale du-
plication.

This definition provides a template in which an embodiment for a specific study
will make the definition precise by addressing the following factors:

1. Operand: the entity in describing a genomic region

2. Operator: evolutionary modifications that impose on a genomic region; this
specifies the term “evolve” in the definition

3. Result: the status of the ancestral genomic region at some time point of evolu-
tion. This defines the ancestor–descendant relationship, which could be defined
by a distance function

A genomic region could be delineated by different entities as long as the underly-
ing genomic sequence could be identified unambiguously. In practice, several ways
exist to this:

� Use the primary sequence, (i.e., nucleotide composition), where the boundary
is accurate to the base level, given as the start and end position on the chromo-
some.

� Use higher level of annotations (e.g., genes), where the boundary is speci-
fied by the first and the last annotated genes in the region, or use markers
for genetic linkage studies, where the boundary could not be specified accu-
rately except through their relative order (defined by genetic distance) within a
region.

To give an example, let the operands be genes. Then, an ancestral genomic re-
gion could be represented as: A = (a0, a1, . . . , an A) with n A number of genes. In
this case, the operators could be chosen as the evolutionary events, such as gene
insertions, duplications, losses, genomic inversions, and so on. Finally, we need to
specify what could be a resulting genomic region G that is considered the descendant
of A. To fulfill this purpose, a distance fuction could be defined between A and G
by restricting the number of times different operators are applied to A. For exam-
ple, let A = (a0, a1, . . . , a9) be an ancestor, transformed to (a0, a1, a2, a3, a4) after
one segmental gene loss, to (a0, b0, a1, a2, a3, b1, a4) after two gene insertions, to
(a0, b0, a2, a3, b1) after two local gene losses, and finally to (a0, a2, b0, a3, b1) after

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

736 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

one genomic inversion. Therefore, G is considered a descendant from A if we allow
six evolutionary events.3

This description is under the assumption of knowing A and the path of evolution
(e.g., incremental changes applied to A), which is difficult to recover if it is even pos-
sible. We believe that Definition 32.1 generalizes prior methods for synteny detection
in line with C2 and clearly reflects evolution, and we regard it as the biological ideal
to seek.

Although methods for synteny detection normally applies to animal or plant
genomes, gene cluster detection starts the application in microbial genomes, with
the assumption that a set of closely located genes on different bacterial chromosomes
are likely members in a functional unit or pathway [43, 45, 47, 61]. Unlike synteny
detection in which different research groups have their own definition, several well-
defined models exists for gene cluster detection (e.g., common interval model and
gene-teams model).

Although it seems that synteny detection and gene cluster detection apply to dif-
ferent types of organisms and with different biological goals, both lines of research
share a significant algorithmic goal while modeling these two problems. And it is our
intention to put both lines of research in the same section so that the readers could
see this from an algorithmic point of view, and we believe Definition 32.1 could be
generalized to both.

In the following, we will describe models and algorithms used in synteny detec-
tion and gene cluster detection, respectively.

32.4.1 Synteny Detection

As discussed earlier, because the path of evolution is unknown, other criteria are
needed to determine whether two genomic regions G1 and G2 belong to the same
synteny. The assumption is that if we could identify two sequences of a certain num-
ber of markers with similar order and spacing in G1 and G2, which is unlikely to
occur by chance, then, G1 and G2 are related evolutionarily (i.e., through speciation
or large scale duplication), hence forming a synteny.

Generally speaking, two main criteria are considered in the literature: order of
genetic markers and their proximity. When genetic markers are genes, additional
criteria such as strand location or direction of transcription are used.

Conservatively, two genomic regions G1 and G2 are inferred to be in a
synteny if they share a collinear sequence of markers; marker sequence M1 =
(m11, m12, . . . , m1n) in G1 is collinear to M2 = (m21, m22, . . . , m2n) in G2, if
m1i , m2i (1 ≤ i ≤ n) are the same type of markers. Although collinearity provides
a strong evidence of the same origin of evolution, the order frequently is disrupted
by a rearrangement events [51, 72]. Hence, whether to adopt a more stringent or-
der constraint so that we have a higher confidence in the detected syntenies to be
related evolutionarily or to account for rearrangement events so that more distal

3For simplicity, evolutionary events are not defined precisely because their meanings are straightforward
in the context.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32.4 GENE CLUSTER AND SYNTENY DETECTION 737

related regions could be revealed at risk of discovering spurious syntenies is a trade-
off in synteny detection methods. The choice of proximity criterion is arbitrary in
which the typical choices are the physical distance or marker distance between two
markers of interest (e.g., dp and dg for the gene markers).

We term a synteny consisting of two genomic regions a pairwise synteny and that
consisting of more than two genomic regions a multisynteny. Undoubtedly, a multi-
synteny encodes more information on evolutionary relationships than what could be
derived from its constituent pairwise syntenies. For instance, a multisynteny con-
sisting of three genomic regions G1, G2, G3, where G1, G2 and G2, G3 form two
pairwise syntenies, whereas G1 and G3 share no homologous gene pairs, reveals a
differential gene loss [60]. A multisynteny usually is constructed from a set of pair-
wise synteny using transitive relationships (e.g., if G1 is syntenic to G2 and G2 is
syntenic to G3, then G1 is syntenic to G3), whether or not G1 shares some markers
with G3. Weaker syntenies could be revealed using this incremental approach. For
instance, more ancient large-scale duplications are revealed by comparing the rice
genome with the Arabidopsis genome than the self-comparison of 12 chromosomes
of the rice genome [66].

It is noteworthy to mention that there are two implicit assumptions for identifying
a multisynteny: (i) A subset of species under comparison are closely related, whereas
some more distal species exist that serve as the out-group in the evolutionary tree so
that with a set of carefully chosen out-groups, we could validate the hypothesis of
more ancient evolutionary events such as whole genome duplication. (ii) The set
of genomic regions forming a multisynteny are of similar size (e.g., the number of
markers or the length of the genomic sequence).

Synteny detection methods typically use a combination of the following tech-
niques depending on how they handle the marker order and proximity constraints:
statistical methods [29, 30], the dot-plot matrix-based approach [65, 12], and the
dynamic programming approach [28, 59].

Because it is difficult to explicitly define the “proximity” constraint, a natural ap-
proach for detecting syntenies between two genomic sequences is to evaluate how
rarely a sequence of markers could be observed, as addressed by statistical analy-
sis. LINEUP [29] was applied to maize genetic maps with the following three con-
straints: (i) the minimum number of markers involved, (ii) the order of markers in
which the disruption of collinearity is allowed, and (iii) the maximum distance be-
tween two markers of interest, specified by the number of marker insertions.

A basic algorithm is given with the input consisting of two genetic marker se-
quences for chromosomes G1 and G2:

1. Remove unique markers from G1 and G2.

2. Using G1 as the reference, find collinear subsequences between G1 and G2,
allowing no insertions in the reference.

3. For each subsequence in G1, compute a distance score for any candidate sub-
sequence (satisfying the constraints mentioned earlier) in G2, penalizing the
insertions and deletions in G2 and choose the subsequence with the highest
score.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

738 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

With N number of input markers, because the number of subsequences in G1 is
bounded by O(N 2) and the size of any matching subsequence in G2 is bounded by a
constant, this basic algorithm runs in O(N 2) time.

A statistical evaluation with Monte Carlo simulation is applied by repeating the
following procedures 1000 times: randomly permute G2, and apply the basic algo-
rithm. The resulting pairwise syntenies from the simulations are binned by their size.
Each synteny from the original output is evaluated against a bin with the same size
in the simulation. Any synteny contributes to the final result if its score is among the
top 5%.

To relax the collinearity constraint, any marker in C1 is allowed to swap with other
markers within a limited genetic distance; then each such permutation is compared
with C2 in a similar fashion as described in the basic algorithm.

Similar to LINEUP algorithmically, however, CLOSEUP [30] used only the gene
proximity and density (number of homologous gene pairs shared within a unit ge-
nomic region) constraints to find the initial candidate syntenies followed by a statisti-
cal significance test. Because the constraints are less restrictive when compared with
LINEUP, CLOSEUP ran into the problem of inability to evaluate syntenies with a
larger size because of the limitation of using a Monte Carlo simulation; random shuf-
fling of genes in a chromosome result in a no long conserved region. Therefore, an
upper bound (= 10) is set to limit the size of a synteny.

The dot-plot is used widely for visualizing the similarity between two nucleotide
sequences S1 and S2 by drawing them on the x and y axis in a cartesian coordinate
system. A dot is plotted at position (i, j) if and only if S1[i] = S2[j], where S1[i]
denotes the nucleotide on the i th position of S1. ADHORE [65] and DIAGHUNTER
[12] adopted this approach by changing S1 and S2 to the gene sequences G1 and G2

on the x- and y-axis, and a dot is plotted at (i, j) if the i th gene in G1 is homologous
to the j th gene on G2. The collinearity requirement between G1 and G2 is fulfilled
by identifying diagonal or antidiagonal lines on the dot-plot in which a distance
threshold is specified for adjacent dots. ADHORE used linear regression to test the
fitness of a set of dots to the diagonal or antidiagonal lines followed by a random
permutation test for their statistical significance. Any resulting set of collinear genes
on the dot-plot form a synteny.

A dot-plot between G1 and G2 also could be modeled as a directed acyclic graph
(DAG) G = (V, E), where vi j ∈ V denotes the dot in position (i, j), and −→e =
(vi j , vkl) ∈ E exists if k > i . Any scoring function reflecting the proximity and the
order of the dots could be used, and the goal is to identify any maximal scoring path
p = (vi1, j1, vi2, j2 , . . . , vin , jn) such that i1 < i2 < · · · < in and j1 < j2 < · · · < jn or
j1 > j2 > · · · > jn . Path p corresponds to the diagonal or antidiagonal lines in the
dot-plot. Note that a subpath of the maximal scoring path is also locally maximal;
therefore, the solution of the overall problem is depend on the solution of the sub-
problems, and thus, dynamic programming comes into play (e.g., [28]).

To unveil syntenies consisting of ancient genomic regions as resulting from large-
scale genomic duplications followed by frequent gene losses, it is necessary to com-
pare multiple genomes in hopes of identifying some of its constituent well-conserved
pairwise syntenies. Then, using the pairwise synteny as the seed, a new round of

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32.4 GENE CLUSTER AND SYNTENY DETECTION 739

comparison could be applied, and this process iterates until no more genomic re-
gions could be found. This idea is implemented in a genome-profile-based approach
(I-ADHORE) [60, 59], which has a higher sensitivity compared with other methods.
In the following, we describe this algorithm for identifying a multisynteny on an
input of multiple genomes:

1. ADHORE (described earlier) could be used to identify a significant pairwise
synteny.

2. Two genomic regions in the pairwise synteny are converted to two strings S1

and S2 of gene family labels. Alignment is performed on S1 and S2 using dy-
namic programming (e.g., Needleman–Wunsch algorithm [41]). An alignment
profile is constructed from the alignment; if the gene family label f (g) aligns
with an indel or with f (g′) on the i th position, then emit f (g) in the profile at
the same position.

3. The profile is treated as a new genomic region; iterate it through the previous
steps until no significant pairwise synteny can be found.

Note that, in step 2, if any of the genomic regions is derived from a profile, then mul-
tiple alignment is performed instead of pairwise alignment, and the profile generation
step is similar.

32.4.2 Gene Cluster Detection

Gene cluster detection has been studied intensively during the past decade (e.g.,
[2, 3, 5, 6, 9, 14, 21, 26, 32, 33, 34, 37, 48, 49, 52, 53, 57, 64, 69]). A variety of
formal models have been developed. Because excellent reviews and descriptions of
these models already exist [33, 5], instead of repeating them here, we will organize
this section as follows: to be self-contained, we will briefly describe some of these
models and what have been captured, then we will describe recent progress and de-
velopment, and finally, we will address several issues that we believe are important
and need be considered for future development.

Different from synteny detection, in gene cluster models, gene directionality and
strand information generally are overlooked, and instead, the focus is on the gene
orders, proximities, and multiplicities. There are several formal models describing
what forms a gene cluster, such as the r -window model, common interval model,
gene teams model (also known as the max-gap cluster model), and median gene
cluster model. In this order, each model generalizes the previous one, and intuitively,
we are expecting the improvement of the sensitivity. However, this is just one side of
the story; better sensitivity does not necessarily mean a better model.

We will start with the gene teams model [6] because of the multiple favorable
properties it possesses [33], and so far, the biological results achieved by this model
are better or on par with the others.

We regard a gene cluster as a set of gene family labels, which is an abstract con-
cept, and an instance of this gene cluster is a gene sequence present at some location

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

740 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

of a chromosome. The validity of a gene cluster is derived from and supported by
its instances. Although the term “gene cluster” has been used for both the abstract
meaning as well as for the instances, the ambiguity is manageable. However, we
prefer to keep them separate.

32.4.2.1 Gene Teams Model. Given two chromosomes G1 and G2, where
Gi = (gi1, gi2, . . . , gini) (1 ≤ i ≤ 2), a set of gene families C form a δ-gene
team (or max-gap cluster) with two instances I1 = (g1 j1 , g1 j2 , . . . , g1 jn) and I2 =
(g2k1 , g2k2 , . . . , g2kn) if the following conditions hold, where δ is the parameter spec-
ifying the maximum allowable distance between two adjacent genes in any instance
of the gene team:

1.
⋃

j1≤ j ′≤ jn

f (g1 j ′) =
⋃

k1≤k′≤kn

f (g2k ′) = C

2. dg(g1 jl , g1 jl+1) ≤ δ and dg(g1kl , g1kl+1) ≤ δ for 1 ≤ l ≤ n − 1

Bergeron et al. [6] developed an efficient algorithm to identify all gene teams in
O(n log2(n)) time between two genomes with n genes each. This is a divide-and-
conquer approach consisting of the following ideas: first, transform G1 and G2 into
G ′

1 and G ′
2 by removing genes that are unique to either of them. Then, split G ′

1
and G ′

2 into multiple segments at places where two adjacent genes are more than
δ distance apart because any two such genes will not be in the same team accord-
ing to the definition. Let the resulting segments be denoted by {G11, G12, . . . , G1n1}
and {G21, G22, . . . , G2n2} for G ′

1 and G ′
2, respectively. Without loss of generality,

consider G11, if we find that some G2 j (1 ≤ j ≤ n2) share the same gene fam-
ilies with G11; then they form a team. Otherwise, G11 will be split into multi-
ple segments again because some genes exist that belong to different segments
of G ′

2. With the same rationale, each segment generated in some stage is tested
against its counterparts, and either the split will take place, or the gene team is
found. This algorithm is generalized to m(> 2) genomes with the complexity of
O(mn log2 n).

This basic algorithm is used in many more realistic biological applications, such
as considering gene duplications [32]. Kim et al. [37] proposed a more flexible gene
teams model, which relaxes the required spatial proximity. They proposed a breadth-
first search algorithm to find gene clusters in multiple microbial genomes based on
the fact that a gene cluster may exist only among a subset of genomes. Starting from
a reference genome as the root of the tree, as more genomes are incorporated, the
genomic segment is split into smaller parts based on the common genes, which are
represented as the branches of the tree. On the other hand, instead of relaxing the con-
straints, Zhu et al. [73] used a more stringent proximity criterion than the gene teams
model, and got comparable results as the gene teams model. This raised the question
of whether the gene teams model is too permissive in practice than is necessary. This
consideration is consistent with the conclusion drawn by the experiment carried out
in [33] with bacterial genomes.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

32.4 GENE CLUSTER AND SYNTENY DETECTION 741

The gene teams model takes into consideration genomic inversions, gene inser-
tions, and duplications. When gene insertions are not allowed (i.e., δ = 0), this model
reduces to the common interval model.

Recently, median cluster model [54, 9] was introduced that has a different opti-
mization criteria for gene clusters; given a distance threshold δ, a gene family set C
is a median gene cluster if

k∑

i=1

|C \ F(Ii)| + |F(Ii) \ C | ≤ δ

where F(Ii) denotes the gene family set of instance Ii .
ILP [54] is one of the median gene cluster models using an integer linear pro-

gramming approach. Variations in gene cluster detection, such as the cardinality of
a gene cluster, or the presence or absence of a gene cluster in a particular genome,
could be modeled with different constraints. Therefore, because of its generality, the
common interval model and the gene teams model could be captured by varied ILP
formalization. Although ILP is a known NP-complete problem, it has been stud-
ied intensively in computer science community and efficient approximation solvers
exist. Böcker et al. [9] proposed several algorithms to identify median gene clus-
ters by identifying a filter, which is an instance of a gene cluster. Using this fil-
ter, all other instances in the dataset are identified using the distance constraint
specified. And a consensus of these instances are regarded as the median gene
cluster.

32.4.2.2 Important Issues. As addressed by Hoberman and Durand [33], there
are two starting points for developing a model: either from a computational point of
view with the goal of identifying an efficient algorithm or from a biological point of
view with the goal to model biological intuitions as much as possible. The former
is interesting theoretically, but for computational biology studies that try to resolve
real-life problems, we believe the latter approach is more valuable.

To make more sense of the underlying biology, we summarize the following issues
that we believe are important and have not been addressed adequately. Then, we will
discuss each of these issues individually.

1. Model evaluation—sensitivity versus specificity

2. Model comparison

3. Model applicability—what should be captured?

Undoubtedly, a more generalized model would have a higher sensitivity than
a more restricted model. Unfortunately, in biological applications, high sensitivity
without considering specificity amounts to an overwhelming number of wet-lab ex-
periments; hence, it needs be avoided. Therefore, each model should be evaluated for
both sensitivity and specificity, which could be carried out in two ways: (i) compare
against biologically validated data; (ii) in a less favorable situation, when there is a

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

742 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

lack of biological results, comprehensive synthetic data should be used. To date, no
comprehensive validations exist in gene cluster detection. And existing approaches
attempt to classify the identified gene clusters that could not be validated as the “po-
tential unclassified gene clusters”. This conclusion is more convincing in some cases
(e.g., HomologyTeams model [32] because a good proportion of the identified gene
clusters match biologically validated operons) but is more difficult to judge for some
models with a high sensitivity (e.g., median cluster model [9]), because specificity is
overlooked when evaluating on both synthetic and real data.

When comparing results, the newly developed models are shown to be superior
over existing models by arguing that more gene clusters are found. However, we
believe this approach is erroneous. Two important factors need be considered while
comparing different models: (i) in addition to sensitivity, specificity needs to be com-
pared; (ii) different methods use different parameter settings, as well as different
distance metrics (e.g., physical distance vs. gene distance). The comparable conver-
sion between distance metrics and the parameters are critical before a fair conclusion
could be made regarding the sensitivity of two models. Because this conversion sets
the sensitivity of both models under comparison to the same level (i.e., the capability
to discover a candidate gene cluster) whereas ultimately, the specificity will deter-
mine the workload for a biologist doing wet-lab experimentation. As a consequence,
ignoring these factors could easily lead to overexaggeration of the capability of the
model as well as to misinterpretation of the biological data under study.

Among the models for gene cluster detection, we consider gene teams model as
more biologically oriented, which well capture the following evolutionary events: ge-
nomic inversions, gene duplications, and gene insertions. Although algorithmically,
median gene cluster models can identify these events as well as gene losses, the op-
timization criteria is more computationally oriented, and the biological meaning of
the resulting clusters wanes in multiple genome comparison. Therefore, what has
been missed is a model to formally capture gene losses, which is a difficult problem
because of the following complications: how to decide if a gene is an insertion in
one instance or a loss in another instance; how to differentiate a gene loss event from
a gene duplication event if both in-paralogs and out-paralogs are present; and how
to deal with genomic inversions, which move the gene loss positions. In addition,
the size of instances for a gene cluster is restricted implicitly or explicitly, which
rules out the segmental gene loss events in microbial genomes (e.g., the existence of
uber-operons [14]).

The first attempt to address several of these issues is given in [70], where an
effort for modeling biological intuitions has been made to increase the sensitiv-
ity without sacrificing the specificity of the model; gene loss events are modeled
formally in line with the gene teams model, and gene cluster consisting of mul-
tiple instances that occur in one or multiple genomic sequences is derived with-
out relying on pairwise comparison. While comparing with the existing method, a
generic approach is proposed to determine empirically the comparable conversions
of distance metrics and choice of parameters. Because the model does not restrict
the instances size in a cluster, functional units such as uber-operons are detected
automatically.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

REFERENCES 743

32.5 CONCLUSIONS

In this chapter, we attempt to address the three basic problems in comparative
genomics—ortholog assignment, synteny detection, and gene cluster detection. Our
goal is to provide an overall picture of how algorithmically these problems are mod-
eled and resolved in the literature rather than provide an exhuastive survey. We refer
the reader to subsequent chapters for the detailed discussions of other problems in
comparative genomics.

REFERENCES

1. D.A. Bader, B.M. Moret, and M. Yan. A linear-time algorithm for computing inver-
sion distance between signed permutations with an experimental study. J Comput Biol,
8(5):483–491, 2001.

2. A.K. Bansal. An automated comparative analysis of 17 complete microbial genomes.
Bioinformatics, 15(11):900–908, 1999.

3. M. Béal, A. Bergeron, S. Corteel, and M. Raffinot. An algorithmic view of gene teams.
Theor Comput Sci, 320(2-3):395–418, 2004.

4. S. Bérard, A. Bergeron, C. Chauve, and C. Paul. Perfect sorting by reversals is not always
difficult. IEEE/ACM Trans Comput Biol Bioinform, 4(1):4–16, 2007.

5. A. Bergeron, C. Chauve, and Y. Gingras. Formal models of gene clusters. In Computa-
tional Techniques and Engineering. Wiley, New York, 2008.

6. A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams. Lect Notes
Bioinform, 2452:464–476, 2002.

7. M. Blanchette, E.D. Green, W. Miller, and D. Haussler. Reconstructing large regions of
an ancestral mammalian genome in silico. Genome Res, 14(12):2412–2423, 2004.

8. M. Blanchette, W.J. Kent, C. Riemer, L. Elnitski, A.F.A. Smit, K.M. Roskin, R. Baertsch,
K. Rosenbloom, H. Clawson, E.D. Green, D. Haussler, and W. Miller. Aligning multi-
ple genomic sequences with the threaded blockset aligner. Genome Res, 14(4):708–715,
2004.

9. S. Böcker, K. Jahn, J. Mixtacki, and J. Stoye. Computation of median gene clusters. In
M. Vingron and L. Wong, editors, Research in Computational Molecular Biology, volume
4955 of Lecture Notes in Computer, Science, Springer, New York, 2008, pp. 331–345.

10. G. Bourque and P. Pevzner. Genome-scale evolution: Reconstructing gene orders in the
ancestral species. Genome Res, 12(1):26–36, 2002.

11. G. Bourque, G. Tesler, and P. Pevzner. The convergence of cytogenetics and
rearrangement-based models for ancestral genome reconstruction. Genome Res,
16(3):311–313, 2006.

12. S. Cannon, A. Kozik, B. Chan, R. Michelmore, and N.D. Young. DiagHunter and
genoPix2D: Programs for genomic comparisons, large-scale homology discovery and vi-
sualization. Genome Biol, 4(10):R68, 2003.

13. S. Cannon and N.D. Young. OrthoParaMap: Distinguishing orthologs from paralogs by
integrating comparative genome data and gene phylogenies. BMC Bioinformatics, 4:35,
2003.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

744 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

14. D. Che, G. Li, F. Mao, H. Wu, and Y. Xu. Detecting uber-operons in prokaryotic genomes.
Nucleic Acids Res, 34(8):2418–2427, 2006.

15. X. Chen, S. Kwong, and M. Li. A compression algorithm for DNA sequences and its
applications in genome comparison. RECOMB ’00, ACM, New York, 2000, p. 107.

16. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment of
orthologous genes via genome rearrangement. IEEE/ACM Trans Comput Biol Bioinform,
2(4):302–315, 2005.

17. J. Chiu, E. Lee, M. Egan, I. Sarkar, G. Coruzzi, and R. DeSalle. OrthologID: Automation
of genome-scale ortholog identification within a parsimony framework. Bioinformatics,
22(6):699–707, 2006.

18. P. Cliften, P. Sudarsanam, A. Desikan, L. Fulton, B. Fulton, J. Majors, R. Waterston,
B.A. Cohen, and M. Johnston. Finding functional features in saccharomyces genomes by
phylogenetic footprinting. Science, 301(5629):71–76, 2003.

19. A. Darling, B. Mau, F. Blattner, and N. Perna. Mauve: Multiple alignment of conserved
genomic sequence with rearrangements. Genome Res, 14(7):1394–1403, 2004.

20. C.N. Dewey. Aligning multiple whole genomes with Mercator and MAVID. Methods Mol
Biol, 395:221–236, 2007.

21. D. Durand and D. Sankoff. Tests for gene clustering. J Comput Biol, 10(3-4):453–482,
2003.

22. R. Edgar. MUSCLE: Multiple sequence alignment with high accuracy and high through-
put. Nucleic Acids Res, 32(5):1792–1797, 2004.

23. W.M. Fitch. Distinguishing homologous from analogous proteins. Syst Zool, 19(2):99–
113, 1970.

24. Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang. MSOAR: A high-throughput
ortholog assignment system based on genome rearrangement. J Comput Biol, 14(9):1160–
1175, 2007.

25. Z. Fu and T. Jiang. Clustering of main orthologs for multiple genomes. J Bioinform Com-
put Biol, 6(3):573–584, 2008.

26. W. Fujibuchi, H. Ogata, H. Matsuda, and M. Kanehisa. Automatic detection of conserved
gene clusters in multiple genomes by graph comparison and p-quasi grouping. Nucleic
Acids Res, 28(20):4029–4036, 2000.

27. J.L. Gordon, K.P. Byrne, and K.H. Wolfe. Additions, losses, and rearrangements on the
evolutionary route from a reconstructed ancestor to the modern saccharomyces cerevisiae
genome. PLoS Genet, 5(5):e1000485, 2009.

28. B.J. Haas, A.L. Delcher, J.R. Wortman, and S.L. Salzberg. DAGchainer: A tool for mining
segmental genome duplications and synteny. Bioinformatics, 20(18):3643–3646, 2004.

29. S. Hampson, A. McLysaght, B. Gaut, and P. Baldi. LineUp: Statistical detection of
chromosomal homology with application to plant comparative genomics. Genome Res,
13(5):999–1010, 2003.

30. S.E. Hampson, B.S. Gaut, and P. Baldi. Statistical detection of chromosomal homology
using shared-gene density alone. Bioinformatics, 21(8):1339–1348, 2005.

31. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip (polynomial algorithm
for sorting signed permutations by reversals). J ACM, pp. 178–189, 1995.

32. X. He and M.H. Goldwasser. Identifying conserved gene clusters in the presence of ho-
mology families. J Comput Biol, 12(6):638–656, 2005.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

REFERENCES 745

33. R. Hoberman and D. Durand. The incompatible desiderata of gene cluster properties. In
Comparative Genomics. Springer-Verlag, Dublin, Ireland, 2005.

34. R. Hoberman, D. Sankoff, and D. Durand. The statistical significance of max-gap clusters.
Lect Notes Comput Sci, 3388:55–71, 2005.

35. H. Kaplan, R. Shamir, and R.E. Tarjan. Faster and simpler algorithm for sorting signed
permutations by reversals. SIAM J Comput, pp. 344–351, 1997.

36. M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E.S. Lander. Sequencing and compar-
ison of yeast species to identify genes and regulatory elements. Nature, 423(6937):241–
254, 2003.

37. S. Kim, J.H. Choi, and J. Yang. Gene teams with relaxed proximity constraint. Proceed-
ings of the IEEE Computing Systems Bioinformatics Conference, pp. 44–55, 2005.

38. E.V. Koonin. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet, 39:309–
338, 2005.

39. L. Li, C.J. Stoeckert, and D.S. Roos. OrthoMCL: Identification of ortholog groups for
eukaryotic genomes. Genome Res, 13(9):2178–89, 2003.

40. J. Ma, L. Zhang, B.B. Suh, B.J. Raney, R.C. Burhans, W.J. Kent, M. Blanchette, D. Haus-
sler, and W. Miller. Reconstructing contiguous regions of an ancestral genome. Genome
Res, 16(12):1557–1565, 2006.

41. S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453,
1970.

42. C. Notredame, D.G. Higgins, and J. Heringa. T-coffee: A novel method for fast and accu-
rate multiple sequence alignment. J Mol Biol, 302(1):205–217, 2000.

43. H. Ogata, W. Fujibuchi, S. Goto, and M. Kanehisa. A heuristic graph comparison algo-
rithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res,
28(20):4021–4028, 2000.

44. E. Ohlebusch and M. I. Abouelhoda. Chaining algorithms and applications in compar-
ative genomics, In Handbook of Computational Molecular Biology. Chapman and Hall,
New York, 2006.

45. A. Osterman and R. Overbeek. Missing genes in metabolic pathways: A comparative
genomics approach. Curr Opin Chem Biol, 7(2):238–251, 2003.

46. M. Ott, J. Zola, S. Aluru, and A. Stamatakis. Large-scale maximum likelihood-based
phylogenetic analysis on the IBM bluegene/l. Proceedings of Supercomputing, 2007.

47. R. Overbeek, M. Fonstein, M. D’Souza, G.D. Pusch, and N. Maltsev. The use of gene
clusters to infer functional coupling. Proc Natl Acad Sci U S A, 96(6):2896–2901,
1999.

48. L. Parida. Statistical significance of large gene clusters. J Comput Biol, 14(9):1145–1159,
2007.

49. S. Pasek, A. Bergeron, J.L. Risler, A. Louis, E. Ollivier, and M. Raffinot. Identifica-
tion of genomic features using microsyntenies of domains: Domain teams. Genome Res,
15(6):867–874, 2005.

50. E. Passarge, B. Horsthemke, and R.A. Farber. Incorrect use of the term synteny. Nat
Genet, 23(4):387, 1999.

51. P. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution: Lessons from
human and mouse genomes. Genome Res, 13(1):37–45, 2003.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

746 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS

52. N. Raghupathy and D. Durand. Individual gene cluster statistics in noisy maps. In
Comparative Genomics, volume 3678 of Lecture Notes in Computer Science, Springer,
New York, 2005.

53. N. Raghupathy, R. Hoberman, and D. Durand. Two plus two does not equal three: Statis-
tical tests for multiple genome comparison. J Bioinform Comput Biol, 6(1):1–22, 2008.

54. S. Rahmann and G.W. Klau. Integer linear programs for discovering approximate gene
clusters. WABI, pp. 298–309, 2006.

55. M. Remm, C.E. Storm, and E.L. Sonnhammer. Automatic clustering of orthologs and
in-paralogs from pairwise species comparisons. J Mol Biol, 314(5):1041–1052, 2001.

56. D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–917,
1999.

57. D. Sankoff and L. Haque. Power boosts for cluster tests. In Comparative Genomics, vol-
ume 3678 of Lecture Notes of Computer Science, Springer, New York, 2005, pp. 121–130.

58. A.C. Siepel. An algorithm to enumerate sorting reversals for signed permutations. J Com-
put Biol, 10(3-4):575–597, 2003.

59. C. Simillion, K. Janssens, L. Sterck, and Y. Van de Peer. i-ADHoRe 2.0: An improved
tool to detect degenerated genomic homology using genomic profiles. Bioinformatics,
24(1):127–128, 2008.

60. C. Simillion, K. Vandepoele, Y. Saeys, and Y. Van de Peer. Building genomic profiles
for uncovering segmental homology in the twilight zone. Genome Res, 14(6):1095–1106,
2004.

61. B. Snel, P. Bork, and M. Huynen. The identification of functional modules from the ge-
nomic association of genes. Proc Natl Acad Sci, 99(9):5890–5895, 2002.

62. C.E.V. Storm and E.L.L. Sonnhammer. Automated ortholog inference from phylogenetic
trees and calculation of orthology reliability. Bioinformatics, 18(1):92–99, 2002.

63. R.L. Tatusov, M.Y. Galperin, D.A. Natale, and E.V. Koonin. The COG database: A tool for
genome-scale analysis of protein functions and evolution. Nucleic Acids Res, 28(1):33–
36, 2000.

64. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two per-
mutations. Algorithmica, 26:2000, 2000.

65. K. Vandepoele, Y. Saeys, C. Simillion, J. Raes, and Y. Van De Peer. The automatic detec-
tion of homologous regions (ADHoRe) and its application to microcolinearity between
arabidopsis and rice. Genome Res, 12(11):1792–1801, 2002.

66. K. Vandepoele, C. Simillion, and Y. Van de Peer. Detecting the undetectable: Uncovering
duplicated segments in arabidopsis by comparison with rice. Trends Genet, 18(12):606–
608, 2002.

67. A. Vashist, C.A Kulikowski, and I. Muchnik. Ortholog clustering on a multipartite graph.
IEEE/ACM Trans Comput Biol Bioinform, 4(1):17–27, 2007.

68. S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21(16):3340–3346, 2005.

69. Q. Yang and S. Sze. Large-scale analysis of gene clustering in bacteria. Genome Res,
18(6):949–956, 2008.

70. X. Yang and S. Aluru. A unified model for multi-genome synteny and gene cluster
inference. Technical Report, Iowa State university, Ames IA, 2009. http://archives.ece
.iastate.edu/archive/00000496/.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

REFERENCES 747

71. C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and ambiguities from comparative
maps in rearrangement analysis. IEEE/ACM Trans Comput Biol Bioinform, 4(4):515–
522, 2007.

72. H. Zhu, D. Kim, J. Baek, H. Choi, L. Ellis, H. Küester, W. McCombie, H. Peng, and
D. Cook. Syntenic relationships between medicago truncatula and arabidopsis reveal ex-
tensive divergence of genome organization. Plant Physiol, 131(3):1018–1026, 2003.

73. Q. Zhu, Z. Adam, V. Choi, and D. Sankoff. Generalized gene adjacencies, graph band-
width and clusters in yeast evolution. ISBRA, 2008, pp. 134–145.

74. J. Zola, X. Yang, S. Rospondek, and S. Aluru. Parallel T-Coffee: A parallel multiple
sequence aligner. Proceedings of the ISCA PDCS, 2007, pp. 248–253.

P1: OSO
c32 JWBS046-Elloumi December 2, 2010 9:47 Printer Name: Sheridan

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33
ADVANCES IN GENOME

REARRANGEMENT
ALGORITHMS

Masud Hasan and M. Sohel Rahman

33.1 INTRODUCTION

One of the goals of the scientists is to explain better the evolutionary history of a
set of species. Interestingly although the organizations of the molecules of different
species differ dramatically, the content of the DNA molecules from one species to an-
other are believed to be often similar. Genome rearrangements refer to the mutations
that affect this organization. Now, the role of computer scientists (or bioinformati-
cians), in this regard, lies basically in the efficient formulation of the evolutionary
events to a combinatorial problem and then to provide an efficient solution for it.
More specifically, a computer scientist would use mathematical model and combina-
torial tools to reconstruct rearrangement scenarios to explain better the evolutionary
history of a set of species.

Now, every study of genome rearrangement involves solving a combinatorial
problem of finding a series of rearrangements that transform a genome into another.
In the late 1980s, Palmer and Herbon [70] found that the number of such operations
needed to transform the gene order of one genome into the other could be used as
a measure of the evolutionary distance between two species. The classic examples
of cabbage transforming into a turnip (Figure 33.1) and/or a mouse transforming
into a human (Figure 33.2) are cited in almost all textbooks related to bioinformat-
ics. Notably, in the latter example, the focus is only on the X chromosome, because

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

749

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

750 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

1

1

1

1

−5

−5

−5

2 3 4 5

−2−3−4

−2−34

2−34

Cabbage

Turnip

Figure 33.1 Transformation of a cabbage into a turnip.

according to Ohno’s law, the gene content of X chromosomes barely has changed
throughout mammalian evolution, although, the order of genes therein has been dis-
rupted several times. One of the exciting and perhaps surprising findings of the sci-
entists is that, in some ways, the human genome is just the mouse genome cut into
about 300 large genomic fragments, called the synteny blocks, that have been pasted
together in a different order. And, although there are about 80 million years of evo-
lutionary distance between the two, this amounts to only about 140–150 operations
of rearrangements!

3 1425

23 145

3 412 5

1 32 4 5

Mouse X Chromosome

Human X Chromosome

Figure 33.2 Transformation of the mouse gene order into the human gene order on the X
chromosome (only the five longest synteny blocks are shown here).

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33.1 INTRODUCTION 751

One question is what kind of genome rearrangement events (also called oper-
ations) take place in nature? If we consider operations on a single chromosome,
then the possible operations include deletions (a certain part is lost), insertions (a
part is added), duplications, reversals or inversions (a part is reversed), and trans-
positions (two parts change places). Among these transposition is believed to be
the most rare because it requires three points of leverage along the chromosome.
Now, how do these operations take place? If two regions along a chromosome are
very similar, then they might hybridize just like two different strands of the double
helix. Once they are attached, a loop forms. This loop might be discarded (dele-
tion), or its direction might switch (reversal). Operations on two chromosomes in-
clude translocation (two chromosomes swap their “tails”), fusion (two chromosomes
merge), and fission (one chromosome splits into two chromosomes). Scientific stud-
ies show that for uni-chromosomal genomes, inversions (reversals) are the dominant
rearrangement event, and for multichromosomal genomes, reversals, transpositions,
and translocations are common rearrangement events. Biologists are interested in the
most parsimonious evolutionary scenario, that is, the scenario involving the smallest
number of operations. It is important to note that, although there is no guarantee that
this scenario represents an actual evolutionary sequence, it gives us a lower bound
on the number of rearrangements that have occurred and indicates the similarity be-
tween two species in some way. Another notable and perhaps more interesting point
from an informatics point of view is that even for the small number of synteny blocks
shown, it is not so easy to verify that the three evolutionary events in Figure 33.2
represent the shortest series of reversals transforming the mouse gene order into the
human gene order on the X chromosome. This makes the study of genome rearrange-
ment interesting and challenging for the computer scientists from the complexity as
well as algorithmic points of view.

The analysis of genome rearrangements in molecular biology was pioneered in the
late 1930s by Dobzhansky and Sturtevant, who published a milestone paper present-
ing a rearrangement scenario with 17 inversions for the species of Drosophila fruit
fly [29]. Since then and with the advent of large-scale DNA mapping and sequenc-
ing, the number of biological problems related to genome rearrangements has been
growing rapidly in different areas including the evolution of Lobelia fervens [59],
chloroplast [72], and mitochondrial genomes [74], virology [62], and Drosophila
genetics [83]. However, the first computer science results allowing a biologist to an-
alyze gene rearrangements appeared in the literature no earlier than the early 1990s.
The first such result was an algorithm by Kececioglu and Sankoff [58] for rever-
sal distance with a guaranteed error bound two. The abovementioned paper raised a
spectrum of open problems motivated by genome rearrangements that opened a new
avenue of research in this regard. However, as it turned out, most problems related to
genome arrangements are nondeterministic polynomial (NP)-hard; some versions of
the problems are still open from the complexity point of view. As a result, the main
thrust of the research has been directed toward the approximation algorithms of the
related problems. In this chapter, we make an effort to present the state of the art of
the genome rearrangements algorithms in the computer science literature.

The rest of the chapter is organized as follows. We start with some preliminary
notations and definitions in Section 33.2. The problem of sorting by reversals, both

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

752 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

for signed and unsigned versions, is studied in Section 33.3. Section 33.4 focuses on
the problem of sorting by transpositions. We discuss different other rearrangement
operations in Section 33.5. Then, in Section 33.6, we focus on applying more than
one operation simultaneously. Finally, we conclude the chapter by discussing some
future research directions in Section 33.7.

33.2 PRELIMINARIES

A permutation of a sequence of n numbers is just a reordering of that sequence. In
what follows, we always will use permutations of consecutive integers. For exam-
ple, (2, 1, 3, 4, 5) is a permutation of (1, 2, 3, 4, 5). Notably, the latter sequence is
termed as the identity permutation. As has been mentioned before, synteny blocks
are genomic fragments and play important roles in comparative genomics analysis.
In the rearrangement of synteny blocks in a genome, the molecules within a synteny
block do not change the order. For this reason, a synteny block is considered as a
single element and the whole genome is a permutation of a certain length. For exam-
ple, the order of synteny blocks on the X chromosome in humans is represented in
Figure 33.2 by (1, 2, 3, 4, 5), whereas the ordering in mice is (3, 5, 2, 4, 1). Now, the
problem of finding a sequence of rearrangement operations to transform one genome
to another reduces to transforming one permutation to another. The problem can be
simplified further to finding a sequence of rearrangement operations to transform
one permutation to the identity permutation. Moreover, recall that, the biologists are
interested in finding the shortest such sequence.

As has been mentioned already, most problems related to the genome arrange-
ments and hence to sorting permutations, have designated to be hard to solve. In most
problems discussed in this chapter, efficient polynomial algorithms are still unknown
and are unlikely ever to be found. Therefore, we are interested in approximation al-
gorithms for the problems at hand. Note carefully that approximation algorithms are
only relevant to problems that have a numerical objective function (i.e., are maxi-
mization/minimization problems). For a maximization problem, the approximation
ratio, or performance guarantee, denoted as ρ, of algorithm A is defined as the max-
imum ratio of A(π) and OPT(π) over all input π , that is, as

ρ ≤ max
π

OPT(π)

A(π)

where A(π) and OPT(π) refer to the solutions produced by the Algorithm A and the
correct (optimal) solution of the problem, respectively. For a minimization problem
it is defined as follows:

ρ ≤ max
π

A(π)

OPT(π)

which means that the performance of A is measured by how much ρ can become
close to one. Note that in our case the problem is a minimization problem, and we will

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33.3 SORTING BY REVERSALS 753

follow the second equation. It should be clear that an approximation algorithm gives
a worst-case scenario of just how far off an algorithms output can be from a hypothet-
ical perfect algorithm. The reason we use the term “hypothetical perfect” is because,
in reality, such a case may not even develop. Technically speaking, an approximation
algorithm would return a suboptimal (incorrect) output for some input. The approxi-
mation ratio gives us an idea of just how incorrect the algorithm can be. Clearly, the
goal is to design approximation algorithms with better performance guarantees. One
final remark is that the overall running time of the algorithm must remain polynomial
for the approximation algorithm to be useful. In other words, an exponential-time ap-
proximation algorithm is not acceptable irrespective of its approximation ratio.

33.3 SORTING BY REVERSALS

As has been mentioned already, scientific studies show that for unichromosomal
genomes, reversals are the dominant rearrangement operation. Therefore, we start
this chapter with the problem of sorting, allowing only the reversal operations. This
particular problem has been popularly referred to in the literature as the problem of
sorting by reversals. The section outline is as follows. First we define the problem
more formally. Then we discuss how to design an approximation algorithm for sort-
ing by reversals followed by some techniques to improve the approximation ratio. We
further discuss the relation with the signed version of the problem (i.e., when each
element of the permutation has a sign “+” or “−”, which changes with the element
comes under a reversal). Finally, we give other recent results on the improvement on
the approximation ratio and running time.

We begin by defining some notations and terminologies used throughout this sec-
tion and the subsequent sections. A genome can be represented by a permutation π =
[π1 π2 . . . πn] of n distinct elements, where 1 ≤ πi ≤ n for 1 ≤ i ≤ n. A reversal
ρ(i, j), for some 1 ≤ i < j ≤ n, applied to π reverses the elements πi . . . π j−1 and
thus transforms π into permutation π × ρ = [π1 . . . πi−1 π j−1 . . . πi π j . . . πn].
For example, if π = 2 3 1 7 4←→ 5 6, then π × ρ(3, 6) = 2 3 4 7 1 5 6.

An identity permutation I is a permutation such that πi = i for 0 ≤ i ≤ n + 1.
The reversal distance d(π) between π and I is the minimum number of reversals
such that π × ρ1 × ρ2 × . . . × ρd(π) = I . The problem of sorting by reversals is
to find a shortest sequence of reversals that transforms a permutation π into identity
permutation I (i.e., finding the distance d(π)). For example, π = 2 3 1 7 4 5 6 can
be sorted by minimum d(π) = 3 reversals: 2 3 1 7 4 5 6←→ → 2 3←→ 1 7 6 5 4 →
1 2 3 7 6 5 4←→ → 1 2 3 4 5 6 7.

In what follows, as we have mentioned before, we will be focusing on unsigned
permutations. And, because the sorting by reversal problem for unsigned permuta-
tions are proven to be NP-hard [19], we will concentrate on approximation algo-
rithms. We will talk about the signed version of the problem in a later section. Be-
fore going deep into the discussion of approximation algorithms for the sorting by
reversal problem for the unsigned permutation, we would like to discuss a bit of the

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

754 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

motivation behind studying the unsigned version of the problem. Biologists derive
gene orders either by sequencing entire genomes or by using comparative physical
mapping. Sequencing provides information about the directions of genes and allows
one to represent a genome by a signed permutation. However, sequencing of entire
genomes is still expensive, and most currently available experimental data on gene
orders are based on comparative physical maps. Physical maps usually do not provide
information about the directions of genes and therefore lead to the representation of
a genome as an unsigned permutation.

33.3.1 Approaches to Approximation Algorithms

In this section, we discuss different approaches to solve the sorting by reversal prob-
lem. We start with the so-called breakpoint model, which in fact, was introduced in
the very first computational studies of genome rearrangements [69, 82]. In particular,
the authors of the pioneering papers noticed some correlations between the reversal
distance and the number of breakpoints, which interestingly enough, were discussed
implicitly by Sturtevant and Dobzhansky [75], almost 70 years ago! We define the
notion of a breakpoint subsequently.

A breakpoint in π is a position i of a permutation π such that |πi − πi−1| �= 1. The
number of breakpoints of permutation π is denoted by b(π). Therefore, b(π) ≥ 1 if
and only if the permutation π is not I . The most important concept of designing an
approximation algorithm for sorting by reversals (in fact, sorting by any operations)
is based on efficiently removing break points from π .

Designing a good approximation algorithm depends on finding a good lower
bound for an optimal algorithm as well as giving an algorithm with a good upper
bound. We first present a classic two-approximation algorithm that illustrates the
basic approach of finding a lower bound and an upper bound for finding an approx-
imation algorithm for sorting by reversals. This algorithm is from Kececioglu and
Sankoff [58].

33.3.1.1 A Classic 2-approximation Algorithm. It is convenient to add two
extra elements π0 = 0 and πn+1 = n + 1 at the beginning and end of π , respectively,
and thus considering π = [π0, π1 π2 . . . πn, πn+1]. To transform π to the identity
permutation, the nonconsecutive elements πi and πi+1 forming a breakpoint must
be removed. The sorting by reversals is the process of eliminating such breakpoints.
The main observation is that a reversal can eliminate at most two breakpoints: one
on the left end and another on the right end of the reversal. It implies that an optimal
algorithm must use at least b(π)

2 reversals, giving a lower bound of d(π) ≥ b(π)
2 for

sorting by reversals.

Lemma 33.1 d(π) ≥ b(π)
2 .

Now we present the idea of an algorithm that will use at most b(π) reversals,
thus giving an upper bound of d(π) ≤ b(π). It needs to partition π into increasing
and decreasing strips. A strip of π is a maximal subsequence of π without any

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33.3 SORTING BY REVERSALS 755

breakpoint. A strip of one element is both increasing and decreasing, except for π0

and πn+1, which are always increasing. For example, π = 0 2 3 1 7 4 5 6 7 has six
strips: 0 | 2 3 | 1 | 7 | 4 5 6 | 8, where | 0 |, | 2 3 |, | 4 5 6 |, and | 8 | are the increasing
strips, and the remaining strips are both increasing and decreasing.

From the lower bound in Lemma 33.1, a reversal can add or remove no more than
two breakpoints. Define an i -reversal, i ∈ {0, 1, 2}, as the reversal that removes i
breakpoints. Now the algorithm removes breakpoints by reversals and merge strips
into a single increasing strip. To guarantee an approximation ratio of 2, it always
should happen that we can find a reversal that removes at least one breakpoint, at
least on average. Kececioglu and Sankoff [58] proved that this is possible by the
following lemma.

Lemma 33.2 If π has a decreasing strip, then it is always possible to find a one-
or two-reversal on π . If every possible reversal transforms π without any decreasing
strip, then among all those possible reversals, there is at least one two-reversal.

So, a greedy algorithm for sorting by reversals is to apply reversals in rounds. In
each round, apply a reversal that removes maximum break points as long as we are
left with π with no decreasing strip, for which we apply a zero-reversal to convert an
increasing strip to a decreasing strip. Then start a new round.

By Lemma 33.2, we know that at the end of each round, we applied a two-reversal,
which can amortize the zero-reversal at the beginning of the next round. So, as a
whole, each reversal removes at least one breakpoint on average. Therefore, we need
no more than b(π) reversals to sort π .

Lemma 33.3 d(π) ≤ b(π).

Lemmas 33.1 and 33.3 give an approximation ratio ρ ≤ b(π)
b(π)

2

= 2. It is worth men-

tioning that in this algorithm, finding a reversal that removes maximum breakpoint
can be done in polynomial time once a suitable representation of π is assumed.

Theorem 33.1 A polynomial time two-approximation algorithm exists for sorting
by reversals.

We remark that although this algorithm was the first of this kind, it gives a basic
concept of designing subsequent more efficient approximation algorithms.

33.3.1.2 Improving by Cycle Decomposition Graph. Although there has
been much research work in the literature on the breakpoint model, it turns out that
the estimate of reversal distance in terms of breakpoints is very inaccurate. In 1993,
Bafna and Pevzner in their pioneering paper [8, 10] showed that another parameter
(size of a maximum cycle decomposition of the breakpoint graph) estimates rever-
sal distance with a much greater accuracy. In this section, we focus on the cycle
decomposition graph model to solve the problem.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

756 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

0 2 1 3 4

3120

3210

4

4

Figure 33.3 A permutation π and its cycle decomposition graph G(π). A reversal ρ(2, 3) applied
on G(π). The right-hand side shows a clearer picture of the changes in G(π) that happen as a
result of the reversal.

The breakpoint graph, also called cycle decomposition graph, G(π) of π is an
undirected multigraph whose n + 2 vertices are πi , for 0 ≤ i ≤ n + 1. G(π) has
2(n + 1) edges, and they are of two types: gray and black. For each 0 ≤ i ≤ n, the
vertices πi and πi+1 are joined by a black edge. For 0 ≤ i, j ≤ n + 1, there is a gray
edge between πi and π j if πi = π j + 1. For example, Figure 33.3 shows the break-
point graph of the permutation 0 2 1 3 4.

An alternating cycle in G(π) is a cycle of size at least two in which the edges
are alternate colors. An l-cycle means an alternating cycle with l black edges.
The graph G(π) can be decomposed completely into edge-disjoint alternating cy-
cles [23, 20, 63]. However, there may be many different such cycle decompositions.
The maximum number of cycles in any cycle decomposition of G(π) is denoted
by c(π).

At first, it seems that no or very little connection exists between cycle decom-
position of G(π) and sorting by reversals. However, there is a strong connection
between breakpoint and the value of l in an l-cycle. Observe that an l-cycle involves
two consecutive elements of π that have no breakpoint in it. In fact, π is the iden-
tity permutation if and only if G(π) does not have any l-cycle for l ≥ 2, and in that
case, π has exactly n + 1 l-cycles. That means the sorting by reversals is the pro-
cess of increasing the number of l-cycles in G(π), and efficiently increasing this
number by decomposing larger cycles can lead to better approximation ratio. (See
Figure 33.3.) For example, the lower bound of d(π) can be improved using this idea
as follows. Bafna and Pevzner [8, 10] proved that any optimal algorithm cannot in-
crease the number of cycles by more than one, which gives a stronger lower bound
of d(π) ≥ b(π) − c(π). This lower bound is occasionally better than b(π)/2 because
an l-cycle means adjacency between two elements, and the black edges in every other
l-cycle, for l ≥ 2, means a breakpoint. Because there can be at most b(π) black edges
in all l-cycles, for l ≥ 2, the number of such l-cycles can be at most b(π)/2.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33.3 SORTING BY REVERSALS 757

Now for an improved upper bound, if we can start with a maximum cycle decom-
position of G(π), then our task of increasing the number of l-cycle becomes easy.
But finding a maximum cycle decomposition is not easy; in fact, it is proven to be
NP-hard [19]. So people started decomposing G(π) into cycles in many different
ways and estimating the number of larger cycles in a maximum cycle decomposi-
tion of G(π). For example, Bafna and Pevzner [8, 10] found a decomposition that
has at least a certain number of four-cycles. Using that, they further improved the
lower bound to d(π) ≥ 2

3 b(π) − 1
4 c4(π), where c4(π) is the number of four-cycles

in a maximum cycle decomposition. And they give an algorithm that uses at most
d(π) ≤ b(π) − 1

4 c4(π) reversals. Combining these two gives an improved approxi-
mation ratio of ρ ≤ 7

4 .
Using a similar idea, Christie [23] proved a lower bound of d(π) ≥ 2

3 b(π) −
1
3 c2(π), where c2(π) is the number of two-cycles in their cycle decomposition and
gave an algorithm that uses at most b(π) − 1

2 c2(π) reversals. Thus, their algorithm
gives an approximation ratio of 3

2 .
Finally, the best approximation ratio so far comes from Berman et al. [15] with

ratio 1.375, which they achieve by developing a new approximation algorithm for
maximum cycle decomposition.

33.3.1.3 How Much Can One Improve? Not much, at least on complexity is-
sues! Caprara already proved that sorting by reversal problem is NP-hard [19]. Their
proof uses, once again, the concept of cycle decomposition of G(π). They proved
that the maximum cycle decomposition of G(π) is equivalent to maximum cycle de-
composition of an Eulerian graph, which is proven to be NP-hard in [54]. Then they
reduce the problem of sorting by reversal to maximum cycle decomposition of G(π),
thus proving the former problem NP-hard, too.

That is not the end of bad news on improving on sorting by reversals. Berman and
Karpinski [16] proved that for sorting by reversals, a constant factor approximation
algorithm is the best one can think of. They proved that it cannot be approximated
better than 1.008 times the optimal, thus excluding the possibility of a polynomial
time approximation scheme.1

Open Problem 33.1 For the approximation ratio, there is a wide gap between the
best known lower bound of 1.008 and the best known upper bound of 1.375. Is it
possible to close this gap by finding an approximation ratio better than 1.375 or by
improving the inapproximability result of 1.008?

33.3.2 Signed Permutations

In the previous subsection, we have represented a genome by unsigned permutations.
However, in reality, genes and synteny blocks have directionality. This directionality

1A polynomial time approximation scheme can approximate arbitrary close to the optimal, but in expense
of a higher running time.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

758 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

basically reflects whether they reside on the direct strand or the reverse complement
strand of the DNA. Therefore, the synteny block order in an organism is represented
better by a signed permutation instead of an unsigned one. Notably, the motivation
presented in the previous section for unsigned version still remains valid. Just to
remind the readers, because of the high cost of sequencing experimentations, gene
orders derivation is done mostly using comparative physical mapping, which usually
does not provide information about the directions of genes and therefore leads to the
representation of a genome as an unsigned permutation π . Now, biologists make an
effort to derive a signed permutation from this representation by assigning a posi-
tive (negative) sign to increasing (decreasing) strips2 of π . And in fact, the result of
Hannenhalli and Pevzner [45] that “reversals do not cut long strips” do provide a
theoretical substantiation for such a procedure in the case of long strips. Admittedly,
however, for two-strips, this procedure might fail to find an optimal rearrangement
scenario. Hannenhalli and Pevzner [45] pointed to a biological example for which
this procedure fails and described an algorithm fixing this problem. Nevertheless,
the fascinating and intriguing difference in the complexity status of the signed ver-
sion with the unsigned one along with its biological significance makes the problem
very interesting to study.

In a signed permutation π ′, each element π ′
i has a sign either “+” or “−”. Af-

ter a reversal, the sign of the elements in the subsequence that has been reversed is
changed. At first sight, it seems that, involving an extra sign parameter, sorting signed
permutation by reversals would be difficult. However, it is interesting that sorting a
signed permutation by reversals is easier to handle than unsigned permutations; in
fact, it can be handled by the unsigned version. A signed permutation π ′ is converted
to an unsigned permutation πas follows: each +x element is replaced with 2x − 1
and 2x , and each −x element is replaced 2x and 2x − 1. Then the cycle decomposi-
tion graph G(π ′) of π ′ is defined as the cycle decomposition graph G(π) of π with
its one-cycles deleted. For example, see Figure 33.4.

Observe that in G(π ′), each vertex has degree two. Thus, G(π ′) already is de-
composed into disjoin cycles, and it is the maximum decomposition. This is the fact
that makes sorting a signed permutation easier. From this decomposition, an optimal
sequence of reversals can be found in polynomial time that sorts π ′ into an iden-
tity permutation. Hannenhalli and Pevzner [44] were the first to give a polynomial
time alorithm for this problem. Their algorithm runs in O(n4) time. But before that,
when the complexity was unknown, Kececioglu and Sankoff [58] conjectured that
the problem is NP-hard and gave a two-approximation algorithm. Later, Bafna and
Pevzner [8, 10] improved the ratio to 1.5 by using the breakpoint graph.

33.3.2.1 Improved Running Time and Simpler Algorithms. Most im-
provements and simplifications of the algorithms for sorting by reversals are for
signed permutations. Once Henehalli and Pevzner found an optimal polynomial time
solution for signed permutation, people started to make it faster and simpler. The
algorithm of Hannenhalli and Pevzner takes O(n4) time. Proving that Kececieglu

2Recall that a strip of π is a maximal subsequence of π without any breakpoint. A strip of one, two, and
more than two elements are called, respectively, a singleton, a 2-strip, and a long strip.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33.4 SORTING BY TRANSPOSITIONS 759

+3 −1 −2

0 5 6 2 1 4 3 7

34 712650

Figure 33.4 Transforming a signed permutation to an unsigned one and creating a correspond-
ing cycle decomposition graph.

and Sankoff’s conjecture in negative was good enough to leave an algorithm with
such a higher running time. Berman and Henehalli [14] implemented their algorithm
in O(n2α) time, where α is the inverse Ackerman function. Kaplan et al. [55] sim-
plified the algorithm and improved the runing time to O(n2). Since then, it was a
challenge to design a subquadratic algorithm. Bader et al. [7] designed a linear time
algorithm for computing d(π) without giving the actual sequence of reversals of
that length. Kaplan and Verbin [56] broke the quadratic bound by giving a random-
ized O(n

1
3

√
log n) time algorithm. Then Tannier et al. [77] achieved a deterministic

O(n
1
3

√
log n) time algorithm. Very recently, Swenson et al. [76] gave an algorithm

that runs in O(n log n + kn) time, where k is mostly a constant but θ (n) is in worst
case. Despite all these efforts, an O(n log n) algorithm remains ellusive.

Open Problem 33.2 Devise an O(n log n) algorithm for sorting signed permuta-
tion by reversals.

For now, that is all for the “pure form” of sorting by reversals. We will discuss the
variants of reversals in Section 33.5.

33.4 SORTING BY TRANSPOSITIONS

In the previous section, we have focused on the most common rearrangement oper-
ation, namely the reversals. In this section, we focus on transposition. As we have

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

760 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

mentioned before, transposition is believed to be the most rare because it requires
three points of leverage along the chromosome. However, in case of highly rear-
ranged genomes (e.g., herpes viruses or plant mitochondrial DNA) transpositions of
a long fragment along with reversals seem to be common. To be more specific, anal-
ysis of genomes of the Epstein-Barr Virus (EBV) and herper simplex virus (HSV-1)
reveals that evolution of these herpes viruses involve several inversions and trans-
positions of large fragments; in particular, an analogue of the gene UL52-BSLF1
(required for DNA replication) in a common herpes virus precursor “jumped” from
one location in the genome to another. This later event of jumping in fact refers to the
transposition. As a first approximation, transpositions in genome rearrangements can
be modeled in a straightforward manner by the problem of sorting by transpositions,
which is the subject matter of this section.

A transposition τ = τ (i, j, k), for some 1 ≤ i < j ≤ n + 1 and some 1 ≤
k ≤ n + 1 such that k /∈ [i, j] cuts the elements πi . . . π j−1 and pastes
between πk−1 and πk and thus transforms π into permutation π × τ =
[π0 . . . πi−1 π j . . . πk−1 πi . . . π j−1 πk . . . πn+1]. In other words, a transposition
τ = τ (i, j, k) swaps the two consecutive blocks πi . . . π j−1 and π j . . . πk−1 .

For example, if π = 0 2 1 3 7 4 5 6 8, then π × τ (4, 5, 8) = 0 2 1 3 4 5 6 7 8.
The transposition distance d(π) between π and I is the minimum number of re-

versals such that π × τ1 × τ2 × · · · × τd(π) = I . The problem of sorting by trans-
position is to find a shortest sequence of reversals that transforms a permuta-
tion π into identity permutation I (i.e., finding the distance d(π)). For example,
π = 0 2 1 3 7 4 5 6 8 can be sorted by the following minimum d(π) = two transpo-
sitions: 0 2 1 3 7 4 5 6 8 → 0 2 1 3 4 5 6 7 8 → 0 1 2 3 4 5 6 7 8.

33.4.1 Approximation Results

Once again, similar to sorting by reversals, a good approximation algorithm tries
to remove breakpoints in π as quickly as possible. A transposition can remove at
most three breakpoints. For instance, in the previous example, the first transposition
removes three breakpoints. So, a lower bound for sorting by transpositions is d(π) ≥
b(π)

3 . With this lower bound, any algorithm that can remove at least one breakpoint
in each step will gurantee an approximation ratio of 3, and such an algorithm is not
difficult to design.

But incorporating a cycle decomposition graph G(π) of π can improve greatly the
approximation ratio. It is not always possible that an optimal algorithm will remove
three breakpoints at each steps. So, the earlier lower bound is not tight. Remember
that for the identity permutation π = I , the number of cycles is n + 1, where all
cycles are l-cycle. Bafna and Pevzner [9, 11] proved that if the number of cycles
with an odd number of black edges (called the odd cycles) in G(π) is codd(π), then
a transposition can increase the number of cycles in G(π) by at most two. So an
improved lower bound is d(π) ≥ n+1−codd(π)

2 . They also give an algorithm that can
increase, at least on average, one odd cycle in each step, thus giving an upper bound
of d(π) ≤ n + 1 − codd(π). This gives an approximation ratio of 3. In the same

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33.5 OTHER OPERATIONS 761

paper [9, 11], they improve the approximation ratio to 1.75 and then to 1.5. The
ratio 1.5 was the best one for about 10 years until Elias and Hartman [33] came up
with a ratio of 1.375 with an O(n2) time algorithm.

33.4.2 Improved Running Time and Simpler Algorithms

In parallel, people kept finding simpler and faster algorithms for sorting by trans-
positions, sometimes even sacrificing approximation ratios. The 1.5 approximation
algorithm of Bafna and Pevzner [9, 11] runs in O(n2) time, but it is somewhat diffi-
cult. Christei [24] came up with a simpler O(n4) time 1.5 approximation algorithm.
An O(n3) implementation of this algorithm, along with heuristics that improve its
performance, were given by Walter et al. [81]. Eriksson et al. [35] provided an algo-
rithm that sorts any given permutation on n elements by at most 2n/3 transpositions
but has no approximation guarantee. Hartman [46] further simplified the algorithm
and improved the runing time to O(n2), and then Hartman and Shamir [47] further
improved the runing time to n3/2

√
log n by using a splay tree. But despite all these

efforts, an O(n log n) algorithm remained ellusive, until recently, when Feng and
Zhu [36] found an O(n log n) time algorithm with a 1.5 approximation ratio. They
use a new data structure, called a permutation tree to obtain the O(n log n) time
bound. The beauty and power of a permutation tree is that it arranges the elements
of π in a heap like tree and can do all that is necessary for a particular transposition
in O(log n) time by doing the necessary “split” and “merge” operations on the tree.
Very recently, Firoz et al. [40] have shown that the permutation tree data structure
also allows the 1.375 approximation algorithm of Elias and Hartman [33] to run in
O(n log n) time.

Open Problem 33.3 Now, it would be interesting to see whether the concept of a
permutation tree can be used to get an O(n log n) running time for optimally sorting
signed permutations by reversals (see also Open Problem 33.2).

33.5 OTHER OPERATIONS

Once the problems of sorting by reversals and sorting by transpositions received
much attention, people started studying variations of these, sometimes motivated by
biological applications and somtimes by purely theoretical interests. This section is
devoted to some of those variations.

33.5.1 Sorting by Prefix Reversals

We start with a variation that in fact was known to the computer scientists before
the problems of genome rearrangement surfaced and has additional applications in
communication networks. This is the problem of sorting by prefix reversals, also
popularly known as the pancake flipping problem. A prefix reversal (also called a
flip) is a reversal in which the substring to be reversed is a prefix of π . The problem

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

762 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

of sorting by prefix reversals [12, 30, 44, 52, 53] deals with finding the minimum
number of prefix reversals required to sort a given permutation. This problem was
introduced first in 1975 by Dweighter [30], who described the motivation of a chef
to rearrange a stack of pancakes from the smallest pancake on the top to the largest
one on the bottom by grabbing several pancakes from the top with his spatula and
flipping them over, repeating the process as many times as necessary. The first ever
attempt to solve this problem was by Gates and Papadimitriou [42]. They proved
that the prefix reversal diameter of the symmetric group, dpref(n) = maxπ∈Sn dpref(π)
is bounded above by 5/3n + 5/3, where n is the length of π . They also proved that
n → ∞ ⇒ dpref(n) = 17/16n.

A well-studied variation of the pancake flipping problem is the burnt pancake flip-
ping problem [12, 52, 53] in which each element in the permutation has a sign, and
the sign of an element changes with reversals. In communication networks, pancake
and burnt pancake networks have a better diameter and a better vertex degree than the
popular hypercubes [52]. Some other variations exist of pancake flipping, which pro-
vide different efficient interconnection networks [12]. Heydari and Sudborough [51]
have claimed that this problem to be NP-complete.

33.5.2 Sorting by Prefix Transpositions

A similar variation of sorting by transpositions is sorting by prefix transpositions,
where a prefix transposition always moves a prefix of the permutation to another
location. Dias and Meidanis [28] presented approximation algorithms with ratios
2 and 3 and conjectured that the diameter of prefix transposition of an n-element
permutation is n − � n

4 �. The complexity of the problem is still unknown.

33.5.3 Sorting by Block Interchange

A generalization of transposition is block interchange. Remember that a transposi-
tion swaps two consecutive blocks (i.e., subsequences). Whereas a block interchange
can interchange two nonconsecutive subsequences. More formally, given a permuta-
tion π = [π0 π1 π2 . . . πn+1], a block interchange with parameters (i, j, k, l), where
0 ≤ i < j < k < l ≤ n + 1 is applied to π by exchanging the blocks [πi . . . π j−1]
and [πk . . . πl−1] (the special case of j = k, is a transposition) Christie [22] first in-
troduced the problem of sorting by block interchanges and showed that unlike sorting
by transpositions, this problem can be solved optimally in O(n2) time.

Recently, Lin et al. [65] have studied this sorting problem for circular as well
as linear genomes. They have given algorithms that optimally can sort the permuta-
tions and have a running time of O(δn), where δ is the minimum number of block
interchanges required to sort the permutation and it can be found in O(n) time be-
forehand. Because δ can be much less than n, their running time is better than the
O(n2) time algorithm of Christie [22]. They also implemented their algorithm and
applied it to the circular genomic sequences of three human vibrio pathogens for pre-
dicting their evolutionary relationships. The experimental results coincide with the
previous ones obtained by others using a different comparative genomics approach,

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33.6 SORTING BY MORE THAN ONE OPERATION 763

which implies that the block-interchange events seem to play a significant role in the
evolution of vibrio species.

Open Problem 33.4 It may not be difficult to design an O(n log n) time algorithm
for sorting by block interchanges, but that is still open.

33.5.4 Short Swap and Fixed-Length Reversals

Some other variations of reversals and transpositions exist for sorting genome se-
quence, and new variations will continue to show up. While analyzing the evolu-
tionary proces of two genome sequnecs, it has been observed that reversals happen
among some fixed-length subsequences. It motivated scientists to study sorting by
fixed-length reversals. For example, soting by short swaps has been studied by Feng
et al. [38, 39] and by Heath and Vergara [50], where a short swap means a reversal
of a subsequence of length two or three. They give several approximation algorithms
for this problem. Chen and Skiena [21] studied a more geaneralized version of this
problem in which the length of the subsequence is a given integer k.

33.6 SORTING BY MORE THAN ONE OPERATION

As has been discussed already, the large number of conserved segments in the maps
of man and mouse suggest that multiple chromosomal rearrangements have occurred
since the divergence of lineages leading to humans and mice. Interestingly enough,
in their pioneering paper, Nadeau and Taylor [69] estimated that just 178 ± 39 re-
arrangements have occurred since this divergence. In spite of a ten-fold increase in
the amount of the comparative man/mouse mapping information since then, the new
estimate, based on the latest data [25], almost did not change compared with Nadeau
and Taylor [69]. Notably, however, for highly rearranged genomes, the scenario may
be different. For example, genomes of herpes viruses evolve so rapidly that the sim-
ilarity between many genes in herpes viruses is very low [57]. In particular, there
is little or no cross hybridization between DNAs of the EBV and the HSV-1, and
until recently, there was no unambiguous evidence that these herpes viruses actually
had a common evolutionary origin [68]. Analysis of such genomes suggest that the
evolutions thereof may have involved multiple operations simultaneously.

In this section, we focus on sorting using multiple simultaneous operations. The
operations that have been considered for sorting by more than one operations are
reversal, transposition, and transreveral. A transreversal is a transposition with a
reversal applied to a subsequence before it is swapped with another subsequence.

Walter et al. [80] provided a two-approximation algorithm for signed permutation
for sorting by reversals and transpositions. Gu et al. [43] gave a two-approximation
algorithm for sorting signed permutations by transpositions and transreversals. Lin
and Xue [64] improved this ratio to 1.75 by considering a third operation, called
revrev, which reverses two contiguous segments. Hartman and Sharan [48] further
improved it to 1.5. Blanchette et al. [17] worked on a variation of the problem and

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

764 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

developed a computer program Derange II built on a greedy algorithm, which at-
tempts to minimize the “weighted sum” of the number of operations. Eriksen [34]
provided a (1 + ε) approximation algorithm for sorting signed, circular permuta-
tions in which reversals are weighted one and transpositions and transreversals are
weighted two.

There has been less progress in the problem of sorting unsigned permutations
using more than one rearrangement operations. Walter et al. [80] gave a three-
approximation algorithm for sorting signed permutations by reversals and transpo-
sitions. Rahman et al. [71] recently have improved this ratio to 2k, where k is the
approximation ratio of the cycle decomposition algorithm used. Remember that the
problem of maximum cycle decomposition of the breakpoint graph G(π) of a permu-
tation π is NP-hard [19]. Using the best known approximation ratio for this problem,
which is by Lin and Jiang [63], their approximation ratio becomes 2.8386 + ε, for
any ε > 0.

Interestingly, one may think that the combined problem of sorting by more than
one operation, say, by reversals and transpositions, equally may be difficult/easy as
sorting by one operation (either by reversals or by transpositions), which may lead to
a further assumption that approximation algorithms for sorting by a single operation
would work fine for sorting by more than one operations. But that is not the case.
Because, while sorting a permutation by one operation, at some point, it may be
difficult to apply that operation, which can be overcome easily by applying the other
operation. On the other hand, the lower bound of the problem of sorting by more than
one operation also changes. As a whole, desigining good approximation algorithms
for sorting with more than one operation is comparatively difficult. According to
Hasan et al. [49], a reason for this issue is that a lower bound is determined by
the superior operation (i.e., the operation that contributes more toward the sorting
process) and that an upper bound of an approximation algorithm in the worst case
can be determined by an inferior operation (i.e., the operation that contributes less
toward the sorting process), which implies an inferior approximation ratio. They also
have derived an improved an adaptive approximation ratios based on the number of
inferior operations applied by an optimal algorithm.

33.6.1 Unified Operation: Doule Cut and Join

Some other operations exist, such as fission, fusion, and translocation that deal
with two sequences. A fission/fussion cuts/inserts one sequence from/into another.
A translocation applies two cuts into two sequences and joins the four end points
created by these cuts into two different ways as shown in Figure 33.5. Now, ob-
serve that these three operations as well as a reversal use two cuts (i.e., a double
cut) and two joining (i.e., a double join). Based on these observations, Yankopu-
lous et al. [84] presented a general genome model that includes linear and circular
chromosomes and introduced a new operation called double cut and join (or shortly
DCJ) operation. In addition to inversions and translocations, the DCJ operation also

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

33.7 FUTURE RESEARCH DIRECTIONS 765

=⇒
=⇒

=⇒

Figure 33.5 Example of a translocation.

can capture transpositions, transreversals, and block interchanges. By using DCJ, the
computation of distance between two permutations becomes easier, and the sorting
algorithm becomes efficient [13, 84].

33.7 FUTURE RESEARCH DIRECTIONS

In this chapter, we have discussed algorithms for sorting permutations based on dif-
ferent operations. In the corresponding sections, we also have highlighted important
open questions that could be considered future avenues for research. We believe these
open questions along with many other new issues developing out of newer experi-
mentations would shape the coming days of bioinformatics research.

One interesting avenue for future research, which we did not discuss in this chap-
ter, is the problem of sorting strings instead of sorting permutations. Note carefully
that the algorithms and models for genome rearrangements we have discussed so far
implicitly assume that each gene is present exactly once in each genome (and, hence,
we use permutations). Although this hypothesis of unique genes may be appropriate
for small genomes (e.g., viruses), it is clearly unguaranteed for divergent species
containing several copies of highly paralogous and orthologous genes scattered
across the genomes. Orthologs and paralogs originally were defined by Fitch [41]
in 1970. Orthologs are genes in different species that evolved from the same gene in
the last common ancestor of the species, and paralogs are genes that were duplicated
from a single gene on the same genome. It therefore seems obvious to consider the
possibility of having different copies (paralogous) of the same gene in one genome
(e.g., multigene families). Several attempts already can be found in the literature
to consider genome arrangements problems in which duplicate of genes have
been considered (e.g., the exemplar approach [73], evolutionary model involving
segment reversals and duplications [31], sorting strings with duplicates [32, 60, 61];
see Table 33.1). We believe that research in this area will continue to flourish in
coming years.

Another interesting area to probe into is to consider the more general multi-
break rearrangements. Multibreak rearrangements break a genome into multiple
fragments and further glue them together in a new order. Although two-break re-
arrangements represent standard reversals, fusions, fissions, and translocations oper-
ations, the three-break rearrangements are a natural generalization of transpositions
and inverted transpositions. Multibreak rearrangements in circular genomes were

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

766 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

Table 33.1 Summary of best known results on genome rearrangement algorithms

Operations Un/signed ρ, NP-hardness Running Time Ref.

NP-hard — [19]
Reversals Unsigned ρ �< 1.008 — [16]

1.375 O(n log n) [15]

Optimal O(n
1
3
√

log n) [56, 77]
Signed Optimal O(n log n + kn), k ∈ O(n) [56]

Optimal O(n
1
3
√

log n) [76]

1.375 O(n2) [33]
Transpositions — 1.5 O(n log n) [36]

1.375 O(n log n) [40]

Prefix
transpositions

— 2 — [28]

Block
interchange

— Optimal O(n2) [22, 65]

Transpositions,
reversals

Signed 2 O(n2) [80]

Transpositions,
transreversals

Signed 1.5 O(n
3
2
√

log n) [48]

Transpositions,
reversals

Unsigned 2.8386 + ε Polynomial [71]

studied in depth in [6] and were applied further to the analysis of chromosomal evo-
lution in mammalian genomes [5]. Later, the study was extended to a linear genome
as well [4]. It seems that mutibreak arrangements and the combination of simultane-
ous rearrangement operations (discussed in Section 33.6) would be one of the main
the focus of future research.

33.8 NOTES ON SOFTWARE

Although the focus of this chapter was on the theoretical advancement on genome
rearrangement algorithms, before we conclude, we would like to discuss very briefly
a few related softwares and tools. We note, however, that our discussion in this brief
section is in no way complete.

1. Genome Rearrangements In Man and Mouse (GRIMM) is a tool for analyz-
ing rearrangements in pairs of genomes, including unichromosomal and mul-
tichromosomal genomes. GRIMM can handle both signed and unsigned data.
It began in 2001 as a project by Glenn Tesler and Yang Yu in an undergrad-
uate course taught by Pavel Pevzner’s at University of California, San Diego.
Subsequent development was done by Glenn Tesler [78, 79].

2. Mauve [27] is a system for efficiently constructing multiple genome align-
ments in the presence of large-scale evolutionary events such as rearrangement

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

REFERENCES 767

and inversion. It employs algorithmic techniques that scale well in the amount
of sequences being aligned.

3. Genome Inversion and Rearrangement Locator (GRIL) [26] is a tool that can
be used to identify the location of rearrangements and inversions in the back-
bone of a set of DNA sequences. Note, however, that GRIL does not perform
an actual alignment of genome sequences.

4. Sorting Permutation by Reversals and block-INterchanGes (SPRING) [1, 66]
is a tool to compute the rearrangement distance as well as an optimal scenario
between two permutations. SPRING can handle linear/circular chromosomes
and can consider reversals, block interchanges, or both. Additionally, it can
compute the breakpoint distance between two permutations, which can be used
to compare with the rearrangement distance to see whether they are correlated.

5. ROBIN [2, 67] is a web server for analyzing rearrangements between two chro-
mosomal genomes using the block interchange events. It takes two or more
linear/circular chromosomes as its input and computes the number of mini-
mum block interchange rearrangements between any two input chromosomes
for transforming one chromosome into another and also determines an optimal
scenario taking this number of rearrangements.

6. The package baobabLUNA [18] is a Java framework to deal with permutations
that represent genomes in rearrangement analysis. It can perform several tasks
including building breakpoint graphs, performing reversals, calculating rever-
sal distances, sorting permutations, and so on. Note that, baobabLUNA only
can deal with unichromosomal genomes, and its main functionality is the im-
plementation of an algorithm that gives a compact representation of the space
of all solutions of the sorting by reversals problem, that is, a representation of
all optimal sequences of reversals that sort one genome into another.

7. CTRD [3, 37] is a software for computing translocation distance between
genomes. It takes two genomes as its input and tests whether one genome
can be transformed into the other. If possible, it computes the translocation
distance between two genomes and gives the translocation sequence.

These softwares mostly are available on the internet.

REFERENCES

1. SPRING: Sorting permutation by reversals and block interchanges. http://algorithm.cs
.nthu.edu.tw/tools/SPRING/.

2. ROBIN. A tool for genome rearrangement of block interchanges. http://genome.life
.nctu.edu.tw/ROBIN/.

3. CTRD: Computing Signed Translocation Distance. http://www.cs.cityu.edu.hk/∼lwang/
software/Translocation/index.html.

4. M.A. Alekseyev. Multi-break rearrangements and breakpoint re-uses: From circular to
linear genomes. J Comput Biol, 15(8):1117–1131, 2008.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

768 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

5. M.A. Alekseyev and P.A. Pevzner. Are there rearrangement hotspots in the human
genome? PLoS Comput Biol, 3(11):e209, 2007.

6. M.A. Alekseyev and P.A. Pevzner. Multi-break rearrangements and chromosomal evolu-
tion. Theor Comput Sci, 395(2-3):193–202, 2008.

7. D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing inver-
sion distance between signed permutations with an experimental study. J Comput Biol,
8(5):483–491, 2001.

8. V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. Proceedings
of the 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS’93),
1993, pp. 148–157.

9. V. Bafna and P. Pevzner. Sorting permutations by transpositions. Proceedings of the 6th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’95), 1995, pp. 614–623.

10. V. Bafna and P.A. Pevzner. Genome rearrangements and sorting by reversals. SIAM J
Comput, 25(2):272–289, 1996.

11. V. Bafna and P.A. Pevzner. Sorting by transpositions. SIAM J Discrete Math, 11(2):224–
240, 1998.

12. D.W. Bass and I.H. Sudborough. Pancake problems with restricted prefix reversals and
some corresponding cayley networks. J Parallel Distr Comput, 63(3):327–336, 2003.

13. A. Bergeron, J. Mixtacki, and J. Stoye. Hp distance via double cut and join distance. Pro-
ceedings of the 19th Annual Symposium on Combinatorial Pattern Matching (CPM’08),
volume 5029 of Lecture Notes in Computer Science, Springer, New York, 2008, pp. 56–
68.

14. P. Berman and S. Hannenhalli. Fast sorting by reversal. In Proc. 7th Annual Symposium on
Combinatorial Pattern Matching (CPM’96), volume 1075 of Lecture Notes in Computer
Science, Sprnger, New York, 1996, pp. 168–185.

15. P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm for sort-
ing by reversals. Proceedings of the 10th European Symposium on Algorithms (ESA’02),
volume 2461 of Lecture Notes in Computer Science, Springer, New York, 2002,
pp. 200–210.

16. P. Berman and M. Karpinski. On some tighter inapproximability results (extended ab-
stract). Proceedings of the 26th International Colloquium Automata, Languages and Pro-
gramming (ICALP’99), volume 1644 of Lecture Notes in Computer Science, Springer,
New York, 1999, pp. 200–209.

17. M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement. Gene,
172:GC11–17, 1996.

18. M.D.V. Braga. Babobabluna: The solution space of sorting by reversals. Bioinformatics,
25(14):1833–1835, 2009.

19. A. Caprara. Sorting by reversals is difficult. Proceedings of the 1st ACM Conference on
Research in Computational Molecular Biology (RECOMB’97), 1997, pp. 75–83.

20. A. Caprara and R. Rizzi. Improved approximation for breakpoint graph decomposition
and sorting by reversals. J Combinl Optimi, 6(2):157–182, 2002.

21. T. Chen and S.S. Skiena. Sorting with fixed-length reversals. Discrete Appl Math, 71(1-3):
269–295, 1996.

22. D.A. Christie. Sorting permutations by block-interchanges. Inform Process Letts,
60(4):165–169, 1996.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

REFERENCES 769

23. D.A. Christie. A 3/2 approximation algorithm for sorting by reversals. Proceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98), 1998, pp. 244–
252.

24. D.A. Christie. Genome Rearrangement Problems. PhD dissertation, University of
Glasgow, Glasgow, Scotland, 1999.

25. N.G. Copeland, N.A. Jenkins, D.J. Gilbert, J.T. Eppig, L.J. Maltals, J.C. Miller, W.F.
Dietrich, A. Weaver, S.E. Lincoln, R.G. Steen, et al. A genetic linkage map of the mouse:
Current applications and future prospects. Science, 262:57–65, 1993.

26. A.C. Darling, B. Mau, F.R. Blatter, and N.T. Perna. Gril: Genome rearrangement and
inversion locator. Bioinformatics, 20(1):122–124, 2004.

27. A.C. Darling, B. Mau, F.R. Blatter, and N.T. Perna. Mauve: Multiple alignment of con-
served genomic sequence with rearrangements. Genome Res, 14(7):1394–1403, 2004.

28. Z. Dias and J. Meidanis. Sorting by prefix transpositions. Proceedings of the 9th Interna-
tional Symposium on String Processing and Information Retrieval (SPIRE 2002), volume
2476 of Lecture Notes in Computer Science, Springer, New York, 2002, pp. 463–468.

29. T. Dobzhansky and A. Sturtevant. Inversions in the chromosomes of drosophila pseudo-
obscura. Genetics, 23:28–64, 1938.

30. H. Dweighter. Problem E2569. Am Math Mon, 82:1010, 1975.

31. N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments duplica-
tions and reversals. J Comput Syst Sci, 65(3):442–464, 2002.

32. N. El-Mabrouk and D. Sankoff. The reconstruction of doubled genomes. SIAM J Comput,
32(3):754–792, 2003.

33. I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting by transposi-
tions. Proceedings of the 5th International Workshop on Algorithms in Bioinformatics
(WABI’05), volume 3692 of Lecture Notes in Computer Science, Springer, New York,
2005, pp. 204–214.

34. N. Eriksen. (1+ε)-approximation of sorting by reversals and transpositions. Theor Comput
Sci, 289(1):517–529, 2002.

35. H. Eriksson, K. Eriksson, J. Karlander, L. Svensson, and J. Wastlund. Sorting a bridge
hand. Discrete Math, 241(1-3):289–300, 2001.

36. J. Feng and D. Zhu. Faster algorithms for sorting by transpositions and sorting by block
interchanges. ACM Trans Algorithm, 3(3):Article 25, 2007.

37. W. Feng, L. Wang, and D. Zhu. Ctrd: A fast applet for computing signed translocation
distance between genomes. Bioinformatics, 20(17):3256–3257, 2004.

38. X. Feng, Z. Meng, and I.H. Sudborough. Improved upper bound for sorting by short
swaps. Proceedings of the 7th International Symposium on Parallel Architectures, Algo-
rithms and Networks (ISPAN’04), 2004, pp. 98–103.

39. X. Feng, I.H. Sudborough, and E. Lu. A fast algorithm for sorting by short swap. Pro-
ceedings of the Computational and Systems Biology, 2006, pp. 62–67.

40. J.S. Firoz, M. Hasan, A.Z. Khan, and M.S. Rahman. The 1.375 approximation algo-
rithm for sorting by transpositions can run in o(n log n) time. Proceedings of the 4th
Annual Workshop on Algorithms and Computation (WALCOM’10), 2009. To appear.
http://arxiv.org/abs/0910.3292.

41. W.M. Fitch. Distinguishing homologous from analogous proteins. Syst Zool, 19:99–113,
1970.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

770 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

42. W.H. Gates and C.H. Papadimitriou. Bounds for sorting by prefix reversals. Discrete
Math, 27:47–57, 1979.

43. Q.P. Gu, S. Peng, and H. Sudborough. A 2-approximation algorithm for genome rear-
rangements by reversals and transpositions. Theor Comput Sci, 210(2):327–339, 1999.

44. S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip. Proceedings of the 27th
Annual ACM Symposium on Theory of Computing (STOC’95), 1995, 178–189.

45. S. Hannenhalli and R.A. Pevzner. To cut . . . or not to cut (applications of comparative
physical maps in molecular evolution). Proceedings of the 7th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’96), 1996, pp. 304–313.

46. T. Hartman. A simpler 1.5-approximation algorithm for sorting by transpositions. Pro-
ceedings of the 14th Annual Symposium on Combinatorial Pattern Matching (CPM’03),
volume 2676 of Lecture Notes in Computer Science, Springer, New York, 2003 pp. 156–
169.

47. T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm for sorting
by transpositions. Inform Comput, 204(2):275–290, 2006.

48. T. Hartman and R. Sharan. A 1.5-approximation algorithm for sorting by transpositions
and transreversals. Proceedings of the 4th International Workshop on Algorithms in Bioin-
formatics (WABI’04), volume 3240 of Lecture Notes in Computer Science, Springer, New
York, 2004, pp. 50–61.

49. M. Hasan, A. Rahman, M.S. Rahman, M. Sharmin, and R. Yeasmin. Pancake flipping
with two spatulas, 2009. http://arxiv.org/abs/0812.3933v2.

50. L.S. Heath and J.P.C. Vergara. Sorting by short swaps. J Comput Biol, 10(5):775–789,
2003.

51. M.H. Heydari and I.H. Sudborough. Sorting by prefix reversals is np-complete. To appear.

52. M.H. Heydari and I.H. Sudborough. On sorting by prefix reversals and the diameter of
pancake networks. Parallel Architectures and Their Efficient Use, volume 678, 1993,
pp. 218–227.

53. M.H. Heydari and I.H. Sudborough. On the diameter of the pancake network. J Algorithm,
25(1):67–94, 1997.

54. I. Holyer. The NP-completeness of some edge-partition problems. SIAM J Comput,
10(4):713–717, 1981.

55. H. Kaplan, R. Shamir, and R.E. Tarjan. A faster and simpler algorithm for sorting signed
permutations by reversals. SIAM J Comput, 29:880–892, 1999.

56. H. Kaplan and E. Verbin. Sorting signed permutations by reversals, revisited. J Comput
Syst Sci, 70(3):321–341, 2005.

57. S. Karlin, E.S. Mocarski, and G.A. Schachtel. Molecular evolution of herpesviruses: Ge-
nomic and protein sequence comparisons. J Virol, 68:1886–1902, 1994.

58. J. Kececioglu and D. Sankoff. Exact and approximation algorithms for the inversion dis-
tance between two permutations. Proceedings of the 4th Annual Symposium on Combi-
natorial Pattern Matching (CPM’93), volume 684 of Lecture Notes in Computer Science,
Springer, New York, 1993, pp. 87–105.

59. E.B. Knox, S. Downie, and J.D. Palmer. Chloroplast genome rearrangements and evolu-
tion of giant lobelias from herbaceous ancestors. Mol Biol Evol, 10:414–430, 1993.

60. P. Kolman and T. Walen. Approximating reversal distance for strings with bounded num-
ber of duplicates. Discrete Appl Math, 155(3):327–336, 2007.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

REFERENCES 771

61. P. Kolman and T. Walen. Reversal distance for strings with duplicates: Linear time
approximation using hitting set. Electron J Combinator, 14(1), 2007.

62. E.V. Koonin and V.V. Dolja. Evolution and taxonomy of positive-strand rna viruses: Im-
plications of comparative analysis of amino acid sequences. Crit Rev Biochem Molec Biol,
28:375–430, 1993.

63. G. Lin and T. Jiang. A further improved approximation algorithm for breakpoint graph
decomposition. J Combin Optim, 8(2):183–194, 2004.

64. G.H. Lin and G. Xue. Signed genome rearrangements by reversals and transpositions:
Models and approximations. Proceedings of the 5th Annual International Conference on
Computing and Combinatorics (COCOON’99), volume 1627 of Lecture Notes in Com-
puter Science, Springer, New York, 1999, pp. 71–80.

65. Y.C. Lin, C.L. Lu, H.-Y. Chang, and C.Y. Tang. An efficient algorithm for sorting by
block-interchanges and its application to the evolution of vibrio species. J Comput Biol,
12(1):102112, 2005.

66. Y.C. Lin, C.L. Lu, Y.-C. Liu, and C.Y. Tang. Spring: A tool for the analysis of genome re-
arrangement using reversals and block-interchanges. Nucleic Acids Res, 34(Web-Server-
Issue):696–699, 2006.

67. C.L. Lu, T.C. Wang, Y.C. Lin, and C.Y. Tang. Robin: a tool for genome rearrangement of
block-interchanges. Bioinformatics, 21(11):2780–2782, 2005.

68. D.J. McGeoch. Molecular evolution of large dna viruses of eukaryotes. Semin Virol,
3:399–408, 1992.

69. J.H. Nadeau and B.A. Taylor. Lengths of chromosomal segments conserved since diver-
gence of man and mouse. Proc Nat Acad Sci U S A, 81:814–818, 1984.

70. J.D. Palmer and L.A. Herbon. Tricircular mitochondrial genomes of brassica and
raphanus: Reversal of repeat configurations by inversion. Nucleic Acids Res, 14:9755–
9764, 1986.

71. A. Rahman, S. Shatabda, and M. Hasan. An appoximation algorithm for sorting by rever-
sals and transpositions. J Discrete Algorithm, 6(3):449–457, 2008.

72. L.A. Raubenson and R.K. Jansen. Chloroplast dna evidence on the ancient evolutionary
split in vrrscular land plants. Science, 255:1697–1699, 1992.

73. D. Sankoff. Genome rearrangements with gene families. Bioinformatics, 15:909–917,
1999.

74. D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. Lang, and R. Cedergren. Gene order
comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc
Nat Acad Sci U S A, 89:6575–6579, 1992.

75. A.H. Sturtevant and T. Dobzhansky. Inversions in the third chromosome of wild races of
drosophila pseudoobscura, and their use in the study of the history of the species. Proc
Nat Acad Sci U S A, 22:448–450, 1936.

76. K.M. Swenson, V. Rajan, Y. Lin, and B.M.E. Moret. Sorting signed permutations by in-
versions in o(n log n) time. Proceedings of the 13th Annual International Conference on
Research in Computational Molecular Biology (RECOMB’09), volume 5541 of Lecture
Notes in Computer Science, Springer, New York, 2009, pp. 386–399.

77. E. Tannier, A. Bergeron, and M.-F. Sagot. Advances on sorting by reversals. Discrete App
Math, pp. 881–888, 2007.

78. G. Tesler. Efficient algorithms for multichromosomal genome rearrangements. J Comput
Syst Sci, 65(3):587–609, 2002.

P1: OSO
c33 JWBS046-Elloumi December 2, 2010 9:48 Printer Name: Sheridan

772 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS

79. G. Tesler. Grimm: Genome rearrangements web server. Bioinformatics, 18(3):492–493,
2002.

80. M.E. Walter, Z. Dias, and J. Meidanis. Reversal and transposition distance of linear
chromosomes. Proceedings of the South American Symposium on String Processing
and Information Retrieval (SPIRE’98), IEEE Computer Society, Washington, DC, 1998,
pp. 96–102.

81. M.E.T. Walter, L.R.A.F. Curado, and A.G. Oliveira. Working on the problem of sorting by
transpositions on genome rearrangements. Proceedings of the 14th Annual Symposium on
Combinatorial Pattern Matching (CPM’03), volume 2676 of Lecture Notes in Computer
Science, Springer, New York, 2003, pp. 372–383.

82. G.A. Watterson, W.J. Ewens, T.E. Hall, and A. Morgan. The chromosome inversion prob-
lem. J Theor Biol, 99:1–7, 1982.

83. J. Whiting, M. Pliley, J. Farmer, and D. Jeffery. In situ hybridization analysis of chrw mo-
somal homologies in drosophila melanogaster and drosophila virilis. Genetics, 122:90–
109, 1989.

84. S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21(16):3340–3346, 2005.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34
COMPUTING GENOMIC

DISTANCES : AN
ALGORITHMIC VIEWPOINT

Guillaume Fertin and Irena Rusu

34.1 INTRODUCTION

34.1.1 What this Chapter is About

Comparative genomics is a field of bioinformatics in which the goal is to compare
several species by comparing their genomes, to understand how the different species
under study have evolved in time. This study leads, for instance, to reconstructing
putative ancestral genomes, building phylogenetic trees, or inferring the functionality
of genes or sets of genes.

One of the main activities of comparative genomics consists of comparing pairs
of genomes to identify their common features and thus also to determine what dif-
ferentiates them. In that case, genomes usually are modeled as sequences of genes in
which a gene is identified by a (possibly signed) label. The sign + or –, if present,
indicates on which DNA strand the gene lies. In that context, the order of the
genes in the studied genomes is the main information we are given. Note that the
way this order was obtained is out of our scope here; only the order itself is taken
into account.

It also should be noted that genomes may contain several occurrences of the same
gene (possibly carrying different signs if signs are present). In that case, we say that a
genome contains duplicates. Indeed, genes may be duplicated during evolution, and
duplicate genes actually occur frequently in all living species.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

773

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

774 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

Comparing pairs of genomes on that basis can be done roughly in two different
ways:

1. Compare the structure of the two genomes under study by computing a mea-
sure that represents the (dis)similarity between the genomes.

2. Infer the evolution process from one genome to another. For this, process, one
needs to consider one or several operations (called rearrangement(s)) that can
occur in a genome during evolution (e.g., inversions or translocations), and the
goal is to determine the most parsimonious (i.e., less costly) rearrangement
scenario that leads from one genome to the other.

In this chapter, we only focus on option 1. This static viewpoint has the advantage
of allowing us to identify conserved regions between genomes, which is not the case
with option 2. Note also that, although the term distance is used often for option 1.
(as is done in the title of this chapter), this only refers to evolutionary distance (i.e.,
the amount of changes that occurred during the evolution process). Indeed, the so-
called “distances” that have been defined in the literature are rarely mathematical
distances, they are measures that evaluate the differences and similarities resulting
from evolution between the two genomes, either by directly counting the number of
changes or, in a complementary way, by counting the conserved regions. Hence, in
the following, we often use the term measure rather than distance.

The purpose of this chapter is to present some algorithmic aspects of pairwise
genome comparisons when those comparisons aim at finding a (dis)similarity mea-
sure. More precisely, we present several algorithms that were proposed recently for
solving (exactly or approximately) several variants of the problem. Our goal is not
to survey exhaustively all existing results on that topic but rather to give a sam-
ple of different algorithmic ideas and techniques that have been used to answer
some problems. Besides the fact that it presents original and nontrivial concepts that
we think are of interest for the reader, it also gives a flavor of the inventiveness and
the richness of recent research on the subject.

34.1.2 Definitions and Notations

Genomes under consideration in this chapter are represented as sequences of (pos-
sibly signed) integers built from the alphabet � = {1, 2, 3 . . . , n}, where n is as
large as necessary. When unsigned (respectively, signed) genomes are considered,
then their representation is a sequence of unsigned (respectively, signed) integers.
When a sequence contains distinct integers (i.e., the corresponding genome has no
duplicates), the sequence is called a permutation, whereas in the contrary case, it is
called a string. For instance, P = (2 − 3 8 − 4 − 5 1 7 − 6) is a signed permuta-
tion, whereas Q = (3 − 4 − 3 2 1 2 2) is a signed string.

For any genome P , its length (i.e., its number of genes) is denoted as m P . More-
over, for any 1 ≤ i ≤ j ≤ m P , P[i] denotes the i th element of P , |P[i]| is P[i]
whose sign has been removed, and P[i, j] = (P[i] P[i + 1] . . . P[j]) denotes the

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.2 INTERVAL-BASED CRITERIA 775

portion of P whose extremities are given by indices i and j , both being included.
For instance, if P = (2 − 3 8 − 4 − 5 1 7 − 6), then P[2] = −3, |P[2]| = 3, and
P[2, 4] = (−3 8 − 4).

A duo in a genome P is a set of two consecutive elements of P . For any 1 ≤
i ≤ m P − 1, the duo di represents P[i]P[i + 1] and is denoted as follows: di =
(P[i], P[i + 1]). Two duos d = (a, b) and d ′ = (a′, b′) of a signed genome are said
to be identical if (i) a = a′ and b = b′ or (ii) a = −b′ and b = −a′. If the genome is
unsigned, then two such duos are identical whenever a = a′ and b = b′ only. Given
two permutations P and Q built on the same alphabet, an adjacency in P is a duo d
for which a duo d ′ exists in Q such that d and d ′ are identical. Whenever d is not an
adjacency in P , then it is a breakpoint. We note that these two notions are symmetric;
that is, given two permutations P and Q built on the same alphabet, the number of
adjacencies (respectively, breakpoints) in P is equal to the number of adjacencies
(respectively, breakpoints) in Q.

34.1.3 Organization of the Chapter

This chapter is organized as follows: in Section 34.2, we are interested in comparing
pairs of genomes by finding their common or conserved intervals. In this context,
three algorithms are presented. Section 34.3 is devoted to two algorithms to deter-
mine the minimum number of breakpoints between pairs of genomes containing du-
plicates. Section 34.4 is the conclusion.

34.2 INTERVAL-BASED CRITERIA

34.2.1 Brief Introduction

Breakpoints and adjacencies are easy to compute in permutations but do not give
much insight on the genome organization in terms of sets of genes that are close to
each other in both genomes. However, these groups of genes are particularly inter-
esting because they show a similarity between genomes in their content, a similarity
that has been preserved despite of the past evolutionary events.

Looking for intervals rather than duos allows us to model such regions with
identical content but different gene order. In this context, the location of the genes
changes from one genome to the other; some genes even may get duplicated, but
the new locations and the possible duplicates still form an interval in the second
genome.

Going further, that is, speaking about approximate intervals (substrings with al-
most identical content) is possible, but measuring the similarity or dissimilarity be-
tween genomes with this approach becomes difficult. Each of these regions is seen
more successfully like a cluster of genes sharing a potential common function. Their
importance is undeniable, but it is not the point of this chapter. This is why we limit
our study to measures based on intervals.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

776 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

34.2.2 The Context and the Problems

Let P be a signed string of integers over the finite alphabet �, representing a linear
genome.

Definitio 34.1 [12] The character set of the interval P[i, j] of P, with 1 ≤ i ≤
j ≤ m P , is defined as

CS(P[i, j]) = {|P[h]| : i ≤ h ≤ j}

The character set of an interval stores the content of the interval, regardless of the
order of genes within it, their signs, or their number of occurrences. When the same
character set is defined by two intervals of two strings, a strong local similarity is
identified between the two strings.

Definitio 34.2 [12] Let C ⊆ � be a set of integers and P, Q be two signed strings
over �. Set C is a common interval of P and Q if positions a, b, i, j exist, with
1 ≤ a ≤ b ≤ m P and 1 ≤ i ≤ j ≤ mQ, such that

CS(P[a, b]) = CS(Q[i, j]) = C

This definition allows several variants:

1. Common intervals of two permutations, defined in [14], when P and Q are
permutations on {1, 2, . . . , n}

2. Conserved intervals of two permutations, defined in [4], when P and Q are
signed permutations on {1, 2, . . . , n} and the common interval is required to
satisfy either P[a] = Q[i] and P[b] = Q[j], or P[a] = −Q[j] and P[b] =
−Q[i]

3. Common intervals of two strings, defined in [12], when P and Q are unsigned
strings with elements in {1, 2, . . . , n}.

Each variant defines a criterion to measure the similarity between strings P and Q
as the number of common/conserved intervals of P and Q. For common intervals and
conserved intervals in permutations, a mathematically rigorous notion of distance
(satisfying the three properties of a metric) may be defined as follows. Note that the
number of common intervals between a permutation P and itself is the number of
intervals of P , that is, n(n + 1)/2. The same holds for conserved intervals.

Definitio 34.3 Let Common(P, Q), Conserved(P, Q) be the number of common
and conserved intervals of two permutations P and Q, respectively. The common
intervals distance between P and Q is defined as follows:

distanceCommon(P, Q) = n(n + 1) − 2 Common(P, Q)

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.2 INTERVAL-BASED CRITERIA 777

The conserved intervals distance between P and Q (assumed signed) is defined as
follows:

distanceConserved(P, Q) = n(n + 1) − 2 Conserved(P, Q)

This notion of distance was introduced in [4] for conserved intervals, and in the
more general case where each of P and Q is replaced by a set of permutations.

The extension of the definitions and methods used in this section to more than two
strings is briefly discussed in Section 34.2.6. For common intervals in strings, the
possible difference between the lengths of P and Q as well as the possibly different
number of locations of each interval in each string make a neat definition much more
difficult to find.

In the next three sections, we present algorithms to compute the number of com-
mon intervals between P and Q according to each of these three variants. These three
algorithms allow us to see and discuss three different ways to reach a similar goal.
The reader will note that for common intervals, both in permutations and in strings,
the algorithms given here really compute each of the searched intervals. The num-
ber of intervals then is computed implicitly. For conserved intervals, it is possible to
compute directly the number of intervals without displaying them all.

To understand the differences between the three approaches, let us start with a
slightly deeper analysis of the problem. Looking for a common interval of P and
Q is looking for two positions i and j on Q such that the elements in the interval
Q[i, j] also form an interval in P .

Definitio 34.4 Given a position i in Q, a Max zone of i is any maximal interval of
P whose character set contains Q[i] and is included in CS(Q[i, mQ]). A Min zone
of i is any maximal interval of P whose character set contains Q[i] and is included
in CS(Q[1, i]).

Recalling that the elements in the interval Q[i, j] are both in CS(Q[i, m Q]) and
in CS(Q[1, j]), the following lemma is then easy to deduce:

Lemma 34.1 The set C defined by C = CS(Q[i, j]), with 1 ≤ i ≤ j ≤ mQ, is a
common interval of P and Q if and only if a Max zone of i exists and a Min zone of
j exists whose intersection has character set C.

Figure 34.1 illustrates this lemma. Note that when P and Q are permutations
(with or without signs), there is exactly one Max zone and one Min zone for every
position in Q. The three approaches are summarized as follows.

Commuting Generators. The algorithm for common intervals in permutations,
presented in Section 34.2.3 and introduced in [3], identifies for every position
i in Q (renumbered such that Q is the identity permutation), a subzone of the
Max zone and a subzone of the Min zone containing consecutive elements (in-
cluding i) with respect to the order in Q. These subzones are called generators.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

778 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

P = 3 1 4 2 6 5 8 4 2 1 5 2 7

Q = 6 7 2 1 5 4 4 2 3 4 8

i=3 j=7

Figure 34.1 Max zones (grey boxes) of position 3 in Q and Min zones (white boxes) of position
7 in Q, when Q = (6 7 2 1 5 4 4 2 3 4 8) and P = (3 1 4 2 6 5 8 4 2 1 5 2 7). Sets {1, 2, 4}, {5}, and
{1, 2, 4, 5} all may be obtained as the intersection of a Max zone of 3 with a Min zone of 7, but
only {1, 2, 4, 5} is CS(Q[3, 7]) and is thus a common interval of P and Q.

A common interval then is defined by any pair i, j such that j is in the Max
subzone of i , and i is in the Min subzone of j . Once the subzones are com-
puted, obtaining all common intervals is an easy task. The resulting algorithm
is in O(n + N), where n = m P = m Q = Card(�) is the common length of P
and Q, and N is the number of common intervals between P and Q.

Bound-and-Drop. The algorithm for conserved intervals in (signed) permutations,
presented in Section 34.2.4 and introduced in [4], considers for each j in Q
(renumbered such that Q is the identity permutation) the candidates i < j in
Q such that i is in the Min zone of j , j is in the Max zone of i , and the number
of elements in the interval of P with endpoints i and j is j − i + 1. The bad
candidates i are dropped, whereas the first suitable one found is validated. The
result is a set of special conserved intervals CS([i, j]), called irreducible inter-
vals, which allows quickly computing, in O(n), the total number of conserved
intervals. An algorithm to find all conserved intervals in O(n + N) time then
is obtained easily (where n = m P = m Q = Card(�)).

Element Plotting. The algorithm for common intervals in strings, presented in
Section 34.2.5 and introduced in [12], deals with multiple Max zones and Min
zones for any fixed i by considering in a left-to-right order all positions j > i
and plotting on P the elements found in Q[i, j]. The Max zones of i and
the Min zones of j are computed in this way simultaneously but uncontigu-
ously and incompletely (only the useful elements, those in Q[i, j], are plotted).
When an interval of plotted elements in P has the same number of distinct el-
ements as CS(Q[i, j]), a common interval is displayed. This is equivalent to
saying that the intersection of a Max zone of i and a Min zone of j is an
interval that contains exactly the elements in CS(Q[i, j]). The algorithm pre-
sented here runs in �(m2) (where m = max{m P , mQ}) but may be improved
to O(m2) as shown in [12].

34.2.3 Common Intervals in Permutations and the Commuting
Generators Strategy

Common intervals of two permutations were introduced in [14], together with a first
(and complex) algorithm in O(n + N) to compute them.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.2 INTERVAL-BASED CRITERIA 779

The algorithm we present in this section was proposed in [3]. The genomes P and
Q are represented as permutations on � = {1, 2, . . . , n}. Moreover, to simplify the
presentation, we assume without loss of generality that Q is the identity permutation,
denoted I d, and P is an arbitrary permutation. This can be achieved easily given two
arbitrary permutations by renumbering Q to obtain I d and renumbering P accord-
ingly. As a consequence, given i ∈ {1, 2, . . . , n}, we have that Q[i] = I d[i] = i and
that the Max zone and Min zone of i may be redefined as follows:

Definitio 34.5 Given i ∈ {1, 2, . . . , n}, define on P the following intervals:

I Max[i]: the largest interval containing i and elements greater than i
I Min[i]: the largest interval containing i and elements smaller that i

Let (i.. j) be a shorter notation for CS(I d[i, j]) that assumes 1 ≤ i ≤ j ≤ n.
According to Lemma 34.1, a set (i.. j) is a common interval of P and I d if and only
if the equality CS(I Max[i]) ∩ CS(I Min[j]) = (i.. j) holds. With the supplementary
notation

Sup[i]: the largest integer such that (i..Sup[i]) ⊆ CS(I Max[i]), and
Inf[i]: the smallest integer such that (Inf[i]..i) ⊆ CS(I Min[i])

the latter equality holds if and only if j ≤ Sup[i] and Inf[j] ≤ i . Equivalently, we
have that (i.. j) is a common interval of P and I d if and only if

(i.. j) = (i..Sup[i]) ∩ (Inf[j].. j)

The vectors Sup and Inf, both of size n, are thus sufficient to generate all common
intervals (i.. j) (and only the common intervals) using this formula. But this pair of
vectors is not necessarily unique.

A general definition may be given:

Definitio 34.6 A pair (R, L) of vectors of size n is a generator for the common
intervals of P and I d if the following properties hold:

1. R[i] ≥ i and L[i] ≤ i , for all 1 ≤ i ≤ n, and

2. (i.. j) is a common interval of P and I d if and only if

(i.. j) = (i..R[i]) ∩ (L[j].. j)

The pair (Sup, Inf) allows us to answer affirmatively the question whether a gen-
erator exists for every P and I d. Paper [3] deeply analyzes generators for two or
more permutations, and for other families of intervals. We focus here on computing
the common intervals of two permutations, which is done with Algorithm 34.1.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

780 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

Algorithm 34.1 Algorithm Common Intervals In Permutations [3]
Step 1. For all i ∈ {1, 2, . . . , n} do compute I Max[i] and I Min[i] Endfor;
Step 2. Compute (Sup, Inf);
Step 3. Compute common intervals.

Consider Steps 1 through 3 one by one.

step 1
As I Max[i] and I Min[i] are intervals of P , computing them just requires computing
their left and right endpoints. To ensure a linear complexity, all endpoints of a given
type are obtained during a single search along P . To obtain, for instance, the left
endpoints LMin[i] of I Min[i] (1 ≤ i ≤ n), Algorithm 34.2 is proposed, which uses
a stack S to store in a convenient order the current candidates. The linear running
time of this algorithm is obvious.

Algorithm 34.2 Algorithm Step 1 (LMin version) [3]
{S is a (initially empty) stack of positions in P}
Stack 0 on S; P[0] ← n + 1;
For h = 1 to n do

While P[top(S)] < P[h] do Unstack top(S) Endwhile;
LMin[P[h]] ← top(S) + 1;
Stack h on S;

Endfor.

step 2
Computing (Sup, Inf) when the endpoints of I Max[i] and I Min[i] are known is
based on the following property:

Algorithm 34.3 Algorithm Step 2 [3]
{W, w are two vectors of size n}
Inf[1] ← 1; Sup[n] ← n;
For i = 1 to n do W [i] ← i; w[i] ← i Endfor;
For i = n − 1 downto 1 do

While W [i] + 1 ∈ CS(I Max[i]) do W [i] ← W [W [i] + 1] Endwhile;
Sup[i] ← W [i]

Endfor;
For i = 2 to n do

While w[i] − 1 ∈ CS(I Min[i]) do w[i] ← w[w[i] − 1] Endwhile;
Inf[i] ← w[i]

Endfor.

Lemma 34.2 Let P be a permutation. If (i..k) ⊆ CS(I Max[i]), then Sup[i] ≥
Sup[k]. If (k..i) ⊆ CS(I Min[i]), then I n f [i] ≤ I n f [k].

The proof of this lemma is done easily by noting that we have (k..Sup[k]) ⊆
CS(I Max[k]) and that I Max[k] is included in I Max[i]. Then both (i..k) and
(k..Sup[k]) are subsets of CS(I Max[i]) and so is their union. The conclusion fol-
lows from the definition of Sup[i]. A similar reasoning is valid for the second part of
the lemma.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.2 INTERVAL-BASED CRITERIA 781

Lemma 34.2 allows us to compute Sup[i] in the decreasing order of i . Assum-
ing Sup[i + 1], . . . , Sup[n] are known already, one obtains Sup[i] by initializing it
with i and successively updating it to Sup[kh] as long as the element kh , defined
by k1 = i + 1, kh+1 = Sup[kh] + 1 (h ≥ 1), is found in I Max[i]. Algorithm 34.3 is
based on this idea and runs in O(n) because the total number of updates over all
i is n − 1.

step 3
To compute common intervals, a commuting generator is needed to ensure a mini-
mum running time for the algorithm.

Definitio 34.7 A generator (R, L) is commuting if each of the collections of sets
{(i..R[i]) : 1 ≤ i ≤ n} and {(L[i]..i) : 1 ≤ i ≤ n} has the property that any two
distinct sets of the collection are either disjoint, or one of them contains the other one.

The generator (Sup, Inf) computed in Step 2 is commuting (easily deduced ei-
ther using the definition or Algorithm 34.3), but Algorithm 34.4 works as well for
an arbitrary commuting generator. It first computes for every element (and posi-
tion) i > 1 in I d a value Support[i], which gives the rightmost position h < i such
that R[h] ≥ R[i]. Then, for each j in decreasing order, it successively identifies
the positions i = Supportq [j] (q ≥ 0, with the convention that Support0[j] = j ,
and Supportr [j] = Support[Supportr−1[j]]) such that L[j] ≤ i , that is, (L[j].. j)
contains i . This is sufficient to ensure that (i.. j) is a common interval because
we also have, by the definition of the vector Support, that R[i] ≥ j , and thus,
(i.. j) = (i..R[i]) ∩ (L[j].. j).

Algorithm 34.4 Algorithm Step 3 [3]
{S is a (initially empty) stack of positions in I d}
{R, L are two vectors of size n, representing the given generator}
Stack 1 on S
For i = 2 to n do

While R[top(S)] < i do Unstack top(S) Endwhile;
Support[i] ← top[S];
Stack i on S

Endfor;
For j = n downto 1 do

i ← j;
While i ≥ L[j] do

Output the common interval (i.. j);
i ← Support[i]

Endwhile
Endfor.

The second while loop of this algorithm is executed proportionally to the num-
ber of common intervals it outputs so that the running time of the algorithm is in
O(n + N).

The algorithm COMMON INTERVALS IN PERMUTATIONS we described
in this section first collects the necessary information and then builds at once all

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

782 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

common intervals in contrast to the next algorithms, which use sequentially collected
information to display sequentially the common intervals.

34.2.4 Conserved Intervals in Permutations and
the Bound-and-Drop Strategy

In [4], conserved intervals were introduced as a family of common intervals
that should not be broken by rearrangement operations on the genome. An O(n)
algorithm to compute the number of conserved intervals between two (and even
more, see Section 34.2.6) permutations is given in the paper, and we present it subse-
quently. Displaying all conserved intervals in O(n + N), where N is the total number
of conserved intervals, is an easy task using Lemma 34.3 and the algorithm.

In this section, genomes are signed permutations on {1, 2, . . . , n}. Without loss of
generality, we assume once again that one of the permutations is the identity permu-
tation I d, and the other permutation P is an arbitrary signed permutation. Moreover
because singletons are known conserved intervals, they are omitted from the pre-
sentation. All conserved intervals considered in the remaining of this section are
therefore, by definition, nonsingletons.

Definitio 34.8 Let P be a signed permutation. A conserved interval C of I d and
P is reducible if smaller conserved intervals C1, C2, . . . , Ch (h ≥ 2) exist such that
C is the union of C1, C2, . . . , Ch. In the contrary case, C is called irreducible.

Note that irreducible conserved intervals are not necessarily minimal with respect
to inclusion. Moreover, it is easy to prove that irreducible conserved intervals are
either disjoint, are included in each other (and with different endpoints), or are over-
lapping on exactly one element so that they form chains:

Definitio 34.9 Let P be a signed permutation. A collection C1, C2, . . . , Cl (l ≥ 1)
of irreducible conserved intervals of P and I d is a chain if Cx and Cx+1 have exactly
one element in common, for all x, 1 ≤ x ≤ l − 1. A chain C1, C2, . . . , Cl (l ≥ 1) is
maximal if no irreducible conserved interval C0 exists such that C0, C1, C2, . . . , Cl

or C1, C2, . . . , Cl, C0 is a chain.

Maximal chains partition the collection of irreducible conserved intervals. More-
over, a conserved interval is always a chain (not necessarily maximal) so that estimat-
ing the number of conserved intervals and displaying each of them when irreducible
conserved intervals are known may be done using the following result:

Lemma 34.3 Let P be a signed permutation. A maximal chain C1, C2, . . . , Cl

(l ≥ 1) of irreducible conserved intervals of P and I d generates exactly l(l + 1)/2
conserved intervals.

It remains to give the algorithm for finding the irreducible conserved intervals.
Note that the conserved intervals with endpoints i, j , 1 ≤ i ≤ j ≤ n, on I d have ei-
ther positive endpoints i, j (in this order, from left to right) or negative endpoints

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.2 INTERVAL-BASED CRITERIA 783

− j,−i (in this order, from left to right) on P . Algorithm 34.5 shows how to iden-
tify the irreducible conserved intervals with positive endpoints (called positive irre-
ducible intervals). The same algorithm, applied to I d and to the result P of a com-
plete signed reversal on P (i.e., P = (−P[n] − P[n − 1] . . . − P[1])) identifies the
irreducible conserved intervals with negative endpoints (called negative irreducible
intervals).

Algorithm 34.5 Algorithm Positive Irreducible Intervals [4]
{S is a (initially empty) stack of indices in P∗}
{B is a vector of size n + 2}
Stack 0 on S; B[0] ← n + 1;
Compute LMin[i], i = 0, . . . , n + 1, using Algorithm Step 1 (LMin version);
For j = 1 to n + 1 do

If LMin[|P∗[j]|] > 1 then B[j] ← |P∗[LMin[j] − 1]| else B[j] ← n + 1 Endif;
While |P∗[j]| < P∗[top(S)] or |P∗[j]| > B[top(S)] do

Unstack top(S)
Endwhile;
If j − top(S) = P∗[j] − P∗[top(S)] and B[j] = B[top(S)] then

Output the positive irreducible interval (P∗[top(S)]..P∗[j])
Endif;
If P∗[j] > 0 then Stack j on S Endif;

Endfor.

For simplicity reasons, the algorithm works on the permutation P∗ =
(0 P[1] . . . P[n] n + 1). The interpretation of the results on the initial permutation
P is easy and left to the reader. Moreover, LMin[i] is the left endpoint of the interval
I Min[i], defined as in Definition 34.5, but for P∗

+, the unsigned permutation that is
obtained from P∗ by removing the signs.

It is important to note that each index j in P can be the right endpoint of at most
one positive irreducible interval. Then, each j is considered, in increasing order, and
the corresponding left endpoint of the possible interval is searched for on the stack
S, which contains the positions of the candidates (both the positions and their corre-
sponding elements in P∗ are in increasing order from bottom to top). To this end, a
value B[i] is computed for each i that upperly bounds the values |P∗[j]| obtained at
a possible right end j of a conserved interval (i.. j). Obviously bad candidates top(S)
(too large or whose bound B[top(S)] is exceeded by |P∗[j]|) are dropped, and the
next candidate either is the suitable one (the number of elements in the interval is
correct, and these elements are all smaller than P∗[j]), or is not, and in this latter
case, there is no suitable candidate.

The running time of this algorithm is in O(n), because the While loop will unstack
globally at most n elements (each index is stacked exactly once on S).

34.2.5 Common Intervals in Strings and
the Element Plotting Strategy

In this section, P and Q are unsigned strings over {1, 2, . . . , n}, of respective lengths
m P and m Q , which implies that every element in the alphabet may have zero, one,
or several occurrences in each string. Without loss of generality, it is assumed that

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

784 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

n ≤ m P + m Q (otherwise, a renumbering of the elements in the alphabet may be
performed to achieve this), and that strings P and Q are extended at their left and
right extremities with a new element (not in �), say n + 1. To simplify explanations,
the resulting strings still are noted P and Q with lengths m P and m Q (which only
differ by two from the initial lengths, thus not affecting the complexity order of
Algorithm 34.6).

The algorithm presented in this section was proposed in [12] and uses a very
different strategy to display all common intervals compared with the ones in Sections
34.2.3 and 34.2.4. To start with, note that we may limit the searches to maximal
locations of common intervals:

Definitio 34.10 Let Q be an unsigned string on the alphabet � = {1, 2, . . . , n}
and C ⊆ {1, 2, . . . , n}. Interval Q[i, j] is a location of C in S if CS(Q[i, j]) = C. The
location Q[i, j] is leftmaximal if i = 1 or Q[i − 1]
∈ C, is rightmaximal if j = m Q

or Q[j + 1]
∈ C, and is maximal if it is both left maximal and right maximal.

Algorithm 34.6 uses a vector of lists POS and a matrix NUM to store, respectively,
the positions in P of every element c ∈ {1, 2, . . . , n} and the number of distinct
elements in each interval P[a, b] with a, b ∈ CS(P). For each pair of indices i, j
with 1 ≤ i ≤ j ≤ m Q , such that Q[i, j] is a maximal location of CS(Q[i, j]) (set
stored as a vector OCC in the algorithm), the nOCC elements of CS(Q[i, j]) are
plotted (or marked) on P . Intervals of plotted elements on P then are tested to see
whether they have all the desired elements (i.e., nOCC elements) and whether they are
maximal. In the affirmative case, they are maximal common intervals and are thus
output by the algorithm.

Algorithm 34.6 Algorithm Common Intervals In Strings [12]
{OCC[c] = 1 if and only if c belongs to the current interval Q[i, j]}
Compute data structures POS and NUM for P;
For i = 1 to m Q do

For c = 1 to n do OCC[c] ← 0 Endfor;
nOCC ← 0; j ← i;
While j ≤ m Q and Q[i, j] is left maximal do

c ← Q[j];
OCC[c] ← 1; nOCC ← nOCC + 1;
While Q[i, j] is not right maximal do j ← j + 1 Endwhile;
For all p in POS[c] do

Mark element c at position p in P;
P[a, b] ← the largest interval of marked characters with a ≤ p ≤ b;
If NUM[a, b] = nOCC and P[a, b] is maximal then

Output C = CS(Q[i, j]) and the pair (P[a, b], Q[i, j])
Endif

Endfor;
j ← j + 1

Endwhile
EndFor.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.3 CHARACTER-BASED CRITERIA 785

It is easy to imagine examples on which this algorithm will display twice (or
more) the same common interval C with two different locations either on P or on Q.
The algorithm may be modified to avoid redundant outputs, as shown in [12].

This algorithm runs in �(m2), where m = max{m P , mQ}, but a variant of it exists
that runs in O(m2) [12].

34.2.6 Variants

The notions and algorithms presented so far either are devised directly for or ex-
tended easily to an arbitrary number K ≥ 2 of genomes (see [3, 4, 12]). In this case,
the complexity becomes O(K n + N) to output all common or all conserved inter-
vals in (signed) permutations O(K n) to compute the number of conserved intervals
in signed permutations, and O(K m2) to output all common intervals in strings.

The case of genomes with duplicates, represented by signed or unsigned strings,
was approached in Section 34.2.5 under the double hypothesis that (i) no distinction
can be made among duplicates in P and in Q and that (ii) the locations of a common
interval of P and Q may contain an arbitrary number of copies of each gene. This
approach passes up the underlining biological hypothesis that the copies of a gene
are obtained during speciation and duplication processes that imply relationships
between duplicates. Several ways to express this biological hypothesis exist (see [6]
for detailed explanations), resulting in different hard problems to solve, for which
different approaches were proposed.

In our next section, we present some of them.

34.3 CHARACTER-BASED CRITERIA

34.3.1 Introduction and Definition of the Problems

As mentioned in the previous section, computing the number of breakpoints between
two genomes that do not contain duplicates is an easy task. On the contrary, when
duplicates occur in genomes, an intuitive way of dealing with them is to get back to
permutations, that is, genomes without duplicates. For this, the goal is to establish
a one-to-one correspondence between genes of both genomes, that is a matching,
say M. Once M is found, we remove from both genomes the genes that are not
matched by M (this happens, for instance, when the number of duplicates of a given
gene differs between both genomes), and after a renaming of the genes, we obtain a
permutation on which all classical measures can be computed.

The tricky part of the process is to find an appropriate matching. Usually, the
matching M that we look for is one that optimizes the studied measure, thus follow-
ing the parsimony hypothesis, which states that nature always chooses the “shortest
path” to go from one species (i.e., one genome) to another.

In that case, the problem of computing a measure between two genomes, which
was just a computation problem in permutations (we just are asked to provide a
number) becomes an optimization problem in strings in which one wants to find the
matching that optimizes the studied measure.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

786 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

In the following, we are interested in genomes that contain duplicates. We first
look at the particular case in which the pairs of genomes that we compare contain,
for each gene g, exactly the same number of copies of g. In that case, we say that
genomes are balanced. This restriction could seem strong, but genes are DNA frag-
ments, and no two genes are constituted of the exact same DNA sequence; thus, du-
plicate genes are actually genes that are pairwise similar (i.e., their DNA sequences
are sufficiently close). Hence, it is always possible to build gene clusters such that
there are as many copies in the first genome as in the second (e.g., by removing from
a given cluster those genes that are less similar to the others).

Suppose that the two input genomes are balanced. It thus seems natural to ask
for a one-to-one correspondence of the genes (i.e., a matching) that contains all the
genes of both genomes. Such a matching is referred to in the following as a full
matching.

Now, if the two input genomes are unbalanced, then we need to define more pre-
cisely the matching that we look for. First, for any gene g, we denote by occ(g,P)
(respectively, occ(g,Q)) the number of (positive and negative) occurrences of g in P
(respectively, Q). The required matching M thus needs to satisfy the following rule:
for any gene g in P (respectively, Q), M must contain min{occ(g, P), occ(g, Q)}
one-to-one correspondences involving g. In that sense, M remains a full matching,
because it contains the maximum possible number of one-to-one correspondences
between genes. The difficulty here is the following: because genomes are not bal-
anced, some genes will remain unmatched by M. In that case, we prune the genomes
(i.e., we remove those unmatched genes), to obtain two genomes P ′ and Q′ in which
each gene is covered by M. We then compute the number of breakpoints between
P ′ and Q ′ resulting from the permutation induced by M.

We note, for the sake of completeness, that other types of matching exist that can
be required:

� One can ask for an exemplar matching in which we only keep one occurrence
of each gene g [11]

� One also can ask for an intermediate matching in which for each gene g, we
keep 1 ≤ x ≤ min{occ(g, P), occ(g, Q)} occurrences of g [1]

Coming back to the full matching variant, in both the balanced and unbalanced
cases, finding a full matching that optimizes a given measure is NP-hard, and even
APX-hard for all classical measures. This is, for instance, the case for minimizing the
number of breakpoints [8], which maximizing the number of common intervals [2] or
the number of conserved intervals [2], and this hardness holds even for very restricted
instances. Consequently, most efforts in the literature have focused on what seemed
to be the “simplest” case (i.e., minimizing the number of breakpoints).

In the rest of this section, we describe two algorithms that deal with genomes
P and Q, represented as strings of integers, and aim to find a full matching M
that minimizes the number of breakpoints in the permutation induced by M (pos-
sibly obtained after pruning in case P and Q are not balanced). Let us denote this
problem by BAL-FMB (for Full Matching Breakpoints) (P, Q) in the balanced case,

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.3 CHARACTER-BASED CRITERIA 787

and UNBAL-FMB(P, Q) in the unbalanced case. The two algorithms we describe
here are:

1. An approximation algorithm for BAL-FMB [9]

2. An exact (thus, exponential) algorithm for UNBAL-FMB [1], written in the
form of a 0–1 linear program, the goal being to be able to handle large instances

We want to emphasize the fact that this section does not aim to be an exhaus-
tive survey of the results concerning BAL-FMB and UNBAL-FMB but to provide dif-
ferent algorithmic techniques and results that we think can be of interest for the
reader.

34.3.2 An Approximation Algorithm for BAL-FMB

In this section, we show the main ideas and arguments of an approximation algorithm
provided by Kolman and Waleń [9]. Let P and Q be two balanced strings containing
signed integers, let n = m P = m Q , and let k be the maximum number of copies of a
gene in P (respectively, in Q). Note that, because a gene is represented by a signed
integer, k takes into account both positive and negative occurrences of the most rep-
resented integer in P (respectively, Q). The result from Kolman and Waleń [9] that
we develop here is as follows.

Theorem 34.1 An O(k) approximation algorithm exists for solving the problem
BAL-FMB.

34.3.2.1 A Slightly Different Problem: Unsigned Minimum Common
String Partition (UMCSP). To make things simpler, we first develop the main ar-
guments for the previous theorem in the specific case where the strings are un-
signed (i.e., every integer in both strings carries the same sign, which we always
will consider as positive). The algorithm can be adapted easily for instances contain-
ing signed strings but with a loss of a factor two in the approximation ratio, which of
course, does not change the ratio of O(k) given in Theorem 34.1.

It should be said first that the result from Kolman and Waleń [9] considers a
slightly different problem than BAL-FMB, called unsigned minimum common string
partition (UMCSP). This problem is the following: given two balanced unsigned
strings P and Q, find a partition P = {P1, P2, . . . Pt} of substrings (i.e., sets of con-
secutive elements) of P such that:

1. P1 · P2 · P3 . . . Pt = P , where X · Y denotes the concatenation of strings X
and Y

2. A permutation π exists on {1, 2, . . . t} such that Q = Pπ (1) · Pπ (2) ·
Pπ (3) . . . Pπ (t)

3. t is minimized

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

788 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

In this context, each Pi , 1 ≤ i ≤ t is called a block. It is shown that BAL-FMB and
UMCSP are related closely in the following sense:

� Any block partition of P and Q returned by UMCSP can be converted as a full
matching between genes of P and genes of Q and vice-versa.

� If b (respectively t) denotes the minimum number of breakpoints obtained by
BAL-FMB (respectively the minimum number of blocks obtained by UMCSP),
then b and t differ by one. Thus, any approximation algorithm of ratio O(k) for
UMCSP is also an approximation algorithm of ratio O(k) for BAL-FMB.

As a consequence, in the rest of the section, we only focus on UMCSP, keeping in
mind that the result also applies to BAL-FMB.

Before going into further details, we need a few definitions: a substring of a string
S is a set of consecutive elements of S. Recall that a duo in a string S is just a
substring of length two of S, and let us denote by duos(S) the set of duos of S.
Finally, given any solution for UMCSP, if a duo d from P does not appear in P , then
we say that d is broken.

34.3.2.2 A First Approximation Algorithm for UMCSP. The crucial idea be-
hind the approximation algorithm from [9] is expressed as follows: in any solution for
UMCSP, whenever a substring X appears a different number of times in P than in Q,
at least one duo in at least one occurrence of X must be broken. For any nonempty
string X , we denote by #substr(P, X) (respectively #substr(Q, X)) the number of
times X appears as a substring of P (respectively Q). Hence, the approximation al-
gorithm ApproxUMCSP we look for could work as follows: for every X such that
#substr(P, X)
= #substr(Q, X), cut at least one duo in each occurrence of X in P
and Q, and return the partitions P and Q induced by those cuts. The correctness of
ApproxUMCSP is given by the following lemma.

Lemma 34.4 Algorithm ApproxUMCSP returns two partitions P and Q that form
a common partition of P and Q.

Note that we should try to avoid too many cuts of duos because each cut of a duo
corresponds to an increase in the number of blocks in P and Q. However, minimizing
the number of cuts is equivalent to the hitting set problem, which is known to be
hard to approximate [10]. Thus, a deeper analysis is needed. Let T denote the set
of all substrings X ∈ �∗ such that #substr(P, X)
= #substr(Q, X). Then, it can be
seen that not all substrings X ∈ T need to be considered. Indeed, if two substrings
X, Y ∈ T are such that X � Y (where X � Y here means “X is a proper substring
of Y ”), then any duo d that breaks an occurrence of X contained in Y also will
break Y . Thus, we can limit ourselves to the study of the set Tmin, which is defined
as follows:

Tmin = {X ∈ T |�X ′ ∈ T s.t. X ′ � X}

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.3 CHARACTER-BASED CRITERIA 789

In other words, Tmin is the set of the substrings of T that are minimal with respect
to the relation �.

Thus, instead of going through T , going through Tmin only in algorithm
ApproxUMCSP maintains its correctness. Now, to determine the approximation ra-
tio we look for, we need to analyze how Tmin is involved in any optimal solution of
UMCSP. Let the two partitions (PO,QO) represent an optimal solution of UMCSP, and
let an optimal break be any broken duo in this solution. The following lemma holds.

Lemma 34.5 If X ∈ Tmin, then at least one occurrence of X in P or Q exists that
contains an optimal break.

Our goal now is to assign to each X ∈ Tmin an optimal break. For this, for any
X ∈ Tmin, we denote by f (X) the optimal break that X contains. If X contains more
than one optimal break, then f (X) is set arbitrarily to the leftmost one. In that case,
the following lemma holds.

Lemma 34.6 Let X = X [1]X [2] . . . X [l] and Y be two strings from Tmin such that
f (X) = f (Y). In that case, duos(Y) ∩ {X [1]X [2], X [l − 1]X [l]}
= ∅.

Lemma 34.6 leads us directly to the following modification of algorithm
ApproxUMCSP: for each X ∈ Tmin, we cut the first and last duo in all occurrences
of X in P and Q. Algorithm ApproxUMCSP is now complete and is summarized
in Algorithm 34.7.

Algorithm 34.7 Algorithm ApproxUMCSP [10]
Input: Two balanced unsigned strings of integers, P and Q,
each of length n = m P = m Q

1. Compute the set Tmin defined in the text above
2. � = ∅
3. P = {P}, Q = {Q}
4. For each X ∈ Tmin do
6. If duos(X) ∩ � = ∅ then
7. Add the first and last duo of X in �

8. Cut all occurrences of those two duos in the
partitions P and Q
9. End If
10. End For

Output: Partitions P and Q

It can be seen that Algorithm ApproxUMCSP remains correct because each oc-
currence of any X ∈ Tmin is cut by at least one duo, and Lemma 34.4 still holds.
Moreover, the following theorem holds.

Theorem 34.2 Algorithm ApproxUMCSP is a 4k approximation algorithm for
UMCSP.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

790 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

The proof is as follows: suppose that X1 and X2 are two distinct strings of Tmin

that contributed to increasing the cardinality of the set � during the execution of
ApproxUMCSP. Then, by Lemma 34.6, f (X1)
= f (X2). Because, on the whole,
there are Card(PO) + Card(QO) − 2 optimal breaks, this means that Card(�) ≤
2 Card(PO) + 2 Card(QO) − 4. Here, we consider instances in which a given inte-
ger appears at most k times; thus, each duo from � induces at most k cuts. Let P
and Q be the partitions returned by ApproxUMCSP, and recall that, by definition,
Card(P) = Card(Q) and Card(PO) = Card(QO). We have Card(P) ≤ k Card(�) +
1; thus Card(P) ≤ 4k(Card(PO) − 1) + 1, that is, Card(P) ≤ 4k Card(PO).

34.3.2.3 About the Time Complexity of ApproxUMCSP. Kolman and
Waleń have presented different tricks for achieving a time complexity of O(n) for
ApproxUMCSP, where n = m P = m Q .

First, instead of computing Tmin, it is sufficient to compute a set T ′ of strings
satisfying the three following properties:

1. Card(T ′) is in O(n) and can be computed in O(n) time

2. Tmin ⊆ T ′ ⊆ T

3. If a string X ∈ T passes the test of Line 6. of algorithm ApproxUMCSP (i.e.,
duos(X) ∩ � = ∅), then X ∈ Tmin

In other words, T ′ is just a set that is easier to compute than Tmin. Property 1
ensures it is not too large and that it can be found efficiently. Properties 2 and 3
ensure that ApproxUMCSP remains correct using T ′ instead of Tmin.

T ′ actually can be computed in O(n) time using a suffix tree; let P and Q be the
two balanced genomes from the instance. Then we build the (compact) suffix tree
T of string S = P$P Q$Q , where $P and $Q are characters not appearing in P and
Q. Such a suffix tree can be constructed in O(n) time [13]. Let r be the root of T ,
and let v
= r be any node of T . Let parent(v) be the father of v in T , let s(v) be
the string represented by the path from r to parent(v), and let s ′(v) = s(v) · c, where
c is the first character of the string represented by the edge {parent(v), v}. Finally,
we say that v is a proper node of T when s′(v) contains neither $P or $Q . Now we
can define T ′; T ′ is the set of the strings s ′(v) for any proper node v in T for which
#substr(P, s′(v))
= #substr(Q, s ′(v)). One can see that Card(T ′) is in O(n) because
T contains O(n) nodes. Besides, Tmin ⊆ T ′ by definition. Finally, using the suffix
tree, #substr(P, s ′(v)) (respectively #substr(Q, s ′(v))) can be computed in O(n) time,
and T ′ thus can be computed in O(n) time as well.

Second, Kolman and Waleń describe how to maintain the set �, test the condition
of Line 6 of algorithm ApproxUMCSP, and realize the cuts in O(1) time, leading
to O(n) overall. For this, they use a data structure from Gabow and Tarjan [7] that
ensures an amortized O(1) time for each such operation.

34.3.2.4 From UMCSP to the Signed Case SMCSP. The previous description
was focused on UMCSP, that is, the unsigned case. If we want to adapt ApproxUM-
CSP to the signed case (a problem that we call SMCSP), then a few adaptations need

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.3 CHARACTER-BASED CRITERIA 791

to be made. For any string S, let −S denote its reversed string, both in order and sign.
Then three main changes need to be done:

� #substr(P, X) now should count the number of occurrences of X and −X in P
� The set T ′ should be computed using the suffix tree T ′ of string S′ =

P$P Q$Q(−P)$P (−Q)$Q (where the brackets are here just to delimit strings)
� Whenever a duo ab should be cut, all duos −b − a should be cut as well

None of these adaptations changes the time complexity or the correctness of the
algorithm. However, the last one increases the approximation ratio of ApproxUM-
CSP by a factor of two.

34.3.2.5 Remarks. First, we note that approximation algorithm ApproxUM-
CSP is actually a �(k) approximation algorithm because instances exist for which
the optimum number of blocks is O(1), whereas the number of blocks returned by the
algorithm is O(k). Strings P = ba{ab}k−1 and Q = abk [9] form such an instance;
a partition of P (respectively Q) exists containing three blocks, but ApproxUMCSP
will return a solution containing k + 1 blocks.

It also should be noted that, strangely enough, if instead of trying to minimize the
number of breakpoints, we aim to find a full matching that maximizes the number
of adjacencies, then a four-approximation algorithm exists [2] (i.e., an approxima-
tion ratio that does not depend on k). However, each problem is, in some sense,
the dual of the other. This raises the question of whether we can do better than an
O(k)-approximation algorithm for BAL-FMB, and more precisely, is BAL-FMB O(1)-
approximable?

34.3.3 An Exact Algorithm for UNBAL-FMB

In this section, we focus on the problem UNBAL-FMB in which the goal is to find a
full matching M between two unbalanced signed genomes in such a way that the
permutation induced by M minimizes the number of breakpoints.

Here, we give the main elements of an exact algorithm that solves UNBAL-FMB,
published in [1]. The problem is known to be APX-hard, even for instances in which
P does not contain duplicates and occ(g,Q)≤ 2 for any gene g from Q [2]. Thus, the
algorithm we give here is exponential; our approach is to express UNBAL-FMB in a
0–1 linear program, that is, a series of inequalities implying Boolean variables only,
together with an objective function on Boolean variables, that we wish to maximize.

The main interest in such an approach lies in the fact that there has been many
efforts in the past to develop software that can handle such programs even if they
contain a large number of variables and inequalities. Thus, our hope is that powerful
enough solvers (such as minisat+ or CPLEX) can provide optimal solutions on real
data in a reasonable time. If this is the case, then we have two options:

� We can solve exactly those instances for themselves. However, even if this
works for some data, one easily can imagine that instances exist that never
will be solved in reasonable time.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

792 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

� Thanks to the exact results obtained by this method, we can analyze and evalu-
ate one or several heuristic(s), as was done, for example, in [1].

As we will see later, we have tested our program on a set of 12 genomes of bacte-
ria, for which all 66 pairwise comparisons were achieved rapidly.

We first present below the complete 0–1 linear program in itself (full matching
adjacencies [FMA], a name that will be justified later), together with an explana-
tion of the different variables we have defined and used. Next, a few data reduc-
tion rules are provided that aim to reduce the input size, and hence to speedup the
program.

Program FMA takes as input two genomes P and Q with duplicates, of respec-
tive lengths m P and m Q , and solves problem UNBAL-FMB. Recall that � denotes
the set of integers (representing genes) on which P and Q have been built. The
objective function, the variables and the constraints involved now are discussed
(see also Figure 34.2).

34.3.3.1 Variables

• Variables ad j(i, j, k, �), 1 ≤ i < j ≤ m P and 1 ≤ k < � ≤ mQ , represent ad-
jacencies according to M. Our initial problem is to try to minimize the num-
ber of breakpoints; however, maximizing the number of adjacencies makes the
writing of our 0–1 linear program more simple. Besides, it can been seen easily
that because Card(M) is given by the input, the full matching that minimizes
the number of breakpoints also maximizes the number of adjacencies. Thus, we
only focus on adjacencies here, and ad j(i, j, k, �) = 1 if and only if the three
following properties are satisfied:

1. One of the two following cases occur:

– (P[i], Q[k]) and (P[j], Q[�]) belong to M, P[i] = Q[k] and P[j] =
Q[�]

– (P[i], Q[�]) and (P[j], Q[k]) belong to M, P[i] = −Q[�] and
P[j] = −Q[k]

2. P[i] and P[j] are consecutive in P according to M
3. Q[k] and Q[�] are consecutive in Q according to M

• Variables a(i, k), 1 ≤ i ≤ m P and 1 ≤ k ≤ mQ , define a matching M: ai,k = 1
if and only if P[i] is matched with Q[k] in M.

• Variables bX (i), X ∈ {P, Q} and 1 ≤ i ≤ m X , define whether the gene ap-
pearing at position i of X is covered by the matching M. More precisely,
bX (i) = 1 if and only if X [i] is covered by M. Clearly,

∑
1≤i≤m P

bP (i) =∑
1≤k≤mQ

bQ(k), and this is precisely the size of M.

• Variables cX (i, j), X ∈ {P, Q} and 1 ≤ i < j ≤ m X , determine whether genes
at positions i and j in X are consecutive genes according to M: cX (i, j) = 1 if
and only if X [i] and X [j] both are covered by M, and no gene X [p], i < p <

j , is covered by M.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.3 CHARACTER-BASED CRITERIA 793

Figure 34.2 Program FMA solves exactly UNBAL-FMB.

34.3.3.2 Constraints. Assume 1 ≤ i < j ≤ m P and 1 ≤ k < � ≤ m Q .

• Constraint C.01 ensures that each gene of P and of Q is matched at most once
(i.e., bP (i) = 1 (respectively bQ(k) = 1) if and only if gene i (respectively k) is
matched in P (respectively Q)). Observe that in any matching, any two genes
that are mapped together necessarily have the same label (except maybe for the
sign), and hence, we do not have to ask explicitly for a(i, k) = 0 in case P[i]
and Q[k] are two different genes.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

794 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

• Constraint C.02 actually defines the fact that we ask for a full matching. For
each gene g, min(occ(g, P), occ(g, Q)) occurrences of g must be covered by
M in both P and Q.

• Constraints in C.03 and C.04 are concerned with our definition of consecutive
genes. Variable cX (i, j) is equal to 1 if and only if no p exists such that i < p <

j and bX (p) = 1. It is worth noticing here that, according to these constraints,
one may have cX (i, j) = 1 even if one of the genes X [i] or X [j] is not covered
by M.

• Constraints in C.05 to C.10 define variables adj. In the case where
P[i] = Q[k] and P[j] = Q[�], constraints C.05 and C.06 ensure that we
have adj(i, j, k, �) = 1 if and only if all variables a(i, k), a(j, �), c1(i, j), and
c2(k, �) are equal to 1. In the case where P[i] = −Q[�] and P[j] = −Q[k],
Constraints C.07 and C.08 ensure that we have adj(i, j, k, �) = 1 if and only if
all variables a(i, �), a(j, k), c1(i, j), and c2(k, �) are equal to 1. Constraint C.09
sets variable adj(i, j, k, �) to 0 if none of these two cases hold. Finally, thanks
to constraint C.10, one must have at most one adjacency for every pair (i, j).

The objective of Program FMA is to maximize the number of adjacencies between
the two considered genomes. According to the above data, this objective thus reduces
in our model to maximizing the sum of all variables adj(i, j, k, �).

34.3.3.3 Speeding Up the Program. Program FMA has O((m P mQ)2) vari-
ables and O((m P m Q)2) constraints. To speed up the execution of the program, there
are some simple rules to apply for reducing the number of variables and constraints
in FMA.

First, the genomes are pairwise preprocessed to delete all genes that do not appear
in both genomes because we know that no full matching will contain them.

Second, for any gene g for which occ(g, P) = occ(g, Q) = 1 and |P[i]| =
|Q[k]| = g, the corresponding variable ai,k is set directly to 1 as well as the two
variables bP (i) and bQ(k).

Also, if two genes appearing only once in each genome occur consecutively or in
reverse order with opposite signs, the corresponding variable adj is set directly to 1,
and the related constraints are discarded.

Finally, if for two genes, say occurring at positions i and j in P , at least one gene
g occurring between position i and j in P must be covered in any matching M (e.g.,
if all occurrences of g appear between i and j in P), then the corresponding variable
cP (i, j) and the variables adj(i, j, k, �) for all 1 ≤ k < � ≤ m Q are set directly to
0, and the related constraints are discarded. Of course, the same reasoning applies
for two positions k and � in Q and the variables cQ(k, �) and adj(i, j, k, �) for all
1 ≤ i < j ≤ m P .

34.3.3.4 Remarks. FMA has been tested on 12 genomes of γ -Proteobacteria (a
subfamily of bacteria), which contain from 564 to 5540 genes (3104 on average).

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

34.4 CONCLUSION 795

This led to 66 pairwise comparison that were achieved within two minutes (leading
to an average of 1.7 s per comparison) using the solver CPLEX [1].

FMA works for unbalanced genomes and can be simplified greatly to be adapted
to balanced ones; more precisely, some variables and thus some constraints do not
need to exist anymore. For instance, if P and Q are balanced and of length n, bP (i)
(respectively bQ(i)) is set to 1 for any 1 ≤ i ≤ n, and cP (i, j) (respectively cQ(i, j))
are unnecessary. The same goes for some constraints such as (C.03) and (C.04).

34.3.4 Other Results and Open Problems

34.3.4.1 Balanced Case. Apart from the approximation algorithm given in Sec-
tion 34.3.2, the main recent result is a fixed-parameter tractable (FPT) algorithm for
UMCSP by Damaschke [5]. More precisely, the main result from [5] is the following:
an FPT algorithm for UMCSP exists on P and Q, whose exponential running time
involves only parameters b and r , where:

� b is the minimum number of blocks in an optimal solution for UMCSP on P
and Q

� r is the repetition number of P , that is, the maximum i such that P = X · Y i · Z
for some strings X, Y , and Z , where Y is nonempty.

Two main open problems remain:

1. Does an approximation algorithm exist of ratio O(1) for SMCSP?

2. Is UMCSP (respectively SMCSP) fixed-parameter tractable on b only?

34.3.4.2 Unbalanced Case. In this case, to our knowledge, no positive result
(polynomial time approximation scheme, approximation algorithm or FPT algo-
rithm) is known for UNBAL-FMB, even for restricted cases. In that sense, the field
is totally open.

We note though, that a related problem, called Zero (full) Matching Breakpoint
Distance (ZMBD), has been shown to be polynomial in [2]. ZMBD is the following
decision problem: given two signed unbalanced genomes, determine whether a full
matching M exists such that the number of breakpoints in the permutation induced
by M is equal to zero.

34.4 CONCLUSION

In this chapter, we have presented different algorithmic techniques for comparing
pairs of genomes to infer (dis)similarity measures between them. The two main types
of measures that have been studied were: (i) common and conserved intervals in the
first part and (ii) breakpoints and adjacencies in the second part.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

796 COMPUTING GENOMIC DISTANCES : AN ALGORITHMIC VIEWPOINT

We intentionally did not provide a survey of all existing results on the topic, but we
have chosen to focus only on a few algorithms to show the different techniques and
ideas that lie behind those algorithms. We think and hope this could be of interest for
the reader. It also allowed us to show a sample of the ideas that have been developed
lately in the algorithmic field of comparative genomics.

As is shown in this chapter, all aforementioned measures can be computed in poly-
nomial time whenever genomes are permutations. On the contrary, when genomes
contain duplicates, and in case a matching is required, all measures are hard to com-
pute and even hard to approximate, even in very restricted cases. It is shown, how-
ever, that when genomes are balanced, some positive results exist in the form of
approximation and FPT algorithms in the full matching case.

The most challenging questions that remain open in this domain are probably
those that ask for positive results for comparing unbalanced genomes using a match-
ing and any of the aforementioned measures.

REFERENCES

1. S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. Efficient tools for comput-
ing the number of breakpoints and the number of adjacencies between two genomes with
duplicate genes. J Comput Biol, 15(8):1093–1115, 2008.

2. S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. On the approximability of
comparing genomes with duplicates. J Graph Algorithm Appl, 13(1):19–53, 2009.

3. A. Bergeron, C. Chauve, F. de Montgolfier, and M. Raffinot. Computing common inter-
vals of K permutations, with applications to modular decomposition of graphs. SIAM J
Discrete Math, 22(3):1022–1039, 2008.

4. A. Bergeron and J. Stoye. On the similarity of sets of permutations and its applications to
genome comparison. J Comput Biol, 13(7):1340–1354, 2006.

5. P. Damaschke. Minimum common string partition parameterized. Proceedings of WABI
2008, Volume 5251 of Lecture Notes of Computer Science, Springer, New York, 2008,
pp. 87–98.

6. G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics of Genome
Rearrangements. MIT Press, Cambridge, MA, 2009.

7. H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. J Comput Syst Sci, 30(2):209–221, 1985.

8. A. Goldstein, P. Kolman, and J. Zheng. Minimum common string partition problem: Hard-
ness and approximations. Electron J Combinator 12(1):paper R50, 2005.

9. P. Kolman and T. Waleń. Reversal distance for strings with duplicates: Linear time ap-
proximation using hitting set. Electron J Combinator, 14(1):R50, 2007.

10. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and sub-constant
error-probability PCP characterization of NP. Proceedings of STOC 97, ACM, Mountain
View, CA, 1997, 475–484.

11. D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909–917,
1999.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

REFERENCES 797

12. T. Schmidt and J. Stoye. Quadratic time algorithms for finding common intervals in two
and more sequences. Proceedings CPM 2004, Volume 3109 of Lecture Notes in Computer
Science, Springer, New York, 2004, pp. 347–358.

13. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

14. T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two per-
mutations. Algorithmica, 26:290–309, 2000.

P1: OSO
c34 JWBS046-Elloumi December 2, 2010 9:49 Printer Name: Sheridan

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35
WAVELET ALGORITHMS

FOR DNA ANALYSIS

Carlo Cattani

35.1 INTRODUCTION

One of the main tasks of the genome project is to understand completely the un-
derlying biological function from a possible interpretation of the given sequence of
nucleotides that is from the distribution of the four symbols A, C, G, T along the
sequence [21, 24, 25]. The main hypotheses of this project are as follows:

1. The activity (functional) of the organism is a result of the distribution of nu-
cleotides.

2. The distribution of nucleotides should follow some hidden rules.

3. It should be possible to discover these rules by singling out some regular fea-
tures like periodicity, typical patterns, trends, sequence evolution, and so on.

In recent years, the analysis of DNA sequences has been focused mainly on the
existence of hidden law, periodicities, and autocorrelation [14, 17, 24, 34]. The main
task is to find (if any) some kind of mathematical rules or meaningful statistics in the
nucleotides distribution. This would help us to characterize each DNA sequence to
construct a possible classification. From a mathematical point a view, the DNA se-
quence is a symbolic sequence (of nucleotides) with some empty spaces (no coding
regions). To get some numerical information from this sequence, it must be trans-
formed into a digital sequence. It follows that the symbolic sequence is transformed
into a very large time series (from one half of a million digits for the primitive

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

799

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

800 WAVELET ALGORITHMS FOR DNA ANALYSIS

organisms such as fungus, eukaryotes, to several million as for mammals, like the
nearly 1.5 billion nucleotides for human DNA). These large sequences look like
some random sequence, from which it seems to be impossible to single out any sin-
gle correlation (see e.g., [17] and references therein).

The DNA sequence consists of a large string made by four chemical elements
(nucleotides) called bases (or base pairs): adenine (A), cytosine (C), guanine (G),
and thymine (T). They are combined in a such way to form a long filament that has
the structure of a double spiral, which is a very steady chemical structure. When the
symbolic sequence of A , C , G , T is digitalized into one or more sequences of digits,
one may benefit from the statistical analysis of the digitalized time series (signal)
so that the genome can be characterized by the classical statistical parameters like
variance, deviation, nonclassical-like complexity, fractal dimension, or long-range
dependence.

In any case, one of the main problems is to assign one (or more) representative
digital time series (discrete time signal) to the symbolic sequence of the genome so
that the representation would be the most suitable for the statistical–mathematical
analysis. However, the digitalization of a symbolic sequence must be done with care
by avoiding some dependence or degeneracy of the representation. In other words,
it is always possible that the analysis of the numerical signal could be dependent on
the method used for the digitalization.

Some problems in DNA analysis are the understanding of the underlying genomic
language to find an organization principle of the genome, to discover some kind of
order (symmetries) or hidden structures (patches or regular patterns), and to under-
stand the existence of functions on genes such as localized periodicities, correlation,
complexity, and so on. The easiest mathematical model is based on the transfor-
mation of the symbolic string into a numerical string based on the Voss indicator
function [40, 41], which is a discrete binary function. In the following, a complex
representation is proposed to single out a fractal law in the cumulative distribution of
nucleotides. The existence of patterns and symmetries is shown through the cluster
analysis of the wavelet coefficients [12, 13].

Only recently, the analysis of DNA sequences has been improved by using
wavelets (see, e.g., [14, 34, 38]). With wavelet analysis, it is possible to single out
singularities, frequency content, fractal nature, and compression properties on DNA
sequences [1, 4, 34, 38, 46]. This choice was motivated by the fundamental proper-
ties of wavelets, in fact,

1. With the localization property [14], it is possible (at least in principle) to single
out local behavior and to characterize local spikes and jumps [12, 14].

2. Because of the decorrelation process of the wavelet transform [37], the DNA
sequence is decomposed into sequences of detail coefficients at different levels,
each one expressing some kind of autocorrelation on the corresponding level.

However, the wavelet transform of a sequence with a huge number of data (like the
walks on DNA) gives a (huge) sequence of detail coefficients, which is meaningless

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.1 INTRODUCTION 801

when we want to focus on the existence of local (short) or long-range correlations. If
we are interested on the jumps that can develop from one element of the series and
the closer element of the sequence, then we must reduce the number of the elements
to be mapped into the wavelet space. This can be achieved by a decomposition of
the sequence into short segments of equal length and by a wavelet transform to be
applied to each segment.

A fundamental problem in DNA analysis is whether a long-range correlation
exits in the digital representation of the DNA sequence [3, 6, 10, 11, 29, 32, 33,
35, 36, 40, 41, 42, 45]. A correlation in a digital signal can be linked roughly with
the concept of dependence, in a statistical sense, of elements that are far away from
each other. Correlation in a DNA sequence is interesting because base pairs in a se-
quence of millions of pairs seem to have some statistical dependence. The existence
of correlation in DNA has been explained with the so-called process of duplication-
mutation. According to [32, 39], in the evolutionary model, the actual DNA sequence
results from an original short-length chain that was duplicating and modifying some
pieces of the sequence. Because of this, the characterizing 1/ f power law decay
followed [10, 11, 41].

The power law for long-range correlations is a measure of the scaling law, show-
ing the existence of self-similar structures similar to the physics of fractals. The
long-range correlation, which can be detected by the autocorrelation function, im-
plies the scale independence (scale invariance), which is typical of fractals. The au-
tocorrelation also is used for measuring linear dependence and periodicity. It has
been applied to the analysis of DNA sequences [8, 31, 33, 35, 36, 40, 41] to prove
the existence of scale invariance. However, the preliminary results in this topic were
disputed [10, 11, 30] because of the limited number of available data and because of
different approaches to this analysis. On the other hand, the existence of patchiness
and correlation would imply some important understanding of DNA organization. It
has been observed that the source for long-range correlation is linked with the exis-
tence of patchiness in the DNA sequence. The identification of these patches could
be the key point for understanding the large-scale structure of DNA.

This chapter is organized as follows: Section 35.2 deals with some preliminary
remarks on DNA and DNA representation. The indicator matrix is given, and its
global fractal estimate is computed as well. In particular, the indicator matrix shows
the existence of fractal patterns. Section 35.3 deals with some remarks on statistical
parameters on the concept of long range correlation. The power spectrum is com-
puted for candida’s and dog’s DNA, and the existence of long-range correlation is
shown. Section 35.4 deals with the Haar wavelet theory. Statistical parameters, such
as variance, fluctuation and the Hurst exponent are expressed in terms of wavelet co-
efficients in Section 35.5. The short Haar wavelet transform is given in Section 35.6.
The cluster analysis of the complex representation and walk on dog’s and candida’s
DNA are given in Section 35.7 and compared with clusters for white noise (random
walks for pseudo random complex sequences). Also, in this case, the existence of
long range correlation and, fractal behavior is shown. The possibility to detect easily
anomalies in base pair distribution by clusters of wavelet coefficients is shown in
some examples.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

802 WAVELET ALGORITHMS FOR DNA ANALYSIS

35.2 DNA REPRESENTATION

35.2.1 Preliminary Remarks on DNA

Genome is the whole set of genetic material (DNA) in the chromosomes of a living
organism. The DNA of each organism of a given species is a long sequence of a
specific (large) number of base pairs. The size of the DNA might range from 105 to
109 base pairs. Each base pair is defined on the four elements alphabet of nucleotides:

A = adenine , C = cytosine , G = guanine , T = thymine

Because the base pairs are distributed along a double-helix, when straightened, the
helix appears as a double strands system:

5′−→ · · · A T T C A T A G · · · 3′−→
3′←− · · · T A A G T A T C · · · 5′←−

Both strands have to be read from 5′ end to 3′ end, left to right, for the upper strand,
and vice-versa for the lower strand. The two sequences on opposite strands are com-
plementary in the sense that opposite nucleotides must fulfill the ligand rules of base
pairs

A ←→ T C ←→ G

In particular, A and G are called purines, whereas C and T are pyrimidines.
In a DNA sequence, there are some subsequences, coding and noncoding regions,

with a special meaning. In particular, genes (coding regions) are characteristic se-
quences of base pairs, and the genes in turn are made by some alternating subse-
quences of exons and introns (except Procaryotes, which miss introns):

A T C G . . .

gene
︷ ︸︸ ︷
A T . . . G A G︸ ︷︷ ︸

...exon...intron...exon...

. . . T C G . . .

gene
︷ ︸︸ ︷
C A . . . T A G︸ ︷︷ ︸

...exon...intron...exon...

. . .

Each exon region is made of triplets of adjacent bases called codon. Because the
bases are four, there are 64 possible codons. Each codon synthesizes a specific amino
acid so that a sequence of codons defines a protein. A protein is a set of 20 different
amino acids, and the amino acids are made by codons. There are only 20 proteins;
therefore, the correspondence codons to proteins is many to one. The exons region
also is called the coding region and because of the triplet formation, it exhibits a
period-three behavior (on short term). So that by a discrete Fourier transform, there
is a peak in correspondence of the frequency 2π/3 (see, e.g., [39]).

Let

A def= {A , C , G , T}

be the finite set (alphabet) of nucleotides and x ∈ A be any member of the alphabet.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.2 DNA REPRESENTATION 803

A DNA sequence is the finite symbolic sequence

S = N × A

so that

S def= {xh}h=1,...,N , N < ∞

being

xh
def= (h, x) = x(h), (h = 1, 2, . . . , N ; x ∈ A) (35.1)

the value x at the position h.

35.2.2 Indicator Function

The indicator function [40] is the map

u : S × S → {0 , 1}

such that for a fixed xh ∈ S

uxh (xk)
def= u(xh, xk) =

{
1 if xh = xk

0 if xh �= xk

(xh ∈ S , xk ∈ S) (35.2)

According to (35.2), the indicator of an N -length sequence easily can be repre-
sented by the N × N sparse matrix of binary values {0, 1}, and this matrix can be
plotted in two dimensions by putting a dot where (Figures 35.1 and 35.2) uhk = 1
and a white spot when uhk = 0 being

uhk
def= uxh (xk) (xh ∈ S , xk ∈ S; h, k = 0, . . . , N − 1)

100 200

100

200

100 200

100

200

Figure 35.1 Indicator matrix (n ≤ 200) for dog’s DNA (left) and candida’s (right).

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

804 WAVELET ALGORITHMS FOR DNA ANALYSIS

500 1000

500

1000

500 1000

500

1000

Figure 35.2 Indicator matrix (n ≤ 1000) for the dog’s DNA (left) and a pseudorandom array
(right).

which results from the following indicator table/matrix:

...
...

...
...

...
...

...
...

...
...

... . .
.

G 0 1 0 0 0 0 0 0 0 1 . . .

C 0 0 0 1 0 0 0 0 1 0 . . .

A 1 0 0 0 1 0 1 1 0 0 . . .

A 1 0 0 0 1 0 1 1 0 0 . . .

T 0 0 1 0 0 1 0 0 0 0 . . .

A 0 0 0 0 1 0 0 1 0 0 . . .

C 0 0 0 1 0 0 0 0 1 0 . . .

T 0 0 1 0 0 1 0 0 0 0 . . .

G 0 1 0 0 0 0 0 0 0 1 . . .

A 1 0 0 0 1 0 0 1 0 0 . . .

uhk A G T C A T A A C G . . .

where both on the bottom and on the left there is the sequence S, and the composition
table is done according to the indicator values uhk .

It is shown in Figure 35.1, and Figure 35.2 (left) that

1. Some motifs are repeated at different scales like in a fractal.

2. Empty spaces are more distributed than filled spaces in the sense that the matrix
uhk is a sparse matrix (having more zeroes than ones).

3. It seems that there are some square-like islands where black spots are more
concentrated.

4. The comparison of the DNA indicator matrix with a corresponding pseudoran-
dom matrix clearly shows the existence of some hidden rule for the correlation
of nucleotides.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.2 DNA REPRESENTATION 805

From the indicator matrix, we can have an idea of the “fractal-like” distribution of
nucleotides; however, there is no one-to-one correspondence between the indicator
matrix and the DNA sequence. This can be realized by the barcode matrix, defined
as follows:

vhk
def= uxh (xk) (xh ∈ S , xk ∈ A; h = 0, . . . , N − 1, k = 1, . . . , 4)

which results from the barcode table

T 0 0 1 0 0 1 0 0 1 0 . . .

G 0 1 0 0 0 0 0 0 0 1 . . .

C 0 0 0 1 0 0 0 0 1 0 . . .

A 1 0 0 0 1 0 0 1 0 0 . . .

vhk A G T C A T A A C G . . .

where the composition table is done according to the indicator values vhk . By putting
a black bar where vhk = 1 and a white bar when uhk = 0, we obtain Figure 35.3.

Let

pX (�), X ∈ A = {A, C, G, T }

be the probability to find the nucleotide X at the distance �; we can see that for higher
values of �, the probabilities tend to assume some constant values thus showing that
nucleotides are distributed heterogeneously. For the the dog’s DNA, it is:

pA = 0.36, pC = 0.19, pG = 0.19, pT = 0.26 (35.3)

and for the candida’s DNA, it is.

pA = 0.32, pC = 0.16, pG = 0.17, pT = 0.35 (35.4)

5000 10000

A

C

G

T

5000 10000

A

C

G

T

Figure 35.3 Barcode matrix (n ≤ 15000) for the dog’s DNA (left) and the candida’s (right).

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

806 WAVELET ALGORITHMS FOR DNA ANALYSIS

35.2.2.1 Global Fractal Estimate by the Correlation Matrix. By using the
indicator matrix, it is possible to give a simple formula that enables us to estimate
the fractal dimension as the average of the number p(n) of one in the randomly taken
n × n minors of the N × N correlation matrix uhk

D = 1

N

N∑

n=2

log p(n)

log n
(35.5)

The fractal dimension of the dog’s DNA and candida are 1.66 ± 0.01, whereas for
the pseudorandom array, it is 1.82 ± 0.01. These values coincide with those already
obtained in [9], for the human DNA by using the more general sandbox formula. It
also should be noticed that the fractal dimension of DNA coincides, up to 10−1, with
the golden ratio number

D ∼= 1 + √
5

2
(35.6)

35.2.3 Representation

The (digital) representation of a DNA sequence is defined as the map of S into
R

�, � ≥ 1. Indeed, the embedding space of representation is based on the four
vectors

Xx : A → R
�, (x ∈ A, � ≥ 1)

in the real space R
�, or almost equivalently in the complex space C

�,

Xx : A → C
�, (x ∈ A, � ≥ 1)

so that X(x) ≡ Xx is a �ple, which is associated with the symbol x ∈ A.
The basic elements of the representation are as follows:

XA = (xA1 , xA2 , . . . , xA�)

XC = (xC1 , xC2 , . . . , xC�)

XG = (xG1 , xG2 , . . . , xG�)

XT = (xT1 , xT2 , . . . , xT�) (� ≥ 1)

The digital representation in R
� or C

� of a N -length DNA sequence is the map
R : N × A → R

� or, for a complex representation, R : N × A → C
� so that S
→

G ∈ R
� and for each xn ∈ S it is

xn
R→ Y(n) (xn ∈ S ;Y(n) ∈ R

�)

being

Y(n)
def= Y(xn)

(1)= Y(x(n))

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.2 DNA REPRESENTATION 807

defined as follows. Each element of the DNA sequence can be considered [2] as the
linear combination

Y(n)
def= u A(xn)XA + uC(xn)XC + uG(xn)XG + uT(xn)XT , (n = 1, . . . , N) (35.7)

The graph of Yn = Y(n) is G and if we define

an
def=

n∑

i=1

u A(xi) , cn
def=

n∑

i=1

uC(xi) , gn
def=

n∑

i=1

uG(xi) , tn
def=

n∑

i=1

uT(xi) (35.8)

then it is

an + cn + gn + tn = n (35.9)

so that, as a consequence of Equation (35.7) and the definition (35.8), the following
identity holds:

nY(n) = anXA + cnXC + gnXG + tnXT

We have a degeneracy (or a loop, circuit, or periodicity) if it is (see, e.g., [44])Y(n) =
0 or, equivalently,

anXA + XC + gnXG + tnXT = 0 (35.10)

If, we do not have a degeneracy, then there is a one-to-one correspondence be-
tween the DNA sequence S and G, (i.e., S ↔ G).

Because of the definition of the indicator function (35.2), it also can be seen that

uxh (xk) = 1 ⇒ Y(h) = Y(k)

35.2.4 Representation Models

This section deals with some of the most popular representation models. In particular,
we have:

� in R
1: It is XA = XC = XG = XT = 1 so that the digitalization is made by the

four sequences [40]: {uA(xn)} {uC(xn)} {uG(xn)} {uT(xn)}
� in R

2:

– In [27, 44], it has been proposed that nucleotides are distributed symmetri-
cally on the half plane x > 0

XA = (sin θ,− cos θ) XC = (cos θ, sin θ)

XG = (cos θ,− sin θ) XT = (sin θ, cos θ)

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

808 WAVELET ALGORITHMS FOR DNA ANALYSIS

with θ ∈
(

0,
π

2

)
, θ �= π

4
. This method has been proposed with the aim

to avoid degeneracy in the sense that the projection on the vertical axis gives
four disjoint values: (− cos θ,− sin θ, cos θ, and sin θ). In particular, in [44],
it is assumed θ = π/6.

– In [22, 23], nucleotides are localized in the four cardinal points

XA = (0 ,−1),XC = (−1 , 0),XG = (1 , 0),XT = (0 , 1) (35.11)

With this choice we cannot avoid degeneracy, but the nucleotides are dis-
tributed symmetrically.

� in C
1: The representation is given in the complex plane so that, given the imag-

inary unit i on the vertical axis, it is

– By assuming that the Euclidean distance in C
1 of A and C is greater than A

and T, we have [7]

XA = (1 , i) ≡ 1 + i ≡
√

2
(

cos
π

4
+ i sin

π

4

)

XC = (−1 ,−i) ≡ −1 − i ≡
√

2

(

cos
5π

4
+ i sin

5π

4

)

XG = (−1 , i) ≡ −1 + i ≡
√

2

(

cos
3π

4
+ i sin

3π

4

)

XT = (1 ,−i) ≡ 1 − i ≡
√

2

(

cos
−π

4
+ i sin

−π

4

)

– By assuming that nucleotides in C
1 are localized on the four cardinal points

[7, 15, 16]

XA = (1 , 0) ≡ 1,XC = (0 ,−i) ≡ −i,XG = (−1 , 0) ≡ −1,

XT = (0 , i) ≡ i (35.12)

� in R
3: In this case, the nucleotides are located in some points of R

3:

– in [28], it is

XA = (1 , 1 ,−1),XC = (−1 ,−1 ,−1),XG = (−1 , 1 ,−1),

XT = (1 ,−1 ,−1)

35.2.5 Constraints on the Representation in R
2

The choice of representation is the fundamental aspect in mathematical modeling of
DNA. In fact, from a statistical point of view, there might be different conclusions
according to the chosen representation. In particular, if we want to avoid degeneracy,
then this implies some constraints on the representation as follows:

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.2 DNA REPRESENTATION 809

Let

XA = (xA , yA) , XC = (xC , yC)

XG = (xG , yG) , XT = (xT , yT)

be the representation of the nucleotides in R
2, the degeneracy condition (35.10) gives

an(xA , yA) + cn(xC , yC) + gn(xG , yG) + tn(xT , yT) = 0

that is

{
an xA + cnxC + gn xG + tnxT = 0

an yA + cn yC + gn yG + tn yT = 0

This system, to be a nonsingular system, must admit only the trivial solution

an = cn = gn = tn = 0

so that it must be

rk

(
xA xC xG xT

yA yC yG yT

)

= 2

For instance, in the four cardinal points (35.11), it is

{−cn + gn = 0

−an + tn = 0

which is solved by

cn = gn , an = tn (35.13)

When the representation is nonsingular, for each n, it is Y(n) �= 0 so that there is
a one-to-one correspondence between the location and the value of Y(n) as

Y(n) = an

n
XA + cn

n
XC + gn

n
XG + tn

n
XT

Even if there is a nontrivial solution of the periodicity, it should be noticed
that the solution (35.13) is indeed far from being observed in real sequences in the
sense that the four nucleotides are not distributed equally in the DNA. For this rea-
son, in the following, we will focus on the cardinal representation because, according
to (35.3) and (35.4), nucleotides are not distributed homogeneously.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

810 WAVELET ALGORITHMS FOR DNA ANALYSIS

35.2.6 Complex Representation

In the following, we will consider the cardinal representation (35.11) in C
1 (35.12)

so that the DNA representation is the N -length one-dimensional complex signal
{Yn}n=0,...,N−1. In this case, from (35.7) and (35.12), we have

Yn = u A(xn) − uC (xn)i − uG(xn) + uT (xn)i

= [u A(xn) − uG(xn)] + [uT (xn) − uC (xn)] i
(35.14)

or

Yn = ξn + ηni , |ξn| + |ηn| = 1 , ξnηn = 0

with

ξn
def= uA(xn) − uG(xn), ηn

def= uT(xn) − uC(xn)

so that the representation is a map S → C
1, and the time series Y(n) is a sequence

of complex numbers

{Yn}n=0,...,N−1 , Yn = ξn + ηni

In the following, the complex value digital sequence {Yn}n=0,...,N−1, in the cardinal
representation (35.12), associated with a N -length DNA sequence shortly will be
called DNA representation (or DNA signal).

35.2.7 DNA Walks

DNA walk (or DNA series) is defined as the series

∑
Yn, n = 0, ..., N − 1 (35.15)

which is the cumulative sum on the following DNA sequence representation:

{

Y0 , Y0 + Y1 , . . . ,

n−1∑

s=0

Ys . . . ,

N−1∑

s=0

Ys

}

Taking into account Equations (35.8) and (35.14), for the complex cardinal represen-
tation, it is

Zn
def=

n−1∑

s=0

Ys =
n−1∑

s=0

{[uA(xs) − uG(xs)] + [uT(xs) − uC(xs)] i}

= (an − gn) + (tn − cn)i

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.2 DNA REPRESENTATION 811

20 40 60

10

20

20 40

10

20

30

Figure 35.4 DNA walk (n ≤ 300) of the candida’s DNA (left) and the dog’s (right).

So that the DNA walk is the complex values signal {Zn}n=0,...,N−1 with

Zn = (an − gn) + (tn − cn)i (35.16)

where the coefficients an, gn, tn , and cn given by Equation (35.8) fulfill condition
(35.9).

The DNA walk (DNA series) on a complex cardinal representation is a complex
series as well. If we map the points

Pn = (� [Zn] ,� [Zn]) = (an − gn , tn − cn), n = 0, ..., N − 1

whose coordinates are the real and the imaginary coefficients of each term of the
DNA walk sequence, then we obtain a cluster showing the existence of some patches
or some kind of self-similarity (Figures 35.4, 35.5). It should be noticed (Figure 35.5)
that nearly all points of the DNA walk lie in the positive sector of the plane so that:
an ≥ gn, tn ≥ cn, (n = n0, . . . , N). Both figures for the candida DNA and the dog’s
(Figures 35.4 and 35.5) show that a fractal behavior exists of the random sequence.

40 80 120

30

60

90

40 80

30

Figure 35.5 DNA walk (n ≤ 750) of the candida’s DNA (left) and the dog’s (right) for n ≤ 900.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

812 WAVELET ALGORITHMS FOR DNA ANALYSIS

35.3 STATISTICAL CORRELATIONS IN DNA

To understand the complex organization of genomes, a central role is played by the
interpretation of correlations in DNA sequence.

35.3.1 Long-Range Correlation

The most popular techniques for measuring correlations in a time series are:

– The direct computation of the correlation function

– Analysis of variance [35] later improved by the detrended fluctuation analy-
sis [36]

– Power spectrum method [33, 40]

– Mutual information function [29]

– Wavelets method [3, 5, 6].

For a given sequence {Y0, Y1, . . . , YN−1}, the variance is

σ 2 def= 1

N

N−1∑

i=0

Y 2
i −

(
1

N

N−1∑

i=0

Yi

)2

(35.17)

and the variance at the distance N − k is

σ 2
k

def= 1

N − k

N−k−1∑

i=0

Y 2
i −

(
1

N − k

N−k−1∑

i=0

Yi

)2

(35.18)

From the variance immediately follows the standard deviation

σ =
√

σ 2 (35.19)

The autocorrelation at the distance k, (k = 0, . . . , N − 1) is the sequence
(see e.g., [8])

ck
def= 1

σ 2

(
1

N − k

N−k−1∑

i=0

Yi Yi+k − 1

(N − k)2

N−k−1∑

i=0

Yi

N−k−1∑

i=0

Yi+k

)

(35.20)

with k = 0, . . . , N − 1.
A simplified definition of correlation, in the fragment F − N has been given [20]

as follows:

ck
def=

N−1−k∑

i=F

1

N − F − k
uxi (xi+1+k)

with the indicator given by Equation (35.2).

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.3 STATISTICAL CORRELATIONS IN DNA 813

The power spectrum can be computed as the Fourier transform of ck as follows:

Sk
def= ĉk =

N−1∑

n=0

cne−2πink/N

If ck = 0, then there is no linear correlation; ck > 0 means that there is a strong
(linear) correlation (anticorrelation when ck < 0), whereas c0 = 1 doesn’t give any
information about correlations. A true random process has a vanishing correlation
ch = δ0h and its power spectrum Sh is constant. Its integral gives the Brownian mo-
tion (random walk) whose power spectrum is proportional to 1/k2.

It has been shown [3, 5, 45] that correlations in DNA are linear. However, the
main problem of this measure is that it strongly depends on the representation and
on the length of the sequence, and for nonbinary representation, it is affected by
spurious results [8]. Moreover, the definition (35.20) holds only for real values of the
representation.

It also has been noticed [8, 42] that to have accuracy and to avoid statistical fluctu-
ations in the computation of the autocorrelation function, a long sequence is needed.

The statistical fluctuation is ε = 1√
N

so that the autocorrelation is measured by

ck ± 1√
N

. Therefore, when the sequence is shorter then its fluctuation is larger.

Moreover, there are several critical comments on the direct measure of correlation:

– Different sequences may exhibit the same correlation functions

– Correlation functions obtained for the whole sequence may be different for a
subsequence

35.3.1.1 Covariance Matrix. For a better understanding of the correlation, it
also has been proposed to take into account the crosscorrelation [29] function. To
define the crosscorrelation matrix, we need some basic definitions of probability; let
pAB(�) be the joint probability of observing the symbol A and B, of the alphabet
A = {A, C, G, T}, separated by a distance � in the DNA sequence S, and

pA×(�)
def=

4∑

B=1

pAB(�) p×B(�)
def=

4∑

A=1

pAB(�)

the cumulated probability density. The cross-correlation matrix between nucleotide
A ∈ A and nucleotide B ∈ A is defined as [32] follows:

	AB(�)
def= pAB(�) − pA×(�)p×B(�) (35.21)

In principle, there are 16 correlation functions, but because of symmetries [29, 32],
the number of independent functions reduces to nine.

Therefore, the computation of the correlation function depends on how it com-
putes the probability on a finite N -length sequence.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

814 WAVELET ALGORITHMS FOR DNA ANALYSIS

Several methods [32] can be used to estimate the probability that enter in the
Equation (35.21); the simplest is the frequency estimator. It is assumed that the prob-
ability is given as the ratio of the number of counts events NA over the total number

of count N : pAB = NAB

N
.

35.3.1.2 Analysis of Variance and Detrended Fluctuation Analysis.
With this method as a measure of the correlation, the variation is taken of variance
along some sliding windows. Given a window of length σ , it first computes a mov-
ing average of length σ . This average can overlap or not depending on the analysis.
As a second step, the variance of this moving averages sequence is computed. This
variance as a function of σ can give the information about correlation in the case of
stationary data.

Detrended fluctuation analysis improves the analysis of variance, and it is based
on the following steps [8, 36]:

� Sequence splitting of the N -length DNA series (random walk) into σ = N/�

nonoverlapping segments and defining the local trend in each segment
� Defining the detrended walk as the difference between the random walk and

the local trend
� Computing the variance in each segment and the average of these variances

over all segments.

Although this method is very popular, it has been shown [26] that it is impossible
to avoid fully the influence of trends on this analysis.

35.3.1.3 Mutual Information Function. This method is based on the mutual
information function defined as [29, 32] follows:

M(�)
def=

∑

AB

pAB(�) log2
pAB(�)

pA×(�)p×B(�)

which can be considered the average over all correlation functions. In absence of a
correlation, it is M(�) = 0.

35.3.2 Power Spectrum

Let {Yn}n=0,...,N−1 be a given series, the discrete Fourier is the sequence

Ŷs = 1

N

N−1∑

n=0

Yne−2π ins/N , s = 0, . . . , N − 1

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.3 STATISTICAL CORRELATIONS IN DNA 815

The power spectrum of the sequence {Yn}n=0,...,N−1, which is the mean square
fluctuation, is defined as [18] follows:

Sk
def=

k−1∑

s=0

∣
∣Ŷs

∣
∣2

(35.22)

The power spectrum of a stationary sequence, gives an indirect measure of the
autocorrelation. A long-range correlation can be detected if the fluctuations can be
described by a power law so that

Sk
∼= α

k

max
1≤k≤kmax

[αk]
1 ≤ k ≤ kmax

with α >
1

2
.

The fluctuation exponent α, with its values, characterizes a sequence as

1. Anti-correlated: α < 1/2

2. Uncorrelated (white noise): α ∼= 1/2 Figure 35.7

3. Correlated (long-range correlated): α > 1/2

4. 1/ f noise: α ∼= 1

5. Nonstationary, random-walk like: α > 1

6. Brownian noise: α ∼= 3/2

For the human DNA, [7] a long-range correlation was observed only for coding
regions with α = 0.61. However, this value also can be seen for dog’s and candida’s
DNA (Figure 35.6) for the complete sequence (coding and noncoding regions), even
if by including the noncoding regions this value is a little bit higher being α ∼= 0.65
for the dog’s, and α ∼= 0.62 for the candida’s DNA, respectively.

50 100

1

50 100

1

Figure 35.6 Power spectrum for dog’s DNA (left) and candida’s DNA (right) with the corre-
sponding least-square linear fit α = 0.65 for the dog’s DNA and α = 0.62 for the candida’s DNA,
respectively.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

816 WAVELET ALGORITHMS FOR DNA ANALYSIS

50 100

1

Figure 35.7 Power spectrum for white noise (random sequence (35.23)) with the corresponding
least-square linear fit: 0.5 k.

A pseudorandom (white noise) complex sequence similar to the cardinal complex
representation (35.14) can be defined as follows:

Rn
def= (−1)r1 ir2 (35.23)

with r1 , r2, random integer. It looks like

{−1, i, 1, 1,−i, i,−1,−i, i, 1,−i, i,−1, i, 1,−i,−i,−i,−1,}

and its fluctuation parameter is α ∼= 0.5 (see Figure 35.7).
It is interesting to note that the power spectrum for a step function

Yh =
{

1, 0 ≤ h ≤ (N − 1)/2

0, (N − 1)/2 < h ≤ N − 1

is Sk ∝ 1/k2. This was commented [32] by the fact that for each DNA sequence, in
one half of the chain the distribution of C and G is higher, whereas the distribution
of A and T is lower and vice-versa in the second half. Therefore, it is expected that
whatever is the representation, the power spectrum is characterized by a 1/k2 decay.

When the power spectrum is a power-law function

S(k) = Sk ∝ 1

kα

this function is scale invariant (like fractals), that is, f (λx) = λH f (x). It can be
shown (see e.g., [32]) that for the power-law functional dependence, in the N → ∞
limit, it is

S(λk) ∝ λ1−a S(k) S(k) = 1/kb (35.24)

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.3 STATISTICAL CORRELATIONS IN DNA 817

with k � 1 − a and a being related to the so-called Hurst exponent. In other words,
for a power-law function, the power spectrum is scale invariant (like a fractal).

In particular, from Equation (35.24) it follows that when b � 1 and a � 0, the
correlation function has a slow decay to zero, and the spectrum more properly is
called 1/ f -noise (or white noise). This spectrum appears in many natural phenomena
(noise in electronic devices, traffic flow, signals, radio-antenna, and turbolence).

It also has been observed [6] that for scale-invariant functions, the standard devi-
ation (35.19), as a function of the scale n, is

σ (2n) = σ (20)2n(H−1) (35.25)

where H is the Hurst exponent. So that in a log–log plot

log2 σ (2n) = n(H − 1) log2 σ (20)

we obtain a straight line whose slope gives an estimate of H .
The power spectrum 1/k has been observed in DNA sequences [31, 33]; however,

it is not yet clear what the correlation function should be (step-function, power law
decay, or white-noise), and in particular if a single length scale or a multilength scale
exists [32]. This scale dependence (or self-similarity) of DNA cannot yet been ex-
plained from biological point of views. A possible explanation could be the dynamic
process of the evolution or maybe the functional activity inside the constrained do-
main (like the fractal shape of brain, lungs, etc.), which might have some influence
on the spatial geometry [30].

The biological explanation of long-range correlations can be explained by the
existence of heterogeneity in DNA (i.e., a different density distribution of bases). The
main questioning is about the power law spectrum: 1/k [39] or 1/k2 [32]. Indeed, it
has been observed that the power spectrum is nearly flat for low and high frequencies
and only the central part has a low power decay.

However, it has been observed [32, 33] that the existence of long-range correlation
in DNA should be intended from a statistical point of view in the sense that far away
base pairs tend to have a similar variation. In other words, this correlation should be
understood as a periodic distribution of base pairs without a causality law between
base pairs located at different segments far away from each other.

35.3.3 Complexity

The existence of repeating motifs, periodicity, and patchiness can be considered a
simple behavior of sequence, whereas nonrepetitiveness or singularity is taken as a
characteristic feature of complexity. To have a measure of complexity, for an n-length
sequence, the following has been proposed [7]:

K = log �1/n

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

818 WAVELET ALGORITHMS FOR DNA ANALYSIS

50 100 200

0.5

1.3

1.6

Figure 35.8 Complexity for the first 200 base pairs of a dog’s DNA and a candida’s DNA.

with

� = n!

an!cn!gn!tn!

By using a sliding n-window [7] over the full DNA sequence, one can visualize
the distribution of complexity on a partial fragment of the sequence. For the whole
sequence, the asymptotic constant value is Figure 35.8

K ∼= 1.3

35.4 WAVELET ANALYSIS

Wavelet analysis can be considered a good tool [3, 5, 32, 46] for studying the het-
erogeneity in a time series, particularly in a DNA sequence. Heterogeneity briefly
can be described as follows: in some fragments of DNA, a higher concentration of
nucleotides exits C and G with a poor distribution of A and T, whereas on the con-
trary, other fragments are more rich of A and T and poor of C and G (see Figure 35.3
and Equations (35.3) and (35.4)). Thus, a fundamental problem is to make a partition
of a DNA sequence into homogenous segments. This segmentation can be done by
minimizing the variance (or by maximizing the entropy [8]).

The wavelet transform expresses the signal in terms of dilated and scaled instances
of the wavelet basis functions. If we call W [f]x0 the wavelet transform of the signal
f (x) computed in x = x0 at the scale 2−n and h(x0) the local Hölder exponent, then
it is [3] W [f]x0 � 2−nh(x0). Therefore, wavelet transform is one of the most expedi-
ent tools for detecting singularities. It can be used to define a generalization of the

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.4 WAVELET ANALYSIS 819

box-counting method, the so-called wavelet transform modulus maxima, to focus on
the scaling behavior [3] and to visualize the multifractal property.

In this section, some fundamentals on the Haar wavelet theory will be given and
applied to the analysis of DNA sequences.

35.4.1 Haar Wavelet Basis

The Haar scaling function ϕ(x) is the characteristic function on [0, 1]; its family of
translated and dilated scaling functions is defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕn
k (x)

def= 2n/2ϕ(2n x − k) (0 ≤ n , 0 ≤ k ≤ 2n − 1)

ϕ(2n x − k) =
⎧
⎨

⎩
1 , x ∈ Ωn

k Ωn
k

def=
[

k

2n
,

k + 1

2n

)

0 , x �∈ Ωn
k

(35.26)

The Haar wavelet family {ψn
k (x)} is the orthonormal basis for the following L2(R)

functions [19]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψn
k (x)

def= 2n/2ψ(2n x − k) ||ψn
k (x)||L2 = 1

ψ(2n x − k)
def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1 x ∈
[

k

2n
,

k + 1/2

2n

)

1 x ∈
[

k + 1/2

2n
,

k + 1

2n

)

(0 ≤ n , 0 ≤ k ≤ 2n − 1)

0 elsewhere
(35.27)

35.4.2 Haar Series

Let VN be the subspace of L2(R) of the piecewise constant functions y(x) with com-
pact support on ΩN

k (N fixed, k ∈ Z):

VN ≡ {y(x) ∈ L2(R) y(x) = Yk = constant

x ∈ ΩN
k y(x) = 0 x �∈ ΩN

k (k = 0, . . . , N − 1)}

Any y(x) ∈ VN , according to Equations (35.26) and (35.27), can have two equivalent
representations [12, 13]

y(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N−1∑

k=0

Yk ϕN
k (x)

αϕ(x) +
M−1∑

n=0

2n−1∑

k=0

βn
k ψn

k (x) (2M = N)

(35.28)

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

820 WAVELET ALGORITHMS FOR DNA ANALYSIS

in terms of scaling functions and Haar wavelets, respectively. So the piecewise
constant function y(x), interpolating the points {xi , Yi }, with xi = i/(2M − 1),
i = 0, . . . , 2M − 1, is such that y(x) = y(xi) = Yi , ∀ x ∈ ΩN

i .
In general, any function (not only piecewise constant) F(x) in L2(R) can be re-

constructed completely as Equation (35.28) in terms of wavelet series [12–14, 19].
Thus, by fixing the scale of approximation, or resolution N = 2M < ∞, any function
F(x) ∈ L2(R) might be approximated by its projection π N F(x) into VN , (N = 2M),
that is (in the case of Haar wavelets) by a piecewise constant function, like in Equa-
tion (35.28). Formally, both representations in Equation (35.28) are equivalent; in
both cases, we still have the piecewise constant interpolation, but the wavelet repre-
sentation is based on the wavelet coefficients α, βn

k , having some direct interpretation
of the “local” behavior of the piecewise constant function (and the data as well). The
coefficients can be defined as follows.

The scalar product of two functions F(x), G(x), of L2(R), is defined as

〈F(x), G(x)〉 def=
∫ ∞

−∞
F(x)G∗(x)dx (35.29)

It can be shown easily that Haar wavelets are orthogonal functions in the sense
that

〈ϕn
k (x), ϕm

h (x)〉 = 2(n+m)/2δnmδhk 〈ϕ(x), ψm
h (x)〉 = 0

〈ψn
k (x), ψm

h (x)〉 = 2(n+m)/2δnmδhk

(35.30)

where δhk is the Kroenecker symbol. Because Haar wavelets are real functions, it is
ψn

k (x) = ψ∗n
k (x). Thus, from Equations (35.29) and (35.30), by a scalar product with

the basis functions, we obtain the following wavelet coefficients:

αk = 〈F(x), ϕk(x)〉 =
∫ ∞

−∞
F(x)ϕk(x)dx =

∫ k+1

k
F(x)ϕk(x)dx

βn
k = 〈F(x), βn

k (x)〉 =
∫ ∞

−∞
F(x)βn

k (x)dx =
∫ (k+1)/2n

k/2n

F(x)βn
k (x)dx

that is, according to Equations (35.26) and (35.27)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αk = 2−M
∫ k+1

k
F(x)dx

βn
k = 2n/2

[∫ (k+1)/2n

(k+1/2)/2n

F(x)dx −
∫ (k+1/2)/2n

k/2n

F(x)dx

] (35.31)

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.4 WAVELET ANALYSIS 821

Because the coefficients of the series (35.28) are linearly dependent on the dis-
crete values Yk , the wavelet coefficients can be computed by the (discrete) wavelet
transform WN as defined in the following section.

35.4.3 Discrete Haar Wavelet Transform

Let YYY ≡ {Yi }, (i = 0, . . . , 2M − 1, 2M = N < ∞, M ∈ N) be a real and square
summable time series YYY ∈ K

N ⊂ �2 (where K is a real field), sampled at the dyadic
points xi = i/(2M − 1), in the interval restricted for convenience and without restric-
tion to Ω = [0, 1].

The discrete Haar wavelet transform is the N × N matrix WN : K
N ⊂ �2 →

K
N ⊂ �2 that maps the finite energy (column) vector YYY into the finite energy

(column) vector of the wavelet coefficients βββN = {α , βn
k } as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

WNYYY = βββN

βββN
def= {α, β0

0 , . . . , βM−1
2M−1−1}

YYY
def= {Y0, Y1, . . . , YN−1} (2M = N)

(35.32)

Let the direct sum of matrices A, B be defined as

A ⊕ B =
(

A 0
0 B

)

where 0 is the matrix of zero elements. The N × N matrix WN can be computed by
the recursive product [12, 13]

WN
def=

[
M∏

k=1

(
(P2k ⊕ I2M−2k)(H2k ⊕ I2M −2k)

)
]

N = 2M (35.33)

of the direct sum of the following elementary matrices:

1. Identity: I2k =

⎛

⎜
⎜
⎜
⎝

1 0
. . .

︸︷︷︸
2k

0 1

⎞

⎟
⎟
⎟
⎠

, which is equivalent to

I2 ≡
(

1 0
0 1

)

, I2k ≡ I2 ⊕ . . . ⊕ I2︸ ︷︷ ︸
k

=

⎛

⎜
⎜
⎜
⎝

I2 0
. . .

︸︷︷︸
k

0 I2

⎞

⎟
⎟
⎟
⎠

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

822 WAVELET ALGORITHMS FOR DNA ANALYSIS

2. Shuffle:

P2 ≡
(

1 0
0 1

)

P4 ≡

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ P8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
↓ → 1

↓ → 1
↓ → 1 →

→ 1
↓ → 1

↓ → 1
↓ → 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The arbitrary shuffle matrix P2k = (
ai j

)
; i, j = 1, . . . , 2k can be defined

as ai+1, j+2 = 1, i = 1, . . . , 2k−1, j = 1, . . . , 2k − 3, i = 2k−1, . . . , 2k − 1,

j = 0, . . . , 2k − 2, and as zero elsewhere.

3. Lattice (derived from the recursive inclusion formulas see, e.g., [12, 13]):

H2 ≡

⎛

⎜
⎝

1√
2

1√
2

− 1√
2

1√
2

⎞

⎟
⎠ H4 = H2 ⊕ H2 =

⎛

⎜
⎝

1/
√

2 1/
√

2 0 0
−1/

√
2 1/

√
2 0 0

0 0 1/
√

2 1/
√

2
0 0 −1/

√
2 1/

√
2

⎞

⎟
⎠ , . . .

and in general

H2k ≡ H2 ⊕ . . . ⊕ H2︸ ︷︷ ︸
k

=

⎛

⎜
⎜
⎜
⎝

H2 0
. . .

︸︷︷︸
k

0 H2

⎞

⎟
⎟
⎟
⎠

For example, with N = 4 and M = 2, assuming the empty set I0
def= ∅ as the neu-

tral term for the direct sum ⊕ so that A ⊕ I0 = I0 ⊕ A = A, it follows from Equation
(35.33)

W4 =
∏

k=1,2

[
(P2k ⊕ I4−2k)(H2k ⊕ I4−2k)

]

= [(P2 ⊕ I2)(H2 ⊕ I2)]k=1 [(P4 ⊕ I0)(H4 ⊕ I0)]k=2

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.5 HAAR WAVELET COEFFICIENTS AND STATISTICAL PARAMETERS 823

that is,

W4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

1
2

1
2

1
2

− 1
2 − 1

2
1
2

1
2

− 1√
2

1√
2

0 0

0 0 − 1√
2

1√
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(35.34)

Analogously, with N = 8 and M = 3, it is (from Equation (35.33))

W8 =
∏

k=1,2,3

[
(P2k ⊕ I8−2k)(H2k ⊕ I8−2k)

]

= [(P2 ⊕ I6)(H2 ⊕ I6)]k=1 [(P4 ⊕ I4)(H4 ⊕ I4)]k=2 [(P8 ⊕ I0)(H8 ⊕ I0)]k=3

that is

W8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2

− 1
2
√

2
− 1

2
√

2
− 1

2
√

2
− 1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2
1

2
√

2

− 1
2 − 1

2
1
2

1
2 0 0 0 0

0 0 0 0 − 1
2 − 1

2
1
2

1
2

− 1√
2

1√
2

0 0 0 0 0 0

0 0 − 1√
2

− 1√
2

0 0 0 0

0 0 0 0 − 1√
2

1√
2

0 0

0 0 0 0 0 0 − 1√
2

1√
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(35.35)

35.5 HAAR WAVELET COEFFICIENTS AND
STATISTICAL PARAMETERS

The wavelet coefficients α, βn
k may be used to characterize easily the local variability

of data. Let us define the mean value as follows.

〈Yi,i+s〉 def= 1

s + 1

i+s∑

k=i

Yk

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

824 WAVELET ALGORITHMS FOR DNA ANALYSIS

and, in particular, for i = 0, s = N − 1, the mean value

〈Y〉 = 1

N

N−1∑

k=0

Yk ;

the first-order forward difference is

�hYi ≡ Yi+h − Yi , 1 ≤ h ≤ 2M − 1 − i,

and the central difference is

δhYi ≡ Yi+h − Yi−h , 0 ≤ h ≤ min(i, 2M − 1 − 1)

respectively. It is

δh/2Yi+h/2 = �hYi (35.36)

and, in particular,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�hYi
def= (Yi+h − Yi)

�2
hYi

def= �h(�hYi) = (Yi+2h − 2Yi+h + Yi) , . . .

�n
hYi

def= (�n−1
h Yi+h − �n−1

h Yi) =
n∑

j=0

(−1) j

(
n

j

)

Yi+ jh+n

the forward (finite) difference formulas, and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δhYi
def= (Yi+h − Yi−h)

δ2
hYi

def= δh(δhYi) = (Yi+2h − 2Yi + Yi−2h) , . . .

δn
h Yi

def= (δn−1
h Yi+h − δn−1

h Yi−h) = �n
2hYi−h/2

the central (finite) difference formulas, respectively.
It easily can be shown (see, e.g., [12, 13]) by a direct computational method that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β0
0 = 2−1+M/2�2M−1〈Y0,2M−1−1〉

βs
k = 2−1+(M−s)/2�2M−1−s 〈Yk 2M−s ,k 2M−s+2M−s−1−1〉 0 < s < M − 1

βM−1
k = 2−1/2�1Y2k

(35.37)

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.5 HAAR WAVELET COEFFICIENTS AND STATISTICAL PARAMETERS 825

with n = 0, . . . , M − 1, k = 0, . . . , 2M−1 − 1 and

�2M−1−n 〈Yk 2M−n ,k 2M−n+2M−n−1−1〉 = �2M−1−n

⎡

⎣ 1

2M−n−1

k 2M−n+2M−n−1−1∑

k 2M−n

Ys

⎤

⎦

= 1

2M−n−1

k 2M−n+2M−n−1−1∑

k 2M−n

�2M−1−n Ys

For example, with M = 2 and N = 4, we have

α = 1

4
(Y0 + Y1 + Y2 + Y3)

and

β0
0 = 1

2
�2 (Y0 + Y1) = 1

2
(�2Y0 + �2Y1)

= 1

2
(Y0+2 − Y0 + Y1+2 − Y1) = 1

2
(Y2 − Y0 + Y3 − Y1)

and

⎧
⎪⎪⎨

⎪⎪⎩

β1
0 = 1√

2
�1Y2·0 = 1√

2
�1Y0 = 1√

2
(Y0 − Y1)

β1
1 = 1√

2
�1Y2·1 = 1√

2
�1Y2 = 1√

2
(Y3 − Y2)

When the wavelet coefficients are given, these equations can be solved with respect
to the original data. With M = 2 and N = 4, we have, for example,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y0 = α − β0
0 + √

2β1
0

2
, Y1 = α − β0

0 − √
2β1

0

2

Y2 = α + β0
0 − √

2β1
1

2
, Y3 = α + β0

0 + √
2β1

1

2

According to Equation (35.37), the first wavelet coefficient α represents the aver-
age value of the sequence, and the other coefficients β represent the finite differences.
The wavelet coefficients βs, also called details coefficients, are connected strictly
with the first-order properties of the discrete time series.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

826 WAVELET ALGORITHMS FOR DNA ANALYSIS

Concerning the variance, from definition (35.17), we obtain by a direct computa-
tion its expression in terms of wavelet coefficients [43]:

σ 2 = 1

N

M−1∑

n=0

2n−1∑

k=0

(
βn

k

)2
(N = 2M) (35.38)

The Hurst exponent, in terms of wavelet coefficients, can be evaluated by the
following

Theorem 35.1 The Hurst exponent is given by

H = 1

2
+ log2

n

√
√
√
√
√

[∑2n−1
k=0 (βn

k)2
]1/2

|β0
0 | (35.39)

Proof: Taking into account Equations (35.19) and (35.38), definition (35.25) be-
comes the following:

1

2n/2

[
2n−1∑

k=0

(βn
k)2

]1/2

= |β0
0 |2n(H−1)

log2

⎧
⎨

⎩

1

2n/2

[
2n−1∑

k=0

(βn
k)2

]1/2
⎫
⎬

⎭
− log2 |β0

0 | = n(H − 1)

that is,

1

n
log2

1

2n/2

[∑2n−1
k=0 (βn

k)2
]1/2

|β0
0 | = (H − 1)

log2 2 + 1

n
log2

1

2n/2

[∑2n−1
k=0 (βn

k)2
]1/2

|β0
0 | = H

from which Equation (35.39) follows.

35.6 ALGORITHM OF THE SHORT HAAR DISCRETE
WAVELET TRANSFORM

To reduce the computational complexity of the wavelet transform shown in Equations
(35.32) and (35.33), the sequence Y can be sliced into subsequences, and the wavelet
transform is applied to each slice. In fact, the wavelet transform (35.32) and (35.33)

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.6 ALGORITHM OF THE SHORT HAAR DISCRETE WAVELET TRANSFORM 827

implies the computation of N = 2M wavelet coefficients at the resolution M with N
basis functions ψn

k (t) involved and a computation complexity O(N 2). However, if we
consider only p = 2m ≤ N basis functions, then the complexity reduces to O(pN).
This can be obtained by simply slicing the data with a fixed window, as it usually is
done, for instance, in the local sine and cosine transforms or in the wavelet packet
decomposition. With the reduced Haar transform, it is possible both to reduce the
number of basis functions and the computational complexity and to keep unchanged
the piecewise constant interpolation in Equation (35.28).

Algorithm 35.1 Let the set YYY = {Yi }i=0,...,N−1 of N data be, segmented into σ =
N/p, (1 ≤ σ ≤ N) segments of p = 2m data:

YYY = {Yi }i=0,...,N−1 =
σ−1⊕

s=0

YYY s , YYY s ≡ {Ysp, Ysp+1, . . . , Ysp+p−1}
(s = 0, . . . , N − p; 1 ≤ p ≤ N)

the p-parameters short (reduced or windowed) discrete Haar wavelet transform
W p,σYYY of YYY is defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

W p,σ ≡
σ−1⊕

s=0

W p , YYY =
σ−1⊕

s=0

YYY s

W p,σYYY =
(

σ−1⊕

s=0

W p

)

YYY =
(

σ−1⊕

s=0

W pYYY s

)

W2m
YYY s =

{
α

0(s)
0 , β

0(s)
0 , β

1(s)
0 , β

1(s)
1 , . . . , β

m−1(s)
2m−1−1

}
(2m = p)

In general, for the vector of 2M elements, YYY = {Yi }i=0,...,2M −1, the Haar wavelet
transform is the vector W2M

YYY , whereas there are different reduced transforms that
can be done with one of the following matrices {W2i ,2 j }i+ j=M . To transform the vec-
tor YYY , instead of using the N × N matrix WN up to the resolution M = log2 N ,
we can use the N × N matrix W p,σ , which is the direct sum of p × p matri-

ces: W p,σ =
σ−1⊕

s=0

W p, so that in each segment YYY s , we will have the resolution

m = log2 p.
For example, the reduced wavelet transform W4,2, (to be compared with W8 of

Equation (35.35)), expressed as follows:

W4,2 = W4 ⊕ W4

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

828 WAVELET ALGORITHMS FOR DNA ANALYSIS

that is

W4,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

1
2

1
2

1
2 0 0 0 0

− 1
2 − 1

2
1
2

1
2 0 0 0 0

− 1√
2

1√
2

0 0 0 0 0 0

0 0 − 1√
2

1√
2

0 0 0 0

0 0 0 0 1
2

1
2

1
2

1
2

0 0 0 0 − 1
2 − 1

2
1
2

1
2

0 0 0 0 − 1√
2

1√
2

0 0

0 0 0 0 0 0 − 1√
2

1√
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(35.40)

So that for the given vector YYY = {Y0, Y1, . . . , Y7}, we might have two distinct repre-
sentations:

� A single vector of eight components: W8YYY with W8 given by Equation (35.33)
as a result of the discrete Haar wavelet transform

� Two four-component vectors W4,2YYY = {W4YYY 0,W4YYY 1} with YYY 0 =
{Y0, . . . , Y3}, YYY 1 = {Y4, . . . , Y7} as a result of the reduced discrete Haar
wavelet transform W4,2 of Equation (35.40).

The reduced transform W4,2 gives some advantages in the matrix representations;
it maps the data YYY into a cluster of points in the space of the wavelet coefficients (i.e.,
the row of two vectors {W4YYY 0

, W4YYY 1}).
In general, for the vector of 2M elements, YYY = {Yi }i=0,...,2M −1, the Haar wavelet

transform is the vector W2M
YYY , whereas the reduced analysis can be done with one

of the following matrices {W2i ,2 j }i+ j=M —of course, when σ = 1 → p = N and
W pσYYY = WNYYY .

The short wavelet transform at the resolution m = log2 p, involves only p wavelet
basis functions. Compared with the wavelet transform on the sequence of data, this
implies a faster computation for the wavelet coefficients.

35.7 CLUSTERS OF WAVELET COEFFICIENTS

Significant information on a time series can be derived not only from the wavelet
coefficients but also from clusters of wavelet coefficients.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.7 CLUSTERS OF WAVELET COEFFICIENTS 829

For the N = 2M length real vector YYY , the wavelet transform WNYYY represents a
point in the N -dimensional Euclidean space

R
N :

(
α, β0

0 , β1
0 , . . . , βM−1

2M−1−1

)

of the wavelet coefficients.
For the N = 2M length complex vector YYY , the wavelet transform is applied to the

real WN �(YYY) and to the imaginary part WN �(YYY) and gives either one point in

C
N = R

2N :
(
α, β0

0 , β1
0 , . . . , βM−1

2M−1−1, α∗, β∗0
0, β∗1

0, . . . , β
∗M−1

2M−1−1

)

or two points in

R
N × R

N :
(
α, β0

0 , β1
0 , . . . , βM−1

2M−1−1

)
×

(
α∗, β∗0

0, β∗1
0, . . . , β

∗M−1
2M−1−1

)

or a cluster of N points in the product of two-dimensional spaces

N∏

i=1

R
2
i :

(
α, α∗) × (

β0
0 , β∗0

0

) × (
β1

0 , β∗1
0

) × . . . ×
(
βM−1

2M−1−1, β∗M−1
2M−1−1

)

where the stars denote the wavelet coefficients of �(YYY). In each two-dimensional
(phase) space R

2
i , there is only one point, and these single points do not give any

significant information about the existence of some autocorrelation of data. By using,
instead, the p-parameter short Haar wavelet transform, we can analyze the cluster of
points

(
W p�(YYY s),W p�(YYY s)

)
s = 0, . . . , σ = N/p

in the 2p-dimensional space R
p × R

p, that is,

(α , α∗) ,
(
β0

0 , β∗0
0

)
, . . .

(
β

p−1
2p−1−1 , β∗ p−1

2p−1−1

)

For a complex sequence {Yk}k=0,...,N−1 = {xk + i yk}k=0,...,N−1, we can con-
sider the correlations (if any) between the wavelet coefficients of the real part
{xk}k=0,...,N−1 against the imaginary coefficients {yk}k=0,...,N−1. This can be realized
by the cluster algorithm of Table 35.1.

This algorithm enables us to construct clusters of wavelet coefficients and to study
the correlation between the real and imaginary coefficients of the DNA representa-
tion and DNA walk, as given in the following section.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

830 WAVELET ALGORITHMS FOR DNA ANALYSIS

Table 35.1
{
Y0, Y1, . . . Yp

} ⊕ {
Yp+1, Yp+2, . . . Y2p

} ⊕ Complex values sequence

⇓

xi = �(Yi) , yi = �(Yi) Real values sequences

⇓
{

x0, x1, . . . x p

} ⊕ {
x p+1, xp+2, . . . x2p

} ⊕{
y0, y1, . . . yp

} ⊕ {
yp+1, yp+2, . . . y2p

} ⊕

〉

Real sequences

⇓

W p
{

x0, x1, . . . x p

} ⊕ W p
{

xp+1, xp+2, . . . x2p

} ⊕

W p
{

y0, y1, . . . yp

} ⊕ W p
{

yp+1, yp+2, . . . y2p

} ⊕

〉

Wavelet transform

⇓
{
α, β0

0 , β1
0 , β1

1 , . . .
}

1
⊕ {

α, β0
0 , β1

0 , β
1
1 , . . .

}
2
⊕{

α∗, β∗0
0, β

∗1
0, β

∗1
1, . . .

}
1
⊕ {

α∗, β∗0
0, β

∗1
0, β

∗1
1, . . .

}
2
⊕

〉

Wavelet coefficients

⇓
{(α, α∗)}1 ⊕ {(α, α∗)}2 ⊕ {(α, α∗)}3{(

β0
0 , β∗0

0

)}
1
⊕ {(

β0
0 , β

∗0
0

)}
2
⊕ {(

β0
0 , β∗0

0

)}
3
.....{(

β1
0 , β∗1

0

)}
1
⊕ {(

β1
0 , β

∗1
0

)}
2
⊕ {(

β1
0 , β∗1

0

)}
3
.....

...
...

...

〉

Clusters

35.7.1 Cluster Analysis of the Wavelet Coefficients of the Complex
DNA Representation

Given a DNA sequence, we can start by plotting the wavelet transform of the cor-
relation matrix (35.2), which is the matrix of the Haar wavelet transform applied to
each row of uhk . However, because there are only finite jumps (Figure 35.9, left), the
resulting picture does not give any interesting perspective in the comprehension of
DNA (Figure 35.10) better than Figure 35.1

The cluster algorithm of Table 35.1, instead, when applied to the complex repre-
sentation sequence (35.14), which is in the form

{−1, i, 1, 1,−i, i,−1,−i, i, 1,−i, i,−1, i, 1,−i,−i,−i,−1,}

shows that the values of the wavelet coefficients belong to some discrete finite sets
(Figure 35.11). If we compare the clusters of Figure 35.11 with the clusters (Fig-
ure 35.12) of the pseudorandom sequence (35.23), which is similar to the previous
sequence, then we can see that the set of wavelet coefficients is larger (still discrete)
than the set for the DNA (Equation 35.11) although the detail coefficients have (more
or less) the same values (see also Figure 35.9).

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.7 CLUSTERS OF WAVELET COEFFICIENTS 831

α

β0
0

β0
1

β1
1

α

β0
0

β0
1

β1
1

α

β0
0

β0
1

β1
1

α

β0
0

β0
1

β1
1

Figure 35.9 Wavelet coefficients for the real (left column) and imaginary part of the complex
representation in the fourth short Haar wavelet transform of a dog’s DNA (top) compared with
the pseudorandom sequence (35.23), (n ≤ 1200).

35.7.1.1 Detection of Misplaced Base Pairs. With the wavelet clustering al-
gorithm (Table 35.1) it is easy to identify the existence of some misplaced base pairs.
In fact, this pathological distribution of nucleotides implies some broken symmetries
in the cluster. To show this, let us take the first 1200 terms of the sequence and make

10050

100

50

Figure 35.10 Haar wavelet transform of the correlation matrix (n ≤ 128) of the dog’s DNA.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

832 WAVELET ALGORITHMS FOR DNA ANALYSIS

1

2

1

2

1

2

1

2

c

1

2

1

2

1

2

1

2

d

1 11

2

1

2

1

1

1

2

1

2

a

2 21 1

2

1

1

2
b

Figure 35.11 Cluster analysis of the fourth short Haar wavelet transform of the complex repre-
sentation series (n ≤ 1200) of the dog’s DNA: a) (α, α∗) ; b)

(
β0

0, β∗0
0

)
; c)

(
β1

0, β∗1
0

)
; d)

(
β1

1, β∗1
1

)
.

these changes:

Yi ⇒ Yi = 0 i = 100, 200, 300, 400, . . . , 1100, 1200

These anomalous terms, which are very little compared with the length of the se-
quence (being only 1%), can be detected easily by the cluster analysis because some

1 1

1

1

c

1 1

1

1

d

1

1

1
a

1 1

1

1

b

Figure 35.12 Cluster analysis of the fourth short Haar wavelet transform of the pseudorandom
sequence (35.23) (n ≤ 1200): a) (α, α∗); b)

(
β0

0, β∗0
0

)
; c)

(
β1

0, β∗1
0

)
; d)

(
β1

1, β∗1
1

)
.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.7 CLUSTERS OF WAVELET COEFFICIENTS 833

1

2

1

2

1

2

1

2

d

1

2

1

2

1

2

1

2

d

1

2

1

2

1

2

1

2

c

1

2

1

2

1

2

1

2

c

2 21 1

2

1

1

2

b

2 21 1

2

1

1

2

b

1 11

2

1

2

1

1

1

2

1

2

a

1 11

2

1

2

1

1

1

2

1

2

a

Figure 35.13 Cluster analysis of the fourth short Haar wavelet transform of the complex rep-
resentation series (n ≤ 1200) of the dog’s DNA without (left) and with some misplaced terms
(right): a) (α, α∗); b)

(
β0

0, β∗0
0

)
; c)

(
β1

0, β∗1
0

)
; d)

(
β1

1, β∗1
1

)
.

new spots appear (Figure 35.13 right column a, b). The anomalies can be seen by
comparing the clusters of the first two rows (a and b).

As a second example, let us consider the following:

Yi ⇒ Yi = i i = 100, 200, 300, 400, . . . , 1100, 1200

where there is very little difference from the original sequence. Although, in the first
example, the digit 0 does not belong to the representation values {1, −1, i, −i},

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

834 WAVELET ALGORITHMS FOR DNA ANALYSIS

in this case, i belongs to them. Nevertheless, this difference can be detected by the
clustering analysis. It is shown (Figure 35.14) that the clusters coincide with the
original signal except for the coefficients

(
β1

1 , β∗1
1

)
(Figure 35.14, bottom row, d).

As a third example, let us consider the case in which only two terms have been
changed

Y400 = −i ⇒ i, Y401 = 1 ⇒ i

so that there are only 0.1% of changes. Also, in this case, this anomaly can be de-
tected easily by the clusters of wavelet coefficients

(
β0

0 , β∗0
0

)
, (Figure 35.15).

35.7.2 Cluster Analysis of the Wavelet Coefficients of DNA Walks

Let us now consider DNA walks on cardinal complex representation and the corre-
sponding wavelet analysis.

As shown in Figures 35.4 and 35.5, the DNA walks seem to show a self-similar
structure. Let us first compute the global fractal estimate with wavelet coefficients
as [43]

〈(β0
0)2 + (β∗0

0)2〉s

〈(β1
0)2 + (β∗1

0)2 + (β1
1)2 + (β∗1

1)2〉s
= 1.6 (s = 0, . . . , (N − 1)/4)

Moreover, by using the power spectrum method of Equation (35.22), the fluctuation
exponent of the dog’s DNA walk coincides with the same coefficient computed for
the cardinal sequence (see Fig. 35.16) being α = 0.65.

For each complex DNA walk, two sets of wavelet coefficients correspond to
the real and complex coefficients of the complex values of Equations (35.15) and
(35.16). However, even if the real and complex coefficients of the DNA walk show
some nonlinear patterns (Figures 35.4 and 35.5), the detail coefficients range in some
discrete sets of values. It is shown by a direct computation that the jumps from one
value to another belong to some discrete sets (see e.g., Figures 35.17 and 35.18).

In other words, the real and imaginary coefficients of the DNA walk increase with
a given law, and the distribution of the nucleotides must follow this rule. Moreover,
it should be noticed that, except for the coefficients (α, α∗), the other wavelet coeffi-
cients are distributed on symmetric grids (Figures 35.17 and 35.18), and the patterns
of the grids look similar to the grids obtained for the DNA cardinal complex repre-
sentation.

It should be noted that the presence of correlations in the dog’s DNA does not
depend on the simple (random-like) structure of the complex representation. In the
sense that even if the DNA representation looks like the pseudorandom sequence
(35.23), the wavelet (detail) coefficients are quantized and symmetrically distributed
such that the detail coefficients of both the representation and the DNA walks have
discrete finite values (see Figures 35.11, 35.17, 35.18), in particular,

∣
∣β0

0 ± β∗0
0

∣
∣ ≤ 2

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.7 CLUSTERS OF WAVELET COEFFICIENTS 835

1

2

1

2

1

2

1

2

d

1

2

1

2

1

2

1

2

d

1

2

1

2

1

2

1

2

c

1

2

1

2

1

2

1

2

c

2 21 1

2

1

1

2

b

2 21 1

2

1

1

2

b

1 11

2

1

2

1

1

1

2

1

2

a

1 11

2

1

2

1

1

1

2

1

2

a

Figure 35.14 Cluster analysis of the fourth short Haar wavelet transform of the complex rep-
resentation series (n ≤ 1200) of the dog’s DNA without (left) and with some misplaced terms
(right): a) (α, α∗); b)

(
β0

0, β∗0
0

)
; c)

(
β1

0, β∗1
0

)
; d)

(
β1

1, β∗1
1

)
.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

2 21 1

2

1

1

2

b

2 21 1

2

1

1

2

b

Figure 35.15 Cluster analysis of the fourth short Haar wavelet transform of the complex rep-
resentation series (n ≤ 1200) of the dog’s DNA without (left) and with some misplaced terms
(right):

(
β0

0, β∗0
0

)
.

10 20 30 40 50

23.5

24

24.5

25

Figure 35.16 Power spectrum for dog’s DNA walk with the corresponding least-squares linear
fit α = 0.65.

1

2

1

2
1

1

2

1

2

1

2

1

2

1

21 4

1

2

1

2

10050

40

80

120

(a)

2 1 1 2

2

1

1

2

(b)

c d

Figure 35.17 Cluster analysis of the fourth short Haar wavelet transform of the DNA walk
(n ≤ 1200) of the dog in the planes: a) (α, α∗); b)

(
β0

0, β∗0
0

)
; c)

(
β1

0, β∗1
0

)
; d)

(
β1

1, β∗1
1

)
.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

35.7 CLUSTERS OF WAVELET COEFFICIENTS 837

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

10050

40

80

120

(a)

2 1 1 2

1.5

1

0.5

0.5

1

1.5

2

(b)

c d

Figure 35.18 Cluster analysis of the fourth short Haar wavelet transform of the DNA walk
(n ≤ 1200) of the candida in the planes: a) (α, α∗); b)

(
β0

0, β∗0
0

)
; c)

(
β1

0, β∗1
0

)
; d)

(
β1

1, β∗1
1

)
.

This is not true for the pseudorandom sequence, because the wavelet coefficients
of the sequence still are quantized (see Figure 35.12), whereas the wavelet coeffi-
cients of the corresponding random walk are distributed randomly in the phase plane
(Figure 35.19).

Also, the wavelet coefficients of the fourth short Haar wavelet transform of the
DNA walk give more information than the wavelet analysis of the DNA sequence.

50 50

50

50

c

50 50

50

50

d

25 30

20

20

a

50 50

50

50

b

Figure 35.19 Cluster analysis of the fourth short Haar wavelet transform of the random walk
(n ≤ 1200) of a random sequence in the planes: a) (α, α∗); b)

(
β0

0, β∗0
0

)
; c)

(
β1

0, β∗1
0

)
; d)

(
β1

1, β∗1
1

)
.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

838 WAVELET ALGORITHMS FOR DNA ANALYSIS

Figure 35.20 Wavelet (detail) coefficients for the real (left column) and the imaginary part of
the complex representation in the fourth short Haar wavelet transform of the dog’s DNA walk
(n ≤ 1200).

It is shown that the wavelet coefficients at the higher frequencies are bounded (Fig-
ure 35.20), whereas β0

0 shows some periodic oscillations.

35.8 CONCLUSION

In this chapter, the definition of a complex indicator function has been given for
the DNA sequences. The indicator, applied to the dog’s DNA and to the candida’s
DNA, has provided a pair of complex strings analyzed with the wavelet transform.
By using the wavelet transform together with some algorithms (short Haar transform,
and clusters of wavelet coefficients), it has been shown that the random walks have
a fractal behavior, with respect to the scaling coefficient α and some (unexpected)
symmetries and quantization for the remaining wavelet coefficients

(
β0

0 , β1
0 , β1

1

)
both

for the real coefficients and the imaginary coefficients of the (complex) random walk.
A very interesting correlation has been shown in the comparison of the random walk
with its rate of change.

It should be noted that when comparing the clusters of dog and candida some
slight changes in the clusters appear (but not in the quantized values of the wavelet
coefficients). This could offer the possibility to organize a different classification of
DNA sequences.

It has been shown that for DNA sequences, the following properties hold: hetero-
geneous distribution of nucleotides, long-range correlated, self-similarity, and sym-
metries. In particular,

1. The correlation matrix has been defined that enables us to have a simple two-
dimensional representation of DNA. It has been shown that the resulting pic-
ture (see, e.g., Figure 35.2, 35.1) is a fractal with the fractal dimension shown

in Equations (35.5) and (35.6) coinciding with the golden ratio
1 + √

5

2
.

2. By using the barcode matrix, a one-to-one correspondence from the matrix and
the DNA sequence has been given. In particular, the barcode picture (see e.g.,
Figure 35.3) shows that the nucleotides are not homogeneously distributed and
the probability distribution has been computed.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

REFERENCES 839

3. By using the cardinal complex representation (35.14), we can see that in the
complete sequence (coding and noncoding regions), a long-range correlation
exists (Figure 35.6) with α ∼= 0.61.

4. It has been shown, by a cluster analysis of the wavelet coefficients, that not
only the wavelet coefficients of the cardinal complex representation but also
of the random walk on which the cardinal complex series belong are displayed
on some symmetrical grids (Figures 35.11, 35.13, 35.14).

5. Clusters of wavelet coefficients are sensible to anomalies in the sequence (Fig-
ures 35.13, 35.14) in the sense that any pathology can be detected easily by the
existence of new spots.

6. DNA walks have the same long-range correlation of the cardinal representation
(Figure 35.16)

7. Both wavelet coefficients of cardinal complex representation and of corre-
sponding DNA walk range in discrete sets. The clusters of wavelets are dis-
tributed on some grids that show some axial symmetries for both (sequence
and walk) (Figures 35.11, 35.17, 35.18).

8. It has been shown that a random sequence is characterized by clusters of
wavelet coefficients distributed on symmetrical grids (Figure 35.12). How-
ever, the corresponding walk does not have a symmetrical grid distribution
(Figure 35.19).

REFERENCES

1. M. Altaiski, O. Mornev, and R. Polozov. Wavelet analysis of DNA sequence. Genet Anal,
12:165–168, 1996.

2. D. Anastassiou. Frequency-domain analysis of biomolecular sequence. Bioinformatics,
16(12):1073–1081, 2000.

3. A. Arneado, E. Bacry, P.V. Graves, and J.F. Muzy. Characterizing long-range correlations
in DNA sequences from wavelet analysis. Phys Rev Lett, 74:3293–3296, 1995.

4. A. Arneado, Y.D’Aubenton-Carafa, E. Bacry, P.V. Graves, J.F. Muzy, and C. Thermes.
Wavelet based fractal analysis of DNA sequences? Phys D, 96:291–320, 1996.

5. A. Arneado, Y. D’Aubenton-Carafa, B. Audit, E. Bacry, J.F. Muzy, and C. Thermes.
What can we learn with wavelets about DNA sequences? Phys A, 249:439–448, 1998.

6. B. Audit, C. Vaillant, A. Arneodo,Y. d’Aubenton-Carafa, and C. Thermes. Long range
correlations between DNA bending sites: Relation to the structure and dynamics of nu-
cleosomes. JMB J Mol Biol, 316:903–918, 2002.

7. J.A. Berger, S.K. Mitra, M. Carli, and A. Neri. Visualization and analysis of DNA se-
quences using DNA walks. J Franklin Inst, 341:37–53, 2004.

8. P. Bernaola-Galván, R. Román-Roldán, J.L. Oliver. Compositional segmentation and
long-range fractal correlations in DNA sequences. Phys Rev E, 55(5):5181–5189, 1996.

9. C.L. Berthelsen, J.A. Glazier, and M.H. Skolnick. Global fractal dimension of human
DNA sequences treated as pseudorandom walks. Phys Rev A, 45(12):8902–8913, 1992.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

840 WAVELET ALGORITHMS FOR DNA ANALYSIS

10. B. Borstnik, D. Pumpernik, and D. Lukman. Analysis of apparent 1/ f α spectrum in DNA
sequences. Europhys Lett, 23:389–394, 1993.

11. S.V. Buldyrev, A.L. Goldberger, A.L. Havlin, C.-K. Peng, M. Simons, F. Sciortino, and
H.E. Stanley. Long-range fractal correlations in DNA. Phys Rev E, 51:5084–5091, 1995.

12. C. Cattani. Haar wavelet based technique for sharp jumps classification. Math Comput
Model, 39:255–279, 2004.

13. C. Cattani. Haar wavelets based technique in evolution problems. Proc Estonian Acad
Sci Phys Math, 53(1):45–63, 2004.

14. C. Cattani and J.J. Rushchitsky. Wavelet and wave analysis as applied to materials with
micro or nanostructure, series on advances in mathematics for applied sciences. World
Sci Singapore, 74, 2007.

15. C. Cattani. Complex representation of DNA sequences. Proceedings of the Bioinformat-
ics Research and Development Second International Conference, BIRD 2008, Vienna,
Austria, volume 13 in Communications in Computer and Information Science, Springer-
Verlag, Berlin 2008, pp. 528–537.

16. E.A. Cheever, D.B. Searls, W. Karanaratne, and G.C. Overton. Using signal processing
techniques for DNA sequence comparison. Proceedings of the 15th Annual Bioengineer-
ing Conference, Northeast, 1989, pp. 173–174.

17. P. D. Cristea. Large scale features in DNA genomic signals. Signal Process, 83:871–888,
2003.

18. E. Coward. Equivalence of two Fourier methods for biological sequences. J Math Biol,
36:64–70, 1996.

19. I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, PA, 1992.

20. G. Dodin, P. Vandergheynst, P. Levoir, C. Cordier, and L. Marcourt. Fourier and wavelet
transform analysis, a tool for visualizing regular patterns in DNA sequences, J Theor
Biol, 206:323–326, 2000.

21. J.P. Fitch and B. Sokhansanj. Genomic engineering: Moving beyond DNA sequence to
function. Proc IEEE, 88(12):1949–1971, 2000.

22. M. A. Gates. Simpler DNA sequence representations. Nature, 316(219):137–142, 1985.

23. M.A. Gates. A simple way to look at DNA. J Theor Biol, 119:319–328, 1986.

24. H. Gee. A journey into the genome: what’s there. Nature, 12, 2001. http://www.
nature.com/nsu/010215/010215-3.html.

25. The Genome Data Base http://gdbwww.gdb.org/; Genome Browser, http://genome.
ucsc.edu; European Informatics Institute, http://www.ebl.ac.uk; Ensembl, http://www.
ensembl.org.

26. K. Hu, P. Ch. Ivanov, Z. Chen, P. Carpena, and H.E. Stanley. Effect of trends on detrended
fluctuation analysis. Phys Rev E, 64:011114, 2001.

27. X.-Y. Jiang, D. Lavenier, and S.S.-T. Yau, Coding region prediction based on a universal
DNA sequence representation method. J Comput Biol, 15(10):1237–1256, 2008.

28. E. Hamori and J. Ruskin. H curves, a novel method of representation of nucleotide series
especially suited for long DNA sequences. J Biol Chem, 258(2):1318–1327, 1983.

29. H. Herzel, E.N. Trifonov, O.Weiss, and I. Grosse. Interpreting correlations in biose-
quences. Phys A, 249:449–459, 1998.

30. S. Karlin and V. Brendel. Patchiness and correlations in DNA sequence. Science,
259:677–680, 1993.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

REFERENCES 841

31. W. Li. The complexity of DNA: The measure of compositional heterogenity in DNA
sequence and measures of complexity. Complexity, 3:33–37, 1997.

32. W. Li. The study of correlation structures of DNA sequences: A critical review. Computer
Chem, 21(4):257–271, 1997.

33. W. Li and K. Kaneko. Long-range correlations and partial 1/ f α spectrum in a noncoding
DNA sequence. Europhys Lett, 17:655–660, 1992.

34. K.B. Murray, D. Gorse, and J.M. Thornton. Wavelet transform for the characterization
and detection of repeating motifs. J Mol Biol, 316:341–363, 2002.

35. C.-K. Peng, S.V. Buldryev, A.L. Goldberg, S. Havlin, F. Sciortino, M. Simons, and H.E.
Stanley. Long-range correlatins in nucleotide sequences. Nature, 356:168–170, 1992.

36. C.-K. Peng, S.V. Buldryev, S. Havlin, M. Simons, H.E. Stanley, and A.L. Goldberg.
Mosaic organization of DNA nucleotides. Phys Rev E, 49:1685–1689, 1994.

37. D.B. Percival and A.T. Walden. Wavelet Methods for Time Series Analysis. Cambridge
University Press, Cambridge, UK, 2000.

38. A.A. Tsonis, P. Kumar, J.B. Elsner, and P.A. Tsonis. Wavelet analysis of DNA sequences.
Phy Rev E, 53:1828-1834, 1996.

39. P.P. Vaidyanathan and B.-J. Yoon. The role of signal-processing concepts in genomics
and proteomics. J Franklin Inst, 341:111–135, 2004.

40. R.F. Voss. Evolution of long-range fractal correlations and 1/ f noise in DNA base se-
quences. Phy Rev Lett, 68(25):3805–3808, 1992.

41. R.F. Voss. Long-range fractal correlations in DNA introns and exons. Fractals,, 2:1–6,
1992.

42. O. Weiss and H. Herzel. Correlations in protein sequences and property codes. J Theor
Biol, 190:341–353, 1998.

43. G. Wornell. Signal Processing with Fractals: A Wavelet-Based Approach, Prentice Hall
Upper Saddle River, NJ, 1996.

44. S.S.-T, Yau, J. Wang, A. Niknejad, C. Lu, N. Jin, and Y.-K. Ho. DNA sequence represen-
tation without degeneracy. Nucleic Acids Res, 31:3078–3080, 2003.

45. Z.G. Yu, W.W. Anh, and B. Wang. Correlation property of length sequences based on
global structure of the complex genome. Phys Rev E, 63:011–903, 2001.

46. M. Zhang. Exploratory analysis of long genomic DNA sequences using the wavelet trans-
form: Examples using polyomavirus genomes. Genome Sequencing and Analysis Con-
ference VI, 1995, pp. 72–85.

P1: OSO
c35 JWBS046-Elloumi December 2, 2010 9:51 Printer Name: Sheridan

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

36
HAPLOTYPE INFERENCE

MODELS AND ALGORITHMS

Ling-Yun Wu

36.1 INTRODUCTION

With complete genome sequences for humans and many organisms available in the
postgenomics era, one of the most important tasks in biological and medical re-
search is to identify the genes related to diseases. The genetic study to find the as-
sociation between genes and common complex diseases needs to assign a pheno-
type to a genetic region that is identified by one or several markers such as a single
nucleotide polymorphism (SNP), microsatellite. Haplotype is a set of neighboring
SNPs (or other genetic markers) that are transmitted together on the same chro-
mosome. Because they capture information about regions descended from ancestral
chromosomes, haplotypes generally have higher power than individual markers in
association studies of the common complex diseases [3, 80]. Haplotypes also play a
very important role in other areas of genetics such as population history studies.

Although the haplotypes can be determined by the use of existing experimental
techniques [68], the current laboratory approaches for obtaining haplotypes directly
from DNA samples are considerably expensive and time consuming; therefore they
are not practical [93, 98, 92]. Hence, computational methods that offer a way of
inferring haplotypes from existing data (e.g., DNA sequencing data and genotype
data) become attractive alternatives. There are two classes of in silico haplotyping
problems: the haplotype assembly problem and the haplotype inference problem.
The haplotype assembly problem (also called the individual haplotyping problem)
is to assemble the aligned SNP fragments from shotgun sequencing methodology,

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

843

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

844 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

whereas the haplotype inference problem (also called the population haplotyping
problem) is to infer a set of haplotypes of a population from their genotype dataset.
In this chapter, we will focus on the models and algorithms for the haplotype
inference problem.

Current practical laboratory techniques easily can produce unphased genotype
data (i.e., an unordered pair of alleles for each marker, that is, we do not know which
alleles come from the same chromosome). The reconstruction of haplotypes from
genotype data is a fundamental and decisive step in genetic studies. According to the
available information, currently, there are mainly two ways for solving the haplotype
inference problem. The first approach is haplotyping genetically related individuals
(e.g., the people from a family). By exploiting the additional pedigree data, we can
get a better estimate of haplotypes because the haplotype pair of a child is constrained
by its inheritance from his parents. The disadvantage of this approach is that it in-
volves significant additional genotyping costs and potential recruiting problems, and
there are still a portion of the alleles that are ambiguous. The second approach is hap-
lotyping a population without pedigree information. This fast and cheap population-
based alternative applies computational or statistical methods to find the most likely
haplotype configurations from the observed genotype data.

There are already some review papers (e.g., Bonizzoni et al. [7], Gusfield [38],
Halldörsson et al. [40], Stephens and Donnelly [81], Adkins [2], and Gao et al. [25]).
But most of them focus on only some aspects of the haplotype inference prob-
lem. For example, Bonizzoni et al. [7], Gusfield [38], and Halldörsson et al. [40]
mainly reviewed the combinatorial approaches. Stephens and Donnelly [81] and Ad-
kins [2] focused on the population-based statistical methods, whereas Gao et al.
[27] surveyed the statistical methods for pedigree data. In this chapter, we try to
give the readers a brief but complete overview on the haplotype inference prob-
lems from modeling and algorithmic viewpoints, focusing on the recent research
progress.

The rest of the chapter is organized as follows. In the next section, the problem
statement of the haplotype inference problem is given. Then the models and algo-
rithms are reviewed in three groups: the combinatorial methods in Section 36.3, the
statistical methods in Section 36.4, and the methods for pedigree haplotype inference
problem in Section 36.5. Finally, the evaluation and comparison of haplotype infer-
ence methods are introduced in Section 36.6, and some discussion is presented in the
last section.

36.2 PROBLEM STATEMENT AND NOTATIONS

In this section, we first introduce the haplotype inference problem and related no-
tations. For the diploidy organisms such as human, each individual has two nearly
identical copies of each chromosome and hence of each region of interest. A de-
scription of the alleles of markers on a single copy is called a haplotype, whereas a
description of the conflated alleles (i.e., the unordered pair of alleles for each marker)
on the two homogenous copies of chromosomes is called a genotype. For SNPs, the

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

36.2 PROBLEM STATEMENT AND NOTATIONS 845

possible alleles in each site are 2, and the alleles often are labeled “0” (wild type) and
“1” (mutant type). Then, mathematically, a haplotype h can be denoted as a vector
(h1, · · · , hn) over {0, 1}. A genotype g denotes a vector (g1, · · · , gn) over {0, 1, 2}.
Let h1, h2 be a pair of haplotypes from the corresponding pair of chromosomes.
Then the relationship between h1, h2 and g is:

gi =
⎧
⎨

⎩

0, if h1i = h2i and h1i , h2i are wild
1, if h1i = h2i and h1i , h2i are mutant
2, if h1i �= h2i (i.e., the i th SNP site is heterozygous)

(36.1)

A pair of haplotypes h1, h2 is called a haplotype configuration or a resolution
of a genotype g if they satisfy Equation (36.1). We denote it by h1 ⊕ h2 = g,
h1 = g � h2, h2 = g � h1, where h1, h2 are said to resolve the genotype g. A geno-
type may have many haplotype configurations (2k−1 configurations if there are k het-
erozygous sites). A genotype is called ambiguous if it has at least two heterozygous
positions; otherwise, it is called resolved. A haplotype h is called compatible with
a genotype g if for all gi �= 2, hi = gi . The genotype data in a population of size m
can be formulated as an m × n matrix G = {gi j} on {0, 1, 2} with each row gi cor-
responding to an genotype and each column j corresponding to an SNP site on the
chromosome. A realization of a genotype matrix is a haplotype matrix H on {0, 1}
with each row corresponding to a haplotype, and for each genotype gi , there are two
rows (a pair of haplotypes) h1, h2 of H such that h1, h2 form a resolution of gi .

For a pair of chromosomes of a child, if no recombination occurs, then one copy
is inherited identically from the paternal genome and the other is inherited from the
maternal genome; otherwise, portions of the paternal or maternal chromosomes are
exchanged during inheritance, as shown in Figure 36.1. Biological experiments [13]

Figure 36.1 Recombination event illustration. A recombination event occurs when the chromo-
somes of the right child are inherited from parents (SNP A and b are from different chromosomes
of one parent), and no recombination occurs when the chromosomes of the left child are inherited
from parents.

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

846 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

show that human chromosomes have a block structure called linkage disequilibrium
(LD) block in which, within each block, no or few recombinations could occur
and haplotypes have very low diversity. These facts make the haplotype mapping
and disease association study possible. Haplotype inference is to resolve the
heterozygous sites in a set of genotype data (i.e., to determine which copy of a pair
of chromosomes each allele belongs to). Mathematically, the haplotype inference
problem is given as follows:

Given an m × n genotype matrix G, find a haplotype matrix H such that for each
genotype at least one pair of haplotypes in H exists that is a resolution of this
genotype.

Obviously, without any biological insight or genetic model, we cannot infer hap-
lotypes from genotype data because there may be an exponential number of possible
haplotype configurations. If we arbitrarily select a pair of haplotypes among them
for a genotype, then the haplotype inference problem is trivial and we do not know
which one is “true.” Blocks of limited haplotype diversity make haplotype inference
somewhat easier than the case that many recombination events occur. Therefore, an
inferring method mainly considers the analysis of a specific block in the population.
Actually, the haplotype inference problem has several versions based on different ge-
netic models and assumptions. The most powerful genetic model is the population-
genetic concept of a coalescent [44, 85].

Since the first haplotype inference model, the Clark’s rule, was proposed in 1990,
a lot of approaches to population-based haplotyping problem were investigated.
Roughly, these methods can be classified into two groups: the combinatorial meth-
ods and the statistical methods. The former is a deterministic approach that includes
the parsimony methods and the phylogeny methods, and the latter method exploits
stochastic tools. We are going to introduce the methods of each group one by one in
the next sections.

36.3 COMBINATORIAL METHODS

36.3.1 Clark’s Inference Rule

Clark [11] first pointed out some basic computational issues related to haplotype in-
ference under a general inference rule. Suppose that G is a set of genotypes with
n SNP sites. First, all the resolved genotypes in G are identified and form a haplo-
type set H . For a genotype g ∈ G, select a haplotype h compatible with g in H .
If there is no g � h in H , then add g � h into H . Remove g from G. The process
continues until either all genotypes are resolved or no haplotype in H is compati-
ble with the left genotypes. A greedy approach is applied when the known haplo-
types are tested against the unresolved genotypes. A simple example is illustrated as
follows:

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

36.3 COMBINATORIAL METHODS 847

� EXAMPLE 36.1

Given a set of genotype G:

G =

⎛

⎜
⎜
⎝

2 1 2 1 1 2
0 1 2 1 1 0
1 2 0 2 0 2
2 2 0 2 2 0

⎞

⎟
⎟
⎠

The second genotype g2 = (0 1 2 1 1 0) is resolved because it has only one
heterozygous site. Two haplotypes are identified as h1 = (0 1 0 1 1 0) and
h2 = (0 1 1 1 1 0). Note that h1 is compatible with g1 = (2 1 2 1 1 2); therefore,
another haplotype is identified as h3 = g1 � h1 = (1 1 1 1 1 1). h1 is also compati-
ble with g4 = (2 2 0 2 2 0); therefore, h4 = (1 0 0 0 0 0). Finally, g3 = (1 2 0 2 0 2)
is compatible with h4, so then h5 = g3 � h4 = (1 1 0 1 0 1). Hence, five haplo-
types are obtained as follows:

H =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 1 1 0
0 1 1 1 1 0
1 1 1 1 1 1
1 0 0 0 0 0
1 1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎠

And the haplotype configurations for each genotype:

g1 = h1 ⊕ h3

g2 = h1 ⊕ h2

g3 = h4 ⊕ h5

g4 = h1 ⊕ h4

Clark’s experiments on real data and simulated data suggest that a valid solution
is usually the one that resolves a maximum number of genotypes. Based on this
observation, a lot of parsimony methods were proposed in the past two decades.
Owing to its intuitive simplicity and biological implication, the parsimony methods
were investigated extensively.

The maximum resolution (MR) model is based on Clark’s inference rule and a
parsimony principle: the real solution of haplotype inference can resolve a maximum
number of genotypes. Then the haplotype inference problem becomes: Given a set of
genotypes G (including some resolved ones), find a maximum number of genotypes
that can be resolved by successive application of Clark’s inference rule.

The MR model can be formulated exactly as an integer linear programming and
was proved to be nondeterministic polynomial (NP)-hard (Gusfield [35]). Gusfield

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

848 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

[34, 35] employed a graph-theoretical method to express and analyze the inference
problem. Linear programming relaxation is adopted to solve the practical problem.

The single genotype resolution (SGR) model also is based on Clark’s inference
rule and is related to the MR problem. It was formulated first by Bonizzoni et al. [7].
Given a nonempty set of haplotypes H and a distinguished genotype g in a set of
genotypes G, this model finds a sequence of applications of the Clark’s inference
rule that resolves a subset G0 ⊂ G including g or conclude that such a sequence
does not exist.

The computational complexity of the SGR problem was listed as an open problem
by Bonizzoni et al. [7]. Lin et al. [59] solved it by reduction from 3 satisfiability
(SAT) problem and thus proved that the SGR problem is NP-complete. So far, there
is no algorithm designed for this problem.

36.3.2 Pure Parsimony Model

The MR model and the SGR model both are defined by using Clark’s rule.
Gusfield [37] further studied a parsimony version of the Clark’s rule and proposed
the pure parsimony criterion for haplotype inference, which does not rely directly
on the Clark’s rule. Its reasonability and biological meanings were illustrated in
Gusfield [37], Wang and Xu [89]. This criterion is based on the fact that in nat-
ural populations, the number of the observed distinct haplotypes is vastly smaller
than the number of combinatorially possible haplotypes. The haplotype inference by
pure parsimony (HIPP) is defined as follows: Given a set of genotypes G, find a
cardinality-smallest set of haplotypes H such that for each g ∈ G, there is a haplo-
type configuration consisting of two sequences in H to resolve g.

The HIPP problem is proved approximable (APX)-hard by Lancia et al. [50]. A
branch-and-bound method was suggested by Wang and Xu [89]. An integer pro-
gramming model of exponential size was presented in Gusfield [37], and later an
integer programming model of linear size was given by Brown and Harrower [8].
The first approximation algorithm with performance guarantee 2k−1 was designed
by Lancia et al. [50] for the case in which each genotype has at most k heterozy-
gous positions. Huang et al. [43] proposed an O(log n)-approximation algorithm,
where n is the number of genotypes. A heuristic algorithm—parsimonious tree-grow
method (PTG)—in O(m2n) time (m is the number of SNP sites, and n is the number
of genotypes) was developed by Li et al. [58], which can not only solve haplotyp-
ing problem in an accurate and efficient manner but also numerically handle large-
scale problems, and a software is also provided for PTG in http://zhangroup.aporc
.org/bioinfo/ptg/. Recently, Lancia and Rizzi [51] presented a polynomial time al-
gorithm for the HIPP problem when each genotype has at most two heterozygous
positions.

The parsimony methods are developed from the Clark’s rule [11]. The advantage
of the parsimony models is intuitive simplicity; therefore, it is easy to understand.
The parsimony criterion also has many biological implications and is used widely in
biological research, especially in bioinformatics. But most models derived by parsi-
mony criterion are difficult to solve. Some of them are NP-hard, whereas some are

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

36.3 COMBINATORIAL METHODS 849

even APX-hard. Therefore, the parsimony methods are not practical for large-scale
applications. For real biological data, the numbers of genotypes and SNPs could be
as large as thousands to millions because of the rapid advance of genotyping tech-
niques such as SNP array. Moreover, as shown in some benchmark studies [64], the
performance of parsimony methods is not good as the statistical methods, which
partially may be a result of its simple parsimony assumption.

36.3.3 Phylogeny Methods

Phylogeny methods for haplotype inference is based on the coalescent theory in ge-
netics. In the phylogeny model, the evolutionary history of the haplotypes in the
population can be described by a rooted tree, and each haplotype is a leaf of the
tree. Another assumption of the phylogeny model is infinite site. That is to say, at
most, one mutation occurs in a given site in the tree, and recurrent mutations are
forbidden. Hence, the infinite site model is suitable for describing the evolutionary
history without recombination.

Let H be a set of haplotypes (an m × n matrix on {0, 1}). A haplotype perfect
phylogeny for H is a rooted tree with the following properties:

1. Each leaf in the tree denotes a distinct haplotype in H .

2. Each edge represents an SNP site with a mutation from 0 to 1, and each site is
labeled by at most one edge.

3. For each haplotype labeled by a leaf of the tree, the unique path from the root
to itself specifies all SNP sites with a value of 1 in this haplotype.

For example, given a set of haplotypes H as follows, Figure 36.2 is a haplotype
perfect phylogeny for H .

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Given a genotype matrix G, find a haplotype set H such that for each g ∈ G, there
is a pair of haplotypes in H acting as a resolution of g and H has a haplotype perfect
phylogeny; otherwise, conclude that such a matrix does not exist. This is called a
perfect phylogeny haplotype (PPH) problem and was introduced by Gusfield [36] in
RECOMB 2002.

The PPH problem is polynomially solvable. Gusfield [36] solved the PPH prob-
lem by transforming it into a graph realization problem. Gusfield showed that the
solution can be determined if it is unique; otherwise, all solutions can be repre-
sented as a linear-space data structure, both in linear time. Though the algorithm is of

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

850 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

2 4

6

1

8 3 75

h1 h2 h4 h5 h6

h3

Figure 36.2 An example of haplotype perfect phylogeny. The label of each edge is the index
of SNP site, which is mutated from 0 to 1, and the labels h1 to h6 denote haplotypes in H.

polynomial time of O(mnα(mn)) (α is the inverse Ackerman function), its realiza-
tion procedure is very complicated. Two direct polynomial O(mnα(mn)) algorithms
based on “conflict-pairs” were proposed independently by Bafna et al. [87] and Eskin
et al. [22]. Bafna et al. [4] claimed that these algorithms cannot be adapted to an al-
gorithm of O(mn), and any linear time solution to the PPH problem likely requires
a different approach. Later, Gramm et al. [29] gave a linear time algorithm for PPH
when the phylogeny is a path. Their algorithm relies on a reduction of the problem to
that of deciding whether a partially ordered set has width 2. Ding et al. [18] solved
this problem by giving a practical and deterministic O(mn) algorithm based on a
simple data structure and simple operatioins. The other two O(mn) algorithms were
proposed independently by Liu et al. [63] and Vijayasatya and Mukherjee [88].

If there are multiple solutions for PPH, then is it possible to find one that is most
parsimonious in terms of the number of distinct haplotypes? Bafna et al. [4] proposed
a variant of PPH problem called the minimum perfect phylogeny haplotype (MPPH)
problem, which minimizes the number of distinct haplotypes in the PPH solutions.
Bafna et al. [4] showed that the problem is NP-hard by a reduction from vertex cover.
Recently, Sridhar et al. [79] developed the first practical method for reconstructing
the minimum perfect phylogenies directly from genotype data. They showed that
MPPH is computationally feasible for moderate-sized problem instances.

When there is inconsistency (read-errors, missing bases, or an imperfect fit to the
perfect phylogeny model) in the data, PPH becomes a computationally hard problem.
Gramm et al. [29] proved that PPH with missing data is NP-complete even when the
phylogeny is a path and only one allele of every polymorphic site is present in the
population in its homozygous state. Kimmel and Shamir [48] proved that the perfect
phylogeny haplotype problem is NP-complete when some data entries are missing.
Fortunately, Gramm et al. [30] found that haplotyping via perfect phylogeny with
missing data becomes computationally tractable when imposing additional biologi-
cally motivated constraints. Similarly, Halperin and Karp [42] assumed a rich data
hypothesis under which the problem becomes tractable.

Damaschke [14] proposed a different approach, which also is based on perfect
phylogeny structure. Although most PPH algorithms are purely combinatorial and
generate a description of all possible haplotyping results for any set of genotypes,
Damaschke’s approach concentrated on the haplotypes that can be inferred safely.

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

36.4 STATISTICAL METHODS 851

Damaschke [15] gave an algorithm that identifies haplotypes incrementally along
the sequence, which also can recover missing data. Barzuza et al. [6] considered a
variant of the PPH problem with less information (i.e., only the heterozygosity or
homozygosity information is known for genotypes).

The perfect phylogeny assumption may be too restrictive for real biological data.
Data inconsistent with perfect phylogenies can come from multiple mutations, re-
combinations, gene conversions, and so on. Therefore, several new models have
been taken into account more realistic molecular evolution. Halperin and Eskin [41]
successfully used the imperfect phylogeny (IPPH) model to reconstruct long hap-
lotypes. The imperfect phylogeny method was shown to be very fast and accurate.
Song et al. [77] presented a polynomial-time algorithm for the case when a single
site is allowed to mutate twice (or a single recombination is present) under a prac-
tical assumption on the input data. Sridhar et al. [78] showed that it is possible to
infer imperfect phylogenies with any constant number q of recurrent mutations in
polynomial time in the number of sequences and number of sites typed. But the
computational complexity of general IPPH is still an open problem.

36.4 STATISTICAL METHODS

36.4.1 Maximum Likelihood Methods

In most statistical models for haplotype inference, there is an underlying unknown
distribution of the haplotype frequencies in the population. These models often as-
sume the Hardy–Weinber equilibrium (HWE). That is, the probability of a genotype
is related to the probabilities of its haplotype configurations. In detail, for a genotype
g ∈ G,

Pr(g) =
∑

h⊕h̄=g

Pr(h) Pr(h̄)

where Pr(·) represents the probability. The maximum likelihood methods try to esti-
mate the haplotype frequencies that maximize the likelihood function of the observed
genotype set G. This problem also is known as haplotype frequency estimation.

An expectation-maximization (EM) algorithm was proposed by Excoffier and
Slatkin [23]. This likelihood-based model does not make any assumption on the
mutation and recombination. Note that because there is an exponential number of
possible haplotypes, the EM algorithm cannot handle satisfactorily the problem with
long haplotypes and large population size. In 2002, a partition-ligation-estimation-
maximization (PLEM) algorithm developed by Qin et al. [70] uses a divide and
conquer approach to address this issue.

Kimmel and Shamir [45, 47] extended the maximum likelihood method by ex-
plicitly considering the recombination. Their method simultaneously solves the hap-
lotype inference problem and the haplotype block partitioning problem [13, 68, 96].

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

852 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

The haplotypes are derived through mutations from founder haplotypes in each hap-
lotype block.

36.4.2 Bayesian Methods

Stephens et al. [83] proposed a modification of the maximum likelihood method by
introducing an approximate population genetic model based on the coalescent the-
ory to generate a priori distribution of the haplotype frequencies. Their algorithm
samples new haplotypes for each genotype from the mosaics of all haplotypes cur-
rently assigned to the genotypes. The more the haplotypes are similar to the assigned
haplotypes, the more likely they are to be chosen. Then they try to find the posterior
distribution of the haplotype frequencies for a given genotype set G. This problem
also is called Bayesian haplotype inference. Stephens et al. [83] solved the prob-
lem by a Markov chain Monte Carlo (MCMC) approach. A partition-ligation variant
of the MCMC approach was proposed by Niu et al. [65] to deal with large-scale
problems. Another difference is that the sampling strategy of Niu et al. [65]
prioritize the haplotypes already assigned to many genotypes. Greenspan and
Geiger [31] also presented a Bayesian network model explicitly considering the
recombination.

In 2005, Stephens and Scheet [82] extended the Bayesian MCMC method by
considering the decay of LD and the missing data in genotypes. In this model, a
hidden Markov model (HMM) is constructed to sample haplotypes and estimate
the haplotype frequencies, and the recombination processes are treated as “nui-
sance parameters.” The algorithms in [80, 82] are implemented in the software
PHASE, which often is considered the most accurate software for population-based
haplotype inference so far [64]. But the running time of PHASE increases dra-
matically with the number of markers because of the adopted MCMC approach.
Delaneau et al. [16] addressed this problem by using a binary tree representations to
avoid searching in an exponential growth space. In their tests, the new algorithm can
run up to 150 times faster than PHASE while maintaining similar accuracy.

36.4.3 Markov Chain Methods

Instead of estimating frequencies of full haplotypes as the previous models, the vari-
able order Markov chain model proposed by Eronen et al. [20] estimates and uses
frequencies of short haplotype fragments. The haplotype frequencies are calculated
from the fragment frequencies by modeling the haplotype as a Markov chain of short
fragments. These fragments are shorter regions potentially conserved for several gen-
erations and thus are more likely to be identified reliably in a population sample. This
method is aimed at long marker maps, where LD between markers may be relatively
weak. The Markov chain model can adapt better to the recombination because it does
not assume haplotype blocks.

To find the haplotype configuration with maximum likelihood from a solution
space with an exponential number of haplotypes, Eronen et al. use a heuristic
partition-ligation method like that in Qin et al. [70]. However, the partition-ligation

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

36.5 PEDIGREE METHODS 853

algorithm used in Eronen et al. [20] is only a greedy heuristic algorithm producing
near-optimal haplotype reconstructions in reasonable time and without any guaran-
tee of solution quality. Recently, Zhang et al. [94, 95] proved that this problem can
be solved exactly by a dynamic programming algorithm with polynomial time com-
plexity. The computational experiments in [94, 95] show that the solution of the
partition-ligation method may be far away from true optimum in some cases such
as large marker spacing. Therefore, a dynamic programming method greatly can im-
prove the results in [20], whereas the time and space complexity remains in the same
low magnitude of the partition-ligation method.

Eronen et al. [21] introduced an EM algorithm to improve iteratively the accu-
racy of fragment frequencies estimation. This algorithm reestimates the fragment
frequencies from the combined set of the most probable haplotype configurations
for all genotypes, which is sampled in the previous step. The experiments in Eronen
et al. [21] show that the algorithms outperform most existing haplotype inference
methods, especially on genetically long marker maps. Based on the work in [21],
Wu et al. [91] show that, by using the dynamic programming method proposed
in [94, 95], the fragment frequencies can be reestimated more accurately from the
possible haplotype configurations for all genotypes, which further improves the ac-
curacy of haplotype inference.

Browning and Browning [9] proposed another haplotype inference method based
on the variable Markov chain model. They described a localized haplotype cluster
model that can be interpreted as a special class of HMMs. A stochastic EM-like al-
gorithm is used. The algorithm involves iterative fitting a localized haplotype model
to estimated haplotype configurations and sampling haplotype estimates conditional
on the fitted localized haplotype model and the genotype data.

Scheet and Stephens [75] proposed an HMM to model the mutation and recom-
bination on haplotypes in the maximum likelihood model. This algorithm was im-
plemented in the software fastPHASE. But unlike the models based on the variable
Markov chain [21, 9, 91], the number of haplotype clusters (i.e., the number of states
in each marker) is predetermined so that it can not adapt locally to the haplotype
structures. Kimmel and Shamir [46] also adopted the HMM in the maximum like-
lihood model for haplotype inference. Similarly, Landwehr et al. [53] proposed a
method based on constrained HMMs.

Recently, Rastas et al. [72] presented a new approach that combines the variable
Markov chain model and the Bayesian method in which the haplotype inference
relies on the posterior distribution of haplotype assignments in the previous step like
in PHASE [80, 82]. The Bayesian step is solved efficiently by using a so-called
context tree weighting algorithm.

36.5 PEDIGREE METHODS

The previous part of this chapter introduced the haplotype inference approaches in
an unrelated population. However, some methods also can be applied to pedigree
data. In this section, we will focus on the models and methods specially designed for

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

854 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

the haplotype inference with pedigree data. Generally, haplotype inference based on
pedigree data has two fundamental assumptions:

1. The given genotype data has a pedigree structure called pedigree graph. That
is to say, the individuals in the population are related genetically.

2. The inheritance satisfies the Mendelian law (i.e., out of two alleles in every
SNP site of the genotype of a child, one comes from his paternal genome and
the other from his maternal genome), and there is no mutation to occur during
the inheritance.

One then can get a better estimation of haplotypes because the haplotypes of a child
is constrained by its inheritance from his parents. However, collection of such pedi-
gree data (related individuals) costs much more than that of an unrelated population.
The complexity of haplotype inference with pedigree data heavily depends on the
structure of the pedigree graph.

36.5.1 Minimum Recombinant Haplotype Configurations

The first version of haplotype inference problem with pedigree data is the minimum
recombinant haplotype configurations (MRHC) problem. The MRHC problem is de-
fined as follows: Given a valid genotype pedigree graph G, find a realization H of
G involving a minimum number of recombination events. This version of haplotype
inference was studied in the literature [39, 84, 69, 55, 56, 57, 19]. The models are
based on the fact that few recombinations occur when the haplotypes of a child are
inherited from parents, and hence, the objective is often to minimize the total number
of recombinations.

Haines [39] designed an algorithm to solve MRHC and used it to detect genotyp-
ing error. Tapadar et al. [84] presented a genetic algorithm based on certain principles
of biological evolution. Qian and Bechkmann [69] presented a rule-based algorithm,
which allows an exhaustive search of all possible haplotype configurations under the
criterion that there are minimum recombinants between markers and can be applied
to various pedigree structures. The algorithm performs well for small pedigrees but
runs slowly on moderate or large-scale data. Li and Jiang [55] proved MRHC on a
general pedigree graph to be NP-hard by reduction from three-dimensional match-
ing and proposed an iterative heuristic algorithm. Doi et al. [19] proved MRHC on
a pedigree tree is also NP-hard. They gave two dynamic programming algorithms
for MRHC on pedigree tree. Although most algorithms do not consider the missing
data, Li and Jiang [56, 57] developed an integer linear programming formulation of
the MRHC problem with missing data and a branch-and-bound algorithm to solve it.

36.5.2 Zero Recombinant Haplotype Configurations

A widely studied variant version of MRHC is the zero recombinant haplotype con-
figurations (ZRHC) problem: Given a valid genotype pedigree graph G, find a

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

36.5 PEDIGREE METHODS 855

realization H of G involving no recombination events or decide that such a realiza-
tion does not exist. The zero recombinant assumption in the ZRHC is a little different
from that in the phylogeny methods for population-based haplotype inference. The
assumption here requires that recombination events do not occur among the genera-
tions in a single pedigree, whereas the assumption in the phylogeny methods implies
that there are no recombination events since the ancestral haplotypes of the whole
population. Note that the timespan of a pedigree typically is much smaller than that
of the evolution of a population from their common ancestral haplotypes. Therefore,
the zero recombinant assumption in the ZRHC is more realistic.

Wijsman [90] presented a rule-based algorithm for ZRHC. O’Connell [66] de-
veloped a genotype-elimination [67, 54] algorithm, which use the recoded alleles to
delete inconsistent genotypes and to find the all possible haplotype configurations.
Li and Jiang [55] proved the ZRHC is polynomial time solvable and presented an al-
gorithm based on Gaussian elimination for ZRHC. Based on a generalization of the
genetic rules of Wijsman [90] and the genotype-elimination algorithm of O’Connell
[66], Zhang et al. [97] designed the software HAPLORE in which the haplotype fre-
quencies are estimated by a partition-ligation-expectation-maximization algorithm
in [70]. The algorithm developed by Baruch et al. [5] addressed very large pedi-
grees and small chromosomal segments, assuming no recombination and allowing
for missing data.

If we relax the strict constraints on the number of recombination events in the
ZRHC, then we can get another variant of MRHC, k-minimum recombination hap-
lotype configuration (k-MRHC), which is defined as follows: Given a valid genotype
pedigree graph G, find a realization H of G such that the total number of recombi-
nations is minimal and the number of recombinations on each parent-offspring pair
is at most k. Chin et al. [10] proved k-MRHC on a pedigree graph to be NP-hard
even for k = 1. They proposed a dynamic programming in O(nm3k+1

0 2m0) time on
pedigrees with n nodes and at most m0 heterozygous loci in each node. The com-
putational complexity of k-MRHC on a pedigree tree is still open. Several variants
of MRHC also were formulated by Bonizzoni et al. in their review paper [7]. The
complexity and algorithms of these variants mostly are open.

36.5.3 Statistical Methods

The statistical methods for population-based haplotype inference are often flexible
enough to be adapted to use pedigree information such as nuclear family and trios.
For example, the methods in [82, 41] were modified to exploit the trios pedigree
information in [64]. These methods often assume HWE in population and no recom-
bination in pedigrees and extend the population-based approaches by excluding the
parental haplotypes that are not consistent with the children’s genotype data. Un-
like the methods designed for pedigrees, these methods only infer the haplotypes of
parents instead of whole families. Similar works can be found in [60, 73, 17, 62].

There are also several statistical methods specially designed for the pedigree-
based haplotype inference problem [76, 61, 86]. Most are maximum likelihood
methods with HWE assumption. Kruglyak et al. [49] applied the Lander–Green

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

856 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

algorithm [52] and the Viterbi algorithm [71] to reconstruct haplotype configurations.
Gudbjartsson et al. [32, 33] and Abecasis et al. [1] also used similar approaches.
Fishelson et al. [24] developed a maximum likelihood method based on the Bayesian
network. Although these are exact algorithms, the approximation methods are needed
for large and complex pedigrees with large size of markers. Sobel et al. [76] pre-
sented an MCMC method based on simulated annealing. Lin and Speed [61] pro-
posed another MCMC method based on a Gibbs-jump algorithm. Thomas et al. [86]
designed a block Gibbs sampler for haplotype linkage analysis. Gao et al. [28] and
Gao and Hoeschele [27] presented the conditional enumeration method, a determin-
istic approximation. Because the likelihood-based methods often ignore LD between
markers, they are suitable for linkage analysis in long chromosomal regions with
low-density markers but less accuracy in haplotype inference. Moreover, although
these methods are capable of haplotyping, most focus on linkage analysis instead of
haplotyping. The implementation of some methods do not provide a haplotyping out-
put. A detailed review on statistical haplotype inference methods for pedigree data
can be found in Gao et al. [25].

36.6 EVALUATION

36.6.1 Evaluation Measurements

There are several widely used measurements to evaluate the computational results of
haplotype inference methods. The switch error, incorrect genotype percentage (IGP)
and incorrect haplotype percentage (IHP) are measurements to compare the inferred
haplotype configurations with the true haplotype configurations. Switch error is the
percentage of possible switches (“recombinations”) used to recover the correct hap-
lotype configuration of an individual [60]. Switch error is a natural error measure
for the haplotype inference problem because many applications using inferred hap-
lotypes will look at local haplotype segments, and they are correct unless one of the
needed switches is within the segment. IGP is the percentage of sites with incorrect
inferred phase when the putative haplotypes are aligned with the real haplotypes to
minimize the phase differences. IHP is the percentage of ambiguous individuals of
which the inferred haplotype configuration is not completely correct [83]. The switch
error, IGP, and IHP typically are used for high-density markers (e.g., in a short chro-
mosomal region.)

However, for low-density markers, the likelihood of the haplotype configurations
and the effects of haplotype configurations on the accuracy of association studies
such as quantitative trait locus (QTL) mapping is considered more important [26].
The numbers of recombinant in the inferred haplotype configurations also often are
used for the rule-based methods [19, 39, 55, 56, 57, 69, 84]. The aims of phylogeny
methods include the construction of phylogeny besides the haplotype inference;
therefore, the accuracy of inferred haplotype is not the most important criteria of
assessment. The authors of phylogeny methods claim that phylogeny reconstruction
directly from unphased data is computationally feasible for moderate-sized problem

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

36.6 EVALUATION 857

instances and can lead to substantially more accurate tree size inferences than the
standard practice of treating phasing and phylogeny construction as two separate
analysis stages [5, 55].

36.6.2 Comparisons

There is no unified framework for the haplotype inference problem. There are two
parallel main methodologies in inference model formulation; one is deterministic
and the other is statistic. Various inference models have been suggested by featur-
ing different computational complexity ranging from polynomial (P) to NP. These
models of haplotype inference have different biological assumptions. Therefore, the-
oretical comparison of methods with different assumptions is difficult if not im-
possible. Some researchers have done comparisons of haplotype inference methods
based on similar models. For example, Stephens and Donnelly [81] compared three
Bayesian methods, emphasizing the differences between the models and the compu-
tational strategies.

Numerical comparison of models and algorithms need large and objective
datasets because every model has its suited data. Extensive and objective accuracy
comparison of them is heavily technical but an important research work. There are
already some attempts. Adkins [2] compared the accuracy of some methods using
a large set of 308 empirically determined haplotypes based on 15 SNPs. Marchini
et al. [64] conducted a comprehensive comparison of five leading algorithms for
haplotype inference. The algorithms were applied to both father-mother-child trios
data and unrelated data. Two kinds of datasets were used: the simulated data gen-
erated by a coalesent model and the real data produced from the publicly available
HapMap [12] data.

Although most papers compared their works with other methods in the papers,
these comparisons are sometimes unfair and not objective. First, these comparisons
are incomplete. Only a few methods are chosen for comparison. Second, the selection
of datasets has bias. The performance of haplotype inference methods depends on the
underlying properties of the genotype data (e.g., the density of markers). Therefore,
large number of varying data sets are necessary for comparing methods from a com-
plete viewpoint. Third, the parameters of other methods are not well tuned. Most
authors just use the default parameter settings provided by the software without any
tuning for the test data. Evaluating all existing inference models on one framework
and on unified datasets is still a problem for future study.

36.6.3 Datasets

Currently, most works in literature used both simulated data and real data for eval-
uation purposes. The data can be simulated in different levels. For example, some
researchers use real haplotype and simulate genotypes by randomly mating. This is
consistent with the HWE assumption, which is used in most models. Furthermore,
the haplotype itself can be simulated instead of using real data. Some haplotype data
are simulated by using software with a coalesent model such as COSI [74], whereas

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

858 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

some are simulated by simple probabilistic distribution (e.g., uniform distribution).
The haplotype inference methods based on coalesent theory such as PHASE [80, 82]
may benefit from the data generated using coalesent model because the assumption
of inference methods is consistent with the simulated data. This often is argued by
the authors of the haplotype inference methods that do not use a coalesent model.
In fact, it is difficult to design a completely fair simulation scheme for all haplotype
inference methods.

Compared with the simulated data, the real data is less arguable. The public Daly
set [13] is a real genotype set with missing data from a European-derived popu-
lation. Daly set was used widely in many literature such as Eronen et al. [20, 21],
Zhang et al. [95], and Stephens and Scheet [82]. The data consists of 103 SNPs rang-
ing over 500 kb on chromosome 5q31 (Crohn’s disease). Another important source
of real data is the HapMap data, which consists of genotypes from four popula-
tions: 30 trios from the Yoruba population in Ibadan, Nigeria (YRI), 30 trios from
the CEPH (Utah residents with ancestry from northern and western Europe) popu-
lation (CEU), 45 unrelated individuals from China (CHB), and 45 unrelated indi-
viduals from Japan (JPT). Marchini et al. [64] constructed haplotype and genotype
datasets from HapMap [12] data, which consists of about 1.22 million SNPs. The
simulated and real data used in [64] can be downloaded from the Internet.1 Browning
and Browning [9] and Rastas et al. [72] also generated genotype datasets from
the HapMap data. Because the performance of methods may vary on the datasets
with different density of markers (i.e., the distance between markers), both sparse
and dense datasets are needed for evaluating haplotype inference methods. The
sparse datasets can be filtered by removing some markers with a small minimum
allele frequency and then selected randomly from the markers in dense datasets
[64, 72].

36.7 DISCUSSION

In this chapter, we briefly introduced the haplotype inference problem and the recent
progress of haplotype inference methods. From the type of used genotype data, the
haplotype inference methods are classified into two categories: population-based and
pedigree-based. From the methodology viewpoint, the haplotype inference methods
can be divided into two groups: combinatorial methods and statistical methods. But
this classification is not strict. When statistical models are adopted for haplotype
inference, probability and stochastic process theory play main roles in establishing
models and designing algorithms. But one also can find in the literature that an effi-
cient algorithm may require both deterministic and stochastic techniques, depending
on the problem setting. Because there are an exponential number of feasible solu-
tions in the haplotyping problem, to design an efficient computational method with
a high accuracy is still an important task. In this sense, statistical methods are also
kind of combinatorial methods.

1See http://www.stats.ox.ac.uk/marchini/phaseoff.html.

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

REFERENCES 859

LD decays is one of the most important properties of haplotype. To model the LD
decays with distance, many approaches are developed in the literature: the coales-
cent model, haplotype block structure, size-varied sliding window, HMM, frequent
haplotype fragments, and so on. The combinatorial methods often do not fully use
the information of intermarker distances and are more appropriate for tightly linked
markers in a small chromosomal region [25]. In practice, the optimal solution of
many haplotype inference models does not necessarily correspond to “true” hap-
lotypes with 100% accuracy. Incorporating more information into existing models
may improve the accuracy of haplotype inference, which will be a future research
direction.

REFERENCES

1. G.R. Abecasis, S.S. Cherny, W.O. Cookson, and L.R. Cardon. Merlin—rapid analysis of
dense genetic maps using sparse gene flow trees. Nat Genet, 30:97–101, 2002.

2. R.M. Adkins. Comparison of the accuracy of methods of computational haplotype infer-
ence using a large empirical dataset. BMC Genet, 5:22, 2004.

3. J. Akey, L. Jin, and M. Xiong. Haplotypes vs single marker linkage disequilibrium tests:
What do we gain? Eur J Hum Genet, 9(4):291–300, 2001.

4. V. Bafna, D. Gusfield, S. Hannenhalli, and S. Yooseph. A note on efficient computation
of haplotypes via perfect phylogeny. J Comput Biol, 11(5):858–866, 2004.

5. E. Baruch, J.I. Weller, M. Cohen, M. Ron, and E. Seroussi. Efficient inference of haplo-
types from genotypes on a large animal pedigree. Genetics, 172:1757–1765, 2006.

6. T. Barzuza, J.S. Beckmann, R. Shamir, and I. Pe’er. Computational problems in perfect
phylogeny haplotyping: Typing without calling the allele. IEEE/ACM Trans Comput Biol
Bioinform, 5:101–109, 2008.

7. P. Bonizzoni, G.D. Vedova, R. Dondi, and J. Li. The haplotyping problem: An
overview of computational models and solutions. J Comput Sci Technol, 18(6):675–688,
2003.

8. D.G. Brown and I.M. Harrower. A new integer programming formulation for the pure
parsimony problem inhaplotype analysis. Proceedings of the 4th International Workshop
on Algorithms in Bioinformatics (WABI), 2004, pp. 254–265.

9. S.R. Browning and B.L. Browning. Rapid and accurate haplotype phasing and missing-
data inference for whole-genome association studies by use of localized haplotype clus-
tering. Am J Hum Genet, 81:1084–1097, 2007.

10. F.Y. Chin, Q.F. Zhang, and H. Shen. k-recombination haplotype inference in pedigrees.
Proceedings of the International Conference on Computational Science (ICCS), LNCS
3515, Springer-Verlag, Berlin, 2005, pp. 985–993.

11. A.G. Clark. Inference of haplotypes from PCR-amplified samples of diploid populations.
Mol Biol Evol, 7(2):111–122, 1990.

12. The International HapMap Consortium. The international hapmap project. Nature,
426(6968):789–796, 2003.

13. M.J. Daly, J.D. Rioux, S.F. Schaffner, T.J. Hudson, and E.S. Lander. High-resolution hap-
lotype structure in the human genome. Nat Genet, 29(2):229–232, 2001.

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

860 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

14. P. Damaschke. Fast perfect phylogeny haplotype inference. Proceedings of the 14th Sym-
posium on the Fundamentals of Computation. Theory FCT 2003, LNCS 2751, 2003,
pp. 183–194.

15. P. Damaschke. Incremental haplotype inference, phylogeny and almost bipartite graphs.
Proceedings of 2nd RECOMB Satellite Workshop on Computational Methods for SNPs
and Haplotypes, 2004, pp. 1–11.

16. O. Delaneau, C. Coulonges, and J.-F. Zagury. Shape-it: New rapid and accurate algorithm
for haplotype inference. BMC Bioinformatics, 9:540, 2008.

17. X. Ding, Q. Zhang, C. Flury, and H. Simianer. Haplotype reconstruction and estimation of
haplotype frequencies from nuclear families with only one parent available. Hum Hered,
62:12–19, 2006.

18. Z. Ding, V. Filkov, and D. Gusfield. A linear-time algorithm for the perfect phylogeny
haplotyping (pph) problem. J Comput Biol, 13(2):522–553, 2006.

19. K. Doi, J. Li, and T. Jiang. Minimum recombinant haplotype configuration on tree pedi-
grees. Proceedings of the 3th Annual International Workshop on Algorithms in Bioinfor-
matics (WABI), Springer-Verlag, New York, 2003, pp. 339–353.

20. L. Eronen, F. Geerts, and H. Toivonen. A markov chain approach to reconstruction of
long haplotypes. Proceedings of the 9th Pacific Symposium on Biocomputing (PSB’04),
World Scientific, Singapore, 2004, pp. 104–115.

21. L. Eronen, F. Geerts, and H. Toivonen. Haplorec: Efficient and accurate large-scale re-
construction of haplotypes. BMC Bioinformatics, 7(542), 2006.

22. E. Eskin, E. Halperin, and R.M. Karp. Efficient reconstruction of haplotype structure via
perfect phylogeny. J Bioinform Comput Biol, 1(1):1–20, 2003.

23. L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular haplotype fre-
quencies in a diploid population. Mol Biol Evol, 12(5):921–927, 1995.

24. M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for gen-
eral pedigrees. Hum Hered, 59:41–60, 2005.

25. G. Gao, D.B. Allison, and I. Hoeschele. Haplotyping methods for pedigrees. Hum Hered,
67(4):248–266, 2009.

26. G. Gao and I. Hoeschele. Approximating identity-by-descent matrices using multiple hap-
lotype configurations on pedigrees. Genetics, 171(1):365–376, 2005.

27. G. Gao and I. Hoeschele. A rapid conditional enumeration haplotyping method in pedi-
grees. Genet Sel Evol, 40:25–36, 2008.

28. G. Gao, I. Hoeschele, P. Sorensen, and F. Du. Conditional probability methods for haplo-
typing in pedigrees. Genetics, 167(4):2055–2065, 2004.

29. J. Gramm, T. Nierhoff, R. Sharan, and T. Tantau. On the complexity of haplotyping via
perfect phylogeny. Proceedings of Second RECOMB Satellite Workshop on Computa-
tional Methods for SNPs and Haplotypes, Pittsburgh, PA, 2004, pp. 35–46.

30. J. Gramm, T. Nierhoff, and T. Tantau. Perfect path phylogeny haplotyping with missing
data is fixed-parametertractable. In Lecture Notes in Computer Science, volume 3162.
Springer-Verlag, New York, 2004, pp. 174–186.

31. G. Greenspan and D. Geiger. Model-based inference of haplotype block variation. Pro-
ceedings of the 7th Annual International Conference on Computational Molecular Biol-
ogy (RECOMB), 2003, pp. 131–137.

32. D.F. Gudbjartsson, K. Jonasson, M.L. Frigge, and A. Kong. Allegro, a new computer
program for multipoint linkage analysis. Nat Genet, 25:12–13, 2000.

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

REFERENCES 861

33. D.F. Gudbjartsson, T. Thorvaldsson, A. Kong, G. Gunnarsson, and A. Ingolfsdottir. Alle-
gro version 2. Nat Genet, 37:1015–1016, 2005.

34. D. Gusfield. A practical algorithm for optimal inference of haplotypes from diploid pop-
ulations. Proceedings of the Eighth International Conference on Intelligent Systemsfor
Molecular Biology (ISMB), AAAI Press, Menlo Park, CA, 2000, pp. 183–189.

35. D. Gusfield. Inference of haplotypes from samples of diploid populations: Complexity
and algorithms. J Comput Biol, 8(3):305–323, 2001.

36. D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient solu-
tions. Proceedings of 6th Annual International Conference on Research in Computational
Molecular Biology (RECOMB), ACM Press, Menlo Park, CA, 2002, pp. 166–175.

37. D. Gusfield. Haplotyping by pure parsimony. Proceedings of the 14th Sympo-
sium on Combinatorial Pattern Matching (CPM), Springer-Verlag, New York, 2003,
pp. 144–155.

38. D. Gusfield. An overview of combinatorial methods for haplotype inference. Proceedings
of the 1st RECOMB Satellite Workshop on Computational Methodsfor SNPs and Haplo-
type Inference. Springer-Verlag, New York, 2004, pp. 9–25.

39. J.L. Haines. Chromlook: An interactive program for error detection and mapping in ref-
erence linkage data. Genomics, 14:517–519, 1992.

40. B.V. Halldórsson, V. Bafna, N. Edwards, R. Lippert, S. Yooseph, and S. Istrail. A survey
of computational methods for determining haplotypes. In S. Istrail, M. Waterman, and
A. Clark, editors, SNPs and Haplotype Inference, LNBI 2983. Springer-Verlag, Berlin
Germany, 2004, pp. 26–47.

41. E. Halperin and E. Eskin. Haplotype reconstruction from genotype data using imperfect
phylogeny. Bioinformatics, 20(12):1842–1849, 2004.

42. E. Halperin and R.M. Karp. Perfect phylogeny and haplotype assignment. Proceedings of
8th Annual International Conference on Research in Computational Molecular Biology
(RECOMB), 2004, pp. 10–19.

43. Y.-T. Huang, K.-M. Chao, and T. Chen. An approximation algorithm for haplotype in-
ference by maximum parsimony. Proceedings of the 2005 ACM Symposium on Applied
Computing, 2005, pp. 146–150.

44. R. Hudson. Gene genealogies and the coalescent process. Oxf Sur Evol Biol, 7:1–44,
1990.

45. G. Kimmel and R. Shamir. Maximum likelihood resolution of multi-block genotypes.
Proceedings of the 8th Annual International Conference on Computational Molecular
Biology (RECOMB), 2004.

46. G. Kimmel and R. Shamir. A block-free hidden markov model for genotypes and its
application to disease association. J Comput Biol, 12(10):1243–1260, 2005.

47. G. Kimmel and R. Shamir. Gerbil: Genotype resolution and block identification using
likelihood. Proc Natl Acad Sci U S A, 102(1):158–162, 2005.

48. G. Kimmel and R. Shamir. The incomplete perfect phylogeny haplotype problem. J Bioin-
form Comput Biol, 3(2):359–384, 2005.

49. L. Kruglyak, M.J. Daly, M.P. Reeve-Daly, and E.S. Lander. Parametric and nonparamet-
ric linkage analysis: A unified multipoint approach. Am J Hum Genet, 58:1347–1363,
1996.

50. G. Lancia, C. Pinotti, and R. Rizzi. Haplotyping population by pure parsimony: Complex-
ity of exact and approximationalgorithms. INFORMS J Comput, 16(4):348–359, 2004.

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

862 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

51. G. Lancia and R. Rizzi. A polynomial case of the parsimony haplotyping problem. Oper
Res Let, 34(3):289–295, 2006.

52. E.S. Lander and P. Green. Construction of multilocus genetic linkage maps in humans.
Proc Nat Acad Sci, 84:2363–2367, 1987.

53. N. Landwehr, T. Mielik0Ł1inen, L. Eronen, H. Toivonen, and H. Mannila. Con-
strained hidden markov models for population-based haplotyping. BMC Bioinformatics,
8(Suppl 2):S9, 2007.

54. K. Lange and T.M. Goradia. An algorithm for automatic genotype elimination. Am J Hum
Genet, 40:250–256, 1987.

55. J. Li and T. Jiang. Efficient inference of haplotypes from genotypes on a pedigree. J Bioin-
form Comput Biol, 1(1):41–69, 2003.

56. J. Li and T. Jiang. An exact solution for finding minimum recombinant haplotype configu-
rations on pedigrees with missing data by integer linear programming. Proceedings of the
8th Annual International Conference on Research in Computational Molecular Biology
(RECOMB), ACM press, Menlo Park, CA, 2004, pp. 20–29.

57. J. Li and T. Jiang. Computing the minimum recombinant haplotype configuration from
incomplete genotype data on a pedigree by integer linear programming. J Comput Biol,
12(6):719–739, 2005.

58. Z. Li, W. Zhou, X.-S. Zhang, and L. Chen. A parsimonious tree-grow method for haplo-
type inference. Bioinformatics, 21(17):3475–3481, 2005.

59. H. Lin, Z. Zhang, Q. Zhang, D. Bu, and M. Li. A note on the single genotype resolution
problem. J Comput Sci Technol, 19(2):254–257, 2004.

60. S. Lin, A. Chakravarti, and D. Cutler. Haplotype and missing data inference in nuclear
families. Genome Res, 14:1624–1632, 2004.

61. S. Lin and T.P. Speed. An algorithm for haplotype analysis. J Comput Biol, 4:535–546,
1997.

62. P.Y. Liu, Y. Lu, and H.W. Deng. Accurate haplotype inference for multiple linked single-
nucleotide polymorphisms using sibship data. Genetics, 174:499–509, 2006.

63. Y. Liu and C.-Q. Zhang. A linear solution for haplotype perfect phylogeny problem.
International Conference on Bioinformatics and Its Applications (ICBA), 2004.

64. J. Marchini, D. Cutler, N. Patterson, M. Stephens, E. Eskin, E. Halperin, S. Lin, Z.S. Qin,
H.M. Munro, G.R. Abecasis, et al. A comparison of phasing algorithms for trios and
unrelated individuals. Am J Hum Genet, 78(3):437–450, 2006.

65. T. Niu, Z.S. Qin, X. Xu, and J.S. Liu. Bayesian haplotype inference for multiple linked
single-nucleotide polymorphisms. Am J Hum Genet, 70(1):157–169, 2002.

66. J.R. O’Connell. Zero-recombinant haplotyping: Applications to fine mapping using
SNPs. Genet Epidemiol, 19(Suppl 1):S64–S70, 2000.

67. J.R. O’Connell and D.E. Weeks. An optimal algorithm for automatic genotype elimina-
tion. Am J Hum Genet, 65:1733–1740, 1999.

68. N. Patil, A.J. Berno, D.A. Hinds, W.A. Barrett, J.M. Doshi, C.R. Hacker, C.R. Kautzer,
D.H. Lee, C. Marjoribanks, D.P. McDonough, et al. Blocks of limited haplotype
diversity revealed by high-resolution scanning of human chromosome 21. Science,
294(5547):1719–1723, 2001.

69. D. Qian and L. Beckmann. Minimum-recombinant haplotyping in pedigrees. Am J Hum
Genet, 70(6):1434–1445, 2002.

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

REFERENCES 863

70. Z.S. Qin, T. Niu, and J.S. Liu. Partition-ligation-expectation-maximization algorithm
for haplotype inference with single-nucleotide polymorphisms. Am J Hum Genet,
71(5):1242–1247, 2002.

71. L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proc IEEE, 77(2):257–286, 1989.

72. P. Rastas, J. Kollin, and M. Koivisto. Fast bayesian haplotype inference via context tree
weighting. Proceedings of the 8th International Workshop on Algorithms in Bioinformat-
ics, 2008.

73. K. Rohde and R. Fuerst. Haplotyping and estimation of haplotype frequencies for closely
linked biallelic multilocus genetic phenotypes including nuclear family information. Hum
Mutation, 17:289–295, 2001.

74. S.F. Schaffner, C. Foo, S. Gabriel, D. Reich, M.J. Daly, and D. Altshuler. Calibrating a
coalescent simulation of human genome sequence variation. Genome Res, 15(11):1576–
1583, 2005.

75. P. Scheet and M. Stephens. A fast and flexible statistical model for large-scale population
genotype data: Applications to inferring missing genotypes and haplotypic phase. Am J
Hum Genet, 78(4):629–644, 2006.

76. E. Sobel, K. Lange, J.R. O’Connell, and D.E. Weeks. Haplotyping algorithms. In T. Speed
and M.S. Waterman, editors, Genetic Mapping and DNA Sequencing, volume 81 of IMA
Volumes in Mathematics and Its Applications, Springer-Verlag, New York, 1996, pp. 89–
110.

77. Y. Song, Y. Wu, and D. Gusfield. Algorithms for imperfect phylogeny haplotyping with
a single homoplasy or recombination event. Proceedings of Workshop on Algorithms in
Bioinformatics, 2005.

78. S. Sridhar, G.E. Blelloch, R. Ravi, and R. Schwartz. Optimal imperfect phylogeny re-
construction and haplotyping (ipph). Computational System Bioinformatics Conference,
2006, pp. 199–210.

79. S. Sridhar, F. Lam, G.E. Blelloch, R. Ravi, and R. Schwartz. Direct maximum parsimony
phylogeny reconstruction from genotype data. BMC Bioinformatics, 8:472, 2007.

80. J.C. Stephens, J.A. Schneider, D.A. Tanguay, J. Choi, T. Acharya, S.E. Stanley, R. Jiang,
C.J. Messer, A. Chew, J.H. Han, et al. Haplotype variation and linkage disequilibrium in
313 human genes. Science, 293(5529):489–493, 2001.

81. M. Stephens and P. Donnelly. A comparison of bayesian methods for haplotype re-
construction from population genotype data. Am J Hum Genet, 73(5):1162–1169,
2003.

82. M. Stephens and P. Scheet. Accounting for decay of linkage disequilibrium in haplotype
inference and missing-data imputation. Am J Hum Genet, 76(3):449–462, 2005.

83. M. Stephens, N.J. Smith, and P. Donnelly. A new statistical method for haplotype recon-
struction from population data. Am J Hum Genet, 68(4):978–989, 2001.

84. P. Tapadar, S. Ghosh, and P.P. Majumder. Haplotyping in pedigrees via a genetic algo-
rithm. Human Heredity, 50(1):43–56, 2000.

85. S. Tavare. Calibrating the clock: Using stochastic processes to measure the rate of evo-
lution. In E. Lander and M. Waterman, editors, Calculating the Secrets of Life. National
Academy Press, Washington, DC, 1995.

86. A. Thomas, A. Gutin, V. Abkevich, and A. Bansal. Multilocus linkage analysis by blocked
Gibbs sampling. Stat Comput, 10:259–269, 2000.

P1: OSO
c36 JWBS046-Elloumi December 2, 2010 9:52 Printer Name: Sheridan

864 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS

87. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phylogeny: A
direct approach. J Comput Biol, 10(3–4):323–340, 2003.

88. R. Vijayasatya and A. Mukherjee. An optimal algorithm for perfect phylogeny haplotyp-
ing. J Comput Biol, 13(4):897–928, 2006.

89. L. Wang and Y. Xu. Haplotype inference by maximum parsimony. Bioinformatics,
19(14):1773–1780, 2003.

90. E. Wijsman. A deductive method of haplotype analysis in pedigrees. Am J Hum Genet,
41:356–373, 1987.

91. L.-Y. Wu, J.-H. Zhang, and R. Chan. Improved approach for haplotype inference based
on Markov chain. Proceedings of the 2nd International Symposium on Optimization and
Systems Biology (OSB 2008), volume 9, Beijing, China. World Publishing Corporation,
Xian, China, 2008, pp. 204–215.

92. J. Xu. Extracting haplotypes from diploid organisms. Curr Issues Mol Biol, 8(2):113–122,
2006.

93. H. Yan, N. Papadopoulos, G. Marra, C. Perrera, J. Jiricny, C.R. Boland, H.T. Lynch, R.B.
Chadwick, A. de la Chapelle, K. Berg, et al. Conversion of diploidy to haploidy. Nature,
403(6771):723–724, 2000.

94. J.-H. Zhang, L.-Y. Wu, J. Chen, and X.-S. Zhang. A new statistical method for haplo-
type inference from genotype data. Proceedings of IASTED International Conference on
Computational and Systems Biology (CASB 2006), ACTA Press, Calgary, Canada, 2006,
pp. 7–12.

95. J.-H. Zhang, L.-Y. Wu, J. Chen, and X.-S. Zhang. A fast haplotype inference method for
large population genotype data. Comput Stat Data Anal, 52(11):4891–4902, 2008.

96. K. Zhang, M. Deng, T. Chen, M.S. Waterman, and F. Sun. A dynamic programming
algorithm for haplotype block partitioning. Proc Natl Acad Sci U S A, 99(11):7335–7339,
2002.

97. K. Zhang, F. Sun, and H. Zhao. HAPLORE: A program for haplotype reconstruction in
general pedigrees without recombination. Bioinformatics, 21:90–103, 2005.

98. K. Zhang, J. Zhu, J. Shendure, G.J. Porreca, J.D. Aach, R.D. Mitra, and G.M. Church.
Long-range polony haplotyping of individual human chromosome molecules. Nat Genet,
38(3):382–387, 2006.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

VII
ANALYSIS OF

BIOLOGICAL NETWORKS

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37
UNTANGLING BIOLOGICAL

NETWORKS USING
BIOINFORMATICS

Gaurav Kumar, Adrian P. Cootes, and Shoba Ranganathan

37.1 INTRODUCTION

37.1.1 Predicting Biological Processes: A Major Challenge to
Understanding Biology

Cells are the building blocks of life in an organism. Each cell holds genes contain-
ing the information about constituent cellular processes. This genetic information
is carried out by thousands of different proteins. Proteins are the nanomachines or
tools of the cell that rarely work in isolation. They interact and constantly communi-
cate with each other. The advent of genome sequencing projects has made available
nearly a complete list of genetic information from the different kingdoms of life.
However, this information does not give any direct insight into how the molecular
components within the cell interact, resulting in the complexity of life forms. To
understand cellular complexity, one has to map the molecular interactions occurring
within the cell. Interaction maps provide guides on how different cellular entities like
proteins, metabolites, and genes are linked together via direct physical or functional
associations, to create the complex web of life.

The advent of high-throughput screening techniques has allowed the large-scale
identification of components such as genes, RNAs, proteins, and metabolites. Al-
though the data from such large-scale experimental studies are often incomplete and
contain errors, they nonetheless provide valuable information about the function of

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

867

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

868 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

individual components and cellular processes. Thus, the large-scale datasets gener-
ated experimentally have provided input to different biological network models. The
descriptions of biological networks are based on the mathematical foundations of
network theory. We have therefore provided the core concepts of network features
and principles, resulting from the statistical analysis of many man-made systems
such as the Internet, power grid and traffic flow. In nature, complex network systems
are evident in social interactions, where “Everybody on this planet is separated by
only six other people. Six degrees of freedom. Between us and everybody else in
this planet” [1]. In the biological world, one can see this complex interconnectivity
in networks describing protein-protein interactions, metabolic pathways, transcrip-
tional regulation, and neural connectivity.

37.1.2 Historical Perspective and Mathematical
Preliminaries of Networks

The first study of networks, in the form of graph theory, comes from the Königsberg
problem solved by Euler in 1736 [1]. Real networks are also random graphs as re-
ported by Erdős and Rényi in 1959 [2], and this ER (Erdős-Rényi) view of networks
has dominated scientific thinking for the past 50 years. Networks are highly inter-
connected. This was first proven in a social setting by Miligram in 1967, with people
in the world being connected by a chain of six “friends of a friend” and leading to
the phrase “six degrees of separation” between human beings, implying “it’s a small
world!” [3]. The concept of the small-world networks was revisited by Watts [4] with
the availability of high-performance computing.

The basic mathematical concept used to model biological networks is a graph. A
graph is a collection of vertices/nodes and interconnecting edges/links (Figure 37.1).

E2

E1

E10 E9

E12

E13

E16

E14

E11

E8

E7

E3

E6

E4
E5E15

F

H D

CA

G

B
E

Figure 37.1 Schematic representation of a graph. Nodes or vertices are represented in circles
(A, B, . . . , H), whereas edges or links are shown by lines (E1,E2, ... , E16). Highly connected
nodes are known as hubs (e.g., the gray node H).

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.1 INTRODUCTION 869

In the context of cellular mapping, one can define nodes as proteins, metabolites,
or genes. An edge is a connection between cellular nodes defining their functional
or physical interaction. Understanding how the complex rules of molecular associa-
tions give rise to precise cellular and developmental processes has become a major
challenge for modern molecular and cellular biology. A detailed review of the appli-
cations of graph theory in bioinformatics is presented in Chapter 8 [5].

A graph or network that we encounter in biological systems can be divided into
two broad classes: directed graphs and undirected graphs. Directed graphs repre-
sent networks with a unidirectional interaction or connectivity between the nodes,
whereas there is no such restriction in an undirected graph or network. When the
first or initial node of a network is also connected to the final or last node, we have
a cyclic graph. In an acyclic graph, the initial nodes are not connected to the final
nodes, leading to an open network. Figure 37.1 represents an undirected graph, with
8 nodes (A, B, . . ., H) and 16 edges (E1, E2, . . . , E16). As A is connected to the last
node H, this graph is also cyclic.

In biology, transcription factor binding and metabolic networks are usually mod-
eled as directed graphs. For example, in a transcriptional network, nodes would rep-
resent genes with edges denoting the interactions between them. For instance, if X
regulates Y, then there is a natural direction associated with the edge between the cor-
responding nodes X and Y, starting from X and ending at Y. This is also true of neu-
ronal networks, where individual neurons represent nodes and synaptic connection
corresponds to edges. Formally, a directed graph G consists of a set of vertices/nodes
V (G),

V (G) = {v1, v2, v3, , vn}

together with an edge set, E(G) ⊆ V (G)xV (G). Intuitively, each edge (u, v) ∈ E(G)
can be visualized as connecting the starting node u to the terminal node v. By con-
vention, uv is denoted as a short form for the edge (u, v). It implies that the edge uv

starts at u and terminates at v.
An undirected graph G consists of vertex set V (G) and an edge set E(G) with

no direction associated with the edges. Hence, the elements of E(G) are simply two
elements of the subset of V (G), rather than an ordered pair present in a directed
graph, and can be represented as uv or vu, to denote connectivity from one node
to the next. For two vertices, u and v of an undirected graph, uv is an edge if and
only if vu is also an edge. Among biological networks, protein-protein interactions
are usually modeled as undirected graphs. For an undirected graph G and a vertex
u ∈ V (G), the set of all neighbors of u is denoted as N (u) and is given by

N (u) = {u ∈ V (G) : uv ∈ E(G)}

The number of vertices n in a directed or undirected graph is the size or order of the
graph. For an undirected graph G, the degree of a node u is simply the total number
of edges meeting at u. In Figure 37.1, node C has a degree of 4. The sum of the
degrees of vertices in a graph equals twice the number of edges.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

870 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

For a graph G = (V, E),

∑

v∈V

deg(v) = 2|E |

In an directed graph G, the in-degree, degin(u) of a vertex u is given by the number
of edges terminating at u. On the other hand, degout(u) (the out-degree) of a vertex
u is defined as the number of edges starting from the vertex u. Suppose that the
vertices of a graph (directed or undirected) G are ordered as v1, v2, , vn . Then
the adjacency matrix A of G is given by

A =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 1 0
0 1 0 0 0
0 0 0 0 1
0 1 0 0 0
1 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎦

ai j =
{

1 if viv j ∈ E(G)
0 if viv j /∈ E(G)

The first example of a complex network that has attracted enormous attention
is the World Wide Web (www). www consists of web pages as nodes and may be
viewed as a directed graph when the first web page is linked to the second and so
on. While studying the topology of the web, Barabasi and his group [6] showed that
the in-degree has a power-law exponent of 2.1 and the out-degree has an exponent of
2.45, where power law is described as the probability P(k) of finding the node with
degree k and is proportional to k−λ. A similar power-law distribution was observed in
a biological system for the first time by Liljeros et al. [7] while investigating sexual
networks in Sweden. They found that the exponential degrees (λ) for female and
male contacts are 2.5 and 2.3, respectively. A power-law degree distribution implies
that a real network has no characteristic or central node. Although there are few
nodes with a large number of neighboring nodes, the majority of nodes have only a
few neighbors. The power-law degree distribution thus forces us to abandon the idea
of a scale or a characteristic node. There is thus no scale in these networks. Hence,
the term scale-free network was coined by Barabasi [8-10] from this observation of
the power-law degree distribution (Figure 37.2).

The “fat-tail” of power-law distribution, in which there are few nodes with high
degrees, consists of highly connected nodes called hubs [11, 12]. This kind of scale-
free network is encountered with protein-protein interaction data, where the presence
of hub proteins provides robustness to the system, as these hubs are also conserved
more than non-hub proteins [12] across species. Networks depicting metabolic path-
ways [13, 14], protein domains [15], protein-protein interaction [16], regulatory
genes [17], and transcription factor binding [18] interactions are all characteristically
scale free.

37.1.3 Structural Properties of Biological Networks

The network structure plays a very important role in understanding the archi-
tecture and robustness of biological networks. Several of the commonly used

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.1 INTRODUCTION 871

(a) (b)

Figure 37.2 Degree distribution of random network follows a bell-shaped curve (i.e., normal
distribution) (a), suggesting that most nodes have the same number of links, whereas the power-
law degree distribution of a scale-free network shows the presence of many nodes with a few
links. These nodes are held together by a few highly connected hubs (b).

topological features include degree distribution, short path length, clustering coef-
ficient, and centrality measures. There are at least three structurally different classes
of networks based on their degree distribution [19]:

1. Single-scale networks where the degree distribution has a fast decaying tail,
such as exponential or Gaussian and is “small world” as defined by Watts and
Strogatz [21].

2. Scale-free networks with power-law degree distribution P(k) ∼ k−λ (described
above).

3. Broad-scale or truncated scale-free networks for which P(k) has a power-law
regime followed by a sharp cutoff (e.g., exponential or Gaussian decay of the
tail). An example is the movie-actor network described in the small world of
Watts [22, 23].

To characterize small-world networks, a measure of the shortest path lengths within
the network is required. For a graph G with u and v as two vertices, the path from
u to v will pass sequentially through vertices v1, v2 . . . vk , with u = v1 and v = vk ,
such that for i = 1, 2, k − 1: (i) vivi+1 ∈ E(G) and (ii) vi �= v j for i �= j . The
path length is then said to be (k − 1). The simple geodesic distance, d(u, v), from
u to v is the length of the shortest path from u to v in the graph G. One can apply
Floyd’s algorithm [24] to find all possible shortest paths in a network proportional
to V 3, where V is the total number of nodes or vertices in the graph G. The distance
is infinity if no such path exists (i.e., d(u, v) = ∞). In a connected graph G, every
possible vertex is connected to another (i.e., (u, v) ∈ V (G)). The average path length,
〈l〉, of such a graph is defined as the average of values taken over all the possible pairs

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

872 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

of nodes connected by at least one path:

〈l〉 = 2

N (N − 1)

N∑

i=1

li j

The diameter of the network is defined as the maximum distance between two nodes
of a graph G (i.e., D = max{di j |i, j ∈ N }, where N is the total number of nodes in
the graph or network). The average network diameter is given by

〈D〉 =

∑

N

N f (N)

∑

N

f (N)

where f (N) represents the frequency of the shortest path length between two nodes.
The diameter D is a global property whereas the average diameter 〈D〉 is a local prop-
erty of the biological network. The characteristic path length and the diameter in a
network are indicators of how readily “information” can be transmitted through the
network. This small-world feature is observed in many biological networks, suggest-
ing its efficiency in information transfer (i.e., only a small number of intermediate
steps is necessary for any one protein, metabolite, or gene to influence the character-
istics or behavior of another biomolecule) in a complex network.

The degree distribution is a local characterization of a network and can be mean-
ingfully interpreted when the network is based on an ER model [2, 20] or a Barabasi-
Albert (BA) model [8, 9]. The clustering coefficient is another characteristic of a
network that is unrelated to the degree distribution. It is a quantitative measure to the
proximity of the neighborhood of each node to form a complete subgraph (clique)
[21] and thus defines a measure of the local behavior of the small-world network.
The clustering coefficient is defined as

Ci = 2N

ki (ki − 1)

where N denotes the number of existing links among the ki nodes connected to the
node i. Similarly, one can define an average clustering coefficient as

〈C〉 = 1

N

N∑

i=1

Ci

An additional measure of the network structure is the function C(k), defined as
the average clustering coefficient of all nodes with k links. C(k) may be dependent or
independent of k. If C(k) is independent of k, then the network has a homogenous rep-
resentation of many small, tightly linked clusteres. Otherwise, if the function takes
the form C(k) ∼ k−1, that network has a hierarchical representation. Thus, as the de-
gree of a node increases, its clustering coefficient C(k) decreases, implying that the

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.1 INTRODUCTION 873

neighborhoods of low-degree nodes are densely clustered, whereas those of hubs are
sparsely clustered. Ravasz et al. [25] calculated the average clustering coefficient in
a metabolic network of 43 organisms and reported that C(k) of the metabolic net-
work was at least an order of magnitude higher than that of the corresponding BA
network. Similar observations were reported for the interacting pairs of yeast nuclear
proteins, comprising 318 interactions among 329 proteins, where most of the neigh-
boring nodes of hub proteins have significantly lower connectivity than the hubs [26].
Dense local clustering is exhibited in the yeast genetic interaction network, consist-
ing of ∼1000 genes with ∼4000 interactions [27].

Centrality is one of the key structural aspects of the nodes in a network and is
a measure of the relative influence of each node on the network. It thus ranks the
nodes based on the extent of connections around each node. Specifically, centrality
defines the share of the total centrality ascribed to the most central node. In bio-
logical networks, the centrality measure helps in identifying the important genes or
proteins in the network. For example, in the noncancerous cell, p53 gene is inactive,
whereas in a tumor cell the p53 network is activated, resulting in the stimulation of
enzymes that modify p53 and its negative regulator MDM2 [28]. Jeong et al. [12]
showed that in the yeast protein interaction network, the highly connected proteins
are three times more essential compared to proteins with only a few connections,
highlighting the importance of centrality.

There are four classical variants of centrality measures in network theory:

1. Betweenness centrality

2. Closeness centrality

3. Degree centrality

4. Eigenvector centrality

Detailed mathematical descriptions of the above are available from the excellent re-
view of Mason et al. [29]. Betweenness centrality is the most common centrality
measure in protein, gene, or transcription factor binding networks. It is the fraction
of shortest paths between all the pairs of nodes that passes through a given node
[30]. It gives the notion of traffic or flux through a given node, assuming that the
information flow across a network primarily follows the shortest available path.

37.1.4 Local Topology of Biological Networks: Functional Motifs,
Modules, and Communities

Beyond the properties of individual nodes (such as hubs) and pair nodes, one can
observe structural organization that includes few nodes together. A recent study has
shown the existence of a loose hierarchical structure within biological networks. At
the lowest level, one can observe three to four node clusters with a significantly
higher frequency relative to the randomized network. Such clusters are commonly
referred as the network motifs. Milo et al. [31] developed a tool, mfinder, for the
network motifs detection. The mfinder algorithm detects the network motifs by

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

874 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

exhaustively enumerating all the subgraphs (clusters) within a given number of
nodes in a network. When applied on the transcriptional regulatory network of
Sacchromyces cerevisae (yeast or baker’s yeast) and the neuronal network of
Caenorhabditis elegans, he showed the presence of three-node feedforward loops
(FFLs) and four-node bi-parallel motifs. A similar finding by Shen-Orr et al. [32]
showed the presence of FFLs, single-input motifs (SIMs), and dense overlapping
regulons (DORs), which are three common motifs present in the Escherichia coli
transcriptional network. The core concept of network motif and basic schema is de-
scribed in the method by Milo et al. [31]. The mfinder method can be described in
three simple steps. For a given directed graph G, the motifs of size k (three to seven
nodes or vertices) can be identified as follows. First, calculate the frequency of the
motif’s occurrence in a directed graph G (i.e., the number of cluster S (subgraph) of
size k, in G). Second, generate a large number of random networks such that each
node has the same in-degree and out-degree and every cluster of size k − 1 occurs
with the same frequency as in the real network G. Third, one can describe cluster S
as a motif if it satisfies the following three conditions:

I. The probability of S occurring in a real network is more frequent under a
prescribed p-value compared with its corresponding random network.

II. There should be at least four distinct occurrences of S in the real network G.

III. The actual number of occurrences of S in G is significantly higher than the
average number of occurrences of S in the randomly generated networks.

The above approach was used for the detection of network motifs. It was demon-
strated that network motifs play a key informational processing role in many bio-
logical networks. Therefore, it is worth mentioning the general structural features
(Figure 37.3):

i. The FFL motif describes a situation where two transcription factors A and
B jointly regulate a third transcription factor C, and A also regulates B pos-
itively (coherent FFL) or negatively (incoherent FFL) [33]. This can be seen
in the L-arabinose utilization system [34]. These motifs occur where an exter-
nal signal causes a rapid response in the biological system. The presence of
coherent FFL suggests a functional design where decision making is based on
the fluctuation of external stimuli.

ii. SIM is described as a single transcription factor regulating many operons. It
is generally autoregulatory and has a temporal design pattern for processing
information that needs to be carried out in multiple steps. The classical exam-
ple is arginine biosynthetic pathway. Many amino acid pathways contain such
motifs [32].

iii. DOR is defined as the layer of overlapping interaction and a group of input
transcription factors (TFs) that is much more dense corresponding to the ran-
domized network [32].

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.1 INTRODUCTION 875

Figure 37.3 The common motifs with three-unit and four-unit subgraphs commonly present in
biological networks. TFs or regulators are marked with a circular/elliptical object, and the target
gene is represented as a box. (a) FFLs, in which one regulator controls the other and both of
them together control the target gene. (b) Bi-FFL motifs, one TF controls another and both of
them bind to common target genes. (c) Bi-fan motifs, where two separate regulators bind together
with two target genes. (d) Bi-parallel motifs, in which one TF controls two separate regulators
that further regulates a given target gene. (e) Three-chain motifs, where three regulators (in this
case, it need not be the TF) are controlled by each other in a stepwise manner for controlling
a given biological process. (f) SIM, a single TF controls a set of operons and the TF usually is
autoregulatory. (G) DOR, defined as a set of genes, controlled by the set of TFs.

iv. The bi-fan motif is the simple version of the DOR motif in which two tran-
scription regulators bind to a common target. This suggests a simple func-
tional design to precisely control the large numbers of targets under several
different conditions by a few regulators. This four-node motif is common in
the Caenorhabditis elegans neuronal network [32].

v. The bi-parallel motif is found in transcriptional and signaling networks of
many organisms and indicates redundancy. It is a four-node motif that com-
prises a regulator (transcription factor) controlling two other regulators that
further regulates one gene. This motif has a wide range of functional roles in
biological networks [31].

vi. Three-chain motifs are frequently present in food web networks. This motif
represents structural adaptation to the energy flow in the food web were flow
is directed from the lower tropic level to the higher tropic level in the food
pyramid [31].

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

876 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

Table 37.1 Biological networks visualization tools

Purpose Website

Biolayout Visualization; analysis http://biolayout.org/
Cell Illustrator Visualization and analysis http://biobase-international.com
Cytoscape Visualization; analysis http://cytoscape.org
Graphviz Visualization; analysis http://graphviz.org
H3Viewer Visualization; analysis http://graphics.stanford.edu/∼munzner/h3/
LaNet-vi Online visualization tool http://xavier.informatics.indiana.edu/lanet-vi/
NetMiner Visualization and analysis http://netminer.com/NetMiner/home 01.jsp
Osprey Visualization; analysis http://biodata.mshri.on.ca/osprey/servlet/Index
Pajek Visualization; analysis http://vlado.fmf.uni-lj.si/pub/networks/pajek/
Visant Visualization; analysis http://visant.bu.edu/
Yed Graph editor http:/yworks.com/en/products yed about.html

The concept of network motifs detection is further extended based on the random
sampling of subgraph for estimating subgraph concentration [35]. The significance
profile (SP) descriptor was proposed as a mean for classifying networks based on
subgraphs [36]. FANMOD is another useful and fast network motif detection tool in
bioinformatics, which improves the motif detection by removing the sampling bias
in a random network and scales well with varying node degrees in a network [37–
39]. Tables 37.1 and 37.2 provide additional information on bioinformatics network
motifs visualization and analysis tools.

Most real-world networks contain parts/subsets in which group of nodes are
highly connected to each other rather than to the rest of the network. Such sets of
nodes are usually referred as cluster, communities, cohesive groups, or modules
[39–41]. Ravasz et al. [25] observed the presence of modules or communities in
the metabolic network, suggesting a hierarchical organization of the biological net-
work. Hierarchy describes the structural organization in a network (i.e., how nodes

Table 37.2 Biological networks analysis tools

Purpose Website

Bioconductor Network analysis http://bioconductor.org/
Biotapestry Network analysis http://biotapestry.org/
Cfinder Visualizing dense cluster http://cfinder.org/
FANMod Network motif detection tool http://theinf1.informatik.uni-jena.de/

∼wernicke/motifs/
MAVisto Motif analysis and visualization http://mavisto.ipk-gatersleben.de/
Mfinder Network motif detection tool http://weizmann.ac.il/mcb/UriAlon/

groupNetworkMotifSW.html
TYNA Network analysis http://tyna.gersteinlab.org/tyna/
Vanted Network analysis http://vanted.ipk-gatersleben.de/

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.1 INTRODUCTION 877

in a network link to form a motif). These motifs combine to form communities, and
these communities link to form a network. Communities occur between the scale
of the whole network and the scale of the motifs. Girvan and Newman [42] pro-
posed an algorithm for the community detection around the ideas of centrality in-
dices (as mentioned above). They introduce an edge betweenness, which is defined
as the number of the shortest paths between pairs of vertices that run along it. In
order to detect communities inside a network, one should look for all the possible
short paths between few edges, which loosely connect the local community in a net-
work. Their algorithm has a run time in the order of O(n3), where n is the number of
nodes. Newman defines modularity as a property that describes the division of a net-
work into a distinct community [43]. Communities are characterized by having more
links within them (between constituent nodes) than with other communities (be-
tween the constituent and nonconstituent nodes). Communities are determined using
the measure

Q = 1

L

n∑

i=1

(

li − di2

4L

)

where Q is the measure of modularity to define the partition. L denotes the total num-
ber of links in a network with n communities, li denotes the number of links in the ith
community, and di is the total number of degrees in the community i. Clauset et al.
[44] proposed the modularity optimization algorithm to enhance the run time for
finding the communities inside a network. Many real-world networks are sparse (no.
of edges ∼ no. of vertices) and hierarchical (depth d of the dendrogram such that
d ∼ log n, where n is the number of vertices in a network). Their modularity op-
timization algorithm for most of the real network runs in linear time of the or-
der O(nlog2 n). The clique percolation method (CPM) algorithm was developed to
quantify the overlapping community [41]. It is a promising algorithm for predicting
the functional relationship of proteins in an interaction network. CFinder is a free-
software tool that implements the CPM algorithm (Table 37.2). To gain an insight
into the metabolic network of Treponema pallidum, Clauset et al. [45] proposed
the hierarchical random graph model. The ability of this algorithm to detect false-
positive and missing links in a complex network makes it valuable for deciphering
the hidden structure of the biological system.

A revolutionary approach to discovering gene function has been to knock out a
gene and observe its phenotype. One such computational method is based on the
framework of flux balance analysis (FBA). Segre et al. [46] studied the system-level
epistasis interaction by computing the phenotype of all single and double knockout
of 890 metabolic genes in S. cerevisae. FBA is a mathematical approach for com-
puting whole-cell metabolic fluxes and the growth rate on the steady-state and opti-
mality assumptions. Based on their finding, they developed the Prism algorithm for
hierarchical clustering of gene pairs for the observed epistasic behavior in the yeast
cell. The promising computational algorithms discussed above can be very helpful
in identifying the function of genes and proteins in the biological network.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

878 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

37.2 TYPES OF BIOLOGICAL NETWORKS

37.2.1 Protein-Protein Interaction Networks

To date, protein-protein interaction maps represent the largest and the most diverse
dataset available on the biomolecular networks. The first protein interaction map
was developed using the yeast two-hybrid technique [47, 48]. This technique has
also been used to study the protein interaction map of species such as Drosophila
melanogaster, C. elegans, and Homo sapiens [49–51]. The recent use of high-
throughput screening techniques using affinity purification followed by identifica-
tion of associated proteins using mass spectroscopy has resulted in large datasets of
protein interactions.

The use of protein interactions to predict function relies on the principle assump-
tion that the interacting protein pairs are likely to collaborate for a common purpose.
Schwikowski et al. [16] was the first to show that the S. cerevisiae interaction net-
work (containing 2358 interactions among 1548 proteins) could be used to classify
protein into functional groups simply by observing the function of the neighboring
proteins. Their approach correctly classified 63% and 76% of interacting protein
pairs into the same function and the same subcellular location, respectively. The idea
of “guilt by association or neighboring count method” was extended by providing a
χ 2-like functional score for the protein functional assignment [52]. This functional
score accounts for the influence of distant neighbors when predicting the function
of a target protein in a given protein interaction network. For a target protein, the
highest χ2 value among the function of all n-neighboring proteins can be defined as

χ 2
i = (ni − ei)2

ei

where i denotes the protein function, ei denotes the expected number of i in n-
neighboring proteins expected from the distribution of proteins in the whole network,
and ni denotes the observed number of i in n-neighboring proteins. One problem with
this method is that it treats distant as well as nearest neighbors for a given protein
equally (i.e., the functional score does not take the distance into account during the
functional assignment of protein). To overcome this problem, a functional score that
gives a different weight to neighboring proteins according to their distance from the
target protein was proposed [53]. This method gives importance to the functional
similarity of proteins that are close in the interaction network.

The majority rule method predicts the function of a target protein to be the best
represented function among the neighbors of known function. Predicting the func-
tion of an unknown protein when its neighbors include more proteins of an unknown
than a known function can be difficult using the simple majority rule. To address this
scenario, the simulated annealing method for the functional prediction of protein was
proposed [54]. The simulated annealing method takes a generic approach to account
for the fact that yeast two-hybrid data itself contains false-positive and false-negative
information about the interaction in the protein network map. In this method, proteins

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.2 TYPES OF BIOLOGICAL NETWORKS 879

of unknown function are randomly labeled with a function. A score Ex is calculated
based on the observed functional similarity of neighboring proteins in the network.
A protein of unknown function is then randomly relabeled with another function, and
the corresponding score is calculated (Ey). If �E (Ey − Ex) ≤ 0, then the new func-
tional labeling (with score Ey) is retained. Otherwise, the new function is accepted
with a probability r = exp(−�E/T), where T represents a hypothetical parameter.
Nabieva et al. [55] suggested a graph-based network-flow algorithm to predict the
protein function in an interaction network. This approach accounts for the decreased
likelihood of proteins having the same function at greater distances. The basic idea
is to treat each protein annotated with the function as the source of a “functional
flow.” After simulating the spread of function over time through the network, each
unannotated protein is assigned a score for each function based on the amount of that
function that “flowed” to the protein during the simulation.

One can also compare protein interaction networks to identify interologues (in-
teractions that are conserved across species). Algorithms such as PathBlast and
NetworkBlast were proposed to identify paths and a dense cluster of conserved inter-
actions [56, 57]. These methods are important for comparing the cellular machinery
of different species and for increasing the overall confidence in the underlying inter-
action measurements.

37.2.2 Metabolic Networks

All living entities, whether unicellular or multicellular organisms, consist of simi-
lar chemical molecules for extracting and using energy from the surrounding envi-
ronment. This process is known as metabolism. Directly, it refers to the thousands
of chemical reactions and molecules that govern the flow of mass and energy in
an organism. The sequential nature of a chemical reaction in a metabolic pathway
means that it can be modeled in the form of a graph or network. The metabolic
network usually focuses on the flux (steady-state mass flow) in basic biochemical
pathways that generate essential components such as polymers (proteins, polysac-
charides, lipids, and polynucleiotides) and small molecules that are the basic build-
ing block of polymers. Literature curation and genome annotation were used to
construct these complex metabolic networks in organisms such as E. coli, yeast,
and humans (Table 37.3). One can describe the metabolic pathway or network as a
collection of connected biochemical molecules. As such, these networks are often
represented as directed graphs, typically containing both metabolites as well as pro-
teins (i.e., enzymes). Metabolic pathways can be “metabolite-centric” or “enzyme-
centric.” The metabolite-centric metabolic network is the most common representa-
tion of metabolic pathways (Figure 37.4).

Wagner and Fell [14], in their undirected graph analysis of an E. coli metabo-
lite network, showed that the presence of a highly connected metabolite like coen-
zyme A, NAD, ATP, or GTP gave an evolutionary glimpse of the RNA world. Their
metabolite-centric network analysis also suggests that the glycolysis and TCA cy-
cles are the most ancient metabolic pathways. The intermediate metabolites of Mo-
rowitz [58] such as pyruvate, 2-oxoglutarate, acetyl coA, and oxalate are the core

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

880 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

Table 37.3 Interaction and regulatory databases

Purpose Website

BioCyc Metabolic pathway http://biocyc.org/
BioGrid Metabolic pathway http://www.thebiogrid.org/
BOND Metabolic pathway http://bond.unleashedinformatics.com/Action?
DIP Protein-protein interaction http://dip.doe-mbi.ucla.edu/dip/Main.cgi
HPRD Protein-protein interaction http://www.hprd.org/
IntAct Protein-protein interaction http://www.ebi.ac.uk/intact/site/index.jsf
JASPER Transcription factor binding http://jasper.cgb.ki.se/

profile
KEGG Encyclopedia of gene and http://www.genome.jp/kegg/

genome
MINT Protein-protein interaction http://mint.bio.uniroma2.it/mint/Welcome.do
MIPS Protein-protein interaction http://mips.gsf.de/
String Protein-protein interaction http://string.embl.de/
TRANSFAC Transcription factors http://www.biobase-international.com/pages/

index.php?id=transfac

(a) (b)

(c) (d)

Figure 37.4 Schematic representation of metabolic networks. (a) A set of metabolic reactions
involving the interconversion of metabolites M1, M2, M3, and M4, catalyzed by enzymes E1,
E2, E3, and E4. (b) A metabolic network representation of the set of reactions in (A). (c) A
metabolite-centric metabolic network showing the connectivity among the metabolites in (A). (d)
An enzyme-centric metabolic network showing the connectivity between the enzymes in (A).

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.2 TYPES OF BIOLOGICAL NETWORKS 881

metabolites in the ancient pathway of the molecular evolution. Wagner and Fell’s
study implied that metabolic pathways evolve by preferential arrangements, which
lead to small-world architecture. This topology of the metabolic network helps in fast
response to any perturbation posed by the surrounding environment. In many obli-
gate endocellular symbionts, biochemical pathways comprise intermediate metabo-
lites as a minimal set [59]. A comprehensive study of metabolic networks from more
than 300 bacterial species (taken from the KEGG database) suggested that network
size is an important topological determinant of modularity in the metabolic network
[60]. Larger genomes have a high modularity score compared with smaller genomes.
Environmental factors also contribute to modularity across different species. Pal et
al. [61] showed that metabolic networks evolve via horizontal gene transfer which
contributes to the fitness for its specific environment. They showed that horizontally
transferred genes are integrated at the periphery of the network, whereas the central
network pathways (e.g., TCA cycle and glycolysis) remain evolutionarily stable.

Interactions between metabolites and enzymes in metabolic networks are closely
related to their gene functions. This suggests the potential role of genes in shap-
ing the network behavior and its wider application to achieve the desired metabolic
products. In view of this, considerable attention has been focused on network dynam-
ics using constrain-based analysis such as the FBA. FBA assumes a steady state of
all metabolites and that living organisms have optimized metabolic fluxes for max-
imizing biomass production [62–64]. The OptKnock framework was suggested to
incorporate this key concept, which uses the gene deletion strategies to overproduce
a specific chemical compound in E. coli [65]. This method was applied to the pro-
duction of succinate, lactate, and 1, 3-propanediol (PDO) in E. coli.

Environmental conditions play a major role in the viability of a cell. The Papp
et al. [66] study suggests that the majority of nonessential enzymes in the yeast
metabolic network are important for the viability of cells under certain environmental
conditions. In their study, only a small subset of network flux is compensated for the
presence of enzyme or the alternative biochemical pathways. Highly connected en-
zymes in the biochemical pathway of yeast have direct access to many network nodes
that resulted in the short path length in the metabolic network [67]. The metabolic
network suggests that the highly connected enzymes of large flux have undergone
less mutation. The network model suggests the lowering of enzymatic flux caused
by mutation. However, high flux enzymes have evolved through the gene duplication
event. These features of metabolic networks should be general to other organisms
as fundamental metabolic network structures are likely to be conserved during evo-
lution. Indeed, a topological analysis of metabolic networks in 43 organisms from
all three domains of life (eukaryote, archaea, and bacteria) revealed the presence of
highly similar topological properties [13].

37.2.3 Transcriptional Networks

The genetic program of any living organism is encoded in its genome. The func-
tional unit of an organism’s genome is the gene. Gene expression programs involve
the regulation of thousands of genes. TFs are an essential subset of interacting

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

882 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

proteins responsible for controlling the expression of genes. The pioneering studies
by Jacob and Monod suggested the presence of TFs, which interact with DNA
elements upstream of specific genes and control their expression, by forming
transcriptional regulatory complexes. Several studies during the past few years have
accumulated a wealth of information about the transcriptional regulatory complexes
in model organisms [68–71]. The complexity of an organism seems to be linked
to their number of TFs. Organisms such as E. coli and S. cerevisiae seem to have
200–300 TFs. Compartive analysis of multicellular eukaryotes shows the presence
of 600–820 TFs in C. elegans and D. melanogaster, and 1500–1800 in Arabidopsis
thaliana. Around 1500 TFs have been documented for humans, although an estimate
of 2000–3000 TFs is predicted [72]. Phylogenetic analysis has revealed that the
growth of certain transcription factor families relies on the amplification and
shuffling of protein domains.

Transcription factor-binding networks have been assembled in two different ways.

I. Through large-scale, genome-wide location analysis of the cis-regulatory (pro-
moter) region of DNA. The sea urchin embryo gene regulatory network was
developed in this manner, controlling the specification of the endoderm and
mesoderm tissue formation [17].

II. Through large-scale identification of transcription factor-binding sites using
chromatin immuno-precipitation followed by probing of genomic microarrays
(ChIP-chip) or DNA sequencing (ChIP-PET or STAGE). This method has
been used for creating the transcriptional network in yeast and other higher
organisms [68–74].

Location analysis for identifying interaction between regulators (TFs) and DNA re-
gions provides strong evidence of transcriptional regulation. Although this infor-
mation is useful, it is limited because TF binding does not provide any functional
evidence in terms of regulation (i.e., whether a positive, negative, or silent regula-
tor). On the other hand, microarray-based location information contains substantial
experimental noise. Since both sets of information are useful and complementary to
each other, Bar-Joseph et al. [75] developed the GRAM (Genetic regulatory module)
algorithm to integrate these data sources. A similar approach to integrate genomic
data for yeast has been developed in the SANDY algorithm [18] and applied to the
S. cerevisiae transcriptional network. The algorithm was tested on a yeast transcrip-
tional regulatory network under five different experimental conditions to capture the
network dynamic. It was found that 78% of the hubs are transient and seem to in-
fluence one experimental condition and not the others, suggesting a relationship to
condition-dependent lethality. Lee et al. [76] showed that the yeast transcriptional
network can rewire itself to describe potential pathways for global gene regulation
and expression programs. This study also showed that 10% of yeast TFs is autoregu-
lated, whereas a prokaryote (E. coli) was shown to have 52–72% TFs under autoreg-
ulation. The transcriptional network of yeast shows the presence of 188 regulator
chain motifs, consisting of 3–10 TFs. These motifs are present mainly in the regu-
latory circuit of the cell cycle, associated with the regulation of the different stages

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.2 TYPES OF BIOLOGICAL NETWORKS 883

of the cycle. The presence of multiple component loop (MCL) motifs seems to be
characteristic of eukaryotic transcriptional networks, as no such motif is found in
prokaryotes.

Several experimental and computational studies suggest that combinatorial reg-
ulation is the dominant mechanism behind complexity in gene expression patterns.
To understand how gene expression is controlled by TF binding and thereby attains
functional co-regulation through combinatorial association, Balaji et al. [77] studied
the co-regulation network using the yeast transcriptional network. Their network is
defined by adding an edge between a pair of TFs denoting a co-regulation associ-
ation, when a pair of TFs regulates the same target gene. Their results suggest that
67% of the TFs seem to have a positive correlation, in a co-regulation network con-
sisting of 5622 pair-wise associations between 157 TFs.

The human transcription factor network (HTFN) seems to be dissociative, with
higher degree proteins attached to many low-degree ones [72]. This is an impor-
tant property as it signifies the presence of modularity and its functional importance,
where a smaller set of TFs closely regulate a group of genes. A dissociative net-
work is also characterized by hubs that are linked to other network elements but not
usually to each other. This dissociativeness allows large parts of the network to be
separated and thus partially isolated from different sources of perturbation. Experi-
mental studies suggest that many TFs binding sites lack biological function, or, more
likely, are functionally redundant with other regulatory sites or affect gene expres-
sion under other conditions. In mammalian gene expression systems, TFs bind to
distant locations on genes, rather than to upstream locations.

37.2.4 Other Biological Networks

In vivo cellular studies of human and yeast proteins suggest that 30% of proteins
are phosphorylated [78]. Signaling pathways recruit protein kinases, which are ca-
pable of undergoing phosphorylation for initiating cellular cross-talk, that trigger
subsequent biological processes. Weng et al. [79] used a neural network simula-
tor, GENESIS, to analyze a simplified network consisting of four different sections
of the MAP kinase pathways. Plants also use a similar kind of signaling pathways
for physiological processes. Abscisic acid (ABA) signal transduction in the guard
cells is one of the best characterized signaling systems in plants. The ABA signaling
pathway contains more than 20 components, including signaling proteins, secondary
metabolites, and ion channels. ABA induces guard cell shrinkage and stomatal clo-
sure via secondary messengers such as calcium ion and cytosolic pH. Dynamical
modeling of the guard cell ABA network by Li et al. [80] showed that gene dis-
ruptions and pharmacological interventions do not affect a significant fraction of the
network, thereby validating its robustness. This network analysis also revealed a re-
dundancy in signaling pathways as eight independent pathways for ABA signaling.
Many signaling proteins in this network are represented by multigene families in
Arabidopsis, providing functional redundancy as protein isoforms. Table 37.4 pro-
vides descriptions of the components of selected biological networks, across several
organisms.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

884 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

Table 37.4 Current status of biological Networks

Number of
Types of Network Species Number of nodes Interactions Reference

Protein-protein
Interaction
Network

S. cerevisiae

C. elegans
D. melanogaster
H. sapiens

1,548
1,825
1,415
4,651
1,307
7,509

2,358
2,238
2,135
3,039
2,483

20,979

[16]
[47]
[48]
[50]
[49]
[99]

Transcriptional
Regulatory
Network

S. cerevisiae

H. sapiens
Sea Urchin

2,343 (genes)
142 (TFs) & 3,420

(genes)
157 (TFs) & 4,410

(genes)
243 (TFs)
40 (genes)

∼4,000
7,040

12,873
—
—

[78]
[20]
[79]
[74]
[18]

Metabolic Network E. coli
S. cerevisiae
M. genitalium

283 (Metabolite)
1,881 (enzymes)
83 (enzymes)

—
—
—

[14]
[66]
[67]

Genetic Network S. cerevisiae 3,258 13,963 [99]

37.3 NETWORK DYNAMIC, EVOLUTION AND DISEASE

37.3.1 Biological Network Dynamic and Evolution

A generic property of the complex network is that it constantly evolves in time.
This implies that the underlying networks are not static but change continuously
through the addition and/or removal of new nodes and links. Barabasi and Albert [8]
investigated the WWW and proposed a preferential attachment model for the growth
of this scale-free network. The BA model was not inspired by any specific biological
consideration. It is a mathematical model for the dynamical growth of any scale-free
network that captures the consequence of two generic mechanisms:

1. Growth: a network grows by adding new nodes to it.

2. Preferential attachment: a new node added preferentially to those nodes that
are already well connected.

Eisenberg et al. [81] supported this growth model for the evolution of a protein in-
teraction network by cross-genome comparisons. They used a BLAST e-value as
a sequence similarity measure to classify yeast proteins into a different evolution-
ary time-scale by genome-wide comparisons with E. coli, Arabidopsis, and fission
yeast. The assumption made in this study is that a protein created at a certain time in
a certain ancestor organism will have descendants in all organisms that diverge from
this ancestor. An analysis of average connectivity of proteins in the yeast interaction
dataset showed that there is a clear dependency of the connectivity on the age of the

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.3 NETWORK DYNAMIC, EVOLUTION AND DISEASE 885

protein, with older proteins having significantly more interactions. To account for the
preferential growth model, a comparison of the number of links for each protein in
the oldest genome (E. coli) to the newer ones (fission yeast and Arabidopsis) showed
that the average links per protein is 6.5 in the oldest genome (E. coli) and 0.5 in the
newest (fission yeast). On a molecular level, one can expect such growth as there
is a tendency to increase the number of protein attachment domains or improve ex-
isting domains such that they can bind to more target proteins. This mechanism of
preferential attachment may depend on the physicochemical properties of the highly
conserved and well-connected proteins. The network analysis supports the essential-
ity of hub proteins for the survival of the species as well as establishes their age on
the evolutionary time-scale.

Bianconi et al. [82] introduce a fitness model to accommodate the fact that in
many real networks, the connectivity and growth rate of a node do not depend on its
age alone. The assumption made here was that the existence of fitness modifies the
preferential attachment to compete for links. Proteins with more interactors evolve
more slowly not because they are more important to the organism but because a
greater proportion of the proteins are directly involved in function and evolve to-
gether as a unit [83]. Thus, proteins with many interactors have a large effect on the
fitness of an organism.

Many recent models for complex network evolution are based on the mechanism
of growth and preferential attachment. However, more biologically motivated models
have been developed for protein interaction and genetic network. These models are
based on the fundamental biological assumption of cellular processes such as “du-
plication” and “divergence.” This hypothesis for the duplication-divergence model
states that gene and protein networks evolve through the occasional copying of in-
dividual genes or protein coding genes followed by acquired random mutation that
leads to functional diversification. Over a period of time, these processes can com-
bine to yield a complex network of genes and protein interactions. Vazquez et al.
[84] used their graph-generating models to mimic the evolutionary process of du-
plication and divergence of the genes that translate to proteins. We describe briefly
the simulation of the duplication-divergence model of a protein interaction network,
whose evolution is based on the following rules:

I. Duplication: Select node x randomly and add an edge to node x′. The link is
established between x and x′ with a probability P.

II. Divergence: For each of the nodes y linked to x and x′, choose randomly one
of the links (x, y) or (x′, y) and remove it with probability Q, where P is a
graph-model parameter representing the creation of an interaction between the
duplicates of a self-interacting. Q represents the loss of an interaction between
the duplicates and their neighbors due to the divergence of the duplicates.
Based on these simple rules, Vazquez et al. showed the creation of a scale-free
protein interaction network.

The mechanism of interaction gain and loss discussed above also shape
the rewiring and cross-talk observed in metabolic pathways and transcriptional

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

886 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

regulation. Luscombe et al. [20] showed the rewiring under “exogeneous states”
(e.g., stress response) leads to a decrease in the diameter of the transcriptional net-
work in a yeast cell, with large hubs responding quickly to the external conditions and
stimulus. Many signaling pathways often employ the same or homologous proteins
for sensing external stimuli. For example, in S. cerevisiae, two pathways for sensing
the osmolar and pheromone signals share the same or homologous molecules. De-
spite the potential cross-wiring through common molecules, cells show specificity of
response by filtering out spurious cross-talk through mutual inhibition [85].

37.3.2 Biological Networks and Disease

Epidemic models can be mapped by the connectivity pattern characterizing the pop-
ulation in which an infective agent (i.e., infection) spreads. For example, the web of
sexual contact is the natural social network that defines the spread of sexually trans-
mitted disease (STD) and its persistence. As most social networks are described by
power-law degree distributions, the heterogeneity of connectivity patterns determines
the epidemic outbreak in such scale-free networks. Pastor-Sattoras and Vespignani
[86] first showed that the spread of infection is tremendously strengthened by us-
ing a susceptible-infective-susceptible model (SIS model) to analyze the underlying
scale-free network. Their findings on this model suggest that the scale-free network
supports the persistence of diseases, irrespective of any low values of infective rate.
May and Lloyd [87] arrived at the same conclusions regarding the absence of any
epidemic threshold, using a SIR (susceptible-infective-removed) model. The mathe-
matical details of the SIS and SIR models are described by Hethcote [88]. The results
of scale-free network analyses have resulted in orienting immunization strategies to
target highly connected node individuals, in order to control disease propagation
[89], because scale-free networks do not acquire global immunity from major epi-
demic outbreaks even in the presence of an unrealistically high density of randomly
immunized individuals. These highly connected individuals are the hubs of social
networks.

At the cellular level, disease is characterized by the malfunction of cellular pro-
cesses resulting from absent/aberrant proteins. The protein coding gene can be of
immense value to understand diseases as shown by linkage analysis in several in-
fected families. There are diseases like PID (primary immunodeficiency) caused by
defective endosomal adapator proteins p14, where no substantial statistical evidence
is present for general understanding of the disease mechanism [90]. However if the
disease-related locus alone is identified, subsequent gene identification is difficult if
the genomic region is large. Ortutay and Vihinen [91] developed an in silico method
for the identification of disease genes by integrating gene ontology and protein in-
teraction networks. Their method identifies 26 novel primary immunodeficiency-
related genes. To understand the disease phenotype in human diseases, Lee et al.
[92] constructed the bipartite human disease association network in which nodes
represent diseases and two diseases are linked if mutant enzymes associated with
them catalyze the adjacent metabolic reaction. Their finding suggests that the con-
nected disease pair shows high correlation in reaction flux rate. Moreover, the more

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

37.4 FUTURE CHALLENGES AND SCOPE 887

connected a disease is to another disease, the higher its prevalence and associated
mortality.

An interaction study of the drug-protein bipartite graph suggests the importance
of anticancer drugs such as imatinib (marketed as Gleevec) and sunitinib (marketed
as Sutent) [93] for the cancer treatment. This study highlights the properties of drug
targets in the context of cellular networks and how it can be used for the under-
standing of a disease-gene product. The immune response can be seen as a dynamic
interplay among interdependent interaction networks such as TF-gene interaction
networks, cell-cell interactions, and cytokine interaction networks. To have a holistic
understanding of immune response, one has to incorporate a local and systemic im-
mune response to pathogens. The dynamical constraint-based modeling of such an
immune network suggests the hijacking of a host immune molecular system for the
persistence of disease in a bacterial infection [94].

Our ability to combat epidemic and gene-dependent diseases depends on a deep
understanding of social and cellular network topologies. Moreover, the hubs of these
cellular networks play a crucial role in disease development in animal models, im-
plying a relationship between disease and the underlying biological processes. Such
systematic studies can be extended to other diseases and organisms, for identifying
important components in disease pathology.

37.4 FUTURE CHALLENGES AND SCOPE

The experimental data on which the modeling and analysis of biological networks
are based are far from complete and contain high rates of false-positive errors. There
is also a need for more accurate and reliable experimental methodology development
for future research in cellular networks. Batada et al. [95] conclude that for the small
interaction datasets, party hubs (which interact with all the partners simultaneously)
cannot be distinguished from date hubs (which vary their connecting partners de-
pending on time and location). The current view of the transcription regulatory net-
work as an interplay between transcription factors and their corresponding genes is
a highly simplified one. Actually, gene regulation can occur at many different stages
such as the activation of the gene, synthesis rate, splicing, and efficacy of the export
of RNA from the nucleus for its translation and final degradation in the cytoplasm.
New scientific evidence suggests that information not only flows from DNA to RNA,
but also can flow back from RNA to DNA to guide the developmental processes in an
organism [96–98]. Many different elements such as miRNAs, temporal regulation,
and transport proteins need to be integrated with the current gene regulatory network
to provide a biologically meaningful description.

ACKNOWLEDGMENTS

Gaurav Kumar acknowledges support from the Macquarie University Research
Scholarship (MQRES) Award. This work also was supported by the award of the
ARC Centre of Excellence in Bioinformatics grant (CE0348221) to S.R.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

888 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

REFERENCES

1. A.L. Barabasi. Linked: The New Science of Networks. Perseus Publishing, Cambridge,
MA, 2002, p. 280.

2. P. Erdos and A. Renyi. On random graphs. I. Publ. Math. Debrecen, 6:290–297, 1959.

3. S. Miligram. The small world problem. Psychol Today, 2:60–67, 1967.

4. Small World Project. http://smallworld.columbia.edu/project.html.

5. E. Chacko and S. Ranganathan. Graph Theory in Bioinformatics. Algorithms in Compu-
tational Molecular Biology: Techniques, Approaches and Applications. Wiley, New York,
193–219, 2011.

6. R. Albert, et al. Diameter of the World-Wide Web. Nature, 401:130, 1999.

7. F. Liljeros, et al. The web of human sexual contacts. Nature, 411(6840):907–908, 2001.

8. A.L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

9. A.L. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics of random networks:
The topology of the World-Wide Web. Physica A, 281:69–77, 2000.

10. A.L. Barabasi and E. Bonabeau. Scale-free networks. Sci Am, 288(5):60–69, 2003.

11. A.L. Barabasi and Z.N. Oltvai. Network biology: Understanding the cell’s functional or-
ganization. Nat Rev Genet, 5(2):101–113, 2004.

12. H. Jeong, et al. Lethality and centrality in protein networks. Nature, 411(6833):41–42,
2001.

13. H. Jeong, et al. The large-scale organization of metabolic networks. Nature,
407(6804):651–654, 2000.

14. A. Wagner and D.A. Fell. The small world inside large metabolic networks. Proc Biol
Sci, 268(1478):1803–1810, 2001.

15. S. Wuchty. Scale-free behavior in protein domain networks. Mol Biol Evol, 18(9):1694–
1702, 2001.

16. B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in yeast.
Nat Biotechnol, 18(12):1257–1261, 2000.

17. E.H. Davidson, et al. A genomic regulatory network for development. Science,
295(5560):1669–1678, 2002.

18. N.M. Luscombe, et al. Genomic analysis of regulatory network dynamics reveals large
topological changes. Nature, 431(7006):308–312, 2004.

19. L.A. Amaral, et al. Classes of small-world networks. Proc Natl Acad Sci U S A,
97(21):11149–11152, 2000.

20. P. Erdos and A. Renyi. On the evolution of random graphs. Publ Math Inst Hung Acad
Sci, 5:17–61, 1960.

21. D.J. Watts and S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442, 1998.

22. D.J. Watts. Small worlds. The dynamics of networks between order and randomness. In
Princeton Studies in Complexity. Princeton University Press, Princeton, NJ, 1999.

23. D.J. Watts. Networks, Dynamics, and the Small-World Phenomenon. Am J Sociol,
105(2):493–527, 1999.

24. R. Sedgewick. Algorithms in C++, 3rd edition, Graph Algorithms, Volume 2, part 5,
Addison-Wesley, Reading, MA, 1998, pp. 1–495.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

REFERENCES 889

25. E. Ravasz, et al. Hierarchical organization of modularity in metabolic networks. Science,
297(5586):1551–1555, 2002.

26. S. Maslov and K. Sneppen. Specificity and stability in topology of protein networks.
Science, 296(5569):910–913, 2002.

27. A.H. Tong, et al. Global mapping of the yeast genetic interaction network. Science,
303(5659):808–813, 2004.

28. B. Vogelstein, D. Lane, and A.J. Levine. Surfing the p53 network. Nature,
408(6810):307–310, 2000.

29. O. Mason and M. Verwoerd. Graph theory and networks in biology. IET Syst Biol,
1(2):89–119, 2007.

30. L.C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40:35–
41, 1977.

31. R. Milo, et al. Network motifs: simple building blocks of complex networks. Science,
298(5594):824–827, 2002.

32. S.S. Shen-Orr, et al. Network motifs in the transcriptional regulation network of
Escherichia coli. Nat Genet, 31(1):64–68, 2002.

33. S. Mangan, A. Zaslaver, and U. Alon. The coherent feedforward loop serves as a sign-
sensitive delay element in transcription networks. J Mol Biol, 334(2):197–204, 2003.

34. S. Mangan and U. Alon. Structure and function of the feed-forward loop network motif.
Proc Natl Acad Sci U S A, 100(21):11980–11985, 2003.

35. M. Khammash. Reverse engineering: the architecture of biological networks. Biotech-
niques, 44(3):323–329, 2008.

36. R. Milo, et al. Superfamilies of evolved and designed networks. Science, 303(5663):
1538–1542, 2004.

37. S. Wernicke. Efficient detection of network motifs. IEEE/ACM Trans Comput Biol Bioin-
form, 3(4):347–359, 2006.

38. S. Wernicke and F. Rasche. FANMOD: A tool for fast network motif detection. Bioinfor-
matics, 22(9):1152–1153, 2006.

39. M.E.J. Newman. Detecting community structure in networks. Eur Phys J B, 38:321–330,
2004.

40. D.J. Watts, P.S. Dodds, and M.E. Newman. Identity and search in social networks. Sci-
ence, 296(5571):1302–1305, 2002.

41. G. Palla, et al. Uncovering the overlapping community structure of complex networks in
nature and society. Nature, 435(7043):814–818, 2005.

42. M. Girvan and M.E. Newman. Community structure in social and biological networks.
Proc Natl Acad Sci U S A, 99(12):7821–7826, 2002.

43. M.E. Newman and M. Girvan. Finding and evaluating community structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys, 69(2 Pt 2):026113, 2004.

44. A. Clauset, M.E. Newman, and C. Moore. Finding community structure in very large
networks. Phys Rev E Stat Nonlin Soft Matter Phys, 70(6 Pt 2):066111, 2004.

45. A. Clauset, C. Moore, and M.E. Newman. Hierarchical structure and the prediction of
missing links in networks. Nature, 453(7191):98–101, 2008.

46. D. Segre, et al. Modular epistasis in yeast metabolism. Nat Genet, 37(1):77–83, 2005.

47. P. Uetz, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces
cerevisiae. Nature, 403(6770):623–627, 2000.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

890 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

48. T. Ito, et al. A comprehensive two-hybrid analysis to explore the yeast protein interac-
tome. Proc Natl Acad Sci U S A, 98(8):4569–4574, 2001.

49. L. Giot, et al. A protein interaction map of Drosophila melanogaster. Science,
302(5651):1727–1736, 2003.

50. S. Li, et al. A map of the interactome network of the metazoan C. elegans. Science,
303(5657):540–543, 2004.

51. J.F. Rual, et al. Towards a proteome-scale map of the human protein-protein interaction
network. Nature, 437(7062):1173–1178, 2005.

52. H. Hishigaki, et al. Assessment of prediction accuracy of protein function from protein–
protein interaction data. Yeast, 18(6):523–531, 2001.

53. H.N. Chua, W.K. Sung, and L. Wong. Exploiting indirect neighbours and topologi-
cal weight to predict protein function from protein-protein interactions. Bioinformatics,
22(13):1623–1630, 2006.

54. A. Vazquez, et al. The topological relationship between the large-scale attributes and local
interaction patterns of complex networks. Proc Natl Acad Sci U S A, 101(52):17940–
17945, 2004.

55. E. Nabieva, et al. Whole-proteome prediction of protein function via graph-theoretic anal-
ysis of interaction maps. Bioinformatics, 21 (Suppl 1):i302–i310, 2005.

56. B.P. Kelley, et al. Conserved pathways within bacteria and yeast as revealed by
global protein network alignment. Proc Natl Acad Sci U S A, 100(20):11394–11399,
2003.

57. R. Sharan, et al. Conserved patterns of protein interaction in multiple species. Proc Natl
Acad Sci U S A, 102(6):1974–1979, 2005.

58. H.J. Morowitz. A theory of biochemical organization, metabolic pathways and evolution.
Complexity, 4:39–53, 1999.

59. E. Borenstein, et al. Large-scale reconstruction and phylogenetic analysis of metabolic
environments. Proc Natl Acad Sci U S A, 105(38):14482–14487, 2008.

60. A. Kreimer, et al. The evolution of modularity in bacterial metabolic networks. Proc Natl
Acad Sci U S A, 105(19):6976–6981, 2008.

61. C. Pal, B. Papp, and M.J. Lercher. Adaptive evolution of bacterial metabolic networks by
horizontal gene transfer. Nat Genet, 37(12):1372–1375, 2005.

62. D. Segre, D. Vitkup, and G.M. Church. Analysis of optimality in natural and perturbed
metabolic networks. Proc Natl Acad Sci U S A, 99(23):15112–15117, 2002.

63. I. Famili, et al. Saccharomyces cerevisiae phenotypes can be predicted by using
constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl
Acad Sci U S A, 100(23):13134–13139, 2003.

64. J. Forster, et al. Large-scale evaluation of in silico gene deletions in Saccharomyces cere-
visiae. OMICS, 7(2):193–202, 2003.

65. A.P. Burgard, P. Pharkya, and C.D. Maranas. Optknock: A bilevel programming frame-
work for identifying gene knockout strategies for microbial strain optimization. Biotech-
nol Bioeng, 84(6):647–657, 2003.

66. B. Papp, C. Pal, and L.D. Hurst. Metabolic network analysis of the causes and evolution
of enzyme dispensability in yeast. Nature, 429(6992):661–664, 2004.

67. D. Vitkup, P. Kharchenko, and A. Wagner. Influence of metabolic network structure and
function on enzyme evolution. Genome Biol, 7(5):R39, 2006.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

REFERENCES 891

68. Y. Makita, et al. DBTBS: Database of transcriptional regulation in Bacillus subtilis and its
contribution to comparative genomics. Nucleic Acids Res, 32(Database issue):D75–D77,
2004.

69. V. Matys, et al. TRANSFAC and its module TRANSCompel: Transcriptional gene regu-
lation in eukaryotes. Nucleic Acids Res, 34(Database issue):D108–D110, 2006.

70. R.V. Davuluri, et al. AGRIS: Arabidopsis gene regulatory information server, an infor-
mation resource of Arabidopsis cis-regulatory elements and transcription factors. BMC
Bioinformatics, 4:25, 2003.

71. V.V. Svetlov and T.G. Cooper. Review: compilation and characteristics of dedicated tran-
scription factors in Saccharomyces cerevisiae. Yeast, 11(15):1439–1484, 1995.

72. C. Rodriguez-Caso, M.A. Medina, and R.V. Sole. Topology, tinkering and evolution of
the human transcription factor network. FEBS J, 272(24):6423–6434, 2005.

73. C.L. Wei, et al. A global map of p53 transcription-factor binding sites in the human
genome. Cell, 124(1):207–219, 2006.

74. C.E. Horak and M. Snyder. ChIP-chip: A genomic approach for identifying transcription
factor binding sites. Metho Enzymol, 350:469–483, 2002.

75. Z. Bar-Joseph, et al. Computational discovery of gene modules and regulatory networks.
Nat Biotechnol, 21(11):1337–1342, 2003.

76. T.I. Lee, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science,
298(5594):799–804, 2002.

77. S. Balaji, et al. Comprehensive analysis of combinatorial regulation using the transcrip-
tional regulatory network of yeast. J Mol Biol, 360(1):213–227, 2006.

78. G. Manning, et al. Evolution of protein kinase signaling from yeast to man. Trends
Biochem Sci, 27(10):514–520, 2002.

79. G. Weng, U.S. Bhalla, and R. Iyengar. Complexity in biological signaling systems. Sci-
ence, 284(5411):92–96, 1999.

80. S. Li, S.M. Assmann, and R. Albert. Predicting essential components of signal trans-
duction networks: A dynamic model of guard cell abscisic acid signaling. PLoS Biol,
4(10):e312, 2006.

81. E. Eisenberg and E.Y. Levanon. Preferential attachment in the protein network evolution.
Phys Rev Lett, 91(13):138701, 2003.

82. G. Bianconi and A.L. Barabasi. Competition and multiscaling in evolving networks.
Europhys Lett, 54(4):436–442, 2001.

83. H.B. Fraser, et al. Evolutionary rate in the protein interaction network. Science,
296(5568):750–752, 2002.

84. A. Vazquez, et al. Modeling of protein interaction networks. ComPlexUs, 1:38–44, 2003.

85. M.N. McClean, et al. Cross-talk and decision making in MAP kinase pathways. Nat
Genet, 39(3):409–414, 2007.

86. R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Phys
Rev Lett, 86(14):3200–3203, 2001.

87. R.M. May and A.L. Lloyd. Infection dynamics on scale-free networks. Phys Rev E Stat
Nonlin Soft Matter Phys, 64(6 Pt 2):066112, 2001.

88. H. Hethcote. The mathematics of infectious disease. SIAM Rev, 42(4):599–653, 2000.

89. R. Pastor-Satorras and A. Vespignani. Immunization of complex networks. Phys Rev E
Stat Nonlin Soft Matter Phys, 65(3 Pt 2A):036104, 2002.

P1: OSO
c37 JWBS046-Elloumi December 2, 2010 9:53 Printer Name: Sheridan

892 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS

90. G. Bohn, et al. A novel human primary immunodeficiency syndrome caused by deficiency
of the endosomal adaptor protein p14. Nat Med, 13(1):38–45, 2007.

91. C. Ortutay and M. Vihinen. Identification of candidate disease genes by integrating gene
ontologies and protein-interaction networks: Case study of primary immunodeficiencies.
Nucleic Acids Res, 37(2):622–628, 2009.

92. D.S. Lee, et al. The implications of human metabolic network topology for disease co-
morbidity. Proc Natl Acad Sci U S A, 105(29):9880–9885, 2008.

93. M.A. Yildirim, et al. Drug-target network. Nat Biotechnol, 25(10):1119–1126, 2007.

94. J. Thakar, et al. Constraint-based network model of pathogen-immune system interac-
tions. J R Soc Interface, 6(36):599–612, 2009.

95. N.N. Batada, et al. Stratus not altocumulus: A new view of the yeast protein interaction
network. PLoS Biol, 4(10):e317, 2006.

96. R.C. Lee and V. Ambros. An extensive class of small RNAs in Caenorhabditis elegans.
Science, 294(5543):862–864, 2001.

97. J.S. Mattick. The genetic signatures of noncoding RNAs. PLoS Genet, 5(4):e1000459,
2009.

98. T. Reguly, et al. Comprehensive curation and analysis of global interaction networks in
Saccharomyces cerevisiae. J Biol, 5(4):11, 2006.

99. X. Zhu, M. Gerstein, and M. Snyder. Getting connected: Analysis and principles of bio-
logical networks. Genes Dev, 21(9):1010–1024, 2007.

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

38
PROBABILISTIC

APPROACHES FOR
INVESTIGATING

BIOLOGICAL NETWORKS

Jérémie Bourdon and Damien Eveillard

Last decade saw a significant increase of high throughput experiments. As a ma-
jor achievement, these novel techniques replicate the molecular experiments, which
opens perspectives of quantitative behavior investigations. For illustration, it is now
possible to define the concentration for which a protein (i.e., transcription factor)
may activate a given gene. This information used to be considered as a limitative
factor for producing accurate dynamical models of large biological regulatory net-
works [5]. Today, one must take it into account for building large quantitative mod-
els. Furthermore, high throughput experiments describe, as well, macromolecular
processes via their temporal properties. Thus, biological processes can be summa-
rized by the evolutions of their biological compounds over time (i.e., a succession of
biological qualitative states or temporal patterns). Such experiments show temporal
parameters that refine, in a natural manner, the qualitative models describing biolog-
ical systems. However, these refinements, which present great biological interests,
raise similarly several computational concerns. One is dealing with the complexity
that originates from the large amount of experimental data. The challenge hence con-
sists in trimming the experimental information at disposal for extracting the major
driving compounds and their respective interactions within a network. Another is
taking into account the quantitative impacts of these components on the biological

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

893

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

894 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

dynamics (in [3], the authors propose a probabilistic model allowing us to intro-
duce a quantification under the hypothesis that the global behavior of a quantity is
an accumulation of small variations). It implies dealing with different ranges of con-
centration variations for several compounds. Such integrations rise the opportunity to
build predicting models that reproduce replicated experimental results. A third issue
is integrating temporal behaviors in such complex systems (a study of the temporal
effects in Escherichia coli carbon starvation system can be found in [1]). In this case,
the complexity lies in introducing partial informations. Indeed, a temporal behavior
of a given compound, like a gene, is often known, whereas others remains not well
understood.

To sum up, current computational challenges are (i) analyzing large amount of
data and their inherent complexity, introducing both (ii) quantitative knowledge and
(iii) temporal properties into models of biological regulatory networks. Among the
computational biology techniques, probabilistic approaches appear as an accurate
consensus that deal with those features. This chapter proposes a short overview
of their applications for investigating biological regulatory networks. We will first
present the theoretical framework needed for such particular biological systems (Sec-
tion 38.1). It emphasizes a qualitative modeling that comes from both empirical and
experimental knowledge. Second, we will show (Section 38.2) an overview of the
analyses that can be performed on such a kind of model.

38.1 PROBABILISTIC MODELS FOR BIOLOGICAL NETWORKS

Several probabilistic approaches exist, and they are not all accurate for modeling
dynamical biological systems. Feedback loops are the most common control process
of natural systems, especially for gene regulatory networks (see Figure 38.1). Taking
such loops into account (i.e., positive or negative) is therefore the major criterion for
choosing one probabilistic approach among others.

Protein Y

gene y

Protein X

gene x

Figure 38.1 Representation of a gene regulatory network with two genes. Gene x activates
the transcription of gene y via the production of protein X. Reversely, gene y represses the
transcription of gene x via the production of protein Y.

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

38.1 PROBABILISTIC MODELS FOR BIOLOGICAL NETWORKS 895

Because it is based on Boolean networks, probabilistic Boolean networks (PBNs)
[19] is a probabilistic framework that deals with feedback loops. This modeling gives
two great advantages. First, it allows a qualitative analysis [4, 5] by investigating
the qualitative properties of the “Boolean core.” Second, it proposes a quantitative
analysis when focusing on the probabilities. Combining probabilities and BN logical
informations gives thus insights about both temporal behaviors and predictions of
biological compounds quantities, which comes up to recent biological expectations.
In this section, we focus on Boolean networks.

38.1.1 Boolean Networks

The Boolean networks represent the qualitative core of the PBN. Their interpreta-
tion constitutes a key step for a complete understanding of their probabilistic exten-
sions. Introduced by Stuart Kauffman and co-workers [8, 13], the Boolean networks
quickly raise a strong interest from both physical and biological fields. Their applica-
tions in computational biology resume the genes by switches: The gene activity can
be either ON or OFF. This assumption comes from a simplification of the step func-
tion that represents the activation of a gene by another. Because these genes interact
on each other, their interactions build a network, in which the evolution of a given
gene activity depends on the activities of other genes (see [5] for review). Following
this assumption, a Boolean network can be seen as a vector of Boolean functions,
such as follows.

Definitio 38.1 A Boolean network B = (V, F) is a pair, where

� V = {x1, . . . , xn} is a set of Boolean variables (i.e., genes), ∀i, xi ∈ {0, 1}.
� F = { f1, . . . , fn} is a set of Boolean functions, ∀i, fi : {0, 1}n → {0, 1}. Here,

fi describes the evolution of gene i .

Such networks allow the dynamical description of given phenomena. Formally,
if X (t) = (x1(t), . . . , xn(t)) represents the value of all variables at time t , then
X (t + 1) = (x1(t + 1), . . . , xn(t + 1)), where ∀i , xi (t + 1) = fi (x1(t), . . . , xn(t)) is
the value of all variables after one iteration of the Boolean network. Note that for n
genes, the corresponding number of Boolean networks is (2n)(2n). Among them, few
are accurate with biological knowledge. Their identifications is therefore a major
issue of Boolean networks theory.

Dependency Graph. We are interested in trimming the number of Boolean net-
works of interest. In general cases, fi depends on a subset of the Boolean vari-
ables only. A Boolean variable x j is so-called ficticius for fi if, and only if, for
all (x1, . . . , x j−1, x j+1, . . . , xn) ∈ {0, 1}n−1:

fi (x1, . . . , x j−1, 0, x j+1, . . . , xn) = fi (x1, . . . , x j−1, 1, x j+1, . . . , xn)

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

896 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

It shows that some genes are not useful for predicting the behaviors of the system:
fi does not depend on variable x j , or in other words, ∂ fi (x1, . . . , xn)/∂x j = 0. All
other genes are so-called essential because they impact the dynamical description.
Thus, knowing the values of fi for all possible affectations of essential variables is
sufficient. Furthermore, it is informative to draw the Boolean variables dependencies
using a directed graph.

Definitio 38.2 Let B = (V, F) a Boolean network. The dependency graph G =
(V, E) of B is defined by (j, i) ∈ E if, and only if, x j is an essential variable
for fi .

The following figure illustrates an example of dependency graph. Herein, x1 and
x2 are essential for f1; x1 is essential for f2; and x1, x2, and x3 are essential
for f3.

x 1

x 2 x 3

Representations of Boolean Functions. The Boolean networks can be complex,
and one of the major concerns remains the storage of the Boolean functions. Indeed,
it is necessary to store one or more Boolean function per gene. Several ways define
efficiently and unambiguously a Boolean function.

truth table. The simplest way to define a Boolean function consists in providing
its truth table.

x1 x2 x3 f (x1, x2, x3)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

However, based on the function values for all its possible entries, the size of such
a table is exponential.

logic expressions. Any Boolean function can be expressed via simple Boolean op-
erations {∧(logical and),∨(logical or)and¬(logical not)}. Combining these logical

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

38.1 PROBABILISTIC MODELS FOR BIOLOGICAL NETWORKS 897

operators is equivalent to design a logic circuit that mimics a given Boolean
function. It compacts the expression of the Boolean function. Like this, the pre-
vious truth table corresponds to f (x1, x2, x3) = (x1 ∧ x2) ∨ ¬x3, or this logical
circuit:

2x

3x

1x

)3x ,2x ,1x(for

not

and

binary decision trees. Another expression of the truth table relies on a branching
process. As illustration, based on the previous truth table, the first half of the table
corresponds to all entries when the first variable is false. By using this consideration
recursively, one defines a binary decision tree that matches the truth table.

0

0

0 0 0 0

0

1 1 1 1

11

1

1 1 1 1 10 0 0

2x

1x

2x

3x3x3x3x

Although the size of such a graph is still exponential, it allows us to think about
some improvements. Like this, it emphasizes that some part of the decision tree are
not that informative, which it is not obvious when reading the truth table only. Indeed,
if x1 = x2 = 1 is true, then for any choice of x3, f (x1, x2, x3) = 1. As a consequence,
the last part of the tree can be pruned and replaced by a leaf that has value 1. The
variable ordering is therefore one of the key features. For illustration, the decision
tree can be simplified by considering the ordering (x3, x1, x2) instead of (x1, x2, x3).
In this case, half of the binary decision tree is pruned.

2x

1x

3x0

0

0

1

1

1

10

1

0

01 01 1 0 11

1

1 1

1111

0

0000

0

0 3x

1x 1x

2x2x2x 2x

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

898 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

This tree manipulation represents a natural way to emphasize an information of inter-
est. Lee [14] extends this approach and proposes a binary decision diagram (BDD).
It is a directed acyclic graph obtained when applying two simplification rules to the
decision tree:

1. Merging any isomorphic subgraphs.

2. Eliminating any node whose two childs are isomorphic.

When applied on the above Decision tree (respectively, for the orders (x1, x2, x3) and
(x3, x1, x2)), these two rules give the following binary decision diagrams.

1x

2x3x

0 1
10

1

0

10

1x2x

3x

0

1 11

1

0

0

These diagrams show different roots; respectively x1 for the order (x1, x2, x3) and x3

for (x3, x1, x2), but both show similar decision patterns and truth tables, as shown
above. As a concrete application in the computational biology field, A. Naldi and
co-workers [17] propose a similar approach that successfully investigates gene regu-
latory network Boolean models.

Examples of Boolean Networks. A literature review shows several modelings
of biological systems using Boolean networks and, moreover, plenty modeling ap-
proaches that derive from Boolean networks. We propose to present herein three of
them.

cellular automata. As a classical Boolean network extension, a cellular au-
tomaton [10] is a modeling approach that focuses on the notion of variable local-
ity. Indeed, the cellular automata consider a unique Boolean function f (z1, . . . , zk)
in k variables and a set of k integers N = {n1, . . . , nk} ⊂ Z that corresponds to the
neighborhood to be considered. The associated Boolean network is then defined by
setting fi (x1, . . . , xn) = f (xi+n1 , . . . , xi+nk). Notice here that the indices belong to
the torus {1, . . . , n} (i.e., all operations are assumed to be modulo n), where x[n]
denotes the remainder of the ordinary euclidean division of x by n. The following
figure shows a trajectory of the cellular automaton corresponding to N = {−1, 0, 1}
and f (x1, x2, x3) = (¬x3 ∧ x2) ∨ (x3 ∧ ¬x1) ∨ (x3 ∧ x1 ∧ ¬x2). More precisely, the
first line represents the initial values of all variables (pixels in white if 0 or in

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

38.1 PROBABILISTIC MODELS FOR BIOLOGICAL NETWORKS 899

black if 1). Each line below is computed from the previous one and the Boolean
network.

As a major feature, the cellular automaton theory achieves the identification of pe-
riodic patterns that can be derived from the evolution of the automaton. For illus-
tration, the above picture shows periodic patterns, like the tiny white triangles that
are repeated on the diagonals of the figure. They characterize one of the specific
properties of the Boolean functions. They might be automatically extracted from the
simulation traces via standard pattern finding approaches.

discrete networks. The major biological assumption depicted within the Boolean
networks remains the discrete abstraction of the gene activity. However, in many
cases, assuming a gene as a simple interruptor is not appropriate. It has been noticed
that genes may have different behaviors depending on their activation levels [6].
Other genes may present different promotors that respond differentially in function
of the transcription factor activity level [18]. Therefore, a single Boolean domain for
each variable is no longer sufficient. A natural way to deal with this consists in intro-
ducing thresholds for modeling gene activity, in order to differentiate several effects
of the gene activity. Following this assumption, R. Thomas and co-workers [26, 24]
propose a model of discrete networks where the variables are discretized. D. Thieffry
and co-workers extend this idea [4, 25, 23]. It allows them to analyze the qualitative
properties of the discrete models, which bridges the gap between continuous mod-
els (i.e., ordinary differential equation based models) and Boolean networks. The

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

900 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

implementation of such an approach shows fine qualitative results [16] but reversely
produces discrete exponential graphs. Hence, they are often too large for allowing a
probabilistic extension on the discrete networks.

influence graphs. Following similar gene regulatory network modeling moti-
vations, A. Siegel and co-workers [22] propose an another extension with a re-
stricted type of Boolean functions. Indeed, they consider a function fi (x1, . . . , xn) =
y1 ∨ · · · ∨ yn , where yk = 0 if variable xk is ficticious for fi ; and yk = xk or yk =
¬xk , where xk is essential for fi . The choice between these two cases relies on the
fact that xk is an activator or a repressor for xi . As a direct consequence, each essen-
tial variable appears only once in the Boolean function expression, either as an activa-
tor or as an inhibitor. From this compact expression of the gene regulatory network,
they define a so-called generalized dependency graph G̃ = (V, E) of the Boolean
network B = (V, F), where there exists an edge (i, j, s) ∈ E ⊂ V × V × {−,+} if,
and only if, x j is an essential variable for fi and s = sign (∂ fi (x1, . . . , xn)/∂x j). For
illustration, when considering three Boolean functions that represent a given biolog-
ical knowledge:

f1(x1, x2, x3) = ¬x1 ∨ x2

f2(x1, x2, x3) = x1

f3(x1, x2, x3) = x1 ∨ ¬x2 ∨ x3

We can picture these constraints by the following generalized dependency graph:

x 1

x 2 x 3

This graph represents an elegant summary of the logical (i.e., qualitative) properties
that emerge from the set of biological constraints. Note that these Boolean constraints
might be automatically investigated. In particular, P. Veber and co-workers [27] pro-
pose an in silico protocol that checks the consistencies of these constraints with ex-
perimental knowledges at disposal. It represents an elegant validation of the qualita-
tive properties of the “Boolean core” before further probabilistic extensions.

38.1.2 Probabilistic Boolean Networks: A Natural Extension

Boolean networks do not always reflect the correct behaviors of complex biolog-
ical models. In fact, at some point, quantitative models need flexibility for taking
into account the inherent complexity of gene interactions (i.e., nonlinearity due to

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

38.1 PROBABILISTIC MODELS FOR BIOLOGICAL NETWORKS 901

post-transcriptional regulations) or to deal with incomplete data. In this purpose,
Shmulevich and co-workers [19] introduced PBNs, that is, a probabilistic extension
of Boolean networks.

Definitio 38.3 A probabilistic Boolean network B = (V,F) is a pair, where

� V = {x1, . . . , xn} is a set of Boolean variables (i.e., genes), ∀i, xi ∈ {0, 1}.
� F = {F1, . . . , Fn} is a set, where Fi = {(f (1)

i , p(1)
i), . . . , (f (li)

i , p(li)
i)} is a set

of pairs composed by a Boolean function and a probability. For all i , one has∑
k∈{1,...,li } p(1)

i = 1. Here, the evolution of gene i is predicted by f (k)
i with prob-

ability p(k)
i .

The dynamics of the biological system are now described using Boolean random
variables (X1(t), . . . , Xn(t)), which satisfy:

∀i,∀k ∈ {1, . . . , li }, Prob{Xi (t + 1) = f (k)
i (X1(t), . . . , Xn(t))} = p(k)

i

From the simulation viewpoint, it opens other perspectives. If (x1, . . . , xn) is the
current Boolean affectation of all gene activities, the activity of gene i becomes
f (k)
i (x1, . . . , xn) with probability p(k)

i . Like this, the probabilities add an uncertainty
feature to the model. Intuitively, one disposes of several predictors for a gene activity.
One can trust a predictor with a given probability.

Note that PBN can be decomposed as a finite set of
∏n

i=1 |Fi | constituent Boolean
networks with some transitions probabilities between them that are determined by
the predictor probabilities.

38.1.3 Inferring Probabilistic Models from Experiments

The concern is to fit the previous probabilistic framework with biological knowledge
at disposal. Several approaches have been proposed to build them from experiments
using an automatic manner [19, 20, 21]. Mainly, experiments correspond to long
time courses C = ((x1(1), . . . , xn(1)), . . . , (x1(T), . . . , xn(T))) involving measures
of n genes at T different time steps. The goal is to build a PBN that reproduces
C as a trajectory with a high probability. Notice that if the time course originates
from a single Boolean network, classical methods such as Viterbi or Baum-Welch
algorithms can be adapted from the inference of hidden Markov model herein for
contructing the most probable Boolean network. We observe that a PBN can be seen
as a composition of a finite number of constituent Boolean networks. In this context,
perturbation probabilities allow us to swap from a Boolean network to another. Based
on this observation, the inference of a proper PBN from long time courses consists
in three distinct steps:

1. First separate the time course into subsequences originating from the same
constituent Boolean network.

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

902 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

2. Infer separately every constituent Boolean networks.

3. Retrieve the swapping probabilities between constituent Boolean networks,
and construct the PBN.

Notice that the first step is crucial. The choice of the optimization method is also a
major factor to ensure a convergence to the right PBN.

38.2 INTERPRETATION AND QUANTITATIVE ANALYSIS OF
PROBABILISTIC MODELS

Previous analyses of the Boolean core allow us to investigate the qualitative proper-
ties of the biological regulatory networks. Others approaches exist for investigating
both temporal and quantitative properties that emerge from models probabilistically
extended.

38.2.1 Dynamical Analysis and Temporal Properties

One of the major biological expectations when studying regulatory networks is to
extract general properties from the evolution of gene activities. This evolution is
inherently encoded by the network. It can be represented by a dynamical graph
(or state space) defined as follows:

Definitio 38.4 Let B = (V, F) be a Boolean network and n = |V |. The dynami-
cal graph G = ({0, 1}n, E) associated with B is a directed graph possessing an edge
from (x1, . . . , xn) to (x ′

1, . . . , x ′
n) if this edge defines a possible update (several up-

date strategies are described in the sequel).

The dynamical graph may show attractors that represent key features of the sys-
tem dynamic. It has been shown that phenotypes are very often associated with
these attractors [11, 12]. Therefore, studying these properties of the dynamical graph
presents great interest in a biological context. It explains why several approaches
have been proposed. They focus on distinct viewpoints: simulation of the steady
state distribution, algorithms from the graph theory to study the topological aspects
of graphs, and model checking approaches. Since they introduce time, all these ap-
proaches are sensitive to the update of the biological system. For the same network,
several update strategies were proposed. It results in distinct dynamical graphs.

38.2.1.1 Synchronous Update. It is the most natural update. It corresponds
to a succession of observations of the gene activities at some fixed time. The syn-
chronous update strategy assumes that all genes are updated at the same time.
Like this, if (x1(t), . . . , xn(t)) is the Boolean affectation of all gene activities at
time t , (x1(t + 1), . . . , xn(t + 1)), where for all i , xi (t + 1) = fi (x1(t), . . . , xn(t)),
is the Boolean affectation of all gene activities at time t + 1. For illustration, the

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

38.2 INTERPRETATION AND QUANTITATIVE ANALYSIS OF PROBABILISTIC MODELS 903

0000

0001

0010

1100

0011

1101

0100

0101

0110

01111000

1001

1010

1011

1111

1110

Figure 38.2 Dynamical graph with a synchronous update strategy.

Figure 38.2 draws the synchronous dynamical graph associated with the Boolean
network:

f1(x1, x2, x3, x4) = x1 ∧ x2 ∨ ¬x2 ∧ x3

f2(x1, x2, x3, x4) = x1 ∧ x3 ∧ x4 ∨ ¬x1 ∧ x2

f3(x1, x2, x3, x4) = x1 ∧ ¬x2 ∧ x4 ∨ ¬x2 ∧ ¬x4

f4(x1, x2, x3, x4) = x1 ∨ x2 ∧ x3 ∨ ¬x3 ∧ x4

38.2.1.2 Asynchronous Update. One might observe that it is rare that two
independent genes change their activity level together at the same time. Regarding
the dynamical evolution of discretizations of continuous variables, this observation is
inconsistent with the previous synchronous update strategy. We must suppose herein
that only one gene can change at a given time. Like this, if (x1(t), . . . , xn(t)) is the
Boolean affectation of all gene activities at time t , there exists at most n possible

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

904 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

0000

0001

0010

0110

10100011

0111 1011

0100

0101 1000

1001

1111

1100

1101

1110

Figure 38.3 Dynamical graph with an asynchronous update strategy.

affectations (x1(t + 1), . . . , xn(t + 1)), where xi (t + 1) = fi (x1(t), . . . , xn(t)) if i =
j and xi (t + 1) = xi (t) otherwise, for all j ∈ {1, . . . n}. For illustration, Figure 38.3
pictures the dynamical graph of the Boolean network above, with an asynchronous
strategy.

38.2.1.3 Mixed Updates with Priorities. Biological systems often need plas-
ticity in their update strategies. Indeed, some genes are co-regulated, whereas oth-
ers are independent. Thus, the asynchronous assumption is not fulfilled because
of regulation specificities or an incomplete knowledge. In this context, Naldi and
co-workers [16] proposed a mixed strategy that combines synchronous updates
for genes having a similar regulation speed and asynchronous updates for others.
For that, they define a synchronization partition of genes. Let P = {I1, . . . , Im},
be a disjoint partition of {1, . . . , n} composed by nonempty sets (i.e., ∀u, Iu 	= ∅,

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

38.2 INTERPRETATION AND QUANTITATIVE ANALYSIS OF PROBABILISTIC MODELS 905

0000

0001

0010

1110 0011

1111

0100

0110

0101

0111

1000

1001

1011

1010

1100

1101

Figure 38.4 Dynamical graph with a mixed update strategy with synchronization partition
P = {{1, 2}, {3}, {4}}.

⋃m
u=1 Iu = {1, . . . , n} and ∀u 	= v, Iu ∩ Iv = ∅). This partition describes synchro-

nizations between genes. The two extremal cases correspond to P = {{1, . . . , n}}
for synchronous updates and P = {{1}, . . . , {n}} for asynchronous updates. Then,
if (x1(t), . . . , xn(t)) is the Boolean affectation of all gene activities at time t ,
there exists at most m possible affectations (x1(t + 1), . . . , xn(t + 1)), where for all
u ∈ {1, . . . , m}, xi (t + 1) = fi (x1(t), . . . , xn(t)) if i ∈ Iu and xi (t + 1) = xi (t) oth-
erwise. For illustration, Figure 38.4 represents the dynamical graph of the previ-
ous Boolean network with a mixed update strategy with synchronization partition
P = {{1, 2}, {3}, {4}}.

38.2.2 Impact of Update Strategies for Analyzing Probabilistic
Boolean Networks

In a probabilistic context, the edges of a dynamical graph are endowed with a transi-
tion probability. Consequently, the dynamical graph becomes a Markov chain. Nat-
urally, update strategies that impact the Boolean network interpretation play a major

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

906 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

role for investigating probabilistic Boolean networks too. We propose to illustrate
this point by showing how mixed updates are extended in the probabilistic context
of PBN. Here, the dynamical graphs become Markov chains with 2n states, whose
transition matrix T = (pi→ j)i, j∈({0,1}n)2 is defined as follows.

Let P = {I1, . . . , Im} be a synchronization partition of {1, . . . , n}. For all u ∈
{1, . . . , m}, let Iu = {s1, . . . , spu } and define the sets

� Hu = ∏
s∈Iu

{1, . . . , ls}, where ls is the number of statistical predictors of
gene s.

� Ui, j,u = {(ks1, . . . , kspu
) ∈ Hu, (x1, . . . , xn) = i, x ′

s = f (ks)
s (xs) if s ∈ Iu and

x ′
s = xs otherwise and (x ′

1, . . . , x ′
n) = j}.

Then, if one has

pi→ j =
m∑

u=1

∑

(ks1 , . . . , kspu
) ∈ Ui, j,u,

Iu = {s1, . . . , spu }

∏

s∈Iu

p(ks)
s

This framework achieves a probabilized dynamical graph for all update strategies
applied on a PBN. For illustration, let us consider PBN defined by

f (1)
1 (x1, x2, x3, x4) = x1 ∧ x2 ∨ ¬x2 ∧ x3 p(1)

1 = 0.3

f (2)
1 (x1, x2, x3, x4) = ¬x1 ∧ x2 ∨ x3 ∧ x4 p(2)

1 = 0.7

f (1)
2 (x1, x2, x3, x4) = x1 ∧ x3 ∧ x4 ∨ ¬x1 ∧ x2 p(1)

2 = 1

f (1)
3 (x1, x2, x3, x4) = x1 ∧ ¬x2 ∧ x4 ∨ ¬x2 ∧ ¬x4 p(1)

3 = 1

f (1)
4 (x1, x2, x3, x4) = x1 ∨ x2 ∧ x3 ∨ ¬x3 ∧ x4 p(1)

4 = 1

This PBN is a generalization of the BN previously presented, the only change
being on the rule for gene 1.

Figures 38.5, 38.6, and 38.7 represent the dynamical graphs with probabilities
on edges for distinct strategy updates, respectively, synchronous, asynchronous, and
mixed strategy with P = {{1, 2}, {3}, {4}}.

38.2.3 Simulations of a Probabilistic Boolean Network

Previous approaches emphasize the qualitative properties of the probabilistic
Boolean networks. However, biologists might be interested by quantifying each bio-
logical compounds that interact within the biological network. Simulations represent
a natural way to predict the biological compounds quantities. Note here that such
a quantitative information is in accordance with the qualitative results previously
shown. The quantitative information results from the transitions taken more or less

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

38.2 INTERPRETATION AND QUANTITATIVE ANALYSIS OF PROBABILISTIC MODELS 907

0000 1

0001

1

0010

0100

0.7

1100

0.3

0011

1101

1

0.3

1010

0.7

0101

0.3

1000

0.7

0110

0111

0.3

1111

0.7

0.3

0.7

1

1001

1

0.7 0.3

1011

1

0.7

0.3

0.7 0.3

1110

0.7

0.3

1

Figure 38.5 Dynamical graph of a PBN with a synchronous strategy.

in a manner that is conformed with probabilities on the network transitions. In other
words, qualitative properties indicate the potential qualitative transitions, whereas
quantitative features represent the integration of all qualitative transitions. The Monte
Carlo approach achieves such an integration by computing numerical values, given a
probability distribution. In the PBN context, probabilities are related to the interac-
tions. When one stays at one state in the graph, the Monte Carlo algorithm indicates
what is the transition to take, in accordance with the probabilities associated with the
transitions that go out from the given state (see Figure 38.8 for illustration). Follow-
ing a Bernoulli law and a significant number of random walks through the graph, one
can estimate the distribution of the biological quantities. In this context, we describe
here a simulation based on a Markov chain Monte Carlo approach that estimates the
equilibrium distribution. Several algorithms implement distinct approaches, among
which Metropolis-Hasting algorithm and Gibbs sampling, are the most applied in
computational biology (see [2] for details).

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

908 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

0000 1

0001

0.25

0.75

0010

0.25

0.425

0110

0.25

1010

0.075

0011

0.25

0.25

0111

0.25

1011

0.25

0100

0.25

0.325

0.25

1100

0.175

0101

0.25

0.25

0.325

1101

0.175

0.575

0.25

1110

0.175

0.25

0.575

1111

0.175

1000

0.25

0.5

1001

0.25

0.25

0.5

0.25

0.1750.25

0.325

0.25

0.75

0.25

0.175

0.25

0.075

0.25

0.250.175

0.25

0.575

0.175

0.25

0.325

0.25

0.25

0.75

Figure 38.6 Dynamical graph of a PBN with an asynchronous strategy.

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

0000 1.000

0001

0.333

0.667

0010

0.333

0.333

0110

0.233

1110

0.100

0011

0.333

0.333

1111

0.333

0100

0.100

0.333

0.333

1000

0.233

0101

0.100

0.333

0.333

1001

0.233

0.433

0111

0.333 0.233

0.333

0.433

0.233

0.333

0.333

0.333

0.333

0.333

1011

0.333

1010

0.233

0.333

0.100

0.333

0.667

0.333

1100

0.233

0.100

1101

0.333

0.333

0.233

0.100

0.667

0.233

0.100

0.333

0.333

0.333

0.667

Figure 38.7 Dynamical graph of a PBN with a mixed strategy considering P = {{1, 2}, {3}, {4}}.

y

3x

2x

1x

3
p

2
p

1
p

Figure 38.8 Illustration of the Monte Carlo algorithms. The algorithm produces a random walk
in the network in accordance with the probability distribution. Here, when one is in the state y,
the choice to take the path through x1, x2, or x3 is made in accordance with probabilities p1, p2,
and p3.

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

910 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

3x→ yτ

2x→ yτ

1x→yτ

y

3x

2x

1x

Figure 38.9 Illustration of the Gillespie algorithms. The algorithm produces a random walk in
the network in accordance with the production rates. Here, when one is in the state y, the choice
to take the path through x1, x2, or x3 is made in accordance with probabilities estimated from
τy→x1 , τy→x2 , and τy→x3 .

The major issue of Monte Carlo approaches is to determine how many steps are
necessary for an accurate estimation of the equilibrium. Moreover, biologists might
be interested by the evolution of the quantities. It implies adding an estimation of
time between two given quantities. In this purpose, the Gillespie algorithm [7] is a
refinement of the Monte Carlo approach (see Figure 38.9). It uses a complementary
information: the production rate τ for each interaction. The algorithm simulates the
evolution of the biological compound over time by determining what kind, and when,
the next interaction will occur. Like this, the simulation shows the result of a random
walk in the discrete network for given initial conditions: the quantity of biological
components in presence.

gillespie algorithm applied on probabilistic boolean networks. For a given
quantity of all biological compounds of the system, and some production rates τi→ j

from state i to j for all edges, the Gillepsie algorithm consists in a repetition of four
basic steps. First suppose that the initial state is i .

1. Let τtot = ∑
j τi→ j .

2. Choose a random number T following an exponential distribution with param-
eter τtot. Here, T is the total duration ellapsed in state i . Increase the total time
by T .

3. Choose randomly the next state; each state j is reached with probability
τi→ j/τtot.

4. Update the production rates.

These simulations are particularly appropriate for estimating quantities of bi-
ological compounds that interact on large biological networks. The efficiency of
the quantitative prediction can then be estimated using multiregression approaches.
Note, herein, that automatic probabilistic verifications can be performed on smaller

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

REFERENCES 911

networks [9]. It emphasizes the impact of specific probabilities on the overall quanti-
tative behaviors of the system. From the biological viewpoint, it indicates the genes,
or other biological compounds, that can be tuned for a better fitting of the model
with experimental data; or cornerstone genes that might impact the overall behav-
ior when modified (i.e., mutation or environmental condition modifications). The
probabilistic model-checkers hence appear as a natural complement to the automatic
qualitative verification techniques of the Boolean core, as previously mentioned in
Section 38.1.1.

38.3 CONCLUSION

In this chapter, we summarized the essential features of the probabilistic Boolean net-
works. They represent a general probabilistic model that possesses plenty of applica-
tions in the context of biological networks when dedicated extensions are proposed.
Notice that plenty other probabilistic models not shown herein exist. The Bayesian
network is one of them that deals with biological informations. It is a probabilis-
tic graph model that represents the biological compound interactions via a directed
acyclic graph. As itself, it is not able to take into account the feedback loops. For tak-
ing them into account, one introduces dynamical Bayesian networks. They consist in
a repetition of an elementary Bayesian network, as previously defined, that are linked
together in order to abstract the dynamical effect, which includes the feedback loops.
For further reading about this method as an extension of this chapter, we recommend
the study [15] that compares the probabilistic Boolean networks and the dynamical
Bayesian networks in a gene regulatory context.

ACKNOWLEDGMENTS

The authors of this chapter would like to thank Mathieu Giraud and Pierre Peterlongo
for their precious comments.

REFERENCES

1. J. Ahmad, J. Bourdon, D. Eveillard, J. Fromentin, O. Roux, and C. Sinoquet. Temporal
constraints of a gene regulatory network: Refining a qualitative simulation. Biosystems,
98(3):149–159, 2009.

2. C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for
machine learning. Mach Learn, 50:5–43, 2003.

3. J. Bourdon, D. Eveillard, S. Gabillard, and T. Merle. Using a probabilistic approach for
integrating heterogeneous biological knowledges. Proceedings of RIAMS 2007, Lyon,
2007.

4. C. Chaouiya, H. de Jong, and D. Thieffry. Dynamical modeling of biological regulatory
networks. Biosystems, 84(2):77–80, 2006.

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

912 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS

5. H. de Jong. Modeling and simulation of genetic regulatory systems: A literature review.
J Comput Biol, 9(1):67–103, 2002.

6. A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical analysis of a generic boolean
model for the control of the mammalian cell cycle. Bioinformatics, 22(14):e124–131,
2006.

7. D.T. Gillespie. Stochastic simulations of coupled chemical reactions. J Phys Chem,
81(25):2340–2361, 1977.

8. K. Glass and S.A. Kauffman. The logical analysis of continuous, non-linear biochemical
control networks. J Theor Biol, 39:103–129, 1973.

9. J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic
model checking of complex biological pathways. Theor Comput Sci, 391(3):239–257,
2008.

10. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, MA, 1979.

11. S. Huang. Gene expression profiling, genetic networks, and cellular states: An integrating
concept for tumorigenesis and drug discovery. J Mol Med, 77(6):469–480, 1999.

12. S. Huang. Genomics, complexity and drug discovery: Insights from boolean network
models of cellular regulation. Pharmacogenomics, 2(3):203–222, 2001.

13. S.A. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic nets.
J Theor Biol, 22(3):437–467, 1969.

14. C.Y. Lee. Representation of switching circuits by binary-decision programs. Bell Syst
Tech J, 38:985–999, 1959.

15. P. Li, C. Zhang, E.J. Perkins, P. Gong, and Y. Deng. Comparison of probabilistic boolean
network and dynamic Bayesian network approaches for inferring gene regulatory net-
works. BMC Bioinformatics, 8(Suppl 7):S13, 2007.

16. A. Naldi, D. Berenguier, A. Fauré, F. Lopez, D. Thieffry, and C. Chaouiya. Logical mod-
elling of regulatory networks with ginsim 2.3. Biosystems, 97(2):134–139, 2009.

17. A. Naldi, D. Thieffry, and C. Chaouiya. Decision diagrams for the representation and
analysis of logical models of genetic networks. Proceedings of the Computational
Methods in Systems Biology (CMSB’07), volume LNCS/LNBI 4695, 2007, pp. 233–
247.

18. D. Ropers, H. de Jong, M. Page, D. Schneider, and J. Geiselmann. Qualitative simulation
of the carbon starvation response in Escherichia coli. Biosystems, 84(2):124–152, 2006.

19. I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang. Probabilistic boolean networks:
A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–
274, 2002.

20. I. Shmulevich, E.R. Dougherty, and W. Zhang. Gene perturbation and intervention in
probabilistic boolean networks. Bioinformatics, 18(10):1319–1331, 2002.

21. I. Shmulevich and W. Zhang. Binary analysis and optimization-based normalization of
gene expression data. Bioinformatics, 18(4):555–565, 2002.

22. A. Siegel, O. Radulescu, M. Le Borgne, P. Veber, J. Ouy, and S. Lagarrigue. Qualitative
analysis of the relation between DNA microarray data and behavioral models of regula-
tion networks. Biosystems, 84(2):153–174, 2006.

23. D. Thieffry. Dynamical roles of biological regulatory circuits. Brief Bioinformatics,
8(4):220–225, 2007.

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

REFERENCES 913

24. D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks—II.
Immunity control in bacteriophage lambda. Bull Math Biol, 57(2):277–297, 1995.

25. D. Thieffry and R. Thomas. Qualitative analysis of gene networks. Pacific Symposium on
Biocomputing, 1998, pp. 77–88.

26. R. Thomas, D. Thieffry, and M. Kaufman. Dynamical behaviour of biological regulatory
networks—I. Biological role of feedback loops and practical use of the concept of the
loop-characteristic state. Bull Math Biol, 57(2):247–276, 1995.

27. P. Veber, C. Guziolowski, M. Le Borgne, O. Radulescu, and A. Siegel. Inferring the role
of transcription factors in regulatory networks. BMC Bioinformatics, 9:228, 2008.

P1: OSO
c38 JWBS046-Elloumi December 2, 2010 9:54 Printer Name: Sheridan

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39
MODELING AND ANALYSIS

OF BIOLOGICAL
NETWORKS WITH

MODEL CHECKING

Dragan Bošnački, Peter A.J. Hilbers, Ronny S. Mans, and Erik P. de Vink

39.1 INTRODUCTION

During last decades, biological networks, like signal transduction pathways, meta-
bolic pathways, and genetic networks, have received increasing attention in bio-
chemistry. In each living organism, a growing plethora of such networks have been
identified. It has become clear that the understanding of the mechanisms and their
functioning is crucial for elucidating the functioning of the cell and the organism as
a whole.

Different formalisms and approaches exist for the modeling of biological net-
works. In this chapter we focus on model checking as a method that exploits exe-
cutable models. Its main advantage is that they lend themselves to formal verifica-
tion. Standard simulation on the model can only yield predictions regarding model
properties with certain probability. The advantage of model checking over standard
simulation is that it considers all possible behaviors of the systems, not just some
subset of it and therefore yields conclusions with certainty.

After intrducing the basic concepts in the next section, in Section 39.3, we show
how standard model checking can be used to model and analyze biological systems.
To this end we use as the modeling language Promela, the specification language of

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

915

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

916 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

the model checking tool SPIN. The SPIN tool can be used to check a broad range of
properties. In particular, we show how SPIN can be used to detect steady states of
the biological systems as well as periodic behavior. Some of the case studies that we
discuss have also been modeled with other formalisms, like Petri nets or π -calculus.
We discuss the advantages of model checking over those approaches.

Section 39.4 is devoted to modeling and analysis of biological systems that are
inherently probabilistic. To this end we use a special kind of model checking—
probabilistic model checking. We demonstrate the concepts of probabilistic model
checking for biological systems using the probabilistic model checking tool Prism.

39.2 PRELIMINARIES

39.2.1 Model Checking

Roughly speaking, model checking [19, 2] is an automated technique that, given a
model of the system and some property, checks whether the model satisfies the prop-
erty. Compared with other automated or semi-automated formal techniques, such as
deductive methods using theorem provers, model checking is relatively easy to use.
The specification of the model is very similar to programming, and as such it does
not require much additional expertise from the user. The verification procedure is
completely automated and often takes only seconds to several minutes. Another im-
portant advantage of the method is that, if the verification fails (i.e., the property that
is checked does not hold), the erroneous behavior of the system can be reproduced.
This significantly facilitates the location and correction of the errors.

Unlike simulation, model checking explores all possible states of the system. The
model checker explores the complete system behavior (i.e., all possible executions
of the system). Obviously, for model checking to be applicable, the state space of
the system under study should be finite. Systems with infinite state spaces can be
handled as well provided the state space can be reduced to a finite one. For this
reason, various abstraction techniques are available. In general, the state space that
reflects all system behavior is represented as a graph in which the states are nodes
and the edges are transitions between states. A particular behavior of the system,
which we also refer to as an execution sequence or a path, can be represented by a
path in the graph consisting of states and the transitions between them. Of particular
interest are states from which there are no outgoing transitions, which are called
deadlock states, as well as cyclic paths in the state-space graph. The deadlock states
correspond to steady states in the real systems, whereas the cycles are associated
with periodical behavior of the systems.

To illustrate the above notions related to the state spaces, we consider the simple
genetic network given in Figure 39.1 a, which consists of three genes. Gene A is an
inhibitor of gene B, whereas gene B activates gene C. Furthermore, if B is not active,
then gene C spontaneously deactivates, whereas if gene A is not active, then gene B
spontaneously activates. Also gene A is a self-activating one. The state space of the
network is given in Figure 39.1b. The states are represented by a state vector. For

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.2 PRELIMINARIES 917

CA

000

100 010

110 011

111101

(b)

001

A

(c)(a)

010 100

011

111

101

000

001

110

(d)

B CB

Figure 39.1 A simple genetic network with its state space.

the sake of simplicity, in the figure, the state vectors are simplified into 3-bit binary
strings. (States are depicted as circles, and transitions as arcs.) The components of
the vector correspond to the genes A, B, and C, respectively. Each gene can take two
values 0 (not activated) and 1 (activated).

We assume that the genes change their states asynchronously, one gene at a time.
So, from the state 000 one can go nondeterministically either to state 100 or 010. The
first transition happens when gene A activates spontaneously, whereas the second one
corresponds to a spontaneous activation by gene B. The transition from state 101 to
100 happens by spontaneous deactivation of gene C and the transition from 110 to
100 because of the inhibiting influence of A to B. Similarly the other transitions
can be coupled to activation/deactivation of a particular gene. The only deadlock or
stable state is 100.

The state space does not contain cycles. However, cyclic behavior can be intro-
duced, for instance, by adding a feedback activating influence between C and A and
assuming that A deactivates spontaneously (see Figure 39.1c). In that case a sponta-
neously activated gene B activates gene C, which in its turn activates gene A. Gene A
will deactivate gene B, which will result in spontaneous deactivation of gene C and as
a consequence also gene A. Then the cycle can resume again with a new spontaneous
activation of B. The state space of the new network is given in Figure 39.1d.

39.2.2 SPIN and Promela

Spin [18] is a software tool that supports the analysis and verification of concur-
rent systems. The system descriptions are modeled in a high-level language called
Promela. Its syntax is derived from the programming language C and extended with
constructs to model nondeterminism, the so-called guarded commands from Dijk-
stra, and with statements to model communication (sending and receiving messages)
that are inspired from Hoare’s CSP language.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

918 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

In Promela, system components are specified as processes that can interact ei-
ther by message passing, via channels, or memory sharing, via global variables. The
message passing can either be buffered or unbuffered. Concurrency is asynchronous
and modeled by interleaving (i.e., in every step exactly one enabled action is per-
formed, if available at all). No assumptions are made on the relative speed of process
executions.

Given a Promela description as input, SPIN generates a C program that performs
the verification of a system property by generating the state-space graph. Simulta-
neously, the check of the property is performed (i.e., each new state is checked if it
is erroneous, e.g., a deadlock state, or if an erroneous cyclic path is closed). There
are various ways to formally express the properties that we want to verify. Properties
that boil down to the presence or absence of cycles in the state space can be formu-
lated via special formal language called linear temporal logic (LTL) (cf. [12]). We
give more details about LTL in Section 39.2.3. The most general way of expressing
properties in SPIN is via so-called never claims, which are best seen as monitoring
processes that run in lock step with the rest of the system.1 SPIN provides an auto-
matic translator from formulas in LTL to never claims. In case the system violates a
property, the trace of actions leading to an invalid state, or a cycle, is reported. The
erroneous trace can then be replayed, on the Promela source, by a guided simulation.

39.2.3 LTL

We give only an informal overview of the LTL. For a formal definition, we refer
the reader to [12]. Temporal logic is a formalism for specifying sequences of states.
Temporal logic formulae are composed out of a small number of special temporal
operators and state formulae. LTL is a specific branch of temporal logic that only
contains future time temporal operators. This branch of logic is most relevant to the
verification of concurrent systems.

For our purposes we only use two temporal operators. These are the operator
always or box, which is represented by the symbol “[]” and the operator eventually
or diamond, which is represented by the symbol “〈 〉”. Let us suppose that p is a
formula expressing some property. Then formula []p captures the notion that the
property specified by p remains invariantly true throughout an execution sequence
(i.e., holds in each state of the sequence). The informal meaning of the formula 〈 〉p
is that the property p is guaranteed to eventually become true at least once in an
execution sequence. Besides the special temporal operators, LTL also provides the
usual logical operators: “!” for negation, “||” for disjunction, “&&” for conjunction,
and “→” for logical implication.2

To illustrate the use of LTL formula, some examples are given in Table 39.1.

1The never claims are, in fact, Büchi Automata [33] and, thus, can express what are called arbitrary
omega-regular properties.
2For the reader who is familiar with LTL and model checking: In most of the applications that we discuss
in this chapter, the usage of LTL formulas even for safety properties (i.e., properties that can be disproved
with a finite counterexample sequence), is essential. This is because those safety properties are global and
therefore cannot be expressed with assertions, which capture only local properties.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.3 ANALYZING GENETIC NETWORKS WITH MODEL CHECKING 919

Table 39.1 Examples of LTL formulas

Formula Informal Meaning

[]〈 〉p always eventually p, i.e., infinitely many p’s
〈 〉[]p eventually always p, i.e., p only from some point on
p → 〈 〉q if initially p then eventually q
[](p → 〈 〉q) every p is eventually followed by a q
<> p → 〈 〉q eventually p implies eventually q

39.3 ANALYZING GENETIC NETWORKS WITH MODEL CHECKING

We discuss how to use model checking to analyze genetic networks. In genetic net-
works, genes can activate or inhibit one another. Moreover, self-regulation (activa-
tion/inhibition) of a gene is possible too. We are interested in the qualitative behavior
of genetic networks, i.e., for each gene we distinguish only two possible states: ‘on’
and ‘1’ vs. ‘off’ and ‘0’. Consequently, we use boolean regulatory graphs [9] as
formal models of the genetic networks.

39.3.1 Boolean Regulatory Networks

Let G = {g1, . . . , gn} be a set of genes. To each gene gi ∈ G, we assign a subset
I (i) ⊆ G and a boolean function Ki . Intuitively, I (i) contains the source genes of
all incoming interactions into gi and is called input of gi . The boolean function
Ki : 2I (i) → {0, 1} associates a parameter Ki (X) to each subset X of I (i). Intuitively,
if all genes in the subset X are active then gi is activated (if Ki (X) = 1) or inhib-
ited (in case Ki (X) = 0). As a result, the output of function Ki (X) produces the new
value of gene gi .3 The corresponding regulatory graph is a (labeled) directed graph
defined by the following three components:

� a set of nodes G = {g1, . . . , gn},
� a set of edges determined by the sets I (i), i = 1, . . . , n, and
� a set of parameters K = {Ki (X) | j = 1, . . . , n, X ⊆ I (i)}.

39.3.2 A Case Study

We illustrate our approach in more detail on a case study—a genetic network of the
plant Arabidopsis thaliana, which is involved in the control of flower morphogenesis.
Mendoza et al. [27] have proposed a Boolean regulatory model involving 10 genes
cross-regulating each other. For proper parameter value sets, this model encompasses
six stable states, four of them matching the qualitative gene expression patterns ob-
served in the different flower organs, whereas the two last stable states correspond to

3Thus, the network can be regarded as an asynchronous sequential logical circuit.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

920 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

LUG

AG1

API

TLF1

EMF1

LFY

AP3

PI

UFO

SUP

Figure 39.2 Genetic network for flowering in Arabidopsis.

nonflowering situations. All these stable states correspond to deadlocks in the state
space of the system and as such can be detected by model checking.

Chaouiya et al. have introduced a simplified version of the network that focuses
on a subset of six genes that play a crucial role in the selection of specific flowering
differentiative pathways, leaving aside the genes that can be treated as simple inputs
(EMF1, UFO, LUG, and SUP). In [9], a parameter set has been chosen for which
the system has four stable states, each corresponding to a gene expression pattern
associated with a specific flower organ.

Thus, only the following genes are considered: TLF1, LFY, AP1, AG1, AP3, and
PI. The gene network is depicted in Figure 39.2. Crossbar arrowheads indicate in-
hibition, whereas standard arrowheads indicate activation. The inhibition/activation
interactions between genes in Figure 39.2 are rather informal. The precise defini-
tion of the interactions is given by the Ki parameters of the underlying regulatory
graph that are given in Table 39.2. In the table gi is associated with gi = 1 (gi ∈ X)
and its complement ḡi corresponds to gi = 0 (gi /∈ X). For example, KL (AT̄) =
0 means that when AP1 is activated and TLF1 is inhibited, then gene LFY is
inhibited.

Table 39.2 Parameters given in [9]

TLF1 (=T) LFY (=L) AP1 (=A) AG1 (=G) AP3 (=P) PI (=I)

KT (L̄) = 0 KL (Ā T̄) = 0 K A(L̄ Ḡ) = 1 KG(T̄ L̄ Ā) = 1 K P (P̄ Ī L̄) = 0 KI (Ī P̄ L̄) = 0
KT (L) = 0 KL (ĀT) = 0 K A(L̄ G) = 0 KG(T̄ L̄ A) = 0 K P (P̄ Ī L) = 1 KI (Ī P̄ L) = 1

KL (A T̄) = 0 K A(L Ḡ) = 1 KG(T̄ L Ā) = 1 K P (P̄ I L̄) = 0 KI (Ī P L̄) = 0
KL(AT) = 0 K A(LG) = 0 KG(T̄ L A) = 0 K P (P̄ I L) = 1 K I (Ī P L) = 1

KG(T L̄ Ā) = 0 K P (P Ī L̄) = 0 KI (I P̄ L̄) = 0
KG(T L̄ A) = 0 K P (P Ī L) = 0 KI (I P̄ L) = 0
KG(T L Ā) = 0 K P (P I L̄) = 1 K I (I P L̄) = 1
KG(T L A) = 0 K P (P I L) = 1 KI (I P L) = 1

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.3 ANALYZING GENETIC NETWORKS WITH MODEL CHECKING 921

39.3.3 Translating Boolean Regulatory Graphs into Promela

As a Boolean function, each Ki parameter has a unique value for all possible
combinations of inputs. Therefore, it is relatively straightforward to model such
functions in Promela. We model each gene gi as a separate process (Promela
proctype), which consists of an (infinite) loop given with the Promela do loop:

do
:: statement 1
:: statement 2
...
:: statement n
od.

Each statement is of the form condition->action with the meaning that
action is executed if the guard condition is fulfilled. Furthermore, each state-
ment corresponds to a row in definition of function Ki in Table 39.2. For instance,
the code for the AG1 gene is given in Listing 39.3.1.

Listing 39.3.1 (Promela code corresponding to gene AG1)

1 proctype AG() {
2 do

3 :: atomic{!Active[G] && !Active[T] && !Active[L] && !Active[A] -> Active[G]=1}
4 :: atomic{!Active[G] && !Active[T] && Active[L] && !Active[A] -> Active[G]=1}
5

6 :: atomic{Active[G] && !Active[T] && !Active[L] && Active[A] -> Active[G]=0}
7 :: atomic{Active[G] && !Active[T] && Active[L] && Active[A] -> Active[G]=0}
8 :: atomic{Active[G] && Active[T] && !Active[L] && !Active[A] -> Active[G]=0}
9 :: atomic{Active[G] && Active[T] && !Active[L] && Active[A] -> Active[G]=0}

10 :: atomic{Active[G] && Active[T] && Active[L] && !Active[A] -> Active[G]=0}
11 :: atomic{Active[G] && Active[T] && Active[L] && Active[A] -> Active[G]=0}
12 od; }

Recall that the exclamation mark ! denotes negation. The atomic clause is a techni-
cality that denotes that the enclosed check of the guard and the corresponding action
are executed in atomic fashion (i.e., they cannot be interrupted by some statement
executed by another process (gene)). The complete model is given in the appendix
as Listing A.0.1.

The do loop is executed as long as at least one of the options is executable. Oth-
erwise the loop is blocked. Each branch (guarded command) of the do loop corre-
sponds to a row in the table defining Ki . The condition (guard) encodes the fact that
all genes in X are active. As a result, the value of gi is updated according to Ki from
the table.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

922 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

We simplify the model by the observation that to detect stable states, only the
transition of a gene from active to inactive and inactive to active needs to be con-
sidered. (When we also model a transition of a gene from active to active and from
inactive to inactive, then the system can do a step, whereas the state of the system
remains the same. As a result, a deadlock can never appear in the system.) There-
fore, an extra variable x0 is added to Ki (X), which represents the gene i itself, and
with which only transitions from inactive to active and from active to inactive can be
considered.

Using fairly standard techniques from propositional logic, one can also simplify
the Boolean functions. This often leads to a more compact code, which can be par-
ticularly useful for more complex networks. For example, the Promela code of the
simplified logical expression of gene AG1 is presented in Listing 39.3.2.

Listing 39.3.2 (Simplified code for gene AG1)

1 proctype AG() {
2 do
3 :: atomic{!Active[G] && (!Active[T] && !Active[A]) -> Active[G]=1}
4 :: atomic{ Active[G] && (Active[T] || Active[A]) -> Active[G]=0}
5 od; }

39.3.4 Some Results

Finding Stable States. With the kind of models described above, one can find
stable states by checking for deadlocks that in SPIN are called invalid end states.
Since a deadlock state is an error SPIN also always shows a scenario that leads
to the found deadlock state. Finding deadlock states in SPIN is an option that is
independent from the LTL verification. By default SPIN stops after the first deadlock
state is found. This is not very convenient because in this way it is possible to detect
only one stable state in the model. In principle, there is an option that instructs SPIN
not to stop on the first error—in our case, the first found deadlock—and instead report
all found deadlocks. However, for technical reasons that are beyond the scope of this
chapter and that are related to SPIN’s output, sometimes it could be more convenient
to use the following trick: To each found stable state, we add a self-loop to that sate.
In this way, the latter is not found anymore by the deadlock detection algorithm. To
achieve this, we add a separate process with a do loop in it that contains the following
line: stable state -> skip (where stable state is a correct representation of
the stable state in SPIN, and skip is a dummy statement). In this way, there is always
a transition from stable state to itself. Obviously, one could repeat this procedure
until no more stable states are found.

As it was mentioned above, to simplify the model and make the verification more
efficient, we exploited the fact that in our setting the stable states correspond to dead-
lock states. However, with model checking techniques, one can detect also a more
general type of stable states that are not necessarily deadlocks. They correspond to
partially stable states in which only a subset of the genes in the network remains
stable.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.3 ANALYZING GENETIC NETWORKS WITH MODEL CHECKING 923

Figure 39.3 The four stable states.

Finding such states can be achieved in two steps. First, we have to verify that the
state itself can be reached. This can be done with the following formula (that, by
default, is checked for all executions): ! 〈 〉 state meaning “not eventually state”
(i.e., “state is never reachable”. When the model checker gives an error trail, then
the state exists. Second, we have to verify that the state is indeed a stable state. In
other words, when the system reaches the state, it has to remain in that state forever.
This can be done with the following formula, which has to hold for all executions of
the system: [](state -> []state). When the model checker indicates that the
verification result is valid, then state is indeed stable.

Using deadlock detection techniques, we obtain some interesting results with the
Arabidopsis model. In [9] it is claimed that, for the set of parameters given in Ta-
ble 39.2 and with an initial state in which both LFY and AP1 are active and the others
being not active, the system has four stable states. These stable states are shown in
Figure 39.3. (The first stable state in the figure indicates that gene A (AP1) is active
and the other genes are not. The others can be interpreted analogously.) However,
SPIN reports that the last two stable states in Figure 39.3 cannot be reached at all.
This can be also analytically proven.

Guided by the counterexamples produced by SPIN, we define an alternative set
of parameter values given in Table 39.3 for which all four stable states exist. When
choosing these parameter values, we have tried to respect as much as possible the
activatory and inhibitory relationships among the genes, as defined in Figure 39.2.
Sometimes this was impossible though. So, in the cases in which the pictorial
representation is ambiguous (i.e., for the genes for which there are both activat-
ing and inhibiting incoming edges), we have used the predetermined values of the

Table 39.3 Set of parameters that respect as much the activatory and repressory
relationships and the predetermined values

TLF1 (=T) LFY (=L) AP1 (=A) AG1 (=G) AP3 (=P) PI (=I)

KT (L̄) = 0 KL(Ā T̄) = 0 K A(L̄ Ḡ) = 1 KG(T̄ L̄ Ā) = 1 K P (P̄ Ī L̄) = 0 K I (Ī P̄ L̄) = 0
KT (L) = 0 KL(ĀT) = 0 K A(L̄ G) = 0 KG(T̄ L̄ A) = 0 K P (P̄ Ī L) = 1 K I (Ī P̄ L) = 1

KL(A T̄) = 0 K A(L Ḡ) = 1 KG(T̄ L Ā) = 1 K P (P̄ I L̄) = 1 K I (Ī P L̄) = 1
KL (AT) = 0 K A(LG) = 1 KG(T̄ L A) = 1 K P (P̄ I L) = 1 KI (Ī P L) = 1

KG(T L̄ Ā) = 0 K P (P Ī L̄) = 1 K I (I P̄ L̄) = 1
KG(T L̄ A) = 0 K P (P Ī L) = 1 K I (I P̄ L) = 1
KG(T L Ā) = 1 K P (P I L̄) = 1 KI (I P L̄) = 1
KG(T L A) = 1 K P (P I L) = 1 K I (I P L) = 1

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

924 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

parameters, as given in [27]. That those predetermined values are not always in ac-
cord with Figure 39.2 can be seen from the following example. In [27], it has been
stated that in order to obtain stable states KL (AT) needs to be set to zero. Since we
have that in two of the stable states AP1 is activated and LFY is inhibited, we con-
clude that KL (A) has to be set to zero too. This is contradictory with the relationships
among the genes in Figure 39.2, which imply that gene AP1 activates gene LFY. By
applying similar reasoning, we were able to establish the parameter set given in in
Table 39.3. With these values for all states in Figure 39.3, we could check with SPIN
that they can be reached and that they are indeed stable states. It should be empha-
sized that despite some discrepancies, the values from Table 39.3 are much closer
to the experimental data (see e.g., [27]) than the parameters in Table 39.2 proposed
in [9]. Thus, in this way we are able to substantially improve the model based on the
results obtained with the model checker.

Checking Cycles. Besides stable states, one can also detect cycles in the state space
of the network. Suppose that we want to check if there is a cycle consisting of (a
subset of) the states s0 to sn . To find the cycle we have to check the negation of the
formula: !< >[](s0||s1||. . .||sn) (i.e., not eventually always one of the states s0

to sn). In other words, there is no execution sequence of the model such that some of
the states s0 to sn is reached, and the system remains in that state forever. If the cycle
exists, the previous property does not hold. Strictly speaking, one has to check first
that none of the states si , i = 0 . . . n is a deadlock state. If one of the states turns out
to be a deadlock, this would automatically mean that a cycle through composed of
those states does not exist.

It is worth emphasizing that it takes SPIN just a couple of seconds to produce all
results described above.

39.3.5 Concluding Remarks

In the previous sections, we considered genetic networks that are defined by a
Boolean function. We presented a method for which a genetic network, which is de-
fined by a Boolean function can be translated into Promela. With a small extension
to this method, it is possible to detect stable states in the network. Also, we showed
some LTL formulas with which it is possible to verify stable states and cycles.

The use of standard model checking techniques, exploiting Promela and SPIN in
particular, are not limited to genetic networks. They can be applied also to other types
of biological networks, like signaling and metabolic pathways. More specifically,
since SPIN originally has been developed for modeling of communication protocols,
it can be used in a natural way for modeling signaling pathways.

39.3.6 Related Work and Bibliographic Notes

There are several papers on model checking or closely related formal techniques
applied to biological networks (e.g., [20, 6, 30, 25]). Here we briefly discuss in more

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.4 PROBABILISTIC MODEL CHECKING FOR BIOLOGICAL SYSTEMS 925

detail the works that are the most relevant with regard to the subjects treated in this
chapter.

In [8], symbolic model checking techniques are applied to the querying and vali-
dation of both quantitative and qualitative models of biomolecular systems. The main
difference with our approach is that [8] uses the symbolic model checker NuSMV
and the constraint-based model checker DMC, which both accept the temporal logic
CTL as a language to formulate the queries (properties). It is well known that for
some applications the explicit model checkers, like SPIN, are more efficient and
more intuitive to use. For instance, it would be easier to translate the π -calculus into
SPIN than into NuSMV. Also the property language of SPIN, LTL, and CTL are not
comparable in the sense that there are LTL formulas that cannot be expressed in CTL
and vice versa.

In [3] an approach for model checking genetic regulatory networks has been pro-
posed that consists in connecting GNA to the CADP verification toolbox. GNA is
a quantitative simulation tool well adapted to the available information on genetic
regulatory networks. Also, it is capable of analyzing large and complex genetic reg-
ulatory networks. The µ-calculus has been used as a property language. Although
the µ-calculus is more general than LTL, in the sense that each LTL formula there
is an equivalent µ-calculus formula, the latter are usually much more cryptic and
difficult to grasp than their LTL counterparts.

In [1], two tools are described, Simpathica and XSSYS, which involves an
automaton-based semantics of the temporal evolution of complex biochemical re-
actions starting from the representation given as a set of differential equations. Also,
the ability is provided to qualitatively reason about the systems using a propositional
temporal logic. However, those tools are essentially simulation tools that deal with
systems that are deterministic with nature. The Promela/SPIN models are able to
capture also the nondeterministic feature of the biological systems.

SPIN is an open-source software that is available from http://spinroot.com.
Other model checking tools can be applied also to biological systems, for instance,
NuSMV available from http://nusmv.irst.itc.it, and DiVinE, available from
http://divine.fi.muni.cz.

39.4 PROBABILISTIC MODEL CHECKING FOR
BIOLOGICAL SYSTEMS

Many biological systems have inherently a probabilistic/stochastic nature. A proba-
bilistic interpretation, rather than a deterministic one underlying the continuous view
based on ordinary differential equations (ODEs), is necessary when the number of
molecules in the system is small or the time interval considered is short. A standard
example from the literature are genetic switches, in particular the λ-phage [26]. In
this section we consider another class of biological systems in which probabilities
play an indispensable role. We show how a specific type of model checking, so-
called probabilistic model checking, can be used for such systems. The probabilistic
approach we present has been developed in the last several years and constitutes

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

926 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

an alternative to traditional methods such as Gillespie-type simulations. Also here,
the advantage of probabilistic model checking over simulation is that model check-
ing considers all possible behaviors of the systems (i.e., all simulation runs). Thus,
model checking, when feasible, is more reliable and in the case considered also faster
than simulation. To demonstrate the basic approach, we use the probabilistic model
checker Prism.

39.4.1 Motivation and Background

The transfer of genetic information from DNA to mRNA to protein happens with
very high precision. This is because each a single error potentially can have
dramatic consequences for the organism as a whole. Here we analyze the stage of
this information pathway that corresponds to the translation from mRNA to protein
(i.e., the protein biosynthesis). In particular, we are interested in translation errors
and the factors of potential influence.

An mRNA molecule can be considered as a string of codons, each of which en-
codes for a specific amino acid. The codons of an mRNA molecule are sequentially
read by a ribosome, and each codon is translated into an amino acid. As a result we
obtain a chain of amino acids (i.e., a protein). The amino acids are carried to the
ribosome by a specific transfer-RNA (aa-tRNA). Each aa-tRNA contains a so-called
anticodon and carries a specific amino acid. Arriving by Brownian motion, an aa-
tRNA docks into the ribosome and may succeed in adding its amino acid to the chain
under construction. Alternatively, the aa-tRNA dissociates in some stage of the trans-
lation. This depends on the pairing of the codon under translation with the anticodon
of the aa-tRNA, as well as on the stochastic influences such as the changes in the
conformation of the ribosome.

Thanks to the vast amount of research during the last 30 years, the overall pro-
cess of translation is reasonably well understood from a qualitative perspective. The
process can be divided into around 20 small steps/reactions, with several of them
being reversible. Relatively little is known exactly about the kinetics of the trans-
lation. During the past several years, Rodnina and collaborators have measured ki-
netic rates for various steps in the translation process for a small number of specific
codons and anticodons [28, 31, 32, 15]. They were able to experimentally show that
in several of those steps, the rates strongly depend on the degree of matching be-
tween the codon and the anticodon. Additionally, in [11], the average concentrations
(amounts) of aa-tRNAs per cell have been collected for the model organism Es-
cherichia coli. Viljoen and co-workers [13] proposed a model that is based on those
results. One of their basic assumption is that the rates found by Rodnina et al. can
be used, in general, for all codon-anticodon pairs. Thus, the model in [13] covers
all 64 codons and all 48 aa-tRNA classes for E. coli. The model is used to per-
form extensive Monte Carlo simulations and to establish codon insertion times and
frequencies of erroneous elongations. The results show a strong correlation of the
translation error and the ratio of the concentrations of the so-called near-cognate
and cognate aa-tRNA species. Consequently, one can argue that the competition of

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.4 PROBABILISTIC MODEL CHECKING FOR BIOLOGICAL SYSTEMS 927

aa-tRNAs, rather than their availability, decides both speed and fidelity of codon
translation.

In this text, we model the translation kinetics via the modelchecking of
continuous-time Markov chains (CTMCs) using the tool Prism [22, 16]. The tool
provides built-in performance analysis algorithms and a formalism (computational
stochastic logic, CSL) to reason about various properties of the CTMCs, removing
the burden of extensive mathematical calculations from the user. Additionally, in our
case, the Prism tool provides much shorter response times compared with Gillespie
simulation.

39.4.2 A Kinetic Model of mRNA Translation

There exists a fixed correspondence between codons and amino acids given by the
well-known genetic code. With exception of the three so-called stop codons, which
denote the end of the genetic message, each codon codes for exactly one amino
acid. As a consequence, an mRNA encodes for a unique protein. This ideal picture
is disturbed by the fact that, in theory, each codon can bind with each anti-codon.
However, the binding intensity can significantly differ from pair to pair. This in-
fluences the speed of the actual translation and the chances for errors. Thus, the
translation is accurate but not perfect. The biological model of the translation mech-
anism that we adopt here is based on [31, 21]. Two main phases can be distinguished:
peptidyl transfer and translocation. Here we focus on the peptidyl transfer because
it is this part that determines the error probabilities. This phase can be divided in
several steps that are represented in Figure 39.4 and that we briefly describe in the
sequel. The transfer begins with aa-tRNA arriving at the A-site of the ribosome-
mRNA complex by diffusion (state A1 in Figure 39.4). The initial binding leads

GTP

GDP

GTPA1
A2

6A5A A7

A9

Accomodation
Peptydil
transfer

Rejection

Codon

recognition

+mRNA

Initial

binding

EF−Tu configuration

change

GTPase
activation

A4
A3

A8

Ribosome+aatRNA

aa−tRNAs

GTP

GDP GDP

sisylordyhPTG
GTP

Figure 39.4 Kinetic scheme of peptidyl transfer [13].

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

928 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

to state A2. As the binding is relatively weak the reverse process (i.e., unbinding
of the aa-tRNA is also possible), this brings us to the initial state. Codon recogni-
tion comprises (i) establishing contact between the anticodon of the aa-tRNA and
the current codon in the ribosome-mRNA complex, and (ii) subsequent conforma-
tional changes of the ribosome. GTPase-activation of the elongation factor EF-Tu
is largely favored in case of a strong complementary matching of the codon and
anticodon. After GTP-hydrolysis, producing inorganic phosphate Pi and GDP, the
affinity of the ribosome for the aa-tRNA reduces. The subsequent accommodation
step also depends on the fit of the aa-tRNA. This step happens rapidly for cognate
aa-tRNA, whereas for near-cognate aa-tRNA, this proceeds slower and the aa-tRNA
is likely to be rejected. These different speeds are expressed via the reaction rates
from A6 to A7 and A6 to A9. For a cognate aa-tRNA, the rate A6–A7 is much
bigger than the rate A6–A9, whereas for a near cognate, the situation is the other
way around.

Next, the translocation phase follows. Another GTP-hydrolysis involving elonga-
tion factor EF-G produces GDP and Pi and results in unlocking and movement of
the aa-tRNA to the P-site of the ribosome. The latter step is preceded or followed by
Pi -release. Reconformation of the ribosome and release of EF-G moves the tRNA,
which has transferred its amino acid to the polypeptide chain, into the so-called
E-site of the ribosome. Further rotation eventually leads to dissociation of the used
tRNA. As mentioned above, we assume that this phase does not further influence the
probability of incorporating the amino acid in the chain. More precisely, we assume
that once the final state (A8) of the peptidyl transfer is reached, the amino acid will
be for sure added to the chain. Because of that in our formal model that we present
later, we deal only with the peptidyl transfer.

There is not much quantitative information regarding the translation mechanism.
For E. coli, several specific rates have been collected [31, 15], whereas some steps
are known to be relatively rapid. Here we adopt the fundamental assumption of [13]
that the experimental data found by Rodnina et al. for the UUU and CUC codons,
extrapolate to other codons as well. Also, accurate rates for the translocation phase
are largely missing. Again following [13], we have chosen to assign, if necessary,
high rates to steps for which data are lacking. This way these steps will not be rate
limiting.

39.4.3 Probabilistic Model Checking

Traditional model checking, which we presented in the previous sections of this
chapter, deals with the notion of absolute correctness or failure of a given prop-
erty. On the other hand, probabilistic4 model checking is motivated by the fact that

4In the literature, probabilistic and stochastic model checking often are used interchangeably. A more clear
distinction is made by relating the adjectives probabilistic and stochastic to the underlying model, viz.
discrete-time and continuous-time Markov chain, respectively. For the sake of simplicity, in this chapter,
our focus is on discrete-time Markov chains, so we opted for consistently using the qualification “prob-
abilistic.” Nevertheless, as we also emphasize in the sequel, the concepts and algorithms that we present
here can be applied as well to continuous-time Markov chains.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.4 PROBABILISTIC MODEL CHECKING FOR BIOLOGICAL SYSTEMS 929

probabilities are often an unavoidable ingredient of the systems we analyze. There-
fore, the satisfaction of properties is quantified by a probability. This makes proba-
bilistic model checking a powerful framework for modeling various systems ranging
from randomized algorithms via performance analysis to biological networks.

From an algorithmic point of view, probabilistic model checking overlaps with the
conventional technique, since it too requires computing reachability of the underly-
ing state space graphs. Still, there are also important differences because numerical
methods are used to compute the transition probabilities. However, these details are
beyond the scope of this chapter. They will play no role in the application to biolog-
ical systems that we consider in the sequel.

39.4.4 The Prism Model

To obtain our formal Prism model, we apply a twofold abstraction to the above in-
formally sketched biological model: (i) Instead of dealing with 48 classes of aa-
tRNA, that are identified by the their anticodons, we use four types of aa-tRNA
distinguished by their matching strength with the codon under translation. (ii) We
combine various detailed steps into one transition. The first reduction greatly sim-
plifies the model, more clearly eliciting the essentials of the underlying process. The
second abstraction is more a matter of convenience, although it helps in compactly
presenting the model.

For each codon, we distinguish four types of aa-tRNA: cognate, pseudo-cognate,
near-cognate, and non-cognate. Cognate aa-tRNAs carry an amino acid that is the
correct one for the according to the genetic code and their anticodon strongly couples
with the codon. The binding of the anticodon of a pseudo-cognate aa-tRNA or a
near-cognate aa-tRNA is weaker, but sufficiently strong to occasionally result in the
addition of the amino acid to the nascent protein. In case the amino acid of the aa-
tRNA is, accidentally, the right one for the codon, we call the aa-tRNA of the pseudo-
cognate type. If the amino acid does not coincide with the amino acid the codon
codes for, we speak in such a case of a near-cognate aa-tRNA.5 The match of the
codon and the anticodon can be very poor too. We refer to such aa-tRNA as being
non-cognate for the codon. This type of aa-tRNA does not initiate a translation step
at the ribosome.

Here we focus on the computation of insertion errors. As a result the model
can be even further simplified by assuming that the non-cognates do not play any
role in the process. In our model, the main difference of cognates versus pseudo-
cognates and near-cognates is in the kinetics. At various stages of the peptidyl
transfer, the rates for true cognates differ from the others up to three orders of
magnitude.

Figure 39.5 depicts the relevant abstract automaton, derived from the Prism model
discussed above. In case a transition is labeled with two rates, the left-hand number
concerns the processing of a cognate aa-tRNA, and the right-hand number that of

5The notion of a pseudo-cognate comes natural in our modeling. However, the distinction between a
pseudo-cognate and a near-cognate is nonstandard. Usually, a near-cognate refers to both type of tRNA.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

930 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

21

0

87643

5

85

0.23/80

190

167/46260/0.40

60/FAST

Figure 39.5 Abstract automaton for error insertion.

a pseudo-cognate or near-cognate. In three states, a probabilistic choice has to be
made. The probabilistic choice in state 2 is the same for cognates, pseudo-cognates,
and near-cognates alike; the ones in state 3 and in state 4 differ for cognates and
pseudo-cognates or near-cognates.

For example, after recognition in state 3, a cognate aa-tRNA will go through the
hydrolysis phase leading to state 4 for a fraction 0.999 of the cases (computed as
260/(0.23 + 260)), a fraction being close to 1. In contrast, for a pseudo-cognate or
near-cognate aa-tRNA, this is 0.005 only. Cognates will accommodate and continue
to state 6 with probability 0.736, whereas pseudo-cognates and near-cognates will
do so with the small probability 0.044, the constant FAST being set to 1000 in our
experiments. As the transition from state 4 to state 6 is irreversible, the rates of the
remaining transitions are not of importance here.

One can see the Prism model as a superposition of three stochastic automata, each
encoding the interaction of one of the types of aa-tRNA, except the non-cognate
type. Each automaton is obtained from the automaton in Figure 39.5 by applying the
corresponding rates.

We can further simplify our model by taking into account that we deal with aver-
age transition times and probabilities based on exponential distributions. Under this
assumption, it is a common practice in performance analysis to merge two subse-
quent sequential transitions with given rates λ and µ into a combined transition of
rate λµ/(λ + µ). However, it should be noted that in general such a simplification is
not compositional and should be taken with care.

In the models that we are considering, which are based on continuous-
time Markov chains, Prism commands have the form [label] guard → rate :
update ;. From the commands whose guards are satisfied in the current state, one
command is selected with a probability proportional to its relative rate. Thus, a prob-
abilistic choice is made. Executing the selected command results in a progress of
time according to the exponential distribution for the particular rate. Also an update
is performed on the state variables. More information about the Prism model checker
can be found in [22, 16].

Initially, control is in state s=1 of the Prism model with four Boolean variables
cogn, pseu, near, and nonc set to false. The initial binding of aa-tRNA is mod-
eled by selecting one of the Boolean variables that is to be set to true. There is a
race among the three types of aa-tRNA: cognate, pseudo-cognate, or near-cognate.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.4 PROBABILISTIC MODEL CHECKING FOR BIOLOGICAL SYSTEMS 931

The outcome of the race depends on the concentrations c cogn, c pseu, c near,
and c nonc of the three types of aa-tRNA and a kinetic constant k1f. Accord-
ing to the Markovian semantics, the probability that cogn is set to true (the oth-
ers remaining false) is the relative concentration c cogn/(c cogn + c pseu + c near).
Analogously the probabilities for the other two types of aa-tRNA are computed. This
amounts to the following code:

// initial binding
[] (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;
[] (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;
[] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;

The aa-tRNA that has just attached can also dissociate. We model this below by re-
turning the control to the state s=0. Although it might seem more natural to return to
the initial state, as we will see later, we need this state for model checking purposes.
The Boolean that was set to true is reset. We assume the same dissociation rate for
all aa-tRNA types. rate k2b.

// dissociation
[] (s=2) -> k2b ;

(s’=0) & (cogn’=false) & (pseu’=false) & (near’=false) ;

Regardless of the type, aa-tRNA can continue from state s=2 in the codon recogni-
tion phase, leading to state s=3. This step can also be reversed; hence, we include
transitions from state s=3 back to state s=2. The fidelity of the translation mechanism
is ensured by the fact that the rates for cognates versus pseudo- and near-cognates,
viz. k3bc, k3bp, and k3bn, differ significantly (see Table 39.4). The Boolean vari-
ables remain unchanged because aa-tRNA is not released.

// codon recognition
[] (s=2) -> k2f : (s’=3) ;
[] (s=3) & cogn -> k3bc : (s’=2) ;
[] (s=3) & pseu -> k3bp : (s’=2) ;
[] (s=3) & near -> k3bn : (s’=2) ;

The next step, from state s=3 to state s=4, is one-direcitonal. It corresponds to a
combination of detailed steps in the biological model that involves modification of
GTP. We assume that rates k3fp and k3fn, respectively, for pseudo-cognate and

Table 39.4 Rates of the Prism model

k1f 140 k3fc 260 k4rc 60 k6f 150
k2f 190 k3fp, k3fn 0.40 k4rp, k4rn FAST k7f 145.8
k2b 85 k3bc 0.23 k4fc 166.7 k7b 140
k2bx 2000 k3bp, k3bn 80 k4fp, k4fn 46.1

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

932 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

near-cognate aa-tRNA, are equal. The progress of the translation in the right direction
is again ensured by a significant difference between these rates and rate k3fc for a
cognate aa-tRNA.

// GTPase activation, GTP hydrolysis, EF-Tu conformation change
[] (s=3) & cogn -> k3fc : (s’=4) ;
[] (s=3) & pseu -> k3fp : (s’=4) ;
[] (s=3) & near -> k3fn : (s’=4) ;

State s=4 is an important crossroad in the process. The aa-tRNA can either be re-
jected, after which control moves to the state s=5, or it can be accepted. This cor-
responds to the various accommodation steps in the biological model (i.e., the ribo-
some reconforms such that the aa-tRNA can hand over the amino acid it carries),
the so-called peptidyl transfer. In our model the accepting step means moving to to
state s=6. In this step too the rates for cognates and those for pseudo-cognates and
near-cognates differ significantly.

// rejection
[] (s=4) & cogn -> k4rc : (s’=5) & (cogn’=false) ;
[] (s=4) & pseu -> k4rp : (s’=5) & (pseu’=false) ;
[] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;
// accommodation, peptidyl transfer
[] (s=4) & cogn -> k4fc : (s’=6) ;
[] (s=4) & pseu -> k4fp : (s’=6) ;
[] (s=4) & near -> k4fn : (s’=6) ;

The step from state s=6 to state s=7 models the binding of the EF-G complex. This
step is also reversible, but eventually the binding becomes permanent. The transi-
tion to the final state s=8 subsumes many different steps of the translation mecha-
nism, which start with GTP hydrolysis and end with elongation of the polypeptide
chain with the amino acid carried by the aa-tRNA. Non-cognates never pass beyond
state s=2, but the outcome of the translation can still be an error if aa-tRNA is near-
cognate (i.e., if Boolean near is true). In this case, an amino acid is inserted that
does not correspond to the codon in the genetic code.

// EF-G binding
[] (s=6) -> k6f : (s’=7) ;
[] (s=7) -> k7b : (s’=6) ;
// GTP hydrolysis, unlocking, tRNA movement and Pi release,
// rearrangements of ribosome and EF-G, dissociation of GDP
[] (s=7) -> k7f : (s’=8) ;

The model is completed by transitions from the dissociation state s=0 and the rejec-
tion state s=5 back to the start state s=1. After an aa-tRNA is rejected, the race of

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.4 PROBABILISTIC MODEL CHECKING FOR BIOLOGICAL SYSTEMS 933

the four aa-tRNA types resumes. Also, for technical reasons, a self-loop at the final
state s=8 is added.

// no entrance, re-entrance at state 1
[] (s=0) -> FAST : (s’=1) ;
// rejection, re-entrance at state 1
[] (s=5) -> FAST : (s’=1) ;
// elongation
[] (s=8) -> FAST : (s’=8) ;

The rates that are used in our model are given in Table 39.4. They are collected from
the biological literature [31, 13].

The complete Prism model can be found in the appendix as Listing A.0.2. In the
sequel we use the Prism model described above for the analysis of the probability
for insertion errors (i.e., the chance that the peptidyl chain is extended with an amino
acid that differs from the one encoded by the codon that is translated).

39.4.5 Insertion Errors

Once we have the model, we can use the model checking capabilities of the Prism
tool to predict the misreading frequencies for individual codons. To this end we need
to give Prism the exact property that corresponds to our question about the probabil-
ity. In other words, we need the right formula with the above-mentioned CSL. The
formula should state that we want to compute the probability that an erroneous state
is reached in which a wrong amino acid is added.

For a codon under translation, a pseudo-cognate anticodon carries precisely the
amino acid that the codon codes for. Therefore, successful matching of a pseudo-
cognate does not lead to an insertion error.

Taking into account the above we come up with the following CSL formula:

P=? [(true) U ((s=8) and not near)]

The formula is of the form P=?[�], which is a basic formula template for CSL. The
part P=? means that we want a numerical result (i.e., the cumulative probability of
all paths that satisfy formula �). Like the formulas for the LTL in standard model
checking, CSL formulas are also interpreted on sequences of states (i.e., paths) of
the model. So, the inner formula � states that we are interested only in paths that
end in state s=8—in which the amino acid is added to the chain—and, moreover,
that the added amino acid is the wrong one (i.e., the tRNA is not cognate or pseudo-
cognate but near-cognate). This last fact is expressed as near, where not is the
negation operator. The paths start by default in the initial state s=0. The formula �

itself is of the form �1 U �2, where U is the so-called until operator.6 The meaning

6Actually, this operator exists also in LTL, but we “hid” it in the temporal operators [] and 〈 〉. The latter
are just syntactic sugar, and they can be expressed using the until operator U .

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

934 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

Table 39.5 Probabilities per codon for erroneous elongation

UUU 27.4e-4 CUU 46.7e-4 GUU 1.12e-10 AUU 14.4e-4
UUC 91.2e-4 CUC 13.6e-4 GUC 55.0e-4 AUC 35.0e-4
UUG 7.59e-4 CUG 4.49e-4 GUG 2.68e-4 AUG 58.3e-4
UUA 23.5e-4 CUA 18.9e-4 GUA 22.3e-4 AUA 34.4e-4
UCU 2.81e-10 CCU 34.1e-4 GCU 1.77e-10 ACU 2.73e-10
UCC 56.1e-4 CCC 10.4e-4 GCC 12.5e-4 ACC 34.2e-4
UCG 20.3e-4 CCG 37.6e-4 GCG 3.187e-4 ACG 31.7e-4
UCA 9.09e-4 CCA 22.8e-4 GCA 28.2e-4 ACA 29.1e-4
UGU 6.97e-4 CGU 1.21e-10 GGU 1.32e-10 AGU 8.70e-4
UGC 30.4e-4 CGC 4.59e-4 GGC 9.40e-4 AGC 37.2e-4
UGG 39.8e-4 CGG 88.7e-4 GGG 2.72e-10 AGG 140.7e-4
UGA 7.50e-4 CGA 3.98e-4 GGA 100.3e-4 AGA 48.1e-4
UAU 2.81e-10 CAU 91.1e-4 GAU 18.6e-4 AAU 15.2e-4
UAC 15.7e-4 CAC 47.5e-4 GAC 43.2e-4 AAC 49.3e-4
UAG 41.3e-4 CAG 69.4e-4 GAG 7.09e-4 AAG 32.1e-4
UAA 6.04e-4 CAA 22.7e-4 GAA 21.4e-4 AAA 14.6e-4

of this kind of formula is that along the path, formula �1 must hold until a state is
reached in which formula �2 holds. If �2 holds in the initial state, �1 does not need
to hold in that state, because in this case, the formula is trivially true. In our case
we have set �1 to true. Because true holds trivially in all states, this means that
we do not care about the intermediate states of the path and that it is only impor-
tant that a state is reached in which �2 holds (i.e., a wrong amino acid is added to
the chain).

Our results obtained with Prism are given in Table 39.5. Prism produces these
results within a couple of minutes. Checking for an individual codon takes just a few
seconds.

As reported in [13], the probability for an erroneous insertion is strongly corre-
lated with the quotient of the number of near-cognate anticodons and the number
of cognate anticodons.This can be seen also in Figure 39.6. On the y-axis is the
quotient of the concentrations (number of molecules) of near-cognate and cognate
tRNAs, whereas on the x-axis are the probabilities for erroneous insertion.

39.4.6 Concluding Remarks

We showed how probabilistic model checking can be used to analyze biological net-
works as an alternative for Gilliespie-like simulation. As an example we discussed a
stochastic model of the translation process based on realistic data of ribosome kinet-
ics. We used the probabilistic model checker Prism and in particular its capabilities to
deal with continuous time Markov chains. Compared with simulation, our approach
is computationally more reliable as it is independent on the number of simulations.
Also, it this case, it has faster response times, taking seconds rather than minutes
or hours.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

39.4 PROBABILISTIC MODEL CHECKING FOR BIOLOGICAL SYSTEMS 935

16

14

12

10

8

6

4

2

0
0.0020

ra
tio

 n
ea

r-
co

gn
at

e/
co

gn
at

e

0.004 0.006 0.008
probability for erroneous insertion

0.01 0.012 0.014 0.016

Figure 39.6 Correlation of ratio near-cognate versus cognates aa-tRNAs and error
probabilities.

The kind of probabilistic/stochastic models, as we presented here, has opened new
avenues for future work on biological systems that possess intrinsically probabilistic
properties. For example current research using the model-checking-based method
is targeted at biological processes that require high precision, like DNA translation,
DNA repair, charging of the tRNAs with amino acids, and so on. In [4], we show how
with our model one could check if amino acids with similar biochemical properties
substitute erroneously for one another with greater probabilities than dissimilar ones.

39.4.7 Related Work and Bibliographic Notes

The model that is used in this chapter builds on [5], which was inspired by the sim-
ulation experiments of mRNA translation reported in [13]. A similar model, based
on ordinary differential equations, was developed in [17]. Although probabilistic, it
is used to compute insertion times but no translation errors. The model of mRNA
translation in [14] assumes insertion rates that are directly proportional to the mRNA
concentrations but assigns the same probability of translation error to all codons.

Applications of probabilistic model checking and in particular Prism can be found
in [24]. More about probabilistic model checking and the underlying algorithms can
be found in [23].

There exist numerous applications of formal methods to biological systems. A
selection of recent papers from model checking and process algebra includes [29, 8,
10]. More specifically pertaining to this chapter, [7] applies the Prism model checker
to analyze stochastic models of signaling pathways. Their methodology is presented
as a more efficient alternative to ordinary differential equations models, including
properties that are not of a probabilistic nature. Also, [16] employs Prism on various

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

936 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

types of biological pathways, showing how the advanced features of the tool can be
exploited to tackle large models.

Prism is a free available software and can be downloaded from its web page
http://www.prismmodelchecker.org. Of course, any model checking tool that
supports CTMCs can be used also for analyzing biological systems. One such tool is
MRMC, which is also in the public domain; see http://www.mrmc-tool.org.

REFERENCES

1. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Model building and model checking
for biochemical processes. Cell Biochem Biophys, 38:271–286, 2003.

2. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

3. G. Batt, D. Bergamini, H. de Jong, H. Garavel, and R. Mateescu. Model checking ge-
netic regulatory networks using GNA and CADP. Proceedings of the 11th SPIN Workshop
Barcelone, Spain, volume 2989 of Lecture Notes in Computer Science, 2004.

4. D. Bošnački, H.M.M. ten Eikelder, M.N. Steijaert, and E.P. de Vink. Stochastic analysis of
amino acid substitution in protein synthesis. In M. Heiner and A.M. Uhrmacher, editors,
Proceedings of the CMSB 2008, LNCS 5307, 2008, pp. 367–386.

5. D. Bošnački, T.E. Pronk, and E.P. Vink. In silico modelling and analysis of ribosome
kinetics and aa-tRNA competition. Trans Comput Syst Biol, IX:69–89, 2009. CompMod
2008 special issue, R.-J. Back and I. Petre, guest editors.

6. M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling pathways
using the prism model checker. Proceedings of the CMSB, 2005, pp. 179–190.

7. M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling pathways
using continuous time Markov chains. Trans Comput Syst Biol, VI:44–67, 2006.

8. N. Chabrier and F. Fages. Symbolic model checking of biochemical networks. Proceed-
ings of the CMSB 2003, LNCS 2602, 2003, pp. 149–162.

9. C. Chaouiya, E. Remy, P. Ruet, and D. Thieffry. Qualitative modelling of genetic
networks: From logical regulatory graphs to standard petri nets. In J. Cortadella and
W. Reisig, editors, ICATPN, volume 3099 of Lecture Notes in Computer Science.
Springer, 2004.

10. V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling of cel-
lular signalling. Proceedings CONCUR, LNCS 4703, 2007, pp. 17–41.

11. H. Dong, L. Nilsson, and C.G. Kurland. Co-variation of tRNA abundance and codon
usage in Escherichia coli at different growth rates. J Mol Biol, 260:649–663, 1996.

12. E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Formal Models and
Semantics, Elsevier, New York, 1990, pp. 995–1072.

13. A. Fluitt, E. Pienaar, and H. Viljoen. Ribosome kinetics and aa-tRNA competition deter-
mine rate and fidelity of peptide synthesis. Comput Biol Chem, 31:335–346, 2007.

14. M.A. Gilchrist and A. Wagner. A model of protein translation including codon bias, non-
sense errors, and ribosome recycling. J Theor Biol, 239:417–434, 2006.

15. K.B. Gromadski and M.V. Rodnina. Kinetic determinants of high-fidelity tRNA discrim-
ination on the ribosome. Mol Cell, 13(2):191–200, 2004.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

REFERENCES 937

16. J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilis-
tic model checking of complex biological pathways. Proceedings of the CMSB 2006,
LNBI 4210, 2006, pp. 32–47.

17. A.W. Heyd and D.A. Drew. A mathematical model for elongation of a peptide chain. Bull
Math Biol, 65:1095–1109, 2003.

18. G.J. Holzmann. The SPIN Model Checker. Addison-Wesley, Reading, MA, 2003.

19. E.M. Clarke Jr., O. Grumberg, and D.A. Peled. Model Checking. The MIT Press, Cam-
bridge, MA, 2000.

20. N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E.J. Albert Hubbard, and M.J. Stern.
Formal modeling of c. elegans development: A scenario-based approach. In C. Priami,
editor, Proceedings of the CMSB, volume 2602 of Lecture Notes in Computer Science,
Springer, New York, 2003, pp. 4–20.

21. G. Karp. Cell and Molecular Biology, 5th edition, Wiley, New York, 2008.

22. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model cheking with
Prism: a hybrid approach. Int J Softw Tools Technol Transf, 6:128–142, 2004. See also
http://www.prismmodelchecker.org/.

23. M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In M. Bernardo
and J. Hillston, editors, Formal Methods for the Design of Computer, Communication and
Software Systems: Performance Evaluation (SFM’07), volume 4486 of LNCS (Tutorial
Volume), Springer, New York, 2007, pp. 220–270.

24. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic model checking for systems
biology. Symbolic Systems Biology. Jones and Bartlett, 2009. To appear.

25. P. Lecca and C. Priami. Cell cycle control in eukaryotes: A biospi model. Proceedings
of the Workshop on Concurrent Models in Molecular Biology (BioConcur’03), ENTCS,
2003.

26. H.H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. PNAS, 94:814–
819, 1997.

27. L. Mendoza, D. Thieffry, and E.R. Alvarez-Buylla. Genetic control of flower morpho-
genesis in arabidopsis thaliana: A logical analysis. Bioinformatics, 15(7/8):593–606,
1999.

28. T. Pape, W. Wintermeyer, and M. Rodnina. Complete kinetic mechanism of elongation
factor Tu-dependent binding of aa-tRNA to the A-site of E. coli. EMBO J, 17:7490–7497,
1998.

29. C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic name-
passing calculus to represent ation and simulation of molecular processes. Inf Proces Lett,
80:25–31, 2001.

30. A. Regev. Computational Systems Biology: A Calculus for Biomolecular Knowledge. PhD
thesis, Tel Aviv University, December 2002.

31. M.V. Rodnina and W. Wintermeyer. Ribosome fidelity: tRNA discrimination, proofread-
ing and induced fit. Trends Biochem Sci, 26(2):124–130, 2001.

32. A. Savelsbergh, V.I. Katunin, D. Mohr, F. Peske, M.V. Rodnina, and W. Wintermeyer. An
elongation factor G-induced ribosome rearrangement precedes tRNA–mRNA transloca-
tion. Mol Cell, 11:1517–1523, 2003.

33. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Formal Models and
Semantics, Elsevier, New York, 1990, pp. 995–1072.

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

938 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

APPENDIX

Listing A.0.1 (Promela description of the Arabidopsis network)

1 #define T 0
2 #define L 1
3 #define A 2
4 #define G 3
5 #define P 4
6 #define I 5
7
8 bool Active[6];
9

10 proctype TLF1() {
11 do
12 :: atomic{Active[T] && !Active[L] -> Active[T]=0}
13 :: atomic{Active[T] && Active[L] -> Active[T]=0}
14 od; }
15
16 proctype LFY() {
17 do
18 :: atomic{Active[L] && !Active[A] && !Active[T] -> Active[L]=0}
19 :: atomic{Active[L] && !Active[A] && Active[T] -> Active[L]=0}
20 :: atomic{Active[L] && Active[A] && !Active[T] -> Active[L]=0}
21 :: atomic{Active[L] && Active[A] && Active[T] -> Active[L]=0}
22 od; }
23
24 proctype AP1() {
25 do
26 :: atomic{!Active[A] && !Active[L] && !Active[G] -> Active[A]=1}
27 :: atomic{!Active[A] && Active[L] && !Active[G] -> Active[A]=1}
28 :: atomic{Active[A] && !Active[L] && Active[G] -> Active[A]=0}
29 :: atomic{Active[A] && Active[L] && Active[G] -> Active[A]=0}
30 od; }
31
32 proctype AG() {
33 do
34 :: atomic{!Active[G] && !Active[T] && !Active[L] && !Active[A] -> Active[G]=1}
35 :: atomic{!Active[G] && !Active[T] && Active[L] && !Active[A] -> Active[G]=1}
36 :: atomic{Active[G] && !Active[T] && !Active[L] && Active[A] -> Active[G]=0}
37 :: atomic{Active[G] && !Active[T] && Active[L] && Active[A] -> Active[G]=0}
38 :: atomic{Active[G] && Active[T] && !Active[L] && !Active[A] -> Active[G]=0}
39 :: atomic{Active[G] && Active[T] && !Active[L] && Active[A] -> Active[G]=0}
40 :: atomic{Active[G] && Active[T] && Active[L] && !Active[A] -> Active[G]=0}
41 :: atomic{Active[G] && Active[T] && Active[L] && Active[A] -> Active[G]=0}
42 od; }
43
44 proctype AP3() {
45 do
46 :: atomic{!Active[P] && !Active[I] && Active[L] -> Active[P]=1}
47 :: atomic{!Active[P] && Active[I] && Active[L] -> Active[P]=1}
48 :: atomic{Active[P] && !Active[I] && !Active[L] -> Active[P]=0}
49 :: atomic{Active[P] && !Active[I] && Active[L] -> Active[P]=0}
50 od; }
51
52 proctype PI() {
53 do
54 :: atomic{!Active[I] && !Active[P] && Active[L] -> Active[I]=1}
55 :: atomic{!Active[I] && Active[P] && Active[L] -> Active[I]=1}
56 :: atomic{Active[I] && !Active[P] && !Active[L] -> Active[I]=0}
57 :: atomic{Active[I] && !Active[P] && Active[L] -> Active[I]=0}
58 od; }
59
60 init {
61 atomic{
62 Active[L]=1;

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

APPENDIX 939

63 Active[A]=1;
64 run TLF1();
65 run LFY();
66 run AP1();
67 run AG();
68 run AP3();
69 run PI();
70 }
71 }

Listing A.0.2 (Prism model of mRNA translation)

1 stochastic
2
3 // constants
4 const double ONE=1;
5 const double FAST=1000;
6
7 // tRNA rates
8 const double c_cogn ;
9 const double c_pseu ;

10 const double c_near ;
11 const double c_nonc ;
12
13 const double k1f = 140;
14 const double k2b = 85;
15 const double k2bx=2000;
16 const double k2f = 190;
17 const double k3bc= 0.23;
18 const double k3bp= 80;
19 const double k3bn= 80;
20 const double k3fc= 260;
21 const double k3fp= 0.40;
22 const double k3fn= 0.40;
23 const double k4rc= 60;
24 const double k4rp=FAST;
25 const double k4rn=FAST;
26 const double k4fc= 166.7;
27 const double k4fp= 46.1;
28 const double k4fn= 46.1;
29 const double k6f = 150;
30 const double k7b = 140;
31 const double k7f = 145.8;
32
33 module ribosome
34
35 s : [0..8] init 1 ;
36 cogn : bool init false ;
37 pseu : bool init false ;
38 near : bool init false ;
39 nonc : bool init false ;
40
41 // initial binding
42 [] (s=1) -> k1f * c_cogn : (s’=2) & (cogn’=true) ;
43 [] (s=1) -> k1f * c_pseu : (s’=2) & (pseu’=true) ;
44 [] (s=1) -> k1f * c_near : (s’=2) & (near’=true) ;
45
46 [] (s=2) -> k2b : (s’=0) &
47 (cogn’=false) & (pseu’=false) & (near’=false) ;
48
49 // codon recognition
50 [] (s=2) & -> k2f : (s’=3) ;
51 [] (s=3) & cogn -> k3bc : (s’=2) ;
52 [] (s=3) & pseu -> k3bp : (s’=2) ;
53 [] (s=3) & near -> k3bn : (s’=2) ;
54

P1: OSO
c39 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

940 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING

55 // GTPase activation, GTP hydrolysis, reconformation
56 [] (s=3) & cogn -> k3fc : (s’=4) ;
57 [] (s=3) & pseu -> k3fp : (s’=4) ;
58 [] (s=3) & near -> k3fn : (s’=4) ;
59
60 // rejection
61 [] (s=4) & cogn -> k4rc : (s’=5) & (cogn’=false) ;
62 [] (s=4) & pseu -> k4rp : (s’=5) & (pseu’=false) ;
63 [] (s=4) & near -> k4rn : (s’=5) & (near’=false) ;
64
65
66 // accommodation, peptidyl transfer
67 [] (s=4) & cogn -> k4fc : (s’=6) ;
68 [] (s=4) & pseu -> k4fp : (s’=6) ;
69 [] (s=4) & near -> k4fn : (s’=6) ;
70
71 // EF-G binding
72 [] (s=6) -> k6f : (s’=7) ;
73 [] (s=7) -> k7b : (s’=6) ;
74
75 // GTP hydrolysis, unlocking,
76 // tRNA movement and Pi release,
77 // rearrangements of ribosome and EF-G,
78 // dissociation of GDP
79 [] (s=7) -> k7f : (s’=8) ;
80
81 // no entrance, re-entrance at state 1
82 [] (s=0) -> FAST : (s’=1) ;
83 // rejection, re-entrance at state 1
84 [] (s=5) -> FAST : (s’=1) ;
85 // elongation
86 [] (s=8) -> FAST : (s’=8) ;
87
88 endmodule

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

40
REVERSE ENGINEERING

OF MOLECULAR
NETWORKS FROM A

COMMON COMBINATORIAL
APPROACH

Bhaskar DasGupta, Paola Vera-Licona, and Eduardo Sontag

40.1 INTRODUCTION

The understanding of molecular cell biology requires insight into the structure and
dynamics of networks that are made up of thousands of interacting molecules of
DNA, RNA, proteins, metabolites, and other components. One of the central goals
of systems biology is the unraveling of the as yet poorly characterized complex web
of interactions among these components. This work is made harder by the fact that
new species and interactions are continuously discovered in experimental work, ne-
cessitating the development of adaptive and fast algorithms for network construction
and updating. Thus, the “reverse engineering” of networks from data has emerged as
one of the central concern of systems biology research.

A variety of reverse-engineering methods have been developed, based on tools
from statistics, machine learning, and other mathematical domains. To use these
methods effectively, it is essential to develop an understanding of the fundamental
characteristics of these algorithms. With that in mind, this chapter is dedicated to the
reverse engineering of biological systems.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

941

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

942 REVERSE ENGINEERING OF MOLECULAR NETWORKS

Specifically, we focus our attention on a particular class of methods for reverse
engineering, namely those that rely algorithmically on the so-called “hitting set”
problem, which is a classical combinatorial and computer science problem, Each of
these methods uses a different algorithm to obtain an exact or an approximate solu-
tion of the hitting set problem. We will explore the ultimate impact that the alternative
algorithms have on the inference of published in silico biological networks.

40.2 REVERSE-ENGINEERING OF BIOLOGICAL NETWORKS

Systems biology aims at a systems-level understanding of biology, viewing organ-
isms as integrated and interacting networks of genes, proteins, and other molecu-
lar species through biochemical reactions that result in particular form and func-
tion (phenotype). Under this “system” conceptualization, it is the interactions among
components that give rise to emerging properties.

Systems-level ideas have been a recurrent theme in biology for several decades,
as exemplified by Cannon’s work on homeostasis [7], Wiener’s biological cybernet-
ics [31], and Ludwig von Bertalanffy’s foundations of general systems theory [30].
So what has brought systems biology to the mainstream of biological science re-
search in recent years? The answer can be found in large part in enabling technolog-
ical advances, ranging from high-throughput biotechnology (gene expression arrays,
mass spectrometers, etc.) to advances in information technology, that have revolu-
tionized the way that biological knowledge is stored, retrieved, and processed.

A systems approach to understanding biology can be described as an iterative
process that includes; (i) data collection and integration of all available information
(ideally, regarding all the components and their relationships in the organism of inter-
est), (ii) system modeling, (iii) experimentation at a global level, and (iv) generation
of new hypotheses (see Figure 40.1).

The current chapter focuses on the system modeling aspects and, specifically,
on the top-down modeling approach broadly known as the biological “reverse-
engineering,” which can be very broadly described as follows:

The biological reverse-engineering problem is that of analyzing a given system in order
to identify, from biological data, the components of the system and their relationships.

In broad terms, there are two very different levels of representation for biological
networks. They are described as follows.

network topology representations. Also known as “wiring diagrams” or
“static graphs,” these are coarse diagrams or maps that represent the connections
(physical, chemical, or statistical) among the various molecular components of a
network. At this level, no detailed kinetic information is included. A network of
molecular interactions can be viewed as a graph: Cellular components are nodes
in a network, and the interactions (binding, activation, inhibition, etc.) between
these components are the edges that connect the nodes. A reconstruction of network

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

40.2 REVERSE-ENGINEERING OF BIOLOGICAL NETWORKS 943

G11

G9 G6

G1

G7

G5

G4 G2

G3G8G10

Figure 40.1 Iterative process in systems biology.

topology allows one to understand properties that might remain hidden without the
model or with a less relevant model.

These type of models can be enriched by adding information on nodes or edges.
For instance, “+” or “−” labels on edges may be used in order to indicate positive or
negative regulatory influences. The existence of an edge might be specified as being
conditional on the object being studied (for instance, a cell) being in a specific global
state, or on a particular gene that regulates that particular interaction being expressed
above a given threshold. These latter types of additional information, however, refer
implicitly to notions of state and temporal evolution, and thus, they lead naturally
toward qualitative dynamical models.

Different reverse-engineering methods for topology identification differ on the
types of graphs considered. For example, in the work in [3, 9, 11, 24, 26, 27, 32, 33],
edges represent statistical correlation between variables. In [10, 13, 15, 17], edges
represent causal relationships among nodes.

network dynamical models. Dynamical models represent the time-varying be-
havior of the different molecular components in the network and, thus, provide a
more accurate representation of biological function.

Models can be used to simulate the biological system under study. Different
choices of values for parameters correspond either to unknown system charac-
teristics or to environmental conditions. The comparison of simulated dynamics
with experimental measurements helps refine the model and provide insight on

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

944 REVERSE ENGINEERING OF MOLECULAR NETWORKS

qualitative properties of behavior, such as the identification of steady states or limit
cycles, multistable (e.g., switch-like) behavior, the characterization of the role of
various parts of the network in terms of signal processing (such as amplifiers, dif-
ferentiators and integrators, and logic gates), and the assessment of robustness to
environmental changes or genetic perturbations.

Examples of this type of inference include those leading to various types of
Boolean networks [2, 20–22] or systems of differential equations [12, 16, 28], as
well as multistate discrete models [19].

Depending on the type of network analyzed, data availability and quality, network
size, and so forth, the different reverse-engineering methods offer different advan-
tages and disadvantages relative to each other. In Section 40.3.1, we will explore
some of the common approaches to their systematic evaluation and comparison.

40.2.1 Evaluation of the Performance
of Reverse-Engineering Methods

The reverse-engineering problem is by its very nature highly “ill-posed,” in the sense
that solutions will be far from unique. This lack of uniqueness stems from the many
sources of uncertainty: measurement error, lack of knowledge of all the molecular
species that are involved in the behavior being analyzed (“hidden variables”),
stochasticity of molecular processes, and so forth. In that sense, reverse-engineering
methods can at best provide approximate solutions for the network that one wishes
to reconstruct, making it very difficult to evaluate their performance through a
theoretical study. Instead, their performance is usually assessed empirically, in the
following two ways:

Experimental testing of predictions. After a model has been inferred, the newly
found interactions or predictions can be tested experimentally for network
topology and network dynamics inference, respectively.

Benchmarking testing. This type of performance evaluation consists on measuring
how “close” the method of our interest is from recovering a known network,
referred to as the “gold standard” for the problem. In the case of dynamical
models, one evaluates the ability of the method of interest to reproduce obser-
vations that were not taken into account in the “training” phase involved in the
construction of the model. On the another hand, for methods that only recon-
struct the network topology (wiring diagram), a varierty of standard metrics
may be applied.

metrics for network topology benchmarking. Suppose that � is the graph
representing the network topology of a chosen “gold standard” network. Let �i be
the graph representing the inferred network topology. Each one of the interactions in
�i can be classified into one of the these four classes, when comparing with the gold
standard:

(a) Correct interactions inferred (true positives, TP)

(b) Incorrect interactions inferred (false positives, FP)

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

40.2 REVERSE-ENGINEERING OF BIOLOGICAL NETWORKS 945

(c) Correct noninteractions inferred (true negatives, TN)

(d) Incorrect noninteractions inferred (false negatives FN)

From this classification of the interactions, we compute the following metrics:

� The Recall or True Positive Rate TPR = TP/(TP + FN).
� The False Positive Rate FPR = FP/(FP + TN).
� The Accuracy ACC = (TP + TN)/TotI , where TotI is the total number of pos-

sible interactions in a network.
� The Precision or Positive Predictive Value PPV = TP/(TP + FP).

As mentioned, the reverse-engineering problem is underconstrained. Every algo-
rithm will have one or more free parameters that helps select a “best” possible predic-
tion. Hence, a more objective evaluation of performance has to somehow involve a
range of parameter values. One way to evaluate performance across ranges of param-
eters is the receiver operating characteristic (ROC) method, based on the plot of
FPR vs. TPR values. The resulting ROC plot depicts relative trade-offs between true
positive predictions and false positive prediction across different parameter values
(see Figure. 40.2). A closely related approach is the Recall-Precision plot, obtained
by plotting TPR vs. PPV values.

Figure 40.2 Receiver operating characteristic (ROC)-space. Defined by FPR vs. TPR val-
ues in a two-dimensional coordinate system: A perfect reverse-engineering method will ide-
ally have score (FPR, TPR) = (0, 1), whereas the worst possible network will have coordinates
(FPR, TPR) = (1, 0), and scores below the identity line (diagonal) indicate methods that perform
no better than a random guess.

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

946 REVERSE ENGINEERING OF MOLECULAR NETWORKS

40.3 CLASSICAL COMBINATORIAL ALGORITHMS: A CASE STUDY

We have briefly discussed some basic aspects of reverse engineering of biological
systems. Next, as a case of study, we focus our attention on some reverse-engineering
algorithms that rely on the solution of the so-called “hitting set problem.” The hit-
ting set problem is a classical problem in combinatorics and computer science. It is
defined as follows:

Problem 40.1 (HITTING SET Problem) Given a collection H of subsets of E =
{1, . . . , n}, find the smallest set L ⊆ E such that L ∩ X �= ∅ for all X ∈ H.

The hitting set problem is NP-hard, as can be shown via transformation from its
dual, the (minimum) set cover problem [14].

We next introduce some reverse-engineering methods based on the hitting set
approach.

� Ideker et al. [15].
This paper introduces two methods to infer the topology of a gene regulatory
network from gene expression measurements. The first “network inference”
step consists of the estimation of a set of Boolean networks consistent with an
observed set of steady-state gene expression profiles, each generated from a dif-
ferent perturbation to the genetic network studied. Next, an “optimization step”
involves the use of an entropy-based approach to select an additional perturba-
tion experiment in order to perform a model selection from the set of predicted
Boolean networks. In order to compute the sparsest network that interpolates
the data, Ideker et al. rely on the “minimum set cover” problem. An approxi-
mate solution for the hitting set problem is obtained by means of a branch and
bound technique [25]. Assessment is performed “in Numero”: The proposed
method is evaluated on simulated networks with varying number of genes and
numbers of interactions per gene.

� Jarrah et al. [13]
This paper introduces a method for the inference of the network topology from
gene expression data, from which one extracts state transition measurements
of wild-type and perturbation data. The goal of this reverse-engineering algo-
rithm is to output one or more most likely network topologies for a collection
x1, . . . , xn of molecular species (genes, proteins, etc.), which we will refer to
as variables. The state of a molecular species can represent its levels of acti-
vation. That is, each variable xi takes values in the set X = {0, 1, 2, . . .} and
the interactions among species indicate causal relationships among molecu-
lar species. The inference algorithm takes as input one or more time courses
of observational data. The output is a most likely network structure for the
interactions among x1, . . . , xn that is consistent with the observational data:
The notion of consistency with observational data makes the assumption that
the regulatory network for x1, . . . , xn can be viewed as a dynamical system

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

40.3 CLASSICAL COMBINATORIAL ALGORITHMS: A CASE STUDY 947

that is described by a function f : Xn → Xn , which transforms an input state
(s1, . . . , sn), si ∈ X , of the network into an output state (t1, . . . , tn) at the next
time step. A directed edge xi → x j in the graph of the network topology of
this dynamical system f indicates that the value of x j under application of
f depends on the value of xi . Hence a directed graph is consistent with a
given time course s1, . . . , sr of states in Xn , if it is the network topology of
a function f : Xn → Xn that reproduces the time course; that is, f (si) = si+1

for all i .
One possible drawback of reverse-engineering approaches lies in the fact

that they construct the “sparest” possible network consistent with the given
data. However, real biological networks are known to be not minimal [29]. Al-
though accurate measures of deviation from sparsity are difficult to estimate,
nonetheless it seems reasonable to allow additional edges in the network in a
“controlled” manner that is consistent with the given data. As already com-
mented in [15], it is possible to add redundancies to the reverse-engineering
construction. The basic hitting set approach provides only a minimal set of
connections, whereas real biological networks are known to contain redundan-
cies (e.g., see [22]). To account for this, one can modify the hitting set approach
to add redundancies systematically by allowing additional parameters to con-
trol the extra connections. Theoretically, in terms of the algorithm this cor-
responds to a standard generalization of the set-cover problem, known as the
set-multicover problem, which is well studied in the literature, and for which
approximation algorithms are known [4].

The search for the topologies that interpolate the input data involves directly
the hitting set problem, which is solved analytically with the use of a computa-
tional algebra tools.

The algorithms presented in [5, 17] also make use of hitting set algorithms, but we
will restrict our attention to the comparison of the two methods described above.

40.3.1 Benchmarking RE Combinatorial-Based Methods

40.3.1.1 In Silico Gene Regulatory Networks. We use data from two differ-
ent regulatory networks. These contain some features that are common in real regu-
latory networks, such as time delays and the need for a measurement data presented
into discrete states (0, 1, 2, . . .).

in silico network 40.1: gene regulatory network with external per-
turbations. This network was originally introduced in [6]. It was generated
using software package given in [23], the interactions between genes in this
regulatory network are phenomenological, and represent the net effect of tran-
scription, translation, and post-translation modifications on the regulation of the
genes in the network. The model is implemented as a system of ODEs in
Copasi [18].

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

948 REVERSE ENGINEERING OF MOLECULAR NETWORKS

Figure 40.3 Network 1: 10 genes and 3 environmental perturbations. In this network, the 3
environmental perturbations P1, P2, and P3 directly affect the expression rate of genes G1, G2,
and G5, respectively.

This network, shown in Figure 40.3, consists of 13 species: ten genes plus three
different environmental perturbations. The perturbations affect the transcription rate
of the gene on which they act directly (through inhibition or activation) and their
effect is propagated throughout the network by the interactions between the genes.

Network 40.2: segment polarity genes network in drosophila melanogaster.
The network of segment polarity genes is responsible for pattern formation in the
D. melanogaster embryo (Figure 40.4). Albert and Othmer [1] proposed and ana-
lyzed a Boolean model based on the binary ON/OFF representation of mRNA and
protein levels of five segment polarity genes. This model was constructed based
on the known topology, and it was validated using published gene and expression
data. We generated time courses from this model, from which we will attempt to
reverse-engineer the network in order to benchmark the performance of the reverse-
engineering algorithms being evaluated.

The network of the segment polarity genes represents the last step in the hierar-
chical cascade of gene families initiating the segmented body of the fruit fly. The
genes of this network include engrailed (en), wingless (wg), hedgehog (hh), patched
(ptc), cubitus interruptus (ci), and sloppy paired (slp), coding for the corresponding
proteins, which are represented by capital letters (EN, WG, HH, PTC, CI, and SLP).
Two additional proteins, resulting from transformations of the protein C I , also play
important roles: CI may be converted into a transcriptional activator, CIA, or may
be cleaved to form a transcriptional repressor CIR. The expression of the segment
polarity genes occurs in stripes that encircle the embryo. These key features of these
patterns can be represented in one dimension by a line of 12 interconnected cells,
grouped into three parasegment primordia, in which the genes are expressed every
fourth cell. In Albert and Othmer [1], parasegments are assumed to be identical, and
thus only one parasegment of four cells is considered. Therefore, in the model, the

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

40.3 CLASSICAL COMBINATORIAL ALGORITHMS: A CASE STUDY 949

x17 x16

x19

x11

x12

x15 x14

x2

x3x7

x6

x13x21x20

x18

x10

x1

x4

x5

x8

x9

Figure 40.4 Segment polarity genes network on the D. melanogaster. This network consists
of the interaction of 60 molecular species: genes and proteins.

variables are the expression levels of the segment polarity genes and proteins (listed
above) in each of the four cells, and the network can be seen as a 15 × 4 = 60 node
network. Using the wild-type pattern from [1], we consider one wild-type time series
of length 23.

40.3.1.2 Results of Comparison. In this section we compare the results ob-
tained after running Jarrah et al.’s and Ideker et al.’s methods on each of the
above networks. Computations were made on Mac OS X, Processor 2GHz Intel
Core 2 Duo.

As we mentioned in Section 40.3, for Jarrah et al.’s method, the input data must
be discrete. Hence, in order to apply this reverse-engineering method to network 1,
we discretize the input data, considering then different discretizations as our run-
ning parameter to test Jarrah et al.’s method in the ROC space. We specifically use

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

950 REVERSE ENGINEERING OF MOLECULAR NETWORKS

Table 40.1 Comparison of RE methods

TP FP TN FN TPR FPR ACC PPV

Network1
Jarrah Exact Sol D7 12 34 113 10 .5454 .231 .7396 .2608
Jarrah Exact Sol Q5 9 49 98 13 .4090 .3334 .6331 .1551
Jarrah Exat Sol I5 7 46 101 15 .3181 .313 .6390 .1320
Karp Greedy Approx R1 9 49 98 13 .4090 .666 .016 .084
Karp Greedy Approx R2 11 63 84 11 .5 .571 .020 .115
Karp LP Approx. R1 7 46 101 15 .318 .687 .014 .064
Karp LP Approx. R2 9 59 88 13 .409 .598 .018 .092

Network 2
Jarrah Exact Sol – – – – – – – –
Karp Greedy Approx R1 4 3321 91 124 .031 .026 .923 .042
Karp Greedy Approx R2 15 3254 218 113 .117 .062 .908 .064
Karp LP Approx. R1 3 3279 93 125 .023 .026 .939 .031
Karp LP Approx. R2 9 3285 187 119 .070 054 .915 .045

three discretization methods: a graph-theoretic based approached “D” (see [8]), as
well as quantile “Q” (discretization method on which each variable state receives an
equal number of data values) and interval “I” discretization (discretization method
on which we select thresholds for the different discrete values).

For Ideker et al.’s method we have considered both greedy and linear program-
ming approximations to the hitting set problem as well as redundancy values (how
many extra edges one allows) of R = 1 or 2.

We have displayed some our results on Table 40.1. We observe that for network
1, Jarrah et al.’s method obtains better results than Ideker et al.’s method when
considering these values in the ROC space, although both fare very poorly. On the
other hand, we observe that Ideker et al.’s method achieves a performance no bet-
ter than random guessing on this network. In contrast, for network 2, Jarrah et al.’s
method could not obtain any results after running their method for more than 12
hours, but Ideker et al.’s method was able to compute results for such a network in
less than 1 minute. Also Ideker et al.’s method improved slightly its results when
the redundancy number is increased; this might indicate the shortcoming of inferring
sparser networks when they are of a larger size containing redundancies.

40.3.2 Software Availability

The implementation of Jarrah et al.’s algorithm [13] is available online through the
web interface provided at http://polymath.vbi.vt.edu/polynome/. The implementa-
tion of Ideker et al.’s algorithm [15] is available online through the web interface
provided at http://sts.bioengr.uic.edu/causal/.

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

REFERENCES 951

40.4 CONCLUDING REMARKS

In this chapter, we first provided a brief discussion of the biological reverse-
engineering problem, which is a central problem in systems biology. As a case study,
we then focused on two methods that rely on the solution of the “hitting set prob-
lem” but that differ in their approach to solve this problem, thus leading to different
performance.

In terms of network inference power, we hypothesize that, for the smaller net-
work, the poor quality of the results when using Jarrah’s approach might be ascribed
to the type of data used: In [13], it is claimed that the method performs better if per-
turbation data are added. The algorithm has the ability of considering both wild-type
and mutant data to infer the network, and probably results would improve if using
such additional data. In the case of Ideker et al.’s method, in both networks we think
that it is possible that the low quality of results could be due to the lack of ability of
using more than one time series at a time, as well as the fact that the implementation
of the method does not include self-loops (self-loops are edges connecting a node
to itself that may, for example, represent degradation terms in biochemical systems).
We believe that this feature is fundamental for a good performance of the algorithm.

When comparing the computational efficiency of the approaches, one should keep
in mind that there will always be a difference between exact solutions and approxi-
mate solutions based on greedy algorithms or linear programming relaxations. How-
ever, since the size of the networks was fairly small, it is possible that the reason
Jarrah’s method did not find a solution within a reasonable time might lie in encod-
ing issues rather than in the intrinsic computational complexity of the problem.

ACKNOWLEDGMENTS

The authors would like to thank Joe Dundas for the implementation and main-
tenance of the web tool for the Ideker et al. method. We would like to thank
as well Dr. Brandilyn Stigler for useful discussions on different aspects of this
book chapter. This work was supported in part by grants AFOSR FA9550-08,
NIH 1R01GM086881, and NSF grants DMS-0614371, DBI-0543365, IIS-0612044,
IIS-0346973, and the DIMACS special focus on Computational and Mathematical
Epidemiology.

REFERENCES

1. R. Albert and H. Othmer. The topology of the regulatory interactions predicts the ex-
pression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol,
223:1–18, 2003.

2. T. Akutsu, S. Miyano, and S. Kuhara. Inferring qualitative relations in genetic networks
and metabolic pathways. Bioinformatics, 16(8):727–734, 2000.

3. M.J. Beal and F. Falciani. A Bayesian approach to reconstructing genetic regulatory net-
works with hidden factors. Bioinformatics, 21(3):349–356, 2005.

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

952 REVERSE ENGINEERING OF MOLECULAR NETWORKS

4. P. Berman, B. DasGupta, and E. Sontag. Randomized approximation algorithms for set
multicover problems with applications to reverse-engineering of protein and gene net-
works. Discrete Appl Math, 155(6–7):733–749, 2007.

5. P. Berman, B. DasGupta, and E. Sontag. Algorithmic issues in reverse-engineering of
protein and gene networks via the modular response analysis method. Ann NY Acad Sci,
1115:132–141, 2007.

6. D. Camacho, P. Vera-Licona, P. Mendes, and R. Laubenbacher. Comparison of reverse-
engineering methods using an in silico network. Proc NY Acad Sci, 1115(1):73–89,
2007.

7. W.B. Cannon. The wisdom of the body. Norton, New York, 1993.

8. E. Dimitrova, L. Garcia-Puente, A.S. Jarrah, R. Laubenbacher, B. Stigler, M. Stillman,
and P. Vera-Licona. Parameter estimation for Boolean models of biological networks.
Submitted for publication.

9. N. Dojer, A. Gambin, A. Mizera, B. Wilczynski, and J. Tiuryn. Applying dynamic
Bayesian networks to perturbed gene expression data. BMC Bioinformatics, 7(1):249,
2006.

10. N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using bayesian networks to analyze
expression data. J Comput Biol, 7(3–4):601–620, 2000.

11. A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes. Discovery of meaningful asso-
ciations in genomic data using partial correlation coefficients. Bioinformatics, 20:3565–
3574, 2004.

12. T.S. Gardner, D. di Bernardo, D. Lorez, and J.J. Collins. Inferring genetic networks and
identifying compound mode of action via expression profiling. Science, 301(5629):102–
105, 2003.

13. A.S. Jarrah, R. Laubenbacher, B. Stigler, and M. Stillman. Reverse-engineering polyno-
mial dynamical systems. Adv Appl Math, 39(4):477–489, 2007.

14. R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations. Plenum Press, New York, 1972.

15. T.E. Ideker, V. Thorsson, and R.M. Karp. Discovery of regulatory interactions through
perturbation: Inference and experimental design. Pacific Symposium on Biocomputing,
2000, pp. 305–316.

16. J. Kim, D. Bates, I. Postlethwaite, P. Heslop-Harrison, and K.H. Cho. Least-squares meth-
ods for identifying biochemical regulatory networks from noisy measurements. BMC
Bioinformatics, 8(1):8, 2007.

17. B. Krupa. On the number of experiments required to find the causal structure of complex
systems. J Theor Biol, 219(2):257–267, 2002.

18. S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes,
and U. Kummer. COPASI—a COmplex PAthway SImulator. Bioinformatics, 22:3067–
3074, 2006.

19. R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse-
engineering of gene regulatory networks. J Theor Biol, 229:523–537, 2004.

20. S. Liang, S. Fuhrman, and R. Somogyi. Reveal, a general reverse-engineering algorithm
for inference of genetic network architectures. Pacific Symposium on Biocomputing, 1998,
pp. 18–29.

21. S. Martin, Z. Zhang, A. Martino, and J.L. Faulon. Boolean dynamics of genetic reg-
ulatory networks inferred from microarray time series data. Bioinformatics, 23(7):
866–874, 2007.

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

REFERENCES 953

22. S. Mehra, W.S. Hu, and G. Karypisb. A Boolean algorithm for reconstructing the structure
of regulatory networks. Metabolic Eng, 6(4):326, 2004.

23. P. Mendes. Biochemistry by numbers: Simulation of biochemical pathways with Gepasi
3. Trends Biochem Sci, 22:361–363, 1997.

24. N. Nariai, Y. Tamada, S. Imoto, and S. Miyano. Estimating gene regulatory networks
and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide
data. Bioinformatics, 21(suppl 2):ii206–ii212, 2005.

25. G.L. Nemhauser. Integer and Combinatorial Optimization. Wiley, New York, 1988.

26. I. Pournara and L. Wernisch. Reconstruction of gene networks using Bayesian learning
and manipulation experiments. Bioinformatics, 20(17):2934–2942, 2004.

27. J.J. Rice, Y. Tu, and G. Stolovitzky. Reconstructing biological networks using conditional
correlation analysis. Bioinformatics, 21(6):765–773, 2005.

28. E. Sontag, A. Kiyatkin, and B.N. Kholodenko. Network reconstruction based on steady-
state data. Essays Biochem, 45:161–176, 2008.

29. G. Tononi, O. Sporns, and G.H. Edelman. Measures of degeneracy and redundancy in
biological networks. PNAS, 96(6):3257–3262, 1999.

30. L. von Bertalanffy. General System Theory. Braziler, New York, 1968.

31. N. Wiener. Cybernetics or Control and Communication in the Animal and the Machine.
The MIT Press, Cambridge, MA, 1948.

32. J. Yu, V. Smith, P. Wang, A. Hartemink, and E. Jarvis. Advances to Bayesian network
inference for generating causal networks from observational biological data. Bioinfor-
matics, 20:3594–3603, 2004.

33. M. Zou and S.D. Conzen. A new dynamic Bayesian network (DBN) approach for iden-
tifying gene regulatory networks from time course microarray data. Bioinformatics,
21(1):71–79, 2005.

P1: OSO
c40 JWBS046-Elloumi December 2, 2010 9:55 Printer Name: Sheridan

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41
UNSUPERVISED LEARNING

FOR GENE REGULATION
NETWORK INFERENCE

FROM EXPRESSION
DATA: A REVIEW

Mohamed Elati and Céline Rouveirol

41.1 INTRODUCTION

In the organism, each organ, each cell, and each protein has a defined role to fulfill
so that life is maintained. When one player deviates from its predefined scenario,
the consequences are generally not even noticeable. However, sometimes, the con-
sequences are very important, and the whole organism might not survive it. The
only way to fight against these disorders is to understand fully the functioning of
the whole ensemble, and how each deviation affects it. This is what systems biology
is about [2, 14]. At the cellular level, this requires understanding how the different
components interact, and how these interactions result in functional networks, of-
ten called pathways. Regulation of gene expression at the transcriptional level is a
fundamental mechanism that is evolutionarily conserved in all the cellular systems.
This form of regulation is typically mediated by transcription factors (TFs) that bind
to short DNA sequence motifs, also called binding sites, in promoter regions of tran-
scriptional units and either activate or repress the expression of nearby genes.

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

955

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

956 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

In the past decade, microarrays and other high-throughput methods have revolu-
tionized biology, providing a wealth of new experimental data. This unprecedented
amount of data—for example, the simultaneous measurement of the expression lev-
els of all genes in a given organism—requires the development of new techniques in
order to extract biological meaning. One very important aim of such new data anal-
ysis approaches is to infer genetic regulatory networks [61] from microarray data
(also known as transcriptome data). Genetic regulatory networks, denoted GRNs in
the following, are large graphical structures, such that nodes are genes and links are
regulation relations. Their inference is a central problem in bioinformatics, but this
problem is highly complex, as the number of candidate networks is exponential in
the number of genes potentially involved in the network. Machine learning and, in
particular, unsupervised machine learning is essential to efficient and tractable net-
work inference (i.e., inference of the network structure and parameters that cause the
observed gene expressions and phenotypic states).

There have been numerous efforts in this direction, and this chapter is a review
of the main trends in this very active research area. Considerable efforts are being
made to chart large-scale gene regulatory networks by relating the expression of a
target gene to that of the genes encoding its regulators [67, 25, 43]. Many recent
studies have aimed to derive complete genetic regulatory networks in yeast (Saccha-
romyces cerevisiae) using additional information, such as protein-DNA binding from
ChIP-chip experiments [45] or computational analysis of transcription factor bind-
ing sites [49], with the computational advantage of restricting the number of possible
regulators for a given target gene. However, these approaches are difficult to adapt
to other organisms, for which the computational detection of binding sites is far less
tractable, and the experimental detection of binding events is currently very limited
(e.g., Homo sapiens). In contrast, the collection of expression datasets is growing
at an exponential rate, and methods that rely solely on gene expression for network
reconstruction are needed.

The chapter starts with a brief survey about the underlying biology and the data
available for GRN inference. Section 41.2 summarizes the biology that underlies the
statistical and machine learning problems in the field of network inference. Then,
Sections 41.3 and 41.4 discuss available data and introduce the network inference
problem. Sections 41.5, 41.6, and 41.7 detail existing approaches for network in-
ference along three axes, from the most simple model for GRN (i.e., co-expression
network) to the more sophisticated ones (Bayesian networks and labeled DAGs).
Section 41.8 describes several ways to validate the so infered networks. Finally,
the chapter is concluded with an analysis of the field as a whole, some underlying
methodological issues, and a few possible areas for future research.

41.2 GENE NETWORKS: DEFINITION AND PROPERTIES

Gene regulation is a general name for several sequential processes, the most well
known and understood being transcription and translation, which control the level of
a gene’s expression and, ultimately, result in a specific quantity of a target protein. A

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.2 GENE NETWORKS: DEFINITION AND PROPERTIES 957

gene regulation system [4, 42] consists of genes, binding sites, and regulators. The
regulators are most often proteins, called transcription factors (denoted as TFs in the
following), but small molecules, like RNAs and metabolites, sometimes also partic-
ipate in the overall regulation. The interactions and binding of regulators to DNA
sequence motifs in promoter regions of genes controls the level of gene expression
during transcription. The promoter regions serve to aggregate the input signals, me-
diated by the regulators, and thereby effect a very specific gene expression signal.
The traditional roles of individuals or groups of TFs as activators and inhibitors,
with respect to a gene, are assigned given the change they cause in expression, and
are viable if their effects are strong enough and independent of other TF effects [32].
Those roles have been refined recently by associating function to modules of bind-
ing sites (or equivalently TFs) to include more operators, like enhancers, switches,
and amplifiers, which form the repertoire of transcriptional control elements. Some
of those have been used to engineer synthetic gene circuits with prespecified
functions.

In many cases, the level of expression of the gene encoding a transcription fac-
tor provides a good indication of its activity. References [55, 59] expanded the set
of candidate regulators to proteins involved in various aspects of gene regulation,
including both known and putative transcription factors but also signal transduction
molecules, to obtain additional information about regulation by considering the lev-
els of expression of signalling molecules with potential indirect effects on transcrip-
tion. The genes, regulators, and the regulatory connections between them, together
with an interpretation scheme, form gene networks (see Figure 41.1).

Substantial knowledge has been gained recently about gene regulation and net-
works. Some of this knowledge can be used to effectively model gene networks.
Gene regulation networks are sparse [39] (i.e., there is a small number of edges per
node, much smaller than the total number of nodes). The sparseness property is often
used to prune the search space during network inference, as described later. Recent
studies [4] have also shown that the frequency distribution of connectivity of nodes

(a) Components

Transcription Factor (TF)

Target Gene (TG)

(b) Motifs (c) Modules (d) Global structure

Figure 41.1 Organization of the transcriptional regulatory network: (a) The basic unit consists
of a regulatory interaction between a TF and a target gene. (b) The basic unit forms small
patterns of regulatory interactions called network motifs. (c) Module, a set of connected genes
that together are involved in a biological process. (d) The set of all transcriptional regulatory
interactions is referred to as the GRN.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

958 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

in biological networks tends to be longer tailed than the normal distribution. The
appropriate distribution seems to belong to a class of power-law functions described
by P(k) = k−β , where k is the degree of a vertex in the network graph and β is
some network specific constant. Such networks are called scale-free and exhibit sev-
eral important properties. The first is the emergence of hubs, or highly connected
nodes, which are highly unlikely to appear in a network with normally distributed
node degrees. The second property is that through the hubs, the rest of the nodes are
connected by, in the worst case, very short paths, yielding overall short longest paths
between nodes (degree of separation, small-world networks).

41.3 GENE EXPRESSION: DATA AND ANALYSIS

The amount of mRNA produced during transcription is a measure of how active or
functional a gene is. Gene chips, or microarrays [58], are large-scale gene expres-
sion monitoring technologies used to detect differences in mRNA levels of thou-
sands of genes at a time, thus speeding up dramatically genome-level functional
studies. Microarrays are used to identify the differential expression of genes be-
tween two experiments, typically test versus control, and to identify similarly ex-
pressed genes over multiple experiments. An important issue that is often underesti-
mated is the preprocessing of the gene expression data prior to the inference of net-
works [30]. Although microarray technology produces continuous data, many meth-
ods require data discretization prior to further analysis. Data discretization [29, 56]
implicitly assumes that in a large compendium of microarrays, the complete dy-
namic range of expression values was observed for each gene. This complete range
can then for example be subdivided into discrete levels such as high, basal, or low
expression level [35]. This discretization step is critical due to the potential loss
of information. Similarly, interpreting discretization levels as over-, normal, and
under-expression should be treated with caution because observing the complete dy-
namic range of a gene can never be guaranteed unless a large compendium of data
is used [41].

The processing pipeline of microarray data involves preprocessing the raw data
to get a gene expression matrix and then analyzing the matrix for differences and/or
similarities of expression. We will assume in this chapter that the gene expression
matrix contains preprocessed expression values with genes as rows and experiments
as columns. Thus, each column corresponds to an array or gene-chip. The exper-
iments can be time points (for time-course experiments) or treatments (for pertur-
bation experiments). Each row in the matrix represents a gene expression profile.
Gene-chips can hold probes for tens of thousands of genes, whereas the number of
experiments, limited by resources, is much smaller, at most in the hundreds. Thus,
the gene expression matrix is typically very narrow. This is known as the dimen-
sionality curse, and it is a serious problem for gene network inference. The in-
ference methods described in the following sections use different ways to address
this problem.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.5 CORRELATION-BASED METHODS 959

41.4 NETWORK INFERENCE AS AN UNSUPERVISED
LEARNING PROBLEM

Machine learning [50] is a scientific discipline concerned with the design and de-
velopment of algorithms that allow computers to improve their performance based
on observation data. A major focus of machine learning research is to automatically
learn to recognize complex patterns and make intelligent decisions based on data.
Machine learning has proposed a very large range of algorithms. One very important
class of such methods is unsupervised learning. Intuitively, unsupervised learning
techniques seek to determine how observed data are organized by uncovering regu-
larities/similarities within the data. It is distinguished from supervised learning (and
reinforcement learning) in that the learner is given only unlabeled examples. Unsu-
pervised learning is closely related to the problem of density estimation in statistics.
However, unsupervised learning also encompasses many other techniques that seek
to summarize and explain key features of the data.

The inference of regulatory networks from data has been addressed by several
unsupervised machine learning methods. Three main research directions have been
explored in the recent literature:

� Learning regulation networks based on co-regulation detection [15, 28].
� Learning static models of genetic regulation ranging from learning classic

Bayesian networks [35] to extensions [55, 59]
� (Constrained) itemset mining [40, 52, 9, 11, 31]

The first type of approach uses relatedness metrics, such as correlation metrics or
mutual information to elucidate network structure independently of a gene regula-
tion model. The last two families of network inference methods address the difficult
problem of identifying the structure of the regulation network with more complex
assumptions. When expressed as a combinatorial problem (i.e., given a set of genes,
find the network linking those genes that optimizes some score function), learning
a GRN structure is known to be NP-hard [21]. NP-hardness calls for a relaxation
of the combinatorial problem or demands heuristics to explore the finite huge set of
candidate networks for a given number of genes. Feasibility depends on the training
dataset size and the extent of constraints specified by the user through prior knowl-
edge. We describe in the next sections some recent publications in each of these
families and how they solve the combinatorial problem of exploring a huge number
of candidate graphs.

41.5 CORRELATION-BASED METHODS

Co-expression networks (also known as relevance or correlation networks) are
graphs where edges connect highly co-expressed genes [15, 28, 26, 5]. Two genes are

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

960 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

co-expressed if their expression profiles (rows in the expression matrix) are strongly
correlated. They can also be weighted, with the weights indicating the strengths of
the relationships. Either the nodes, edges, or both are sometimes labeled with the
function, or nature, of the relationship (i.e., activation, inhibition, etc.).

The correlation can be measured in different ways. Two of the most important
measures are the connected correlation coefficient (or its normalized version, the
Pearson correlation coefficient) [18] and the mutual pairwise information of the two
variables [15]. Mutual information is more general than the Pearson correlation coef-
ficient. This quantifies only linear dependencies between variables, and a vanishing
Pearson correlation does not imply that two variables are statistically independent.
In practical application, however, mutual information and Pearson correlation may
yield almost identical results [64].

Typically, parsimonious arguments stemming from biological principles are used
to restrict the resulting networks. Such networks normally contain much more links
than the actual regulatory interaction between transcription factors and regulated
genes. Also, second neighbours may still be considerably correlated. Inference al-
gorithms based on this measure are numerous. Some approaches are as follows.

Relevance Network. The relevance network approach [15, 28] has been intro-
duced in gene clustering and was successfully applied to infer relationships between
RNA expressions and chemotherapeutic susceptibility. The approach consists of in-
ferring a genetic network where a pair of genes (gi , g j) is linked by an edge if the
mutual information I (gi , g j) is larger than a given threshold. The complexity of the
method is O(n2) because all pairwise interactions are considered. Mutual informa-
tion, I (gi , g j), is computed as

∑
P(gi , g j) log

P(gi , g j)

P(gi)P(g j)

Note that this method does not eliminate all the indirect interactions between
genes. For example, if gene g1 regulates both gene g2 and gene g3, this would cause
high mutual information among the pairs (g1, g2), (g1, g3), and (g2, g3). As a con-
sequence, the algorithm would set an edge between g2 and g3, although these two
genes interact only through gene g1.

CLR Algorithm. The CLR algorithm [33] is an extension of the relevance network
approach. This algorithm computes the mutual information for each pair of genes and
derives a score related to the empirical distribution of the mutual information values.
In particular, instead of considering the information I (gi , g j) between genes gi and
gj , it takes into account the sample mean and standard deviation of the empirical dis-
tribution of the values I (gi , gk), k = 1, . . . , n. The CLR algorithm was successfully
applied to decipher the Escherichia coli. CLR has a complexity in O(n2) once the
mutual information is computed.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.6 PROBABILISTIC GRAPHICAL MODELS 961

ARACNE Algorithm. Reference [5] starts by assigning to each pair of nodes a
weight equal to the mutual information. Then, as in relevance networks, all edges for
which I (gi , g j) < I0 are removed, with I0 a given threshold. Eventually, the weak-
est edge of each triplet is interpreted as an indirect interaction and is removed if
the difference between the two lowest weights is above a threshold W0. Note that
by increasing I0 the number of inferred edges is decreased, whereas the opposite
effect is obtained by increasing W0. Once I (gi , g j) for all gene pairs has been com-
puted, ARACNE excludes all the pairs for which the null hypothesis of mutually
independent genes cannot be ruled out. A p-value for the null hypothesis, computed
using Monte Carlo simulations, is associated with each value of the mutual infor-
mation. The final step of this algorithm is a pruning step that tries to reduce the
number of false-positives. They use the data processing inequality (DPI) principle
that asserts that if both (gi , g j) and (g j , gk) are directly interacting, and (gi , gk) is in-
directly interacting through j , then I (gi , gk) ≤ min(I (gi , g j), I (g j , gk)). This elim-
ination step increases strongly the precision of the algorithm since it reduces the
number of false-positives, but it decreases also its sensitivity canceling many weak
pair interactions. ARACNE’s complexity is O(n3) because the algorithm considers
all triplets of genes. In [5], the method was able to recover components of the GRN
in mammalian cells and outperformed Bayesian networks and relevance networks on
several inference tasks.

41.6 PROBABILISTIC GRAPHICAL MODELS

When modeling a gene regulatory network, the goal is to uncover the relationships
linking entities that are involved in the system under study (e.g., genes) and their dif-
ferent attributes (e.g., expression level). In a probabilistic model [54], these attributes
are handled as random variables. Random variables include observed attributes, such
as the expression level of a particular gene in a particular experiment, as well as hid-
den attributes that are assumed by the model, such as the cluster assignment of a
particular gene. A model embodies the description of the joint probability distribu-
tion of all the random variables of interest. Probabilistic graphical models represent
multivariate joint probability distributions via a product of terms, each of which in-
volves only a few variables. The structure of the product is represented by a graph
that relates variables that appear in a common term. This graph specifies the product
form of the distribution and provides tools for reasoning about the properties entailed
by the product. For a sparse graph, the representation is compact and in many cases
allows effective inference. In Bayesian networks, the joint distribution over a set
G = g1, . . . , gn of random variables is represented as a product of conditional prob-
abilities. A Bayesian network associates with each variable gi a conditional proba-
bility P(gi |Pi), where Pi ⊆ G is the set of variables that are called the parents of
gi . The resulting product is of the form P(g1, . . . , gn) = ∏

P(gi |Pi). A Bayesian
network implicitly encodes the Markov assumption that given its parents, each vari-
able is independent of its nondescendants. The graphical representation is given by
a directed acyclic graph where we put edges from gi ’s parents to gi . To specify a

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

962 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

(a)
(b)

Figure 41.2 An example of Bayesian network, where the genes can take discrete states of Up
(1) and Down (0). The probability distributions at the nodes imply the dependencies of nodes
only on their parent nodes. The joint probability can be computed directly from the graph, for any
instance of the node values.

model completely, we need to describe the conditional probability associated with
each variable (see Figure 41.2). In general, any statistical regression model may be
used. For example, models where each P(gi |Pi) is a linear regression of gi on Pi

can be considered. Alternatively, decision trees can be uses to represent the proba-
bility of a discrete variable gi given the values of its parents [66]. The choice of a
specific parametric representation of the conditional probabilities is often dictated by
our knowledge or assumptions about the domain.

Bayesian Networks. The general aim is to learn a model that is as close as pos-
sible to the underlying distribution from which the observations were made [35, 62].
Two main tasks can be distinguished: parameter estimation and model selection. In
parameter estimation, the parameters of the conditional probabilities are learned for
a given model structure. This task is often addressed as a maximum likelihood prob-
lem [47]. In model selection, the goal is to select among different model structures to
find one that best reflects the dependencies in the domain [34, 21]. This task is often
addressed as a discrete optimization problem where one tries to maximize a score
that measures how well each candidate structure matches the observed data. Once a
model that describes a joint distribution has been specified or learned, it can be uses
to compute the likelihood of observations and make predictions about the value of
unobserved random variables given these observations. There is a wide choice of
exact and approximate methods for answering such queries. These exploit, when
possible, the structure of the product form for efficient computation. In [35, 62], the
authors use Bayesian networks to establish regulatory relationships between genes
in yeast, based on time-series data of gene expression. To do that, they used several
biologically plausible simplifying assumptions. The first one is that the nodes are of
bounded in-degree (i.e., the networks are sparse). The second is that the parent and
children nodes likely have similar expression patterns, and thus co-expressed pairs
of genes might be in regulatory relationships. Both are realistic to a degree and are
meant to reduce the number of potential high-scoring networks. It was found that

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.7 CONSTRAINT-BASED DATA MINING 963

even with these assumptions, the number of high-scoring networks was still high.
The problem with learning of Bayesian networks is combinatorial: If the graph model
is not known, then the space of all graph models has to be explored. But this space
is super-exponential even for directed acyclic graphs and exploring it completely is
impossible even with the fastest heuristics [54, 21]. Exploring hierarchical properties
of DAGs can help in pruning the search space from super-exponential down to expo-
nential size for which, with current technology, exact solutions can be obtained for
small networks of n ¡ 30 nodes. A promising direction is to restrict the search space
further by including additional biological knowledge as it becomes available.

Minreg Algorithm. The authors of [55] have designed the Minreg system, a con-
strained Bayesian network for the reconstruction of regulatory networks. The max-
imal in-degree of target genes and the total number of regulators in the model are
limited, so the model focuses on only a small set of global active regulators (ARs).
The authors have made use of these constraints to devise an approximation algo-
rithm to search for a high scoring network given expression data. The system suc-
cessfully and robustly identifies the key active regulators but cannot learn the full
detailed network and may miss interesting regulation relationships: Given a current
set of ARs, the greedy search of Minreg will ignore combinations of co-regulators
AR ∪ {r1, r2} if the marginal score values of AR ∪ {r1} and AR ∪ {r2} are both low,
although AR ∪ {r1, r2} may be significant. In such a case, r1 and r2 are said to co-
operate (i.e., they should act collectively in order to influence their target gene(s)).
Note that very few computational approaches have investigated the role of regula-
tor cooperativity [19, 31], although such mechanisms have been identified in many
organisms (Saccharomyces cerevisiae, Homo sapiens, etc.).

Module Networks. Reference [59] exploits the idea that in many large domains,
variables can be partitioned into sets so that variables of each set have similar parent
sets. In gene regulatory modeling, this assumption reflects the well-founded idea
that some sets of genes are co-regulated by the same inputs in order to ensure the
coordination of their joint activity. In the module network framework, a module M j

is defined by a set of parents Pa[M j] and a conditional probability template (CPT)
P(M j —Pa[M j]) that specifies a distribution over the values that the variables in the
modules can take for each assignment of the parent’s values.

The “parameters” of the model are now the number of modules, the dependency
structure over the modules, and the conditional probability template for each module.
A nonparametric tool, namely regression trees [66], has been used here to model
these conditional distributions, allowing a great flexibility for dependencies. Such a
modeling has appeared to be relevant when the network involves regulatory cascades
with large groups of co-regulated genes, for instance, in the cell cycle of the yeast.

41.7 CONSTRAINT-BASED DATA MINING

The problem of computing the set of frequent itemsets and the associated set of
association rules has been introduced in the seminal paper of Agrawal [1], in the

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

964 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

context of the problem of “market basket analysis”: Given a set of transactions,
formed by lists of items bought together, the goal is to identify itemsets frequently
bought together.

The task of finding frequent itemsets can be modeled as follows. An extraction
context is a triplet (O,A,B) such that O is a finite set of observations, A is a finite set
of attributes (items) and B is a binary relationship between O and A, (B ⊆ O × A).
B will also be refered to as an extraction context in the following. An itemset is a set
of items or attributes of A. An intemset of size k is refered to as a k-itemset. The set
of itemsets L = 2A is a lattice, partially ordered by the inclusion relationship denoted
⊆ [46]. The support of itemset m, denoted Supp(m), is the proportion of observations
in B containing m : supp(m) = |{(o ∈ O|m ⊆ o}|

|O| . The min-support constraint is defined
as follows: Given a user defined threshold γ , named minimal support, an itemset m
is frequent in a context B, if supp(m) ≥ γ .

Constraint-based mining selects all itemsets of L satisfying a property q, referred
to as a constraint hereafter. A constraint formalizes the interest of the user to focus
on the most promising patterns according to his point of view. Search for itemsets of
L satisfying a constraint q is in the worst-case exponential in the size of A. However,
it can be optimized if q has some properties, such as anti-monotonicity. A constraint
q is anti-monotonic with respect to ⊆, If for all m and m ′ itemsets of L such that
m ⊆ m ′, if q(m′) is satisfied, then q(m) is also satisfied.

This anti-monotonicity property allows to derive the following safe pruning con-
ditions when exploring L for itemsets satisfying an anti-monotonic property q: If an
itemset does not satisfy an anti-monotonic property q, none of its supersets will ever
satisfy q. The min-support constraint mentioned above is anti-monotonic wrt ⊆: If
an itemset m is frequent, all its subsets are necessarily frequent. In the example of
Figure 41.3, DE is a minimal itemset that does not satisfy the min-support constraint.
As a consequence, none of its supersets need to be generated and evaluated. Note that
some works [51] replace the frequency by other interestingness measures to evaluate
the relevance of itemsets.

APriori [1], given a user supplied min-supp threshold, looks for every itemset
frequent in a transactional dataset. This is a level-wise “generate and test” algorithm:

O Transaction

o1 A B C D E
o2 A B C E
o3 C
o4 B C
o5 A B C D
o6 A B C

O \ A A B C D E

o1 1 1 1 1 1

o2 1 1 1 0 1

o3 0 0 1 0 0

o4 0 1 1 0 0

o5 1 1 1 1 0

o6 1 1 1 0 0

Figure 41.3 Two representations of a transactional dataset B.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.7 CONSTRAINT-BASED DATA MINING 965

ABCDE

ABCD

ABC ABD ACD BCD ABE ACE BCE CDE BDE ADE

AB AC BC

A

Infrequent itemsets

B C D E

AD BD CD AE BE CE DE

ABCE ABDE ACDE BCDE

Frequent itemsets

Figure 41.4 Lattice of frequent motifs from B (see Figure 41.3) with the min-support threshold
γ = 2.

At iteration k, it generates all candidate k-itemsets, using frequent (k − 1)−itemsets
found during previous iteration. Then, exact frequency of candidate k-itemsets is
evaluated with a dataset scan. For instance, given the dataset B of Figure 41.3,
APriori with a min-supp threshold of 2/6 computes 23 frequent itemsets (see
Figure 41.4).

Although the worst-case complexity of APriori is exponential in the number of
attributes of A, it may be quite efficient if the data analyzed is sparse. Its empirical
efficiency relies on specific data structures structures (hash-tree, trie or FP-tree)—
see [38] for a review. Other search strategies in the lattice of itemsets of A have been
implemented, such as depth-first with backtrack [12], or best-first search [36].

When the itemsets satisfying a set of constraints are too many to be extracted
efficiently, many algorithms build approximate or condensed representations [16]
for candidate itemsets. The most studied condensed representation is that of closed
patterns, first introduced in [53]. The closure operator f associates with an itemset m
the maximal set of items common to all the observations containing m: The closure
of an itemset m is equal to the intersection of all the observations containing it. For
itemsets, the closed motif corresponding to a motif m is the largest superset of m with
the same support set. Extraction of closed itemsets may show a high-performance
increase especially when data are highly correlated [38].

41.7.1 Multiple Usages of Extracted Patterns

Extracted motifs may be used for very different purposes. They can be used as such,
as a special type of local information, or they can be combined with each other to
build a global model, descriptive or predictive [24]. Local patterns encode knowledge
that is out of the scope of classical statistical analyses (e.g., multivariate analysis),

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

966 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

which tend to ignore low-frequency events. Deriving association rules [1] is one of
the most frequent use of local patterns. Association rules capture local correlations
observed in data. An association rule built on a pattern Z is an implication of the
form : X → Y , where X ⊂ Z and Y = X \ Z . X is called the premise or the left-
hand side of the rule, whereas Y is the conclusion or right-hand side of the rule.
Association rule algorithms usually look for rules satisfying a minimal support and
confidence, or other syntactic properties such as size of its premise. The support of
rule X → Y is the support of X ∪ Y , and its confidence is its support divided by the
support of its premises, and denotes the conditional probability that the conclusion of
the rule is satisfied when its premise is. Note that the confidence measure is neither
monotonic nor anti-monotonic, which excludes easy pruning the search space of
candidate association rules. Rules with low support may well have a high confidence
and be quite useful from an application viewpoint [48]. Local patterns may also be
combined to obtain global models (such as top-n patterns [24]) in order to reduce the
extracted patterns to the most “significant” ones, yielding an improved resistance to
noise in the data.

41.7.2 Mining Gene Regulation from Transcriptome Datasets

Frequent and constrained data mining algorithms have been applied to publicly avail-
able transcriptome datasets from various organisms. To fit with the previously intro-
duced framework, an item is a gene/transcription factor, a transaction is a condition/
observation, and frequent itemsets are co-regulated genes. Such techniques have at
least two major advantages with respect to classical statistical clustering techniques.
First, itemset mining techniques are able to build overlapping gene groups (i.e., a
gene that functions in numerous physiological pathways may be associated to several
groups), without limitations. Second, they allow the discovery of expression patterns
observed in a subset only of all the conditions examined, sometimes of relatively low
support.

Whatever organism tackled, expression datasets share three characteristics that
makes them quite different from market basket analysis datasets.

First, transcriptome data are continuous and therefore usually have to be dis-
cretized before being handled by a data mining algorithm1. Several techniques for
discretizing continuous datasets have been studied [29], some general ones and
some application-oriented ones. In the context of gene expression mining, we re-
fer to [56] that propose several application-oriented techniques as well as a tech-
nique to quantify information loss due to this reformulation step. Most often, gene
expression datasets are binarized. For instance, 1 means the gene is differentially ex-
pressed in the observed conditions, and 0 means that it is not. Some approaches [31]
handle three-valued gene-expression datasets, which allows the representation of
finer-grained gene variation (over-, normal, and under-expression). Discretization
can smooth the stochastic variations of gene expression and be a partial solution
to overfitting.

1Notice some association rule mining may handle data directly in a numeric format [37].

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.7 CONSTRAINT-BASED DATA MINING 967

Second, the number of attributes/items is very large with respect to the num-
ber of observations/conditions. As a consequence, the search space for frequent co-
expressed genes (i.e., the lattice L), is huge and an exhaustive level-wise type of
search is intractable unless the dataset is sparse, especially when mining constraints
are loose (support, number of gene in a co-expression cluster, etc.). As the com-
plexity of data mining algorithms is in the worst-case exponential with the number
of attributes/items, mining and biological expertise is used to reduce the number of
items considered.

Finally, noise, both experimental and by-product of diverse preprocessing steps
(normalization, discretization, etc.) occurs in the data, with the effects of increasing
the size of results, making it even more difficult to detect knowledge nuggets among
the results [44]. We will point out specific works in the following that address at least
one of these issues in a gene expression mining context.

Constrained Itemsets. Constrained itemset mining approaches try to establish
synexpression groups, that is, groups of genes whose expression is correlated in dif-
ferent biological situations. The system described in [40] extracts gene sets that are
positively and negatively correlated for three-valued datasets. In [52, 11], the authors
proposed to extract formal concepts (i.e., associations of closed gene sets and closed
conditions sets from gene expression data). These formal concepts are interesting for
biological interpretation because they can be seen as candidate transcription mod-
ules [10]. They build closed gene sets by manipulating a transposed version of the
expression context and by enumerating condition sets rather than gene sets, which
drastically improves the efficiency of the extraction method when the number of con-
ditions is small with respect to the number of genes. Besson et al. [9] propose the
D-miner algorithm, which is a general-purpose mining algorithm, dedicated to the
extraction of constrained bi-sets or formal concepts. This system is used to enrich
the extraction context with boolean information coding the association of transcrip-
tion factors with genes, when the information is available. This allows inferring more
relevant concepts, associating gene with both biological conditions and transcription
factors. Similarly, [69] looks for formal concepts observed in a number of different
datasets.

Association Rules. Association Rules Discovery has the goal of identifying sets
of genes whose expression is correlated [6, 23, 57, 22]. The kind of association rules
discovered is of the following form: When gene A and gene B are expressed, then
gene C is often expressed. Although association rules encode that the expression of
gene sets are correlated, this is clearly not sufficient to capture the complexity of
a regulation network. Still, let us mention here some successful attempts to extract
some local structure from gene expression datasets. Reference [6] uses the notion
of free itemsets in the context of SAGE expression analysis. An itemset m is free
if none of its subsets are linked within a strong association rule (i.e., a rule with
confidence 100%). Instead of finding individual association rules, FARMER [22]
finds interesting rule groups that are essentially a set of rules that are generated
from the same set of rows (conditions). Unlike conventional rule mining algorithms,

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

968 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

FARMER searches for interesting rules in the row enumeration space and exploits all
user-specified constraints, including minimum support, confidence, and chi-square to
support efficient pruning.

Unless very strict constraints are set on the expected association rules, the num-
ber of rules obtained is most of the time very high [23], which makes the interpreta-
tion task of biologists quite difficult. Some authors chose to enrich gene expression
datasets with external data sources in the aim of selecting relevant association rules
(i.e., Gene ontology [17] or data about bindings DNA-proteins (ChIP-chip) [57]).

LICORN (LearnIng CoOperative Regulation Networks). Elati et al. [31]
have recently proposed an original, scalable technique called Licorn for deriving
cooperative regulations, in which many co-regulators act together to activate or re-
press a target gene. Let us denote by R the set of genes with a known or putative
regulation activity and G as the set of genes without such an activity. The input
of the mining method is a discretized expression matrix for genes of R ∪ G. Each
expression value can take the value −1 (under-expressed), 0 (normal), or 1 (over-
expressed). A gene regulatory network (GRN) associated with a target gene g is a
pair (A, I), where A ⊆ R is a co-activator set, and I ⊆ R is a co-inhibitor set. The
set of GRNs for all target genes can also be seen as a bipartite graph where the top
layer contains regulators, the bottom layer contains target genes, and edges code for
a regulatory interaction between regulators and target genes, each edge being labeled
with a regulatory mode (i.e., activator or inhibitor). The regulation relations of in-
terest here are combinatorial: Each target gene has a number of activators and/or
inhibitors. Activators on the one side and inhibitors on the other side are aggregated
in the model through an extended logical ANDs (i.e., a regulator set S (activator
or repressor) is over-expressed (respectively, under-expressed) if and only if all the
regulators in S are over-expressed (respectively, under-expressed)). Finally, the Fig-
ure 41.5 describe a discrete function called Regulatory Program (RP), which, given
the combined states of activators A and inhibitors I of g in a sample s computes
ĝs(A, I), the estimated state of g in s. The main features of this regulation model are
therefore the explicit representation of activation and repression relationships for a
given target gene, and the representation of cooperative transcriptional regulation.

Licorn uses an original heuristic approach to accelerate the search for an appro-
priate structure for the regulation network. It first computes frequent co-regulator sets
(i.e., regulator sets that frequently occur together as over (1) or under (-1)-expressed
in the discretized expression matrix). This is done by using an extension of the Apri-
ori algorithm [1] to handle both 1 and -1 supports2. From this representation, a lim-
ited subset of candidate co-regulator sets is then associated with each gene. The
learning algorithm looks for each gene for regulator sets, which have a high “over-
lap” with the target gene. Intuitively, the overlap constraint checks the size of the
intersection between supports of the target gene and a given candidate co-regulator
set. A candidate activator set for a target gene g is frequently over-expressed when g

2The x-support of a co-regulator C in the three-valued expression matrix is the set of samples that include
all the regulators of C with the state x .

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.8 VALIDATION 969

Figure 41.5 Definition of the regulatory program RP, which interprets as follows: i) GRN con-
tains coactivators only; RP checks the correlation between the status of the target gene and
that of its regulators. ii) GRN contains coinhibitors only; RP checks the anticorrelation between
the status of the target gene and that of its regulators. iii) GRN contains both coactivators and
coinhibitors; this regulation program specifies a combinatorial interaction. For example, the tar-
get gene is over-expressed only when the coactivators are over-expressed and the coinhibitors
are not.

is over-expressed or frequently under-expressed when g is under-expressed. On the
opposite, a candidate repressor set for a target gene g is frequently over-expressed
when g is under-expressed and vice-versa. This search can be efficiently performed
because of the property of anti-monotonicity of the overlap constraint with respect to
set inclusion. Then, once a limited number of candidate activator and inhibitor sets
have been obtained, an exhaustive search for the best gene regulatory network can
be performed. Finally, a permutation-based procedure is used for selecting statisti-
cally significant regulation relations. Authors have shown in [31] that the cooperative
regulation patterns inferred by Licorn cannot be identified by clustering or pairwise
methods, and are only partly revealed by constrained Bayesian or decision tree-based
techniques, such as those used in previous studies [55, 59].

41.8 VALIDATION

Within the scope of network inference, the validation can essentially take two forms:
First the results of the learning algorithm have to be assessed by some quality mea-
sure in order to inform the biologist about the success or the failure of the inference
process. Second, if the learned model is considered as relevant according to the cri-
teria of statistical machine learning, it is mandatory to confront the model to new
sources of knowledge or data to confirm or infirm each piece of inferred information.
In the following, we will call the first kind of validation statistical validation and the
second one, biological validation. Statistical validation associates some confidence
scores to the links inferred in order to assess their likelihood, given the current model,

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

970 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

and also evaluate the robustness of the inference procedures to data variance. To
implement the biological validation step, the biologists and the computer scientist/
statistician can re-design appropriate additional experiments targeted toward the test
of the most relevant extracted pathways or they can screen the literature and mine
the existing biological databases for testing the validity of the hypothesis using in-
dependent sources of information. Alternately, most of the authors evaluate their
inference tool by exploited public data related to known networks in order to show
the quality of their approaches and present also extensive results on artificial data
generated from artificial networks, allowing an empirical study of the algorithm
behavior.

41.8.1 Statistical Validation of Network Inference

All algorithms described in Sections 41.5, 41.6, and 41.7 produce a final hypothesis
or a set of hypotheses. To complete the procedure of reverse modeling, a process
able to reject or accept the proposed modeling must be defined and applied. Note
that the produced hypothesis may be interesting regarding a subset of the involved
variables only and yet bring local but valuable information about the network. We
present in the following three methods that contribute to assess the quality of the
produced network.

Model Selection. Statistical estimation methods such as a bootstrap offer a con-
venient means to measure the sensitivity of some quality criterion to data variance,
especially when the posterior distribution Pr(D|M), where D is the data observed
and M is the inferred network, is unknown or difficult to estimate. Once a quality
criterion is fixed, a boostrap can be used to estimate the variance of this criterion
computed when the learning sample varies. This procedure allows are to measure to
what extent the algorithm provides a robust model. A boostrap is frequently used to
select a hypothesis among a set of candidate hypotheses: In machine learning, this is
the most general way to do model selection because no information about the back-
ground distribution is needed. This method has been used, for instance by [31], that
infers cooperative regulators GRN for a set of genes, in order to evaluate how unusu-
ally low the score of the best GRN is with respect to the scores that would have been
observed if there was no biological relationship between regulators and target gene
expression. The absence of a biological relationship between the target and candi-
date regulators in the GRN is checked, using random permutations of the samples
in the gene expression matrix. The problem of this approach is that, as thousands
of genes are tested simultaneously, we must then expect a high number of false-
positives among the networks retained. As a means of overcoming this problem, [7]
suggested the selection of a threshold making it possible to control the false discovery
rate (FDR), which corresponds to the expected proportion of false-positives among
selected GRNs. As the procedure they propose has only been shown to control the
FDR when the tests are independent, which is far from true for gene expression, the
more conservative procedure proposed by [8] can be used, which gives strong control
of the FDR for any dependence structure.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.8 VALIDATION 971

Cross-validation. One of the well-known difficulties for evaluating unsupervised
methods in the context of regulation network inference is that there is no objective
criterion for assessing what a “good” interaction between two genes is [68]. One
usual way to proceed, once the network has been inferred, is to transform the prob-
lem into a supervised learning one, in order to assess the inferred networks with the
range of estimation tools provided in a supervised learning context. The network can
then be seen as a classifier, able to predict the gene expression level of its target
gene, given the state of its regulators. For a prediction measure to be objective, it
must be evaluated on a validation set that has not been used to build the predictor.
Cross-validation is widely used in classification and learning theory. This approach
involves partitioning the observed population S into K subgroups S1, . . .SK . For
k = 1 . . . K , the predictor is built on the training population S \ Sk , and its perfor-
mance is evaluated on the test population Sk . In practice, ten-fold cross-validation is
often considered, as this method provides a fair estimate of the prediction error at a
reasonable computational cost (10 training runs with |S|

10 observations each). When
the dataset size is very limited, it is possible to use a single test example at each
validation step and to repeat | S | the validation step, this method is known as leave-
one-out.

Authors of [31] for instance use a 10-fold cross validation to evaluate Licorn’s
performance. The authors used MAE (Mean Average Error) as a measure of the dis-
crepancy between actual gene expression and gene expression inferred from the ac-
tivity of regulators through its GRN. Peer et al. [55] perform a 5-fold cross-validation
to study the performance of their Minreg system, assessing the capability of inferred
regulators to predict the gene expression level of their target gene. They have shown
that Minreg performs better than co-expression gene networks. Licorn significantly
outperformed Minreg on two yeast datasets (p-value in paired T -tests of 1.6 × 10−8

for the Spellman dataset and 6.7 × 10−9 for the Gasch dataset).

Prediction Performance on a Known Network. When learning algorithms are
applied to known networks (real or simulated), it is possible to evaluate the results
of the learning process in term of class prediction. The concept of regulation from
one gene (regulator) to another gene (target gene) is used as the class to be predicted.
The quality of a network inference system can be evaluated by measuring the num-
ber of true positive regulations (TP), the number of false-positive regulations (FP),
and the number of true negative regulations of this class (TN). Until now, we have
described an evaluation method that only takes into account a single measure: empir-
ical error. It can be useful, in a supervised context, to take into account finer grained
measures, such as the False-Positive and False-Negative rate. Indeed the costs of a
false-positive and a false-negative are usually not identical, and a higher error rate
can be preferred if it allows to reduce the highest cost errors. ROC curves (Receiver
Operating Characteristic) make it possible to tune this compromise [13]. However,
using ROC curves in order to evaluate the inferred networks implies that the real
underlying regulation network is available, which is not the case for most organisms.
As a consequence, the false-positive rate cannot be evaluated. The recent trend is to

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

972 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

use synthetic datasets obtained by simulating an artificial network [60] in order to
systematically assess the robustness of the inference algorithm to environmental and
internal parameters variations (e.g., noise, size of the training set, etc.). Recently, [27]
proposes a generator, SynTReN, that takes into account biological knowledge, and,
in particular, network topology. However, evaluation based on artificial datasets are
optimistic because the same model is used both for generating datasets and for infer-
ing the network.

41.8.2 Biological Validation

Network inference aims at helping the biologists to discover a new pathway and re-
fine existing ones. There are many ways to biologically validate infered networks.
The network infered is usually of a large size; in that case, post-processing of the re-
sults has to take place for extracting salient information to be proposed to the biolo-
gists. Many biologically pertinent questions about gene regulation and networks have
direct counterparts in graph theory and can be answered using well-established meth-
ods and algorithms on graphs. For example, one may wish to identify highly interact-
ing genes, resolve cascades of gene activity, compare gene networks (or pathways)
for finding high degree vertices, topological vertex ordering, and graph iso(homo)-
morphisms. For instance, analysis of the structure and organization of networks in-
ferred by Licorn revealed several notable features. In both stress response GRNs
(Gasch dataset) and cell cycle GRNs (Spellman dataset), the authors have studied
the number of interactions learned, the number of regulators/target genes, and vice
versa. They have found that the distribution of the out-going connectivity is best ap-
proximated by a power-law equation. This allowed us to detect regulator hubs [42]
with high out-going connectivity (e.g., the heat shock and osmolarity stress regula-
tor PPT1 regulates 300 target genes). Note that these cumulatively account for more
than 60% of the interactions in both datasets. For most regulators in both datasets,
a linear dependence was observed between the number of target genes regulated by
a given regulator and the number of co-regulators of that regulator. However, reg-
ulators from the Spellman dataset have a higher number of co-regulators than do
regulators from the Gasch dataset, indicating that there are more cooperative asso-
ciations between regulators in cell cycle GRNs. All these results are consistent with
recent advances [39, 45, 3] concerning the characterization of topological transcrip-
tional network features in yeast and provide the first evidence of the relevance of
inferred GRNs.

Some research teams have tried to cross-check the infered networks with addi-
tional sources of information. As far as yeast is concerned, a large amount of biolog-
ical knowledge is available: functional information, in the Saccharomyces Genome
Database [20], documented regulations in the YEASTRACT database [65], protein-
protein interactions in the BioGRID database [63]. Thus, the transcriptional networks
identified for yeast can be checked by comparison with various sources of informa-
tion. As an example, Segal et al. [59] exploit their module network approach for the
yeast cell cycle data, starting from a set of regulators candidates containing both pu-
tative and known transcription factors. First, biological validation consists of scoring

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

41.9 CONCLUSION AND PERSPECTIVES 973

the functional coherence of each module according to its gene covered by annota-
tions significantly enriched in the modules. Second, they test whether their method
correctly predicts targets of each regulator by analyzing the distribution of gene dif-
ferentially expressed in modules. Third, they try to identify the process regulated
by each regulator and thus corresponding to the modules. They selected three hy-
potheses suggested by the method, involving uncharacterized putative regulators and
processed the relevant yeast deletion strains. Altogether, two of the three regulators
were confirmed by the various additional sources of information including the new
experiments. Reference [31] evaluated the cooperativity between the coregulators
inferred by Licorn, based on two assumptions: (i) the existence of protein-protein
interactions between coregulators implies participation in the same regulation mech-
anism, and (ii) targets contributing to a similar biological process are regulated by
the same control mechanism.

Although most attempt to unraveling gene regulatory networks have focused on
yeast, we can notice the methods have begun to be applied to higher eukaryotes such
as mouse or human. Reference [5] used the system ARACNE for the reconstruction
of regulatory networks from expression profiles of human B cells. Their results sug-
gested a hierarchical, scale-free network where a few highly interconnected genes
(hubs) account for most of the interactions. Confrontation of the inferred network
against available data led to the identification of MYC as an important hub, which
controls known target genes as well as new ones, which were biochemically vali-
dated. The newly identified MYC targets include some major hubs. This approach
can be generally useful for the analysis of normal and pathology networks in mam-
malian cells.

41.9 CONCLUSION AND PERSPECTIVES

To understand most cellular processes, one must understand how genetic information
is processed. A formidable challenge is the dissection of gene regulatory networks to
delineate how eukaryote cells coordinate and govern patterns of gene expression that
ultimately lead to a phenotype. In this chapter, we have reviewed several approaches
for modeling gene regulatory networks and for reverse engineering such networks
from experimental observations. We have discussed three important unsupervised
learning models: co-expression network, Bayesian networks, and constrained item
set mining. This review attempted to highlight some of the methodological advan-
tages brought by machine learning as well as the difficult technical points yet to
be solved. Nevertheless, a first generation of tools have demonstrated on problems
of limited complexity and on biological case studies that network inference is pos-
sible but requires prior knowledge integration and dimension reduction to be scal-
able. Regarding these last points, unsupervised learning techniques have appeared
as a promising framework, supporting the management of uncertainty, the estima-
tion of hidden variables and modular approaches. From the literature, it appears that
the most interesting machine learning works are those that have been carefully val-
idated, both statistically and biologically. This suggests that in an ideal setting, the

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

974 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

computer scientists and the statisticians should be involved in the discovery process
from the beginning (i.e., from the experiment design to the biological validation of
the discovered hypotheses). Regarding this modeling and discovery process, there is
a large, open field for various learning applications and complex data analysis. We
therefore think that the use of machine learning in the process of discovery in system
biology is only at its infancy.

For this approach to be fully successful, several issues must be addressed. First,
such machine learning methods should exploit the wide knowledge stored in existing
databases in order to be able to confront these sources with experimental data from
the lab. Second, if network inference has to take place at the scale of a whole genome,
the detailed models must be replaced by hierarchical and modular approaches that
reduce the dimension of the search space. Third, integrative views that combine for
instance genetic networks, protein-protein interaction networks, and metabolic net-
works have not yet been worked out and must be considered. Finally, active learning
methods can be explored to suggest which interventions (i.e., knockouts or over-
expressions) should be performed in order to increase our knowledge about the gene
network structure.

REFERENCES

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items
in large databases. Proceedings of the International Conference on Management of Data,
1993, pp. 207–216.

2. E. Alm and A.P. Arkin. Biological networks. Curr Opin Struct Biol, 13:193–202, 2003.

3. S. Balaji, M.M. Babu, L.M. Iyer, N.M. Luscombe, and L. Aravind. Comprehensive anal-
ysis of combinatorial regulation using the transcriptional regulatory network of yeast.
J Mol Biol, 360:204–212, 2006.

4. A.L. Barabasi and Z.N. Oltvai. Network biology: Understanding the cell’s functional or-
ganization. Nat Rev Genet, 5:101–113, 2004.

5. K. Basso, A.A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and A. Califano.
Reverse engineering of regulatory networks in human B cells. Nat Genet, 37:382–390,
2005.

6. C. Becquet, S. Blachon, B. Jeudy, J.F. Boulicaut, and O. Gandrillon. Strong-association-
rule mining for large-scale gene-expression data analysis: A case study on human sage
data. Genome Biol, 3: research0067.1–research0067.16, 2002.

7. Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and pow-
erful approach to multiple testing. J Roy Stat Soc, 57:289–300, 1995.

8. Y. Benjamini and Y. Yekutieli. The control of the false discovery rate in multiple testing
under dependency. Ann Stat, 29:1165–1198, 2001.

9. J. Besson, C. Robardet, J.F. Boulicaut, and S. Rome. Constraint-based concept mining
and its application to microarray data analysis. Intell Data Anal, 9:59–82, 2005.

10. E. Birmele, M. Elati, C. Rouveirol, and Ch. Ambroise. Identification of functional mod-
ules based on transcriptional regulation structure. BMC Proceedings, 2:S4, 2008.

11. S. Blachon, R.G. Pensa, J. Besson, C. Robardet, J.F. Boulicaut, and O. Gandrillon. Clus-
tering formal concepts to discover biologically relevant knowledge from gene expression
data. In Silico Biol, 7:467–483, 2007.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

REFERENCES 975

12. C. Borgelt. Efficient implementations of apriori and eclat. 1st Workshop of Frequent Item
Set Mining Implementations, 2003.

13. A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recogn, 30:1145–1159, 1997.

14. P. Brazhnik, A. de la Fuente, and P. Mendes. Gene networks: How to put the function in
genomics. Trends Biotechnol, 20:467–472, 2002.

15. A.J. Butte and I.S. Kohane. Mutual information relevance networks: Functional genomic
clustering using pairwise entropy measurements. Pacific Symposium in Biocomputing,
2000, pp. 418–429.

16. T. Calders, C. Rigotti, and J.F. Boulicaut. A survey on condensed representations for
frequent sets. Constraint-Based Mining and Inductive Databases, volume 3848, Springer,
New York, 2004, pp. 64–80.

17. P. Carmona-Saez, M. Chagoyen, A. Rodriguez, O. Trelles, J. Carazo, and A. Pascual-
Montano. Integrated analysis of gene expression by association rules discovery. BMC
Bioinformatics, 7:54, 2006.

18. S.L. Carter, C.M. Brechbuhler, M. Griffin, and A.T. Bond. Gene co-expression network
topology provides a framework for molecular characterization of cellular state. Bioinfor-
matics, 20:2242–2250, 2004.

19. Y.H. Chang, Y.C. Wang, and B.S. Chen. Identification of transcription factor cooperativity
via stochastic system model. Bioinformatics, 22:2276–2282, 2006.

20. J.M. Cherry, C. Adler, C. Ball, S.A. Chervitz, S.S. Dwight, E.T. Hester, Y. Jia, G. Juvik,
T. Roe, M. Schroeder, S. Weng, and D. Botstein. SGD: Saccharomyces Genome Database.
Nucleic Acids Res, 26:73–79, 1998.

21. D.M. Chickering. Optimal structure identification with greedy search. J Mach Learn Res,
3:507–554, 2002.

22. G. Cong, A.K.H. Tung, X. Xu, F. Pan, and J. Yang. FARMER: Finding interesting rule
groups in microarray datasets. Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, Paris, France, 2004, pp. 143–154.

23. C. Creighton and S. Hanash. Mining gene expression databases for association rules.
Bioinformatics, 19:79–86, 2003.

24. B. Crémilleux and A. Soulet. Discovering knowledge from local patterns with global
constraints. Proceedings of the International Conference on Computational Science and
Its Applications, Part II, Perugia, Italy, Springer-Verlag, New York, 2008, pp. 1242–1257.

25. F. D’Alché Buc. Inference of biological regulatory networks: Machine learning ap-
proaches. In François Képès, editor, Biological Networks, World Scientific, Singapore,
2008, pp. 41–83.

26. A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes. Discovery of meaningful asso-
ciations in genomic data using partial correlation coefficients. Bioinformatics, 20:3565–
3574, 2004.

27. T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Verschoren,
B. De Moor, and K. Marchal. SynTReN: A generator of synthetic gene expression data
for design and analysis of structure learning algorithms. BMC Bioinformatics, 7:43, 2006.

28. P. D’haeseleer, S. Liang, and R. Somogyi. Genetic network inference: From co-expression
clustering to reverse engineering. Bioinformatics, 16:707–726, 2000.

29. J. Dougherty, R. Kohavi, and A. Sahami. Supervised and unsupervised discretization of
continuous features. Machine Learning: Proceedings of the Twelfth International Confer-
ence, 1995, pp. 487–499.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

976 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

30. S. Draghici. Data Analysis Tools for DNA Microarrays. Chapman & Hall/CRC, Boca
Raton, FL, 2003.

31. M. Elati, P. Neuvial, M. Bolotin-Fukuhara, E. Barillot, F. Radvanyi, and C. Rouveirol.
LICORN: Learning cooperative regulation networks from gene expression data. Bioin-
formatics, 23:2407–2414, 2007.

32. L. Elnitski, V.X. Jin, P.J. Farnham, and S.J.M. Jones. Locating mammalian transcription
factor binding sites: A survey of computational and experimental techniques. Genome
Res, 16(12):1455–1464, 2006.

33. J. Faith, B. Hayete, J.T. Thaden, I. Mogno, J. Wierzbowski, G. Cottarel, S. Kasif, J.J.
Collins, and T.S. Gardner. Large-scale mapping and validation of Escherichia coli tran-
scriptional regulation from a compendium of expression profiles. PLoS Biol, 5:e8, 2007.

34. N. Friedman. Inferring cellular networks using probabilistic graphical models. Science,
303:799–805, 2004.

35. N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian network to analyze
expression data. Comput Biol, 7:601–620, 2000.

36. A.W. Fu, R.W. Kwong, and J. Tang. Mining n-most interesting itemsets. Proceedings
of the 12th International Symposium Foundations Intelligent Systems (ISMIS), Springer-
Verlag, New York, 2000, pp. 59–67.

37. E. Georgii, L. Richter, U. Ruckert, and S. Kramer. Analyzing microarray data using quan-
titative association rules. Bioinformatics, 21:123–129, 2005.

38. B. Goethals and M.J. Zaki. Advances in frequent itemset mining implementations: Intro-
duction to FIMI03. FIMI, volume 90, 2003.

39. N. Guelzim, S. Bottani, P. Bourgine, and F. Képès. Topological and causal structure of
the yeast transcriptional regulatory network. Nat Genet, 31:60–63, 2002.

40. L. Ji and K. L. Tan. Mining gene expression data for positive and negative co-regulated
gene clusters. Bioinformatics, 20:2711–2718, 2004.

41. L. Ji and K. L. Tan. Identifying time-lagged gene clusters using gene expression data.
Bioinformatics, 21:509–516, 2005.

42. T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, N.M. Hannett,
C.T. Harbison, C.M. Thompson, I. Simon, J. Zeitlinger, E.G. Jennings, H.L. Murray, D.B.
Gordon, B. Ren, J.J. Wyrick, J.B. Tagne, T.L. Volkert, E. Fraenkel, D.K. Gifford, and
R.A. Young. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science,
298:799–804, 2002.

43. W.P. Lee and W.S. Tzou. Computational methods for discovering gene networks from
expression data. Brief Bioinformatics, 10:408–423, 2009.

44. J. Liu, S. Paulsen, W. Wang, A. Nobel, and J. Prins. Mining approximate frequent itemsets
from noisy data. Proceedings of the Fifth IEEE International Conference on Data Mining,
IEEE Computer Society, Piscataway, NJ, 2005, 721–724.

45. N.M. Luscombe, M.M. Babu, H. Yu, M. Snyder, S.A. Teichmann, and M. Gerstein.
Genomic analysis of regulatory network dynamics reveals large topological changes. Na-
ture, 431:308–312, 2004.

46. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Min Knowl Discov J, 1:241–258, 1997.

47. F. Markowetz and R. Spang. Inferring cellular networks—a review. BMC Bioinformatics,
8 (Suppl 6):S5, 2007.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

REFERENCES 977

48. S. Chawla and T. McIntosh. High confidence rule mining for microarray analysis.
IEEE/ACM Trans Comput Biol Bioinform, 4(4):611–623, 2007.

49. M. Middendorf, A. Kundaje, C. Wiggins, Y. Freund, and C. Leslie. Predicting genetic
regulatory response using classification. Bioinformatics, 20:232–240, 2004.

50. T.M. Mitchell. Machine Learning. McGraw Hill, New York, 1997.

51. R.T. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning opti-
mizations of constrained associations rules. SIGMOD Rec, 27(2):13–24, 1998.

52. F. Pan, G. Cong, A.K.H. Tung, J. Yang, and M.J. Zaki. Carpenter: Finding closed patterns
in long biological datasets. KDD ’03: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2003, pp. 637–642.

53. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning closed itemset lattices for
association rules. Actes 14ème Conférence Bases de Donnes Avances (BDA’98), 1998,
pp. 177–196.

54. J. Pearl. On the connection between the complexity and credibility of inferred models. Int
J Gen Syst, 4:255–264, 1978.

55. D. Pe’er, A. Regev, and A. Tanay. Minreg: Inferring an active regulator set. Bioinformat-
ics, 18:258–267, 2002.

56. R.G. Pensa, C. Leschi, J. Besson, and J.F. Boulicaut. Assessment of discretization tech-
niques for relevant pattern discovery from gene expression data. Proceedings of the
4th ACM SIGKDD Workshop on Data Mining in Bioinformatics BIOKDD’04, 2004,
pp. 24–30.

57. T.H. Pham, K. Satou, and T.B. Ho. Mining yeast transcriptional regulatory modules from
factor dna-binding sites and gene expression data. Genome Inform, 15:287–295, 2004.

58. M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative monitoring of gene expres-
sion patterns with a complementary dna microarray. Science, 70:467–470, 1995.

59. E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Mod-
ule networks: Identifying regulatory modules and their condition-specific regulators from
gene expression data. Nat Genet, 34:166–176, 2003.

60. V.A. Smith, E.D. Jarvis, and A.J. Hartemink. Evaluating functional network inference
using simulations of complex biological systems. Bioinformatics, 18:216S–224S, 2002.

61. R. Somogyi and H. Kitano. Gene expression and genetic networks. Pacific Symposium in
Biocomputing, 1999, pp. 3–4.

62. P. Spirtes, C. Glymour, R. Scheines, S. Kauffman, V. Aimale, and F. Wimberly. Con-
structing Bayesian network models of gene expression networks from microarray data.
Proceedings of the Atlantic Symposium on Computational Biology, Genome Information
Systems and Technology, 2000.

63. C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers. BioGRID:
A general repository for interaction datasets. Nucleic Acids Res, 34:535–539, 2006.

64. R. Steuer, J. Kurths, C.O. Daub, J. Weise, and J. Selbig. The mutual information: De-
tecting and evaluating dependencies between variables. Bioinformatics, S18:231–240,
2002.

65. M.C. Teixeira, P. Monteiro, P. Jain, S. Tenreiro, A.R. Fernandes, N.P. Mira, M. Alenquer,
A.T. Freitas, A.L. Oliveira, and I. Sa-Correia. The YEASTRACT database: A tool for
the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic
Acids Res, 34:446–451, 2006.

P1: OSO
c41 JWBS046-Elloumi December 2, 2010 9:57 Printer Name: Sheridan

978 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE

66. L. Torgo. Functional models for regression tree leaves. Proceedings of the 14th Interna-
tional Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1997,
pp. 385–393.

67. R.S. Wang, X.S. Zhang, and L. Chen. Inferring transcriptional interactions and regulator
activities from experimental data. Mol Cells, 24:307–15, 2007.

68. F.C. Wimberly, T. Heiman, J. Ramsey, and C. Glymour. Experiments on the accuracy
of algorithms for inferring the structure of genetic regulatory networks from microarray
expression levels. Proceedings of the IJCAI 2003 Bioinformatics Workshop, 2003.

69. X. Zhang and W. Wang. An efficient algorithm for mining coherent patterns from
heterogeneous microarrays. 19th International Conference on Scientific and Statistical
Database Management, 2007, SSBDM ’07, 2007, p. 32.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42
APPROACHES TO

CONSTRUCTION AND
ANALYSIS OF

MICRORNA-MEDIATED
NETWORKS

Ilana Lichtenstein, Albert Zomaya, Jennifer Gamble, and Mathew Vadas

42.1 INTRODUCTION

42.1.1 miRNA-mediated Genetic Regulatory Networks

A genetic regulatory network (GRN) can be thought of as a network made up of
molecular species and their interactions, which together control the levels of gene ex-
pression and end products in that network. The research effort to create formal mod-
els of GRNs and develop tools to infer such models by integrating high-throughput
data and other data sources is a well-established field in systems biology.

Consistent with traditional dogma in theoretical biology, models of GRNs have
to date focused on identifying protein-mediated regulation of gene transcription
by transcription factors (TFs). However, modern theoretical biology postulates that
complexity in higher organism GRNs may be mediated via alternative mechanisms
involving sequence-specific binding of noncoding RNA (nc-RNA) molecules to a
range of targets [49]. nc-RNAs have been implicated in regulation of gene ex-
pression programs at many levels, including chromatin modification, transcription,

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

979

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

980 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

alternative splicing, RNA modification, RNA editing, mRNA translation, RNA sta-
bility, and cellular signal transduction and trafficking pathways.

Computational methods and tools must be adapted to provide accurate and mean-
ingful models of GRNs in light of changing paradigms in biology, with increased
focus on nc-RNAs. This chapter reviews the application of computational methods
to modeling GRNs, or parts of GRNs, where microRNAs (miRNAs) function as im-
portant regulators of network behavior. We have focused on miRNA-mediated regu-
lation because miRNAs are a relatively well-studied class of ncRNAs, and because
they operate on a large scale, targeting a high number of genes in the genome, and
thereby regulating many important biological processes.

microRNAs (miRNAs) are a class of small regulatory nc-RNAS that are ∼22 nt
long. miRNAs are transcribed in the nucleus as pri-miRNAs after which the tran-
script is processed into a 60–70-nt hairpin structure (pre-miRNA), with the ma-
ture miRNA located on one or both arms of the hairpin stem. The hairpin struc-
ture is transported to the cytoplasm where it is further processed and the mature
miRNA transcript is released. See [7] for further details of the miRNA biogenesis
pathway.

miRNAs are thought to play a role in developmental timing, cell proliferation,
apoptosis, metabolism, and morphogenesis [1, 2] and to play a role in many can-
cers [47]. miRNAs are believed to regulate cellular programs at multiple levels;
however, the most well-studied level is translational repression, which is mediated
through miRNA antisense complementary binding to a target region in the 3’UTR
of a mRNA target. It is believed that in plants miRNA perfectly binds mRNA sub-
strates, which initiates degradation of the transcript [20]. In animals, it is thought
that miRNAs sometimes bind weakly with imperfect complementarity to their tar-
get, which leads to translational repression at the site of the ribosome [2, 7, 13].
However, other studies have demonstrated that some miRNAs act at the mRNA
transcript level in both plants and animals through degradation or deadenylation
[4, 45].

There are now 8619 known miRNA hairpin loci according to the miRBase
Sequence Database [25, 26, 27] (miRBase, v.12.0, September 2008). At least 10–
40% of genes are regulated by miRNAs in vertebrates, insects, and nematodes
(reviewed in [28]), with many target transcripts thought to be targeted by coexpressed
miRNAs [39].

miRNAs therefore affect cell behavior. Such effects can be seen qualitatively and
quantitatively with mathematical models of network dynamics. However, such mod-
els rely on proper understanding of the underlying network structure and properties.
Thus, there is much motivation to develop tools that can aid in computational infer-
ence of the structure and behavior of components that make up miRNA-mediated
networks.

Conceptually, one might expect GRNs that incorporate miRNA-mediated mecha-
nisms of control to share similar types of network components, interactions, and ar-
chitectural properties with TF-mediated networks because TF-mediated and miRNA-
mediated control of gene expression share many common functional characteristics.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.1 INTRODUCTION 981

Both are trans-acting molecules that activate or repress genes via hardwired cis-
regulatory binding sites, and both use coordinated and cooperative target binding to
fine-tune their instructions contextually [31]. We might therefore expect that simi-
lar formalisms and reconstruction methods may be applied and adapted to describe,
infer, and analyze these networks.

42.1.2 The Four Levels of Regulation in GRNs

According to Babu et al. [3] transcription regulatory networks (TRNs) may be con-
sidered to have four layers of regulation. TRNs are a subset of GRNs that focus
on transcriptional control and, thus, are a good representative of GRNs for the pur-
pose of categorizing layers of regulation. At the lowest level, individual regulatory
molecules and their targets interact directly according to biochemical reaction laws.
At the next level up, local circuits are formed by interconnecting individual interac-
tions. Such circuits can perform operations on input signals, leading to a change in
form or quantity of one or more output components. Circuits can be considered to
be patterns defined by graphical properties such as number of nodes and edges, and
edge directionality. Where these patterns are found to be overrepresented in a TRN
or GRN against the expected number of such patterns in randomly generated net-
works, they are termed network “motifs.” At the next level up, transcription modules
are identified as sets of genes that show some measure of similarity to one another
within each module, and some measure of independence from genes in other mod-
ules, where the level of similarity or difference is determined by properties of the
genes such as promoter sequences or expression profiles (i.e., clustering). At the
highest level, the TRN comprises an integrated network comprising the interaction
of the individual modules [3]. Figure 42.1 describes the four levels of detail with
which we can conceive a GRN.

(b)

TF-1

L2 (c) L3 (d) L4(a) L1

hsa-let-7c

hsa-let-7cTRIM71 TRIM1

Figure 42.1 GRNs can be conceptualized at four levels of detail. (a) Level 1 displays di-
rect interactions between genes. (b) Level 2 displays circuits made up of level 1 interactions.
(c) Level 3 displays modules of genes comprising many circuits, where each module displays
semi-independent behavior. (d) Level 4 conceptualization of the network contains all possible
interactions, circuits, and modules.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

982 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

42.1.3 Overview of Sections

Section 42.2 reviews efforts to identify the basic components and interactions—
miRNA genes, their transcription properties and regulators, and their mRNA
targets—which make up miRNA-mediated networks. Computational research into
predicting these low-level components and interactions is extensive, and the section
does not provide an exhaustive discussion of such research but provides a high-
level overview, referring the reader to more detailed reviews where appropriate.
Section 42.3 reviews methods that identify network subgraphs at the circuit level
(level 2) and the module level (level 3). Section 42.3.1 describes studies that identify
individual circuits by integrating miRNA-mediated basic interactions with other val-
idated interactions (i.e., forward engineering of the network). These methods are
straightforward, and the subsection only exists to contrast against reverse-
engineering approaches. Section 42.3.2 reviews efforts to identify modules compris-
ing genes (including miRNAs in some instances) where there is evidence that those
genes within each module share similar properties. In the case of miR-mediated net-
work, the concept of a “module” is somewhat different to a transcriptional mod-
ule. Properties that define miRNA-mediated modules include (dis)expression levels
of the miRNAs and mRNAs under various conditions, and the gene or miRNA se-
quences that may bind common regulators (TFs or miRNAs). These methods often
involve reverse-engineering modules from high-throughput data using statistical or
machine learning techniques, where constraints are imposed by stored prior biologi-
cal knowledge (e.g., miRNA-target knowledge and conservation requirements).

Section 42.4 reviews studies into global and local topological properties of
miRNA-containing networks and efforts to map network motifs to suggested miRNA
cellular functions.

42.2 FUNDAMENTAL COMPONENT INTERACTION RESEARCH:
PREDICTING MIRNA GENES, REGULATORS, AND TARGETS

There are few miRNA-spanning networks that are experimentally mapped out and
well understood. Instead, the process of reconstructing miRNA-containing networks
has mostly been done in a somewhat piecemeal fashion, with each research study
leading to the addition of one likely connection (molecular interaction) that may
form part of many different miRNA-containing networks. Computational prediction
of such interactions involves methods that screen genomes searching for the presence
of statistically improbable features that are characteristic of the interaction type. For
example, to find potential miRNA regulators, features searched for include transcrip-
tion factor binding sites (TFBS) in the promoter or enhancer regions of genes, or for
potential miRNA-target interactions, complementarity binding seeds in 3’UTR re-
gion of target mRNA transcripts. Often, multiple genomes are screened to assess fea-
ture conservation across species. Predicted and validated interactions are compiled
into online catalogues that can be searched online or downloaded (see discussion
below).

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.2 FUNDAMENTAL COMPONENT INTERACTION RESEARCH 983

42.2.1 Prediction of Novel miRNA Genes

Chaudhuri and Chatterjee provide a comprehensive survey of computational methods
developed to predict novel miRNA genes, including plant and viral miRNAs [14].
Many methods involve searching candidate sequences in genomes for features that
suggest the presence of a pre-miRNA hairpin. See, also, Leung et al. in [43]. The
features searched for include free energy of the putative miRNA hairpin (indicating
thermodynamic stability), the number of paired bases in the stem (indicating struc-
tural accessibility for enzymes to cleave mature miRNA), and the sizes of the loops
and bulges indicating the ability of mature miRNA to be loaded into the RISC com-
plex in which it travels to the target [62].

Xie et al. screened the promoter regions and 3’UTR regions of protein coding
genes across human, mouse, rat, and dog genomes in a multipart study to identify
novel putative miRNA genes by searching for potential binding sites in 3’UTRs
of target genes [84]. Their study involved searching for highly conserved (HC) se-
quence motifs in 3’UTRs, which are sequences of a certain length that have a sig-
nificantly high ratio of conserved occurrences across four species against a set of
random background sequences sampled from the same region in the human genome.
When searching for HC motifs in 3’UTRs, they found 106 HC motifs in the 3’UTRs,
identified a directional bias in the HC motifs with respect to DNA strand, and found a
peak in the number of HC motifs of length 8. Of note, no similar peak was found for
motifs during similar studies in the promoter region of genes. An analysis of a selec-
tion HC 8-mer motifs were clustered into 72 HC similar motifs that matched 46% of
the full set of 3’UTR motifs. They then screened for new miRNA genes by searching
the four aligned genomes for sequences complementary to the 72 3’UTR 8-mers. Se-
quences flanking the conserved site were then evaluated with the RNAfold program
to identify those with stable stem-loop structures. At the time of the study, there were
222 known miRNA genes, 113 of which were found in the HC sequences. The study
further predicted 129 new miRNA genes from these sequences. Of a representative
set of 12 predicted genes, 6 were validated to be genes expressed in adult tissues.
The authors conclude approximately 45% of the HC motifs are related to miRNAs.

Studies such as Xie et al. can assist in the identification of novel microRNAs;
however, as the authors discuss, many (around half) of the known miRNAs were not
found to bind to highly conserved motifs. This suggested to the authors that many
miRNAs may bind regions outside the 3’UTR, or may be partially complementary to
their targets. Many miRNAs may evolve rapidly and are thus not highly conserved,
nor do they possess highly conserved targets. Indeed, some studies predict that there
may be up to 800 human miRNAs [10] (or up to around 1000 miRNAs conserved
across vertebrates [11]). If indeed variation across genomes is highest at the level
of nc-RNAs, then using conservation as a screening criteria may limit the ability
to detect recently evolved, species-specific miRNAs. Thus, when building miRNA
networks from the bottom up (i.e., linking known components), it is important to be
aware that we do not yet have a complete inventory of miRNAs, including the many
species-specific miRNAs.

The reader is referred to Chaudhuri and Chatterjee for further studies.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

984 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

42.2.2 Prediction of miRNA Targets

An even larger effort has focused on identifying specific miRNA target sites in
mRNAs. Many researchers have developed mRNA target prediction algorithms, and
there exist several online databases that predict binding sites and target genes of in-
dividual miRNAs. Many of these websites contain precompiled lists (catalogues) of
miRNA target predictions, such as PicTar [39], TargetScan [41], and TargetScanS
[42]. Good reviews of target prediction algorithms exist elsewhere [14, 28, 60].

These methods have varying levels of accuracy, and in practice, studies often com-
bine results from different online databases (which use different sets of the above cri-
teria in their search algorithms) to reduce noise in the overall prediction. Sethupathy
et al. [60] evaluate the performance of five well-known target prediction algorithms
against experimentally validated targets from TarBase [61]. The study also evaluates
the success of predictions based on unions and intersections of the different methods.

Sethupathy et al.’s study and others reveal that there is still great diversity among
the target prediction algorithms. For example, in the study by Sethupathy et al.,
the intersection of PicTar and TargetScanS in detecting conserved miRNA-target
gene interactions from an unbiased dataset achieved just slightly less sensitivity
(56.7%) than either program individually (64.3% for TargetScanS and 63.2% for
PicTar). However, adding miRanda to the intersection dropped the sensitivity to
nearly 40%, and adding either DIANA-microT or TargetScan to the intersection re-
duced to around 10%. Further research has raised concerns regarding reliance on
unions and intersections of target prediction tools [55]. Thus, use of target prediction
algorithms need to be treated with caution.

Up to 90% of target genes have been validated with assays in some target pre-
diction algorithms [54]. TarBase provides a list of experimentally verified target pre-
dictions, including annotations. The TargetCombo website (http://www.diana.pcbi
.upenn.edu/cgi-bin/TaretCombo.cgi) provides precompiled lists of results from se-
lected combinations of programs that are discussed.

42.2.3 Prediction of miRNA Transcript Elements
and Transcriptional Regulation

Efforts to understand direct miRNA interactions can be improved by incorporating
information on the miRNA transcriptome. Such studies assist in locating and analyz-
ing promoter and enhancer elements of miRNA genes, which provide information
on which TFs regulate the gene, and under which conditions. Large-scale screening
of genomic regions upstream and downstream of putative or known miRNA genes
have shed light on the transcriptional apparatus of miRNAs.

Little is known about transcripts of independently transcribed miRNAs, including
intergenic miRNAs, miRNAs that are intronic but antisense to their host gene, or
intronic miRNAs that may lie in sense to their host gene yet possess autonomous
transcription machinery. On the other hand, transcriptional apparatus of intragenic
miRNAs that are thought to be transcribed together with their host gene may be
better understood where transcription of the host gene has been explored.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.2 FUNDAMENTAL COMPONENT INTERACTION RESEARCH 985

Ohler et al. studied upstream and downstream regions of 88 independent and
13 co-transcribed miRNA stem-loop foldbacks in Caenorhabditis elegans [52]. The
search was motivated by the desire to improve the performance of their miRNA gene
finding algorithm, miRScan by identifying additional sequence features of miRNA
genes with which to train the model. The authors first searched for conserved up-
stream or downstream regions of candidate genes in order to search for features
within these regions. A peak was found in conservation about 200 bp upstream of
the conserved stem-loop foldbacks. The authors then searched from motifs in these
regions, using both an enumerative word-based algorithm, the ST algorithm, based
on an approached described by Sinha and Tompa [66], and an alignment-based motif
finding tool, MEME [5]. Both algorithms identified one highly significantly mo-
tif that was overrepresented in the upstream region of independently transcribed
miRNAs, which was not found in co-transcribed miRNAs or other genes. The authors
also used the algorithms to search for motifs in the upstream regions of miRNAs in
mammals and Drosophila melanogaster.

Sethupathy et al. investigated the location of promoter regions of intergenic
miRNAs in human and mouse by assembling contiguous ESTs downloaded from
dbEST, which overlap the intergenic miRNA precursor sequences [59]. They then
searched for motifs in the upstream regions of the putative primary transcripts and
scanned significant motifs for vertebrate TFBS. Several sites were found to recruit
TFs known to be involved in development. Furthermore, the authors investigated
whether miRNAs expressed in a tissue-specific manner possess any specific motifs
or TFBS not shared by other miRNAs. After clustering miRNAs according to
expression profiles based on northern blots and microarrays, they selected the
brain cluster for further investigation and searched for upstream motifs and TFBS
of miRNA genes within the cluster. However, due to limited ESTs in the dbEST
database, none of the miRNAs in the brain cluster had EST support so no putative
primary transcript was created, and thus, the study was limited to searching upstream
of the precursor sequence.

Gu et al. studied the expression profile of mammalian intergenic miRNAs by
matching expressed sequence tags (ESTs) downloaded from dbEST to miRNA flank-
ing sequences [29]. The authors argue that this provides a cheaper and faster alterna-
tive to microarrays and cloning to study microRNA expression patterns. RT-PCR was
performed to confirm the expression of miRNAs matched to the predicted ESTs. In-
formation on miRNA expression behavior could then be gleaned from the annotation
of the matched EST.

Similar studies exist that have examined the promoter regions of plants [50, 75].
Xie et al. identified the promoters of 52 Arabidopsis thaliana microRNA genes and
showed that most of them have TATA-boxes in their core promoters [75].

Zhou et al. studied and characterized promoter regions of intergenic miRNAs
on a genome-wide scale in four species, including human, nematode, and plant
species [78]. The authors acknowledged the difficulty of building a prediction model
based on learning key cis-regulatory elements due to the variability in the presence of
elements found in promoter regions of known genes, and further due to the relatively
unchartered area of miRNA promoter analysis. In the first part of the study, they

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

986 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

built a classifier that could discriminate between input sequences that were Pol II
promoters, Pol III promoters, and random intergenic sequences. For each species,
two classifiers were used, one based on a decision tree model, whereas the other
employed a support vector machine.

The features used to train the model comprised k-mers that were found to be
overrepresented in known Pol II promoters, Pol III promoters, and random genes.
The machines were trained using a feature vector for each promoter that specified the
number of statistically overrepresented motifs present in that gene for each feature.
The authors used 10-fold cross-validation to assess the accuracy of the classifiers.
They further developed a novel promoter prediction algorithm, CoVote, which they
used to predict novel promoters for the intergenic miRNAs in the four species. The
model is trained using motifs obtained from upstream regions of known Pol II genes.
A decision tree (DT) model is used to classify segments of an input sequence in a core
promoter class (Pol II or random), and the path to the leaf node in the DT specifies
the set of motifs present in the segment. Leaves of the tree are weighted according
to the number of segments that have followed the same sequence motif path to arrive
there and, thus, reveals common votes for this path by other segments, hence, the
name common query voting (coVote). Each miRNA gene is then considered to have
a core promoter region as a concatenation of the segments found in its upstream
region whose leaf node is scored above a cutoff score.

Their study confirmed prior studies suggesting that many microRNAs share com-
mon elements in their promoters to protein-coding genes and are therefore likely to
be transcribed by RNA polymerase II (Pol II). They identified many cis-regulatory
elements common to intergenic miRNA promoter regions in all four species, and
some that are species specific.

Lee et al. developed a method that screened the upstream regions of known hu-
man miRNA genes to identify cis-regulatory motifs (CRMs) de novo [40]. The back-
ground sequences were taken from the genome of interest to ensure they represented
the true background distribution of sequences given high representation of some se-
quences due to effects of evolution of the genome (e.g., genomic expansion). CRMs
also could be used to identify miRNAs that are likely to be regulated by the CRMs.
The CRMs identified could be used to predict TFBS de novo. Top-scoring CRMs
were compared against a set of motifs known to be binding sites of human tran-
scription factors in the TRANSFAC database [48]. A vast number of CRMs found
upstream of the miRNA genes also were located within 500 nt of protein-coding
genes, suggesting similar factors control transcription of genes and miRNAs.

The authors identified miRNAs that they predicted were combinatorially con-
trolled by TFs due to the existence of multiple CRMs in the upstream region. The
study then focused on 48 miRNA genes that were predicted to be regulated by the
top 50 hexamer CRMs. Using information on TF-CRM and CRM-miRNA inter-
actions, the authors predicted that several TFs regulated all 48 miRNAs, and thus,
the TFs were considered to be master regulators of miRNA expression. Several
miRNAs were predicted to be combinatorially regulated by several CRMs (e.g., miR-
132 was predicted to be regulated by 24 CRMs), suggesting that miRNA expression
is finely controlled, and supporting the notion that faults in a complex transcriptional
coordination program may underlie miRNA misexpression in cancer.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.2 FUNDAMENTAL COMPONENT INTERACTION RESEARCH 987

To investigate properties of the intergenic miRNA transcript more generally, Saini
et al. analyzed the genomic location of several transcription elements relative to 474
human pre-miRNAs in miRBase [56]. The features analysed were transcription start
sites, CpG islands, ESTs, TF-binding sites, expression ditags, and poly(A) signal
predictions. Combining results of the analysis of each of these features, the authors
can delineate several 5′ and 3′ boundaries of a transcript region for each miRNA or
for cluster of miRNAs. Of interest, it was found that the transcripts of a significant
fraction of intergenic miRNAs were 3–4 kb in length, with a small fraction of longer
transcripts up to 6 kb.

The location of the TSS for intergenic regions were peaked within 2 kb upstream
of pre-miRNA start, with a smaller peak at 9–10 kb upstream. This was in con-
trast to intronic pre-miRNAs whose TSS peaked at around 2–6 kb upstream. Many
miRNAs clustered within a distance of 10 kb were found to share a similar TSS,
and the authors concluded these miRNAs are co-transcribed. A significant pro-
portion (40%) of CpG islands were found to be overlapping with predicted TSS
sites within 4 kb upstream. Poly(A) signals that predict 3′ boundaries peaked at
2 kb downstream of the pre-miRNA. Results obtained from the large-scale ge-
nomic study were validated using miRNA expression data via EST matches and
gene identification signature-paired-end digtags (GIS-PET). The authors produced
a canonical structure of the mammalian miRNA primary transcript based on their
findings.

In a follow-up study, Saini et al. extended their study into the transcript boundaries
of pri-miRNA to regions conserved across species in order to identify “consensus
features” that are features conserved across pri-miRNAs in multiple sequences [57].

Fujita et al. adopted an approach that they argued improved on the work of Lee
and Zhao by searching for promoter regions by taking into account the structure
of the pre-miRNA and the transcription unit. They identified sequences that showed
conserved miRNA hairpins and screened regions 100 kb upstream of these conserved
gene regions to identify putatitive promoter regions (miPPR) that were conserved
across species, and contained at least one core promoter element required for tran-
scription by RNA polymerase II (TATA, CCAAT, and GC box) [24]. Where more
than one promoter region satisfying these requirements was identified for an miRNA,
the region in closest proximity to the miRNA gene was selected as the miPRR. Bio-
chemical analysis of the miRNA transcript was conducted using primer extension
and Northern blots to confirm that the miRNA transcript was indeed driven by ele-
ments in the miPRR.

As with computational prediction of novel miRNA genes, the success of iden-
tifying novel binding sites using genomic screening methods is limited by the ex-
perimental design of the study. Screening for motifs that lie in an upstream region
of a certain distance from the transcription start site will not detect CRMs that may
lie several thousand nucleotides away from miRNA sequences, do not lie within the
same strand of DNA, or are not in a contiguous stretch of DNA. Furthermore, as
algorithms rely on either consensus of motifs lying upstream of the miRNA gene
within a species, or conservation across species, promoter regions that do not pos-
sess sequence elements that are significantly overrepresented according to the model
may fail to be detected.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

988 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

42.3 IDENTIFYING MIRNA-MEDIATED NETWORKS

42.3.1 Forward Engineering—Construction of Multinode
Components in miRNA-mediated Networks Using
Paired Interaction Information

The role of miRNAs in regulatory circuits in development systems is the subject
of interest. Many studies use genetic analysis studies to infer the presence of indi-
vidual interactions and multinode components involving miRNA regulation. Such
approaches may be considered to be forward-engineering or bottom-up approaches
to network construction.

In studies aimed at identifying the molecular architecture responsible for termi-
nal differentiated states of C. elegans taste receptor neurons, “ASE left” (ASEL) and
“ASE right” (ASER). Johnston et al. used a series of mutation experiments and gene
expression profile analysis in which ASE symmetry is disrupted to infer causative
relationships between genes. The output architecture placed two miRNAs (miR-273
and lsy-6) in a double-negative feedback loop together with die-1, the output reg-
ulator of downstream effector genes [35]. The network architecture is believed to
govern bistability and irreversibility of ASE neuron specification in response to an
unidentified input signal. Other examples where a forward engineering approaches
are used to identify architecture of miRNA-mediated circuits. See also [44, 53].

42.3.2 Reverse Engineering—Inference of MicroRNA Modules Using
Top-Down Approaches

The fields of mathematics and computational science have provided important meth-
ods and tools that aid in inferring the structure of GRNs from large-scale data sources
such as microarrays, most often through the use of statistically driven algorithms.
Such methods can thus be used to identify modules within expression data (level
3 regulation), or an attempt may be made to reconstruct relationships across the
entire network (level 4 regulation). A wide variety of methods exist for reconstruct-
ing relationships across the network from high-throughput expression data, includ-
ing methods that specify genetic networks as Boolean networks [65], Bayesian net-
works [23, 51], and linear models [12, 18]. The reader is referred to more detailed
reviews in [19] and [38]. Such methods and tools have thus played an important role
in the effort to map out genetic processes that regulate cell programs. Methods used
to identify regulatory modules de novo in transcription networks that share common
transcriptional profiles have been explored in [9] and [58].

Recently, the concept of miRNA modules (MRMs) have been developed, which
are sets of genes comprising miRNAs and mRNAs, where the genes within a mod-
ule possess some measure of similarity determined by a set of properties, where that
similarity is less strong between genes in different modules. In the first subsection,
we consider gene clusters that are similar to transcription modules, in that they com-
prise the targets of a single miRNA. Then we consider research into the recently
developed MRM.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.3 IDENTIFYING MIRNA-MEDIATED NETWORKS 989

42.3.2.1 Inference of miRNA-associated Gene Clusters. Several studies
have been conducted that have aimed to infer an association between individual
miRNAs and tissue-specific gene signatures. Sood et al. examined the expression of
mRNA genes containing a nucleus or binding site for a particular miRNA in tissues
where the miRNA was overexpressed. The removal of PicTar targets (genes contain-
ing multiple binding sites) dampened the degree of downregulation of the predicted
targets, suggesting that the existence of multiple binding sites for the miRNA was an
important factor in miRNA downregulation [67].

Zilberstein et al. developed an algorithm to infer conditions in which individual
microRNAs are active [77]. The methodology involved creating two matrices: one
that specifies the predicted targets of miRNAs, and another that contains the expres-
sion data for mRNAs over a range of conditions. A function produced a score for
each miRNA based on the two matrices by comparing the number of its predicted
targets that were downregulated in a condition against the number of its nontargets
that were downregulated in the condition. A statistical analysis of the scores allowed
the authors to infer which miNAs were implicated in each condition. The experi-
ment was performed on 98 miRNAs under 380 conditions in A. thaliana. Several
tissue-specific miRNAs were determined.

Huang et al. developed a program GenMir [33], and its improved version,
GenMir++ [34], which use variational Bayesian learning methods to detect whether
putative targets predicted by target prediction algorithms are functional. The authors
developed a probabilistic graphical model to represent the probability that a pre-
dicted mRNA xi was downregulated by its predicted regulator, microRNA m j , using
an unobserved binary random variable si j , where si j = 1 for a functional prediction
and si j = 0 otherwise. The inference task involves finding the posterior probability
for each value si j in the set S, that is, the posterior probability that the target pre-
diction is valid conditioned on the expression data. The advantage of GenMir over
Zilberstein’s methodology is that it takes into account coordinated miRNA regula-
tion by analyzing miRNA expression data as well as mRNA expression data and
sequence data. GenMiR++ significantly improves the performance of GenMir by
including additional parameters to take into account tissue scaling effects for the
miRNA and mRNA arrays.

Cheng et al. studied the activity of 211 individual human miRNAs on genes, by
analyzing 12 expression change profiles of their predicted targets from six miRNA
transfection experiments taken at 12 hours and 24 hours [15]. The expression data
from each of the 12 profiles were integrated with information on predicted binding
ability using the miRanda algorithm. They use an activity change (AC) score to infer
the relative activity of each miRNA across two conditions (transfection and refer-
ence). The algorithm ranks genes from highest to lowest expression change values
in the array. A prescore is calculated as a relative measure of the binding affinity of
the transfected miRNA among highly or lowly expressed genes in the ranked list,
against a control list. In other words, if high binding affinity genes are enriched at
the top or bottom of the list, this indicates the miRNA is itself downregulated, or
upregulated, respectively. The score is then normalized, and its statistical signifi-
cance is determined. The authors found that in the miR-1 and miR-24 transfection

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

990 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

experiments, it could be inferred that some other miRNAs were also downregu-
lated. The authors postulated that this could be caused by either one miRNA (e.g.,
the transfected miRNA) affecting other miRNAs, or alternatively, that the introduc-
tion of exogenous miRNA affected the processing and maturation of endogenous
miRNAs.

42.3.2.2 Inference of Multiple Interaction Modules. Yoon and De Micheli
developed the concept of a microRNA module (MRM), which can be defined as a set
of miRNAs and their target genes believed to cooperate in post-transcriptional regu-
lation [76]. Figure 42.2 is an example of an MRM represented as a relation graph.

Yoon and De Micheli use a five-step process to search for MRMs among a set of
input miRNAs and a set of input genes using target prediction data. In developing
their algorithm for finding MRMs, the authors were motivated by the theory that key
features of miRNA control are a multiplicity of targets per miRNA and a multiplicity
of input regulation for each target. They assume MRMs favor many-many relations
and that the binding strength of each miRNA on a target should be similar. The first
step in the method involves identifying possible miRNA–mRNA duplexes among the
sets using a local alignment score and free energy of the miRNA–mRNA duplex. In
the next step, a weighted bipartite graph (the relation graph) is constructed between
the miRNAs and the predicted targets, where the weight of the edge between each
miRNA and its target is determined using principal component analysis.

The third step involves finding maximal bicliques in the relation graph. Bicliques
are complete subgraphs in a bipartite graph, and maximal bicliques are bicliques that
do not form a proper subgraph of another biclique. The algorithm searches for seeds
that are a set of miRNAs for each target t in the relation graph, where the miRNAs
in the seed have edges incident on t with a similar weight. The fourth step uses an
algorithm to search for MRMs by constructing a trie where seeds are stored in the
nodes of the tree, and then merging nodes to find candidate MRMs from those nodes
with the highest number of target genes. In the final step, statistically significant
MRMs are selected from candidate MRMs. A Poisson random variable is assumed
for the number of MRMs in the relation graph. The result was tested on human
miRNA and gene sequences and detected 431 MRMs with on average 3.58 miRNAs

miRNA-1 miRNA-2

mRNA1 mRNA2 mRNA3

Figure 42.2 An example of an MRM represented as a relation graph.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.3 IDENTIFYING MIRNA-MEDIATED NETWORKS 991

and 6.74 target genes, and ontological analysis was performed on one high-scoring
module.

Joung et al. use a co-evolutionary, population-based probabilistic learning algo-
rithm that uses both target prediction and expression data to identify MRMs [36]. The
method searches through possible miRNA–mRNA modules to find optimal modules.
The algorithm initializes two population vectors X and Y with individuals xi and yi ,
where each individual represents a binary string reflecting miRNAs or target mR-
NAs with values set to either on or off, respectively. Each individual can therefore
be thought of as a set of unique miRNAs (M) in xi or mRNAs (T) in yi . A fitness
function is used to evaluate each individual xi (x j) against another individual x − j
(x − i) from the other population. This score is based on a balanced aggregate of
the mean target prediction score of the miRNAs in M against targets in T, and the
expression coherence of the subsets M and T. For each individual xi (x j), the in-
dividual in the other population x − j (x − i) producing the highest score is used.
The most fit individuals are thus selected. A set of probability vectors specifies the
probability that each miRNA (or mRNA) will be included in the next generation of
individuals. After each evaluation round, the probability vectors are updated based
on the frequency of occurrence of the miRNA (or mRNA) in the most fit individu-
als selected in the previous generation. This step is repeated for a specified number
of generations, and optimal modules are selected. The authors discovered modules
among 3982 miRNA–mRNA target pairs in 89 cancer samples. They investigated
two statistically significant modules; the first one was found to contain miRNAs
that were tumor-suppressors, whereas the second module was also found to also be
cancer-related.

Tran et al. improve on Joung’s method by using CN2-SD, a type of separate-and-
conquer, rule-based induction method to find MRMs from PicTar target prediction
data, and miRNA and mRNA expression data [70]. The rules are learned from a set of
examples that comprise a table for each mRNA (subject mRNA) in the dataset. The
table contains a row for each other mRNA in the dataset, and each column specifies
whether the mRNA is a predicted target of each miRNA in the dataset, and whether
the gene expression of the mRNA and the subject mRNA are correlated (similar
using Pearson’s correlation coeffeicient). A CN2-SD rule induction system learns
a set of rules of the form Condition → Class. In this instance, the condition is a
conjunction of attribute value pairs, here values of miRs, and the class is the number
of positive (subject mRNA is correlated or similar) or negative (subject mRNA is not
correlated or dissimilar) training instances covered by the rule.

Noninteresting rules are filtered out, so that rules that remain have a high expres-
sion correlation between genes and miRNAs within each rule. MRMs are selected
from each rule by selecting examples with similarity class covered by the rule.

Liu et al. [46] use association rule mining to find functional MRMs (FMRMs),
which are MRMs associated with a particular condition. They first find sets of
maximal bicliques from miRNA–mRNA target pairs predicted from miRBase Tar-
gets version 5.0. The miRNA and mRNA expression profiles of 12 prostate cancer
samples (6 cancer and 6 normal) are downloaded and discretized. Frequent itemsets
are subsets of each maximal biclique (e.g., miR-1, miR-2, mRNA-1, mRNA-2 and

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

992 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

mRNA-3), where the miRNAs and the mRNAs show opposite expression patterns
(e.g., miR-1 ↑, miR-2 ↑, mRNA-1 ↓, and mRNA-2 ↓). They then used frequent
itemset mining to discover whether a frequent itemset associates with a condition.
This leads to a set of relations comprising the itemset and its association (e.g.,
cancer), which are the FMRMs. Redundancies (i.e., where miRNA–mRNA patterns
are shared between more than one itemset) are removed by merging the itemsets to
produce an FMRM for the condition.

Joung et al. use an author-topic model that is family of a probabilistic graphical
model to predict miRNA modules (which they term miRMs), which takes into ac-
count gene expression data, without requiring miRNA expression data [37]. They
also use transcription factor binding elements and miRNA promoter analysis to de-
termine likely regulators for the miRMs.

42.3.2.3 Discussion. The use of expression data as evidence in algorithms that
learn MRMs suffers from several limitations. First, gene expression data reveal levels
of mRNA transcripts usually as a proxy for protein levels; however, in animals it is
known that sometimes miRNAs exert their influence through translational repression.
Therefore, the repressive effect or miRNA regulation may not be detected at the level
of mRNA expression. Thus, using anticorrelation of expression between miRNA and
mRNA as input to a module finding algorithm may ignore relationships where the
miRNA and the mRNA remain correlated, but the protein level of the target gene
is affected. Proteomic analysis may provide valuable data in order to overcome this
limitation [22].

Second, in some situations, the miRNA is not the primary regulator of its target,
and its role is to maintain the target at steady-state levels. In such a situation, the tar-
get transcript or protein product abundance is only moderately reduced. This means
the response variable is “tuned” rather than “switched-off.” Again, module finding
algorithms that search for anticorrelated behavior between miR and its predicted tar-
get may miss more subtle modulations. Third, there may be some situations where
only a small fold change in the target mRNA is required to mediate a functional
response that causes the cell to switch to a different state; yet module finding, al-
gorithms may ignore such targets because the fold change is below a predetermined
cutoff.

Furthermore, in some cases, a phenotypic effect is mediated from a “target bat-
tery” comprising all repressed targets; yet in other cases, only several targets are ac-
tually required to mediate the phenotypic effect by acting as a genetic switch. Thus,
we may consider a module to comprise a set of genes showing widespread repres-
sion, even though only some of these are required for the phenotypic response of
interest. By examining the module in question (such as with gene ontology anal-
ysis tools), we will not be able to distinguish the roles of different genes in the
module.

Despite this limitation, module identification is an important step in identifying
subsets of genes and the miRs that regulate them, which may be involved in medi-
ating a functional response. Gene ontology studies may reveal functional categories
enriched in the modules.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.4 GLOBAL AND LOCAL ARCHITECTURE ANALYSIS 993

42.4 GLOBAL AND LOCAL ARCHITECTURE ANALYSIS IN
MIRNA-CONTAINING NETWORKS

Analysis of global topological properties of transcription regulatory networks
(TRNs) is well established. Many cellular networks display a scale-free architec-
ture (see discussion in [6]). For example, TRNs in Saccharomyces cerevisiae and
Escherichia coli have been found to have a scale-free architecture with respect to the
out-degree of transcription factor proteins, meaning that most TFs regulate very few
partners, but some TFs regulate many partners. However, TRNs have been found to
display a restricted exponential distribution with respect to in-degree, meaning that
most genes are regulated by one, two, or three regulators [3, 30]. Similarly, there
has been much research into representation of local patterns within GRNs or TRNs.
Such motifs are generally three-node and four-node components capable of signal
processing [64]. Recently, parallel research into the global and local properties of
miRNA regulation at the post-transcriptional level has commenced.

Post-transcriptional networks can be constructed from prediction or experimen-
tally validated interaction data for the purpose of characterizing global and local
properties. In the case of TF-mediated networks, studies into local motif proper-
ties were sometimes conducted on networks that were already well understood; net-
work analysis was therefore a separate task to network identification. In the case
of miRNAs, little is known about complete networks containing multinode compo-
nents because experimental validation of indiviual miRNA genes and target binding
interactions is still relatively new. Thus, the process of individual network construc-
tion using forward- and reverse-engineering approaches is often done in parallel with
studies into global and local network properties.

42.4.1 Global Architecture Properties of miRNA-mediated
Post-transcriptional Networks

42.4.1.1 Scale-free Properties of miRNA-containing Networks. Shalgi
et al. studied global and local properties of miRNA-mediated networks in an at-
tempt to characterize properties of coordinated regulation by TF-miRNA, or by
miRNA–miRNA pairs. The authors studied predicted interactions of a set of miRNA
and target genes downloaded from the Pictar [39] (178 miRNAs and 9152 human
RefSeq genes) and TargetScan [41, 42] (138 miRNAs and 8672 human RefSeq
genes). Both of these databases contain predicted binding site information for evolu-
tionarily conserved miRNA-target pairs. The authors identified a long-tail (i.e., scale
free) topology for the number of different miRNAs regulating each gene (in-degree).
They named genes with a high in-degree as gene “target hubs” to indicate their anal-
ogy to transcription factor gene target hubs demonstrated elsewhere. These genes
were those that displayed a statistically high number of miRNA binding sites or, al-
ternatively, a high density of binding sites against random sequences. An ontological
analysis revealed target hub genes were enriched for TFs that play important roles as
regulators in processes such as development and transcription. This finding extended

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

994 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

the scope of the theory applied to TF-mediated yeast networks, that genes that are
significant regulators are themselves heavily regulated.

Martinez et al. perform a similar study on global properties of both TF − >

miRNA and miRNA − > TF regulatory networks in C. elegans. In the first sce-
nario, they use the yeast one-hybrid (Y1H) method that allows detection of TFs that
can bind to a set of promoters of interest. They perform the study on the C. ele-
gans genome, which has 115 known miRNA genes in miRBase V4.0 and Worm-
Base WS130, and 940 predicted TFs according to previous studies, to obtain 347
high-confidence interactions between 63 miRNA promoters and 116 proteins. An
examination of the high-confidence TF− >miRNA interactions revealed a power
law for the out-degree distribution of the TFs (R2 = 0.82) and an exponential law
for the in-degree distribution (R2 = 0.84) of the miRNA promoters. This finding for
miRNA transcription regulatory networks is therefore similar to findings relating to
global regulation in protein-coding gene networks.

They authors also examined the interaction for miRNA− >TF interactions us-
ing high-confidence interactions from the target prediction algorithms: TargetScan,
PicTar, miRanda, and RNAHydbrid. They identified 252 high-confidence interac-
tions involving 67 miRNAs and 73 TFs. Graphical analysis of the out-degree and in-
degree distribution of this set of interactions revealed that both followed exponential
distributions (R2 = 0.90 and R2 = 0.84, respectively). The finding relating to out-
degree meant that unlike in transcription networks where some TFs have many tar-
gets, it is not possible find any clear miRNA hubs. In transcription networks, knock-
out of TF hubs can be lethal to the organism. In contrast, the lack of miRNA hubs
supports the suggestion that miRNAs play a role in fine-tuning gene expression [8],
rather than acting as master regulators of gene expression. Although the findings
suggest an exponential distribution for the number of miRs per TF target (in-degree),
when all targets are considered, the findings suggest the in-degree distribution follow
a power law. In this distribution, they found gene target hubs are enriched for TFs.
This study thus agrees with Shalgi’s findings (discussed above).

42.4.2 Local Architecture Properties of miRNA-mediated
Post-transcriptional Networks

42.4.2.1 TF-TF, miR-miR, and TF-miR Coordinated Regulation of Gene
Targets. Coordinated regulation of gene expression programs by multiple tran-
scription elements is a well-recognized property of GRN analysis. In the case of
miRNAs, similar research has explored the extent to which miRNAs regulate their
targets in pairs, or together with a TF element.

Shalgi et al. studied whether there are significantly high numbers of coregulatory
miR-miR pairs or TF-miR pairs with a shared gene target among the targets in the
PicTar and TargetScan datasets. In the former case, the test statistic was obtained by
screening for the co-occurence (and avoidance) of complementary binding sequences
in 3’UTRs of target genes for each pair. They identified 107 significant co-occurrence
pairs in the TargetScan dataset and 199 significant co-occurrence pairs in the
PicTar dataset. They built a miR combinatorial network for each dataset that showed

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.4 GLOBAL AND LOCAL ARCHITECTURE ANALYSIS 995

scale-free properties. This meant that a few miRs are highly connected to other miRs,
whereas others are much less connected.

Similarly, to study TF-miRNA pairs, they screened for the co-occurrence of a
TFBS for the TF in the target gene’s promoter using position-specific scoring matri-
ces representing TF binding sites in TRANSFAC and binding seed for the miRNA
in the 3’UTR region of the gene. They detected 104 miR-TF pairs in the Tar-
getScan dataset and 916 miR-TF pairs in the PicTar dataset that were significant in
two statistical tests. Expression data across human tissues and organs for miRs and
mRNAs were used to study the expression coherence of the miR-miR and miR-TF
co-occurrence pairs, and it was found that the histogram had peaks in the number of
pairs with strong positive and negative correlation coefficients.

Zhou et al. analyzed a large integrated network compiled from predicted PicTar
and TFBS targets to study the properties of TF-miR, miR-miR, and TF-TF regula-
tory pairs [79]. They found that TF-TF and miR-miR pairs were more highly abun-
dant than TF-miR pairs in the IRNS. The authors also found that feedforward loops
(where the miRNA were suppressed by the TF and many of its targets) were promi-
nent motifs among TF-miR pairs.

Cui et al. investigated the extent to which genes that possess features indicating
high levels of coordinated regulation by transcription factors also show similarly
high levels of coordinated miRNA regulation [17]. They studied the target genes of
three TFs, OCT4, NANOG, and SOX2 in human embryonic stem cells (a total of
2046 genes). After dividing the genes into three groups according to whether they
are regulated by 1, 2, or all 3 of the TFs, they counted the number of genes that are
regulated by miRNAs in each group. They found that miRNA targets are enriched in
groups of genes targeted by more TFs.

They then repeated the study on a genome-wide scale by using two datasets of hu-
man TFBS to study genes containing more than three (i.e., on average 20 for dataset
1) putative TFBS in the promoter region. They found that the average TFBS-count
of the miRNA target genes is significantly higher than that on the non-target genes
(p < 1.9 × 10−55) in the first dataset (DS1), with a similar result (p < 1.5 × 10−216)
in the second dataset (DS2). Further analysis revealed that there was a high correla-
tion between TFBS-count and miRNA target rate (Pearson’s correlation coefficient,
r = 0.9432 in dataset 1; r = 0.9680, DS2), and between miRNA-count and TFBS-
count of genes targeted by more than 1 miRNA (r = 0.7364, DS1; r = 0.7200,
DS2). A study of top GO terms for the top 200 genes with both high TFBS-count
and miRNA target rate revealed that development categories were enriched among
these genes.

Wang et al. perform two studies to search for TFs and miRNAs that are most
likely to participate in combinatorial regulation of a set of genes that are differentially
expressed in a given condition. The two conditions investigated are fetal alcohol
syndrome [72] and androgen-independent prostate cancer compared with androgen-
dependent prostate cancer [73].

The algorithm involves first using their algorithm MotifFinder to identify TFBS
and binding sites in the 3’UTRs of genes. They then randomly select a set of TF-
BSs found in the promoter regions of the genes and binding sites in the 3’UTRs for

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

996 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

miRNAs. The algorithm then scores how well a regulatory function based on that
set of regulatory binding sites and estimated levels of TFs and miRNAs matches the
actual differential regulation for each gene. A fitness score is maintained for each
TFBS and miRNA binding site as a cumulative score constructed from the indi-
vidual TFBS and miRNA binding scores in each of the random sets. Top-scoring
TFBS and miRNA binding sites are matched to TFs in TRANSFAC and miRNAs in
miRBase.

42.4.2.2 miR-regulated FFLs, FBLs, and Other 3 or Greater Node-
Motifs in Regulatory Networks. Theoretical and evidence-based approaches
have been used to identify local circuit types that are expected to characterize
miRNA-containing networks. Prediction of circuit motif types is often guided by
observations of gene expression responses to genetic mutation analysis.

Hornstein and Shomron [32] observed that forward genetic screens that identified
loss-of-function in miRNA mutants tended to study miRNA relationships where the
miRNA and the target had high binding avidity (multiple binding sites in the target).
They postulated that in many miRNA-target relationships, the role of the miRNA
was less dramatic.

Gene expression analysis of gene sets enriched for miRNA targets in miRNA
overexpression studies revealed that miRNA expression is mutually exclusive with
target mRNA transcripts in some tissues spatially or temporally [68]; and that in
other organisms and conditions the target may be expressed in the same tissue as the
miRNA but at significantly lower levels [21, 67].

Based on these findings, Hornstein and Shomron suggested potential wirings for
miRNA circuits that would explain the two different observed responses. They pro-
posed that miRNAs may commonly act within a feedforward loop (FFL), where a
TF and a miRNA both regulate a common target, and the TF regulates the miRNA
gene. The authors proposed that miRNAs may participate in coherent FFLs (type 3
and 4) (Figure 42.3b and c), which would provide a molecular basis for findings that
targets and miRNAs are anticorrelated in expression patterns. In both types of coher-
ent FFL, the miRNA enforces the decision of the TF regulator. In the case of type 3
coherent FFLs, the miRNA is suggested to function by mopping up any leaking basal
transcription of a target that was downregulated at the transcription level.

TF

(a) (b) (c)

TF TF

miR

gene gene gene

miR miR

Figure 42.3 (a) Coherent FFLs. (b),(c) Incoherent FFLs.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.4 GLOBAL AND LOCAL ARCHITECTURE ANALYSIS 997

The authors suggested a type I incoherent FFL (Figure 42.3a) could underly find-
ings that targets are expressed but at lower levels in miRNA-specific tissue. In this
circuit, a transcription regulator activates a target but also upregulates the miRNA,
which maintains the target at a fairly constant level. Thus, the miRNA may reduce
the effects of noise associated with varying TF levels on the mRNA target.

Shalgi et al. studied the frequency of various FFLs in the networks constructed
from PicTar and TargetScan datasets [63]. They first searched for “FFL TF − > miR”
motifs among TF-miR pairs, by searching for the occurrence of the TFBS in the miR
itself among identified TF-miRNA pairs in the earlier study. They found that the fre-
quency of such motifs was significant for the PicTar dataset (p < 10−4) but were
modest for the TargetScan dataset (p = 0.024). Similar studies were performed for
FFL miR − >TF motifs (where the miR regulates the TF), and results again showed
motif overrepresentation for miR-TF pairs in the PicTar (but not the TargetScan)
datasets. A composite loop network motif, FFL miR < −− > TF (where the miR
and the TF regulate eachother), showed overepresentation among pairs from the
PicTar dataset. The final motif indirect FFL, which involved one TF exerting regula-
tion of its partner miRNA via another mediator TF, was found to be overrepresented
among pairs from both datasets.

Tsang et al., used expression studies to identify whether type I (incoherent) or
type II (coherent) FFLs and feedback loops (FBLs) were recurrent across human
and mouse tissues [71]. They analyzed the expression levels of 60 human intronic
miRNAs (using the expression levels of the host gene as proxy) and thousands of
mRNAs in the Novartis human expression atlas and mouse atlas [69]. For each mi-
croRNA, they compiled a list of genes ranked according to expression pattern corre-
lation against the miRNA among the arrays. They then searched for predicted targets
of the miRNA found using TargetScanS [42] in the list. The authors reasoned that
where a predicted target appeared high in the list, it indicated the presence of a type
I circuit where the mRNA and miRNA are correlated in expression. Similarly, where
the target appeared in a low ranking, it indicated the presence of a type II circuit—the
mRNA and its target are anticorrelated.

Among the 60 ranked lists, 75% had a significantly higher number of predicted
targets in the top and bottom 10th percentile of the ranked list, suggesting that many
miRNAs and targets exist in type I (incoherent) circuits and many in type II (coher-
ent) circuits, respectively. They repeated the study of the lists against a conservation
score (CE) for miRNA seed matches in a set of genes, to avoid reliance on noisy tar-
get prediction algorithms. For both human and mouse, they found a large percentage
of miRNAs possessed genes with a significant CE score in the top ten and bottom
ten percentile sets, indicating a type I and type II bias, respectively.

The study was repeated in homogeneous neuronal cell population expression pro-
files to address the concern that human and mouse datasets contain tissues that may
contain mixed cell types.

The study was conducted for miRNAs in three types of motor neurons in a devel-
opmental time course set and in the profiles of 12 homogenous neuronal cell types
(mature cells). Again, both sets displayed a bias for type I and II circuits. Mature
neuronal cells displayed a stronger bias for the type I circuit over the type II circuit

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

998 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

(44% vs 17%). This lends support to suggestions that miRNAs may have a different
function in neuronal cells than in non-neuronal cells, but only with respect to mature
neuronal cells.

These findings suggested to the authors that the miRNA function is controlled by
an activation preference for distinct circuit types in different cell types. Findings of
prevalence of type II circuits confirm the findings of Sood et al. [67] and others that
targets are expressed at lower levels in tissues where the miRNA gene is expressed.
On the other hand, type I circuits are less supported with experimental data. The
authors suggest type I circuits play a role in permitting a fast response to network
component fluctuations to ensure homeostasis and avoid random switching events.

Martinez et al. analyzed a real genome-scale miRNA GRN in C. elegans that
integrates TF − > miR interactions detected with Y1H assays and high-confidence
miR − > TF predictions, to study the presence of FBLs. They first study the presence
of type I miRNA < − > TF composite FBLs, identifying 23 type I FBLs involving
14 miRNAs and 16 TFs. These comprised both single-negative and double-negative
FBLs. The TF − > miR interactions in several motifs were confirmed in vivo using
TaqMan PCR assays, whereas the miR − > TF interactions were confirmed with
Western blotting. The authors also identified higher order composite FBLs, for ex-
ample, type II FBLs containing 1 miRNA and 2 TFs.

They found composite miRNA − > TF FBLs occurred twice as frequently in
the integrated miRNA GRN than in random background networks generated with
three different randomization methods. They found that miRNAs and TFs in the
integrated miRNA GRN that participated in FBLs had a higher in-degree and out-
degree. They further found that nodes with a high flux capacity (Fc = kin × kout)
were likely to participate in FBLs. However, noting that FBLs remain overrepre-
sented even against a background network generated with the randomization method
involving edge switching where individual node degree and overall degree distri-
bution remains unaltered (and thus Fc remains the same), they conclude high flux
capacity is not the only determinant in the presence of FBLs in the real network.

Yu et al. examined system-wide motifs involving miRNAs and TFs in integrated
networks constructed from PicTar and miRanda datasets. The authors exhaustively
enumerated a list of possible 3-node subgraphs to be studied in the IRNs, which
included instances where the miRNA or TF were regulatory targets (not previously
explored), yielding 46 motifs in total (compared with the 5 motif types studied by
Shalgi et al., discussed above). For each miRNA, the authors counted the occurrence
of the miRNA in each subgraph type in the two IRNs, and evaluated this count as a
z-score against the expected number of occurrences of the miRNAs in the subgraph
type, derived from the overall representation of the subgraph type in the IRN.

The authors then clustered the motifs and top-scoring subgraphs were selected
based on z-score and cluster number. High-scoring subgraphs included regulated
FBL where two TFs regulate each other and one miRNA regulates both of them
(z-score: 68.1 for miRanda, 24.4 for Pictar), and coregulation motifs where miR-
NAs and TFs coregulate a common target without coregulating each other (z-score:
38.1 for miRanda, 50.2 for Pictar). miRNA-associated FFLs were also high-scoring
subgraphs.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

42.4 GLOBAL AND LOCAL ARCHITECTURE ANALYSIS 999

The authors also examined the functionality of the regulated FBL using mathe-
matical modeling to determine the effect of miR regulatory strength and different
initial molecular levels on system properties such as state transition.

The authors clustered miRNAs according to similarity of network motif profiles,
and found that there were two distinct classes of miRNAs: class I miRNAs that were
enriched for network subgraphs in which the miRNAs were regulated by many TFs,
and class II miRNAs that were enriched for network subgraphs in which the miRNAs
were only regulated by one or a few TFs. The authors used experimental datasets on
whole genome in vivo binding of human TFs to support their findings. They also
studied the gene expression of miRNAs in tissues in both embryonic development
stages and adult tissues across several organisms. They found that class I miRNAs
were enriched in embryonic developmental conditions, whereas class II miRNAs
were enriched in the adult tissues, suggesting that different TFs may be responsible
for regulating the miRs at different stages during development.

Zhou et al. investigated local properties of combinatorial networks in A. thaliana
[79]. They first identified TF-miRNA coordinating pairs by the presence of a binding
site in the promoter region of the miRNA target, with additional requirements such
as coherent expression patterns of targets. Local motifs were further detected includ-
ing feedforward, double feedforward, composite pair, and composite loop networks.
The statistical significance of the co-occurence of the miRNA and a motif in the
promoter was determined using the cumulative hypergeometric distribution. The sta-
tistical significance of the other network motifs was obtained for the corresponding
number of coordinating pairs using a Monte Carlo simulation.

Table 42.1 summarizes popular miRNA-containing motifs in networks con-
structed using various methods.

42.4.2.3 Role of miRNAs in Targeting Signaling Network Motifs. Cui
et al. investigated the nature of proteins coded for by genes that are predicted tar-
gets of miRNAs (using PicTar and TargetScanS), which are found in signaling
networks [16]. In particular, they explored proteins that play a role in a signaling
network in a mammalian hippocampal CA1 neuron (Ma’ayan et al.) that contained
commonly used pathways in many cell types. After grouping proteins into categories
from upstream (e.g., ligands) to downstream (e.g., nuclear proteins) groups, they ob-
served that the ratio of miRNA targets to other proteins in the group increases with
signal information flow from the upstream to the downstream. They then studied the
nature of adaptor proteins that are thought to play a role in regulating downstream
signaling proteins. After dividing adaptor proteins into high-link (bind to >4 down-
stream components) and low-link adaptors, they observed that high-link adaptors had
a higher fraction of genes that were miRNA targets than low-link adaptors. The au-
thors suggest miRNAs may control levels of the downstream components, to confer
precision to the cellular response to stimuli mediated by high-link adaptors.

They also analyzed the abundance of miRNA targets among 11 different classes
of network motifs identified in the network. They classified the motifs based on the
number of nodes that are miRNA targets (0–3 for 3-node motifs or 0–4 for 4-node
motifs). They then calculated a score for each motif as a ratio of positive links to

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1000 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

Table 42.1 Examples of some significant miRNA-containing motifs discovered in
various constructed miRNA-mediated networks

Description of
Network where Motif

Motif Author was Found Method Potential Role

regulated
FBL

Yu et al. integrated regulatory
network formed
with PicTar and
miRanda

motif count and
statistical
analysis

canalization of
development.

miR-TF
regulatory
pairs

Yu et al. integrated regulatory
network formed
with PicTar and
miRanda

motif count and
statistical
analysis

canalization of
development.

type I
FFL/FBL

Tsang
et al.

Gene expression
network across
multiple conditions
and in mature
neuronal cells in
mouse

find target
enrichment in
top %10 of list
of genes ranked
according to
correlation with
miRNA

noise reduction
and target
stabilization.

type II
FFL/FBL

Tsang
et al.

Gene expression
network across
multiple conditions
and in developing
mouse neuronal
cells

find target
enrichment in
bottom %10 of
list of genes
ranked
according to
correlation with
miRNA

reinforce decision
of principal
regulator.

FFL/FBL
(TF –>

miR)

Shalgi
et al.

IRN built with PicTar
and TargetScanS
(motif score less
significant)

motif count among
TF-miR pairs
and statistical
analysis

—

FFL/FBL
(miR –>

TF)

Shalgi
et al.

IRN built with PicTar
and TargetScanS
(motif score less
significant)

motif count among
TF-miR pairs
and statistical
analysis

—

double-
negative
FBL

Martinez
et al.

Real integrated
miRNA network in
C. elegans

motif count and
statistical
analysis

lead to bistability
and act as
toggle-switch.

total direction links (Ra score) in each subgroup. They found that for most motifs,
the Ra score in subgroups with 0 nodes was less than the average Ra across all
motifs; and, for most motifs, the ratio of positive links in the subgroups increased
with the number of miRNA targets. Thus, they discovered for most motifs (in partic-
ular, highly abundant motifs), a clear positive correlation between positive link ratio
and miRNA target number in the motif.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

REFERENCES 1001

They then studied the miRNA-targeted scaffold proteins, which play a role in re-
cruiting distinct proteins to different pathways. They found that those proteins that
were miRNA targets were more likely to form a motif than were other scaffold pro-
teins. They also found that highly linked scaffold proteins were targeted by multiple
miRNAs (e.g., 5 or 6 miRNAs for SNAP25 and CRK, respectively). This is consistent
with the highly specialized spatio-temporal expression behavior of scaffold proteins.

They then studied the fraction of miRNA targets among shortest-path proteins in
five distinct cellular machines, which may be activated by the signaling pathway.
They found that these proteins possess a lower fraction of miRNA targets than in
the rest of the network, suggesting miRNAs avoid disturbing basic cellular processes
mediated by proteins that are shared among basic cellular machines. Overall, they
argue that these patterns are suggestive of a role for miRNAs in terminating incoming
messages and in permitting quick and robust transitions.

42.5 CONCLUSION

Identification of microRNA-mediated networks and analysis of network properties is
a growing field. As we identify miRNA-target interactions, we are able to integrate
circuits constructed from these interactions with validated TF-mediated circuits to
achieve a more detailed picture of regulation of cell behavior at multiple levels.

The largest body of research into properties of miRNA behavior has focused on
identifying novel miRNA genes and their direct targets. Predictions of miRNA-target
relationships continue to be useful in understanding miRNA behavior; however, such
tools must be used with caution. Target prediction data are therefore increasingly
used in conjunction with gene expression and proteomic data to learn functional
targets and infer biological consequences of different levels of repression.

Studies that aim to characterize the miRNA transcript reveal important informa-
tion regarding the nature of miR regulation and likely regulators of miRNA genes.
Further studies into properties of miRNA transcripts will be assisted by improved
EST collection and annotation. Further information regarding the transcriptome will
be aided by the availability of modern transcriptome sequencing tools such as Illu-
mina sequencing technology.

Forward-engineering remains a reliable way to infer the existence miRNA-
containing circuits that perform signal processing functions within the cell.
Reverse engineering of modules reveals miRNAs and genes showing similar prop-
erties. The study of the network motifs, including increasingly wide-ranging and
sophisticated patterns, in miRNA-containing networks continues to provide insight
into possible roles for miRs in different conditions and tissues.

REFERENCES

1. I. Alvarez-Garcia and E.H. Miska. MicroRNA functions in animal development and hu-
man disease. Development, 132(21):4653–4662, 2005.

2. V. Ambros. The function of animal MicroRNAs. Nature, 431:350–355, 2004.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1002 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

3. M.M. Babu, N.M. Luscombe, L. Aravind, M. Gerstein, and S.A. Teichmann. Structure
and evolution of transcriptional regulatory networks. Curr Opin Struct Biol, 14:283–291,
2004.

4. S. Bagga, J. Bracht, S. Hunter, K. Massirer, J. Holtz, et al. Regulation by let-7 and lin-4
miRNAs results in target mRNA degradation. Cell, 122:553–563, 2005.

5. T.L. Bailey and C. Elkan. Unsupervised learning of multiple motifs in biopolymers using
expectation maximization. Mach Learn, 21:51–83, 1995.

6. A.L. Barábasi and Z.N. Oltvai. Network Biology: Understanding the cell’s functional
organization. Nat Genet, 5:101–113, 2004.

7. D.P. Bartel. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell,
116:281–297, 2004.

8. D.P. Bartel and C.Z. Chen. Micromanagers of gene expression: The potentially
widespread influcence of metwazoan microRNAs. Nat Rev Genet, 5:396–400, 2004.

9. Z. Bar-Joseph, G.K. Gerber, T.I. Lee, N.J. Rinaldi, J.Y. Yoo, F. Robert, D.B. Gordon,
E. Fraenkel, T.S. Jaakkola, R.A. Young, and D.K. Gifford. Computational discovery of
gene modules and regulatory networks. Nat Biotechnol, 21:1337–1342, 2003.

10. I. Bentwich, A. Avniel, Y. Karov, R. Aharonov, S. Gilad, O. Barad, A. Barzilai, P. Einat,
U. Einav, E. Meiri, et al. Identiifcation of hundreds of conserved and nonconserved human
microRNAs. Nat Genet, 37:766–770, 2005.

11. E. Berezikov, V. Guryev, J. Van De Belt, E. Wienholds, R.H. Plasterk, and E. Cuppen.
Phylogenetic shadowing and computational identification of human microRNA genes.
Cell, 120:21–24, 2005.

12. R. Bonneau, D. Reiss, P. Shannon, M. Facciotti, L. Hood, N. Baliga, and V. Thorsson. The
inferelator: An algorithm for learning parsimonious regulatory networks from systems—
biology data sets de novo. Genome Biol, 7:R36, 2006.

13. J.C. Carrington and V. Ambros. Role of microRNAs in plant and animal development.
Science, 301:336–338, 2003.

14. K. Chaudhuri and R. Chatterjee. MicroRNA detection and target prediction: Integration
of computational and experimental approaches. DNA Cell Biol, 26:5, 2007.

15. C. Cheng and L.M. Li. Inferring microRNA activities by combining gene expression with
microRNA target prediction. PLoS Comput Biol, 3(4):e1989, 2008.

16. Q. Cui, Z. Yu, E. Purisima, and E. Wang. Principles of microRNA regulation of a human
cellular signaling network. Mol Syst Biol, 2:46, 2006.

17. Q. Cui, Z. Yu, Y. Pan, E. Purisima, and E. Wang. MicroRNAs preferentially target the
genes with high transcriptional regulation complexity. Biochem Biophys Res Commun,
352:733–738, 2007.

18. P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi. Linear modeling of mRNA ex-
pression levels during CNS development and injury. Pacific Symposium Biocomputing,
1999, pp. 41–52.

19. H. De Jong. Modeling and simulation of genetic regulatory systems: A literature review.
J Comput Biol, 9:67–103, 2002.

20. D.V. Dugas and B. Bartel. MicroRNA regulation of gene expression in plants. Curr Opin
Plant Biol, 7:512–520, 2004.

21. K.K. Farh, A. Grimson, C. Jan, B.P. Lewis, and W.K. Johnston. The widespread impact
of mammalian microRNAs on mRNA repression and evolution. Science, 310:1817–1821,
2005.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

REFERENCES 1003

22. A.S. Flynt and E.C. Lai. Biological principles of microRNA-mediated regulation: Shared
themes amid diversity. Nat Rev Genet, 9:831–842, 2008.

23. N. Friedman, N. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze
expression data. J Comput Biol, 7:601–620, 2000.

24. S. Fujita and H. Iba. Putative promoter regions of miRNA genes involved in evolutionary
conserverd regulatory systems. Bioinformatics, 24(3):303–308, 2008.

25. S. Griffiths-Jones. The microRNA Registry. Nucleic Acids Res, D109–D111, 2004.

26. S. Griffith-Jones, R.J. Grockock, S. van Dongen, A. Bateman, and A.J. Enright.
miRBase:microRNA sequenes, targets and gene nomenclature. Nucleic Acids Res,
34:D140–D144, 2006.

27. S. Griffiths-Jones, H.K. Saini, S. van Dongen, and A.J. Enright. Nucleic Acids Res,
36(Database Issue):D154–D158, 2008.

28. D. Grün and N. Rajewsky. Chapter 12: Computational prediciton of microRNA targets
in vertebrates, fruitfiles and nematodes. In K. Appasani, editor, MicroRNAs: From Basic
Science to Disease Biology, Cambridge University Press, Cambridge, U.K., 2007.

29. J. Gu, T. He, Y. Pei, F. Li, X. Wang, J. Zhang, X. Zhang, and Y. Li. Primary transcripts
and expressions of mammal intergenic microRNAs detected by mapping ESTs to their
flanking sequences. Mamm Genome, 17:1033–1041, 2006.

30. N. Guelzim, S. Bottani, P. Bourgine, and F. Kepes. Topological and causal structure of the
yeast transcriptional regulatory network. Nat Genet, 31:60–63, 2002.

31. O. Hobert. Common logic of transcription factor and microRNA action. Trends Biochem
Sci, 29(9):462–468, 2004.

32. E. Hornstein and N. Shomron. Canalization of development by microRNAs. Nat Genet
Suppl, 38:s20, 2006.

33. J.C. Huang, Q.D. Morris, and B.J. Frey. Detecting microRNA targets by linking se-
quence, microRNA and gene expression data. Lect Notes Comput Sci, 3909:114–129,
2006.

34. J.C. Huang, Q.D. Morris, and B.J. Frey. Bayesian inference of microRNA targets from
sequence and expression data. J Comput Biol, 14(5):550–563, 2007.

35. R.J. Johnston, Jr., S. Chang, J.F. Etchberger, C.O. Ortiz, and O. Hobert. MicroRNAs act-
ing in a double-negative feedback loop to control a neuronal cell fate decision. Proc Natl
Acad Sci U S A, 102:12449–12454, 2005.

36. J.G. Joung, K.B. Hwang, J.W. Nam, S.J. Kim, and B.T. Zhang. Discovery of microRNA-
mRNA modules via population-based probabilistic learning. Bioinformatics, 23(9):1141–
1147, 2007.

37. J.G. Joung and Z. Fei. Identification of microRNA regulatory modules in Arabidopsis via
a probabilistic graphical model. Bioinformatics, 25:387–393, 2009.

38. G. Karlebach and R. Shamir. Modelling and analysis of gene regulatory networks. Nature
Reviews Molecular Cell Biology, 9:770–780, 2008.

39. A. Krek, D. Grün, M.N. Poy, et al. Combinatorial microRNA target predictions. Nat
Genet, 37:495–500, 2005.

40. J. Lee, Z. Li, R. Brower-Sinning, and J. Binno. Regulatory circuit of human microRNA
biogenesis. PLoS Comput Biol, 3(4):e67, 2007.

41. B.P. Lewis, I.H. Shih, M.W. Jones-rhoades, D.P. Bartel, and C.B. Burge. Prediction of
mammalian microRNA targets. Cell, 115:787–798, 2003.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1004 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

42. B.P. Lewis, C.B. Burge, and D.P. Bartel. Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120:15–
20, 2005.

43. W.S. Leung, S.M. Yiu, D.W. Cheung, L. Lai, M.C. Lin, and H.F. King. Computational
prediction on mammalian and viral miRNAs—A review. Int J Integr Biol, 1(2):118–126,
2007.

44. X. Li and R.W. Carthew. A microRNA mediates EGF receptor signaling and promotes
photoreceptor differentiation in the Drosophila eye. Cell, 123:1267–1277, 2005.

45. L.P. Lim, N.C. Lau, and P. Garrett-Engele. Microarray analysis shows that some micro-
RNAs downregulate large numbers of target mRNAs. Nature, 433:769–733, 2005.

46. B. Liu, J. Li, and A. Tsykin. Discovery of functional miRNA-mRNA regulatory modules
with computational methods. J Biomed Inform, 42(4):685–691, 2009.

47. J. Lu, G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck. A. Sweet-Cordero,
B.L. Ebert, R.H. Mak, A.A. Ferrando, et al. MicroRNA expression profiles classify hu-
man cancers. Nature, 435:834–838, 2005.

48. V. Matys, O.V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land et al. TRANSFAC and its
module TRANSCompel: Transcriptional gene regulation in eukaryotes. Nucleic Acids
Res, 34:D108–D110, 2006.

49. J.S.M. Mattick. A new paradigm for developmental biology. J Exp Biol, 210:1526–1547,
2007.

50. M. Megraw, V. Baev, V. Rusinov, et al. MicroRNA promoter element discovery in Ara-
bidopsis. RNA, 12:1612–1619, 2006.

51. K. Murphy and S. Mian. Modeling gene expression data using dynamic bayesian
networks, Technical Report, Berkely, CA Computer Science Division, University of
California, 1999.

52. U. Ohler, S. Yekta, L.P. Lim, D.P. Bartel, and C.B. Burge. Patterns of flanking sequence
conservation and a characteristic upstream motif for microRNA gene identification. RNA,
10:1309–1322, 2004.

53. K.A. O’Donnell, E.A. Wentzel, K.I. Zeller, C.V. Dang, and J.T. Mendell. c-Myc-regulated
microRNAs modulate E2F1 expression. Nature, 435:839–843, 2005.

54. N. Rajewsky. MicroRNA target predictions in anmials. Nat Genet Suppl, 38:S8–S13,
2006.

55. W. Ritchie, S. Flamant, and E.J. Rasko. Predicting microRNA targets and functions: Traps
for the unwary. Nat Methods, 6(6):397–398, 2009.

56. H.K. Saini, S. Griffiths-Jones, and A.J. Enright. Genomic analysis of human microRNA
transcripts. PLoS Comput Biol, 104(45):17719–17724, 2007.

57. H. Saini, A.J. Enright, and S. Griffiths-Jones. Annotation of mammalian primary micro-
RNAs. BMC Genom, 9:564, 2008.

58. E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Mod-
ule networks: Identifying regulatory modules and their condition-specific regulators from
gene expression data. Nat Genet, 34:166–176, 2003.

59. P. Sethupathy, M. Megraw, M.I. Barrasa, and A.G. Hatzifeorgiou. Computational identifi-
cation of regulatory factors involved in microRNA transcription. Lect Notes Comput Sci,
3746:457–468, 2005.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

REFERENCES 1005

60. P. Sethupathy, M. Megraw, and A.G. Hatzigeorgiou. A guide through present computa-
tional approaches for the identification of mammalian microRNA targets. Nat Methods,
3(11):881–886, 2006.

61. P. Sethupathy, B. Corda, and A.G. Hatzigeorgiou. TarBase: A comprehensive database of
experimentally supported animal microRNA targets. RNA, 12:192–197, 2006.

62. P. Sethupathy, M. Megraw, and A.G. Hatzigeorgiou. Computational approaches to eluci-
date miRNA biology. In K. Appasani, editor, MicroRNAs: From Basic Science to Disease
Biology. Cambridge University Press, Cambridge, U.K., 2007.

63. R. Shalgi, D. Lieber, M. Oren, and R. Pilpel. Global and local architecture of the mam-
malian microRNA-transcription factor regulatory network. PLoS Comput Biol, 3(7):e131,
2007.

64. S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional
regulation network of Escherichia coli. Nat Genet, 31:64–68, 2002.

65. I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean networks:
A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–
274, 2002.

66. S. Sinha and M. Tompa. A statistical method for finding transcription factor binding sites.
ProC Int Conf Intell Syst Mol Biol, volume 8, 2000, pp. 344–354.

67. P. Sood, A. Krek, M. Zavolan, G. Macino, and N. Rajewsky. Cell-type-specific signatures
of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A, 103:2746–2751,
2006.

68. A. Stark, J. Brennecke, N. Bushati, R.B. Russell, and S.M. Cohen. Animal microRNAs
confer robustness to gene expression and have a significant impact on 3UTR evolution.
Cell, 123:1133–1146, 2005.

69. A.I. Su, T. Wiltshire, S. Batalov, H. Lapp, K.A. Ching, D. Block, J. Zhang, R. Soden, M.
Hayakawa, G. Kreiman, et al. A gene atlas of the mouse and human protein-encoding
transcriptomes. Proc Natl Acad Sci U S A, 101:6062–6067, 2004.

70. D.H. Tran, K. Satou, and T.B. Ho. Finding microRNA regulatory modules in human
genome using rule induction. BMC Bioinformatics, 9(Suppl 12):S5, 2008.

71. J. Tsang, J. Zhu, and A. van Oudenaarden. MicroRNA-mediated feedback and feedfor-
ward loops are recurrent network motifs in mammals. Mol Cell, 26:753–767, 2007.

72. G. Wang, X. Wang, Y. Wang, J.Y. Yang, L. Li, K.P. Nephew, H.J. Edenberg, F.C. Zhou,
and Y. Liu. Identification of transcription factor and microRNA binding sites in responsi-
ble to fetal alcohol syndrome. BMC Genomics, 9(Suppl 1):S19, 2008.

73. G. Wang, Y. Wang, W. Feng, X. Wang, J.Y. Yang, Y. Zhao, Y. Wang, and Y. Liu. Transcrip-
tion factor and microRNA regulation in androgen-dependent and -independent prostate
cancer cells. BMC Genomics, 9(Suppl 2):S22, 2008.

74. X. Xie, E.J. Kulbokas, T.R. Golub, et al. Systematic discovery of regulatory motifs in
human promoters and 3’UTRs by comparison of several mammals. Nature, 434:338–345,
2005.

75. Z. Xie, E. Allen, N. Fahlgren, A. Calamar, S.A. Givan, and J.C. Carrington. Expression
of Arabidopsis miRNA genes. Plant Physiol, 138:2145–2154, 2005.

76. S. Yoon and G. De Micheli. Prediction of regulatory moduels comprising microRNAs and
target genes. Bioinformatics, 21:ii93–ii100, 2005.

P1: OSO
c42 JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1006 CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS

77. C.B.-Z. Zilberstein, M. Ziv-Ukelson, R.Y. Pinter, and Z. Yakhini. A high-throughput ap-
proach for associating microRNAs with their activity conditions. J Comput Biol, 13:245–
266, 2006.

78. X. Zhou, J. Ruan, G. Wang, and W. Zhang. Characterization and identification of mi-
croRNA core promoters in four model species. PLoS Comput Biol, 3:e37, 2007.

79. X. Zhou and W. Zhang. Combinatory circuits of miRNAs and transcription factors in
plant gene regulations. RECOMB Satellite Conference on System Biology, 2007.

80. Y. Zhou, J. Ferguson, J.T. Chang, and Y. Kluger. Inter- and intra-combinatorial regulation
by transription factors and microRNAs. BMC Genomics, 8:396, 2007.

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX

aa-tRNA, 927–933
ABI-SOLiD next-generation sequencing

system, 426
ABS database, 399, 406
Abscisic acid (ABA), 883
Absorption, in drug discovery, 377
Absorption, distribution, metabolism,

elimination, toxicology (ADMET), 362
ACANA, 244, 246
AC automaton, 60
Activator, regulatory networks, 968–969
Active learning methods, 974
Acyclic graphs, 195, 208
Adenine (A), 3, 31, 36, 171, 522, 599,

799–800, 802, 816, 818
ADGO, 669
ADHORE, 738–739
Adjacencies, generally

genomic distances, 791–792
matrix, 683
relation, 176–179, 184–185

Adleman-Lipton problem, 172
Affine gap penalty, 243
Aho-Corasick, generally

algorithm, 97–98
automata, 78, 86–88, 98

Akaike information criterion (AIC), 702
ALEXSYS, 255
Alignment

algorithms, see Alignment algorithms
arc-annotated sequences, 114–115
clustering sequence, 210–211, 216
full sensitivity, 92

genome-wide, 410
mapping sequences, 429
motifs combined with, 412–414
multiple, 144
of sequences, 30–31, 143–144
shapes, 558–559, 573
types of, 143–144

Alignment algorithms
accuracy of, 255
influential factors, 255
types of, 242–250

Alignment fragment pairs (AFPs), 262–266,
275

Alignment-free distance, 322
Alignment-free techniques

biological applications, 344–349
combinatorial, 331–336
compositional methods, 336–340, 600
exact word matches, 340–344
experimental algorithmics, datasets and

software for, 349–354
information-theoretic, 323–331, 600–601
statistical dependency, 329

Alleles, 844–845
ALLEZ, 669
Alphabet(s)

bounded, 158, 163
Alphabet E, 77
DNA, 94–95

Alternating cycle, 756
Alternative splicing, 207–208, 216
Alternative splicing factor/splicing factor2

(ASF/SF2), 349

Algorithms in Computational Molecular Biology, Edited by Mourad Elloumi and Albert Y. Zomaya
Copyright C© 2011 John Wiley & Sons, Inc.

1007

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1008 INDEX

Alternative Splicing Graph Server (ASGS),
208

Ambiguity cluster, 734
Amdahl’s law, 573
Amino acids, 96, 213, 312–313, 337, 350,

403, 483, 502, 512–513, 601, 603, 802,
928–929, 932–933, 935

Amortization, 755
Amphibians, phylogenetic trees, 615
Amplification, 136, 705, 707
Amplifiers, 944
Amplify operation, Adleman-Lipton model,

175
Amplitude, 635
Analysis of variance (ANOVA), 694, 696,

698, 700, 814
Ancestral genome reconstruction, 727
Anchor/anchoring

ballast, 293–294
pairwise alignment algorithms, 243–244

Annealing, 174, 488, 573. See also
Simulated annealing (SA)

Annotations, 231, 238, 406–408, 480–485,
490, 659, 735

Anticancer drugs, 887
Anticodons, 927–929, 933–934
Anti-monotonicity, 964, 969
Antiviral drugs, 537
Apostolico dataset, 350, 353–354
Append operation, Adleman-Lipton model,

175, 179, 186
Approximability, 134
Approximate likelihood ratio test (aLRT),

565
Approximate pattern matching, 157–160,

166, 429
Approximation

algorithm, 752–755, 760, 763–764
ratio, 752–753, 757, 760–761, 764

Aquificae, 347
Arabidopsis, 660, 737, 884, 938–940, 999
ARACNE algorithm, 961, 973
Arbitrary weighted distance, 45
Arc-altering, 117
Arc-annotated sequences

alignment, 115–116, 124
arc-preserving subsequence, 120–122
characterized, 113
defined, 113

edit distance, 123–125
maximum arc-preserving common

subsequences, 122–123
Arc-breaking, 117
Archaea, 346, 451, 453, 618, 729, 881
Archaeoglobus fulgidus, 600
Arc preserving subsequence (APS), 114,

120–122
Arc-removing, 117
Arc structure hierarchy, 113–114
Artificial networks, 970, 972. See also

Artificial neural networks
Artificial neural network (ANN), 372,

470–471, 473, 484
ASCII codes, 94–95
ASSESS, 669, 671
Association rules, 966–968
Association studies, 681, 843
Asynchronous dynamical graph, 903–905
A12co, 252
Augmentation path, 206
Autocorrelation, 801, 812–813
Autoradiography, 415–416
Autoregression, 635
Auxiliary stack, 11
Available Chemical Directory (ACD)

databases, 370–371, 374–376
Average common substring (ACS) distance,

332, 334, 345–346
Average correlation value (ACV) function,

655
Average linkage clustering, 463–464
Average model of probability estimation, 12
Average Spearman’s rho (ASR) function,

655
AVID, 244, 246

Background Markov model, 339
Background probability distribution, 337,

442
Background probability model, 302
Back-propagation (BP) network model, 470
Backtracking, 246
Backward automata, 59–60
Bacterial genomes, 346–347, 451, 453, 619,

729, 740, 881
Bacterialis subtilis, 469–470, 472
Bad character heuristic, 94
Baeza-Yates’ algorithm, 94

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1009

Balanced genomes, 786
BAL-FMB, 787–788
BALiBASE, 253, 293
Ballast anchors/program, 294–295
Bandwidth, 119
baobabLUNA software, 767
Barcoding

algorithmic techniques on, 133–135,
141

barcode defined, 132
barcode matrix, 838
biological applications of, 132–133
problems, see Barcoding problems
whole-genome, 138

Barcoding problems
information content approach, 135–136
overview of, 129–130
randomly generated instances, 139–140
real data, 140
set-covering approach, 135–139
software availability, 140
test set problems, 130–132

Barnard Chemical Information (BCI)
fingerprints, 365

Bartlett’s tests, 700–701
Base pairs

characterized, 93
misplaced, 831–835
probabilities, 533–534
RNA structure, 523–544
sequences of, 802

Base substitutions, 33
Basic simulation method (BSM),

nondeterministic finite automata
(NFA), 52, 60–61, 66, 68–69

Baum-Welch algorithm, 901
Bayesian biclustering model (BBC), 659
Bayesian classifier, 460, 464–466
Bayesian haplotype inference, 852
Bayesian information criterion (BIC), 702
Bayesian MCMC method, 852
Bayesian models, 683
Bayesian networks, 460–461, 467–468, 484,

489, 956. See also Bayesian neural
network (BNN)

Bayesian neural network (BNN), 374–375
Bayesian posterior probabilities, 565
Bayesian principle component analysis

(BPCA), 631–632

BDM (backward DAWG matching
algorithm), 59, 95

BEAST, 551
Bell number, 45
Benchmarks/benchmarking

biological sequence alignment algorithms,
252–255

datasets, 350–351, 355
operon prediction, 465
reverse engineering, 944–945
structure-based domain-identification

methods, 508
Bernoulli model, 302, 311
Berry-Ravindran algorithm, 95
BICAT, 658–659
Bicluster/biclustering

algorithms, systematic and stochastic,
656–659

characterized, 486, 651–652
evaluation functions, 654–656
groups of, 653–654
types of, 652–653
validation, biological, 659–661

Biclusters enumeration (BE) approach,
656–658

Biconductor software, 876
BICOVERLAPPER, 659
Bifactor array, 307
Bi-fan motif, 875
BIMAX algorithm, 659
Binary decision trees, 897–898
Binary descriptors, hash-based, 365–366
Binary search, 9–10, 18, 81
Binary tree, 198
Binding sites, 955–956, 993
Binding sites for transcription factors

(TFBSs), 398, 400, 404–407, 409,
412–414, 417, 438–444, 995–996

BioCyc database, 880
BioGRID database, 880, 972
Bioinformatics

applications, generally, 56, 93, 323, 376,
441

biological sequence alignment algorithms,
241–255

data management system, 221–238.
See also Data management

graph theory and, 207
regulatory regions, 399

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1010 INDEX

Biolayout software, 876
Biological dynamics, 893–894
Biological networks

disease and, 886–887
dynamic and evolution, 884–886
future directions for, 887
historical perspective, 868–870
interaction, large-scale, 666
investigating using probabilistic

approaches, 893–911
local topology of, 873–877
microRNA-mediated networks,

construction and analysis approaches,
979–1001

modeling and analysis with model
checking, 915–936, 938–940

reverse engineering of molecular
networks from a combinatorial
approach, 941–951

structural properties of, 870–873
types of, 878–884
unsupervised learning for gene regulation

network inference from expression
data, 955–974

untangling using bioinformatics,
867–887

visualization tools, 876
Biological processes, predicting, 867–868
Biological sequence alignment algorithms

benchmarks, 252–255
score functions, 250, 252, 255
types of alignment, 242–250

Biological sequence analysis
alignment algorithms, 241–255
biological data mining, novel

combinatorial and information-
theoretic alignment-free distances,
321–355

clustal family evolution of multiple
sequence alignment programs, 277–296

data storage management for
bioinformatics data, 221–238

fast homology searches in large datasets,
filters and seed approaches for,
299–315

first fact of, 143
graphs in bioinformatics, 193–216
local structural alignment algorithms,

261–275

metabolite and drug molecule analysis, in
silico methods for, 361–377

structural motif identification algorithms,
261–275

Biological sequences
alignment algorithms, see Biological

sequence alignment algorithms
analysis, see Biological sequence analysis
characterized, 241–242, 326
comparison of, 242

Biological systems, tracking the temporal
variation of, 209–210

Biological validation, 972–973
Biological warfare, 129
Biomarkers, 694
Biomolecular interaction networks, 671,

677, 682, 684
Biomolecular network(s)

analysis software, 674
characterized, 665–666

BioPython, 187
Biotapestry software, 876
Bi-parallel motifs, 874
Bipartitions, 566–568
Birds, phylogenetic trees, 615
Bit, generally

mapping techniques, 15
masking, 79
matching, 89
parallelism (BP), 52, 61–63, 68–69, 95

BIVISU algorithm, 659
BLAST, 92, 104, 143, 245–246, 311, 314,

322, 341, 503, 729–730
BLAST-like alignment tool (BLAT),

431–432
BLASTP database, 295, 312
BLASTZ, 245
Block dissimilarity score, 336
Block interchange, 762–763, 766
Blocks Substitution Matrix (BLOSUM), 242
Blood-brain barrier, 377
BLOSUM matrices, 283, 312–313, 322,

503, 509
BNDM (backward nondeterministc DAWG

matching) automaton, 59–60, 69, 96,
101, 103–104

Boltzmann constant, 490
Boltzmann distribution, 531
BOM automaton, 60, 69

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1011

BOND database, 880
Boolean algebra, 364–365
Boolean information coding, 967
Boolean networks. See Probabilistic Boolean

networks (PBNs)
Boolean regulatory graphs, translating into

Promela, 921–922, 938–940
Bootstrap/bootstrapping, 565, 569, 573, 970
Bound-and-drop algorithm, 778, 782–783
Bounded relevant numbers, 158
BOWTIE software, 92, 104–106
Box-counting method, 819
Boyer-Moore algorithm, 15, 59, 96, 94
Boyer-Moore-Horspool (BMH) algorithm,

94–95, 101
BRALIBASE, 254
Branch-and-bound (B&B) algorithm, 33, 44,

249, 313, 582, 848
Branch distribution, 210
Branch-proportional method, 291
Breakpoint(s)

distance, 732
genomic distances, 786
graph, 755–756

Breast tumors, 707
Broad-scale networks, 871
Brown-Forsythe test, 701
Brownian motion, 813
B-spline, 645–646
Bulge loop, 523, 525, 527, 534, 541
Burnt pancake flipping problem, 762
Burrows-Wheeler

aligner (BWA), 433
index, 433
transform (BWT), 106, 332–333, 433

Cache-oblivious string B-tree (COSB-tree),
19–20

Caenorhabditis elegans, 874–875, 878, 882,
884, 994, 998, 1000

Cancer, 207, 660. See also Cancer studies;
specific types of cancer and tumors

Cancer studies, differential expression
by chromosomal aberrations, 705–711
differential coexpression, global

multidimensional interactome, 714–720
differential mean of expression, 694–698
differential variability of expression,

699–701

in gene interactome, 711–714
notations, 692–694
overview of, 691–692
in tumor compendium, 701–705

Candida, DNA analysis, 803–806, 811, 818,
834, 836, 838

Candidate generation phase, 137–138
Candidate selection phase, 137
Canonical simple recursive pseudoknots,

541–542
Capacity

data management system, 227
in graphs, 199
residual, 205

Carbohydrate-Active Enzymes (CAZy)
database, 351–352

Cardiovascular disease, 207
CASTp database, 485
CATHEDRAL (CATH) database, 485, 511,

514
CATMAP, 669–670
cDNA, 417, 626–627
CE algorithm, 263
Cell cycle(s), 625, 632, 635, 638, 640–641,

675, 691, 972
Cell division, 640
Cell Illustrator software, 876
Cellular automaton theory, 898–899
Center of gravity (CG), 262, 270
Central processing units (CPUs), 139
Centrality, in biological networks, 873
Cfinder software, 876–877
Chaetosphaeridium, 618
Chain (CHAIN) arc structure, 115,

117–124
Chaining, hash functions with, 7
CHAOS algorithm, 244–246, 249–250
Character stationary probability distribution,

344
ChemBank database, 368–370
Chemical Entities of Biological Interest

(ChEBI), 368–369
ChemIDplus database, 368–369
Chemogenomics, 376
Chemoinformatics

drug-likeness, 362–363
metabolic-likeness (ML), 372, 377

Chemotherapy, 960
Chew-Kedem dataset, 349

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1012 INDEX

Chimeral words, composition vectors and,
340

Chinese Natural Product Database (CNPD),
371

ChIP-chip
binding, 968
experiments, 956

ChIP-on-chip (ChIP-chip), 417
ChIP-Seq data analysis

characterized, 417, 425–426
DNA structure modifications detected by,

437–438
enriched regions, identification of,

434–438
mapping sequences on genome,

429–434
overview of, 426–429
peak-finding methods, 436–437
transcription factor binding site (TFBS)

derivation, 438–444
ChIP-Sequencing (ChIP-Seq). See ChIP-Seq

data analysis
ChipSeq Peak Finder, 436
Chlorella, 618
Chlorophyte, 618
Chloroplast genomes, 617–618, 751
Chloroplasts, 619
Chromatin, 398
Chromatin immunopreciptiation (ChIP),

416
Chromosomal aberrations, differential

expression
locally adaptive statistical procedure

(LAP), 710–711
local singular value decomposition,

709–710
overview, 705–708
wavelet variance scanning (WAVES) for

single-sample analysis, 708–709
Chromosomes, 749–751, 764, 845–846.

See also Chromosomal aberrations
Circadian clock, 632
Circadian rhythms, 640
CircTree, 209
Circular order, 209
Cis-regulatory modules (CRMS), 344,

347–348
Cladistics, 579–580
Cladograms, 580

Clark’s inference rule, 5, 846–849
Cliques

defective, 215–216
in graphs, 197–198

Closed itemsets, 965
Closest neighbor algorithm, 200–201
Closest String, 45
Closest substring, 42
CLOSEUP, 738
CloudBurst, 434
CLR algorithm, 960
Clustal program(s)

ClustalV, 280
ClustalW, 143–144, 247, 251, 284–289,

292–293, 329
ClustalX, 289–292
ClustalX 2.0, 293
DbClustal, 247, 251, 293–295
development of, 278–279
multiple alignment, 282–296

Cluster(s), see Clustering
analysis, 280
inference of miRNA-associated,

989–990
Cluster of orthologous groups (COG)

database, 350–351, 450, 456, 471–472,
481, 729–730

Clustering, see specific types of clusters
biclustering, 651–661
classical statistical, 966
coefficient, 872–873
gene expression data, 211–212
hierarchical, 374, 463, 488
implications of, 280, 374, 376
linkage, 462–464
ortholog, 729

Coalescent, 846
COBALT, 247, 251
Coding region, 337, 802, 815
Codons, 403, 552, 802, 927–929, 932–934
Coefficient matrix, 605–607
Coefficients, see specific types of coefficients
Co-expression network, 956, 959–961,

972–973
COFFEE, 252
Cognate aa-tRNA, 929, 935
Coimmunoprecipitation, 215
Color coding, 675
Colorectal cancer, 707

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1013

COMBAT, 698
Combinatorial approaches

algorithms, 946–951
combinatorial distance, 345
inference methods, 846–851
optimization, 581–582
in phylogeny, 344–346

Combinatorics, 115
Commentz-Walter algorithms, 103
Common ancestor, 11, 242, 580
Common Approximate Substring (CAS), 28,

31, 41–46
Commuting generators strategy, 778–782
Comparative genomics

defined, 725, 773
features of, 408–410, 450–451, 460,

725–726, 774
gene cluster detection, 725–726, 734,

739–742
goals of, 725, 773
multiple genome alignment, 725–726
notations, 727
ortholog assignment, 726–737
synteny detection, 725–726, 734–793

Comparative studies, 322–323
Comparison, haplotype inference problem,

857
Complementary RNA (cRNA), 626
Complements, 52
Complete composition vector (CCV)

characterized, 338–339, 346
computation using fast algorithms,

339–340
Complete graph, 194
Complete linkage clustering, 462–463
Complexity

computational, 28–30
in DNA analysis, 817–818
memory, 56
parameterized, 35, 40–41, 44, 46
time and space, 78

Component-wise correlation analysis,
636–637, 639, 641

Composition vector (CV) method, 600,
614–619

Comprehensive Medicinal Chemistry
(CMC) database, 371, 374

Compression, indexing structures, 21
Computation, partition-based, 139

Computational biology, 12, 19, 303, 323,
479, 666, 741

Computational chemistry, 376
Computational geometry, 267
Computational models, for condition-

specific gene and pathway inference
condition-specific pathway identification,

666–681, 685
disease gene prioritization and genetic

pathway detection, 681–684
module networks, 684–685

Computational molecular biology, 321,
651

Computer processing unit (CPU), 313–314
Computing, DNA-based. See DNA-based

computing
Concatenation, in pattern matching, 77
Condition cover problem, 131
Condition-specific pathway identification,

gene set analysis, 667–671
Condition-specific pathway inference

gene-based methods, 673–674
group-based methods, 676–677
interaction-based methods, 674–676
mathematical programming methods,

677–681
overview of, 667–673, 685
probabilistic models, 677

Conditional probability, 508, 677, 962–963,
966

Confind, 252
Conflict pairs, 850
ε-Congruence problem, 267
Connected graph, 195
Conreal database, 399
Consensus, generally

scores, 252
sequences, 30–31, 36, 41–42, 44, 400–401
string, 144

Consensus-based algorithms, ChIP-Seq data
analysis, 440–441, 443

Conservation scores, 290–291
Conservative degenerate string, 75, 77,

85–88
Conservative edit distance and mapping,

125
Conserved gene pairs, 454–460
Constant factor approximation algorithm,

757

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1014 INDEX

Constraint-based data mining
extracted patterns, multiple usages of,

965–966
gene regulation from transcriptome

datasets, 966–969
overview of, 963–965

Constraints, genomic distances, 793–794
Content distribution network, 227, 229,

233
Context dependencies, 339
Convergence, 568–572
Convolution phase, 391–392
Coronavirus, 346
Correlation, generally

coefficients, 346, 348, 459, 461, 463, 467,
492, 509, 637, 679, 960

long-range, 801, 812–814, 817, 839
matrix, 806, 831, 838
networks, 959

COSI, 857–858
Cosine function, 327, 329, 348, 365,

807–808
Cost function, 263–265, 270
Cost of an edit-script, 116
Covariance matrix, 813–814
Cover, defined, 77
Covers, in weighted sequences

defined, 160
identification of, 164

CPLEX, 791, 795
CPM algorithm, 877
Crenarchaeota, 346–347
CRK, 1001
Crochemore’s algorithm, 163
Crohn’s disease, 858
Cross-correlation, 813
Cross hybridization, 763
Crossing (CROS) arc structure, 114,

117–125
Crossing relation, 114, 534–535
Crossover, genetic algorithms, 471,

589–591, 594–595
Cross-validation, 511, 971
Cryptanalysis, 5
Cryptography, 73
CSL formula, 933–934
CTRD sftware, 767
Cube, defined, 77
Cumulative probability, 12

Cumulated probability density, 813
Current Patent Fast Alert database, 371
Cyanobacteria, 617
Cyanophora, 618
Cybernetics, biological, 942
Cycle decomposition graph, 755–757, 760
Cycles, in graphs, 194–195
Cyclic gene expression profiles, detection of

overview of methods, 640–643
spectral estimation by signal

reconstruction, 644–646
SSA-AR spectral estimation, 643–644
statistical hypothesis testing for periodic

profile detection, 646–647
Cyclic graph, 195
CYTOSCAPE software, 674, 876
Cytosine (C), 3, 31, 36, 171, 522, 599,

799–800, 802, 816, 818

DALI algorithm, 263, 484
Daly set, 858
Damerau distance, 53, 66
DASH, 314
Data, generally

attributes models, 237
compression, 323, 354, 600
discretization, see Discretization
evolution, data models, 237
extraction, in microarray analysis,

627–630, 648
integration, protein function prediction,

489–491
management, see Data management

systems
mining, see Data mining

Database of Drosophila melanogaster genes
(DEDB), 207

Database of Prokaryotic Operons (DOOR),
450, 453–454

Databases, small molecule, 367–370. See
also specific databases

Data management systems
background of, 222
data model, 223–227
evaluation of, 230–236
load balancing, 227–230, 232, 238
replication, 227–230
scalability challenges, 222–223, 237

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1015

self-organized system, 223, 227, 230, 236,
238

system architecture, 224–227
Data mining

biological, 323, 336
constraint-based, see Constraint-based

data mining
features of, 296
gene regulatory networks, 963–969

Data processing
characteristics of, 630–631, 648
inequality (DPI) principle, 961

Dataset(s)
benchmarking, 350–351, 355
gold standard, 342
haplotype inference problem, 857–858

DAWG matching algorithm, 59
DBCLUSTAL, 247, 251, 293–295
DBTBS, 450, 453
DBTSS, 399
de Bruijun graph, 34–35
Decentralization, data models, 237–238
Decision function, 468–469
Decision trees, 374–375, 897–898
Decorrelation, 800
Degeneracy, 807–809
Degenerate pattern matching, 75–76
Degenerate sequences, processing

developments
background, 74–76
conservative string covering in degenerate

strings, 85–88
overview of, 73
primer design problem, 74
repetitive structures in, 79–85
terminology, 76–78

Degenerate string, see Indeterminate string
defined, 77
features of, 5, 14, 56–57
local cover, computation of, 81–84,

88–89
smallest cover, computation of, 79–81,

88–89
Degenerate symbol, 56
Delete, pattern matching, 62–64
Deletion operations, 117
Deletions, 18–19, 33, 105, 248, 304, 433,

468, 551, 705, 707, 737, 751
DeltaH/DeltaS, 188

Denaturation, 188
Dendograms, 281
Denoising formulas, 603–610, 614–615,

617
Dense overlapping regulons (DORs),

874–875
Dependency

characterized, 330–331, 344, 348–349
detection of, 403–405
graph, 895–896

Derange II, 764
Descendents, in rooted tree, 198
Detect operation, Adleman-Lipton model,

175
Deterministic finite automata

characterized, 78
direct use of, see Direct use of

deterministic finite automata (DFA)
transition diagram, 78

Deterministic match, 15
Deterministic Motif Search (DMS)

algorithm, 393, 395
Deterministic state cache (DSC), 66
Detrended fluctuation analysis, 814
DIAGHUNTER, 738
Diagnostic testing, barcoding problems, 131
DIALIGN software, 249, 250–251, 295
Diameter path noise ratio, 210
Dictionary-based descriptors, 364–365
Dictionary matching, 13, 15
Diffentiators, 944
Differential coexpression, global

multidimensional interactome
characterized, 714–715
differential expression linked, 718
differential friendly neighbors (DiffFNs),

718–720
Kostka and Spang’s algorithm, 715–718

Differential equations, 899
Differential friendly neighbors (DiffFNs),

718–720
Differential mean of expression

empirical Bayes extension, 698
multifactor differential expression,

697–698
significance of, 694–695
single factor differential expression,

695–697
Differential parsimony, 455

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1016 INDEX

Differential variability of expression,
differential variability analysis

multigroup, Bartlett’s and Leven’s tests
for, 700–701

two-group, F-test for, 699–700
Diffusion kernel, 683
Digraph. See Directed graph (digraph)
Dihydrofolate reductase-thymidylate

synthase (DHFR-TS), 644
Dijkstra’s algorithm, 203–205, 213
DIP database, 880
Diploidy, 844
DIRE database, 399
Directed acyclic graphs (DAGs), 99, 195,

207, 956, 961, 963. See also Directed
graph (digraph)

Direct use of deterministic finite automata
(DFA)

backward automata, 59–60
characterized, 51–52
degenerate strings, 56–57
exact string matching algorithm, 54
fail function, automata with, 60
filtering automata, 59
forward automata, 53–56
indexing automata, 57–59
NFA simulation compared with, 60

Directed graph (digraph), 194–196,
869–870, 874, 947

DIRMBASE, 254
Disconnected graph, 195
Disc-covering methods (DCMs), 593
Discrete binary function, 800
Discrete Fourier transform, 802, 814
Discrete Haar wavelet transform, 821–823
Discrete networks 899–900
Discrete optimization problem, 962
Discretization, 950, 958, 966–967
Disease gene prioritization, 681–684
Disk partitioning, 17
Distance-based information preservation

crossover (DiBIP), 588–591, 595
Distance measure

angle-based, 611–613
conditions of, 611
function, 42

Distributed hash table (DHT) algorithm,
224–226, 229–230, 237

Distributed pattern matching, 15

Distribution, in data models, 237. See also
specific types of distributions

Divana, 252
Divergence, 885
Divide-and-conquer (DAC) approach, 12,

158, 248–249, 513, 592–593, 656, 658
D2 measure, 340–341, 343–344, 348
D-miner algorithm, 967
DNA

amplification of, 428
characterized, 171, 802, 817
ChIP-Seq data analysis, 425–428
coding regions, 337, 802, 815
contamination, 430, 434
double-stranded, 171, 427, 802
footprinting, 414–415
fractal estimate, 806
fragmentation, 216, 322, 415, 429, 436
genomic, 434–435
heterogeneity, 818
mathematical modeling of, 808
methylation, 692
microarray analysis, see DNA microarrays
mitochondrial (mtDA), 345, 615, 617, 760
modifications, ChIP-Seq identification of,

437–438
motifs, short, 458
noncoding regions, 802
pathogen-specific, 130
repair, 935
replication, 759
representation, see DNA representation
sequences, see DNA sequence analysis;

DNA sequences
single strand, 171, 467
statistical correlations in, 812–818
translation, 935
walks, 810–811, 834–839

DNA-BAR software, 140
DNA-based computing

Adleman-Lipton model with stickers,
174–175, 188

defined, 171
development of, 172
experimental data, 187–188
graph isomorphism problem, 183–184,

188
maximum common subgraph problem,

184–188

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1017

models of, 175–179
solution space, sticker-based, 175–176
subgraph isomorphism problem, 179–183,

188
DNA microarrays

analysis, characterized, 665
features of, 209, 417
technology, sample experiment, 626–627

DNA PREFAB, 254
DNA-protein, generally

binding, 968
interaction, 402

DNA representation
complex, 810, 817–818, 830–834, 839
constraints on, 808–809
digital, 806
implications of, 176, 802–803
indicator function, 803–807
models of, 807–808

DNA sequence analysis
indicator function, 803–806
problems with, 800–801
representation, 806–810
walk sequence, 811
wavelet algorithms, 818–839

DNA sequences
analysis of, see DNA sequence analysis
barcoding problems, 132
Common Approximate Substring (CAS)

problem, 42–43
degenerate sequence processing, 73
dependencies, 344, 348–349
entropy optimization, 601
exact search algorithms, 92
implications of, 13, 17, 331
Longest Common Superstring (LCS)

problem, 40
motif finding problem, 388
MPSCAN applications, 103–104
protein-coding, 602–603
Shortest Common Superstring (SCS)

problem, 31–32, 34–36
single pattern matching algorithms, 94–96
weighted, see Weighted DNA sequences
whole, 602

Do-not-care characters, 14–15
Dog, DNA analysis. See Candida
DomainParser program, 212
DomCut, 502

Dominating set problem, 172
DomNet, 512
DOMpro, 502, 512
Dot matrices

alignment, 143
characterized, 243–244
dot-plot, 737–738

Doule cut and join (DCJ) operation,
764–765

Downregulation, 996
Down-weighting, 288, 291
Drosophila melanogaster, 347, 751, 882,

884, 948–949
Drug design methods, 370, 573
Drug discovery process, 361–362, 377
Drug failures, 370
Drug-likeness (DL), 362–363, 370–371, 377
DSSP, 350
Duo, defined, 775
Duplication(s), 730, 732, 735, 737, 741–742,

751, 773, 885
Duplication-divergence model, 885
Duplication-mutation process, 801
Dyes, fluorescent, 626–627, 630
Dynamic programming

algorithms, generally, 12, 37–41
efficient algorithm, 281–282
evolutionary trees, 209
filters, 304, 311
haplotype inference, 853
maximum entropy, 599
memory-efficient algorithm, 279
multiple global alignment, 245–249
nondeterministic finite automata (NFA),

52, 63–66, 68
operon prediction, 461
pairwise global alignment, 242, 244
pairwise local alignment, 244–245
RNA structure prediction, 526, 532,

538–542
seed-based heuristics, 314–315
similarity searches and, 300
synteny detection, 738
types of, 143
VLAFP algorithm, 264–265, 267

Dynamic range, 958
Dynamical analysis, probabilistic models

overview of, 902, 911
temporal properties, 903–905, 908–909

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1018 INDEX

Dynamical models, reverse engineering,
943–944

Dynamism, data models, 237

E-CCC-BICLUSTERING, 659
Edge betweenness, 877
Edge deletion (ED), 468
Edge-weighted graph, 195
Edit distance

for arc-annotated sequences, 114,
116–117, 123–125

barcoding problems, 140
implications of, 12, 42, 45–46, 53, 66–67,

303, 308–309, 386
weighted sequences, 166

Edit Distance Motif Search (EDMS), 393,
395

Edited motif problem (EdMP), 386,
392–393, 395

Edit graph, 38, 41
Edit operations, 115–117, 386. See also

Delete; Insert; Replace
Efficiency, 28, 32, 37, 42
eF-Site database, 485
Eigenvector/eigenvalue, 552, 709
ELAND software, 104–105, 107, 432
Electrophoresis, 415–416
Electrophoretic mobility shift assay

(EMSA), 415–416
Element plotting, 778, 783–785
Embedding relation, 114
EMBOSS, 92
Empirical probability distribution,

325–329
Empty string, 52, 77
Endosymbiotic theory, 617
Energy genomics, 451
Enhanced suffix array, 12
Ensembl, 399
Enthalpy, 188
Entropy

ChIP-Seq data analysis, 442
composition vector methods, 600–601
empirical relative, 326, 329, 348
empirical version of, 323, 325–327
implications of, 188, 252, 402
operon prediction, 459
optimization, see Entropy optimization

relative, 322–329, 390, 442, 466
revised relative, 328
score, 390
weighted relative, 328–329

Entropy optimization
definitions, 601–603
denoising formulas, 603–610
distance measure, 611–619
phylogenetic tree construction, 613

Enumerate-and-check algorithm, 41
Environmental Stress Pathway Project

(ESPP), 451
Enzymatic reactions, 171
Enzyme Commission (EC) number, 480
Enzyme Nomenclature database, 480–481
Enzymes, classification of, 480
EPD, 399
Epidemics, 132
Epigenetic regulation, 437
Epigenomics, 92–93
Epstein-Barr virus (EBV), 760, 763
eQED, 680
Equivalence classes, 161
Equivalence relations, 161–163
ERMINEJ, 669–671
Erythroblastic leukemia viral oncogene

homolog 2 (ERBB2), 707
Escherichia coli, 451–452, 465–466, 469,

472, 881–882, 884–885, 894, 928, 960
eShadow database, 399
Eubacteria, 617–618
Euclidean distance, 268, 327, 329, 334, 346,

348, 373, 612–613
EU.GENE.ANALYZER, 669
Euglena, 618
Eukaryota/eukaryotes 346–347, 459,

617–618, 729, 881
Eulerian circuit, 197
Eulerian cycle/tour, 197
Eulerian graph, 196–197, 757
Eulerian paths, 34, 196–197, 214–215
Euryarchaeota, 346–347
Evaluation functions, 654–656
Evolutionary and Hydrophobicity profile

(E-H) profile, 502–503, 506, 509–511,
515

Evolutionary computation (EC) approach,
657–658

Evolutionary distances, 726, 750, 774

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1019

Evolutionary metaheuristics
distance-based information preservation

crossover, 589–590
genetic algorithm (GA) problems,

588–589, 594
greedy randomized adaptive search

procedure (GRASP), 587–588
Evolutionary pressure, 337
Evolutionary profile, 510
Evolutionary studies, 241
Evolutionary tree construction, 208–209,

216
Exact search algorithms

applications for read mapping and
comparison with mapping tools,
103–107

multiple pattern algorithms, 97–103
significance of, 92–93
single pattern matching algorithms,

93–96
Exact word matches

D2 and distributional regimes, 340–341
optimal word size, 342–343

Exhaustive enumeration, 582
Exons, 55, 208, 468, 802
Expectation maximization (EM) algorithm,

390, 411, 441, 507, 701, 851, 853
Experimental algorithmics

datasets, 350–353
features of, 349–350
software, 353–354

Exponential distribution, 930, 993
Exponential-time algorithms, 41
Expressed sequence tags (ESTs), 431–432
Expression Data Clustering Analysis and

VisualizATiOn Resource
(EXCAVATOR), 211

Expression profiling, 430
Expression quantitative trait loci (eQTLs),

680
Expression ratio, 627
EXPRESSO, 247, 251
Extended Burrows-Wheeler transform

(EBWT), 333–334
Extended connectivity fingerprints (ECFP),

366
Extended (l, d)-motif problem (ExMP), 386,

391–392, 395
Extracted motifs, 965–966

Extract operation, Adleman-Lipton model,
175, 179, 184, 186

exVote algorithm, 392

Factor analysis, 694–695
Factor automata, 57–59, 66
Factors, defined, 52
Failure

in drug discovery process, 360
function, 60, 86
links, 97–98

False discovery rates (FDR), 708, 970
FANMod software, 876
FARMER software, 967–968
Fast alignments, 279
FASTA files, 143, 245–246, 322, 350–351,

353, 407, 479
fastDNAml, 561
Fat-tail, of power law, 870
FATISCAN, 669–670
F distribution, 697
Feedback loops (FBLs), 894, 911, 997–998,

1000
Feedforward loops (FFLs), 874–875,

996–997, 1000
Feed forward neural networks (FFNNs),

372, 375–376
Ferungulates, phylogenetic trees, 617
Field-programmable gate array (FPGA), 314
Fikov’s dataset, 640–641
Filtering, see Filters

algorithms, 100–103
automata, 59
phase, seed-based heuristics, 310
significance of, 245
SSA, 644

Filters, see specific types of filters
characterized, 300
chemical space, 371
fundamentals of, 301–303
preprocessing, 300, 302

Filtration/filtering algorithms, 100–103
Finding Peaks, 436
Fingerprints/fingerprinting

(binary) descriptors, 364–366
circular, 366
hash-based, 365–366
pathogen, 133

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1020 INDEX

Finishing phase, seed-based heuristics, 310
Finite automata

classification of pattern matching
algorithms, 53

composition, 67
as computation model, 66–67
deterministic, direct use of, 51–52, 53–60,

68
Longest Common Substring (LCS), 40
nondeterministic, simulation, 60–66
in pattern matching, 51–67
in stringology, 51

Finite-order Markov chains, 343
Finite sample effect, 326
Firmicutes, 347
First-approximation algorithm, 791
First come first serve (FCFS) queue, 226
First responder pathogen detection system

(FRPDS), 133
Fisher g-statistic, 646–647
Fisher’s tests

cumulant, 704
exact, 669–670

Fitch-Margoliah (FM) method, 613
Fitch’s algorithm, 580, 593–594
Fixed-length reversals, 763
Fixed-parameter tractable (FPT) algorithm,

28–29, 120, 795–796
Flip, defined, 761
Flows, in graphs, 199
Flux balance analysis (FBA), 877, 881
Folding, RNA pseudoknots, 542
Footprinter database, 399
Footprinting, phylogenetic, 399
Ford-Fulkerson algorithm, 205–207, 212
Forests, in graphs, 198–199
Formal concepts, 967
Forward automata, 53–56
Forward engineering, 988, 993, 1001
Forwarding hops, 229
Four-approximation algorithm, 791
Fourier transform, 813
FOXA3, 435
FP-tree, 965
Friendly neighbors (FNs) algorithm,

717–720
Front-compressed packed memry array

(FC-PMA) data structures, 21
FSA, 251

F-Seq, 436
F-test, 699–700
FTP, 45–46
Full matching adjacencies (FMA), 792–794
FULL search algorithm, 570–571
FuncAssociate, 660
Funcat database, 481, 492
FUNCLUSTER, 669
Functional annotations, 91
Functional connectivity fingerprints (FCFP),

366
Functional genomics, 451
Functional groups, 677
Fus, 347

Gap(s), generally
characterized, 243
extension penalty (GEP), 281, 283,

285–287, 294
matrices, 538, 540
opening penalty (GOP), 281, 283,

285–287, 294
in pattern matching, 154–156
penalties, 243, 280, 286–287

Gappy alignments, 557–558
GARLI, 551, 554, 557, 559, 562–563
Gasch dataset, 972
Gating networks, 507–508
Gaussian distribution, 669, 677
Gaussian mixture model (GMM), 629,

701–703
Gaussian noise, 646, 702–704
GAZER, 669, 671
Gel electrophoresis, 171, 415–416
GEMS, 658
GenBank, 17, 345, 353, 451
Gene-chips, 958
Gene cluster detection

characterized, 734–735
common interval model, 736, 739
compared with synteny detection, 739
defined, 736
gene teams model, 736, 739–741
model development, 741–742
overview of, 739–740

GENECODIS, 660
Gene content method, 600
Gene-disease association, 681

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1021

Gene expression, generally
clustering data, 211–212
data extraction, 627–630, 648
matrices, 970
profiles/profiling, 347, 480, 625, 634, 647

GENEICON, 628
Gene interactome, differential expressions

friendly neighbors algorithm, 711–712
GeneRank, 712–713
top scoring pairs (TSP), 713–714

Gene networks
data and analysis, 958
defined, 956–957
properties of, 956–958

Gene Oncology Consortium (GOC), 660
Gene ontology, 968
Gene Ontology (GO), 452, 456–457, 473,

480–481, 485, 492, 659–660, 667–668,
674, 681, 711–712

Gene-phenotype network, 682–683
General feature format (GFF), 407
Generalized dependency graph, 900
Generalized factor automaton (GFA), 16
Generalized Levenshtein distace, 53
Generalized string, 56
Generalized suffix tree (GST), 7–8, 14, 393
General systems theory, 942
General time reversible (GTR) model, 553
GENERANK algorithm, 711–713
Generate and test algorithm, 964–965
Gene rearrangements, 749. See also Genome

rearrangement algorithms
Gene regulatory networks (GRNs), see

Regulatory networks
characterized, 398, 417, 894, 947–948,

955–956
correlation-based, 959–961
data mining, 963–969
four levels of, 981
inference, 959–969, 973–974
microRNA-mediated, 979–981
probabilistic graphical model, 961–963

Gene set enrichment analysis (GSEA),
668–670

Gene transcription, 397–398
Gene trees, 728
Genetic algorithm (GA), 471–472
Genetic Computer Group (GCG) package,

92

Genetic disorders, 684
Genetic network, 884. See also Genetic

network analysis
Genetic network analysis

Boolean regulatory networks, 919–922
case study, 919–920
information resources, 924–925
stable states, 922–924

Genetic pathway detection
condition-specific pathway identification,

666–681, 685
disease gene prioritization, 681–684

Genetic profiling, 349
GENETRAIL, 669
GenMAPP, 668
Genome analysis

comparative genomics, 725–743
DNA analysis, wavelet algorithms,

799–839
genome rearrangement algorithms,

advances in, 749–767
genomic distances, computation of,

773–796
haplotype inference models and

algorithms, 843–859
Genome breakpoint mapping, 92
Genome Inversion and Rearrangement

Locator (GRIL) software, 767
Genome rearrangement algorithms

fixed-length reversals, 763
future research directions, 765–766
overview of, 749–752
permutations, 752
short swap, 763
software notes, 766–767
sorting by block interchange, 762–763
sorting by multiple operations, 763–765
sorting by prefix reversals, 761–762
sorting by prefix transpositions, 762
sorting by reversals, 753–759
sorting by transpositions, 759–761

Genome Rearrangement in Man and Mouse
(GRIMM) software, 766

Genome regulatory landscape, 397–399
Genome sequences, mapping, 429–434
Genome sequencing, 92–93, 221
Genomes, types of

human, 17, 107, 311, 337, 407, 750, 753
metazoan, 344, 347

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1022 INDEX

Genomes, types of (Continued)
microbial, 139, 474, 736, 740
mitochondrial, 344–345, 350, 353, 355
mouse, 750, 763
viral, 345

Genomic analysis, 30–32
Genomic distances, computation of

character-based criteria, 785–795
definitions, 774–775
interval-based criteria, 775–785
notations, 774–775

Genomic regions, enriched, 434–437
Genomic sequences, 136–137, 322,

344–345, 355
Genotype(s)

ambiguous, 845
pedigree graph, 854

Genotyping, 430, 844
GEO database, 105
Geodesic distance, 871
Geometric congruence, 267
gff2ps, 399, 407
GIBBS, 249
Gibbs sampler, 399, 441–442, 856, 907
GIGA, 681
Gillespie algorithm, 910–911
Giraffe tree, 19
GLAM, 249, 251, 307, 309
GLASS, 244
Glaucophytes, 617–618
Gleevec, 887
Global alignment

anchored, 294–295
features of, 143
multiple, 245–249
pairwise, 242–244
structural, 262

GLOBALTEST, 669–670
Globular proteins, 501
Glycolysis, 879
Glycoside hydrolase family 2 (GH2), 349,

351–353
GMCIMPUTE, 631
GNEA, 681
GOAL, 669
Gold standard, 944
GO-MAPPER, 669
Gonnet matrices, 283
Google file system (GFS), 237

GOTM, 669
GPCRIPDB Data Base, 351
G-protein-coupled receptors (GPCRs), 351
GRAM (genetic regulatory module), 882
GRAMALIGN, 247, 251
Graph(s)

in biological world, 207–216
common problems and algorithms,

200–207
defined, 193
graph theory, 193–207, 216, 450, 868,

972
isomorphism problem, 172–173, 183–184
matching algorithms, 367
types of, 194–199

Graphical user interface (GUI), 92, 289,
293

Graphic processing units (GPUs), 314
Graphviz software, 876
Greedy algorithms, 312, 441, 755, 764
Greedy candidate selection algorithm,

138–139
Greedy iterative search (GIS) approach, 656,

658
Greedy randomized adaptive search

procedure (GRASP), 587–588
Greedy set-cover algorithm, 136–137,

139–140
Green algae, 618–619
GSA, 669, 671
GTP-hydrolysis, 928, 932
Guanine (G), 3, 31, 36, 171, 522, 599,

799–800, 802, 816, 818
Guanine nucleotide-binding proteins

(G-proteins), 350–351
Guanosine diphosphate (GDP), 351
Guanosine triphosphate (GTPases), 351
Guard tests, 95
Guide tree, 247, 280–281, 284–285
GXNA, 681

Haar scaling function, 819
Haar wavelet

characterized, 819–820
coefficients, 823–826, 828–838
discrete transform, 821–823, 827
short transform, 826–828, 832, 835–837
theory, 801

Hairpin loop, 523, 525, 527, 534

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1023

HAMAP database, 481
Hamiltonian graph, 197
Hamiltonian path, 33–34, 172, 197–198,

200, 214–215
Hamming distance, 12–13, 42, 45, 53, 66,

157–160, 164–165, 301, 303, 305–307,
342, 365, 373, 389, 442, 455, 590

HAPLORE software, 855
Haplotype(s)

assembly problem, 843
block partitioning problem, 851
characterized, 5, 16, 843–844
compatible, 845
configuration, 845
defined, 843
frequency estimation, 851
inference, see Haplotype inference

methods; Haplotype inference problem
inference by pure parsimony (HIPP),

848–849
reconstruction of, 844
types of problems, 843–844

Haplotype inference methods
classification of, 858
combinatorial, 846–851
evaluation measurements, 856–858
pedigree, 853–856
statistical methods, 851–853, 85

Haplotype inference problem
characterized, 843–844, 846
problem statement and notation, 844–846

HapMap, 857–858
Hard splitting, 513
Hardy-Weinber equilibrium (HWE), 851,

855, 857
Hash function, 7, 95, 224–226, 567
Hash table, 433
Hash-tree, 965
HBV, 619
Hebb rule, 470
HEINZ, 681
Helices, types of structures, 263, 523, 525,

527, 534
Hepatitis delta virus (HDV), 537
Herpes simplex virus (HSV)/Herpes simplex

virus (HSV-1), 614, 616, 619, 759, 763
Heterogeneity, 818
Heuristic method of sequence alignments,

143

Heuristics
applications, generally, 27, 94, 134, 143,

300
biclustering algorithms, 656
ChIP data analysis, 430
condition-specific gene and pathway

inference, 674
information content (ICH), 135–136, 139
regulatory networks, 968
seed-based, 310–311, 313–315

Hidden Markov models (HMMs), 91,
404–405, 460–462, 852–853, 859

Hierarchical mixture of experts (HME),
506–507, 509–510, 513, 515

High osmolarity glycerol (HOG) pathways,
685

High-performance computing (HPC), 549
High-scoring pairs (HSPs), 729
High-throughput screening (HTS), 92, 104,

107, 221, 867
High-throughput sequencers, 314
High-throughput technology, 956
Hitting set problem, 946–947
HIV Sequence Compendium, 346
HMMER, 251
Hölder exponent, 818
Homeostasis, 998
Homo sapiens, 878, 883–884, 956, 963
Homologies, 299–300, 309
Homologous sequence alignment, 513
Homologs, defined, 727
HOMSTRAD, 254
Horspool with q-grams (HG), multipattern,

101–102
HotKnots, 543
Hpknotter, 542–543
HPRD database, 880
H3Viewer software, 876
Hubs

defined, 870, 887
regulatory, 958, 972–973
target, 993–994

Human expression atlas, 997
Human genetic diseases, 207
Human genome, 17, 107, 407, 750, 763
Human immunodeficiency virus (HIV), 336,

346
Human-in-the-loop profiling, 515
Human papillomavirus (HPV), 141

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1024 INDEX

Human transcription factor network
(HTFN), 883

Hurst exponent, 801, 817, 826
Hybrid (H) approach, 657–658
Hybrid algorithm, 590
Hybridization, 187, 626–627, 630–631,

763
Hydra software program, 587
Hydrogen bond acceptors (HBA)/donors

(HBD), 366, 370
Hydrogen bonds, 113
Hydrophobicity, 503–505, 514
Hypergeometric test, 669
Hypergraphs, 44
Hypothesis testing, 646–647
Hypothetical perfect, 753

Ideker et al’s algorithm, 946, 949–951
Ignored mask bits problem, 158
Iid

background model, 341
probability distribution, 343

Illumina-Solexa
next-generation sequencing system, 426
sequencer, 104, 107

Image analysis, in microarray analysis
automatic gridding, 628
block segmentation, 628
applications, 627–630, 648
image preprocessing, 628
spot extraction, 628–630

Immune network, 887
Immunoprecipitation. See ChIP-Sequencing

(ChIP-Seq)
Imperfect phylogeny haplotype (IPPH)

problem, 851
Improved configurational entropy (ICE),

213
Incorrect haplotype percentage (IHP), 856
In-degree

distribution, 994
in graphs, 195–196

Indels, 105, 432
Independence, 330–331
Indeterminate string

characterized, 56
defined, 5
index structures, 14–16
pattern matching, 75

Indexing
automata, 57–59
ChIP data analysis, 431
defined, 148
high-dimensional, 237
multidimensional, 222, 224, 237–238
neighborhood, 312–313
permutation set generation, 176
phase, seed-based heuristics, 310
space-conscious, 332
weighted suffix tree, 148–152

Index repository, 224
Indicator function, 803–807
Individual haplotyping problem, 843
Infections, 141
Inference(s)

condition-specific pathway, 667, 671–681
gene regulatory networks (GRNs),

959–969, 973–974
haplotype, 846–858
microarray data analysis, 665–685
network. See Network inference
phylogenetic, 327, 550–552, 572
rule, 846

Influence graphs, 900
Information content approach, 135, 442
Information entropy, empirical, 327
Information measures, 323–325
Information theoretic distance, 345
Information theory, 323
Inheritance, 845
Inhibitors, regulatory networks, 968
INPARANOID, 730
Insert, pattern matching, 62–63, 65
Insertion(s)

arc-annotated sequences, 116
errors, 933–934
implications of, 33, 105, 248, 304, 433,

551, 735, 737, 741–742
string B-trees, 18–19

In silico gene regulatory networks, 947–950
In silico haplotyping, 843
IntAct database, 880
Integer linear program (ILP), 45, 489–491,

741, 847
Integer programming, 134
Integrated Relational Enzyme Database

(IntEnz), 369
Integrators, 944

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1025

Intergenic distance, 449, 454, 459, 469, 471
Intergenic spacing, 454, 459
Internal loop, 524–525, 527, 534, 541
Internal ribosome entry sites (IRESs),

536–537
International Chemical Identifier codes

(InChI), 363
International Union of Pure and Applied

Chemistry (IUPAC), 96, 363, 400–401,
438

Interologues, 879
Intersection automaton, 53, 67, 69
Intervals

approximate, 775
character set, 776
common, 776, 778, 783–785
common distance, 776
conserved, 778, 782–783
conserved distance, 777
irreducible, 778, 782–783
Max zone, 777–778
Min zone, 777–778

Intractability of problem, 28–30, 32
Introns, 55, 398, 802
Inverse Ackerman function, 850
Inversions, 735, 741–742, 751, 767
IQPNNI, 551, 557, 559
i-reversal, 755
IRMBASE, 254
Isoleucine, 56–57
Itemset mining, constrained, 967
Iterated local search (ILS), 584
Iterative signature algorithm (ISA), 658
IUB/IUPAC nucleic acid codes, 96

Jackknife testing, 469
JACTIVEMODULES, 673, 681
Jarrah et al’s algorithm, 946–947, 949–951
Jarvis-Patrick clustering algorithm, 374
JASPER database, 399, 406–407, 880
Joint prediction of operons (JPOP), 469, 471
Joint probability distribution, 467
JPROGO, 669

KALIGN, 247, 251
Kappa shape index, 364
KEGG database, 473, 481, 668, 672,

880–881
KEGG Orthology (KO), 457–458, 473

Kendall’s correlation, 711
Kernel(s)

function, 470
protein function prediction, 490

KineFold, 542
Kinetics

mRNA translation, 927–928
peptidyl transfer, 927–930

K-MEANS algorithm, 462
KMP automaton, 60
Knapsack problem, 172
k-Nearest neighbor classifier (k-NN)

technique, 373–374
Knight’s Tour and Icosian Game, 193
KNNIMPUTE, 631
Knockout, 974
KnotSeeker, 542–543
Knuth-Morris-Pratt algorithm, 75
Kohonen self-organizing maps (SOMs), 372
Kolmogorv-Smirnov, generally

statistic, 668, 670
tests, 342, 669

Kostka and Spang’s (KS) algorithm,
715–718

Kroenecker symbol, 820
Kruskal’s algorithm, 201–202, 211
Kruskal-Wallin test, 697
Kullback-Leibler, generally

distance, 324, 326, 332
divergence, 466

Kurtosis, 704–705
Kyoto Encyclopedia of Gene and Genomes

Ligand COMPOUND database, 369

LAGAN, 244, 246
Lagrange multipliers, 468
Lagrangian relaxation, 134
Lander-Green algorithm, 855–856
LaNet-vi, software, 876
Laplacian matrix, 683
Large datasets, fash homology searches,

299–315
Large-scale, generally

biological investigations, 344
experiments, ChIP-SEQ data analysis, 443
phylogenetic analyses, 550

Latencies, 311–312, 314
Lattices, 822, 965
Lazy dynamic programming algorithms, 39

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1026 INDEX

Lazy evaluation strategies, 563–564
Learning regulation networks, 959
Learning rules, 470
Least-square support vector machine

(L-SVM), 469
Leave-one-out method, 971
Lecroq’s algorithm, 96
Length of string, defined, 386
Length ratio, 458
Leucine, 57
Leukemia, 660
Leven’s tests, 700–701
Levenshtein distance, 53, 55–56, 63, 65–66
Library

defined, 187
sequence, 187
strands, 187

Library for support vector machines
(Lib-SVM), 469

LICORN (Learning CoOperative Regulation
Networks), 968–969, 971–973

Likelihood ratchet techniques, 573
Linear correlation coefficient, 327
Linear dependence, 960
Linear discriminant analysis (LDA), 372
Linear gap penalty, 243
Linear models for microarray data

(LIMMA), 694, 698
Linear regression, 738
Linear-time algorithms, 11, 75–76
LINEUP, 737
Linkage analysis, 681
Linkage disequilibrium (LD), 846, 852, 856,

859
Linkage studies, 735
Lipinski’s rule, 370
LLSIMPUTE, 631–632
Lobelia fervens, 751
Local alignment

algorithm, see Local alignment algorithm
implications of, 143, 322
tools, 307

Local alignment algorithm
multiple, 249–250
pairwise, 244–245

Local covers (LC), degenerate strings,
82–84, 88–89

Local decoding, 334–336
Local dissimilarity score, 336

Local information, 965–966
Locality sensitive hash function (LSH), 225
Local optimum, 583–584
Local search (LS) algorithm, 582–584,

587–588, 594
Local singular value decomposition

(LSVD), 709–710
Local structural alignment

computation of, 270
pairwise, 273
problem definition, 262–263

Local structural entropy (LSE), 213
Logarithmic-affine gap penalty, 243
Logarithmic gap penalties, types of, 243
Log-energy entropy, 469
Logic, see Truth tables

Boolean functions, 896–897
gates, 944

Log likelihood (LL)
implications of, 701–702
ratio, 402
resampling of the estimated (RELL), 565
score, 459–460, 473, 560, 569

Log ratios, 630
Lokerns function, 711
Longest arc-annotated subsequence

(LAPCS)
approximability, 118, 120
classical complexity, 117–119
defined, 114, 117–118
EDIT problem, 123–124
parameterized complexity, 118–120

Longest common subsequence (LCS), 28,
31, 308

Longest common substring (LCS), 8–11
Losses, impact of, 731–732, 735, 742
Lossless filters

characterized, 300, 302, 315
history of, 303–304
multiple repeats, 305

Lossy seed-based filters, 301, 309, 315
LSIMPUTE, 631–632
LVB software program, 587
Lymphoma, 660, 678

MACAW, 249
MACCS-II Drug Data Report (MDDR), 371,

374, 376
Machine learning, 450, 956, 959, 973

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1027

Macromolecules, 241
MACS, 436
MAD, 703
MAFFT, 248, 251, 253
Maize, 737
Mammalian, generally

datasets, 345
genomes, 766

Mammals, phylogenetic trees, 615, 619
Mann-Whitney-Wilcoxon test, 695–696
MAPPFINDER, 669
Mapping

cross-species, 432
physical maps, 754, 758
quantitative trait locus (QTL), 856

Mapping and Assembly with Quality
(MAQ), 104–105, 108, 433–434

MapReduce, 434
Marchantia, 618
Market basket analysis, 964
Markov chains

haplotype inference, 852–853
implications of, 324, 327–328, 343–344,

404–405, 905–906
Markov chain Monte Carlo (MCMC)

approach, 852, 856, 907
Markov clustering (MC), 488
Markovian background model, 337
Markovian distribution, 332
Markov models, 329, 348, 443. See also

Hidden Markov models (HMMs);
Markov random field (MRF) model

Markov random field (MRF) model, 487,
490, 677

Masking technique, 79
Match/matches, generally

counts, pattern matching using, 153–154
database, 399
defined, 245
heuristic, 94

MATCHBOX, 249, 251
Matching, genomic distances, 785–786. See

also Pattern matching
Maternal genome, 845
MATLAB, 353, 619
MatScan database, 399, 407
Mauve software, 766–767
MAVID, 247, 251
MAVisto software, 876

Max-flow min-cut theorem, 206–207
Max-gap cluster model, 739
Maximal flow problem, 205–207
Maximal words, composition vectors and,

340
Maximum arc-preserving common

subsequence (MAPCS), 114, 122–123
Maximum clique problem, 172
Maximum common subgraph (MCS)

problem, 174, 184–187, 367
Maximum entropy, 604–605
Maximum independent set problem, 172
Maximum isomorphic subgraphs, 173–174
Maximum likelihood (ML)

alignment shapes, 558–559, 573
applications, 507, 549–550, 729, 851–852
computation of, 552–554
haplotype inference, 856
phylogenetic inference, 550–552, 572
phylogenetic search algorithms, see

Phylogenetic likelihood function (PLF)
search heuristics, 559–565
tree, 345

Maximum likelihood estimate (MLE), 344
Maximum Oligonucleotide Mapping

(MOM), 433
Maximum parsimony (MP)

characterized, 551, 559–561, 570, 594
cladistics, 579–580
defined, 579
genetic algorithm (GA) problems,

588–589
local search algorithms, 582–584,

587–588
neighborhoods, 584–587
sample problem, 581

Maximum resolution (MR) model, 847–848
Maximum-weighted Hamiltonian paths, 33
Maximum weighted matching (MWM),

541–543
Maxmean statistic, 669
MDL Drug Data Report, 370
MDM2, 873
MDScan, 443–444
Mean average error (MAE), 971
Mean squared error (MSE), 470
Mean squared residue (MSR) function, 654
Measurement Systems Analysis (MSA)

software, 247, 251

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1028 INDEX

MEGA, 613–614
MEGO, 669
Melina2 database, 399
Melting temperature, 188
MEME database, 249, 251, 399, 441–443
Memetic algorithm (MA), 590, 592
Memory

access, in neighborhood indexing,
311–312

complex, 175
footprints, 550
hierarchies, string data structures, 17–20

Merge operation, Adleman-Lipton model,
175, 179

Merging phase, 17
Mesostigma, 618–619
Message possing interface (MPI), 314
Messenger RNA (mRNA), 207, 349, 537,

626, 692, 694, 699, 927–928, 934, 958
Metabolic-likeness (ML) methods, 372, 377
Metabolic networks, 665, 671–672,

879–881, 884
Metabolite and drug molecule analysis, in

silico methods
databases, 367–370
methods and data analysis algorithms,

370–376
molecular descriptors, 363–367

Metabolomics, 376
Metagenomics, 92
Metaheuristic algorithms, 656
Metropolis-Hasting algorithm, 907
mfinder algorithm, 873–874, 876
Microarray analysis, see Microarray data

analysis
features of, 130, 132, 209, 417
gene regulatory networks, 958

Microarray data analysis
biclustering, 651–661
cancer studies, heterogeneity of

differential expression, 691–720
condition-specific gene and pathway

inference computational models,
665–685

microarray gene expression, see
Microarray gene expression data
analysis

Microarray experiments, operon prediction,
458–459

Microarray expression profiles, 480
Microarray gene expression data analysis

cyclic gene expression profiles detection,
640–647

data processing, 630–631, 648
DNA microarray technology and

experiment, 626–627
image analysis and expression data

extraction, 627–630, 648
missing value imputation, 631–634, 648
temporal gene expression profile analysis,

634–640, 648
Microarray probe enrichment, 444
Microarray technology, 426, 956
Microbes, 346
MicrobesOnline, 450–452
Microbial genome, 139, 474, 736, 740
MicroRNA (miRNA)

functions of, 397
genetic regulatory network, 979–981
local architecture analysis, in

miRNA-containing networks,
993–1001

network identification, 988–992
prediction of novel genes, 983
prediction of targets, 984
prediction of transcript elements and

transcriptional regulation, 984–987
Microsatellites, 843
MILPS, 681
Minimal forbidden words, 340
Minimal spanning tree (MST) problem,

201–202, 209, 211
Minimum bounding rectangle (MBR), 222,

234
Minimum cost probe set problem with a

threshold, 132
Minimum free energy (MFE) model

characterized, 524–526
structure prediction, 526–530

Minimum-length walk, 34
Minimum perfect phylogeny haplotype

(MPPH), 850
Minimum recombinant haplotype

configuration (MRHC), 854
Minimum set cover problem, 946
Minimum test collection problem, 131
MINREG algorithm, 963, 971
min-support constraint, 964–965

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1029

MINT database, 880
MIPS database, 880
miRanda, 994, 998, 1000
miRBase V4.0, 994
MiRNA modules (MRMs), 988
Mismatches, 80–81, 93, 105, 117, 165, 283,

303, 306–308, 342–343, 432, 438
Missing value imputation algorithms,

631–634, 648
Mitogen-activated kinase pathway (MAPK)

signaling pathways, 491, 680, 685
Mixed integer linear programming model,

678
MMG, 681
MMP13 promoter regions, 413
Model checking

genetic network analysis with, 919–925
LTL, 918–919
overview of, 916–917
probabilistic, for biological systems,

925–934
Promela, 917–918, 921–922, 938–940
SPIN, 917–918

Modularity, 877
Modular kernel approach (MKA), 510–512
Module networks, 963
Molecular Access System (MACCS)

structural keys, 365
Molecular biology

components of, 299–300, 315, 522,
751

computational, 3–20, 187
techniques, 171

Molecular codes, 363–364
Molecular complex detection algorithm

(MCODE), 488, 492
Molecular connectivity index, 364
Molecular descriptors, types of

one-dimensional (1-D) descriptors,
363–364

three-dimensional (3-D) descriptors,
366–367

two-dimensional (2-D) descriptor,
364–366

Molecular diversity (MD), 376
Molecular evolution, 321
Molecular interaction network, 678
Molecular similarity (MS), 376
Monotonic block distance, 334

Monte Carlo, generally
algorithms, 909–911
simulation, 441, 738, 907, 961

Mosaic background modeling. See
NestedMica

Motif(s)
alignment of, 249
combined with alignment, 412–414
discovery, 164–166, 249, 439–440
functional, 873–874
search, 44
signaling network, 999–1000
three-chain, 875

Motif finding and structure prediction
algorithms in biological sequences,

385–395
ChIP-Seq data analysis, algorithmic issues

in, 425–444
operon prediction approaches and

methods based on machine learning
techniques, 449–475

protein domain boundary prediction,
501–515

protein function prediction with
data-mining techniques, 479–493

regulatory regions, computational
characterization of, 397–417

RNA structure and pseudoknot prediction,
521–544

MotifFinder, 995
Motif finding problem

characterized, 385
terminology, 386
types of, 386, 395

Mouse
atlas, 997
genome, 750, 763

Moving averages, 814
MPSCAN, 92, 103–104, 106–108
MrBayes, 551, 554, 557
MSAID, 248
MSigDb, 671
MSOAR algorithm, 732–733
MULTALIN, 248
MULTI-LAGAN, 248, 251
Multifactor differential expression, 697–698
Multigene alignments, 551
Multigraphs, 194
Multilayer perceptrons (MLPs), 485, 510

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1030 INDEX

Multiloops, RNA structures, 524, 527–529,
534, 540

MultiMSOAR algorithm, 732, 734
Multinormal distribution, 677
Multiple alignment algorithms

characterized, 255
constrained, 249
global, 245–249
local, 249

Multiple component loop (MCL), 883
Multiple interaction modules, inference of,

990–992
Multiple sequence alignment programs

Clustal programs, 284–296
divergent sequences, 288, 293
efficient dynamic programming algorithm,

281–283
guide tree, 280–281, 284–285
overview of, 277–278
pairwise similarity score, 279–280
profile alignments, 284, 288
progressive, 281, 285–288, 294
quality analysis, 290–292

Multiplicative model of probability
estimation, 12

Multiset, defined, 175
Multisource Association of Genes by

Integration of Clusters (MAGIC)
system, 489

MULTITALIN, 251
Multivariate analysis, 965
MUMMALS, 251
MUMMER, 244, 246
Mumsa, 252
MUSCLE, 248, 251, 253, 731
Mus musculus, 492
Music applications, degenerate sequence

processing, 73
Musicology, 5
Mutations, 31, 164, 208–209, 242, 322, 337,

349, 354, 472, 513, 589, 594, 625, 640,
657, 681, 697, 728–729, 851, 881, 911

Mutual information, 324, 329–331, 349,
814, 960–961

Mycoplasma genitalium, 884
Myers and Miller algorithm, 282–283

Naive algorithms, 33, 37, 43
Naive Bayes classifier, 464

National Center for Biotechnology
Information (NCBI)

database, 139–140, 354, 346, 367
RefSeq, 399, 480, 993

National Institute of Standards and
Technology (NIST), 363

National Institutes of Health (NIH), 367
National Library of Medicine (NLM),

369
National Science Foundation, 573
Natural Product (NP)-likeness, 362
Near-cognate aa-tRNA, 929–932, 934–935
Nearest neighbor

energy model, 526, 530
interchanges (NNI), 561, 563, 584–586

Needleman-Wunsch alignment algorithm,
143, 348, 739

Negative irreducible intervals, 783
Neighborhood(s), generally

indexing, 312–313
phylogenetic reconstruction, 584–586,

588
protein function prediction, 486–487
search (NS) approach, 657–658
tree, 44

Neighboring count method, 878
Neighbor-joining (NJ) algorithm, 284–285,

292–293, 559, 600, 613
Nephroselmis, 618–619
Nested (NEST) arc structure, 115, 117–125
NestedMICA, 441, 443
Nested sampling, 441
Nested structure, 524
NetMiner software, 876
NET-SYNTHESIS, 681
Network(s)

flow problem, 212
in graphs, 199
inference, see Network inference
motifs, 873
residual, 205–206, 212
topology, gene regulatory networks, 972

NetworkBlast software, 879
Network inference

biological validation, 972–973
constraint-based data mining, 963–969
correlation-based methods, 959–961
probabilistic graphical models, 961–963
statistical validation of, 970–972

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1031

as unsupervised learning problem, 959
validation, 969–973

Network topology, reverse engineering
benchmarking metrics, 944–945
components of, 942–943

Neural networks (NNs), 372–373, 450, 460,
471, 473–474, 502, 506–507

Neurodegenerative disorders, 207
New Chemical Entities database, 371
NEWICK format, 566
Newton-Raphson method, 554
Next generation sequencing/sequencers, 36,

92, 299–300, 426–428, 444
NGILA, 243, 246
NIMBUS filters, 304–307, 309
Nodes

child, in rooted tree, 198
data, 224–227, 232, 235–236
index, 224, 226, 229, 232, 235–236
initial, 203
parent, in rooted tree, 198
routing, 224
storage, 225
utilization, 232–233, 235

Noise distribution, 646–647. See also
Gaussian noise

Noncoding region, 802, 815
Non-cognate aa-tRNA, 929, 932
Nonconserved gene pair, 455–456
Nondeterministic automaton, 59. See also

Nondeterministic automaton
Nondeterministic finite automata (NFA)

active state of, 52
approximate string matching, 56
depth of state, 52
exact gene matching, 55
exact string matching, 54–55
level of state, 52
stimulation, 60–66

Nondeterministic polynomial (NP)
-complete problems, 172–173, 255, 537,

731, 733–734, 741
defined, 130
-hard problem, 440–441, 450, 672–673,

681, 751, 753, 757–758, 764, 847, 850,
854, 959

Nonmaximal words, composition vectors
and, 340

Nonorthologous genes, 726

Normal distribution, 341–342, 704, 871
Normalization, 630–631, 967
Northern hybridization, 452
Nuclear magnetic resonance (NMR), 537
Nucleic sequences, 313
Nucleosomes, 398
Nucleotide(s), see Single nucleotide

polymorphisms (SNPs)
barcoding problems, 139
functions of, 130, 171, 302, 311–312, 401,

403, 439, 443, 543, 551–553, 580–581,
593, 610, 616, 626, 802, 804–805, 808,
813, 834, 838

polymorphisms, 429.
sequences, 114

Oblivious model of computation, 19
Occurrence heuristics, 94
Odd cycles, 760
Offset indexing, 311
Ohno’s law, 750
Oligonucleotides, 92, 133, 403–404, 416,

439, 441–443, 461, 626, 644–645
Online Mendelian Inheritance in Man

(OMIM) database, 682
Open reading frames (ORFs), 454, 461–462,

473
Operon

characterized, 449–450
databases, 450
prediction, see Operon prediction

Operon Database (ODB), 450–452
Operon Finding Software (OFS), 469
Operon prediction

computational data, 454–459
datasets, 451–454, 474
machine learning methods, 460–474
preprocess methods, 459–460

Oppossum2 database, 399
Optimization

entropy, 601–613
genomic distances, 785
phylogenetic reconstruction, 593–594
problems, see Optimization problems

Optimization problems
maximum likelihood, 551
protein function prediction, 488–489
solution of, 605–609

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1032 INDEX

Order array, 80
Order of magnitude, 92, 315, 873
Order preserving submatrix (OPSM)

algorithm, 658
Oreganno database, 399, 406
ORIS seed-based indexing, 314
Ortholog assignment

characterized, 727–729
phylogeny-based method, 731–732
rearrangement-based method, 732–734
sequence similarity-based method,

729–731
Orthologous sequences, 322
Orthologs, defined, 727–728, 765. See also

Ortholog assignment
Oscillation, 639–640
Osprey software, 876
Out-degree

distribution, 994
in graphs, 195–196

Overexpression, 974
Overfitting, 966
Overlap graphs, 33–35
Overlapping, 534–535
Oversampling, 483
OXBENCH, 253–254

PAGE, 669
Pairwise alignment, 36–37, 143, 242–246,

255, 284–285, 413–414, 482
Pajek software, 876
PAML, 551
Pancake flipping problem, 761–762
Papillomaviruses, 552
Paradigms, alignment-free distances, 322
Parallel coordinate (PC), 659
Parallelism, 314, 554
Parallelization, 106, 549, 558, 573
Parallel sequencing, 92
Parallelograms, in filtering, 304–305, 308
Paralogs, 728, 730, 733–734, 765
Parameterized matching, 13
Pareto analysis, 371
Parsimonious tree-grow (PTG) method,

848
Parsimony

co-expressed networks, 960
large problem, 581, 594

maximum, see Maximum parsimony
small problem, 580–581
types of, 580, 729

Parsing, 333–334
Partition function, 530–533
Partition into exact search (PEX) filter,

104
Partition-ligation-expectation-maximization

algorithm, 852–853, 855
Partitioning, 17, 83, 211–212, 237, 374,

488, 508, 556, 733, 787–788, 818, 904,
971

PASS, 432–433
Pastry algorithm, 225
Paternal genome, 845
PathBlast software, 879
Path label, 6
Pathogen detection, 129–130
Paths, in graphs, 194–195
Patricia trie, 18
Pattern-based algorithms

defined, 386
for planted-motif problem (PMP),

387–388
PatternBranching, 390, 395
Pattern-discovery algorithm, 411–412
Pattern-driven algorithms, 406–408
PATTERNHUNTER, 245
Pattern matching

approximate, see Approximate pattern
matching

automaton, 53
basic classification of algorithms, 53
features of, 7–10, 13–15, 349
multiple, 97–103
single, 93–96
weighted DNA sequences, 152–160

PAUP*, 551
Pazar database, 399
Pearson’s correlation coefficient, 348, 469,

655, 960, 995
Pedigree, significance of, 844
Pedigree tree, 855
Peer-to-peer (P2P) environment, 237
Peptides, operon prediction, 464–465
Peptidyl transfer, 927–928
Percent Accepted Mutations (PAM), 242
Perfect phylogeny haplotype (PPH)

problem, 849–851

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1033

Performance guarantee, 752–753
Period, in strings, 77, 146
Periodograms, 646
Permutations

common intervals in, 778–782
conserved intervals in, 782–783
defined, 774
gene regulatory networks, 970
implications of, 752–754
identity, 760, 777, 779
interval-based computations, 774–782
set, 175–178
signed, 757–759, 763, 774, 778, 782
test methods, 670
unsigned, 759, 774

Permutation tree, 761
Pfizer rule, 370
Pharmacogenomics, 376
Pharmacophoric keys, in 3-D descriptors,

366–367
PHASE software, 852–853, 858
Phosphorylation, 503, 883
Photolithographic synthesis, 626
PHYLIP, 613
PhyloBayes, 551
Phylogenetic analyses, 514, 556, 882
Phylogenetic footprinting, 408–409
Phylogenetic likelihood function (PLF)

acceleration by algorithmic means,
555–558

characterized, 549–550
defined, 549

Phylogenetic profiles, 450, 469
Phylogenetic reconstruction, see Phylogeny

reconstruction
evolutionary metaheuristics, 589–590
features of, 331
memetic methods, 590, 592
neighborhoods, 584–586, 588
problem-specific improvements,

592–594
Phylogenetic search algorithms, 549–573.

See also Maximum-likelihood (ML)
Phylogenetic trees

characteristics of, 208, 242, 327, 329, 332,
338, 345–346, 352–354, 551, 615

construction of, 613, 731
inferences, 582

Phylogenomic alignments, 551

Phylogeny
characterized, 551–552
compositional methods, 346–347
information theoretic and combinatorial

methods, 344–346
haplotype inference, 849–851
mitchondrial genome, 334
reconstruction, see Phylogeny

reconstruction
Phylogeny reconstruction

heuristic methods with maximum
parsimony, 579–595

maximum entropy method for
composition vector method, 599–619

phylogenetic search algorithms for
maximum likelihood, 549–573

Phyloinformatics, 550
PHYML, 551, 554, 559, 562, 564
PhyNav program, 573
Picard-Queyranne algorithm, 212
PicTar, 994–995, 997–1000
PID (primary immunodeficiency), 886
Piecewise constant function, 819–820
Pigeon-hole principle, 431
Pipmaker, 399
PLAGE, 669, 671
Plain (PLAIN) arc structure, 115, 119–121,

123, 125
Planted (l, d)-motif problem (PMP),

386–390, 395
PLASMA, 251
Plasmodium falciparum, 643, 645–646,

647–648
PLAST seed-based indexing, 314
POCSIMPUTE, 632–633, 648
Point accepted mutation (PAM), 208–209,

283, 322
Pointer meshes, 557–558
Point mutations, 725, 728
Point query, 226, 230–232, 236
Poisson distribution, 341
Poisson score, 348
Poly(A) tail, 537
Polymerase chain reaction (PCR), 31,

73–74, 133, 136, 171, 416, 426, 998
Polynomial-time

approximation, 120, 122, 125, 130
efficiency, 37, 42
problems, 28–30, 32, 40

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1034 INDEX

Polypeptides, 514
Population

diversity, 589
haplotyping problem, 844

Porphyra, 618
Position frequency matrix (PFMs), 401–402
Position-specific scoring matrices (PSSMs),

401, 508–510
Position weight matrices (PWMs), 12,

401–404, 406, 412
Positive irreducible intervals, 782–783
Post-transcriptional

networks, 993
regulations, 901

Power law
distribution, 870–871
function, 801, 815–816, 994

Power spectrum
characterized, 813–817, 834, 836
density (PSD), 646

PQ-tree, 210
PRALINE, 247, 251
Precedence relation, 114
Prediction suffix tree, 13
PREFAB, 253
Prefix

creation phase, 17
defined, 3, 146, 386
reversals, 761–762
transpositions, 762, 766

Preprocessing step, ExMP, 393
Prim’s algorithm, 201–202, 211
Primates, phylogenetic trees, 617
Primers, 74, 133
Principal component analysis (PCA), 633
Principal eigen vector, 709
Prism model checker, 877, 929–933,

935–936
Probabilistic approaches, applications,

generally, 893–894. See also
Probabilisitic models

Probabilistic Boolean networks (PBNs)
Boolean functions, 896–897
dependency graph, 895–896
examples of, 898–900
inferring from experiments, 901–902
natural extensions, 900–901, 911
representations, 896–898

simulations, 906–911
update strategies, impact on analysis of,

905–906
Probabilistic graphical models

Bayesian networks, 961–963
characterized, 961–962
MINREG algorithm, 963
module networks, 963

Probabilistic model(s)
Boolean networks (PBNs), 895–901, 905
checking, see Probabilistic model

checking
graphical, see Probabilistic graphical

models
inference from experiments, 901–902
interpretation and quantitative analysis of,

902–911
Probabilistic model checking

background, 926–927
defined, 925
insertion errors, 933–934
Prism, 929–933, 935–936
motivation, 928–929

Probabilistic suffix tree, 13
Probability

defined, 12
distributions, 324–330, 337–338, 343,

462, 530–531, 838
dot plot, 534
matrices, 553
theory, 858

PROBCONS, 248, 251, 253
Probe(s)

microarray technology, 187, 626–627, 958
sequences, 187

ProbModel approach, evolutionary trees, 209
Pro(CKSI), 354
PRODO, 502
Profile(s)

alignments, 284, 288
in multiple alignment, 247

Profile-based algorithms
ChIP-Seq data analysis, 443
defined, 386
for planted-motif problem (PMP),

389–390
ProfileBranching, 389–390, 395
Profiling techniques, 503–510

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1035

Progressive alignment, 281, 285–288
Progressive neighborhood (PN), 586
Projection onto convex sets (POCS),

632–633
Prokaryotic genomes, 459, 474, 617
PROMALS, 247, 251
Promela model checker, 917–918, 921–922,

938–940
Promoters, 398–399, 413, 437, 443, 957
Property matching, 13
PROSITE database, 101, 144
Prostate cancer, 995
Protein(s), generally

alignment, 322
β-sheets, 513
CATH classification of, 350
domains, see Protein domains
function prediction with data-mining

techniques, 479–493
gene expression, 485–486
G-proteins, 350–351
GH2 family, 351
misclassification of, 483
phylogenetic profile, 455
phylogeny experiments, 346
predicting network interactions by

completing defective cliques, 215–216
RAMPs family, 351
scaffold, 1001
sequence classification, 481–483
sequences, generally, 337
structural classification of (SCOP), 273
structure, atomic coordinates in, 269, 272
subcellular localization prediction,

483–484
superfamilies, 273, 275, 502–503
thermally stable, 212–214
thermophilic, 213

Protein-coding
gene networks, 994
regions, 403, 602–603

Protein Data Bank (PDB) database, 92,
212–213, 261, 266–267, 270, 272–274,
279, 350, 484

Protein-DNA
binding, 956
complexes, 416, 426
interaction, 671–672

Protein domain boundary prediction
importance of, 501–503
machine learning models, 510–515
profiling technique, 503–510

Protein domains
boundary prediction, see Protein domain

boundary prediction
decomposition, 212, 216
identification of, 210–211

Protein interactome map, protein function
prediction

global topology, 488–489
local topology structure, 486–488

Protein-protein identification, 671–672
Protein-protein interaction (PPI), 398, 480,

486, 488–489, 491–492, 665–666,
675–676, 679–682, 878–880, 884,
973–974

Proteobacteria, 347, 794–795
Proteomes, phylogenetic studies, 337, 346
Proteomics, 332
Proteomic sequences, 322, 344–345, 355
PRRP, 248
PRRP/PRRN, 251
Pruning, 786, 961
PSALIGN, 247, 251
Pseudo-cognate aa-tRNA, 929–931
Pseudocodes, 593
Pseudocounts, 402
Pseudoknots, in RNA

biological relevance of, 530, 536–537,
544

characterized, 524, 534–536
detection of, 542
dynamic programming, 538–542
heuristic approaches, 541–543
prediction of, 537–538, 542, 544

Pseudovertices, 180–181
PSI-BLAST, 479–480, 503, 508, 510
Psilotum, 618
PSIST algorithm, 263, 273–274
PubChem database, 367–368
PubMed database, 367, 453
Pure parsimony model, 5, 848–849
Pyrococcus furiosus, 472

Quadratic discriminant (QDA), 372
Quadratic time, 36

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1036 INDEX

Quantitative structure activity relationship
(QSAR), 370

Quantitative trait locus (QTL), 856
Quantum match, 15
QUASAR filters, 303–305, 307
Quasiperiodic string, 77
Queries

data management system, 226–227
query arrival rate, 229, 233–235
query/data-fetch reports, 226–227
query resolving process, 226–227
query sequence, 210
range, 222, 229–230, 233–236
response time to, 231–232, 234–235

QuEST, 436

Rabin-Karp algorithm, 103
Random access memory (RAM), 106, 139,

432–433
Randomization, 669–670
Random walk, 584, 683, 814–815, 838, 907
Range query, 222, 226, 229–230, 233–236
Rapid amplification, 133
Rapid computation, 130, 133
RASCAL algorithm, 250
Ratcheting technique, 594–595
Rate heterogeneity, 554, 556
RaxML, 550–551, 554, 556–559, 561–565,

567, 569, 573
Read(s)

mapping, exact set pattern matching,
103–107

next-generation sequencing, 428
operation, Adleman-Lipton model, 175
whole-genome sequencing, 429–434

Rearrangement
analysis, 726–727, 732–734
implications of, 766
multibreak, 765–766

ReBlosum matrix, 313
Recall-Precision plot, 945
Receiver operating characteristic (ROC)

analysis, 329
curve, 683, 971
plot, 945
reverse engineering, 945, 949–950

Receptor activity-modifying proteins
(RAMPs) family, 351

Reciprocal best hits (RBHs), 729–730

Recombination, 657, 845, 851–852
Reconstruction sequences, 30
Recurrent neural networks, 373
Recursion, RNA structures, 527–529,

538–540
Redundancy, 19, 875
Redundant distinguishability, 133
REFINER algorithm, 250
RefSeq, 399, 480, 993
Regression

linear, 738
models, 676, 683
studies, 738

Regular expressions, 144–145
Regular graph, 195
Regulatory information, sources of, 405–406
Regulatory Program (RP), 968
Regulatory regions

annotating sequences using predictive
models, 406–408

combining motifs and alignments,
412–414

comparative genomics characterized,
408–410

dependencies in sequences, detection of,
403–405

genome regulatory landscape, 397–399
qualitative models of regulatory signals,

400–401
quantitative models of regulatory signals,

401–403
repositories of regulatory information,

405–406
sequence comparisons, 410–412
validation, experimental, 414–417, 428

Regulatory signals
qualitative models, 400–401
quantitative models, 410–403

RegulonDB database, 450, 452–453, 464,
472

Relative entropy, 322–329, 390, 442, 466
Relevance networks, 959–960
Repeats

defined, 299, 301
filtering, 302, 304–309
multiple, 301, 305–307

Repetitions
fixed-length simple, 161–162
fixed-length strict, 163

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1037

simple, 160–163
strict, 160, 163
in strings, 146
weighted sequences, 160–163, 166–167

Replace, pattern matching, 62–64
Replica management, 223, 228–232, 236
Reptiles, phylogenetic trees, 615
Resampling of the estimated log likelihood

(RELL) method, 565
Response time, queries, 231–232, 234–235
Restricted-case algorithms

assessing efficient solvability options for
general problems and, 28–30

Common Approximate Substring (CAS),
28, 41–46

Longest Common Subsequence, 36–41
need for special cases, 27–28
Shortest Common Superstring (SCS), 28,

31–36
string and sequence problems, 30–31
types of restrictions, 29, 46

Restricted neighborhood search clustering
(RNSC), 488

Restricted recursive pseudoknots,
541–542

Reversal distance, 732
Reversals, genome rearrangements,

753–759, 766
Reverse engineering

applications, generally, 941–942
of biological networks, 942–945
combinatorial algorithms, 946–951
gold standard, 944
miRNA inference modules using

top-down approaches, 988–982
miRNA-mediated post-transcriptional

networks, 993
miRNA modules, 1001
performance evaluation, 944–945

Reverse transcriptase PCR (RT-PCR),
416

Revrev, 763
RF algorithm, 250
Rhodophyte, 618
Ribosomal RNA (rRNA), 132, 345–346,

614–615
Rice genome, 737
Rightmost shift array, 15
RMAP software, 104–106, 434

RNA
alignment algorithms, 254
alignment programs, 293
characterized, 521–522
pathogen-specific, 130
pseudoknots, 534–543
secondary structure, 115, 125, 522–534
sequences, see RNA sequences
structure comparison, 113

RNAHydbrid, 994
RNA polymerase II, 397–398
RNA sequences

Common Approximate Substring (CAS)
problem, 42–43

features of, 601
Shortest Common Superstring (SCS)

problem, 31
MPSCAN applications, 103–104

ROBIN software, 767
Robinson Foulds (RF) metric, 345, 550,

556–571
Robust computation, 130, 133
Roche-454 next-generation sequencing

system, 426
Rodents, phylogenetic trees, 617
Rooted trees, 198, 582
Rose hydrophobicity scale, 504
RSA, 407
RSAtools, 399
R-tree/R*-tree, 222–223, 226, 234
Rule of five (Ro5), 370–371
Run, in strings, 146
rVISTA database, 399

SABMARK, 253
Saccharomyces

cerevisaie, 212, 216, 479, 640, 660, 874,
877–878, 884, 886, 956, 963

Genome Database, 972
SAGA, 251
SAGE expression analysis, 967
SAM-GS, 669
SAMO database, 485
Sampling

ChIP-Seq data analysis, 441
intensity, 210

SANDY algorithm, 882
SARAH1 scale, 503–505, 509–510, 515

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1038 INDEX

SARSCoV (severe acute respiratory
syndrome coronavirus), 346

SATCHMO, 251
SBNDM4, 95–96
Scaled matching, 13
Scale-free networks, 871, 958, 973
Scaling factor, 291
Scaling law, 801
Scan phase, 391
Scoring

conservation, 290–291
entropy, 390
local dissimilarity, 336
log-likelihood, 459–460, 473, 569
normalization, 473
Poisson, 348
profile-to-profile, 482
similarity, 279–280
sum-of-pairs, 283

Search tree-based algorithms, 35, 37
Sea Urchin, 884
Secondary structure alignment, 513–514
Sectorial search (SS), 592–593, 595
Seed/seeding, generally

defined, 245
in degenerate strings, 77, 84–85, 87–89
filters, 309, 315
pairwise local alignment, 245

Segment polarity genes network, 948–949
Selectivity, in filtering, 308–309
Self-organizing maps (SOMs), 372
Semantic analysis, 482
Semimetrics, 334
Sensitivity

co-expressed networks, 961
gene clustering, 741–742
in filtering, 311, 315
operon prediction, 453, 465, 467

SEQMAP software, 105–106, 432
Sequence(s), generally

alignment, 242–254, 322, 354
analysis, 323
comparison, 321, 599
homologies, 315
logos, 145
motifs, 92
set, 176
similarity, 91, 280, 347, 410, 729
splitting, 814

Sequence-driven algorithms, 409–410
Sequence-sequence alignments, 284
Sequencing by hybridization (SBH), 34,

214–215
Serine/arginine-rich (SR) proteins, 143–144
Set backward oracle matching (SBOM)

algorithm, 98–100
Set problems

cover, 134, 139, 172, 947
packing, 172

Seven bridges of Königsberg, 193, 196–197
Severe acute respiratory syndrome (SARS),

537
Sexually transmitted disease (STD), 886
Shannon entropy, 325
Shannon information theory, 323
Sheet structures, 263
Shift-or technique, 15
Shift-Or algorithm, 95, 101
Shift-or with q grams (SOG), 101
Shortest Common Superstring (SCS), 28,

31–36
Shortest path, generally

algorithms, 38
network problem, 213
problem, 203–205, 213

Short oligonucleotide alignment program
(SOAP), 104, 106, 432–433

Short swap, 763
Short tandem repeats (STRs), 349
Shotgun sequencing method, 843
Side-chain conformations, 267
Side-walk descent, 584
Sigmoid function, 470
Signaling transduction networks, 679
Signal-to-noise ratio, 603, 678
Signed common string partition (SMCSP),

790–791, 795
Signed reversal distance with duplicates

(SRDD), 732–733
Significance analysis function and

expression (SAFE), 669–670
Significance analysis of microarrays (SAM),

667, 670, 694, 698, 710
Simian immunodeficiency virus (SIV), 336,

346
Similarity, generally

coefficients, 365–366
functional, 347

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1039

index, information-based, 327
of sequences, 323–325, 334
scores, 279–280, 730
searches, 91–92, 210, 300, 315, 329,

362
Simple count methods

characterized, 370
enhanced, using structural features, 371
example studies using, 370–371

Simple graph, 194
Simple motif problem (SMP), 386, 393–395
Simple motif search (SMS) algorithm,

394–395
Simple recursive pseudoknots, 538–542
Simple repetitions, 160–163
Simplified Molecular Input Line Entry

Specification (SMILES), 363–364,
369–370

Simulated annealing (SA), 134, 584, 587,
678, 856

Simulations
nondeterministic finite automata (NFA),

51–52
probailistic Boolean networks (PBNs),

906–911
Sine function, 807–808
Single factor differential expression

characterized, 695
multilevel, 696–697
two-level, 695–696

Single genotype resolution (SGR), 848
Single-input motifs (SIMs), 874–875
Single instruction multiple data (SIMD),

593
Single linkage clustering, 462–463
Single nucleotide polymorphisms (SNPs), 5,

429, 433, 680, 734, 843, 848–849, 857
Single-scale networks, 871
Single streaming extension (SSE), 593
Singular spectrum analysis (SSA)

autoregressive (AR)-based spectral
estimation, (SSA-AR), 641, 643–644

characterized, 641–642
filtering, 644

Singular value decomposition (SVD), 643,
709–710

Sinusoids, 635
SISSRS, 436
Skewed data, 232, 237

Skip loop, 94–95
Small parsimony problem, 580–581
Smith-Waterman algorithm, 92, 143, 245,

314, 348
SnapDRAGON, 502
SNAP25, 1001
SOAR algorithm, 732
Solexa sequencing technology, 432
Solid symbol, 77
Sorting

comparison-based, 19
genome rearrangements, 753–765

Sorting Permutation by Reversals and
block-INterchanGES (SPRING)
software, 767

Source-sink networks, 212–213
Space algorithms, 36
Spanning trees, 198–199
Sparseness, 957
Spatial query processing, 222
Spearman correlation, 342–343
Spearman’s rank correlation, 656
Speciation trees, 728
Specificity

gene clustering, 741–742
in operon prediction, 453, 465, 467

Spectral component correlation, 634–638
Spectral estimation, microarray analysis

signal reconstruction, 644–646
SSA-AR, 643–644

Speller algorithm, 393, 395
Spellman dataset, 971–972
SPEM, 247, 251
SPINE, 681
SPIN model checker, 917–918
Splicing graphs, 207–208
SPLITSTREE, 613–614
Spotted microarray, 626
Square, 77
SSABS, 95
Sspro, 513
Static graphs, 942
Statistical-Algorithmic Model for Bicluster

Analysis (SAMBA), 490
Statistical analysis

classical, 965
miRNA, 1000
population-based, 844

Statistical clustering techniques, 966

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1040 INDEX

Statistical dependency
mutual information and, 329–331
significance of, 323–325, 349

Statistical process theory, 858
Statistical validation, network inference

cross-validation, 971
model selection, 970
prediction performance, 971–972

Stem, RNA structure, 523, 525, 527, 541
Stem (STEM) arc structure, 115, 118–119,

124
Stem cells, 995
Stem-loops, 125
STEP, 585
Stepwise addition, 583
Stickers model, 172, 174–175, 188
Stochastic biclustering algorithms, 657
Stochastics, protein function prediction, 490
Stochastic search algorithms, 657
STOP search algorithm, 570–571
Stopping, phylogenetic search algorithms,

569–572
Strict repetitions, 160, 163
String, generally

alignment, 143
barcoding problem, 131–132
B-trees, 5–6, 17–19
characterized, 301
database, 880
defined, 3, 76, 146, 386
graphs, 33–34
indexing, see String indexing
k-string composition, 337–338
length of, 76

String data structures, for computational
molecular biology

classic algorithmic problems, 4–5
EM-based algorithms, 5
indeterminate/degenerate string, 5, 56–57
index structures, 12–16, 21
main string indexing data structures, 6–12
in memory hierarchies, 17–20
overview of, 3–4, 20
terminology, 3–4

String indexing
compression, 16
data structures, 6–12
indeterminate strings, 14–16
weighted strings, 12–14

Stringology, 51
Strings processing, and applications to

biological sequences
arc-anotated sequences, algorithmic

aspects of, 113–125
degenerate sequences, new developments

in processing of, 73–89
DNA barcoding problems, algorithmic

issues in, 129–141
DNA computing for subgraph

isomorphism problem and related
problems, 171–188

efficient restricted-case algorithms for
problems in computational biology,
27–46

exact search algorithms, 91–108
finite automata in pattern matching, 51–69
string data structures for computational

molecular biology, 3–20
weighted DNA sequences, recent

advances in, 143–167
Strips, approximation algorithms, 754–755,

758
Structural alignment, see Global structural

alignment; Local structural alignment
based on center of gravity (SACG),

266–271, 273, 275
problem, 261–262

Structural classification of proteins (SCOP),
253, 273, 481, 484, 514

Structural motifs
functional, 273
searching, 270, 272–274

Structural restrictions, 29, 46
Styczynski et al.’s algorithm, 391–392, 395
Subgraph isomorphism problem

defined, 172–174
DNA computing, 179–183
example of, 173

Subgraphs, 197–198, 367
Subsampling with network induction

(SSML), 468
Subset sum problem, 172
Substitution operations, 116–117
Substitutions, 304
Substrings

defined, 146, 386
functions of, generally, 13, 788
length of, 28

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1041

Subtree pruning and regrafting (SPR),
561–564, 569–570, 585–586, 588–589,
594

Subtrees, 14, 198
Suffix, generally

arrays, 8–12
automata, 57–59
defined, 52, 146, 386
link recovery phase, 17
trees, see Suffix tree
trie, 58

Suffix tree
functions of, generally, 5–8, 14, 17, 43,

58, 243–244, 335–336, 339–340, 790
pattern matching using, 152–153
property, 151–152
weighted, 148–153

Sum-of-pairs (SP)
alignment, 36
score, 283

Supercomputers, 550, 572
Superprimitive string, 77
Superstring, 77
Supervised classification (SC) methods, 372
Supervised learning, 959, 971
Supply link, 99
Support vector machines (SVMs)

characterized, 372–373, 375, 460,
468–470

protein domain boundary prediction, 502
protein function prediction, 481, 483, 485,

487
Susceptible-infective-removed (SIR) model,

886
Susceptible-infective-susceptible model (SIS

model), 886
SVDIMPUTE, 631
Swapped matching, 13
Swaps, pattern matching with, 156–157
SWIFT filters, 303–305
Swissprot, 279
Switch error, 856
Symbol-occurrence restrictions, 39–40
Synchronization loss, in microarray analysis,

632–633
Synchronous dynamical graph, 902–903,

905
Synonymous codon usage biases (SCUB),

458

Synteny
block, 752, 757
defined, 735–737. See also Synteny

detection
detection, 734–739

SynTReN, 972
Systematic biclustering algorithms, 656–657
Systematic evolution of ligands by

exponential enrichment (SELEX), 416
Systems biology, 216, 666, 942–943, 955

Tabu search (TS), 587
Tags

ChIP-SEQ data analysis, 429–437
data models for, 237
next-generation sequencing, 428

Tandem affinity purification (TAP) tagging,
215

Tandem repeat
defined, 146
fixed-length, 163

TargetScan, 994
TargetScanS, 997, 999–1000
Taxonomy tree, 346
TCA, 879, 881
T-COFFEE, 247, 251, 253, 731
Teiresias algorithm, 394–395
Temporal gene expression profile analysis,

634–640, 648
Temporal properties, probabilistic models

asynchronous update, 903–905, 908
mixed update with priorities, 904–905,

909
synchronous update, 902–903

Ten-fold cross-validation, 971
Term Finder, GO website, 660
Testing, degenerate strings, 80
Test statistics, 994
TF-MAP alignment, 399
Thermodynamics, 188
Thermotogae, 347
Third-generation sequencing, 444
Three-dimensional matching problem, 172
Thymine (T), 3, 31, 36, 171, 599, 799–800,

802, 816, 818
TIGRFAMS database, 481
Time and space analysis, 529
Time complexity, 790

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1042 INDEX

Time-series
data, gene expression, 962
profiles, 644
whole-genome expression data, 634

TM-Align algorithm, 263
Top-down clustering, 374
TOPNET, 681
Topological distance, 586–587, 589–592
Topological indices, 364
Top scoring pairs (TSP), 711, 713–714
TOPS model, 350
Torovirus, 346
Toxicity, 377, 680
T-PROFILER, 669
Tractability of problem, 27–30
Trails, in graphs, 195
Training population, 971
Transciptome data, 966–967
Transcriptional networks, 881–883, 972
Transcription factor binding sites, 347
Transcription factors (TFs), 398, 400, 403,

405, 407, 412–414, 425–426, 428–429,
436–438, 869, 882–883, 887, 893, 899,
955, 957, 993–1001

Transcription regulatory networks (TRNs),
665, 884, 981, 993

Transcription start sites (TSS), 398–399
Transcriptomes, 430
Transcriptomics, 105
TRANSFAC database, 399, 405–407, 880,

995–996
Transfer RNA (tRNA), 929, 935
Translocation, 751
Transpositions, genome rearrangements,

751, 759–761, 766
Transreversal, 763, 766
Traveling salesman problem (TSP), 172,

200–201, 208
Tree(s), see specific types of trees

alignment, 36
bisection reconnection (TBR), 561,

585–586, 594
in graphs, 198–199
kernel, 455
length, 580

TREE-FINDER, 551
TRELLS, 17
Treponema pallidum, 877

Trie, defined, 965
Trie-based algorithms, 97–100
Truncated generalized factor automaton

(TGFA), 16
Truncated scale-free network, 871
Truth tables, 896, 898
t-statistic, 676
t-test, 667, 669, 694–696
TSUKUBA-BB, 249
TUIUIU filters, 304, 308–309
Tumors

characterized, 660, 676
differential expression, see Tumors,

differential expression in compendium
estrogen receptor (ER) progression,

691–692
heterogeneity of, 701

Tumors, differential expression in
compendium

Gaussian mixture model (GMM) for finite
levels of expression, 701–702

kurtosis excess, 704–705
locally adaptive statistical procedure

(LAP), 710–711
local singular value decomposition,

709–710
outlier detection strategy, 703–704

TVSBS, 95
Two-channel microarray experiment, 626
Two-regulating-one, 634–635
TYNA software, 876
Type 2 diabetes, 679

UCSC Genome Browser, 399, 410
Unbalanced genomes, 796
UNBAL-FMB, 787, 791–793, 795
Undersampling, 483
Undirected graphs, 194–195, 197, 869
UniProt protein database, 369, 481
Universal Similarity Metric (USM), 354
Unlimited (UNLIM) arc structure, 114,

117–118, 120–124
Unmatched substring, 80, 83
Unrooted binary tree

function of, 568, 582
topology, 552–553

Unsigned minimum common string partition
(UMCSP), 787–791

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

INDEX 1043

Unsupervised classification (UC) methods,
374

Unsupervised learning problem, 959
Until operator, 933–934
Untranslated regions

3′ (3′UTR), 995
5′ (5′UTR), 349, 461–462, 536

Unweighted pair group, 613
Unweighted pair grouping method with

arithmetic means (UPGMA), 280, 285,
293, 589, 592

Upstream problems, 725
Up-weighting, 288, 291
Uracil (U), 3, 31, 171, 522

Validation
biological, 972–973
experimental 414–417, 428, 472
gene regulatory network inference,

969–973
network inference, 970–973
statistical, 970–972

Value sequence, 187
van Emde Boas trees, 165
Vanishing ingredient, 502, 506
Vanted software, 876
Variable length alignment fragment pairs

(VLAFPs)
algorithm, 263–266
based on center of gravity (CG),

274–275
contiguous sequence of, 264
defined, 262
protein classification, 274

Variable Neighborhood Search (VNS), 586,
588

VCOST function, 264–266, 270
Vector(s)

bipartition, 566–568
in computing genomic distances, 779
dissimilarity rank, 342
Euclidean, 611
frequency, 600–601
in microarray analysis, 633
probability, 554–557

Vectorizing, 593
Verification, 100
Vertebrates, 346

Vertex
cover problem, 172
isolated, 180–181
level of, 198
-weighted graph, 195

Vienna RNA Package, 534
Virtual Institute for Microbial Stress and

Survival (VIMSS), Group Term Life
Insurance (GTL) project, 451

Virtual suffix tree, 11
Viruses, 331, 345–346, 536–537, 552, 619.

See also specific viruses
Visant software, 876
VISTA, 399, 410–411
VITERBI algorithm, 461, 901

Walks
in graphs, 194–195
random, 584, 683, 814–815, 838, 907
Shortest Common Superstring (SCS),

34–35
Watson-Crick complements, 132
Wavelet analysis

discrete Haar wavelet transform,
821–823

Haar wavelet basis, 819
Haar series, 819–821

Wavelet coefficient, 820–821, 828–839. See
also Wavelet coefficient clusters

Wavelet coefficient clusters
characterized, 828–830
of complex DNA representation,

830–834, 839
of DNA walks, 834–838

Wavelet transform, 460
Wavelet variance scanning (WAVES),

708–709
Weblogo, 399
Weighted directed graph, 195
Weighted DNA sequences

characterized, 147–148
defined, 145
indexing, 148–152, 166
strings, defined, 146

Weighted graph, 195–196
Weighted matching, 13
Weighted Sequence Entropy (WSE),

326–327

P1: OSO
ind JWBS046-Elloumi December 2, 2010 9:56 Printer Name: Sheridan

1044 INDEX

Weighted strings, index structures for,
12–14

Weighted suffix tree (WST), 14, 161,
165–167

Weighted TSP (WTSP), 714
Weighted undirected graph, 195
White noise, 816–817
Whole genome sequences, 136, 600, 619
Whole human genome, 407
Whole molecule descriptors, 363
Widrow-Hoff learning rule, 470
Wiener index, 364
Wilcoxon rank-sum test, 669–670
Wildcard, 393, 431
Wiring diagrams, 942
Word(s)

defined, 3
exact matches, 340–344
size, 342–343

WormBase WS130 and 940, 994
Wu-Manber algorithm, 95, 103

XMOTIF algorithm, 659
X-ray crystallography, 263, 269, 267

YASS, 245–246
Yeast, see Saccharomyces cerevisiae

cell cycle, 660, 675
characteristics of, 397, 491, 956
interaction networks, 684
microarray analysis, 632, 635, 638, 640
network inference, 962
TF-mediated networks, 994
transcriptional network, 882
two-hybrid, 215, 878

YEASTRACT database, 972
Yed software, 876

Zero (full) Matching Breakpoint Distance
(ZMBD), 795

Zero recombinant haplotype configuration
(ZRHC) problem, 854–855

Zhu-Takaoka algorithm, 95
Zipfian/zipf distribution, 231
ZM, 432
zmSRp32 gene, 349
ZOOM, 103–106, 108, 314, 433
Zoom-in/zoom-out techniques, 573
Z-score, 343, 348, 669, 998

P1: OTA/XYZ P2: ABC
series JWBS046-Elloumi November 3, 2010 12:36 Printer Name: Sheridan

Wiley Series on

Bioinformatics: Computational Techniques and Engineering

Bioinformatics and computational biology involve the comprehensive application of
mathematics, statistics, and computer science to the understanding of living systems.
Research and development in these areas require cooperation among specialists from the
fields of biology, computer science, mathematics, statistics, physics, and related sciences.
The objective of this book series is to provide timely treatments of the different aspects of
bioinformatics spanning theory, new and established techniques, technologies and tools, and
application domains. This series emphasizes algorithmic, mathematical, statistical, and
computational methods that are central in bioinformatics and computational biology.

Series Editors: Professor Yi Pan and Professor Albert Y. Zomaya
pan@cs.gsu.edu albert.zomaya@sydney.edu.au

Knowledge Discovery in Bioinformatics: Techniques, Methods, and Applications
Xiaohua Hu and Yi Pan

Grid Computing for Bioinformatics and Computational Biology
Edited by El-Ghazali Talbi and Albert Y. Zomaya

Bioinformatics Algorithms: Techniques and Applications
Ion Mandiou and Alexander Zelikovsky

Analysis of Biological Networks
Edited by Björn H. Junker and Falk Schreiber

Computational Intelligence and Pattern Analysis in Biological Informatics
Edited by Ujjwal Maulik, Sanghamitra Bandyopadhyay, and Jason T. L. Wang

Mathematics of Bioinformatics: Theory, Practice, and Applications
Matthew He and Sergey Petoukhov

Algorithms in Computational Molecular Biology: Techniques, Approaches and
Applications

Edited by Mourad Elloumi and Albert Y. Zomaya

	ALGORITHMS IN
COMPUTATIONAL
MOLECULAR BIOLOGY
	CONTENTS
	PREFACE
	CONTRIBUTORS
	I STRINGS PROCESSING AND APPLICATION TO BIOLOGICAL SEQUENCES
	1 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY
	1.1 Introduction
	1.2 Main String Indexing Data Structures
	1.2.1 Suffix Trees
	1.2.2 Suffix Arrays

	1.3 Index Structures for Weighted Strings
	1.4 Index Structures for Indeterminate Strings
	1.5 String Data Structures in Memory Hierarchies
	1.6 Conclusions
	References

	2 EFFICIENT RESTRICTED-CASE ALGORITHMS FOR PROBLEMS IN COMPUTATIONAL BIOLOGY
	2.1 The Need for Special Cases
	2.2 Assessing Efficient Solvability Options for General Problems and Special Cases
	2.3 String and Sequence Problems
	2.4 Shortest Common Superstring
	2.4.1 Solving the General Problem
	2.4.2 Special Case: SCSt for Short Strings Over Small Alphabets
	2.4.3 Discussion

	2.5 Longest Common Subsequence
	2.5.1 Solving the General Problem
	2.5.2 Special Case: LCS of Similar Sequences
	2.5.3 Special Case: LCS Under Symbol-Occurrence Restrictions
	2.5.4 Discussion

	2.6 Common Approximate Substring
	2.6.1 Solving the General Problem
	2.6.2 Special Case: Common Approximate String
	2.6.3 Discussion

	2.7 Conclusion
	References

	3 FINITE AUTOMATA IN PATTERN MATCHING
	3.1 Introduction
	3.1.1 Preliminaries

	3.2 Direct Use of DFA in Stringology
	3.2.1 Forward Automata
	3.2.2 Degenerate Strings
	3.2.3 Indexing Automata
	3.2.4 Filtering Automata
	3.2.5 Backward Automata
	3.2.6 Automata with Fail Function

	3.3 NFA Simulation
	3.3.1 Basic Simulation Method
	3.3.2 Bit Parallelism
	3.3.3 Dynamic Programming
	3.3.4 Basic Simulation Method with Deterministic State Cache

	3.4 Finite Automaton as Model of Computation
	3.5 Finite Automata Composition
	3.6 Summary
	References

	4 NEW DEVELOPMENTS IN PROCESSING OF DEGENERATE SEQUENCES
	4.1 Introduction
	4.1.1 Degenerate Primer Design Problem

	4.2 Background
	4.3 Basic Definitions
	4.4 Repetitive Structures in Degenerate Strings
	4.4.1 Using the Masking Technique
	4.4.2 Computing the Smallest Cover of the Degenerate String x
	4.4.3 Computing Maximal Local Covers of x
	4.4.4 Computing All Covers of x
	4.4.5 Computing the Seeds of x

	4.5 Conservative String Covering in Degenerate Strings
	4.5.1 Finding Constrained Pattern p in Degenerate String T
	4.5.2 Computing λ-Conservative Covers of Degenerate Strings
	4.5.3 Computing λ-Conservative Seeds of Degenerate Strings

	4.6 Conclusion
	References

	5 EXACT SEARCH ALGORITHMS FOR BIOLOGICAL SEQUENCES
	5.1 Introduction
	5.2 Single Pattern Matching Algorithms
	5.2.1 Algorithms for DNA Sequences
	5.2.2 Algorithms for Amino Acids

	5.3 Algorithms for Multiple Patterns
	5.3.1 Trie-Based Algorithms
	5.3.2 Filtering Algorithms
	5.3.3 Other Algorithms

	5.4 Application of Exact Set Pattern Matching for Read Mapping
	5.4.1 MPSCAN: An Efficient Exact Set Pattern Matching Tool for DNA/RNA Sequences
	5.4.2 Other Solutions for Mapping Reads
	5.4.3 Comparison of Mapping Solutions

	5.5 Conclusions
	References

	6 ALGORITHMIC ASPECTS OF ARC-ANNOTATED SEQUENCES
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Arc-Annotated Sequences
	6.2.2 Hierarchy
	6.2.3 Refined Hierarchy
	6.2.4 Alignment
	6.2.5 Edit Operations

	6.3 Longest Arc-Preserving Common Subsequence
	6.3.1 Definition
	6.3.2 Classical Complexity
	6.3.3 Parameterized Complexity
	6.3.4 Approximability

	6.4 Arc-Preserving Subsequence
	6.4.1 Definition
	6.4.2 Classical Complexity
	6.4.3 Classical Complexity for the Refined Hierarchy
	6.4.4 Open Problems

	6.5 Maximum Arc-Preserving Common Subsequence
	6.5.1 Definition
	6.5.2 Classical Complexity
	6.5.3 Open Problems

	6.6 Edit Distance
	6.6.1 Definition
	6.6.2 Classical Complexity
	6.6.3 Approximability
	6.6.4 Open Problems

	References

	7 ALGORITHMIC ISSUES IN DNA BARCODING PROBLEMS
	7.1 Introduction
	7.2 Test Set Problems: A General Framework for Several Barcoding Problems
	7.3 A Synopsis of Biological Applications of Barcoding
	7.4 Survey of Algorithmic Techniques on Barcoding
	7.4.1 Integer Programming
	7.4.2 Lagrangian Relaxation and Simulated Annealing
	7.4.3 Provably Asymptotically Optimal Results

	7.5 Information Content Approach
	7.6 Set-Covering Approach
	7.6.1 Set-Covering Implementation in More Detail

	7.7 Experimental Results and Software Availability
	7.7.1 Randomly Generated Instances
	7.7.2 Real Data
	7.7.3 Software Availability

	7.8 Concluding Remarks
	References

	8 RECENT ADVANCES IN WEIGHTED DNA SEQUENCES
	8.1 Introduction
	8.2 Preliminaries
	8.2.1 Strings
	8.2.2 Weighted Sequences

	8.3 Indexing
	8.3.1 Weighted Suffix Tree
	8.3.2 Property Suffix Tree

	8.4 Pattern Matching
	8.4.1 Pattern Matching Using the Weighted Suffix Tree
	8.4.2 Pattern Matching Using Match Counts
	8.4.3 Pattern Matching with Gaps
	8.4.4 Pattern Matching with Swaps

	8.5 Approximate Pattern Matching
	8.5.1 Hamming Distance

	8.6 Repetitions, Covers, and Tandem Repeats
	8.6.1 Finding Simple Repetitions with the Weighted Suffix Tree
	8.6.2 Fixed-Length Simple Repetitions
	8.6.3 Fixed-Length Strict Repetitions
	8.6.4 Fixed-Length Tandem Repeats
	8.6.5 Identifying Covers

	8.7 Motif Discovery
	8.7.1 Approximate Motifs in a Single Weighted Sequence
	8.7.2 Approximate Common Motifs in a Set of Weighted Sequences

	8.8 Conclusions
	References

	9 DNA COMPUTING FOR SUBGRAPH ISOMORPHISM PROBLEM AND RELATED PROBLEMS
	9.1 Introduction
	9.2 Definitions of Subgraph Isomorphism Problem and Related Problems
	9.3 DNA Computing Models
	9.3.1 The Stickers
	9.3.2 The Adleman–Lipton Model

	9.4 The Sticker-based Solution Space
	9.4.1 Using Stickers for Generating the Permutation Set
	9.4.2 Using Stickers for Generating the Solution Space

	9.5 Algorithms for Solving Problems
	9.5.1 Solving the Subgraph Isomorphism Problem
	9.5.2 Solving the Graph Isomorphism Problem
	9.5.3 Solving the Maximum Common Subgraph Problem

	9.6 Experimental Data
	9.7 Conclusion
	References

	II ANALYSIS OF BIOLOGICAL SEQUENCES
	10 GRAPHS IN BIOINFORMATICS
	10.1 Graph theory—Origin
	10.1.1 What is a Graph?
	10.1.2 Types of Graphs
	10.1.3 Well-Known Graph Problems and Algorithms

	10.2 Graphs and the Biological World
	10.2.1 Alternative Splicing and Graphs
	10.2.2 Evolutionary Tree Construction
	10.2.3 Tracking the Temporal Variation of Biological
Systems
	10.2.4 Identifying Protein Domains by Clustering Sequence Alignments
	10.2.5 Clustering Gene Expression Data
	10.2.6 Protein Structural Domain Decomposition
	10.2.7 Optimal Design of Thermally Stable Proteins
	10.2.8 The Sequencing by Hybridization (SBH) Problem
	10.2.9 Predicting Interactions in Protein Networks by Completing Defective Cliques

	10.3 Conclusion
	References

	11 A FLEXIBLE DATA STORE FOR MANAGING BIOINFORMATICS DATA
	11.1 Introduction
	11.1.1 Background
	11.1.2 Scalability Challenges

	11.2 Data Model and System Overview
	11.3 Replication and Load Balancing
	11.3.1 Replicating an Index Node
	11.3.2 Answering Range Queries with Replicas

	11.4 Evaluation
	11.4.1 Point Query Processing Performance
	11.4.2 Range Query Processing Performance
	11.4.3 Growth of the Replicas of an Indexing Node

	11.5 Related Work
	11.6 Summary
	References

	12 ALGORITHMS FOR THE ALIGNMENT OF BIOLOGICAL SEQUENCES
	12.1 Introduction
	12.2 Alignment Algorithms
	12.2.1 Pairwise Alignment Algorithms
	12.2.2 Multiple Alignment Algorithms

	12.3 Score Functions
	12.4 Benchmarks
	12.5 Conclusion
	Acknowledgments
	References

	13 ALGORITHMS FOR LOCAL STRUCTURAL ALIGNMENT AND STRUCTURAL MOTIF IDENTIFICATION
	13.1 Introduction
	13.2 Problem Definition of Local Structural Alignment
	13.3 Variable-Length Alignment Fragment Pair (VLAFP) Algorithm
	13.3.1 Alignment Fragment Pairs
	13.3.2 Finding the Optimal Local Alignments Based on the VLAFP Cost Function

	13.4 Structural Alignment based on Center of Gravity: SACG
	13.4.1 Description of Protein Structure in PDB Format
	13.4.2 Related Work
	13.4.3 Center-of-Gravity-Based Algorithm
	13.4.4 Extending Theorem 13.1 for Atomic Coordinates in Protein Structure
	13.4.5 Building VCOST(i,j,q) Function Based on Center of Gravity

	13.5 Searching Structural Motifs
	13.6 Using SACG Algorithm for Classification of New Protein Structures
	13.7 Experimental Results
	13.8 Accuracy Results
	13.9 Conclusion
	Acknowledgments
	References

	14 EVOLUTION OF THE CLUSTAL FAMILY OF MULTIPLE SEQUENCE ALIGNMENT PROGRAMS
	14.1 Introduction
	14.2 Clustal-ClustalV
	14.2.1 Pairwise Similarity Scores
	14.2.2 Guide Tree
	14.2.3 Progressive Multiple Alignment
	14.2.4 An Efficient Dynamic Programming Algorithm
	14.2.5 Profile Alignments

	14.3 ClustalW
	14.3.1 Optimal Pairwise Alignments
	14.3.2 More Accurate Guide Tree
	14.3.3 Improved Progressive Alignment

	14.4 ClustalX
	14.4.1 Alignment Quality Analysis

	14.5 ClustalW and ClustalX 2.0
	14.6 DbClustal
	14.6.1 Anchored Global Alignment

	14.7 Perspectives
	References

	15 FILTERS AND SEEDS APPROACHES FOR FAST HOMOLOGY SEARCHES IN LARGE DATASETS
	15.1 Introduction
	15.1.1 Homologies and Large Datasets
	15.1.2 Filter Preprocessing or Heuristics
	15.1.3 Contents

	15.2 Methods Framework
	15.2.1 Strings and Repeats
	15.2.2 Filters—Fundamental Concepts

	15.3 Lossless filters
	15.3.1 History of Lossless Filters
	15.3.2 Quasar and swift—Filtering Repeats with Edit Distance
	15.3.3 Nimbus—Filtering Multiple Repeats with Hamming Distance
	15.3.4 tuiuiu—Filtering Multiple Repeats with Edit Distance

	15.4 Lossy Seed-Based Filters
	15.4.1 Seed-Based Heuristics
	15.4.2 Advanced Seeds
	15.4.3 Latencies and Neighborhood Indexing
	15.4.4 Seed-Based Heuristics Implementations

	15.5 Conclusion
	15.6 Acknowledgments
	References

	16 NOVEL COMBINATORIAL AND INFORMATION-THEORETIC ALIGNMENT-FREE DISTANCES FOR BIOLOGICAL DATA MINING
	16.1 Introduction
	16.2 Information-Theoretic Alignment-Free Methods
	16.2.1 Fundamental Information Measures, Statistical Dependency, and Similarity of Sequences
	16.2.2 Methods Based on Relative Entropy and Empirical Probability Distributions
	16.2.3 A Method Based on Statistical Dependency, via Mutual Information

	16.3 Combinatorial Alignment-Free Methods
	16.3.1 The Average Common Substring Distance
	16.3.2 A Method Based on the EBWT Transform
	16.3.3 N-Local Decoding

	16.4 Alignment-Free Compositional Methods
	16.4.1 The k-String Composition Approach
	16.4.2 Complete Composition Vector
	16.4.3 Fast Algorithms to Compute Composition Vectors

	16.5 Alignment-Free Exact Word Matches Methods
	16.5.1 D2 and its Distributional Regimes
	16.5.2 An Extension to Mismatches and the Choice of the Optimal Word Size
	16.5.3 The Transformation of D2 into a Method Assessing the Statistical Significance of Sequence Similarity

	16.6 Domains of Biological Application
	16.6.1 Phylogeny: Information Theoretic and Combinatorial Methods
	16.6.2 Phylogeny: Compositional Methods
	16.6.3 CIS Regulatory Modules
	16.6.4 DNA Sequence Dependencies

	16.7 Datasets and Software for Experimental Algorithmics
	16.7.1 Datasets
	16.7.2 Software

	16.8 Conclusions
	References

	17 IN SILICOMETHODS FOR THE ANALYSIS OF METABOLITES AND DRUG MOLECULES
	17.1 Introduction
	17.1.1 Chemoinformatics and “Drug-Likeness”

	17.2 Molecular Descriptors
	17.2.1 One-Dimensional (1-D) Descriptors
	17.2.2 Two-Dimensional (2-D) Descriptors
	17.2.3 Three-Dimensional (3-D) Descriptors

	17.3 Databases
	17.3.1 PubChem
	17.3.2 Chemical Entities of Biological Interest (ChEBI)
	17.3.3 ChemBank
	17.3.4 ChemIDplus
	17.3.5 ChemDB

	17.4 Methods and Data Analysis Algorithms
	17.4.1 Simple Count Methods
	17.4.2 Enhanced Simple Count Methods, Using Structural Features
	17.4.3 ML Methods

	17.5 Conclusions
	Acknowledgments
	References

	III MOTIF FINDING AND STRUCTURE PREDICTION
	18 MOTIF FINDING ALGORITHMS IN BIOLOGICAL SEQUENCES
	18.1 Introduction
	18.2 Preliminaries
	18.3 The Planted (l, d)-Motif Problem
	18.3.1 Formulation
	18.3.2 Algorithms

	18.4 The Extended (l, d)-Motif Problem
	18.4.1 Formulation
	18.4.2 Algorithms

	18.5 The Edited Motif Problem
	18.5.1 Formulation
	18.5.2 Algorithms

	18.6 The Simple Motif Problem
	18.6.1 Formulation
	18.6.2 Algorithms

	18.7 Conclusion
	References

	19 COMPUTATIONAL CHARACTERIZATION OF REGULATORY REGIONS
	19.1 The Genome Regulatory Landscape
	19.2 Qualitative Models of Regulatory Signals
	19.3 Quantitative Models of Regulatory Signals
	19.4 Detection of Dependencies in Sequences
	19.5 Repositories of Regulatory Information
	19.6 Using Predictive Models to Annotate Sequences
	19.7 Comparative Genomics Characterization
	19.8 Sequence Comparisons
	19.9 Combining Motifs and Alignments
	19.10 Experimental Validation
	19.11 Summary
	References

	20 ALGORITHMIC ISSUES IN THE ANALYSIS OF CHIP-SEQ DATA
	20.1 Introduction
	20.2 Mapping Sequences on the Genome
	20.3 Identifying Significantly Enriched Regions
	20.3.1 ChIP-Seq Approaches to the Identification of DNA Structure Modifications

	20.4 Deriving Actual Transcription Factor Binding Sites
	20.5 Conclusions
	References

	21 APPROACHES AND METHODS FOR OPERON PREDICTION BASED ON MACHINE LEARNING TECHNIQUES
	21.1 Introduction
	21.2 Datasets, Features, and Preprocesses for Operon Prediction
	21.2.1 Operon Datasets
	21.2.2 Features
	21.2.3 Preprocess Methods

	21.3 Machine Learning Prediction Methods for Operon Prediction
	21.3.1 Hidden Markov Model
	21.3.2 Linkage Clustering
	21.3.3 Bayesian Classifier
	21.3.4 Bayesian Network
	21.3.5 Support Vector Machine
	21.3.6 Artificial Neural Network
	21.3.7 Genetic Algorithms
	21.3.8 Several Combinations

	21.4 Conclusions
	21.5 Acknowledgments
	References

	22 PROTEIN FUNCTION PREDICTION WITH DATA-MINING TECHNIQUES
	22.1 Introduction
	22.2 Protein Annotation Based on Sequence
	22.2.1 Protein Sequence Classification
	22.2.2 Protein Subcellular Localization Prediction

	22.3 Protein Annotation Based on Protein Structure
	22.4 Protein Function Prediction Based on Gene-Expression Data
	22.5 Protein Function Prediction Based on Protein Interactome Map
	22.5.1 Protein Function Prediction Based on Local Topology Structure of Interaction Map
	22.5.2 Protein Function Prediction Based on Global Topology of Interaction Map

	22.6 Protein Function Prediction Based on Data Integration
	22.7 Conclusions and Perspectives
	References

	23 PROTEIN DOMAIN BOUNDARY PREDICTION
	23.1 Introduction
	23.2 Profiling Technique
	23.2.1 Nonlocal Interaction and Vanishing Gradient Problem
	23.2.2 Hierarchical Mixture of Experts
	23.2.3 Overall Modular Kernel Architecture

	23.3 Results
	23.4 Discussion
	23.4.1 Nonlocal Interactions in Amino Acids
	23.4.2 Secondary Structure Information
	23.4.3 Hydrophobicity and Profiles
	23.4.4 Domain Assignment Is More Accurate for Proteins with Fewer Domains

	23.5 Conclusions
	References

	24 AN INTRODUCTION TO RNA STRUCTURE AND PSEUDOKNOT PREDICTION
	24.1 Introduction
	24.2 RNA Secondary Structure Prediction
	24.2.1 Minimum Free Energy Model
	24.2.2 Prediction of Minimum Free Energy Structure
	24.2.3 Partition Function Calculation
	24.2.4 Base Pair Probabilities

	24.3 RNA Pseudoknots
	24.3.1 Biological Relevance
	24.3.2 RNA Pseudoknot Prediction
	24.3.3 Dynamic Programming
	24.3.4 Heuristic Approaches
	24.3.5 Pseudoknot Detection
	24.3.6 Overview

	24.4 Conclusions
	References

	IV PHYLOGENY RECONSTRUCTION
	25 PHYLOGENETIC SEARCH ALGORITHMS FOR MAXIMUM LIKELIHOOD
	25.1 Introduction
	25.1.1 Phylogenetic Inference

	25.2 Computing the Likelihood
	25.3 Accelerating the PLF by Algorithmic Means
	25.3.1 Reuse of Values Across Probability Vectors
	25.3.2 Gappy Alignments and Pointer Meshes

	25.4 Alignment Shapes
	25.5 General Search Heuristics
	25.5.1 Lazy Evaluation Strategies
	25.5.2 Further Heuristics
	25.5.3 Rapid Bootstrapping

	25.6 Computing the Robinson Foulds Distance
	25.7 Convergence Criteria
	25.7.1 Asymptotic Stopping

	25.8 Future Directions
	References

	26 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MAXIMUM PARSIMONY
	26.1 Introduction
	26.2 Definitions and Formal Background
	26.2.1 Parsimony and Maximum Parsimony

	26.3 Methods
	26.3.1 Combinatorial Optimization
	26.3.2 Exact Approach
	26.3.3 Local Search Methods
	26.3.4 Evolutionary Metaheuristics and Genetic Algorithms
	26.3.5 Memetic Methods
	26.3.6 Problem-Specific Improvements

	26.4 Conclusion
	References

	27 MAXIMUM ENTROPY METHOD FOR COMPOSITION VECTOR METHOD
	27.1 Introduction
	27.2 Models and Entropy Optimization
	27.2.1 Definitions
	27.2.2 Denoising Formulas
	27.2.3 Distance Measure
	27.2.4 Phylogenetic Tree Construction

	27.3 Application and Dicussion
	27.3.1 Example 1
	27.3.2 Example 2
	27.3.3 Example 3
	27.3.4 Example 4

	27.4 Concluding Remarks
	References

	V MICROARRAY DATA ANALYSIS
	28 MICROARRAY GENE EXPRESSION DATA ANALYSIS
	28.1 Introduction
	28.2 DNA Microarray Technology and Experiment
	28.3 Image Analysis and Expression Data Extraction
	28.3.1 Image Preprocessing
	28.3.2 Block Segmentation
	28.3.3 Automatic Gridding
	28.3.4 Spot Extraction

	28.4 Data Processing
	28.4.1 Background Correction
	28.4.2 Normalization
	28.4.3 Data Filtering

	28.5 Missing Value Imputation
	28.6 Temporal Gene Expression Profile Analysis
	28.7 Cyclic Gene Expression Profiles Detection
	28.7.1 SSA-AR Spectral Estimation
	28.7.2 Spectral Estimation by Signal Reconstruction
	28.7.3 Statistical Hypothesis Testing for Periodic Profile Detection

	28.8 Summary
	Acknowledgments
	References

	29 BICLUSTERING OF MICROARRAY DATA
	29.1 Introduction
	29.2 Types of Biclusters
	29.3 Groups of Biclusters
	29.4 Evaluation Functions
	29.5 Systematic and Stochastic Biclustering Algorithms
	29.6 Biological Validation
	29.7 Conclusion
	References

	30 COMPUTATIONAL MODELS FOR CONDITION-SPECIFIC GENE AND PATHWAY INFERENCE
	30.1 Introduction
	30.2 Condition-Specific Pathway Identification
	30.2.1 Gene Set Analysis
	30.2.2 Condition-Specific Pathway Inference

	30.3 Disease Gene Prioritization and Genetic Pathway Detection
	30.4 Module Networks
	30.5 Summary
	Acknowledgments
	References

	31 HETEROGENEITY OF DIFFERENTIAL EXPRESSION IN CANCER STUDIES: ALGORITHMS AND METHODS
	31.1 Introduction
	31.2 Notations
	31.3 Differential Mean of Expression
	31.3.1 Single Factor Differential Expression
	31.3.2 Multifactor Differential Expression
	31.3.3 Empirical Bayes Extension

	31.4 Differential Variability of Expression
	31.4.1 F-Test for Two-Group Differential Variability Analysis
	31.4.2 Bartlett’s and Levene’s Tests for Multigroup Differential Variability Analysis

	31.5 Differential Expression in Compendium of Tumors
	31.5.1 Gaussian Mixture Model (GMM) for Finite Levels of Expression
	31.5.2 Outlier Detection Strategy
	31.5.3 Kurtosis Excess

	31.6 Differential Expression by Chromosomal Aberrations: The Local Properties
	31.6.1 Wavelet Variance Scanning (WAVES) for Single-Sample Analysis
	31.6.2 Local Singular Value Decomposition (LSVD) for Compendium of Tumors
	31.6.3 Locally Adaptive Statistical Procedure (LAP) for Compendium of Tumors with Control Samples

	31.7 Differential Expression in Gene Interactome
	31.7.1 Friendly Neighbors Algorithm: A Multiplicative Interactome
	31.7.2 GeneRank: A Contributing Interactome
	31.7.3 Top Scoring Pairs (TSP): A Differential Interactome

	31.8 Differential Coexpression: Global MultiDimensional Interactome
	31.8.1 Kostka and Spang’s Differential Coexpression Algorithm
	31.8.2 Differential Expression Linked Differential Coexpression
	31.8.3 Differential Friendly Neighbors (DiffFNs)

	Acknowledgments
	References

	VI ANALYSIS OF GENOMES
	32 COMPARATIVE GENOMICS: ALGORITHMS AND APPLICATIONS
	32.1 Introduction
	32.2 Notations
	32.3 Ortholog Assignment
	32.3.1 Sequence Similarity-Based Method
	32.3.2 Phylogeny-Based Method
	32.3.3 Rearrangement-Based Method

	32.4 Gene Cluster and Synteny Detection
	32.4.1 Synteny Detection
	32.4.2 Gene Cluster Detection

	32.5 Conclusions
	References

	33 ADVANCES IN GENOME REARRANGEMENT ALGORITHMS
	33.1 Introduction
	33.2 Preliminaries
	33.3 Sorting by Reversals
	33.3.1 Approaches to Approximation Algorithms
	33.3.2 Signed Permutations

	33.4 Sorting by Transpositions
	33.4.1 Approximation Results
	33.4.2 Improved Running Time and Simpler Algorithms

	33.5 Other Operations
	33.5.1 Sorting by Prefix Reversals
	33.5.2 Sorting by Prefix Transpositions
	33.5.3 Sorting by Block Interchange
	33.5.4 Short Swap and Fixed-Length Reversals

	33.6 Sorting by More Than One Operation
	33.6.1 Unified Operation: Doule Cut and Join

	33.7 Future Research Directions
	33.8 Notes on Software
	References

	34 COMPUTING GENOMIC DISTANCES: AN ALGORITHMIC VIEWPOINT
	34.1 Introduction
	34.1.1 What this Chapter is About
	34.1.2 Definitions and Notations
	34.1.3 Organization of the Chapter

	34.2 Interval-Based Criteria
	34.2.1 Brief Introduction
	34.2.2 The Context and the Problems
	34.2.3 Common Intervals in Permutations and the Commuting Generators Strategy
	34.2.4 Conserved Intervals in Permutations and the Bound-and-Drop Strategy
	34.2.5 Common Intervals in Strings and the Element Plotting Strategy
	34.2.6 Variants

	34.3 Character-Based Criteria
	34.3.1 Introduction and Definition of the Problems
	34.3.2 An Approximation Algorithm for BAL-FMB
	34.3.3 An Exact Algorithm for UNBAL-FMB.
	34.3.4 Other Results and Open Problems

	34.4 Conclusion
	References

	35 WAVELET ALGORITHMS FOR DNA ANALYSIS
	35.1 Introduction
	35.2 DNA Representation
	35.2.1 Preliminary Remarks on DNA
	35.2.2 Indicator Function
	35.2.3 Representation
	35.2.4 Representation Models
	35.2.5 Constraints on the Representation in R2
	35.2.6 Complex Representation
	35.2.7 DNA Walks

	35.3 Statistical Correlations in DNA
	35.3.1 Long-Range Correlation
	35.3.2 Power Spectrum
	35.3.3 Complexity

	35.4 Wavelet Analysis
	35.4.1 Haar Wavelet Basis
	35.4.2 Haar Series
	35.4.3 Discrete Haar Wavelet Transform

	35.5 Haar Wavelet Coefficients and Statistical Parameters
	35.6 Algorithm of the Short Haar Discrete Wavelet Transform
	35.7 Clusters of Wavelet Coefficients
	35.7.1 Cluster Analysis of the Wavelet Coefficients of the Complex DNA Representation
	35.7.2 Cluster Analysis of the Wavelet Coefficients of DNA Walks

	35.8 Conclusion
	References

	36 HAPLOTYPE INFERENCE MODELS AND ALGORITHMS
	36.1 Introduction
	36.2 Problem Statement and Notations
	36.3 Combinatorial Methods
	36.3.1 Clark’s Inference Rule
	36.3.2 Pure Parsimony Model
	36.3.3 Phylogeny Methods

	36.4 Statistical Methods
	36.4.1 Maximum Likelihood Methods
	36.4.2 Bayesian Methods
	36.4.3 Markov Chain Methods

	36.5 Pedigree Methods
	36.5.1 Minimum Recombinant Haplotype Configurations
	36.5.2 Zero Recombinant Haplotype Configurations
	36.5.3 Statistical Methods

	36.6 Evaluation
	36.6.1 Evaluation Measurements
	36.6.2 Comparisons
	36.6.3 Datasets

	36.7 Discussion
	References

	VII ANALYSIS OF BIOLOGICAL NETWORKS
	37 UNTANGLING BIOLOGICAL NETWORKS USING BIOINFORMATICS
	37.1 Introduction
	37.1.1 Predicting Biological Processes: A Major Challenge to Understanding Biology
	37.1.2 Historical Perspective and Mathematical Preliminaries of Networks
	37.1.3 Structural Properties of Biological Networks
	37.1.4 Local Topology of Biological Networks: Functional Motifs, Modules, and Communities

	37.2 Types of Biological Networks
	37.2.1 Protein-Protein Interaction Networks
	37.2.2 Metabolic Networks
	37.2.3 Transcriptional Networks
	37.2.4 Other Biological Networks

	37.3 Network Dynamic, Evolution and Disease
	37.3.1 Biological Network Dynamic and Evolution
	37.3.2 Biological Networks and Disease

	37.4 Future Challenges and Scope
	Acknowledgments
	References

	38 PROBABILISTIC APPROACHES FOR INVESTIGATING BIOLOGICAL NETWORKS
	38.1 Probabilistic Models for Biological Networks
	38.1.1 Boolean Networks
	38.1.2 Probabilistic Boolean Networks: A Natural Extension
	38.1.3 Inferring Probabilistic Models from Experiments

	38.2 Interpretation and Quantitative Analysis of Probabilistic Models
	38.2.1 Dynamical Analysis and Temporal Properties
	38.2.2 Impact of Update Strategies for Analyzing Probabilistic Boolean Networks
	38.2.3 Simulations of a Probabilistic Boolean Network

	38.3 Conclusion
	Acknowledgments
	References

	39 MODELING AND ANALYSIS OF BIOLOGICAL NETWORKS WITH MODEL CHECKING
	39.1 Introduction
	39.2 Preliminaries
	39.2.1 Model Checking
	39.2.2 SPIN and Promela
	39.2.3 LTL

	39.3 Analyzing Genetic Networks with Model Checking
	39.3.1 Boolean Regulatory Networks
	39.3.2 A Case Study
	39.3.3 Translating Boolean Regulatory Graphs into Promela
	39.3.4 Some Results
	39.3.5 Concluding Remarks
	39.3.6 Related Work and Bibliographic Notes

	39.4 Probabilistic Model Checking for Biological Systems
	39.4.1 Motivation and Background
	39.4.2 A Kinetic Model of mRNA Translation
	39.4.3 Probabilistic Model Checking
	39.4.4 The Prism Model
	39.4.5 Insertion Errors
	39.4.6 Concluding Remarks
	39.4.7 Related Work and Bibliographic Notes

	References

	40 REVERSE ENGINEERING OF MOLECULAR NETWORKS FROM A COMMON COMBINATORIAL APPROACH
	40.1 Introduction
	40.2 Reverse-Engineering of Biological Networks
	40.2.1 Evaluation of the Performance of Reverse-Engineering Methods

	40.3 Classical Combinatorial Algorithms: A Case Study
	40.3.1 Benchmarking RE Combinatorial-Based Methods
	40.3.2 Software Availability

	40.4 Concluding Remarks
	Acknowledgments
	References

	41 UNSUPERVISED LEARNING FOR GENE REGULATION NETWORK INFERENCE FROM EXPRESSION DATA: A REVIEW
	41.1 Introduction
	41.2 Gene Networks: Definition and Properties
	41.3 Gene Expression: Data and Analysis
	41.4 Network Inference as an Unsupervised Learning Problem
	41.5 Correlation-Based Methods
	41.6 Probabilistic Graphical Models
	41.7 Constraint-Based Data Mining
	41.7.1 Multiple Usages of Extracted Patterns
	41.7.2 Mining Gene Regulation from Transcriptome Datasets

	41.8 Validation
	41.8.1 Statistical Validation of Network Inference
	41.8.2 Biological Validation

	41.9 Conclusion and Perspectives
	References

	42 APPROACHES TO CONSTRUCTION AND ANALYSIS OF MICRORNA-MEDIATED NETWORKS
	42.1 Introduction
	42.1.1 miRNA-mediated Genetic Regulatory Networks
	42.1.2 The Four Levels of Regulation in GRNs
	42.1.3 Overview of Sections

	42.2 Fundamental Component Interaction Research: Predicting miRNA Genes, Regulators, and Targets
	42.2.1 Prediction of Novel miRNA Genes
	42.2.2 Prediction of miRNA Targets
	42.2.3 Prediction of miRNA Transcript Elements and Transcriptional Regulation

	42.3 Identifying miRNA-mediated Networks
	42.3.1 Forward Engineering—Construction of Multinode Components in miRNA-mediated Networks Using Paired Interaction Information
	42.3.2 Reverse Engineering—Inference of MicroRNA Modules Using Top-Down Approaches

	42.4 Global and Local Architecture Analysis in miRNA-Containing Networks
	42.4.1 Global Architecture Properties of miRNA-mediated Post-transcriptional Networks
	42.4.2 Local Architecture Properties of miRNA-mediated Post-transcriptional Networks

	42.5 Conclusion
	References

	INDEX

