


ALGORITHMS IN
COMBINATORIAL DESIGN THEORY



NORTH-HOLLAND MATHEMATICS STUDIES 114
Annals of Discrete Mathematics (26)

General Editor: Peter L. HAMMER
Rutgers University, New Brunswick, NJ, U.S.A.

Advisory Editors

C. BERGE, Université de Paris, France

M. A. HARRISON, University of California, Berkeley, CA, U.S.A.

V. KLEE, University of Washington, Seattle, WA, U.S.A.

J.-H. VAN LINT, California Institute of Technology, Pasadena, CA, U.S.A.
G.-C. ROTA, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

NORTH-HOLLAND - AMSTERDAM o NEW YORK ® OXFORD



ALGORITHMS IN
COMBINATORIAL DESIGN THEORY

edited by

C.J.COLBOURN and M. J.COLBOURN
Department of Computer Science

University of Waterloo

Waterloo, Ontario

Canada

NORTH-HOLLAND —~AMSTERDAM ¢ NEW YORK e OXFORD



© Elsevier Science Publishers 8.V., 1985

Allrights reserved. No part of this.publication may be reproduced, stored in a retrieval system,
ortransmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owner.

ISBN:0444 878025

Publishers:

ELSEVIER SCIENCE PUBLISHERS BV.
P.0.BOX 1891

1000BZ AMSTERDAM

THE NETHERLANDS

Sole distributors forthe U.S.A. and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
52VANDERBILT AVENUE

NEW YORK, N.Y. 10017

US.A.

Library of Congress Cataloging in Publication Data
Main entry under title:

AMlgorithms in combinatorial design theory.

(Annals of discrete mathematics ; 26) (North-Holland
mathematics studies ; 11k%)

Includes bibliographies.

1. Combinatorial designs and configurations--Data
processing. 2. Algorithms. I. Colbourn, C. J.
(Charles J.), 1953~ . II. Colbourn, M. J. (Marlene
Jones), 1953- . III. Series. 1IV. Series: North-

t tudies ; 11bL.
AL 13 ) S LA S 85-10371
ISBN O-b44-BT802-5 (U.8.)

PRINTED IN THE NETHERLANDS



PREFACE

Recent years have seen an explosive growth in research in combinatorics and graph theory.
One primary factor in this rapid development has been the advent of computers, and the
parallel study of practical and efficient algorithms. This volume represents an attempt to
sample current research in one branch of combinatorics, namely combinatorial design
theory, which is algorithmic in nature.

Combinatorial design theory is that branch of combinatorics which is concerned with the
construction and analysis of regular finite configurations such as projective planes, Hada-
mard matrices, block designs, and the like. Historically, design theory has borrowed tools
from algebra, geometry and number theory to develop direct constructions of designs.
These are typically supplemented by recursive constructions, which are in fact algorithms
for constructing larger designs from some smaller ones. This lent an algorithmic flavour
to the construction of designs, even before the advent of powerful computers.

Computers have had a definite and long-lasting impact on research in combinatorial design
theory. Primarily, the speed of present day computers has enabled researchers to construct
many designs whose discovery by hand would have been difficult if not impossible. A
second important consequence has been the vastly improved capability for analysis of
designs. This includes the detection of isomorphism, and hence gives us a vehicle for
addressing enumeration questions. It also includes the determination of various proper-
ties of designs; examples include resolvability, colouring, decomposition, and subdesigns.
Although in principle all such properties are computable by hand, research on designs with
additional properties has burgeoned largely because of the availability of computational
assistance.

Naturally, the computer alone is not a panacea. It is a well-known adage in design theory
that computational assistance enables one to solve one higher order (only) than could be
done by hand. This is a result of the “combinatorial explosion”, the massive growth rate
in the size of many combinatorial problems. Thus, research has turned to the development
of practical algorithms which exploit computational assistance to its best advantage. This
brings the substantial tools of computer science, particularly analysis of algorithms and
computational complexity, to bear.

Current research on algorithms in combinatorial design theory is diverse. It spans the many
areas of design theory, and involves computer science at every level from low-level imple-
mentation to abstract complexity theory. This volume is not an effort to survey the field
exhaustively; rather it is an effort to present a collection of papers which involve designs
and algorithms in an interesting way.



vi Preface

It is our intention to convey the firm conviction that combinatorial design theory and
theoretical computer science have much to contribute to each other, and that there is a
vast potential for continued research in the area. We would like to thank the contributors
to the volume for helping us to illustrate the connections between the two disciplines.
All of the papers were thoroughly refereed; we sincerely thank the referees, who are always
the “unsung heroes and heroines” in a venture such as this. Finally, we would like es-
pecially to thank Alex Rosa, for helping in all stages from inception to publication.

Charles J. Colbourn and Marlene Jones Colbourn
Waterloo, Canada
March 1985
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Computation of Some Parameters of Lie Geometries

A.E. Brouwer and A.M. Cohen

Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
THE NETHERLANDS

Abstract

In this note we show how one may compute the parameters of a finite Lie
geometry, and we give the results of such computations in the most
interesting cases. We also prove a little lemma that is useful for showing
that thick finite buildings do not have quotients which are (locally) Tits
geometries of spherical type.

1. Introduction

The finite Lie geometries give rise to association schemes whose parameters
are closely related to corresponding parameters of their associated Weyl groups.
Though the parameters of the most common Lie geometries (such as projective
spaces and polar spaces) are very well known, we have not come across a
reference containing a listing of the corresponding parameters for geometries of
Exceptional Lie type. Clearly, for the combinatorial study of these geometries
the knowledge of these parameters is indispensible. The theorem in this paper
provides a formula for those parameters of the association scheme that appear
in the distance distribution diagram of the graph underlying the geometry. As a
consequence of the theorem, we obtain a simple proof that the conditions in
lemma 5 of [2] are fulfilled for the collinearity graph of any finite Lie geometry
of type A,,, D,, or E,,, 6sm=8. (See remark 3 in section 4. The proof for the
other spherical types, i.e. C,, Fy, and G, is similar.) By means of the formula in
the theorem, we have computed the parameters of the Lie geometries in the
most interesting open cases for diagrams with single bonds only (A,, and D, are
well known, and are given as examples). The remaining cases follow similarly,
but the complete listing of all parameters would take too much space.
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2. Introduction to Geometries (following Tits [10])

A geometry over a set A (the set of types) is a triple (T',* t) where I is a set
(the set of objects of the geometry), * is a symmetric relation on I' (the
incidence relation) and t is a mapping (the {ype mapping) from I' into A4, such
that for x, y € T we have (t(x)=t(y) & x*y) if and only if x=y. (An example is
provided by the collection I’ of all (nonempty proper) subspaces of a finite
dimensional projective space, with t: T'-A=N, the rank function, and *
symmetrized inclusion (i.e., x*y iff x C y or y C x).)

Often we shall refer to the geometry as I rather than as ([',*,t).

A flag is a collection of pairwise incident objects. The residue Res(F) of a
flag F is the set of all objects incident to each element of F. Together with the
appropriate restrictions of * and t, this set is again a geometry.

The rank of a geometry is the cardinality of the set of types A. The
corank of a flag F is the cardinality of AM(F). A geometry is connected if and
only if the (looped) graph (I',*) is connected. A geometry is residually connected
when for each flag of corank 1, Res(F) is nonempty, and for each flag of corank
at least 2, Res(F) is nonempty and connected.

A (Buékenhout-Tits) diagram is a picture (graph) with a node for each
element of A and with labelled edges. It describes in a compact way a set of
axioms for a geometry I' with set of types A as follows: whenever an edge
(d,d;) is labelled with D, where D is a class of rank 2 geometries, then each
residue of type {d,d;} of I must be a member of D. (Notice that a residue of
type {d,,d,}iis the residue of a flag of type A\{d,,d,}.) In the following we need
only two classes of rank 2 geometries. The first is the class of all projective
plancs, indicdted in the diagram by a plain edge. The second is the class of all
generalized digons, that is, geometries with objects of two types such that each
object of one type is incident with every object of the other type. Generalized
digons are indicated in the diagram by an invisible (i.e., absent) edge.

For example, the diagram

OO0

is an axiom system characterizing the geometry of points, lines, and planes of
projective 3-space. Note that the residue of a line (i.e., the points on the line
and the planes containing the line) is a generalized digon. Usually, one chooses
one element of A and calls the objects of this type points. The residues of this
type are called lines. Thus lines are geometries of rank 1, but all that matters is
they constitute subsets of the point set. In the diagram the node corresponding
to the points is encircled.
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As an example, the principle of duality in projective 3-space asserts the
isomorphism of the geometries

Grassmannians are geometries like

O—0—0

(Warning: points are objects of the geometry but lines are sets of points, and
given a line, there need not be an object in the geometry incident with the same
set of points.)

Let us write down some diagrams (with nodes labelled by the elements of
A) for later reference.

OO0

n
» (OO~
1 ) 3 n—2  n-1
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Eg -
1 2 3 4 5 6 7
(Warning: in different papers different labellings of these diagrams are used.)

If one wants to indicate the type corresponding to the points, it is added as
a subscript. For example, D, denotes a geometry belonging to the diagram

1 ¥ 1
O——0O
1 2 3

It is possible to prove that if I is a finite residually connected geometry of rank
at least 3 belonging to one of these diagrams having at least three points on
each line then the number of points on each line is ¢+ 1 for some prime power ¢,
and given a prime power ¢ there is a unique geometry with given diagram and
g+ 1 points on each line. We write X,(g) for this unique geometry, where X, is
the name of the diagram (cf. Tits [9] Chapter 8, and [2]).

[For example, A,(gq) is the geometry of the proper nonempty subspaces of
the projective space PG(n ,¢). Similarly, D,(q) is the geometry of the nonempty
totally isotropic subspaces in PG(2n-—1,9) supplied with a nondegenerate
quadratic form of maximal Witt index. Finally, D, y(q) is an example of a polar

space.]
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A remark on notation: ‘:=' means “is by definition equal to” or “‘is defined

3. Distance Distribution Diagrams for Association Schemes

An association scheme is a pair (X {R,,...,R,}) where X is a set and the R;
(0=i{=3s) are relations on X such that {R,,..,R,} is a partition of XXX
satisfying the following requirements:

(i) Ry = I, the identity relation.

(ii) for all ¢, there exists an ¢’ such that R,-T = R,

(iii) Given z,y € X with (z,y) € R;, then the number y;}, = |{z: (z,2) € R;
and (y,z) € R,}| does not depend on z and y but only on ¢.

Usually we shall write v for the total number of points of the associated scheme,

ji.e. v = |X|. The obvious example of an association scheme is the situation

where a group G acts transitively on a set X. In this case one takes for

{R,,...,R,} the partition of XXX into G-orbits, and requirements (i)-(iii) are

easily verified.

Assume that we have an association scheme with a fixed symmetric
nonidentity relation R, (i.e, R] = R,). Clearly (X,R,) is a graph. Now one
may draw a diagram displaying the parameters of this graph by drawing a circle
for each relation R;, writing the number k; = l{z: (z,2) € R;}] = p2 where z
€ X is arbitrary msnde the circle, and joining the clrclw for R; and R; by a line
carrying the number p,, at the (R;)-end whenever p,, #0. (Note that k,p,, ==
k;p}, so that p,, is nonzero iff pJ, 1s nonzero.) When ¢ =4, one usually omits

J
the line and just writes the number p{, next to the circle for R;.

For example, the Petersen graph becomes 2 symmetric association scheme,
i.e., one for which Rf = R; for all { when we define (z,y) € R; iff d(z,y) = ¢
for i=0,1,2. We find the diagram

O
2

More generally, a graph is called distance regular when (z,y) € R; iff d(z,y) =
{ (0si{=diam(G)) defines an association scheme.

When (X,R,) is a distance regular graph, or, more generally, when the
matrices I, A, A%, ..., A® are linearly independent (where A is the 0-1 matrix of
Ry, ie., the adjacency matrix of the graph), then the pj-l suffice to determine all
Pj- On the other hand, when the association scheme is not symmetric but R
is, then clearly not all R; can be expressed in terms of R,.
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In this note our aim is to compute the parameters pj-,, for the Lie
geometries X, ,(¢) where X, is a (spherical) diagram with designated ‘point'-
type n, and the association scheme structure is given by the group of (type
preserving) automorphisms of X,, ,(g) - essentially a Chevalley group. In the
next section we shall give formulas valid for all Chevalley groups and in the
appendix we list results in some of the more interesting cases. Let us do some
examples explicitly. (References to words in the Weyl group will be explained in
the next section.)

Usually we give only the p;:,; the general case follows in a similar way.

«O—0—-O

1 2 3 n
The collinearity graph of points in a projective space is a clique: any two points
are adjacent (collinear). Thus our disgram becomes

n+l_ n_
v= qq—l l,k= 1 l.,=v—l.

“O-0-0-0

1
Now we have the graph of the projective lines in a projective space, two

projective lines being adjacent whenever they are in a common plane (and have
a projective point in common).

Example 1.

Example 2.

[N.B.: the lines of this geometry are pencils of g+1 projective lines in a
common plane and on a common projective point.|

Our diagram becomes

k ©
ko1 - g% (g""2=1Mg-1) (g+1)

weyl words: 31 “2" “2312"
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p=—a"=1)g"—1)
(¢*=1)g-1)

n-1_
k=g(g+ni—2L
g—1
n—2_1
>.=q—l+q2+qz‘qq—_l—

q"'l—l gn-z_l 4
-1 g¢-1
For ¢=1 (the ‘thin’ case) this becomes the diagram for the triangular graph:

ot

[Clearly X;:=p'i,-=k— Z‘p'l j- Often, when ); does not have a particularly nice
LD
form, we omit this redundant information.]

k2=

Notice how easily the expressions for v,k,k2,\ can be read off from the
Buekenhout-Tits diagram: for example, A=\(z,y) lirst counts the ¢—1 points on
the line zy, then the remaining ¢ points of the unique plane of type {1,2}
containing this line and finally the remaining g2 points of the planes of type
{2,3} containing this line.

Example 3.

This is the graph of the j-flats (subspaces of dimension j) in projective n-space,
two j-flats being adjacent whenever they are in a common (j+1)-flat (and have
a (j—1)flat in common). The graph is distance regular with diameter
min(j,n+1—j). Parameters are

o= (q"*f-l)(qf'—l)---(q"”"'-1)=:[n4;1]
(0=’ "= 1).e-1) A U
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)

;
. . . —i—it
bi:=P'l.o'+l=qz'+l Jl']q ln Jl. l]q

€ =pii-1= H:

The parameters for the thin case have g=1 a‘nd binomial instead of Gaussian
n+l
il

The Weyl words (minimal double coset representatives in the Weyl group)
have the following shape: for double coset ¢ in A, ; the representative is

coefficients; we find the Johnson scheme

4

E A NLIUNSLIEI WS WAL TE S S LI S WETE S TN B

Note that w; has length ¢2, the power of ¢ occurring in k;.

Example 4.

1 2 n-—2 n-=1
(n23; Dy, is the direct product A, ;X A, ,, i.e., a (g+1)X(g+1) grid.)

"—1)(g""'+1
=D, = LU

n-1 n-2
-1 +1
"=¢I#Dn-1,1’=v(L q)_(ql )

Diagram:



Some parameters of Lie geometries

g=1+¢°#D,_,, (g—=1)#D,_,,
v=2n,k=2n-2

2n—4
This is Ky, minus a complete matching.

Thin case:

The Weyl words are:
*" for double coset 0,
*“1" for double coset 1, and
“123 - n—-3n—-2nn—=1n-2 --- 1” for double coset 2.

Example 5.
n
DwQ-@--- (n=5)
1 2 n—2 n—1
p= I0na®#Dn-1a _ ("= 1)(g" '+ 1)(g" "I 1)(g" 241)

#4,, (¢*-1)(g-1)

"2-1)(g" "+
g—1

k=q#A, #D, _5,=q(g+1) U
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Diagram (for n >4):

Double coset 1 contains adjacent points, i.e., lines of the polar space in a
common plane. Shortest path in the geometry: 2-3-2 (unique).

Double coset 2 contains the points at ‘polar’ distance two, belonging to the
Weyl word “2312", i.e., in a polar space Ay,. (I.e., lines of the polar space in a
common t.i. subspace). Thus
n-2

" =1 n-4 4
+1
71 a1 Je

2"-5_ l
ky=#D, _,.ky(A;2)= 1

Shortest path in the geometry: 2-4-2 (unique). Double coset 3 contains points
incident with a common 1-object, so that the Weyl word is the one for double
coset 2 in D, _y; (relabelled):

“23 - n=3n—-2nn-1n-2 -+ 2"
(These are intersecting lines not in a common t.i. plane.) Thus
ky=#Ay ky(Dy -y 1)=(g+1)g "%
Shortest path in the geometry: 2-1-2 (unique).

Double coset 4 contains points with shortest path 2-1-3-2 (unique); the
Weyl word is

“283 - n=3n—2nn-1n-2 - 312"

the reduced form of the product of the word we found for double coset 3 and the
word 212" describing adjacency in A;5. Thus
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n-2
_l - -
k4=#Du-2,142(‘Du—1,1‘(4+1)‘02'Dn—3,1)='qF_1_(9" S+1)(g+ 1) 3
Double coset 5 contains the remaining q"'" points (the lines of the polar
space in general position). Shortest path in the geometry: 2-1-2-1-2 (not
unique). The Weyl word is

“23 -+ - n-1123 --- n—=2an-2 --- 21n-1--- 32"
of length 4n —7.
The thin case is:
v=2n(n—1), k=4(n-2)

2(n ~2)}n—3)

Example 6.
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As before we find
N LW it VI il W
g®-1 91 g-1
and k=¢g(q+1)°.
This time the thin diagram is
v=24, k=8

and we see that the number of classes is one higher than before. This is caused
by the fact that we can distinguish here between shortest paths 2-4-2 and 2-3-2,
while in the general case (n&5) both 2—n—2 and 2—(n—1)—2 are equivalent
to 2—3~—2. Thus, our previous double coset 2 splits here into two halves.
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Double coset Weyl word Cardinality  Shortest path {unique)
0 1 2
1 “ugn q(g+1)® 2-{1,3,4)}-2
2 “2312" a*g+1) 2-4-2
3 “2412" g +1) 2-3-2
4 “92432" ' g +1) 2-1-2
5 “24312" ?%(q+1)° 2-1-{3,4}-2
6 “231242132" ¢

Diagram:

(g+1)%(g—1)

Example 7.

1 2 3 n—2 n—1

This graph is distance regular of diameter [-—2"-]

We have
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v=(¢" " '+1)(¢""2+1)..(g+1)

2],
b =q4:+l[n-2ll
7
;= 22'

q

Note that when n=2m, then k,,,=q"'(2"""). Also, note that in the case n=4
these parameters reduce to those we found for D ;.

Two points have distance =i (for 0si=n) iff there is a path
n—(n—2{)—n in the geometry. When n is even, then two points at distance

% (“in general position”) are not incident to a common object. (Note that
k=#A,_,2q and, more generally, that
ki =#A,_y 9iki(Do; 2;)=q"® " VA, _ 4.

The values for b; and ¢; follow similarly. The value for v follows by induction,
and when n=2m then k,, is found from k,,=v— 3] k;)
i<m
The Weyl word corresponding to distance § is the same ome (after
relabelling) as in Dy; o;, namely:

‘nn-2n-1n-3n-2nn—-4n-3n-2n-1---"
of length
1+2+3+4+ - +2i-1 = §(2i—1).

In the thin case we have v = 2"~} k= [g], and the graph is that of the binary

vectors of even weight and length n where the distance is the Johnson distance,
i.e., half the Hamming distance.
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Example 8 (see Tits [8]).

This graph is strongly regular (i.e., distance regular with diameter 2). We have
12_4 9_
o= .94_1.‘1_1
¢*-1 ¢—1
and

8
-1
k=q#Dg 5= ng_—l(q’+ 1).

The thin case gives diagram

v=27 1 /16\ 10
16 1 8
10 8
the Schlafli graph; this is the complement of the collinearity graph of the
generalized quadrangle GQ(2,4). In general we find the diagram

l/\q’#A4'|
1 k k
Q \x/ #m,@

where ky= qs#DM and A=¢—1+ q2#A4.2.
Double coset 1 corresponds to the shortest path 1—-2—1 and has Weyl word

“1". Double coset 2 corresponds to the shortest path 1=-5—1 and has Weyl
word *12364321", as in Dy ;.

Example 9.



16 A.E. Brouwer and A M. Cohen

1 2
This graph has

o_
v=LSHe (e + 1+ )
and
5
k=q#Asy=q(g*+1)(¢*+ 1)1‘1—_—11

The thin case gives diagram
9 9

20 @ 17N\! 1/~ 20
0

with v = 72.

In general we find

with k,= #AM#A“q‘ and kg=¢'%k and A=g—1+¢*(¢®+g+1)%.. Double
coset 1 corresponds to shortest path 6-3-6 and has Weyl word *6". Double coset
2 corresponds to shortest path 6-{1,5}-6 and has Weyl word “634236" (of D, ).
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Double coset 3 corresponds to shortest path 6-1-4-8 (or, equivalently, 6-5-2-8)
and has Wey! word 6345 234 1236". Double coset 4 has Weyl word *'8345 234
1236345 234 1238"'.

Example 10.
The case of type Fy; has been treated in Cohen [6].

Up to now all our computations were easy and straightforward, mainly
because of the limited permutation ranks (number of classes of these association
schemes) and the fact that A,,, D, ;, and Eg; have diameter at most two.
Continuing in this vein we quickly encounter difficulties. E;, is still distance
regular with diameter three and E; 4 and Eg,; have diagrams like Egq (and
these three cases are easily done by hand) but for instance E7 4 has 149 classes
(double cosets) and all geometric intuition is lost; in the next section we describe
how parameters for these Lie geometries can be mechanically derived by means
of some computations in the Weyl group. In a way, this means that it suffices
to consider the case g=1. Now everything is finite and a computer can do the
work.

In the appendix we give computer output describing Ey,, E;4, E7 4, Eg,,
Eg3, and Egg, in other words, the geometries belonging to the ‘end nodes’ of the
diagrams E,; and Eg. For E; we also computed the parameters on the
remaining nodes, but listing these would take too much room. We therefore
content ourselves with the presentation of the permutation ranks for the
Chevalley groups of type F,, E, (6sn=8); to each node r in the diagram below
is attached the permutation rank of the Chevalley group of the relevant type on
the maximal parabolic corresponding to r.

O-CE0-O

5 17 17 5
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10

4 13 50 149 27 5

35

Eg
5 26 122 547 1437 134 10

4. Reduction to the Weyl group

In this section, G is a Chevalley group X,(g) of type X, over a finite field
F,. We shall rely heavily on Carter [4], to which the reader is referred for
details. Though with a little more care, all statements can be adapted so that
they are also valid for twisted Chevalley groups, for the sake of simplicity, we
shall only consider the case of an untwisted Chevalley group G. To G we can
associate a split saturated Tits system (B,N,W,R), cf. Bourbaki [1], consisting
of subgroups B,N of G such that G is generated by them, and of a Coxeter
system (W,R) with the following properties:

(i) H=BNN is a normal subgroup of N and W=N/H.
(ii) For any weW and reR,

(ii)’ BwBrB € BwBUBuwrB

(ii)’*'BCHB
(iii) (split) There is a normal subgroup U of B with B=UH and UNH = {1}.

(iv) (saturated) m “B=H.

weW
Here and below, YA stands for wAw™! if A is a subset of G invariant under
conjugation by H. Notice that “B and Bw are well defined. We shall briefly
recall how a Tits system may be obtained. Start with a Coxeter system (W,R)
where W is a Weyl group of type X,,. Let @ be a root system for W. A set of
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mutually obtuse roots corresponding to the subset R (of fundamental
reflections) forms a set of fundamental roots. Now any root ae® is an integral
linear combination of the fundamental roots such that either all coefficients are
nonnegative or all coefficients are nonpositive. In the former case, a is called
positive, denoted a >0; in the latter case, a is called negative, denoted a <0.

Now choose a Cartan subgroup H in G, and denote by X, for aed the root
subgroup with respect to a (viewed as a linear character of H). Thus H
normalizes each X,. Next, let N be the normalizer of H in G. Then W= N/H
permutes the X, (ae®) according to YX, = X, (weW).

Now U= JJ X, is a subgroup of G normalized by H, so that B=UH is a

a>0
subgroup of G with BAN=H. This explains how B,N,W,R,U occurin G. We

need some more subgroups of G. Given weW, set
Ug:= JI X,
a>0,w 'a<0
It is of crucial importance to the computations below that
|U; | =¢'®)

for every weW, where /(w) denotes the length of w with respect to R. (For a
proof, see Carter [4] 8.8; notice that our definition of U, differs from Carter’s
in that our U,, coincides with his U_-1.) Observe that U, is a subgroup of U,
for if we let wg denote the unique longest element in W with respect to [, then
wy is an involution satisfying U, = U N ““°U (and also U N U = {1}). Fix
reR and write J = R\{r}, W; = <J>, the subgroup of W generated by J, and
P=BW,;B. Then P is a socalled maximal parabolic subgroup of G (associated
with r). We are interested in the graph I'=T(G,P) defined as follows. Its
vertices are the cosets zP in G (for z¢G), two vertices zP,yP being adjacent
when y~'z¢PrP.

In this graph, zP and yP have distance d(zP,yP)<e if and only if
y 'zeP<r> -+ <r>P (a product of 2¢+1 terms). Let us first compute the
number v of vertices of this graph.
Lemma 1. Each coset zP has a unique representation zP=uwP where ueU,
and w is a right J-reduced element of W, i.e.,

weLp:={weW| l(ww)2l{w) for all w'eW,}.

Proof:

zB has a (unique) representation zB=uwB with weW, uelU, (see Carter
[4], Theorem 8.4.3). Thus zP=uwP and obviously we may take weL; (cf.
Bourbaki (1], Chap. IV, §1 Exercice 3). Suppose uwP=u'w'P. Then
w'eBwBW ;B so that w' = ww" with w” € W,, but since w,w'eL; it follows that
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w'=w. We assert that PNw™!Bw C B. (See [5], Proposition p. 63; since this
reference is not easily accessible we repeat the argument.) Let w=r;r, - - - r, be
an expression of w as a product of ¢ =I(w) reflections in R. Denote by S the set
of elements of the form r;r; - - - r; with §;<i;< - <f,. Then w,NS"lw =
{1} since wW;NS = {w} (w is the only element in S with length at least {(w)).
Hence, PNw ™ !'Bw € BW;BNBw 'BwuB C BW;BNBS 'wB =
B(W;,NS"'w)B = B, as asserted. Now u~'u' € wPw™'NU;, =
w(PNw ™ WwNuwUws Hw™! € w(BNwUwg Nw™! = {ww™'} = {1} since
BN™U = 1 (see Carter [4], Lemma 7.1.2). Thusu=u’®

Proposition 1. The graph I'(G,P) has v vertices, where
v= Eq'(W)_

wel,

Proof:
A straightforward consequence of the formula |U, | = q'("') for weW and
lemma 1. ®

Remark 1. Of course, we also have the multiplicative formula

n gdia 1
v=|GIP| = [JL—
1L e
is1¢ =1
where dy, ..., d, are the degrees of the Weyl group W, ey, ..., ¢, are the degrees
of the Weyl group W, and e; = 1 (cf. Carter [4]).
Next, we want to put the structure of an association scheme on this graph.
The group G acts by left multiplication on the cosets zP, and clearly this action
is transitive. Thus we find an association scheme. The collections of cosets in a
fixed relation with a given coset, say P, are the double cosets PzP. The pair
(zP,yP) has relation G(zP,yP), labelled with Pz ~'yP. We see that a relation
PzP is symmetric iff PzP = Pz~ 'P, and this holds in particular for z=r.

Lemma 2. Each double coset PzP has a unique representation PrP=PwP
where w is an element of W that is both left and right J-reduced, i.e.,

weDy:={weW | w is the unique shortest word of W uW,}.
Proof:
See Bourbaki (1] Chap. IV §1 Exercice 3. ®
Proposition 2. The association scheme I'(G,P) has valencies &; (belonging to the
relation PiP) for 1eDy, where

k'- = 2 ql("’]_
wel;NAW,i
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Proof:
Obvious. @

Remark 2. If ieDy, then iW,i " 'NW,;=W, ;-14, by Solomon [7], so substitution
of ¢g=1 in the above formula for k; leads to the equation. | L;NW,i| =
| W,
| Wesi-tasl
Finally, we come to the parameters p;},. It is more convenient to label the
relations (such as i,7,k) by elements from D; than by 0,1,...,8 as in Section 2.
Therefore, we shall use these new labels; 1 now stands for the “‘old 07, and r for
adjacency, i.e., the ““old 1”. We shall confine ourselves to giving p;,.
Theorem. Let ¢,5¢D;. Then the number of points (i.e., cosets) in sPrP N PjP
is
welNA , I(iw)>l(iwr)
welNA, I(iw)<l(iwr)
g'®g-1)
welNAr , I(iw)<l(iwr)
where L := L; N W;r and A := i ~'W,W,.

Proof:
Clearly,
[ ]
WyW, = wiW,
wel
Consequently,

L ]
iPrP={BW,BrBW,B=iBW;W,;B= ] iBuP

wel

Now we want to write each set iBwP as a union of cosets ywP as in lemma 1.
For geG and K a subgroup of G define /K := gKg~! and K* = K\1}. 1tis
well known that for any ueW we have if I(fu)=1(¢)+I(u) then *(U;) C U, .
(See Cohen [5] Lemma 2.11.) Notice that w=vr for some veW, with
1(iv)=1(¢)+1(v) and l(vr)=I(v)+1.
Distinguish two cases:

If I(sw) >I(sv) then

iBwB=iU, wB="*(U )iwB
and we have *(U;") € U, as desired.
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If I(iw) <l(iv) then
iBwB=iBvBrB="(U," )ivBrB="'(U,) - (iwB G w((U,”)*)ivB)

and we have ‘(U,”) € U, i(US)™(US) € Uy as desired. (For the
inclusion *(U,”) € U;, note that v cannot change the sign of the root
corresponding to r since veW;.)

Now in order to count how many of the cosets uwP fall into a given double
coset PjP we need only observe that wwP C PP iff weW;;W,, and that
distinct welL lead to distinet cosets iwP. ®

Corollary. Given two vertices 2P, z,P of T at mutual distance d, the number
of vertices at distance d—1 to z,;P and adjacent to z,P is congruent to 1 (mod
g), and the number of vertices at distance d to z;P and adjacent to z,P is
congruent to —1 (mod ¢). Also, the valency k is congruent to 0 (mod g).

Proof:

From “weW;r iff |(w)=1" and the expression given for k=k, we see that
k = 0 (mod ¢). Next, from the previous theorem we obtain that

P m&(ireW,Wy)+(g—1)6(i W, W,) (mod g)

where §(T) for a predicate T denotes 1if T is true and 0 otherwise. Thus, all p,,.
are congruent to 0 (mod ¢) except p,, which i is congruent to —1 (mod gq) and p}.
which is congruent to 1 (mod ¢) -- where i is defined by u'(W_,uW_, Clearly
d(PsP) = d(PiP)-1. ®

Remark 3. This corollary is motivated by Lemma 5 in [2] which is a crucial step
in the proof that if I' is finite and g >1, then the building corresponding to the
Tits system (B,N,W,R) does not have proper quotients satisfying the conditions
in [10], Theorem 1. The above corollary shows that the conditions are satisfied
for the Chevalley groups of type A,, D, or E, (6=m=8). For another
application, see [3).

Remark 4. It is possible to compute the parameters pj-,, for arbitrary k in a
similar way. Again one starts by writing {PkP as a disjoint union of sets of the
form sBwP. Next by induction on I{w) this is rewritten as a disjoint union of
cosets uvP, where uelU,” and vel;. As an algorithm this works perfectly well,
but it is not so easy to give a simple closed expression for pj-,,.
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5. Computation in the Weyl group

We shall briefly discuss the way in which several items in the Weyl group

have been computed.

(i)

(ii)

(i)

(iv)

The length function I.

The only essential ingredient in our computations is the length function; all
other computations could be done by general group theoretic routines. But
given the permutation representation of the fundamental reflections on the
root system @ and a product representation w=a,'8,""*s,,, (not necessarily
minimal), we find {{w) from

l(w)=|{aed:a >0 and wa <0}
(see e.g. Bourbaki [1] Chap. VI, §1.6 Cor. 2).

Canonical representatives of the cosets wi;.

Let & be the coroot perpendicular to all fundamental roots except the one
corresponding to r. Then @ has stabilizer W; in W, and the images of ¢
under W arein 1-1 correspondence with the cosets wW.

Equality in W.

Similarly, let p be the sum of all positive roots. Then wp=w'p iff w=w'.
Double coset representatives.

Given a suitable lexicographic and recursive way of generating the cosets
wWj, the first of these to belong to a certain coset W,wW; will have weD;.
All cosets in the same double coset are found by premultiplying previously
found cosets with reflections in J. However, the set D; of distinguished
double coset representatives can be found without listing all single cosets
wW;: given weDy, one can determine all elements from D; N wkL, where L
= L; N W;r, by simply sieving all right and left J-reduced words from wlL
(compare with (i)). In view of the fact that W is generated by J U {r},
iteration of this process will eventually yield all of D (one can start with
w=1). We have done so for the Weyl groups of type F,, Ey, E, Eg. The
cardinalities of Dy, i.e. the permutation ranks, have been given above.
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Appendix

Eg1

27 cosets
3 double cosets
Sizes:

0: ()
m 1

1 (1)

(18] g+¢%+¢°+2¢* +2¢° +2¢° +2¢" +2¢° + ¢° + ¢"° + "

2: (12384321)

[10] q8+ qO + q|o+ qll + 2q12+q13 +ql4+q15+ qlﬂ

Neighbours of a point in 0:

1:

(16] g+ +¢°+2¢" +2¢° + 2¢° + 29" + 2¢° + ¢" + ¢'% + ¢!

Neighbours of a point in 1:

0:

1:

2

h 1
10) -1+g+¢*+¢*+2¢*+2¢°+2¢°+¢" +¢°
[5] q7 + 08+ qﬁ +ql° +qll

Neighbours of a point in 2:
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18  l4+g+¢*+2° +¢* +¢°+¢°
28] l-g®+0'+¢"+¢%+2¢" +2¢°+¢° 4 ¢+ ¢M

Eq 2
218 cosets
10 double cosets
Sizes:
0: ()
(1] 1
1: (2)
[20] ¢ +2¢ +3¢° + 4¢* + 4¢° + 3¢° + 2¢" + ¢
2: (2312)

l30] ql + 2q5 + 4q8 + 5q7 + 6q8+ 5q9 + 4q10 + 2qll + qnz
3: (236432)
[10]  ¢°+2¢" +2¢° + 2¢° + 2¢™ + ¢!
4: (2364312)
(60]  ¢” +3¢° +6¢° + 99" + 119" + 11¢'2 4 9¢’® + 6™ + 3¢1° 4 o0
5: (23645342312)
l2°f qll +2ql2+3q13+4q14+4q15+ 3q16+ 2ql7+q|8
8: (23412365432)
[20] qll +2ql2 +3q13+4ql4+4q15+3q16+ 2ql7 + q18
7: (2341236342312)
[5] ql3 + qu + q15 + qlﬁ + ql7
8: (23412365342312)
[40] qll +3q15 + 5q16 +7ql7 +8q18 + 7q19 + 5q20 +3q2l + q22
9: (2364534123645342312)
[10] q24 + q25
Neighbours of a point in 0:
1:20]  3¢% + 2¢” + ¢
Neighbours of a point in 1:
0: [1) 1
L7 -l4g+2¢°+2¢°+2¢* +4°
2: 6] ¢*+2¢'+2¢° +4°
38 S+t d
B +q +4¢8
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Neighbours of a point in 2:
L[4  1+42¢+4q?
2: (8] -1-9g+¢°+3¢3+3¢g"+¢°
48 ' +3¢°+3¢%+47
5: 2] ¢ +¢°
Neighbours of a point in 3:
1: [8] 1+¢+2%+¢3+¢*
3 1-P+*+¢'+2°+ ¢+
08 ¢+ +2'+¢%+4"
6: [4 *+¢"+q +¢°
Neighbours of a point in 4:

L] 1

2: [4] q+ 2q2 + qa

311 ¢

4: [71] -1-q+2¢%+ 49 +3¢°
5: 2]  ¢%+47

6: 2] ¢*+¢°

N

8: 2] ¢ +4¢°
Neighbours of a point in 5:
2: 3] 1+4q+g?
4: [8] >+2¢° +2¢* + q°
5: 4 -1+¢*+q'+¢%+¢%+¢
8 [6] ¢'+2¢°+2¢°+¢’

9: (1] q®
Neighbours of a point in 8:
3:[2] 1+49¢

48] g+2¢°+2¢°+ ¢

6: (6] -1-q¢+¢°+3¢"+3¢°+¢°

8 [6) ¢°+2¢°+2¢" +¢°
Neighbours of a point in 7:

4:{12] 1429+ 3¢ +3¢° +2¢* + ¢°

7: 0] 1-g-¢*+q'+¢%+¢°

8 [8]  ¢'+2¢°+2¢%+2¢" +¢8
Neighbours of a point in 8:
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4: [3] 149 +4°
5: 8] g+¢*+gt
6: 3]  ¢*+4¢*+q*
()
8 (7]  -1-g-¢*+3¢'+4¢° +2¢% + ¢’
9: 8] ¢*+q¢"+¢8
Neighbours of a point in 9:
5: 2] 1+4g
8:[12] q+3¢g%+4¢°+3¢* +¢°
9: (6]  -1-9-¢°-¢"+¢'+3¢°+3¢° +2¢7 +¢°

Eg
72 cosets
5 double cosets
Sizes:
0: ()

(1] 1
1: (6)

[20] g+ g% +2¢° +3¢" + 3% + 3¢° + 3¢7 + 2¢° + ¢ + ¢!
2: (634236)

[30) 0% +2¢" +3¢% + 4% + 50" 4 5" 4 4¢'% 4 34" 4 29" + 415
3: (63452341236)

20] @'+ "2+ 298 4 3gM + 3¢'% + 3¢1% + 3417 + 29! 4 g19 4 ¢20
4: (634523412363452341236)

¢
Neighbours of a point in 0:

1:[20] g +¢®+2¢° +3¢* + 3¢° + 3¢% + 3¢7 + 2¢° + ¢° +¢'°

Neighbours of a point in 1:

0: [1) 1

1 (9]  -1+q+q¢®+2¢°+3¢" + 2¢° + ¢S
209 ¢®+2°+3¢" +2¢%+¢°

3 1] "

Neighbours of a point in 2:
1: [6] 1+9+2¢°+¢%+¢*
2: [8]  -1-¢%+¢%+ 29" +3¢° + 2¢% + 247
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3 (6] ¢®+q" +2°+¢°+¢"
Neighbours of a point in 3:
LN 1
2:[9] g +2¢+3¢% +2¢* + ¢
3 [9]  -1-¢%-¢°+¢*+2¢° + 3¢+ 3¢7 + 2¢° + ¢°
4 (1] "
Neighbours of a point in 4:
3:[20] 149 +2¢° +3¢>+3¢% +3¢°+3¢%+ 297 + %+ ¢°
4:00]  -1-¢%-g3+q7 +¢%+ 410

E7.1
56 cosets
4 double cosets
Sizes:
0:()
1] 1

1: (1)
27 ‘5t 20° + 29" + 2¢% + 3¢° + 2410 n
[27) gq+¢i;—q%+¢{4 1+%+g+q+q+q+2q+
2: ( 1234754321)
271 4"+ +7'2+3'3+ 20" 4 20" + 2¢'0 + 29" + 3¢ + 24

+2¢%0 + 29 4 2% +¢*+¢% +¢
3: (123475645347234512347654321)
ll] q27

Neighbours of a point i 0:
1: [27] q+q +‘{,+%+2? +2%+2?+2q + 3¢° + 291 + 29" 4
2q +2q +q¢ " +g +q
Neighbours of a point in 1:
o[ 1
1: [16] -1+q+q +0° + g +2¢° + 2% + 297 + 248 4 2% 4 ¢10 4 g1
+9
92: [10] q +qlo+qll+ql2+2q18+ql4+ql5+qw+ql7
Neighbours of a point in 2;
1:[10) 1449 +¢° +q +2q +4° +q +q +48
2: (18] -1-q*+¢° +q +97 +¢% 4+ 3¢° + 290 + 29" 4 2912 4 9g13 4

q14+q15+q
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3 (1] 7
Neighbours of a point in 3:
2: [27] l+q+({+q +2¢{ % 2g+2q + 3¢+ 2¢° + 2410 4
29" +2q +q +¢'+¢%+¢
3: [0 A-gt-g® + g% + g+ gV

Eze
126 cosets
5 double cosets
Sizes:
0: ()
(1] 1
1: (8)
32] ¢ +q +? +2q "'22 33 + 39" +3¢% + 3¢° + 3910 + 3¢M +
2q + 2q + q ‘4 g +gq
2: (65473458)
60] g
+ 5q + 5q
3: (65473452347123456)
(32] ¢! + qls + g % 04 2q21 + 3q22 + 3¢% + 392 + 3¢% 4 342
+3¢%7 +2¢% + 2¢% + ¢30 4 g3 4 %2
4: (654734582345123474563452347123456)
] ¢*
Neighbours of a point in 0:
1: [32] q+q +? +2q "'22 +3g°+3q’+3q8+3q“+3q‘°+3q"+
2q + 2q + q 4 3 +gq
Neighbours of a point in 1:
o1 1
1: [15] -l+q+q +q + 2¢* + 2¢° + 3¢° + 247 +2¢% + ¢° +q
2:(15] @7 +q® +2¢° + 2'0 + 3¢" 4 29" + 213 4 g1 + ¢
3: 1] q't
Neighbours of a point in 2:
1 [g] l+q+q +2q +q! +q +q
2: [16] -l q+q +q +2q +3q +3q +3q +2q'°+2q"+q
3 (8] g +gM g+ 2g gt !5 gt
Neighbours of a point in 3:

12+4g

4 Z 14 5¢1° + 8¢'% + 84"
+ 4q + 2¢°

+¢¥+ 42

2, + 20"

+4q + 2¢°
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1. 1] 1

2:(15] g+q%+2¢°+2¢* +3¢°+20% + 207 + ¢® + ¢°

3:(15]  -1-¢-0°+q%+q" +2¢% + 2¢° + 39'0 + 3" + 2¢"% + 24" +

14 15

g'+g

1] ¢

Neighbours of a point in 4:

3:(32] l4+gq+ qz + 21,’ + 2% + 335 +3¢° +3¢" +3¢°+3¢° + 3" +
2qll+2q2+q8+ql4+ql

1 0] Aot -gS g 4 g 4 gt

Ezz
576 cosets
10 double cosets
Sizes:
0: ()
(1] 1
1: (7)
[35] ¢ +n¥2 + l‘%q“ + 3% + 4¢° + 4% + 5¢7 + 4¢° + 4¢° + 39" + 29V
+¢9 " +9¢g
2: (745347)

[105] ¢° + 29 + 4¢° + 8¢° + 99" + 11¢™ + 13¢"% + 139" + 13¢™ +
1'% + 09" +6¢'7 + 49" + 29" + ¢
3: (74563452347)
[140] g" + 2¢' 4 491% 4 7¢14 + 10g1° + 139° + 16¢"7 +17¢"® + 174"
+ 189%° + 13¢%! + 10972 + 7% 4 49 + 2¢%° 4+ g
4: (745347234512347)
[7] qls + qls + ql7 + qls + qIO + q20 + q2l
5: (7453476234512347)
[140] " + 297 + 4¢1° + 790 + 1047 + 13¢%" + 1697 + 1797 + 174
+16¢%° + 13¢” + 10977 + 7% + 497 + 2¢% 4 ¢¥
8: (745634523474563452347)
[7] g2 4 g2 4 qB 4 g 4 B 4 ¢B 4 o7
7: (1456345234745634512347)
[105] g™ + 2% + 49% + 6¢%° + 0¢%° + 11¢7" 4+ 13¢% + 13" + 13¢%
+11¢° + 9% + 8¢ + 4™ + 2¢% + ¢®
8: (74534762345123473456234512347)
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(35) ¢%* + q3°3+ 208 + 3¢™ + 4¢3 + 4¢* + 5¢% 4 4¢% 4 4% +
3q38+ 2q 9+ q40+q4
8: (745347623451234734562345123473456234512347)
Neighbours of a point in 0;
1:[35) ¢+ 32 +20° + 3¢* + 49 + 4¢° + 5¢7 + 4¢% + 4¢° + 3910 + 2q"!
+ gt 4 i3

Neighbours of a point in 1:
0: [1] 1
L12]  -1+qg+¢%+2¢° +3¢* +3¢° + 2¢° + ¢7
2: 18] q5 + 2qa + 4q7 + -lq8 + 4q° + 2q'° + q"
3: [4] qno + qll + ql2 + q13
Neighbours of a point in 2:
1: [8] 1+g+2¢%+¢%+¢*
2:[12] -1-¢%4+¢%+ 2¢% + 4q5+3q’+3q7 +¢®
3:[12]  ¢°+29" +3¢% + 3¢" + 29" 4 "
01
5: [4] " 4+ g' 4 g12 4 ¢13
Neighbours of a point in 3:
1 1 1
2: [9] q+29°+3¢°+2¢* + q°
3:12]  -1-¢%-¢*+ g%+ 3¢% + 4¢% + 497 + 2¢° + ¢°
5 18] 0" +2¢° +3¢° + 29" + ¢
6: [1] ¢'
7 13 g" 4 ' 4 ¢
Neighbours of a point in 4:
2: [15] l+q+2q2+2q3+3q4+2q5+2q°+q7+q8
0] -1-¢*-g*+¢°+4¢"+¢°
5:1200 g%+ g%+ 2¢° + 397 +3¢° + 3¢° + 3¢"0 + 2¢" 4 12 4 g8
NeighLours of a point in 5:
2: 3] 1+4q+q°
3: |9} o +2¢8 + 304 + 2¢% + q°
4 (1) ¢
5:(12]  -1-¢%-¢%+ 2¢° +3¢% + 5¢7 + 3¢% + 2¢°
7 [9] q8+2q0+3q10+2q11 +q12
& [1] "
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Neighbours of a point in 8:
3:1200 1+9+20°+3¢°+3¢* +3¢°+3¢°+2¢" +¢%+¢°
B: [0] -1-¢%-¢*+4"+¢%+¢"°
7:[15]  ¢®+q%+ 207 +2¢% + 3¢° + 290 + 29" 4 ¢! 4 g1
Neighbours of a point in 7:
314 l+g+¢*+4°
5:(12] ¢®+2¢3+3¢* +3¢° +2¢° + ¢7
6: (1] ¢
7:[12]  -1-9¢%-¢%-g* + ¢° + 2¢% + 497 + 4¢% + 3¢° + 2¢'°
8: 6] ¢ +q'0 + 29" 4 12 4 ¢
Neighbours of a point in 8:
5: 4 1+q¢+¢*+4°
7:(18] g%+ 2¢% + 4¢* + 4¢° + 4¢® + 2¢7 + ¢°
8:[12]  -1-q%-¢%- ¢* + 3¢7 + 3¢® + 4¢° + 3¢° + 2¢1 + 12
9: 1] 4"
Neighbours of a point in 9:

8: [35] ll-ll-q+2q +3¢% + 49" + 4% +5¢° + 49" + 4¢® + 3¢° + 2¢"° +

g + q
9: [0] 1-g2-g%-q -+ g7+ ¢® + ¢10 4 ¢! 4 ¢
Eg,
240 cosets
5 double cosets
Sizes:
0: ()
1] 1
1: (1)

58] q+q +& +q +q + 2¢° +2q +22 c{ +3q'°+3q”+
39,7+ 301 + 3914 + 39 + 3¢'° + 3¢'7 + 308 + 3¢ + 2% +
2¢%! + 2¢% +2q +q° +q’+q"+q”+q

2: (123458654321)

126 12 13 14 18 18 3 19 21

I T D AR SR SRS SR NS i
T 50% + 50 4 0% + 69 + 898 + 6971 4 Ty + 70, +800+
8q +6q + 6¢% + 5¢% + 5¢ +4q + 4¢%7 + 3¢% + 3¢% +
2940 + 29" + g% 4¢P 4 oM 4+ ¢

3: (12345867564583456234587654321)
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(56] g% + ¢® 4 ¢¥ +¥az+ 33 4 2¢% + 29 + 2% 4 2¢%7 4 3¢% 4
3q”+3q‘°+3%4 + 397 + 3% + 3¢" + 3¢% + 394 + 347 4
20%8 + 29 + 2% 4 24% 4 ¢F + g%+ g% 4 g% 4 g%
4. (12345867564583456723456123458567456345823456123458765432l)
1 47
Neighbours of a point in 0:
1:[56) ¢+ ¢%+ q: + q‘l+ g° +lzq° +2¢7 + 2?" + 2<{° + 3¢ + 39" +
3g,% + 3¢ ) + 3¢ + 3910 + 39' 4 39" 1 3918 4 3919 4 9% 4
207 + 297 + 297 4 g2 4 g% 3 g8 4 g2 4 o2
Neighbours of a point in 1:
0: [1] 1
1:(27) -1 +q+32+q“+q‘-‘i-q5+2q°+2q7+2q8+2q°+3q’°+
2" + 2¢'% 4 2913 4 291 4 g1 L 18 L 17
2- [27] qll + qlz + zl3 +
+2¢% +2¢% 4+ 29
3 (1] ¢*
Neighbours of a point in 2:
12 14+9+¢*+¢*+¢" +2¢° +¢% +¢7 + ¢® + ¢° + ¢"°
2:[32] _l_q5+ B+q7+q8+q9+2 |°+3ql|+3q|2+3q13+3q14+
3¢% + 3q?o +3¢" + 218 4 2q‘€+ g2 4 % 4 g2
3:[12] @4 g' 4 g% 4 g 4 g%y 2g 4 Py g% 4 B, ¢ + ¢%
Neighbours of a point in 3:
I (1] 1
2:127] ¢ +¢%*+ %3 + 1‘ + 2?5 + 2%° + 27’ +2¢% + 3¢° + 29" + 2¢" +
29'% + 29" + g1 4 I8 4 18 4 4!
3¢"8 + 3" + 2070 4 29?1 4 297 4 2478 4 g+ g 4 g 4 ¥
o | VR i
Neighbours of a point in 4:
3:(56] 1+q+ 1: + q“l-; gt +"2q5 +|§q° + ?37 + 23’8 + 31" + 3q': +
3, + 30"+ 3¢ *+ 30" + 39" + 3¢° + 39 +3¢"8 4+ 2¢" 4
2970 4 2% 4 2972 4 g2 4 g2 1 G5 T B

ZH + 2q15 + 2q16 + 2ql7 + 2q18 + 34" + 2q20
3+q24 +q25+q26+q27

Egz

2160 cosets

10 double cosets
Sizes:
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0: ()
[ 1
1: (7)
2, 3 4 5 s 7 8 9 10 n
4 4 4 5 5
[64] g?—zq++5-18+24q"+ 2q4 ?;3q4+uq ;lq +2 zs+ 2q 1o+ q20+
g g  +4¢" + 49" + 49" +3¢" +2¢7 +2¢7 +49¢7 +
¢ + ¢

2: (76584567)

[280] ¢® + ¢° +2¢' + 3¢ + 5¢)% + 6¢'5 + 9¢') + 10¢"7 + 13¢5 +
15¢" + 17¢"° + 18¢"0 + 20¢%° + 2042 + 209%* + 20¢% + 18¢% +
l7q25 + 15326 + l3q27 + loq28 + oq ] + 6q30 + 5q31 + 3q82 + 2q33
+¢3+ ¢

3: (76584563458234567)

[448] q" + 2q|8+3 19 + 5%20 +7q21 + loq22+ l4q23+ l7q24+2oq25
+ 24¢%% + 27¢% + 309%® + 32¢%° + 32¢%° + 32¢%' + 32282 + 30¢%
+ 27q34 + 24q35 + 2oq30 + 17q37 + 14q38 + loq3° + 7q 0 + 5qﬂ +
3‘]42 + 2q48 + q“

4: (765845673456234581234567)

[560] g & ¢® +20% + 44 + 8¢ + 8¢ +12¢% + 15021 + 1947 +
24¢% + 27¢%4 + 31¢% + 35¢°° + 37¢%7 + 38¢%% + 40¢%° + 38¢%° +
371" + 35°q‘2 +31¢% + 279% + 242‘5 + 19¢% + 15¢%7 + 12¢%% +
8;7"+6q5 +4q5'+2q52+q53+q ‘

5: (765845673456234585674563458234567)

[14] q33 + qM + q85 + qaa + q87 + q88 + 2q80 + q40 + qﬂ + q42 + q43

+ 44 + 45
¢ +4q
8: (7658456734562345856745634581234567)

[448] g™ + 2¢% + 3¢* + 5¢% + 7¢* + 10¢° + 14¢* + 17¢*! + 202
+ 249" + 279 + 309*%° + 32¢*® + 3297 + 32¢%° + 323“' + 3qu5°
+27¢° + 24¢% + 209 + 17¢% + 149 + 10¢% + 7¢°7 + 5¢% +
3q50 + 2q60 + qsl

7: (7658456345872345612345845673456234581234567)

[280] q43 + q“ + 2q45 + 3?40 +5 47 + 6q48 +9q40 + loqso + l3q51 +
15¢%% + 17¢% + 18¢%¢ + 20¢% + 204°¢ + 20¢%7 + 204 + 18¢%° +
.17q60 + 15361 + l3q62 + loqss + Oq 4 + 6q65 + 5q86 + 3q67 + 2q68
+¢% + 47

8: (76584563458723456123458456734562345845673456234581234567)

[64] qss + q57 + 58+ 2“50 + 2280 +3 81 + 4 82 + 4 83 + 4§M + 5165
+5¢% 4 50% +5¢% +4¢% + 49" + 497 + 3¢ + 20" + 2970 +
97 +9" +4

9: (7B5845673456234585674561234586723456123458345672345612345845
873456234581234567)
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q78

Neighbours of a point in O:

1: [64]

q+q +¢{ + 2¢4 +2q +3q +4q +4g q+5q'°+5q”+
53 +5 + 49" + 49" + 49" + 3¢ 4+ 2¢"% + 29" + ¢ ¢
¢*! + ¢

Neighbours of a point in 1:

0: (1]
1: [21]

2: [35]

3: (7]

1

-1+q+q +¢%+2¢" +2¢° +3¢° + 3¢ +3¢% 4 2¢° + 290 +
12

g +¢

7+ ¢® +2¢° + 39" + 4¢" + 4¢"% + 5¢"% + 49" + 49"% + 3¢ +

%"+q°+q

q +q +q +q19+q20+q2l+q22

Neighbours of a point in 2:

1: [8]
2: [24]

3: [24]
4: (8]

1+g+a’+20° +¢' +¢° +¢°

1-0"+ 90+ 0" +2¢° + 49" +4¢° + 49° + 49" + 3¢" + 20" +
9

g + 29" + 39" + 49" + 49™ + 49" + 3¢"% + 2¢"7 4+ '8

qlﬁ + ql7 + qls + 2q19 + q20 + q2l + q22

Neighbours of a point in 3:

1: (1)
2: [15)
3: [21)

4: [20]
5: 1]
6: [6]

1

q+q2+2q3+2q‘+3q5+2q +2q +q +q

-l g3 -q +¢% + 29" + 3¢% + 3¢° + 49" + 4¢" + 3¢" + 29" +
q Y4’

" + ¢! +2q'2+3q'3+3q“+3q'5+3q“+2q"+q’8+q'°
q't

q|7+q|s+q|o+qzo+q2|+q22

Neighbours of a point in 4:

2: [4]
3: (18]
4: [24]

6: [16)
7: {4]

1+qg+¢>+¢3

q3+2q +3q5+4q +3q +2q +q

-l-q -lg -q% + q" + 298 +3¢° + 5¢" + 59" + 5¢"% + 49" +
2¢"

ql3+2ql4+3ql5+4qlﬂ+3ql7+2q|8+q

q"+q2°+92'+q22

Neighbours of a point in 5:

3: (32]

5: (0]

1+q+g¢ +27 +2q +3g +3¢% +3¢7 +3¢% +3¢° + 3¢g" +
2q +2q +q3+q +q

1-g*- g+ g 4+ g+ g
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8: [32] q'l{;_ qs +lg° + 2%|0 + 2qll + 3q|2 + 3q|3 + 3q|4 + 3q15 + 3q16 +
3¢ + 290 + 29" 4+ ¢ + ¢ + ¢B
Neighbours of a point in 6:
306 l+g+g®+¢*+q'+¢°
4:20]  ¢*+¢* +2¢° +3¢° + 30" +3¢° + 3¢° + 29" + ¢" + g2
5: (1] ¢°
6:[21] ~-1- «4‘ -¢%- g‘ +q"+ %+ ¢% + 3910 + 49" + 4¢'% 4 4¢"% 4 3™
+2¢'8 4 2¢!
7:(15] @™+ ¢ +2¢" +2¢"% + 3¢"7 + 298 + 291 + ¢ 4 ¢!
8 1] %
Neighbours of a point in 7:
8] l+g+d*+2°+¢*+¢"+¢°
6:[24] g +2¢°+3¢" + 49" + 4¢° + 4¢° + 3¢"% + 29" + ¢
7 [241 -1- %3 - q5 - qﬂ + 2ql° + 3q" + 4q12 + sqls + 4914 + 4q|5 + 3q|3
_ +2¢'7 +¢"®
8: (8] g% 4 g7 4 g18 4 9910 4 g0 4 21 4 o2
Neighbours of a point in 8:
6: [71 1+g+a*+¢+¢'+¢°+¢"
2¢'3 + ¢ 4 ¢
8:21] -1 o g - 1: - ¢¢ -Bq9 + &'o + z" + 29" + 3¢" + 39" + 3¢"° +
49" + 3¢'7 + 2¢"8 + 29" 4 20 4 ¥
o 1] 4*
Neighbours of a point in 9:
864 1 qu + ¢ +2¢° ;i- 29 + 3¢% + 4¢° + 4°q7 + 4?: +5¢° +5¢° +
59" + 59 + 49" + 4g" + 49"% + 3¢ + 2977 4 29" 4 ¢V 4
P 4+ g2
0: 0] -1-¢%-¢°-q-q"+ ¢+ ¢ + " +¢" 4 ¢®

Egg
17280 cosets
35 double cosets
Sizes:
0: ()
(1] 1
1: (8)
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[56) g +¢%+ 2" + 39" + 49 + 597 + 8¢ + 69" + 8g° + 69" + 5¢"'
+ 4g 2 + 3q18 + 20“ + qls + qlﬁ
2: (856458)

[280] ¢° 4297 + 49° + 7q0 + 1190 + 15"} + 2092 + 249" + 279 +
209'° + 209" 4 2797 + 24¢™® + 200" + 15¢% + 11¢*! + 7¢% +
4q 3 + 2q24 + q25

3: (85674563458)

[560] ¢ + 2¢'% + 5¢'% + 0™ + 15¢"° + 22¢'° + 31¢'7 + 39¢'® 4 474"
+53¢7" + 5601 + 560°% + 53¢% + 47¢% + 309% + 319 + 22¢%
+15¢% + 99% + 5¢% + 2¢%! + ¢*

4: (856458345623458)

[56] g + 29" + 3¢'% + 4917 + 5417 + 607 + 7¢%" + 797 4 6¢% +

5q24 + 4q25 +3q20+ 2q27 + q2
5: (8564587345623458)

[1120] ¢"° 4+ 3¢"7 + 7¢'% + 149" + 24¢% + 37¢%1 + 53¢™ + 7042 +
86g71 + 100¢% + 109¢°° + 112" + 1009, + 100¢% + 869" +
70¢*" + 53¢ + 37¢™ + 24¢™ + 14¢% + 7¢% + 3¢% + ¢**

6: (856745634585674563458)

(28] g + 0% + 202 + 2¢% + 39%° + 3% + 4% + 397 + 3¢ +

2q30 + 2q31 + q32 + q3
7: (8564583456723456123458) ‘

[280] g% + 20 + 4g® + 79 + 11¢%° + 157 + 2097 + 24¢%? + 27¢%
+ 20050 + 200% 4 27¢% + 249 + 20¢% + 159 + 11¢*7 + 7¢%
+4¢° + 2940 + ¢4

8: (8567456345823456123458)

[280] % + 2% + 497 + 79 + 11970 + 15077 + 2097 + 247 + 27¢¥
+20¢%" + 20¢° + 27¢%° + 24¢™ + 209 + 15¢° + 11¢%7 + 7¢%®
+ 49 + 2940 4 ¢

0: (8567456345856745623458)

[840) ¢ + 3¢® + 7% + 13¢%° + 22¢%° + 33¢% + 48¢% + 50¢% +
719 + 803! + 85¢°% + 85¢% + 80¢* + 71¢% + 504 + 46¢%" +
339% + 22¢% 4 13¢%° + 7¢%! 4 3912 4+ ¢®

10: (8567456345856723456123458)

[1680) ¢%° + 3¢%% + 8¢ + mg” + 295%” + 484‘” + 68¢% + 924%2 +
117¢% + 1303 + 15633 + 165¢% + 165¢%7 + 156¢%® + 139¢% +
l}gqio + 92¢ 1 + 88q‘ + 48q‘3 + 29q“ + 18q45 + 8q‘3 + 3q‘7 +
q

11: (85645873456234584567345623458) :

(280]  g* + 2¢% + 493" + 7¢% + 119% + 150 + 209 + 249" 4 27¢%
+20¢%% + 209% + 274" + 249" + 20¢*? + 15¢*° + 11¢* + 7¢%
+ 49" + 2947 + ¢*®
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12: (856458734562345845673456123458)
[1680] ¢ + 3¢ + 8¢% + 1607 + 20g%¢ + 46¢% + 68¢% + 929" +
38 39 4 2 43 44
17g "+ 13090 + 1569°" + 16501 + 165" + 156¢% + 1309% +
1§s7q‘5 +02¢% + 8897 + 48¢%® + 20¢% + 1805 4 8¢5 + 3¢%2 +
q
13: (85674563458567456345823456123458)
[168] g% + 2 + g™ + 8¢% + 9™ + 12¢%7 + 15¢%8 4 1799 4 18440
+ 18940 + 179 + 15¢% + 129" + 09* + 6¢%® + 499 4 20 4
q
14: (85645834567234561234585674563458)
[168] g% + 2¢* + 4g™ + 8¢ + 0g% + 12¢%7 + 15¢% 4 17¢% + 18¢%
+“18q“ + 17" + 15¢% + 129" 4 99 4 690 4 4g¥7 4 248 4
q
15: (85674563458567456234586723456123458)
86¢%° + 100¢* + 1000 + 112¢® 4 1004% + 1003‘8 + 88¢%7 4+
700% + 53¢% +37¢°% + 2445 + 14¢% + 7455 4 3458 4 g7
16: (85645834567234561234584567345623458)
[1120] ¢ + 3¢% + 7¢%7 4 14¢% + 249 + 37¢% + 53g"! 4 70442 4
8694 + 1oo({“ + 1099 + 112¢®® + 10097 + 1009*® + 86¢% +
700% + 53¢% + 37¢5% 4 2445 + 1495 1 7455 1 3456 4 o7
17: (85674563458234561234583456723456123458)
38 39 40 41 42 43 44 45 46
2 3 5 7 7 8
[701 3 47+ 9 48+ i 49+ q50+ q5| + 5q62 + 5# +54 ¢+ 8T+
7¢™ + 79 4+ 5¢* + 5¢™ + 34 +2¢°+¢" +¢
18: (856745634585672345612345856723456123458)
[1680) ¢% 4 3¢%0 + ¢! 4 wg" + 295%“ + 46g“ + 68¢% + 024 4
117¢*7 4 1392“ + 156947 + 185¢% + 1685¢°! + 156¢%2 + 13045 +
lgq“ + 92¢°° + 68¢% + 46057 + 20¢%8 1 18¢°9 4+ 8¢%0 4 3¢ 4
q
10: (856458734562345845673456234584567345623458)
[8] q42 + q43 + q“ + 045 + Q“ + qd'l + 048 + 049
20: (8564583456723456123458567456345823456123458)
[8] q48 + q“ + q45 + q40+ qﬂ + q48 + qn + q60
21: (8564587345623458456734562345845673456123458)
[168]  ¢® + 2% + 4% + 6% + 9g%7 4 12418 4 1509 4 17,50 4 1845
+ 018q52q+ 17qga + 15¢% + 1255 4 9458 4 Gq%" + 4¢% + 295 4
q
22: (8564587345623458456734561234584567345623458)
(188] ¢% + 22q“ + 49%% + 69" + 0% + 129% + 15%“‘ +17¢% 4+ 18,5
+m18q6 + 17¢% + 15¢% + 12¢% 4 9458 + 6457 4 49%8 4 2¢% +
q
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23; (85845873456234584567345612345845673456123458)

[1680] ¢*¢ + 39%° + 8¢** + 16047 + 200 + 469 + 68% + 92¢°1
117¢%2 + 139353 + 156? + 185¢% + 165 S+ 15645" Ry 139¢°8 +
l};q"" +929°° + 68¢%" + 46¢%2 + 209% + 16¢% + 8¢5 + 3¢% +
q

24: (8564583456723456l234585674563458723456123458)

[280] g% + 2% + 42“ +7¢ + uq‘8 + 15q‘° + 2oq5° + 24q5' + 27452
+ 2935’ + 294 + 27q55 +24¢% + 20¢%7 + 15¢% 4+ 1195 4 74%
+ 4¢° + 2¢%% 4 ¢®

25; (8564583456723456l23458456734562345856723456123458)

[840] ¢*% + 3¢4%° + 7¢%" + 13¢%% 4+ 22¢% + 33q5‘ + 46q5~" + 59¢% 4+
7157 + 80¢%8 4 85q5" + 85¢% + 80%! + 719% + 50¢%% 4 46¢% +
33¢% + 22¢% 4 13¢%7 4 7¢% 4 3489 4 g0

26: (856745634585674562345867234581234583456723456123458)

[280] ¢°' + 2;,"‘2 + 435“ + 7q5‘ + 11q5~; + 15q"'° + 20q57 + 24"583+ 2795:
+ 293 + 29q + 27q + 249" + 20¢% 4 15¢% + 11¢% + 748
+ 4q + 2q + q

27 (856745634582345612345834567234561234584567345823458)

[280] ¢°' + 2q52 + 4353 + 7q5‘ +11¢% + 15q5° + 20q57 + 24¢° + 27¢%
+ 293 + 2945 + 27q + 24¢% + 20¢% + 15¢% + 11¢% 4 7¢%7
+ 4¢%8 4 289 4 470

28; (856745634585672345612345856723456123458456723456123458)

[1120) ¢ Ry 3¢% + 7¢° + 14¢%7 + 24 & + 37qB + 5sq°° + 70¢% +

86¢% + 100 7%” + 109q“ + 112¢™ + 1099 8 |+ 100 g + ssq“ +
, 709 +53¢™ + 37¢™ + 2497 + 149" + 7¢™ + 3¢7° 4 ¢7®
29; (856458734562345845673456l2345845673456234583456723456123458)

[28]  ¢® + ¢% + 248" 4 20% + 3¢% + 3¢™ + 4¢% + 3% 4 3077 4

29% + 20% 4 o7 4 ¢
30; (856458734562345845673458123458456734561234583456723456123458)

[560] q + 2q31 +5 + 9q63 + lsqsl + 22q55 + 3lq66 + 39qﬂ7 + 47q33
+ 53q + 56970 4 56q + 53q + 47¢" + 309" + 3197 + 2247
+ 1597 4 997 4 5979 4 2480 4 81

31:(8567456345856745623458672345612345834567234561234584567345623458)
[56] ¢* + 2q°5 + 3q°° + 4q°" + 52 + 8% + 797 4+ 70" + 872 &
597 + 4¢74 +3¢"% + 29" + ¢
32:
(8567456345856745623458672345812345834567234561234583456723456123458)
[280) ¢% + 2q“ + 4;“ + 7q’° + llq" + 15q72 + 20q" + 24¢7* 4 27475
+ 293 + 2097 + 27q + 2497 + 20¢% 4 15¢%! + 11452 4 7¢%
+4¢°" + 2¢% 4 g%
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33:
(858458734582345845673458l2345845873458123458345672345812345834587
23456123458)

8

89 + 5¢°° + 4™ + 3¢ + 2% 4 g9 4 g0
34:

(85845873458234584587345812345845873458123458345872345812345834587
234561234583456723456123458)

1] 4%
Neighbours of a point in 0:
1:[58] ¢+ 1: + 2":a+ 3q‘“+ 4qf5+ 5q‘°°+ 8g” + 6¢° + 8¢° + 6¢'° + 5¢"
+4¢°+3¢7 +29%+¢"° +¢
Neighbours of a point in 1:
o] 1
L{IS] -1+ +¢®+2¢°+3¢% +3¢° + 3¢% + 297 + ¢°
2:[30]  ¢° + 2¢° + 47 + 5¢® + 6¢% + 5¢1° + 4¢"" + 2" 4 ¢
3:[10] g%+ ¢" + 29" 429" + 291 + RLIME L
Neighbours of a point in 2:
L8  1+g+2¢%+¢%+4t
2: (18]  -1-9%+¢> +2¢* + 4¢° + 49" + 497 + 2¢° + ¢°
3: [18] qb + 2q7 + 4?8 + 40‘ + 4q10 + qul + qlﬁ
€03 ¢+ +g"
5:(12]  ¢'%+ 29" + 39" + 3" + 29" 4 ¢

8 [1] ¢'°
Neighbours of a point in 3:
O T

2: [9] g +2¢° +3¢% +2¢* + ¢°
3:[15]  -1-¢%-¢%+q* +3¢% +5¢% + 5¢7 + 3¢® + ¢°
5:(18] g7 + 3¢ + 5¢° + 5910 4 3¢ 4 ¢12
6: [1) "
7. I3] qll + qnz + q13
9: [6] g" + 2912 4 2913 4 g1
10: I3] qu + qns + qlb
Neighbours of a point in 4:
2:015] 1+9+2¢*+2¢° +3¢* +2¢° + 2¢° +¢" + ¢°
4 [6] -l-q’-q‘+q5+q°+2q7+q’+2q°+q'°+q”
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5:(20] %+ ¢ +20° + 30" + 30"+ 3¢° + 39"+ 29" + ¢'2 4 ¢
8: (15 ¢ +¢° + 29" + 29" + 3¢'2 4 273 4 2¢M 4 15 4 410
Neighbours of a point in 5:
2: 3] 1+4gq+q?
3 8]  q*+2¢°+3¢"+2¢°+¢"
41 ¢
5:[15)  -1-g%-¢%+ 29 + 4¢% + 897 + 4¢® + 2¢°
7 13] qﬁ + qm + qll
8: 3]  ¢®+¢°+¢"
9: [9] q8 + 2q9 + 3qlo + 2qll + qlz
10: [9) ' + 2" + 3¢'2 4 2! 4 oM
1 E ) Y e
12: (3] g™+ g% + ¢
Neighbours of a point in 6:
3:200  1+q+2¢°+3¢° +3¢* +3¢° +3¢%+ 20" + ¢® + ¢°
6: 0] -1-¢*-¢*+q"+¢%+¢"
0:(30]  ¢°+ 20 +3¢7 + 4¢® + 5¢° + 5¢'° + 49" + 3¢'% 4 24" 4 gM
14: [6] qll + qlz + qls + qM + q15 + qlﬂ
Neighbours of a point in 7:
306 1+g+2¢%+¢*+4*
5:(12)  ¢*+2¢* +3¢% + 3¢° + 297 + ¢8
T -1-*+ %+ q%+ 29"+ ¢% +2¢° + 90 + "
10: 18] ¢® + 297 + 4¢® + 4¢° + 49" + 29" 4+ o2
12: [12] qlo + 2qll + 3ql2 + 3q18 + 2q14 + q15

17: (1] '
Neighbours of a point in 8:
2: 1] 1

¢ B8 g+¢*+¢°
5:(12]  ¢®+2¢° +3¢* +3¢°+2¢% 4+ ¢7
8:[12)  -1-¢%-¢%+¢%+3¢°+ 49" + 4¢® + 2¢° + ¢'°
10: (18] ¢7 + 2¢% + 4¢° + 4¢"° + 4" + 292 4 ¢
13: (8]  @" + g 4 2¢"2 4 g1 4 g
15: [4]  g"3+ g™+ ¢! 4 o
Neighbours of 2 point in 9:
34 1+qg+q¢2+¢°

41
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5:[12] ¢*+2¢%+ 3¢ +3¢% + 2¢% + 7
6: 1] ¢
9: 13] -l q-q -¢* +¢%+3¢° + 49" + 448 + 3¢° + 2410
10: [8) q + 2% 4 2% 4 210 4 g1
11: [5] q +q10+2qll +q12+ql3
12: [6] "0+ M 4 2912 4 g1 4 oM
14: 2] ' + g2
16: [4] "4 M 4 o154 18
Neighbours of a point in 10:
3: 1) 1
B: 8] g +2¢%+2¢%+¢*
B P+et+ g
8: [3] q‘ +¢¢+ q°
9: (4] ¢t + 2q +¢°
10: [14] -l q-q-q + 3¢% +6q + 5¢% + 3¢° + !0
12:(12]  ¢° +3¢° + 49" + 3¢" 4 ¢
13: 1] 0
14: [1] ¢V
15: [6] @' + 29" + 2¢'3 4 g
16: [2] ¢'? 44"
18: [3]  gM 4 gt 4 18
Neighbours of a point in ll:
5[4 1+g+¢*+ q
9: (18] q+2q +4q +4q +4q +2¢" +¢8
11: [12)  -1- q-q-q +3q + 3¢ + 4¢° + 3910 4 2411 4 g2
12: (6] q+q +2¢° + ¢° + ¢
16: (12]  ¢° + 29" + 3¢ 4 3¢'% 4 2413 4 g1
19: [1] 8
22: [3] M4 gt 4 g0
Neighbours of a point in 12:
S: 2] 1+g
2 ¢+4f
9: 3] ¢*+¢%+¢!
10: [12]  ¢® +3¢* +4¢° + 3¢% + 47
11: (1 ¢°



12: 13]
15: [6]
16: [6)
17: [1]
18: [6]
21: (1]
23: [3]

Some parameters of Lie geometries

-1- qz-q"’- q‘-q5+2q°+5q7+6q8+4q°+q'°
q9 + 2qlo + 2q“ + q12
¢® + 29" + 24" 4 g"?
10
9
g" + 2¢'2 4 293 4 oM

ql3

qld + qls + qM

Neighbours of a point in 13:

8: [10]
10: [10]
13: [10)
15: [20]
20: (1]
24: [5]

l+q+2q2+2q3+2q‘+q5+q°

P +gt+205+20°+2¢" + g%+ ¢°

-1-q%- g%+ ¢% +2¢% + 3¢ + 3% + 2¢° + 2¢°
9" +2¢% + 3¢° + 49" + 49" + 3¢'2 + 293 4 oM

qll

ql2 +'ql3+qld+q15+q10

Neighbours of a point in 14:

6: [1]

9: [10]
10: [10]
14: (5]
16: [20]
18: [10]

1

q+292+2¢%+2¢* +2¢° + ¢°

g* + 4% +2¢° + 297 + 2¢% + ¢° + ¢1°

-2 +¢%+¢%+ 297+ ¢® + ¢ + ¢!

q° + 2q7 + 3q8 + 4q° + 4q1° + 3q" + 2ql2 + qla
910 + q' 4 2912 4 23 4 2gM 4 g5 4 18

Neighbours of a point in 15:

8: [1]
10: [9]
12: [9]
13: [3]
15: [13]
18: 9]
21: [3]
23: (3]
24: [3]
25: [3]

1

g +2¢% +3¢°+2¢* + ¢°

q‘ + 2q5 + 3q° + 2q7 + q8

g+ gt
-1-¢%-¢%-¢* + ¢% + 49" + 4¢® + 4¢° + 310 4+ oM
¢® + 20 + 3¢1 4 2¢'! 4 12

gt 4 g2 4 g1

g2 4 g1 4 g4

g 4 g2 4 g3

g™ 4 g1 4 o1

Neighbours of a point in 16:

9: [3]
10: [3]

14+q+4¢°
®+¢ +q*

43
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11: [3]
12: [9]
14: [3]
16: [13]
18: [9]
22: [3)
23: [9]
27: {1]

A.E. Brouwer and A.M. Cohen

q +q* +q

q +2q +3q +2q +q

¢ +q +q

-1 0% 0% q* + 2% + 497 + 4¢% + 4¢° + 2¢1 4 oM
q +2q +3q10+2qll+q12

q +qll+ql2

qll+2q12+3q18+2q“+q15

q!B

Neighbours of a point in 17:

7: 4]
12: [24)
17: [0]
18: [24]
26: [4)

1+9+¢%+4°
q’+2q‘+4q‘+5q°+5q°+4q’+2q“+q°
-l g’ -q gt - + 0"+ 2¢° + ¢ + ¢

q +2q +4q +5q10+5qll+4q12+2q13+q4
q +ql4+q15+q13

Neighbours of a point in 18:

10: [3]
12: (6]
14: [1)
15: [6)
18: [8]

17: 1}

18: [13]
23: [12)
24: (1)
25: (3]
26: [2]
28: [2]

1+q+q?
¢+ 2¢° + 2¢* + ¢°

3
q

g* +2¢% +2¢% 4+ 47

g* +2¢° + 2¢% + ¢

6

q
_l.qz.qa_ql.q5+4q7+6q8+5qﬁ+3qlo
qﬂ +3ql° + 4qll + 3qlz +q13
n
q
' 4 % 4 g1
'S 4 g1
g" + ¢

Neighbours of a point in 19:

11: (3§]

19: [0]

22: [21]

l+q+2q +3¢° + 49" + 4¢° + 5¢° + 497 + 4¢® + 3¢% + 2" +
q' +q

1-g? -q -q¢'-¢° AL AT T b

q +q +2¢° + 2¢° +3qno+3qn+3q12+2q13+2qu+q15+
q'®

Neighbours of a point in 20:

13: [21]

20: [0]

l+q+2q +2q +3q +3¢° + 3¢% + 2¢7 +2¢%+ ¢% + ¢"°
1-g%-q'+q" +¢° + "
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24: (35] ¢! + 7° + 2¢8 + 3¢ + 4¢° + 4¢° + 50" + 49" + 4q'2 +3¢% +
29" + g% 4"
Neighbours of a point in 21:
12: [10] 1+ q + 2¢% +2¢% + 2¢* + ¢° + ¢°
15: [20) ¢+ 2¢* + 3¢% + 4¢® + 4¢” + 3¢% + 2¢° + ¢'°
21: [5]  1-q%-q%-qt- g0+ q" +q%+2¢° +2¢" + 29" + % 4+ ¢"
23:[10]  ¢® +q" + 2¢% + 2¢° + 2¢"° + ¢"! + "2
25:[10) @' + 29" + 2¢"% + 293 + 29" + q®
20: [1] o'
Neighbours of a point in 22:
1:[5] 1+qg+¢®+¢*+¢!
16: [20] g% +2¢° +3¢* +4¢° + 4¢% + 3¢ + 2¢% + q°
19: 1] ¢°
22:(10) -1-¢%-¢%-q¢*- >+ ¢*+2¢" +3¢% + 3¢° + 3910 + 24" 4 g2
23:[10] 7 + q® + 2¢° + 290 + 2" + ¢'2 4 13
27: [10] g0+ ¢" + 2¢'% + 2" 4 2¢M 4 15 4 18
Neighbours of a point in 23:
12: 3] 1+4+q+¢°
15: 2] ¢°+q*
16: 8] ¢*+2¢°+2¢" +¢°
18:[12)  ¢* +3¢° + 4¢% + 3¢" + ¢®
21: [1] ¢°
22: (1] ¢
23: [14] -1- q%- - q*- q5 +3¢" + 5q8 + 6q° +4¢'" + q"!
25: 4 ¢V +2¢" +
o8: [3] qll + qlz + qxa
27: [3]  ¢"+q' + g2
28: (6] '%+ 2¢' + 2¢™ 4 ¢
30: [1] ¢'
Neighbours of a point in 24:
13: 3] 14¢+¢°
15:{12]  ¢%+2¢% +3¢* +3¢° + 2¢% + 47
18: (6] ¢®+q" +2¢°+ 4%+ ¢"°
20: (1] ¢°
24: {12]  -1-¢%-¢%+ ¢ +2¢% + 49" + 3¢% + 3¢° + ¢'° + gU!
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25: [18] % + 29 + 49"0 + 4™ + 4912 4 2913 4 oM
28: 14] qls + qM + qxs + qln
Neighbours of a point in 25:
15: 4 1+q+¢2+4°
18: (6] ¢*+¢°+2¢' +¢°+¢°
21: 2] ¢+ ¢°
23: (8] ¢*+2¢°+2¢" + 2% + ¢°
24: [6] ¢*+q*+2¢°+¢%+ ¢’
25: (18] -1-q2-g*-q*-q®+ % +3¢7 + 4 + 4¢% + 4" 4 2¢"
28: [12] ¢ +2¢"0 + 39" + 3¢'2 + 2913 4 M
29: [1] ¢
30: [4] ¢" 4 M4 g5 4 gt8
Neighbours of a point in 26:
17: f1] 1
18:[12] g +2¢% +3¢3 +3¢* + 2¢5 4+ ¢°
23: [18) ¢+ 2¢% + 4¢° + 497 + 4¢% + 2¢° + q'°
26: [7) -1-q2-¢%-q'+2¢7 +¢% + 2¢° + 2" + 24" + 1% + ¢
28: [12] g% + 2¢° + 3¢'° + 3g" + 2412 4 413
30: [6] ql2 + qns + 24“ + qls + qlﬂ
Neighbours of a point in 27:
16: [4) 149+q¢2+4°
22: [6]  ¢®+¢°+2¢' +¢° +¢°
23:[18] ¢ +2¢'+ 4q5 +4¢%+4¢" + 2¢% + ¢°
27:[12]  -1-¢%-¢%-q*- ¢® + 2" + 4¢® + 4¢° + 4" + 291 4 2
28: [12]  ¢° + 2" + 3" + 3412 + 2¢'3 4 oM
31 [3] ¢4 gM 4 gt
32: 1] gt
Neighbours of a point in 28:
18: [3] 14¢ +4¢2
23: [9]  ¢®+2¢° +3¢" +2¢° + ¢
24: 1] 43
25: [0]  ¢'+2¢° +3¢% +2¢7 + ¢
26: 3] ¢°+q¢"+4’
27: 8] ¢"+q" +¢°
98: l15] -1- 12' qa R qi . q5 . qﬂ + 2q7 + 4q8 + eqﬁ + 5qlo + 3qll + ql2
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30: (9]  ¢'0 + 2¢" + 3¢ + 2¢" 4 oM

31 1) ¢

32: 3]  gM+ ¥+ gt
Neighbours of a point in 29:

21: 6] 1+q+¢i+¢d+q*+¢°

25: [30) ¢ + 2¢° + 3¢* + 4¢° + 5¢° + 5¢7 + 4¢® + 3¢° + 2¢"° + ¢V

29: 0] -1-¢2-¢-q'-g®+ g%+ ¢%+¢' + ' 4 g2

30:(20) g7 + g% + 2¢° + 3¢"0 + 3¢!" + 3¢'% 4 3¢" 4+ 2¢M 4 g1 4 gt
Neighbours of a point in 30:

23: [3] 1+gq+g?

25: [6] ¢ +2¢°+2¢%+¢°

26: [3] ¢ +¢*+¢°

28: [18] ¢+ 3¢° + 5¢% + 5¢" + 3¢% + ¢°

20: [1] ¢°

30: [15] -1-¢%-¢%-q*-¢®- ¢" + q7 + 3¢® + 5¢° + 69" + 4" + 242

32: [0]  g" 4+ 2¢'2 4 3¢" + 2¢M 4+ ¢1®

33: {1 ¢
Neighbours of a point in 31:

27:[15) 1+ q+2¢°+2¢° +3¢* +2¢° +2¢° + ¢" + ¢®

28:[20] ¢°+¢' +2¢° +3¢° + 397 +3¢% + 3¢° + 2¢'0 + ¢! + "2

31: [8]  -1-q%-g%-q'+ 207 + ¢ + 2¢° + 2¢"° + 2" 4 ¢3

32: (15)  ¢% + ¢® +2¢"0 + 2¢M + 3¢" + 2¢"3 + 2¢' + g + ¢'t
Neighbours of a point in 32:

27: (1] 1

28:(12] ¢ +2¢°+3¢° +3¢* +2¢° +¢°

30: [18]  ¢* +2¢° + 4¢% + 497 + 4¢% + 2¢° + ¢'°

31: [3) ¢P+¢%+4¢

47

32: [16] -1 l_3q2 . qa - qi_ q5_ qﬁ + q7 + 2q8 + 4q9 + sqno + 5qll + 3ql2 +

2q
33 (6] "%+ ¢" 4 2¢M 4+ g1 4 g
Neighbours of a point in 33:
30:[10) 14 +2¢%+2¢°+2¢* +¢° +¢°
32:[30] ¢® + 2¢* + 4¢® + 5¢° + 697 + 5¢% + 4¢° + 2¢'° + g

33: [15] -1- q2 . ?3 - ql . q5 - qﬂ + qs + 2q9 + 4q|0 + 4q" + 4q|2 + 3q|3 +

2q|4+q 5

34: [1] ¢
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Neighbours of a point in 34:
33:[56) 1+gq+ 2%2 + 313 + 4?‘ + 5%5 + 6¢% + 897 + 6¢% + 8¢° + 5¢'° +
49" + 3¢ +2¢° + ¢ + ¢!
34: [0] -1-q’-q3-q‘-q5-q°+q'°+q" +q2 4 g4 gy gt
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Performance of Subset Generating Algorithms

Margaret Carkeet and Peter Eades

Department of Computer Science
University of Queensland
St. Lucia, Queensland
AUSTRALIA

Abstract

This note reports on some tests of several algorithms for generating the
subsets of fixed size of a set. In particular, the speed of execution is
compared.

1. Introduction
In this note the results of tests of algorithms for generating all subsets of

size k of a set of size n (sometimes called combinations) are reported. We are

concerned with testing the speed of the aigorithms. No complexity analysis is
applied; we are merely reporting the results of some tests.
There are eight such algorithms known to the authors.

1 BER: From [1). Wc tested the optimized version of the algorithm,
described in 9] (page 186).

2  CHASE:From [3].

EMK: From [5]. An optimized version (from B. D. McKay, private
communbication) was tested.

4 EE:Evens version (in [7), page 42) of Ehrlich’s algorithm in [8].

LS: The optimized (third) version from [8].

8 LEX: The usual lexicographic algorithm. It is described in all standard
texts, including [9] (page 181).

7  RD: The “revolving door’ algorithm presented in [10] (subroutine NXSRD
on page 30).

8  EHR: The very strong minimal change algorithm described in [4] and [2].
Note that this algorithm works only for restricted values of n and k. For
this reason, and because it is much slower than the others, this algorithm
was not tested.
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Some of these algorithms have ‘‘minimal change” properties, that is,
successively generated subsets differ from each other by a small amount. To
describe these properties we need to consider the data structures used to
represent subsets., The elements of the sets are represented by the integers
1,2,...n. A k-subset S of an n-set can be represented as a bitvector (b, b,, ...
,bn), where b, is 1 if z is in S and 0 if z is not in S. Alternatively, if S={s,, a,,
.. ,8;} where 8; < 83 < ... < 8, then S can be represented by the ordered array
(84 82, - - 8;)-

(Aside : All the algorithms above can be implemented using either data
structure. For testing each algorithm was implemented using the data structure
which made it faster: bitvectors were used for BER and EE, all the others used
ordered arrays. It is usually easy to convert an ordered array slgorithm to a
bitvector algorithm without effecting performance significantly. The reverse
conversion, however, often reduces performance.)

The minimal change properties are:

1  WMCP (Weak Minimal Change Property): Successively generated
bitvectors differ in at most two positions. This means that the next subset
is formed from the previous one by deleting one element and adding
another. This property holds for all the above algorithms except LEX.

2 SMCP (Strong Minimal Change Property): Successively generated ordered
arrays differ in only one position. Note that this implies WMCP. This
property holds for EHR, CHASE, EMK, and EE.

3  VSMCP (Very Strong Minimal Change Property): Successively generated
bitvectors differ in two adjacent positions. This implies SMCP. It holds
for EHR only.

These properties are discussed in detail in [5).

2. The Results

The first seven algorithms above were tested on a Perkin-Elmer 3220
running UNIX. These language used was Pascal, and the programs were run
under two different systems: the Berkeley Pascal to p-code compiler, and a UQ
Pascal to C compiler.

The Berkeley system reports the number of statements executed, and this
was used as an indication of running time. The UNIX time utility was used to
give an indication of the execution time under the UQ system. The two different
Pascal systems and the two different timing systems were in substantial
agreement, and only the results from the Berkeley system are quoted here.
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The authors recognize the dangers of this type of measurement. The time
utility is a little sensitive to the machine load at the time of execution. It is
quite probable that a different programmer, a different language, a different
hardware configuration, could have produced different results. Every effort was
made to minimize the effect of these differences, but we admit that at best, only
the first few digits of our results are significant. To obtain more significance a
full complexity analysis (along the lines of the analysis of LEX in [9]) would be
required.

With the exception of LEX and RD, all the algorithms tested are fast in the
sense that the average time to generate a subset is bounded by a constant,
independent of n and k. Further, these algorithms are loopless, or uniformly
bounded, which roughly means that the time to generate each subset is constant,
independent of n and k. (See [9] for a precise definitions of these properties.)
LEX and RD do not have these properties when k is close to n.

The graph in figure 1 summarizes the results. The tables from which figure
1 was derived are in figure 2. The vertical axis in figure 1 is the average number
of Pascal statements executed per subset produced. The average was taken over
n=>5 to n=12. The horizontal axis represents the range of k; the leftmost
value is k=2, and the rightmost is k=n-2. The other value of k are dispersed
linearly between the left and rightmost.

Some statement counts for larger values of n are given in figure 3.

3. Conclusions

All the algorithms except EHR are reasonably simple and can be coded in a
few pages. LEX is very simple and takes only a few minutes to write.

No algorithm (exccpt EHR) uses more than O(n) space; this is insignificant
in comparison to time requirements.

The main result of the tests is that LS is significantly faster than any of the
others. An implementation of LS on a VAX11/750 generates a subset about
every 45 microseconds; on a Cyber 172/2 it takes about one third of this time.

In an application, each subset has to be processed in some way. If the
processing time dominates the generation time, then the processing time also
determines the size of the largest problem that can be tackled. However, if the
processing time is about the same or less than the generation time, then the
generation time imposes a limit on the largest problem which can be tackled: for
instance, in an hour of CPU time on the Cyber172/2, LS can process every 15-
subset of a 30-set. Hand optimized assembler, or a supercomputer, could
improve this limit, but not significantly.
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The only disadvantage of using LS is that it does not have SMCP. EMK,
about 4 times slower than LS, is the fastest zlgorithm with this property. If the
processing is significantly faster with SMCP, then EMK should be used. Also, if
the processing time dominates generation time, then a minor snpeedup from
SMCP may justify EMK.

The problem of finding a fast algorithm which has VSMCP is open.

Finally we note that LEX is surprisingly fast. The simplicity of this
algorithm (it requires no clever stack implementation}), makes it attractive.

Figure 2a. BER - number of statements executed

n=>5 173 161

n=0 252 206 244

n=7 347 495 539 319

n=8§ 458 770 1058 794 434

n=9 585 1133 1893 1733 1245 533

n=10 728 1596 3152 3408 3080 1680 680

n=11 887 2171 4959 6179 6771 4523 2403 803

n=12 1062 2870 7454 10508 13574 10734 7168 4902 1602
k=2 | k=3 | k=4 | k=5 | k=0 | k=7 | k=8 | k= k=10

Figure 2b, CHASE - number of statements executed

n=>5 246 240

n=>0 371 459 358

n=7 527 797 789 493

n==8 716 1285 1554 1237 664

n=9 940 1956 2803 2740 1861 848

n=10 1201 2854 4719 5486 4557 2646 1076

n=11 1501 3089 7520 10142 9995 7134 3670 1313

n=12 1842 5427 11461 17593 20085 17054 10748 4902 1602
k=2 | k=3 | k=4 | k= k=8 | k= k=8 | k=9 | k=10
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Figure 2¢. EMK - number of statements executed

n=>5 189 187

n==06 260 364 319

n="7 334 610 712 428

n==8§ 411 928 1353 1122 603

n=9 491 1321 2316 2451 1750 756

n=10 574 1792 3678 4733 4232 2481 973

n=11 660 2344 5519 8381 9012 6677 3478 1168

n=12 749 2080 7922 13806 17452 156256 10185 4613 1429
k=2 | k= k= k=5 | k=8 | k=7 | k=8 | k=9 | k=10

Figure 2d. EE - number of statements executed

n=>5 326 322

n==6 516 653 516

n="7 760 1173 1181 752

n=8 1067 1938 2367 1929 1065

n=9 1440 3007 4316 4288 3003 1423

n=10 1886 4448 7334 8594 7300 4409 1877

n=11 2411 6334 11793 15916 15903 11689 6203 2381

n=12 3021 8744 18138 | 27696 | 31828 | 27569 17989 9846 3001
k= k=3 | k=4 | k=5 | k=8 | k=7 | k=8 | k=9 | k=10

Figure 2e. LS - number of statcments executed

n=>5 37 57

n==6 48 90 08

n=7 61 134 182 147

n=8§ 76 191 310 319 208

n=9 93 263 495 619 515 277

n=10 112 352 762 1104 1122 776 358

n=11 133 460 1098 1846 2214 1882 1116 447

n=12 156 589 15562 2034 4048 4080 2080 1541 548
k=2 | k= k= k= k= k= k=8 | k=9 | k=10
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Figure 2f. LEX - number of statements executed

n=>5 152 177

n=~06 222 333 293

n=7 306 558 628 446

n=8 402 866 1188 1076 642

n=9 511 1270 2056 2266 1720 886

n=10 633 1783 3328 4324 3988 2604 1183

n=11 768 2418 5113 7654 8314 6598 3793

n=12 916 3188 7533 12769 15970 14914 10393
k=2 | k=3 | k=4 | k=5 | k=6 | k=7 | k=8 =

Figure 2g. RD - number of statements executed

n=>5 174 261

n=6 251 514 338

n=7 342 888 736 621

n=8 445 1404 1295 1692 713

n=9 561 2086 2406 3474 1974 1160

n=10 690 2957 3873 6786 4641 3658 1260

n=11 832 4040 5913 12213 9726 9655 4221

n=12 987 5358 8656 20629 18697 22466 11836
k=2 | k= k=4 | k=5 | k=8 | k=7 | k=
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Figure 3. Number of Pascal statements executed.

n k BER CHASE EMK EE LS LEX RD
u| s 4687 9350 4515 15481 017 5184 8700
/| s 419 66540 53237 105357 | 11438 140048 57163
| 27230 43211 10520 72181 | 11518 41038 50380
|12 1339 2249 1970 4484 m 3000 2085
18| 3 10330 22664 87127 39387 1915 11870 19488
181{ 6 278111 432284 202287 | >500900 | 58801 284109 326008
18 | 9 | >500000 | >500000 | >500000 | >500000 | 214523 | >500000 | >500000
18 | 12 267183 103018 379181 | >500000 | 111599 400449 450742
18 |15 11343 19151 17368 38858 6483 25005 30451
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Abstract

Algorithms for determining the existence of subdesigns in a combinatorial
design are examined. When A=1, the existence of a subdesign of order d
in a design of order v can be determined in O(v'°®%) time. The order of
the smallest subdesign can be computed in polynomial time. In addition,
determining whether a design has s subdesign of maximal possible order (a
“head”) requires polynomial time. When A>1, the problems are
apparently significantly more difficult: we show that deciding whether a
block design has any non-trivial subdesign is NP-complete.

1. Introduction

A (balanced incomplete) block design of order v, denoted Blk,\;v], is a v-set
V of elements together with a collection B of k-element subsets of V called
blocks, with v >k; cach 2-subset of V appears in precisely A of the blocks. A
Steiner system is 8 block design with A=1; a Steiner triple system is a Steiner
system with k=3. A subdesign of a B[k \;v] (V,B) is a Blk,\;v] (V',B’) such
that V! € V and B’ C B; subdesigns are non-trivial when v’ > k, and either v
> v'or A > M. A design without non-trivial subdesigns is called simple. It is
easy to see that v=(k—1)v’+1; when equality is met, the subdesign is called a
head [5).

We examine the computational complexity of determining the existence of
various types of subdesigns. A primary motivation is that the numbers and
types of subdesigns are often used as invariants in distinguishing isomorphism
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classes of designs (see, for example, [4]). We show that for Steiner systems,
most problems involving subdesigns are computationally straightforward.
Determining simplicity requires polynomial time, as does locating subdesigns of
any fixed constant size. When the order of the desired subdesign d increases as
a function of the order of the design v, the complexity of this algorithm becomes
superpolynomial, but still subexponential. At the other extreme, we show that
polynomial time suffices to determine whether a Steiner system has a head.

For block designs in general, however, firding subdesigns is not an easy
task. In fact, we show that deciding whether a B[3,3;v] design has a subdesign is
NP-complcte, and hence is unlikely to have any efficient solution. This result
shows that deciding the existence of a subdesign of specified size is also NP-
complete.

2. Subdesigns of Steiner systems

Doyen and Wilson [7] showed that given two admissible orders v and w
(v>w), there is a Steiner triple system of order v having a subdesign of order w
if and only if v22w+1; thus, there are many possible orders for subdesigns. It
is also known that there is a simple Steiner triple system for every admissible
order [6]. We are concerned with the related question of determining when a
particular Steiner system has subdesigns; the following lemma s
straightforward:

Lemma 2.1: Simplicity of Steiner systems can be decided in polynomtal
time.

Proof:

A subdesign has the property that every block intersects the subdesign in 0,
1, or k elements. Therefore, given a subset S of elements to be placed in a
subdesign, we can close this set, by repeatedly introducing all elements of blocks
intersecting the set in more than one element. When this closure procedure
introduces no new elements, the set obtained forms a subdesign. Taking any
single element and closing, one obtains a trivial subdesign of ordcr 1. Taking
any pair of elements and closing yields a block, another trivial subdesign.
Taking any three clements not appearing in a block together, and closing, yields
cither a proper subdesign or the design itself.

Simplicity of Steiner systems can therefore be easily tested by applying
closure to each set of three elements in turn. The design is simple if and only if
the subdesigns obtained are trivial in each case. ©

Lemma 2.1 gives a method for determining whether there are any proper
subdesigns; it is worth noting that the method can easily be modified to find the
smallest subdesign. One simply rctains the minimum size cf a nontrivial
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subdesign encountered. Of course, this method does not help us determine
whether there is a subdesign of specified size, or the size of the laigest subdesign.
Nonetheless, a similar closure method will answer these questions in
subexponential time.

Lemma 2.2: Determining the presence of a subdesign of order d in a
Stelner system of order v can be accomplished in v2(#4) time,

Proof:

Every subdesign of order d is generated by a set of log d elements, in the
following sense: given these log d elements, closure produces the subdesign. This
can be easily secen by induction. Thus it suffices to enumerate all sets of log d
elements chosen from the v elements in the design. Closure is applied to each;
the design has a subdesign of order d if and only if one of these closures
produces one. Since closure can be applied in polynomial time to each set of
logd elements, and there are v©U%9) guch sets, the total time required is v?{°r9),
o

It is worth remarking that when d is a constant, the time bound in lemma
2.2 is polynomial. Lemma 2.2 also gives a subexponential time algorithm for
finding the largest subdesign; in practice, the subexponential method operates
quite quickly, since its worst case is realized only when there is a significant
number of subdesigns (such as the projective and affine spaces}. In many of the
worst cases, the design has a subdesign of maximal order, a head. Although we
are unable to determine the size of the maximal subdesign in polynomial time,
we can make one step in this direction, by determining whether the design has a
head.

Lemmn 2.3: The existence of heads in Steiner systems can be decided
in polynomial time.

Proof:

The key observation here is that every block intersects a head in 1 or &
elements. The algorithm for finding a head opcrates as follows. At any given
stage, we mark an element as “in’’ the head, “out” of the head, or “undecided”.
The usual closure operation enables us to mark all elements of 2 block “in"
when two elements of the block are marked “in” already. In searching for
heads, given a block containing an element marked “in" and an element marked
“out”, all other elements can be marked “out”.

Tke algorithm proceeds by usual backtracking. Imitially, an element is
chosen to be marked “out”. At a general step, ¢ block is chosen involving an
element which is “out” and all other elements unmarked. One of these k-1
clements must be marked “in"’ and the remainder *“‘out”. It should be noted that
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it is possible for closure to produce a contradiction, i.e. a specification of an
element as both “in” and “out”; in this event, the elements chosen to be “in"
cannot form a head, and we simply backtrack. If no contradiction arises, once
one is marked “in”, the two closure operations will increase the number of
elements marked “in” by a factor of k-1 (at least), since closure produces a
subdesign. This ensures that the depth of the backtrack is O(log; - v). Since at
each level of the backtrack there is a fixed number k-1 of choices, the backtrack
operates in time (k-l)o(l"“‘"'), which is a polynomial in v. ®

These lemmas establish that

Theorem 2.4: In polynomia! time, one can decide whether a Steiner
system has a subdesign, find the order of the smallest subdesign,
determine the existence of subdesigns of fixed constant order, and
determine the existence of a head. In subexponential time, one can
determine the existence of a subdesign of specified order and the order
of the maximal subdesign.

3. Subdesigns of Block Designs

The results from section 2 all generalize in the obvious manner if we are to
determine subdesigns with the same X as that of a given block design. In this
section, however, we show that the situation is dramatically different when, as in
our definition, subdesigns are allowed to have smaller A\. Here we establish that
even deciding whether a design has a nontrivial subdesign is NP-complete, even
for B[3,3;v] designs.

This NP-completeness result is predicated on the use of a combinztorial
structure called a “Latin background”, which has been used previously in
establishing numerous NP-completeness results for design-theoretic problems
[1,2]. Given an n-vertex r-regular graph G, a Latin background for G, denoted
LB|G;m,s8), s=n, is an 8 by s symmetric array with elements chosen from
{1,2,...,m}. Each diagonal position contains the element m. In the first n rows,
each entry is either cmpty, or contains an element from {r--1,...,m}; in the latter
s-n rows, each position coatains an element from {l,...,m}. Every element
appears at most once in each row and in each column (hence ms). Finally,
the pattern of empty positions is precisely an adjacency matrix for the graph G
-- hence the term *‘background”. We require the following result from [1):
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Lemma 3.1: Let G be an n-vertex r-regular graph. A Latin
background LB[G;m,m] exists for every even m=2n. Moreover, such a
background can be constructed in time which is polynomialin m. ®

The Latin backgrounds formed in lemma 3.1 are partial symmetric Latin
squares which can be completed if and only if G is r-edge-colourable. Edge-
colouring graphs is NP-complete [9,12], and hence so is completing symmetric
Latin squares [1]. This underlies the following result:

Theorem 3.2: Determining whether a B[3,3;v] design has a subdesign is
NP-complete.

Proof:

Membership in NP is straightforward; hence, we need only reduce a known
NP-complete problem to our problem. We reduce the problem of determining
whether a cubic graph is 3-edge-colourable [0]. Given an arbitrary n-vertex
cubic graph G, we construct in polynomial time a B[3,3;85-3] design which has a
subdesign if and only if G is 3-edge-colourable. First, we construct a
LB|G;2s,23], where s=n is the smallest integer for which 2s—1 is a prime. It is
important to note that s is O(n) [8]. In the Latin background, we then
eliminate all occurrences of the last element, 24, leaving the diagonal empty.
The entries of the last row (and column) are moved into the corresponding
diagonal positions, after which the last row and column are deleted. Rows ard
columns are then simultaneously interchanged so that position (i,§) contains ¢;
that is, the 2s-1 by 2a-1 square is idempotent. Denote this modified square by
IB. We will also employ a 2s-1 by 2s-1 idempotent symmetric Latin square SL
having no subsquares. For example, one could take the square whose (i,5) entry
is i+ (mod 28—1), and interchange rows and columns to make it idempotent;
this has no subsquares since 23 =1 was chosen to be prime.

The B[3,3;65-3] we create has elements {z, ..., z,,_;}, {y;, -, ¥2,-1}, and
{24, ..y 29,—1}; it contains the following blocks:

1. {{z;,y;,%}| 1=i=2s—1}, each three times.

2. “!l.-,!l,‘,z,,} | 1=i<j=2s—1, SL contains k in position (¢,5)}, each three
times.

3. {{z,z;m} | 1=i<j=s2s-1, SL contains k in position (¢,§)}, each three
times.

4. {{z;,z;u} | 1=i<j=2s—1, position (i,j) of IB is nonempty and contains

k}, each three times.
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5. {{z;,z;m}| 15i <j=2s -1, position (i,5) of IB is empty, 1=k=3}.

All blocks are repeated, except those arising from empty positions in IB. A
nontrivial subdesign of this B[3,3;6s — 3] design must involve all 6s =3 elements,
since any subdesign induces a subsquare on the {y;} and on the {;} and SL has
no nontrivial subsquares. Then the ouly possible nontrivial subdesign is a
B[3,1;68 — 3], i.e. a decomposiiion of the design into designs with smaller \. Any
B[3,1;6s — 3] induces a symmetric Latin square on the {z;} which is a conupletion
of IB, and conversely. Hence the B[3,3;6s— 3] has a decomposition (and hence a
nontrivial subdesign) if and only if IB is completable, which holds if and only if
the original graph is 3-edge-colourable. @

Theorem 3.2 strongly suggests that algorithms for subdesign problems
applied to block designs in general will have exponential running time in the
worst case.

4. Future Research

A very general formulation of algorithmic questions about subdesigns could
ask when a block design B[k, \;v] contains a B[k'\;v]. Of course, v=v', k=k!,
and A=) In this paper, we have considered only the case k=k'. When k=k'
and v=v', this is the question of decomposability of designs, studied in [2,11].
Another question of this type arises when one takes v=v' and k> k'; this is the
question of when a design contains a nested design (see, for example,
[3,10,13,14]). The complexity of determining whether a design has a nested
design remains open.
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Abstract

We present a survey of existing results concerning algorithmic aspects of
combinatorial design theory. The scope within design theory includes
block designs and restricted families thereof, Latin squares and their
variants, pairwise balanced designs, projective planes and related
geometries, and Hadamard and related matrices. However, the emphasis is
on t-designs, particularly balanced incomplete block designs and Steiner
systems. There are many different algorithmic aspects of combinatorial
design theory which could be discussed here; we focus upon isomorphism
testing and invariants, colouring, nesting, resolvability, decomposing,
embedding and completing, orienting and directing, as well as algorithmic
aspects of intersection graphs. Also included is a brief discussion of some
general algorithmic techniques including backtracking, hill-climbing, greedy
and orderly algorithms.

1. Introduction

Research on combinatorial design theory extends from the mid-eighteen
hundreds to the present. Throughout the intervening decades, researchers have
examined many interesting problems in combinatorial design theory. Some of
the questions and solutions proposed are algorithmic in nature.

It is our intent here to examine some of the algorithmic aspects and issues
in combinatorial design theory. Within design theory, we include block designs
and variations thereof such as balanced incomplete block designs, pairwise
balanced designs and Steiner systems, Latin squares and their variants,
projective planes and related geometries, and Hadamard and related matrices.
Over the years, researchers have examined a wide variety of aspects concerning
block designs and related combinatorial configurations, many of which are
algorithmic in nature, have algorithmic solutions, or exploit algorithmic tools.
We discuss some of these aspects and issues. First we present some necessary
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definitions, as well as some of the essential background regarding computational
complexity. This is followed by an introduction to common algorithmic
techniques such as backtracking, branch-and-bound, hill-climbing, orderly and
greedy algorithms.

We cannot hope to provide a complete survey of all algorithmic aspects of
combinatorial design theory. Rather we focus on particular problems:
isomorphism testing and invariants, colouring blocks and elements, nesting,
resolvability, decomposing, embedding and completing, orienting and directing,
as well as some algorithmic aspects of intersection graphs. While presenting
results in these areas, we try to provide the reader with examples of different
types of proofs. Hence, our choice of which proofs to present is influenced by
our desire to provide representative proofs without encumbering the reader with
eXxcessive detail.

One aspect of combinatorial design theory which we do not survey here is
existence, despite the fact that many proofs of existence include direct or
recursive constructions which are algorithmic in nature. To survey this area
would be an enormous task which is beyond the scope of this paper.

1.1 Definitions

1.1.1 Design Theory Definitions

For a general introduction to combinatorial design theory, the reader
should consult [S10]. A t¢—design t-Blk\;v] is a pair (V,B) where B is a
collection of k-subsets called blocks of the v-set V, such that every ¢-subset of V
is contained in precisely A blocks of B. | V| =v is referred to as the order of
the design. Some researchers refer to A as the balance factor or index. From
these parameters, one can calculate the replication factor r, the number of

(t—1) (t-1) )
number of blocks in the design, b, is then vr/k. A balanced incomplete block
design (BIBD), denoted BJk,\;v), is a ¢t-design with ¢=2. A BIBD is said to be
symmetric if v=b. Symmetric designs with A\=1 are projective planes, and
when A\=2, they are referred to as biplanes.

blocks to which each element belongs, as X[(v-l) ]/[(k-l) ] The total

Early research concerning £-designs was initiated by the investigation of a
restricted class of designs, Steiner systems. A Steiner system, denoted S(¢,k,v)
is a ¢t-design with A=1; e.g. a t-Blk,1;v] design. Two families of Steiner systems
which have received an enormous amount of attention are Steiner (riple
systems, which are S(2,3,v) designs and Steiner gquadruple systems, denoted
S(3,4,v).
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Twofold triple systems, B[3,2;v] designs, have also been the focus of much
research. In particular, researchers have examined various directing or orderings
of the blocks to form Mendelsohn triple systems and directed triple systems. A
Mendelsohn triple system is a B[3,2;v] design in which the blocks are cyclic 3-
tuples, such that each ordered pair of elements occurs in exactly one block. For
example, the block (z,y,z) contains the pairs (z,y), (y,2) and (z,z), but not the
pairs (y,z), (2,¥), (z,z). On the other hand, a directed triple system is a
B[3,2;v] design in which the blocks are ordered 3-tuples, such that the block
(z,y,z) contains the pairs (z,y), (z,z) and (y,z). Again, each ordered pair of
elements must occur in exactly one block. These definitions can be extended to
higher values of k.

A pairwise balanced design (PBD) is a generalization of a BIBD, in which
the blocks may be of different sizes. If K={k,,...k,} is a set of positive
integers, a PBD B[K ,\;v] is a pair (V,B); B is a collection of blocks from a y-set
V of elements such that every pair of elements appears in exactly \ blocks of B
and every block of B has cardinality belonging to the set K. A partially
balanced incomplete block design (PBIBD) is another generalization of a BIBD.
In this case, each pair of elements need not appear the same number of times. If
A={\,...,.\n} is a set of positive integers, a PBIBD Blk,4;v| is an arrangement
of v elements into k-subsets such that each pair occurs together in ); blocks for
some X; €A.

Two designs (V,,B,) and (V;,B,) are isomorphic if and only if there exists
a bijection f:V,-V, such that 6 €B, if and only if f(b)€B,. An automorphism
of a design is an isomorphism of the design with itself. The set of all
automorphisms forms a group under the usual composition of mappings, called
the automorphism group.

A design of order v is cyclic, denoted ¢-CBk,\;v], when its automorphism
group contains a v-cycle. A ¢—CB[k \;v] design can be represented as a ¢-
Blk,\;v] design with elements {0,...,v—1} for which if {a,,...,a,} is a block,
{a,+1,...,a;, +1} (addition performed modulo v) is also a block. A cyclic design
is always isomorphic to a design (V,B) for which V=2,={0,1,...,v—1} and the
mapping f:(-f+1 (mod v) is an automorphism.

The most common representation for cyclic designs is in terms of difference
sets. A (v,k)\) (cyelic) difference set D={d,,...,d;} is a collection of k residues
modulo v such that for any residue z#0 (mod v), the congruence d; —d;mz
(mod v) has exactly \ solution pairs (d;,d;) with d;,d;€D. Every (v,k))
difference set generates a cyclic symmetric BIBD, whose blocks are
B(i)={d,+s,.,d.+i} (mod v), §=0,.,v—1. The difference set is often
referred to as the starter or base block of the symmetric design.
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A (v,k,\) difference family is a collection of such sets D,,....D, each of
cardinality k such that each residue z#0 (mod v) has exactly \ solution pairs
(d;,d;) with d;,d;€D,, for some m. A difference family is said to be planar or
simple it \=1. Each (v,k,\) difference family generates a cyclic BIBD in the
same manner as before. For example, the difference family (0,1,4) (0,2,7)
generates the cyclic S(2,3,13) design with V = {0,1,...,12}. This definition is
really uot sufficiently general; for example, an S(2,3,15) design cannot be
represented as a difference family, as defined above. However, it is possible for
the design to be generated by 2 starter blocks modulo 15, when one includes the
5 blocks generated by the extra starter block (0,5,10). We will call a S(2, k,v)
design cyclic if the design can be generated by m starter blocks modulo v,
possibly with the extra starter block (0, m’2m’,..(k—1)m’') where
b=mv+m', m' <v. The definition can be generalized for larger values of ¢ and
X in the obvious manner.

Consider two difference sets, D, and D,, having the same parameters. If
D,=tD,+s (mod v) for some integers ¢ and s, D, and D, are equivalent
difference sets. If D;=¢tD,+s (mod v), t is a multiplier of D,. The mappings
z-tz+i (mod v), i=0,...,v—1, are isomorphisms of the associated symmetric
block designs.

This idea can also be extended to difference families. Consider two (v,k,\)
difference families D and E; D={D,,...,D,} and E={E,...E,}. They are
equivalent if for some integers ¢t and s,,...,s,, {E,,...,E)} =
{tD,+s,,...,tD,+8,} (mod v), ¢t is a multiplier of the difference family D.
The mappings z-tzx+¢{ (mod v), {=0,..,v~1, are isomorphisms of the
associated block designs. The collection of multiplier automorphisms of a given
difference set or family form a group under composition called the multiplier
group. There do exist cyclic designs which possess different automorphism and
multiplier groups.

Recall that a design is cyclic if it has an automorphism consisting of a
single cycle of length v. We can define k-rotational designs in an analogous
way; a design is k—rotational, k&1, if it has an automorphism fixing one
element and permuting the remaining elements in k cycles of length (v—1)Vk
each. (Note that this k is not related to the block size k).

A partial parallel class (PPC) of a design D is a collection of mutually
disjoint blocks of D. A parallel class (PC) is a PPC in which each element of V
occurs exactly once; in other words, a PC contains v/k blocks. A design is said
to be resolvable if the b blocks can be partitioned into disjoint parallel classes.
In the case of STS, a resolvable STS is referred to as a Kirkman triple system.
STS exist when ym1,3 (mod 6) {K3, R5]; obviously, when ym1 (mod 6), a STS
cannot be resolvable. However, if after removing an element and the blocks in
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which that element appears, one can partition the design into parallel classes,
the original STS is referred to as a nearly Kirkman triple system. Given a
design, the largest PPC(s) contained therein is said to be mazimum. A PPC is
mazimal if there is no block of the remaining design which is mutually disjoint
with all of the blocks in the PPC; hence, the PPC cannot be extended.

A Latin square of order n is an n Xn array; each entry is an element from
the set {1,...,n}. Each row contains each element exactly once, and each column
contains each element exactly once. Two Latin squares of order n, L; and L,,
are said to be orthogonal if, for any ¢, 15i{=<n, the n positions which contain ¢
in L, are occupied in L, by 1,2,...,n, each occurring once.

Algebraically, a Latin square is the multiplication table of a quasigroup. A
quasigroup is a pair (A,*); A is a set of elements and * is a binary operation
such that for a,b €A, the equations a*z=b,a*b=y, and z*a=b have unique
solutions for z,y and z. A quasigroup is commulative if a*b=b"% for all
a,b€A. A quasigroup is idempotent if a*a=a for all a€A. The corresponding
Latin square is symmetric when the quasigroup is commutative.

A partial Latin square of order n is an n Xn array; each entry is either
empty or else it contains an element from {1,...n}. Each row (column) contains
each element at most once. One important investigation of the structure of
partial Latin squares aims to characterize partial Latin squares which can be
completed to Latin squares without the addition of rows, columns, or elements.

A Howell design H(n,2t), with t<n=<2t—1, is a square array of side n,
where cells are either empty or contain an unordered pair of elements chosen
from a set X of size 2¢ such that: (1) each member of X occurs exactly once in
each row and column of the array, and (2) each pair of elements of X occurs in
at most one cell of the array. A Room square of side n (n odd) is an H(n,n+1)
design. It follows that, in this case, each pair of elements of X occurs in exactly
one cell of the array.

A Hadamard malriz of order n is an nXn (1,-1)-matrix which satisfies
HHT=nl, where HT is the transpose of H. A Hadamard matrix is in standard
Jorm is all entries of the first row and column are 1. For a Hadamard matrix
to exist n must be 1, 2 or 4m, m&1. A Hadamard design is a symmetric
B[2m —1,m —1;4m —1] design. Such designs exist if and only if an Hadamard
matrix of side 4m exists. To see this, given an Hadamard matrix in standard
form, remove column 1 and row 1. Then replace all -1’s by 0’s. The result is an
incidence matrix of a Hadamard design [S10,p224]). Two Hadamard matrices are
Hadamard equivalent if one can be obtained from the other by a finite series of
the following operations: multiply a row by -1, multiply a column by -1,
interchange any two rows, or interchange any two columns.



72 M.J. Colbourn

1.1.2 Graph Theory Deflnitions

A hypergraph is a pair (V,E) such that E is a subset of the powerset of V.
A hypergraph is k —uniform if each edge of E is of cardinality k. A graph is a
2-uniform hypergraph. The incidence graph of a hypergraph (V,E) has a vertex
for each member of V and for each member of E. Whenever a vertex v belongs
to an edge e of E, the corresponding vertices in the incidence graph are
adjacent.

A strongly regular graph has parameters n, k, p, ¢. It is a n-vertex graph
regular of degree k satisfying the constraints that two adjacent vertices z, y
have p common neighbours (for any z,y) and two non-adjacent vertices have ¢
common heighbours (for any z,y). A strongly regular graph is, in fact, a 2-
class association scheme. An association acheme consists of a set V together
with a partition of the set of 2-element subsets of V into s classes R;, 1=i=s,
satisfying the following two conditions:

(1) given p €V, the number v; of ¢ €V with {p,g}€R; depends only on i;
(2) given {p,g}€R,, the number p(i,j,k) of r€V with {p,r}€R;, {rql€R;
depends only on i,5,k.

A 1- factor of a graph is a spanning subgraph which is regular of degree 1.
A 1~ factorization of a graph is a collection of edge-disjoint 1-factors whose
union is the entire graph.

For additional graph theory definitions, the reader should consult [B11].

1.2 Computational Complexity

Throughout this paper, we describe various algorithmic solutions to some of
the interesting problems in combinatorial design theory. For many of these
problems, efficient algorithms have been developed. By efficient, we mean
algorithms which require at most a polynomial amount of time -- polynomial in
the size of the input on a conventional computing device or a unit-cost RAM
(random-access machine) [Al]. We employ the standard “O’ notation to denote
an upper bound on an algorithm’s running time. Saying a function f(n) is
O(g(n)) means that | f(n)] =c| g(n)| for some constant ¢ and for all n=0.
For example, saying an algorithm is “order n®" or O(nz) implies that the
running time of the algorithm is bounded by the function en? for some constant
¢ and for all values of n. A polynomial time algorithm is defined to be one
whose time complexity function is O(p(n)) for some polynomial p. In the case
p(n)=n, the algorithm is said to be linear. If an algorithm is O(n' "), it is
subezponential. An ezponential algorithm is an O(z") algorithm for some
z=2.
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Polynomial time algorithms are much more desirable than those requiring
exponential time. For convincing evidence of this, see [G4, p7], where the
running time of various algorithms is compared. For example, consider an
O(n?) and an O(2") algorithm. On input of size 30, they would require .0009
seconds and 17.9 minutes of execution time, respectively. When the input size is
increased to 60, the time requirements have increased to .0038 seconds and 368
centuries, respectively.

The distinction between polynomial and exponential-time algorithms was
first made in [C3, E1]. More importantly, Edmonds [El] equated polynomial
time algorithms with the notion of “good” or efficient algorithms. The class P
is defined to be the set of all problems which have polynomial time algorithms.
A problem is considered sntractable if it is so hard that no polynomial time
algorithm can possibly solve it [G4].

The earliest intractability results are the undecidability results of Turing.
He proved, for example, that it is impossible to specify any algorithm which,
given an arbitrary computer program and an arbitrary input to that program,
can decide whether or not the program will eventually halt when applied to that
input [T4]. Other problems have since been shown to be undecidable; see [G4,
L5, H11] for a discussion.

The first examples of intractable decidable problems were obtained in the
early sixties {H10]; for a discussion of these problems, see {G4, C38].. Unlike
these early examples, most of the apparently intractable problems encountered
in practice are decidable and can be solved in nondeterministic polynomial time.
However, this means that none of the proof techniques developed so far is
powerful enough to verify the apparent intractability of these problems.

The class NP consists of all problems that can be solved in polynomial
time on a nondeterministic Turing machine; NP stands for nondelerminiatic
polynomial. One can think of these problems as being solvable in polynomial
time if one can guess the correct computational path to follow. In 1971, Cook
[C38] proved that a particular problem in NP, 3-CNF-Satisfiability, has the
property that every other problem in NP can be polynomially reduced to it. If
this satisfiability problem is solved with a polynomial time algorithm, so can
every problem in NP; if any problem in NP is intractable, the satisfiability
problem is also intractable. Hence, in some sense, the satisfiability problem is
the “hardest” problem in NP. A wide variety of problems have now been shown
to be of equivalent difficulty to the satisfiability problem; for example, see |G4,
K1]. This equivalence class of the ‘“‘hardest’’ problems in NP is the class of
NP - complete problems.
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The question of whether or not the NP-complete problems are intractable is
one of the major open questions of computer science. If a problem is shown to
be NP-complete, this is generally accepted as strong evidence that the problem is
difficult and that it is highly unlikely that a polynomial time algorithm will be
developed to solve the problem.

To establish that a problem R is NP-complete, one must first show that the
problem is in NP and that some other NP-complete problem @ is polynomial-
time reducible to R. A problem @Q is polynomial —time reducible to a problem
R if the required transformation can be executed by a polynomial time
deterministic algorithm. If this is the case, a polynomial time algorithm to solve
problem R will also provide a polynomial algorithm for problem @. Examples
of polynomial-time reductions and NP-completeness proofs are provided later in
this paper.

Any problem, whether a member of NP or not, to which we can transform
an NP-complete problem will have the property that it cannot be solved in
polynomial time unless P=NP. Such a problem is said to be NP— hard, since it
is at least as hard as the NP-complete problems; see [G4] for an excellent
discussion of both NP-complete and NP-hard problems.

2. General Algorithmic Techniques

There are several common algorithmic approaches which researchers have
employed when searching for or generating combinatorial configurations with
particular properties. The most notable of these are orderly algorithms, greedy
algorithms, hill-climbing, backtracking, and branch and bound algorithms.
These techniques are by no means restricted to use within combinatorics, but
rather are common approaches employed within many different mathematical
applications. We briefly describe each of these methods here and mention some
of the uses of each approach within combinatorial design theory. Again, we
cannot hope to survey all of the relevant literature, but rather cite
representative examples of each technique’s applicability.

Probably the most common of the aforementioned algorithmic techniques is
backtracking, which is a method of implicitly searching all possible solutions in a
systematic maaner. A formal definition of the backtrack search technique can
be found in [B5]. More recent expositions of the method can be found in [Al,
Hi4, P1).

Backtrack programming is a method for the systematic enumeration of a
set of vectors. Therefore, it is applicable to discrete problems in which possible
solutions can be described by vectors, the elements of which are members of a
particular finite set. The vectors need not all have the same dimension. The
first task in employing a backtrack algorithm is to establish a one-to-one
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correspondence between the combinatorial configurations and the vectors or
sequences. For a BIBD, the vector could represent the blocks of the design in
lexicographically increasing order. In order to employ a backtrack, there must
be some notion of lexicographical ordering, since a backtracking algorithm
typically enumerates the vectors starting from the lexicographically smallest
vector.

A backtrack algorithm is best described by explaining its operation in the
midst of the backtrack process. We include here a presentation based on [P1).
Suppose that a complete vector (z,,z,,...,z,) has just been constructed. At this
point, the vector may be made available to some other routine for processing;
for example, at this point, one would check to see whether the generated vector
satisfies the particular constraints or properties for which one is searching.
Upon return to the backtrack procedure, an attempt is made to find a new r**
element. This new element is selected from the set X, of elements which can
occur in the r* position, given the values of the elements that are in the first
r—1 positions of the vector. If X, is not empty, its first member may be
selected, deleted from the set X, and inserted into the vector in the r** slot.
We may now have another complete vector or we may have to select further
elements in the vector; regardless, the set X, has been reduced by one member.
If, however, X, was empty, it is necessary to backtrack to the previous
component of the vector and replace element z,_,. Clearly, z,_; can only be
replaced if the set of remaining possible members for that element, X, _,, is not
empty. If X, _, is non-empty, we choose a new element, delete it from X, _,,
replace element z,_,, and move forward again. We now must form a new set
X, of elements which are now possible candidates for the r** slot in the vector.
Of course, if X,_, was empty, it would have been necessary to backtrack even
further.

In this way, the vector is built up, one element at a time. Whenever one
runs out of possible candidates for the current slot in the vector, one backtracks.
If one wants the search to be exhaustive, the backtracking process continues
until all possible candidates for the first vector position have been examined.
Often, however, one simply wants to find a solution, in which case the
backtrack is terminated when the first solution is encountered.

Ideally, each X, 1=k=r, should be easy to compute and contain as few
elements as possible. In order to reduce the portion of the solution space which
is being searched, one wants to determine at an early stage in the construction
of the partial vector that it is not suitable or whether it has already been
examined in some other form. This usually entails exploiting information
concerning the automorphisms of the current, and possibly previous, partial
solutions.
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The backtrack method aims at doing all of its validity testing according to
the problem specifications during the formation of the vectors. At the other
extreme, one could enumerate all complete vectors and only test the complete
vectors for validity. Of course, one need not settle for either extreme, but rather
incorporate some testing while forming the vectors and leave the rest until a
completed vector is obtained. Obviously, the benefit of doing the extra work
during the production of the vectors will only be felt if there is a substantial
reduction in the number of vectors produced. However, from experience, it
appears that when generating combinatorial configurations, where there tend to
be many partial solutions which correspond to almost-completed vectors, it is
crucial to eliminate unsuitable partial solutions; hence, the extra work during the
production stage seems critical.

A special variation of backtrack for optimization problems is branch and
bound. In a backtrack algorithm, a partial vector (and all its descendents e.g.
larger vectors which include this particular partial vector) are excluded from the
search if the partial vector already violates the constraints. We can associate
high costs with such infeasible vectors and zero cost with those vectors which do
satisfy the constraints. Then a backtrack algorithm can be viewed as searching
for a minimum cost vector. If one can associate a cost with each partial vector
such that cost(z,,....,2z; - )Scost(z,,...,z—1,2;), for all possible values of k, one
can view the generation problem as searching a tree of possible solutions in
which the cost of a parent node is always less than or equal to the cost of its
children. In such a case, if we have found a solution node $, with cost C, we
would not examine the children of a partial solution node §, whose cost exceeds
C, since all the children of S, will be of higher cost than C. This is the central
idea in branch and bound. We do not branch from a node whose cost is higher
than the cost of the minimum cost solution found so far. Of course, the bound
is updated if a better solution is found. Therefore, in contrast to backtracking,
a branch and bound algorithm extends the most promising partial solution,
rather than the most recent. For more detailed descriptions of various branch
and bound algorithms, see [Al, H14, P1].

Branch and bound techniques, as well as the more general version of
backtracking, are common approaches to generating combinatorial
configurations. For examples of the use of backtracking for generating designs
and related configurations, see [C7, D2, G11, G5, I1, K8]. The trick to a
successful backtrack is to prune the search by employing appropriate
isomorphism rejection techniques. When generating designs, one can employ a
backtracking algorithm either on a block-by-block basis or element-by-element.
The former is the more common approach.



Algorithmic aspects of combinatorial designs 77

Unlike backtracking algorithms and variations thereof, hdll —climbing is
not exhaustive. Because of this, an algorithm based strictly on a hill-climbing
method may not yield the optimal solution, but rather one which is only locally
the best. For the same reason, this technique does not guarantee a solution.

Given an initial configuration or vector X and an evaluation function f,
the basic hill-climbing algorithm moves to a new configuration X' if
f(X')<f(X). The algorithm halts when no further improvement can be made.

This search method has been employed to generate SBIBD {S2], mutusally
orthogonal Latin squares [T2], strong starters, and hence Room squares and
Howell designs [D8], and STS [S5]. In order to employ a hill-climbing
algorithm, there must be some sense of when one partial solution is better than
another. In other words, an evaluation or cost function is required as in branch
and bound algorithms. In the case of constructing BIBD, the evaluation
function may be simply the number of element pairs which do not appear in the
partial design. One also needs at least one technique for moving from one
partial design to another. Ideally one wants to move to a better partial
solution, but often hill-climbing algorithms are implemented such that one may
move to a configuration of the same worth; in doing this, one must be careful to
avoid cycling. However, one never moves to a configuration of less worth, as is
the case in backtracking algorithms. In some cases, hill-climbing algorithms are
implemented in conjunction with some backtracking, so that if a local optimum
is reached that is unsuitable, the algorithm either backtracks or jumps to
another location in the search space. In their search for strong starters, Dinitz
and Stinson [D8] include very limited backtracking.

To have some hope of success with a hill-climbing algorithm, one needs a
good evaluation function which is easy to compute and several fast methods of
moving from one partial configuration to another. As an example of a
successful hill-climbing algorithm which includes several appropriate heuristies
for converting partial configurations, we present Dinitz and Stinson’s research
concerning generating strong starters [D8].

A strong starter of order n in an additive Abelian group G of odd order
n=2t+1is a set S={{z,y;},-...{z,,4,}} which satisfies the following properties:

(‘) {zl)-'-)zt )yl)"-yy:} =G-{0})
(ii) {=(y; — ;)| {z: .y }€ S} =G - {o},
(ii) z; +y; #z;+y; if i #j, and z;+y,; #0, for any i.

Dinitz and Stinson use hill-climbing to find strong starters of order n=2¢{+1 in
the cyclic group Z,. To do this, we first need the notion of a partial strong
starter, which is a set S'={{z;y,}, ... {z,.9.}}, 1=r=t, satisfying the
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following conditions:

(i) the z;'s and y;’s are distinct nonzero elements of Z,;

(ii) g; —z; # 2 (y;—z;) if i # 5,

i) z;+y; #2,+y; il i#j, and z;+y; #0 if 0SisSr.
sTHTE;TY;

The deficiency of S’ is def(S’)=t—r; in other words, it is the number of
“missing pairs”. A partial strong starter S’ is mazimal if there exists no
{u,v}CZ, such that S’ U{{u,v}} is a partial strong starter.

Consider a set of differences D={12,..t}; D is a set of natural numbers.
Without loss of generality, we can assume that y;>z;, 1SiSr; then
y;—z;=d;€D, if 1Sisr. If an element z€Z,—{0} is €{z;,y;} for some such
set in S', z is said to be used; otherwise z is unused. Similarly, one can refer to
a difference as being used or unused. Finally, e € Z, —{0} is said to be a used or
unused sum depending on whether or not e=z;+y; for some i, 1Sisr.

A state of the hill-climbing algorithm is a partial strong starter S’ together
with two distinct unused elements u, and u,, and an unused difference d €D.
Given a state of the algorithm, let T;={u; —d,u; +d},i =12, and let T=T,UT,.
The following operations can be performed on a state:

(i) matching u; with an unused element. If there exists w € T; such that w is
an unused element and u;+w is an unused sum (for the appropriate
i= 1 or 2), let 8'"=S5"U{{uy;,w}}. If def(S’’')#0, choose a new
ty,80,d.

(ii) switching a pair. If w€T; is a used element and u;+w is an unused
sum, let §'' =5 —{{z;,y;NU{{w,4;}}, where w=z; or y;, for some j,
I1sjsr. Set d=d;, u;=u3_;, and uy=y;, if w=z;; if w=y;, set
02=2J-.

(iii) backtracking. Revert to the previous state of the algorithm if (ii) or
(iii) was the last operation performed.

(iv) switching a difference. Replace d by some other unused difference d’.
Leave u,,u, unchanged.

(v) switching a pair. Suppose u;—us_;=d €D is a used difference, and
u;+uy is an unused sum. Then set 5'' =S5’ —{{z,,ys HU{u,u,); set
Uy =24, 82=y,, snd leave d unchanged.

The algorithm can now be described in terms of operations (i)-(v):
(1) Initialization: Set def =t,S =, choose any distinct u,,u5€Z2, —{0}, d€D.

(2) If operation (i) can be performed, do so and go to (8).
(3) If operation (ii) can be performed, do so and go to (2).
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(4) If operation (iii) can be performed, do so and go to (3).

(5) If operation (iv) can be performed, do so and go to (2).

(8) If operation (v) can be performed, do so and go to (2).

(7) Stop; algorithm fails.

(8) Set def =def —1, choose any distinct unused u,,u; and d.
If def #0 go to (2).

(9) Stop; algorithm succeeds.

It is important to note that no operation increases the deficiency and operation
(i) decreases it by 1. There may be more than one way to perform an operation
(ii) on a given state; one is selected at random. If a state is reached again, this
time by backtracking, the first way to perform operation (ii) is excluded and one
of the remaining ways is chosen at random.

In [D8] Dinitz and Stinson also present a probabilistic proof that the
algorithm should run and succeed in O(n?) time. In fact, this hill-climbing
algorithm has been successfully employed to gemerate strong starters, Room
squares and Howell designs. A similar hill-climbing algorithms for STS, due to
Stinson [S5], is also based on the motion of ‘‘switching”, analogous to the
switching heuristic employed in the strong starter case.

Anderson [A3] recently extended Dinitz and Stinson’s hill-climbing approach
to construct houses. Let n be a positive integer, S be a set of elements of size
2n, and F be a partition of S into unordered pairs. A house of order n is a
2n X 2n array H such that

(i) every cell of H is either empty or contains an unordered pair of distinct
symbols of S,

(i) every symbol occurs in precisely one cell of each row and each column of
Hv

(iii) the pairs in F each occur in preciscly two cells of H, whereas every
other pair of symbols occurs in exactly one cell of H,

(iv) the pairs in the first and second rows of H are precisely those in F,

(v) every column of H contains one pair from F.

The success of hill-climbing algorithms may in part be due to the richness
of the solution space. If there are many solutions, one’s chances of successfully
climbing to a solution via relatively weak heuristics is better than in a sparse
solution space. However, hill-climbing algorithms have not been employed
sufficiently often for researchers to characterize problem spaces which will lend
themselves well to the technique.
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Greedy algorithms have the same flavour as hill-climbing algorithms in that
they are concerned with local optimums. At any individual stage, a greedy
algorithm selects that option which is “locally optimal” in some particular sense.
For example, when colouring the elements of a design, one’s decision criterion
may concern the number of colours being used. Hence, a locally optimal partial
solution is the one which employs the fewest colours. Of course, it may be
impossible to extend this partial solution to a proper colouring of the given
design, let alone an optimal colouring. Greedy algorithms for colouring STS are
discussed in section 4 of this paper and in [C15].

One’s decision criterion with regard to which element or object to select
next may be very simple. For example, when constructing a spanning tree of a
connected graph, one need only check that the edge being added does not create
a cycle. This simple greedy algorithm always produces a spanning tree.

In general, it appears that when generating combinatorial configurations,
greedy algorithms do not suffice. For example, consider the construction of an
nXn latin square by filling in the entries one by one, checking at each stage
that no entries in that row or column have been filled with the same symbol.
There are examples in which this greedy algorithm will fail. One interesting
question is to determine the smallest integer k such that a ‘failed’ partial n Xn
latin square can always be partitioned into k pieces, each of which can be
extended into a n Xn latin square; k is the ¢ntricacy of the problem. For the
latin square problem, it has been determined that the intricacy is always
between 2 and 4 [O1]. Other construction problems and their intricacy are also
examined in [O1]; such results indicate when a greedy algorithm will succeed and
can also be employed to suggest when such an algorithmic approach can be
expected to suffice on average.

Although greedy algorithms have not been applied extensively in design
theory, one problem which appears conducive to this type of approach is the
construction of partial parallel classes (PPC). For example, to establish a lower
bound on the size of a maximum PPC in a STS, Brouwer [B17] employs a
greedy-style procedure which includes an exchange process when the current
PPC one is constructing cannot be extended directly. Brouwer’s bound is
presented in section 5.

In the generation or-search methods discussed so far -- backtrack, branch
and bound, hill-climbing and greedy algorithms -- a particular solution may, in
fact, be encountered more than once unless one incorporates an appropriate
isomorphism rejection mechanism into the algorithm. This is usually done by
exploiting automorphism information of the partial solutions. For some
problems, an orderly algorithm is possible in which the combinatorial
configurations are generated in canonical form, hence removing the problem of
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checking for duplicate solutions [R3].

We present the strategy here in terms of graphs, employing the
corresponding vector notation of the upper triangle of the adjacency matrix. A
graph can be represented by possibly many adjacency matrices. Thus, each
graph may have many vector representations. To make the representation of a
graph G unique, we define the canonical form of G to be the largest vector
which is a vector representation of G.

Let (p,g)-graph denote a graph with p vertices and ¢ edges. Typically in
graph generation, one is given a list L(p,q) of all nonisomorphic graphs with p
vertices and g edges, and required to produce the list L(p,g+1). In an orderly
algorithm, the canonical form of every (p,g+1)-graph is obtained by changing
some O to a 1 in the canonical form of some (p,g)-graph. If the 0 changed is
required to be to the right of the rightmost 1 in the canonical form then the
canonical form of each (p,g+1)-graph is produced from the canonical form of
exactly one (p,g)-graph. This change from 0 to 1 is called an augmentation.

This allows one to start with an ordered list L(p,q) of the canonical forms
of the nonisomorphic (p,q)-graphs, and perform augmentation in every possible
way on each member of L(p,q). The resulting set of vectors contains canonical
forms and other vector representations. However, since each required canonical
form appears on the list exactly once, we simply test each graph to see whether
it is canonical, and include it in L{p,g+1) if and only if it is. Observe that, we
determine whether a given vector representation is to be added to L(p,g+1)
without referring to what has already been added.

Orderly algorithms for graphs have been studied by a variety of researchers;
for example, see [C30, R3]. Their application need not be restricted to graphs.
Unfortunately, for many combinatorial problems, it appears to be difficult to
generate the canonical form of one combinatorial configuration from the
canonical form of a smaller one.

Elsewhere in this volume, Ivanov [I1] employs a combination of an orderly
algorithm with traditional backtracking techniques to generate BIBD. The
algorithm is orderly in the sense that one is generating canonical incidence
matrices of the designs. In general, one is backtracking through the search tree
(or solution space). However, not all branches of the search tree need be
examined since it can be shown that they cannot contain canonical matrices of
the desired designs; hence, the canonicity information is being employed to prune
the search tree.

Orderly algorithms have also been employed to construct SQS [C19, C28,
P7]; Phelps’s algorithm [P7] is discussed in section 5.
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Without techniques such as orderly algorithms, one is forced to incorporate
isomorphism rejection into exhaustive generation methods such as backtrack or
branch and bound algorithms, if one wants all possible solutions. We examine
algorithms for isomorphism testing and the use of isomorphism invariants in
section 3.

3. Isomorphism Testing and Invariants

3.1 Isomorphism Testing

The problem of deciding whether two graphs are isomorphic has attracted a
significant amount of attention [C5]. One of the reasons is that although the
problem is not known to be NP-complete, no algorithm to solve it in polynomial
(or even subexponential) time is known [R4]. Over the years, many proofs have
appeared demonstrating that testing isomorphism of random graphs can be done
efficiently, and with high probability of success [B2, K2, L6]. It is of interest,
therefore, to identify the difficult instances of the problem.

Corneil [C40] observed that practical isomorphism algorithms have the
most difficulty with strongly regular graphs and other graphs obtained from
combinatorial configurations. In a compilation of graphs which are hard for
isomorphism algorithms, Mathon [M2] included solely graphs derived from
combinatorial configurations.

To show that a subclass of graphs is difficult, one must at least establish
that an algorithm to solve isomorphism in the subclass is powerful enough to
solve graph isomorphism. Formally, one must show that deciding isomorphism
of graphs in the subclass is polynomial time equivalent to graph isomorphism or
isomorphism complete. For a survey of results concerning isomorphism
completeness, see [B13]. Since that survey, however, other problems have been
shown to be isomorphism complete. In particular, it it now known that

Theorem 3.1 [C34): Testing isomorphism of block designs is isomorphism
complete.

Theorem 3.2 [F1]: Testing isomorphism of 4-class association schemes is
isomorphism complete.

Hence, it is unlikely that we will devise an efficient {polynomial-time) algorithm
for block design isomorphism. Consequently, one is motivated to search for
better algorithms for specific subcases.

Using a result of Tarjan, Miller [M12] showed that quasigroup isomorphism
can be decided in O(v'°6?) time; the standard representation of an STS as a
Steiner quasigroup yields a subexponential algorithm for deciding isomorphism
in this case. Implementations of this algorithm are discussed in [C32, S6).
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Although no polynomial-time algorithm is known for testing isomorphism of
STS, Stinson found that in practice Miller’s algorithm appears to run in time
O(v'logv) [S4, S6]. Miller's algorithm can be easily extended to handle
S(¢,t+1,v) designs; for details see [C32]. Moreover, the recursive doubling
behaviour of the quasigroup isomorphism procedure carries over naturally to
handle isomorphism problems for many classes of 1-factorizations in
subexponential time. Consequently, there exist subexponential isomorphism
algorithms for 1-factorizations of arbitrary connected graphs, 1-factorizations of
complete multigraphs, Room squares and Howell designs [C11]. There also exist
subexponential time isomorphism algorithms for Hadamard matrices [C12] and
symmetric designs [L18]. In the case of symmetric designs with A=1, i.e.
projective planes, Miller [M12] showed that isomorphism testing can be
performed in O(v'°6!°6?) time. Babai and Luks {B3] have since extended this
result to show

Theorem 3.3 [B3]: Canonical forms (and hence isomorphism testing) for
symmetric B[k, \;v] designs can be found in v@(°91°8%) time,

However, no infinite family of symmetric designs is known for any A >1.

The more exciting result contained in Babai and Luks’ paper {B3] concerns
computing canonical forms for graphs of bounded valence in polynomial time.
The canonical form problem for graphs is closely related to the problem of
testing isomorphism; the second task can be performed at least as fast as the
first and, in most instances, an isomorphism test for a class of graphs consists of
a procedure for determining the canonical form. Hence, a fast algorithm for
determining the canonical form of a class of graphs (or designs), implies a fast
algorithm for isomorphism testing of that class. Babai and Luks [B3] establish

Theorem 3.4 [B3]: Canonical forms for graphs of maximum degree d can be
computed in O(n (%)) steps where n=| V(G)].

Theorem 3.5 [B3]: Canonical forms for B[k \;v] designs can be computed in
v/ (FN*1oBY time,

In other words, isomorphism testing of B[k \;v] designs with fixed & and \ can
be done in subexponential time. Babai and Luks’ results represent a major
advance in the research concerning graph isomorphism. Moreover, from a design
theory point of view, Theorem 3.5 is a nice contrast to the isomorphism
completeness result for general block designs.

Another class of designs in which some improvement with regard to
isomorphism testing might be expected is cyclic designs. There is an elementary
polynomial time algorithm for deciding equivalence of two difference families.
Hence, if all inequivalent designs are non-isomorphic, there would be a
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polynomial-time algorithm for deciding isomorphism of difference families.
However, this is not the case.

Theorem 3.6 [B16]: There exist inequivalent, isomorphic B[3,2;v] designs.

The smallest known pair exists when v=186. Furthermore, Brand [B16] has
established the existence of an infinite family of such designs. For even values of
n, Brand [B186] constructs 2{"2)~! cyclic designs on Z,» which are not equivalent
as cyclic designs. He further establishes that these designs can be paired off so
that the designs in a pair are isomorphic. However, no pair of inequivalent
isomorphic STS is known, despite the fact that there exist cyclic STS which have
non-multiplier automorphisms. The Bays-Lambossy theorem ([BS, LI]
guarantees that such a pair does not exist on a prime order; for details of the

theorem, see [B6 Partll; C36). '

Theorem 3.7 [B8 Partll]: Given 2 isomorphic cyclic structures on a prime
number of elements, there exists a multiplier isomorphism transforming one to
the other.

Theorem 3.7 is a statement about cyclic hypergraphs, a broad class of
structures incorporating both circulants and cyclic designs. Using this theorem,
we observe that there is an O(v?) algorithm for deciding isomorphism of cyclic
designs with a prime number of elements. In deciding this complexity, we
assume that the algorithm is given a cyclic representation of each design; the
complexity of recognizing cyclic designs is unknown to the author. In practice,
this does not create any difficulty since one usually deals with a difference
family representation of the design.

There remain several interesting open questions regarding isomorphism
testing of block designs. In the case of cyclic designs, the main question is
whether there exists a pair of inequivalent, isomorphic STS. Ideally, one would
like to prove that such a pair does not exist. Or perhaps, the Bays-Lambossy
theorem can be extended to the case of STS(v) where v is the product of two
primes. As it has now been established that isomorphism testing is
subexponential for several classes of block designs, it would be interesting to see
if any of these results can be extended to include other classes of designs or to
establish a polynomial time algorithm for any non-trivial class of designs.

3.2 Isomorphism Invariants V

The lack of a polynomial time algorithm for block design isomorphism
compels us to search for other techniques which reduce the magnitude of this
problem. In particular, given a list of designs, we require a method of
partitioning the list into classes such that two isomorphic designs are in the
same class. A design property which partitions the list in such a way is an
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isomorphism invariant. We view an snvariant as a function I for which
I(D,)=1(D,) if D, and D, are isomorphic. When I(D,)=1I(D,) if and only if
D,# D,, the invariant is complete. There is no known efficiently computable
complete invariant, for designs in general. To maintain efficiency in resolving
isomorphism we must, at present, resort to incomplete invariants. In choosing
an invariant we wish to reduce the magnitude of the problem as much as
possible. With this in mind, Petrenyuk and Petrenyuk [P3] propose that a
measure of the invariant's effectiveness be its sensitivily -- the ratio of the
number of classes it distinguishes to the number of non-isomorphic designs under
consideration. A complete invariant has sensitivity one. In the remainder of
this section, we consider invariants with respect to ease of computation and
semsitivity.

3.2.1 Invariants for Block Designs

One of the earliest invariants employed was the order of the automorphism
group. This invariant, however, is insensitive. A second difficulty is that no
polynomial time algorithm is known for computing the order of the
automorphism group. In fact, there is evidence that computing the order of the
automorphism group is equivalent to deciding isomorphism; in the related case
of graphs, the problem is isomorphism complete [B1, M3].

Another means of distinguishing designs is by examining the number and
type of subdesigns. Moore [M13] used this invariant to demonstrate the
existence of at least two non-isomorphic STS, v>13. This invariant is also
insensitive. Again, there is no known polynomial time algorithm for deciding
whether one design is a subdesign of another. The corresponding problem for
graphs is NP-complete.

Of course, there is no reason why one cannot employ subcomponents other
than subdesigns as invariants. For example, Gibbons [G5] used fragments to
distinguish various STS; this approach is discussed later in this section. Another
possibility is to employ information concerning parallel classes or partial parallel
classes. For example, one might consider the number of distinet parallel or
partial parallel classes or various intersection patterns of such classes; these
approaches are discussed in section 5 of this paper.

One invariant for general block designs, which has been successfully
employed by several researchers, is clique analysis. Given a design D, we can
define a series of block intersection graphs G;, i=0,....k, defined as follows:

The vertices of G; are the blocks of D. Two vertices are adjacent if and

only if the corresponding blocks contain exactly ¢ elements in common.

One effective invariant is the number of cliques of size ¢ in G;; this is referred to
as (c,f)-clique analysis. Gibbons [G5] employed clique analysis to help
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distinguish B[3,1;15], B[3,2;9], B[4,3;8], B[4,3;9] and B[5,3;10] designs. In
distinguishing B[3,2;9] designs, Mathon and Rosa [M6] also used clique analysis,
as cycle structure (which we discuss shortly) does not suffice. For cyclic STS,
v=27, (4,0)-clique analysis is a complete invariant [C36]. The complexity of this
invariant is also appealing; an O(b*) algorithm for computing this invariant is
immediate. When the design is transitive, we need only consider the number of
cliques containing a particular element. Hence, an O(rb"') algorithm results.
However, the number of cliques for relatively small values of v is enormous; for
example, one of the S(2,3,21) designs contains 24646 (4,0)-cliques [C36]. Hence,
although the growth is polynomial, the computation is extremely expensive.
Furthermore, it appears that in order to maintain high sensitivity, the size of
cliques being examined must increase as a function of v. If this is indeed the
case, the computation is extremely difficult from a complexity standpoint -- it is,
in fact, a special case of a #P-complete problem [G4, V1].

Other design properties which can be used to distinguish non-isomorphic
designs include both the chromatic number and the chromatic index; these are
discussed further in section 4.

3.2.2 Invariants for S(t,t+1,v)

In 1913, White [W1] introduced a method of distinguishing the two
$(2,3,13) designs. Given a STS D, consider a triad (z,y,z) which is not in D,
(z,y,2) is transformed by replacing each pair (z,y), (z,2), (y,z) by the single
element with which it appears in D. Another triad results. For example, let D
contain the three triples (1,2,4), (1,3,5), (2,3,8); the triad (1,2,3) will be
transformed into (4,5,8). If one continuously repeats this operation, one of two
things must occur. Either a triad of D is encountered or a previous triad is
again reached. For simplicity, White refers to triads of D as one term cycles.
Hence, every triad not in D initiates a train of triples which terminates in a
periodic cycle. Trains are a special class of transformation graphs; for a more
general study of transformation graphs, see [D3, D4]. Examining these trains,
White differentiated the two S(2,3,13) designs. Although White proposed this
invariant simply for STS, the obvious extension allows one to construct trains
for S(t,t+ 1,v) designs in O(v**!) time.

The train of a S{¢,f+1,v) design is a directed graph in which each
component is 8 special {ree —like directed graph. With this in mind, we can
employ the optimal linear time tree isomorphism algorithm [C10, H13] in
conjunction with Booth's optimal labelled cycle isomorphism algorithm [B12] to
obtain an optimal algorithm for deciding isomorphism of trains. These
observations supply us with a practical and efficient isomorphism method for
trains [C22] which we would like to use to distinguish S(¢,t + 1,v) designs.
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The question is: how sensitive are trains? Trains successfully distinguish all
eighty STS(15). In fact, their structure varies dramatically, and hence there is
every reason to expect that they are a useful invariant for larger STS. One
piece of theoretical evidence which supports this is the fact that every outregular
directed graph with outdegree 1 not containing a cycle of length two appears as
a subgraph of the train of some STS. However, trains do not completely
distinguish nonisomorphic STS:

Lemma 3.8 [C22]: There are nonisomorphic STS having isomorphic trains.

Proof: Consider the Hall triple systems, in which every three elements generate
either a block or a sub-STS(9). The train of such an STS consists simply of
copies of the train of the STS(9), and depends only on the order v. But there
are non-isomorphic Hall triple systems of order 3™ for all m=4 [H1].

One serious problem with trains is their size; the graph contains [g]

nodes. A smaller invariant is desired. Retaining just the number of components
is not enough, nor is retaining the component sizes, since the trains of the first
seven STS(15) from [G5] all consist of 35 components of 13 vertices each. With
the additional information of the number of sources (vertices of indegree zero) in
each component, all STS(15) are distinguished except designs 6 and 7 [C22].
Although this simplified invariant, a compact frain, is easy to compute and
requires little storage, it is unclear whether they retain sufficient power.

Stinson [S4] instead examines the indegree sequence of trains.

Lemma 3.9 [S4]: No vertex in a train has indegree exceeding v—2. Further, any
vertex of indegree v—2 is a block of the STS.

Since the indegrees are at most v—2, we may form a vector (g;:08iSv—2),
where a; is the number of vertices of indegree ¢. We refer to this as the
tndegree list of the train. The space required to store an indegree list is clearly
proportional to v, so we have a “small” invariant. Of course, the time required
to compute the invariant is still proportional to v3. For STS(15), indegree lists
distinguish all non-isomorphic designs; the lists are presented in [S4].

Another invariant introduced to distinguish STS is cycle structure, which is
sometimes referred to as the graph of interlacing. Several researchers have
employed cycle structure to distinguish triple systems of small orders [C32, C37,
C42, H3, M6, M15, P3, S4]. We describe it here in a more general setting [C36).
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For a given S(¢,t+1,v) system D=(V,B), consider any set ACV such that
|A| = t=1. For convenience, let A={z,z,...,z;,1}. We define a graph G, to
be G(V4,E,) where V4=V—A and

EA={(ﬂ,b)| a,bGVA,<21'22'...,2,_1,0,b>€B}.
This graph is a 1-factor.

Given D, consider two sets of elements A={z,z,..z,-,} and
C={z,..z,-27,} We define G,=(V4,E4) and Go=(V¢,Ep) as above. We
now define the union of two such graphs G,UG; to be G(V' ,E' L) where

V =vV,NVo—{z| <z,,.,2, 2 >€B}
and .

E' ={(a,b)| a,b €V’ (a,b)€E or(a,b)€Ey}
and L is a mapping of edges to labels. L(a,b)=A if (a,b)€E,. Because every
t-tuple must appear exactly once in D, each element z in V’ appears once in a
block with the set A and once with the set C. Hence, G4UG, is regular of
degree 2; it is therefore a union of cycles.

A compact notation for this graph is just the list of cycle lengths in
ascending order. This is called the cycle list for the pair of (¢ —1)-sets A and C.
Consider the cycle lists for every pair of (¢ — 1)-sets, which have ¢ —2 elements in
common. This collection of lists, when ordered lexicographically, is called the
cycle structure. For cyclic STS, one only has to consider the cycle lists for the
pairs (0,¢), 1sis(v—1)/2.

In order to estimate the sensitivity of this invariant, the author [C32, C36]
employed it to distinguish cyclic STS(v), v=45; for these designs, cycle
structure's sensitivity is approximately 0.9. For SQS, this invariant has been
used by Phelps [P7] to distinguish the twenty-nine S(3,4,20) designs.

There is an elementary O(v®) algorithm for computing this invariant for
STS (O(v?) for cyclic STS). Its high sensitivity guarantees the existence of many
classes containing a single design. It has the added attraction that even for
classes containing more than one design, a subexponential isomorphism
algorithm based on cycle structure can be employed to differentiate the designs
[C32].

Like trains, one difficulty with cycle structure is the space requirement.
Gibbons [G5] suggested a way of compressing the cycle structure by considering
only cycles of length 4. Instead of keeping the list of cycle lengths for G, UG,
simply count the number of cycles of length 4. By keeping this information for
each pair of elements, one forms the fragment vector for the STS.

Note, we do not have to determine all the graphs G4,UG, in order to find
the fragment vectors. A fragment is a set of four blocks of the form (u,v,w),
(v,2,9), (v,2,2), (w,y,2). A fragment gives rise to a 4-cycle in G,UG,, G,UG,
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and G,UG,. We can determine the fragment vector simply by finding all
fragments, and each time one is encountered, updating the fragment vector
appropriately. Although this method still requires time proportional to v, it is
considerably quicker than determining the complete cycle structure. It also has
the added advantage of requiring less space than cycle structure; the fragment
vector requires space proportional to v.

Gibbons [GS5)] used fragment vectors to distinguish all 80 STS(15). In [S4],
Stinson compared the sensitivity and efficiency of indegree lists and fragment
vectors on random STS(v), 15 Sv= 31, generated via a hill-climbing algorithm
[S5). Both invariants are complete for STS(v), v=15; for larger v, Stinson
concludes that both invariants seem to be very successful in practice. Both
invariants can be computed in time O(v3) and require space O(v). Experimental
evidence suggests that the invariant based on trains is more effective, but it
requires about five times longer to compute [S4].

For further information regarding many of the aforementioned invariants
and other properties for specific STS, see [M5).

Stinson and Vanstone [S8] in their examination of nonisomorphic Kirkman
triple systems, developed an invariant which exploits information concerning the
design’s resolution. Consider a KTS(6¢+3) (V,B) with a resolution
R={R,,...,R3,+,}. I (z,y,2) is a block, define other(z,y)=z and re(z,y)=R; if
(z,y,2) € R;. Now define a partial mapping g from the 3-subsets of V to the 3-
subsets of R. If z, y and z are distinct members of V, let z,=other(z,y),
y,=other(z,z) and z,=other(y,z). I (z,,y,,2;) is not a block, define
9((z,y,2))={re(z,,9,)re(z},2,), re(y,,2,)}. For i=0, let f; denote the number
of 3-subsets of R which have an inverse image of cardinality exactly 1. Finally,
define INV(R)=(f;|0sisv). INV(R) is an invariant for Kirkman triple
systems. Stinson and Vanstone employ this invariant to distinguish
nonisomorphic KTS(39) and KTS(51) [S8].

The construction of the above KTS is based on strong starters; as noted
earlier, strong starters have been successfully used to construct a variety of
combinatorial configurations including Room squares and Howell designs. For
appropriate algorithmic techniques for generating inequivalent or nonisomorphic
strong starters in cyclic groups, see [K5).

3.2.3 Invariants for Steiner Systems

In the previous section, we defined cycle structure, which is applicable only
when £—t=1. However, when this is not the case, we can still define the graph
G4, |A| =t—1. G, is a collection of disjoint (k— ¢+ 1)-cliques. We may again
define the labelled graph G,UG, as before. Any invariant of this graph is an
invariant of the pair of (¢ —1)-sets A and C. For a given invariant I, let I(A,C)
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denote the value of ] on G4UG,. An invariant of the design is the multiset

{I(A,c)l 1A =t=1,|C|=t-1,]ANC| =t-2,ACV,CCV}.

One can see that cycle structure is an invariant of this form. Let us consider a
specific graph G,UG;. Let X be the (k—¢+1)-clique common to both G4 and
Gc. The (k—t+1)-cliques of G4—X can be arbitrarily ordered. Then the
(k—=t+1)-cliques of Go—X can be represented in terms of the cliques of
G4—X eg. a (k—=t+1)set S(K); if v belongs to the ith clique of G4 —X and
v€EK, {€S(K). Observe that for v,w€K,v#w, v and w belong to different
cliques in G4 =X . Hence, S(K) is a (k—¢t+1)-set. For a given ¢, consider the
k—t+1 sets S(K,),....S(Kp-;+) which contain . From this collection form
T(K;)=S(K;)—{i}. Now T(K,),...T(Ky-;4+;) form the edges of a (k—t)-
uniform hypergraph, which we will denote H; and call an overlap graph.

Any invariant of the collection {H;} is an invariant of G,UGy. Each
overlap graph H; has the same number of edges, so this invariant would result
in no discrimination. However, they may have a different number of vertices.
With this in mind, we define the overlap list of G4,UGy, OL(A,C), to be the
multiset {] V(H;)|}. The overlap list is clearly invariant under isomorphism.
The overlap structure of a design is the multiset

{oL(A,C)| | Al =t-1,|C|=t-1,|ANC| =t-2,ACV,CCV}.

A seemingly more powerful invariant can be defined by enumerating all
{k —t)-uniform hypergraphs with {k—¢+1)} edges and arbitrarily ordering them
1 through m. For such a hypergraph H, denote by I(H) its index in this list.
The typed overlap list of G4UGe, TOL(A,C), is the multiset {I(H;)}. The
typed overlap structure is the obvious analogue of overlap structure.

With respect to computation, there is an efficient algorithm for computing
this invariant [C33]. Furthermore, the invariant appears to be quite sensitive.
For example, overlap structure distinguished all cyclic S(2,4,v) designs, v=64,
and all cyclic S(2,5,v) designs, v=65 [C33, C36).

4. Colouring Block Designs

4.1 Colouring Elements

An r—colouring of a hypergraph is an assignment to each vertex of a
colour chosen from an r—set of available colours; equivalently, it is a partition
of the vertices into r sets. An r-colouring is proper if no edge contains solely
vertices of one colour. A hypergraph is r—colourable if it has a proper r-
colouring, and is r—chromatic if it r-colourable but is mot (r—1)-colourable.
The chromatic number of a hypergraph H, denoted x(H), is that r for which H
is r-chromatic.
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Many researchers have examined colouring graphs and hypergraphs; in fact,
these problems arise in many areas of computer science [C2, E3]. We focus here
upon the analogous colouring problems for combinatorial designs. For another
survey of results concerning the colouring of Steiner systems, the reader can also
refer to [B10]. There are many reasons for examining such colouring problems
and related tasks. Investigations of the chromatic number have led both directly
and indirectly to elegant constructions for {-designs; one recent example is the
investigation of 2-chromatic SQS (P11]. Furthermore, colouring information is a
means of distinguishing designs and is, of course, an isomorphism invariant.
Unfortunately, determining the chromatic number of a design appears to be a
computationally difficult task, and hence this is not a practical invariant.

This does however raise another motivation for examining colouring
problems. It is well-known that deciding whether a graph is k-colourable (for
fixed k=3) is an NP-complete problem [G4]. Determining whether a graph is 2-
chromatic can be easily carried out in linear time -- we need only decide if the
graph is bipartite (see [C2], for example). On the other hand, deciding whether
a hypergraph is 2-chromatic is NP-complete [L17]. Do such problems remain
NP-complete when one is examining block designs or Steiner systems? Or can
the structure of block designs be exploited to ensure polynomial time
algorithms? We will examine some of these questions in this section.

First, we present Lovdsz' NP-completeness result regarding colouring
hypergraphs. The construction is presented here as an example of the type of
transformation which is required in such proofs.

Theorem 4.1 [L17]: Deciding whether a 3-uniform hypergraph is 2-colourable is
NP-complete.
Proof:

Membership in NP is immediate. To show completeness, we give a
polynomial time reduction from the problem of graph 3-colourability. Given a
graph G=(V,E), V={v,,...v,}, we define a 3-uniform hypergraph H= (W F).
The vertex set, W, is {o} U {z,-,-l 1si{sn,lsj=<3}. The edgesin F are

(1) {0,z ,z 3} Hor all {v;,v} € E, 1=k=3.
(2) {z;1,%i9,2;3} for 1=i=n.
Now H is 2-colourable if and only if G is 3-colourable.

A 3-uniform hypergraph can be transformed into a partial SQS H such that
H is 2-colourable if and only if the original hypergraph was 2-colourable.
Furthermore, the transformation can be performed in polynomial time which
establishes
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Theorem 4.2 [C20]: Deciding whether a partial SQS is 2-colourable is NP-
complete.

As an interesting contrast to the previous result, it has been established that

Theorem 4.3 [C20): Deciding whether a SQS is 2-colourable can be performed in
polynomial time.

To illustrate this, we follow the presentation in [C20]. A 2-colouring of a
SQS (V,E} is a partition of V into two sets V, and V. It is proper if for any e €
E,e N V,#e. Doyen and Vandensavel [D9] proved that if <V,,V,> is a proper
2-colouring of (V,E), then |V,| = | V4.

The algorithm operates by extending a partial colouring, which is a
partition of V into three sets Vy, V, and U. Vertices in V, (V,) have been
assigned the first (second) colour; the colours of vertices in U are as yet
unspecified. A partial colouring <V,,V,,U> is feasible if there is a proper 2-
colouring <W;W,> for which V;, C W, and V, C W,. All feasible partial
colourings are proper, but of course the converse need not hold.

A simple-minded method which uses Doyen and Vandensavel's observation
is the following. Given a partial colouring <V,V,,U> first check that it is
proper. If it is not, it is not feasible. Next check if either | V}| or | V3| is | V]/2;
if so, we have completed a proper 2-colouring [D9]. In the final case, we attempt
to extend the partial 2-colouring. For each v € U in turn, we determine
whether <V, U {v},V,,U~{v}> is feasible. If any one of these is feasible,
< V,,Va,U> is feasible; otherwise it is not.

Now a SQS (V,E) is 2-colourable if and only if < @ , & , V> is feasible.
When extending a partial colouring, additional information can be exploited. For
example, if {w,z,y,z} is an edge (block) for which w,z,y € V, and z € U, we
know that z must be placed in V,. Therefore, we say that z is an implicant for
V, (Vy) if z € U and there is an edge {w,z,y,2} with w,z,y € V, (V).

To circumvent the selection of vertices leading immediately to improper
colourings, we introduce a process called stabilization. Given a partial colouring
<V;,Vo,U>, we locate the set U, € U of implicants for V, and the set U, C U
of implicants for V,. If U, and U, contain an element in common, a proper
colouring is impossible, in which case the stabilization has failed. Otherwise, if
U,=U,=J, stabilization is said to succeed. If the stabilization process has
neither failed nor succeeded, we repeat the process and stabilize <V, U U,, V,
UU, U-U,~U,>.

Stabilization can be carried out in polynomial time, and thus it can be used
to substantially improve the simple-minded algorithm mentioned earlier. After
each selection, we stabilize the partial colouring and then attempt to extend the
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resulting partial colouring. In fact, we need only deal with stable partial
colourings throughout the algorithm.

To guarantee an improvement over the exponential running-time, we need
two additional facts. The first concerns the sizes of the two colour classes in a
stable colouring. If <V, V,, U> is a stable partial colouring of a SQS (V,E),
| Vi| =2s|V,y|=|V;| +2. Secondly, one needs to establish that at each step
of the algorithm, one can select an element to colour which has a sufficiently
large number of implicants. Hence, the algorithm (or this step of the algorithm)
cannot be invoked too often. In fact, it can be invoked at most O(log n) times;
hence, the algorithm runs in polynomial time. Once this fact is established, one
can apply a greedy selection process, which results in a polynomial-time
algorithm.

Although, this result has been presented here for SQS, it can clearly be
generalized to other families of ¢-designs in which one can exploit the existence
of implicants. In other words, deciding whether a ¢-Bjt + 1,\;v] design ({=3) can
be 2-coloured can be performed in polynomial time. Doyen and Vandensavel’s
result indicates that only designs with an even number of elements can be 2-
coloured. Therefore, no STS can be 2-coloured.

Projective planes, with the exception of the STS(7), can be 2-coloured.
Given a 2-colouring, the smaller colour class is called a blocking set. For results
concerning blocking sets in designs, see [B15, B18, D5, D11].

The existence of k-chromatic STS for k=3 has been examined [D1, RS,
R7]. In particular, Rosa [R7] established the existence of a 3-chromatic STS of
all admissible orders. A more recent paper [D1] established a much more general
result:

Theorem 4.4 [D1): For any k=3, there exists an n; such that for all admissible
vn; there exists a k-chromatic STS of order v.

Furthermore, de Brandes, Phelps and R6dl [D1] established that n,<49. In so
doing, two colour-preserving recursive constructions are presented.

Theorem 4.5 [D1]: If there exists a k-chromatic STS(v), there exists a -
chromatic STS(2v+1).

Theorem 4.6 [D1]: Let vm1,9 (mod 12). If there exists a k-chromatic STS(v),
there exists a k-chromatic STS(2v +7).

In the course of their examination of k-chromatic STS, de Brandes, Phelps
and RGdl raise some very interesting existence algorithmic questions. For
example, do there exist uniquely colourable k-chromatic STS for all k? A
corresponding question which one might ask is “Given a k-colouring of a k-
chromatic STS, how difficult is it to establish that this colouring is unique?”.
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Before examining this question, it is sensible to answer the more basic question
“How difficult is it to decide whether a STS is k-chromatic?”.

It is known that
Theorem 4.7 [P10}: Deciding whether a STS is k-chromatic is NP-complete.

There are several related results which warrant mention here, the first of which
concerns partial STS.

Theorem 4.8 [C21]: Deciding whether a partial STS is ¢-colourable is NP-
complete for any fixed ¢23.

Proof:

In order to prove this theorem, we construct ¢{-chromatic partial STS in
which any ¢-colouring assigns a fixed pair of elements different colours. To do
this, we need the following two lemmas.

Lemma 4.9: For each =2, there is a t-chromatic partial STS for which any ¢-
colouring assigns the same colour to two fixed elements.

Proof:

There are (¢+1)-chromatic STS for all t=2 [D1]. Suppose P is a (¢t+1)-
chromatic STS. A triple is said to be eritical if its deletion lessens the
chromatic nnmber of the partial STS. Starting with any (¢Z+1)-chromatic
system, we delete blocks until one becomes critical. Call this partial STS P.
Deleting a critical block from P produces a {-chromatic partial STS P’. Any ¢-
colouring of P’ assigns the same colour to the three elements forming the
critical block of P, since otherwise the ¢-colouring of P' would also ¢-colour P,
which is in contradiction to our assumption.

Lemma 4.10: For each {22, there exists a ¢-chromatic partial STS P and a
»
fixed pair of elements {z, 2} of P, such that any ¢-colouring of P assigns a
14
different colour to z and z.

Proof:

Let P be a partial STS with chromatic number ¢, having the property that
any t-colouring of P assigns the same colour to two given elements z and y.
Denote the element set of P by @ U {z}. Take two copies of P, one on Q, U
{z} and one on @, U {z} that is, two copies intersecting only at z. Add a new
element z and include the block {y,, yz,z'}. This partial STS is {-chromatic and
any ¢-colouring must assign the same colour to z, y,, and y,. Then z must be
coloured differently from z.

Proof of Theorem 4.8:
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Suppose we are to decide whether an arbitrary graph G is ¢-colourable; we
know that this problem is NP-complete for any fixed ¢=3 [G4]. First,let P bea
partial STS with chromatic number ¢ having fixed elements z, z' which every
t-colouring P assigns two different colours. We construct a partial STS with a
copy of P for every edge of the graph G; for an edge {y, z} of G, we take a
copy of P disjoint from the other copies, and identify z and z’ with y and z.
The theorem follows directly.

Given a partial STS on v elements, one can produce in polynomial time a
B[3,12tv + 3;18tv + 3] design which is 3¢-colourable if and only if the partial STS
is ¢-colourable. Hence, there is a polynomial time reduction of a known NP-
complete problem to a more general colouring problem, establishing that

Theorem 4.11 [C21]): Deciding whether a block design is ¢-colourable is NP-
complete for all t=9.

However, the above result is established for block designs with relatively large \;
in fact, A is O(v). However, even restricting one’s attention to small fixed X\
does not necessarily result in any improvement. Phelps and Rédl [P10] more
recently established that

Theorem 4.12 [P10]: Deciding whether a STS is 14-colourable is NP-complete.

To establish this result, Phelps and R6d! employed the fact that deciding
3-colourability of 4-regular graphs is NP-complete {G4]. Given a 4-regular
graph G, a partial STS P is constructed such that the chromatic number of P is
four times that of G. The partial STS P is then embedded into a STS S.
Moreover, the chromatic number of S is at most x(P)+2. Therefore, if
x(G)=3, then x(P)=12 and x(S)=<14. Alternatively, if x(G}=4, x(P)=16. In
order to establish the NP-completeness results, it is necessary to guarantee that
the embedding can be performed in polynomial time, which is indeed the case.
The embedding employed transforms a partial STS(v) into a STS(6v+3) and is
done in polynomial time.

Related work concerns the existence of particular colourings. For example,
given a block design in which the elements are coloured with m colours and the
colouring is proper, can one produce a complete colouring with m + 1 colours? A
colouring is complete if the merging of any two colour classes would result in an
improper colouring e.g. a monochromatic block. Cockayne, Miller and Prins
[C4] have proved several interesting results along these lines. First let us define
what is meant by a type 1 colouring. A colouring {V},V,, - - - V, } is said to be
typel if, for all z € V; and all j<i, {V,,..V; U {z},...V; —{z},..V,} is an
improper colouring. In other words, no element can be moved to a “lower”
colo