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PREFACE 

Recent years have seen an explosive growth in research in combinatorics and graph theory. 
One primary factor in this rapid development has been the advent of computers, and the 
parallel study of practical and efficient algorithms. This volume represents an attempt to 
sample current research in one branch of combinatorics, namely combmatorial design 
theory, which is algorithmic in nature. 

Combmatorial design theory is that branch of combinatorics which is concerned with the 
construction and analysis of regular f h t e  configurations such as projective planes, Hada- 
mard matrices, block designs, and the like. Historically, design theory has borrowed tools 
from algebra, geometry and number theory to develop direct constructions of designs. 
These are typically supplemented by recursive ~ ~ n s t ~ ~ t i o n s ,  which are in fact algorithms 
for constructing larger designs from =me smaller ones. This lent an algorithmic flavour 
to the construction of designs, even before the advent of powerful computers. 

Computers have had a definite and long-lasting impact on research in combinatorial design 
theory. Rimarily, the speed of present day computers has enabled researchers to construct 
many designs whose discovery by hand would have been difficuit if not imposslile. A 
second important consequence has been the vastly improved capability for anu&sis of 
designs. This includes the detection of isomorphism, and hence gives us a vehicle for 
addressing enumeration questions. It a h  includes the determination of various proper- 
ties of designs; examples include resolvability, colouring, decomposition, and subdesigns. 
Although in principle all such properties are computable by hand, research on designs with 
additional properties has burgeoned largely because of the availability of computational 
assistance. 

Naturally, the computer alone is not a panacea. It is a well-known adage in design theory 
that computational assistance enables one to solve one higher order (only) than could be 
done by hand. This is a result of the “combinatorial explosion”, the massive growth rate 
in the size of many combinatorial problems. Thus, research has turned to the development 
of practical algorithms which exploit computational assistance to its best advantage. This 
brings the substantial tools of computer science, particularly analysis of algorithms and 
computational complexity, to bear. 

Current research on algorithms in combinatorial design theory is diverse. It spans the many 
areas of design theory, and involves computer science at every level from low-level imple 
mentation to abstract complexity theory. This volume is not an effort to survey the fsld 
exhaustively; rather it is an effort to present a collection of papers which involve designs 
and akorithms in an interesting way. 
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Comput,ation of Some Parameters of Lie Geometries 

A.E. Brouwr and A.M. Cohcn 

Centre for Mathematics and Computer Science 
Kruislaan 413 

1098 SJ Amsterdam 
THE NETHERLAM)S 

Abstract 

In this note we show how one may compute the parameters of a finite Lie 
geometry, and we give the results of such computations in the most 
interesting cases. We also prove a little lemma that is useful for showing 
that thick finite buildings do not have quotients which are (1ocalIy) Tits 
geometries of spherical type. 

1. Introduction 

The finite Lie geometries give rise to association schemes whose parameters 
arc closely related to corresponding parameters of their associated Weyl groups. 
Though the parameters of the most common Lie geometries (such as projective 
spaces and polar spaces) are very well known, we have not come across a 
reference containing a listing of the corresponding parameters for geometries of 
Exceptional Lie type. Clearly, for the combinatorial study of these geometries 
the knowledge of these parameters is indispensible. The theorem in this paper 
provides a formula for those parameters of the asociation scheme that appear 
in the distance distribution diagram of the graph underlying the geometry. As a 
consequence of the theorem, we obtain a simple proof that the conditions in 
lemma 5 of 121 are fulfilled for the collinearity graph of any finite Lie geometry 
of type A,,, D,,, or Em, 6SmS8. (See remark 3 in section 4. The proof for the 
other spherical types, i.e. C,, F,, and C2 is similar.) By means of the formula in 
the theorem, we have computed the parameters of the Lie geometries in the 
most interesting open cases for diagrams with single bonds only (A,, and 0, are 
well known, and are given as examples). The remaining cases follow similarly, 
but the complete listing of all parameters would take too much space. 
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2. InfroduetSon to Geometrler (following TSts [lo]) 
A geometry over a set A (the set of types) is a triple (r,*,t) where r is a set 

(the set of objects of the geometry), * is a symmetric relation on r (the 
incidence relation) and t is a mapping (the type mapping) from I' into A, such 
that for x, y € r we have (t(x)=t(y) & x*y) if and only if x=y. (An example is 
provided by the collection r of all (nonempty proper) subspaces of a finite 
dimensional projective space, with t: r 4 = N ,  the rank function, and * 
symmetrized inclusion (i.e., x*y iff x C y or y C x).) 

Often we shall refer to  the geometry as I' rather than as (r,*,t). 
A flag is a collection of pairwise incident objects. The residue Res(F) of a 

flag F is the set of all objects incident to each element of F. Together with the 
appropriate restrictions of * and t, this set is again a geometry. 

The rank of a geometry is the cardinality of the set of types A. The 
corank of a:flag F is the cardinality of A\t(F). A geometry is connected if and 
only if the (looped) graph (r,*) is connected. A geometry is reeidually connected 
when for each flag of corank 1, Res(F) is nonempty, and for each flag of corank 
a t  least 2, Res(F) is nonempty and connected. 

A (Buekenhout-Tile) diagram is a picture (graph) with a node for each 
element of A and with labelled edges. I t  describes in a compact way a set of 
axioms for a geometry I' with set of types A as follows: whenever an edge 
( d l d 2 )  is labelled with D, where D is a class of rank 2 geometries, then each 
residue of type {d,,d2} of r must be a member of D .  (Notice that a residue of 
type {d,,d,}iis the residue of a flag of type A\{d1,d2}.) In the following we need 
only two classes of rank 2 geometries. The first is the class of all projective 
planes, indicltted in the diagram by a plain edge. The second is the class of all 
generalized digons, that is, geometries with objects of two types such that each 
object of one'type is incident with every object of the other type. Generalized 
digons are indicated in the diagram by an invisible (i.e., absent) edge. 

For example, the diagram 

is an axiom system characterizing the geometry of points, lines, and planes of 
projective &space. Note that the residue of a l i e  (i.e., the points on the l i e  
and the planes containing the line) is a generalized digon. Usually, one chooses 
one element of A and calls the objects of this type pointe. The residues of this 
type are called linee. Thus lines are geometries of rank 1, but all that matters is 
they constitute subsets of the point set. In the diagram the node corresponding 
to the points is encircled. 
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As an example, the principle of duality in projective 3-space asserts the 
isomorphism of the geometries 

Grassmannians are geometries like 

(Warning: points are objects of the geometry but lines are sets of points, and 
given a line, there need not be an object in the geometry incident with the same 
set of points.) 

Let us write down some diagrams (with nodes labelled by the elements of 
A) for later reference. 

1 2 3 n 

1 2 3 n - 2  n - 1  

9' Eoo-ouo-o 1 2 3 4 5 
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0' 
E7 

1 2 3 4 5 6 

Q 8  

E8 

(Warning: in different papers different labellings of these diagrams are used.) 

a subscript. For example, D,,, denotes a geometry belonging to the diagram 
If one wants to indicate the type corresponding to the points, it is added as 

0 1 2 3 
It is possible to prove that if I' is a finite residually connected geometry of rank 
a t  least 3 belonging to one of these diagrams having at least three points on 
each line then the number of points on each l i e  is g+ 1 for some prime power g, 
and given a prime power g there is a unique geometry with given diagram and 
g + 1 points on each line. We write X,,(g) for this unique geometry, where X,, is 
the name of the diagram (cf. Tits [9] Chapter 8, and 121). 

F o r  example, A,,(g) is the geometry of the proper nonempty subspaces of 
the projective space PG(n,g). Similarly, D,,(g) is the geometry of the nonempty 
totally isotropic subspaces in PG(2n - 1,g) supplied with a nondegenerate 
quadratic form of maximal Witt index. Finally, DnJg) is an example of a polar 
space.] 
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A remark on notation: ‘:=’ means “is by definition equal to” or “is defined 
as,’. 

8. Distance Distribution Diagrams for h c i a t i o n  Schemer 

An association scheme is a pair (X,{Ro1...,R,}) where X is a set and the R; 
( 0 5 i 5 . 9 )  are relations on X such that {Ro, ..., Ru} is a partition of X X X  
satisfying the following requirements: 

(i) 
(ii) for all i ,  there exists an i’such that RT= Rp 
(iii) Given z,y € X with ( Z J )  € R;, then the number pi3 = 112: (z,z) € Rj 

Usually we shall write u for the total number of points of the associated scheme, 
i.e. u = 1x1. The obvious example of an association scheme is the situation 
where a group G acts transitively on a set X .  In this case one takes for 
{ R  ol...lRu} the partition of X X X  into C-orbits, and requirements (i)-(iii) are 
easily verified. 

Assume that we have an association scheme with a fixed symmetric 
nonidentity relation R1 (Le., RT = Rl) .  Clearly ( X , R l )  is a graph. Now one 
may draw a diagram displaying the parameters of this graph by drawing a circle 
for each relation Rj, writing the number A;. = I {z :  ( 2 , ~ )  € R;)I = p: where z 
€ X is arbitrary inside the circle, and joining the circles for R; and Rj by a line 
carrying the number p i l  a t  the (Ri)-end whenever p i l  # 0. (Note that &;pil  = 
kjpi l  so that p j ,  is nonzero iff p i l  is nonzero.) When i = j ,  one usually omits 
the line and just writes the number pi’, next to the circle for R;. 

For example, the Petersen graph becomes a symmetric association scheme, 
i.e., one for which RT = R; for all i when we define (ZJ) € R; iff d(z,y) = i 
for i=0,1,2. We find the diagram 

Ro = 1, the identity relation. 

and ( y , ~ )  € Rk}I does not depend on z and y but only on i .  

2 
More generally, a graph is called distance regular when ( 2 , ~ )  € .Ri iff d(z,y) = 
i (,OSiSdiam(G)) defines an association scheme. 

When ( X , R l )  is a distance regular graph, or, more generally, when the 
matrices I, A, A*, ..., A’ are linearly independent (where A is the 0-1 matrix of 
R1, i.e., the adjacency matrix of the graph), then the p i l  suffice to determine all 
pi3.  On the other hand, when the association scheme is not symmetric but R1 
is, then clearly not all Rj can be expressed in terms of R l .  
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In this note our aim is to  compute the parameters pf for the Lie 
geometries XmIn(q) where X,,, is a (spherical) diagram with designated 'point'- 
type n, and the association echeme structure is given by the group of (type 
preserving) automorphisms of X,,,,n(9) - essentially a Chevalley group. In the 
next section we shall give formulas valid for all Chevalley groups and in the 
appendix we l i t  results in some of the more interesting cases. Let us do some 
examples explicitly. (References to words in the Weyl group will be explained in 
the next section.) 

Usually we give only the pil ; the general case follows in a similar way. 
Example 1. 

4 1 ~ - 0 - ( ) - - - ~  

1 2 3 n 
The collinearity graph of points in a projective space is a clique: any two points 
are adjacent (collinear). Thus our diagram becomes 

Example 2. 

1 2 3 n 
Now we have the graph of the projective lines in a projective space, two 
projective lines being adjacent whenever they are in a common plane (and have 
a projective point in common). 

[N.B.: the limes of this geometry are pencils of 9+ 1 projective lines in a 
common plane and on a common projective point.] 
Our diagram becomes 

Weyl words: "" "2312" 2 " 
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* qn-2- 1 
X= q - 1 + q2+ q 

q - 1  

qn-1- 1 qn-2-  1 d ,  

q2-1 q-1 k2 - 

For q = 1 (the 'thin' case) this becomes the diagram for the triangular graph: 

n-1  
[Clearly Xi:=pfi=k- z p f i .  Often, when X i  does not have a particularly nice 

form, we omit this redundant information.] 
Notice how easily the expressions for u,k,k2,X can be read off from the 

Buekenhout-Tits diagram: for example, X=X(z,y) first counts the q -  1 points on 
the line zy, then the remaining q2 points of the unique plane of type {1,2} 
containing this line and finally the remaining q2 points of the planes of type 
{2,3} containing this line. 

j*i 

Example 3. 

This is the graph of the j-flats (subspaces of dimension j) in projective n-space, 
two j-flats being adjacent whenever they are in a common ( j +  1)-flat (and have 
a (j-I)-flat in common). The graph is distance regular with diameter 
min (j ,n + 1 - j). Parameters are 

(qn+l-l)( ,p- 1)...(,p+2-i- 
U= 

( q j -  l)(qj-l-  I) ...(q- 1) Q 
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bi:=pf,i+l = q  z i + l  l ; i 1 9  I.- j ; i + ~ ]  
9 

The parameters for the thin case have q = l  and binomial instead of Gaussian 

coefficients; we find the Johnson scheme (nfl). 
The Weyl words (minimal double coset representatives in the Weyl group) 

have the following shape: for double coset i in A,,j the representative ie 

wi:= " , j+  1 ,..., j +  i - 1,j- 1, j ,..., j + i  - 2  ,.....,, j -  i + 1, j - i  + 2  ,..., j '! 

Note that wi has length i2, the power of g occurring in ki .  

Example 4. 

Dn.1 a-0 
1 2 n-2 n-1 

(n23; Dz,l is the direct product AlllXAlI1, i.e., a (g+l )X(q+l)  grid.) 

1 n-l-l)( n-2+ 1) 

9 - 1  
)=Q+Dn-l,l'g 

Diagram: 
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Thin case: 

u=2n ,A = 2n - 2 

2n - 4  
This is K2, minus a complete matching. 

The Weyl words are: 

'I" for double coset 0, 

"1" for double coset 1, and 

"1 2 3 * n -3 n - 2  n n - 1 n - 2  - - - 1" for double coset 2. 

Example 5. 

1 2 



10 A.E. Brouwer and A.M. Cohen 

Diagram (for n >4): 

n 

Double coset 1 contains adjacent points, i.e., lines of the polar space in a 
common plane. Shortest path in the geometry: 2-3-2 (unique). 

Double coset 2 contains the points a t  ‘polar’ distance two, belonging to  the 
Weyl word ”2312”, i.e., in a polar space AS12. (Le., lines of the polar space in a 
common t.i. subspace). Thus 

Shortest path in the geometry: 2-42 (unique). Double coset 3 contains points 
incident with a common 1-object, so that the Weyl word is the one for double 
coset 2 in On - (relabelled): 

“23 n -3n-2n  n - l n - 2  2”. 

(These are intersecting lines not in a common t.i. plane.) Thus 
2n-4 * ~ S = + A I , I ~ ~ ( D ~  - 1,1)=(q + 1)q 

Shortest path in the geometry: 2-1-2 (unique). 

Weyl word is 
Double coset 4 contains points with shortest path 2-1-3-2 (unique); the 

“2 3 * * * n-3 n-2 n n-1 n-2 - * -  3 12’: 

the reduced form of the product of the word we found for double coset 3 and the 
word “212” describing adjacency in A2,2. Thus 
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n-2, 
k,= +on -2,1q2(10n - 1.1 - (q + 1)- !++o,-s,l)= U ( q n - S +  l ) (q  + l)q2"-S 

q - 1  
Double coset 5 contains the remaining g4"-' points (the lines of the polar 

space in general position). Shortest path in the geometry: 2-1-2-1-2 (not 
unique). The Weyl word is 

"23 . . . n - 1  1 2 3  - * - n-2 n n-2 . . - 2 1 n - 1  - - * 3 2 "  

of length 4n - 7. 

The thin case is: 

u=2n(n -l), k=4(n -2) 

Example 6. 
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9' 
D4,2 04-0 1 2 3 

As before we find 

and k = g ( g +  1)'. 

This time the thin diagram is 

v=24, k = 8  
- 

and we see that the number of classes is one higher than before. This is caused 
by the fact that we can distinguish here between shortest paths 2-4-2 and 2-3-2, 
while in the general case (n25) both 2-n-2 and 2-(n-1)-2 are equivalent 
to 2-3-2. Thus, our previous double coset 2 splits here into two halves. 
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Double coset 
0 
1 
2 
3 
4 
5 
6 

Weyl word Cardinality Shortest path (unique) 
1 2 II!9 

“2” Q ( Q  + 2-{1,3,4)-2 
“2312” Q‘(Q + 1) 2-42 
“2412” Q‘(Q + 1) 2-3-2 
“2432” Q‘(Q + 1) 2-1-2 
“24312” Q5(4 + 2-1-{3,4)-2 

“23 1242 132” Q* 

Diagram: 

Example 7. 

9’ 
1 2 3 n - 1  

We have 
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u = ( q " - ' + l ) ( q ~ - 2 + 1 )  ...(q+ 1) 

Note that when n =2m, then km=qm(2m-1) ,  Also, note that in the case n = 4  
these parameters reduce to those we found for D4,1. 

Two points have distance S i  (for O S i S n )  iff there is a path 
n-(n-2i)-n in the geometry. When n is even, then two points at distance 
n - ("in general position") are not incident to  a common object. (Note that 
2 
k = +A, - l,2q and, more generally, that 

i(2i - 
ki = +A, - 1,2 ik i (~2i , z i )=  q ')+A, - 1,2i. 

The values for bi and ei follow similarly. The value for u follows by induction, 
and when n = 2m then km is found from km = u - C k; .) 

i <m 

The Weyl word corresponding to distance i is the same one (after 
relabelling) as in D2i,2i, namely: 

"n n - 2 n - l n - 3 n - 2 n  n - 4 n - 3 n - 2 n - 1  . . . "  
of length 

1 + 2 + 3 +  4 + * - *  + 2i-1 = i(2i-1). 

In the thin case we have u = 2"-', k -  , and the graph is that of the binary 

vectors of even weight and length n where the distance is the Johnson distance, 
i.e., half the Hamming distance. 

kl 



Some parameters of Lie geometries 15 

Example 8 (see Tits [8]). 

p’ 
E6J  0 

1 2 3 4 5 
This graph is strongly regular (i.e., distance regular with diameter 2). We have 

and 

The thin case gives diagram 

10 8 
the Schlafli graph; this is the complement of the collinearity graph of the 
generalized quadrangle GQ(2,4). In general we find the diagram 

k x 
where k2= q8#D5,, and A= q - 1 + q2#A4,2. 

“1”. 

word “12364321”, as in D5.1. 

Double coset 1 corresponds to the shortest path 1-2- 1 and has Weyl word 
Double coset 2 corresponds to the shortest path 1-5-1 and has Weyl 

Example 9. 
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E6,6 

1 2 3 4 5 
This graph hss 

“=po- l (g6+l ) (g4+ l)(g3+l) 
9-1  

and 

The thin case gives diagram 
9 9 

8 
with v = 12. 

In general we find 
x 

with kz=#AB,I#A4,1g6 and ks=ql’k and X=q-1+q2(g2+g+1)2. Double 
coset 1 corresponds to shortest path 8-3-6 and has Weyl word “6”. Double coset 
2 corresponds to shortest path 6{1,5)-6 and has Weyl word “634236” (of D4,I). 
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Double coset 3 corresponds to shortest path 6-1-48 (or, equivalently, 6-5-2-6) 
and has Weyl word "6345 234 1236". Double coset 4 has Weyl word "6345 234 
1236345 234 1236". 

Example 10. 
The case of type F4,1 has been treated in Cohen 161. 
Up to now all our computations were easy and straightforward, mainly 

because of the limited permutation ranks (number of classes of these association 
schemes) and the fact that A, , l ,  Dn,l, and E6,l have diameter at most two. 
Continuing in this vein we quickly encounter difficulties. E7,l is still distance 
regular with diameter three and E7,, and E8,l have diagrams like E6,6 (and 
these three cases are easily done by hand) but for instance E7,, has 149 classes 
(double cosets) and all geometric intuition is lost; in the next section we describe 
how parameters for these Lie geometries can be mechanically derived by means 
of some computations in the Wcyl group. In a way, this means that it suffices 
to consider the case g = 1. Now everything is finite and a compriter can do the 
work. 

In the appendix we give computer output describing E7,1, Er16, E7,7, 

E8,?, and E8,8, in other words, the geometries belonging to the 'end nodes' of the 
diagrams E7 and E8. For E ,  we also computed the parameters on the 
remaining nodes, but listing these would take too much room. We therefore 
content ourselves with the presentation of the permutation ranks for the 
Chevalley groups of type F4, En (6SnS8); to each node r in the diagram below 
is attached the permutation rank of the Chevalley group of the relevant type on 
the maximal parabolic corresponding to r. 

5 17 17 5 

3 10 37 10 3 
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E7 

4 13 50 140 27 5 

35 

E8 

5 26 122 547 1437 134 10 

4. Reduction to the Weyl group 

In this section, C is a Chevalley group X,,(g) of type X,, over a finite field 
F,. We shall rely heavily on Carter [4], to which the reader is referred for 
details. Though with a little more care, all statements can be adapted so that 
they are also valid for twisted Chevalley groups, for the sake of simplicity, we 
shall only consider the case of an untwisted Chevalley group C.  To C we can 
associate a split saturated Tits system (B,N,W,R), cf. Bourbaki [l], consisting 
of subgroups B,N of C such that C is generated by them, and of a Coxeter 
system (W,R) with the following properties: 
(i) H-BnN is a normal subgroup of N and W =  N/H. 
(ii) For any tucW and rcR, 

(ii)' BwBrB C BwBUBwtB 

(ii)" ' B  C B 
(iii) (split) There is a normal subgroup U of B with B-UH and U n H  = (1). 

(iv) (saturated) n " B = H .  

Here and below, '"A stands for tuAtu" if A is a subset of C invariant under 
conjugation by H. Notice that '"B and Bw are well defined. We shall briefly 
recall how a Tits system may be obtained. Start with a Coxeter system (W,R) 
where W is a Weyl group of type X,,. Let 4 be a root system for W. A set of 

w cw 
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mutually obtuse roots corresponding to the subset R (of fundamental 
reflections) forms a set of fundamental roote. Now any root ace is an integral 
linear combination of the fundamental roots such that either all coefficients are 
nonnegative or all coefficients are nonpositive. In the former case, a is called 
positive, denoted a>O; in the latter case, a is called negative, denoted a<O. 

Now choose a Cartan subgroup H in C, and denote by X u  for ace the root 
subgroup with respect to Q (viewed as a linear character of H). Thus H 
normalizes each Xu. Next, let N be the normaiizer of H in G .  Then W = N / H  
permutes the X u  (ac@) according to "Xu = X,, (wcW). 

Now U =  n X a  is a subgroup of G normalized by H, so that B=UH is a 

subgroup of G with B n N =  H .  This explains how B,N,W,R,U occur in C .  We 
need some more subgroups of C .  Given wcW, set 

a>O 

uw-:= n x,. 
a>o,w-'a<o 

It  is of crucial importance to the computations below that 

for every wcW, where I(w) denotes the length of w with respect to R. (For a 
proof, see Carter [4] 8.6; notice that our definition of Ui differs from Carter's 
in that our Us- coincides with his Ui-1.) Observe that U,- is a subgroup of U, 
for if we let wo denote the unique longest element in W with respect to  I ,  then 
wo is an involution satisfying U,- = U n """U (and also U f l  ""U = (1)). Fix 
rcR and write J = R\{r}, WJ = < J > ,  the subgroup of W generated by J, and 
P=BWjB.  Then P is a socalled maximal parabolic subgroup of C (associated 
with r). We are interested in the graph r = r ( C , P )  defined as follows. Its 
vertices are the cosets z P  in C (for zcG), two vertices zP,yP being adjacent 
when y-'zrPrP. 

In this graph, z P  and yP have distance d(zP,yP)Se  if and only if 
y-'zcP<r> * <r>P (a  product of 2 e + l  terms). Let us first compute the 
number u of vertices of this graph. 
Lemma 1. Each coset z P  has a unique representation zP=uwP where ucU,- 
and w is a right J-reduced element of W ,  i.e., 

w~LJ:={wcWI ~ ( w w ' & ~ ( w )  for at1 w'cWJ). 

Proof: 
zB has a (unique) representation zB=uwB with wcW, ucU,' (see Carter 

[4], Theorem 8.4.3). Thus zP=uwP and obviously we may take WCLJ (cf. 
Bourbaki [I), Chap. W, $1 Exercice 3). Suppose uwP=u'w'P. Then 
w'cBwBW~B so that w' = wwa with wa € WJ,  but since w , w ' ~ L ~  it follows that 
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w'= w .  We assert that Pnw'lBw C B .  (See [S], Proposition p. 63; since this 
reference is not easily accessible we repeat the argument.) Let w=rlr2 * * - r, be 
an expression of w as a product of t=l(a) reflections in R. Denote by S the set 
of elements of the form ri,ris * - * rj, with i1<i2< - * * <i,. Then WJnS-'w = 
(1) since wWJnS = { w }  (w is the only element in S with length a t  least I(w)).  
Hence, Pnw-lBw C BW/DnBw-'BwB C BWJBnBS"wB = 
B(W,nS"w)B = B,  as asserted. Now u'lu' f wAu-'nU,' = 
w ( m w - l u w n w O u t Q ) w - l  c w ( B n w O u w , - l ) d  = {w-'} = {I) since 
BnWoU = 1 (see Carter [4], Lemma 7.1.2). Thus u=u? 0 

Proposition 1. The graph r ( C , P )  has u vertices, where 
U' c q'("). 

WCLJ 

Proof 

lemma 1. 0 

Remark 1. Of course, we also have the multiplicative formula 

A straightforward consequence of the formula IUiI = q'(") for wtW and 

where d,, ..., d,, are the degrees of the Weyl group W, e2, ..., e,, are the degrees 
of the Weyl group WJ and e l  = 1 (cf. Carter 14)). 

Next, we want to put the structure of an association scheme on this graph. 
The group G acts by left multiplication on the cosets zP ,  and clearly this action 
is transitive. Thus we find an association scheme. The collections of cosets in a 
fixed relation with a given coset, say P ,  are the double cosets PzP. The pair 
(zP,yP) has relation C(zP,yP),  labelled with Pz-'yP. We see that a relation 
PzP is symmetric iff PzP = Pz"P, and this holds in particular for s = r .  

Lemma 2. Each double coset PzP has a unique representation PzP=PwP 
where w is an element of W that is both left and right J-reduced, i.e., 

wcD~:={wcW I w ie the unique ehorteet word of WJwW,). 

Proof: 
See Bourbaki [11 Chap. IV $1 Exercice 3 . 0  

Proposition 2. The association scheme I'(C,P) has valencies ki (belonging to the 
relation A'P) for icDJ, where 

ki= C q l ( w ) .  

W d J n  WJi 
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Proof: 
Obvious. 0 

Remark 2. If i cDj ,  then iwJi - 'nwJ=wiJi - in  J by Solomon 171, so substitution 
of q = l  in the above formula for ki leads to the equation. ILJnWJiI = 

I wJI 

I %Ji-'n J I * 

Finally, we come to the parameters pi%. It is more convenient to label the 
relations (such as i , j , k )  by elements from D j  than by O , l ,  ...,a as in Section 2. 
Therefore, we shall use these new labels; 1 now stands for the "old O", and r for 
adjacency, i.e., the "old 1". We shall confine ourselves to giving p$. 

Theorem. Let i , jcDJ.  Then the number of points (i.e., cosets) in i R P  n PjP 
is 

f)$= c p)+ 

c g l ( w ) +  

c q'(wr)( q - 1) 

w r L n A  , l ( iw)>l( iwr)  

w t L n A  , f ( iw)<l ( iwr)  

w r L n A r  , l ( iw)< l ( iwr )  

where L := L j  n wJt and A := ~ - ' W J ) ~ J .  

Proof 

Clearly, 

Consequently, 

Now we want to write each set iBwP as a union of cosets uwP as in lemma 1. 
For gcC and K a subgroup of C define ' K  := gKg-' and K' = K\{l}. It  is 
well known that for any ucW we have i j l ( i u ) = l ( i ) + l ( u )  then ' ( U c )  C Ui;. 
(See Cohen [S] Lemma 2.11.) Notice that w=ur for some UCWJ with 
l ( i u ) = l ( i ) + l ( u )  and I ( w ) = l ( u ) +  1. 

Distinguish two cases: 
If l ( iw)>l( iu)  then 

iBwB= i U i  wB = '(U;)iwB 

and we have ' (U;)  C; Ui, as desired. 
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i f  I(iw)<I(iu) then 
0 

iBwB = iBuBrB = ' (UC;)iuBrB = ' (U;) - (iwB u iw (( U:)')iuB) 

and we have '(UC;) C UG, i(UC;)*iw(U;) C Uii as desired. (For the 
inclusion '(VC;) C Ui note that u cannot change the sign of the root 
corresponding to r since u ~ W J . )  
Now in order to count how many of the cosets UWP fall into a given double 

coset PjP we need only observe that UWP PjP iff tutWj~Wj,  and that 
distinct wtL lead to distinct cosets iwP. 0 

Corollary. Given two vertices z l P ,  z2P  of r a t  mutual distance d ,  the number 
of vertices a t  distance d -  1 to z l P  and adjacent to z2P  is congruent to 1 (mod 
q ) ,  and the number of vertices a t  distance d to z l P  and adjacent to z 2 P  is 
congruent to - 1 (mod q ) .  Also, the valency k is congruent to 0 (mod q ) .  

Proof 

k I 0 (mod q ) .  Next, from the previous theorem we obtain that 
From =U)tWJr iff I(w)Zl" and the expression given for k-k, we see that 

Pf- a(itcWJJwJ) + (9' 1)'6(i CWJJWJ) (mod 9) 

where 6(T) for a predicate T denotes 1 if T is true and 0 otherwise. Thus, all p i  
are congruent to 0 (mod q )  except p:, which is congruent to - 1 (mod q )  and p,!, 
which is congruent to 1 (mod q )  -- where f is defined by ircWJfWJ. Clearly 
d(P,t$') = d(P, iP)-  1.  0 

Remark 3. This corollary is motivated by Lemma 5 in [ Z ]  which is a crucial step 
in the proof that if r is finite and q>1,  then the building corresponding to the 
Tits system (B,N,W,R)  does not have proper quotients satisfying the conditions 
in [ lo] ,  Theorem 1. The above corollary shows that the conditions are satisfied 
for the Chevalley groups of type A,,, D, or E,,, (6SmS8). For another 
application, see [3]. 
Remark 4. It  is possible to compute the parameters p b  for arbitrary k in II 

similar way. Again one starts by writing iPkP as a disjoint union of sets of the 
form iBwP. Next by induction on I ( w )  this is rewritten as a disjoint union of 
cosets uuP, where utU,,- and ~ t L j .  As an algorithm this works perfectly well, 
but it is not so easy to  give a simple closed expression for pb. 
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6. Computation in the Weyl group 

have been computed. 
(i) The length function 1 .  

We shall briefly discuss the way in which several items in the Weyl group 

The only essential ingredient in our computations is the length function; all 
other computations could be done by general group theoretic routines. But 
given the permutation representation of the fundamental reflections on the 
root system # and a product representation W=81’S2”’8m (not necessarily 
minimal), we find l ( w )  from 

l (w)=  I {ac&a>O and w a ( 0 ) l  

(see e.g. Bourbaki [l] Chap. M, 81.6 Cor. 2). 

(ii) Canonical representatives of the cosets wWJ. 
Let # be the coroot perpendicular to all fundamental roots except the one 
corresponding to r. Then 0 has stabilizer WJ in W, and the images of q5 
under W are in 1-1 correspondence with the cosets wWJ. 

Similarly, let p be the sum of all positive roots. Then wp= w’p iff w = w’. 

Given a suitable lexicographic and recursive way of generating the cosets 
wWJ, the first of these to beiong to  a certain coset WJdVJ will have wcDJ. 
All cosets in the same double coset are found by premultiplying previously 
found cosets with reflections in J. However, the set D j  of distinguished 
double coset representatives can be found without listing all single cosets 
wW,: given ~ t D j ,  one can determine a11 elements from D j  n WL, where L 
= LJ n WJt ,  by simply sieving all right and left J-reduced words from wL 
(compare with (i)). In view of the fact that W is generated by J U {r), 
iteration of this process will eventually yield all of D j  (one can start with 
w = 1). We have done so for the Weyl groups of type F,, E,, E,, E8. The 
cardinalities of D j ,  i.e. the permutation ranks, have been given above. 

(iii) Equality in W. 

(iv) Double coset representatives. 
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Appendix 

E6,1 
27 cosets 
3 double cosets 
Sizes: 

0: 0 

1: (1) 
111 1 

[16] 

[lo] 

9 + 9* + qS + zg4 + 2gs + 2q6 + 29' + ~9~ + Q9 + qlo + 911 

q8 + Qg + q'0 + q" + 2q12 + 9'3 + q" + q'6 + 9" 
2: (12364321) 

Neighbours of a point in 0: 

Neighboura of a point in 1: 
1: [I61 q + 92 + 9' + 29' + 2g5 + 29' + 29' + 298 + q9 + 91° + qll 

0: [l] 1 

2: IS] 

1: [lo] -1 + 9 + 92 + 9' + 29' + 29' + 29' + 9' + 9' 
9' + q8 + 99 + 9'0 + g" 

Neighbours of a point in 2: 
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1: [8] 1 + q + q2 + 2q5 $. q' + 95 + q' 
2: [8] -1 - qs + q' + q5 + q' + 2q7 + 2q8 + q9 + q'Q + q" 
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Neighbours of a point in 2: 

1: [4] 

5: [2] q7 + q8 

1 + 2q + q2 

2: IS] -1 - + q2 + 3qs + 3q4 + q6 

4: [8] q4 + 3q5 + 3q" + q7 

Neighbours of a point in 3: 

1: (61 

4: (61 

6: [4] 

1 + q + 2q2 + qs + q' 

q2 + qs + 2q' + q5 + q' 
q5 + q6 + q7 + q8 

3: [4] -1 - q2 + q3 + Q' + 2q6 + q' + q7 

Neighbours of a point in 4: 
1: [l] 1 

2: 14) q + 2q2 + qs 

3: 111 9 
4: pj -1 - + zqs + + 3q5 

5: [2] q' + q7 

7: [l] q' 
6: [2] q5 + q' 
8: [2] q7 + q8 

2: [3) 
4: [S] 

8: [6] 

Neighbours of a point in 5: 

1 + q + q2 

q a  + 2qs + 2q' + qs 

q' + 2qb + 2q' + q7 
5: 141 

9: 11) q8 

3: [2] 1 + q 

-1 + qs + q' + q6 + q' + q7 

Neighboun of a point in 6: 

4: [6] 

8: [6] 

q + 2q2 + 2qs+ q' 

qs + 2q' + 2q7 + q8 
6: [6] -1 - q + qs + 3g4 + 3g5 + q' 

Neighbours of a point in 7: 
4: [12] I + 2q + aq2 + sqS + 2q4 + q6 

7: [O] -1 - q - q2 + q' + q6 + q' 
8: [8] q' + 2qs + 2q' + 2q7 + q8 

Neighbours of a point in 8: 
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4: [3] 
5: 131 
6: 131 q 2 +  q 3 +  q' 
7: [l] qs 

1 + q + q2 

q + q2 + q3 

8: [7] -1 - - q2 + 3g' + 447' + 2g' + q7 

9: [3] q" + q7 + q8 
Neighbours of a point in 9: 

5: 121 1 + q 
8: 1121 

9: [6] 

q + 3q2 + 4qs + 347' + qs 

-1 - q - q2 - q3 + Q' + 3q5 + 3q" + 2q' + q8 

Ee,, 
72 cosets 
5 double cosets 
Sizes: 

0: 0 
111 1 

[20] q + q2 + 2q3 + 3q4 + sq5 + 3q6 + aq7 + 2q8 + q9 + p 

130) 4 + 2q7 + 3q8 + 4qg + 5q10 + 5 p  + 4 p  + 3,p + 2,p + q15 

[20] q" + q'2 + 2q'3 + 3q" + 3q'S + 3q'" + 3q'7 + 2q'8 + + q20 

111 q2' 

1: (6) 

2: (634236) 

3: (63452341236) 

4: (634523412363452341236) 

Neighbours of a point in 0: 

Neighbours of a point in 1: 

6 

I: 1201 

0: 111 1 

1: [g) 
2: I91 
3: 111 q'0 

2: [8] 

+ q2 + 2q3 + 3q4 + 3q5 + 3qs + 3q7 + 2q8 + q9 + qIo 

-1 + q + q2 + 2q3 + 3q' + 2qs + q" 
qs + 2q" + 3q7 + 2q8 + qg 

Neighbours of a point in 2: 

1: [6] 1 + q + 2q2 + qs + q' 
-1 - q2 + q3 + !zq4 + 3qs + 2q6 + 2q7 
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3: [6] 

1: 111 1 

3: 191 
4: [I] q'0 

3: [20] 

4: [O] 

q6 + q7 + 2q8 + qg + q'0 
Neighbours of a point in 3: 

2: [Q] q + 2q2 + 3qs + 2q' + q5 
-1 - q2 - qJ + q4 + 2q5 + 3q0 + aq7 + 2q8 + qg 

I + q + 2g2 + 3g3 + 3q4 + 3q5 + 3q6 + 2q7 + q8 + qs 
-1 - q2 - qJ + 47 + q* + q'0 

Neighbours of a point in 4: 

E7,1 
56 cosets 
4 double cosets 
Sizes: 

0: 0 

1: (1) 
111 1 

2: (1234754321) 

3: (123475645347234512347654321) 

Neighbours of a point in 0: 
111 927 

Neighbours of a point in 1: 

0: 111 1 

2: [lo] 

I: [lo] 
2: 1161 

1: [ l G ]  -1 $2q + q2 + qs  + q' + 2q5 + 2q6 + 2q' + 29' + 2qg + ql0  + q" 
+ 4  

Neighbours of a point in 2: 
qg + q'0 + q" + q'2 + 2q'J + q" + q'5 + q16 + q17 

I + q + q2 + q3 + 2q4 + q5 + q6 + q7 + q8 

Q + Q  + Q  
-\; Q4 2 q5 t 6 q o  + q7 + q8 + 3qg + 2q'O + 2q" + 2q12 + 2q'J + 
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E7,8 
126 cosets 
5 double cosets 
sizes: 

0: 0 
111 1 

1: (6) 

4: (654734562345123474563452347123456) 

Neighbours of a point in 0: 
111 P 

Neighbours of a point in 1: 
0: 111 1 

1: [15] -1 + q + q2 + q3 + 2q4 + 2q5 + aq6 + 2q7 + 2q8 + q g  + qlo 

2: [is] q7 + q8 + 2q9 + zq10 + 3 p  + 2q12 + 2 p  + q l ~  + q15 

3: [l] q'6 

1: [SI 1 + + q2 + + q4 + q5 + q6 

Neighbours of a point in 2: 

2: [IS] -I - q3 + q4 + q5 + 2q6 + 3q7 + 3q8 + 3q9 + 2q'O + 2q" + q12 

q" + q" + q12 + 2qI3 + qI4 + q15 + q16 3: [S] 
Neighbours of a point in 3: 
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4: [O] -1 - qJ - 45 + q" + q'8 + q'6 

E7,7 
576 cosets 
10 double cosets 
Sizes: 

0: 0 

1: (7) 
111 1 

2: (745347) 

6: (745634523474563452347) 

7: (7456345234745634512347) 
[7] q2' + q22 + q23 + q2' + q25 + g2' + q2' 

8: (74534762345123473456234512347) 
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9: (745347623451 234734562345123473456234512347) 

Neighbours of a point in 0: 
I11 q42 

1: I351 Q +J2 + i q 3  + 3q' + 4q5 + 4q6 + 5q7 + 4q8 + 4qo + 3q'O + 2q" 
+ Q  + Q  

Neigbbours of a point in 1: 

0: 11) 1 

1: 1121 -1 + q + q2 + ~3 + 3q4 + 

3: [4] q'0 + q" + q'2 + q'J 

2: 1121 -1 - q2 -+ q3 + zq4 + dq5 + 3q6 + sq7 + q8 

3: 1121 q6 + 2 2  + aq8 + 3qo + 2 p  + q l l  

4: 11) qQ 

5: [4] $0 + q" + q '2  + q'3 

1: 111 1 

2: 191 q + zq2 + 3q3 + 2q4 + q5 

3: 1121 -1 - q2 - q3 + q' + 3q5 + 4q6 + 4q7 + 2q8 + qQ 

5: 191 q7 + 2q8 + 3qQ + 2q'O + q" 

7: I31 q" + q'2 + q ' 3  

2: I151 1 + q + 2q2 + 
4: 10) -1 - q2 - q 4  + 45 + q' + qQ 
5:  IZOl Q' + q5 + 2q6 + 3q' + 3q8 + 3qQ + 3q'O + 2q" + q'2 + q'3 

2: 131 1 + q + (12 

3: pi q2 + 2q3 + aq4 + 2q5 + g6 

4: 111 q 3  

5: 1121 -1 - q2 - q3 + 2q5 + 3q6 + sq7 + sq8 + 2qo 

7: 191 q8 + 2qQ + 3q'O + 2q" + q'2 

8: 111 q'3 

+ 2q6 + q7 

2: [18] q5 + 2g6 + 4q7 + 49' + 4qo + 2q'O + q" 

Neighbours of a point in 2: 

1: IS] l + q  + Z q 2 + q 3 + q '  

Neighbours of a point in 3: 

6: 111 9'' 

Neigbbours of a point in 4: 

+ 3q4 + 2q5 + zq6 -+ q7 + q* 

NeighLours of a point in 5: 
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Neighbours of a point in 6: 

3: pol 1 + 9 + 2g2 + 39' + 39' + 396 + 3q8 + 2*7 + ,f + 

7: 1151 g5 + q6 + 2q7 + 2g8 + 3g0 + 2q10 + 2 p  + + p 

3: 141 1 + 9 + 92 + 9' 
5: 1121 q2 + 29' + 39' + 396 + 296 + 9' 

7: 112) -1 - 92 - qs - 4' + q6 + 2q6 + 4q7 + 4g8 + 399 + 2910 

6: [O] -1 - q2 - 4' + 9' + q8 + 9'' 

Neighbourn of a point in 7: 

6: [I] 9' 

8: 161 

5: [4] 
7: [18j 

qg + g" + 29" + ql2 + 9'' 

1 + 9 + q2 + g3 

q2 + 29' + 49' + 4qS + 49" + 29' + q8 

Neighbours of a point in 8: 

8: [12] -1 - g2 - 9' - 9' + 39' + 39' + 49' + 39'' + 29" + 912 
9: [l] 9'' 

8: 1351 

9: [O] 

Neighbours of a point in 9: 

9 $2292 + 3g3 + 49' + 4q6 + 5q6 + 49' + 498 + 399 + 29'0 + 
9 + 9  
-1 - q2 - Q' - 9' - 96 + 47 + (Jg + 9'0 + 911 + 9'' 
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1561 q29 + qS0 + qS1 + p"' + !; + 2 g  + 2 p  + 2 p  + ~ 3 7  + 3 p  + 

29 +2q + 2 q  +2q + q  + q  + q  + q  + q  
3q;; + 3q;: + 3 c  + 3f1 + g2 +ss3q44st 3q4t5+ 3 l g  + 3q" + 

4: ( 12345867564583456723456123458567456345823456123458765432 1) 

Neighbours of a point in 0: 
111 qS7 

1: 1561 q + q2 + f + q4 + q6 yq6 + zq7 + T ' J ~  + 21; + 3 p  + 3 p  + 
3q;; + 3qd + 3{; + $f +2,3q 2 3q +3q'Q + 2q20 + 
2q + 2q +2q + q  + q + q  + q 2 7 +  928 

+ 3q 

Neighbours of a point in 1: 
0: 111 1 

3: 111 q28 

1: 1121 I + + q2 + q3 + q4 + 2qs + q6 + + q8 + qQ + qlo 

Neighbours of a point in 2: 

3: [12] 

1: 111 1 

q18 + qlQ + q20 + q21 + q22 + 2q23 + q24 + q25 + q26 + q27 + q28 

Neighbours of a point in 3: 

4: 11) q28 

Neighbours of a point in 4: 

3: 1561 1 6 q + 4: + q31t q4 +1,2q5 +zq6 + f f 7  + 2pl" + 3f + 3 p  + 
3q20 + 3q21 + 3q2 + 39 + 3q + 39 + 3q + 3q + 2 p  + 
2q + 2q + 2q + q 2  +p+ q 2 5 + 9 2 6 +  q27 

4: [O] -1 - 45 - qQ + q'Q + $3 + q28 

E8,7 
2160 cosets 
10 double cosets 
Sizes: 
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111 qT8 
Neighboun of a point in 0: 

1: 1641 Q t 2 q 2  + 93" + "(I:,+ 2q5 5 3qe + 4q7 + 478 + 4qQ + 5q'O + 5q" + 
5g1 +,",4 + 4q + 4q + 4qI6 + 3q1 + zq18 + 2 p  + q20 + 
!I + Q  

Neighbours of a point in 1: 

0: 111 1 

3: [71 

1: [8] 

q" + q" + qI8 + q" + q20 + q2' + q22 

1 + q + q2 + 2qs + q' + q5 + q6 

Neighbours of a point in 2: 

4: [20] 

5: [l] q16 

q ' O  + q" + 2q'2 + 3q'3 + 3q" + 3q'5 + 3q'O + 2 p  + q'8 + g'Q 

6: [S] qI7 + qI8 + q" + qZo + q2' + q22 
Neighbours of a point in 4: 

2: [4] 
3: [IS] 

1 + q + q2 + qs 
q3 + 2q' + 3q5 + 4q6 + 39' + 2q8 + qQ 

6: [lS] qI3 + 2q" + 3qI5 + 4q16 + 3q" + 2q18 + q" 
7: 141 q'Q + q20 + q21 + q22 

Neighbours of a point in 5:  
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Es,s 
17280 cosets 
35 double cosets 
Sizes: 

0: 0 
[11 1 

1: (8) 
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12: (856458734562345845673456123458) 

[l680] 9" + 39" + 89" + M f  + 2 Q r +  469: + 68ga6 + Q2qS7 + 
1174:5" 13Qf + + 1659 + 1659 + 156g4' + 1389" + 
1i l9  + 929 + 689 + 469" + 299'' + 169" + 89'' + 39'2 + 
9 

9'' + $' + 4f4 + 69:: + Qg" + 12ga7 + 159'' + 178'' + 189'' 
+,18q + 179 + 159 + l2q" + 99" + 6g" + 4q + 2q4' + 
9 

qS2 + 29'' + 41" + 69" + Q9" + 129'' + 15g" + 17 " + 189" 
+rW4' + 179 + 159" + 12q44 + 99" + 6q40 + 494! + ~ 4 8  + 
9 

13: (85674563458567456345823456123458) 

[I681 

14: (85645834567234561234585674563458) 

I1681 

15: (85674563458567456234586723456123458) 

869" + 1otp + 10Qg45 + 1129 
709" + 539 

[1120] 9'' + 3qs6 + 7q" + 14q" + 24f' + 379'' + 539'' + 70q42 + 
+ 1089" + 1o0848 + 869'' + + 37962 + 249" + 14q6' + 79= + 395 + 957 

16: (85645834567234561234584567345623458) 

[1120] 9'5 + 3gS6 +4r79s7 + 149'' + 24f' + 379'' + 539" + 70g42 + 
+ 10Qg47 + 100848 + 8694' + 869" + 100 51 + 1W$" + 1129 

70q6' + 539 + 379 + 249" + 149" + 79'' + 395 + 967 
17: (85874563458234561234583456723456123458) 

18: (856745634585672345612345856723456123458) 

Il680J q'' + 39" + 89" + 16 42 + + 468" + 68g" + Q2g46 + 
1:Zqs4 + Q2q + 68q6 + 46qS7 + 29g" + 16qSo + 89" + 39" + 
9 

q42 + q" + 9" + 9" + q4" + q47 + 9'' + 9" 

9'' + 9" + q4' + 946 + 9'' + 9'' + 9" + 9'' 

q4' + !j4' + 495'" -k 69;: + 99p",,+ 129'' + 15%:' + 175$a + 18g6' 
$:89 + 179 + 159 + 129 + Qg6' + 69 + 49 + 2qsg + 
9 

9" + 22'' + 4f: +. 69:: + Q9" + 129'' + 1 5 c  + 175< + 189'' 
+,18q5 + 179 + 159 + 12q6' + gq6' + 69 + 49 + 2q6' + 
9 

117q47 + 13Qf; + 1568 4f + 1659 + 1659 ' + 156qs2 + 139g" + 

19: (856458734562345845673456234584567345623458) 

20: (8564583456723456123458567456345823456123458) 

21: (8564587345623458456734562345845673456123458) 

181 

[8] 

Il68] 

22: (8564587345623458456734561234584567345623458) 

[168] 
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23: (85645873456234584567345612345845673456123458) 

[l680] q44 + 3q" + 8q" 
117gb2 + 1391; + &?'+ 165q + 165q ' + 
1fq5' + 92q 
Q 

q44 + f$45 + 49" + 79:: + llqE+ 15q" + 20g50 + 24q" + 27q52 + 29& + 29q ' + 27q + 2OqS7 + 15qS8 + l lq" + 7q60 + 4q 

q 4 0 5 t  3g50 + 7q5' + 13q52 + 22q5' + 33q5' + 46q55 + 59q56 + 
71q6, + 80q:: + 85q5' + 85f + 80#' + 71g62 + 59q6' + 46q" + 
33g + 22q -t- 13qa7 + 7q + 3q6' + q70 

q51 + !#52 + 41: + 74: + llqz + 15q56 + 20q57 + 24g58 + 27gS0 + 29f8 + 29g + 2Oq" + 15g65 + Ilq66 + 7q67 + 4q 

q51 + $52 + 4$ + 7q:i + l lqt+  15q56 + 20q5' + 24q58 + 27q50 
+ 2Qt8 + 2,"q + 20q64 + 15q65 + l lq"  + 7q67 

" + 29448 + 46f4' + 68q50 + Q2q5' + 
+ 13Qq58 + + 46g62 + 29q6' + 16q" + 8q65 + 3q66 + + 68g 

24: (85645834567234561234585674563458723456123458) 

[280] 
+ 24q + 2q62 + q6' 

25: (8564583456723456123458456734562345856723456123458) 

I8401 

26: (856745634585674562345867234561234583456723456123458) 

[280] 
+ 27g + 249 + 2q6Q + q70 

27: (856745634582345612345834567234561234584567345623458) 

[280] 
+ 27q + 24q + 4q + 2q + q'0 

28: (856745634585672345612345856723456123458456723456123458) 

Ill201 ~~~~t 3gS5 + 7956 + 14q5' + 24f + 3 7 c  + 5 3 q z  + 70q" + 
86q + + 1 p ? 6 4  + 112q 4- 109g ' + 100 + 86q68 + 
70qS0 + 53q + 37q + 24q72 + 14q7' + 7q7' + 3g79 + q76 , 

29: (8564587345623458456734561234584567345623458345~723456123458~ 

30: (8564587345623458456734561234584567345612345834567234561234581 

[560] + 2q6' + 5f + 9q:: + 159:; + 22qS5 + 31q66 + 39q" + 47q68 
+ 539;; + 56?8 + 56q + 53g + 47g" + 39q7' + 31q75 + 22q76 + 15g + 9g + 5q7' + 2q80 + q8' 

31:(8567456345856745623458672345612345834567234561234584567345623458~ 
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33: 
(85645873456234584567345612345845673456123458345672345612345834567 
23456123458) 

34: 
(85645873456234584567345612345845673456123458345672345612345834567 
234561234583456723456123458) 

Neighbours of a point in 0: 
[11 904 

1: [SSl 9 + qi + 29' + 39' + 49' + 5q6 + 69' + 69' + 69' + 69" + 59" + 49 + 39'' + 29" + 9'' + 916 
Neighbours of a point in 1: 

0: [l] 1 
1:  is] 
2: [30] 
3: [lo] 

1: [6] 
2: 1161 

-1 + 9 + g2 + 29' + 39' + 39' + 3# + sq7 + 9* 
9' + 29' + 49' + 59' + 69' + 59" + 49" + 2912 + 913 
9" + 9" + 29'* + 291' + 29'' + 916 + 916 

1 + 9 + 2g2 + 9' + 9' 
-1 - q2 + 9' + 29' + 49' + 4q6 + 49' + 29' + 9' 

Neighbours of a point in 2: 

3: 1181 

5: [l2] 
8: [l] 916 

q6 + 2q' + 4g8 + 4q0 + 49" + 29" + q12 

9'' + 29" + 3912 + 39'' + 29'' + 9" 
4: [3] 99 + 9'0 + q" 

Neighbours of a point in 3: 

1: 111 1 

2: [9] 
3: [15] 
5: [18] 

6: [l] 9" 

7: [3] 
9: 161 
1 0  [3] 

q + 2g2 + 39' + 2q' + 9' 
-1 - q2 - 9' + 9' + 39' + 59" + 59' + 39' + 9' 
9' + 3q8 + 59' + 59" + 39" + 912 

9" + 912 + 9" 

9" + 9'' + 9l" 
9" + 2912 + 29'' + 

Neighbours of a point in 4: 
2: [15] 1 + 9 + 2q2 + 29' + 39' + 29' + 2g6 + 9' + q8 

4: [6] -1 - q2 - 4' + 9' + q6 + 29' + 9' + 29' + 9" + g" 
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5: [ZOl q4 + q5 + 2q' + 3q' + 3q8 + 3q9 + 3q'O + 2q" + q'2 + q '3  
8: [lS] 

2: (31 

q8 + qg -+ 2q1° + 2qJ1 + 3q12 + zqJS + zq14 + ,+5 + q16 

1 + q + q2 

Neighbours of a point in 5: 

3: [Q] q2 + 2q3 + aq4 + 2q5 + qo 
4: 111 qs 

5: [iq -1 - q2 - q3 + 2q5 + dq6 + 6q7 + dq8 + 2qg 

7: [3] 49 + q'0 + q" 
8: 13) q8 + qg + q'0 

9: [Q] q8 + 2qg + 3q10 + 2 p  + p 
10: [Q] q'0 + 2q" + 3g'2 + 2q'S + q" 
11: 111 q'3 

12: [3] q" + q '5  + q1' 

3: 1201 1 + q + 2q2 + 3g3 + 3q4 + 3q5 + 3q6 + 2q7 + q8 + q9 

Neighboun of a point in 6: 

6: [0] -1 - q2 - q3 + q7 + q8 + qIo 

q + 2q + 3q' + 4g8 + 5gg + 5q'O + 4q1' + 3q12 + 2q13 + q l 4  

q" + qt2 + q" + q" + q" + ql' 

5 0 9: [30] 

14: IS] 
Neighboun of a point in 7: 

3: 161 1 + q + 2q2 + 9' + q4 
5: [12] q3 + 2q4 + aq5 + 

7: [?I -1 - q2 + q5 + go + 2q7 + q8 + 2q9 + q l o  + 

12: [12] g I o  + 2 p  + 3 p  + 3 p  + 2 p  + p 

+ 2q7 + q8 

10: [18] 

17: 111 q" 

q' + 2q7 + 4q8 + 4q9 + 4qto + 2q" + qJ2 

Neighboun of a point in 8: 

2: [I] 1 

4: [3] 
5: [12l 
8: [12] 

q + q2 + q3 

q2 + 2q3 + 3q' + 3q5 + 2q' + q' 
-1 - q2 - q3 + q5 + 3q' + 4q7 + 4q8 + 2q* + q'0  

10: (181 

1 3  [S] 
15: [4] 

q7 + 2q8 + 4qg + 4q'O + 4q" + 2q12 + qt3  
g** + q'l + 2qt2 + q" + q" 
q" + qt4 + qt5  + q" 

Neighbours of a point in 9: 
3: [41 1 + q + q2 + q3 
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5: I121 q2 + 2qs + 3q' + 395 + 2qa + q7 

9: 1131 -1 - q2 - qs  - 4' + q6 + 3q' + 4q7 + 4q8 + 3qQ + 2q'O 

6: [l] q' 

10: (81 q7 + 2q8 + 2qQ + 2gl0 + q'l 

11: [S] 

12: IS] 
14: [2] q" + q12 

16: [4] 

qQ + q'O + 29" + 912 + g'J 
q'' + q" + 2q12 + q15 + q" 

q13 + q'* + q" + g" 
Neighbours of a point in 10: 

3: 111 1 

5: 161 q + 2g2 + 2q5+ q' 
7: [3) qs + q 4 +  q6 
8: 131 4' + q 6  +q' 

9: 141 q' + 2q6+ g' 

12: [l2] q8 + 3qQ + 4q'O + 39" + q'2 

10: [14] 

13: 111 q" 

14: [l] q" 
15: [S] 
16: [Z]  qI2 + q13 
18: [3] 

-1 - q2 - qs  - Q' + 39' + 6q7 + 5q8 + 3qQ + q'O 

q" + 2q12 + 2qls + q" 

q" + q" + q1' 
Neighbours of a point in 11: 

1 + q + q2 + q5 5: [4] 
9: 1181 q2 + 2qs + 4q4 + 4qs + 496 + 2,,7 + q8 

11: 1121 -1 - q - q - q + 397 + 3q8 + 490 + 3q'O + 2q" + q'2 

16: [rz] qg + 2glo + 3,+1+ 3g12 + 2q1s + g14 

19: [l] 9'3 

5: (21 1 + g ' 

7: 121 g2 + q3 

9: 131 q2 + q 3  +q' 
10: I121 qs + 3q' + 495 + 396 + q7 
11: 11) 95 

2 5 4  

12: Is] q' -+ q' + 2q8 + qg + q" 

22: (31 q" + q"+ ql8 

Neighbours of a point in 12: 
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2 12: (131 -1 - 
15: 16) 

16: [S] 
17: [l] q" 

18: IS] 

23: I31 

8: [lo] 

- q3 - q' - q5 + 2q' + Sq7 + 6q8 + 4q9 + q'' 
9' + 251'' + 2q" + q" 
qg + 2q" + 2q" + qt2  

q" + 2qI2 + 2qtS + q" 

q" + q t 5  + q" 
Neighbours of a point in 13: 

1 + q + 2q2 + 2q3 + 2q' + q5 + q' 

21: [I] q t 3  

10: [lo] qs + q4 + 2q5 + zq6 + 2q7 + q8 + qo 
13: [lo] -1 - q2 - q3 + q5 + 2q0 + 3q7 + aq8 + 2q9 + 2 p  
15: 120) q7 + 2g8 + 3qg + 4qto + 4 p  + 3 p  + 2 p  + 
20: [I] q" 

24: [5] 

6: [l] 1 

qt2 + q13 + q" + qt5 + q" 
Neighbours of a point in 14: 

9: [lo] 
10: 1101 q4 + q5 + 2q0 + 2q7 + 2q8 + qg + q l o  

14: IS] -1 - q2 + q5 + + 2q7 + q8 + q9 + 
16: 1201 qo + 2q7 + 3qe + 4qg + 4qi0 + 3 p  + 2 p  + ,+3 

18: [lo) ql0 + qtl + 2#2 + 2,p + zq14 + p + ,p 

+ 2q2 + 2qs + 2q4 + zq5 + qo 

Neighbours of a point in 15: 

8: [l] 1 
10: [Q] 

13: 13) 

15: [13] 

18: [9] 
21: [3] 

23: (31 

24: 131 
25: [3] 

q + 2q2 + 3q3 + 2q' + q5 

q' + q5 + q' 
-1 - q2 - q3 - Q' + q' + 4g7 + 4q8 + 4q9 + 30'' + q" 
q8 + 2q9 + 3q" + 2q" + q t 2  

q" + q t 2  + qI3 
qI2 + q13 + q" 
q" + qI2 + q" 
q" + qt5  + q" 

Neighbours of a point in 16: 

12: 191 q 4  + 2q5 + 3q6 + + q8 

9: 131 1 + q + q2 

10: 131 q2 + 4' +q' 
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11: 131 qs + q ' +  qs 

12: 191 q4 + zqs + aq6 + zq7 + q* 

18: Is] q8 + zq9 + aqI0 + 2 p  + q12 

22: 131 q'0 + 9" + q'2 

14: [3] q 5 + q 4 + q s  
16: 1131 -1 - q2 - q3 - Q' + 2g6 + 4g7 + 4q8 + 4q9 + 2q'O + q" 

23: IS] 
27: 111 q" 

7: [4] 
12: [24] 
17: [O] 

18: [24] 
26: 141 

9" + 2qI2 + 3qIs + 2q" + qIs 

Neighbours of a point in 17: 

1 + q + q2 + q3 

q2 + 2qs + 441' + 5q6 + 5q6 + 447' + 2q8 + qg 
-1 - q2 - q5 - 9' - qs + 47 + 2g8 + qg + q10 

q7 + 2q8 + 4g9 + 5q'O + 5q" + 4q12 + zqls + gl4 

q" + q" + q l S  + ql' 
Neighbours of a point in 18: 

10: [3] 

12: [6] 

14: [l] 4' 
15: [6] 

16: [6] 
17: [l] q6 

18: 1131 
23: I121 
24: [l] q" 
25: [3] 
26: 121 qI3 + q" 

28: [2] q15 + q" 

1 + q + g2 
q2 + 2q3 + 2q' + q6 

q' + 2q6 + 2q6 + q' 
4' + 2qs + 2q6 + 9' 

-1 - q2 - q3 - 4' - q5 + 4q7 + 6q8 + 5g9 + 3qlo 
4' + 3g'O + 4q" + 3qI2 + q l S  

q t 2  + q" + q" 

Neighbours of a point in 19: 
11: P51 

19: [O] -1 - q2 - q s  - 4 ' .  q a  + 47 + q9 + *I0 + q" + q'3 

22: 1211 g:,+ q7 + 2q8 + 2q9 + 3910 + 3 p  + 3 p  + 2q1a + z g * 4  + ,p + 

13: 1211 1 + q + 2g2 + 2qs + 3q4 + 3qs + sq6 + 2q7 + Zq8 + qg + qlo 

20: [O] -1 - q2 - q' + 47 + q g  + q" 

'lt !I $;;q2 + 3q3 + 4q' + 4q5 + 5q6 + 4q7 + 4q8 + 3qQ + 2q'O + 
4 + 4  

Q 
Neighbours of a point in 20: 
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24: [35] P4;: Q5 5 29'$3q' + 4q8 + 4qQ + 5q'O + 49" + 4qi2 + 3q'3 + 
2q + 4  + q  

Neighbours of a point in 21: 
12: (101 1 + q + 2q2 + zqS + 2q4 + q5 + q6 

15: 1201 q3 + 2q4 + 3q5 + dq6 + 

25: [lo] q10 + 2q11 + zqt2 + zq13 + 2 p  + p 
20: 111 q" 

16: pol q2 + zq3 + 3q4 + 4q5 + dq8 + 
10: 111 95 

22: [lo] -1 - q2 - q3 - q 4  - q5 + q6 + 2q7 + aq8 + 3 q ~  + 3,p + 2q11 + ,p 

27: [lo] q l o  + qll + 2q12 + zqi3 + 2q14 + q'5  + 

12: 131 1 + q + q 2  

18: 1121 9' + 3q5 + 4q' + 3q7 + q8 

21: [l] q5 

22: 111 q' 

+ 3q8 + 2 q ~  + p 
21: [5] 
23: [lo] 

-1 - q2 - q3 - q4 - q' + q' + qs  + 2qQ + 2q'O + 2q" + g12 + q'3 

q' + 4' + 2q8 + 2qQ + 2q'O + q" + qI2 

Neighbours of a point in 22: 
11: [5] 1 + q + q2 + q3 + q' 

+ 2q8 + qQ 

23: [lo] q7 + q8 + 2gQ + 2q'O + 2q" + q12 + qI3 

Neighbours of a poiot in 23: 

15: [2] q3 + q' 
16: IS] q2 + 2q3 + 244' + q5 

23: [14] 
25: [4] 
26: [3) 
27: [3] 
28: (61 

30: [l] qI6 

13: [31 

18: 161 

-1 - q2 - q3 - q' - q5 + 3q7 + 5g8 + 6qQ + 4q'O + ql1  
q" + 2q" + qI2 

q" + q12 + q13 

q"+ q" + q12 
q12 + 2q" + 2q" + q I 5  

Neighbours of a point in 24: 
1 + q + q2 

q' + q7 + 2q8 + qQ + q" 
15: 1121 q2 + 2q3 + aq4 + sq5 + zq6 + q7 

20: 111 q 3  

24: 1121 -1 - q2 - q3 + q5 + 29' + 4q' + 3q8 + 3qQ + q ' O  + q" 
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25: [18] q8 + 2g0 + 4q'O + 4q" + 4gI2 + 2q" + q" 

2 8  141 q '3  + q14 + q15 + q" 
Neighbours of a point in 25: 

1 + q + q2 + 4' 
q2 + qs + 2q' + q5 + q' 

q5 + 2q0 + 2q7 + 29' + qo 
q3 + q4 + 2q5 + q6 + q7 

-1 - q2 - 4' - 9' - q5 + 4' + 3g7 + 4q8 + 4q0 + 4q'O + 2q" 

15: 141 
18: IS] 

23: [8] 
24: [6] 
25: [13] 

29: 111 qI2 
30: [4] 

17: 111 1 

23: [l8] 
26: [7] 
28: [l2] 
30: 161 

16: 14) 
22: [6] 
23: 1181 

28: 1121 
31: 131 
32: 111 q" 

18: 131 
23: [g] 
24: 111 qs 

26: [a) 
27: 131 

21: [2] q'+ q5 

28: 1121 qo + 2qI0 + 3 p  + 3q12 + 2 p  + 

q" + q" + q" + ql' 

Neighbours of a point in 26: 

18: q + 2q2 + 3q3 + aq4 + zq5 + qa 

q' + 2q5 + 4q' + 4q7 + 49' + 2q0 + q" 
-1 - q2 - qs - q' + 2g7 + q8 + 2q0 + 2q1° + 2q1l + g l 2  + q l 3  

9' + 2q0 + 3q'O + 3q" + 2qI2 + q" 

qI2 + q l s  + 2qI4 + q15 + qla 

Neighbours of a point in 27: 

1 + q + q2 + qs 

q2 + q3 + 2q' + q5 + q' 
4' + 247' + 4q5 + 4q' + 4q7 + 2q8 + qo 

qo + 2q'O + 3g" + 3qI2 + 2qls + q" 
9" + q" + q" 

Neighbours of a point in 28: 

2 3 4 5  27: 1121 -1 - q - - - + 2q7 + 4q8 + 4q0 + 4 p  + 2 p  + p 

1 + q + q2 

q2 + 2q3 + 3q4 + 29' + q' 

25: lo] q4 + 2q5 + 3g6 + 2q7 + q8 

q 5 +  g' + q7 
q'+ q7 + q8 

28: [lS] -1 - q2 - Q 3  - q' - qs - q' + 2q' + 4q8 + 6qo + ~ ~ 1 0  + 3qll + q12 
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30: [sl qlo + 2 p  + 3q12 + + q14 

31: [l] q" 

32: [3] 

21: [6] 
25: 130) 

q" + q" + q" 
Neighbours of a point in 29: 

1 + q + q2 + 9' + q' + 47' 
q2 + 2qs + 3q' + 4q5 + 5g' + 59' + 4g8 + 3q9 + 2q'O + q" 

29: [O] -1 - q2 - q3 - Q' - q5 + q8 + qQ + q ' O  + q" + q'2 

30: 1201 q7 + q8 + 2qQ + 3qlo + 3 p  + 3 p  + 3 p  + 2 p  + q15 + p 
Neighbours of a point in 30: 

23: [3] 
25: (61 

26: (31 q3 + q ' +  q5 
28: [18] 
29: [I] q' 

32: [Q] 

1 + q + q2 

q2 + 2q3 + 2q' + q5 

Q' + 3g5 + 5q' + 5q7 + 3q8 + qQ 

30: [IS] -1 - q2 - qs  - q' - q5 - q' + q' + 3q8 + 5q9 + 6q10 + 4g11 + 2q12 
g" + 2gi2 + 3q" + 2q" + q" 

33: [l] q'' 

27: 1151 1 + q + 2q2 + 2q3 + aq4 + 2q5 + 2q6 + q7 + q8 

28: 1201 q3 + q4 + 2q5 + sq8 + aq7 + 3q8 + sqQ + 2 p  + p + q12 

a: [is) q8 + qQ + 2g10 + 2q11 + 3 p  + 2,+3 + 2 p  + q15 + ,p 

28: [12] q + 2q2 + 3q3 + 3q4 + 2q5 + q6 

Neighbours of a point in 31: 

31: [S] -1 - q2 - q3 - q' + 2g' + q8 + 29'' + 247" + 2q" + q13 

Neighbours of a point in 32: 

27: [l] 1 

30: [18] 
31: [3] 

32: [16] 

33: [6] 

4' + 2g5 + 49' + 4q' + 4q8 + 2qQ + q'O 
q 5 +  q' + q' 
-1 ;3q2 - q3 - Q' - 4' - 9' + Q' + 2q8 + 4qQ + 5q'O + 5q" + 3q'2 + 
2q 
g12 + q" + 2q" + q" + q" 

Neighbours of a point in 33: 
30: 110) 1 + q + 2qz + zqS + 2q4 + q5 + qs  

2 p  + ,f5 
32: [30] 
33: [15] 

q3 + 2q' + 4q5 + 5q' + 6q' + 5q8 + 4qQ + 2q'O + q" 
-1 - q2 - ' - q' - q5 - q' + q8 + 2q9 + 4q'O + 4gl1 + 4g12 + aq13 + 

34: [l] q" 
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Abstract 

This note reports on some tests of several algorithms for generating the 
subsets of fixed size of a set. In particular, the speed of execution is 
compared. 

1. Introduction 

In this note the results of tests of algorithms for generating all subsets of 
size k of a set of size n (sometimes called combinations) are reported. We are 
concerned with testing the upced of the aigorithms. No complexity analysis is 
applied; we are merely reporting the results of some tests. 

There are eight such algorithms known to the authors. 
BER: From [l]. Wc tested the optimized version of the algorithm, 
described in IS] (page 186). 

CHASE: From [3]. 
EMK: From IS]. An optimized version (from B. D. McKay, private 
communication) was tested. 
EE: Even’s version (in [7j, page 42) of Ehrlich’s algorithm in [S]. 

LS: The optimized (third) version from [8]. 

LEX: The usual lexicographic algorithm. It  is described in all standard 
texts, including (01 (page 181). 

RD: The “revolving door” algorithm presented in [lo] (subroutine NXSRD 
on page 30). 
EHR: The very strong minimal change algorithm described in [4] and [2]. 
Note that this algorithm works only for restricted values of n and k. For 
this reason, and because it is much slower than the others, this algorithm 
was not tested. 
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Some of these algorithms have "minimal change" properties, that is, 
successively generated subsets differ from each other by a small amount. To 
describe these properties we need to consider the data structures used to 
represent subsets. The elements of the sets are represented by the integers 
l,2, ..., n .  A k-subset S of an n-set can be represented as a 6itwctor (61, 62, ... 
,6,), where 6, is 1 if z is in S and 0 if z is not in S. Alternatively, if S={aI, 82, 

... ,ak} where 81 < 82 < ... < a) ,  then S can be represented by the odered array 

(Aside : AU the algorithms above can be implemented using either data 
structure. For testing each algorithm was implemented using the data structure 
which made it faster: bitvectors were used for BER and EE, all the others used 
ordered arrays. It is usually easy to convert an ordered array algorithm to a 
bitvector algorithm without effecting performance significantly. The reverse 
conversion, however, often reduces performance.) 

(81, 82, * ..> 8k) -  

The minimal change properties are: 
WMCP (Weak Minimal Change Property): Successively generated 
bitvectors differ in a t  most two positions. This means that the next subset 
is formed from the previous one by deleting one element and adding 
another. This property holds for all the above algorithms except LM. 
SMCP (Strong Minimal Change Property): Successively generated ordered 
arrays differ in only one position. Note that this implies WMCP. This 
property holds for EHR, CHASE, EMK, and EE. 
WMCP (Very Strong Minimal Change Property): Successively generated 
bitvectors differ in two adjacent positions. This implies SMCP. It holds 
for EHR only. 

These properties are discussed in detail in IS]. 

, 

2. TheReealtr 

The first seven algorithms above were tested on a Perkin-Elmer 3220 
running UNIX. These language used was Pascal, and the programs were run 
under two different systems: the Berkeley Pascal to pcode compiler, and a UQ 
Pascal to C compiler. 

The Berkeley system reports the number of statements executed, and this 
was used as an indication of running time. The UNIX time utility was used to 
give an indication of the execution time under the UQ system. The two different 
Pascal systems and the two different timing systems were in substantial 
agreement, and only the results from the Berkeley system are quoted here. 
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The authors recognize the dangers of this type of measurement. The time 
utility is a little sensitive to the machine load at the time of execution. It is 
quite probable that a different programmer, a different language, a different 
hardware configuration, could have produced different results. Every effort was 
made to minimize the effect of these differences, but we admit that a t  best, only 
the first few digits of our results are significant. To obtain more significance a 
full complexity analysis (along the lines of the analysis of LEX in [Q]) would be 
required. 

With the exception of LEX and RD, all the algorithms tested are fast in the 
sense that the average time to generate a subset is bounded by a constant, 
independent of n and k .  Further, these algorithms are loopless, or uniformly 
bounded, which roughly means that the time to generate each subset is constant, 
independent of n and k .  (See [Q] for a precise definitions of these properties.) 
LEX and RD do not have these properties when k is close to n. 

The graph in figure 1 summarizes the results. The tables from which figure 
1 was derived are in figure 2. The vertical axis in figure 1 is the average number 
of Pascal statements executed per subset produced. The average was taken over 
n=5 to n=12. The horizontal axis represents the range of k ;  the leftmost 
value is k=2, and the rightmost is C=n-2. The other value of k are dispersed 
linearly between the left and rightmost. 

Some statement counts for larger values of n are given in figure 3. 

8. Conclusions 

All the algorithms except EHR are reasonably simple and can be coded in a 
few pages. LM is very simple and takes only a few minutes to write. 

No algorithm (exccpt E m )  uses more than O(n) space; this is insignificant 
in comparison to time requirements. 

The main result of the tests is that LS is significantly faster than any of the 
others. An implementation of LS on a VAX11/750 generates a subset'about 
every 45 microseconds; on a Cyber 172/2 it takes about one third of this time. 

In an application, each subset has to be processed in some way. If the 
processing time dominates the generation time, then the processing time also 
determines the size of the largest problem that can be tackled. However, if the 
processing time is about the same or less than the generation time, then the 
generation time imposes a limit on the largest problem which can be tackled: for 
instance, in an hour of CPU time on the Cyber172/2, LS can process every 15- 
subset of a 30-set. Hand optimized assembler, or a supercomputer, could 
improve this limit, but not significantly. 
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n=5 

n=6 

n=7 

The only disadvantage of using LS is that it does not have SMCP. EMK, 
about 4 times slower than LS, is the fastest elgorithm with this property. If the 
processing is significantly faster with SMCP, then EMIC should be used. Also, if 
the processing time dominates generation time, then a minor speedup from 
SMCP may justify EMK. 

The problem of finding a fast algorithm which has VSMCP is open. 
Finally we note that LEX is surprisingly fast. The simplicity of this 

algorithm (it requires no clever stack implementation), makes it attractive. 

173 161 

252 296 244 

3.17 495 539 313 

I Figure 2s. BER - number of statements executed I 

n=8 

n=9 

n=10 

458 770 1058 794 434 

585 1133 1893 1733 1245 533 

728 1596 3152 3408 3080 1680 680 

n=12 
I I 

1062 2850 7454 10508 13574 10734 7166 4902 1602 

k=2 k=3 k=4 k=5 k=O k=7 k=8 k=9 k=1O 

n=5 

n=6 

n=7 

I Figure 2b. CHASE - number of statements executed I 
246 240 

371 459 358 

527 797 789 493 

n=8 

n=9 

n=10 

716 1285 1554 1237 664 

940 1056 2803 2740 1861 a48 

1201 2854 4719 5486 4557 2646 1076 
I I n = l l  I 1.501 I 3089 I 7520 I 10142 I 9995 I 7134 I 3670 I 1313 I 
I I I I I 



54 M. CarkeetandP. Eades 

n=5 183 187 

n=6 2130 364 319 

k=10 

1980 

k=3 

~ 

79'22 13806 17462 16626 10186 4613 

k=4 k=5 k=6 k=7 k=8 k=9 

610 1 712 1 428 1 I 766 1 973 1 
928 1363 1122 603 

1321 2316 2461 1760 

1792 9878 4733 4232 2481 

* 
n =I0 

n = l l  I 660 I 2344 I 6619 I 8361 I 9012 I 6S77 I 3476 I 1168 

Figure 2d. EE - numbei 

n =5 326 

n =6 616 

n =7 760 1173 I 1181 I 762 

n =8 * 
4448 

1087 

1440 n =9 

n =I0 1888 
1 

n = l l  2411 6334 I 11793 I 16916 

n =I2 * k=3 k=4 k=5 

3021 

k=2 

Figure 2e. LS - number of statcments executed 

_+f_t_ n =5 

n =6 

n =7 61 I 134 I 182 147 I 1 1 f- n =8 * 
1104 1122 

n=9 263 

n=10 

n = l l  133 I 460 I 1098 1 2214 1 1882 I 1116 

4048 4080 2980 

k=5 k=6 k=7 k=8 

n =I2 

k=9 I k=lO 
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n =5 174 281 

n=6 251 514 338 

7 ~ 

Figure 2 t  LEX - numbe 

1 
1 

n=5 152 177 

n=6 222 333 293 

n=10 

n = l l  

n=12 

/ n = 7  1 ; 1 558 1 628 j 446 

n =Q ino 2ose 2286 

n =8 866 1188 1076 

690 2957 3873 6788 4641 3658 1280 

832 4040 5913 12213 9728 9655 4221 1903 

987 5358 8656 20829 18697 22466 11836 7109 2003 

n =12 

b of statements executed d 
3988 I 3604 I 1183 I 1 1 
8314 1 6598 1 3793 1 1 19Ss I 15970 14914 10393 

k=6 k=7 k=8 k=9 k=10 

I 1 

ln=7 1 ;3; 1 888 1 736 1 621 

n =8 1404 1295 1592 

n=9 2086 2406 3474 

?-+j-+j 
1974 1180 
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14 

I4 

I4 
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n k  BER CHASE EMK EE Ls LE% RD 

3 4687 gas0 4616 16481 9 I7 6184 8790 

6 44419 66640 63237 1osa67 i ~ s a  49046 6710 

9 27239 43211 40620 72131 11618 JIOM 69380 

I Figure 3. Number of Pascal statements executed. 1 

~~ - ~ ~ - ~~ 

18 3 ioaso ia664 8727 303~7  191s I IS70 19488 

18 6 278111 432264 292287 >WOO00 68601 284169 326006 

18 9 >WOO00 >600000 >WOO00 >SOOOOO 214523 >WOO00 >SO0000 
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Abstract 
Algorithms for determining the existence of subdesigns in a combinlrtorial 
design are examined. When X = l ,  the existence of a subdesign of order d 
in a design of order u can be determined in O(u”gd) time. The order of 
the smallest subdesign can be computed in polynomial time. In addition, 
determining whether a design has a subdesign of maximal possible order (a 
“head”) requires polynomial time. When X > 1 ,  the problems are 
apparently significantly more difficult: we show that deciding whether a 
block design has any non-trivial subdesign is NP-complete. 

1. Introduction 
A (balanced incomplete) block design of order u, denoted B[k,X;v], is a v-set 

V of elements together with a collection B of k-element subsets of V called 
blocks, with u>k; each 2-subset of V appears in precisely X of the blocks. A 
Steiner system is a block design with X=l; a Steiner triple system is a Steiner 
system with k=3. A subdesign of a B[k,X;u] (V,B) is a B[k,X‘;u) (V,B’) such 
that V C V and B’ t B subdesigns are non-trivial when u’ > k, and either u 
> u’ or X > A’. A design without non-trivial subdesigns is called simple. It is 
easy to see that ua(k-l)u’+l;  when equality is met, the subdesign is called s 
head [S]. 

We examine the computstional complexity of determining the existence of 
various types of subdesigns. A primary motivation is that the numbers and 
types of subdesigns are often used as invariants in distinguishing isomorphism 
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classes of designs (see, for example, 141). We show that for Steiner systems, 
most problems involving si?bdesigns are computationally straightforward. 
Determining simplicity requires polynomial time, as does locating subdesigns of 
any fixed constant size. When the order of the desired subdesign d increases as 
a function of the order of the design u, the complexity of this algorithm becomes 
superpolynomial, but still subexponential. At the other extreme, we show that 
polynomial time suffices to determine whether n Steiner system has a head. 

For block designs in general, however, firding subdesigns is not an easy 
task. In fact, we show that deciding whether IL B[3,3;u] design has a subdesign is 
NP-complcte, and hence is unlikely to have any efficient solution. This result 
shows that deciding the existence of a subdesign of specified size is a130 NP- 
complete. 

2. Subdeslgnr of Stelner systems 

Doyen and Wilson [7] showed that given two admissible orders u and w 
( u > w ) ,  there is a Steiner triple system of order u having a subdesign of order w 
if and only if uh2w+l;  thus, there are many possible orders for subdesigns. It 
is also known that there is a simple Steiner triple system for every admissible 
order 161. We are concerned with the related qvestion of determining whcn a 
particular Steiner system bas subdesigns; the following lemma is 
s traightforwsrd: 

Lemma 2.1: Simplicity of Stelner systems can be decided In polynomial 
time. 

Proof 

A subdesign has the property that every block intersects the subdesign in 0, 
1, or k elements. Therefore, given a subset S of elements to be placed in a 
subdesign, we can close this set, by repeatedly introducing all elements of blocks 
intersecting the set in more than one element. When this closure procedure 
introduces no new elements, the sct obtained forms a subdesign. Taking any 
single element and closing, one obtains a trivial subdesign of orucr 1. Taking 
any pair of elements and closing yields a block, another trivial subdcsign. 
Taking any three elements not appearing in a block together, and closing, yields 
either a proper subdesign or the design itself. 

Simplicity of Steiner systems can therefore be easily tcsted by applying 
closure to each set of three elements in turn. The design is simple if and only if 
the subdesigns obtained are trivial iil each case. 0 

Lemma 2.1 gives a method for determining whether there are any proper 
subdesigns; it is worth noting that the method can easily be modified to find the 
smallest subdesign. One simply retains the minimum size of a nontrivial 



Finding subdesigns in combinatorial designs 61 

subdesign encountered. Of course, this method does not help us determine 
whether there is a subdesign of specified size, or the size of the laxgest subdesign. 
Nonetheless, a similar closure method will answer these questions in 
subexponential time. 

Lemma 2.2: Determining the presence of a subdesign of order d in a 
Steiner eyetem of ordcr u can be sccompllshed in uo(’Wd) time. 

Proof: 
Every subdesign of order d is generated by a set of log d elements, in the 

following sense: given these log d elements, closure produces the subdesign. This 
can be easily seen by induction. Thus it suffices to enumerate all sets of log d 
elements chosen from the u elements in the design. Closure is applied to each; 
the design has a subdesign of ordcr d if and only if one of these closures 
produces one. Since closure can be applied in polynomial time to each set of 
logd elements, and there are voff”fd) such sets, the total time required is uo(’qd). 

It  is worth remarking that when d is a constant, the time bound in lemrna 
2.2 is polynomial. Lemma 2.2 also gives a subexponential time algorithm for 
finding the largest subdesign; in practice, the subexponential method operates 
quite quickly, since its worst case is realized only when there is a significant 
number of subdesigns (such as the projective and affme spaces). In many of the 
worst cases, the design has a subdesign of maximal order, a head. Although we 
are unable to determine the size of the maximal subdesign in polynomial time, 
we can make one step in this direction, by determining whether the design has a 
head. 

0 

Lemma 2.3: The existence of heads in Steiner systems can be decided 
in polynomial the .  

Proof 
The key observation here is that every block intersects a head in 1 or k 

elements. The algorithm for finding a head opcrates as follows. At any given 
stage, we mark an element as ‘‘in’’ the head, “out” of the head, or “undecided”. 
The usual closure operation enables us to mark all elements of a block “in” 
when two elements of the block are mar?:ed “in” already. In searcbing for 
heads, given a block containing an element marked ,‘in” and an element marked 
“out”, all other elements can be marked “out”. 

The algorithm proceeds by usual backtracking. Initially, an element is 
chosen to be marked “out”. At a general step, c block is chosen involving an 
element which is ‘‘out” and all other elements unmarked. One of these k-1 
t!ements must be markcd “in” and the remainder “out”. I t  should be noted that 
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it is possible for closure to produce a contradiction, i.e. a specification of an 
element as both “in” and “out”; in this event, the elements chosen to be “in” 
cannot form a head, and we simply backtrack. If no contradiction arises, once 
one is marked “in”, the two closure operations will increase the number of 
elements marked “in” by a factor of k-1 (at least), since closure produces a 
subdesign. This ensures that the depth of the backtrack is 0(logk,,u). Since a t  
each level of the backtrack there is a l i e d  number k-1 of choices, the backtrack 
operates in time (k-l)o@‘b-lvl, which is a polynomial in u. 0 

These lemmas establish that 

Theorem 2.4: In polynomial time, one can decide whether a Steiner 
system haa a subdesign, h d  the order of the smallest subdesign, 
determine the existence ot rubderigns of CLxed conrtant order, and 
determine the existence of a head. In rubexponential time, one can 
determine the extstence ot 8 rubdesign of rpeeifled order and the order 
of the maximal subdestgn. 

8. Subdesigns of Block Deslgns 
The results from section 2 all generalize in the obvious manner if we are to 

determine subdesigns with the 8ume X as that of a given block design. In this 
section, however, we show that the situation is dramatically different when, as in 
our definition, siibdesigns are allowed to have smaller A. Here we establish that 
even deciding whether a design has a nontrivial subdesign is NP-complete, even 
for B[3,3;u] designs. 

This NP-completeness result is predicated on the use of a combinctorial 
structure called a “Latin background”, which has been used previously in 
establishing numerous NP-completeness results for design-theoretic problems 
[1,2]. Given an n-vertex t-regular graph G, a Latin background for G, denoted 
LB(G;m,e], 8 2 n ,  is an 8 by 8 symmetric array with elements chosen from 
{1,2, ... ,m}. Each diagonal position contains the element m. In the l i t  n rows, 
each entry is either empty, or contains an element from {r+l ,... ,m}; in the latter 
8-n rows, each position contains an element from {l ,... ,m}. Every element 
appears a t  most once in each row and in each column (hence m a s ) .  Finally, 
the pattern of empty positions is precisely an adjacency matrix for the graph G 
-- hence the term “background”. We require the following result from [ll: 
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Lemma 3.1: Let G be rn n-vertex r-regular graph. A Latin 
background LB[G;m ,m] cxbb for every even m 2 2 n  . Moreover, mch a 
background ern  be constructed h time which b polynomial ha m. 0 

The Latin backgrounds formed in lemma 3.1 are partial symmetric Latin 
squares which can be completed if and only if G is r-edge-colourable. Edge- 
colouring graphs is NP-complete [9,12], and hence so is completing symmetric 
Latin squares 111. This underlies the following result: 

Theorem 3.2: Determining whether a B[3,3;v] design has a subdesign L 
NP-eomp lete . 
Proof 

Membership in NP is straightforward; hence, we need only reduce a known 
NP-complete problem to our problem. We reduce the problem of determining 
whether a cubic graph is 3-edgecolourable [9]. Given an arbitrary n-vertex 
cubic graph G, we construct in polynomial time a B[3,3;6s-31 design which has a 
subdesign if and only if G is 3-edge-colourable. First, we construct a 
L5[G;2s,2s], where s h n  is the smallest integer for which 28-1 is a prime. It  is 
important to note that s is O(n) 181. In the Latin background, we then 
eliminate all occurrences of the last element, 2s, leaving the diagonal empty. 
The entries of the last row (and column) are moved into the corresponding 
diagonal positions, after which the last row and column are deleted. Rows ar?d 
columns are then simultaneously interchanged so that position (i , i)  contains i; 
that is, the 28-1 by 28-1 square is idempotent. Denote this modified square by 
IB. We will also employ a 28-1 by 28-1 idempotent symmetric Latin square SL 
having no subsquares. For example, one could take the square whose (i,j) entry 
is i + j (mod 2s - l), and interchange rows and columns to make it idempotent; 
this has no subsquares since 2s - 1 was chosen to  be prime. 

and 
I t , ,  ..., z2, - I}; it contains the following blocks: 
1. 

2. 

3, 

4. 

The B[3,3;68-3] we create has elements {zl, ..., 22,-1}1 {yl, ..., y2,- 

{{ziIyi,zi} I l S i S 2 s - l } ,  each three times. 
{{yi,yj,zk} I 1 5 i < j S 2 s - l ,  SL contains k in position (i,j)}, each three 
times. 
{{z;,zi,zt) I l S i < j S 2 s - l ,  SL contains k in position ( i , j ) } ,  each three 
times. 
{{z;,zi,yk) I l S i < j 5 2 s - l ,  position (i ,j)  of IB is no2empty and contains 
k}, each three times. 
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5. {{zirzj,y~ti) I l S i < j S 2 s -  1, position ( i , j )  of IJ3 is empty, l S k S 3 ) .  
All blocks are repeated, except those arising from empty positions in IB. A 

nontrivial subdesign of this B[3,3;6s-3] design must involve all 68-3 elements, 
since any subdesign induces a subsquare on the {y;} and on the {ziti) and SL has 
no nontrivial subsquares. Then the only possible nontrivial subdesign is a 
B[3,1;08-3], i.e. a deeompoeiiion of the design into designs with smaller X. Any 
B[3,1;68 -31 induces a symmetric Latin square on the {q} which is a completion 
of IB, and conversely. Hence the B[3,3;88-3] has a decomposition (and hence a 
nontrivial subdesign) if and only if IB is completable, which holds if and only if 
the original graph is 3-edge-colourable. 0 

Theorem 3.2 strongly suggests that algorithms for subdesign problems 
applied to block designs in general will have exponential running time in the 
worst case. 

4. Future Research 

A very general formulation of algorithmic questions about subdesigns could 
ask when a block design B[k,X;u] contains a B[k’,X’;ul. Of course, u Z d ,  kZk’, 
and XkX’.  In this paper, we have considered only the case k=k! When k=k’ 
and u=ut, this is the question of decomposability of designs, studied in [2,ll]. 
Another question of this type arises when one takes u=u’ and k>k’; this is the 
question of when a design contains a nested design (see, for example, 
[3,10,13,14]). The complexity of determining whether a design has a nested 
design remains open. 
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Abstract 

We present a survey of existing results concerning algorithmic aspects of 
combinatorial design theory. The scope within design theory includes 
block designs and restricted families thereof, Latin squares and their 
variants, pairwise balanced designs, projective planes and related 
geometries, and Hadamard and related matrices. However, the emphasis is 
on t-designs, particularly balanced incomplete block designs and Steiner 
systems. There are many different algorithmic aspects of combinatorial 
design theory which could be discussed here; we focus upon isomorphism 
testing and invariants, colouring, nesting, resolvability, decomposing, 
embedding and completing, orienting and directing, as well as algorithmic 
aspects of intersection graphs. Also included is a brief discussion of some 
general algorithmic techniques including backtracking, hill-climbing, greedy 
and orderly algorithms. 

1. Introdnetton 

Research on combinatorial design theory extends from the mid-eighteen 
hundreds to the present. Throughout the intervening decades, researchers have 
examined many interesting problems in combinatorial design theory. Some of 
the questions and solutions proposed are algorithmic in nature. 

I t  is our intent here to  examine some of the algorithmic aspects and issues 
in combinatorial design theory. Within design theory, we include block designs 
and variations thereof such as balanced incomplete block designs, painvise 
balanced designs and Steiner systems, Latin squares and their variants, 
projective planes and related geometries, and Hadamard and related matrices. 
Over the years, researchers have examined a wide variety of aspects concerning 
block designs and related combinatorial configurations, many of which are 
algorithmic in nature, have algorithmic solutions, or exploit algorithmic tools. 
We discuss some of these aspects and issues. First we present some necessary 
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definitions, as well as some of the essential background regarding computational 
complexity. This is followed by an introduction to common algorithmic 
techniques such as backtracking, branch-and-bound, hill-climbing, orderly and 
greedy algorithms. 

We cannot hope to provide a complete survey of all algorithmic aspects of 
combinatorial design theory. Rather we focus on particular problems: 
isomorphism testing and invariants, colouring blocks and elements, nesting, 
resolvability, decomposing, embedding and completing, orienting and directing, 
as well as some algorithmic aspects of intersection graphs. While presenting 
results in these areas, we try to provide the reader with examples of different 
types of proofs. Hence, our choice of which proofs to present is influenced by 
our desire to provide representative proofs without encumbering the reader with 
excessive detail. 

One aspect of combinatorial design theory which we do not survey here is 
existence, despite the fact that many proofs of existence include direct or 
recursive constructions which are algorithmic in nature. To survey this area 
would be an enormous task which is beyond the scope of this paper. 

1.1 Deflnitionr 

1.1.1 Design Theory Deflnltlonr 
For a general introduction to combinatorial design theory, the reader 

should consult [SlO]. A t-design t-B(k,X;u] is a pair (V,B) where B is a 
collection of k-subsets called blocka of the u-set V, such that every t-subset of V 
is contained in precisely X blocks of B. I Vl = u  is referred to as the order of 
the design. Some researchers refer to X as the balance /actor or indez. From 
these parameters, one can calculate the replication factor r, the number of 

blocks to which each element belongs, as X 

number of blocks in the design, 6 ,  is then w/k. A balanced incomplete block 
design (BIBD), denoted B[k,X;w], is a t-design with t=2. A BIBD is said to be 
symmetric if w = b .  Symmetric designs with X = l  are projective planes, and 
when X=2, they are referred to as biplanes. 

Early research concerning t-designs was initiated by the investigation of a 
restricted class of designs, Steiner systems. A Steiner aptem, denoted S(t,k,u) 
is a 1-design with X-1; e.g. a t-B(k,l;v] design. Two families of Steiner systems 
which have received an enormous amount of attention are Steiner triple 
sptems,  which are S(2,3,u) designs and Steiner quadruple aystema, denoted 
S(3,4,V). 
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Twofold triple systems, B[3,2;u] designs, have also been the focus of much 
research. In particular, researchers have examined vzrious directing or orderings 
of the blocks to form Mendelsohn triple systems and directed triple systems. A 
Mendelsohn triple system is a B[3,2;u] design in which the blocks are cyclic 3- 
tuples, such that each ordered pair of elements occurs in exactly one blwk. For 
example, the block (z,y,z) contains the pairs ( z , y ) ,  (g , z )  and ( z , ~ ) ,  but not the 
pairs ( y , z ) ,  (z,y), ( 2 , ~ ) .  On the other hand, a directed triple system is a 
B[3,2;u] design in which the blocks are ordered &tuples, such that the block 
(z,y,z) contains the pairs (z,y), ( 2 , ~ )  and ( y , z ) .  Again, each ordered pair of 
elements must occur in exactly one block. These definitions can be extended to 
higher values of k. 

A pairwise balanced design (PBD) is a generalization of a BIBD, in which 
the blocks may be of different sizes. If K={kl1...,km} is a set of positive 
integers, a PBD B[K,X;uJ is a pair (V,B); B is a collection of blocks from a u-set 
V of elements such that every pair of elements appears in exactly X blocks of B 
and every block of B has cardinality belonging to the set K. A partially 
balanced incomplete block design (PBIBD) is another generalization of a BIBD. 
In this case, each pair of elements need not appear the same number of times. If 
A={X l l . . . ,Xm} is a set of positive integers, a PBIBD B[k,A;u] is an arrangement 
of u elements into &-subsets such that each pair occurs together in Xi blocks for 
some A; € A. 

Two designs (Vl,B1) and (V2,B2) are isomorphic if and only if there exists 
a bijection f:V1-V2 such that 6 €Bl  if and only if f ( b ) € B 2 .  An automorphism 
of a design is an isomorphism of the design with itself. The set of all 
automorphisms forms a group under the usual composition of mappings, called 
the automotphism group. 

A design of order u is cyclic, denoted t-CB[k,X;ul, when its automorphism 
group contains a u-cycle. A t -CB[k,X;u] design can be represented 'as a t -  
B[k,X;uj design with elements {O,...,u-l} for which if {al, . . . ,at} is a block, 
{ a I + l ,  ..., ak+ 1) (addition performed modulo u) is also a block. A cyclic design 
is always isomorphic to a design (V,B) for which V=Z,={O,l, ..., u-1) and the 
mapping f : i - i  + 1 (mod u) is an automorphism. 

The most common representation for cyclic designs is in terms of difference 
sets. A (u,k,X) fcyclic) difference set D = { d l ,  ..., dk) is a collection of k residues 
modulo u such that for any residue z + O  (mod u), the congruence d j - d j - z  
(mod u) has exactly X solution pairs (d ; ,d j )  with d i , d j € D .  Every (u,k,X) 
difference set generates a cyclic symmetric BIBD, whose blocks are 
B ( i ) = { d , + i ,  ..., d k + i }  (mod u), i = O ,  ..., u-1. The difference set is often 
referred to as the starter or base block of the symmetric design. 
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A (u,k,X) difference family is a collection of such sets D1, ..., Dn each of 
cardinality k such that each residue z i 0  (mod u) has exactly X solution pairs 
(di,di) with di,dj€D,,, for some m. A difference family is said to be planar or 
simple if A= 1. Each (u,k,X) difference family generates a cyclic BIBD in the 
same manner as before. For example, the difference family (0,1,4) (0,2,7) 
generates the cyclic S(2,3,13) design with V = {OJ, ..., 12}. This definition is 
really not sufficiently general; for example, an S(2,3,15) design cannot be 
represented as a difference family, as defined above. However, it is possible for 
the design to be generated by 2 starter blocks modulo 15, when one includes the 
5 blocks generated by the ezfra starter block (0,5,10). We will call a S(2, k,u) 
design cyclic if the design can be generated by m starter blocks modulo u, 
possibly with the extra starter block (0, m',2m', ...,( k- 1)m') where 
6 = mu + m' , m' Cu. The definition can be generalized for larger values of t and 
X in the obvious manner. 

Consider two difference sets, D1 and D2, having the same parameters. If 
D2=tDl+e (mod u) for some integers t and 8 ,  D1 and D2 are quiualent 
difference sets. If Dl=tDl+s  (mod u), t is a multiplier of D1. The mappings 
z-tz+i (mod u), i = O ,  ..., u-1, are isomorphisms of the associated symmetric 
block designs. 

This idea can also be extended to difference families. Consider two (u,k,X) 
difference families D and E; D={Dl, .  . . ?Dn] and E={El,  ... ,Em}. They are 
equivalent if for some integers t and sl, . . . ,an, {El,. . . ,En} = 
{ tDl+s l , .  . . ,tDn+sn) (mod u), t is a multiplier of the difference family D. 
The mappings z-tz+i (mod u), i -0 ,  ..., u-1, are isomorphisms of the 
associated block designs. The collection of multiplier automorphiims of a given 
difference set or family form a group under composition called the multiplier 
group. There do exist cyclic designs which possess different automorphism and 
multiplier groups. 

Recall that a design is cyclic if it has an automorphism consisting of a 
single cycle of length u. We can define k-rotational designs in an analogous 
way; a design is k-rotational, k k l ,  if it has an automorphiim fixing one 
element and permuting the remaining elements in A cycles of length (u-l)/k 
each. (Note that this k is not related to the block size k) .  

A partial parallel class (PPC) of a design D is a collection of mutually 
disjoint blocks of D .  A parallel class (PC) is a PPC in which each element of V 
occurs exactly once; in other words, a PC contains u/k blocks. A design is said 
to be reso~ua6le if the 6 blocks can be partitioned into disjoint parallel classes. 
In the case of STS, a resolvable STS is referred to  as a Kirhnan triple system. 
STS exist when u=1,3 (mod 6) [K3, R5); obviously, when u = l  (mod 6), a STS 
cannot be resolvable. However, if after removing an element and the blocks in 
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which that element appears, one can partition the design into parallel classes, 
the original STS is referred to as a nearly Kirkman triple system. Given a 
design, the largest PPC(s) contained therein is said to be mazimum. A PPC is 
mazimal if there is no block of the remaining design which is mutually disjoint 
with all of the blocks in the PPC; hence, the PPC cannot be extended. 

A Latin square of order n is an n X n  array; each entry is an element from 
the set {l, ..+I. Each row contains each element exactly once, and each column 
contains each element exactly once. Two Latin squares of order n, L, and L,, 
are said to be orthogonal if, for any i ,  l 5 i 5 n ,  the n positions which contain i 
in L, are occupied in L2 by lI2,  ..., n , each occurring once. 

Algebraically, a Latin square is the multiplication table of a quasigroup. A 
quaeigroup is a pair (A,* ) ;  A is a set of elements and * is a binary operation 
such that for a,b€A, the equations a*z=b,a*b=y, and t*a=b have unique 
solutions for z,y and z. A quasigroup is commutative if a*6=6*a for all 
a,b€A. A quasigroup is idempotent if a*a=a for all a € A .  The corresponding 
Latin square is symmetric when the quasigroup is commutative. 

A partial Latin equare of order n is an n X n  array; each entry is either 
empty or else it contains an element from {1, ..., n). Each row (column) contains 
each element a t  most once. One important investigation of the structure of 
partial Latin squares aims to characterize partial Latin squares which can be 
compfeted to Latin squares without the addition of rows, columns, or elements. 

A Howell design H(n,2t), with t Sn S 2 t -  1, is a square array of side n, 
where cells are either empty or contain an unordered pair of elements chosen 
from a set X of size 2t such that: (1) each member of X occurs exactly once in 
each row and column of the array, and (2) each pair of elements of X occurs in 
a t  most one cell of the array. A Room square of side n (n odd) is an H(n,n + 1) 
design. I t  follows that, in this case, each pair of elements of X occurs in exactly 
one cell of the array. 

A Hadamard matriz of order n is an n X n (1,-1)-matrix which satisfies 
H H T = n I ,  where HT is the transpose of H. A Hadamard matrix is in standard 
/onn is all entries of the first row and column are 1. For a Hadamard matrix 
to exist n must be 1, 2 or 4m, m z l .  A Hadamard design is a symmetric 
B12m - 1,m - 1;4m - 11 design. Such designs exist if and only if an Hadamard 
matrix of side 4m exists. To see this, given an Hadamard matrix in standard 
form, remove column 1 and row 1. Then replace all -1’s by 0’s. The result is an 
incidence matrix of a Hadamard design [S1OIp224]. TWO Hadamard matrices are 
Hadamard equivalent if one can be obtained from the other by a finite series of 
the following operations: multiply a row by -1, multiply a column by -1, 
interchange any two rows, or interchange any two columns. 
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1.1.1 Graph Theory Definitions 
A hypergraph is a pair (V,E) such that E is a subset of the powerset of V .  

A hypergraph is k - uniform if each edge of E is of cardinality &. A graph is a 
2-uniform hypergraph. The incidence graph of a hypergraph ( V , E )  has a vertex 
for each member of V and for each member of E. Whenever a vertex u belongs 
to an edge e of E ,  the corresponding vertices in the incidence graph are 
adj scent. 

A etrongly regular graph has parameters n, k, p ,  q .  It is a n-vertex graph 
regular of degree & satisfying the constraints that two adjacent vertices 2, y 
have p common neighbours (for any z,y) and two non-adjacent vertices have q 
common neighbours (for any z,y). A strongly regular graph is, in fact, a 2- 
class association scheme. An aeeociation echeme consists of a set V together 
with a partition of the set of %-element subsets of V into e classes Ri, lS i58 ,  
satisfying the following two conditions: 
(1) given p €V, the number ui of q € V  with b ,q )€R;  depends only on i ;  
( 2 )  given {p ,q }€Rk ,  the number p ( i , j , k )  of r € V  with f p , r } € R i ,  { r , 9 } € R j  
depends only on i ,  j , k .  

A 1 - factor of a graph is a spanning subgraph which is regular of degree I. 
A 1 - factorization of a graph is a collection of edge-disjoint 1-factors whose 
union is the entire graph. 

For additional graph theory definitions, the reader should consult [Bll). 

1.1 Computational Complexity 
Throughout this paper, we describe various algorithmic solutions to some of 

the interesting problems in combinatorial design theory. For many of these 
problems, efficient algorithms have been developed. By efficient, we mean 
algorithms which require at most a polynomial amount of time -- polynomial in 
the size of the input on a conventional computing device or a unit-cost RAM 
(random-access machine) [All. We employ the standard “0” notation to denote 
an upper bound on an algorithm’s running time. Saying a function f ( n )  is 
O ( g ( n ) )  means that I f(n)l S c  I p(n)l for some constant c and for all naO. 
For example, saying an algorithm is “order n2” or O(n2) implies that the 
running time of the algorithm is bounded by the function en2 for some constant 
c and for all values of n, A polynomial time algorithm is defiied to be one 
whose time complexity function is O ( p ( n ) )  for some polynomial p .  In the case 
p ( n ) = n ,  the algorithm is said to be linear. If an algorithm is O(nbgn), it is 
eubezponential. An ezponential algorithm is an O(zn) algorithm for some 
z r 2 .  
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Polynomial time algorithms are much more desirable than those requiring 
exponential time. For convincing evidence of this, see [G4, p7], where the 
running time of various algorithms is compared. For example, consider an 
O(n2) and an O(2”) algorithm. On input of size 30, they would require .0009 
seconds and 17.9 minutes of execution time, respectively. When the input size is 
increased to 60, the time requirements have increased to  .0036 seconds and 366 
centuries, respectively. 

The distinction between polynomial and exponential-time algorithms was 
first made in [C3, El]. More importantly, Edmonds [El] equated polynomial 
time algorithms with the notion of “good” or efficient algorithms. The class P 
is defined to be the set of all problems which have polynomial time algorithms. 
A problem is considered intractable if it is so hard that no polynomial time 
algorithm can possibly solve it [G4]. 

The earliest intractability results are the undecidability results of Turing. 
He proved, for example, that it is impossible to specify any algorithm which, 
given an arbitrary computer program and an arbitrary input to  that program, 
can decide whether or not the program will eventually halt when applied to that 
input [T4]. Other problems have since been shown to be undecidable; see [G4, 
L5, Hll l  for a discussion. 

The first examples of intractable decidable problems were obtained in the 
early sixties p101; for a discussion of these problems, see [G4, C391.. Unlike 
these early examples, most of the apparently intractable problems encountered 
in practice are decidable and can be solved in nondeterministic polynomial time. 
However, this means that none of the proof techniques developed so far is 
powerful enough to verify the apparent intractability of these problems. 

The class NP consists of all problems that can be solved in polynomial 
time on a nondeterministic Turing machine; NP stands for nondetcrminicltic 
polynomial. One can think of these problems as being solvable in polynomial 
time if one can guess the correct computational path to follow. In 1971, Cook 
(C381 proved that a particular problem in NP, &CNF-Satisfiability, has the 
property that every other problem in NP can be polynomially reduced to it. If 
this satisfiability problem is solved with a polynomial time algorithm, so can 
every problem in NP; if any problem in NP is intractable, the satisfiability 
problem is also intractable. Hence, in some sense, the satisfiability problem is 
the “hardest” problem in NP. A wide variety of problems have now been shown 
to be of equivalent difficulty to the satisfiability problem; for example, see [G4, 
Kl]. This equivalence class of the “hardest” problems in NP is the class of 
NP- complete problems. 
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The question of whether or not the NP-complete problems are intractable is 
one of the major open questions of computer science. If a problem is shown to  
be NP-complete, this is generally accepted strong evidence that the problem is 
difficult and that it is highly unlikely that a polynomial time algorithm will be 
developed to solve the problem. 

To establish that a problem R is NP-complete, one must f i t  show that the 
problem is in NP and that some other NP-complete problem Q is polynomial- 
time reducible to R. A problem Q is polynomial -time reducible to a problem 
R if the required transformation can be executed by a polynomial time 
deterministic algorithm. If this is the case, a polynomial time algorithm to solve 
problem R will also provide a polynomial algorithm for problem 8.  Examples 
of polynomial-time reductions and NP-completeness proofs are provided later in 
this paper. 

Any problem, whether a member of NP or not, to which we can transform 
an NP-complete problem will have the property that it cannot be solved in 
polynomial time unless P=NP. Such a problem is said to be NP-hard, since it 
is a t  least as hard as the NP-complete problems; see [G4) for an excellent 
discussion of both NP-complete and NP-hard problems. 

2. General Algorithmic Techniques 
There are several common algorithmic approaches which researchers have 

employed when searching for or generating combinatorial configurations with 
particular properties. The most notable of these are orderly algorithms, greedy 
algorithms, hill-climbing, backtracking, and branch and bound algorithms. 
These techniques are by no means restricted to use within combinatorics, but 
rather are common approaches employed within many different mathematical 
applications. We briefly describe each of these methods here and mention some 
of the uses of each approach within combinatorial design theory. Again, we 
cannot hope to survey all of the relevant literature, but rather cite 
representative examples of each technique's applicability. 

Probably the most common of the aforementioned algorithmic techniques is 
backtracking, which is a method of implicitly searching all possible solutions in a 
systematic manner. A formal definition of the backtrack search technique can 
be found in p]. More recent expositions of the method can be found in [Al, 
H14, Pl]. 

Backtrack programming is a method for the systematic enumeration of a 
set of vectors. Therefore, it is applicable to discrete problems in which possible 
solutions can be described by vectors, the elements of which are members of a 
particular finite set. The vectors need not all have the same dimension. The 
first task in employing a backtrack algorithm is to establish a one-to-one 
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correspondence between the combinatorial configurations and the vectors or 
sequences. For a BIBD, the vector could represent the blocks of the design in 
lexicographically increasing order. In order to employ a backtrack, there must 
be some notion of lexicographical ordering, since a backtracking algorithm 
typically enumerates the vectors starting from the lexicographically smallest 
vector. 

A backtrack algorithm is best described by explaining its operation in the 
midst of the backtrack process. We include here a presentation based on [PI]. 
Suppose that a complete vector (z1,z2, ..., 2,) has just been constructed. At this 
point, the vector may be made available to some other routine for processing; 
for example, a t  this point, one would check to  see whether the generated vector 
satisfies the particular constraints or properties for which one is searching. 
Upon return to the backtrack procedure, an attempt is made to find a new rth 
element. This new element is selected from the set X, of elements which can 
occur in the tth position, given the values of the elements that are in the f i t  
r-1  positions of the vector. If X, is not empty, its t i t  member may be 
selected, deleted from the set X,, and inserted into the vector in the tth slot. 
We may now have another complete vector or we may have to select further 
elements in the vector; regardless, the set X, has been reduced by one member. 
If, however, X, was empty, it is necessary to  backtrack to the previous 
component of the vector and replace element z,-~. Clearly, z,,, can only be 
replaced if the set of remaining possible members for that element, Xr-l, is not 
empty. If X,,, is non-empty, we choose a new element, delete it from X,-,, 
replace element z,-,, and move forward again. We now must form a new set 
X, of elements which are now possible candidates for the rr* slot in the vector. 
Of course, if X,-, was empty, it would have been necessary to backtrack even 
further. 

In this way, the vector is built up, one element a t  a time. Whenever one 
runs out of possible candidates for the current slot in the vector, one backtracks. 
If one wants the search to be exhaustive, the backtracking process continues 
until all possible candidates for the first vector position have been examined. 
Often, however, one simply wants to find a solution, in which case the 
backtrack is terminated when the first solution is encountered. 

Ideally, each Xk, l S k S r ,  should be easy to compute and contain as few 
elements as possible. In order to  reduce the portion of the solution space which 
is being searched, one wants to determine a t  an early stage in the construction 
of the partial vector that it is not suitable or whether it has already been 
examined in some other form. This usually entails exploiting information 
concerning the automorphisms of the current, and possibly previous, partial 
solutions. 
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The backtrack method aims a t  doing all of its validity testing according to 
the problem specifications during the formation of the vectors. At the other 
extreme, one could enumerate all complete vectors and only test the complete 
vectors for validity. Of course, one need not settle for either extreme, but rather 
incorporate some testing while forming the vectors and leave the rest until a 
completed vector is obtained. Obviously, the benefit of doing the extra work 
during the production of the vectors will only be felt if there is a substantial 
reduction in the number of vectors produced. However, from experience, it 
appears that when generating combinatorial configurations, where there tend to  
be many partial solutions which correspond to  almost-completed vectors, it is 
crucial to eliminate unsuitable partial solutions; hence, the extra work during the 
production stage seems critical. 

A special variation of backtrack for optimization problems is branch and 
bound. In a backtrack algorithm, a partial vector (and all its descendents e.g. 
larger vectors which include this particular partial vector) are excluded from the 
search if the partial vector already violates the constraints. We can associate 
high costs with such infeasible vectors and zero cost with those vectors which do 
satisfy the constraints. Then a backtrack algorithm can be viewed as searching 
for a minimum cost vector. If one can associate a cost with each partial vector 
such that C O d ( Z 1 ,  ...., ~ k , ~ ) S c o f d ( z ,  ,..., 2k-1,2h) ,  for all possible values of k, one 
can view the generation problem as searching a tree of possible solutions in 
which the cost of a parent node is always less than or equal to the cost of its 
children. In such a case, if we have found a solution node S1 with cost C,  we 
would not examine the children of a partial solution node S2 whose cost exceeds 
C,  since all the children of S, will be of higher cost than C. This is the central 
idea in branch and bound. We do not branch from a node whose cost is higher 
than the cost of the minimum cost solution found so far. Of course, the bound 
is updated if a better solution is found. Therefore, in contrast to backtracking, 
a branch and bound algorithm extends the most promising partial solution, 
rather than the most recent. For more detailed descriptions of various branch 
and bound algorithms, see [Al, H14, Pl]. 

Branch and bound techniques, as well as the more general version of 
backtracking, are common approaches to generating combinatorial 
configurations. For examples of the use of backtracking for generating designs 
and related configurations, see [C7, D2, G11, G5, 11, KS]. The trick to  a 
successful backtrack is to prune the search by employing appropriate 
isomorphism rejection techniques. When generating designs, one can employ a 
backtracking algorithm either on a block-by-block basis or element-by-element. 
The former is the more common approach. 
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Unlike backtracking algorithms and variations thereof, hill - climbing is 
not exhaustive. Because of this, an algorithm based strictly on a hill-climbing 
method may not yield the optimal solution, but rather one which is only locally 
the best. For the same reason, this technique does not guarantee a solution. 

Given an initial configuration or vector X and an evaluation function f ,  
the basic hill-climbing algorithm moves to a new configuration X' if 
f(X')<f(X). The algorithm halts when no further improvement can be made. 

This search method has been employed to  generate SBIBD [SZ], mutually 
orthogonal Latin squares [Ti!], strong starters, and hence Room squares and 
Howell designs IDS], and STS [S5]. In order to employ a hill-climbing 
algorithm, there must be some sense of when one partial solution is better than 
another. In other words, an evaluation or cost function is required as in branch 
and bound algorithms. In the case of constructing BIBD, the evaluation 
function may be simply the number of element pairs which do not appear in the 
partial design. One also needs a t  least one technique for moving from one 
partial design to  another. Ideally one wants to move to a better partial 
solution, but often hill-climbing algorithms are implemented such that one may 
move to a configuration of the same worth; in doing this, one must be careful to  
avoid cycling. However, one never moves to a configuration of less worth, as is 
the case in backtracking algorithms. In some cases, hill-climbing algorithms are 
implemented in conjunction with some backtracking, so that if a local optimum 
is reached that is unsuitable, the algorithm either backtracks or jumps to  
another location in the search space. In their search for strong starters, Dioitz 
and Stinson [D8] include very limited backtracking. 

To have some hope of success with a hill-climbing algorithm, one needs a 
good evaluation function which is easy to compute and several fast methods of 
moving from one partial configuration to another. As an example of a 
successful hill-climbing algorithm which includes several appropriate heuristics 
for converting partial configurations, we present Dinitz and Stinson's research 
concerning generating strong starters [D8]. 

A strong starter of order n in an additive Abelian group C of odd order 
R =2t  + 1 is a set S = { { ~ ~ , y ~ } , . . . , ( z ~ , ~ ~ } }  which satisfies the following properties: 

Dinitz and Stinson use hill-climbing to find strong starters of order n = 2t + 1 in 
the cyclic group 2,. To do this, we first need the notion of a partial strong 
starter, which is a set S' ={{z1,yl), . . . ,{zr,yr}}, I S r S t ,  satisfying the 
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following conditions: 

(i) the 2;'s and yi's are distinct nonzero elements of 2,; 
(ii) yj-zi#*(yj-zj) if i C  j; 
(iii) zj+yj#zj+yj if i# j, and zi+yi#O if0SiSr.  

The deficiency of S' is de/(S')=t-r; in other words, it is the number of 
"missing pairs". A partial strong starter 5'' is mazimal if there exists no 
{u ,u}CZ, such that S' U{{u ,u}} is a partial strong starter. 

ConsLder a set of dif/erenees D={1,2, ... th  D is a set of natural numbers. 
Without loss of generality, we can assume that yi>zi, 15iSr; then 
yi-zi=di€D, if 1SiSr .  If an element z€Z,-{O} is €{q,yi) for some such 
set in S', z is said to be used; otherwise z is unused. Similarly, one can refer to 
a difference as being used or unused. Finally, e € 2, - {0} is said to be a used or 
unused sum depending on whether or not c=zi +yi for some i, 1SiSr .  

A stale of the hill-climbing algorithm is a partial strong starter S' together 
with two distinct unused elements u1 and u2, and an unused difference d€D.  
Given a state of the algorithm, let q={ui-d,ui+d},i=l,2, and let T=TlUT2. 
The following operations can be performed on a state: 

(i) matching ui with an unused element. If there exists w € Ti such that w is 
an unused element and ui+w is an unused sum (for the appropriate 
i= 1 or 2), let S"=S'U{{ui,w}}. If de/(S")#O, choose a new 

(ii) switching a pair. If w €q is a used element and ui + w is an unused 
sum, let S"=S'-{{zj,yj}}U{{w,ui}}, where w = z j  or yj, for some j, 
1SjSr. Set d=dj, ul=us-i, and u2=yj, if w=zj; if w=y+ set 
U2'2j. 

(iii) backtracking. Revert to the previous state of the algorithm if (ii) or 
(iii) was the last operation performed. 

(iv) switching a difference. Replace d by some other unused difference d'. 
Leave uI,u2 unchanged. 

(v) switching a pair. Suppose ui-us+=d,€D is a used difference, and 
ul+uz is an unused sum. Then set S"~S'-{{zd~,yd~}u(u~~a~);  set 
u = Zdl, u2= ydl, and leave d unchanged. 

u l,UZ,d. 

The algorithm can now be described in terms of operations (i)-(v): 

(1) Initialization: Set def=t,S=O, choose any distinct u1,u2€Zn-{O), d € D .  
(2) If operation (i) can be performed, do SO and go to (8). 
(3) If operation (ii) can be performed, do so and go to (2). 
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(4) If operation (iii) can be performed, do so and go to (3). 
(5) If operation (iv) can be performed, do so and go to  (2). 
(6) If operation (v) can be performed, do so and go to (2). 
(7) Stop; algorithm fails. 
( 8 )  Set def =de f  - 1, choose any distinct unused u 1,u2 and d .  

If def $ 0  go to (2). 
(9) Stop; algorithm succeeds. 

It is important to note that no operation increases the deficiency and operation 
(i) decreases it by 1. There may be more than one way to perform an operation 
(ii) on a given state; one is selected a t  random. If a state is reached again, this 
time by backtracking, the first way to perform operation (ii) is excluded and one 
of the remaining ways is chosen a t  random. 

In [D8] Dinitz and Stinson also present a probabilistic proof that the 
algorithm should run and succeed in O(n2) time. In fact, this ha-climbing 
algorithm has been successfully employed to generate strong starters, Room 
squares and Howell designs. A similar hill-climbing algorithms for STS, due to 
Stinson [S5], is also based on the notion of “switching”, analogous to  the 
switching heuristic employed in the strong starter case. 

Anderson [A31 recently extended Dinitz and Stinson’s hill-climbing approach 
to construct houses. Let n be a positive integer, S be a set of elements of size 
2n,  and F be a partition of S into unordered pairs. A house of order n is a 
2n x 2 n  array H such that 

(i) every cell of H is either empty or contains an unordered pair of distinct 

(ii) every symbol occurs in precisely one cell of each row and each column of 

(iii) the pairs in F each occur in preciscly two cells of H, whereas every 

(iv) the pairs in the first and second rows of H are precisely those in F, 
(v) every column of H contains one pair from F. 
The success of hill-climbing algorithms may in part be due to the richness 

of the solution space. If there are many solutions, one’s chances of successfully 
climbing to a solution via relatively weak heuristics is better than in a sparse 
solution space. However, hill-climbing algorithms have not been employed 
sufficiently often for researchers to characterize problem spaces which will lend 
themselves well to the technique. 

symbols of S, 

H ,  

other pair of symbols occurs in exactly one cell of H ,  
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Greedy algorithms have the same flavour aa hill-climbing algorithms in that 
they are concerned with local optimum. At any individual stage, a greedy 
algorithm selects that option which is “locally optimal” in some particular sense. 
For example, when colouring the elements of a design, one’s decision criterion 
may concern the number of colours being used. Hence, a locally optimal partial 
solution is the one which employs the fewest colours. Of course, it may be 
impossible to extend this partial solution to a proper colouring of the given 
design, let alone an optimal colouring. Greedy algorithms for colouring STS are 
discussed in section 4 of this paper and in [C15]. 

One’s decision criterion with regard to which element or object to select 
next may be very simple. For example, when constructing a spanning tree of a 
connected graph, one need only check that the edge being added does not create 
a cycle. This simple greedy algorithm always produces a spanning tree. 

In general, it appears that when generating combinatorial configurations, 
greedy algorithms do not suffice. For example, consider the construction of an 
n X n latin square by filling in the entries one by one, checking a t  each stage 
that no entries in that row or column have been filled with the same symbol. 
There are examples in which this greedy algorithm will fail. One interesting 
question is to determine the smallest integer A such that a ‘failed’ partial n X n  

latin square can always be partitioned into k pieces, each of which can be 
extended into a n X n  l a t h  square; k is the intricacy of the problem. For the 
latin square problem, it has been determined that the intricacy is always 
between 2 and 4 [Ol]. Other construction problems and their intricacy are also 
examined in (011; such results indicate when a greedy algorithm will succeed and 
can also be employed to suggest when such an algorithmic approach can be 
expected to suffice on average. 

Although greedy algorithms have not been applied extensively in design 
theory, one problem which appears conducive to this type of approach is the 
construction of partial parallel classes (PPC). For example, to establish a lower 
bound on the size of a maximum PPC in a STS, Brouwer p17) employs a 
greedy-style procedure which includes an exchange process when the current 
PPC one is constructing cannot be extended directly. Brouwer’s bound is 
presented in section 5. 

In the generation or.search methods discussed so far -- backtrack, branch 
and bound, hill-climbing and greedy algorithms -- a particular solution may, in 
fact, be encountered more than once unless one incorporates an appropriate 
isomorphism rejection mechanism into the algorithm. This is usually done by 
exploiting automorphism information of the partial solutions. For some 
problems, an orderly algorithm is possible in which the combmatorial 
configurations are generated in canonical form, hence removing the problem of 
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checking for duplicate solutions w]. 
We present the strategy here in terms of graphs, employing the 

corresponding vector notation of the upper triangle of the adjacency matrix. A 
graph can be represented by possibly many adjacency matrices. Thus, each 
graph may have many vector representations. To make the representation of a 
graph C unique, we define the canonical form of C to be the largest vector 
which is a vector representation of C. 

Let (p,q)-graph denote a graph with p vertices and q edges. Typically in 
graph generation, one is given a list L(p,q)  of a11 nonisomorphic graphs with p 
vertices and q edges, and required to produce the list L(p,q+l).  In an orderly 
algorithm, the canonical form of every (p ,q + 1)-graph is obtained by changing 
some 0 to a 1 in the canonical form of some (p,q)-graph. If the 0 changed is 
required to be to the right of the rightmost 1 in the canonical form then the 
canonical form of each (p,q+ 1)-graph is produced from the canonical form of 
exactly one (p ,q)-graph. This change from 0 to 1 is called an augmenfafion . 

This allows one to start with an ordered list L(p,q) of the canonical forms 
of the nonisomorphic (p ,q)-graphs, and perform augmentation in every possible 
way on each member of L ( p , q ) .  The resulting set of vectors contains canonical 
forms and other vector representations. However, since each required canonical 
form appears on the list exactly once, we simply test each graph to see whether 
it is canonical, and include it in t (p ,q+  1) if and onIy if it is. Observe that, we 
determine whether a given vector representation is to be added to L(p,q+1) 
without referring to what has already been added. 

Orderly algorithms for grapbs have been studied by a variety of researchers; 
for example, see [C30, R3]. Their application need not be restricted to graphs. 
Unfortunately, for many combinatorial problems, it appears to be difficult to 
generate the canonical form of one combinatorial configuration from the 
canonical form of a smaller one. 

Elsewhere in this volume, Ivanov [Il l  employs a combination of an orderly 
algorithm with traditional backtracking techniques to generate BIBD. 'The 
algorithm is orderly in the sense that one is generating canonical incidence 
matrices of the designs. In general, one is backtracking through the search tree 
(or solution space). However, not all branches of the search tree need be 
examined since it can be shown that they cannot contain canonical matrices of 
the desired designs; hence, the canonicity information is being employed to prune 
the search tree. 

Orderly algorithms have also been employed to construct SQS [C19, C28, 
p?]; Phelps's algorithm Ip?] is discussed in section 5. 
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Without techniques such as orderly algorithms, one is forced to incorporate 
isomorphism rejection into exhaustive generation methods such as backtrack or 
branch and bound algorithms, if one wants all possible solutions. We examine 
algorithms for isomorphism testing and the use of isomorphism invariants in 
section 3. 

8. Isomorphism Testing and Invariants 

8.1 Isomorphism Testing 
The problem of deciding whether two graphs are isomorphic has attracted a 

significant amount of attention [C5]. One of the reasons is that although the 
problem is not known to be NP-complete, no algorithm to solve it in polynomial 
(or even subexponential) time is known [R4]. Over the years, many proofs have 
appeared demonstrating that testing isomorphism of random graphs can be done 
efficiently, and with high probability of success p 2 ,  K2, L6]. It is of interest, 
therefore, to identify the difficult instances of the problem. 

Corneil [C40] observed that practical isomorphism algorithms have the 
most difficulty with strongly regular graphs and other graphs obtained from 
combinatorial configurations. In a compilation of graphs which are hard for 
isomorphism algorithms, Mathon p2] included solely graphs derived from 
combinatorial configurations. 

To show that a subclass of graphs is difficult, one must at least establish 
that an algorithm to solve isomorphism in the subclass is powerful enough to  
solve graph isomorphism. Formally, one must show that deciding isomorphism 
of graphs in the subclass is polynomial time equivalent to graph isomorphism or 
ieomorphiem complete. For a survey of results concerning isomorphism 
completeness, see [B131. Since that survey, however, other problems have been 
shown to be isomorphism complete. In particular, it it now known that 
Theorem 3.1 [C34]: Testing isomorphism of block designs is isomorphism 
complete. 
Theorem 3.2 [Fl): Testing isomorphism of 4-class association schemes is 
isomorphism complete. 

Hence, it is unlikely that we will devise an efficient (polynomial-time) algorithm 
for block design isomorphism. Consequently, one is motivated to search for 
better algorithms for specific subcases. 

Using a result of Tarjan, Mffler p12] showed that quasigroup isomorphism 
can be decided in O(dO&'') time; the standard representation of an STS as a 
Steiner quasigroup yields a subexponential algorithm for deciding isomorphism 
in this case. Implementations of this algorithm are discussed in [C32, SS]. 
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Although no polynomial-time algorithm is known for testing isomorphism of 
STS, Stinson found that in practice Miller's algorithm appears to run in time 
O(u'10gu) [S4, SS]. Miller's algorithm can be easily extended to  handle 
S ( t , t  + 1,u)  designs; for details see [C32]. Moreover, the recursive doubling 
behaviour of the quasigroup isomorphism procedure carries over naturally to 
handle isomorphism problems for many classes of l-factorizations in 
subexponential time. Consequently, there exist subexponential isomorphism 
algorithms for l-factorizations of arbitrary connected graphs, l-factorizations of 
complete multigraphs, Room squares and Howell designs [Cll]. There also exist 
subexponential time isomorphism algorithms for Hadamard matrices [C12] and 
symmetric designs [L18]. In the case of symmetric designs with X = l ,  i.e. 
projective planes, Miller ml2 l  showed that isomorphism testing can be 
performed in O ( U ~ ~ ~ ' ~ ~ " )  time. Babai and Luks [a31 have since extended this 
result to show 
Theorem 3.3 [B]: Canonical forms (and hence isomorphism testing) for 
symmetric B[k,X;u] designs can be found in ~ ~ ( ' ~ f " ~ " )  time. 

However, no infinite family of symmetric designs is known for any 0 1 .  
The more exciting result contained in Babai and Luks' paper (B31 concerns 

computing canonical forms for graphs of bounded valence in polynomial time. 
The canonical form problem for graphs is closely related to the problem of 
testing isomorphism; the second task can be performed a t  least as fast as the 
first and, in most instances, an isomorphism test for a class of graphs consists of 
a procedure for determining the canonical form. Hence, a fast algorithm for 
determining the canonical form of a class of graphs (or designs), implies a fast 
algorithm for isomorphism testing of that class. Babai and Luks IB3] establish 
Theorem 3.4 [B3]: Canonical forms for graphs of maximum degree d can be 
computed in O(nffd)) steps where n= I V(G)I .  

Theorem 3.5 [MI: Canonical forms for B[k,X;u] designs can be computed in 
u (kA)+ b time. 

In other words, isomorphism testing of B[k,X;u] designs with fixed k and X can 
be done in subexponential time. Babai and Luks' results represent a major 
advance in the research concerning graph isomorphism. Moreover, from a design 
theory point of view, Theorem 3.5 is a nice contrast to the isomorphism 
completeness result for general block designs. 

Anotber class of designs in which some improvement witb regard to 
isomorphism testing might be expected is cyclic designs. There is an elementary 
polynomial time algorithm for deciding equivalence of two difference families. 
Hence, if all inequivalent designs are non-isomorphic, there would be a 
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polynomial-time algorithm for deciding isomorphism of difference families. 
However, this is not the case. 
Theorem 3.6 PM]: There exist inequivalent, isomorphic B[3,2;u] designs. 

The smallest known pair exists when u=M. Furthermore, Brand PlS] has 
established the existence of an infinite family of such designs. For even values of 
n , Brand [Bls] constructs 2("'2)-1 cyclic designs on 2,. which are not equivalent 
as cyclic designs. He further establishes that these designs can be paired off so 
that the designs in a pair are isomorphic. However, no pair of inequivalent 
isomorphic STS is known, despite the fact that there exist cyclic STS which have 
non-multiplier automorphisms. The Bays-Lambossy theorem p, Llj 
guarantees that such a pair does not exist on a prime order; for details of the 
theorem, see [Bs PartII; C36]. 
Theorem 3.7 [B6 PartII]: Given 2 isomorphic cyclic structures on a prime 
number of elements, there exists a multiplier isomorphism transforming one to 
the other. 

Theorem 3.7 is a statement about cyclic hypergraphs, a broad class of 
structures incorporating both circulants and cyclic designs. Using this theorem, 
we observe that there is an O(v2) algorithm for deciding isomorphism of cyclic 
designs with a prime number of elements. In deciding this complexity, we 
assume that the algorithm is given a cyclic representation of each design; the 
complexity of recognizing cyclic designs is unknown to the author. In practice, 
this does not create any difficulty since one usually deals with a difference 
family representation of the design. 

There remain several interesting open questions regarding isomorphism 
testing of block designs. In the case of cyclic designs, the main question is 
whether there exists a pair of inequivalent, isomorphic STS. Ideally, one would 
like to prove that such a pair does not exist. Or perhaps, the Bays-Lambossy 
theorem can be extended to the case of STS(u) where u is the product of two 
primes. As it has now been established that isomorphism testing is 
subexponential for several classes of block designs, it would be interesting to see 
if any of these results can be extended to include other classes of designs or to 
establish a polynomial time algorithm for any non-trivial class of designs. 

8.2 Inomorphtsm Invarianfs 
The lack of a polynomial time algorithm for block design isomorphism 

compels us to search for other techniques which reduce the magnitude of this 
problem. In particular, given a list of designs, we require a method of 
partitioning the l i t  into classes such that two isomorphic designs are in the 
same class. A design property which partitions the l i t  in such a way is an 
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isomorphism invariant. We view an invariant as a function f for which 
f ( D , ) = i ( D 2 )  if D1 and 0, are isomorphic. When f ( D l ) = I ( D 2 )  if and only if 
Dl# D,, the invariant is complete. There is no known efficiently computable 
complete invariant, for designs in general. To maintain efficiency in resolving 
isomorphism we must, a t  present, resort to incomplete invariants. In choosing 
an invariant we wish to reduce the magnitude of the problem as much as 
possible. With this in mind, Petrenyuk and Petrenyuk Ip3] propose that a 
measure of the invariant's effectiveness be its eensitiuity -- the ratio of the 
number of classes it distinguishes to the number of non-isomorphic designs under 
consideration. A complete invariant has sensitivity one. In the remainder of 
this section, we consider invariants with respect to ease of computation and 
sensitivity. 

3.2.1 Invariants for Block Designs 

One of the earliest invariants employed was the order of the automorphism 
group. This invariant, however, is insensitive. A second difficulty is that no 
polynomial time algorithm is known for computing the order of the 
automorphism group. In fact, there is evidence that computing the order of the 
automorphism group is equivalent to deciding isomorphism; in the related case 
of graphs, the problem is isomorphism complete [Bl, M3]. 

Another means of distinguishing designs is by examining the number and 
type of subdesigns. Moore p13]  used this invariant to demonstrate the 
existence of a t  least two non-isomorphic STS, u>13. This invariant is also 
insensitive. Again, there is no known polynomial time algorithm for deciding 
whether one design is a subdesign of another. The corresponding problem for 
graphs is NP-complete. 

Of course, there is no reason why one cannot employ subcomponents other 
than subdesigns as invariants. For example, Gibbons [GS] used fragments to  
distinguish various STS; this approach is discussed later in this section. Another 
possibi1it.y is to employ information concerning parallel classes or partial' parallel 
classes. For example, one might consider the number of distinct parallel or 
partial parallel classes or various intersection patterns of such classes; these 
approaches are discussed in section 5 of this paper. 

One invariant for general block designs, which has been successfully 
employed by several researchers, is clique analysis. Given a design D ,  we can 
define a series of block intersection gruphs Ci, i = O ,  ..., k ,  defined as follows: 

The vertices of C; are the blocks of D. Two vertices are adjacent if and 
only if the corresponding blocks contain exactly i elements in common. 

One effective invariant is the number of cliques of size c in Ci; this is referred to 
as (c,i)-clique analysis. Gibbons [G5l employed clique analysis to help 
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distinguish B[3,1;15], B[3,2;9], B[4,3;8], B[4,3;9] and B[5,3;10] designs. In 
distinguishing B[3,2;9] designs, Mathon and Rosa [M6] also used clique analysis, 
as cycle structure (which we discuss shortly) does not suffice. For cyclic STS, 
uL27, (4,O)-clique analysis is a complete invariant [C36]. The complexity of this 
invariant is also appealing; an O(b') algorithm for computing this invariant is 
immediate. When the design is transitive, we need only consider the number of 
cliques containing a particular element. Hence, an O(r6') algorithm results. 
However, the number of cliques for relatively small values of u is enormous; for 
example, one of the S(2,3,21) designs contains 24646 (4,O)-cliques [C36]. Hence, 
although the growth is polynomial, the computation is extremely expensive. 
Furthermore, it appears that in order to maintain high sensitivity, the size of 
cliques being examined must increase as a function of u. If this is indeed the 
case, the computation is extremely difficult from a complexity standpoint -- it is, 
in fact, a special case of a #P-complete problem [G4, Vl]. 

Other design properties which can be used to distinguish non-isomorphic 
designs include both the chromatic number and the chromatic index; these are 
discussed further in section 4. 

8.2.2 InvarIanfs for S(t,t+l,v) 

In 1913, White pl] introduced a method of distinguishing the two 
S(2,3,13) designs. Givcn a STS D ,  consider a triad (z,y,z) which is not in D .  
( z , y , r )  is transformed by replacing each pair (z,y), ( z , ~ ) ,  (y,z) by the single 
element with which it appears in D .  Another triad results. For example, let D 
contain the three triples (1,2,4), (1,3,5), (2,3,6); the triad (1,2,3) will be 
transformed into (4,5,6). If one continuously repeats this operation, one of two 
things must occur. Either a triad of D is encountered or a previous triad is 
again reached. For simplicity, White refers to  triads of D as one term cycles. 
Hence, every triad not in D initiates a traits of triples which terminates in a 
periodic cycle. Trains are a special class of transformation graphs; for a more 
general study of transformation graphs, see p3, D41. Examining these trains, 
White differentiated the two S(2,3,13) designs. Although White proposed this 
invariant simply for STS, the obvious extension allows one to construct trains 
for S ( I , t +  1,u) designs in O(U'+') time. 

The train of a S(f,C+l,u) design is a directed graph in which each 
component is a special tree-like directed graph. With this in mind, we can 
employ the optimal linear time tree isomorphism algorithm [ClO, H13) in 
conjunction with Booth's optimal labelled cycle isomorphism algorithm p12] to 
obtain an optimal algorithm for deciding isomorphism of trains. These 
observations supply us with a practical and efficient isomorphism method for 
trains [C22] which we would like to use to distinguish S(t,t+l,u) designs. 
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The question is: how sensitive are trains? Trains successfully distinguish all 
eighty STS(l5). In fact, their structure varies dramatically, and hence there is 
every reason to expect that they are a useful invariant for larger STS. One 
piece of theoretical evidence which supports this is the fact that every outregular 
directed graph with outdegree 1 not containing a cycle of length two appears as 
a subgraph of the train of some STS. However, trains do not completely 
distinguish nonisomorphic STS: 

Lemma 3.8 [C22]: There are nonisomorphic STS having isomorphic trains. 

Proof: Consider the Hall triple systems, in which every three elements generate 
either a block or a sub-STS(0). The train of such an STS consists simply of 
copies of the train of the STS(O), and depends only on the order u.  But there 
are non-isomorphic Hall triple systems of order 3'" for all m 2 4  w11. 

(3.1 One serious problem with trains is their size; the graph contains 

nodes. A smaller invariant is desired. Retaining just the number of components 
is not enough, nor is retaining the component sizes, since the trains of the first 
seven STS( 15) from [GS] all consist of 35 components of 13 vertices each. With 
the additional information of the number of sources (vertices of indegree zero) in 
each component, all STS(15) are distinguished except designs 6 and 7 [C22]. 
Although this simplified invariant, a compact train, is easy to  compute and 
requires little storage, it is unclear whether they retain sufficient power. 

Stinson [S4] instead examines the indegree sequence of trains. 

Lemma 3.0 (S4]: No vertex in a train has indegree exceeding u-2. Further, any 
vertex of indegree u-2 is a block of the STS. 

Since the indegrees are a t  most u-2, we may form a vector (ai:OSi5u-2), 
where a; is the number of vertices of indegree i. We refer to this as the 
indegree list of the train. The space required to store an indegree list is clearly 
proportional to u, so we have a "small" invariant. Of course, the time required 
to compute the invariant is still proportional to u3. For STS(15), indegree liits 
distinguish all non-isomorphic designs; the liits are presented in [S4]. 

Another invariant introduced to distinguish STS is cycle structure, which is 
sometimes referred to as the graph of interlacing. Several researchers have 
employed cycle structure to distinguish triple systems of small orders [C32, C37, 
C42, H3, M6, M15, P3, SS]. We describe it here in a more general setting [C36]. 
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For a given S(t , t+l,u) system D=(V,B), consider any set ACVsuch that 
IAI = t - 1 .  For convenience, let A = { Z ~ , ~ ~ , . . . , Z ~ - ~ ] .  We defiie a graph GA to  
be C(VA,EA) where VA=V-A and 

EA ={(a ,b )  I 0 ,b 6 VA, <21,22,...,Zt - 1,U ,b > c B}. 

This graph is a 1-factor. 
Given D ,  consider two sets of elements A={z1,z2,...,zt- 1} and 

C={Z,,. . . ,Z~-~,~~). We define GA=(VA,EA) and Gc=(VC,Ec) as above. We 
now define the union of two such graphs GAUG, to be C(V,E' ,L)  where 

and 

and L is a mapping of edges to labels. L(a,b)=A if ( a , b ) € E ~ .  Because every 
t-tuple must appear exactly once in D, each element z in V appears once in a 
block with the set A and once with the set C. Hence, GAUG, is regular of 
degree 2; it is therefore a union of cycles. 

A compact notation for this graph is just the list of cycle lengths in 
ascending order. This is called the cycle list for the pair of ( t  - 1)-sets A and C. 
Consider the cycle lists for every pair of ( t  - 1)-sets, which have t - 2 elements in 
common. This collection of lists, when ordered lexicographically, is called the 
cycle structure. For cyclic STS, one only has to consider the cycle lists for the 
pairs ( O , i ) ,  15i5(u-1)/2.  

In order to estimate the sensitivity of this invariant, the author [C32, C36) 
employed it to distinguish cyclic STS(u), u545;  for these designs, cycle 
structure's sensitivity is approximately 0.9. For SQS, this invariant has been 
used by Phelps [p7] to distinguish the twenty-nine S(3,4,20) designs. 

There is an elementary O(us) algorithm for computing this invariant for 
STS (O(u2) for cyclic STS). Its high sensitivity guarantees the existence of many 
classes containing a single design. I t  has the added attraction that even for 
classes containing more than one design, a subexponential isomorphism 
algorithm based on cycle structure can be employed to differentiate the designs 

Like trains, one difficulty with cycle structure is the space requirement. 
Gibbons [GS] suggested a way of compressing the cycle structure by considering 
only cycles of length 4. Instead of keeping the l i t  of cycle lengths for GAUCc, 
simply count the number of cycles of length 4. By keeping this information for 
each pair of elements, one forms the {ragmenl uectot for the STS. 

Note, we do not have to determine all the graphs CAUGC in order to  find 
the fragment vectors. A fragment is a set of four blocks of the form (u,u,w), 
(u,z,y), (u,z,z), (w ,y , t ) .  A fragment gives rise to a 4-cycle in G,UG,, CaUGN 

V =VAnVc-{z I <z, , . . . ,~ t , z>€B}  

E' ={(a , b ) l  a ,b cV ,(a , b ) fE~or (U  ,b)CEc) 

[C32]. 
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and C,UC,. We can determine the fragment vector simply by finding all 
fragments, and each time one is encountered, updating the fragment vector 
appropriately. Although this method still requires time proportional to  us, it is 
considerably quicker than determining the complete cycle structure. It also has 
the added advantage of requiring less space than cycle structure; the fragment 
vector requires space proportional to u. 

Gibbons [GS] used fragment vectors to distinguish all 80 STS(l5). In [S4], 
Stinson compared the sensitivity and efficiency of indegree liits and fragment 
vectors on random STS(u), 15 5 u S  31, generated via a hill-climbing algorithm 
[SS]. Both invariants are complete for STS(u), u S l 5 ;  for larger u, Stinson 
concludes that both invariants seem to be very successful in practice. Both 
invariants can be computed in time O(us) and require space O(u). Experimental 
evidence suggests that the invariant based on trains is more effective, but it 
requires about five times longer to compute [S4]. 

For further information regarding many of the aforementioned invariants 
and other properties for specific STS, see [M5]. 

Stinson and Vanstone [SS] in their examination of nonisomorphic Kirkman 
triple systems, developed an invariant which exploits information concerning the 
design’s resolution. Consider a KTS(6t +3) (V,B) with a resolution 
R={Rl , . . . ,R3t+l } .  If ( z , y , r )  is a block, define other(z,y)=z and rc(z,y)=Ri if 
(z,y,rf G Rj. Now define a partial mapping g from the &subsets of V to the 3- 
subsets of R. If 2 ,  y and z are distinct members of V, let rl=other(z,y), 
yl=other(z,z) and z I = o t h e t ( y , r ) .  If (z1,y1,zl)  is not a block, define 
g((z,y,r))={rc(zl,yl),rc(zl,rl), rc(yllzl)}. For i Z 0 ,  let f i  denote the number 
of 3-subsets of R which have an inverse image of cardinality exactly i. Finally, 
define INC’(R)=(fi IO5 iSu) .  INV(R) is an invariant for Kirkman triple 
systems. Stinson and Vanstone employ this invariant to distinguish 
nonisomorphic KTS(39) and KTS(51) [SS]. 

The construction of the above KTS is based on strong starters; as noted 
earlier, strong starters have been successfully used to construct a variety of 
combinatorial configurations including Room squares and Howcll designs. For 
appropriate algorithmic techniques for generating inequivalent or nonisomorphic 
strong starters in cyclic groups, see PSI. 

3.2.3 Invariants for Steiner Systems 
In the previous section, we defined cycle structure, which is applicable only 

when & - t = 1. However, when this is not the case, we can still define the graph 
CA, I A I = t - 1. CA is a collection of disjoint (A. - t + 1)-cliques. We may again 
define the labelled graph GAUCc, as before. Any invariant of this graph is an 
invariant of the pair of ( 1  - 1)-sets A and C. For a given invariant I, let f ( A , C )  
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denote the value of I on CAUCc. An invariant of the design is the multiset 

One can see that cycle structure is an invariant of this form. Let us consider a 
specific graph CAUCc. Let X be the (k-t+l)-clique common to both CA and 
Cc. The (k-t+l)-cliques of CA-X can be arbitrarily ordered. Then the 
(k-t+l)-cliques of Go-X can be represented in terms of the cliques of 
C A  - X  e.g. a (k - t + 1)-set S ( K ) ;  if u belongs to the i th clique of C A  - X and 
v€K,  i € S ( K ) .  Observe that for u,w€K,u#w, u and w belong to different 
cliques in CA-X. Hence, S ( K )  is a ( k - t +  1)-set. For a given i ,  consider the 
&-  t +  1 sets S(Kl)l...lS(Kk-t+l) which contain i .  From this collection form 
T ( K j ) = S ( K j ) - { i } .  Now T(Kl)l....T(Kk-t+l) form the edges of a ( k - t ) -  
uniform hypergraph, which we will denote Hi and call an overlap graph. 

Any invariant of the collection {Hi} is an invariant of CAUC,. Each 
overlap graph Hi has the same number of edges, so this invariant would result 
in no discrimination. However, they may have a dirferent number of vertices. 
With this in mind, we define the overlap list of CAUGC, OL(A,C), to be the 
multiset {I  V(Hi)I }. The overlap list is clearly invariant under isomorphism. 
The overlap structure of a design is the multiset 

{I(A,C)I IAI  = t - l , l  Cl - t - l , I A n C l  =f-2,ACV,CCV). 

{OL(A,C)I I A1 = t - l , l  Cl = t - l , I A n C l  =t-2,ACV,CCV). 
A seemingly more powerful invariant can be defined by enumerating all 

(k - t )-uniform hypergraphs with (k - t 4- 1) edges and arbitrarily ordering them 
1 through m. For such a hypergraph H ,  denote by I ( H )  its index in this list. 
The typed overlap l i d  of CAUC,, IYIL(A,C), is the multiset {I(Hi)}.  The 
typed overlap structure is the obvious analogue of overlap structure. 

With respect to computation, there is an efficient algorithm for computing 
this invariant [C33]. Furthermore, the invariant appears to be quite sensitive. 
For example, overlap structure distinguished all cyclic S(2,4,u) designs, uS64, 
and all cyclic S(2,5,u) designs, uC65 [C33, C36]. 

4. Colourlng Block Designs 

4.1 Colourlng Elements 
An r-colouring of a hypergraph is an assignment to each vertex of a 

colour chosen from an t -set  of available colours; equivalently, it is a partition 
of the vertices into r sets. An r-colouring is proper if no edge contains solely 
vertices of one colour. A hypergraph is t-colourable if it has a proper r- 
colouring, and is r-chromatic if it r-colourable but is not (r-1)-colourable. 
The chromatic number of a hypergraph H, denoted x ( H ) ,  is that r for which H 
is t-chromatic. 
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Many researchers have examined colouring graphs and hypergraphs; in fact, 
these problems arise in many areas of computer science [CZ, E3]. We focus here 
upon the analogous colouring problems for combinatorial designs. For another 
survey of results concerning the colouring of Steiner systems, the reader can also 
refer to [BlO]. There are many reasons for examining such colouring problems 
and related tasks. Investigations of the chromatic number have led both directly 
and indirectly to elegant constructions for t-designs; one recent example is the 
investigation of 2-chromatic SQS tpll]. Furthermore, colouring information is a 
means of distinguishing designs and is, of course, an isomorphism invariant. 
Unfortunately, determining the chromatic number of a design appears to be a 
computationally difficult task, and hence this is not a practical invariant. 

This does however raise another motivation for examining colouring 
problems. It is well-known that deciding whether a graph is k-colourable (for 
fixed k r 3 )  is an NP-complete problem [G4]. Determining whether a graph is 2- 
chromatic can be easily carried out in linear time -- we need only decide if the 
graph is bipartite (see [CS], for example). On the other hand, deciding whether 
a hypergraph is 2-chromatic is NP-complete (L171. Do such problems remain 
NP-complete when one is examining block designs or Steiner systems? Or can 
the structure of block designs be exploited to ensure polynomial time 
algorithms? We will examine some of these questions in this section. 

First, we present LovaSz' NP-completeness result regarding colouring 
hypergraphs. The construction is presented here as an example of the type of 
transformation which is required in such proofs. 
Theorem 4.1 [L17]: Deciding whether a &uniform hypergraph is 2-colourable is 
NP-complete. 
Proof 

Membership in NP is immediate. To show completeness, we give a 
polynomial time reduction from the problem of graph 3-colourability. Given a 
graph G =  (V,E) ,  V={ul, .... un}, we define a 3-uniform hypergraph H=(W,F).  
The vertex set, W ,  is {m} U {z;jl l S i S n , l S j S 3 } .  The edges in F are 

( I )  {m, z ik , z jk }  for all {ui,uj} € E, 1 S k S 3 .  
(2) {Z~~,Z;~,Z~~} for I S i S n .  

Now H is 2-colourable if and only if C is 3-colourable. 
A 3-uniform bypergraph can be transformed into a partial SQS H such that 

H is 2-colourable if and only if the original hypergraph was 2-colourable. 
Furthermore, the transformation can be performed in polynomial time which 
establishes 
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Theorem 4.2 [C20): Deciding whether a partial SQS is 2-colourable is NP- 
complete. 

As an interesting contrast to the previous result, it has been established that 
Theorem 4.3 [C20]: Deciding whether a SQS is 2-colourable can be performed in 
polynomial time. 

To illustrate this, we follow the presentation in [CZO]. A 2-colouring of a 
SQS (V,E) is a partition of V into two sets V, and V2. It  is proper if for any c € 
El e n V;: # e. Doyen and Vandensavel [DQ] proved that if <V1,V2> is a proper 
2-colouring of (V,E), then I Vll = I V2l. 

The algorithm operates by extending a partial colouring, which is a 
partition of V into three sets Vl, V2 and U. Vertices in V, (V2) have been 
assigned the first (second) colour; the colours of vertices in U are aa yet 
unspecified. A partial colouring <V1,V2,U> is feaeiblc if there is a proper 2- 
colouring <W1,W2> for which Vl C Wl and V2 C W2. All feasible partial 
colourings are proper, but of course the converse need not hold. 

A simpleminded method which uses Doyen and Vandensavel's observation 
is the following, Given a partial colouring <Vl,V2,U> first check that it is 
proper. If it is not, it is not feasible. Next check if either I Vll or I Vzl is Ill /2; 
if so, we have completed a proper 2-colouring [DQ]. In the final case, we attempt 
to extend the partial 2-colouring. For each u € U in turn, we determine 
whether <Vl U {u},V2,U-{u)> is feasible. If any one of these is feasible, 
<V,,V2,U> is feasible; otherwise it is not. 

Now a SQS (V,E) is 2-colourable if and only if < 0 , 0 , V> is feasible. 
When extending a partial colouring, additional information can be exploited. For 
example, if {w,z,y,z) is an edge (block) for which w,z,y € V, and z € U, we 
know that z must be placed in V2. Therefore, we say that t is an implicant for 
V2 (V,) if L € U and there is an edge {w,z,y,z} with w,z,y € V, (V2). 

To circumvent the selection of vertices leading immediately to improper 
colourings, we introduce a process called etabilization . Given a partial colouring 
<Vl,V2,U>, we locate the set Ul S U of implicants for Vl and the set U2 C U 
of implicants for V2. If Ul and U2 contain an element in common, a proper 
colouring is impossible, in which case the stabilization has railed. Otherwise, if 
U 1 = U 2 = 0 ,  stabilization is said to eueceed. If the stabilization process has 
neither failed nor succeeded, we repeat the process and stabilize <V, U U,, V2 

Stabilization can be carried out in polynomial time, and thus it can be used 
to substantially improve the simpleminded algorithm mentioned earlier. After 
each selection, we stabilize the partial colouring and then attempt to extend the 

u 4, U-U,-Uz>.  



Algorithtnic aspects of cotttbittatorial dcsigtu 93 

resulting partial colouring. In fact, we need only deal with stable partial 
colourings throughout the algorithm. 

To guarantee an improvement over the exponential running-time, we need 
two additional facts. The first concerns the sizes of the two colour classes in a 
stable colouring. If <Vl, V,, U >  is a stable partial colouring of a SQS (V,E),  
I V ,  I - 2 s  I V2 1 S I Vl I + 2. Secondly, one needs to  establish that at each step 
of the algorithm, one can select an element to  colour which has a sufficiently 
large number of implicants. Hence, the algorithm (or this step of the algorithm) 
cannot be invoked too often. In fact, it can be invoked at most O(log n) times; 
hence, the algorithm runs in polynomial time. Once this fact is established, one 
can apply a greedy selection process, which results in a polynomial-time 
algorithm. 

Although, this result has been presented here for SQS, it can clearly be 
generalized to other families of t-designs in which one can exploit the existence 
of implicants. In other words, deciding whether a t-B[f + 1,X;uj design ( t 2 3 )  can 
be 2-coloured can be performed in polynomial time. Doyen and Vandensavel’s 
result indicates that only designs with an even number of elements can be 2- 
coloured. Therefore, no STS can be 2-coloured. 

Projective planes, with the exception of the STS(7), can be 2-coloured. 
Given a 2-colouringI the smaller colour class is called a blocking set. For results 
concerning blocking sets in designs, see p15, B18, D5, Dll] .  

The existence of k-chromatic STS for k Z 3  has been examined [Dl, R6, 
R7]. In particular, Rosa IR7J established the existence of a 3-chromatic STS of 
all admissible orders. A more recent paper (Dl] established a much more general 
result: 
Theorem 4.4 [Dl]: For any k 2 3 ,  there exists an nk such that for all admissible 
vanh there exists a k-chromatic STS of order v .  

Furthermore, de Brandes, Phelps and Rodl (Dl] established that n,S’49. In so 

doing, two colour-preserving recursive constructions are presented. 
Theorem 4.5 [Dl]: If there exists a k-chromatic STS(v), there exists a k- 
chromatic STS(2u+ 1). 

Theorem 4.6 [Dl]: Let v=l$  (mod 12). If there exists a k-chromatic STS(u), 
there exists a k-chromatic STS( 2u + 7). 

In the course of their examination of k-chromatic STS, de Brandes, Phelps 
and Rodl raise some very interesting existence algorithmic questions. For 
example, do there exist uniquely colourable k-chromatic STS for all k?  A 
corresponding question which one might ask is “Given a k-colouring of a k- 
chromatic STS, how difficult is it to establish that this colouring is unique?”. 
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Before examining this question, it is sensible to answer the more basic question 
“How difficult is it to  decide whether a STS is k-chromatic?”. 

It is known that 
Theorem 4.7 [PlO]: Deciding whether a STS is k-chromatic is NP-complete. 

There are several related results which warrant mention here, the f i t  of which 
concerns partial STS. 
Theorem 4.8 [C21]: Deciding whether a partial STS is t-colourable is NP- 
complete for any fixed t r 3 .  

Proof 
In order to prove this theorem, we construct t-chromatic partial STS in 

which any t-colouring assigns a fixed pair of elements different colours. To do 
this, we need the following two lemmas. 
Lemma 4.9: For each t Z 2 ,  there is a t-chromatic partial STS for which any f -  
colouring assigns the same colour to  two fixed elements. 
Proof 

There are (t+l)-chromatic STS for all t Z 2  [Dl]. Suppose P is a (1+1)- 
chromatic STS. A triple is said to  be critical if its deletion lessens the 
chromatic number of the partial STS. Starting with any ( t  + 1)-chromatic 
system, we delete blocks until one becomes critical. Call this partial STS P. 
Deleting a critical block lrom P produces a I-chromatic partial STS P. A n y  t -  
colouring of P assigns the same colour to  the three elements forming the 
critical block of P ,  since otherwise the 1-colouring of P would also I-colour P, 
which is in contradiction to  our assumption. 
Lemma 4.10: For each 1 2 2 ,  there exists a t-chromatic partial STS P and a 
fixed pair of elements (2, 2’) of P, such that any t-colouring of P assigns a 
different colour to  2 and 2’. 

Proof 
Let P be a partial STS with chromatic number t ,  having the property that 

any l-colouring of P assigns the same colour to two given elements z and 8 .  
Denote the element set of P by Q U (2). Take two copies of P, one on Q, U 
( 2 )  and one on QZ U (2) that is, two copies intersecting only at 2. Add a new 
element 2’ and include the block (yl, v2,z’}. This partial STS is t-chromatic and 
any t-colouring must assign the same colour to z, gl, and y2. Then z’ must be 
coloured differently from 2. 

Proof of Theorem 4.8: 
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Suppose we are to decide whether an arbitrary graph G is t-colourable; we 
know that this problem is NP-complete for any f i e d  tk3  [G4]. First, let P be a 
partial STS with chromatic number t having f i e d  elements 2, 2‘ which every 
1-colouring P assigns two different colours. We construct a partial STS with a 
copy of P for every edge of the graph G; for an edge {y, t) of G, we take a 
copy of P disjoint from the other copies, and identify z and 2’ with y and z .  
The theorem follows directly. 

Given a partial STS on u elements, one can produce in polynomial time a 
B[3,12tu+3;18tu+31 design which is 31-colourable if and only if the partial STS 
is t-colourable. Hence, there is a polynomial time reduction of a known NP- 
complete problem to a more general colouring problem, establishing that 
Theorem 4.11 [C21]: Deciding whether a block design is 1-colourable is NP- 
complete for all t r 9 .  

However, the above result is established for block designs with relatively large A; 
in fact, X is O(u). However, even restricting one’s attention to  small l i e d  X 
does not necessarily result in any improvement. Phelps and Rodl F10) more 
recently established that 
Theorem 4.12 [PlO]: Deciding whether a STS is 14-colourable is NP-complete. 

To establish this result, Phelps and Rodl employed the fact that deciding 
3-colourability of &regular graphs is NP-complete [G4]. Given a 4regular 
graph C, a partial STS P is constructed such that the chromatic number of P is 
four times that of C. The partial STS P is then embedded into a STS S. 
Moreover, the chromatic number of S is at most x(P)+2. Therefore, if 
x(C)S3, then x(P)S12 and x(S)Sl4 .  Alternatively, if x(G)Z4,  ,y(P)Z16. In 
order to establish the NP-completeness results, it is necessary to guarantee that 
the embedding can be performed in polynomial time, which is indeed the case. 
The embedding employed transforms a partial STS(u) into a STS(6u+3) and is 
done in polynomial time. 

Related work concerns the existence of particular colourings. For example, 
given a block design in which the elements are coloured with m coloun and the 
colouring is proper, can one produce a complete colouring with m + 1 colours? A 
colouring is complete if the merging of any two colour classes would result in an 
improper colouring e.g. a monochromatic block. Cockayne, Miller and Prins 
[C4] have proved several interesting results along these lines. First let us define 
what is meant by a type 1 colouring. A colouring {V,,V2, - - V,) is said to  be 
type1 if, for all z € V;. and all j < i ,  {V, ,.... U {z} ,..., V;. -{z} ,... V,} is an 
improper colouring. In other words, no element can be moved to a “lower” 
colour class. 
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Theorem 4.13 [C4]: Given a design D=(V,B) with complete type 1 colourings 
of orders m and n (m <n), one can obtain a complete type 1 colouring for each 
order p,  m <p <n. 

Proof 
Let Q={QI, * * * Q,} and R = { R l ,  ..., R,} be the complete type 1 colourings 

of order m and n,  respectively. Now consider the partitioning 
Q1= {RllQ *- RlrQ2-RI1 * * Q,-Rl}. This is a type 1 complete colouring of 
V, using a t  most m + l  colours. Similarly, Q2=(RI,Rt,Ql-Rl-R2, 

* - Q,-R1-R2}.  Repeating this process, we obtain a sequence of type 1 
complete colourings of V: Q,Q1,Q2, ...,Q" =R. The number of colours employed 
in 9''' is either the number of colours employed in Q' or one more. 

In fact, Cockayne, Miller and Prins [C4] prove a more general result 
regarding the existence of colourings; f i t  we require some further definitions. 

Instead of asking what is the least number of colours required to colour the 
elements of a design, one could examine the achromatic number of a design. 
Given a t-B[k,X;u] design D consider a n-colouring i.e. a partition of the 
elements into disjoint sets Vl ,  V2, ... V, such that each V;. is an independent set 
of D .  That is to say that for all i ,  no k elements of V;. constitute a block. 
Furthermore, for each pair of distinct sets V;., Vj, U Vj is not an independent 
set. The achromatic 'number of D ,  denoted S ( D ) ,  is the largest n such that D 
can be n-coloured according to the above conditions. Deciding whether a graph 
is k-achromatic is NP-complete (G4j. The complexity of deciding whether a 
design is k-achromatic is not known. 
Theorem 4.14 [C4]: Given a design D ,  there exists a complete n-colouring for 
all n, x(D)SnSS(D). 

Sketch of Proof 
The proof is based on three observations and is again algorithmic in nature: 

(1) Theorem 4.13 above. 

(2) Given the lLsmallestll colouring e.g. one with x(D) colours, one can 
obtain a colouring. of the same size, which in addition to being complete, 
is also a type 1 colouring. 

(3) Given a n-colouring which is complete (but not type l ) ,  one can 
produce a type 1 (and hence complete) n-colouring or a complete n- l -  
colouring. 
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Neietiil, Phelps and Rodl [Nl] examined the achromatic number of STS 
and partial STS. In fact, the paper includes an algorithm for colouring a STS(u) 
with a t  least c f i  coIours, obtaining a complete colouring. In order to establish 
this result, Ndetiil, Phelps and Rodl establish that any partial STS(n) with a t  
least cn2 blocks contains an induced subgraph which is quite dense (i.e. a set of 
blocks such that every element is contained in a t  least cn/lO blocks. The 
algorithm provided identifies this dense subgraph in polynomial time. Next, 
they present an algorithm which will employ at least CG colours to  colour the 
subgraph. The algorithms will require a t  most a polynomial number of 
iterations; however, the maximum time required for an arbitrary iteration is 
unclear. It would be interesting to determine the time bound for this algorithm 
and/or establish a polynomial algorithm to produce colouring which require a 
large number of colours. No such algorithmic results have been established for 
other families of block designs. 

The problems of colouring designs, locating independent sets, and 
determining subdesigns are related. One can think of any proper n-colouring as 
a partitioning of V into n disjoint independent sets, and independent sets can be 
viewed as the opposite of subdesigns. Independent sets in STS have been studied 
by de Brandes and Rodl p2] .  Despite the correspondence, the complexity of 
deciding whether a block design has an independent set of size at least k is 
unknown. The corresponding problem for graphs is NP-complete [G4]. 

The polynomial time algorithm for recognizing 2-chromatic SQS presented 
in lC2OJ is also an algorithm for deciding if a SQS of order 2n has a maximum 
independent set of size n , which is the largest possible pa]. 

Another related problem is establishing the size of a design’s smallest 
dominating set. Given a design D=(V,B),  a subset V‘ E V is a dominating set 
if for all b € B ,  there exists u € b such that u € V’. Again the corresponding 
problem for graphs is NP-complete [G4]. Domination in designs seems not to 
have been studied. 

4.2 Colourhg Blocks 

So far, we have examined probtems associated with the colouring of a block 
design’s elements. Alternatively, one can assign colours to blocks. In a block- 
colouring, a colour class is a set of pairwise disjoint blocks. In the design of 
experiments where each block corresponds to a ‘test’, we can view disjoint blocks 
as tests which can be carried out simultaneously. A n-block colouring is a 
partition of the blocks into n colour classes; the chromatic indes is the least n 
for which such a colouring exists. In our example, the chromatic index is 
precisely the time required for the entire experiment. Designs and related 
systems have been employed in the scheduling of tournaments [K4, M14, S1, 
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MI0 and references therein]. The same analogy holds; the chromatic index 
corresponds to the least number of rounds. Designs with small chromatic index 
have been studied under the guise of resolvable or nearly resolvable designs (for 
example, see PS, R2 and references therein]). We address the topic of 
resolvability later. 

In the case of simple graphs, Vizing’s Theorem p3] guarantees that the 
chromatic index is either 6 or 6+1, where 6 is the maximum vertex degree. 
Arjomandi [A41 gives a clever polynomial-the method for constructing a 
(6+ 1)-colouring. Nonetheless, in 1981 Holyer P12] proved that deciding 
whether the chromatic index of a graph is 6 or 6+1 is NP-complete. Similar 
results are lacking for designs. 

The majority of research concerning the chromatic index of designs has 
focussed on Steiner 2-designs, particularly STS. One question of interest is: 
what is the upper bound on the chromatic index? For Steiner 2-designs, a 
relatively weak bound is obtained from Brooks’ Theorem p11] which guarantees 
that the chromatic number of the design’s block intersection graph (and hence 
the chromatic index of the design) is a t  most - . One reason to suspect that 

this bound is quite weak is that a conjecture of Erdos, Faber and Lovllsz p2 ]  
would ensure an upper bound of u. In fact, in the case of cyclic Steiner 2- 
designs, it has been shown that the chromatic index is a t  most u [C13]. 

As far as algorithmic results are concerned, less is known for designs than 
in the corresponding graph case. The complexity of computing the chromatic 
index is unknown; the current best method involves backtracking which could 
require an exponential amount of time. Instead of employing a backtrack, a 
depth-first branch-and-bound algorithm could be implemented, in which one 
chooses the most promising partial colouring to  extend (instead of simply trying 
to extend the most recent). Although such an algorithm is still exhaustive, in 
general its running time should prove faster than the traditional backtracking 
algorithm. C. Colbourn [C?] has implemented sgch an algorithm and tested its 
performance on the eighty STS( 15). 

To develop such an algorithm, one must first define what one means by 
‘promising’ partial colouring. A partial colouring leading to an optimal 
colouring might be expected to have few colours and many blocks; at the very 
least, it should not have many colours and few blocks. With this in mind, we 
define the priority of a partial colouring to be p - uc, where p is the number of 
blocks in the partial colouring, and c is the number of colours. 

The branch-and-bound algorithm starts with all blocks uncoloured; at any 
stage, it maintains a priority queue of partial colourings which are candidates 
for extension. A partial colouring of highest priority is removed from the queue. 

k-1 
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Each of the partial colourings resulting from extending this partial colouring is 
added to the priority queue. 

Two simple heuristics prove quite useful in improving this basic method. 
The first involves the elimination of solutions using too many colours, as follows. 
The priority of a colouring is largely determined by the number of blocks in it; 
this gives the algorithm a tendency to complete colouring early. Once we have 
completed a colouring, we can ignore all partial colourings using as many or 
more colours. This preserves the major advantage of a depth-first approach. 

Once a partial colouring is selected to be extended, a second heuristic is 
employed to further limit the computational effort. To extend a partial 
colouring, select an uncoloured block, and try colouring it with each available 
colour in turn, including assigning it a new colour. For a given block, there will 
be certain colours which it cannot be assigned. Having selected a partial 
colouring, we are still free to select any uncoloured block to perform the 
extension. The second heuristic is to select a block which can be assigned the 
fewest number of colours. The goal here is to limit the number of partial 
colourings considered. 

Although this algorithm could theoretically require an exponential amount 
of time (from what we know so far), it has performed well in practice [C7]. 

Because there is no known polynomial time algorithm for computing the 
chromatic index, one must instead investigate algorithms which are guaranteed 
to run in polynomial time but which may only give approximate answers. Two 
general classes of algorithms for approximating the chromatic index were 
studied in [ClS]: greedy methods and hill-climbing methods. 

One very simple approach is a block-by-block greedy algorithm. Initially, 
no blocks are coloured. The blocks are coloured one a t  a time. For convenience, 
let the different colours be represented by integers; when colouring a block the 
least possible integer is assigned such that the resulting colour class still contains 
disjoint blocks. 

Alternatively, a greedy algorithm could proceed colour-by-colour. Having 
selected i colour classes, we select the ( i  + l)sl by taking a maximal colour class 
from among the remaining uncoloured blocks. By mozimal we mean: 

(1) every uncoloured block intersects the colour class 
(2) there is no block whose deletion from the colour class enables the 
simultaneous addition of two uncoloured blocks. 

Clearly, the first colour is assigned to the largest set of mutually disjoint blocks 
(i.e. a partial parallel class). Therefore, we know that this first colour class must 
contain a t  least (u- 1)/4 blocks LlO]. 
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Both greedy algorithms can be improved by introducing some simple 
heuristics and hence hill-climbing from the current colouring to a better or 
morepromising colouring. Obviously, the block-by block greedy method is 
highly sensitive to the order in which the blocks are presented. Therefore, one 
heuristic is to check to see if ever the blocks of a colour class can be distributed. 
A second heuristic operates as follows. If there are two blocks 6 with colour i 
and d with colour j ,  which can be recoloured so that 6 has colour j and d has 
colour k, and if in so doing the vector of colour class sizes is lexicographically 
increased, we do so. 

These two simple heuristics improve the performance of both greedy 
methods. If one selects the best colouring from the two resultant methods, the 
colouring produced for each of the eighty STS( 15) is close to optimal. This can 
be seen in the table below, which gives the number of STS(15) coloured with 
7,8,9 and 10 colours. 

Chromatic Index Size of Best Colouring Obtained 
7 8 9 10 

7 2 0 2 0 
8 0 13 0 
9 50 13 

As in the case of graphs [H51, one could also consider the achromatic indez 
of a design; the maximum number of colours that could be required in a block- 
colouring. Again, the complexity of determining the achromatic index is 
unknown. An obvious greedy algorithm for obtaining a block colouring which 
may require many colours is as follows. Initially, assign each block a different 
colour. Then join together any two disjoint colour classes, and hence eliminate 
a colour. Continue to do so until no pair of disjoint colour classes exists. 

4.S Nemting Block Designs 

One problem which is a special case of block colouring is nesting. A 
nesting for a triple system B(3,X;uI (V,B) is an assignment to each block 6 €f? of 
an element e(b)€V,  such that adjoining 4 6 )  to  6 for each block b produces a 
block design with block size 4. It is a simple matter to verify that nesting a 
B[3,X;u] produces a B[4,2X;u], and hence that nested triple systems can only exist 
when X(u-1)mO (mod 6), u Z 4 .  Several researchers have examined nested 
designs and related configuration; for example, see [Cl?, L12, L14, Ll5, L18, 
MQ, M16, N2, S71. 

First let us examine the case when X=l;  a nested STS can only exist for 
u-1 (mod 6). Some of the work regarding nesting STS has actually concerned 
nesting cyclic STS. A cyclic STS has a cgclic nesting if each starter block can 
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be assigned a fourth element to produce starter blocks for a B[4,2;u] design. 
The following condition on a set of starter blocks for a STS is equivalent t o  the 
existence of a cyclic nesting: the starter blocks can be chosen so that each 
element i or its complement u - i appears in exactly one starter block. 

This equivalence allows us to  state a conjecture of Nov6k “21: every cyclic 
STS of order 6t + 1 has a cyclic nesting. NovSk verified this conjecture for t 5 5 .  
Little work has been done to  address Novdk’s conjecture. Longyear L14] notes, 
however, tbat  Bose’s construction p14) for cyclic triple systems yields a cyclic 
nesting for a cyclic STS for every order u where u is a prime or prime power. 

Another generalization of nested STS has been studied by Mendelsohn P S I .  
A perpendicular array of triple systems of order v ,  denoted PATS(u), is a 
u(u - 1)/6 by 4 array. When any column is omitted, the result is a STS. Note 
that every column, therefore, forms a nesting for the STS which remains. 
Mendelsohn P 9 ]  shows asymptotic closure for the existence of PATS(u), 
thereby producing nested STS for every admissible order with finitely many 
exceptions. This closure is obtained by employing a direct product and PBD 
closure for PATS; both of these extend trivially to nested triple systems. 

Other constructions for nested triple systems can be obtained by noting the 
relation between nested triple systems and perpendicular arrays. A 
perpendicular array of order n and depth 8 is a n(n - l y 2  by s arrayl denoted 
PA(n,s); every two columns contain each unordered pair of an n-set exactly 
once. A nested triple system of order u produces a PA(u,4), as follows. When 
block ( i l j , k )  has nesting element I ,  include the rows (i , j ,k, l) ,  (k l i l j , l )  and 
(jl&,ill) in the PA. The resulting PA(u14) is invariant under the column 
permutation (123)(4); this is the conjugate invariant subgroup of the PA. 
Mullin, Schellenberg, van Rees, and Vanstone [MIS] give a singular indirect 
product for PA(u,4); this product preserves the conjugate invariant subgroup, 
and hence, provides a singular indirect product for nested triple systems. 

Longyear [LM] and Stinson IS?] take a different approach to the 
construction of nested designs by examining nested group divisible designs. A 
group -divisible design (GDD) is a triple (X,G,A), where X is a set of points, 
C is a partition of X into subsets (called groups), and A is a set of subsets of X 
(blocks), such that a group and a block contain at most one common point, and 
any two points from distinct groups occur in a unique block. A GDD with block 
size 3 is said to  be nested if one can adjoin a fourth point to  each block, so that 
every pair from distinct groups occurs in two blocks. Through his examination 
of GDD, Stinson has managed to  prove that 
Theorem 4.15 (S7]: There is a nested STS if and only if u-1 (mod 6). 
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Proof: 
The condition urn1 (mod 6) is necessary. As nested designs of prime power 

orders are known to exist, nested STS(u) for u = 7, 13, 19, and 37 can be 
assumed. For any other u-1 (mod 6), add one new point to  a GDD, replacing 
each group by a nested STS(7) on the six points in the group and the new point. 

To complete the proof, Stinson needed to determine the existence of the 
necessary GDD. This was accomplished via Wilson’s Fundamental Construction 
for GDD p 2 ,  W3, W4], establishing the following result: 
Theorem 4.16 [S7]: If u=O (mod 6), ~ 2 2 4 ,  u#36, there is a nested GDD with 
groups of size 6 and blocks of size 3. 

In the case when X=O (mod 6), self-orthogonal Latin squares are used to 
construct nestings; when A-3 (mod 6), Room squares are used and when X=2,4 
(mod 6), almost resolvable twofold triple systems are used. Combining these 
various constructions together, it is possible to show: 

Theorem 4.17: Nested triple systems B[3,X;u] exist whenever X(u- l ) = O  (mod 6), 
u 2 4 .  

6. Resolvability of Block Designs 
Many researchers have examined the existence of resolvable designs; here, 

we examine some of the algorithmic issues which arise when discussing partial 
parallel classes (PPC) and resolvability. First, let us recast the problem in a 
different setting. 

A PPC is simply a collection of mutually disjoint blocks of the design. Now 
instead, look a t  the block intersection graph; two vertices are adjacent if their 
corresponding blocks share at least one element in common. Therefore, a PPC 
in the design corresponds to an independent set in the block intersection graph; 
hence, determining whether a design is resolvable involves finding a partition 
into maximum independent sets. However, it .is well-known that finding the 
maximum independent set of a graph is NP-complete [G4]. If one views the task 
in terms of hypergraphs, a PPC has also been termed a matching. 

Although the complexity of determining whether or not a design is 
resolvable is unknown, the problem is likely to be NP-complete. Therefore, it is 
unlikely that there exists an efficient algorithm for determining the resolutions 
of a design. The usual approach is to employ a backtracking algorithm to 
determine all of the design’s parallel classes and then attempt to piece these 
classes together (again via backtracking) to form a resolution. 
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Perhaps we can hope for some improvement in a restricted class of designs. 
For example, consider a Steiner 2-design; the block intersection graph of a 
Steiner 2-design is a strongly regular graph, i.e. each pair of adjacent vertices 
has  the same number of common neighbours and each pair of non-adjacent 
vertices has the same number of common neighbours. The converse is also true; 
for sufficiently large u, strongly regular graphs with the appropriate parameter 
sets, are block intersection graphs of some S(2,k,u) [p5]. Unfortunately, the 
complexity of finding a maximum independent set in a strongly regular graph is 
unknown. 

The majority of research concerning the resolvability of designs has 
focussed upon triple systems. It is well-known that resolvable or Kirkman triple 
systems (KTS) exist for all orders u-3 (mod 6) [R2]. In the case u-1 (mod 6), 
a parallel class is, of course, impossible. However, one can hope to  partition the 
system to form a nearly Kirkman triple system. In either case, one is forming a 
collection of PC or PPC of size u/3 when u-3 (mod 6) or (u-1)/3 for u-1 
(mod 6). Of course, it is not always possible to form a PPC which is this large. 
Hence, an obvious question is "Given a STS(u), what is the size of the largest 
PPC?" 

Several researchers have established lower bounds in an attempt to answer 
this question [Bl?, LlO, P4, P5, WS]. Let t-r[k,X;u] be the largest number 
such that every f-B[k,X;v] design has a PPC containing t -n[k,X;u] blocks. 
Lindner and Phelps PlO] proved that 
Theorem 5.1 [LlO): t -n[t  + l , l ;u]Z(u-  t + l)/(t +2), where u2t '+3t3+t2+ 1. 

Woolbright [W5] has since improved the bound; 
k2+2k+l  - + l,l;u12 ( k2+ 211. + ) (&I - ( 2 ~ - 5 k 2 +  Sk - 

An interesting corollary of Theorem 5.1 is 
Corollary 5.2 [LlO]: 3-r[4,l;u]Z(u-2)/5 for all ~ 2 1 7 2 .  

A similar corollary was established for STS with a few small possible exceptions 
which were recently settled by Lo Faro to establish: 
Theorem 5.3 [LlO, L13]: 2- r[3,1;u]2(u- 1)/4 for all uk9.  

Brouwer has recently established an asymptotic bound for STS regarding 
tho size of the maximum PPC. Given a STS(u), let r be a maximum PPC. 
Hence, there are r = u -3) elements which do not occur in this PPC. We wish 
to bound r. 
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Theorem 5.4 [Bl?]: Given a STS(u), r<5uW3, where r is the number of 
elements not contained in a maximum PPC. 

Brouwer also establishes the same asymptotic bound r=O(uY3) for SQS. We do 
not include the proofs here, although they are algorithmic in nature. 

So far, we have examined only lower bounds on the size of a maximum 
PPC. However, what is the upper bound on t-r[k,X;u]? This question has been 
posed by Phelps [pa] and probably others; can one construct STS(u), for v 
sufficiently large such that the STS does not contain a PPC with more than 
(u-e)/3 blocks for some e 2 4 ?  At the moment, it is not known whether there 
exists an STS(u) without a PC for each admissible value of u. 

Other bounds have been established for the more general case of partial 
triple systems (PTS). A PTS is a simple 3-uniform hypergraph; simple means 
that every pair is contained in a t  most one triple. Consider the case where the 
PTS is maximal; in other words, the addition of any triple will cause some pair 
to occur in more than one triple. If one is trying to  determine the size of the 
maximum PPC in a maximal PTS, this is equivalent to finding the size of the 
largest maximal matching in a maximal 3-uniform hypergraph. Working in 
terms of hypergraph, Phelps [P8] established that 
Theorem 5.5 P8]: Every maximal simple 3-uniform hypergraph with n vertices 
contains a matching of size n112. 

Other researchers have examined the enumeration of resolvable designs. 
For example, the following enumerations have determined, in addition to other 
properties, which of the generated designs are resolvable: B[3,2;9] designs MS), 
B[3,2;10j designs with repeated blocks [Gl, GZ], STS(21) with particular 
automorphism groups (M5). In the case of MTS (for example, see [Gl, G2]), the 
number of resolutions is simply the number of distinct resolutions of the 
underlying B[3,2;u] times 2=, where z is the number of repeated blocks in the 
design. I t  appears that the problem has not been examined for related class of 
DTS. 

A related study p 7 ]  concerns the enumeration of 1-factorizations of the 
complete &uniform Q-vertex hypergraph; to restrict the task to a manageable 
size, only 1-factorizations with automorphism groups of size greater than 4 
were considered. This study also includes an examination of some 
indecomposable and resolvable NB[3,X;u] designs (i.e. no repeated blocks). 
Consider a resolvable B[S,X;u]; it is said to be R-decompoeabk if a t  least one of 
its resolutions contains a resolution of a subdesign B[3,X';u] with O<X'<X; 
otherwise the design is R-indecompoeable. It is well-known that any resolvable 
B[3,2;9] is R-decomposable p 6 ] ;  this is not true for B[3,3;9] p 7 ] .  In the case of 
B[3,3;9], any R-indecomposable design is also indecomposable p 7 ] ;  this is not 
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the case for X>3. 

Another enumeration study, that of cyclic SQS(20), is of interest here 
because Phelps [FT] recasts the enumeration problem in terms of perfect 
matchings in hypergraphs. Consider a cyclic SQS(u); associated with each 
quadruple ( i  , j , k , l )  is a difference quadruple < j -  i ,k - j , l  - k, i  - I >, where the 
differences are taken mod u. The four 3-element subsets of a quadruple will give 
rise to  four (not necessarily distinct) difference triples; these in turn characterize 
the orbit of the quadruple. Two quadruples will be in the same orbit (e.g. 
generated from the same base block) if and only if they have equivalent 
difference triples; two difference triples are equivalent if they are the same up to  
a cyclic reordering. Hence, there are three ways of characterizing the orbits of a 
cyclic SQS(u): one can choose a quadruple from each orbit or associate with 
each orbit s difference quadruple or a set of difference triples. 

If one considers the difference triples to be the vertices of a hypergraph, the 
edges then correspond to the different orbits. Then a cyclic SQS(u) is equivalent 
to a 1-factor or perfect matching in this hypergraph. Using this setting, Phelps 
[P7] enumerated all cyclic SQS(20). 

First consider all valid orbits of quadruples of Zz0. Let X be the set of all 
possible difference triples mod 20. Then to  each valid orbit, assign the 
appropriate subset of X. Let E denote the collection of these subsets of X ;  
hence, [ E , X )  is a hypergraph. if one locates a 1-factor in ( E , X ) ,  then one has 
determined a set of edges such that every difference triple occurs exactly once in 
this set. Hence, the union of the corresponding orbits will be a cyclic SQS(2O) 
since every triple will occur exactly once in this set of quadruples. 

A brute-force search to locate 1-factors in (E,X) is, of course, undesirable. 
Instead, one employs the automorphism group to  restrict the search. For 
example, having found all 1-factors that contain a particular edge, one can 
eliminate that edge and all edges in its orbit. Similarly, having found a 
particular partial 1-factor, the subgroup of these sutomorphisms that fixes this 
partial 1-factor can be employed to  simplify the search. 

The search can also be restricted by insisting upon the inclusion of a 
particular difference quadruple and hence set of difference triples. This is the 
case with cyclic SQS(20) which all contain a particular base block which 
corresponds to the difference triple (5,5,10). Therefore, this difference triple can 
be removed from the hypergraph along with all edges incident to  it. Working in 
this reduced hypergraph, Phelps located all 1-factors via a simple backtracking 
algorithm; for details see [FT]. For other applications of this approach, again 
concerning cyclic SQS, see [ClS, CZS]. 
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One interesting question regarding resolvable combinatorial configurations 
concerns orthogonal resolutions. For example, given a block design along with a 
particular resolution, can one determine a second resolution which is orthogonal 
to the first? In particular, a Kirkman system B[k,l;u] is doubly resofva6fe if the 
blocks can be resolved into two resolutions R, and R2 such that any resolution 
class from R, has a t  most one block in common with any resolution class from 
R2. Similarly, doubly resolvable nearly Kirkman systems can be defined. 

Room squares are examples of doubly resolvable Kirkman systems with 
&=2.  Many researchers have examined Room squares; for example, see p 1 8 ,  
M19, R8, RQ, S3]. Mathon and Vanstone w8) constructed the first examples of 
doubly resofuabfe Kirkman systems with k Z 3 ;  in fact, they established the 
existence of infinite families of such designs. There are now a variety of 
construction techniques for doubly resolvable Kirkman systems and related 
combinatorial configurations; for example, see [D7, F2, F3, M8, V2]. Another 
generalization of Room squares, which has recently been examined, allows for 
each symbol to appear u times in each row and column of the array (L2, L31. 
Furthermore, the construction of doubly resolvable designs has been greatly 
facilitated by a related combinatorial object called a jrame [C27, M17]. 

Another resolvability problem worthy of note is that of resolving complete 
block designs. Baranyai [B4, Cl] established that if h l n  then the h-element 

subsets of an n-element set can be partitioned into - classes so that every 

class contains n/h disjoint h-element sets and every h-element set appears in 
exactly one class. In other words, if kl u, a complete block design can be 
resolved. 

0 

6. Deeompoelng Block Dealgns 
Considering a t-B[k,X;u] design, one means of constructing such designs is 

to take the union of a I-B[k, A,; u] design and a I-B[k, X2; v] design where X = 
A, + A,. An obvious question is whether there are t-B[k,X;u] designs which 
cannot be expressed in this way. Such systems are referred to as 
indecomposabfe or irreducible designs; for a recent survey, see [SQ]. Kramer 
w7] demonstrated the existence of indecomposable B[3,2;u] and B[3,3;u] designs. 
Moreover, he showed that for X=2 determining whether a design is 
decomposable can be carried out efficiently, i.e. in polynomial time. To do this, 
one constructs a block intersection graph in which adjacency of blocks denotes a 
shared pair of elements. This graph is bipartite if and only if the BIk,2;u] is 
decomposable. Determining whether a graph is bipartite can be done in Linear 
time [All. Kramer IK7] also observes that "the determination of 
indecomposability appears generally to be a difficult problem". 
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In IC14, C18], it is proved that deciding whether a B[3,3;u) is decomposable 
is NP-complete, and hence unlikely to have any efficient solution. NP- 
completeness is established by reducing the completion problem for commutative 
Latin squares, which has recently been shown to be NP-complete [C6, CS], to 
decomposability. We follow the proof given in [Clrl]. 

Given a t-regular n-vertex graph G, a Latin backpround for G, denoted 
LB(G;m,8] is an 8 x 8 symmetric array with elements chosen from {1,2,...m}. 
Each diagonal entry contains the element rn. In the first n rows, each position 
is either empty, or contains a single element from the set {r+ l ,  ..., m}. In the 
latter 8-n rows, each position contains a single element of the set {1,2, ... m}. 
Each element appears a t  most once in each row (and symmetrically, each 
column). Finally, the pattern of empty squares forms an adjacency matrix for 
the graph G -- hence the term background. 

In [CS, CS], Cruse’s embedding technique for partial commutative Latin 
squares (C41j is adapted to show that 
Theorem 6.1 [C6, CS]: For each rZO and each r-regular n-vertex graph G, there 
is a Latin background LBIG;m,m] for every even rn22n .  Furlhermore, one can 
be produced in time bounded by a polynomial in m.  

Latin backgrounds are partial commutative Latin squares. In fact, a Latin 
background for a r-regular graph G can be completed (with no additional rows 
and columns) to a Latin square if and only if G is r-edge-colourable. Holyer 
[HlZ] has shown that deciding whether an arbitrary cubic graph is &edge- 
colourable is NP-complete, and Leven and Galil [L4] have generalized this result 
to t-edge-colourability for all f i e d  r23. Latin backgrounds are used to  
translate these graph theoretic results into the domain of combinatorial design 
theory. 
Theorem 6.2 [C14]: Deciding whether an NB[B,X;u] design contains a B[3,l;u) 
design is NP-complete. 
Proof 

Membership in NP is immediate -- a nondeterministically chosen sub- 
B[3,l;u] can easily be verified in polynomial time. To show completeness, we 
reduce the known NP-complete problem of t-edge-colourability of r-regular 
graphs to our problem. Given an arbitrary n-vertex r-regular graph G, we f i t  
determine a size for a Latin background for G. When 2n - 1=1,3(mod6), we set 
u = 2n - 1; otherwise we set u =  2n + 1. Using theorem 6.1, we next construct a 
Latin background LB[G;u+ l ,u+  11 called L; we do this in polynomial time. We 
produce r disjoint Latin backgrounds L,, ...., L, by repeatedly applying the 
permutation (1 2 ... t) ( t + l ,  ... u) (u+ l )  to the elements of L. 
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Using these Latin backgrounds, we construct an NB[3,r;2u+ 11 block design 
with elements {zl, ...., z,,, yl ,  ..., v,,+~}. The blocks are as follows: 

(1) On the elements {zl, ..., z,,}, place r disjoint Steiner triple systems. 
Such systems exist (at least) for all u>12r, u-1,3 (mod 6). 
(2) Let l S i < j S u + l  and let the ( i , j )  entry of one of the Latin 
backgrounds be k. Include the block (q, gi, yj}. 
(3) Let 1Si < j S u +  1 and let the ( i , j )  entry of the Latin background L 
be empty. Include the blocks (21, yi, yj}, (22, yi, yj}, and {za, yi, yj} 
each once. 

That the set of triples so defined forms an NB[3,r;2u+ 11 is easily verified, 
and this design is constructed in polynomial time. To establish NP- 
completeness, then, we need only show that the block design D has a sub- 
B[3,1;2u + 11 if and only if G is r-edge-colourable; further, this depends only on 
the triples of type (3) above. 

Suppose we have an r-edgecolouring of G. To find a sub-B[3,1;2u+ 11, we 
include the triples {{zk, yi, yj} I {yi, gj} has colour A}. Together with one of 
each of the disjoint Steiner triple systems, and the triples arising from one of the 
disjoint Latin backgrounds, this constructs a B[3,1;2u+ 11. 

In the other direction, suppose D has a B[3,1;2w+l]. In this B[3,1;2u+1], 
the pairs appearing with z1 (similarly, with z2 and so on) form a 1-factor of G. 
Moreover, these 1-factors are all disjoint, and hence cover all edges of G. Since 
there are r disjoint 1-factors, and (tv)/2 edges in a r-regular graph, the 1- 
factors comprise a r-edge-colouring of G, as required. 

Theorem 6.2 shows that deciding decomposability of NB[3,3;u] designs is 
NP-complete. However, it does not establish this for any X24. The theorem 
can be generalized to establish that deciding whether a BI3,X;uj design contains 
a B[3,l;u] design is NP-complete. Now consider the case X=4; an NB[3,4;u] 
may decompose into two NB[3,2;u] designs. Therefore, theorem 6.2 does not 
establish that determining whether a B[3,4;u) design is decomposable is NP- 
complete; although this is the case [C14]. 

Note that a design NB[3,X;u] constructed by the process in Theorem 6.2 
contains a NB[3,Xprime;u] if and only if the original X-regular graph contains a 
1'-factor. Konig p 6 ]  has shown that whenever X is odd, there are X-regular 
graphs containing no regular factors. Applying the construction in Theorem 6.2 
to these graphs produces indecomposable NB[3,X;u] designs for every odd A. 
Together with the constructions in [C31], this yields many infinite families of 
indecomposable triple systems with arbitrary odd X. 
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For even X the construction does not have such immediate applicability. 
Petersen [P2] has shown that every regular graph of even degree can be edge- 
partitioned into 2-factors; thus, all designs with even X produced by this 
construction will be decomposable. 

Although decomposing block designs appears to be a difficult problem, 
perhaps its correspondence with graph edge-colouring problem can be exploited 
in order to develop a heuristic algorithm. Given a B[3,3;u] design, consider the 
pairs which appear with a given element 2 .  These pairs form a multigraph. A 
decomposition of the original triple system into three STS produces a 3- 
colouring of the edges of the multigraph. Therefore, a necessary condition is 
that the multigraphs associated with each of the u elements must be 3-edge 
colourable. More generally, if a given B[3,X;u] design to be decomposed into n 
designs with X = XI + X2 + ... + A,, one must be able to partition each 
multigraph into a X,-factor, a X2-factor, ... and a A,-factor. It is important to 
note that this condition is not sufficient. Consider a B[3,4;10] in which each of 
the 10 multigraphs has 9 vertices of degree 4. Therefore, Petersen’s Theorem 
[P2] guarantees the existence of a 2-factor in each of these multigraphs. Yet it 
is known that there exists a B[3,4;10] design which cannot be decomposed [C31]. 

7. Embedding and Completing Block Designs 

Our intent here is not to provide a comprehensive survey of embedding 
results, although most embedding and completing results are constructive and 
hence algorithmic in nature. For an excellent survey concerning embedding 
results for Steiner systems, the reader should consult [MI. 

First, it is important to note that there exist partial designs which cannot 
be completed; that is, there is no set of blocks which can be added to the partial 
design such that a design is created on the same element set. An obvious 
example is the set of triples ((1 2 3) (4 5 8)); it is impossible to complete this set 
of triples to a STS since 6 # 1 or 3 (mod 6). 

Since not all partial designs can be completed, one might ask whether there 
exist partial designs which cannot be embedded. When one is embedding a 
partial design, one is allowed to increase the number of elements. In 1971, 
Treash IT31 proved that every partial STS can be finitely embedded in an STS; 
unfortunately, the containing system is exponentially larger than the initial 
partial system. However, this need not be the case. Lindner p] proved that a 
partial STS( u) can be embedded in an STS( w)  for any w Z 6u + 1, and of course 
w=l,3 (mod 6). Andersen, Hilton and Mendelsohn [A21 improved the bound to 
w 2 4 u + l .  Finally, Lindner [L9] has conjectured that the result can be 
improved to w 2 2 u +  1, which is the best possible (if true). 
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Of course, given a particular STS, it may be possible to embed it into a 
system with fewer than 2 u + l  elements; in particular, it may be possible to 
complete the system. One question one might ask is "Can one easily determine 
the minimal number of elements required to embed a particular STS?". The 
answer appears to be no. In fact, a good characterization of those partial STS 
having very small embeddings is quite unlikely. 
Theorem 7.1 [CS]: Deciding whether a partial STS(u) can be embedded in an 
STS ( w )  for some wS2u-  1 is NP-complete. 
Proof 

Membership in NP is immediate. To establish completeness, start with an 
arbitrary cubic n-vertex graph C ,  and construct both an IB(C;2n - 1,2n - 1) 
and an IB(G;tn+1,2n+l).  From a Latin background B(C;m,m), one can 
construct an idempotent Latin background IB(G;m - 1,m - 1) by placing the 
elements of the last row (column) along the diagonal, thereby eliminating the 
last row, the last column, and the last element. Then, simultaneously, 
interchange pairs of rows and pairs of columns, to place i in square ( i , i ) .  Recall 
from Theorem 6.1 that one can construct the appropriate Latin backgrounds in 
polynomial time and, therefore, the desired idempotent Latin backgrounds. 

Either 2 n + 1  or 2n-1 is the order of a STS; let u denote which one is. 
Then construct a partial STS(2u+1) with elements {zl ,..., z,,yl ,..., yv,,z}. On the 
{zi} place the blocks of a STS(u). Next include the blocks {(z,zi,yi) I 1 5 i 5 u ) .  
Finally, whenever the ( i , j )  position of the IB(G;u,u) is not empty, but rather 
contains an element k, we include the block (yi,yj,q). Since IB(C;u,u) is 
idempotent, k # i  and k# j .  

This partial system S can be completed if and only if 6' is 3-edge- 
colourable. Moreover, if S cannot be completed, a t  least one additional element 
e not in S must be added to complete it. This element must appear in triples 
with each element of S. In particular, e appears in triples with each element of 
{zl, ...., z,,,~}. Each such triple requires a new element, not in S, since all pairs 
involving such an element with another element of S are already covered. Thus, 
the completion of S requires a t  least u + 2  additional elements. This is not all, 
however. 

In a completion of S, each of the u+2 additional elements may appear with 
some "edges" of the cubic graph C. Consider such an additional element which 
appears with the fewest edges of G. Here C has 3n12 edges, where nS(u+l)/2.  
There are a t  least u + 2  additional elements. Thus, aome element f appears 
with no edges of C. Every triple containing f involves at most one element of 
S. Thus, a t  least 2u+2 additional elements (including f) are required. Hence, 
S cannot be completed in fewer than 4u+3 elements. 
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Instead of examining the embedding of partial STS, one might wish to 
know whether a particular STS is contained in a larger design as a subdesign. If 
the containing design has the same number of elements (but larger A), one is 
asking whether the larger design is decomposable. If, however, A is kept 
constant, one is asking an embedding question. For any STS (V,B), and 
contained subdesign (V' ,B' ), I Vlh21  V' I + 1. However, given an arbitrary STS 
(V,B)  can one guarantee that there exists a STS(2l Vl +1) which contains (V,B) 
as a subsystem? The answer is yes. 
Theorem 7.2 [DlO]: Any STS(u) can always be embedded in a STs(u) for every 
u r 2 u + 1 .  

If one does not restrict X to 1, there are several appropriate embedding 
results for triple systems. For partial triple systems, finite embeddings are 
known for every X [Lll]. In the case of even A, embeddings exist for which the 
size of the containing system is quadratic in the size of the partial system [C241; 
for A-2, this can be improved to  linear m4]. Both results rely on the fact that 
every triple system with even X can be transformed into a DTS [C26]. Avoiding 
this preprocessing, linear embeddings can be obtained for triple systems with any 

Many embedding results for block designs depend on embedding techniques 
for Latin squares and similar algebraic configurations. Therefore, of particular 
note is the fact that completing (not necessariIy commutative) partial Latin 
squares is NP-complete [CS]. 

X [C23]. 

8. Orienting and Directing Block Designs 

8.1 Orienting Block Designs 

So far we have only examined designs in which the blocks are unordered k- 
subsets. Instead, one could =sign an ordering to each block and require that 
each ordered t-tuple appear exactly A t h e s .  For example, a M e n d e l e o h  triple 
system of order u, denoted MTS(u), is a collection of triples such that every 
ordered pair appears exactly once. Each triple (a 6 c)  is considered to contain 
the ordered pairs (a b )  (6 c )  and (c a). Given a MTS(u), ignoring the ordering 
produces a B[3,2;uI. The converse is not necessarily true; for each admissible u, 
there exists a B[3,2;u] design which cannot be oriented to produce a MTS(u) 
[BS]. In fact, one can efficiently determine whether a B[3,2;u] design can be 
oriented; the algorithm is implicit in Mendelsohn's initial paper concerning these 
designs [Ml 11. 

The algorithm can also be presented in terms of 2-CNF Satisfiability, a 
problem which is well-known to computer scientists. The problem is as follows: 
one is given a set of variables (I and a set of clauses over (I. Each clause is the 
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disjunction of two literals; a literal is either a variable or its negation. Hence, a 
clause is satislied by a truth assignment if and only if at least one of its 
members is true under that assignment. The collection C of clauses is satisfiable 
if there exists some truth assignment for U that simultaneously satisfies all the 
clauses in C. 

Even, Itai and Shamir [E41 proved that given such a collection C of clauses, 
one can in linear time determine whether there exists a satisfying truth 
assignment for C. If C is indeed satisfiable, the algorithm will produce a 
satisfying truth assignment. 

Now consider a B[3,2;u] design. A block (a 6 c )  can be oriented in two 
distinct ways: (a 6 c )  which contains the ordered pairs (a b),  (6  c )  (c a )  and 
(a c 6 )  with the ordered pairs (a c )  (c 6 )  (b a). Arbitrarily orient each block 
of the design. Each block is then assigned a distinct label; these labels form the 
set of variables U. I1 the ordered block (a 6 c )  is assigned the label X, the 
alternate orientation (a c b )  is associated with the literal g. A U X U  matrix is 
created in which the (a b )  entry is the label(s) of the block(s) containing the 
ordered pair (a 6 ) .  This data structure is now employed in forming the clauses. 
For each pair (a b),  two clauses are created. Consider the case where the 
ordered pair (a b)  is contained in two blocks X and Y. Clearly, in the oriented 
design, only one of these blocks can contain the pair; the other block must be 
reordered. Therefore, one wants to  satisfy the two clauses (X or Y) and (x or 
y )  (i.e. the exclusive or of the two literals X and Y). Alternatively, if (a b )  is 
contained in block X and (b a )  is contained in Y, the two clauses are (X or y)  
and (x or Y) (i.e., (a 6 )  is contained in y). 

One has now created a collection C of clauses. A satisfying truth 
assignment lor C will specify the orientation of each block. Evan, Itai and 
Shamir’s result proves that a satisfying assignment can be found in time linear 
in the number of clauses. Because we created these clauses in time linear in the 
number of blocks of the design, the result is a very efficient algorithm to 
determine whether a B[3,2;u] can be oriented to  produce a MTS(u). 

Unlortunately, an elficient algorithm is not known when k a 3 .  Given a 
B[k,2;u], one would like to orient each block such that each ordered pair appears 
exactly once; the ordered block (zl,zz, * * * zk) is considered to contain the 
ordered pairs (z;,zi), where i <j with one exception: the pair (zk,z,) is included 
instead of the pair (zl,zk). Deciding whether a B[k,2;u] design can be oriented 
appears to  be a difficult problem, although it has not been shown to be NP- 
complete. 

8.2 Directing Block Designs 
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Mendelsohn designs represent one means of interpreting ordered blocks; 
directed designs are another. Again consider a B[3,2;u] design. However, this 
time the ordered block (a Q c )  contains the ordered pairs (a 6 ) ,  (a c )  and ( 6  c). 
With this in mind, a directed triple system of order u ,  denoted DTS(u), is 
defined to be a collection of ordered triples such that each ordered pair appears 
exactly once; these systems are also called t ransi t ive  triple systems. Again one 
might ask which B[3,2;u] designs can be directed to produce DTS(u)? The 
answer is all of them [ClS]. Moreover, C.Colbourn and Harms have extended 
the result to higher A; in fact, they have demonstrated, the existence of a linear 
time algorithm for producing a directed design DB[3,X;u] from a B[3,2A;u] design 
[C26, H7, H8]. 

We present here a description of the algorithm for directing a triple system 
by illustrating its application to a particular example, a B[3,2;8] design. First 
one sorts the blocks into order: 

013 015 024 028 035 046 067 078 127 127 135 146 148 168 234 236 256 258 
348 367 378 457 457 568. 

Next the design is partitioned into segments; a segment S; is the collection of 
blocks having i as their first element. These can be easily identified from the 
sorted list of blocks: 

So: 013 015 024 028 035 046 067 078 
5’1: 127 127 135 146 148 168 
S2: 234 236 256 258 
S3: 348 367 378 
s4: 457 457 
S,: 568 

For each segment Si, we produce a segment graph Ci which contains the 
unordered pairs appearing with i in a triple of Si. In our example, the segment 
graphs have the following edge sets: 

Go: 13 15 24 28 35 46 67 78 
GI: 27 27 35 46 48 68 
C2: 34 36 56 58 
G3: 48 67 78 
c4: 57 57 
Cg:  68. 

Segment graphs may be connected (as C2 is) or disconnected (as G I  is). In the 
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event that the segment graph is disconnected, we define a subsegment to be a 
collection of blocks corresponding to a connected component of the segment 
graph. Each segment Si can be partitioned into subsegments Si,l, ..., Si,,,; each 
subsegment has a connected subsegment graph. In our example, the subsegment 
graphs Gi,j are: 

Go,l: 13 15 35 
Go,z: 24 28 46 67 78 
Gl,l: 40 68 48 
GI,$ 35 
CI,3: 27 27 
C2,l: 34 36 56 58 
G3,l: 48 67 78 
G,,$ 57 57 
G5,1: 68. 

These subsegment graphs can easily be produced in time which is linear in the 
size of the design. For each subsegment graph Si,j, we locate all vertices of odd 
degree and add a 1-factor of virtual edges to construct an augmented 
subsegment graph 4,j in which every vertex hss even degree. In our example, 
the virtual edges are as follows: 

We next examine the segments in reverse order, producing 3-tuples 
corresponding to the original set of blocks in such a way that no ordered pair 
ever appears more than once. The subsegments for each segment are handled in 
turn. In order to process a subsegment Si,j, we first locate an Eulerian circuit in 
the augmented graph Aitj. Each unordered pair appearing as an edge of 
corresponds either to a virtual edge or to an unordered pair in the design. In the 
case that {z,y} appears in a block ( i ,z ,g) ,  we check whether the ordered pair 
(z,y) has already been employed once -- if not, we set f({z,y})=(z,y), and if so, 
we set f({z,y})=(y,z). This function f determines the order in which the 
elements {z,y} will appear in the 3-tuple replacing the block (i ,z,y). 

Two cases arise, according to whether the length of the Eulerian circuit is 
even or odd. When the length of the Eulerian circuit in A;,j is even, we 
construct a set of btuples from the edges of the augmented graph by processing 
the edges in order along the Eulerian circuit; the element i is alternately placed 
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a t  the beginning and tbe end of a triple. For virtual edges, no triple is produced; 
for edges arising from blocks of the design, the ordering of the other two 
elements is prescribed by /. When the length of the Eulerian circuit is odd, one 
triple is chosen to have i placed in the middle, but otherwise the beginning/end 
alternation is followed as before. 

We illustrate the application of this method on our example. For each 
subsegment, we have listed the edges of the Eulerian circuit in the augmented 
graph (in order) in the first column. The second column gives the value of the 
function / computed for non-virtual edges, and the third column gives tbe 
directed block produced: 

G0,2 

Subsegment Graph Eulerian Circuit 
G5J 68 

86 (virt) 

75 
'3,l 48 

87 
76 
64 (virt) 
56 
63 
34 
48 (virt) 
85 
68 
84 
46 
35 
53 (virt) 
27 
72 
13 
35 
51 
24 
46 
67 
78 
82 

C4,l 57 

Value of f 
68 

57 
75 
48 
87 
76 

65 
63 
43 

85 
86 
84 
46 
35 

27 
72 
31 
53 
51 
24 
64 
67 
78 
28 

Block Included 
568 

457 
754 
348 
873 
376 

625 
263 
432 

852 
816 
184 
461 
135 

127 
72 1 
30 1 
053 
510 
204 
640 
067 
780 
028 
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Eulerian circuits can be found quickly, and it is a simple matter to keep track of 
the pairs already used in order t o  evaluate the function /. Thus the entire 
directing algorithm requires only a linear amount of time in the size of its input. 

In the case k ’ 3 ,  one is attempting to  direct each block of the design into a 
transitive tournament of order 3. From the above results, we know this can 
always be accomplished. One might ask if this extends to  transitive tournaments 
of higher orders. It remains an open question whether there exists a ( v , k , 2 )  
design which cannot be directed into the transitive tournament of k vertices. 
Either a general algorithm or a counterexample would be of interest here. 

In the case k = 3 ,  Harms has also examined cyclic systems; an efficient 
algorithm for producing a directed cyclic triple system from an undirected one 
is presented elsewhere in this volume [HS]. 

Other algorithmic questions concerning directing have been posed by 
Teirlinck. Given an idempotent commutative quasigroup, consider the upper 
triangle. Let the ( i , j )  entry be k; this can be viewed as the block ( i , j , k ) .  
Therefore, the upper triangle of an idempotent commutative quasigroup 
corresponds to  a triple system with X-3. Now consider the converse. Given a 
triple system with X=3, can it be written as the upper triangle of an idempotent 
commutative quasigroup? One can ask a similar question in the case when X=6; 
given a triple system with X=S, does it have a corresponding idempotent 
quasigroup? One can view these questions in terms of block orderings, for 
example, the blocks from the idempotent commutative quasigroup are “almost” 
ordered (the i and j can however be flipped). The answer to  both questions is 
no. For example, consider the case with X=S. Take a (u,3,2) design which is 
not a MTS. Take each block three times; hence X=S, but the design does not 
correspond to  an idempotent quasigroup. However, one interesting question 
which remains is “What is the computational complexity of deciding, given the 
triple system, whether or not there exists a corresponding idempotent 
commutative quasigroup?” 

0. Algorithmic Aspects of Intersection Problems 

As noted in an earlier section concerning isomorphism invariants, instead of 
examining the design itself, one might choose to  analyze the corresponding 
intersection graph. Although intersection graphs of designs have not been 
studied extensively for all families of designs, there are certain cases in which it 
is known that the intersection graphs possess certain characteristics. For 
example, if the blocks of a BIBD intersect in only two possible sizes, the 
corresponding block intersection graph is strongly regular [GS]; in particular, the 
intersection graphs of Steiner 2-designs are strongly regular graphs. In the case 
of twofold triple systems, each component of the pair intersection graph is cubic 
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and 3-connected [C35]. A very nice series of results concerning intersection 
graphs is due to Poljak, Rodl and Turzik [P12), who examine the problem in 
terms of sets of distinct representatives for graphs. 

A family F= (A, I z € V) of sets, which are not necessarily distinct, is called 
a set representation of a graph G=(V,E)  if A,n%#:O if and only if ( z , y ) € E  
for every pair z,y of distinct vertices of C. Conversely, C is called an 
intersection graph of F. A set representation F of G is called a k-set 
represenfation if I A, I S k  for all z € V and a distinct set representation if 
A,#% for all z , y € V , z # y .  I t  is a simple eel representation if I A,n% I s 1  
for all z , y € V , z # y .  I t  is well-known that every graph has a simple set 
representation [MI]. 

Poljak, Rodl and Turzik [P12] prove the following theorems: 
Theorem 9.1 [P12]: I t  is NP-complete to  find a minimum integer k for which a 
given graph C has a k-set representation. 
Theorem 9.2 [P12]: It is NP-complete to  decide whether a given graph G has a 
4-set representation. 
Theorem 9.3 [P12]: I t  is NP-complete to  decide whether a graph has a distinct 
3-set representation. 

These results indicate that  the characterization of line graphs, which are 
intersection graphs of graphs, probably cannot be generalized even for triples; 
one can determine in polynomial time whether a given graph has a (simple) %set 
representation [B7, BS]. Line graphs are characterized by a finite family of 
minimal forbidden induced subgraphs PI. However, for the graphs which are 
intersection graphs of k-hypergraphs, k>2, the analogous statement does not 
hold [P12]. 

Theorem 9.4 [P12]: I t  is NP-complete to find the minimum k such that  for a 
given graph C there exists a simple set representation with I UFI = k. 

Poljak, Rodl and Turzik also establish that  

This result can also be considered in connection with line graphs, because if C is 
a graph and H is the line graph of C, then C is a simple set representation of 
H. 

From the above results, it appears that  it is hard to decide whether a graph 
is the intersection graph of a design. As intersection graphs of hypergraphs 
cannot be easily characterized, it seems unlikely that  one will be able t o  
characterize intersection graphs of designs, although this may be possible for 
restricted families of designs. 
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Instead of looking a t  just the intersection graph of one design, one can 
examine the intersection patterns or graphs of two or more designs. The family 
of designs which has received the most attention in this regard is Steiner 
systems, particularly STS. Common questions which have been posed include 
[RlO]: 

Given two Steiner S(t,k,u) systems on the same u-set, how many blocks in 
common can they have? 
Can one find two such systems with no blocks in common? 
If yes, what is the largest number of such systems such that no pair of 
systems have a block in common? 

Two designs (V,Bl) and (V,B2) are disjoint if B 1 U B 2 = 0  i.e. they have no 
blocks in common. Many researchers have examined the existence of disjoint 
Steiner systems and, in particular, have tried to determine the maximum 
number of pairwise disjoint Steiner systems. For an excellent survey of research 
concerning intersection patterns of Steiner systems, the reader should consult 
[RlO]. 

Of particular interest here are some of the algorithmic results concerning 
intersection patterns. 
Theorem 9.5 [L7, T11: If (V~,B1), (V2,B2) are any two S(2,3,u) systems, u27 ,  
and if V is any u-set, then there exists two disjoint S(2,3,u) systems (V,B,),  
(V,B',) such that (V,B2) is isomorphic to (V1Bf2).  

We include Lindner's version of the proof here: 
Proof 

Let (V,Bl) and (V,B2) be any two Steiner triple systems of order u. Let 
(1,2,3) be any triple in BlnB2 and define the spread of 3, denoted by 8(3), to 
be 

With these definitions in mind, the following two statements can easily be 
verified. 

(1) If I s(3)1 <u and d€V-s(3) ,  then I BlnB21 >I BlnB2(3d)I , where 
B2(3d) is the collection of triples obtained by interchanging 3 and d in 
the triples of B2. 



Algorithmic aspects of combinatorial designs I19 

( 2 )  If 18(3)1 = u  and d is any point in AUC, then 

Let (V,Bl)  and (V,B2) be any two triple systems such that B 1 n B 2 # 0 .  
One of two things is true: either there is a triple in B1nB2 containing a point 
whose spread is less tlian u or there is no such triple. Because we have two 
possible cases, we introduce two distinct procedures which one can continue to 
apply until (V,B,) and (V,B2) are disjoint. Whenever there is a triple in B,nB2 
which contains a point whose spread is less than v ,  Procedure 1 is applied, else 
Procedure 2 can be used. After employing Procedure 2 ,  one is guaranteed that 
Procedure 1 is applicable. 

I B W , I =  I ~ ~ , ( 3 d ) l .  

Procedure 1: Let (1,2,3) €B ,nB,  and 18(3)1 <u. Choose d€V-8(3) .  Now 
interchange elements 3 and d in (V,B2). We know that 
I BlnB21 >I B,nB2(3d) l ,  and of course (V,B2) is isomorphic to (V,B2(3d)). 

Procedure 2:  From (V,B2), select any triple containing 3 (other than the triple 
(1 ,2 ,3) ) ;  let this triple be ( 3 , z , y ) .  In (V,Bl),  the triple containing z and y 
cannot intersect (1,2,3) since I8(3)1 =u; let this triple be (c,t,y). Now consider 
the unique triple in (V,B2) which contains 3 and e; let this triple be (3 , c , e ) .  
Now return to (V,B,) and examine the triple containing e and e.  Let this triple 
be (e ,d ,e ) ;  again, it cannot intersect (1,2,3) since I8(3)1 =u. 

At this point, the triples we are examining in (V,B,) are (1,2,3), (c,z,y) and 
( c , d , e ) ;  we have selected three triples in (V,B2) which are (1,2,3), ( 3 , z , y )  and 
(3 , e , e ) .  Note that we have not examined the element d in (V,B2). We can a t  
this point interchange elements 3 and d in (V,B2). We have not changed the 
number of blocks in which the two STS intersect; I B,nB21 = I B l n B 2 ( 3 d ) l .  
However, the triple (e ,d ,e)€BlnB2(3d)  and I 8 ( d ) l  <u (also I 8 ( c ) I  <u). 
Hence, (V,BI)  and (V,B2(3d)) have a triple in common which contains a point 
whose spread is less than u. 

Given two STS (V,Bl)  and (V,B,), one can make them disjoint by 
repeatedly applying Procedure 1 whenever it is applicable, otherwise apply 
Procedure 2; Procedure 2 guarantees that Procedure 1 can then be employed 
again. 

This algorithm can, of course, be employed to produce pairs of isomorphic 
disjoint STS; one simply starts with two copies of the same design. 

A general result which is analogous to Theorem 9.5 is due to Ganter, 
Pelikdn and Teirlinck: 
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Theorem 9.6 (G31: If (Vl,Bi), (V2,B2) are any two S(t,k,u) systems with 
2 tSk<u ,  then there exist two disjoint S(t,k,u) systems (V,P1),  ( V , P 2 )  such 
that (Vl,Bl) is isomorphic to  (V,B',) and (V2,B2) is isomorphic to  ( V , P 2 ) .  

In the case of SQS, Gionfriddo and Lindner [G6, G7, G8) have also constructed 
pairs of designs with prescribed intersection patterns. Their approach involves 
interchanging design fragments in order to  change the number of blocks which 
two designs have in common. 

10. Conclusions 

As demonstrated throughout this paper, there remain many interesting 
open problems concerning various computational aspects of block designs. For 
example, the complexity of determining whether or not a design is resolvable is 
unknown. Although it is likely that the problem is NP-complete, this has not 
been established. Consider tasks such as determining whether a particular 
design can be nested or determining whether it is a derived design; the 
complexity of these operations is again unknown. A more general problem is 
determining the chromatic index of a design. Again this is an open problem, 
although the corresponding problem for graphs is known to be NP-complete 
[H12]. 

All of these problems are related. The operation of nesting requires that 
one increase both k and A, while u and t remain fixed. When embedding a 
design, u is increased; t ,  k and X are fixed. C. Colbourn, Hamm and Rosa [C25] 
examine a related operation in which u and X are increased simultaneously. 
When determining whether a particular Steiner system is derived from another, 
one is increasing t ,  k and u by 1. For further information regarding derived 
Steiner systems, see [D6, G5, G10, M5, PSI. 

With regard to decomposing block designs, one might ask what is the 
smallest X for which one can guarantee that a B[k,X;u] design can be 
decomposed [M4]. Still other computational problems concern orienting and 
directing designs; relatively little is known with regard to these operations on 
designs with k >3. 

As mentioned in the introduction, many algorithmic issues concerning the 
construction of various eombinatorial configurations have not been addressed 
here. Obviously, there remain many open questions regarding the existence of 
various families of block designs. Within this vein, one interesting 
computational result is the fact that determining whether a multiset of integers 
represents the block sizes of a PBD is NP-complete [CZQ]. A related open 
question, posed by Phelps [pg], is "What is the complexity of determining 
whether a multiset of integers is the degree sequence of a PBD?". 
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As demonstrated herein, there has been an extensive amount of research 
which is both computational and combinatorial in nature. Moreover, there are 
other algorithmic aspects and problems concerning various combinatorial 
configurations which we have not addressed here. The past interaction between 
combinatorics and computer science has benefitted both fields. Combinatorial 
tools have helped to  produce efficient algorithms; for example, consider the 
polynomial-time algorithm for 2-colouring SQS. Moreover, computer science 
techniques have greatly aided in obtaining results in combinatorics. Hopefully, 
collaboration between the two fields will continue. 
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Abatrsct 

We discuss computational methods to  find ( t ,u ,u)  directed packings, i.e. 
sets of permutations of u symbols such that no t symbols appear in the 
same order in more than one of the permutations. In so doing, we give 
algorithms for finding all n-cliques in a given n-partite graF5, and in an 
arbitrary graph. We ako discuss an algebraic method for finding directed 
psckings. 

1. Introduction 

Directed packings are combinatorial structures which are used in the design 
of statistical experiments and large computer networks (41. A ( t , k , u )  directed 
packing is a collection of ordered k-subsets, called blocks, of a set of cardinality 
u having the property that no ordered t-tuple occurs in morc than one block. 
An ordered t-tuple is contained in a block if its symbols appear, Icft to right, in 
the block. The maximum number of blocks in a ( t , k , u )  directed packing is 
denoted DD(t,k,u). If every ordered t-tuple appears once, then we have a 
'directed t-design', which is analogous to an ordinary t-design (for t = 2, see, f i x  
example, [5], (61). However, we look at the case k=u, where the analogous t -  
design is a single complete block. Skillicorn has conjectured that 
DD(u-l,u,u) = (u- l ) !  for all u. This has been shown for u=6 by computer. 
A programme, described in Scction 2, was written to  find all ways of extending a 
( t , u -  1,u- 1) dirccted packing to a ( t , u , u )  directed packing, by inserting the 
new symbol somewhere in each block. This programme w3s applied to the 190 
permutations of (1,2,3,4,5}. In Section 3 we dcscribe an algebraic method of 
constructing directed packings, which was used in [l] to give results such as 
DD(5,7,7)5 63, DD(5,8,8)= 18 and DD( 5,0,9)S 27. 
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2. The Main Algorithm 
Let a (tp-1,u-1) directed packing be given, using the symbols 

{I,!& ..., u- lh  we look for a way to insert u somewhere in each block to give a 
( t , u , u )  directed packing. Write u =u- 1, calling the original blocks u-block8 and 
the ricw (extended) blocks u-blocks. Let the given (t,u,u) directed packing have 
n blocks. We define an n-partite graph G = (V,E) with vertex set 
V = { (B,p) :  E a u-block, 1SpSv) .  Each vertex ( E , p )  represents a potential 
u-block, got by inserting u into B in position p ;  we may refer to this u-block 
simply as ( E , p ) .  We let [(B,p),(C,q)] € E if the u-blocks (B,p)  and (C,q) do 
not have a t-tuple in common (and so may appear together in a directed 
packing). 

We now need to find a complete n-subgraph of the above n-partite graph. 
The algorithm therefore falls into two parts. 

Part 1: find the adjacency matrix of the graph. 
For each pair B,C of u-blocks, we determine the positions p and q for 

which (B,p)  and (C,q) have a t-tuple in common. Such a t-tuple must contain 
I), so we look for common (t-l)-tuples in B and C. Write 8=1-1. For an 8-  

tuple (el,c2, . . . ,e,), found in positions (pl,p2, . . . ,p,) in and ( 9 1 , ~ ~ ~  . . . ,q,)  
in C,  ( B , p )  and (C,q) have a common t-tuple for o<Pspl  and O<gSql, or 
p I < p s p 2  and q1<qsq2, or .-., or p , < p s ~  and q,<qSW. 

Part 2: find the complete subgraphs. 
We have an ri-partite graph with parts B1,E2, ..., Bn (Bi denoting both the 

u-block of the original packing and the vertex of the graph), and vertices within 
each part 1,2, ..., u. (The extension to the case where the parts are of unequal size 
is trivial.) Essentially we look at each possible set of choices of vertex (Bi,pi) 
from part Bi; describing such a possibility by the “vertex vector” (p,,p2, ...,pn), 
we look at these vertex vectors in lexicographic order. Our earlier approach was 
as follows. When we find that a certain vertex vector will not do because say 
[(Bi,pi),(Bj,pj)l f E ( i< j )  then we go to the next vertex vector with a new 
value for pi; we check whether [(Bi,pi),(Bj,pj)] € E ( i  < j )  in increasing order of 
j so that when the vertex vector is changed, starting a t  position k ,  we need 
check whether [(Ei,pi),(Bjpj)] € E ( i  < j )  for j r k  only. 

However a more efficient approach is available. Upon giving pi a value, 
determine which values for each p i  ( j > i )  are consequently no longer possible 
(“barred”). Further, if setting pi cause% all values for some pi to be barred then 
pi must be changed. Of course, when we reset pi ,  we must remove all bars on 
p j( j > i )  resulting from the former value of pi. Thus the following algorithm was 
used. Actions described other than by elements of PASCAL code or by using 
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subscripts are quoted; {...I denotes a comment. The complete PASCAL 
programme is available. 

procedure cvv {change vertex vector at place i} ; 
procedure reset(p) {reset bars according to  new setting pi = p} ; 
begin for i := i+l  to n do begin 

possible = false ; 
for q := 1 to u do if bar[j,q]=O or bar[j,q]W then begin 

if adj[Bi,p,Bi,q] then begin bar[j,q] := 0 ; possible := true end 
else bar[j,q] := i ; 

end ; 
if not possible {no value for p i ,  so must change pi} then goto 3 

end 
end {reset} ; 
begin 

“let S = {p: pi <pSu ,  bar[i,p]=O)” 
if “ S = 0 ”  then i := i-1 ; 

else begin pi := “min(S)” ; 
if i = n then “output vertex vector” 

else begin reset(p;) ; i := i + 1 ; pi := 0 end 
end ; 

3 : end {cvv} ; 
begin for i := 1 to n do for p := 1 to u do bar[i,p] := 0 ; 
i := l ; p j  := 0 ;  
repeat cvv until i = 0 

end. 

A further refinement, useful if the graph has many edges, is to  have 
all[Bi,Bj]=true if the induced subgraph with vertex set BiUBj is complete 
bipartite, and replace the second line of procedure reset by 

begin for j := i + 1 to n do if not all[Bi ,Bj] then begin 

The idea of this refinement was incorporated into a method we used to save 
storage space. In the probIem of packings, if we regard u-blocks B and C as 
permutations of (1,2, ..., u}, then adj[B,i,C, j] = adj[l,i,CB-’, j] (I being the 
identity permutation), and so we need store only a &dimensional array, plus a 
table of quotients of permutations. We put a zero in this table, quot[B,C]=O, 
where B and C have no common e-tuple and so no (B,p) and (C,q) could have 
a common t-tuple; otherwise quot[B,C]=CB-’. 
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The programme was run, with the 120 permutations of {1,2,3,4,5}, to 
examine the conjecture that 00(5 ,6 ,6 )  = 5! It was stopped after about 10000 
solutions had been found, when about 1/20th of all possible vertex vectors had 
been scanned. Probably, therefore, there is a large number of non-isomorphic 
solutions. By arguments simiiar to those in 111, the number of occurrences of a 
given symbol in positions ( 1,2, ... ,6) may be (18,30,0,40,10,22), 
(19,25,10,30,15,21), (20,20,20,20,20,20), (21,15,30,10,25,19) or 
(22,10,40,0,30,18). Solutions were found with the numbers of occurrences of the 
various symbols in position 1 being {20,20,20,20,20,20}, {18,20,20,20,20,22}, 
{18,19,20,20,21,22}, {18,19,19,21,21,22}, {18,19,20,21,21,21} and 
{19,19,19,20,21,22}. 

3. An Algebraic Method 
Some other packings were found using an algebraic method. Let the u 

symbols be the elements of a group C ,  here written additively (though not 
necessarily abelian). We look for packings which, whenever they contain a block 
B = {61,62,...,6u}1 also contain B+g = {b,+g,62+g, ..., 6,+g}. To ensure that a 
system with this property is a (t,u,u) directed packing, it is enough to check 
that no t-tuple starting with a given symbol is repeated. (In practice, we 
considered the “initial” block B, and derived any such t-tuples in B+g directly 
from B.) A similar method is used by Mills in finding BIBDs [3]. We look for a 
packing which is a disjoint union of as many {B+g:g€G} as possible. The 
following procedure was used. 

1. For each permutation B = {6~,b21...,bu}1 construct the l i t  
{(e2-e1,e3-el, ..., e,-el)  : (e1,e2, ..., e,) is a t-tuple of B} (since 
(0,e2-e1,e3-el, ..., e,-el)  is a t-tuple in B-el ) .  

2. For each pair B,C of permutations of G compare their lists, setting 
adj[S,C] := true if they do not intersect. 

We now have a graph with vertex set the permutations of C ,  and edge set 
{[B,C] : {B+g:g€C} U {C+g:g€C} is a directed packing} of wbich.we want 
the largest complete subgraph. A recursive procedure was used for this, starting 
with a list of (vertices of) complete subgraphs of order 2. 

3. For n = 2,3, ... , do the following, which gives a lit of n + l -  cliques 
(complete subgraphs of order n + 1) from the list of the r?.-cliques. Take the list 
of n-cliques, in which the vertices of each n-clique are listed in ascending order, 
and the n-cliques are listed in increasing lexicographic order. Consider this list 
in segments, each segment bcing the set of graphs differing only in the last 
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vertex. 

for the segment {{u1,u2 ,..., u,,-i,wi} ; :=1,2 ,..., m} do 
for i := 1 to m-1 do for j := i + l  to m do 

if adj[wi,wj] then write (ul,u2,...,u,,-1,wi,wj) {onto the list of n -I- 1-cliques}. 

We now have a list of n + 1-cliques in lexicographic order. 

This approach was taken further by considering a group A of 
automorphisms of G. An initial block B = (b l , b2 ,  ..., bu} gives rise to blocks 
B(B+g) = {B(b1+g),B(b2+g), ..., B(b,+g)}  for each g b C  and #€A. If the 
stabilizer in A of 0 has p orbits on G\{O}, then we need only ensure that no t -  
tuple whose first symbol is 0 and whose next different symbol is one of a given 
set of representatives of these orbits is repeated. For example, where G and A 
are the additive and multiplicative groups of a field, then we need only check t -  
tuples whose first symbol is 0 and whose first non-zero symbol is 1; furthermore, 
in this case each t-tuple of B gives rise to  exactly one such t-tuple in some block 
B(B+g). This method has been used to find lower bounds for some values of 
DD(4,u,u) and DD(5,u,u); the actual G and A and the results are reported in 
111. More generally, we could consider any group of permutations acting on the 
set of symbols, and use the transitivity structure of G to  simplify the task of 
ensuring that no t-tuple is repeated. St!ch a technique is used by Mills t o  find 
block designs [2]. 
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Abstract 

Using list processiug techniques, an exhaustive search was made for 
orthogonal one-factorizations of Klo. As a result we have found that, up 
to isomorphism, there is exactly one set of four mutually orthogonal one- 
factorizations of Klo, and exactly 267 sets of three mutually orthogonal 
one-factorizations of Klo. 

1. Introduetfon 
Let G be a graph with an even number of vertices. A one-/actor in G is a 

set of (pairwise disjoint) edges which between them contain each vertex exactly 
once. A one-facton’zation is a way of decomposing the edges of G into pairwise 
disjoint one-factors. In particular it is well-known that the complete graph K,, 
on 2n vertices has a one-factorization, which conskits of 2n-1 factors. If F = 
{Fl, F2, ..., Fk} and G = {C,, C2, ..., C,} are one-factorizations of the same 
graph G, we say that F and C are isomorphic if there exists a map 4 which 
permutes the vertices of G and a map $ which permutes the integers (1, 2, ..., k) 
such that for all i ,  &4 = Cis (&4 is the graph derived from 4 by replacing 
each edge (2, y) by (24, yo)). We usually refer to 4 as “the isomorphism”, the 
existence of a suitable map $ being implicit. 

Two one-factorizations {Fl ,  F2, ..., Fk} and {Gl, G,, ..., Ck) of G are called 
orthogonaf if, for every i and j ,  & and Cj have at most one edge in common. 
Orthogonal one-factorizations of complete graphs correspond to Room Squares 
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(see 16, 71 j, orthogonal one-factorizations of regular complete bipartite graphs 
correspond to Latin squares (see [8]). In this paper we discuss orthogonal one- 
factorizations of K4, K6, K8 and especially of Klo, where we have run an 
exhaustive search for sets of orthogonal one-factorizations. 

If F, C ,  F' and C' are factorizations of the same graph, F is orthogonal to 
C ,  and there is an isomorphism which takes F to F' and simultaneously takes C 
to C', we can consider the pairs (F, C )  and {F', Cl) to be the same up to 
isomorphism. If G is a complete graph, this means that the corresponding Room 
squares would be isomorphic also. 

Let 4 r )  be the maximum possible number of mutually orthogonal one- 
factorizations of K,, r even. I t  is easy to see that v(r) 5 r - 3, but no better 
upper bound has been found in general. However, no case is known where 4r) is 

r greater than - - 1, and some authors believe this is an upper bound for all r. It 
2 

is known that v(r) 2 - 1 when r - 1 is a prime power congruent to 3(modulo 

4). However 46) = 1 (see the next section), so v(r) = - - 1 cannot always be 
achieved, even when r - 1 is a prime. The main result of this paper, that 410) 

10 r - - - - 1 = 4, does however lend support to the conjecture that u(r) s - - 1 
2 2 

and that this bound can almost always be attained. 
For further information on dr), see I2,3, 6, 71. In particular, it is shown in 

[O] that 4 r )  approaches infinity with r. 

Our aim here is to study orthogonal factorizations of Klo fully. Not only 
do we wish to evaluate HlO), but we hope that a full study will aid 
understanding of the behaviour of orthogonal one-factorizations in general. 

2 
r 
2 

2. Small Orders 

The onefactorizations of small complete graphs are easily studied. For K, 
and K4 there is only one factorization. K, admits fifteen one-factors and six 
onofactorizations; each factor lies in exactly two factorizations and any two 
factorizations have exactly one factor in common; the six factorizations are 
isomorphic. So there is one factorization up to isomorphism, and there are no 
pairs of orthogonal factorizations, up to order 6: 42) = 44) = 40) = 1. 

For K8 the situation is more interesting. A complete analysis is given in [O]. 
There are six non-isomorphic one-factorizations, which we l i t  in Table 1. We 
shall call them F,, F2, F,, F4, Fs and F6. Up to isomorphism there are four 
factorizations orthogonal to F,, three to F4, two to Fs and one to F6; those 
orthogonal to F, are isomorphic to F1, F4, Fs and F6 respectively. Those 
orthogonal to F4 are isomorphic to F,, F4 and F5 respectively; those orthogonal 
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to F5 are isomorphic to  F1 and F, respectively; the one orthogonal to F6 is 
isomorphic to F,. Allowing for double counting (since IF, G} and (G, F} are the 
same pair) we have six pairs up to isomorphism. Interestingly, there are no 
cases of non-isomorphic pairs (F, G} and (F, H} where G is isomorphic to  H, but 
such pairs appear for higher orders. There is precisely one set of three mutually 
orthogonal factorizations up to isomorphism (isomorphic to F,, F, and F6), and 
no set of four. So 148) = 3. 

All OneFactorizations of K, 
Table 1 

01 23 45 67 
02 13 46 57 
03 12 47 56 
04 15 26 37 
05 14 27 36 
06 17 24 35 
07 16 25 34 

Fl 

01 23 45 67 
02 13 46 57 
03 12 47 56 
04 16 25 37 
05 17 26 34 
06 14 27 35 
07 15 24 36 

F3 

01 23 45 67 
02 13 46 57 
03 14 27 56 
04 16 25 37 
05 17 26 34 
06 12 35 47 
07 15 24 36 

01 
02 
03 
04 
05 
06 
07 

01 
02 
03 
04 
05 
06 
07 

01 
02 
03 
04 
05 
06 
07 

23 45 67 
13 46 57 
12 47 56 
15 26 37 
14 27 36 
17 25 34 
16 24 35 

F2 

23 45 67 
13 46 57 
12 47 56 
16 27 35 
17 26 34 
14 25 37 
15 24 36 

F4 

23 45 67 
14 36 57 
16 25 47 
17 26 35 
12 37 46 
15 27 34 
13 24 56 
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a. OrderTen 
An exhaustive search for orthogonal onefactorizations of Klo was made, 

with the main result being that 410) = 4. In this section we shall discuss the 
method employed in this search and some of the findings. 

In his thesis [4], Gelling determined the complete set of non-isomorphic 
one-factorizations of Klo (see also [S]). These are 396 in all, which we shall 
denote as C1,C2, ..., GJ08 (in Gelling's order). Our search begins by choosing a 
onefactorization, 0, say. We find all onefactorizations orthogonal to C,, and 
then check this list for mutual orthogonality. If any set of orthogonal o n e  
factorizations contains a factorization isomorphic to  C,, , then applying the 
inverse isomorphism to all the factorizations will produce an isomorphic set 
which contains C, itself; so if we let n range from 1 to 396 we shall obtain a 
complete list of all isomorphism classes of orthogonal onefactorizations of Klo. 
(The l i t  could contain some repetitions, as no isomorph-rejection has been 
carried out after the selection of C,,; but the number of repetitions should be 
very small, since the onefactorization of Klo mostly have small automorphism 
groups - 298 of them have the identity group [4]). 

We used a Fortran program which employed three subroutines: WINNOW, 
RS9S and ORTHOG. Let C, = {gl, g2, ..., go} be the n t h  one-factorization on 
Gelling's list. The subroutine WINNOW reads in all 945 one-factors of Klo and 
outputs those which could possibly be contained in a onefactorization 
orthogonal to  C,,. That is, if W is a onefactor of Klo, W will be output if and 
only if W and gi have at most one edge in common for i = 1, 2, ..., 9. 

The subroutine RS9S reads in the onefactors supplied by WINNOW. From 
this list it constructs all possible onefactorizations using only these onefactors. 
So it constructs the onefactorizations orthogonal to  C,. At this point some 
duplication could occur - RS9S might produce two factorizations, K and L say, 
such that some isomorphism x exists which maps C, to  itself and also maps K 
to L. As explained above, the number of such occurrences should be small, and 
it is much cheaper (in terms of CPU time) to allow such duplications to occur 
than to  conduct isomorph-rejection at this stage. 

Finally, the subroutine ORTHOG checks pairs of onefactorizations from 
RS9S for orthogonality. Then if two onefactorizations K and L are found to  be 
orthogonal to  each other, C, and K acd L form a set of three mutually 
orthogonal onefactorizations, and they are output. 

The number of triples is sufficiently small for further work to be done most 
efficiently by hand. We did this and found our main theorem. 
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Theorem 1: There Is exactly one oet of four mutually orthogonal one- 
factorirations of Klo, up to Isomorphism. This set does not extend to a 
set of five mutually orthogonal one-factorlratlons. 

The set of four factorizations is shown in Table 2. 

Four Orthogonal One-Factorizations of Klo 
Table 2. 

01 23 45 67 89 
02 13 46 58 79 
03 12 47 59 68 
04 16 25 39 78 
05 18 24 37 69 
06 19 27 35 48 
07 15 28 36 49 
08 17 29 34 56 
09 14 26 38 57 

F1 

01 26 39 47 
02 14 37 56 
03 17 25 48 
04 18 27 36 
05 19 28 34 
06 15 24 38 
07 13 29 45 
08 16 23 49 
09 12 35 46 

58 
89 
69 
59 
67 
79 
68 
67 
78 

01 29 36 48 57 
02 15 34 69 78 
03 16 28 45 79 
04 17 26 35 89 
05 14 27 39 68 
06 12 37 49 58 
07 19 25 2.3 46 
08 13 24 50 67 
09 18 23 47 56 

F2 

01 25 34 68 79 
02 18 35 49 67 
03 15 27 46 89 
04 13 28 57 69 
05 16 29 38 47 
06 14 23 59 78 
07 12 39 48 56 
08 19 26 37 45 
09 17 24 36 58 

The uniqueness may be checked by computer (in about 32 hours CPU time). 
The four factorizations have an interesting structure. FI is isomorphic to 

C,,, in Gelling's list, while F2, F3 and F4 are all isomorphic to G,,,. The set 
ha3 automorphism group of order 3, generated by n = (013)(476)(598) which is 
an automorphism of F, and swaps F4 - F3 - F2 -. F4. 

We note again that our result says that HlO) = 4. This is significant in 
that it is the first known example of a number r with r 2 (modulo 4) and 4.) 

r z - -  1. 
2 
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By use of invariants of onefactorizations it is possible to  compute the exact 
number of non-isomorphic sets of three mutually orthogonal one-factorizations 
of Klo. This number is 267. A listing of these triples and a description of the 
method will appear in a later paper. Ceaman [l] determined that there are 
exactly 511,562 distinct ordered pairs of orthogonal 1-factorizations (non- 
isomorphic Room squaws) and exactly 257,630 unordered pairs (inequivalent 
Room squares). 

Notice that our computational approach was essentially a list-processing 
one. Backtrack methods were tried experimentally, but are slower by a 
considerable margin (by a factor of over 100 in the WINNOW process). 
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Addendum 

factorizations of K,,, see 
For a complete list of all 267 sets of three mutually orthogonal one 

D.S. Archdeacon, J.H. Dinitz, and W.D. Wallis, “Sets of pairwise orthogonal 
I-factorizations of KIO”, Congressus Numerantiurn, to appear. 
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Abstract 
We consider lines in space and their intersections. The lines are 
partitioned into classes where lines in the same class are parallel. A node 
is an intersection through which a line of each class passes. We look for 
the minimum numbcr of lines in r classes such that the number of nodes 
thcy generate exceeds the number of lines. We mention an application of 
the problem to the construction of nonblocking switching networks with 
details to  come in a subsequent paper. 

1. Introduction 
Consider a set of lincs in the plane. Lines arc in the same class if they are 

parallel. Define f ( r )  t o  be the minimum number of lincs, given that the lines 
are in t classes, which generate a t  least f ( r ) + l  nodcs, whcre a node is defined 
as a point with r lines passing through it (one from each class). We give upper 
bounds and lower bounds for f (r) .  We then study a similar problem for lines in 
higher-dimensional space. We show how this problem is related to a 
construction for nonblocking switching networks. 



152 D. 2. Du et al. 

2. An Upper Bound on /(r) 
2 16 
3 3 

Define U(r) = - r3-2r2 + - r-3. 

Theorem 1. 

ptoo/: The proof is by a construction of U(r) + 1 nodes formed by the 
intersection of only U(r) lines. We fiist give a description of the r slopes which 
define the classes. For r odd the slopes are f 1 ,  f 2 ,  ..., k(r- l ) /?2 and 00 

(vertical); for r even the slopes are 2 1 ,  +2,..., 2- ,= and 0. The set of 
nodes S(r) will be taken from a square array of points and will be contained in a 
convex polygon. Furthermore, the set will be symmetric with respect to both 
the vertical direction and the horizontal direction. Therefore, it suffices to  
describe the set by giving the length of the rows in the upper half (as the 
number of rows has the same parity as r for r L 2, the description includes the 
middle row for odd r Z 3). Let H(r) denote the upper half of S(r). Let ( z ) ~  
denote k consecutive rows of length 2. For r even: 

f ( r )  5 U(r) for all r 2 1. 

r - 2  
2 

H ( 2 )  = (3) 

2 - 2  I- 1 
H(r) = H(r-2),  (2r-5)2 , (2r-3)2 , (2r-1) ; r = 4, 6,8, - - 

It is easily verified that S(2) has U(2)+1 = 6 nodes but only U(2) = 5 
lines (two horizontal and three vertical). Assume that S(r-2)  has U(r-2) lines 
and U(r-2)+ 1 nodes. We prove that S(r) has V(r) lines and U(r)+ 1 nodes. 

The number of additional nodes in S(r)-S(r-2) is 
r r 

2 
2 [ ( 2  - 2) (2r-5) + (- - 1) (2r-3) + (2r- l ) ]  

= 4r2-16r + 24 

= [~(r)+11 - [ ~ ( r - 2 ) + 1 1 .  

Next we count the number of additional lines in S(r) - S(r-2).  Clearly 
there are four additional columns and 4(L - 1) additional rows. We now show 

that each class of S(r-2) ,  except columns and rows, has 4(- - 1) additiocsl 

lines in S(r). We will illustrate our argument by referring to  the example of 
S(6)- 

2 
r 
2 
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... 
..... ....... ....... ......... ... rrR 1 ..... ...... .lei. ....... ......... ....... ......... ..... ........ ... ........ ....... 

S14) ....... 1 ..... ... 

I. . .. . 

S(61 

Figure 1. S(4) and S(6) 
Let C be a class, neither columns nor rows, in S(t-2) with positive slope. 

We note that all lines of C pass through the upper half except the line which 
passes through the rightmost point of the lower middle row. Now consider the 
lines of class C in S(r) which is constructed by inserting S(t) - S(r-2) 
between the two halves of S(t-2). Let R denote the column in S(r) which 
starts with the rightmost point of the upper half of S(r-2) and ends with the 
rightmost point of the lower half of S(r-2). A line of class C either stays to 
the left of R or intersects with a node on R (our choice of slopes does not allow 
a line to slip through two nodes on R). If it stays to the left or intersects with 
the starting point or the ending point of R, then it is a line counted in S(r-2). 
Therefore the new lines in C are those which intersect with the nodes on R 
except the starting and the ending one. There are 4(- - 1) such nodes (one for 

each new row), hence 4(- - 1) new lines of C. By symmetry, we can say the 
same for a class with negative slope. 

f 

2 
f 

2 

Finally, we count the number of lines in the two new classes with slopes 
t - 2  + -  . Take the upper center row (of length 2t-1). Then there is a line of 

- 2  

1 2 lines of slope - - 1 passing through every node and - - slope - - 
passing through between every pair of nodes. It is easily seen that the only line 
of slope - - 1 not intersecting that row is the one passing through the 
rightmost node of the lower center row. Thus there is a total of 
(2r-2) (y - 1) + 2 lines of slope - - 1. By symmetry, the number of lines 

of slope ( -  - + 1) is the same. 

f f f 

2 2 2 

f 

2 

f f 

2 
f 

2 
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Summing up, the total number of new l ies  is 

4+(r-3) (4(1 - l)] + 2[(2r-2) (t - 1)+2) 
2 

= 4r2- 16r +24 

= U (r)-V (r-2). 

For r odd, S(1), S(3) and H ( 5 )  are shown in Fig. 2 (H(r) does not include 
the middle row): 

. . 
S(1f 

e . .  

... 
a * . .  

*-MIDDLE ROW 

Figure 2. S(1), S(3) and H ( 5 )  

For r Z 3, H ! t )  can be constructed recursively by putting together H(r-2), 
(r-3, r-2)(r-')4, r-1,  (r-2,  r-l)(r-')4, r while the size for the middle row 
is r - 1. 

The number of additional nodes in S(r) - S(r-2)  is 

r -3  r - 3  + r - l + ( t - 2 + r - l )  - i- r] + r- l - (r -3)  
2 

2[(r-3+r-2) - 
2 

= 4r2-16r+24 

= [U(r)+ 11- [V(r - 2)+ 11. 

The number of additional lines is the same as the even t case and can be 
obtained by an analogous argument. 
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8. Lower bound8 on f (r )  

classes. To prove f ( r )  2 I' it suffices to prove N(1,r) < 1 + 1 for all 1 < 1 ' .  
Define N(1,r) to be the maximum number of nodes generated by 1 lines in r 

Lemma 1. Suppose that each slope contains at least two lines. Then 

N(1, r)  S N(1-2r, r) + 2(1-r) /(r-l). 

Proof. All the nodes must lie within a convex polygon whose boundaries are the 
boundary lines of the r slopes. We first count the number of nodes on the 
boundary. There are a t  most 2r boundary lines forming a t  most 2r 
intersections between themselves on the boundary (these are the extreme points 
of the polygon). Any nonboundary line can intersect the boundary a t  most 
twice. Hence the total number of intersections is at most 

2++2(1-2+) = 2(1-r). 

This way of counting intersections counts r-1 intersections for each node. 
Hence the number of nodes on the boundary is at most 2(1- r)nr - 1). 

If a boundary line of a given slope is not a boundary line of the polygon, 
then it must lie outside of the polygon and contains no node. Hence throwing 
away the two boundary lines of each slope can only throw away nodes on the 
boundary. Lemma 1 is proved. 

12+ r2- 2r 
Yr(r- 1) 

Corollary. N(1, r)  S for r 2. 

Proof: Consider a configuration achieving N(1, r)  and let li denote the number 
of lines of the i t h  slope. Suppose min li = 2m for some m 21. By Lemma 1 

2(1-r) + 2(1-3r) + . . .  + 211 - (2m - 1)rL 
r-1 r-1 N(I ,  r) s r-l 

- - 2(m1-m2r) (achieving maximum at m = 1/3r) 
r-1 

l 2  
2r(r- 1) 

S 
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Suppose min li = 2 m  + 1 for some m Z 0. If m 2 1, then by Lemma 1 

where the last term represents N(1-2mr,  r) for min li = 1. As it turns out, 
the above inequality is also valid for m = 0. But the right-hand-side achieves 
its maximum a t  m = - . Hence I-r 

2 r  

Proo/: It is easily verified that I < r ( r - l + V r z - 2 r + 2 )  implies 
12+  r2- 2r  
2r ( r -1)  

<1+1. 

Hence N(1, r) < I + 1. 

Corolloty. f ( r )  z 2r(r-1)+1. 

From the Corollary /(2) Z 5, f(3) Z 13. From Theorem 1, 
f (2)  S u(2) = 5, f(3) S u(3) = 13. Hence f (2) = 5, f (3) = 13. 

We next derive an improved bound on f (r) that holds asymptotically. Let 
L be the line system consisting of li lines of the i t h  slope. Since every two 
nonparallel lines intersect, there are C l i l j  intersections and each node accounts 

for (2’) intersections. However, not all intersections occur a t  nodes. We call an 
intersection not occurring a t  a node an off-intersection. If we can show that 
the number of off-intersections is a t  least z, then the number of nodes is a t  
most 

i ,  i 
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For each node u there are r lines passing through it. On each such line, u 
usually has two adjacent nodes unless u is an endpoint; then u may have one or 
zero adjacent nodes. Define S(u) to be the set of 2r line segments incident on u 
where a line segment is from u to an adjacent node if there is one along a half 
line, or just the half l ine3  there is none. Note that each line segment is counted 
a t  most twice when we scan S(u)  over u. A line segment (u, u) is counted 
exactly twice, once in S(u) and once in S(u).  

We will count the number of off-intersections involving segments in S(u)  
for each choice of u. To do this, we will examine all the line segments in S(u) 
together, but we only consider their intersections with lines from two classes at a 
time. Thus consider the lj X lj grid formed by the lines from class i and class 
j .  Notice that all nodes must be grid points from this grid, but not all grid 
points need be nodes. To avoid certain boundary effects in the counting, we 
first augment the grid by adding 2y lines to each class, with y of them on each 
side of the original lines in the class, where y is a suitably large constant 
(independent of i and j )  to be specified later. Then any segment in S(u) that 
has fewer than y off-intersections in the enlarged grid must pass through some 
grid point. We will only be concerned with the off-intersections on such a 
segment that occur between u and the first grid point encountered by the 
segment (which may or may not be a node). More precisely, for 
i = 0,  I ,  ..., y - 1 ,  we will bound the number of segments in S(u) that can have 
exactly i such intersections between u and the first grid point encountered by 
the segment, by bounding the number of grid points that can be reached from u 
by a line segment that passes through no other grid point and that intersects 
exactly i lines of.the grid. In particular, we immediately see that there are at 
most 8 grid points reachable in this way from u with no intermediate 
intersections. Referring to Figure 3, it is not hard to see that for 
i = 1, 2, ..., y - 1  there are a t  most 4 ( i + 1 )  grid points reachable from u by a 
line segment that encounters no other grid point and that intersects exactly i 
lines of the grid. Thus, if the number 2r of line segments in S(u) satisfies 

i - 1  

then the number of off-intersections for S(u)  in this grid must be a t  least 
' -1 

4 ( i + l ) i  + [2r-8- '2 4 ( i + I ) ] y  
i - 1  i - 1  
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= a  
2y(y- 1)(y+ 4) 

3 
= (2r-8)y - 

Figure 3 

Straightforward algebra shows that for (8 )  

y2+y+2 s r or, equivalently, 
to be satisfied we must have 

Thus we simply take y to be the largest integer satisfying this inequality. 

There are (5) ways of choosing two of the r classes, and each off- 
intersection will be counted a t  most r-2 times for S(u) (once for each grid 
involving a pair of classes such that one class is the one for the line intersecting 
the segment from S(u) and the other class is one of the r-2 classes not involved 
in the intersection). Therefore, the line segments in S(u) are involved in a t  least 
a (i) / (r-2) off-intersections in the augmented line system L’ with the 
additional 2y lines in each class. 

Theorem 9. N(I ,  r) < I + l  if 1 < L(r,8-4y+g(rfl-49)’+4j3) where 
B = l+@(r-2). 

2 

Proof: Suppose that L contains z nodes. Then these nodes account for z(i) 

intersections and z(;)a/2(r - 2) off-intersections (one off-intersection can be 

counted once in S(u) and once in S(u)) in L’. Furthermore, the 4(;)y2 

intersections involving pairs of added lines are not counted in either of the above 
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It is well known (see p. 52 of 131) that 
Y 

1 
C 'i'j 

Hence 

Consequently, N(1, r)  < 1 + 1 if 

12+4 1 

r2B 
- < 1 + 1 ,  

or if, 

Corollary 1. / (r)  r (rB-4y)+l .  

4 2 
3 3 

For r large, y - r'b, a -. - r3h and /3 -. - r'h. Hence 

2 
3 

Corollary 2. / (r)  - - r5h for r large. 
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4. Liner in hlghercdimenrion rpaeea 

In this section we consider lines in a d-dimensional space. Let F ( d )  denote 
the minimum number of lines in a d-dimensional space which generate a t  least 
F ( d ) + l  nodes, given that a line must be parallel to one of the d axes. Define 
U(d) -- C i'. d 

i - 1  

Theorem 4. F(d) S U(d). 

Prool. We give construction of a set S(d) of U(d)+l nodes formed by only 
U(d) lines. We denote a point in d-dimensional space by d coordinates. 
Define S(1) = {(l), (2)). Let S'(d) be the projection of S(d-1) into d- 
dimensional space by adding d + l  as the dth coordinate to every node in 
S(d - 1). 
Define C(d) = {(z1,22, ..., 26); 1 S z i S d  , I s i s d ) .  
Define S(d)  = C(d)  U S'(d). 

It is easily verified by induction that S(d)  is what we want. 
We now give a lower bound for F(d). We first prove a lemma. 
Define 

1 I - -  
d - 1  H(k)  = - n + k(d-1) (T) k 

1 
l - -  

d 
1 - 

Lemma 2. H(k) Z Ii(n d ,  = dn . 

Proof: Set 
1 1 n I - -  -n  

0 = H'(k) = - + (d-1) (z) d - l  + k(d-1) (1 - 
k2 

1 - 
Then clearly, k*  = n minimizes H(k). But 

I 1 1 I - -  1 -  (1 - -$(1 - d-1) 
H(k*)  = n + n d  (d-1)n 
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1 1 -7  I 
I - -  

1 
I - -  

= n  + ( d - 1 ) n  = dn 

Theorem 5. F ( d )  Z d d  

Proof: It  suffices to prove that any n nodes in a d-dimensional space must 

involve a t  least dn lincs. For if this is true, then the number of nodes can 

exceed the number of lines only if n > dn d ,  or equivalently n > d d .  This 
implies F ( d )  Z d d .  

Partition the n nodes according to the first coordinate into, say k 
hyperp!anes each of which is orthogonal to the first axis. Suppose that the i t h  
hyperplane has ni nodes. Then there are at least max {nl, ..., nk} lines parallel 
to the first axis. By induction, these n nodes have a t  least 

1 
I - -  

1 
I - -  

I 
d - T  

k 

i l l  
g(n,,  . . . , nk) = max { n l , .  . . , nk} + C ( d - I ) n i  

lines passing through them. 

1 
I - -  

d Claim. g(nl  ,..., n k )  Z dn . 

The claim is true for k = 1 by Lemma 2. We prove the general case by 
induction on k. Suppose that (n;, . . . , n;) minimizes g. 

Case (i). n; = ... = n;. Then the claim follows from Lemma 2. 

Case (ii). If n; are not all equal, assume n; 2 ... h n;. Then there must exist 
an I ,  1 s 1 S k -  1 ,  such that n; = ... = n; > n;+l Z ... Z n;. We consider 
three subcases: 

a. n; = 0. Then 

b. n; > 0 , l  P k - 1. Then we can reduce g by increasing n;+ and decreasing 

n; since C ( d  - I)nj d-T is easily seen to be a Schur concave function 

and the new set of n;' majorizes the old set (see p. 89 of [3]). But such a 

k 1 -  

i - 1  
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reduction contradicts the assumption that (n;, . . . , n;) is minimum. 

c. 1 = k-1 ,  n;-l = z >O.  Then 
1 l - -  

1-1 
1 n-2 1 - - 

d-l + z n-z 
k - 1  k 1  

g(n;, . . . , n;) 9 C(z) = - + (k-1) (d-1) (y-) 

1 
k - 1  

G'(2)  = - - 

1 
1 - -  d - 1  

1 1 
1 l a - =  -x+ d-2 - -  d - 1  < o  

d - 1  (d-2) p--- 

k - 1  

n-z 
k - 1  

since - > 2. Furthermore, it is easily verified that C"(z) < 0. Hence 

C(z) achieves its minimum a t  the boundary points z = 0 or - , and we 
either have Case (iia) or Case (i). The claim, hence Theorem 5, is proved. 

n-z 
k - 1  

6. An Appllcatfion 

A (rectangular) switch (see 111 for a general discussion) has the property 
that any set of pairs - one inlet and one outlet, can be simultaneously connected. 
In fact the fan-out property is also frequently assumed which allows the pairs to 
overlap. Consider a 2-stage network connecting a set of c channels to a set of u 
users. For the time being we assume that there is only one switch in the second 
stage and each first-stage switch has one outlet connected to  one inlet of the 
second-stage switch. We are to assign channels to the inlets of the first-stage 
switches, and the users to the u outlets of the second-stage switch, such that 
any k channel-user pairs, for k 5 u ,  can be simultaneously connected. 
Determine r such that u 5 F(r) (or f(r)). We assign each channel to  r 
different first-stage switches by using some line systems in the d-dimensional 
space or in the plane and interpreting channels as nodes and f i t - s tage  switches 
as lines. Suppose that *a set S of 8 channels has been requested. Then by the 
definition of F(r) (or f(r)), any subset S' of S with 8' users must have a t  least 
8' first-stage switches carrying them. Hence Hall's theorem on SDR (system of 
distinct representatives) 121 applies and we can find 8 distinct first-stage switches 
each carrying a distinct channel of S. Since each such first-stage switch can be 
connected to the second-stage switch independently, the simultaneous connection 
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is done. Furthermore, if the fan-out property is assumed for the second stage 
switch, any channel may be simultaneously connected to any or all of the u 
users. This argument can be extended to a genuine two-stage network with m 
second-stage switches each having u outlets with u S F(r) (or f (r ) )  and each 
first stage switch having m outlets, each connected to an inkt of a second stage 
switch. (See [4] for a more detailed account.) 

The above discussion also makes it clear that the problem we studied can 
be interpreted as a generalized SDR problem for determining the conditions such 
that any k subsets have k distinct representatives (Hall’s theorem deals with the 
case that k equals the cardinality of the given family of subsets). Our results 
give bounds on the number k when each subset has r elements. 
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1. Preliminary definitions 
A (u,b ,r,k,X)- balanced incomplete block design (BIBD) is an arrangement 

of u elements into b blocks such that: (i) each element appears in exactly r 
blocks; (ii) each block contains exactly k (<u) elements; (iii) each pair of 
distinct elements appear together in exactly X blocks. Well known necessary 
conditions for a (u,b,r,k,X)-BIBD to exist are ur = bk and X(u-1) = r(k-1).  
Because of this dependence we shall use the abbreviated notation (u,k,X)-BIBD 
to denote a (u,b,r,k,X)-BIBD. A (u,k,X)-BIBD in which u = 6 (and consequently 
r = k) is called symmetric. 

Two (u,k,X)-BIBD's D1 and D2, with element sets Vl and V2 respectively, 
are said to be isomorphic if there is a bijection &V1-V2 such that {zl, . . . , zk }  
is a block of D ,  if and only if {fI(?,),...,6(zk)} is a block of D2. An 
automorphism of a BIBD is an isomorphism of the BIBD with itself. The set of 
all automorphisms, under the usual composition of mappings, forms the 
automorphism group of the BIBD. 

A Steiner triple system of order u (STS(u)) is a (u,3,1)-BIBD. In this paper 
an STS(u) will often be represented by the pair (V,l?), where V is the set of 
elements and B is the collection of blocks, or triples. Steiner triple systems have 
been studied extensively, and are known to exist if and only if the order 
u sm 1, 3 (mod 6). For general references on STS's the reader is referred to 
Lindner and Rosa (61. 

Two STS's (V,B,) and (V,B,) on the same set V are disjoint if 
B1 n B, = 4, i.e. if they have no triples in common. Furthermore, they are said 
to be orthogonal (or perpendicular) if they are disjoint and, moreover, satisfy the 
following property: 

{Z,Y,4, {u,u,4 c B1, tz,y,a}, t w b }  c B, - a + b 
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That is, if two pairs of elements appear with the same third element in triples of 
B, ,  then they appear with distinct third elements in triples of B2. 

2. Background 
Orthogonal STS’s were first introduced by O’Shaughnessy [13] for the 

purpose of constructing Room squares. In his paper O’Shaughnessy displayed 
pairs of orthogonal STS’s of orders 7, 13 and 19, and conjectured that such pairs 
exist for all orders v 1 (mod 6). He also conjectured that pairs of orthogonal 
STS’s do not exist for u 

Mullin and Nemeth [9,10] supported these conjectures by showing that no 
orthogonal STS’s of order 9 exist, and that there exists a pair of orthogonal 
STS’s of order p”, p a prime, for p” 1 (mod 6). However, the second 
conjecture of O’Shaughnessy was eventually disproved by Rosa [15] when he 
displayed a pair of orthogonal STS’s of order 27. 

Work has also been carried out by Gross [3,4] and Zhu [l7] on constructing 
larger sets of mutually orthogonal STS’s. Gross, for example, has constructed a 
set of 6 mutually orthogonal STS’s of order 31, the smallest order for which 
more than two mutunlly orthogonal STS’s are known to exist. 

In other work Mullin and Rosa [ll], Zhu [18], Mendelsohn IS), Mullin and 
Vanstone [12], and Lawless [S] have extended the concept of orthogonality for 
STS’s to Steiner systems in general, and have investigated applications, for 
example, to the construction of generalised Room squares. 

Finally, a brief survey cf known results on orthogonal STS’s is included in 
Rosa.[14]. In this paper Rosa mentions that the smallest orders v 3 (mod 6) 
for which it is undecided whether a pair of orthogonal STS(u)’s exist are u - 
15, 21, 33, 39, 45, 51, 63, 69, and 75. Furthermore, no work has currently been 
undertaken on enumerating such pairs for u 2 13. 

In this paper we confirm that there exists only one pair of orthogonal 
STS( 13)’s. Furthermore we establish the existence of exactly 19 non-equivalent 
pairs of orthogonal STS( 15)’s involving 24 non-isomorphic systems. 

3 (mod 6). 
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3. Method 
The enumeration was carried out on a computer (or, more specifically, a set 

of four Hewlett Packard 9836 microcomputers based on the Motorola MC68000 
16-bit microprocessor) using construction and enumeration techniques adapted 
from Gibbons, Mathon and Corned [1,2]. Given an input basis STS a backtrack 
search strategy is used to attempt to construct an orthogonal mate. The 
construction proceeds block by block, in lexicographical order, subject both to  
the normal constraints of an STS, and also to  the orthogonality constraints 
imposed by the basis STS. On detection of a violation of these constraints, the 
program must backtrack. On completion of an orthogonal mate, the program 
continues to search for further mates. 

The program was coded in UCSD Pascal on the HP micros and tested with 
Steiner triple systems of small orders. I t  easily found the known pair of 
orthogonal STS(7)’s, and was also quick to confirm the result of Mullin and 
Nemeth [lo] concerning the non-existence of a pair of orthogonal STS(9)’s. 

In the case of the STS(13)’s, there are two (non-isomorphic) systems to 
consider. In about 30 minutes of CPU time for each basis design the program 
was able to establish that the transitive STS(13) (#1 in Mathon, Phelps and 
Rosa [7]) has exactly one mate, isomorphic to  itself, whereas the other STS( 13) 
has no mate. The orthogonal pair is listed in the Appendices. 

The first real test for the program came with the case of the STS( 15)’s. I t  
is well known that there are exactly 80 non-isomorphic such systems (White, 
Cole and Cummings [ls]). A more recent listing of these systems together with 
a comprehensive summary of their properties may be found in Mathon, Phelps 
and Rosa [7]. Indeed, all numberings and representations of basis designs (unless 
otherwise stated) conform to this reference. 

It was not surprising that computation times for the STS(l5)’s were 
significantly greater, and, after a couple of systems had been examined (without 
detection of a mate) it was realised that more sophisticated techniques would 
have to be utilised if a complete enumeration was to be contemplated. The 
most obvious technique to  apply was that of ieomorph rejection. 

Suppose we have two pairs (D,,D,’), {D2,D2’) of orthogonal STS(u)’s on 
the same treatment set V. Each pair forms a (u,3,2)-BIBD (or two/old triple 
eyetem), and we say that the pairs are equivalent if the corresponding twofold 
triple systems are isomorphic. Furthermore, we say that the pairs are 
ieomorphie if there is an isomorphism 4: V -  V mapping D ,  to D, and D,’ to 
0;. It is apparent that isomorphism implies equivalence of pairs, but in general 
it is not known whether the converse is true. However, in the case of the 
STS( 15)’s “equivalence” i s  equivalent to “isomorphism” - we found no pairs of 
orthogonal STS( 15)’s which are equivalent but not isomorphic. 
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Clearly, in our search process we would like to avoid generating isomorphic 
pairs of orthogonal STS's involving a common basis design. Given a particular 
basis design D1, we shall be generating pairs of the form {Dl,D1?,{D1,D1~. 
Suppose C is the automorphism group of D1. Then a special type of 
isomorphism occurs if there exists a 4 € G such that D," = t#(D,'). This fact 
can be used to implement the following isomorph rejection procedure. 

Suppose we have constructed a partial orthogonal system DJ to a given 
basis design D 1  with automorphism group C.  Now, such partial systems are 
being considered by the backtrack program in increasing lexicographical order, 
so that if there exists a € C such that 4(D2') < DJ, then we can reject DJ, 
since an equivalent partial system has already been considered earlier in the 
search. For greatest effect this check should, in theory, be applied after the 
completion of each new block in the constructed (partial) mate. In practice, 
however, this would be too costly, so instead we opted to apply the check, in the 
case of the STS(15)'s, only after construction of each of the first 7 blocks, viz. 
those blocks in the constructed mate containing the element 1. 

We now observe that isomorph rejections will largely be effected by group 
elements from the stabilizer of G which fixes the element 1. For the isomorph 
rejection procedure to have the greatest effect, it would seem that the basis 
design should be in a form which maximizes the size of this stabilizer. In many 
cases a transformation from the representation given in I?] is necessary to 
accomplish this. For example, take system #31 in [?I which has an 
automorphism group of order 4 with generators 

(1 5 6 15) (2 3 8 13) (4 11 0 14) (7 12). 

Here the stabilizer fixing 1 contains only the identity mapping. However if we 
interchange elements 1 and 10 in this design, the stabilizer becomes the 
automorphism group itself, of order 4. 

This isomorph rejection procedure, once implemented, resulted in a 
considerable improvement in search efficiency. For example, in the case of the 
previously mentioned STS( 13)'s, the search time for each basis design was cut to 
about 10 minutes. In the case of the STS( 15)'s 44 of the 80 systems have non- 
trivial groups, and in all but 3 or 4 of these cases a representation can be 
obtained with a non-trivial 1-stabilizer. The best example, of course, is system 
#1 which is 2-transitive with a group of order 20,180. Equivalence 
considerations here imply that only {1,2,4} needs to be considered for block 1 of 
the mate, while the only non-equivalent possibilities for block 2 are {1,3,5}, 
{1,3,6}, {1,3,7}, and {1,3,8). For this particular case the search time was about 3 
hours. On the other hand, a few systems, such as 175 ,  #76, and #??, could not 
be transformed to give a non-trivial 1-stabilizer. In these cases we tried applying 
the isomorph rejection check to later blocks, but found that the extra cost 
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outweighed any benefit obtained from rejection of equivalent partial systems. 
The remaining 36 (rigid) systems with trivial automorphism groups proved 

to be difficult cases to check, accounting for about 75% of the total search time. 
Having checked all 44 systems with non-trivial groups we searched hard for a 
good heuristic to  assist with these cases. One observation which we thought 
might help was the fact that none of these 36 rigid systems have a subsystem of 
order 7. If we could restrict ourselves to constructing mates with no order-7 
subsystems then we would effectively avoid generating a large proportion of 
mates which had already been examined as basis systems. Unfortunately 
however subsystems can only be found in the constructed mate after at least 15 
blocks have been constructed. This proved to be too late to be cost effective in 
the search. 

4. Resulta 
A number of pairs of orthogonal STS(15)’s were found using the search 

procedure described in the previous section. We display these pairs in the form 
of a multi-graph, where the vertices represent the set of 80 STS(15)’s, and there 
is an edge between each distinct pair of orthogonal systems. Note that our graph 
may contain self-loops. 

The complete set of connected components of this graph (omitting isolated 
vertices with no self-loops) is displayed in Figure 1. Beside each node in this 
figure we have indicated the order of the automorphism group of the 
corresponding STS. With one type of exception (described below), Figure 1 
represents all distinct pairs of orthogonal STS( 15)’s relative to our chosen 
representations for the basis designs. Some of the pairs are isomorphic, viz. those 
corresponding to starred edges with common end-points. Using isomorphism 
checking procedures developed in I1,2] we have established that these are the 
only isomorphisms, or equivalences for that matter. In other words, repeating 
what we mentioned earlier, we found no pairs of orthogonal STS(15)’s that are 
equivalent but not isomorphic. 

The actual representations of systems making up the listed components are 
contained in the Appendices. We note here that the isomorphisms indicated in 
components 2, 5 and 7 are similar in form. If we denote a typical pair by 
{basie,mote #I}, {busie,mate #2}, then the isomorphism maps 
baeie - mate # 2  and mote # 1  - basis. The respective isomorphisms are 
listed in the Appendices. 

Another type of isomorphism is not displayed in Figure 1. Note that all 
designs in the figure have groups of order 1 or 3. In particular, given an 
orthogonal pair {D,,D2} where D ,  and D2 have groups of order 3 and 1 
respectively, we can obtain two additional isomorphic, but distinct pairs by 
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Component 1 

8: 
Component 4 

Component 2 

Component 5 

9' 

Component 7 Component 8 

Component 3 

Component 6 

Component 9 
Figure 1 : Graph of distinct p a h  of orthogonalSTS(lS)*s 
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applying the group of Dl to the pair. Pairs obtained by this process have not 
been displayed either in Figure 1 or the Appendices. 

6. Remark0 
Surveying the properties of the systems in the above components, it is 

difficult to identify any trends which might be helpful in constructing orthogonal 
systems of higher orders. It is interesting that all systems have small groups 
with most being rigid, which accounts for the difficulty in finding such systems. 
Also, only two systems, #12 and #20, contain a subsystem of order 7. 

Another observation is the following. Consider a pair D1 = (V,B,), 
D2 = (V,B,) of OrthOgOnaI STS(u)'s, and, for any z € V, define 
P, = {{y,~}:  {z,y,z} € B,} as the set of element paus occurring with z in a 
block of D,.  Now define Q, = {w:  { w , y , t }  C B2, { y , ~ }  € P,} as the set of 
elements occurring with pairs of P, in blocks of B2. Then R = {Q,: z € v) is a 
1-design with v blocks, each containing (u- 1)/2 elements, and with each element 
occuring in (u- 1)/2 blocks. If u 3 (mod 4) the parameters are admissible for 
R to form a 2-desig11, viz. a symmetric (u,(u-l)/2,(~-3)/4)-BIBD (or 
Hadamard design). 

For example with the (unique) pair .of orthogonal STS(7)'s R forms a 
symmetric (7,3,1)-BIBD (or STS(7)). The next admissible order for R to be a 
Hadamard design is u = 15. However analysis of all generated pairs of 
orthogonal pairs of STS(15)'s reveab that none induces a symmetric (15,7,3)- 
BIBD. 

It would be interesting to determine the admissible orders u > 15 for which 
such Hadamard designs are formed. In particular it would be of interest to 
know whether there are any orthogonal STS( 19)'s which induce symmetric 
(19,9,4)-BIBD's. The known pair, generated in [13] and listed in the Appendices, 
does not induce such a design. 

We also note that there is no set of three mutually orthogonal STS(15)'s. 
An open question is to  determine the smallest order for which there exists a set 
of more than two mutually orthogonal systems. As mentioned earlier, currently 
the smallest known order for this to occur is u = 31. 

Finally we remark that no pair of orthogonal STS(2l)'s have yet been 
found. We are convinced that such a pair exists. However this case was beyond 
the range of the computational techniques described in this paper. 
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Appendices 

Al .  The pair of orthogonal STS(7)’e 

#l 
1 2 3  1 4 5  1 6 7  2 4 6  2 5 7  3 4 7  3 5 6  

Isomorphism to mate: (3 7 5 4) 

A% The pair of orthogonal STS(11)C 
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+ I  
1 2  3 1 4  5 1 6  7 1 8  9 1 1 0 1 1  1 1 2 1 3  
2 4 6 2 5 7 2 8 1 0  2 9 1 2  2 1 1 1 3  5 4 8 
3 5 1 2  3 6 1 0  3 7 1 1  3 9 1 3  4 7 9  4 1 0 1 3  
4 1 1 1 2  5 6 1 3  5 8 1 1  5 Q l O  6 8 1 2  6 9 1 1  
7 8 13 7 10 12 

Iuomorphism to mate: (2 3 5 4 9 8) (6 10 1 1  12 13 7) 

A3. The pairs of orthogonal STS(1li)’s 

Component 1 

#66 fb08i8) 

1 2  3 1 4  5 1 6  7 1 8  9 1 1 0 1 1  1 1 2 1 3  1 1 4 1 5  
2 4 6 2 5 7 2 8 1 0  2 9 1 2  2 1 1 1 4  2 1 3 1 5  3 4 8 
3 5 1 2  3 6 1 4  3 7 1 1  3 9 1 3  3 1 0 1 5  4 7 1 5  4 9 1 0  
4 11 12 4 13 14 5 6 9 5 8 16 5 10 14 6 11 13 6 8 11 
6 10 13 6 12 15 7 8 13 7 9 14 7 10 12 8 12 14 9 11 15 

hornorphism 01 6asi8 lo mote: (1  11) (3 13) (4 12) (5  10) (6 14) (8 9 )  
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Component 8 

# 69 (basis) 
1 2  3 1 4  5 1 0  7 1 8  9 1 1 0 1 1  1 1 2 1 3  1 1 4 1 5  
2 4 0 2 5 7 2 8 1 0  2 9 1 2  2 1 1 1 4  2 1 3 1 5  3 4 8 
3 5 1 0  3 0 1 2  3 7 1 3  3 9 1 4  3 1 1 1 5  4 7 1 5  4 9 1 0  
4 11 12 4 13 14 5 0 11 5 8 15 5 9 13 5 12 14 6 8 14 
0 9 15 0 10 13 7 8 12 7 9 11 7 10 14 8 11 13 10 12 15 

Isomorphismo/basistomate#1: (1 11 15 9 5 7 6 2 8 10 12 3 14) 

Isomorphismo/basisto mate #8: (1 14 3 12 10 8 2 6 7 5 9 15 11) 

Isomorphism {basis,mate #1} - {basis,mate #I?}: 

( 1  14 3 12 10 8 2 0 7 5 9 15 11) 

Component 3 

#I8 (basis) 
1 2  3 1 4  5 1 6  7 1 8  9 1 1 0 1 1  1 1 2 1 3  1 1 4 1 5  
2 4 0 2 5 7 2 8 1 0  2 9 1 1  2 1 2 1 4  2 1 3 1 5  3 4 7 
3 5 6  3 8 1 1  3 9 1 2  3 1 0 1 5  3 1 3 1 4  4 8 1 3  4 9 1 4  
4 10 12 4 11 15 5 8 15 5 9 13 5 10 14 5 11 12 0 8 12 
6 9 15 0 10 13 0 11 14 7 8 14 7 9 10 7 11 13 7 12 15 

#33 (mate) 
1 2  9 1 3  0 1 4 1 3  1 5  8 1 7 1 5  1 1 0 1 2  1 1 1 1 4  
2 3 4  2 5 1 2  2 0 1 3  2 7 8  2 1 0 1 4  2 1 1 1 5  3 5 1 0  
3 7 1 1  3 8 1 5  3 9 1 4  3 1 2 1 3  4 5 7 4 0 9 4 8 1 4  
4 10 15 4 11 12 5 0 14 5 9 15 5 11 13 0 7 10 0 8 11 
0 12 15 7 9 13 7 12 14 8 9 12 8 10 13 9 10 11 13 14 15 
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Component 4 

#6/ (b08iS) 

1 2  3 1 4  5 1 6  7 1 8  9 1 1 0 1 1  1 1 2 1 3  1 1 4 1 5  
2 4 6 2 6 7 2 8 1 0  2 9 1 2  2 1 1 1 4  2 1 3 1 5  3 4 7 
3 5 8 3 6 1 3  3 9 1 4  3 1 0 1 2  3 1 1 1 5  4 8 1 5  4 9 1 3  
4 10 14 4 11 12 5 6 11 5 9 15 5 10 13 5 12 14 6 8 14 
6 9 10 6 12 16 7 8 12 7 9 11 7 10 15 7 13 14 8 11 13 

# 67 (mate) 
1 2 1 3  1 3  4 1 5  8 1 6 1 1  1 7 1 5  1 9 1 2  1 1 0 1 4  
2 3 9 2 4 5 2 6 1 4  2 7 1 0  2 8 1 2  2 1 1 1 5  3 5 1 0  
3 6 8  3 7 1 1  3 1 2 1 5  3 1 3 1 4  4 6 7  4 8 1 4  4 9 1 5  
4 10 12 4 11 13 5 6 9 6 7 13 6 11 12 5 14 15 6 10 15 
8 12 13 7 8 9 7 12 14 8 10 11 8 13 15 9 10 13 9 11 14 

Component 5 

#do (basis) 

1 2  3 1 4  5 1 6  7 1 8  9 1 1 0 1 1  1 1 2 1 3  1 1 4 1 5  
2 4 6 2 5 7 2 8 1 0  2 9 1 1  2 1 2 1 4  2 1 3 1 5  3 4 8 
3 5 9  3 6 1 2  3 7 1 4  3 1 0 1 3  3 1 1 1 5  4 7 1 3  4 9 1 2  
4 10 15 4 11 14 5 6 15 5 8 13 5 10 14 5 11 12 6 8 14 
6 9 10 6 11 13 7 8 11 7 9 15 7 10 12 8 12 15 9 13 14 
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#y (mate #I) 
1 2 1 2  1 3  9 1 4  8 1 5 1 4  1 6 1 0  1 7 1 1  11315 
2 314 2 410 2 5 1 1  2 015 2 713 2 8 9 3 415 
3 510 3 6 7 3 812 31113 4 5 0 4 714 4 9 1 3  
4 1 1 1 2  5 7 8 5 915 51213 6 811 6 9 1 2  01314 
7 9 10 7 12 15 8 10 13 8 14 15 9 11 14 10 11 I5 10 12 14 

lsomorphismof6osistomote#S: (1 10 8 9) (2 0 15 3 5 12 13 11 4) 

Isomorphiem {6asis,mote #2} - {6asie,mate #S} : 

(1 10 8 9) (2 0 15 3 5 12 13 1 1  4) 

Component 6 

# / 8  (basis) 

1 2  3 1 4  5 1 0  7 1 8  9 11011 11213 11415 
2 4 0 2 5 7 2 810 2 911 21214 21315 3 4 8 
3 5 1 0  3 6 1 2  3 7 1 5  3 9 1 3  31114 4 7 9  41014 
4 1 1  13 4 12 15 5 0 1 1  5 8 12 5 9 15 5 13 14 0 8 13 
0 9 14 0 10 15 7 8 14 7 10 13 7 11 12 8 11 15 9 10 12 

#39 (mate #I) 
1 2  8 1 3 1 3  1 4  0 1 5  9 1 7 1 4  11015 11112 
2 3 5  2 4 9  2 0 1 1  2 7 1 5  21014 21213 3 4 1 2  
3 6 7  3 8 1 0  3 9 1 4  31115 4 5 1 0  4 7 1 3  4 8 1 1  
4 1 4 1 5  5 6 1 4  5 7 1 1  5 8 1 3  51215 0 8 1 5  0 9 1 2  
6 10 13 7 8 9 7 10 12 8 12 14 9’10 1 1  9 13 15 11 13 14 

# 72 (mate #2)  
1 2 1 1  1 3  8 1 4 1 0  1 5 1 4  1 0 1 2  1 7 1 3  1 9 1 5  
2 310 2 4 1 5  2 5 0 2 7 9 2 814 21213 3 4 0 
3 5 1 3  3 7 1 1  3 9 1 2  31415 4 5 1 1  4 7 8  4 9 1 3  
41214 5 7 1 2  5 8 9  51015 0 7 1 5  0 8 1 1  0 9 1 0  
0 13 14 7 10 14 8 10 13 8 12 15 9 1 1  14 10 11 12 1 1  13 15 
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Component 7 

# 71 (basis) 
1 2 3  1 4 5  
2 4 6  2 5 7  
3 5 1 3  3 6 1 1  
4 11 13 4 12 14 
6 9 15 6 10 13 

#/7 (mate #1)  
1 2 1 4  1 3 1 1  
2 3 1 3  2 4 1 5  
3 5 6  3 7 8  
4 12 13 5 7 15 
6 13 15 7 9 12 

# 70 (mate #2) 
1 2 7  1 3 8  
2 3 1 3  2 4 1 2  
3 5 1 2  3 7 1 1  
4 9 1 3  5 6 1 3  
7 8 14 7 12 13 

1 6 7  
2 8 1 0  
3 7 1 2  
5 6 1 4  
7 8 11 

1 4 6  
2 5 9  
3 9 1 5  
5 10 13 
8 10 14 

1 4 11 
2 5 11 
3 9 15 
5 7 15 
8 10 13 

1 8 9  
2 9 12 
3 9 1 4  
5 8 15 
7 9 1 3  

1 5 12 
2 6 10 
3 10 12 
5 11 14 
8 11 13 

1 5 10 
2 6 8  
3 10 14 
5 8 9  
8 11 12 

1 10 11 1 12 13 
2 11 14 2 13 15 
3 10 15 4 7 15 
5 9 11 5 10 12 
7 10 14 8 13 14 

1 7 1 3  1 8 1 5  
2 7 1 1  2 8 1 2  
4 5 8 4 7 1 0  
6 7 1 4  6 8 9 
9 13 14 10 11 15 

1 6 1 5  1 9 1 2  
2 9 10 2 14 15 
4 5 1 4  4 7 1 0  
6 7 9  6 1 0 1 1  
9 11 14 10 12 15 

1 14 15 
3 4 8  
4 9 10 
6 8 1 2  

11 12 15 

1 9 10 
3 4 14 
4 9 11 
6 11 12 

12 14 15 

1 13 14 
3 4 6  
4 8 15 
6 12 14 

11 13 15 

Zsomorphismo/baeistomate#S: ( 1  9 6 15 2 11 3 )  (4 7 14 5 10 13) ( 8  12) 

Zsomorphismofbasistomate#/: ( 1  3 11 2 15 6 9 )  ( 4  13 10 5 14 7 )  (8  12) 

Isomorphism {basis,mate #S} - {basis,mate #d}: 

( 1  3 11 2 15 6 9 )  (4 13 10 5 14 7 )  (8  12) 

Component 8 

# 28 (his) 
1 2  3 1 4  5 1 6  7 1 8  9 1 1 0 1 1  1 1 2 1 3  1 1 4 1 6  
2 4 8 2 5 7 2 8 1 0  2 9 1 1  2 1 2 1 4  2 1 3 1 5  3 4 7 
3 5 8  3 6 1 1  3 9 1 2  3 1 0 1 5  3 1 3 1 4  4 8 1 3  4 9 1 4  
4 10 12 4 11 15 5 0 14 5 9 10 5 11 13 5 12 15 6 8 12 
6 9 15 6 10 13 7 8 15 7 9 13 7 10 14 7 11 12 8 11 14 
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1 2  8 1 3 1 2  
2 3 1 0  2 4 1 2  
3 5 1 5  3 6 1 3  
4 9 1 0  5 8 9 
7 9 14 7 13 15 

#25 (mate #2) 
1 2 1 4  1 3 1 5  
2 3 6  2 4 8  
3 7 9 3 8 1 4  
4 1 3 1 4  5 6 8  
6 11 13 7 8 11 

#57 (mate #8) 
1 2  6 1 3 1 0  
2 3 1 5  2 4 1 1  
3 5 1 2  3 6 8 
4 14 15 5 6 10 
7 11 15 7 12 13 

Component 9 

# 58 &&S) 

1 2 3  1 4 5  
2 4 6  2 5 7  
3 5 1 1  3 6 1 2  
4 10 15 4 11 13 
6 10 13 6 11 15 

#29 (maze #1) 
1 2 1 0  1 3  5 
2 3 4 2 5 1 2  
3 7 1 1  3 8 1 2  
4 11 12 4 13 14 
6 8 1 3  6 9 1 2  

Orthogonal Steiner triple systems of order 15 

1 4 13 
2 5 6  
3 7 8  
5 10 13 
8 11 13 

1 4 7  
2 5 9  
3 10 13 
5 7 13 
7 12 14 

1 4 7  
2 5 14 
3 7 14 
5 7 8  
8 9 14 

1 6 7  
2 8 1 0  
3 7 15 
5 6 9  
7 8 1 3  

1 4 6  
2 6 11 
3 9 1 0  
5 6 10 
7 12 14 

1 5 14 
2 7 11 
3 9 1 1  
5 11 12 
8 12 14 

1 5 11 
2 7 1 0  
3 11 12 
5 10 12 
8 9 1 2  

1 5 15 
2 7 10 
3 11 13 
5 9 11 
8 12 15 

1 8 9  
2 9 11 
3 9 1 3  
5 8 1 5  
7 9 1 0  

1 7 9  
2 7 8  
3 13 15 
5 7 13 
8 9 11 

1 6  9 1 7 1 0  
2 9 15 2 13 14 
4 5 7 4 6 1 1  
6 7 1 2  6 8 1 0  
9 12 13 10 11 14 

1 6 1 2  1 8 1 0  
2 11 15 2 12 13 
4 6 1 0  4 9 1 1  
5 14 15 6 7 15 
8 13 15 9 10 16 

1 8 1 1  1 9 1 3  
2 8 1 3  2 9 1 2  
4 5 1 3  4 6 1 2  
6 7 9 6 1 1 1 4  
9 10 15 10 11 12 

1 10 11 1 12 13 
2 12 14 2 13 15 
3 10 14 4 7 12 
5 10 12 5 13 14 
7 11 14 8 11 12 

1 8 14 1 11 13 
2 9 13 2 14 15 
4 5 8 4 7 1 0  
5 9 14 5 11 15 
8 10 15 10 11 14 
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1 11 15 
3 4 14 
4 8 16 
6 14 15 

10 12 15 

1 9 13 
3 4 5  
4 12 15 
6 9 1 4  

10 11 14 

1 12 14 
3 4 9  
4 8 10 
6 13 15 

10 13 14 

1 14 15 
3 4 8  
4 9 14 
6 8 14 
9 12 15 

1 12 15 
3 6 14 
4 9 15 
6 7 1 5  

10 12 13 
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#35 (mate #2) 
1 2 1 3  1 3 1 1  1 4  6 1 5 1 0  1 7 1 5  1 8 1 2  1 9 1 4  
2 312 2 411 2 5 8 2 614 2 7 9 21015 3 4 5 
3 6 1 0  3 7 1 4  3 8 1 3  3 9 1 5  4 7 8  4 9 1 3  41012 
41415 5 6 7  5 9 1 2  51114 51315 6 8 9  61113 
6 12 15 7 10 13 7 1 1  12 8 10 14 8 1 1  15 9 10 1 1  12 13 14 

#65 (mate #3)  
1 2  6 1 3 1 0  1 4 1 3  1 5 1 2  1 7 1 5  1 8 1 4  1 9 1 1  
2 3 5 2 4 8 2 711 2 912 21013 21415 3 4 9 
3 6 1 4  3 7 1 2  3 8 1 1  31315 4 5 1 5  4 6 1 1  4 7 1 0  
41214 5 6 8  5 7 1 4  5 9 1 0  51113 6 7 1 3  6 9 1 5  
6 10 12 7 8 9 8 10 15 8 12 13 9 13 14 10 11 14 11 12 15 

#38 (mate to  #35) 
1 2 1 1  1 3 1 5  1 4 1 4  1 5  6 1 7 1 3  1 8 1 0  1 9 1 2  
2 3 6 2 4 8 2 514 2 710 2 913 21215 3 413 
3 5 8 3 711 3 914 31012 4 5 7 4 615 4 910 
4 11 12 5 9 15 5 10 11 5 12 13 6 7 9 6 8 12 6 10 13 
6 11 14 7 8 IS 7 I2 14 8 9 11 8 I3 14 I0 14 15 11 13 15 

#56 (mate to #65) 
1 2 1 4  1 3  8 1 4 1 1  1 5  9 1 6 1 5  1 7 1 0  11213 
2 310 2 4 5 2 6 7 2 8 9 21113 21215 3 414 
3 5 1 2  3 6 1 3  3 7 1 1  3 9 1 5  4 6 1 2  4 7 1 5  4 8 1 3  
4 9 1 0  5 6 1 0  5 7 8  51114 51315 6 8 1 1  6 9 1 4  
7 9 13 7 12 14 8 10 12 8 14 15 9 1 1  12 10 1 1  15 10 13 14 
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A4 The known pair of orthogonal STS(1Q)’m 

1 2  7 1 3 1 1  1 4  8 1 5 1 7  1 
1 1 3 1 6  1 1 4 1 5  2 3 8  2 4 1 2  2 
2 1 1  13 2 14 17 2 15 16 3 4 9 3 
3 12 14 3 15 18 3 16 17 4 5 10 4 
4 16 19 4 17 18 5 6 1 1  5 7 15 5 
6 7 1 2  6 8 1 6  6 9 1 3  6 1 5 1 7  7 
7 16 18 8 9 14 8 10 18 8 1 1  15 8 
9 12 16 10 1 1  16 10 13 17 1 1  12 17 1 1  
13 14 19 

6 
5 
5 
6 
8 
8 
17 
14 

181 

19 1 9 18 1 10 12 
9 2 6 18 2 10 19 
13 3 6 10 3 7 19 
14 4 7 I 1  4 I 3  15 
12 5 14 16 5 18 19 
13 7 9 17 7 10 14 
19 9 10 15 0 1 1  19 
18 12 13 18 12 15 19 

fernorphiem to mote: (2 5 17 8 10 18 12 7 6) (3 9 14 15 19 16 4 13 1 1 )  
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1. Introduction 

Denote a Steiner system by S ( t , k , u )  where the parameters have their usual 
meaning. It is an elementary proposition that if any point of a Steiner system is 
chosen, all blocks not containing the point are deleted, and the point itself is 
then deleted from all of the remaining blocks, what remains is another Steiner 
system S(t - 1,k - 1,u- 1). The latter system is said to be derived from the 
former. It is well known that necessary and sufficient conditions are as follows: 
for a Steiner triple system S(2,3,u) or STS(u), u = 1 or 3 (mod 6) while for a 
Steiner quadruple system S(3,4,u) or SQS(u), u 2 or 4 (mod 6). Such u are 
called admissible. It follows that there exists a derived Steiner triple system for 
every admissible order. Howcve;, whether or not every Steiner triple system is 
derived is a fascinating open question. 

For u = 7 and 9, the Steiner triple systems are unique up to a isomorphism 
and are therefore derived. The case when v = 13 was solved by Mendelsohn 
and Hung [?I who showed that both of the two non-isomorphic systems which 
exist for this order are also derived. There are 80 non-isomorphic Steiner triple 
systems of order 15 (see [Z] and [4]). In this paper we shall use the listing of 
these given by Bussemaker and Seidel [l], and also given in [5] where it is 
probably more easily acccssible. The present state of knowledge concerning the 
derivability of these systems is given in the survey paper by Phelps (101. It rests 
heavily on general theorems, also by Phelps, in earlier papers [8], (91. In the first 
of these be proves: 

Theorem A (Phelps [a]) 
A Steiner triple system of order 2uf 1 with a derived Steiner triple system 

of order u is itself derived. 
This theorem shows that 23 of the 80 systems, namely 11-22 and 61, are 
derived since they contain the STS(7), {1,2,3}, {1,4,5}, {1,6,7}, {2,4,8), {2,5,?}, 
{314,7}1 (3,596). 
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In the second paper a theorem equivalent to the following is proved: 

Theorem B (Phelpr [O]) 

If a Steiner triple system of order 2u+l contains all but one of the blocks of 
a Steiner triple system of order u, and this sTS(u) is derived then the 
STS(2u+ 1) is also derived. (In 121 an STS(u) with one block missing is called a 
semi-head). 
This theorem shows that 15 more systems, namely #23-34, 62, 63 and 64 are 
derived since they contain the semi-head {1,2,3}, {1,4,5}, {1,6,7], {2,4,6}, {2,5,7}, 

Finally in [lo], Phelps states that he has himself determined that #35 and 
53 are derived and that Gibbons [3] has added 659, 70 and 76. The SQS( 16)’s 
containing these sTS(15)’s as derived systems are exhibited in the recent 
encyclopaedic paper by Mathon, Phelps and Rosa 16). Thus the total number of 
known derived STS( 15)’s is 43. In this paper we raise this number to 66. 

(3,497). 

2. Methodology 
Our general methodology is an extension of that used by Phelps [8], [el, in 

the proof of his theorems quoted above. Our method is applicable only to 
Steiner triple systems of order 15 and involves the use of a computer search. We 
analyse the situation in which an STS(15) contains an sTS(7) apart from two 
blocks (a demi-semi-head?). First we need a definition. 

Definition. A quadrilateral consists of four blocks of a Steiner triple system 
whose union has cardinality six. 

It is clear that a quadrilateral must have the following configuration: 
{0,6,c}, {a,y,.z}, {z,b,z},  {z,~,c}. When such a collection appears in a Steiner 
triple system it may be removed and replaced by the “opposite” quadrilateral 
{2,y,.7},{2,6,~}, {a ,y,c}, {a ,6,2} to form a different (but possibly isomorphic) 
Steiner triple system. Gibbons [3] has shown that precisely 79 of the 80 
STS( 15)’s contain a t  least one quadrilateral and that these may be transformed 
into one another by repeated changing of quadrilaterals as described. 

Note firstly that the inclusion of a quadrilateral within an STS(15) is 
equivalent to the STS(15) containing five of the seven blocks of an STS(7). We 
now proceed with the analysis. 

Let the quadrilateral be (al,a3,a5}, {al,a4,a6), {a2,as,a6}, {a2,a,,a5}. 
Identify the three pairs of elemcnts which are not included in the quadrilateral 
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and list the three blocks of the SrS(l5) which contain these pairs. Suppose 
these are {al,a2,2}, {a3,a4,y}, {05,08,2}. Then none of z, y and L can equal any 
ai and, moreover, we can assume that z,y and z are themselves unequal (for 
otherwise the STS( 15) would contain either an STS(7) or a semi-head which can 
be dealt with by Phelps' theorems). Select one of these latter three blocks. 
Without loss of generality we will choose {al,a2,2}. Next identify the blocks 
which contain the pairs   as,^}, {a4,3},   as,^}, {a6,2}. Let these be { 0 3 , ~ , 6 3 } ,  

{ D ~ ~ Z , ~ ~ } ,  { a 5 , ~ ~ 6 5 } ,  {a6,z1b6}. The bi's must be distinct from one another and 
from each of the ai's. Also, y # 63  or  6 4  and z Sb5 or  b6. However, it is 
possible for y to be equal t o  b5,b6 or  z to  be equal t o  b3,64 (but not 
simultaneously). The above blocks are 11 of the 35 blocks in an STS( 15). 

Since each element occurs 7 times within an STS( 15), there are in addition 
four more blocks containing a t  and likewise for at, three more blocks containing 
a 3  and likewise for a4, as and a6, and two more blocks containing z, all these 
blocks being distinct and numbering 22 in all. I t  is left to  identify the remaining 
two blocks. A counting argnment shows thnt these contain the %x' elements 
y, z, 63, 64,  b,, 6,.  It is to  be understood that if, for example, y = 65 then this 
element appears twice, that  is once in each of the two blocks. The exact 
partition of the elements into the two blocks is not determined. We now make 
the further assumption that  these two blocks are (63, 6 4 : ~ )  and {65 ,  b6 ,z}  i.e. 
that  the configuration of the STS( 15) is as given below. 

{b3,b4,y}A, { 6 5 , 6 6 , 2 } 3 ,  together with the 2% blocks identified above. 

The four blocks labelled A form a quadrilateral as do the four labelled B .  
Replacing these with the "opposite" quadrilalerals gives the following 
transformed sTS( 15). 
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This latter STS(15) contains an STS(7) on the elements a1,a2,a3,a4,a5,a6, 
and 2 and hence may be extended to an SQS(16) using Phelps’ techniques. The 
method is as follows: 
(1) The STS(7) is extended to an SQS(8) with one extra element, say QD. 

(2) The other 28 blocks of the STS(1S) all have the element adjoined to 
them. 

(3) Another SQS(8) is formed on the elements b3,b4,b5,b6,j,z, and two further 
elements 6 ,  and b2. 

(4) A one-factorization of a graph K8 whose vertices are the elements 
a1,a2,a3,a4,a5,a6, 2, and QD is formed. The system SQS(l6) is then 
completed by taking each edge {ai,aj}, i #  j or (ai,z} in turn and 
identifying the edge { ~ , a k }  or (QD,~}  within the same onofactor. The 
element ak or z occurs four times in blocks of the STS(15) with disjoint 
pairs of elements from the set {61,62,6~,64,b5,6~, I, 2). Four new blocks are 
formed each containing one of these pairs together with {ajlaj}, i # j  or 
{a; 121. 

Clearly stages (3) and (4) contain some flexibility. In carrying out these 
steps, it may be possible to arrange that the four 3-blocks in each of the two 
quadrilaterals (A tY B )  of the original, untransformed sTS(1S) receive the same 
fourth element in the SQS(16). It is then possible to transform the SQS(t6) to 
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another SQS(16) containing the original sl.S(l5) as a derived subsystem. 

Our method was, therefore, to search each sTS( 15) for quadrilaterals and 
determine which of these extend to the configuration described. This we did by 
computer. Using the configuration to extend the STS(t5) to an SQS(l6) was 
then undertaken by hand and was found to be a not too onerous task. 

3. Results 
In searching for the configuration described in the previous section, the 

computer results indicated that in addition to the 15 systems identified in [Q], 9 
further STS( 15)’s, including both of the additional systems considered by Phelps 
[lo] and one of the three considered by Gibbons 131 have derived semi-heads. 
Hence it follows from theorem B that these systems are derived. 

The systems, together with their semi-heads, are: 

Apart from these, 19 STS(15)’s (including the other two considered by 
Gibbons), contain the configuration described in the previous section. Using the 
configuration we could find in each case an SQS(16) with the sTS(15) as a 
derived system. These SQS(l6)’s are given in the Appendix; the 35 blocks of 
each STS(15) all have a further element (16) adjoined to  them and these blocks 
are listed down the first column. Thus the STS(15)’s may be checked against 
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the listings in [l] or [5] by the reader. The SQS(l6)’s have been checked by the 
authors using a computer checking program. 

The situation concerning derived STS( 15)’s is now as follows: 
23 systems contain an STS(7) and are thus derived by theorem A. These 
are +1-22 and 61. 

24 systems contain a semi-head and are thus derived by theorem B. These 
are #23-35, 39, 40,41, 47, 53, 54, 58, 59, 62, 63 and 64. 

19 systems contain the configuration described in this paper and are derived 
as indicated in the Appendix. 
These are #36,38, 43-46,48-52, 55, 56,57, 60,70, 74,75 and 76. 

14 systems remain whose derivability is still undetermined. 
These are #37, 42, 65-69,71, 72,73 and 77-80. 

1. 

2. 

3. 

4. 
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APPENDIX 

SYSTEM NUMBER 36 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 9 1 6  
3 6 12 16 
3 7 13 16 
3 10 15 16 
3 11  14 16 
4 7 14 16 
4 9 12 16 
4 10 13 16 
4 11 15 16 
5 6 15 16 
5 8 13 16 
5 10 14 16 
5 11 12 16 
6 8 14 16 
6 9 10 16 
6 11 13 16 
7 8 11 16 
7 9 15 16 
7 10 12 16 
8 12 15 16 
9 13 14 16 

2 6 13 14 
2 7 11 12 
2 3 12 13 
2 3 6 7  
1 2  7 1 3  
1 2  6 1 2  
6 7 12 13 
1 3  7 1 2  
1 3  6 1 3  
4 8 9 1 5  
8 10 11 15 
9 10 14 15 
4 5 10 15 
5 8 14 15 
5 9 11 15 
5 8 9 1 0  
4 5 9 1 4  
4 5 8 1 1  
8 9 11 14 
4 9 10 11 
4 8 10 14 
2 3 5 1 5  
1 5 12 15 
5 7 13 15 
2 3 8 1 4  
1 8 12 14 
7 8 13 14 
2 3 9 1 0  
1 9 10 12 
7 9 10 13 
4 6 11 14 
2 3 4 1 1  
1 4 11 12 
4 7 11 13 
3 4 12 14 

1 4 13 14 
2 6 8 1 1  
3 8 11 12 
1 8 11 13 
2 6 9 1 5  
3 9 12 15 
1 9 13 15 
5 7 10 11 
2 5 6 1 0  
3 5 10 12 
1 5 10 13 
2 4 7 9  
3 4 9 1 3  
1 4 6 9  
3 5 11 13 
1 5  6 1 1  
2 7 8 1 5  
3 8 13 15 
1 6  8 1 5  

10 11 12 14 
2 7 10 14 
3 10 13 14 
1 6 10 14 
1 2  4 1 0  
4 6 10 12 
3 4 7 1 0  
1 2 5 8  
5 6 8 1 2  
3 5 7 8  
1 2  9 1 4  
6 9 12 14 
3 7 9 1 4  

11 13 14 15 
1 2 11 15 
6 11 12 15 

3 7 11 15 
2 4 5 1 3  
4 5 7 1 2  
3 4 5 6  
2 8 9 1 3  
7 8 9 1 2  , 
3 6 8 9  
2 10 11 13 
3 6 10 11 
7 12 14 15 
3 6 14 15 
,4 6 8 13 
2 4 8 1 2  
1 4 7 8  
5 6 9 1 3  
2 5 9 1 2  
1 5 7 9  
6 10 13 15 
2 10 12 15 
1 7 10 15 
1 7 11 14 
6 7 8 1 0  
1 3  8 1 0  
8 10 12 13 
6 7 9 1 1  
1 3  9 1 1  
9 11 12 13 
2 4 14 15 
4 6 7 1 5  
1 3  4 1 5  
4 12 13 15 
2 5 11 14 
5 6 7 1 4  
1 3  5 1 4  
5 12 13 14 



Derived Steiner triple systems of order I5 191 

SYSTEM fUt*lBER 38 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 9 1 6  
3 6 12 16 
3 7 14 16 
3 10 13 16 
3 11 15 16 
4 7 10 16 
4 9 13 16 
4 11 14 16 
4 12 15 16 
5 6 13 16 
5 8 15 16 
5 10 14 16 
5 11 12 16 
6 8 11 16 
6 9 14 16 
6 10 15 16 
7 8 12 16 
7 9 15 16 
7 11 13 16 
8 13 14 16 
9 10 12 16 

4 8 10 12 
1 8 12 14 

10 11 12 14 
4 5 12 14 
1 5 10 12 
1 4 11 12 
1 4 10 14 
1 5 11 14 
4 5 10 11 
3 6 8 1 5  
3 9 13 15 
6 7 13 15 
2 6 9 1 5  
2 3 7 1 5  
2 7 9 1 3  
2 3 6 1 3  
2 6 7 8  
2 3 8 9  
3 7 8 1 3  
6 8 9 1 3  
3 6 7 9  
2 3 10 12 
2 3 4 1 4  
2 3 5 1 1  
6 7 10 12 
4 6 7 1 4  
5 6 7 1 1  
4 8 9 1 4  
5 8 9 1 1  
1 S 13 15 

10 12 13 15 
4 13 14 15 
5 11 13 15 
2 6 11 12 
1 2  G 1 0  

2 5 6 1 4  
3 8 11 12 
1 3  8 1 0  
3 5 8 1 4  
9 11 12 13 
1 9 10 13 
5 9 13 14 
4 7 8 1 5  
7 11 12 15 
1 7 10 15 
5 7 14 15 
1 2  8 1 1  
2 4 5 8  
3 12 13 14 
1 3 11 13 
3 4 5 1 3  
6 12 14 15 
1 6 11 15 
4 5 6 1 5  
7 8 9 1 0  
7 9 12 14 
1 7  9 1 1  
4 5 7 9  
1 3  7 1 2  
3 5 7 1 0  
3 4 7 1 1  
1 6  9 1 2  
5 6 9 1 0  
4 6 9 1 1  
5 8 10 13 
4 8 11 13 
2 8 14 15 
1 2 12 15 
2 5 10 15 
2 4 11 15 

2 4 7 1 2  
1 2  7 1 4  
2 7 10 11 
3 4 9 1 2  
1 3  9 1 4  
3 9 10 11 
4 6 12 13 
1 6 13 14 
6 10 11 13 
8 10 11 15. 
2 5 9 1 2  
2 9 10 14 
1 2 4 9  
3 5 12 15 
3 10 14 15 
1 3  4 1 5  
5 6 8 1 2  
6 8 10 14 
1 4 6 8  
5 7 12 13 
7 10 13 14 
1 4  7 1 3  
3 4 6 1 0  
3 6 11 14 
1 3 5 6  
7 8 11 14 
1 5 7 8  
8 9 12 15 
4 9 10 15 
9 11 14 15 
1 5  9 1 5  
2 8 12 13 
2 4 10 13 
2 11 13 14 
1 2  5 1 3  
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SYSTEM NJMBER 43 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 9 1 6  
3 6 12 16 
3 7 14 16 
3 10 15 16 
3 11 13 16 
4 7 10 16 
4 9 15 16 
4 11 12 16 
4 13 14 16 
5 6 11 16 
5 8 13 16 
5 10 14 16 
5 12 15 16 
6 8 15 16 
6 9 14 16 
6 10 13 16 
7 8 12 16 
7 9 13 16 
7 11 15 16 
8 11 14 16 
9 10 12 16 

3 8 11 15 
3 9 10 14 
2 3 10 11 
2 3 8 9  
1 3  9 1 1  
1 3  8 1 0  
8 9 10 11 
1 2  9 1 0  
1 2  8 1 1  
4 7 12 15 
5 7 13 15 
4 5 6 1 5  
6 7 14 15 
6 12 13 15 
5 6 13 14 
5 6 7 1 2  
4 6 12 14 
4 6 7 1 3  
7 12 13 14 
4 5 12 13 
4 5 7 1 4  
1 3  5 1 3  
2 5 10 13 
5 9 11 13 
1 3  6 1 5  
2 6 10 15 
6 9 11 15 
1 3  7 1 2  
2 7 10 12 
7 9 11 12 
4 8 14 15 
1 3  4 1 4  
2 4 10 14 
4 9 11 14 
4 8 10 12 

1 4  9 1 2  
2 3 4 1 2  
5 6 8 1 0  
1 5 6 9  
2 3 5 6  
7 8 10 15 
1 7  9 1 5  
2 3 7 1 5  

11 13 14 15 
8 10 13 14 
1 9 13 14 
2 3 13 14 
1 2  4 1 5  
4 10 11 15 
3 6 8 1 4  
1 2  6 1 4  
6 10 11 14 
3 7 8 1 3  
1 2  7 1 3  
7 10 11 13 
5 9 12 14 
3 5 8 1 2  
1 2  5 1 2  
5 10 11 12 
3 4 7 9  
1 4  7 1 1  
2 4 7 8  
1 5 11 14 
2 5 8 1 4  
3 6 9 1 3  
1 6 11 13 
2 6 A 1 3  

10 12 14 15 
3 9 12 15 
1 11 12 15 

2 8 12 15 
4 5 8 1 1  
3 4 5 1 0  
2 4 5 9  
6 7 8 1 1  
3 6 7 1 0  
2 6 7 9  
8 11 12 13 
3 10 12 13 
2 9 12 13 
2 9 14 15 
3 4 6 1 1  
4 6 9 1 0  
1 4 6 8  
3 5 7 1 1  
5 7 9 1 0  
1 5 7 8  
3 11 12 14 
1 8 12 14 
9 10 13 15 
1 8 13 15 
6 8 9 1 2  
1 6 10 12 
2 6 11 12 
7 8 9 1 4  
1 7 10 14 
2 7 11 14 
3 4 13 15 
4 8 9 1 3  
1 4 10 13 
2 4 11 13 
3 5 14 15 
5 8 9 1 5  
1 5 10 1 5  
2 5 11 15 
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SYSTEM NMBEI? 44 

1 2  3 1 6  3 6  
1 4  5 1 6  3 4  
1 6  7 1 6  2 3  
1 8  9 1 6  2 3  
1 10 11 16 1 3  
1 12 13 16 1 3  
1 14 15 16 8 9  
2 4 6 1 6  1 2  
2 5 7 1 6  1 2  
2 8 10 16 4 7  
2 9 11 16 4 13 
2 12 14 16 5 7  
2 13 15 16 5 12 
3 4 8 1 6  6 7  
3 5 9 1 6  6 12 
3 6 12 16 5 6  
3 7 14 16 5 6  
3 10 15 16 4 6  
3 11 13 16 7 12 
4 7 13 16 4 5  
4 9 12 16 4 5  
4 10 14 16 3 5  
4 11 15 16 1 5  
5 6 15 16 2 5  
5 8 14 16 1 6  
5 10 13 16 2 6  
5 11 12 16 3 11 
6 8 13 16 1 10 
6 9 10 16 2 9  
6 11 14 16 4 6  
7 8 11 16 3 4  
7 9 15 16 1 4  
7 10 12 16 2 4  
8 12 15 16 1 2  
9 13 14 16 4 8  

8 
9 

10 
8 
9 
8 

10 
9 
8 

12 
14 
13 
14 
14 
13 
13 

7 
12 
13 
12 

7 
11 
10 

9 
10 

9 
12 
12 
12 

7 
7 
7 
7 
4 
9 

11 
10 
11 

9 
11 
10 
11 
10 
11 
15 
15 
1 5  
15 
15 
15 
14 
12 
14 
14 
13 
14 
14 
14 
14 
13 
13 
15 
15 
15 
8 

11 
10 
9 

15 
15 

3 5  
1 2  
5 8  
3 6  
1 2  
6 8  
6 7  
3 7  
1 2  
7 8  
1 3  
2 4  
4 10 
1 3  
2 7  
7 10 
1 3  
2 8  

10 11 
4 5  
1 3  
2 5  
5 6  
2 3  
1 4  
4 9  
2 3  
1 5  
5 9  
2 3  
1 7  
7 9  
4 6  
2 3  
1 6  

10 
5 
9 

10 
6 
9 

11 
10 

7 
9 
4 
8 

11 
7 
8 

11 
13 
13 
13 
6 
5 
6 

10 
4 
8 

11 
5 
8 

11 
7 
8 

11 
10 
6 
8 

12 
12 
12 
14 
14 
14 
13 
13 
13 
13 
12 
12 
12 
15 
15 
15 
14 
14 
14 

9 
6 
8 

11 
14 
14 
14 
13 
13 
13 
12 
12 
12 
15 
15 
15 

6 9 11 15 
4 5 8 1 1  
2 4 5 1 0  
3 6 7 9  
2 6 7 1 0  
8 11 12 13 
3 9 12 13 
2 10 12 13 
8 11 14 15 
3 9 14 15 
2 10 14 15 
1 4  6 1 1  
3 5 7 8  
5 7 9 1 0  
1 5  7 1 1  
3 8 12 14 
9 10 12 14 
1 11 12 14 

9 10 13 15 
1 11 13 1 5  
1 6  9 1 2  
6 8 10 12 
2 6 11 12 
1 7  9 1 4  
7 8 10 14 
2 7 11 14 
3 4 6 1 3  
1 4  9 1 3  
4 8 10 13 
2 4 11 13 
3 4 5 1 5  
1 5  9 1 5  
5 8 10 15 
2 5 11 15 

3 a 13 15 



I94 M. J. Crannell and T. S. Criggs 

SYSTEM WMBER 45 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 9 1 6  
3 6 12 16 
3 7 15 16 
3 10 13 16 
3 11 14 16 
4 7 10 16 
4 9 12 16 
4 11 15 16 
4 13 14 16 
5 6 15 16 
5 8 14 16 
5 10 12 16 
5 11 13 16 
6 8 11 16 
6 9 13 16 
6 10  14 16 
7 8 13 16 
7 9 14 16 
7 11 12 16 
8 12 15 16 
9 10 15 16 

1 5 7 9  
7 9 10 13 
5 7 12 13 
5 7 10 11 
1 7 11 13 
1 7 10 12 
1 5 10 13 

10 11 12 13 
1 5 11 12 
2 6 14 15 
2 8 9 1 5  
3 6 9 1 5  
3 8 14 15 
4 9 14 15 
2 3 4 1 5  
4 6 8 1 5  
3 4 6 1 4  
2 4 8 1 4  
2 3 6 8  
6 8 9 1 4  
2 3 9 1 4  
2 3 7 1 3  
2 3 5 1 2  
2 3 10 11 
5 8 9 1 2  
8 9 10 11 
7 13 14 15 
5 12 14 15 

10 11 14 15 
1 4 6 9  
4 6 7 1 3  
4 5 6 1 2  
4 6 10 11 
1 3  9 1 2  
3 7 9 1 1  

6 10 13 15 
1 6 12 15 
6 7 11 15 
8 10 13 14 
1 8 12 14 
7 8 11 14 
2 4 5 9  
2 4 10 13 
1 2  4 1 2  
2 4 7 1 1  
2 5 8 1 3  
1 2  8 1 1  
2 7 8 1 2  
5 6 13 14 
1 6 11 14 
6 7 12 14 
5 9 13 15 
1 9 11 15 
7 9 12 15 
3 4 9 1 0  
3 4 5 1 3  
1 3  4 1 1  
3 4 7 1 2  
1 2  7 1 5  
2 5 10 15 
2 11 12 15 
1 4  7 1 4  
4 5 10 14 
4 11 12 14 
5 6 9 1 0  
6 9 11 12 
3 8 9 1 3  
1 3 7 8  
3 5 8 1 0  
3 8 11 12 

1 2  9 1 3  
2 9 10 12 
3 5 7 1 4  
1 3 13 14 
3 10 12 14 
4 5 7 1 5  
1 4 13 15 
4 10 12 15 
5 6 7 8  
1 6  8 1 3  
6 8 10 12 
1 2  5 1 4  
2 7 10 14 
2 11 13 14 
1 3 5 6  
3 6 7 1 0  
3 6 11 13 
4 9 11 13 
1 5  8 1 5  
7 8 10 15 
8 11 13 15 
1 3 10 15 
3 5 11 15 
3 12 13 15 
1 9 10 14 
5 9 11 14 
9 12 13 14 
2 6 7 9  
1 2  6 1 0  
2 5 6 1 1  
2 6 12 13 
4 7 8 9  
1 4  8 1 0  
4 5 8 1 1  
4 8 12 13 



Derived Steiner triple systems of order I5 195 

SYSTEM MJMBER 46 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 9 1 6  
3 6 12 16 
3 7 15 16 
3 10 13 16 
3 11 14 16 
4 7 10 16 
4 9 14 16 
4 11 13 16 
4 12 15 16 
5 6 11 16 
5 8 12 16 
5 10 15 16 
5 13 14 16 
6 8 13 16 
6 9 15 16 
6 10 14 16 
7 8 14 16 
7 9 13 16 
7 11 12 16 
8 11 15 16 
9 10 12 16 

1 4 13 15 
4 7 8 1 5  
8 9 13 15 
6 7 13 15 
1 7  9 1 5  
1 6  8 1 5  
1 7  8 1 3  
6 7 8 9  
1 6  9 1 3  
5 11 12 14 
2 3 11 12 
2 4 5 1 1  
2 10 11 14 
4 10 11 12 
3 5 10 11 
2 3 4 1 0  
4 5 10 14 
2 5 10 12 
3 10 12 14 
3 4 5 1 2  
2 3 5 1 4  
2 3 7 1 3  
2 3 9 1 5  
2 3 6 8  
4 5 7 1 3  
4 5 9 1 5  
4 5 6 8  
7 10 11 13 
9 10 11 15 
6 8 10 11 
1 4 12 14 
7 12 13 14 
9 12 14 15 
6 8 12 14 
3 8 10 15 

3 6 9 1 0  
1 3  7 1 0  
4 6 9 1 1  
1 4  7 1 1  
5 8 14 15 
5 6 9 1 4  
1 5  7 1 4  
2 4 12 13 
2 8 12 15 
2 6 9 1 2  
1 2  7 1 2  
2 5 8 1 3  
2 5 6 1 5  
1 2 5 9  
4 8 10 13 
4 6 10 15 
1 4  9 1 0  
8 11 12 13 
6 11 12 15 
1 9 11 12 
3 4 7 1 4  
3 8 13 14 
3 6 14 15 
1 3  9 1 4  
2 7 10 15 
2 9 10 13 
1 2  6 1 0  
3 4 9 1 3  
1 3 4 6  
5 7 12 15 
5 9 12 13 
1 5  6 1 2  
4 8 11 14 
7 11 14 15 
9 11 13 14 

1 6 11 14 
1 2 4 8  
2 4 7 9  
3 12 13 15 
1 3  8 1 2  
3 7 9 1 2  
5 11 13 15 
1 5  8 1 1  
5 7 9 1 1  

10 13 14 15 
1 8 10 14 
7 9 10 14 
1 2 11 15 
2 7 8 1 1  
2 6 11 13 
1 3  5 1 5  
3 5 7 8  
3 5 6 1 3  
4 6 13 14 
1 10 12 15 
7 8 10 12 
6 10 12 13 
4 8 9 1 2  
4 6 7 1 2  
1 5 10 13 
5 8 9 1 0  
5 6 7 1 0  
2 4 14 15 
1 2 13 14 
2 8 9 1 4  
2 6 7 1 4  
3 4 11 15 
1 3 11 13 
3 8 9 1 1  
3 6 7 1 1  



196 M. J. Grannell and T. S. Griggs 

SYSTEM MJMBER 48 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 10 16 
3 6 12 16 
3 7 15 16 
3 9 13 16 
3 11 14 16 
4 7 9 1 6  
4 10 14 16 
4 11 13 16 
4 12 15 16 
5 6 11 16 
5 8 12 16 
5 9 15 16 
5 13 14 16 
6 8 13 16 
6 9 14 16 
6 10 15 16 
7 8 14 16 
7 10 13 16 
7 11 12 16 
8 11 15 16 
9 10 12 16 

2 6 7 9  
7 8 12 15 
6 7 13 15 
6 7 8 1 0  
2 7 10 15 
2 7 8 1 3  
2 6 8 1 5  
8 10 13 15 
2 6 10 13 
1 5 11 14 
1 3  4 1 1  
4 5 11 12 
3 5 9 1 1  
4 9 11 14 
1 9 11 12 
3 4 9 1 2  
5 9 12 14 
1 3  9 1 4  
1 4 12 14 
1 3  5 1 2  
3 4 5 1 4  
1 3 7 8  
1 3  6 1 3  
1 3 10 15 
7 8 9 1 1  
6 9 11 13 
9 10 11 15 
6 12 13 14 

10 12 14 15 
2 4 5 9  
4 5 7 8  
4 5 6 1 3  
4 5 10 15 
2 3 12 13 
3 8 10 12 

5 7 11 15 
2 5 11 13 
5 8 10 11 
7 9 14 15 
2 9 13 14 
8 9 10 14 
1 4 6 9  
1 4  7 1 5  
1 2  4 1 3  
1 4  8 1 0  
1 2  9 1 0  
1 9 13 15 
3 4 6 7  
2 3 4 1 0  
3 4 13 15 
5 6 7 1 2  
2 5 10 12 
5 12 13 15 
8 11 12 14 
6 7 11 14 
2 10 11 14 

11 13 14 15 
1 2  7 1 4  
1 6 10 14 
1 8 13 14 
2 4 7 1 2  
4 6 10 12 
4 8 12 13 
5 6 9 1 0  
5 8 9 1 3  
3 11 12 15 
2 3 7 1 1  
3 6 10 11 
3 8 11 13 
1 7 11 13 

1 2  8 1 1  
1 6 11 15 
3 5 7 1 3  
2 3 5 8  
3 5 6 1 5  
4 7 13 14 
2 4 8 1 4  
4 6 14 15 
7 9 12 13 
2 8 9 1 2  
6 9 12 15 
1 7 10 12 
1 2 12 15 
1 6  8 1 2  
3 7 9 1 0  
2 3 9 1 5  
3 6 8 9  
4 7 10 11 
2 4 11 15 
4 6 8 1 1  
5 7 10 14 
2 5 14 15 
5 6 8 1 4  
4 8 9 1 5  
4 9 10 13 
2 6 11 12 

10 11 12 13 
1 5 7 9  
1 2 5 6  
1 5  8 1 5  
1 5 10 13 
3 7 12 14 
2 3 6 1 4  
3 8 14 15 
3 10 13 14 



Derived Steitier triple s y s t e m  of order I5 197 

SYSTEH NJMBER 49 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 10 16 
3 6 12 16 
3 7 15 16 
3 9 13 16 
3 11 14 16 
4 7 14 16 
4 9 15 16 
4 10 12 16 
4 11 13 16 
5 6 13 16 
5 8 14 16 
5 9 12 16 
5 11 15 16 
6 8 11 16 
6 9 14 16 
6 10 15 16 
7 8 13 16 
7 9 10 16 
7 11 12 16 
8 12 15 16 

10 13 14 16 

2 4 5 1 2  
5 9 10 13 
4 5 13 15 
4 5 9 1 1  
2 5 11 13 
2 5 9 1 5  
2 4 9 1 3  
9 11 13 15 
2 4 11 15 
1 7  8 1 4  
1 10 12 14 
3 7 12 14 
3 8 10 14 
6 8 12 14 
1 3  6 1 4  
6 7 10 14 
3 6 7 8  
1 6  8 1 0  
1 3  7 1 0  
7 8 10 12 
1 3  8 1 2  
1 3 4 9  
1 3  5 1 5  
1 3 11 13 
4 8 9 1 0  
5 8 10 15 
8 10 11 13 
4 9 12 14 
5 12 14 15 

11 12 13 14 
2 6 7 1 2  
4 6 7 9  
5 6 7 1 5  
6 7 11 13 
3 5 8 9  

2 3 8 1 1  
3 8 13 15 
5 7 9 1 4  
2 7 11 14 
7 13 14 15 
2 10 11 12 

10 12 13 15 
1 4  6 1 2  
1 5 6 9  
1 2  6 1 1  
1 6 13 15 
1 2  8 1 3  
1 5  8 1 1  
1 4  8 1 5  
2 6 13 14 
5 6 11 14 
4 6 14 15 
2 7 10 13 
5 7 10 11 
4 7 10 15 
3 9 10 12 
2 3 12 13 
3 5 11 12 
3 4 12 1 5  
1 2 12 15 
1 9 11 12 
4 5 7 8  
2 7 8 1 5  
7 8 9 1 1  
4 5 10 14 
2 10 14 15 
9 10 11 14 
3 6 10 13 
3 4 5 6  
2 3 6 1 5  

3 6 9 1 1  
1 2  5 1 0  
1 4 10 13 
1 9 10 15 
2 3 5 1 4  
4 3 13 14 
3 9 14 15 
2 5 6 8  
4 6 8 1 3  
6 8 9 1 5  
4 7 12 13 
7 9 12 15 
1 5 13 14 
1 4 11 14 
1 2  9 1 4  
3 5 7 1 3  
3 4 7 1 1  
2 3 7 9  
4 6 10 11 
2 6 9 1 0  
5 8 12 13 
4 8 11 12 
2 8 9 1 2  
2 3 4 1 0  
3 10 11 15 
2 4 8 1 4  
8 9 13 14 
8 11 14 15 
1 5  7 1 2  
1 2 4 7  
1 7  9 1 3  
1 7 11 15 
5 6 10 12 
6 9 12 13 
6 11 12 15 



198 M.J. Grannell and T.S. Griggs 

SYSTEM NJMBER 50 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 10 16 
3 6 12 16 
3 7 15 16 
3 9 13 16 
3 11 14 16 
4 7 9 1 6  
4 10 12 16 
4 11 15 16 
4 13 14 16 
5 6 15 16 
5 8 14 16 
5 9 12 16 
5 11 13 16 
6 8 11 16 
6 9 14 16 
6 10 13 16 
7 8 13 16 
7 10 14 16 
7 11 12 16 
8 12 15 16 
9 10 15 16 

2 4 12 13 
1 7  9 1 3  
9 11 12 13 
5 7 12 13 
2 7 11 13 
2 5 9 1 3  
2 7 9 1 2  
5 7 9 1 1  
2 5 11 12 
1 3  6 1 5  
1 8 10 '  15 
3 4 10 15 
4 6 8 1 5  
3 8 14 15 
6 10 14 15 
4 8 10 14 
3 4 6 1 4  
1 6  8 1 4  
1 3 10 14 
1 4  6 1 0  
3 6 8 1 0  
1 3  7 1 2  
1 3  5 1 1  
4 6 9 1 3  
4 6 7 1 2  
4 5 6 1 1  
8 9 10 13 
7 8 10 12 
5 8 10 11 
2 4 14 15 
9 13 14 15 
7 12 14 15 
5 11 14 15 
2 3 6 7  
3 5 6 1 3  

3 6 9 1 1  
2 4 7 1 0  
4 5 10 13 
4 9 10 11 
2 7 8 1 5  
5 8 13 15 
8 9 11 15 
1 4 12 14 
1 2  7 1 4  
1 5 13 14 
1 9 11 14 
1 2 6 9  
1 6 11 13 
1 5  6 1 2  
2 3 9 1 5  
3 11 13 15 
3 5 12 15 
2 9 10 14 

10 11 13 14 
5 10 12 14 
1 4 7 8  
2 4 8 9  
4 8 11 13 
4 5 8 1 2  
1 2 5 8  
1 8 11 12 
6 7 13 14 
2 5 6 1 4  
6 11 12 14 
7 10 13 15 
2 5 10 15 

10 11 12 15 
1 3 4 9  
3 4 7 1 3  
2 3 4 5  

3 4 11 12 
1 2  4 1 1  
3 10 12 13 
3 7 9 1 0  
2 3 10 11 
6 12 13 15 
6 7 9 1 5  
2 6 11 15 
8 12 13 14 
7 8 9 1 4  
2 8 11 14 
1 2 10 13 
1 9 10 12 
1 5  7 1 0  
2 3 13 14 
3 9 12 14 
3 5 7 1 4  
4 9 12 15 
4 5 7 1 5  
2 6 8 1 3  
6 8 9 1 2  
5 6 7 8  
4 7 11 14 
4 5 9 1 4  
2 6 10 12 
6 7 10 11 
5 6 9 1 0  
1 4 13 15 
1 2 12 15 
1 7 11 15 
1 5  9 1 5  
1 3  8 1 3  
2 3 8 1 2  
3 7 8 1 1  
3 5 8 9  



Derived Steincr triple systems of order I5 199 

SYSTEM WMBER 51 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 11 16 
3 6 12 16 
3 7 15 16 
3 9 13 16 
3 10 14 16 
4 7 10 16 
4 9 14 16 
4 11 13 16 
4 12 15 16 
5 6 9 1 6  
5 8 15 16 
5 10 12 16 
5 13 14 16 
6 8 14 16 
6 10 13 16 
6 11 15 16 
7 8 13 16 
7 9 12 16 
7 11 14 16 
8 11 12 16 
9 10 15 16 

2 7 10 11 
4 10 14 15 
10 11 13 15 
4 6 10 11 
2 6 10 15 
2 4 10 13 
2 4 11 15 
4 6 13 15 
2 6 ii is 
1 5  7 1 4  
5 7 8 1 2  
3 5 7 9  
1 3  7 1 2  
3 7 8 1 4  
3 5 12 i4 
3 8 9 1 2  
1 3  9 1 4  
1 3 5 8  
1 8 12 14 
5 8 9 1 4  
1 5  9 1 2  
1 3  4 1 5  
1 3 10 13 
1 3  6 1 1  
4 5 7 1 5  
5 7 10 13 
5 6 7 1 1  
10 12 13 14 
6 11 12 14 
2 7 8 9  
4 8 9 1 5  
8 9 10 13 
6 8 9 1 1  
3 4 5 1 0  
2 3 5 1 5  

3 5 6 1 3  
2 7 14 15 
6 7 13 14 
4 e 10 12 
2 8 12 15 
6 8 12 13 
1 7  9 1 1  
1 4  9 1 0  
1 2  9 1 5  
1 6  9 1 3  
1 5 10 15 
1 2 5 6  
1 5 11 13 
3 8 10 15 
2 3 6 8  
3 8 11 13 
2 6 9 1 4  
9 11 13 14 
4 7 12 14 
7 10 12 15 
2 6 7 1 2  
7 11 12 13 
1 4 11 14 
1 6 10 14 
1 2 13 14 
3 4 7 1 1  
3 6 7 1 0  
2 3 7 1 3  
4 5 8 1 1  
5 6 8 1 0  
2 5 8 1 3  
9 12 14 15 
4 9 11 12 
6 9 10 12 
2 9 12 13 

1 2 4 7  
1 7 13 15 
3 10 11 12 
2 3 4 1 2  
3 12 13 15 
5 9 10 11 
2 4 5 9  
5 9 13 15 
8 10 11 14 
2 4 8 1 4  
8 13 14 15 
1 2 10 12 
1 4  6 1 2  
1 11 12 15 
2 3 9 1 0  
3 4 6 9  
3 9 11 15 
2 5 10 14 
4 5 6 1 4  
5 11 14 15 
4 6 7 8  
7 8 11 15 
2 3 11 14 
3 4 13 14 
3 6 14 15 
2 5 11 12 
4 5 12 13 
5 6 12 15 
1 7  8 1 0  
1 2  8 1 1  
1 4  8 1 3  
1 6  8 1 5  
7 9 10 14 
4 7 9 1 3  
6 7 9 1 5  
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SYSTEM NJMBER 52 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 11 16 
3 6 12 16 
3 7 15 16 
3 9 13 16 
3 10 14 16 
4 7 13 16 
4 9 14 16 
4 10 15 16 
4 11 12 16 
5 6 9 1 6  
5 8 15 16 
5 10 12 16 
5 13 14 16 
6 8 14 16 
6 10 13 16 
6 11 15 16 
7 8 12 16 
7 9 10 16 
7 11 14 16 
8 11 13 16 
9 12 15 16 

2 5 10 11 
4 9 11 13 

10 11 13 15 
4 6 10 11 
2 6 11 13 
2 4 11 15 
2 4 10 13 
4 6 13 15 
2 6 10 15 
1 3  5 1 4  
5 7 8 1 4  
3 5 7 9  
5 9 12 14 
1 5  7 1 2  
3 5 8 1 2  
3 7 12 14 
1 3  9 1 2  
1 8 12 14 
1 3 7 8  
3 8 9 1 4  
1 7  9 1 4  
1 3 11 13 
1 3 10 15 
1 3 4 6  
5 7 11 13 
5 7 10 15 
4 5 6 7  

11 12 13 14 
10 12 14 15 
4 6 12 14 
2 5 8 9  
8 9 10 15 
4 6 8 9  
3 4 13 14 
3 6 11 14 

2 3 14 15 
4 5 12 13 
6 5 11 12 
2 5 12 15 
6 7 9 1 1  
2 7 9 1 5  
1 5  8 1 0  
1 4  8 1 3  
1 6  8 1 1  
1 2  8 1 5  
1 5  6 1 5  
1 2  5 1 3  
3 8 10 11 
3 6 8 1 5  
2 3 8 1 3  
9 10 11 14 
6 9 14 15 
2 9 13 14 
4 7 9 1 2  
7 10 11 12 
6 7 12 15 
2 7 12 13 
1 11 12 15 
1 2  6 1 2  
1 4 10 12 
3 9 11 15 
2 3 6 9  
3 4 9 1 0  
5 11 14 15 
2 5 6 1 4  
4 5 10 14 
7 8 9 1 3  
7 8 11 15 
2 6 7 8  
4 7 8 1 0  

1 2  7 1 1  
1 4  7 1 5  
1 7 10 13 
2 3 11 12 
3 4 12 15 
3 10 12 13 
4 5 9 1 5  
5 9 10 13 
2 8 11 14 
4 8 14 15 
8 10 13 14 
1 2 10 14 
1 4 11 14 
1 6 13 14 
2 3 7 1 0  
3 4 7 1 1  
3 6 7 1 3  
4 5 8 1 1  
5 6 8 1 3  
2 9 10 12 
6 9 12 13 
3 5 13 15 
2 3 4 5  
3 5 6 1 0  
7 13 14 15 
2 4 7 1 4  
6 7 10 14 
1 5  9 1 1  
1 9 13 15 
1 2 4 9  
1 6  9 1 0  
8 9 11 12 
8 12 13 15 
2 4 8 1 2  
6 8 10 12 



Derived Steiner triple systems of order 15 20 1 

SYSTEM WMBER 55 

1 2  3 1 6  1 5 7 8  
1 4  5 1 6  8 9 10 13 
1 6  7 1 6  7 8 12 13 
1 8  9 1 6  7 8 10 11 
1 10 11 16 1 8 11 13 
1 12 13 16 1 8 10 12 
1 14 15 16 1 7 10 13 
2 4 6 1 6  10 11 12 13 
2 5 7 1 6  1 7 11 12 
2 8 10 16 3 5 14 15 
2 9 11 16 2 3 6 1 4  
2 12 14 16 2 9 14 15 
2 13 15 16 3 4 9 1 4  
3 4 8 1 6  2 4 5 1 4  
3 5 11 16 4 6 14 15 
3 6 12 16 2 3 4 1 5  
3 7 15 16 4 5 9 1 5  
3 9 13 16 3 4 5 6  
3 10 14 16 2 5 6 1 5  
4 7 9 1 6  3 6 9 1 5  
4 10 13 16 2 3 5 9  
4 11 14 16 2 3 8 1 3  
4 12 15 16 2 3 7 1 0  
5 6 10 16 2 3 11 12 
5 8 15 16 4 5 8 1 3  
5 9 12 16 4 5 7 1 0  
5 13 14 16 4 5 11 12 
6 8 13 16 8 13 14 15 
6 9 14 16 7 10 14 15 
6 11 15 16 11 12 14 15 
7 8 14 16 1 5 6 9  
7 10 12 16 6 7 9 1 0  
7 11 13 16 6 9 11 12 
8 11 12 16 2 5 10 13 
9 10 15 16 2 5 8 1 1  

1 2  5 1 2  
3 10 13 15 
3 8 11 15 
1 3 12 15 
4 8 9 1 1  
1 4  9 1 2  
5 6 7 1 4  
6 10 13 14 
6 8 11 14 
1 6 12 14 
1 3  7 1 4  
3 8 12 14 
3 11 13 14 
5 6 8 1 2  
5 6 11 13 
1 7  9 1 5  
8 9 12 15 
9 11 13 15 
2 4 9 1 0  
1 2 4 7  
2 4 8 1 2  
2 4 11 13 
2 7 8 1 5  
1 2 11 15 
2 10 12 15 

1 3  9 1 1  
3 9 10 12 
1 5 11 14 
5 10 12 14 
4 6 9 1 3  
4 6 7 8  
1 4  6 1 1  
4 6 10 12 
2 7 9 1 2  

3 7 8 9  

1 2  9 1 3  
3 5 8 1 0  
3 5 7 1 2  
1 3  5 1 3  
4 8 10 14 
4 7 12 14 
1 4 13 14 
6 8 10 15 
6 7 12 15 
1 6 13 1 5  
1 2  8 1 4  
2 7 13 14 
2 10 11 14 
1 3 6 8  
3 6 7 1 3  
3 6 10 11 
1 4  8 1 5  
4 7 13 15 
4 10 11 15 
5 7 9 1 3  
5 9 10 11 
3 4 7 1 1  
1 3  4 1 0  
3 4 12 13 
5 7 11 15 
1 5 10 15 
5 12 13 1 5  
5 8 9 1 4  
7 9 11 14 
1 9 10 14 
9 12 13 14 
2 6 8 9  
2 6 7 1 1  
1 2  6 1 0  
2 6 12 13 



202 

SYSTEM NJMBER 56 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 11 16 
3 6 12 16 
3 7 15 16 
3 9 14 16 
3 10  13 16 
4 7 14 16 
4 9 13 16 
4 10 15 16 
4 11 12 16 
5 6 9 1 6  
5 8 15 16 
5 10 12 16 
5 13 14 16 
6 8 13 16 
6 10 14 16 
6 11 15 16 
7 8 12 16 
7 9 10 16 
7 11 13 16 
8 11 14 16 
9 12 15 16 

M. J. Grannell and T S. Griggs 

1 3 4 6  
3 4 11 14 
4 6 14 15 
4 6 10 11 
1 4 11 15 
1 4 10 14 
1 6 11 14 

10 11 14 15 
1 6 10 15 
2 5 9 1 3  
2 7 12 13 
5 7 8 1 3  
8 9 12 13 
3 5 12 13 
2 3 8 1 3  
3 7 9 1 3  
3 5 8 9  
2 3 9 1 2  
2 7 8 9  
5 7 9 1 2  
2 5 8 1 2  
2 3 11 15 
2 3 10 14 
4 6 8 9  
8 9 11 15 
8 9 10 14 
4 6 12 13 

11 12 13 15 
10 12 13 14 

1 3 5 7  
4 5 6 7  
5 7 11 15 
5 7 10 14 
1 3 12 14 
3 10 12 15 

4 5 9 1 1  
1 5  9 1 4  
5 9 10 15 
4 8 11 13 
1 8 13 14 
8 10 13 15 
2 3 6 7  
2 4 7 1 1  
1 2  7 1 4  
2 7 10 15 
1 2 4 9  
2 6 9 1 0  
2 9 14 15 
3 5 6 1 0  
3 5 14 15 
1 4  7 1 3  
6 7 10 13 
7 13 14 15 
3 8 11 12 
1 4  8 1 2  
6 8 10 12 
8 12 14 15 
2 4 10 12 
2 6 11 12 
1 2 12 15 
3 4 9 1 0  
3 6 9 1 1  
1 3  9 1 5  
4 5 10 13 
5 6 11 13 
1 5 13 15 
3 7 8 1 4  
4 7 8 1 0  
6 7 8 1 1  
1 7  8 1 5  

2 4 8 1 5  
1 2  8 1 1  
2 6 8 1 4  
3 4 13 15 
1 3 11 13 
3 6 13 14 
4 5 12 15 
1 5 11 12 
5 6 12 14 
4 7 9 1 5  
1 7  9 1 1  
6 7 9 1 4  
1 2  6 1 3  
2 4 13 14 
2 10 11 13 
3 7 10 11 
1 5 6 8  
4 5 8 1 4  
5 8 10 11 
1 6  9 1 2  
4 9 12 14 
9 10 11 12 
1 3  8 1 0  
3 6 8 1 5  
9 11 13 14 
1 9 10 13 
6 9 13 15 
2 3 4 5  
2 5 11 14 
1 2  5 1 0  
2 5 6 1 5  
3 4 7 1 2  
7 11 12 14 
1 7 10 12 
6 7 12 15 



Derived Steiner triple systems of order 15 203 

SYSTEM NUMBER 57 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 11 16 
3 6 12 16 
3 7 15 16 
3 9 14 16 
3 10 13 16 
4 7 10 16 
4 9 13 16 
4 11 14 16 
4 12 15 16 
5 6 9 1 6  
5 8 15 16 
5 10 12 16 
5 13 14 16 
6 8 13 16 
6 10 14 16 
6 11 15 16 
7 8 14 16 
7 9 12 16 
7 11 13 16 
8 11 12 16 
9 10 15 16 

1 3 4 6  
2 4 10 15 
4 6 14 15 
4 6 10 11 
1 4 11 15 
1 4 10 14 
1 6 10 15 

10 11 14 15 
1 6 11 14 
2 7 8 1 3  
5 7 8 9  
5 7 12 13 
3 7 8 1 2  
3 7 9 1 3  
3 5 8 1 3  
3 5 9 1 2  
2 3 12 13 
2 3 8 9  
2 5 9 1 3  
8 9 12 13 
2 5 8 1 2  
2 3 10 14 
2 3 11 15 
4 6 8 9  
8 9 10 14 
8 9 11 15 
4 6 12 13 

10 12 13 14 
11 12 13 15 
1 3 5 7  
4 5 6 7  
5 7 10 14 
5 7 11 15 
3 4 10 12 
3 11 12 14 

1 3 12 15 
4 5 9 1 0  
5 9 11 14 
1 5  9 1 5  
4 8 10 13 
8 11 13 14 
1 8 13 15 
2 3 6 7  
2 7 11 14 
1 2  7 1 5  
2 4 8 1 1  
1 2  8 1 4  
2 6 8 1 5  
3 4 11 13 
1 3 13 14 
3 6 13 15 
4 5 11 12 
1 5 12 14 
5 6 12 15 
2 7 9 1 0  
4 7 9 1 1  
1 7  9 1 4  
6 7 9 1 5  
1 2  6 1 3  
2 4 13 14 
2 10 11 13 
3 4 7 1 4  
3 7 10 11 
1 5 6 8  
4 5 8 1 4  
5 8 10 11 
2 9 12 15 
1 6  9 1 2  
4 9 12 14 
9 10 11 12 

1 2 4 9  
2 6 9 1 4  
3 5 10 15 
3 5 6 1 4  
1 4  7 1 3  
7 10 13 15 
6 7 13 14 
1 4  8 1 2  
8 10 12 15 
6 8 12 14 
2 6 10 12 
1 2 11 12 
3 4 9 1 5  
3 6 9 1 0  
1 3  9 1 1  
4 5 13 15 
5 6 10 13 
1 5 11 13 
4 7 8 1 5  
6 7 8 1 0  
1 7  8 1 1  
1 3  8 1 0  
3 8 14 15 
3 6 8 1 1  
1 9 10 13 
9 13 14 15 
6 9 11 13 
2 3 4 5  
1 2  5 1 0  
2 5 14 15 
2 5 6 1 1  
2 4 7 1 2  
1 7 10 12 
7 12 14 15 
6 7 11 12 
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SYSTEM NUMBER 60 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 11 16 
2 12 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 15 16 
3 6 12 16 
3 7 11 16 
3 9 13 16 
3 10 14 16 
4 7 14 16 
4 9 15 16 
4 11 13 16 
4 10 12 16 
5 6 13 16 
5 8 12 16 
5 9 10 16 
5 11 14 16 
6 8 11 16 
6 9 14 16 
6 10 15 16 
7 8 15 16 
7 9 12 16 
7 10 13 16 
8 13 14 16 

11 12 15 16 

2 6 7 1 2  
6 8 12 13 
6 7 13 15 
6 7 8 1 0  
2 6 10 13 
2 6 8 1 5  
2 7 8 1 3  
8 10 13 15 
2 7 10 15 
3 9 11 14 
1 3 4 9  
4 9 11 12 
1 9 12 14 
4 5 9 1 4  
3 5 9 1 2  
1 5  9 1 1  
1 3  5 1 4  
3 4 5 1 1  
1 3 11 12 
1 4 11 14 
3 4 12 14 
1 3  8 1 3  
1 3  6 1 0  
1 3  7 1 5  
8 9 11 13 
6 9 10 11 
7 9 11 15 
6 10 12 14 
7 12 14 15 
2 4 5 1 2  
4 5 8 1 3  
4 5 6 1 0  
4 5 7 1 5  
3 6 11 15 
2 3 8 1 1  

3 
4 
2 
4 
6 
2 
9 
1 
1 
1 
1 
1 
1 
1 
2 
3 
3 
5 
8 
2 
6 

10 
1 
1 
3 
2 
3 
4 
2 
4 
5 
5 
2 
5 
1 

10 
6 
4 

10 
9 
8 

10 
5 
5 
2 
5 
2 
6 
9 
3 
4 
4 

10 
11 

7 
11 
11 
2 
8 
6 
3 
8 
6 
4 
8 

12 
6 
5 
8 
2 

11 13 
14 15 

8 14 
13 14 
12 15 

9 12 
12 13 

7 12 
6 15 
5 8  

10 13 
7 9  
9 13 

10 15 
4 7  
6 13 

10 15 
12 15 
12 14 
11 14 
13 14 
14 15 
12 15 
10 12 

7 9  
9 15 
9 10 
7 11 

11 15 
10 11 
13 14 

7 14 
14 15 
10 14 

6 11 

1 7  8 1 1  
1 11 13 15 
2 3 6 1 4  
3 7 8 1 4  
3 13 14 15 
4 7 8 1 2  
4 12 13 15 
2 5 6 9  
5 7 8 9  
5 9 13 15 
1 6  8 1 4  
1 7 13 14 
1 2 10 14 
3 5 6 8  
3 5 7 1 3  
2 3 5 1 0  
4 6 8 9  
4 7 9 1 3  
2 4 9 1 0  
7 11 12 13 
2 10 11 12 
3 7 10 12 
2 3 12 13 
3 8 12 15 
7 9 10 14 
2 9 13 14 
8 I) 14 15 
1 4  6 1 2  
1 4  7 1 0  
1 2  4 1 3  
1 4  8 1 5  
5 6 11 12 
5 7 10 11 
2 5 11 13 
5 8 11 15 



Derived Sic+tier triple systems of order 15 '05 

SYSTEM NUMBER 70 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 12 16 
2 11 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 14 16 
3 6 12 16 
3 7 11 16 
3 9 15 16 
3 10 13 16 
4 7 15 16 
4 9 10 16 
4 11 13 16 
4 12 14 16 
5 6 13 16 
5 8 15 16 
5 9 11 16 
5 10 12 16 
6 8 11 16 
6 9 14 16 
6 10 15 16 
7 8 12 16 
7 9 13 16 
7 10 14 16 
8 13 14 16 

11 12 15 16 

1 3  9 1 3  
2 5 10 13 
9 10 11 13 
4 5 9 1 3  
1 5 11 13 
1 4 10 13 
1 5  9 1 0  
4 5 10 11 
1 4  9 1 1  
2 7 12 14 
6 8 12 14 
6 7 12 15 
3 12 14 15 
2 8 12 15 
2 6 14 15 
7 8 14 15 
3 6 8 1 5  
2 3 7 1 5  
2 3 8 1 4  
2 6 7 8  
3 6 7 1 4  
2 3 4 9  
2 3 5 1 1  
6 7 10 13 
4 6 7 9  
5 6 7 1 1  

10 13 14 15 
4 9 14 15 
5 11 14 15 
1 3  8 1 2  
8 10 12 13 
4 8 9 1 2  
5 8 11 12 
2 11 12 13 
1 2  4 1 2  

3 5 10 15 
3 11 13 15 
1 3  4 1 5  
5 6 10 14 
6 11 13 14 
1 4  6 1 4  
3 7 8 9  
5 7 8 1 0  
7 8 11 13 
1 4 7 8  
2 4 7 1 3  
2 7 9 1 0  
1 2  7 1 1  
3 4 13 14 
3 9 10 14 
1 3 11 14 
4 8 13 15 
8 9 10 15 
1 8 11 15 
2 5 6 1 2  
4 6 12 13 
6 9 10 12 
1 6 11 12 
1 2  8 1 3  
2 4 8 1 1  
2 5 8 9  
1 6 13 15 
4 6 11 15 
5 6 9 1 5  
1 7 13 14 
4 7 11 14 
5 7 9 1 4  
2 3 10 12 
3 4 11 12 
3 5 9 1 2  

1 2 6 9  
2 6 10 11 
3 5 8 1 3  
3 8 10 11 
1 7  9 1 5  
5 7 13 15 
7 10 11 15 
1 9 12 14 
5 12 13 14 

10 11 12 14 
2 9 13 14 
1 2 10 14 
2 4 5 1 4  
1 3  7 1 0  
3 4 5 7  
6 8 9 1 3  
1 6  8 1 0  
4 5 6 8  
9 12 13 1 5  
1 10 12 15 
4 5 12 15 
2 4 10 15 
1 2  5 1 5  
2 9 11 15 
4 8 10 14 
1 5  8 1 4  
8 9 11 14 
3 7 12 13 
4 7 10 12 
1 5  7 1 2  
7 9 11 12 
2 3 6 1 3  
3 4 6 1 0  
1 3 5 6  
3 6 9 1 1  
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SYSTEM NUMBER 74 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 12 16 
2 11 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 11 16 
3 6 12 16 
3 7 14 16 
3 9 13 16 
3 10 15 16 
4 7 15 16 
4 9 14 16 
4 10 12 16 
4 11 13 16 
5 6 13 16 
5 8 15 16 
5 9 10 16 
5 12 14 16 
6 8 11 16 
6 9 15 16 
6 10 14 16 
7 8 12 16 
7 9 11 16 
7 10 13 16 
8 13 14 16 

11 12 15 16 

2 3 4 9  
5 9 14 15 
3 9 11 14 
3 5 7 9  
2 7 9 1 4  
2 5 9 1 1  
2 3 5 1 4  
5 7 11 14 
2 3 7 1 1  
1 6 10 12 
6 12 13 15 
8 10 12 13 
4 6 8 1 2  
1 8 12 15 
6 8 10 15 
1 6  8 1 3  
4 8 13 15 
1 4  8 1 0  
1 4  6 1 5  
1 10 13 15 
4 6 10 13 
4 6 9 1 1  
4 5 6 7  
3 4 6 1 4  
8 9 10 11 
5 7 8 1 0  
3 8 10 14 
9 11 13 15 
5 7 13 15 
3 13 14 15 
1 2  4 1 2  
1 9 11 12 
1 5  7 1 2  
1 3 12 14 
4 5 8 9  

2 4 8 1 1  
4 7 8 1 4  
5 6 9 1 2  
2 6 11 12 
6 7 12 14 
2 10 11 15 
7 10 14 15 
1 3  4 1 3  
1 5  9 1 3  
1 2 11 13 
1 7 13 14 
1 4 7 9  
1 4 11 14 
2 3 6 1 3  
6 7 9 1 3  
6 11 13 14 
2 3 8 1 5  
7 8 9 1 5  
8 11 14 15 
5 10 12 15 
2 3 10 12 
7 9 10 12 

10 11 12 14 
1 2  9 1 5  
1 5 11 15 
1 3  7 1 5  
2 6 9 1 0  
5 6 10 11 
3 6 7 1 0  
2 8 9 1 3  
5 8 11 13 
3 7 8 1 3  
4 12 14 15 
4 5 11 12 
3 4 7 1 2  

1 6  9 1 4  
1 2 5 6  
1 3  6 1 1  
2 4 5 1 5  
3 4 11 15 
8 9 12 14 
2 5 8 1 2  
3 8 11 12 
9 10 13 14 
2 5 10 13 
3 10 11 13 
1 3  9 1 0  
1 5 10 14 
1 2  7 1 0  
4 5 13 14 
2 4 7 1 3  
3 6 8 9  
5 6 8 1 4  
2 6 7 8  
3 9 12 15 
2 7 12 15 
1 3 5 8  
1 2  8 1 4  
1 7  8 1 1  
3 5 6 1 5  
2 6 14 15 
6 7 11 15 
4 9 12 13 
3 5 12 13 
2 12 13 14 
7 11 12 13 
4 9 10 15 
3 4 5 1 0  
2 4 10 14 
4 7 10 11 



Derived Steiner triple systems of order 15 207 

SYSTEM NUMBER 75 

1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 12 16 
2 11 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 13 16 
3 6 14 16 
3 7 12 16 
3 9 11 16 
3 10 15 16 
4 7 15 16 
4 9 14 16 
4 10 12 16 
4 11 13 16 
5 6 11 16 
5 8 15 16 
5 9 10 16 
5 12 14 16 
6 8 12 16 
6 9 15 16 
6 10 13 16 
7 8 11 16 
7 9 13 16 
7 10 14 16 
8 13 14 16 

11 12 15 16 

1 3  
2 6  
4 6  
4 6  
1 6  
1 6  
1 4  

10 11 
1 4  
2 7  
2 7  
5 1  
5 7  
3 7  
3 7  
3 5  
3 5  
2 3  
2 3  
2 5  
8 9  
2 3  
2 3  
4 6  
8 9  
8 9  
4 6  

10 11 
12 13 
1 3  
4 5  
5 7  
5 7  
3 6  
1 3  

4 
11 
12 
10 
11 
10 
11 
12 
10 
8 

14 
8 
9 
8 
9 

14 
8 
9 
8 
9 

14 
10 
12 
8 

10 
12 
14 
14 
14 

5 
6 

10 
12 
8 
8 

6 
12 
13 
11 
13 
12 
12 
13 
13 
9 

15 
14 
15 
15 
14 
15 
9 

15 
14 
14 
15 
11 
13 

9 
11 
13 
15 
15 
15 

7 
7 

11 
13 
11 
12 

3 8 10 13 
6 7 11 15 
1 7 12 15 
7 1@ 13 15 
6 9 11 14 
1 9 12 14 
9 10 13 14 
2 3 4 5  
1 2  5 1 2  
2 5 10 13 
2 6 13 14 
1 2 10 14 
2 4 12 14 
3 6 9 1 3  
1 3  9 1 0  
3 4 9 1 2  
6 7 8 1 3  
1 7  8 1 0  
4 7 8 1 2  
2 5 11 15 
5 6 13 15 
1 5 10 15 
4 5 12 15 
1 2 6 9  
2 4 9 1 0  
2 9 11 13 
3 4 7 1 0  
3 7 11 13 
1 5  6 1 4  
4 5 10 14 
5 11 13 14 
2 8 12 15 
1 6  8 1 5  
4 8 10 15 
8 11 13 15 

1 2  8 1 1  
2 4 8 1 3  
3 6 12 15 
1 3 11 15 
3 4 13 15 
5 6 9 1 2  
1 5  9 1 1  
4 5 9 1 3  
6 7 12 14 
1 7 11 14 
4 7 13 14 
1 2  4 1 5  
2 6 10 15 
3 5 11 12 
3 5 6 1 0  
1 4 7 9  
7 9 11 12 
6 7 9 1 0  
1 4  8 1 4  
8 11 12 14 
6 8 10 14 
1 3 13 14 
3 4 11 14 
3 10 12 14 
1 9 13 15 
4 9 11 15 
9 10 12 15 
2 3 6 7  
1 2  7 1 3  
2 4 7 1 1  
2 7 10 12 
2 5 6 8  
1 5  8 1 3  
4 5 8 1 1  
5 8 10 12 
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1 2  3 1 6  
1 4  5 1 6  
1 6  7 1 6  
1 8  9 1 6  
1 10 11 16 
1 12 13 16 
1 14 15 16 
2 4 6 1 6  
2 5 7 1 6  
2 8 10 16 
2 9 12 16 
2 11 14 16 
2 13 15 16 
3 4 8 1 6  
3 5 14 16 
3 6 11 16 
3 7 9 1 6  
3 10 13 16 
3 12 15 16 
4 7 15 16 
4 9 10 16 
4 11 13 16 
4 12 14 16 
5 6 13 16 
5 8 12 16 
5 9 11 16 
5 10 15 16 
6 8 14 16 
6 9 15 16 
6 10 12 16 
7 8 13 16 
7 10 14 16 
7 11 12 16 
8 11 15 16 
9 13 14 16 

1 2 10 13 
4 7 10 13 
2 6 7 1 3  
2 4 5 1 3  
1 5  7 1 3  
1 4  6 1 3  
1 2 4 7  
4 5 6 7  
1 2 5 6  
3 8 9 1 5  
9 11 12 15 
.8 12 14 15 
3 11 14 1 5  
9 10 14 15 

10 11 12 14 
3 8 10 14 
3 9 10 11 
8 9 10 12 
8 9 11 14 
3 8 11 12 
3 9 12 14 
4 8 9 1 3  
2 5 8 9  
6 7 8 9  
2 5 10 11 
6 7 10 11 
4 13 14 15 
2 5 14 15 
6 7 14 15 
1 3 10 12 
3 4 12 13 
2 3 5 1 2  
3 6 7 1 2  
1 4  8 1 0  
5 6 8 1 0  

7 9 12 13 
1 4  9 1 2  
5 6 9 1 2  
7 11 13 14 
1 4 11 14 
5 6 11 14 
2 3 10 15 
3 7 13 15 
1 3  4 1 5  
3 5 6 1 5  
3 5 8 1 3  
1 3 7 8  
2 3 6 8  
5 9 10 13 
1 7  9 1 0  
2 6 9 1 0  
5 12 13 14 
1 7 12 14 
2 6 12 14 
4 10 11 15 
5 11 13 15 
1 7 11 15 
2 6 11 15 
3 6 9 1 3  
1 3 5 9  
2 3 4 9  
6 10 13 14 
1 5 10 14 
2 4 10 14 
6 11 12 13 
1 5 11 12 
2 4 11 12 
7 8 10 15 
6 8 13 15 
1 5  8 1 5  

2 4 8 1 5  
2 3 13 14 
3 4 7 1 4  
1 3  6 1 4  
2 8 12 13 
4 7 8 1 2  
1 6  8 1 2  
2 9 11 13 
4 7 9 1 1  
1 6  9 1 1  
1 6 10 15 
1 3 11 13 
3 4 5 1 1  
2 3 7 1 1  
1 8 13 14 
4 5 8 1 4  
2 7 8 1 4  
1 9 13 15 
4 5 9 1 5  
2 7 9 1 5  
4 5 10 12 
2 7 10 12 
3 4 6 1 0  
3 5 7 1 0  
1 2  9 1 4  
4 6 9 1 4  
5 7 9 1 4  

10 12 13 15 
1 2 12 15 
4 6 12 15 
5 7 12 15 
8 10 11 13 
1 2  8 1 1  
4 6 8 1 1  
5 7 8 1 1  
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A Survey of Results on the Number of t - ( u , k , X )  Designs 
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Wilhelm-Pieck-Universitat 
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2500 Rostock 
German Democratic Republic 

A t - ( u , k , X )  design is a system of (not necessarily distinct) k-element 
subsets (called blocks) of a u-element set K such that  every t-element subset of 
K appears exactly X times in the blocks. Two t - (u ,k ,X )  designs M and N are 
called isomorphic if and only if there is a permutation of the elements of K 
which bijectively transforms M into N. A t - (u ,k ,X)  design B is called 
indecomposable (or elementary) if and only if there is no subsystem B’ of B 
which is a t - (u ,k ,X ’ )  design for O<X’<X. The existence of a t - ( u , k , X )  design 
implies that  

is an integer for every i = O l l l . . . l t  - 1. 

We introduce the following notations: 

is the number of pairwise nonisomorphic t - (u ,k ,X)  designs without 
repeated blocks. 

is the number of pairwise nonisomorphic indecomposable t - (u,k,X) designs 
without repeated blocks. 

is the number of pairwise nonisomorphic t -(u,k,X) designs with repeated 
blocks. 

is the number of pairwise nonisomorphic indecomposable t - (u ,k ,X)  designs 
with repeated blocks. 

f ( U l k l t  I N  

f . ( V , k , t  7x1 

g(u,k,t ,X) 

9 o ( U , k l t  ,A) 
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For Steiner systems, i.e. t - (u ,k , l )  designs, we refer the reader to the 
excellent bibliography and survey of Doyen and Rosa PSI. In this paper, we 
survey results on these four functions, especially for XZ2.  

The determination of these functions is of practical interest but successfully 
attackable only for small Parameters. In table 1, we present results on designs 
without repeated blocks for 6 S u 5 9  and all possible X according to (1). For 
u h l O  results are only known for the smallest possible A. In table 2 we give 
results for 105uS16 and all possible pairs ( t , k ) ,  2 5 t < k 5 V  and the smallest 

2 
possible X with respect to (1). Note that f(u,k,t,X) = f ' ( u , k , t , X )  for these 
parameters. Finally in table 3 we present results for designs with repeated 
blocks. Since Steiner systems cannot have repeated blocks, we omit those 
parameter sets here. 

In the literature results on this topic are published in many different 
journals and are rediscovered more often than they are discovered. Therefore a 
general improved communication is desirable. The author hopes that this paper 
contributes to this aim. I apologize to those whose results are left out here, if 
there are any. I should greatly appreciate reprints, preprints, and other 
information on further results. 
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t Harnau's paper IHS] missed one design. It is not known whether the missing 
design or its complement is decomposable. 
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I Table 2. Designs without repeated blocks, 1OSuS16 I 
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3-( 16,7,15) 
3-(16,8,3) 

- 
T 

? 
YeS 5 I1 

- 
4 

4-( 16,7,20) 
4-( 16,8,15) 

H. -D. 0. F. Gronau 

? 
? 

rble 2 fcontinuedh Designs without 

5-( 16,6,1) 
5-( 16,7,5) 

~~~~~ 

reDeated blocks. 

No 0 M2 
? 

B7 
w2 

5-( 16,8,5) 
6-1 16,7,10) 

P1 

' 1  
Yes I 1 all7-tuples 

11 

6-( 16,8,15) 
7-( 16,8,3) 

? 
? 

2-( 16,6,2) 
2-( 16,6,3) 

YeS 3 H7,G2,11 
YeS ? I 3 3  
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3-(8,4,6) 

2-(9,3,2) 

2-19,4,3) 

3- (9,4,6 1 
2-( 10,3,2) 

S417 G8 ? 

0 G10,Il 0 
23 Ml,M4,11 16 Ml,M4 

250 G10 L 50 G10 

566 G1,Il 566 
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Abstract 

An efficient algorithm is presented for producing a directed cyclic triple 
system from an undirected one, in the case when X=l .  The algorithm has 
a worst case timing of O(bs),  where b is the number of triples in the cyclic 
triple system. 

1. Introduction 

Standard definitions in design theory are employed (see [2,4] for example). 
A balanced incomplete block design with u elements, block size k ,  and balance 
factor X is denoted by B[k,X;u]. A cyclic block design is a B[k,X;u] with elements 
{0,1,...,u-1} for which, if {a1, a2, ..., 01.) is a block, {al + 1,a2 + l,...,ak + I} is 
also a block (addition performed modulo u). 

For a block b = {a1, ..., 01.) define the set CL(b) = {{al + &...,ak + i} I 0 s 
i < u ,  addition modulo u}. A collection o f  starter block8 for a CB[k,X;u] with the 
multiset of blocks B is a minimal multiset S C B for which the multiset {b I b € 
CL(s1, s € S} = B. 

Now restrict attention to  CB[3,X;u]. Each block b has ICL(b)l = u/3 or u. 
In the former case, the block is called short, and belongs to  CL({O,u/3,2~/3}). 
Finding a CB[3,X;u] is equivalent to finding a suitable collection of starter 
blocks. Alternativcly, one can represent t.5e collection of starter blocks as a 
Collection of difference triples, DT[3,X;u]. Difference triples are derived from 
the starter blocks as follows. Each starter block, s = {a,b,c} is represented by 
the collection of 6 differences {a-b,b-a,c-b,b-c,c-a,a-c}. To represent this set, it 
suffices to  retain only the difference triple for this starter block which is the 
multiset {(min (a-b,b-a)), (min (c-b,b-c)), (min (c-a,a-c))} , arithmetic modulo u. 
Let (xlylz) be a difference triple. It is evident that  either x + y + t (. 0 (mod u) 
or x + y - z (mod u), and if there are n difference triples in the system and 

X=2 then u {zi,yirzi} = {1,1,2,2 ,...,(u-1)/2,(u-1)/2} if u is odd or {Il l  ,...,(u- 

1)/2,(u-1)/2, u/2} if u is even. 

n 

i - 1  



222 J. J .  Harms 

A collection of directed difference triples, DDT[S,l;u] is derived from a 
DT[3,S;u] corresponding to starter blocks of a CB[3,2;u] by “directing” the 
difference triples { t i , y i , z i }  so that each difference occurs only once and 
n 
u (di,ei, f;) = {1121...,u-1}1 where di + ei + /; # 0 (mod u) and di = ti or u - 
i - 1  
zi, ei = yi or u - y; and f i  = zi or u - t i .  This can be generalized to other 
values of X. 

A directed triple eyetem, DB[3,X;uj, is analogous to a triple system B[3,X;u], 
but the blocks are “directed”. A directed triple of a DB[3,X;u], (a,b,c), contains 
the ordered pairs (a,b), (b,c) and (a,c); each ordered pair of elements is contained 
in precisely X of the blocks. A directed cyclic triple system, DCB[3,X;u] is 
analogous to a cyclic triple system but with directed blocks. 

Existence of cyclic directed triple systems have been investigated in (31; it is 
shown there that a directed cyclic triple system exists whenever u I 1,4,7 (mod 
12). A stronger result is given in this paper: all CB[3,2;u] designs with u 1,4,7 
(mod 12) can be directed into DCB[3,1;u] designs. 

2. Finding Cyclic Directed Block Deelgns 

Theorem 1: Every DT[3,2;u] anderlSee a DDT[8,1;u] if and only if u = 
1,4,7 (mod 12). 

Proof 

It is known that a CB[3,2;u] exists (and thus a DT[3,2;u] exists) only when 
u 0,1,3,4,7,9 (mod 12) “4. Short blocks cannot be directed and these occur 
when u 

Given B set of difference triples DT[3,2;u], decoted T, a DDT[3,1;u] D, will 
be formed using a technique which we call “conflict resolution”. The algorithm 
directs each triple of T in turn and puts them in D, resolving conflicts that arise 
without introducing new conflicts. To direct a triple, form L new triple t = 
(d,e,f) in D so that it contains no differences seen in D already and d + e + f # 
0 (mod u) holds. If this is not possible a conflict arises. 

The method begins by choosing the f i t  triple to direct, as follows. If u is 
odd, choose any triple t = (s,b,c). Two cases arise. 
1. a,b,c are distinct. If a + b + c # 0 (mod u), include t in D. Otherwise 

include (w-a,b,c). 
2. a,b,c are not distinct, say a=b. Include the triple (a,u-a,c) in D. Note that 

a + u - a + c # 0 (mod u). 

0,3,9 (mod 12). Thus it is necessary that w 1,4,7 (mod 12). 
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If u is even, choose the triple t = (a,b,c) containing the difference u/2. Two 
cases arise again. 
1. a,b,c are distinct. If a + b + c C 0 (mod u) include t in D. Otherwise if a 

= u/2 include (a,u-b,c) otherwise include (u-a,b,c) in E. 
2. a,b,c are not distinct. This case is handled like the odd cme 2 with c = u/2. 

Each remaining triple is processed in turn; the next triple to be processed is 
chosen to be one which has a difference e for which one of e or u-e has been 
previously used. If no such triple exists, any remaining triple in T may be 
chosen. Three cases arise. 
1. 

2. 

No triple is found, the system is directed. 
Two instances of a difference occur in the triple. Suppose that the triple is 
(a,a,b). Include (a,u-a,b) in D if the difference b has not been seen before 
otherwise include (a,u-a,u-b). 
The triple found is t = (a,b,c) where a,b,c are distinct (mod u), then u = 
(d,e,f) is placed in D where: 
d = B - a if a has been used previously 

e = u - b if b has been used previously 

f = u - c if c has been used previously 

3. 

a otherwise 

b otherwise 

c otherwise. 
If d + e + f # 0 (mod u),  this directed difference triple is valid. 

Otherwise, d + e + f = 0 (mod u) and this triple is not valid. To resolve 
this conflict in D, u is fixed by replacing d by u - d in D. Let m = u - d. 
The following is repeated until the conflict is resolved. Find the other 
difference triple, w, in D containing the difference m. If there is no such 
triple found in D, the conflicts are resolved, since m is in an remaining triple 
of T which will be handled later. Otherwise, w = (g,h,i); we may assume 
that g = m. Then w becomes (u-g,h,i) and two cases arise. 
1. u-g + h + i # 0 (mod u). The triple is valid and conflicts are 

resolved. 
u-g + h + i 0 (mod u). w becomes (u-g,x,y) where x = u-h, y = i 
and m = x if h P uJ2; otherwise x = h, y = u-i, and m = y. 
Cont.inue conflict resolving with this new m. 

The conflict resolving portion of the algorithm will aiways finish. Each 
triple of D is seen a t  most twice (in fact, only one triple of D will be seen twice). 
If the next triple, w = (g,h,i), has already been seen in the conflict resolution, 
then it will be directed without causing a conflict. If w=u, the f i t  triple of the 
conflict resolution, then g = u-d and, if m=h, (g,u-h,i) is a valid triple since we 

2. 
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know that g + h + i PO (mod v )  and u-g + h + i 0 (mod u). The case of m 
= i is handled the same. If w # u, two differences, say g and h, have been 
changed before in the conflict resolution, and (g,h,u-i) is a valid triple since g + 
h + i # 0 (mod u) and g + u-h + i 0 (mod u). In 
either case, no new conflict is introduced and the conflict resolution ends. 

This method of conflict resolution never adds new conflicts, and thus the 
methcd will finish with a DDT[3,l;u]. 0 

0 (mod u) or u-g + h + i 

Theorem 2: Every DDT[3,1;u] can be trrnelated into a DCB[3,I;v]. 
Proof 

Each block in a DDT[3,l;u], D can be ordered so that the third difference is 
the sum of the first two (mod u). Then for each triple (a, b, a+b) € D let S 
contain the block (0, a, a+b). S is a set of starter blocks for a DCB[3, 1; u]. 0 

The algorithm is efficient with a worst case timing of 0 ( 6 ' ) ,  where b is the 
number of triples in the DCB[3,X;u). There are O(6) triples to  be directed. Each 
triple may conflict; resolving the conflict takes 0(6) time. Finally, it takes 0 ( 6 )  
time to find the next triple to  direct. Thus, in the worst case, the algorithm 
takes O(6') time. It is likely that this running time could easily be improved by 
clever implementation. 

S. AnExample 

A CB[3,2;16] design is directed into a DCB[3,1;16] design. 
Consider the starter blocks for the design: 

The following is an example of the method described in the proofs above. 

{0,1,3) {0,1,5) {0,2,8) {0,3,10) {o0,4,0) 
and the corresponding difference triples are: 

(1,2,3) (1,495) (2,698) (3,796) (4,537) 
Since u is even the first triple is (2,6,8) which is invalid and thus becomes 
(14,6,8). The following triples are the results of processing according to  the 
mcthod until a conflict occurs in the last one: 

(14,6,8) (1,213) (1397~13) (15,415) (12~11,g) 
(12,11,9) is G conflict. The sequence of changes to  triples to resolve the conflict 
is as follows: 

(12,11$) becomes (4J1,Q) 

(15,4,5) becomes (15,12,5) becomes (1,12,5) 
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(1,2,3) becomes (15,2,3) , a valid triple 
Thus the final difference triples are: 

(15,2,3) (1,12,5) (14,6,8) (13,7,10) ( 4 , W )  

These difference triples can be reordered so that in every triple the first two 
differences sum to the third. Alter the reordering the difference triples become: 

The corresponding starter blocks of this directed cyclic triple system are: 
(15,3,2) (WQ) (14,8,6) ( 1 3 , W )  (11,9,4) 

(0,15,2) (0,12,1) (0,14,6) (o113,7) ( 0 , W )  
These blocks in turn can be expanded to form the directed triple system. 

4. Conclus~ons 
Colbourn and Harms [1,5] have previously shown that every triple system 

with even X underlies a directed triple system with balance factor X/2. This 
provides a powerful technique for translating results on undirected triple systems 
into results on directed triple systems. However, that technique may alter the 
automorphim group significantly. The algorithm embodied in theorem 1 
demonstrates that directing triple systems can still be done, preserving a cyclic 
automorphism. Once again, this gives a powerful vehicle for applying the many 
results on cyclic undirected systems [4] to cyclic directed systems. 
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Abstract 
This article presents some propositions (whoso proofs are described in thc 
author’s thesis 111 nnd a related paper 131) on which the constructive 
enumeration algorithm for incidcncc systems is based. A cornputor 
implementation allowed us to get some new results on the enumeration of 
balanced incomp!ete block designs. 

1. Definitione and Notations. The Gcncrnl Schema of Constructive 
Enumeration. 

Let V = {el, ..., e,} be a finite set of elements, and lct B = IDl, ..., B,} be 
a collection of its (not necessarily distinct) subsets called 6hCkS. A pair D = 
(V,B) is called a block design or incidence syatem. 

As a rule an incidence system is characterized by the collections of numbers 
K = { s ,  1 5 i S 6 } ,  R = {rj, I S  j S u ) ,  and A = {Aij,  l S i , j S u }  where ki is the 
cardinality of block i, rj is the number of occurrences of element j in blocks, 
and Xij is the number of simultaneous occurrcnccs of i and j in blocks. By 
combining conditions imposed on the parameters (numbers) from thc collections 
K, R, and A, one can specify some subclasses of the class of designs. Proper 
designs have ki = k for all 1 S i S b .  Regular designs have rj = r for all 
I S j S u .  Balanced (proper pairwise 6alar.ced) designs have A+ = X for all 
i s i ,  jsu. Supplementing these conditions with otbers, we get partially 
balanced designs, group divisible dcsigns, t-designs, and so on. 

If the set B of blocks of a bahnccd block design D docs not contain all k- 
subsets of V, the design D is called incomplete, and is a BIB dcsign or I3IBD. 
The five numbers (u, 6, r, k ,  A) are the parameters of thc NED, but only threc 
of them are independent [3,4]. 
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A classical problem of combinatorial theory is the constructive enumeration 
problem which consists of creating a complete list of distinct (inequivalent, 
nonisomorphic) combinatorial objects from a given class. Both the practical 
value of these lists and the difficulty of solving the constructive enumeration 
problems are generally known. In 151, a universal and effective approach to 
solving these problems for different combinatorial objects is described. The 
.algorithm presented in this paper is a development of this approach for the 
enumeration of incidence systems. 

Let D = {d I ,  ..., d l )  be a set of all painvise different incidence systems with 
u elements and 6 blocks. On the sets of elements and blocks of each system acts 
the symmetric permutation group S,, and S,, respectively. Their action induces 
the group CD = S,, X S, which acts on the set D .  Two incidence systems of D 
belonging to the same orbit of the group Go are said to be eguiualenf 
(isomorphic): di - d j  if and only if there exists a g € GD for which di = gd j .  
An element g of the group is an automotphiem of di if di = gdi. The set of all 
automorphisms of the incidence system di forms a group. 

In order to consider restricted classes of incidence systems, such as BIB 
designs, we shall introduce a membership predicate P defied on elements of D 
which is invariant under the action of the group CD. The domain of D for 
which P is true, Dp = {di I P(di)) ,  determines some class of incidence systems. 
Thus the constructive enumeration problem of block designs belonging to the 
class Dp consists of finding an arbitrary transversal of the orbits of the group 
CD on Dp. 

We shall introduce a canonicity predicate C defied on the elements of D 
which is true for a single (canonical) element of every equivalence class. 
Obviously, Dp n Do = 0 9  (where Q = P&C) is a transversal of the orbits of 
the group GD on Dp. We shall seek a transversal of the kind described. 

Let the set D be partitioned into disjoint subsets {Oi l ,  each of which 
contains all block designs of D with the same occurrence of the first element in 
blocks. In the second step, every Di is to be partitioned into disjoint subsets in 
accordance with the occurrence of the second element in the blocks, and so on. 
The system U of these subsets of the set D which is obtained in step u of such a 
partitioning is ordered by inclusion in the form of a tree with D as root, and all 
one-element subsets { d i )  serve as nodes of degree one. 

We introduce a set R = { R i )  of predicates defied on the nodes of this tree 
U so that for all D* C U, and for all Ri € R ,  if there is a d € D' for which 
Q ( d )  holds, then Ri(D') holds. The predicate Ri € R is called an czlension of 
predicate Q on U. From the definition of the set R,  it is clear that each 
extension of the predicate Q provides some necessary conditions for the 
existence in D' of a t  least one element on which Q is true. Conversely, falsity 
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of some predicate of R on some node D o  of [ I  serves as a sufficient condition 
for Q to be false on all elements of subset D o .  

The constructive enumeration problem solving procedure consists of a 
backtracking search through the tree U applying to  every searched node one or 
more predicates from R. If in a current node D o  an applied predicate Ri is 
false, the subtree with root D o  is not searched (a regular search reduction). An 
examination of a node of degree one consists of applying predicate Q = P&C to 
an appropriate element of D .  

A description of the set D by the list of its elements is unrealizable in 
practice. In the next paragraphs of the article, we shall describe an algorithm 
A=A(D,U)  that constructs the elements of the set D according to  a 
correspondence with the tree CI. This correspondence is that all elements of a 
subset D C U are constructed successively one after another. 

2. Canonical representation of incidence aystems. Extensions of 
predicates. 

Using the generally accepted representation of incidence systems by (0,l)- 
matrices, we shall introduce the canonicity predicate C in the following way. 
Let N ( A )  be the number whose binary representation is obtained by reading the 
matrix A l i e  by line. Then on the set D the order of elements is defined 
naturally: 

di,<d;,< - - <di, iff N(Mi,)<N(MiJ< * * - <N(Mi,), 

where Mi* is the incidence matrix of the system d;,. 

The incidence system di (matrix Mi)  is said to  be canonical if it is maximal 
in its orbit induced by the group G, on D: d j  < di for all d j  € D satisfying d j  - di and i # j .  The canonicity predicate C is introduced by C ( d i )  is true exactly 
when for all g € GD, gd;Sdi .  

Let us describe the properties of canonical incidence matrices by the next 
propositions. Here and in what follows we shall denote the (0,l)-matrix of 
dimensions u X b by A .  

Proposition 2.1: If C ( A )  holds, then for all w <u, C(A") holds, where A" is the 
w X b matrix consisting of the f i t  w rows of the matrix A. 

Let ai denote the i t h  row of A ,  and let a? denote the j t h  column. On the 
set of rows and the set of columns, we interpret the order "S" lexicographically. 
Proposition 2.2: If C ( A )  holds, then for all i,i' if i<i', a;La;t. Similarly, if 
C(A)  holds, then for all j,j', if j<j', a?;.ay. 
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The columns i and j of the matrix A are called ur-cquivolcnt, if the 
columns i and j of the matrix A" are equal. The induced equivalence partitions 
the set of column numbers into classes Nv = (c). A connection between the 
partitions W and Nv" is given by 
Proposition 2.3: The predicate C(A) = (for all u: 158s I N" I and € N", 

Let 2: denote, for i>w,  the number of ones in the intersection of row i 
and the columns from c. Assign to row i the vector X; = (zz), 

Proposition 2.4: If C(A), then for all w<u the vector X:+, defines the row 
w + 1 of the matrix A in a unique way. 
Proposition 2.5: If C(A) then for all w,i with i >w + 1, 

We proceed to describe the set of most widely used extensions of the 
predicates for membership P and for canonicity C. Different specifications of 
this set allow us to enumerate the incidence systems of different types. It is 
readily seen that the dimensions, the occurrences of elements in blocks, the 
cardinalities of blocks, the occurrences of paira of elements in blocks are general 
properties of block designs, and the predicates D:, R ,  K, and A corresponding 
to these properties are said to be baeic. The basic predicates are extensions of 
the membership predicate P. Now, for every particular type of incidence 
system, predicate P may be written as 

(r = U+') or (V = G+1 u q:;), q + 1 ,  q:; € hrr+'). 

l S U S  I NvI . 

S X:+ 

P= D,'~YR&K,~YA~YS 

where S is a predicate describing some additional properties. 

predicates defined on the (0,l)-matrices consists of 
a) 

b) 

c) 

Let A = (aij) be a (0,l)-matrix of dimensions ulXbl .  The set of basic 

a dimension predicate D! which is true only on matrices with 6 columns 
and not more than u rows (ul = u if a construction is completed). 
a "row weight" predicate R which is true if and only if the number ri of 
ones in row i is an element of some given set ri. 
a "column weight" predicate K, given by 

01 

i - 1  
K,(A)= C a i j =  kj:k!&,,OS ki- kjisv- u1 

where kj is the number of ones in column j and I?, is some given set. 
a "row dot product" predicate A which is true if and only if the dot product 
X;j of different rows i and j is an element of some given set A. 

d) 
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The truth of extension C,, of the canonicity predicate C is determined 
similarly to the truth of predicate C. 

It is clear that the truth on A* of some extension Q of predicate P L C 
does not guarantee the existence of a completion A' - A, for which P&C(A) 
is true. The more often the impossibility of such a completion will be 
determined without its execution, the more effective the algorithm of 
constructive enumeration will be. A number of propositions from 54-7 allow us 
to construct the set of completion predicates. 

For example, the next situation is met frequently. It is required to add n 
(nz2) rows to the (0,l)-matrix A* with 6 columns so that the obtained matrix 
A will satisfy the predicate K, & A. Here the set K, may be such that the 
condition K J A )  implies that some of the columns of matrix A* must be 
completed only by ones (zeroes). 
Proposition 2 .6  Let X (AJ be the greatest (least, respectively) element of the set 
A. The completion A *  - A satisfying K,&A(A) is impossible if the matrix A 
contains at least X+ 1 (6 -A+ 1, respectively) columns which are forced to be 
completed by ones (zeroes, respectively). 

1. Construction of the aeesreh tree 

We shall describe an algorithm for constructive enumeration of incidence 
systems for the case of BIBDs, and then we shall generalize it to the arbitrary 
case. 

The solution of the constructive enumeration problem for BIBDS with 
parameters (u,b,r,k,X) is a complete list of incidence matrices satisfying 
predicate P t C .  We shall construct these matrices, verifying the extensions 
D:, R, K, and A of the membersbip predicate P.  For BIBDs, fi = r, kV = k, 
and d = X. Questions concerning the truth verification of the extension C, will 
be discussed in 57. Here we assume that canonicity is verified on the completed 
matrices. We shall use only the necessary conditions of canonicity (propositions 
2.2 - 2.5). Note that from these conditions and the definition of BIBD, it follows 
that the two f i t  rows of the incidence matrix will be the following: 

111. ..l 111 ... 1 0 0 0  ... 0 0 0 0  ... 0 
111 ... 1 0 0 0  ... 0 111 ... 1 0 0 0  ... 0 

X r - X  r - X  b -2r + A  

Assume that w rows of incidence matrix A are already constructed, and 
that the column set of this matrix is partitioned into equivalence classes fV"' = 
(y). Recall that 2: ( i > w )  denotes the number of ones in the intersection of 
row i and columns from r, and to every row i ,  the vector X,!" = (zg, 
lS8S I N" 1 is assigned. This vector is essentially a projection of row i on the 
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partition N". It  is easy to see that the dimension of this vector is I W I , and it 
does not depend on i. 

Let X' be the set of all possible distinct projections of the last u-w rows 
of the incidence matrix of a BIBD. Let C N" ( i S w )  be column equivalence 
classes such that aij = 1 for all j € r € P. Let X' denote the set of integral 
nonnegative solutions of the system 

C zr=r 
CfW 

Proposition 3.1: X" € xu for 3Sw5u.  

By proposition 2.4 the vector Xi+' uniquely determines row tu + 1 of the 
canonical matrix. Thus all canonical matrices of BIB& with given parameters 
are found among the matrices given by a backtracking procedure, one step of 
which follows. Let w rows of the matrix A be already defined, and the sets P, 

( i s m )  be constructed. By solving the system (3.1) we determine XI. If x' 
is empty, then the matrix A" cannot be completed up to A. Otherwise, the 
lexicographically minimal solution iq selected from x', and using it as X:+' we 
determine the row w+1. After having defined the sets W+', w+' ( i S t u + l )  
in accordance with proposition 2.3, we are ready to make the next step of the 
search. When all possible ways of completing the matrix A are exhausted, we 
change row w + 1 by taking the next solution from x' as XE+ I .  

When w = u, we determine the canonicity of the obtained matrix using the 
algorithm from [S] (an identical algorithm is contained in [?I). Alter all 
possibilities of constructing the 3rd, 4th, ..., uth row during the search are 
exhausted (which can be.done since xu is finite), the constructive enumeration 
problem for BIBDs with parameters (u,b,r,k,X) will be solved. 

a) 
b) 

The algorithm described has some deficiencies: 
No efficient method to solve the system (3.1) is known. 
A large part of the calculation leads to the construction of noncanonical 
matrices. 
Proposition 3.2 given below allows u9 to get the set x' recursively using the 

previously calculated set xu-'. Thus we succeed in eliminating the first noted 
deficiency. 
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A number of essential search reductions for the described algorithm is made 
possible by this approach to determining x", in particular a substantial 
reduction of the second noted deficiency. Moreover, this algorithm can be 
generalized for the enumeration of general inciicnce systems. 
Proposition 3.2: The set of integral solutions of the system 

equals the set x" of solutions of (3.1), where in the right hand sides, all vectors 

Using proposition 3.2 all sets x" for different values of w may be found by 
= (;ye') € x"-' are substituted consecutively. pw-1 

x solving (3.2) with xo = {t), x' = {t  - 
It  is clear that the system (3.2) is considerably easier to solve, because the 

values of some variables occurring in the system are determined a t  once from 
the available equalities. Further, each equation except the f i t  one contains at 
most two variables, and the "concord" of the values of the variables is made 
only through the first equation. Thus instead of solving the system (3.1) in 
order to determine x",  we have to solve n = Ix""~ times the system (3.2) 
with different right hand sides. 

In the conclusion of this section, we want to note that we are familiar with 
Gibbons's algorithm for enumeration of BIB designs [7],[8]. He finds the same 
orbits of the group G, acting on D, and the canonicity predicate C is 
introduced in the same way. However, his method of finding the next w+l ' th  
row is an exhaustive search of binary vectors which have length 6 and weight r 
not exceeding row w ,  and hence is less efficient than ours. 
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4. Ellmixiatton of inutmbible Miutionr 
The recursive method of constructing the sets x2, ..., xw described above 

makes it possible to eliminate from consideration a number of ways of obtaining 
the last w -  w rows of the matrix A, and thus to shorten considerably the search 
and to reduce the computer memory needed for storing solutions of the system. 
We shall describe two methods of such elimination which are based on a 
modification of the system (3.2) and/or its right hand sides. An important 
positive feature of these methods is that some ways of constructing the last rows 
are eliminated without their actual determination. 

Let y," be the number of ones in every column of class r € W ,  that is y," 
= I {i 5; w , for all j c r ,  o i j  = 1}1. 

Proposition 4.1: k + w - w Sy,"Sk for all w and for all r € N"'. 
If it is not excluded to complete the matrix A' up to the canonical one for 

which the vector X' will be equal to the projection of row i on the partition 
NU, then solution X w  of the system (3.2) will be called i-odmissible. Otherwise, 
the solution X' will be called i-inadmissible. The solution X' of the system 
(3.2) will be called admissibie, if it is i-admissible for some i ;  otherwise it is 
inadmissible. 

Corollary: A solution X' = (2,") of the system (3.2) is inadmissible if the 
columns of some class r, (ro) contain exactly k (k+w-w)  ones, and z.", # 0 

Note that if the conditions of the corollary take place, then by modifying 
the system (3.2) slightly one can ensure tha absence of the inadmissible aolutions 
described in this corollary. It suffices to substitute in the right hand side of (3.2) 
only the vectors zw-' = (;:-I) € xW" whose 8th coordinate satisfies the 
following conditions: 
a) ;,S"=O if v-'=q ( z J - ~ = I ~ - ' I  if v-'=r0) 
w;-'=4 q + 1  I if u-l=u-'u rl+l 

Moreover, in case a) equations are to be removed from the system (3.2) 

(2: # up,). 

(:;-'a I up,l 

2: +z:+ I - w - l  * z E + l = ; y  
( 2 E - I  +2:=2#l = w - I  * z,,,, ' =3;-1-%) 

if V " = ~ - 1 u  up,, 

altogether, and in case b) to be replaced by: 

Elimination of the indicated unknowns from (3.2) corresponds to an 
exclusion of the class rl (To) from N"'. One must also remember to modify 
the first equation of (3.2): 
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Cz:=X-Xu where u>w, Xu= C c I t 1  
r m  i<u y!-k+i-e 

From the way the search of the sets x" (1SwSw) is performed by means 
of (3.2), one can see that such a modification of the system is equivalent to  an 
elimination of inadmissible solutions from x'. Some coordinates of retained 
solutions will be identical and will stay such until the end of the search with the 
given matrix A'. The sets corresponding to these unknowns will not be 
partitioned further, and the forced completion of these matrix columns by ones 
or zeroes will take place. This permits us to get rid of the noninformative 
coordinates and thus to economize on memory and time when solving (3.2). 

Let us agree that each vector frcm any set x' will contain only the 
informative coordinates zp. In other words, each column of the set Yp € N" 
for any coordinate n will contain yr ones, and k+w-v<yp<k. When we 
speak about the projection of a vector on the partition N" we shall also take 
into account the forcibly completed column sets. 

The other class of inadmissible solutions is much more extensive. The 
inadmissibility is related to the canonicity of the matrix A. Let the row w of 
A"' be constructed in accordance with X:"cx'-'. 

Proposition 4.2: The vector XY is inadmissible if it satisfies (3.2) with a 
*Y-'cx'- '  such that *Y-'>X:-'. 

Since we no longer need the set of all solutions of (3.2), we shall henceforth 
denote by x' the set of all admissible solutions. 

Propositions 3.2 and 4.2 and the method described for modification of the 
system (3.2) allow us to accomplish one search step in the following way. Let 
the matrix A""' be constructed, and let x'-' be the set of admissible solutions. 
Fixing one of them as XC-', we shall construct A'. Having solved (3.2) with 
all X'-'cx'-' such that X"'-'SX,"'' we obtain the set x' of admissible 
solutions (here, the system should be modified if necessary). 

Let us sum up the technique discussed above. 
We have described a constructive enumeration algorithm for BIBDs based 

on the examination of the search tree, the nodes of which are the ways of row 
construction obtained by solving the system (3.2). We succeeded in cutting off 
some branches of this tree by using the corollary of proposition 4.1 (proposition 
4.2) having proved that they do not contain the canonical incidence matrices of 
the BIBDs. However, these measures are not sufficient even for an enumeration 
of small BIBDs that are interesting in practice. The fact is that, generally 
speaking, the sets of admissible solutions to systems (3.2) are too large, which 
renders difficult both their storage in the computer memory and the search 
execution. 
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Three methods for overcoming the difficulties noted will be given and 
discussed in detail in subsequent sections. The T i t  of them (55 )  is based on the 
proof of w-inadmissibility for many vectors from x'-'. It may be used 
efficiently when the number of vectors in each set x"-' does not exceed several 
hundred. It is possible to prove w-inadmissibility for approximately S0-95% of 
these vectors. Two other methods ($6) are tailored to the enumeration of BIBDs 
for which it is impossible to keep complete lists of admissible solutions of the 
systems (3.2). 1n.enumeration of several BIBDs, one succeeds in overcoming the 
difficulties noted by using the extension C,,, of canonicity predicate C, in 
particular by using the automorphim group of the matrix A". 

6. Row-inadmbible eolutlonr 
It is easy to prove the w-inadmissibility of many vectors from x"-' by 

using 
Proposition 5.1: The vector XY-' is w-inadmissible if for some coordinate 8 

and for all vectors X"' = (zy") C xu-', X""'SX?'', one of the following 
conditions holds: 

a) z,"-'= 0 
b) z,"-' = I r " I  
A BIBD is called symmetric if u=b.  It is easy to show 141 that any two 

blocks of a symmetric EUBD have X elements in common. We shall use this fact 
to show the w-inadmissibility of several solutions of the system (3.2). 

Let 2;' be the number of common ones in the columns of the classes r 
and fll that is 

2,"' = I { i s w :  /or all jltr and all jztfl,aijl=aij,=l}l 

Proposition 5.2: If A is the incidence matrix of a symmetric BIBD, then for any 
row w we have: 

a) for all r 6 Vl lrl 2 2  4 k + w - w ~ ; y , " ~ X  
b) for all and i N", u # 1 - X + max(;y,",v;") - ~ S Z ; ~ S X  

Corollary 1: The solution X" = (z,!") of the system (3.2) is inadmissible if every 
column of some class TcN" contains exactly X ones (that is, 9," = A), and 

Corollary 2: The solution X" = (2;") of the system (3.2) is inadmissible if for 
some classes v, 
Corollary 3: The solution Xu = (2:) of the system (3.2) is inadmissible if for 
some classes r, f l  C N" (8#1), 2s = X+;yr-k and exactly one of z," and 
zr is nonzero. 

zpa2. 

€ N" (s # l ) ,  z s  = X and both of 2," and 2;" are nonzero. 
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Proposition 5.3: While enumerating the symmetric BIBDs, the vector XI-' is 
w-inadmissible if for all Xv-' = (2r-l € xr" with X"" ZXV", one of the 
following conditions holds: 

a) there exists an s for which z5-l < A, and z,"-' + z;"" # 0, and 
exactly one of zf-', zr-' is zero. 
b) there exists an s for which Ic-'l 2 2  and gy-' < X and 2,"" $1. 

Let us note that there is a similarity between successive uses of propositions 
4.1 and 5.1 on the one hand and propositions 5.2 and 5.3 on the other. In each 
of these cases, some characteristic of the columns (9," or z;) was introduced 
and by the first proposition of each pair the limits of its possible values were 
determined. The "mobile" (depending on the constructed row number) lower 
limit coincides with the upper one, when the kth "one" was added in some of 
the considered columns. When the value of this characteristic coincides with one 
of the limits, some solutions of the system (3.2) were excluded by the corollary 
(corollaries) of this proposition from further search. Use of each of these 
solutions for the construction of the next matrix rows would put the considered 
characteristic beyond the determined limits. On the other hand, when the value 
of the characteristic was within the determined interval, some ways of 
construction of row w were excluded from the search by the second proposition 
of cach pair. Their use in the construction of this row would, because of 
proposition 4.2, make it impossible for the characteristic value to reach its upper 
limit. The latter, as is clear from the definition of the characteristic, is a 
necessary condition for completing the matrix A" to an incidence matrix of a 
BIBD. 

The noted analogy is confirmed by the following. As in the case of 
proposition 4.1, by a modification of the system (3.2) one may avoid solutions 
which are inadmissible in the sense of proposition 5.2. For this, it suffices to add 
to the constraints of the system (3.2) the following conditions: 

a) 
b) 

c) 

zr5l  for the s th  component of the vector described in corollary 1. 

z~*z,"'=O for the s th  and l th  components of the vector described in 
corollary 2. 

(zZfO) - (z,"'#O) for the 8th and l th  components of the vector described 
in corollary 3. 
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8. Two modlflcationr of the general dgorlthm 
The weak side of the algorithm described is the necessity of storing in the 

computer memory the complete lists of solutions of the system (3.2), in order to 
obtain the sets x"' recursively. Using these lists, we succeeded in increasing 
substantially the efficiency of the search, by performing it only via admissible 
(propositions 4.1, 4.2 and 5.2) and w-admissible (propositions 5.1 and 5.3) lines. 
This made possible the solution of the problem of constructive enumeration for a 
number of parameter sets of BEDS. However, the enumeration of other BIBDs 
by this algorithm is infeasible because it is impossible to store the complete 
solution lists in the computer primary memory. Below, two modifications of the 
general algorithm are described which allow one to manage with partially 
constructed lists. 

For the description of the f i t  modification, the following will be required: 
Proposition 6.1: The f i t  element z; of the projection X r  = (z&) of any i t h  
(w <i 5 w + k - yy ) row of the canonical incidence matrix of a BIBD is not equsl 
to 0. 

Proposition 6.1 allows one to modiry the algorithm for enumeration as 
follows. We build up the system (3.2) for finding the construction modes of the 
following rows as we did before, denoting by zp ( 1 S s 5  I Nu I ) the number of 
ones which were put in the columns of nonforcibly completed sets r. But we 
solve it with the additional restriction zyrl. By proposition 6.1, we shall 
receive all possible projections on Nu of the next k - y r  rows of canonical 
matrix A. Having constructed the (w+l)-th row in accordance with some 
Xt+l ,  we solve a new system (3.2) with the additional restriction zy+' rl, 
substituting in the right hand side only those solutions obtained in the previous 
step for which 2"' 5 X t + ,  (proposition 4.2). We proceed in this way until the 
kth "one" has been placed in the leftmost column j o  from q. When this 
happens at last in row i', we shall find the leftmost column jo' of the matrix 
A' which does not yet have k ones (it can turn out that this column must be 
forcibly completed by ones, although it is not necessary that j" C ~ O ) .  Also, 
we determine the row ioo in which the columns jo and jo' were found to  be for 
the f i t  time in different classes. We solve again the system (3.2) for this row, 
adding the condition 2:" = 0. Using the obtained solutions, we solve again 
successively all systems (3.2) up to row i* inclusive. While solving them we put 
restrictions on coordinates so as to obtain all ways of constructing the next 
k-yf. rows of the matrix A having ones in column ioo and in rows numbered i 
for i <i Si ' + k - g;'. 
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Having obtained in this manner all ways of constructing the row i + 1, we 
fix one of them and solve the system (3.2) with the restriction zf'' 21, and so 
on. 

Of course, the method of constructing row i *  should be changed if the set 
of solutions to the system (3.2) with new constraints is empty in some stage of 
the computation. 

We shall call the modification of the general algorithm which was just 
described pumping because of the analogy between the back and forth motion of 
a sucker and the multiple pumping of the solutions with prescribed properties 
through the rows already constructed. 

The use of pumping expands the range of BIBDs which can be enumerated 
due to the possibility of storing the intermediate results in the computer primary 
memory. However, the number of solutions of the system (3.2) grows rapidly 
with the increasing of dimensions of BIBDs. This makes us look for some other, 
more complicated, modifications of the general algorithm. Now we shall 
describe one of these modifications. 

Let w rows of the incidence matrix A of a BIBD be constructed and let the 
set of all nonforcibly completed columns of the matrix A' be partitioned into 
classes N" = (r). Let, by solving the system (3.2), the set x' of admissible 
projections of the next u - w rows on the partition 1\po be found. We shall write 
the set x" in the form of a matrix L' of dimensions IN" I X I x" I. Each 
column of this matrix is one of the admissible projections, and all columns are 
lexicographically ordered. Let y: denote the number of ones in each column of 
the class (Mi5  I N" I ). Then V ( k - 9 : )  is the total number of ones which 
must be added in the next v-w rows in the columns of the class in order to 
obtain the matrix A. By m i  we shall denote the number of rows of the matrix 
A having a projection on V which agree with row j ( l 5 j S  I x' I  ) of the 
matrix L'. The ways of constructing the rows themselves will be called the 
desccndanle of j t h  construction mode of row w +  1. By this name, we emphasize 
the recursive method of their determination with the help of the systems (3.2) 
from the j t h  mode. 

The values of coordinates of the recently defined vector m"' = (my)  must 
satisfy the following equations: 
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The f i t  equation of (6.1) means that the total number of descendants used 
for construction of the rows must be equal to the number of incomplete rows of 
the matrix A. The remaining equations express the necessity of including the 
missing "ones" in all classes by the descendants of selected solutions (those with 
m/#O. 

Using (6.1) one can modify the general algorithm in the following way. 
Having solved tkie system (6.1) to obtain a solution in nonnegative integers, w~ 
shall obtain a set of solutions W = (m"). Having fixed some solution mM , 
we shall construct row w+l of matrix A in accordance with the j t h  mode 
defied by the condition 

In the right hand side of the system (3.2) for the determination of all 
possible projections of the next rows on the partition IVPP'', we shall substitute 
only those construction modes with rn?' 9 0 ,  151s j. On the newly obtained 
set xW+', we solve system (6,1), and so on. 

The solution mM must be changed if the system (3.2) cannot be solved, or 
if the system (6.1) cannot be solved on the set of solutions to (3.2). 

Thus the previous search on the construction modes of the rows is replaced 
by a search on the solutions W .  This modification of the general algorithm we 
shall call the method of sek?ctcd descendants. Let us note that the idea to use 
the solutions of the system (6.1), on which the method of selected descendants is 
based, is a generalization of proposition 5.1. In this proposition, however, only 
the necessary conditions of the solvability of (6.1) were used. 

.. 

7. Use of the canonicity predicate 
When solving constructive enumeration problems for combinatorial objects, 

the selection of nonisomorphic configurations is a very complex procedure. 
Using the canonical representation of incidence systems, we succeeded in 
avoiding pairwise comparison of the constructed objects. Using proposition 5.2, 
we exclude from the search a large number of construction modes of different 
rows of the matrix that cannot belong to canonical matrices which reduces the 
search greatly. 

The extension C,,, of canonicity predicate C was introduced in $2. 
However, its verification is time expensive, and therefore the use of C, demands 
special discussion. In 111, a number of simple heuristic methods for using the 
extension C, is given. The use of automorphism groups of partially constructed 
systems is the most interesting of them. As far M we know, similar methods 
were not presented before in enumeration problems; therefore we shall discuss it 
in detail. 
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Let A' be a canonical w X 6 matrix which ha3 a nontrivial automorphism 
group C' = (C,,,, Ifr), and let P = (r) be the partition of columns into 
equivalence classes. Let us consider some elements from the group Ifr, which 
describes the action of group C' on the columns of the matrix A'. These 
elements permute the classes (r) as a whole without changing the order of 
columns within each class. I t  is easy to show that the set of all such elements 
forms the group J, with the multiplicative operation defied by the product of 
permutations. The group J,,, induces the group Jw acting on the classes (r), if 
to all columns from r we assign the number s ( l S e S  I IF' I ). 
Proposition 7.1: The vector X' € x" is inadmissible if there is a permutation of 
its coordinates h € J p  such that hX' f+? x'. 

Proposition 7.2 is analogous to proposition 5.2. 

Proposition 7.2: The vector X" € x"' is inadmissible if it satisfies (3.2) with 

Proposition 7.3: The vector X'-' € x"-' is w-inadmissible if for some h € 

Using propositions 7.1-7.3, one can modify the general algorithm in the 
following way. In the current stage of computation we obtain the set xQ from 
which we exclude inadmissible vectors in accordance with proposition 7.1, using 
the group Jhr constructed from the automorphism group C"' of matrix A'. 
The remaining vectors will be partitioned into equivalence classes: XY-X? if 
and only if there exists an h € J p  for which X r  = h X r ,  with X r ,  X r  € x'. 
The lexicographically maximal vector from each class will be called canonical. 
We order x' in two stages. In the first stage we order the canonical vectors 
lexicographically. In the second stage we include the noncanonical vectors in the 
obtained list in such a way that each of them will be to the left of the canonical 
vector that is isomorphic to it, but to the right of the preceding canonical 
vector. From proposition 7.3 it follows that we must construct the next row of 
matrix A using only the canonical vectors. Fixing one of them as X:+, , in 
order to obtain x"' we solve the system (3.2) with all 2' € x' such that 2' 
S X:+' in accordance with the introduced order. Thus we shall not obtain the 
inadmissible solutions described in proposition 7.2. 

€ x'-'such that there exists an h € JW-l for which h$'-' > Xt-'. 2'-1 

J p - 1 ,  hX"-' > X"-'. 

Let us make some comments. 
From the construction of the group Jw, it follows that the columns from 
the classes r, contain the same number of ones if these classes are in 
the same orbit. We excluded from the search the %on-informative" 
coordinates (by proposition 4.1 and its corollary). It means that one must 
omit the corresponding coordinates in each permutation h € JW using the 
elimination of solutions with the help of the automorphism group. 

1. 
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2. The elimination of the solutions by the automorphism group of the 
partially constructed BIBD may be performed even when using "pumping". 
But instead of the group J p ,  its subgroup J b  should be considered. Each 
element of J& fiies the senior nonforcibly completed class. 
Using the method at selected descendants and the elimination of solutions 
by the automorphism group simultaneously is impossible. The absence of 
the vector hX' in the set x' does not allow one to affiim the 
inadmissibility of vector X' as it was made in proposition 7.1. Some 
vector Xjo-' < Xi:-' for which rnjo-' = 0 could be the ancestor of the 
vector hX'. 

3. 

8. The naalfs of the eonatmetbe enameratlon of BIBDB 
The algorithm for constructive enumeration described in this article was 

programmed in assembly language on an ICL 4/70 (capable of executing 300,000 
operations per second) and was used for compiling complete lists of BIBDs with 
certain parameter sets. Information about the families of BIBDs which were 
enumerated is presented in Table 1. 

In the column 1st of this table the number of painvise nonisomorphic 
designs with the given parameters is presented. The number of nonisomorphic 
designs without repeated blocks is given in parentheses in the same column 
whenever some of the solutions have repeated blocks. The processor time used is 
given in column "Time". The efficiency of our algorithm can be estimated by 
comparing this time with the enumeration time in column To of the same 
families of designs. These times are those taken by Gibbons's algorithm [7] on 
an IBM 370/165, executing approximately 3,000,000 operations per second. In 
many cases we have a great saving in time despite the fact that Gibbons was 
using a computer that was approximately ten times faster, and also restricted 
himself to the enumeration of designs without repeated blocks. Information 
about the families of the constructed BIBDs can be found in the papers listed in 
the "References" column. We assume that BIBDs for which this column is 
empty are first enumerated in our work. 
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0. A generalisation of the algorithm 
Successively introducing some restrictions ($2), we chose BIBDs from the set 

of all incidence systems an we constructed an algorithm for the constructive 
enumeration of BIBDs. Here, by removing the introduced restrictions, we shall 
generalize it for arbitrary incidence systems. 

First of all we note that the parameters ri, kj, and Xp, were not used in the 
determination of canonicity of the incidence matrix ($2). Hence, for any 
introduced generalization f - F, proposition 4.2 can be used as well as all 
results from $7 (by f - F we denote some generalization meaning that the 
previously used value f is replaced by a set of some values F). 
a) k + k,,. It  is easy to remove the restriction for the number of ones in the 

columns. Thus we shall p y s  to the consideratio? of the regular painvise 
balanced designs with kicK,, (lSiS6), where K, is a nonempty set of 
integers. If k, = {0,1,2, ..., u}, it is sufficient to search as before, but 
without using w-inadmissibility of some solutions of the system (3.2). The 
w-inadmissibility of these solutions was implied by the nonexistence of a 
completion such that each column of matrix A contained exactly k ones. 
By the same reason the "pumping" and the method of selected descendants 
cannot be used. 
X * A. The enumeration of regular block designs which are not painvise 
balanced is a more complicated problem. In this case a t  each search stage 
the system (3.2) is to be solved several times with every l i e d  right hand 
side, by substituting in the first equation the next number X i  from A 
instead of X. Thus we get all possible projections of the last rows on the 
partition N"'. The search on x' is performed as before. 
r -. I?. We can enumerate the nonregular incidence systems by replacing 
xo = r by xo = R. 
I - S. In $2, the special predicate S was introduced for the enumeration 
of incidence systems whos? ptoperties cannot be formulated in terms of 
dimensions u, 6 and sets R, K,, and A. For BIBDs, S - I ,  where I is the 
identically true predicate. If S# I, then for solving some concrete problems 
its extension S, is to be constructed and verified on the nodes of the tree 
CJ. Let A"(Xg+') be the matrix in which row w is constructed in 
accordance with the vector X:". Then if S(A'(X:+')) is not true, the 
vector X:" must be excluded from xr+' as it is inadmissible. 
Table 2 presents the results of constructive enumeration of &designs. 
Frequently the extension S, cannot be effectively constructed. Therefore 

the truth of S must be verified on all fully completed matrices. This happens 
mainly for "global" properties of the incidence systems. Examples of this are 
constructive enumeration problems for group divisible designs 141, connected 
graphs, and Hamiltonian graphs. It is also difficult to construct effective 

b) 

c) 

d) 
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I Table 2 I 

extensions if the predicate S describes some properties of the automorphism 
group (for example, transitivity) of enumerated objects. 

In [lQ], using the described constructive enumeration technique, we 
constructed all regular edge but not vertex-transitive graphs with a t  most 28 
vertices, and we proved the nonexistence of such graphs with 30 vertices. The 
latter answers Folkman’s question (4.2) from [20]. 
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Abstract 
We describe procedures for finding t-designs with prescribed automorphism 
groups and apply these methods to finding t-designs on 20 points with 
either Iy=L2(18) or PSL2(18) as an automorphism group. We produce two 
non-isomorphic simple &designs with parameters &(20,8,112) and 
automorphism group PSL2(18). It has been previously shown that if 
q < 18, simple &designs on u = q + 1 points do not exist with 
automorphism group PSL2(q). Hence u = 20 is the smallest u = q +1 
where simple &designs occur with automorphism group PSL2(q). 

1. Introduction 

A I-design, or t - (u ,k ,X)  design, is a pair ( X , B )  where B is a system of k- 
sets (called blocks) from a w e t  X such that each I-set from X is in exactly X 
blocks of B. A t-design is called simple if no block of B is repeated and trivial 
if each k-subset of X occurs precisely m times in B. In this paper we are 
interested primarily in nontrivial, simple t-designs. A necessary condition for 
the existence of a t - ( u , k , X )  design is that A(::!) 9 0 (mod ( t - i ) )  for 
i = 0,1,2, ..., I. In fact, Wilson (1873) showed that given u, k, t with 
0 < t < k < u,  there is a constant N ( t , k , u )  such that t - (u ,A,X)  designs exist 
for all X > N ( t , k , u ) ,  where X satisfies the above necessary conditions. A major 
problem is to find the minimum value for N(t ,k,u) and also to determine when 
simple, nontrivial t-designs occur. Success in finding simple I-designs for t Z 4 
has been limited. A good survey of results on t-designs is provided by A. 
Hedayat and S. Kageyama (1980). Briefly, there are a small number of infinite 
families of simple 4- and 5-designs, and only finitely many Steiner systems ( t -  
designs with X=l) for t = 4, or 5. Only recently haw simple &designs been 
shown to exist. In 1982, S. Magliveras and D. Leavitt found the first simple 6- 
designs with parameters 6-(33,8,36). Magliveras focused his efforts on the 
unique 4-homogcneous, non set-transitive group PI'L2(32) and Lenvitt dcvelopcd 

k - i  
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a new, powerful search procedure that uses the available information much more 
efficiently than before. In 1983, E. Kramer, D. Leavitt and S. Magliveras found 
the second set of &designs with parameters &(20,9,112) and automorphism 
group PSL2(19). Kramer (1975) had previously ruled out simple &designs on 
u = 17 points using PSL2(lS), and on u = 18 points using psL2(17). Hence, 
PSL2(19) on u = 20 points was an obvious situation to explore. In the 
following sections we describe our procedures for finding t-designs and apply 
them to the situation on u = 20 points with either mL2(19) or PSL2(19) as an 
automorphism group. 

2. Preliminarier. 
A group action C I X induces an action of C on the collection X, of k-  

subsets of X for each k S u = I Xi. Let p = (p(O),p(l), ...,p( u)) be the vector 
whose k'* entry is the number of C-orbits on X,. The entries p ( k )  are easily 
given by the Frobenius-Cauchy-Burnside theorem; that is, 

p(k )  = [number o/ C-orbits on x,] = I GI . - l  c e,(g) 

where Q(g) is the number of k-subsets of X fixed by g c C. A k-subset K of X 
is fixed by an element g of cycle type l"2"' * * * nmR if and only if K is the 
union of cycles of g , Hence, 

I r Q  

e&(l"m "l... n".) = c (T) 
( a t  ..., 8.) i - I 

where the sum is taken over all non-negative integer vectors (al, ..., a,) such that 
i.ai = k . 
If A and B are k-subsets of X, in general it is a non-trivial task to decide 

whether A and B are in the same G-orbit of X,. As we shall soon see, it is 
necessary to make many such decisions in the process of investigating the 
existence of t-designs with a prescribed group of automorphisms. We 
accomplish this by relying on 'invariant' functions. 

Let GI  X be a group action and let RXb be the collection of all functions 
from X, into a set R. The induced action G I X k  is extended to fl by 
!'(A) = / ( A ' )  for A c X,, g c G. A function 1 c RXL f i e d  by all elements of 
G is called G-invariant, or simply inuan'ant. Suppressing G and X, we denote 
the collection of all invariant functions in RXb by l?,(R). Note that when R is a 
ring, &(R) is a free R-module of rank p(k).  

i -1  
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By the rank of f c f&(R),  we mean the number r( f )  of distinct values taken by 
f in R, thus, r( / )  = I f(.,Yk)l. A function f c l?k(R) is called a discriminator 
if r ( / )  = p ( k ) .  We observe that a function f : Xk + R is C-invariant if and 
only if f is constant on the C-orbits in Xk. 'rhus, if f is invariant, A, B c X,, 
and f ( A )  # f(B) then A and B are not in the same orbit. Moreover, for 1 a 
discriminator, A,  B c Xk are in the same orbit if and only if / ( A )  = f(B). If 
f : Xk + R1, g : Xk + R2 are functions then the Cartesian product f X g  is 
defined by (f X g)(A) = (f(A),g(A)). The following statement is easy to see: 

Lemma 1 If 1 c (zt(R1) and g c l?k(R2), then f X g  c l?k(RlXR2) , 
and r( /  X g )  2 max{r(f),r(g)} . 

If f and g are invariant functions we say that f dominate8 g ,  denoted by 
f > g ,  if r ( / X g )  = r(f) .  We say that f is equivalent to  g, f - g ,  if f > g 
and g > f .  Frequently the result of taking the product of two invariant 
functions f and g results in a function strictly dominating both / and g. This 
allows :IS to construct discriminators by iteratively taking Cartesian products of 
invariant functions of small rank. The ef/iciency of an invariant function 

c n k ( R )  is defined to  be the ratio q( f )  = r(/)/p(&), thus, an invariant 
function is a discriminator if and only if it has efficiency 1. 

3. C-fused Incidence Matrices 

In 1976, Kramer and Mesner elucidated the role of certain matrix invariants 
associated with a group action C I X. Roughly speaking such a matrix is the 
result of fusing under C the incidence matrix between X, and Xk where 
incidence is set inclusion. These matrices contain, in a concise way, all the 
relevant information for investigating the existence of t-designs with 
automorphism group C. We proceed to  introduce these matrices. 

For 1 5 t < & < u = I XI , let {A!'): i = l ,  ..., p ( t ) } ,  {AY):  j=1, ..., p(k)} ,  
be the collections of orbits of C on X, and Xk respectively. For a fixed member 
T of A!') the number aij (T)  of members K c A Y )  such that T C K is 
independent of the choice of T c A!'), hence we may write a;j = a;j(T). We 
define the p ( t )  by p ( k )  matrix A,,k = A,,k(C) by: A,,k = (a;,.). 

Dually, for a fixed member K of A?), the number bij (K)  of members T of 
A!') such that T C K is independent of the choice of K in AJk), and we define 
the matrix B,,k = B,,k(G) by B,,k = (b i j ) .  For k = 1 ,..., u, let 
L, = ( L k ( l ) ,  ..., Lk(p(u))) be the vector of orbit lengths of C on Xk, that  is 
L k ( i )  = I A!')I. For the pair of orbits A!') and A?) the entries a;j and b;j can 
be thought of as the degrees of a regular bipartite graph with vertex set 
A!') U A Y )  where T c A!,) is joined to K c A?) if and only if T C K. 
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Finally, we introduce a third family of matrices related to G I X. Let K be 
a fixed member of A!') and let c i j  be the number of elements of Ap' that 
intersect K in exactly t points. We define the p(A) by p ( k )  matrix 
C t , k  = Ct,k(C) by Ct,, = ( c i j ) .  

Figure 1 

We mention here, some useful properties of the matrices A,,k, B,,), Ct,, and the 
orbit length vectors L,. Statement (iv) which is an easy consequence of (iii) was 
first observed by Leo G. Chouinard. Statement (v) was discovered by D. Kreher 
and independently by D. Leavitt. 

Let At,k, Bt,c, C,,,, L, be 89 defiied above. 
A - t  - 1  

Lemma 2 

(i) If t L s d k then A,,, = 

(ii) A,,* has constant row sums (:I:) 
(iii) LAiP,,*(i , j)  = LdjW,,di,d 

tiv) ($Lk = &,A,,, 

A+A8,k 

k 

i - t + l  
('1 c t , k  = ~ : k  A,,, - c ( f1Ci .k  

Proof Properties (i) - (iv) are immediate. We sketch a proof of (v). Note that 
the (i,j)'* entry of B$A,k ia the number of triples (K,T,J) ,  K a fixed 
member of A/') , J t A p j  and T C K n J ,  with I TI = t .  On the other 
hand for r 2: t + 1 (;)C?,k(i,j) is the number of triples (K ,T ,J ) ,  K and J as 
above, where T C K n J ,  I K n $1 = r. Hence the formula. 

Note that the above lemma allows one to compute {A,,k :t <&} and {& :t <k} 
from L1 and { 4 , i + l  :i = 1 ,..., [(u+l)/2]). 
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Let A,,+ be defined above for some pair t ,  k, 1 5 t < k < u. Suppose 
furthermore that there exists a collection of columns jl,.,.,j9 of 
corresponding to the C-orbits of k-sets A$;), . . . ,A$!'), whose sum is the vector 
(X,X, . . . ,A)=. This simply means that the union B of orbits A:), . . . ,At) is 
a collection of k-subsets of X with the property that any t-subset of X occurs 
in exactly X members of B. Hence, B is a C-invariant t - (u ,k ,X)  design. 
Moreover, if the columns j1,...,j9 are distinct, no k-sets repeat, so B is a simple 
design. The converse is easily seen to hold, hence we have the foUowing result. 

v ramer  and Mesner, (1976)]. There exists a t - ( u , k , X )  
design with the underlying point set X, 1x1 = u ,  and with G a group of 
automorphisms if and only if there exists a solution U to the matrix equation 
AU = XJ, where A = At,t, U is a p(k)-dimensional vector of non-negative 
integral entries, J is the p(t)-dimensional vector of all 1'9, and X a positive 
integer. The t-design is simple if and only if U is a 0-1 vector. 

We now proceed to investigate the relationship between A,,k(H) and 
A,,k(K) when H and K are subgroups of C with H S K S C. Let A = (aii) 
be an m X n matrix with non-negative integral entries and constant row sums. 
A pair P = (2r1,7r2) where rl = {Di},!'-l is a partition of {ll...lm} and 
r2 = {Fj}y-l is a partition of {1 ,...pa} is called a tactical jusion of 
({1,...,m},{1,...,n}) for A if 1 S i 5 u ,  1 S j S tu, 2 ,  y t 0; implies that 

Theorem 3 

- - - 
ai,j c 'Zt9 = c a t , q  

9 CFj 9 CFi 

We set A[P] = E+). The tactical domain of A denoted by D ( A )  is the set of 
all tactical fusions for A. If B = A[Pl for some P 6 D(A) we say that B cower8 
A and writeA S B. 

Suppose that C I X is a group action and that 1 S t < k S u  = I XI . 
Let A be the incidence matrix between X, and Xk where incidence is set 
inclusion. The following proposition is easy to show: 

Let H and K be the subgroups of C so t.hat H S K. 
Let 7rl, 7r2 be the systems of H-orbits on X,, Xk and ulr u2 the systems of K -  
orbits on X,, Xk respectively, then 

Proposition 4 

(i) P = (rl,r2) is a tactical fusion for A 

(4 AIPI = A,,L(H) 
(iii) S = (u1,u2) induces a tactical fusion of P for A[P] 

(iv) {A[pI} [sl = At,k(K) 
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4. An Algorithm for Computing Incidence Matricer 
Direct computation of the matrices A,- I,) by means of actually computing 

and storing orbits {A/"')} and (af)} is very inefficient in terms of both 
machine time and space. It suffices to  note that the number of orbits of C on 

X, is bounded below by (l:I)/l GI and that most orbits are regular, that is 
of length I C I . We proceed to  describe a much better algorithm for computing 

Here, we assume that we have representatives of each of the p(k-1) 
G-orbits on (k-1)-sets, say T(k-l,l), ...,?'( k-1, p(k-1)), and the 
corresponding vector of orbit lengths Lk-l .  We also assume that a sequence 
(f f 2,..., f,) of functions in Q(Z)  is made accessible to  the algorithm so that 
for some m S n, / 'X  f2X  * * * X fm is a discriminator. The algorithm 
proceeds to  compute Ac,],) ,  representatives of each of the p ( k )  orbits of G on 
X,, and the vector of orbit lengths 4. The algorithm makes r passes to  
complete the process, where r is the least integer such that f1X * * * X /, is a 
discriminator. 

Algorlthm 6 

1. 

2. Form = 1 to n, step = 1 

3. Set function f equivalent to  function fm 

4. Set indz = 0 

5. 

6. Compute the complement = X \ T(k- 1,i) 

7. 

Initialize F to  an nX(p(k-l)(u-k+l)) zero matrix 

For i = 1 to  p(k -  l), step = 1 

For j = 1 to  (u-k+l), step = 1 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Set indz = indz + 1 

Set q j  = j'* element of Y;. 
Compute Tt = ?'(k-l,i) U {qi}  

Set F(m,indz) = /(T+) 
Next j ; Next i 
Compute R = [the number of distinct columns of F] 
If R = p ( k )  then go to Step 18 

Next m 
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16. Store F on mass-storage device for later use 
Print: 'Discrimination wm not acbieved. Increase Pool of invariant 
functions ...' 

17. Stop 
18. Convert information in F to and print 
19. stop 

We proceed to describe some easily computable invariant functions. 

4.1. Anchor Sets 

Let A be a fixed subset of X ivhich we shall call an anchor set. We 
describe an invariant function f A  cf2,(ZL") as follows: Begin by calculating 
the orbit A = A' = {Al,...&). Now, for any B c X,, we define the frequency 
uecfor of B relative to the anchor set A to be fA(B) = ( f O , f l ,  ...,/,) where f i  

is the number of members A j  of A intersecting B in exactly i points. These 
invariant functions f A  appear to be of low efficiency, when 1 A I is small and k 
is of size close to  [ufi]. The efficiency of / A  improves as the size of A increases 
to  [v/?2]. Typically the Cartesian product of a few judiciously chosen fA has 
produced a discriminator. 

4.2. Taxonomy 1 

Suppose that G contains an element I which is represented on X as a 
regular permutation of type 8'". Then the cyclic group <rr> has a system 
7 = {C,, ..., Cm} of orbits on X, each of size s; that is, 7 is a regular partition of 
X. Let F = 7' be the orbit under G of the partition 7; Thus, F contains all 
partitions of type 7f = {C{ ,..., C:}, g c C.  Now let B be any member of X,. 
If 6 = {D , ,  ..., Dm} c F, we compute the frequency vector of B relative to  the 
partition 6 by: f (6 ,B)  = ( fo , / l , . . . , /q)  where fi is the number of blocks of 6 
intersecting B in exactly i points, q = min(8,k). As 6 runs through the orbit 
of partitions in F, f(6,B) runs through a specific set of distinct frequency 
vectors. We tabulate the frequencies with which the distinct frequency vectors 
appear, and obtain a frequency vector of frequency vectors pW(B). The function 
p, is clearly invariant, apparently of high efficiency, and it appears that  the 
efficiency in discriminating G-orbits on X, increases with k in [ l , u F ] .  In 
several instances, q turns out to  be I - ( l / p ( k ) ) .  
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4.3. Taxonomy 2 

The next procedure in computing invariant functions is motivated by the 
matrices Btlk. Suppose that for some t < k  we have been successful in 
obtaining a discriminator function 4,. Let (A!) : i= l ,  ...,p( t ) }  be the orbits of 
C on X,, and let B be an arbitrary k-subset of X. Now, consider the vector 
v,(B) = ( f1 , f2 ,  . . . , f ~ , ) )  where ji is the number of t-subsets of B which belong 
to A?). To compute v,(B), we run through the ( f )  t-subsets T of B,  each time 
determining the orbit Ai') in which T falls by computing 4,( T). 

6. Leavitt'a Algorithm 
A crucial step in deciding whether a given group action C l X  supports 

simple t-(u,k,X) designs is the investigation of existence of 0-1 solutions to the 
matrix equation AU = XJ. An upper bound to the time complexity for the 
problem is 2C('). Since in the PSL2(g) case p ( k )  is asymptotically 
(i) / I C I - eq"', c a constant, we see that backtrack is hopeless with 
complexity 2(qL-3. Efforts were made to adopt an optimization algorithm for 
integral bivalent problems by Egon Balas (1975) but we were unsuccessful in 
obtaining results with it. Balas' algorithm on the other hand yields one, optimal 
solution, if any, with respect to a predefined objective function. We were 
interested in all solutions with the null objective function. We still intend to 
study the feasibility of Balas' algorithm for our design searches. 

In what follows we discuss a procedure for obtaining all 0-1 solutions to  the 
integral matrix equation AU = B. The procedure can be viewed as solving by 
subspaces and involving spacatime tradeoffs. To make the presentation of the 
method easier we assume that the machine used has unlimited storage. In 
actual practice a user will make modifications to adopt the process to his own 
machine constraints. 

We assume that A and B are set up as m X n and m X r integer matrices 
respectively. In addition we set up an n X r zero matrix for U, where solutions 
are to  be accumulated, and introduce a 1 X n  vector F which is used to flag 
columns of A and rows of U. None of the four matrices A, B ,  U, F are static 
in the sense that their dimensions will change during the procedure. In 
particular, r will fluctuate considerably during execution as it corresponds to the 
number of accumulated potential solutions in the search. We proceed to discuss 
elementary operations for the procedure. 
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Cauee Operatione 

C [ i ]  Divide the i th  row of [A,B] by the greatest common divisor of the 
elements of this row. 

G [i , j] Interchange rows i and j of [A $1. 

Add an integer multiple of row i to row j of [A,B]. The multiplier is a. 
c[wi,Jl 

Ezpaneion Operatione 

Catenate an (m + I)'' row to P, 

am+l , j  is 8 reduced residue class representative of ai,j  modulo p ,  and 
/J,,,+~,~ = bi , j  (mod p).  If S is the 0-1 span of {am+l,j}7-l, then for 
each e t S, s = bj , j  (mod p )  catenate a column ( b , , j , .  . . , b,,+ 8)' to 
[A,B] and a column (u1,j, . . . , ~ , , j ) ~  to U. 
If the elements of the it* row of A are contained in {-l ,O,l},  then 
catenate an (m + 1)'' row to P with 

(am+I, l i  am+1,29 * * 9 am+l,n; bm+l,lt bm+1,21 * * * 1 bm+l,,)  where 

Eli]  

1 if ai,j = - 1  
a m + l , j  - - (0 othenviee 

and 6,+1,j = bi , j .  If S is the 0-1 span of {a,,,+l,j}~-l then for each 
8 E S, 8 > -bit;, catenate a column ( b l , j , .  . . , bmj,  8)' to f3 and 
catenate a column (ul,j, . . . , un,j)' to U. 

Contraction Operatione 
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Cl[i] 

C2[il 

If b;,j is not in the 0-1 span of { ~ i , k ) i - ~  then remove the j'h columns of 
B and U. 
If the greatest common divisor of {ai,&l does not divide bitj then 
delete the j t h  columns of B and U. 

Resolution Operation 
If the i" row of A has all zeroes except that u;,j = 1 then we can 
substitute row i of B into row F(i) of U, delete the i'h row of [A,B], 
delete the j t h  column of A, and delete the j th  entry of F. 

R [ i ]  

Many of the procedures can be combined and follow each other naturally, 
such as C2[il and C[il. E[i] was originally a combination of E[%;i ]  , 
C[l;m + l,i] , C2[i] , G[-  l$,m + 11 , ete. Any procedure which changes the 
number of rows or columns of A or B must update the value of m ,  n ,  or r 
correspondingly. 

Aborithm 6 

1. 
2. 

3. 
4. 
5. Set i = 1 
6. While i < n do 
7. Seth  = i + 1 
8. While h 5 n do 
0. Set boole = true 
10. For j = 1 to m ,  step = 1 

11. Set boole = boole A ( a i j  = ah,j) 

12. Next j 

13. If not 'ooole then go to Step 22 

14. Set U l  = U, Bl = B 
15. For j = 1 to r, step = 1 
16. Set u l h , j  = 1 

Initialize m ,  n ,  and r as scalars 
Enter A and B, an m X n and m X r matrix respectively 
Initialize ! I  to an n X r zero matrix 
Initialize F = (F(l ) ,  ..., F(n))  with F ( i )  = i 
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17. 

18. 

19. 

20. 
21. 

22. 

23. 

24. 

25. 
26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 
43. 

44. 

45. 

46. 

Fork = 1 to m, step = 1 

Set b l k , j  = b l b , j  - ak,A 

Next k ; next i 
Set B = [B;B1], U = [V;Ul], n = t t  - 1 

Delete F ( h )  and h f A  column cf A 
S e t h  = h + 1 

End while 
Set i = i + 1 

End while 
Compute s = [the index of the f i n t  row of A which is not a 0-1 
vector] 
Set index = 0; numodd = n; i = 8 

While i S m do 
C2[i] ; C[ i ]  ; Cl( i ]  

Compute q = [number c.f odd entries in i'h row of A ]  

I1 q Z numodd then go to Step 33 
Set index = i ;  numodd = q 

set; = i + 1 

End while 
E(2;indexl ; E[-1;m ,index] ; C2[index] ; CIindex] ; G[m ,s] 

Set i = 1 

While i 5 m do 
If i = s then go to Step 40 

C [- ai,j;8 ,i J 

s e t ;  = i + 1 

End while 
Set t = m 

While i < s do 
Set count = 0 

For j = 1 to n,  step = 1 

Cl[i] 
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47. 
48. 
48. 
50. 

51. 
52. 
53. 

54. 
55. 

56. 

If 
If ailj C -1 then next j 
E[il ; C[l;m,i] 
Next j 
If count # 1 then set i = i + 1 else set a = o - 1 

# 0 then set count = count + 1 

"1 
End while 
If n > 0 then go to Step 38 

if r = 0 then print 'no solutions' else print U 
stop 

6. The oimple t-derignr from PCL2(18) and PSL2(10) with 3 5; 1 5 5 

In what follows we let X = GF(10) U {OD} = {1,2, ..., 18,20} where we 
identify with 20 and 18 with the zero in CF(l8). The group PSL2(18), of 
order 10.19.18 = 3420, is generated by the two elements a : z -., z + 1 and 
B : z 4 - l/z. Then PCL2(18), of order 20.18.18 = 6840, is generated by a, 8, 
and 7 : z + -2 .  In permutation form, a = (1 2 3 ... 18 10)(20), /3 = (1 18)(2 
9)(3 6)(4 l4)(5 15)(7 8)(10 17)(11 12)(13 16)(10 20), and 7 = (1 18)(2 17) ...( 8 
lo)( 18)(20). The group PCL2(18) is sharply &transitive on X, and PSL2( 18) is 
&homogeneous on X. In Table 1 we list orbit representatives for each of the 
PSL2( 10) orbits on X, for 3 S k S 10. 
If a PSL orbit A is fixed by the outer automorphism 7 then A is also a PGL 
orbit and we label it by using the same unsigned integer index for both groups. 
A PSL orbit A which is not l i e d  by 7 is carried into another PSL orbit 67. 
The two PSL orbits A and A7 fuse to produce the PCL orbit A U 67. We 
denote a pair of PSL orbits interchanged by 7 by a pair of signed integer indices 
j' and j'. These fuse to produce orbit j of PGL. For example, for k = 4, 
PSL orbits 1- and 1' are interchanged by 7 and fuse into PCL orbit 1, while 
PSL orbit 2 is fixed by 7. Our notation depicts which PSL orbits are PCL 
orbits and which PSL orbits fuse in pairs to create PCL orbits. 

From the matrix A = A4,a(PSL2(lS)) 
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- 
1 0 4 0 0 1 2  

2 0 0 0 8  8 

3 2 0 4 2  a 

4 0 2 6 4  4 

259 

1 2  3 4 5- 5+ 

we obtain the matrix A4,5(K'L2(19)) from A4,5(PCL2(19)) = A[Sl where 
S = (u1,u2) is the tactical fusion, with ul = {{l-,l+}, {2},{3},{4}} and crz = 

{{1},{21,{3},{4h{5- ,5+11. 
Note for example that in A4,5(PSLz(19)) the 2 by 2 submatrix 

corresponding to PSL orbits 1-, 1' cn 4-sets and 5 - ,  5+ on 5-sets is ( 12). 
The corresponding entry in the A4,5(FCt2( 10)) is then the common row sum 12 
of the submatrix. We quickly obtain A4,5(f'CL2(19)) as 

12 0 

In Table 2 we display the transposed At,k matrices arising from PSL2( 19) 
for 3 s t < k S 10 and t S 7, but not for t = 7 and & = 8. Implicitly, the 
Att matrices for KX2(19) are also given for the same values of t and k ,  since 
the tactical fusion induced by E L 2 (  19) is completely specified. 

Note that we have drawn lines in the PSL2( 19) matrices to delineate all of 
the 1 by 1, 1 by 2, 2 by 1, or 2 by 2 submatrices that collapse to produce the 
appropriate entry in the E L 2 (  19) matrix. 
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In Table 3 we have indicated the X's for which there exists a simple 
nontrivial f - (u,k,X) design for XL2(19)  or Ps&2(19). Since any design with 
automorphism group m&(19) will also have the subgroup PSL2(19) as an 
automorphism group, the right hand column lists only those values of X for 
which there is a 1 -(u,k,A) design with automorphism group PSL2(19) but not 
E L 2 (  1Q). In our notation we let X be the minimal admissible value of for the 
fixed 1 ,  k, and o = 20. Further X = (;I:) is the value of X if one were to use 
all the k-subsets of X to form the trivial t-design. If ( X , B )  is a simple, 
nontrivial t-design, then (X&W) is also a t-design, so we mention solutions 

only for X S x where is the largest admissible value of X less than or equal to 

When t = 3 and for each value of k = 4,5, ..., 10 it is elementary to check 
that we get nontrivial, simple &designs for precisely those values of X listed in 
Table 3. 

When k = 5 and t = 4 it is easy to check that there are no t-designs for 
either of the two groups. For k = 6, t = 4 a short search rules out any designs 
for pcL2(19), but there are several solutions for PSL2(19), all with X = 60. 
One such solution is, for example, (2-,4,6,8',11,12,13-. The 5-designs for 
either group with k = 6 must be trivial since 

When k = 7, t = 4 the first row of the matrix for both groups implies that 
4 must divide X, so that only X = 140 or 280 are possible. We get 18 solutions 
in all for X = 280 from mLz(19). One such solution is (2,3,4,5,9,11,13,16,17). 
The designs for t = 5 or 6 are trivial since 

For k = 8 and t = 4 or 5 we get the solutions exhibited in Table 3 with an 
example for each X provided in Table 4. If t = 6 the first row of the matrix for 
PSL,(lQ) forces X O,l(mod 3) leaving X = 7,21,28,42 as the only possibilities. 
Relatively easy searches exclude each such value of A, so 6- or 7-designs do not 
occur here. 

For k = 9, when t = 4 an easy check of orbit lengths shows that if 
X = l68z then z 9 l(mod 3). If t = 5 and X = 1052 then similar reasoning 
shows that z 9 2(mod 3). The 4- and 5-designs otherwise exist and an example 
of each possible value of X appears in Table 4. A short search for PG'L2(19) 
rules out any f-designs for t h 6. For psL2(19) there exist exactly two 
nonisomorphic &(20,9,112) designs which are not 7-(20,9,24) designs, and which 
we discuss in the next section. Here no t-designs for t 2 7  exist for k = 9 with 
automorphism group PSL2( 19). 

For k = 10 the X for &designs satisfies X 9 4(mOd 5) and this forces the 
corresponding X for t = 4 and t = 5 to  satisfy X 9 4(mod 5). If t = 4 then 
row 1 of the matrix for mL2(19) forces X 9 2(mod 6). If t = 5 then 

X/2. 

= X. 

= X. 
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consideration of possible orbit lengths for mL2(19) when X = 212 forces 
2 9 l(mod 3). Examples of designs, for a situation where a design exists for a 
particular value of XI are obtained by using unions and complements of unions 
of disjoint designs listed in Table 4. For example, if t = 5 and X = 1113 we get 
a design which is the union of disjoint designs with X values of 315,378, and 420 
respectively. Or if t = 5 and X = 1302 we can get such a design as the 
complement of the union of disjoint designs with X values of 315, 630, and 756, 
respectively. 

For k = 10 and t Z 6 we have ruled out designs having pGL2(19) as an 
automorphism group. This effort was greatly expedited by using the search 
procedure developed by D. Leavitt. In particular, the first author had ruled out 
all but 5 values of X for 6-(20,10,X) fixed by pCL2(19) and had estimated it 
would take several years of CPU time to eliminate just one of these remaining X 
values by the backtrack procedure he was using. 

For k = 10 and t 26 when PSL2(19) is the automorphism group we have 
eliminated any designs for t = 9. We are still in the process of examining 
whether any 6-, 7-, or 8-designs can exist. For t = 6, by considering orbit 
lengths we must have X # 3 (mod 5 )  and we have eliminated 6-(20,10,X) 
designs for X < 140 with PsL2(19) as automorphism group. 

7. New simple &designs with automorphism group PSL2( 19) 

The 6-(20,9,112) designs which we discovered are the smallest possible cases 
where simple 6-designs occur with PSL2(q) as an automorphism group on 
u = q + 1 points. The case q = 13 has been ruled out by several people 
including L. Chouinard and D. Kreher (private communication). E. Kramer 
(1975) established that there were no simple nontrivial 6-designs on u = 17 
points using PSL2(16) and he also determined that there are no &designs on 
u = 18 points with automorphism group PSL2( 17). 

There are exactly four solutions to the matrix equation A,,&' = 112J and 
the vectors of orbit indices producing these solutions are SI,S;,S~,S; where 
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Theorem 7 

with PSL,( 19) as an automorphism group. 
There are exactly two nonisomorphic simple nontrivial 6-(20,9,1 12) designs 

Proof The outer-automorphism 7 E pGL2(19) \PsL2(18) interchanges SI with 
S; and S, with S; so that we have a t  most two non-isomorphic 6-(20,0,112) 
designs. Suppose that S1 is isomorphic to S,. Then there exists a permutation 
A in the symmetric group C =  C20 such that S: = S,. It is known that if 
PSL2(19) < H S CzO then, H = &, the alternating group A,,, or pGL2(19). 
We also know that none of these overgroups of PSL2(10) preserve either S, or 
S2. Then, 

where PSL is the particular psL2(18) fiiing S, and S2. Thus, A normalizes 
PSL, and therefore, A E WL2(19) contrary to the fact that SI is not carried into 
S, under elements of E L 2 (  19). 

In Table 5 we display the intersection numbers of the two 6-(20,9,112) 
designs S, and S,. Here, if B is a block in an orbit constituent of design ( X , B )  
we tabulate the number of blocks in B which intersect B in exactly j points. If 
U is a 0-1 solution to AU = XJ, corresponding to the simple design (X ,B) ,  the 
intersection numbers for (XIS) appear in the product C,,$J. 

The upper section of Table 5 gives this information for the design S, and the 
lower section for the design S,. 

Note that these intersection numbers provide an alternate proof that S, 
and S2 are nonisomorphic. For example, there are blocks in S, that are disjoint 
from 20 other blocks of S,, whereas no blocks in S2 are disjoint from more than 
19 other blocks of S2. 
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8. Closing Remarks 
The authors feel strongly that there exist simple non-trivial f-designs for 

arbitrarily large values of t .  Further we conjecture that for any fixed value of t 
there is a q for which a simple, nontrivial t-design exists with PSL2(q) as its 
automorphism group. 

One major difficulty in seeing what are the appropriate analogues of the t -  
designs for t = 6 that  were found so far, is the very nontrivial problem of 
characterizing the orbits of PSL2(q) on Xk for general q and k. Note that 
solely group theoretic characterizations can not work since most orbits are 
regular. Clearly some invariants of a structural or geometric nature are needed. 

Another major difficulty lies in finding nice examples for relatively small 
situations. Even in the case u = 20, with PsL2(19) as the automorphism group 
our search procedures have not completely finished all cases for the possible 
existence of t-designs for 6 5 t 5 8 and k = 10. Hence improved algorithms 
are very much needed. 
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Table 2 

Metrlces for PSL1(19) end lmpllcitly IM ffiL2(19) for JSlch410 end rS7. but not far 1.7 end 
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Table 2 (cant.) 

Matrices foc PSL+io) end lmplkltly for PGLI(1p) for 3 S t e h S l O  end 1.7. bur nc~I f f f  1-7 md h=O 
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L i s t  of p u n s t e r a  t. k. A with 3 1 t < k 1 1 0  and A 1 F/2 for which thsrs is s simple, 

.ontrivial t-(2O,k,A) d s a i p  with M q ( l 9 )  or PSi.,,(19) as an sntcmorphim p0.p. 

( 2  wniacaorphio aolntiona) 
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7 

I2 - 
310: 
368'1 
3666 
3643 
3701 

36 12 
3701 
3666 
3687 
3694 
364s 
36 87 
3694 
3708 
3666 
36 94 
3687 

361a 

- 

Kmbor I of blooka 17 8 w i t h  a apooifiod 
intorteation a f z o  w i t h  a f i x 4  orbi t  roprorontatiro. 

Orbit 

1 
2 
3- 
3+ 
S 

16- 
17- 
18+ 
21- 
23- 
23+ 
24- 
24+ 
26+ 
28+ 
30+ 
32- 
32+ 

Orbit Orbit 
Ioprorontatiro Longth x0 x1 

1-S 6 10 13 16 380 10 49s 
1-S 6 12 14 20 1140 19 444 
1-S 6 7 9 16 1140 16 IS9 
1-5 6 7 11 111 1140 16 462 
1-S 6 7 8 12 3420 19 442 
1-S 6 7 8 10 3420 13 479 
I-S 6 7 9 10 3420 16 461 
1-5 6 7 11 12 3420 18 446 
1-S 6 7 9 20 3420 17 4SS 
1-S 6 7 10 14 3420 18 448 
I-S 6 7 13 17 3420 18 447 
1-S 6 7 10 20 3420 1S 466 
1-S 6 7 17 20 3420 18 448 
1-S 6 10 14 20 3420 18 447 
1-S 6 9 10 14 3420 19 441 
1-S 7 8 11 1S 3420 17 4SS 
1-5 7 8 11 12 3420 18 447 
1-S 7 8 11 1 8  3420 18 448 

Orbi 

1 
2 
3- 
3+ 
5 
7 
1s 
17- 
17 + 
20+ 
2l- 
22- 
2s- 
2s+ 
2 8- 
28+ 
30- 
a t +  

- 

.- 

18018 
17913 
18018 
17913 
17983 
17948 
17948 

17948 
17983 
18018 
17983 
17983 

I8018 
17948 
18018 
17983 

1ms3 

imr8 

12600 4410 SS8 36 1' 
12831 4221 633 24 1 
12684 4326 S94 30 1 
1 2 7 8  4263 61s 27 1 
12761 42.63 619 26 1 
12712 (326 590 31 1 
127S4 4284 608 28 1 

12768 4270 614 27 1 
12747 4277 613 27 1 
12712 4298 606 28 1 
12706 4319 S9S 30 1 
12747 4277 613 27 1 

12726 4204 612 27 1 
12768 4270 614 27 1 
12712 4298 606 28 1 
12747 4277 613 27 1 

12677 4319 199 29 1 

12712 4298 606 2 1  i 

I 

Orbit 
hpreaontat ire  

1-s 6 10 13 16 
1-S 6 12 14 20 
1-S 6 7 9 16 
1-S 6 7 11 18 
1-S 6 7 8 12 
1-S 6 7 9 11 
1-S 7 8 12 18 
1-S 6 7 9 10 
1-S 6 7 11 17 
1-5 6 7 I1 20 
1-S 6 7 9 20 
1-S 6 7 10 13 
1-S 6 7 13 20 
1-5 6 7 14 20 
1-S 6 9 10 14 
1-S 6 10 14 17 
1-S 7 8 9 10 
I-I 7 8 11 11 

Orbit 
Length xC 

380 l a  
1140 13 
1140 1 9  
1140 16 
3420 20 
3420 IS 
3420 20 
3420 17 
3420 17 
3420 IS 
S420 16 
3420 16 
3420 16 
3420 19 
3420 16 
3420 14 
3420 I8 
3420 I8 

- 
I3 - 

1197( 
1190'1 
118116 
11949 
11863 

l l 9 2 E  
11837 
11914 
11879 
118S8 
11921 
11879 
ll8S8 
11844 
11914 
118S8 
11879 

11970 

- 

=1 

49s 
483 
441 
462 
436 
465 
434 
41s 
4SS 
467 
461 
460 
460 
441 
461 
b73 
b47 
HI 

I3 - 
11970 
120S4 
11844 
11949 
118Sl  
11900 
11809 
11914 
11914 
11942 
11928 
11907 
11907 
11W 
11928 
119S6 
118s8 
11879 - 

=2 

3S82 
3s82 
3708 
364s 
3711 
36S2 
3729 
3666 
3666 
3638 
36S2 
3659 
36S9 
3708 
3652 
3624 
3694 
3687 

273 

I4  

17m8 
18018 

18018 
17913 
17983 
18018 

17948 
17948 
17948 
17948 
17983 
17983 

17948 
17948 
18018 
t 7 9 u  

i m s 3  

m i 8  

1 s  

1 2 8 ~ 2  
12600 

12726 
12789 
12771 
12670 

12768 
12768 
12740 
12714 
12719 
12719 

127s4 
12726 
12712 
It747 

1270s 

12726 

I 6  

4410 
4242 
4284 
4263 
4249 
4340 
4291 
4270 
4270 
4298 
4248 
430s 
4305 

4284 
4312 
4298 
I277 

u r n  

'7 ' 8  I f  

5S8 36 1 
618 27 1 
612 27 I 
61s 27 1 
62s 25 1 
S88 31 1 
611 27 1 
614 27 1 
614 27 1 
602 29 1 
608 28 1 
601 29 1 
601 29 1 

608 28 1 
I96 30 1 
606 21 1 
613 27 1 

612 27 1 
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1. Introduction 
A balanced incomplete block deeign (BIBD) is a pair (V,B) where V is a u- 

set and B is a collection of b k-subsets of V called blocks such that each element 
of V is contained in exactly r blocks and any 2-subset of V is contained in 
exactly X blocks. The numbers u,b,r,k,X are parametere of the BIBD. Trivial 
necessary conditions for the existence of a BIBD(u,b,r,k,X) are 
(1) ur = bk, 

( 2 )  r ( k - 1 )  = A(u-1) 

Parameter sets that satisfy (1) nnd (2) are admieeibfe. 

A BIBD (V,B) is resolvable if there exists a partition R of its set of blocks 
B into subsets called parallel claeeee each of which in turn partitions the set V; 
R is called a reeolution. An additional trivial necessary condition for the 
existence of a resolvable BIBD is 

(3) k l u .  
Two BIBDs (Vl,Bl), (V2,B2) are isomorphic if there exists a bijection 

a:V, - V, such that B,a = B2. Isomorphism of resolutions of BIBDs is dcfined 
similarly. 

Given a symmetric BIBD (one with u = b ,  r = k ) ,  one obtains from it the 
reeidual design by deleting all elements of one block, and the derived design by 
deleting all elements of the complement of one block. The parameters of the 
former are ( u - k , u - l , k ,  k-X,X) while those of the latter are ( k l u - l , k - l ,  A, 
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A-1) .  A BIBD is nontrivial if 3 5 k < u; such designs satisfy Fisher’s 
inequality 6 u. Given a BIBD(u,b,r,k,X), any BIBD(u,mb,mr,k,mX) is termed 
its m-multiple. (Repeated blocks are permitted.) 

We present here a listing of admissible parameter scts of nontrivial BIBDs 
with r 5 41 and k 5 u/2. The most extensive previous list appears to be that 
of DiPaola, Wallis and Wallis [D] although another extensive listing of designs 
classified according to u and k was compiled by Collens (for a brief history of 
tables and listings of BIBDs, see PI). However, our present listing differs from 
that of [D] not only that it extends it up to r 5 41, which more than doubles its 
size, but also in that it includes information concerning enumeration of BIBDs, 
and existence and enumeration of resolvable BIBDs. Our sources were, of 
course, mainly the existing lists. Sevcral recent journal articles and reports 
provided additional source of informstion. We adopted the principle of giving 
only a “minimal setu of references which results, in particular, in an omission of 
several earlier listings from references. From our point of view, the listings of 
Hall, Takeuchi, DiPaola-Wallis- Wallis and Kageyama (for resolvable designs) as 
well as papers by Hanani and Wilson are basic, and are referred to  by letters 
while the remaining references are referred to by wimbers. Unlike most of the 
earlier lists, we include also multiples of known designs; although their existence 
is trivially implied, information concerning their number and resolvability 
usually is not. 

2. Dercription of the Tables 

The admissible parameter sets of nontrivial BIBDs sat,isfjhg r S 41, 
3 5 k S u/2 and conditions (l), (2) are ordered lexicographically by r, k and X 
(in this order). Thus the numbering in our list bears no relation to  numbering in 
any of the earlier listings. 

The column Nd contains the number Nd(u,b,r,k,h) of pnirwise 
nonisomorphic BIBD(u,b,r,k,X)’s or the best known lower bound for this 
number. The column Nr contains a dash - if condition (3) is not satisfied. 
Otherwise it contains the number Nr of pairwise nonisomorphic resolutions of 
BIBD(u,b,r,k,A)’s or the best known lower bound for this number. Note that 
Nr is not necessarily the number of nonisomorphic resolvable BIBDs as two 
nonisomorphic resolutions can have isomorphic underlying (resolvable) design. 
To illustrate the difference, there are 7 nonisomorphic resolutions of 
BIBD( 15,35,7,3,1)’s but only 4 nonisomorphic resolvable BIBD( 15,35,7,3,1)’s (see 
No.14). 

The symbol ? indicates that the existence of the corresponding BIBD 
(resolvable BIBD, respectively) is in doubt. 
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The meaning of symbols that occur in the column "Comments" is as 

m#x : m-multiple of an existing BIBD N0.x; 
m#x* : m-multiple of N0.x which does not exist or whose existence is 

R+x (D+x) : residual (derived) design of N0.x which exists; 
R#x* (D#x*) : residual (derived) design of N0.x which does not exist or 

PG (AG) : projective (affme) geometry; 
NE1 : BIBD does not exist by Bruck-Ryser theorem; 
NE2 : BIBD is a residual of a BIBD that does not exist by Bruck-Ryser 

NE3 : resolvable BIBD does not exist by Bose's condition. 
HD : resolvable BIBD(It,8t-2,4t-l,21,2t-l) exists as there exists a 

symmetric (Hadamard) BIBD(4I - 1,4t - 1,2t - 1,2t - 1,t - 1). 

In the column "References", there are no references given for designs that 
are multiples of known BIBDs. We use often the trivial formula giving 
Nd(u,mb,mr,&,mX) Z n+L provided Nd(u,b,r,&,X) 2 n ,m Z 2,n Z 1 (and 
similarly for Nr). 

follows: 

undecided; 

whose existence is undecided; 

theorem, and X = 1 or 2; 
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- 
No 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33. 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

- 

- 

R. Mutitori urtd A. Rosu 

Table. ( I, b, r, k ,  X) derignr with rS41 

v b r k X  Nd Nr Comments References 

7 7  
9 12 

13 13 
6 10 

16 20 
21 21 
11 11 
13 20 
7 14 

10 15 
25 30 
31 31 
16 16 
15 35 
8 14 

15 21 
30 42 
43 43 
22 22 
15 15 
9 24 

25 50 
13 26 
9 18 

21 28 
49 56 
57 57 
2 9 2 9  
19 57 
10 30 
7 21 

2 8 6 3  
10 18 
46 69 
16 24 
28 36 
64 72 
73 73 
37 37 
25 25 
19 19 
21 70 
6 2 0  

16 40 
41 82 

3 3  
4 3  
4 4  
5 3  
5 4  
5 5  
6 5  
6 3  
6 3  
6 4  
6 5  
6 6  
6 6  
7 3  
7 4  
7 5  
7 6  
7 7  
7 7  
7 7  

8 4  

8 4  

8 7  
8 8  
8 8  
9 3  
9 3  
9 3  
9 4  
9 5  
9 6  
9 0  
9 7  
9 8  
9 9  
9 9  
9 9  
9 9  

10 3 
10 3 
10 4 
10 5 

a 3  

a 4  

a 6  

1 1 
1 1 
1 1 
2 1 
1 1 
1 1 
2 1 
1 2 
2 4 
2 3 
1 1 
1 I 
2 3 
1 80 
3 4 
2 0 
1 0 
1 0 
2 0 
3 5 
2 36 
1 2 6  
2 a 130 - 
3 
2 

11 
0 

1 1 
1 1 
2 0 
1 22395687 
2 860 
3 10 
1 a 138 
4 21 
1 I 
3 a26 
2 7 
1 i 
1 1 
2 4 
3 78 
4 6 
1 r2x108  
4 4 
2 a 10 
1 2 1  

1 

0 
1 

1 

7 
1 
0 
0 

9 

1 

a 7  
0 

0 
1 

2 78 
1 

a 10 

PG 
R#3,AG 
PG 
R#7,NF3 
R#0,AG 
PG 

2#1,D#20 
R#13 
R#12,AG 
PG 

PG 
R+20,AG 
R#19*,NE2 
R+18*,NE2,AG 
NE1,PG 
NE1 
PG 
2#2,D#IO 

2+3 
d+41 
R+28*,NE2 
R#27,AG 
PG 
NEl 

D#54 
3+1 

R#4l,NE3 

R#40 
R+39,NE3 
R138,AG 
PG 

2+4 
2#5 



25 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
09 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
88 
87 
88 
89 
90 
91 
92 
93 
94 
95 
- 
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V b r L A  Nd Nr Commenb H ererencea 

21 42 
11 22 
51 85 
21 30 
36 45 
81 90 
91 91 
46 46 
31 31 
12 44 
12 33 
45 99 
12 22 
45 55 

100 110 
111 111 
5 6 5 8  
23 23 
25 100 
13 52 
9 36 
7 28 

37 111 
19 57 
13 39 
10 30 
25 60 
61 122 
31 62 
21 42 
I6 32 
13 28 
22 33 
33 44 
55 66 

121 132 
133 133 
67 67 
45 45 
34 34 
27 117 
40 130 
66 143 
14 26 
27 39 
40 52 
66 78 

144 156 
157 157 
79 79 

I0 
10 
10 
10 
10 
10 
10 
10 
10 
11 
11 
11 
11 
11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
13 
13 
13 
13 
13 

5 2  
5 4  
6 1  
7 3  
8 2  
9 1  

10 1 
10 2 
10 3 
3 2  
4 3  
5 1  
6 5  
9 2  

10 1 
11 1 
11 2 
11 5 
3 1  
3 2  
3 3  
3 4  
4 1  
4 2  
4 3  
4 4  
5 2  
6 1  
6 2  
6 3  
6 4  
6 5  
8 4  
9 3  

10 2 
11 1 
12 1 
12 2 
12 3 
12 4 
3 1  
4 1  
6 1  
7 6  
9 4  

10 3 
11 2 
12 1 
13 1 
13 2 

z 10 ": 
2 1  

0 
2 7  
a4 

0 
a1 

2574 
a 3 2  
a I6 
601 
all 

? 
? 

a 4  
1102 
z 

a92714 
r330 

35 
a 3  
2 1  

a 198 
a 15 

13 
? 

a 16 
2 1  

a l l 1  
a 1  

? 
a 1  

0 
a1 
a 1  

0 
a 1  

0 
z 10" 

108 
a1 
z 12 
a 9  

? 
a 2  

? 
? 

a 2  

- 2#6 - 2#7,D#63 

R#54,NE3 - R#53*,NE2 

- PC - NEl 

2 1  D#84 
hl  D#85* 

2 7  R#52,AG 

? 
1 R#63,HD 
0 R#02,NE3 
? R#61*,AG - PG 

- 2#8,DM6 

- 4#1 
a 1 0  3#2 

- 3#3,D#97 - 2#10 
2 1 3  2#11 

- 2#12 

- 2#13 - D#98 - R#85* - R#84 - R#83*,NE2 

- PC - NEl 

- NEI 

? 
0 R#98,NE3 

0 R#W*,NE3 
0 R#95,NE3 
? R#94*,AG - PG 

a 1  R#82,AC 

2861 AG 
a1 PG 

2 9  R#97,AG 

- 

279 
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E 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
108 
107 
108 
108 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
- 

R. Mrrtlrori and A .  Roso 

v b r k X  Nd Nr Comments References 

53 53 
40 40 
27 27 
15 70 
22 77 
8 28 

15 42 
38 84 
15 35 
85 170 
43 86 
2 9 5 8  
22 44 
15 30 
78 91 

169 182 
183 183 
92 92 
31 155 
16 80 
11 55 
7 35 
6 3 0  

16 80 
61 183 
31 93 
21 63 
16 48 
13 39 
11 33 
76 190 
26 65 
16 40 
91 195 
16 30 
21 35 

138 204 
46 69 
28 42 
56 70 
91 105 

196 210 
211 211 
106 106 
71 71 
43 43 
36 36 
31 31 
33 176 
9 48 

13 13 3 
13 13 4 
13 13 6 
14 3 2 
14 4 2 
14 4 6 
14 5 4 
14 6 2 
14 6 5 
14 7 1 
14 7 2 
14 7 3 
14 7 4 
14 7 6 
14 12 2 
14 13 1 
14 14 1 
14 14 2 
15 3 1 
15 3 2 
15 3 3 
15 3 5 
15 3 6 
15 4 3 
15 5 1 
15 5 2 
15 5 3 
15 5 4 
15 5 5 
15 5 6 
15 6 1 
15 6 3 
15 6 5 
15 7 1 
15 8 7 
15 9 6 
15 10 1 
15 10 3 
15 10 5 
15 12 3 
15 13 2 
15 14 1 
15 15 1 
15 15 2 
15 15 3 
15 15 5 
15 15 6 
15 15 7 
16 3 1 
16 3 4 

0 
a 24 
a 7  

a685521 
2 1  

2224 
a 1  
a 1  
a 1  

? 
2 1  
a 1  
2 1  
a 6  

0 
2 1  
2 1  

0 

a4777438 
a29845 

108 
6 

2 6 X  10' 
a 10 

a2x10'6 

a =\ 10 
all 
a 3 0  

a127 
2 1  
2 1  
a1 
2 2  

2 5 1  
10' 

? 
? 
? 

2 4  
0 
0 
0 
0 

2 8  
0 

2 16448 
a 1286891 

2330 
a 10's 

a 2 1  

4 
? 

2 1  

2 1  

0 
2 6 X  10' 

? 
a 5  

0 
0 

2 1  
Z9 

NEl 
PG 

2#14,D#l40 

2#15 
2#16*,D 141* 
2#17* 
D#142 

2#18+ 

2#19* 
2#20,D#l43 
R#113*,NE2 
AG 
PG 
NEl 

D#169 

5#1 
3#4 
3#5,D#170 

3#6 
D#171 

3#7 

D#172 

R# 143,AC ,€ID 
R#142 

R#141* 
R#140 
R#139*.NE2 

NEl 

PG 

4#2 



x 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
I86 
I87 
I88 
189 
190 
191 
192 
193 
194 
195 
- 
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V b r L A  Nd Nr Commenb Refenncca 

49 196 
25 100 
17 68 
13 52 
9 3 6  

65 208 
81 216 
21 56 
49 112 

113 226 
57 114 
2 9 5 8  
17 34 

145 232 
25 40 
23 48 

177 236 
45 60 
65 80 

105 120 
225 240 
241 241 
121 121 
81 81 
61 61 
49 49 
41 41 
18 102 
52 221 
35 119 
18 51 
35 85 

120 255 
18 34 
52 68 

120 136 
256 272 
273 273 
137 137 
69 69 
35 35 
37 222 
19 114 
13 78 
10 60 
7 42 

28 126 
10 45 
25 90 
10 36 

16 
I6 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
18 
18 
18 
18 
18 
18 

18 
18 

ia 

4 1  
4 2  
4 3  
4 4  
4 6  
5 1  
6 1  
6 4  
7 2  
8 1  
8 2  
8 4  
8 7  

10 1 
10 6 
11 5 
12 1 
12 4 
13 3 
14 2 
15 1 
16 1 
16 2 
16 3 
16 4 
16 5 
16 6 
3 2  
4 1  
5 2  
6 5  
7 3  
8 1  
9 8  

13 4 
15 2 
16 1 
17 1 
17 2 
17 4 
17 8 
3 1  
3 2  
3 3  
3 4  
3 6  
4 2  
4 6  
5 3  
5 8  

a224 
a 5  
2 1  

h 198 
a 1 2  
a 2  

? 
hl 
a 1  

? 
2 1  
h 1  
a 1  

? 
L1 

L 19 
? 

a 1  
? 
? 
? 
? 
? 
? 

2 1  
a4 
a 1  

Z4XlO" 
r206 

a1 
a 3  
2 1  

a1 'oa 
hl 

0 
a 189 
a 1 3  

0 
a1 

L 1853 
L 1010 

r 2 x  100 
h 3 X  10' 

a961 
417 

b 139 
riiais 
L 10" 
a 22 

- - 2+22 - D#US - 4+3 - 2#24 
2 1  

- 2#25* 
2 1  2+2% 

- 2+27 - 2+28* - D#lM 

- R#172 
0 R#171,NE3 - - R1170 
0 R#169*,NE3 - R i l 6 8 '  
? R#167*,AG - PG 

a 1  D#217* 
a 1  

? 
a 2  D#218* 

? 
Ll  

0 R+186,NE3 
0 R#l85,NE3 
0 R#184*.NE2 

h189 R#183,AG - PG - NEl 

- 2+29,D+231* - 3#8 - 2+30 - 6#1 

- 3#10 

a1 2+33 
a1017 3+ii  

28 1 
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3 E  
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
228 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
- 

R. Marlion arid A. Rosa 

V b r k X  Nd Nr Comments Rerereices 

91 273 18 
46 138 18 
31 93 18 
19 57 18 
16 48 18 
28 72 18 
64 144 18 

145 290 18 
73 140 18 
49 98 18 
37 74 18 
25 50 18 
19 38 18 
55 99 18 

loo 150 18 
34 51 18 
85 102 18 

136 153 18 
289 306 18 
307 307 18 
154 154 18 
103 103 18 
52 52 18 
39 247 19 
20 9s  19 _-  
20 $6 ii  
96 304 19 

153 323 19 
20 38 19 
39 57 19 
88 114 19 

153 i7i i6 
324 342 19 
343 343 19 
172 172 19 
115 115 19 
58 68 19 
39 39 19 
21 140 20 
9 6 0 2 0  
6 40  20 

61 305 20 
31 155 20 
21 105 20 
16 80 20 
13 65 20 
11 55 20 
81 324 20 
41 164 20 
21 84 20 

6 
6 
0 
6 
6 
7 
8 
9 
9 
9 
9 
9 
9 

10 
12 
12 
1s 
16 
17 
18 
18 
18 
18 
3 
4 
5 
6 
9 

10 
13 
16 
17 
18 
19 
19 
19 
19 
19 
3 
3 
3 
4 
4 
4 
4 
4 
4 
5 
5 
5 

1 
2 
3 
5 
6 
4 
2 
1 
2 
3 
4 
6 
8 
3 
2 
6 
3 
2 
1 
1 
2 
3 
6 
1 
3 
4 
1 
1 
9 
6 
3 
2 
1 
1 
2 
3 
6 
9 
2 
5 
8 
1 
2 
3 
4 
5 
6 
1 
2 
4 

a 4  

Z 10 3 
Z l  
a392 

hl 

a 1  
t 

a852 
a79 
Z7 

t 
t 
? 
1 
1 

2 1  
a1 

? 

0 

a1 
a 1  
8 1  

? 
232 

t 
t 
0 
t 
t 
0 
? 
0 

a38 
2 5 %  10" 
a330 

13 
a18132 

hl  

0 

a 1 0 4 4  

Z 6 X  at 10 

Z " t  10 

8396 
a1 
hl 

an 17,MI - 2#34* - 3#12 - D#232' - 3#13,2#36 
I 2#36 

h 1  2#37 

c' 
- 2#38 

lW - 2#39 - 2#40 - 2#41,D#233 

- R#218* - R#217* - R#216* 

- PO 

- m 1  - NEl 

Zl  D#270 
hl D#nl* 

w hl R#2lS,AG 

288 

t 
t 
3 R#233,HD 
0 R#232*,NE3 
0 R#231*,NJB 11 
0 R#230*,NE2 
t R#221)*,AG - PG - NE1 M 

L 79 
2 9  

1 

Z 6 X  16 

NEl 

2#42,D#307 
5#2 
464 

D#308* 
4#5 
6#3 

2#45 
4#6,D#309 
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E 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
286 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288  
289 
290 
29 1 
292 
293 
294 
295 
- 

V b r k X  Nd Nr Gomments Kclerences 

17 6 8 2 0  5 
11 44 20 5 
51 170 20 6 
21 70 20 6 
21 6 0 2 0  7 
36 9 0 2 0  8 
81 180 20 9 

181 362 20 10 ~ - _  
91 182 ZO io 
61 122 20 10 
46 92 20 10 
37 74 20 10 
31 62 20 10 
21 42 20 10 

111 185 20 12 
45 75 20 12 

141 188 20 15 
57 76 20 15 
36 48 20 IS 
76 95 20 16 

171 190 20 18 
361 380 20 19 
381 381 20 20 
191 191 20 20 
96 9 8 2 0 2 0  
77 77 20 20 
43 301 21 3 
22 154 21 3 
15 105 21 3 
8 5 6 2 1  3 
7 49 21 3 

64 336 21 4 
8 42 21 4 

85 357 21 5 
15 63 21 5 

106 371 21 6 
36 126 21 6 
22 77 21 6 
15 56 21 6 

I27 381 21 7 
64 192 21 7 
43 129 21 7 
22 66 21 7 
19 57 21 7 
15 45 21 7 
57 133 21 9 

190 399 21 10 
22 42 21 11 

232 408 21 12 
274 411 21 14 

5 
8 
2 
5 
6 
4 
2 
1 
2 
3 
4 
5 
6 
9 
2 
5 
2 
5 
8 
4 
2 
1 
1 
2 
4 
5 
1 
2 
3 
6 
7 
1 
9 
1 
6 
1 
3 
5 
7 
1 
2 
3 
6 
7 
9 
3 
1 

10 
1 
1 

h 1  
23337 

hl 
a 1  
hl  

? 
a 8  

? 
2 5  

? 

i 
Z l  
hl 
2 2  

? 
? 
? 
? 

2 1  
L 1  

? 
Zl  
h 1  

? 
a 1  

0 
h 5 X  loM 
h 3 X  10' 

h 101 
a 9  

E 12048 
2943  
h 10 
h1 
2 1  
hl 
h 1  
hl 

? 
? 

a1 
hl 
2 1  

h 108 
? 
? 

h 2  
? 
? 

1018 

? 

h 8  

h 1  

- 
a 10" 

2 1  
10 

L l  
? 

? 

? 
0 

4#7 
2#48* 
D#310 
2#49 D#311* 

2#51 

2#52 

2153. 

2#54 
D#312 

2#50C 

R#27l 

R#27O 
R#289* 
R#268AG 
PG 

NEl 

D#336* 
3#14 

7 1 1  

3#15 
PG 
3#16* 

3#17* 
D#337 

3#18* 
3# lQ*,D#338* 

3#20 

R#312,NE3 
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298 
297 
298 
299 
300 
301 
302 
303 
304 
305 
308 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
328 
327 
328 
329 
330 
331 
332 
333 
334 
335 
338 
337 
338 
339 
340 
34 1 
342 
343 
344 
345 

V b r k X  NiI Nr Comments Rererencea 

92 138 21 14 3 
40 80 21 14 7 

295 413 21 15 1 
50 70 21 15 6 
84 84 21 16 5 
85 105 21 17 4 

120 140 21 18 3 
180 210 21 19 2 
400 420 21 20 1 
421 421 21 21 1 
211 211 21 21 2 
141 141 21 21 3 
lo6 108 21 21 4 
85 85 21 21 5 
71 71 21 21 6 
61 61 21 21 7 
43 43 21 21 10 
45 330 22 3 1 
12 88 22 3 4 
34 187 22 4 2 
12 66 22 4 6 
45 198 22 5 2 

111 407 ' 22 6 1 
12 44 22 8 10 

133 418 22 7 1 
45 110 22 9 4 

100 220 22 10 2 
221 442 22 11 1 
111 222 22 11 2 
56 112 22 11 4 
45 80 22 11 5 
23 48 22 11 10 

287 451 22 14 1 
45 M 22 15 7 
56 77 22 18 6 

133 154 22 19 3 
210 231 22 20 2 
441 482 22 21 1 
483 463 22 22 1 
232 232 22 22 2 
155 155 22 22 3 
78 78 22 22 6 
67 67 22 22 7 
24 184 23 3 2 
24 138 23 4 3 
24 92 23 6 5 
70 230 23 7 2 
24 69 23 8 7 
70 161 23 10 3 

231 483 23 11 1 

t 

5 1  
5 157 

? 
t 
? 
? 
? 
7 
0 
0 

2213964 
2 2  

0 
5 2  

5 6 X  lo7* 
2575 

5 1  
5 3 3  
2 17 

5 1  
a802 

t 
2 1353 

t 
? 
t 

r2896 
280 

2: 1103 
t 
t 

2 1  
? 
0 
0 
0 
0 
? 

a1 
0 

2 3 X  10' 
2 1  
a 1  

7 
a 1  

r 

i 

2 157 
0 

0 
? 

a 8 4  
a1 

Z l  
t 

2 4 0 0  
I 
? 
7 

0 

0 

0 

5 1  
= 1  

? 
? 
? 
? 
? 

NE1 
NEl 
PG 

NE1 

2#55 

2#58 
2#57 

2158 

2#59 
2#80* 

2#81* 
2#82 

2#63,D#351 

R#338* 
R#337 

NE1 
D#404* 
D#405* 
D#408* 

D#407 



346 
347 
348 
349 
350 
35 1 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
37 1 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
- 
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V b r k X  Nd Nr Comment8 Rererences 

24 
231 
484 
507 
254 
47 
49 
25 
17 
13 
9 
7 

73 
37 
25 
19 
13 
10 
9 

25 
121 
61 
41 
31 
25 
21 
16 
13 
49 

169 
85 
57 
43 
29 
25 
22 
33 
55 
25 

121 
265 
133 
89 
67 
45 
34 
25 

105 
85 
46 

46 23 
253 23 
50623 
507 23 
254 23 
47 23 

392 24 
200 24 
136 24 
104 24 
72 24 
56 24 

438 24 
222 24 
150 24 
114 24 
78 24 
60 24 
54 24 

120 24 
484 24 
244 24 
164 24 
124 24 
100 24 
84 24 
64 24 
52 24 

168 24 
507 24 
255 24 
171 24 
129 24 
87 24 
75 24 
66 24 
88 24 

132 24 
60 24 

264 24 
530 24 
266 24 
178 24 
134 24 
90 24 
68 24 
50 24 

180 24 
136 24 
69 24 

12 
21 
22 
23 
23 
23 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
5 
6 
6 
6 
6 
6 
6 
6 
6 
7 
8 
8 
8 
8 
8 
8 
8 
9 

10 
10 
11 
12 
12 
12 
12 
12 
12 
12 
14 
15 
16 

11 
2 
1 
1 
2 

11 
1 
2 
3 
4 
6 
8 
1 
2 
3 
4 
6 
8 
9 
4 
1 
2 
3 
4 
5 
6 
8 

10 
3 
1 
2 
3 
4 
6 
7 
8 
6 
4 
9 
2 
1 
2 
3 
4 
6 
8 

11 
3 
4 
8 

a 129 
0 
0 
0 
0 

2 1  
Z 6 X  10’‘ = 1014 

a4968 
a 10’ 
a 107 
2 3 5  
a lo7 

“4 
a 1021 

2 1  
2: 108 

a14819 
2: 10’ 

“1 
2 1  
“1 

2: lo= 
a 1  

“1 
a 1OH 

? 
? 

a lo= 
2 1  
2 1  
2 1  
2 1  
a 1  

? 
2 3  
a1 

? 
a1 

? 
? 

2 1  
? 

2: 10 
? 
? 

2:l 

a 1017 

a “ t  10 

R1351,HD 
R#350*,NE2 
R#34QL,NE2,AG 
NE1,PG 
NEl 

2#64,D#438* 

4#8 
6#2 
8# 1 

2#68 
3#22,D#439* 
2#69 
6#3 
4#10 
3#24 
4#11,D#440 

2#73* 

4#12 
D#441 
3#25*,2#75 
4#13 
2#77 
3#26 

3#27 

3#28* 
D#442* 
2#78* 
2#79 
2#80* 
D#443 
2#81 

2#82 

2#83* 
2#84 
2#85* 
D#444 

R#407 
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E 
398 
397 
398 
390 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 

R. Mathon arid A. Rosa 

Y b r k X  Nd Nr Comments References 

69 92 
115 138 
161 184 
49 MI 

253 276 
529 552 
553 553 

185 185 
139 139 
93 93 
70 70 
51 425 
6 5 0  

76 475 
16 100 

101 505 
51 255 
26 130 
21 105 
11 55 

126 525 
176 550 
226 585 
76 190 
46 115 
26 65 

276 575 
2 6 5 0  

351 585 
51 85 
36 60 
51 75 
76 100 

476 595 
98 120 

126 150 
176 200 
276 300 
576 800 
601 601 
301 301 
201 201 
151 151 
121 121 
101 101 
76 76 
61 61 
51 51 
27 234 

277 n 7  

24 18 6 
24 20 4 
24 21 3 
24 21 10 
24 22 2 
24 23 1 
24 24 1 
24 24 2 
24 24 3 
24 24 4 
24 24 6 
24 24 8 
25 3 1 
25 3 10 
25 4 1 
25 4 5 
25 5 1 
25 5 2 
25 5 4 
25 5 5 
25 5 10 
25 6 1 
25 8 1 
25 10 1 
25 10 3 
25 10 5 
25 10 9 
15 ii i 
25 13 12 
25 15 1 
25 15 7 
25 15 10 
25 17 8 
25 19 6 
25 20 1 
25 20 5 
25 21 4 
25 22 3 
25 23 2 
25 24 1 
25 25 1 
25 25 2 
25 25 3 
25 25 4 
25 25 5 
25 25 6 
25 25 8 
25 25 10 
25 25 12 
26 3 2 

? 

i 
? 

Z l  
0 
a1 
a 1  

0 
0 
T 

Z 6 X  10 '.i 
I9 

a 10 
Z l  
a 1  

a3337 
a 2  

? 
? 
T 
1 

'1 
? 

a1 
? 
? 

Z l  
? 

2 1  
? 

a1 

a ' b  10 

; 

5 
? 

i 

T 
0 

a 1  
2 1  

0 
Z l  
Z l  

a 10" 

- R#406* - R#405* - R#404* 

- NE1 

0 5#4 
a9419 

3 5#5 

- D#471* - Q#6 - 5#7 
Z l  

? 

- D#472 
? 
0 R#444,NE3 

- R#443 
0 R#442*,NE3 
0 R#441,NE3 

- R#44O 
0 R#439*,NE3 
0 R#438*.NE3 
0 R#437*:NE3 

- NE1 

- NEl 

BsSi 2#88,D#511* 
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3 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
480 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
47 1 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
185 
4 8 8  
487 
4 8 8  
489 

491 
492 
4 9 3  
I94 
I95 

490 

- 

V Nd b r k X  Nr Cornmento Keferencec 

40 260 26 
14 91 26 

105 546 26 
6 6 2 8 6 2 8  
27 117 26 
14 52 26 
92 299 26 
27 78 26 

235 611 26 
40 104 26 
66 156 26 

144 312 26 
313 626 26 
157 314 26 
105 210 26 
79 158 26 
63 108 26 
40 80 28 
37 54 26 
40 65 26 

105 130 26 
300 325 26 
625 650 26 
651 651 26 
326 326 26 
131 131 26 
66 6 8 2 6  
55 495 27 
28 252 27 
19 171 27 

7 6 3 2 7  
28 189 27 
55 297 27 
10 54 27 

136 612 27 
46 207 27 
28 126 27 
16 72 27 
28 108 27 
64 216 27 

217 651 27 
109 327 27 
73 219 27 
55 165 27 
37 111 27 
28 84 27 
25 75 27 
19 57 27 
55 135 27 

10 m n 

4 
4 
5 
6 
6 
7 
8 
9 

10 
10 
11 
12 
13 
13 
13 
13 
13 
13 
13 
16 
21 
24 
25 
26 
26 
26 
26 
3 
3 
3 
3 
3 
4 
5 
5 
6 
6 
6 
6 
7 
8 
9 
9 
9 
9 
9 
9 
9 
9 

11 

2 2 100 
6 Z l  
1 Pl  
2 Pl 
5 Pl 

12 2 13 
2 ? 
8 a1 
1 ? 
6 ? 
4 a494 
2 ? 
1 ? 
2 ? 
3 ? 
4 2940 
6 a 1  
8 2 25 

12 P 8  
10 2 1  
5 ? 
2 0 
1 233 
1 2 17 
2 0 
5 ? 

10 P 1  
1 P6XlO" 
2 hl0M 
3 2 1 0 ~ ~  
6 z 1 n1* 
9 G o  
3 Plow 
2 Z l  

12 2 10' 
1 P l  
3 2 1  
5 a1 
9 227 
6 25047 
3 z10" 
1 ? 
2 
3 a10  
4 
6 Z l d  
8 =2 
9 Plop 

12 a1010 
5 ? 

hl 2#87 

? 
? 2#88 - D#512* 

2 1  2#89 

8 1  2 + m , ~ + s i 3  

? 2#91* 
? 2#92 
? 2#93* 

- 2194' 

- 2#95 - 2 m *  - 2#97 - 2#98,D#514 - R#472 
0 R#471*,NE3 - R#470*,NE2 

- PG - NEl 

a33 R#469,AG 

- D#564* - 3#29 - 3#30 - 9#1 

? 
0 3#33 

* 3#34* 
* D#566* - 3#35 
? 3#3f),D#567 

ZlO= 3#32,D#565* 

z1on 3#37 

* 3+38 

- 3#39 - D#568* - 3#40 - 3#41 
? 
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Ex 
498 
497 
498 
499 
500 
501 
502 
503 
504 
505 
Mw 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
532 
533 
534 
535 
536 
537 
538 
539 
540 
54 1 
542 
543 
544 
545 

R. Matkon arid A. Rosa 

V b r k X  Nd Nr Comments Referencea 

100 225 27 
28 6 3 2 7  

325 675 27 
28 54 27 

190 342 27 
55 99 27 

460 690 27 
154 231 27 
52 78 27 
91 117 27 
208 234 27 
325 351 27 
676 702 27 
703 703 27 
352 352 27 
235 235 27 
118 118 27 
79 79 27 
55 55 27 
57 532 2a 
15 140 28 
9 84 28 

85 595 28 
43 301 28 
2 9 2 0 3 2 8  
22 154 28 
15 105 28 
13 91 28 
8 5 6 2 8  

15 84 28 
141 658 28 
36 168 28 
21 98 28 
16 70 28 

169 676 28 
85 340 28 
57 228 28 
43 172 28 
29 116 28 
25 100 28 
22 88 28 
15 60 28 
50 175 28 

225 700 28 
85 238 28 
309 721 28 
78 182 28 
45 105 28 

169 364 28 
365 730 28 

12 
12 
13 
14 
15 
16 
18 
18 
18 
21 
24 
25 
26 
27 
27 
27 
27 
27 
27 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
5 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
8 
9 

10 
12 
12 
12 
13 
14 

3 
11 
1 

13 
2 
7 
1 
3 
9 
6 
3 
2 
1 
1 
2 
3 
6 
9 

13 
1 
4 
7 
1 
2 
3 
4 
6 
7 

12 
8 
1 
4 
7 

10 
1 
2 
3 
4 
6 
7 
8 

12 
4 
1 
3 
1 
4 
7 
2 
1 

t 
a 1  

t 
a 4  

t 
t 
t 
t 

a1 
t 
r 

r 
t 
0 
0 

2 1  

5 

a 10 ‘4 
a 1018 

a 1018 
a330 

‘1 
a 1  
a 1  
a ‘1 10 

a2224 
Ll  

t 
a1 
a1 
‘1 
‘1 

t 
a 1  
a 1  
a 1  
L 1  

1 
t 
t 
t 
t 
t 

a1 
t 

a ‘ t  10 

? 
a 4  

~ 

0 
r - 

, -  

L1 

LO 
2: 10“ 

31 
t 

Ll  

t 

L1 

D#569 

R#514,HD 

R#513 
R#512* 
R#511* 
R#SlO*.NE3 
R + ~ * A G  
PG ’ 

NEl 
NE1 

4#14 
7#2 

D#586* 
2#100 

7#3 
4#15 
4# 16. ,2# 102 

4#17*,2#103 

2#104 

2#105* 

4#18*,2#106 
2#107,D#587* 

4#19*,2#108 
4120 

2#110* 

2#111 
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Is 
546 
547 
548 
549 
550 
551 
552 
553 
554 
555 
556 
557 
558 
559 
560 
561 
562 
563 
564 
565 
506 
567 
568 
569 
570 
57 1 
572 
573 
574 
575 
576 
577 
578 
579 

i81 
582 
i83 
i84 
i85 
i86 
i87 
i88 
8 9  
is0 
i9 1 
i92 
i93 
194 
I95 
- 

V Nd b r k X  Nr Commenb Referescw 

183 366 28 14 
92 184 28 14 
53 106 28 14 
29 5 8 2 8 1 4  
36 6 3 2 8 1 6  

477 742 28 18 

561 748 28 21 
141 188 28 21 
81 108 28 21 
57 76 28 21 
99 126 28 22 

162 189 28 24 
225 252 28 25 
351 378 28 26 
729 756 28 27 
757 757 28 28 
379 3iQ 28 28 
253 253 28 28 
180 180 28 28 
127 127 28 28 

85 85 28 28 
64 64 28 28 
3 0 2 9 0 2 9  3 
88 638 29 4 
30 174 29 5 
30 145 29 6 

175 725 29 7 
117 377 29 9 
30 87 29 10 

117 261 29 13 
378 783 29 14 
30 58 29 15 
88 116 29 22 

175 203 29 25 
378 406 29 27 
784 812 29 28 
B13 813 29 29 
407 407 29 29 
204 204 29 29 
117 117 29 29 
59 59 29 29 
61 610 30 3 
31 310 30 3 
21 210 30 3 
16 180 30 3 
13 130 30 3 
11 110 30 3 
7 7 0 3 0  3 

57 a4 28 19 

109 IOB 28 m 

2 
4 
7 

13 
12 
1 
9 
1 
4 
7 

10 
6 
4 
3 
2 
1 
1 
2 
3 
4 
6 
7 
9 

12 
2 
1 
4 
5 
1 
2 
9 
3 
1 

14 
7 
4 
2 
1 
1 
2 
4 
7 

14 
1 
2 
3 
4 
5 
6 

10 

2 1  
? 

2 1  
a 1  
Z1 

? 

? 
2 1  

? 
? 
? 
? 
0 

2 7  
r 3  

0 
? 
0 
? 

rl 
? 

a 1  

a 2  
2 1  
2 1  r 

? 
? 
? 

2 1  
? 
? 
? 
? 
? 
? 
? 
0 

a 1  
a 2 x  10" 
a2x10" 
z lo2' 

a 10' 
L 10' 
a 108 

I 

r 2 x  10" 

r4XlO' 

0 

0 

r 7  

a1 
a1 

? 
? 
? 
? 
? 
? 
? 
0 
0 
0 
0 
? 

102' 

2#112 
2#113* 

D#588 
R#569 

R#568*,NE3 

R#567 

R#566* 
R#565* 
R#564*,NE3 
R#563*,NE2 
R#562,AG 
PG 
NEl 

NEl 

D#655* 

D#656 
D#657* 

D#658* 

NZl 

2#1 l4,D#677* 
3#42 
2#ii5 
6#8 
2#ll6 
10#1 
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E 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
806 
607 
608 
609 
610 
61 1 
612 
613 
614 
615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632. 
633 
634 
635 
636 
637 
638 
639 
640 
641 
642 
643 
644 
645 
- 

R. Mathoti and A. Rosa 

V b r k X  Nd Nr Comments Keferenccs 

6 
46 
16 
10 

121 
61 
41 
31 
25 
21 
16 
13 
11 

151 
76 
51 
31 
26 
16 
91 
21 
36 
16 
81 
21 

271 
136 
91 
55 
46 
31 
28 

166 
56 
34 
91 

196 
421 
211 
141 
108 
85 
71 
61 
43 
36 
31 

171 
286 
96 

8 0 3 0  
345 30 
120 30 
75 30 

726 30 
36630 
246 30 
186 30 
150 30 
126 30 
9 6 3 0  
78 30 
6 6 3 0  

755 30 
38030 
255 30 
155 30 
130 30 
80 30 

380 30 
9 0 3 0  

135 30 
6 0 3 0  

270 30 
70 30 

813 30 
408 30 
273 30 
165 30 
138 30 
93 30 
84 30 

415 30 
140 30 
85 30 

210 30 
420 30 
842 30 
422 30 
282 30 
212 30 
170 30 
142 30 
122 30 
80 30 
72 30 
62 30 

285 30 
429 30 
144 30 

3 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
7 
7 
8 
8 
9 
9 

10 
10 
10 
10 
10 
10 
10 
12 
12 
12 
13 
14 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
18 
20 
20 

12 
2 
6 

10 
1 
2 
3 
4 
6 
6 
8 

10 
12 
1 
2 
3 
5 
6 

10 
2 
9 
6 

14 
3 

12 
1 
2 
3 
5 
8 
9 

10 
2 
6 

10 
4 
2 
1 
2 
3 
4 
5 
6 
7 

10 
12 
14 
3 
2 
6 

34 
L 1  

a29638 
=1 

all 
Ll 

a 10'6 

a 10 '11 

a lo2' 

a 1 3  

a 1 2  
a 3 1  

Ll  
Z l  

a 10 Z2! 

a ' t  10 

4 
a 3  
a 1  

? 

a 10' 
2 10' 

? 
? 

a 10's 
Zl  

? 
5 1  
2 2  

? 
a 5  

? 
? 
? 
? 
? 
? 
? 
? 

9 9  
9 1  
El  

a 10' 
a l o e  

r 
? 
? 

6#4,3#43 

6#5 
5#10 

2#120 
3#45 
2#121,D#678* 
5#11 
6#6 
2+123 
2#124 
6#1 

2#126 
3#48* 
6#12,D#679 
2+127 
&#13 
2#129 
3#49 
3#50* 
2#130 
3#51 
2#131 

2#132* 
3#52 

2#133* ,3#53* 
3#54,D#680* 
2#134* 

2#135 

2#136* 
2#137* 

2#138* 

2#139* 

2#140 

2#141* 
21142 
2#143,D#681 
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No v b r k A  Nd Nr Comments References 
I 

646 
647 
648 
649 
650 
651 
652 
653 
654 
655 
650 
657 
658 
659 
660 
661 
662 
663 
664 
665 
666 
667 
668 
669 
670 
671 
672 
673 
674 
675 
676 
677 
678 
679 
680 
681 
682 
683 
684 
685 
686 
687 
688 
689 
690 
691 
692 
693 
694 
695 

58 87 30 
301 430 30 
116 145 30 
145 174 30 
261 2W 30 
406 435 30 
841 870 30 
871 871 30 
436 436 30 
291 291 30 
175 175 30 
146 146 30 
88 88 30 
63 651 31 
32 248 31 

125 775 31 
156 806 31 
63 279 31 
32 124 31 
63 217 31 

280 868 31 
435 899 31 
32 62 31 
63 93 31 

125 155 31 
156 186 31 
280 310 31 
433 165 31 
800 930 31 
931 931 31 
400 466 31 
311 311 31 
187 187 31 
156 156 31 
94 94 31 
63 63 31 
33 352 32 
9 90 32 

97 776 32 
49 392 32 
33 264 32 
25 200 32 
17 136 32 
13 104 32 
9 72 32 

65 416 32 
81 432 32 
33 176 32 
21 112 32 
49 224 32 

20 
21 
24 
25 
27 
28 
29 
30 
30 
30 
30 
30 
30 
3 
4 
5 
6 
7 
8 
9 

10 
15 
16 
21 
25 
26 
28 
29 
30 
31 
31 
31 
31 
31 
31 
31 
3 
3 
4 
4 
4 
4 
4 
4 
4 
5 
6 
6 
6 
7 

10 ? 
2 ? 
6 ? 
5 2 1  
3 ? 
2 0 
1 2 1  
1 2 1  
2 0 
3 r 
5 2 1  
6 0 

10 0 

3 2 1  
1 2 1  
1 2 1  
3 Z l  
7 2 1  
4 ? 
1 ? 

1 2 1 0 4  

1 i 
10 l5 '3 
6 r1012 
5 ? 
3 ? 
2 0 
1 0 
1 0 
2 0 
3 ? 
5 0 
6 BlO" 

10 0 

8 e107 
1 Z 2  
2 2225 
3 2 1  

6 Zl  
8 210' 

2 2 3  
2 2 1  
5 Z1 
8 2 1  

15 2 1 0 1 ~  
2 r10'8 

4 =lo= 

12 el$ 

4 21062 

2 1  

- '  

- 
z 10' 

Zl  
21 
Z l  

? 
2 1  

? 
? 
? 

220 
0 

a 10" 
0 
0 
0 
0 

zr 10 

2 1  

2 1062 

R$;L(158* 

RI6.57* --- --. 
R#656 
R#655* 
R#654*.NE2 
R#653&G 
PG 
NEl 

NEl 
NEl 
PG 
D#729* 
hG 
PG 

D#730* 

R#681 AG.HD 
R l t X O ~  

NE1,PG' 
NE1 

NE1 
PG 
NE1 
PG 
2#144,D#775* 
8#2 

2#146 
D#776* 
4#22 
2#148 
8#3 
4#24 
2#151 
2#152* 
D#777* 
4#25*,2#153 
4#26 

I 

29 1 
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698 
697 

699 
700 
701 
702 
703 
704 
705 
706 

708 
709 
710 

698 

707 

711 
712 
713 
714 
715 
716 
717 

719 
720 
721 

718 

No I v b r k X  Nd Nr Comments References 
I 

225 900 32 
113 452 32 

33 132 32 
29 116 32 
17 68 32 

145 464 32 
25 80 32 
33 L)6 32 

177 472 32 
45 120 32 

65 160 32 
105 240 32 
225 480 32 

57 228 32 

33 88 32 

481 w 2  32 
241 482 32 
161 322 32 
121 242 32 
97 104 32 
81 162 32 
61 122 32 

41 82 32 
33 66 32 

305 488 32 

49 9a 32 

725 
726 
727 
728 
729 
730 
731 
732 
733 
734 
735 

737 
738 
739 

736 

740 
741 
742 

i22 369 492 32 

724 217 248 32 
723 I 93 124 32 

465 496 32 
961 992 32 
993 993 32 
497 497 32 
249 249 32 
125 125 32 
67 737 33 
34 374 33 
23 253 33 
12 132 s 3 3  
7 77 33 

12 99 33 
45 297 33 

168 913 33 

100 a25 33 

MI ma 33 
34 187 33 
16 aa 33 
12 66 33 

a 
a 
a 
a 
a 
a 

10 
10 
11 
12 
12 
12 
13 
14 
15 
16 
16 
16 
16 
16 
16 
16 
16 
16 
16 
20 
24 
24 

30 
31 
32 
32 
32 
32 
3 
3 
3 
3 
3 
4 
4 
5 
6 
6 
6 
6 
6 

9 

2a 

a 

1 
2 
4 
7 

14 
2 

12 
10 
2 
8 

11 
6 
4 
2 
1 
2 
3 
4 
5 
6 

10 
12 
15 
2 
2 
8 
4 
2 
1 
1 
2 
4 
8 
1 
2 
3 
6 

11 
1 
9 
3 
1 
3 
5 

11 
15 
1 
6 

a 

a 

h 10 J 
8 1  
2 1  
a1 

? 
a 1  
a20 

? 
hl 
a1 

? 
? 
? 
? 
? 
? 
? 

a1 
2 5  
Ll 
2 1  

? 
? 
? 
? 
0 

a 1  
2 1  

0 
? 
0 

L lo= 
z 10" 

r 3 x  10' 
r ld 
L 107 

a 2  
a33 

?2 1P 
? 

hl 
2 1  
hl 

L802 
a 1  

a35805 

I 

- 2#155* - 4+27 - D#778 - 4#28*,2#157 - 2+158 
* 2#159* - 2+160 
? 2#16l D+779* - 2#16$ - 2+163 - D+780* 
1 2#164* - 2#165*. 
? 26+168* 

- 2#167* 

- 2+188* 

- 2#169* - 2#170 - 2#171 - 2#172 - ~ m a i  

- R#729* - R#728*,NE2 
2 1  R#727,AG - PG - NE1 

- NE1 

- D+811* 

a 1  3+55 
* 11+1 

2 1  
a 1  3+58 

? 3+57 

- DIP8120 

? 
? 3+59 

aii 3+5a 
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zi 
746 
747 
748 
749 
750 
751 
752 
753 
754 
755 
756 
757 
758 
759 
760 
761 
762 
763 
764 
765 
766 
767 
768 
769 
770 
77 1 
772 
773 
774 
775 
776 
777 
778 
779 
7 8 0  
78 1 
782 
783 
784 
785 
786 
187 
raa 
'89 
'90 
'9 1 
'92 
'93 
'94 
'95 
- 

V b r k X  Nd Nr Commcnb Rcrerenccc 

100 
331 
166 
111 
67 
56 
34 
31 
23 

364 
155 
496 
34 

133 
56 

694 
232 
100 
78 
64 

760 
100 
144 
232 
320 
496 

1024 
1057 
529 
353 
265 
177 
133 
97 
89 
67 
69 
18 
52 
18 
35 

171 
18 
35 

120 
18 
35 

34 1 
52 
35 

330 33 10 
993 33 11 
498 33 11 
333 33 11 
201 33 11 
168 33 11 
102 33 11 
93 33 11 
69 33 11 

1001 33 12 
341 33 15 

1023 33 16 
66 33 17 

209 33 21 
88 33 21 

1041 33 22 
348 33 22 
150 33 22 
117 33 22 
96 33 22 

1045 33 24 
132 33 25 
176 33 27 
264 33 29 
352 33 30 
528 33 31 

1056 33 32 
1057 33 33 
529 33 33 
353 33 33 
265 33 33 
i77 33 33 
133 33 33 _ - -  
97 33 33 
89 33 33 
67 33 33 

782 34 3 
204 34 3 
442 34 4 
153 34 4 
238 34 5 
969 34 6 
102 34 6 
170 34 7 
510 34 8 
68 34 9 

119 34 10 
1054 34 11 
136 34 13 
85 34 14 

3 
1 
2 
3 
5 
6 

10 
11 
15 

1 
3 
1 

16 
5 

12 
1 
3 
7 
9 

11 
1 
8 
6 
4 
3 
2 
1 
1 
2 
3 
4 
6 
8 

11 
12 
16 

1 
4 
2 
6 
4 
1 

10 
6 
2 

16 
9 
1 
8 

13 

? 
? 

i: 
a1 

2 1  
a1 

a1103 
? 
? 

2 1  
Ll  

? 
? 
? 
? 
? 
? 

El 
? 

a1 
? 
? 

all 
2 6  

? 
0 
? 
? 

2 1  
? 
0 

a1 
Z4X 10" 
24x10" 

2207 
a1 
2 1  

? 
2 4  
2 2  
2 1  
2 108 
a1 

? 
= 1  

? 

L 1071 

? 

i 

? 3#60* 

- 3#61* 

- 3#62 - D#813* 

- 3#63 

2 1  
0 R#781,NE3 

- R#780* 

- R#779* 

0 R#778NE3 - R#777& 
0 R#776*,NE3 

0 R#774*,NE3 
- R#775* 

2 1 1  R#773,AG - PG 

* NEl 

- NE1 

a1 
2 1  2#173 
2 1  2#174 

? 2#175,D#869* 

? 2#177,D#870* 
2 3  2#176 

2 1  2#178 
a1 2#179 

* D#871* 
? 
? 2#180 
* D#872* 
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3 
796 
797 
798 
799 
800 
80 1 
802 
803 
804 
805 
806 
807 
808 
809 
810 
81 1 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
83 1 
832 
833 
834 
835 
836 
837 
838 
839 
840 
841 
842 
843 
844 
845 
- 

R. Mutliort attd A. Rosa 

v b r k X  Nd Nr Comment8 Rererenets 

120 
256 
545 
273 
137 
69 
35 

715 
69 

154 
34 1 
528 

1089 
1123 
562 
375 
188 
103 
36 
15 
6 
38 
16 
8 

141 
71 
36 
29 
21 
15 
11 
36 

21 1 
100 
71 
43 
36 
31 
22 
16 
I5 
36 

316 
106 
04 
46 
36 
22 

176 
36 

272 34 
544 34 

logo 34 
546 34 
274 34 
138 34 
70 34 

1105 34 
102 34 
187 34 
374 34 
561 34 

1122 34 
1123 34 
562 34 
375 34 
188 34 
103 34 
420 35 
175 35 
70 35 

315 35 
140 35 
70 35 

987 35 
497 35 
252 35 
203 35 
147 35 
105 35 
77 35 

210 36 
1055 35 
530 35 
355 35 
215 35 
180 35 
155 35 
110 35 
80 35 
75 35 

140 35 
1108 35 
371 35 
224 35 
161 35 
126 35 
77 35 

560 35 
105 35 

15 I 
16 2 
17 1 
17 2 
17 4 
17 8 
17 16 
22 1 
23 11 
2 8 6  
31 3 
32 2 
3 3 1  
34 1 
34 2 
34 3 
34 6 
34 11 
3 2  
3 5  
3 14 
4 3  
4 7  
4 16 
5 1  
5 2  
5 4  
5 5  
5 7  
5 10 
5 14 
6 5  
7 1  
7 2  
7 3  
7 5  
7 6  
7 7  
7 10 
7 14 
7 15 
9 8  

10 1 
10 3 
10 5 
10 7 
10 9 
10 15 
11 2 
12 11 

L 14 
? 

2 1  
a1854 

? 
? 
? 
? 
0 
0 
0 
0 
? 
0 
? 

L2X low 
Z 101' 

48 

a 10 
82224 

2 1  
2 1  
Z l  
Z l  

L 10% 
Z l  

Z 106 
a 1  

? 
? 

2 1  
2 1  
9 1  
2 1  
a1 
2 1  

h 109 
2 1  

? 
? 

Z l  
Z l  

? 
hl 

? 

? 

2#181* 
2#182 

2#183 
2#184* 
2#185 
2#186,D#873 

. .  
NE1 
NE1 

NEI 

D#Ml* 
5#14 
7#4 
D#962* 
7#5 
b#lS 

D#Q63* 

7#0 
5#16* 
7#7 
6#17*,D#964* 

5#18* 
D#965* 
PG 
5#19* 

D#966* 
5+2a 

D#967* 

D # W *  
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846 
847 
848 
849 
850 
851 
852 
853 
854 
855 
858 
857 
858 
859 
860 
861 
882 
a63 
884 
865 
868 
867 
888 
889 
870 
87 1 
872 
873 
874 
875 
876 
877 
878 
879 
880 
881 
882 
803 
884 
885 
B86 
887 
888 
889 
890 
B91 
B92 
893 
894 
805 
- 

V b r k X  Nd Nr Comment8 References 

458 
92 
66 
36 

246 
99 
36 

176 
581 
36 
Q6 

351 
141 
51 
85 

316 
136 
64 

561 
1156 
1191 
596 
239 
171 
120 
86 
71 
73 
37 
25 
19 
13 
10 
9 
7 

109 
55 
37 
28 
19 
13 
10 

145 
25 
10 

181 
91 
61 
46 

204 

1140 35 I4 1 
230 35 14 5 
165 35 14 7 
90 35 14 13 

574 35 15 2 
231 35 15 5 
84 35 15 14 

385 35 16 3 
1155 35 17 1 

70 35 18 17 
188 35 20 7 
585 35 21 2 
235 35 21 5 
85 35 21 14 

119 35 25 10 
395 35 28 3 
170 35 28 7 
80 35 28 15 

2 3 8 3 5 3 0  5 
595 35 33 2 

1190 35 34 1 
1191 35 35 1 
5Q6 35 35 2 
239 35 35 5 
171 35 35 7 
120 35 35 10 
86 35 35 I4 
71 35 35 17 

876 36 3 1 
444 36 3 2 
30036 3 3 
2 2 8 3 6  3 4 
1 5 8 3 6  3 6 
1 2 0 3 6  3 8 
1 0 8 3 6  3 9 
84 36 3 12 

981 36 4 1 
495 36 4 2 
33336 4 3 
252 36 4 4 
171 36 4 6 
117 36 4 9 
9 0 3 6  4 1 2  

1044 36 5 1 
1 8 0 3 6  5 6 
72 36 5 16 

1 0 8 8 3 8  6 1 
5 4 6 3 6  6 2 
36836 6 3 
276 36 6 4 

? 
? 
? 

2 1  
? 
? 

a1 
? 
? 

a 9 1  
? 
? 

; 
t 
i 
? 
? 
? 
0 
? 
? 
0 
? 
? 
? 
0 

=1 
a low 
z 1010 
a 10% 
L 1017 
h 10" 
a 1012 
a330 
a417 

z 2  
a 1  

L 10" 
a lo= 

2 1  
a 10' 
z 100 

a 10" 
2 10' 

2 1  
a 5  
2 1  
2 1  

a 1  

? 
? 

a 9 1  

- 

0 
? 

- 

2 10 

a 1026 

a 10; 
a1 

D#960* 

D#970* 

R#873,HD 

R#872* 
R#871* 

R#870* 

R#869* 
R#888*,NE2 
R#867*,AC 
PG 
NE1 

NEl 

2#187,D#991* 
3#64 
4#29 
6#8 
4130 
9#2 
12#1 

3#88,D#992* 
4#32 
3#69 
9#3 
6#10 

6 # l l  
4#33,2#195 

2+106 
3#73* 
4#34*,2#197 
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E 
396 
397 
898 
399 
Qoo 
901 
w2 
903 
904 
905 
KM 
WI 
wu) 
Do9 
D10 
D11 
D12 
Dl3 
D14 
D15 
D16 
Dl7 
D18 
D19 
920 
021 
922 
923 
924 
925 
826 
D 2 7  
928 
929 
030 
93 1 
932 
033 
934 
935 
936 
937 
938 
939 
940 
94 1 
942 
943 
944 
945 
- 

R. Matlton und A. Rosa 

V b r k X  Nd Nr Comments Reference# 

37 222 36 
31 186 36 
21 126 36 
19 114 36 
16 96 36 
13 78 36 

217 1116 36 
28 144 36 
64 288 36 
22 99 36 

2.89 1158 36 
145 580 36 
97 388 36 
73 292 36 
49 196 36 
37 148 36 
33 132 36 
25 100 36 
19 76 36 

325 1170 36 
55 198 36 

121 396 36 
397 1191 36 
199 597 36 
133 399 36 
100 300 36 
67 201 36 
45 135 36 
37 111 36 
34 102 36 

469 1206 36 
505 1212 36 
85 2Q4 36 

136 308 36 
289 612 36 
613 1226 36 
307 614 36 
205 410 36 
154 308 36 
103 206 36 
69 138 36 
52 104 36 
37 74 36 

685 1233 36 
115 207 36 
721 1236 36 
91 156 36 
49 84 36 

253 414 36 
55 90 36 

6 
6 
6 
6 
6 
6 
7 
7 
8 
8 
9 
9 
9 
9 
9 
9 
9 
9 
9 

10 
10 
11 
12 
12 
12 
12 
12 
12 
12 
12 
14 
15 
15 
16 
17 
18 
18 
18 
18 
18 
18 
18 
18 
20 
20 
21 
21 
21 
22 
22 

6 a1 
6 alp' 
9 2 1  

15 Z106 
1 a1 
8 a5434 
4 a 1 0  

12 a1 
1 ? 
2 ? 

10 12 a10  al\ 

- 
3 ? 
4 a 1 o m  
6 a1 
8 a1087 

12 9 a10  '4 
16 Z1O1' 

1 r 

? 1 
2 

3 El0 ld 

? 

3 ElOlQi 
4 ? 
6 a 1  
9 2 1  

11 a1 
12 ? 

1 ? 
1 ? 
6 ? 
4 ? 
2 a1 
1 ? 
2 a1 
3 ? 
4 ? 
6 ? 
0 ? 

12 ? 
17 a1 

1 ? 
6 ? 
1 ? 
8 ? 

15 ? 
3 ? 

14 ? 

D#993 
6#12 
3#75 
2#199 
6#13 
3#77 

4#36 
4#37 
3#78* 

2#203* 

4#38 
2#205* 
4#39,D#904* 
3#79 
4#40 
4#41 

3#80*,2#209* 
3#81 

3#82 
2#210* 
3#83* 
3#84 
D#995* 
3#85*,2#211* 

2#212* 
2#213* 
2#214 

2#315 

2#216* 
2#217* 

2#218* 
DU9M 

R#970* 

R#969* 
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946 
947 
948 
949 
950 
951 
952 
953 
954 
955 
956 
957 
958 
959 
980 
961 
962 
963 
964 
965 
986 
967 
968 
969 
970 
97 1 
972 
973 
974 
97 5 
976 
977 

979 
980 
98 1 
982 
983 

Q85 
Q86 
D87 
088 
Q89 
QQO 
QQ1 
882 
QQ3 
QQ4 
QQ5 

9718 

9184 

- 

V b r k X  Nd N r Commenb Keferencea 

208 
70 
91 

105 
973 
145 

1045 
175 
217 
280 
385 
595 

1225 
1261 
631 
421 
316 
253 
211 
181 
141 
I27 
106 
91 
85 
75 

112 
75 

186 
112 
297 

75 
112 
630 

75 
112 
186 
297 
408 
630 

I296 
1333 
667 
445 
334 
223 
149 
112 

4018 

318 

312 36 24 
105 36 24 
126 36 26 
140 36 27 

1251 36 28 
180 36 29 

1254 36 30 
210 36 30 
252 36 31 
315 36 32 
420 36 33 
630 36 34 

1260 36 35 
1261 36 36 
631 36 36 
421 36 36 
316 36 36 
253 36 36 
211 36 36 
181 36 36 
141 36 36 
127 36 36 
108 36 36 
91 36 36 
8 5 3 6 3 6  

925 37 3 
1036 37 4 
55s 37 5 

ii17 37 S 
592 37 7 

1221 37 9 
1258 37 12 
185 37 15 
259 37 16 

1295 37 18 
74 37 19 

111 37 25 
148 37 28 
222 37 31 
333 37 33 
444 37 34 
686 37 35 

1332 37 36 
1333 37 37 
667 37 37 
445 37 37 
334 37 37 
223 37 37 
I49 37 37 
112 37 37 

4 
12 
10 
9 
1 
7 
1 
6 
5 
4 
3 
2 
1 
1 
2 
3 
4 
5 
6 
7 
9 

10 
12 
14 
15 
1 
1 
2 
1 
2 
1 
1 
7 
5 
1 

I8 
12 
9 
6 
4 
3 
2 
1 
1 
2 
3 
4 
6 
9 

12 

? 
? 
? 
? 

? 

I 
? 
? 
? 
? 
? 
? 
0 
? 
0 
? 
? 
? 
0 
0 
? 

a 10'4 
a 2  
a1 
a1 
a 1  

? 
? 

a 1  
? 
? 

=1 
? 
? 

a1 
? 
? 
0 

i 
? 

i 

i: 
0 
0 
0 

2 1  
? 
? 

- R#968* - R+987* - R # Q W  

0 R#965*,NE3 

0 R#W*,NE3 
- R#W* 

- R#962* - R#961* - R#BBO* 

- PG 

- NEI 

- NE1 

? R#959*,AG 

- NEl - NEl 

a 1  
a 1  

? 
? 
? 
? 
? 

2 1  
? 
T 
0 R#QQ6,NE3 
0 R#QQS*.NE3 
? R#QQ4*. 
0 R#QQ3,NE3 
0 R#992*,NE3 
0 R#99l*,NE3 
0 R#OOO*,NE2 
? R#989*,AG - PG - NEl - NEI - NE1 
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696 
997 

lo00 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1008 
1010 
1011 
1012 
1013 
1014 
1015 
1016 
1017 
1018 
1019 
1020 
1021 
1022 
1023 
1024 
1025 
1026 
1027 
1028 
1029 
1030 
1031 
1032 
1033 
1034 
1035 
1038 
1037 
1038 
1039 
1040 
1041 
1042 
1043 
1044 
1045 

R. Muttion and A. Rosa 

75 
39 

8 9 8 5 8  
8 8 9 2 0  

20 
98 
39 
77 
20 

153 
115 
20 
77 

210 
39 
98 

153 
324 
685 
343 
229 
172 
115 
77 
58 
39 
666 

1369 
1407 
704 
79 
40 
27 
14 
7 

40 
40 

198 
68 
40 
16 
14 
14 
40 

105 
27 
40 
68 

144 
40 

No I V b r k X  Nd Nr Comments Keferences 

75 37 
494 38 
551 38 
190 38 
152 38 
808 38 
247 38 
418 38 
95 38 

646 38 
437 38 
76 38 

2 6 8 3 8  
685 38 
114 38 
228 38 
342 38 
884 38 

1370 38 
686 38 
458 38 
344 38 
230 38 
154 38 
116 38 
78 38 

703 38 
1408 38 
1407 38 
704 38 

1027 39 
520 39 
351 39 
182 39 
91 39 

380 39 
312 39 

1274 39 
429 39 
280 39 
104 39 
91 39 
78 39 

195 39 
455 39 
117 39 
156 39 
234 39 
468 39 
130 39 

37 18 
3 2  
4 2  
4 6  
5 8  
6 2  
6 6  
7 3  
8 14 
9 2  

10 3 
10 18 
11 5 
12 2 
13 12 
16 8 
17 4 
18 2 
19 1 
19 2 
19 3 
19 4 
19 6 
19 9 
19 12 
19 18 
3 6 2  
37 1 
3 8 1  
3 8 2  
3 1  
3 2  
3 3  
3 6  
3 13 
4 3  
5 4  
6 1  
6 3  
6 5  
6 13 
6 15 
7 18 
8 7  
9 3  
9 12 

10 9 
11 6 
12 3 
12 11 

=I  

a 1  
a1 
Ll 
a1 
a1 
2 1  
a 1  
a1 

t 

;c 1044 

i 

i 

a 1  
? 

? 

T 

i 
i 
? 
? 

a 3 9  
t 

9 1  
a1 

1 

26X 10" 
a 1P 

a lo= 
h2X low 

a417 
a IOU 

a1 
? 

2 1  
hl 
a 1  
a1 
a 13 
L1 

t 

a1 
a21684 

t 
2 1  

a 1017 

2 a9 

2 1  
a 1  

? 

t 

? 

a 4  
t 

t 
? 
? 
t 

*I 

a lorn 

a lorn 
t 
? 

2 1  

0 
? 

t 
t 
t 

2 101; 

2#219,D#1071* 

2#220 
2#221 
2#222 
D#1072* 

2#223* 

2#224 

2#225* D#lW3* 
2#226* 
2#227* 
2#228* 

2#229* 

2#230* 
2#231* 

2#232* 
2#233,D#1074 
R#1025* 
R#lO24,AG 
PO 

D#l163* 
3w86 

13#1 
3#87,D#1164* 
D#1165* 

3#88 
D#1166* 

3#89 
D#1167* 

3 m  
3#9l*.D#1168* 
3#92 . 
3#93* 
D# 1169. 



No 
1046 
1047 
1048 
1049 
1050 
1051 
1052 
1053 
1054 
1055 
I056 
1057 
1058 
1059 
1080 
1061 
1062 
1063 
1064 
1065 
1066 
1067 
logs 
1069 
1070 
1071 
1072 
1073 
1074 
1075 
1076 
1077 

1079 
1080 
1081 
1082 
1083 
1084 
1085 
1086 
1087 
1088 
I089 
lo90 
log1 
1092 
1093 
1094 
Log5 

1078 
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V Nd b r k X  Nr comments Reference 

469 
235 
157 

79 
53 
40 
37 
27 
40 

222 
703 
40 

196 
976 
326 
196 
76 
66 
209 
456 
703 

1444 
1483 
742 
495 
248 
115 
79 
81 
21 
9 
6 

121 
61 
4x 
31 
25 
21 
I6 
13 
11 
9 

161 
81 
41 
33 
21 
17 
11 

i ia  

1407 39 
705 39 
471 39 
354 39 
237 39 
159 39 
120 39 
111 39 
81 39 

104 39 
481 39 

1443 39 
78 39 

364 39 
I464 39 
489 39 
294 39 
114 39 
99 39 

247 39 
494 39 
711 39 

1482 39 
1483 39 
742 39 
495 39 
248 39 
115 39 
79 39 

I080 40 
280 40 
120 40 
80 40 

1210 40 
610 40 
410 40 
310 40 
250 40 
210 40 
160 40 
130 40 
110 40 
Bo 40 

1288 40 
648 40 
328 40 
264 40 
168 40 
136 40 
88 40 

13 
13 
13 
13 
13 
13 
13 
13 
13 
I5 
18 
19 
20 
21 
26 
26 

26 
26 
33 
36 
37 
38 
39 
39 
39 
39 
39 
39 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 

m 

1 
2 
3 
4 
6 
9 

12 
13 
18 
I4 
3 
1 

19 
4 
1 
3 
6 

13 
15 
6 
3 
2 
1 
1 
2 
3 
6 

13 
19 
1 
4 

10 
16 
1 
2 
3 
4 
6 
6 

10 
12 
15 
1 
2 
4 
5 
8 

10 
16 

a 

? 
? 

? 
a 101% 

L lo= 

=a 

? 

? 

a1 

a1 
? 
? 

Ll  
? 
? 
? 
? 

? 
? 
0 
0 
0 
0 
? 
0 

; 

L 10 4 
a lo2' 
a lo* 

L 100 
a 10' 

a 1  
a1 

a lo= 

a loL4 

L 100 

76 

a 10 'l!i 

=1 

2 1  
21 
a 1  
2 1  

2 1 0 ~ '  
L1  

L 10' 

? 
hl 

0 
0 

107 
L 102' 
B 10' 

1 

2 1  

3#94* 

3#95 
3#96* 
3#97,D#1170 

3#98 
D#1171* 

R#IO74,HD 

R#1073* 

R#1072* 
R#1071* 

NEl 
NEI 

AG 
4#42 
10#2 
8#4,4#43 

2#237 
D#1192* 
2#238 
5#22 
2#239 
8#5 
10#3 
2#242 
5#24 

2#243 
4#45,D#1193* 

8#6 
2#246 
8#7 
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3E 
loge 
1097 
1098 
1099 
1100 
1101 
1102 
1103 
1104 
1105 
1108 
1107 
1108 
1109 
1110 
1111 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 
1120 
1121 
1122 
1123 
I124 
1125 
1126 
1127 
1123 
1129 
1130 
1131 
1132 
1133 
1134 
1135 
1138 
1137 
1138 
1139 
1140 
1141 
1142 
1143 
1144 
1145 
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V b r k X  Nd Nr Comments Relereneei 

201 1340 
51 340 
21 140 
49 280 
21 120 
281 1405 
141 705 
71 355 
57 285 
41 205 
36 180 
29 145 
21 105 
81 360 
381 1444 
181 724 
121 484 
91 364 
73 292 
61 244 
48 184 
41 164 
37 148 
31 124 
25 100 
21 84 
441 1470 
111 370 
45 150 
481 1480 
105 300 
561 1496 
141 376 
81 218 
57 152 
36 96 
76 190 
171 380 
361 760 
761 1522 
381 762 
191 382 
153 308 
96 192 
77 154 
41 82 
121 220 
921 1535 
231 385 
93 155 

40 6 1 
40 6 4 
40 6 10 
40 7 5 
40 7 12 
40 8 1 
40 8 2 
40 8 4 
40 8 5 
40 8 7 
40 8 8 
40 8 10 
40 8 14 
40 9 4 
40 10 1 
40 10 2 
40 10 3 
40 10 4 
40 10 5 
40 10 6 
40 10 8 
40 10 9 
40 10 10 
40 10 12 
40 10 15 
40 10 18 
40 12 1 
40 12 4 
40 12 10 
40 13 1 
40 14 5 
40 15 1 
40 15 4 
40 15 7 
40 15 10 
40 15 16 
40 16 8 
40 18 4 
40 19 2 
40 20 1 
40 20 2 
40 20 4 

40 20 8 
40 20 10 
40 20 19 
40 22 7 
40 24 1 
40 24 4 
40 24 10 

40 20 5 

2 10i 
t 

z 1o'Q 

? 

2:l 

4#48*,2#248 
5#25*,2#249 
5#26 
4#49 

5#27 
D#1194* 

4#50*,2#251* 
5#%* 
4#51 

2#253' 

4#52 

2#255* 
4#53*,2#256* 
D#1195* 
29257 
4#54 

2#259 

2#280* 
2#261* 

2#262* 

2#263* 
2#284 
2#265 
2#268* 
2#287 

2d268 
2#289* 

2#270 
2#271* 
D#1188 



E 
1146 
1147 
1148 
1149 
1150 
1151 
1152 
1153 
1154 
1155 
1156 
1157 
1158 
1159 
1180 
1161 
1162 
1163 
1164 
1165 
1166 
1167 
1168 
1169 
1170 
1171 
1172 
1173 
I174 
I175 
I176 
I177 
I178 
I179 
I180 
1181 
1182 
I 1 8 3  
1184 
1185 
1186 
I187 
I188 
I189 
I190 
I191 
I192 
I193 
I194 
I195 
1196 

Tab1t.s oj'puruiiwlvrs o]'BlBDs with r < 41 

V b r k X  Nd Nr Comments Referenca 

65 
1001 

81 
217 
91 

1161 
291 
117 
156 
221 
273 
351 
481 
74 1 

1521 
1561 
78 1 
521 
39 1 
313 
261 
196 
157 
131 
121 
105 
42 

124 
165 
42 
42 

288 
370 
247 
42 

247 
780 
42 

124 
165 
288 
370 
780 

1600 
1641 
821 
411 

104 
1540 

120 
310 
130 

1548 
388 
156 
195 
260 
312 
390 
520 
780 

1560 
1561 
78 1 
521 
39 1 
313 
261 
196 
157 
131 
121 
105 
574 

1271 
1353 
287 
246 

1476 
1517 
779 
123 
533 

1599 
82 

164 
205 
328 
410 
820 

1640 
1641 
821 
411 

40 25 
40 26 
40 27 
40 28 
40 28 
40 30 
40 30 
40 30 
40 32 
40 34 
40 35 
40 36 
40 37 
40 38 
40 39 
40 40 
40 40 
40 40 
40 40 
40 40 
40 40 
40 40 
40 40 
40 40 
40 40 
40 40 
41 3 
41 4 
41 5 
41 6 
41 7 
41 8 
41 10 
41 13 
41 14 
41 19 

41 21 
41 31 
41 33 
41 36 
41 37 
41 39 
41 40 
41 41 
41 41 
41 41 

41 20 

329 329 41 41 

15 ? 
1 ? 

13 210'; 
5 

12 ? 

8 i 

1 ? 
4 ? 

10 ? 

6 ? 
5 ? 
4 ? 
3 ? 
2 0 
1 ? 
1 ? 
2 0 
3 ? 
4 ? 
5 0 
6 0 
8 0 

10 0 
12 ? 
13 210m 
15 ? 
2 Z6X102' 
1 2 2  
1 a1 
5 a1 
6 Z1 
1 ? 
1 ? 
2 ? 

13 ? 
3 ? 
1 ? 

20 Z l  
10 ? 
8 ? 
5 ? 
4 ? 
2 ? 
1 ? 
1 ? 
2 ? 
4 ? 
5 ? 
8 0 

- R#1171* 

2 10" R#117O,AG 

- R#1169* 

- R#1168* - R#1167* - R#1166* - R#1165* - R#1164* 
0 R#1163*,NE3 - R#1162*,NE2 
? R#llBl*,AG - PG - NE1 

- NE1 - NEl - NE1 - NE1 

- PG 

a1 D 
hl 

? 
? D  
? D  
? 
? 
? 
? D  
? 
? 
0 R#ll96,NE3 
0 R#1195*,NE3 
0 R#1194*.NE3 
0 R#1193*;NE3 
0 R#1192*.NE3 
0 R#119l*;NE3 
? R#llQO*,AC - PG 

- NE1 

30 1 
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Abetrac t 

In this article we are interested in resolvable (u,k,l)-BIBDs. Let D be a 
(u,k,l)-BIBD and let R and S be two resolutions of the blocks of D. R and 
S are said to  be orthogonal resolutions if any parallel class from R has at 
most one block in common with any class of S. A set of t resolutions of D 
is called a set of t orthogonal resolutions if every pair of these rrsolutions 
is orthogonal. For t = 2 the design resulting is called a Kirkman square. 
For t = 3 it is called a strong Kirkman cube. Previously, the smallest 
order for which a strong Kirkman cube of block size 3 was known to exist 
was u = 255. This paper gives an algorithm for searching for a particular 
type of Kirkman square with block size 3. The algorithm was applied to 
the case u = 39, k = 3 with the result that several strong Kirkman cubes 
were found. The designs obtained have automorphism groups which are 
transitive on parallel classes of all three orthogonal resolutions. In order 
to  find the strong Kirkman cubes of order 39 cited above we enumerate all 
Kirkman squares of order 39 of a specific type. 
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1. Introduction. 
This paper deals with resolvable (u,k,l)-BIBDs. In particular, u = 39, 

k = 3 is our main concern. Recall that a (u,k,l)-BIBD is resolvable if its blocks 
can be partitioned into classes (called parallel classes) R,,R2, . . . ,R, 

(r = -) such that each element is contained in a unique block of each class. 

The set R = {Ri: 1 S i S r} is called a resolution of D .  A (u,k,l)-BIBD with 
a resolution R is called a Kirkman system. Let R = (Ri: 1 S i S r} and 
S = {Si: 1 5 i 5 r} be two resolutions of the same (u,k,l)-BIBD. R is said to 
be orthogonal to  S provided 

I R i n S j l  5 1 ,  lsi, j 5 r .  

u-1 
k - 1  

A set of t resolutions of a (u,k,l)-BIBD is called a set of t orthogonal 
resolutions if every pair of distinct resolutions in the set is orthogonal. 
Although the sequel does not pertain to it, an interesting question is to  
determine good upper and lower bounds on 1 for given u and k. 

A (u,k,l)-BIBD with t orthogonal resolutions is called a Kirkman square 
when t = 2 and a strong Kirkman cube when t = 3. We denote these by 
KSk(u) and SKCk(u) respectively. For the definition of a weak Kirkman cube 
the render is referred to  181. 

A necessary condition for the existence of KS,(u) and SKCk(u) is 
u = k(modk(k-1)). In the case k = 2 the existence question is completely 
settled by thc following two theorems. 

Theorem 1.1 ([7]) For each positive integer u = 0 (mod 2), u # 4 or 6, 
there exists a KS2(u). There does not exist a KS2(4) or a KSZ(6). 

Theorem 1.2 ([a]) For each positive integer u = 0 (mod 2), u # 4 or 6, 
there exists an SKCp(v). There does not exist an SKC2(4) or an SKCZ(6). 

The existence question for k 3 remains open. In the case k = 3 an 
asymptotic existence result can be stated. 

Theorem 1.3 ([a]) Them exists a constant u1 such that for all u > u1 and 
u 3 (mod 6) there exlets a KS,(u). 

This paper is only concerned with the case k = 3; in this case, the 
underlying design is a Steincr triple system (STS). At present there are very few 
direct constructions for KS,(u) and SKC3(u) and until recently the only 
SKC,(u) constructed directly had order u = 255. This article examines a 
particular class of such designs for u = 39 with the hope that a complete 
enumeration may shed some light on a more general direct construction. The 
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choice of u = 39 is easily explained. We are interested in finding direct 
constructions for KS3(u)s  with automorphism groups which pie cyclic on the 
parallel classes. Such KS3(u)’s we will call cyclic or starter-adder. This 
requirement restricts our attention to u 9 3 (mod 12). It  is not difficult to 
establish that no such design exists for u = 15. In fact, there is no KS3(15) 
whatsoever. This can be seen by exhaustively examining all resolvable (15,3,1)- 
BIDDs (for a listing, see, e.g. [S]). A KS3(27) was found in ( [ S ] )  and, more 
recently, a cyclic KS3(27) was found [4]. In fact, Janko and Van Trung (14)) 
have done a complete enumeration of all such cyclic designs of order 27 and 
found precisely three nonisomorphic Ks3(27)s. The next case to  consider for 
cyclic systems is u = 39. In the next section we describe the class of cyclic 
systems which we intend to enumerate. 

2. A special claw of Kirkman systems. 

In order to construct KS3(39)s we need to construct Kirkman triple 
systems. Since we are interested only in cyclic KS3(39)s we can assume that the 
set of elements of such a design is V =  Z l g  X {0,1} U {m}, and the 
corresponding cyclic automorpbism is Q = (0111...181)(02f2 * * * M2)(m). A 
convenient way to represent one of these designs is to list the blocks of one 
parallel class from each of the two orthogonal resolutions. Suppose 
{B1,B2,.  . . ,Br} and {Cl,C2,. . . ,Cr} are parallel classes of blocks, one from 
each of the orthogonal resolutions. Since u = 39 and r = 19, the blocks of the 
underlying design fall into orbits of length 19 under the action of the group. 
Hence, we can assume that B; and C; are in the same orbit, 1 S i 5 r. 
Therefore, an alternate way to list the cyclic KS3(39) is to list {B,,B,, . . . ,Br} 
and a set of mappings {a1,a2, . . . ,ar} such that a;(B;) = Cj, 1 S i 5; r. This 
method of listing is commonly referred to as starter-adder. The set 
{Bl,B2, . . . ,Br} is the starter and the set {a1,a2, . . . ,ar} is the adder. As an 
example consider one of the cyclic KS~(27)’s found in 141. 

B, = 0102) Bfi = I81 41 60) 

B2 = (70 30 111) BI = (91 31 40) 

B3 = 0 0 0  50 81) 

C4 = (20 90 1211 

B5 = (21 1, 80)  

Be = (110 120 lo) 

= (51 71 1011 

01 = 0, a2 = 1, “3  = 5, 0 4  = 3, 6, 0 6  = 10, (I7 = 7, 0 8  = 8, Og = 12 
where ai({ah,bl,c,}) = {(a +ai)L,(b+ai)~,(c+a;),} and operations are in the 
integers modulo 13. 
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Adopting the notation of the previous paragraph, we will specify a cyclic 
KS,(39) by a "base" set S of triplea (13 of them) on the symbols 
V = Z,, X {0,1} U {m} and an adder set A of 13 elements from Zto. We note 
that the adder A must consist of 13 distinct elements. 

Before continuing with the description of the class of cyclic KSa(39) to be 
investigated we require several more deliitions. 

Let D be a (u,k,l)-BIBD with element set V and block set B. A (u,k,l)- 
BIBD D' with element set V' and block set B is a subdesign of D if I" SV and 
B C B. 

Let G be a finite abelian group of odd order 2 n + l  which is written 
additively. A strong starter T in G is a partition of the nonzero elements of G 
into pairs {zl,gl}, . . . ,{z,,,g,,} such that 

(i) j {=(zi-&)} = G\{O}, 
i - 1  

(iif zi + gi # 0, i = 1,2 ,..., n 
(iii) 2; + y; # zj + gj, i , j  = 1,2 ,..., n, i # j .  

Consider a cyclic KS,(u) D defined on the set V = Z, X {0,1} U {a} 

. Let S = {Bo,Bl,. . . ,B,}, where m = - , be a starting where r = - 
set of blocks. Without loss of generality assume that B, = {m 0, O1). Suppose 
D contains a subdesign D' of order r which is l i e d  by the automorphism group. 
Without loss of generality we can assume that D' is defined on the point set 
Z, X (1) and that B*,Bh+,, . . . ,B, is a base set of triples for D' (h = -). 

Let Bi = {a&,b&,cj}, 1 S i S h-1. If T = {{a&,6&k 15;  i S h-1} is a 
ai+bi strong starter in Z, and ci = - then D is called a KS;(u). In the next 

2 
two sections we will enumerate all KSi(u)'s for u = 27 and 39. 

u -1  u-3 
3 2 

r + l  
2 

3, The Algorithm. 
The algorithm we use for enumerating KS;(u) requires the following 

concept. Any partition of the set {1,2, ..., 3f} into triples such that in each triple 
the sum of two of the numbers is equal to the third or the sum of the three 
numbers is equal to 6 t + l  is called a solution to the first Heffter's difference 
problem for I .  We denote this problem by HDP(f) .  Helfter ([q) observed that 
any solution to HDP(I) can be used to construct a cyclic Steiner triple system 
(STS) of order Gt+l. A cyclic STS of order u is a (u,3,1)-BIBD that has an 
automorphism consisting of a single cycle of length u. Without 10s of 
generality one can assume that the point set is V =  Z, and the cyclic 
automorpbism is i - i +  1 (mod u). If {{ai,bi,ci} 1 5 i S t }  is a solution to 
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H D P ( t )  then the set of base triples {{O,a;,a;+b;} 1 S i 5 5} generates an STS 
of order 6t+1.  Conversely, let. (V,B) be a cyclic STS of order 6t+1.  For 
z , y  € Vdefine 

A(z,y) = m i n ~ l z - y 1 , 6 t + l - l z - y } f  

and for {z,y,z} € B let 

A { z , y , 4  = {A(z,y),A(z,z),A(y,t)}. 

Then {AB: B € B} is a solution to HDP(5). 

We list these for later reference. 
There is precisely one solution to HDP(2) and four solutions to  HDP(3). 

11781 11341 1145) 11561 

(469) 568 (379) (347) 
HDP(3): 235 279 288) 289 

For a more extensive listing of solutions to  HDP(t)  the reader is referred to  [l]. 
r-1  

2 
Let S = {{zj,y;}: 1 S i S -} be a strong starter in the cyclic group 

6t+1.  Let .!? = Z,'\{(z;+y;)/2: 1 5  i S -}. Hence, 151 = 35. Z,, r = 

Since zi + y; # zj + yj, i # j (S is a strong starter) then 
(zj+yj)/2 # (zj+yj)/2 for i # j .  S is said to  be a proper strong starter if 
there exists a partition P ( 5 )  of 5 into t triples 

r - 1  
2 

P ( S )  = {{u;,u;,w;}: 1 s i 5 t }  

such that {A{u;,ui,wi}: 1 S i S t }  is a solution to  HDP(5). 
If S is a proper strong starter then it is a simple matter to  construct a 

cyclic resolvable (12t+3,3,1)-BIBD D on the set Z, X {OJ} U {a} where D 
contains a subdesign of order r fixed by the cyclic nutomorphism. 

We note that if {a,b,c}, a < b < e is a triple in a solution to  H D P ( t )  then 
the corresponding base triple in the cyclic STS(6t + 1) can be taken to  be either 
{O,a ,a + b} or (0,-a ,- (a + b)}. We label the first block "+" and the second "-". 
If the triples in a solution to HDP(t)  are arbitrarily ordered then there are 2' 
ways to construct the base blocks for an STS and each can be labelled with a 
sequence of length t consisting of "+" and "-"s where a +(-) in the ith 
positions indicate that the ith triple in the solution was replaced by a +( - I  
difference block. If S is a proper strong starter then there is at least one of 
these 2' base sets which can be translated to  cover all elements in g. For the 
purposes of our algorithm we determine all ways to  partition and label each 
partitioning with one of the 2' possibilities. Having found all proper strong 
starters and all possible partitionings, for each we check the resulting base 
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resolutions for orthogonality. We only check two base resolutions coming from 
the strong starters S and S' if the partitionings of g and have the same label 
or the labels are negatives of each other. (Two labels nre negatives of each 
other if one can be obtained from the other by interchanging "+" and u-u signs.) 

4. Resalta for u = 27 and u = 39. 

Let S = {{zi,yi} 1 S i S t }  be a strong starter in 2,. Define 

aS = {{azi,ayi}:l s i s t } .  

US is a strong starter iff a-'  exists. Two strong starters S and S' are said to 
be equivalent if there exists a € 2, such that S' = aS. 

There are precisely 2 inequivalent strong starters in Zls. They are: 

s = ((2,419 {3,7h (6,121, (5,101, {w}, (8,QN 

S' = (45,719 (3,121, {2,81, {6,W, 0941, {9,10}} 

5 = st = {4,7,8,10,11,12}. 

There is precisely one solution t o  HDP(2) and a simple check shows that both S 
and S' are proper. The resulting base resolutions are not orthogonal and so no 
KSi(27) exists. Of course, this result follows immediately from the fact that 
Janko and Van Trung 111 enumerated all KS3(27) which admit a cyclic 
automorphism of order 13 and it can be easily checked that none of these l i e s  a 
subdesign of order 13. We only include the result on KSi(27)s for completeness. 

The results for u = 39 are more encouraging. In Zlg there are precisely 51 
non-equivalent strong starters. As observed earlier there are 4 solutions to 
HDP(3). The algorithm produced 49 non-equivalent 1(5;(39)s. By %on- 

equivalent '' we mean that one cannot be obtained from the other by multiplying 
by some element in Zlo. All systems are displayed in table 1. Solutions are 
displayed as a base parallel class and associated adders. For example, the first 
few entries in the table are: 

11 14 2 8 3 12 1 7 18 5 16 17 
The first line is a base parallel class which for conciseness is written as a strong 
starter and a base set of triples for the subdesign of order 19. The triple 
{OD 0, 01} is omitted. In its expended form the first Iine would read: 

3 5  1115 7 1 3  4 1 2  110 0 1 8  218  1417 8 9  2 1 1 7  5 7 1 4  3 1 1 1 0  

(30 50 411, (110 150 1311, (70 130 lei}, (40 120 811, 

(10 100 151}, (60 180 121},{20 160 911, (140 170 611, 

(80 90 1811, (21 11 1711, (51 71 1411, (31 111 I61},{0 00 01). 

The adder elements are added to the corresponding triples to produce a base 
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6. Strong Kirkman Cubes. 

The smallest order for which a strong Kirkman cube was known t o  exist is 
255. This design is cyclic. That is, all three orthogonal resolutions are 
generated by a cyclic automorphism of order 127. It is not known whether an 
SKc3(27) exists. A simple check of the Janko-Van Trung paper [4] shows that 
there is no cyclic SKC3(27). By examining the KSi(39)s of Table 1 we find 
precisely 2 non-equivalent cubes. These cubes are displayed below as a base 
parallel class and two adders from which one gets two other base parallel classes 
for the orthogonal resolutions. 

(10 50 33 
1 
14 

[OO 120 13 
15 
7 

(30 70 53 
3 
6 

(00 120 13 
15 
12 

(110 170 143 (20 100 83 (70 160 23 (30 150 OJ 

11 5 7 17 
2 18 3 8 

These cubes are the smallest examples of strong Kirkman cubes that we are 
aware of. (For various recursive constructions that produce infinite families 
from these designs, see [el.) The only other order that we know for which a cube 
is constructed directly, is u = 255 (cf. above). It is constructed from the points 
and lines of Ac(7,2) and all three orthogonal resolutions can be cyclically 
generated. Also, the automorphism fixes a subdesign of order 127. 
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An exhaustive check shows that neither of the two cubes SKC,(39) found 
can be extended cyclically to yield a 4-dimensional Kirkman cube, i.e. l‘iat there 
does not exist a set of 4 mutually orthogonal resolutions (of the consideied type) 
with the property that any two form a KSl(39). 

6. Conclualon. 
The purpose of this article was to examine a special class of STSs of order 

39 and to find those having a t  least two orthogonal resolutions. Although the 
class is reasonably restricted, it does admit a number of designs of the type we 
desired. It is hoped that the results of this paper can be generalized to give 
some new orders of KS,(v)s and SKC,(u)q and possibly an infiinite class of direct 
constructions. At present the only orders less than 100 for which a KS,(u) is 
known to exist are u = 27,39,63 and 81. The only order less than 250 for which 
a SKC,(u) is known is u = 39. 
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Table 1. 

3 5  1115 713 412 110 618 216 1417 8 9  2117 5714 31116 

11 14 2 8 3 1 2 1  7 18 5 16 17 

4 3  14 1 2 11 0 6 7 13 15 10 

11 12 18 3 8 14 1 7 2 16 17 5 

10 9 16 5 I5 8 6 4 3 7 11 1 

8 7  1 5 11 17 18 12 16 4 9 6 

7 5  17 2 16 3 11 1 14 4 9 6 

3 5  1115 713 412 110 618 216 1417 8 0  3511 1216 71417 

4 I I1  17 7 16 9 6 5 2 14 3 

3 5 17 9 1 6 4  2 14 6 18 12 8 

11 14 2 8 3 12 1 7 18 17 5 16 

11 17 16 8 5 12 1 7 18 3 2 I4 

8 1 I1 2 7 3  18 12 14 6 4 9 

8 3  14 13 2 10 18 12 IS 4 9 6 

3 5  1115 713 412 110 618 216 I417 8 9  125 71416 31117 

S Q  4 17 6 16 2 I4 5 I 1  1 7 

8 3  14 13 2 10 18 12 15 5 16 17 

3 5  9 IS 4 10 112 6 15 11 18 2 16 I4 17 7 8  14 IS 18 3 10 12 2 8  13 

3 7  1 9 I1 4 2 14 0 18 12 8 

79 1418 2 8  513 312 1017 611 I4 1516 111415 1310 2713 

3 6  9 1 4 I1  2 14 7 13 IS 10 

18 4 9 2 17 6 3 1 16 13 15 10 

18 6 9 16 4 5 12 8 17 1 7 I1  

- 
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79 14 18 28 5 13 3 12 10 17 6 11 14 15 16 10 11 14 13 13 2 7  15 

18 6 0 16 4 5 12 8 17 2 I4 3 

15 14 2 7 3  1 10 13 11 4 0 6 

18 4 0 2 17 6 3 1 I6 13 15 10 

7 0  1418 2 8  513 312 1017 611 14 1516 71014 31113 1215 

15 14 2 7 3  1 10 13 11 8 18 12 

2 17 16 8 5 12 14 3 18 13 15 10 

9 7  1 2 11 3 6 4 14 8 I8 12 

79 14 18 28 5 13 3 12 10 17 6 11 1 4  15 16 3 7  10 2 11 13 114 15 

4 17 16 1 5 1 1 0  6 7 13 15 10 

2 17 16 8 5 12 14 3 18 1 7 I1 

18 2 3 16 14 5 12 8 17 7 11 1 

- 

35 6 10 0 15 7 18 4 1S 18 2 16 14 17 11 12 113 17 5 7  15 10 11 16 

11 3 14 13 2 10 1 7 15 5 16 17 

18 5 17 0 16 4 12 8 6 3 2 14 

8 6  9 7 4  1 18 12 11 3 2 14 

~ ~ ~~~ ~~ 

S S  6 10 9 15 7 18 4 IS 18 216 I4 17 11 12 113 16 7 15 17 5 10 11 

12 17 16 4 5 6 8 18 0 2 14 a 

35 6 10 0 15 7 18 4 13 18 2 16 14 17 11 12 5 11 13 115 16 7 10 17 

5 14 2 7 3  1 16 17 11 13 15 10 

3 5  1014 713 412 818 29 611 117 1516 1217 5714 S1116 
~ ~~~~~ 

.I1 14 18 3 12 8 2 1 7 16 17 5 

3 5  4 8  015 1018 716 214 611 117 1213 11317 5715 101116 

11 7 14 10 15 3 2 1 13 5 16 17 

3 5  I4 18 6 12 10 8 17 4 11 2 7  10 13 15 16 11 15 18 110 12 7 8  13 
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I1 6 1 9 13 4 10 15 7 12 8 18 

~- ~~ 

3 5  14 18 6 12 I 9  8 17 4 11 2 7  10 13 15 16 8 11 15 1 1 0  18 7 12 13 

5 17 I6 12 7 3 4 10 2 15 14 9 

8 4 2 3 7 I7 18 I6 1 13 15 10 

2 4  I014 39 513 716 18 611 1215 1718 11317 5715 101116 

13 14 7 1 15 10 2 11 3 5 16 17 

10 14 8 I3 18 15 16 17 3 I 1  1 7 

2 4  1014 39 513 716 18 611 1215 1718 51113 11516 71017 
~ ~~ 

6 2  I7 12 8 1 7 18 5 13 15 10 

8 10 3 7  114 6 17 2 11 9 16 13 18 12 15 4 5  11 15 I8 110 12 7 8 13 

1 9 4 I5 6 13 7 I t  10 12 8 18 

6 3  I4 1 2 11 4 9 7 5 16 17 

3 9  4 8 6 12 2 14 18 5 16 17 

12 10 15 6 13 9 8 18 4 5 16 17 

I7 13 10 4 15 6 5 16 9 18 12 8 

8 10 3 7  1 I4 6 17 2 11 9 16 13 18 12 15 4 5  11 12 15 18 10 7 13 18 

17 13 10 4 15 6 5 16 9 2 14 3 

18 15 13 7 10 1 12 8 11 2 14 3 

18 9 4 15 6 13 12 8 10 14 3 2 

1 3  1317 1016 412 515 618 27 1114 8 9  1416 7917 5611 

6 5  17 1 16 11 4 9 7 13 I5 10 
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Abstract 
In this paper we discuss the use of hill-climbing techniques in the 
construction of combinatorial designs. 

1. Introduction 
The construction of combinstorial designs has been and remains a very 

active area of research in discrete mathematics. It is often necessary to 
construct designs on the computer, and backtracking algorithms have been the 
traditional approach used. However, backtracking algorithms exhibit 
exponential behaviour, and become impractical for designs of even moderate 
size. 

In certain instances, a hill-climbing approach can be used. This approach 
works very well in the case of Stcincr triple systems. We describe a simple 
heuristic. A Steiner triple system is constructed block by block, and a t  no time 
in the algorithm is the number of blocks decreased. Although we cannot even 
guarantee that the algorithm will successfully construct a Steiner triple system, 
it appears to provide on extremely fast method of constructing these designs. 

n(n - 1) 
0 

Evidence suggests that a Steiner triple system with n points and 
blocks can be constructed in time proportional to n2 log n. 

We discuss the implementation of the above algorithm, and the numerical 
results we have obtained. Other similar problems are considered, including the 
construction of Latin squares, and strong starters. W e  also consider the 
completion of partial Resigns (an NP-complete problem), and the construction of 
non-isomorphic designs. Finally, we discuss when a hill-climbing approach is 
likely to succeed or fail. Many problems will not succumb to such an attack, but 
hill-climbing is nevertheless a technique which should be considered when using 
the computer to construct new combinatorial designs. 
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2. Hill-cllmblng and Stelner trlple spstems. 
Let n be a positive integer. A Steiner triple system (or STS) of order n is 

a pair (X,B) ,  where X is a set of n elements called poinfs, and B is a set of 3- 
subsets of X (called 6locks1, such that every unordered pair of distinct points is 
contained in a unique block. It follows that there are (n2-n)/s blocks. A 
necessary condition for existence is that n .I 1 or 3 modulo 6, and indeed, this 
condition is also sufficient, as was demonstrated by Kirkman [5] in 1847. 

There is a vast literature concerning the study of Steiner triple systems and 
their properties. (A comprehensive bibliography is given in IS]). Many 
constructions are known, both direct and recursive. In this section we 
investigate the generation of Steiner triple systems by computer. For purposes 
of comparison, we briefly describe a backtracking algorithm. 

A partial Steiner triple system is a pair ( X , B )  , where as before, B is a set 
of blocks of size 3, but where every unordered pair of distinct blocks is contained 
in a t  most one b!?ck. The following is called a block-by-block backtracking 
algorithm: 

Begin 
6:=O; 
B:=& 
while 6 < (n3-n)/s do 

if there is a Bo such that BU{Bo) is a partial STS then begin 
B:=BU(Bo) ; 
b : = b  + 1 ; 
push (stack, B )  

6 : = b  - 1 ; 
B:= B \ pop (stack) 

end else begin 

end 
end. 
The time required for such a backtracking algorithm to successfully 

construct an STS is an exponential function of n. This remains true even if 
refinements such as look-ahead are included. The basic reason for this is that 
too much time is wasted investigating "dead-ends". 

A hill-climbing approach solves this difficulty. An algorithm could work as 
follows: 

Begin 
b:=O; 
B:=& 
while b < (n2-n)/s do 

if there is a BO such that BU{Bo) is 
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a partial STS then begin 
B:=BU{B,) ; 
b:=b  + 1 

find B, € B and Bog B such that 
BU{Bo} \ {B,) is a partial STS ; 

end else begin 

S:=BU{Bo} \ {B,} 
end 

end. 
The most important feature of the above algorithm is that the 

backtracking step has been eliminated; the size of a partial STS is never 
decreased in the course of the algorithm. 

We must discuss what happens when we cannot add a block to a partial 
STS. We alter B slightly, by replacing a block B1 with another block B,. This 
can be done as follows. First choose a point z which has not yet occurred with 
all other points (such a point is called a live point). There must be two points y 
and z with which z has not occurred. We let Bo = {z,y,z). If y and z have 
not yet occurred together, then we could have added Bo as a new block. Hence 
they have occurred in a block, which we name B,. Then we perform the 
switching operation, replacing B1 by Bo. 

Since this switching operation is so easy to perform, it is not worth our 
while to check that there is no way to extend the partial STS before doing the 
switching operation. So our algorithm works as follows: 

Begin 
b:=O; 
B:=d 
while 6 < (n2-n)/s do begin 

choose a live point 2; 

choose y, z which have not occurred with 2; 

if y, z have not occurred in a block of B then begin 
Bo: = {z , Y , 4  

B:=BU{Bo} ; 
6:= 6 4- 1 

end else begin 
B1:= the block of B which contains y, z ; 
B:= BU{B,} \ {Bl) 

end 
end 
end. 
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An iteration consists of either extending the partial STS or performing a 
switching operation. If we are careful, we can implement this algorithm so that 
the time taken per iteration is constant (i.e. not an increasing function of either 
n or b ). 

We need to keep a table of all live points. This table will not be ordered, so 
we require an nrray which indicates where in the table a given point occurs (this 
is necessary for updating operations). When a point ceases to live, the last point 
in the table is moved to occupy its place. If a point which is aot live becomes 
live again, it is simply added to  the end of the table. Hence, the operation 
"choose a live point" consists just of generating a random integer between 1 and 
the number of live points, and choosing the point in the given position of the 
table. 

For each live point we need a table of points which have not occurred with 
that point, and an array indicating where in the table a given point occurs. 
These are maintained in a fashion similar to the table of live points. 

Of course, we have to keep track of the "current" partial STS we 
construct. We also need to know the block which contains any given pair, in 
order to perform a switching operation. 

Thus the total memory required is proportional to n2, and the total time 
required is proportional to the number of iterations. Unfortunately, we are 
unable to prove any theoretical results concerning this number. It is even 
conceivable that the algorithm will sometimes not terminate. However, this 
does not seem to occur in practice. Using assumptions that blocks are 
independent of each other (which is clearly not true), one would suspect that the 
number of iterations is proportional to n2 log n. This appears to be a good 
estimate. Our results are recorded in Table 1. (We use b to denote (tA2-n)/b). 
The algorithm was programmed using Pascal/VS and run on the University of 
Manitoba Amdahl470-V7 computer. Ten STS of each order were constructed. 

S. Related Problems. 
In this section we discuss several other combinatorial design problems to 

which hill-climbing can be applied. 
A h t i n  square of order n is an n by n array of the integers 1, ..., n,  in 

which each integer occurs once in each row and each column. If we label the 
rows ri (1 5 i S n), and we label the columns c; (1 S i S n), then we can 
write down n2 triples, each of the form {ri,ei,k). Each such triple forms a 
transversal of the three sets R = {q}, C = {ci}, and S = {i), and given two 
elements from different sets, there is  a unique triple containing them. Such a 
collection of triples is called a transversal design, and a Latin square can be 
constructed from any transversal design by letting the three sets represent (in 
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Table 1 
Construction of Steiner Triple Systems 

1 

31 

aug. # o/ I A -  (n'-n) I aug. time I aug. msec. I aug.+ iterations 
iten 

155 I 486 I -157 I .323 I A21 
I I I I . ----, 

I 1 I I I 

61 I 610 I 2317 1 .437 I .188 I .502 

121 

151 

181 

01 I 1365 I 5588 I 1.52 I .272 I .567 I 
~ ~ _ _ _ _  

2420 0753 2.64 .271 .517 

3775 15830 2.85 .180 .500 

5430 23064 4.12 .178 .403 

241 

271 

211 I 7385 I 32120 I 5.70 I .180 I .488 I 
~ ~~ 

0640 41430 6.35 .153 .a68 

12105 54267 12.04 .221 .472 

any order) rows, columns, and symbols, and f i g  one cell of the Latin square 
for each triple of the transversal design. 

One can construct a transversal design by a hill-climbing method, using a 
heuristic very similar to that used for STS. If R, C, and S represent the three 
sets, we can easily find ri, ci, and k, so that at most one pair has occurred in a 
given partial transversal design. If a pair has already occurred, then perform the 
switching operation, as before. 

A more difficult problem is the construction of strong starters. Let 
n = 2t + 1 be an odd positive integer. A strong starter in En is a set 
S = 

(i) {zi,yi : 1 L i L t }  = L, \{O} , 
(ii) {=(zj-gj) : I L i L t )  = L, \{O} , 
(iii) q + y i  # zj+gj if i # j ,  and z;+y; # 0 ,  for any i . 

Strong starters are used extensively for the construction of Room squares, 
Howell designs, onefactorizations of complete graphs, and related objects. It is 
suspected, but still unproven, that there exists a strong starter of any odd order 
n L 11. 

Backtracking algorithms break down by order 100, becoming impractical 
(see 121). In [3], Dinitz and Stinson describe a hill-climbing algorithm for the 
construction of strong starters. Here one heuristic does not appear to be 
sufficient. However, several heuristics are described, and incorporated into an 
algorithm which uses all of them. The algorithm does not succeed 

{zj,yj} : 1 S i S t }which satisfies 
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approximately 10% of the time. However, when it does succeed, it appears to 
require approximately n log n iterations (applications of the heuristics). In [3], 
the implementation was not aa efficient as possible (there were some linear 
searches, which are very inefficient). However, this algorithm can be 
programmed so that each iteration takes constant time. With a more efficient 
programme, the results in Table 2 were obtained (two strong starters of each 
order were constructed). 

Table 2 
Cocstruction of Strong Starters 

n I average # iterations I average time(sec) I time/iteration I 
I 1 I 

1001 I 8570 I .65 I .75 x 10-4 I 
I I I 

3001 I 21620 I 1.31 I .60 x 10-4 1 
5001 I 28624 I 1.75 I .61 x lo-’ I 
8001 I 56550 I 3.67 I .65 x lo-‘ I 

I I I 

10001 I 95524 I 7.05 1 .73 x 10-4 1 
These times are a significant improvement over those obtained in [3], 

where, for example, it took 58 seconds to construct a strong starter of order 
10001. 

Another interesting question is the completion of partial designs: given a 
partial STS ( X , B ) ,  is there an STS ( X , B , )  such that B E B,  ? This 
problem is NP-complete [l]. (Also, the problem of completing a partial Latin 
square is NP-complete). We can try to complete a partial design using the same 
heuristic as before, except that some switching operations are not allowed - the 
blocks of the partial design cannot be altered. We suspect that, if a partial 
design can be completed, this method will either find a completion quite quickly, 
or reach a “dead end” from which it cannot escape. Repeated applications of 
the algorithm should, in most cases, provide a completion of any design which 
can be completed. 

We have tried to complete partial Steiner triple systems by this method, 
with differing amounts of success (one can certainly do fr?r better by this 
approach than by backtracking). 

First, we generate a partial STS containing a certain number of blocks, 
which we denote by PMED. We then attempt to complete this partial design. 
We specify a maximum number of iterations (which depends on t and FIXED) 
denoted by NITER. If the design is not completed in NITER iterations, we quit 
and start over. If a given partial design is nbt cornplcted in 10 tries, we 
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Percentage of 
blocks FIXED 

150 50 

abandon it. We are thus allowing for the possibility of “dead ends” csused by 
the existence of the fixed blocks. 

We observe a very interesting phenomenon. The probability of successfully 
completing a partial design by this method (as a function of F‘ED) is a t  first 
very close to 1, and a certain later point, drops very rapidly to 0. For 
n = 43 ( b  = 301) we fipd the results given in Table 3. 

Probability o j success ful completion 
10 tries for each design 

.98 

I Table 3 1 

I 155 I 51.6 I .83 I 
I 

160 I 53.3 I .50 I 
I I 

165 I 55 I 0.0 1 

not 
What the above results do not show is why the uncompleted designs were 
complete. Some of them may in fact be completable, even though the 

algorithm was unsuccessful. To test this possibility, we did the following. An 
STS is generated, and then a random subset of blocks is selected to be our 
partial designs. Such a partial design is completable, so we hope our algorithm 
will succeed. We find that the probability of completing such a partial design in 
any given try (as a function of FIXED) is a t  first very close to 1, then drops to a 
minimum (of approximately .005) and then later inereasps very quickly back to 
1. For n=43 (b=301),  our results are tabulated below. (For each value of 
FIXED, a t  least 30 designs were considered). 

Intuitively, these results seem reasonable. When FIXED is small, there is 
no difficulty completing the partial design. As FIXED is increased, there are 
fewer switching operations possible, and it is more likely that we reach a “dead 
end”. As FIXED is increased further, there are still fewer possible switching 
operations. But there is a t  least one completion, so the correct switching 
operations are “forced”. 

Even in the most difficult cases (where FIXED is between 190 and 200), 
repeated application of this approach would eventually yield a completion. 
Particular examples have required over 100 tries before a completion was found. 

The last problem we consider is the generation of non-isomorphic STS. 
Two STS (X,B,) and (X2,B2) are said to be isomorphic if there is a 
bijection 4 : Xl-X2 such that { z , y , r }  € Bl if and only if 

t 4 b ) I  4b),  4(4} 4 
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135 

140 

145 
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44.8 .729 

46.5 .667 

48.1 .526 

I Table 4 I 

170 

180 

190 

I Completion of partial designs, all completahle I 

56.5 .069 

59.8 .037 

63.1 .005 

215 

220 

I 150 I 49.8 I .441 I 

71.4 .368 

73.1 .500 

I I 

155 I 51.5 I .354 I 

225 

230 

240 

I I 

160 I 53.2 I .300 I 

74.7 384 

76.4 .768 

79.7 .969 

I 165 I 54.8 I .loo I 

I 200 I 66.4 I .005 I 
I I 

210 I 69.7 I .054 

There is an algorithm to test isomorphism of STS in subexponential time, but 
there is no known polynomial algorithm. In practice, one often proves that two 
designs are non-isomorphic by the use of invariants, msny of which can be found 
in polynomial time. 

One invariant, called a fragment uector, is discussed in [4]. A fragment in 
an STS is a set of four blocks, and six points, in which any two blocks contain a 
common point, and any point occurs in two of the four blocks. For each point 
2 ,  let f ( z )  denote the number of fragments containing 2. The fragment 
vector is a l i t  of the integers f (z )  in non-decreasing order. Clearly, 
isomorphic STS have the same fragment vectors. Also, one can enumerate all 
fragments in an STS of order n in time proportional to ns , so it is a fairly 
fast invariant. For triple systems up to order 15, it is also effective: two STS 
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of order n S 15 are isomorphic if and only if they have the same fragment 
vectors. 

We have investigated STS of order 15, generated by our algorithm, by 
means of fragment vectors. One would hope that an STS generated by a hill- 
climbing technique is a random STS. If we make a list of all STS of order 15 
(on a fixed symbol set) they can be collected into 80 isomorphism classes 
C,, ..., Cso (see [6]). The size of class C; is 15!/i Cil where Ci is the 

group of automorphisms of any design in class C; . A truly random algorithm 
would produce an STS in class C; with probability 

We generated and classified 10000 STS of order 15. The total time taken was 
143 seconds, so designs are constructed and classified a t  the rate of over 70 per 
second. Our results are presented in Table 5. (The numbering of the STS is the 
“traditional” numbering, as is followed in [Sl). The “expected” values are 
calculated according to the above probabilities. We do not obtain an acceptable 
goodness of fit. Designs with large automorphism groups are not constructed as 
often as we would expect. Nevertheless, there is a good overall correlation 
between the observed values and the reciprocal of the order of the 
automorphism group. 

We feel that hill-climbing, used in conjunction with fragment vectors, 
provides a very good method of generating large numbers of non-isomorphic 
STS of a given order. One can retain in memory a binary tree of fragment 
vectors (ordered lexicographically). When an STS is generated, it can be 
checked very quickly whether it has a new fragment vector. If so, then the STS 
can be written onto a tape or disk for future use. The use of an invariant 
provides a significant saving in both time and memory. Of course, the invariant 
will fail to distinguish between certain non-isomorphic STS. 
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3 

4 

I Table 5 I 

96 2 0 

8 27 5 

6 

7 

I I I 

5 1  32 I 7 1  2 

24 9 5 

288 1 1 

11 

12 

I 8 1  4 )  54 I 25 
I I I 

2 108 80 

3 72 30 

I 9 1  2 1  108 I 68 

14 

15 

16 

I 10 I 2 1  108 I 68 
I I I 

12 18 10 

4 54 37 

168 1 0 

17 

18 

I 13 I 8 1  27 I 13 

24 9 10 

4 54 33 

24 

25 

26 

~ 

1 217 190 

1 2 17 176 

1 217 164 

I I I 

19 [ 12 I 18 1 12 

I 20 I 3 1  72 I 52 

t 22 I 3 1  72 I 64 
I I I 

I 23 I 1 1  217 I 199 

I 27 I 1 217 I 214 
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System 
Number 

28 

I Table 5 (continued) I 

Order of Number of Number of 
automorphism group designs ezpected designs observed 

1 217 189 

I 10000 Steiner triple systems of order 15 1 

29 

30 

3 72 63 

2 108 100 

32 

33 

I I I 

31 I 4 1  54 I 50 

1 217 200 

1 217 221 

34 1 

35 3 

217 190 

72 69 

I 36 I 4 1  54 I 56 I 

38 

39 

t 37 I 12 I 18 I 23 
I 

1 217 202 

1 217 206 

40 

41 

1 217 179 

1 217 I 217 

I 42 I 2 1  108 I 130 
I I I 

43 

44 

6 36 36 

2 108 116 

I 45 I 1 1  217 I 249 
I I I 

48 

49 

I 46 I 11 217 I 252 I 

1 217 259 

1 217 237 

I 47 I 1 1  217 I 228 
I 

50 

51 

1 217 243 

1 217 209 
I 

52 1 

53 1 

217 238 

217 249 

54 1 217 I 209 
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Number 
55 

56 

Table 5 (continued) i 

outomorphism group deeigns ezpkted designs obet?&d 
1 217 243 

1 217 233 

I 10000 Steiner triple systems of order 15 i 

57 

58 

1 217 254 

1 2 17 254 

62 

63 

t 50 I 3 1  72 I 48 
I I I 

3 72 00 

3 72 86 

I 60 I 1 1  217 I 255 I 

64 

65 

I I t 6 l i  21 I 10 I 12 

3 72 67 

1 217 230 
1 

66 

67 

1 217 230 

1 217 217 

68 

60 

1 217 258 

1 217 267 

70 

71 

1 217 238 

1 217 238 

72 

73 

74 

~ 

1 217 23 1 

4 54 58 

4 54 71  

I I I 

80 60 4 0 

75 

76 

77 

We have generated STS of order 10 in this fashion. 4000 STS were 
generated and classified according to fragment vectors. (The time taken was 
108 seconds, a rate of about 37 per necond). 3645 distinct fragment vectors 

3 72 91 

5 43 45 

3 72 85 

78 

78 

4 54 64 

36 6 3 
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were found, so we know that over 90% of the STS generated are non- 
isomorphic. There are, in fact, over 280000 non-isomorphic STS of order 19, so 
we expect that most of the remaining 355 STS are aiso non-isomorphic. The 
number 3645 is dependent on two factors: the tendency of the hill-climbing 
algorithm to  generate non-isomorphic designs, and the effectiveness of the 
invariant. It is interesting to  note that, of the first 500 STS generated, 496 had 
distinct fragment vectors. 

4. Dbcuseion. 
There is a metatheorem among combinatorialists that, for any given class 

of designs, there is an integer N such that one can solve the case N by hand, 
the case N+ 1 by computer, and the case N + 2  cannot be done. This is more 
formally referred to  as “the combinatorial explosion” and indicates the futility 
of back-tracking methods for constructing designs. 

Hill-climbing exemplifies a completely different philosophy from back- 
tracking. Hill-climbing is non-enumerative whereas backtracking (in theory) 
finds all solutions. Hill-climbing implicitly assumes the existence of a solution, 
whereas backtracking can (in theory) prove that no solution exists. These points 
give some clue as to when hill-climbing is a feasible technique: there must be a 
solution, and, most likely, there must be many solutions. 

However, the overriding factor is the heuristic or heuristics used in the 
algorithm to “build up” the design. The heuristics should be fast and applicable 
in any situation. In the situations where hill-climbing has not proved effective 
(see [8] and IS]), the problem is the difficulty of finding good heuristics. 

In the problems investigated in this paper, we had a very simple, fast, 
effective heuristic. For more difficult design problems, perhaps a combination of 
hill-climbing and back-tracking can be used. 

Hill-climbing is a technique which has been useful in many types of 
optimization problems (see [71); it is our hope that it will prove useful in the 
study of combinatorial designs. 
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