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Preface

Revised versions of selected papers presented at the Joint Conference of the German
Classification Society (GfKl) — 35th Annual Conference — GfKIl 2011 — , the
German Association for Pattern Recognition (DAGM) — 33rd annual symposium —
DAGM 2011 — and the Symposium of the International Federation of Classification
Societies (IFCS) — IFCS 2011 — held at the University of Frankfurt (Frankfurt am
Main, Germany) August 30 — September 2, 2011, are contained in this volume of
“Studies in Classification, Data Analysis, and Knowledge Organization”.

One aim of the conference was to provide a platform for discussions on results
concerning the interface that data analysis has in common with other areas such
as, e.g., computer science, operations research, and statistics from a scientific
perspective, as well as with various application areas when “best” interpretations
of data that describe underlying problem situations need knowledge from different
research directions.

Practitioners and researchers — interested in data analysis in the broad sense — had
the opportunity to discuss recent developments and to establish cross-disciplinary
cooperation in their fields of interest. More than 420 persons attended the con-
ference, more than 180 papers (including plenary and semiplenary lectures) were
presented. The audience of the conference was very international.

Fifty-five of the papers presented at the conference are contained in this. As an
unambiguous assignment of topics addressed in single papers is sometimes difficult
the contributions are grouped in a way that the editors found appropriate. Within
(sub)chapters the presentations are listed in alphabetical order with respect to the
authors’ names. At the end of this volume an index is included that, additionally,
should help the interested reader.

The editors like to thank the members of the scientific program committee:
D. Baier, H.-H. Bock, R. Decker, A. Ferligoj, W. Gaul, Ch. Hennig, I. Herzog,
E. Hiillermeier, K. Jajuga, H. Kestler, A. Koch, S. Krolak-Schwerdt, H. Locarek-
Junge, G. McLachlan, FR. McMorris, G. Menexes, B. Mirkin, M. Mizuta,
A. Montanari, R. Nugent, A. Okada, G. Ritter, M. de Rooij, I. van Mechelen,
G. Venturini, J. Vermunt, M. Vichi and C. Weihs and the additional reviewers of
the proceedings: W. Adler, M. Behnisch, C. Bernau, P. Bertrand, A.-L. Boulesteix,
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vi Preface

A. Cerioli, M. Costa, N. Dean, P. Eilers, S.L. France, J. Gertheiss, A. Geyer-Schulz,
W.J. Heiser, Ch. Hohensinn, H. Holzmann, Th. Horvath, H. Kiers, B. Lorenz, H.
Lukashevich, V. Makarenkov, F. Meyer, I. Morlini, H.-J. Mucha, U. Miiller-Funk,
J.W. Owsinski, P. Rokita, A. Rutkowski-Ziarko, R. Samworth, I. Schméadecke and
A. Sokolowski.

Last but not least, we would like to thank all participants of the conference
for their interest and various activities which, again, made the 35th annual GfKl
conference and this volume an interdisciplinary possibility for scientific discussion,
in particular all authors and all colleagues who reviewed papers, chaired sessions
or were otherwise involved. Additionally, we gratefully take the opportunity to
acknowledge support by Deutsche Forschungsgemeinschaft (DFG) of the Sympo-
sium of the International Federation of Classification Societies (IFCS) — IFCS 2011.

As always we thank Springer Verlag, Heidelberg, especially Dr. Martina Bihn,
for excellent cooperation in publishing this volume.

Colchester, UK Berthold Lausen
Ghent, Belgium Dirk Van den Poel
Marburg, Germany Alfred Ultsch
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Size and Power of Multivariate Qutlier
Detection Rules

Andrea Cerioli, Marco Riani, and Francesca Torti

Abstract Multivariate outliers are usually identified by means of robust distances.
A statistically principled method for accurate outlier detection requires both avail-
ability of a good approximation to the finite-sample distribution of the robust
distances and correction for the multiplicity implied by repeated testing of all the
observations for outlyingness. These principles are not always met by the currently
available methods. The goal of this paper is thus to provide data analysts with useful
information about the practical behaviour of some popular competing techniques.
Our conclusion is that the additional information provided by a data-driven level of
trimming is an important bonus which ensures an often considerable gain in power.

1 Introduction

Obtaining reliable information on the quality of the available data is often the first
of the challenges facing the statistician. It is thus not surprising that the systematic
study of methods for detecting outliers and immunizing against their effect has a
long history in the statistical literature. See, e.g., Cerioli et al. (2011a), Hadi et al.
(2009), Hubert et al. (2008) and Morgenthaler (2006) for recent reviews on this
topic. We quote from Morgenthaler (2006, p. 271) that “Robustness of statistical
methods in the sense of insensitivity to grossly wrong measurements is probably
as old as the experimental approach to science”. Perhaps less known is the fact that

A. Cerioli () - M. Riani
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e-mail: andrea.cerioli @unipr.it; mriani @unipr.it

F. Torti
Dipartimento di Economia, Universita di Parma, Parma, Italy

Joint Research Centre, European Commission, Ispra (VA), Italy

B. Lausen et al. (eds.), Algorithms from and for Nature and Life, Studies in Classification, 3
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-319-00035-0_1,
© Springer International Publishing Switzerland 2013

www.it-ebooks.info


mailto:andrea.cerioli@unipr.it
mailto:mriani@unipr.it
http://www.it-ebooks.info/

4 A. Cerioli et al.

similar concerns were also present in the Ancient Greece more than 2,400 years ago,
as reported by Thucydides in his History of The Peloponnesian War (III 20): “The
Plataeans, who were still besieged by the Peloponnesians and Boeotians, ... made
ladders equal in length to the height of the enemy’s wall, which they calculated by
the help of the layers of bricks on the side facing the town ... A great many counted
at once, and, although some might make mistakes, the calculation would be oftener
right than wrong; for they repeated the process again and again ...In this manner
they ascertained the proper length of the ladders™.!

With multivariate data outliers are usually identified by means of robust dis-
tances. A statistically principled rule for accurate multivariate outlier detection
requires:

(a) An accurate approximation to the finite-sample distribution of the robust
distances under the postulated model for the “good” part of the data;

(b) Correction for the multiplicity implied by repeated testing of all the observa-
tions for outlyingness.

These principles are not always met by the currently available methods. The
goal of this paper is to provide data analysts with useful information about the
practical behaviour of popular competing techniques. We focus on methods based
on alternative high-breakdown estimators of multivariate location and scatter, and
compare them to the results from a rule adopting a more flexible level of trimming,
for different data dimensions. The present thus extends that of (Cerioli et al.
2011b), where only low dimensional data are considered. Our conclusion is that
the additional information provided by a data-driven approach to trimming is an
important bonus often ensuring a considerable gain in power. This gain may be
even larger when the number of variables increases.

2 Distances for Multivariate Outlier Detection

2.1 Mahalanobis Distances and the Wilks’ Rule

Let yy, ..., y, be a sample of v-dimensional observations from a population with
mean vector i and covariance matrix Y. The basic population model for which
most of the results described in this paper were obtained is that

yi ~N(u, X) i=1,...,n. €))]

'The Authors are grateful to Dr. Spyros Arsenis and Dr. Domenico Perrotta for pointing out this
historical reference.
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The sample mean is denoted by /1 and Y is the unbiased sample estimate of X'. The
Mahalanobis distance of observation y; is

d? = (yi — ' 27 (i — . )

For simplicity, we omit the fact that d? is squared and we call it a distance.
Wilks (1963) showed in a seminal paper that, under the multivariate normal
model (1), the Mahalanobis distances follow a scaled Beta distribution:

—1)? -1
di2~uBeta L i=1.....n. 3)
n 2 2

Wilks also conjectured that a Bonferroni bound could be used to test outlyingness
of the most remote observation without losing too much power. Therefore, for a
nominal test size «, Wilk’s rule for multivariate outlier identification takes the
largest Mahalanobis distance among dZ,...,d?, and compares it to the 1 — a/n
quantile of the scaled Beta distribution (3). This gives an outlier test of nominal test
size < a.

Wilks’ rule, adhering to the basic statistical principles (a) and (b) of Sect. 1,
provides an accurate and powerful test for detecting a single outlier even in small
and moderate samples, as many simulation studies later confirmed. However, it can
break down very easily in presence of more than one outlier, due to the effect of
masking. Masking occurs when a group of extreme outliers modifies /i and Y in
such a way that the corresponding distances become negligible.

2.2 Robust Distances

One effective way to avoid masking is to replace i and Y in (2) with high-
breakdown estimators. A robust distance is then defined as

dr = (i — ' 27 (i — ), 4)

where [ and ¥ denote the chosen robust estimators of location and scatter. We can
expect multivariate outliers to be highlighted by large values of d 1_2, even if masked in
the corresponding Mahalanobis distances (2), because now /i and ¥ are not affected
by the outliers.

One popular choice of i and ¥ is related to the Minimum Covariance Deter-
minant (MCD) criterion (Rousseeuw and Van Driessen 1999). In the first stage,
we fix a coverage |n/2] < h < n and we define the MCD subset to be the sub-
sample of & observations whose covariance matrix has the smallest determinant.
The MCD estimator of w, say jfi(vcp), is the average of the MCD subset, whereas
the MCD estimator of ¥, say Z:‘(MCD), is proportional to the dispersion matrix of this
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subset (Pison et al. 2002). A second stage is then added with the aim of increasing
efficiency, while preserving the high-breakdown properties of ftvcp)y and fJ(MCD).
Therefore, a one-step reweighting scheme is applied by giving weight w; = 0 to
observations whose first-stage robust distance exceeds a threshold value. Otherwise
the weight is w; = 1. We consider the Reweighted MCD (RMCD) estimator of p
and X, which is defined as

YWV kYo wi(yi — flemen) (Vi — firmcp))’
=, YrRMCD = —

ARMCD = ,
where w = Z?: , wi and the scaling «, depending on the values of m, n and v,
serves the purpose of ensuring consistency at the normal model. The resulting robust
distances for multivariate outlier detection are then

digmc) = (i — firmep) Sayep (Vi — firmep) i =1,....n. ()

Multivariate S estimators are another common option for ji and Y. For i € R
and X' a positive definite symmetric v X v matrix, they are defined to be the solution
of the minimization problem | ¥'| = min under the constraint

1l & -~
~ pd) =¢ (©6)

i=1

where cil.z is given in (4), p(x) is a smooth function satisfying suitable regularity and
robustness properties, and { = E{p(z'z)} for a v-dimensional vector z ~ N(0, I).
The p function in (6) rules the weight given to each observation to achieve
robustness. Different specifications of p(x) lead to numerically and statistically
different S estimators. In this paper we deal with two such specifications. The first
one is the popular Tukey’s Biweight function

p(x) = ot = 7

where ¢ > 0 is a tuning constant which controls the breakdown point of S
estimators; see Rousseeuw and Leroy (1987, pp.135-143) and Riani et al. (2012)
for details. The second alternative that we consider is the slightly more complex
Rocke’s Biflat function, described, e.g., by Maronna et al. (2006, p. 190). This
function assigns weights similar to (7) to distance values close to the median, but
null weights outside a user-defined interval. Specifically, let

XZ
n:mm(ﬂfﬁ—LQ, (8)
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where y2,.  isthe | — uantile of y2. Then, the weight under Rocke’s Biflat
XV*(l v) v 4q Xy g

function is 0 whenever a normalized version of the robust distance cf,z is outside the
interval [1 — 1,1 4 n]. This definition ensures better performance of S estimators
when v is large. Indeed, it can be proved (Maronna et al. 2006, p. 221) that the
weights assigned by Tukey’s Biweight function (7) become almost constant as
v — oo. Therefore, robustness of multivariate S estimators is lost in many practical
situations where v is large. Examples of this behaviour will be seen in Sect. 3.2 even
for v as small as 10.

Given the robust, but potentially inefficient, S estimators of pu and X, an
improvement in efficiency is sometimes advocated by computing refined location
and shape estimators which satisfy a more efficient version of (6) (Salibian-Barrera
et al. 2006). These estimators, called MM estimators, are defined as the minimizers
of

1 o z
— =), ©)

i=1
where 5 B
AP =(i—)' S (i — ) (10)
and the function p«(x) provides higher efficiency than p(x) at the null model (1).
Minimization of (9) is performed over all pen and all b)) belonging to the set
of positive definite symmetric v X v matrices with |2:J | = 1. The MM estimator

of w is then ﬁ, while the estimator of ¥ is a rescaled version of ¥. Practical
implementation of MM estimators is available using Tukey’s Biweight function only
(Todorov and Filzmoser 2009). Therefore, we follow the same convention in the
performance comparison to be described in Sect. 3.

2.3 The Forward Search

The idea behind the Forward Search (FS) is to apply a flexible and data-driven
trimming strategy to combine protection against outliers and high efficiency of
estimators. For this purpose, the FS divides the data into a good portion that agrees
with the postulated model and a set of outliers, if any (Atkinson et al. 2004). The
method starts from a small, robustly chosen, subset of the data and then fits subsets
of increasing size, in such a way that outliers and other observations not following
the general structure are revealed by diagnostic monitoring. Let m( be the size of
the starting subset. Usually mo = v + 1 or slightly larger. Let S be the subset of
data fitted by the FS at step m (m = my,...,n), yielding estimates [1(m), f}(m)
and distances

d}m) = {y; — pm)Y Tm) My —pom)} i =1.....n.
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These distances are ordered to obtain the fitting subset at step m + 1. Whilst S
remains outlier free, they will not suffer from masking.
The main diagnostic quantity computed by the FS at step m is

cffmn (m) : Imin = arg min c?,-z(m) fori ¢ S, (11)
i.e. the distance of the closest observation to S, among those not belonging to this
subset. The rationale is that the robust distance of the observation entering the fitting
subset at step m + 1 will be large if this observation is an outlier. Its peculiarity will
then be revealed by a peak in the forward plot of dl%nin (m).

All the FS routines, as well as the algorithms for computing most of the com-
monly adopted estimators for regression and multivariate analysis, are contained
in the FSDA toolbox for MATLAB and are freely downloadable from http://www.
riani.it/MATLAB or from the web site of the Joint Research Centre of the European
Commission. This toolbox also contains a series of dynamic tools which enable the
user to link the information present in the different plots produced by the FS, such
as the index or forward plot of robust Mahalanobis distances cjiz (m) and the scatter
plot matrix; see Perrotta et al. (2009) for details.

3 Comparison of Alternative Outlier Detection Rules

Precise outlier identification requires cut-off values for the robust distances when
model (1) is true. If & = jigmcp and X = Zgrmep, Cerioli et al. (2009) show
that the usually trusted asymptotic approximation based on the y2 distribution can
be largely unsatisfactory. Instead, Cerioli (2010) proposes a much more accurate
approximation based on the distributional rules

= w—1)? v w—v—1 )
diz(RMCD) ~ (TBeta (5’ T) if wi =1 (12)
w+1w-—1)v

w w—=v

Fv,w—v if w; =0, (13)

where w; and w are defined as in Sect.2.2. Cerioli and Farcomeni (2011) show
how the same distributional results can be applied to deal with multiplicity of tests
to increase power and to provide control of alternative error rates in the outlier
detection process.

In the context of the Forward Search, Riani et al. (2009) propose a formal outlier
test based on the sequence (jl%nin (m),m = my,...,n—1, obtained from (11). In this

test, the values of c?ifnin (m) are compared to the FS envelope

Vi ol o (m)?,
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Size and Power of Multivariate Outlier Detection Rules 9

where V2 is the 100a % cut-off point of the (m -+ 1)th order statistic from the

m.,o
scaled F distribution
(m*—1)v

A (14)

and the factor ) )
P(Xv+2 < Xv,m/n)

m/n (15)

or(m)* =

allows for trimming of the 7 —m largest distances. In (15), X7\, ~ 134, and 15, ),
is the m/n quantile of y2.

The flexible trimming strategy enjoyed by the FS ensures a balance between
the two enemy brothers of robust statistics: robustness against contamination and
efficiency under the postulated multivariate normal model. This makes the Forward
Search a valuable benchmark against which alternative competitors should be
compared. On the other hand, very little is known about the finite sample behaviour
of the outlier detection rules which are obtained from the multivariate S and MM
estimators summarized in Sect.2.2. In the rest of this section, we thus explore the
performance of the alternative rules with both “good” and contaminated data, under
different settings of the required user-defined tuning constants. We also provide
comparison with power results obtained with the robust RMCD distances (5) and
with the flexible trimming approach given by the FS.

3.1 Size

Size estimation is performed by Monte Carlo simulation of data sets generated
from the v-variate normal distribution N (0, 1), due to affine invariance of the robust
distances (4). The estimated size of each outlier detection rule is defined to be the
proportion of simulated data sets for which the null hypothesis of no outliers, i.e.
the hypothesis that all n observations follow model (1), is wrongly rejected. For S
and MM estimation, the finite sample null distribution of the robust distances d,2 is
unknown, even to a good approximation. Therefore, these distances are compared to
the 1 — a/n quantile of their asymptotic distribution, which is y2. As in the Wilks’
rule of Sect. 2.1, the Bonferroni correction ensures that the actual size of the test of
no outliers will be bounded by the specified value of « if the y? approximation is
adequate.

In our investigation we also evaluate the effect on empirical test sizes of
each of some user-defined tuning constants required for practical computation of
multivariate S and MM estimators. See, e.g., Todorov and Filzmoser (2009) for
details. Specifically, we consider:

* Dbdp: breakdown point of the S estimators, which is inherited by the MM
estimators as well (the default value is 0.5);
e eff: efficiency of the MM estimators (the default value is 0.95);
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» effshape?: dummy variable setting whether efficiency of the MM estimators is
defined with respect to shape (effshape =1) or to location (ef fshape =0,
the default value);

e nsamp: number of sub-samples of dimension (p+1) in the resampling algorithm
for fast computation of S estimators (our default value is 100);

* refsteps: maximum number of iterations in the Iterative Reweighted Least
Squares algorithm for computing MM estimators (our default value is 20);

* gamma: tail probability in (8) for Rocke’s Biflat function (the default value
is 0.1).

Tables 1 and 2 report the results for n = 200, v = 5 and v = 10, when « = 0.01
is the nominal size for testing the null hypothesis of no outliers and 5,000
independent data sets are generated for each of the selected combinations of
parameter values. The outlier detection rule based on S estimators with Tukey’s
Biweight function (7) is denoted by ST. Similarly, SR is the S rule under Rocke’s
Biflat function. It is seen that the outlier detection rules based on the robust S and
MM distances with Tukey’s Biweight function can be moderately liberal, but with
estimated sizes often not too far from the nominal target. As expected, liberality is
an increasing function of dimension and of the breakdown point, both for S and MM
estimators. Efficiency of the MM estimators (e f £) is the only tuning constant which
seems to have a major impact on the null behaviour of these detection rules. On the
other hand, SR has the worst behaviour under model (1) and its size can become
unacceptably high, especially when v grows. As a possible explanation, we note
that a number of observations having positive weight under ST receive null weight
with SR (Maronna et al. 2006, p. 192). This fact introduces a form of trimming in
the corresponding estimator of scatter, which is not adequately taken into account.
The same result also suggests that better finite-sample approximations to the null
distribution of the robust distances d,.2 with Rocke’s Biflat function are certainly
worth considering.

3.2 Power

We now evaluate the power of ST, SR and MM multivariate outlier detection rules.
We also include in our comparison the FS test of Riani et al. (2009), using (14),
and the finite-sample RMCD technique of Cerioli (2010), relying on (12) and (13).
These additional rules have very good control of the size of the test of no outliers
even for sample sizes considerably smaller than n = 200, thanks to their accurate
cut-off values. Therefore, we can expect a positive bias in the estimated power of all
the procedures considered in Sect. 3.1, and especially so in that of SR.

2In the RRCOV packege of the R software this option is called eff . shape
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Table 2 Estimated size of the test of the hypothesis of no
outliers for n = 200 and nominal test size « = 0.01, using
S estimators with Rocke’s Biflat function (SR), for different
values of y in (8). Five thousand independent data sets are
generated for each of the selected combinations of parameter
values

gamma
0.15 0.10 0.05 0.025 0.01 0.001

v=>5 0066 0.057 0055 0.056 0.056 0.061
=10 0.089 0.080 0.079 0.078 0.077 0.081

Average power of an outlier detection rule is defined to be the proportion
of contaminated observations rightly named to be outliers. We estimate it by
simulation, in the case n = 200 and for v = 5 and v = 10. For this purpose,
we generate v-variate observations from the location-shift contamination model

yi ~ (1= 8§)NO, 1)+ SNO + Xe, 1), i=1,....n, (16)

where 0 < § < 0.5 is the contamination rate, A is a positive scalar and e is a column
vector of ones. The 0.01 /71 quantile of the reference distribution is our cut-off value
for outlier detection. We only consider the default choices for the tuning constants
in Tables 1 and 2, given that their effect under the null has been seen to be minor.
We base our estimate of average power on 5,000 independent data sets for each of
the selected combinations of parameter values.

It is worth noting that standard clustering algorithms, like g-means, are likely to
fail to separate the two populations in (16), even in the ideal situation where there
is a priori knowledge that g = 2. For instance, we have run a small benchmark
study with n = 200, v = 5 and two overlapping populations by setting A = 2 and
8 = 0.05 in model (16). We have found that the misclassification rate of g-means
can be as high as 25 % even in this idyllic scenario where the true value of g is
known and the covariance matrices are spherical. The situation obviously becomes
much worse when g is unknown and must be inferred from the data. Furthermore,
clustering algorithms based on Euclidean distances, like g-means, are not affine
invariant and would thus provide different results on unstandardized data.

Tables 3—5 show the performance of the outlier detection rules under study for
different values of § and A in model (16). If the contamination rate is small, it
is seen that the four methods behave somewhat similarly, with FS often ranking
first and MM always ranking last as A varies. However, when the contamination
rate increases, the advantage of the FS detection rule becomes paramount. In that
situation both ST and MM estimators are ineffective for the purpose of identifying
multivariate outliers. As expected, SR improves considerably over ST when v = 10
and § = 0.15, but remains ineffective when § = 0.3. Furthermore, it must be
recalled that the actual size of SR is considerably larger, and thus power is somewhat
biased.
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Table 3 Estimated average power for different shifts A in the contamination
model (16), in the case n = 200, v = 5 and v = 10, when the contamination
rate § = 0.05. Five thousand independent data sets are generated for each of
the selected combinations of parameter values

Mean shift A
2 22 24 2.6 2.8 3
v=>5 ST 0.344 0525 0.696 0.827 0912 0.963
SR 0.387 0549 0.698 0.820 0.908  0.957
MM 0.148 0280 0466 0.672 0.836  0.935
RMCD 0227 0390 0574 0.732 0.856 0.936
FS 0.359 0567 0.730 0.840 0909 0.953
v=10 ST 0.758 0919 0978 0995  0.999 1
SR 0.856 0946 0986 0.997  0.999 1
MM 0.479  0.782 0942 0990 0.998 1
RMCD 0.684 0.839 0956 0987 0.997 1
FS 0.808 0911 0968  0.991 0.998 1
Table 4 Quantities as in Table 3, but now for § = 0.15
Mean shift A
2 24 2.6 2.8 3 34
v=>5 ST 0.073 0.532 0.772 0901 0.960 0.996
SR 0.275 0433 0.594 0.742 0.854 0.925

MM 0.006 0.010 0.012 0.016 0.026 0.397
RMCD 0.096 0428 0.652 0.815 0.913 0.988

FS 0.580 0.803 0.878 0.935 0.965 0.993
v=10 ST 0.006 0.007 0.008 0.01 0.013  0.041

SR 0.696 0.825 0.895 0.923 0931 0.946

MM 0.001 0.001 0.001 0.001 0.003 0.030

RMCD 0.530 0938 0.959 0993 1 1

FS 0.887 0.938 0974 0.991 0998 1

A qualitative explanation for the failure of multivariate MM estimators is
shown in Fig. 1 in the simple case v = 2. The four plots display bivariate ellipses
corresponding to 0.95 probability contours at different iterations of the algorithm
for computing MM estimators, for a data set simulated from the contamination
model (16) with n = 200, § = 0.15 and A = 3. The data can be reproduced using
function randn (200, 2) of MATLAB and putting the random number seed to 2.
The contaminated units are shown with symbol o and the two lines which intersect
the estimate of the robust centroid are plotted using a dash-dot symbol. The upper
left-hand panel corresponds to the first iteration (il), where the location estimate
is i = (0.19,0.18)" and the value of the robust correlation r derived from 3 is
0.26. In this case the robust estimates are not too far from the true parameter values
u = (0,0) and ¥ = I, and the corresponding outlier detection rule (i.e., the ST
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Table 5 Quantities as in Table 3, but now for § = 0.30
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Mean shift A
2 2.4 2.6 2.8 3 4 6
v=5 ST 0.003 0.005 0.006 0.007 0.009 0.016 0.092
SR 0.006 0.033 0.286 0.372 0458 0.557 1
MM 0.002 0.003 0.004 0.005 0.006 0.012 0.085
RMCD 0.010 0.159 0.381 0.637 0.839 1 1
FS 0.627 0915 0.920 0.941 0967 1 1
v=10 ST 0.002 0.002 0.003 0.003 0.003 0.004 0.011
SR 0.002 0.005 0.004 0.005 0.009 0.011 0.039
MM 0.001 0.001 0.001 0.001 0.001 0.001 0.001
RMCD 0.207 0.842 0969 0.994 0999 1 1
FS 0.904 0.929 0961 0.980 0.989 0.995 1

il, i = (0.19,0.18), r =0.26

o

i, i = (0.36,0.31), r =0.46

Fig. 1 Ellipses corresponding to 0.95 probability contours at different iterations of the algorithm
for computing multivariate MM estimators, for a data set simulated from the contamination

model (16) withn = 200,v=2,§ =0.15and A = 3

rule in Tables 3-5) can be expected to perform reasonably well. On the contrary,
as the algorithm proceeds, the ellipse moves its center far from the origin and the
variables artificially become more correlated. The value of r in the final iteration
(i8) is 0.47 and the final centroid ,L:L is (0.37;0.32)’. These features increase the bias
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Fig. 2 Index plots of robust scale residuals obtained using MM estimation with a preliminary
S-estimate of scale based on a 50 % breakdown point. Left-hand panel: 90 % nominal efficiency;
right-hand panel: 95 % nominal efficiency. The horizontal lines correspond to the 99 % individual
and simultaneous bands using the standard normal

of the parameter estimates and can contribute to masking in the supposedly robust
distances (10).

A similar effect can also be observed with univariate (v = 1) data. For instance,
Atkinson and Riani (2000, pp. 5-9) and Riani et al. (2011) give an example of a
regression dataset with 60 observations on three explanatory variables where there
are six masked outliers (labelled 9, 21 30, 31, 38 47) that cannot be detected using
ordinary diagnostic techniques. The scatter plot of the response against the three
explanatory variables and the traditional plot of residuals against fitted values, as
well as the gq plot of OLS residuals, do not reveal observations far from the bulk of
the data. Figure 2 shows the index plots of the scaled MM residuals. In the left-hand
panel we use a preliminary S estimate of scale with Tukey’s Biweight function (7)
and 50 % breakdown point, and 90 % efficiency in the MM step under the same
p function. In the right-hand panel we use the same preliminary scale estimate as
before, but the efficiency is 95 %. As the reader can see, these two figures produce
a very different output. While the plot on the right (which is similar to the masked
index plot of OLS residuals) highlights the presence of a unit (number 43) which
is on the boundary of the simultaneous confidence band, only the plot on the left
(based on a smaller efficiency) suggests that there may be six atypical units (9, 21
30, 31, 38 47), which are indeed the masked outliers.

4 Conclusions

In this paper we have provided a critical review of some popular rules for identifying
multivariate outliers and we have studied their behaviour both under the null
hypothesis of no outliers and under different contamination schemes. Our results
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show that the actual size of the outlier tests based on multivariate S and MM
estimators using Tukey’s Biweight function and relying on the y? distribution is
larger than the nominal value, but the extent of the difference is often not dramatic.
The effect of the many tuning constants required for their computation is also seen
to be minor, except perhaps efficiency in the case of MM estimators. Therefore,
when applied to uncontaminated data, these rules can be considered as a viable
alternative to multivariate detection methods based on trimming and requiring more
sophisticated distributional approximations.

However, smoothness of Tukey’s Biweight function becomes a trouble when
power is concerned, especially if the contamination rate is large and the number
of dimensions grows. In such instances our simulations clearly show the advantages
of trimming over S and MM estimators. In particular, the flexible trimming approach
ensured by the Forward Search is seen to greatly outperform the competitors, even
the most liberal ones, in almost all our simulation scenarios and is thus to be
recommended.
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Clustering and Prediction of Rankings
Within a Kemeny Distance Framework

Willem J. Heiser and Antonio D’Ambrosio

Abstract Rankings and partial rankings are ubiquitous in data analysis, yet there is
relatively little work in the classification community that uses the typical properties
of rankings. We review the broader literature that we are aware of, and identify a
common building block for both prediction of rankings and clustering of rankings,
which is also valid for partial rankings. This building block is the Kemeny distance,
defined as the minimum number of interchanges of two adjacent elements required
to transform one (partial) ranking into another. The Kemeny distance is equivalent to
Kendall’s T for complete rankings, but for partial rankings it is equivalent to Emond
and Mason’s extension of t. For clustering, we use the flexible class of methods
proposed by Ben-Israel and Iyigun (Journal of Classification 25: 5-26, 2008), and
define the disparity between a ranking and the center of cluster as the Kemeny
distance. For prediction, we build a prediction tree by recursive partitioning, and
define the impurity measure of the subgroups formed as the sum of all within-node
Kemeny distances. The median ranking characterizes subgroups in both cases.

1 Introduction

Ranking and classification are basic cognitive skills that people use every day to
create order in everything that they experience. Many data collection methods in the
life and behavioral sciences often rely on ranking and classification. Grouping and
ordering a set of elements is also a major communication and action device in social
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life, as is clear when we consider rankings of sport-teams, universities, countries,
web-pages, French wines, and so on. Not surprisingly, the literature on rankings is
scattered across many fields of science.

Statistical methods for the analysis of rankings can be distinguished in (1) data
analysis methods based on badness-of-fit functions that try to describe the structure
of rank data, (2) probabilistic methods that model the ranking process, and assume
substantial agreement (or homogeneity) among the rankers about the underlying
order of the rankings, and (3) probabilistic methods that model the population of
rankers, assuming substantial disagreement (or heterogeneity) between them. Let us
look at each of these in turn.

Two examples of data analysis methods based on badness-of-fit functions that
have been applied to rankings are principal components analysis (PCA, see Cohen
and Mallows 1980; Diaconis 1989; Marden 1995, Chap. 2), and multidimensional
scaling (MDS) or unfolding (Heiser and de Leeuw 1981; Heiser and Busing 2004).
In psychometrics, PCA on rankings was justified by what is called the vector model
for rankings, going back to the independent contributions of Guttman (1946); Slater
(1960) and Tucker (1960) and popularized by Carroll (1972, pp. 114-129) through
his MDPREF method. It is also possible to perform a principal components analysis
while simultaneously fitting some optimal transformation of the data that preserves
the rank order (in a program called CATPCA, cf. Meulman et al. 2004). By contrast,
the unfolding technique is based on the ideal point model for rankings, which
originated with Coombs (1950, 1964, Chaps. 5-7), but his analytical procedures
were only provisional and had been soon superseded by MDS methods (Roskam
1968; Kruskal and Carroll 1969). Unfortunately, however, MDS procedures for
ordinal unfolding tended to suffer from several degeneracy problems for a long time
(see Van Deun 2005; Busing 20009 for a history of these difficulties and state-of-the-
art proposals to resolve them). One of these proposals, due to Busing et al. (2005),
is available under the name PREFSCAL in the IBM-SPSS Statistics package.

Probabilistic modeling for the ranking process assuming homogeneity of rankers
started with Thurstone (1927, 1931), who proposed that judgments underlying
rank orders follow a multivariate normal distribution with location parameters
corresponding to each ranked object. Daniels (1950) looked at cases in which the
random variables associated with the ranked objects are independent. Examples of
more complex Thurstonian models include Bockenholt (1992), Chan and Bentler
(1998), Maydeu-Olivares (1999) and Yao and Bockenholt (1999). A second class
of models assuming homogeneity of rankers started with Mallows (1957), and
was also based upon a process in which pairs of objects are compared, but now
according to the Bradley-Terry-Luce (BTL) model (Bradley and Terry 1952; Luce
1959), thus excluding intransitivities. These probability models amount to a negative
exponential function of some distance between rankings, for example the distance
related to Kendall’s 7 (see Sect. 3); hence their name distance-based ranking models
(Fligner and Verducci 1986). A third class of models assuming homogeneity of
rankers decompose the ranking process into a series of independent stages. The
stages form a nested sequence, in each of which a Bradley-Terry-Luce choice
process is assumed for selecting 1 out of j options, with j=m, m — 1, ..., 2; hence
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their name multistage models (Fligner and Verducci 1988). We refer to Critchlow
et al. (1991) for an in-depth discussion of all of these models. Critchlow and
Fligner (1991) demonstrated how both the Thurstonean models and the multistage
BTL models can be seen as generalized linear models and be fitted with standard
software.

Probabilistic models for the population of rankers assuming substantial hetero-
geneity of their rankings are of at least three types. First, there are probabilistic
versions of the ideal point model involving choice data (Zinnes and Griggs
1974; Kamakura and Srivastava 1986), or rankings (Brady 1989; Van Blokland-
Vogelesang 1989; Hojo 1997, 1998). Second, instead of assuming one probabilistic
model for the whole population, we may move to (unknown) mixtures of subpop-
ulations, characterized by different parameters. For example, mixtures of models
of the BTL type were proposed by Croon (1989), and mixtures of distance-based
models by Murphy and Martin (2003). Gormley and Murphy (2008a) provided a
very thorough implementation of two multistage models with mixture components.
Third, heterogeneity of rankings can also be accounted for by the introduction
of covariates, from which we can estimate mixtures of known subpopulations.
Examples are Chapman and Staelin (1982), Dittrich et al. (2000), Bockenholt
(2001), Francis et al. (2002), Skrondal and Rabe-Hesketh (2003), and Gormley
and Murphy (2008b). All of these authors use the generalized linear modeling
framework.

Most methods that are mainstream in the classification community follow the
first approach, that is, they use an algorithm model (e.g., hierarchical clustering,
construction of phylogenetic trees), or try to optimize some badness-of-fit function
(e.g., K-means, fuzzy clustering, PCA, MDS). Some of them analyze a rank
ordering of dissimilarities, which makes the results order-invariant, meaning that
order-preserving transformations of the data have no effect. However, there are
very few proposals in the classification community directly addressing clustering
of multiple rankings, or prediction of rankings based on explanatory variables
characterizing the source of them (covariates). Our objective is to fill this gap, and
to catch up with the statisticians.'

Common to all approaches is that they have to deal with the sample space of
rankings, which has a number of very specific properties. Also, most methods either
implicitly or explicitly use some measure of correlation or distance among rankings.
Therefore, we start our discussion with a brief introduction in the geometry of
rankings in Sect. 2, and how it naturally leads to measures of correlation and
distance in Sect. 3. We then move to the median ranking in Sect. 4, give a brief
sketch in Sect. 5 of how we propose to formulate a clustering procedure and to build
a prediction tree for rankings, and conclude in Sect. 6.

'During the Frankfurt DAGM-GfKI1-2011-conference, Eyke Hiillermeier kindly pointed out that
there is related work in the computer science community under the name “preference learning” (in
particular, Cheng et al. (2009), and more generally, Fiirnkranz and Hiillermeier 2010).
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Fig. 1 Permutation polytope for all 24 full rankings of four objects, supplemented by all partial
rankings with one tie-block of two or three objects, or two tie-blocks of two objects. Full rankings
have equal distance towards the center; partial rankings lie strictly within this sphere. For clarity,
mirror images at the back of the polytope are not labeled

2  Geometry of Rankings

The 24 full rankings that can be formed from four objects form a permutation
polytope that has the shape of a truncated octahedron (cf. Thompson 1993; Heiser
2004). Thompson offered an thorough study of the permutation structure of partial
rankings, showing that the 12 partial rankings with a tie in last position form a
truncated tetrahedron, as do the 12 partial rankings with a tie in first position. The 12
partial rankings with a tie in middle position, however, are the intersection of a cube
and an octahedron, forming a cuboctahedron. Then there are six partial rankings
with two tie-blocks forming an octahedron, and finally four partial rankings with
tie-blocks of three in last position or in first position, each forming a tetrahedron.

It should be noted that these generalized permutation polytopes can be connected
with each other in a single graph if we introduce nodes in the original truncated
octahedron that are half-way the nodes of the full rankings. This integrated graph of
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all full and partial rankings is given in Fig. 1. All lines in this graph now indicate
a reversal or switch from one inequality to an equality, or vice versa, except for the
lines in the hexagons that connect to partial rankings with tie-blocks of three, which
represent two switches. The natural graphical distance in the integrated permutation
polytope is the sum of the line segments that need to be traversed along the shortest
path in going from one node to another, and this distance is equivalent to the
count of the minimum number of interchanges of two adjacent elements required
to transform one (partial) ranking into another.

More generally, it will be clear that the sample space of rankings has the
following characteristic properties: it is finite and discrete, it has many symmetries
(for every ranking there is a reverse ranking), it is endowed with a graphical
metric, and it intersects with a hypersphere: all full rankings are equidistant towards
the zero ranking in which all objects are tied. All partial rankings lie strictly
within the hypersphere. For a discussion of the consequences of this geometry for
various ranking and choice models, we refer to Zhang (2004). Rankings can also
arise indirectly as a consequence of doing pairwise discriminant analyses among
m populations (Kamiya and Takemura 1997, 2005). Under the unfolding model,
only a limited amount of rankings can occur (Coombs 1964; Kamiya et al. 20006,
2011). The probabilistic models mentioned in the Introduction describe specific
distributions across the polytope.

3 Kendall’s T and the Kemeny Distance

Although there was earlier relevant work (see Kruskal 1958, Sect. 17), Kendall
(1938) marks the beginnings of the first wave of contributions to the study of
rankings as a separate topic in statistics. Kendall defined t as a coefficient that
“measures the closeness of correspondence between two given rankings in the sense
that it measures how accurate either ranking would be if the other were objective”
(Kendall 1938, p. 85). He then derived its exact sampling distribution and standard
error, assuming one given order and a universe in which all the possible rankings
occur an equal number of times, and he showed that this distribution is already
close to normal for relatively small sample size. In Kendall (1948), he also gave a
second definition of t as a “coefficient of disarray”. Calling the minimum number
of switches which transform any ranking into any other ranking of the same number
of objects s, he showed that

2s
T .
En(n—l)

T=1-

This equivalence between t and s establishes their connection with the permu-
tation polytope, and thus their fundamental relevance for the study of rankings,
because s is just the graphical distance defined in the previous section. The minimum
move metric s is called the Kendall distance (cf. Marden 1995, p. 25).
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Emond and Mason (2002) noted that there is a problem with the Kendall distance
in the case of partial rankings. In that case, it is easy to show that it violates the
triangle inequality (e.g., consider A(BC), ABC, and (AB)C), so it is not a proper
metric. This anomaly is due to the way in which Kendall (1948, Chap. 3) defined
when there are tied ranks.

Fortunately, there is a well-founded distance without these problems, called the
Kemeny distance, conceived independently in the context of social choice theory
(Kemeny 1959; Kemeny and Snell 1962). Kemeny had set up a set of reasonable
axioms of which perhaps the most characteristic one is that the distance be invariant
under addition of equally ranked first and/or last objects. The unique distance
satisfying all axioms turns out to be:

dKem (Rm Rt) = %

m m
i=

> v = x|

1j=1

where R, and R; are any two rankings, m is the number of objects, and x,); is defined
as equal to 1 if object i is preferred to object j in ranking s, equal to —1 if the reverse
is true, and equal to O if the two objects are tied. Clearly, the Kemeny distance is of
the city-block type in the space of pair comparisons.

When there are no ties, the Kemeny distance is equal to the Kendall distance.
From its definition, it is not hard to see that it counts the number of interchanges
of pairs of elements required to transform one (partial) ranking into another, so
it is equal to the graphical distance among any two elements in the integrated
permutation polytope in Fig. 1.

4 Finding a Central Ranking: The Median Ranking

There is an extensive literature on finding a central ranking for a given set
of individual rankings, also called the social choice problem, or the consensus
problem. But when the Kemeny distance is the metric of choice, it will lead us to one
specific central ranking. Consider a set of individual rankings R;, withs =1, ..., n,
and let us indicate the center to be found by S. Then we have

S = argmsm ZWSdK‘—”" (Rs,S).

s=1

Here we have used a weighted version, with weights w; for ranking R; (one
obvious choice of weights is the relative frequency with which each unique ranking
occurs). Center S so defined is usually called the consensus ranking in the social
choice literature, as well as in discrete mathematics, and the median ranking in
statistics. For a review of ranking models for the consensus problem, see Cook
(2006).
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Emond and Mason (2002) proposed a new rank correlation coefficient for the
case of partial rankings, called tx (r-extended), to resolve the difficulty with the
Kendall distance mentioned in the previous section. It is equal to Kendall’s t
for complete rankings, while for partial rankings 1 — tx is equivalent to Kemeny
distance. Maximizing the weighted sum of tx leads to the same median ranking.
Now, it is well known that finding S is an NP-hard problem (Barthélemy et al. 1989).
Emond and Mason’s reformulation has the advantage that it allows a branch-and-
bound algorithm that is practical up to about 20 objects and an unlimited number of
rankers, and deals correctly with partial rankings.

S Application to Clustering and Recursive Partitioning

We will now give a brief sketch of how we are using the Kemeny distance and
the median ranking for classification of multiple rankings. First, we outline a non-
hierarchical clustering algorithm and next we show how to use explanatory variables
(covariates) to build a prediction tree. For clustering, we follow a generalized
K-means method, and for building the prediction tree, we use standard CART
methodology (Breiman et al. 1984) involving a binary segmentation procedure that
recursively partitions the set of rankings, with a specific impurity measure in the
splitting rule. But of course, other choices are possible.

Ben-Israel and lyigun’s (2008) probabilistic distance clustering framework
allows for probabilistic allocation of cases to classes. So it is a form of fuzzy
clustering, rather than hard clustering. It is based on the principle that probability
and distance are inversely related. Shepard (1987) accumulated lots of evidence for
a similar principle governing contingencies of behavior. Under this principle, we
define a loss function for K-Median Cluster Component Analysis (CCA) as follows:

n K

CCA(P. Sy, . Sk) = > > pi (Ry) dgem (Rs. St) .

s=1 k=1

where p(R;) is the probability of allocating ranking s to cluster component k, Sy is
the center of component k for k=1, ..., K, and P is the n x K matrix of allocation
probabilities. If we differentiate the CCA function with respect to pi(Ry), subject
to the constraint that allocation probabilities for a given ranking sum to one, we
obtain the stationary equation pi(R;) dkem(R;s, Sx) = constant depending on R;. So
the stationary equations of the CCA optimization problem are consistent with the
principle of probability being inversely related to distance. Since the CCA function
splits into K parts, finding S; given some given values of the allocation probabilities
P reduces to finding a median ranking using the kth column of P. For finding P given
K median rankings an explicit formula is available. A more detailed description and
evaluation of K-median cluster component analysis is in preparation (Heiser and
D’ Ambrosio 2011).
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Now consider the case in which we have a set of explanatory variables (or
covariates) giving one point z, in predictor space for each ranking R,. The aim is
to predict the differences between the rankings. Tree-based methods partition the
predictor space into a set of rectangular regions parallel to the coordinate axes (i.e.,
the explanatory variables), and fit a simple model in each of them (Hastie et al.
2001). During the recursive partitioning process in which we form a nested sequence
of subsamples, we have to determine, for each possible split along the coordinate
axis of any variable, the impurity of the subsamples formed. The impurity measure
Q/(T) that we choose for a subsample in subtree T at node / representing a region
G; containing the profiles of n; rankings is

nj nj
01(T) = L Z Z diem (Rg, R,), with s > ¢.
Fn(n=1)
z,€G; 7% €G)

Alternatively, we could have chosen the weighted sum of Kemeny distances
towards the median ranking, but that would force us to solve a hard combinatorial
problem many times when growing the tree. Our pruning strategy is cost-complexity
pruning (Hastie et al. 2001, p. 270; also see: Mingers (1989); Cappelli et al. 2002).
For the pruned tree, we calculate in each terminal node the consensus ranking as
described in Sect. 4 and its corresponding Ty, and determine for the internal nodes
of the tree the weighted average tx. For a more detailed description and evaluation
of our distance-based prediction tree, we refer to D’ Ambrosio and Heiser (2011),
which is based on earlier work of D’ Ambrosio (2007).

In one of our test applications, on a real dataset with 500 rankings of 15 objects
and 128 explanatory variables, we first obtained a maximum tree with 24 terminal
nodes. In Fig. 2, the top panel shows how the impurity in the training sample (bottom
line) goes down monotonically, while in the test sample (upper line) the impurity
goes up when tree size passes 11, which is the size of the pruned tree. The bottom
panel of Fig. 2 shows the average tx weighted by node size, which gives a better
interpretable scale. At the root node, overall 7y =0.387, a moderate correlation,
which reaches tx = 0.489 on average for the maximum tree. Some of the terminal
nodes in the pruned tree even reach tx = 0.510, but others are lower.

6 Concluding Remarks

Kemeny distance is the natural graphical distance on the permutation polytope,
which is the sample space of rankings. The polytope can be extended to accom-
modate partial rankings. It provides a standard for other approaches that use
more assumptions or proceed by first embedding the polytope in Euclidean space.
Minimizing the sum of Kemeny distances leads to the median ranking as a center.
For full rankings, one minus Kendall’s 7 is equivalent to the Kemeny distance. Often
the median ranking has ties, or the data are partial rankings to start with. In that
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Fig. 2 Pruning sequence to decide on the depth of the tree. Training error rate is based on 350
rankings, cross-validated error rate is based on 150 rankings (using tenfold cross-validation). Top
panel gives error rates (impurity), bottom panel gives the average Ty

case, one minus Kendall’s t is faulted as a distance, because it no longer satisfies
the metric axioms. Emond and Mason (2002) provided a different definition of ¢
for partial rankings, called ty, for which 1 —tx is equal to the Kemeny distance.
The new definition is welcome, because the scale of ty is easier to interpret than a
distance scale: it is comparable across different numbers of objects.

We believe that loss-function based methods enjoy general advantages compared
to methods based on probability models. They do not depend on assumptions that
may be unrealistic for certain data. For rankings, in particular, the probability
rationale often refers to replicated judgment processes, which is not so relevant
for ranking the States of the United States (O’Leary Morgan and Morgan 2010),
where the raw data are rates or percentages in the population. Note that in our
use of probabilistic distance clustering, the term “probabilistic” merely expresses
the uncertainty in the allocation of rankings to clusters, and does not imply an
assumption about the data generating process, as in probability models.

Loss-function based methods generally tend to lead to better understood compu-
tational processes. Inclusion of weights in loss functions allows greater flexibility
and generality, and in our case we profit from it in the median ranking and in the
clustering algorithm. But weights can also be useful to emulate maximum likelihood
estimation or to down-weight unreliable parts of the data. Some people hold, for
example, that the beginning and the end of a ranking is more reliable than the
middle.

Our clustering method could be compared with probabilistic models like Croon
(1989), Murphy and Martin (2003), and Gormley and Murphy (2008a). Note that
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when we cluster rankings, we are clustering variables, not objects. For applications
where objects are to be clustered on the basis of ordinal variables, a method like
GROUPALS (Van Buuren and Heiser 1989) would be a good possibility. The
here adopted framework also gives us a way to adjust for cluster size (Iyigun and
Ben-Israel 2008), or to develop semi-supervised learning techniques (Iyigun and
Ben-Israel 2010). Our distance-based prediction tree method enjoys the general
advantages of CART-like methods, such as easy interpretability and well-understood
computational processes. It could be compared to methodology known under the
name hierarchical mixtures of experts, based on probability models. An example
of the mixture of experts approach is Gormley and Murphy (2008b). Another
competitor for our method would be the ordinal unfolding approach with restrictions
on the ideal points (Busing et al. 2010).
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Solving the Minimum Sum of L1 Distances
Clustering Problem by Hyperbolic Smoothing
and Partition into Boundary and Gravitational
Regions

Adilson Elias Xavier, Vinicius Layter Xavier, and Sergio B. Villas-Boas

Abstract The article considers the minimum sum of distances clustering problem,
where the distances are measured through the L1 or Manhattan metric (MSDC-L1).
The mathematical modelling of this problem leads to a min-sum-min formulation
which, in addition to its intrinsic bi-level nature, has the significant characteristic of
being strongly non differentiable.

We propose the AHSC-L1 method to solve this problem, by combining two
techniques. The first technique is Hyperbolic Smoothing Clustering (HSC), that
adopts a smoothing strategy using a special C* completely differentiable class
function. The second technique is the partition of the set of observations into
two non overlapping groups: “data in frontier” and “data in gravitational regions”.
We propose a classification of the gravitational observations by each component,
which simplifies of the calculation of the objective function and its gradient. The
combination of these two techniques for MSDC-L1 problem drastically simplify
the computational tasks.

1 Introduction

Cluster analysis deals with the problems of classification of a set of patterns or
observations. In general the observations are represented as points in a multidi-
mensional space. The purpose of cluster analysis is to define the clusters to that
each observation belongs, following two basic and simultaneous objectives: patterns
in the same clusters must be similar to each other (homogeneity objective) and
different from patterns in other clusters (separation objective) Hartigan (1975) and
Spith (1980).
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In this paper, a particular clustering problem formulation is considered. Among
many criteria used in cluster analysis, a frequently adopted criterion is the mini-
mum sum of L1 distances clustering (MSDC-L1); see for example Bradley and
Mangasarian (1996). This criterion corresponds to the minimization of the sum
of distances of observations to their centroids, where the distances are measured
through the L1 or Manhattan metric. As broadly recorded by the literature, the
Manhattan distance is more robust against outliers.

For the sake of completeness, we present first the Hyperbolic Smoothing Cluster-
ing Method (HSC), Xavier (2010). Basically the method performs the smoothing of
the non differentiable min-sum-min problem engendered by the modelling of a broad
class of clustering problems, including the minimum sum of L1 distances clustering
(MSDC-L1) formulation. This technique was developed through an adaptation of
the hyperbolic penalty method originally introduced by Xavier (1982). By smooth-
ing, we fundamentally mean the substitution of an intrinsically non differentiable
two-level problem by a C *° unconstrained differentiable single-level alternative.

Additionally, the paper presents an accelerated methodology applied to the
specific considered problem. The basic idea is to partition the set of observations
into two non overlapping parts. By using a conceptual presentation, the first set
corresponds to the observation points relatively close to two or more centroids. The
second set corresponds to observation points significantly closer to a single centroid
in comparison with others. The same partition scheme was presented first by Xavier
and Xavier (2011) in order to solve the specific minimum sum of squares clustering
(MSSC) formulation. In this paper, specific features of the minimum sum of L1
distances clustering (MSDC-L1) formulation are explored in order to take additional
advantages of the partition scheme.

2 The Minimum Sum of L1 Distances Clustering Problem

Let S = {s1,...,5y,} denote a set of m patterns or observations from an Euclidean
n-space, to be clustered into a given number ¢ of disjoint clusters. To formulate the
original clustering problem as a min — sum — min problem, we proceed as follows.
Letx;,i = 1,...,q be the centroids of the clusters, where each x; € R". The set of
these centroid coordinates will be represented by X € R"9.

Given a point s; of S, we initially calculate the L1 distance from s; to the nearest
center. This is given by z; = min;=;__4 [|s; —x;| 1. A frequent measurement of the
quality of a clustering associated to a specific position of g centroids is provided by
the sum of the L1 distances, which determines the MSDC-L1 problem:

m
minimize sz (D
Jj=1
subject to zjz‘nllin lls; — xill. j=1....m
i=1,..q

www.it-ebooks.info


http://www.it-ebooks.info/

Solving the Minimum Sum of L1 Distances Clustering Problem by Hyperbolic . . . 35
3 The Hyperbolic Smoothing Clustering Method

Considering its definition, each z; must necessarily satisfy the following set of
inequalities: z; — |ls; — x;|li < 0,i = 1,...,q. Substituting these inequalities
for the equality constraints, Problem (1) produces the relaxed problem:

m
minimize sz (2
j=1
subjectto  z; —|ls; —x;[1 <0, j=1,....m, i=1,...,4q.

Since the variables z; are not bounded from below, the optimization procedure
will determine z; — oo, j = 1,...,m. In order to obtain the desired equivalence,
we must, therefore, modify Problem (2). We do so by first letting ¢(y) denote
max{0, y} and then observing that, from the set of inequalities in (2), it follows
that >7_ @(z; — |ls; —xi1 ) = 0, = 1,...,m. In order to bound the variables
zj, j =1,...,m weinclude an ¢ > 0 perturbation.

m
minimize Yz (3)
—

q
subject to qu(zj—ﬂsj—x,-”l) >¢e, Jj=1,....m

i=1

Since the feasible set of Problem (1) is the limit of that of (3) when ¢ — 04,
we can then consider solving (1) by solving a sequence of problems like (3) for a
sequence of decreasing values for ¢ that approaches 0.

Analysing the Problem (3), the definition of function ¢ and the definition of L1
distance endows it with an extremely rigid non differentiable structure, which makes
its computational solution very hard. In view of this, the numerical method we adopt
for solving Problem (1), takes a smoothing approach. From this perspective, let us
define the approximation functions below:

¢>(y,t)=(y+\/y2+r2)/2 4)

O(s;, xi,y) = Z (Sﬁ'_xi[)z + 72 ®)

By using the asymptotic approximation properties of the functions 6; and ¢, the
following completely differentiable problem is now obtained:

www.it-ebooks.info


http://www.it-ebooks.info/

36 A.E. Xavier et al.
m
minimize Z Z;j (6)
Jj=1

q
subject to Z(}S(zj—@l(sj,x,-,y),t)ze, j=1,...,m.

i=1

So, the properties of functions ¢ and 6, allow us to seek a solution to Problem (3)
by solving a sequence of subproblems like Problem (6), produced by the decreasing
of the parameters y — 0,7 — O and ¢ — 0.

On the other side, the constraints will certainly be active and Problem (6) will at
last be equivalent to problem:

m
minimize Yz @)
—

q
subject to £ (zj.X) = Y _¢(zj —0i(s;. 5. 7). 1) —e =0, j=1...m.

i=1

Problem (7) has a separable structure, because each variable z; appears only in
one equality constraint. Therefore, as the partial derivative of i(z;, x) with respect

toz;, j = 1,...,m is not equal to zero, it is possible to use the Implicit Function
Theorem to calculate each componentz;, j = 1,...,m as afunction of the centroid
variables x;, i = 1, ..., q. In this way, the unconstrained problem
m
minimize f(x) = Z Z;j (x) (8)
j=1

is obtained, where each z; (x) results from the calculation of a zero of each equation

q
hi(j.x) =Y ¢z —0i(s;.x;.y).1) —e =0, j=1L...m (9

i=1

Again, due to the Implicit Function Theorem, the functions z;(x) have all
derivatives with respect to the variables x;, i = 1,...,q, and therefore it is possible
to calculate the gradient of the objective function of Problem (8),

Vf(x) =) Vz(x) (10)

j=1
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where

0h;(z;,x)
0z ’

while Vi (z;,x) and 0 (z;,x)/0dz; are obtained from Eqs. (4), (5) and (9).

In this way, it is easy to solve Problem (8) by making use of any method based
on first or second order derivative information. At last, it must be emphasized that
Problem (8) is defined on an (n g)—dimensional space, so it is a small problem, since
the number of clusters, ¢, is, in general, very small for real applications.

The solution of the original clustering problem can be obtained by using the
Hyperbolic Smoothing Clustering Algorithm, described below in a simplified form.

Vzj(x) = = Vhj(zj,x) / (11)

4 The Simplified HSC-L1 Algorithm

Initialization Step:

Choose initial values: x°, y!, !, gl

Choose values0 < p; <1, 0<pa <1, O0<p3<l;letk =1.

Main Step: Repeat until a stopping rule is attained

Solve Problem (8) with y = y*, ¢ = ¥ and ¢ = &, starting at the initial point
x¥=1 and let x* be the solution obtained.

Let yA+l = piyk | ohtl = pyok [ ghtl = piek k= k + 1. [

Just as in other smoothing methods, the solution to the clustering problem is
obtained, in theory, by solving an infinite sequence of optimization problems. In
the HSC-L1 algorithm, each problem to be minimized is unconstrained and of low
dimension.

Notice that the algorithm causes t and y to approach 0, so the constraints of the
subproblems as given in (6) tend to those of (3). In addition, the algorithm causes
¢ to approach 0, so, in a simultaneous movement, the solved Problem (3) gradually
approaches the original MSDC-L1 Problem (1).

S The Accelerated Hyperbolic Smoothing Clustering Method

The calculation of the objective function of the Problem (8) demands the determi-
nation of the zeros of m Eq. (9), one equation for each observation point. This is a
relevant computational task associated to HSC-L1 Algorithm.

In this section, it is presented a faster procedure. The basic idea is the partition
of the set of observations into two non overlapping regions. By using a conceptual
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presentation, the first region corresponds to the observation points that are relatively
close to two or more centroids. The second region corresponds to the observation
points that are significantly close to a unique centroid in comparison with the other
ones.

So, the first part Jp is the set of boundary observations and the second is the set
J¢ of gravitational observations. Considering this partition, Eq. (8) can be expressed
in the following way:

m

minimize f(x) =Y zj(x)= > z;(x) + Y z;(x), (12)

j=1 J€JB Jj€Jg
so that the objective function can be presented in the form:
minimize f(x) = fp(x) + fo(x), (13)

where the two components are completely independent.

The first part of expression (13), associated with the boundary observations, can
be calculated by using the previously presented smoothing approach, see (8) and (9).
The second part of expression (13) can be calculated by using a faster procedure, as
we will show right away.

Let us define the two parts in a more rigorous form. Letbe X;, i = 1,...,q be
a referential position of centroids of the clusters taken in the iterative process.

The boundary concept in relation to the referential point X can be easily specified
by defining a § band zone between neighbouring centroids. For a generic point s €
R”, we define the first and second nearest distances from s to the centroids:

di(s,X) = |ls—x; || = miin s =% | (14)

dy(s, %) = s =X || = min s =%l . (15)
LF1]

where i and i, are the labelling indexes of these two nearest centroids.
By using the above definitions, let us define precisely the § boundary band zone:

Zs(xX) = {s e R" | da(s,X) — di(s,X) < 26} (16)
and the gravity region, this is the complementary space:

Gs(x) = {s eR" — Z5(x) }. 7)

Figure 1 illustrates in R? the Z5(X) and G;(X) partitions. The central lines form
the Voronoi polygon associated with the referential centroids X;, i = 1,...,g. The
region between two parallel lines to Voronoi lines constitutes the boundary band
zone Zs(X).
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Fig. 1 The Z;(x) and Gs(X) partitions

Now, the sets Jp and J can be defined in a precise form:
Jp(@) ={j =1.....m|s; € Zs(x)}, (18)

Jg(f)z{j=1,...,m|sj€G5(Y)}. (19)
In Xavier and Xavier (2011) it is shown the proof of proposition below.

Proposition 1. Let s be a generic point belonging to the gravity region Gs(X),
with nearest centroid i. Let x be the current position of the centroids. Let A x =
max; ||x; — X;|| be the maximum displacement of the centroids. If Ax < § then s
will continue to be nearer to centroid x;, than to any other one. |

Since § > Ax, Proposition 1 makes it possible to calculate exactly expres-
sion (12) in a very fast way. First, let us define the subsets of gravity observations
associated with each referential centroid:

Ji(®) = jEJG|p£}inq||sj—fp | =]si—x| (20)

Let us consider the second sum in expression (12).

q q n q
fo(x) = Z Zj(x):ZZ ”s,-—xi”l =Z Z Z \sll-—xf\zz Z |s§—x,{ .

je€lc i=1jel; i=1jeJ; =1 i=11=1j€eJ;

www.it-ebooks.info


http://www.it-ebooks.info/

40 A.E. Xavier et al.

Let us now perform the partition of each set J; into 3 subsets for each component
[ in the following form:

i@ =i e i@ |s; % = 5} e
i@ = {j es®|s, -5 < -5 22)
JOF) = {j eS| -8 < sl —¥% < 8} (23)

By using the defined subsets, it is obtained:

q n
Jfa(x) =ZZ |:Z |s§—x{|+ Z |s§—x{|+ Z |s§—xil|:| =
Jely

i=1 =1 L+ jedy

n
| e | R e | -
[ Do lsi T AT —af L+ Y sy -w AT x|+ ) |Sj—xi|}
i=li=1 L jept J€Ty jeJd

Let us define the component displacement of centroid A xil = xil - Yf Since

| Ax!'| <8, from the above definitions of the subsets, it follows that:

=il =l =% - Ax for jesi @4

1

|sh—xl| = |si =% | + Ax] for jelJ;

4

So, it follows:

q n
fc(x)zZ:Z[ > (s =F—ax)+ 3 (Ish =71+ ax )+ ) |s}—x5|}=

i=ti=1L ¢+ je€ir jedd

q n
[ Solsh = = 1axh + 3 Ish =+ lulaxl+ Y sf,.—x,!]

TSy j€rd

i=1[=1

jest

(25)

where | J; | and | J; | are the cardinalities of two first subsets.
When the position of centroids x; ,i = 1,...,q moves within the iterative
process, the value of the first two sums of (25) assumes a constant value, since the
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i
J
displacements A xi[ ,i=1,...,q,1 = 1,...,n, and evaluate the last sum, that

normally has only a few number of terms because § assumes in general a relatively
small value.

The function f(x) above specified is non differentiable due the last sum, so in
order to use gradient information, it is necessary to use a smooth approximation:

q n
fa(x) =ZZ[ Dok =X = 17 1Ax +

i=t1=1 L jes+

values s, and Yf are fixed. So, to evaluate f(x) it is only necessary to calculate the

> lsﬁ-—fﬁl+|JJ|Ax5+Zo<s§-,x5,y)} (26)

J€Jy jer)

where o is the smoothing function for each unidimensional distance: o (s ﬁ , x} ,Y) =
((sh = x)? + y)/2,

So, the gradient of the smoothed second part of objective function is easily
calculated by:

q n
Vi) =Y > [ — I+ 1T+ Y —Gh=x foshxly) | e
i=1 [=1 ]‘ejl_(l)

27)

where e;; stands for a unitary vector with the component / of centroid i equal to 1.

Therefore, if § > A x was observed within the iterative process, the calculation
of the expression Y jedg 2 (x) and its gradient can be exactly performed by very
fast procedures, Egs. (26) and (27).

By using the above results, it is possible to construct a specific method, the
Accelerated Hyperbolic Smoothing Method Applied to the Minimum of Sum of
L1 Distances Clustering Problem, which has conceptual properties to offer a faster
computational performance for solving this specific clustering problem given by
formulation (13), since the calculation of the second sum ( fg(x)) is very simple.

A fundamental question is the proper choice of the boundary parameter &.
Moreover, there are two main options for updating the boundary parameter ¢, inside
the internal minimization procedure or after it. For simplicity sake, the AHSC-L1
method connected with the partition scheme presented below adopts the second
option, which offers a better computational performance, in spite of an eventual
violation of the § > A x condition, which gets corrected in the next partition
update.
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6 The Simplified AHSC-L1 Algorithm

Initialization Step:

Choose initial start point: x°;

Choose parameter values: y!, t!,&!;
Choose reduction factors:
O<p<,0<p<l,0<ps<1;
Specify the boundary band width: §';
Letk = 1.

Main Step: Repeat until an arbitrary stopping rule is attained
For determining the Z5(X) and Gs() partitions, given by (16) and (17), use

X = x¥1and § = §*.

Determine the subsets J ﬂ+ ,Jy and J i? and calculate the cardinalities of two first
sets: |/, and |J;7].

Solve Problem (13) starting at the initial point x
obtained:

For solving the equations associated to the first part given by (9), take the
smoothing parameters:

y =y, r=1Fande =& .

For solving the second part, given by (26), use the above determined subsets and
their cardinalities.

Updating procedure:

Let yk+1 = py pk | tkH1 = py ok gkl = py ek

If necessary redefine the boundary value: §+1.

Letk :=k + 1. [ ]

The efficiency of the AHSC-L1 algorithm depends strongly on the parameter §.
A choice of a small value for it will imply an improper definition of the set
Gs(X), and frequent violation of the basic condition Ax <§, for the validity of
Proposition 1. Otherwise, a choice of a large value will imply a decrease in
the number of gravitational observation points and, therefore, the computational
advantages given by formulation (26) will be reduced.

As a general strategy, within first iterations, larger § values must be used, because
the centroid displacements are more expressive. The § values must be gradually
decreased in the same proportion of the decrease of these displacements.

k=1 and let x* be the solution

k

7 Computational Results

The numerical experiments have been carried out on a PC Intel Celeron with
2.7GHz CPU and 512MB RAM. The programs are coded with Compac Visual
FORTRAN, Version 6.1. The unconstrained minimization tasks were carried out by
means of a Quasi-Newton algorithm employing the BFGS updating formula from
the Harwell Library, obtained in the site: (http://www.cse.scitech.ac.uk/nag/hsl/).
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Table 1 Results of AHSC-L1 applied to TSPLIB-1060 and TSPLIB-3038 Instance

TSPLIB 1060 TSPLIB 3038
q JAHSC— Loy Occur Eean Tepu JAHSC—Ligey Occur Evean T
2 0.386500E7 2 0.00 0.10 0.373171E7 2 0.88 0.76
3 0.313377E7 1 0.22 0.14 0.300708E7 1 1.33 0.76
4 0.258205E7 5 0.43 0.21 0.254499E7 1 0.67 0.79
5 0.231098E7 1 0.76 0.29 0.225571E7 1 1.28 0.95
6 0.213567E7 1 0.79 0.35 0.206006E7 1 1.12 0.95
7 0.196685E7 1 1.41 0.48 0.189650E7 1 1.34 1.06
8 0.183280E7 1 222 0.53 0.176810E7 1 1.14 1.13
9 0.168634E7 1 342 0.60 0.164559E7 1 2.13 1.21
10 0.155220E7 1 2.74 0.68 0.154550E7 1 1.97 1.28
Table 2 Results of AHSC-L1 applied to D15112 and P1a85900 Instance
D15112 P1a85900

q Jarsc—Lig,  Occur  Euyean  Tepu JAHSC—L1 o Occur  Eyean Topu

2 0.822872E8 6 0.97 10.35  0.883378E10 2 0.00 242.74
3 0.655831E8 1 1.43 7.56  0.667961E10 1 0.21 166.48
4 0.567702E8 1 1.60 6.21  0.551287E10 2 0.06 129.30
5 0.511639E8 1 1.17 573  0.482328E10 1 1.43 112.95
6 0.462612E8 1 1.67 533 0432972E10 1 2.47 103.02
7 0.425722E8 1 2.30 496  0.401388E10 1 1.87 98.25
8 0.398389E8 1 1.83 5.02  0.373878E10 1 3.47 92.14
9 0.376863E8 1 1.60 5.03  0.355741E10 1 2.40 82.33
10 0.354762E8 1 2.41 5.01 0.341472E10 1 1.77 87.41

In order to exhibit the distinct performance of the AHSC-L1 algorithm, Tables 1
and 2 present the computational results of AHSC-L1 applied to four bench-
mark problems, all from TSPLIB (Reinelt 1991; http://www.iwr.uni-heidelberg.
de/groups/comopt/software). Table 1 represent two instances frequently used as
benchmark clustering problems. Table 2 left contains data of 15,112 German cities.
Table 2 right is the largest symmetric problem of TSPLIB.

The AHSC-L1 is a general framework that bears a broad number of implemen-
tations. In the initialization steps the following choices were made for the reduction
factors: py = 1/4,p, = 1/4 and p3; = 1/4. The specification of initial smoothing
and perturbation parameters was automatically tuned to the problem data. So, the
initial max function smoothing parameter (4) was specified by ! = 0/10 where
02 is the variance of set of observation points: S = {s1,...,S,}. The initial
perturbation parameter (3) was specified by €! = 47! and the Euclidian distance
smoothing parameter by y! = 7!/100.

All experiments where done using ten initial points. The adopted stopping
criterion was the execution of the main step of the AHSC-L1 algorithm in a fixed
number of six iterations.
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Table 3 Speed-up of

AHSC-L1 compared to q TSP1060 TSP3038 DI15112 P1a85900
HSC-L1 (the larger the better) 2 2.60 1.33 0.94 0.82

3 3.79 1.84 1.43 0.95

4 3.24 3.08 1.95 1.30

5 4.41 3.16 3.17 1.76

6 5.23 4.69 4.60 2.58

7 4.96 5.84 5.94 3.80

8 6.94 7.09 8.44 4.44

9 6.30 7.97 10.34 6.78

10 7.66 12.07 13.26 8.75

The meaning of the columns Tables 1 and 2 is as follows. ¢ = the number of
clusters. fagsc—r1—Bess = the best results of cost function using points obtained
from AHSC-L1 method out of all the ten random initial points. Occur. = number
of times the same best result was obtained from all the tenl random initial points.
Eyean = the average error of the ten solutions in relation to the best solution
obtained (famsc—r1—Bes)- Finally, T, = the average execution time per trial, in
seconds.

The “A” of AHSC-L1 means “accelerated”, that is, the technique that partitions
the set of observations into two non overlapping groups: “data in frontier” and
“data in gravitational regions”. The sample problems were solved using HSC-L1
and AHSC-L1 methods. Both algorithms obtain the same results with three decimal
digits of precision. The Table 3 shows the speed-up produced by the acceleration
technique. The meaning of the columns of Table 3 is as follows. g = the number of
clusters. Speed-up for TSPLIB-1060 Instance. Speed-up for TSPLIB-3038 Instance.
Speed-up for D15112 Instance. Speed-up for P1a85900 Instance.

The speed-up was calculated as the ratio between execution times Txsc—r1 and
Tansc—r1, as shown in Eq. (28).

Speed — up = —SC=LL (28)
Tansc—r1

The results in the Table 3 show that in most cases the “accelerated” technique

produces speed-up of the computation effort. In some cases, the speed-up is > 10.

In a few cases (e.g. ¢ = 2, 85,900), the gains produced by the acceleration do not

compensate the fixed costs introduced by the calculus of partition. In these cases the

speed-up is less than one, that is, AHSC-L1 takes longer to run when compared to
HSC-L1.

8 Conclusions

In this paper, a new method for the solution of the minimum sum of L1 Manhattan
distances clustering problem is proposed, called AHSC-L1 (Accelerated Hyperbolic
Smoothing Clustering — L1). It is a natural development of the original HSC
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method and its descendant AHSC-L2 method, linked to the minimum sum-of-
squares clustering (MSSC) formulation, presented respectively by Xavier (2010)
an by Xavier and Xavier (2011).

The special characteristics of L1 distance were taken into account to adapt inside
the AHSC-L1 method from the AHSC-L2. The main idea proposed in this paper is
the acceleration of the AHSC-L1 method by the partition of the set of observations
into two non overlapping parts — gravitational and boundary. The classification
of gravitational observations by each component, implemented by Eqgs. (21)—(23),
simplifies of the calculation of the objective function (26) and its gradient (27).
This classification produces a drastic simplification of computational tasks. The
computational experiments confirm the speed-up, as shown in Table 3.

The computational experiments presented in this paper were obtained by using a
particular and simple set of criteria for all specifications. The AHSC-L1 algorithm
is a general framework that can support different implementations.

We could not find in the literature any reference mentioning the solution of
cluster L1 problem with instances of sizes similar to those presented in this paper.
So, our results represent a challenge for future works.

The most relevant computational task associated with the AHSC-L1 algorithm
remains the determination of the zeros of the Eq.(9), for each observation in the
boundary region, with the purpose of calculating the first part of the objective
function. However, since these calculations are completely independent, they can
be easily implemented using parallel computing techniques.

It must be observed that the AHSC-L1 algorithm, as presented here, is firmly
linked to the MSDC-L1 problem formulation. Thus, each different problem formu-
lation requires a specific methodology to be developed, in order to apply the partition
into boundary and gravitational regions.

Finally, it must be remembered that the MSDC-L1 problem is a global optimiza-
tion problem with several local minima, so both HSC-L1 and AHSC-L1 algorithms
can only produce local minima. The obtained computational results exhibit a
deep local minima property, which is well suited to the requirements of practical
applications.
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On the Number of Modes of Finite Mixtures
of Elliptical Distributions

Grigory Alexandrovich, Hajo Holzmann, and Surajit Ray

Abstract We extend the concept of the ridgeline from Ray and Lindsay (Ann
Stat 33:2042-2065, 2005) to finite mixtures of general elliptical densities with
possibly distinct density generators in each component. This can be used to obtain
bounds for the number of modes of two-component mixtures of ¢ distributions
in any dimension. In case of proportional dispersion matrices, these have at most
three modes, while for equal degrees of freedom and equal dispersion matrices, the
number of modes is at most two. We also give numerical illustrations and indicate
applications to clustering and hypothesis testing.

1 Introduction

Finite mixtures are a popular tool for modeling heterogenous populations. In
particular, multivariate finite mixtures are often used in cluster analysis, see
e.g. McLachlan and Peel (2000). Here, analysis is mainly based on mixtures with
multivariate normal components. However, mixtures of multivariate ¢-distributions
offer an attractive, more flexible and more robust alternative, see McLachlan and
Peel (2000).
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An important feature of these mixtures are their analytic properties, in particular
their modality structure. Modes are essential for a proper interpretability of the
resulting density. For example, in cluster analysis, when there are less modes than
components in a mixture, it is reasonable to merge several components into a single
cluster based on their modality structure, see Hennig (2010). On the other hand,
having more modes than components in a mixtures as can happen in dimensions > 1
is an undesirable feature.

The most important tools for assessing the number of modes of finite mixtures
of multivariate normal distributions are the concepts of the ridgeline and the
IT-function as introduced in Ray and Lindsay (2005). Recently, Ray and Ren (2012)
showed that for two-component mixtures of normals in dimension D, the number
of modes is at most D + 1, and further constructed examples which achieved these
bounds.

Here, we extend their concept of the ridgeline to finite mixtures of general
elliptical densities with possibly distinct density generators in each component. This
can be used to obtain bounds for the number of modes of two-component mixtures
of ¢ distributions with possibly distinct degrees of freedom in any dimension. In case
of proportional dispersion matrices, we show that these have at most three modes,
while for equal degrees of freedom and equal dispersion matrices, the number of
modes is at most two.

The paper is structured as follows. In Sect.2 we introduce the concept of the
ridgeline and the IT-function for mixtures of general elliptical distributions, and
state some basic properties. These are used in Sect. 3 to assess the model structure
of two-component z-mixtures. In Sect. 4 we give numerical illustrations and indicate
some statistical applications to clustering and hypothesis testing.

2 Ridgeline Theory for General Elliptical Distributions

As indicated in Ray and Lindsay (2005), several of their results extend from finite
mixtures of multivariate normal distributions to finite mixtures of general elliptical
densities. In this section we formulate the relevant statements, for the proofs see
Alexandrovich (2011).

First, we introduce some notation. A nonnegative measurable function ¢
[0, 00) — [0, 0o0) for which ¢, := fRD o(xTx)dx < oo is finite is called a density
generator of a D-dimensional spherical distribution. Evidently, f(x) = ¢, To(xTx)
is then a D-dimensional density w.r.t. Lebesgue measure. If € R? and ¥ > 0 is
a positive definite D x D matrix, then

fosp ) =ko((x=)'=7 (=), k= (e det(x)?)

is a density from the associated family of elliptical distributions. For further details
on elliptical distributions and their density generators see Fang et al. (1989). We
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consider general finite mixtures of elliptical densities with possibly distinct density
generators in each component, i.e. densities of the form

K
g, T @i =1, K) =Y miki i ((x— ) TET (e — ), (D)

i=1
where u; € RP, %, > 0 are positive definite D x D matrices, ¢; are density

. —1 . ..
generators with k; = (Cw det(xZ;)"/ 2) the appropriate normalizing constant, and

K
7; € [0,1] with Y 7; = 1. Typically, the density generators ¢; will all be equal
i=1
as in case of normal mixtures, or at least belong to a parametric family of density
generators such as t-distributions with distinct degrees of freedom. Set

K
SK = {Ol = (Oll,...,OlK)T ERKZOl,' € [0, 1],20[,‘ = 1}

i=1

Ray and Lindsay (2005) introduced the map x* : Sy — R?,

_ P _ _
@) =[S 4+ ok DR [ D e .+ ax D k],

the so-called ridgeline function. The next theorem summarizes the connection
between the modes of the finite mixture g in (1) and the ridgeline. For the proof
in this general setting see Alexandrovich (2011).

Theorem 1. Suppose that the density generators @; in the finite mixture g (see (1))
are continuously differentiable and strictly decreasing. Then

1. All critical points of g as defined in (1) are contained in x* (SK), the image of
Sk under the mapping x*.

2. Set h(e) = g(x*(a)), @ € Sk. Then o is a critical point (resp. local
maximum) of h if and only if x*(aei) is a critical point (resp. local maximum)

of g.
3. If D > K —1, then g has no local minima, only local maxima and saddle points.

Thus, looking for modes of g it is sufficient to look for modes of /.
For a two component mixture, setting

S(x,i) = (x — w) "7 — ), i=1,2, )
we can write

glxim, pr, 2, T1. T2 @1, ¢2) = ki (8(x, 1)) + (1 — 1) ka2 (8(x. 2)).

For the ridgeline, we write in slightly different notation than in the above section

x*@) =8 (1 —a)7 " w1 + 25" o), So =(1—a)Z;' +axy".
3)
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As above, set h(x) = g(x*(a)). Then solving
0 h(a) = ki 0,01 (S(x*(ot), 1)) + (1 —mk, 8aq02(5(x*(ot), 2)) =0
for mr, where 9, is the derivative w.r.t. the real parameter o, we get

k2 3402 (8(x* (@), 2))

" 0 @.2) ki (@ 1)

T

the so-called II-function. Note that the II-function depends on parameters
Wi, i, @i, 1 = 1,2, but not on the weight w. For given m, it can be used to
find the critical points of g. Further, it provides general bounds on the number of
modes as follows.

Theorem 2. (a) I1(0) = 1, TI(1) = 0 and I1(x) € [0, 1].
Let N be the number of zeros of the derivative 0, I1(a) of I1(a) w.r.t. @ within
the interval [0, 1]. Then

(b) N is even, and for any w € [0, 1] the equation I1(a) = 7w has at most N + 1
solutions, the smallest of which, oy, gives a mode x* (1) of g.

(c) Forany m, g has at most 1 + N/2 modes.

We can compute general expressions for the II-function and its derivative as
follows. This will be refined for the ¢ distribution in the next section.

Proposition 1. Ler ¢/(1) = dg;/dt(t), t € R, i = 1,2 be the derivatives of the
density generators. Then for 0 < o < 1

(1 —a)k, ¢

H fr—
@ = e taki e

! A

o1 ¢y +2a(1 —a) p(a)((1 — a)p| ¢y + apip))

9eTI(@) = —k1ks :
(1 —a) k2 @) + a ki 9f)

“

where @5 and ¢ are evaluated at 8(x*(0{),2) (see (2)), while ¢| and ¢| are
evaluated at 8(x*(a), 1), and

ple) = (o — p) 27" S 1S RS BT (e — ). (5)

3 Modes of Two Components Mixtures of ¢ Distributions

In this section, based on the results of the previous section we give bounds on the
number of modes of two-component 7-mixtures. Observe that from Theorem 2(c),
for given parameters u;, ¥;, i = 1,2 (and degrees of freedom 7; in case of the t
distribution), the number of modes of the resulting mixture g for any weight r can
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be bounded by the number of zeros of d,I1 in [0, 1]. Thus, if we can bound this
number of zeros in [0, 1] for any parameter combination y;, ¥; (and n;), we obtain
bounds in the number of modes of the mixture g.

For mixtures of 7-distributions, the density generators are given by

~(ni+D) | (s
oy =k (14 5) o TG
|Zi|iF(ni/2)(ni71)D/2

n;

i=1,2,

where n; denotes the degrees of freedom in the ith component. The general two-
component f-mixture is given by

glxim, i, o, 1, Baonymg) = whig(8(x, 1) 1) + (1 — m)ka@(8(x,2); n2),
(6)

Lemma 1. Consider a general t-mixture as in (6). Set
2 =55 =5 - ) (7)

and let ©* = QD*QT, where D = diag(A},...,A%) and Q is an orthogonal
matrix, denote the spectral decomposition of X*. Then the number of modes
of g(x; 7, j1, 2, 1, T, 11, 12) is the same as that of g(x, 7, QT u*,0,D*, Ip,
nl ’ n2)'

This follows along similar lines as Theorem 4 in Ray and Ren (2012). Using this
simplification, by bounding the number of zeros of d, [1-function one can obtain

Theorem 3. 1. Let g(x:m, [i1, o, 1, To,n1,n2) = mk19(8(x, 1);n1) +(1—m)
kao (5 (x,2); nz) be a two-component mixture of t distributions in dimension D,
and let d be the number of distinct eigenvalues of the matrix 22_1/22122_1/2.
Then the number of modes of g is at most 1 + 2d.

2. Let g(x;m, by, 42, 2, X/A,ny,n3), A > 0, be a two-component mixture of t
distributions in dimension D with proportional covariance matrices. Then the
number of modes of g in any dimension is at most three.

3. A two-component t-mixture with equal degrees of freedom and dispersion
matrices, g(x; w, L1, o, X, 1) has at most two modes in any dimension D.

4 Illustrations and Applications

4.1 Numerical Illustrations

We start by giving some numerical illustrations of some of the results in the paper.

1. First, we investigate the effect of varying the degrees of freedom in a mixture of
two t-distributions while keeping the covariances of components fixed. We also
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1.0 o Normal mixture 10 o ny=10 10 < ny=5
nz=10 np=5 {
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Fig. 1 II-functions for Gauss- and #-mixtures with various degrees of freedom

consider a corresponding Gauss mixtures which can be considered as a limit case
in which the degrees of freedom tend to co. Specifically, the parameters of the
mixtures are

0 1 10 0.05 0
“‘:(o)’“zz(l)’El:(oo.os)’zzz( 0 1)' ®

In the case of t-mixtures we scale the matrices X;, i = 1, 2 with the factors 2—= —2

in order to retain equal covariances in each constellation of degrees of freedom
Figure 1 contains plots of the IT-functions for various combinations of degrees

of freedom, while Fig. 2 has the corresponding for the weight # = 0.65. From
Fig. 1 we see that with decreasing degrees of freedoms, the range of mixture
weights for which the mixture has three modes decreases as well. For the choice
7w = 0.65, the first (normal), second (n; = n, = 10) and forth (n; = 10,n, = 3)
have three modes, otherwise there are only two.

2. Second, we consider the transformation in Lemma 1 to diagonal dispersion
matrices for a two-component -mixture with 15 degrees of freedom and & = 0.5
for a special parameter combination. Specifically, consider

(05 _(15) g _( 1 014) o _ (006014
Fr=V\os5) "= \1s5) T \o14006) “>*~\o014 1 )
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1.0 < P
Normal mixture J_/_\YI

Fig. 2 The corresponding contours for the mixtures for 7 = 0.65

Then the transformed parameters are given by

(0 _ (439 5 _(10) g _ (2419 0
Fr=to )2 =\t ) = T \o1 ) 227\ o o0041)

Figure 3 contains plots of the corresponding densities, which look quite distinct.
Thus, it is not apparent that the transformation keeps the number of modes

3. Third, we investigate the effect when rotating one component while keeping
everything else fixed. We consider a two-component z-mixture with 15 degrees
of freedom in each component, and parameters as in (8). We rotate the second
component clockwise, with angles ranging from 45 % up to 135 % in equidistant
steps. The corresponding densities are plotted in Fig. 4. In the process a third
mode appears at an angle around 90 % and vanishes again for higher angles.

4.2 Statistical Applications
Finally, we indicate two potential statistical application of the above theory.

1. Merging components in mixtures of ¢-distributions. McLachlan and Peel (2000)
recommend the use of finite mixtures of z-distributions as a more robust
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0.00

Fig. 3 Two-component 7-mixture before (left) and after (right) transformation to diagonal disper-
sion matrices

Fig. 4 The clockwise rotation of one mixture component
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alternative to normal mixtures. While ¢z-mixtures allow for heavier tails of
the components, asymmetry can still not be dealt with, and thus, the number
of components may exceed the actual number of clusters in the data. Thus,
modality-based merging algorithms like in Hennig (2010) for normal mixtures,
based on the ridgeline as in Theorem 1, can be employed.

2. Testing for the number of modes. If two-component mixtures under suitable
parameter restrictions allow at most two modes, such as two-component normals
with proportional covariances, or f-mixtures with equal degrees of freedom
and covariances, one can use parametric methods to test for one against two
modes in such a model by likelihood-ratio based methods, see Holzmann and
Vollmer (2008) for univariate normal and von Mises mixtures. This requires
explicit characterizations of the parameter constellations which yield unimodal
or bimodal mixtures. For two-component normals with proportional covariances,
these are given in Ray and Lindsay (2005), Corollary 4, while corresponding
characterizations based on Theorem 3 (2) and (3) still need to be derived.
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Implications of Axiomatic Consensus Properties

Florent Domenach and Ali Tayari

Abstract Since Arrow’s celebrated impossibility theorem, axiomatic consensus
theory has been extensively studied. Here we are interested in implications between
axiomatic properties and consensus functions on a profile of hierarchies. Such
implications are systematically investigated using Formal Concept Analysis. All
possible consensus functions are automatically generated on a set of hierarchies
derived from a fixed set of taxa. The list of implications is presented and discussed.

1 Introduction

The problem of combining rival structures into a representative one is the central
focus of the consensus problem. Arrow’s celebrated work (Arrow 1951), followed
by May’s (1952), opened the door to impossibility results for linear orders, where
consensus satisfying desirable properties were characterized as dictatorial (see
Powers and White (2008) for some impossibility results on hierarchies). Although
several consensus methods were developed for supertrees (Semple and Steel 2000),
i.e. when the phylogenetic trees have distinct (but overlapping) sets of taxa, in this
paper we will focus on the classical case where the consensus tree has the same taxa
set as every input tree. An exhaustive survey on consensus theories can be found in
Day and McMorris (2003) and Hudry and Monjardet (2010).
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Despite the fact that several studies had investigated the statistical behavior
of consensus methods (Degnan et al. 2009) or their relationships (see Bryant
(2003) for a classification based on refinement), none were interested in their
inherent structure in conjunction with fundamental axioms. Our study doesn’t aim to
exhaustively enumerate all existing consensus functions: we focused on a selection
of 13 functions, either for their commonality or their distinctiveness, and 9 axioms.

The rest of the paper is organized as follows: in Sect.2 we recall fundamental
definitions of consensus functions and axiomatic properties on such functions. We
introduce Formal Concept Analysis together with implications in Sect. 3. Finally, in
Sect. 4, we discuss the results obtained by systematically generating any possible
input trees and any possible consensus tree and testing axioms and consensus
functions on it.

2 Consensus Methods

Let S be a finite set with n elements, usually called taxa or operational taxonomic
units. A hierarchy H on S, also called n-tree, is a family of nonempty subsets
of S (called the clusters of H) such that S € H, {s} € H forall s € §, and
AN B e{0,A,B}forall A, B € H. We will denote the set of all hierarchies on S
by 7. All the hierarchies considered here are defined on the same set S.

A series of properties can be defined on hierarchies. Two sets A and B are
compatible if AN B € {0, A, B}, and a set A is compatible with a hierarchy H if it
is compatible with every cluster of H (or, equivalently, if AU H € J¢). Hierarchies
can also be defined (Colonius and Schulze 1981) through triplets ab|c, a,b,c € S,
denoting the grouping of a and b relative to c. We say that ab|c in H if there exists
acluster X € H suchthata,b € X butc ¢ X. Adams (1986) extended that idea
to nestings, where X nests in Y in H, denoted as X <y Y iff X C Y and there
is Z € Hsuchthat X € Z and Y & Z. The canonical height no(X) of a cluster
X C S is defined as no(S) = 0 and n9(X) = h iff there is a maximal sequence
SDOXID...D X1 DX, = X. n(H) is the maximal cluster partition for H
with blocks equal to the maximal clusters of H.

Let H* = (Hy, H», ..., Hy) be a profile of hierarchies on S, and K will denote
the set of indices of the hierarchies of H*, K = {l,...,k}. A consensus function
on  isamap c : % — A with k > 2 and % the k cartesian product, which
associate to any profile H* a unique hierarchy consensus, ¢(H*). We will denote
the set of hierarchies of the profile H* containing the cluster X by Ky (H*), i.e.
Kx(H*)={ieK:X e H;}.SetKx(H*) ={i € K: XUH,; &}

Given a profile H* of hierarchies, many different consensus functions can be
defined. The most famous one is the strict consensus, where the consensus tree
is only the common clusters. The majority consensus (Margush and McMorris
1981) considers clusters appearing in at least half of the trees, while the loose
consensus (Barthélemy 1992) (originally called combinable component (Bremer
1990)) will consider subsets as long as they are compatible with all trees. They

www.it-ebooks.info


http://www.it-ebooks.info/

Implications of Axiomatic Consensus Properties 61

were recently (Dong et al. 2011) extended to the majority-rule (4) by adding
some compatible clusters. As noted in the literature, those rules may miss some
structural features of the hierarchies, particularly the fact that two elements could
be closer than a third one. It might be desirable for these elements to be separated
in the consensus hierarchy — which is what Adams’ function (1972) achieves.
Other functions can be based on clusters’ frequency (Nelson-Page (Nelson 1979;
Page 1990), frequency difference), on height assignment (Durchschnitt (Neumann
1983)) or distance between trees (median, asymmetric median (Phillips and Warnow
1996)). One can refer to Bryant (2003) for a discussion about their respective
advantages and drawbacks. Following is the list of consensus functions we have
implemented:

(Str) Strict: Str(H™*) = N;ex H;

(Prj) Projection: 3/ € K : Prj(H*) = H;

(a1 Oligarchy: 3J € K : Ol(H*) = Njes H;

(Maj)  Majority: Maj(H*) = {X € S : |Kx(H*)| > &}

(Lo) Loose: L(H*) = | {X € S:3j e K, X € HiandVi € K, X U
H,‘ S jf}

(LM) Loose and Majority Function Property: LM(H*) = Maj(H*) U L(H™)

(Maj+) Majority-rule (+) : Majt (H*) = {X C S : |[Kx(H*)| > |Kx(H*)|}

(NIP) Nelson-Page: The consensus tree is made of maximum weight (w(X) =
|Kx (H*)| — 1) compatible clusters. If there is a tie, take the intersection.

(FD) Frequency Difference:
FD(H*) = {X : |Kx(H*)| > max{|Ky(H™*)| : Y not compatible
with X }}

(Dur) Durchschnitt: Dur(H*) = Uj')=1{ﬂiel< X;: X; € Hiand no(X;)=J},
with @ = min;egmaxyep, No(X)

(Ad) Adams (from Bryant (2003)): Procedure AdamsTree(Hy, ..., Hy)
Construct w(H ), the product of 7 (H,), ..., w(Hy).
For each block B of n(H) do AdamsTree(H,|3, ..., Hi|p)

Med)  Median: Med(H*) = {H € 57 : Zﬁ;l |H A H;| is minimum}

(AM) Asymmetric Median: AMed(H*) = {H € % : Zﬁ;l |H; — H| is
minimum}

Arrow’s result (for linear orders) characterize consensus functions satisfying
some desirable properties. We have considered the following, taken from Day and
McMorris (2003):

(PO)  Pareto Optimality: (VX C S)(X € N_, H; = X € c(H*))
(Dct)  Dictatorship: (3j € K)(VX € S)(X e Hj = X € c(H"))
(cPO)  co-Pareto Optimality: (c(H*) C Ule H;)
(TPO) Ternary Pareto Optimality:
(Vx,y,2z€ S)((Vi € K)(xy|z € Hi) = xy|lz€ c(HY))
(NP) Nesting Preservation:
(VO # XY € S)(Vi € K)X <, ¥) = (X <cum) V)
(SP) Strong Presence: (V0 # X, Y C S)(X <cuv Y = (Vie K)(X <y, Y))
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(QSP)  Qualified Strong Presence:
VX, Y ec(H*))(X <euv Y = (Vi e K)(X <, 1))

(USP) Upper Strong Presence:
(VX € c(H))(X <cur S = (Vi € K)(X <y, S))

(Btw)  Betweenness: (for any family (X;);ex with X; € H;)(3Y € c(H*))(ﬂf;l
Xicv cUiZ, X

3 Formal Concept Analysis

Formal Concept Analysis (FCA) (Ganter and Wille 1996) was developed in
Darmstadt as a mathematical theory for modeling the notion of “concept”. It starts
from a formal context (G, M, I'), with a set G of objects, a set M of attributes, and
a binary relation I € G x M. (g,m) € [ is read as “object g has attribute m”.
To this formal context, one can associate to a set of objects A C G its intension
A'={me M :Vg e A, (g,m) e I} of all properties shared by A. Dually, we can
define B’ = {g € G : Vm € B,(g,m) € I}, the extension of a set of properties
B C M.Apair(A,B),A C G,B C M,isaformal conceptif A’ = Band B’ = A.

The set of all formal concepts, ordered by inclusion of their intent, forms a lattice
(Barbut and Monjardet 1970), called concept lattice. It generates and visualizes
hierarchies of concepts. For more terms and definitions on lattice theory, one can
refer to Birkhoff (1967) and Davey and Priestley (2002). FCA is intensively used
in data mining, together with the (equivalent) implicational system. An implication
X — Y represents the fact that every object satisfying the set of attributes X will
also satisfy the set of attributes Y, or, equivalently in FCA terminology, X C Y”.
This set of implications can be reduced to the Duquenne-Guigues canonical basis
(Guigues and Duquenne 1986), a minimal set of implications from which any
implication can be generated.

4 Results and Discussion

Our simulation has been implemented using C++, as it takes advantage of low
level optimization. Initially, it generates all possible hierarchies based on a given
set of n taxa. Then it exhaustively traverses through all possible profiles of k
hierarchies, together with all possible consensus trees, creating what we called
a configuration. A configuration (H*, H) is a pair of input trees (a profile)
together with a consensus tree. Each configuration was compared against axiomatic
properties and consensus functions in order to create the formal context (G, M, I),
with G the set of configurations, M the set of axiomatic properties and consensus
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functions, and (g, m) € [ if a configuration g has the (axiomatic) property m. For
example, (H*, H), (PO)) € I if H contains all common clusters of H*; likewise,
(H*,H),(Str)) e I it H = Str(H™).

A first issue arose from the number of possible configurations. Given the number
of n-trees (Felsenstein 1978), and the NP-hard nature of some consensus functions
(Phillips and Warnow 1996), we were able to run our application only forn < 5.
Forn = 4 (resp.n = 5,n = 6) and k = 3, we have 73,125 configurations (resp.
514,807,450, 9.57 x 10'2), and, for each, 22 properties (9 axioms and 13 functions)
were tested on a laptop intel-core 15, 2.3 Gh. In order to significantly improve the
running time, the consensus trees set was reduced to a more compact set of structure-
based trees. All the trees were divided into equivalent classes such that all trees in a
class are isomorphic up to a permutation of their labels. Consider two consensus
trees H and H’ in the same class and ¢ the permutation between their labels,
the configuration (H*, H) has the same properties satisfied as the configuration
(c(H*), H').

Since the running time of the simulation increases exponentially with slight
addition to n or k, in order to have partial results from otherwise computationally
impossible simulations, randomly selected profiles were chosen for every unique
representative consensus tree in order to have a more accurate context and so a
more precise set of implications.

Figure 1 shows the overall concept lattice, having 2,821 concepts. Although
such a huge lattice is hard to read, it is strongly well-structured. There are only
82 implications on the canonical basis (Table 1). The lower (in the lattice) a
property is, the less specific it is: the atoms define four big (overlapping) families
of functions: (USP), (NIP), (cPO) and (PO), setting Nelson-Page function apart.
Under (PO) and (cPO), we can find the family of consensus functions satisfying
both: (LM), (FD), (Med), (Maj+), (Ol).

A few (well known) implications arise from the lattice. The meet of (NP) and
(QSP) is the Adams’ consensus rule, thus uniquely defining it (Adams 1986). (USP)
is a weakening of (QSP), which is a weakening of (SP). Relationships amongst
axioms (Fig. 2, left) are becoming clearer too: (PO) is satisfied if we have (Btw)
(Neumann 1983), which is satisfied if we have (Dct). While considering the lattice
of consensus functions (Fig.2, right), it is similarly well-structured. Apart from
obvious special cases ((Str) and (Prj) implying (Ol), (Lo) implying (LM)) and
previously known implications ((Maj) implying (Med)), all consensus functions are
clearly independent and well-defined.

Our main result is a negative one: there are few unknown implications, and
the consensus functions studied are independent. Unfortunately, a drawback of
our approach is that we cannot implement fundamental (and desirable) axioms
like Independence or Neutrality by construction as these properties are on two
different profiles. We are planning to code more consensus functions (such as
MREP, local, ...) in order to reach some exhaustive,or as close as it can be, study
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Fig. 1 Concept lattice on 9 axioms and 13 consensus functions (Drawn with ConExp Yevtushenko
(2000))

of consensus functions on hierarchies. Similar work is scheduled to extend the
simulation software to more general structures, such as weak hierarchies (Bandelt
and Dress 1989), 2-3 hierarchies (Bertrand 2000), pyramids (Bertrand and Diday
1985), and different classes of lattices.
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Table 1 Implications associated with the lattice

1. Btw — PO 42. PO cPO SP — Str

2. TPO — PO 43. Dct TPO USP Med — Prj

3. Dct — Btw 44. Dct USP NIP Maj+ — Ol

4. NP — TPO Btw 45. TPO Dur Maj+ — QSP

5.QSP — USP 46. Dct USP NIP FD — Ol

6. SP — cPO QSP 47. Maj+ Amed — Btw FD

7. Med — PO cPO 48. TPO USP NIP Maj+ — QSP

8. 01 = PO cPO 49. Btw Med LM Amed — Maj

9. Maj+ — PO cPO 50. Str Med — LM

10. FD — PO cPO 51. TPO USP NIP FD — QSP

11. Prj — Dct cPO Ol 52. TPO USP Med FD — QSP

12.Lo - LM 53. Dct TPO USP NIP — cPO Prj Ad Dur

13. Maj — Med LM; 54. TPO QSP Ol Dur Maj+ — Ad

14. Dur — USP Btw 55. Maj Ol Lo NIP Maj+ — FD

15. Amed — PO 56. Dct TPO Lo Med — NP

16. Ad — NP QSP Btw 57. TPO Dur FD — QSP

17.LM — PO cPO 58. Btw NIP LM Amed — Dct

18. Str — SP Ol 59. Str TPO Dur — Ad

19. Lo FD — Maj+ 60. Str Maj+ — Lo Med

20. NP USP Btw — QSP Ad 61. Dct TPO Lo NIP — NP

21. Dct USP Dur — cPO Prj 62. TPO QSP Ol Dur FD — Ad

22. Dct QSP — Prj Dur 63. USP Amed — Btw

23. Dct TPO USP Ol — Prj 64. Btw NIP Maj+ FD Amed — Dct

24. Dct NIP Med — Ol 65. Str FD — Lo Med Maj+

25. FD Amed — Btw 66. TPO QSP Maj FD — Ol

26. Maj NIP FD — Ol 67. Btw NIP Med Amed — Prj

27. TPO Dur Med — Ad 68. PO cPO Btw Lo LM Amed — Dct Maj+ FD

28. Dct USP NIP LM — Ol 69. Btw Med Maj+ FD Amed — Maj

29. TPO Ol Dur LM — Ad 70. Str NIP — Med LM

30. USP Maj NIP — Ol 71. TPO Btw Maj+ FD Amed — Dct

31.LM Amed — Btw 72. Str Lo NIP Med — Maj+ FD

32. TPO USP Ol NIP — QSP 73. USP Btw LM Amed — Dct

33. TPO USP NIP LM — QSP 74. USP Btw FD Amed — Dct

34.Dct TPO OINIP LM — Prj  75. Str Btw NIP Med LM — TPO

35. Ol Amed — Prj 76. USP Btw NIP Amed — Prj FD

36. TPO NIP Dur — Ad 77. USP Btw Med Amed — Maj Prj

37. TPO USP NIP Med — QSP  78. Dct TPO Lo Maj+ FD Amed — NP

38. Dct TPO OI NIP Med — Prj  79. Str SP Prj Lo Dur Med Maj+ — Maj

39. TPO USP Lo Med — QSP 80. Str TPO SP Prj NIP Ad Dur Med LM — Maj

40. Dct TPO Ol Lo — Prj 81. QSP Btw Amed — Str Maj Prj Lo Dur Maj+ FD

41. NIP Amed — Btw 82. USP Btw Dur Amed — Str QSP SP Maj Prj Lo
Maj+ FD
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Fig. 2 Concept lattice associated with axioms (left) and consensus functions (right) (Drawn with
ConExp Yevtushenko (2000))
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Comparing Earth Mover’s Distance
and its Approximations for Clustering Images

Sarah Frost and Daniel Baier

Abstract There are many different approaches to measure dissimilarities between
images on the basis of color histograms. Some of them operate fast but generate
results in contradiction to human perception. Others yield better results, especially
the Earth Mover’s Distance (EMD) (Rubner et al., Int J Comput Vis, 40(2):
99-121, 2000), but its computational complexity prevents its usage in large
databases (Ling et al., IEEE Trans Pattern Anal Mach Intell, 29(5):840-853,
2007). This paper presents a new intuitive intelligible approximation of EMD. The
empirical study tries to answer the question whether the good results of EMD
justify its long computation time. We tested several distances with images that were
changed by normally-distributed failures and evaluate their results by means of the
adjusted Rand index (Hubert et al., J Classif, 2:193-218, 1985).

1 Introduction

The aim of our research is to cluster image databases. One purpose will be in
marketing, e.g. it could be used for clustering consumers based on their favorite
holiday pictures (Baier and Daniel 2011). There will also be a private use, e.g users
would be able to organize their image databases automatically. Therefore we are
searching for reliable distance measures to cluster images with the smallest number
of misclassifications according to some prespecified criteria.

The Earth Mover’s Distance is already known in the area of image retrieval
but it has not been used for image clustering. There are already some empirical
evaluations (e.g. Puzicha et al. (1999) or Ling and Okada (2007)) verifying that
EMD is one of the most suitable distances for content based image retrieval (CBIR).
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In CBIR applications the EMD between the query image and every contemplable
image of the database has to be computed. Therefore n — 1 distances are required
for a database with n images. For clustering images of the same database, usually
% (n2 — n) distances have to be calculated. The high number of required distances
is one more reason to search for a faster metric for the area of image clustering.
The rest of this paper is organized as follows: Sect. 2 will briefly summarize the
theoretical foundations for our study. In Sect. 3 the mathematical background of the
original EMD and our own approximation algorithm will be presented. The results
of our experiments are illustrated and declared in Sect. 4. Finally we conclude our

findings and particularize our plans for future work.

2 Comparing Images Using Color Histograms

2.1 Color Histograms for Images

In the following we assume that an image A (or B, C, ... ) can be summarized as a
collection of 74 pixels with color measurements C* = {c{', ..., ¢/, }. The measure-
mentel (r = 1,...,T4) takes values from X = {xy,...,xy} C RX which reflects
the possible intensities in a underlying prespecified K-dimensional color space. In
digital image processing, K = 3 has proven to be useful e.g. when the 8-bit-coded
RGB (Red-Green-Blue) color space X = {(0,0,0), (0,0, 1),...,(255,255,255)}is
used with M = 256° = 16,777,216 different colors (= RGB intensity triples).

For characterizing the distribution of these measurements across the image (and
for comparing images), (color) histograms can be used. A histogram is a fixed-
size discrete distributional function with an a priori declared number N of disjoint
color ranges X; C X (i = 1,..., N), the so-called bins. So, e.g., if each possible
color of the 8-bit-coded RGB space would be declared as a bin, we would have
N = M = 16,777,216 bins. Alternatively, if 8 subsequent intensities in each of the
K = 3 dimensions would be summarized, one would receive only N = (%%)3 =
323 = 32,768 bins. For each bin i of histogram h* = {(p{', h{"), ..., (p&. hy)} we
can calculate its number of colors in its range N;, its position (mean color) in the
color space p; and the corresponding number of pixels A in image A4 according to

M r
1
N; = E Lix,exips Pi = N Z X, b = Zl{cf‘EXi}' M
i t=1

m=1 X €EX;

Usually, to make images comparable with different numbers of pixels
(TA,TB,..)), the histogram values are transformed into shares of pixels, i.e. the
frequency A is replaced by the weight (share) w! = h#/T4. Thus we get the
normalized histogram w = {(p/l, w{'), ..., (p5, w)}. Also, instead of histograms
w.r.t. to the same color ranges across all images, so-called signatures can be used,
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Fig. 1 The CIE L*a*b* color space (left) and an example of a color intensity histogram (right) of
a macaw picture (middle)

which describe the color distribution of an image via image-specific non-empty
bins. An adequate coding for a signature for image 4 with N4 bins could be
q' = {(p{".w).....(py.. wy.)} (N* < N). The positions and weights are
calculated in the same way as above. This is especially useful when parts of the
color space are expected to have no weights, e.g. when comparing underwater-
images without red or yellow colored pixels. However, in the following, we restrict
our discussions to histograms and weights.

2.2 The CIE L*a*b* Color Space

In our experiments we use distances between color histograms to compare images.
For humans, the similarity of colors has proven to be very important (see Swain
and Ballard 1991). So, e.g. humans use colors to interpret traffic signs and to decide
whether food is healthy or not, animals use colors to send messages or warnings.
There are many different color spaces. Probably the best known is the above
mentioned RGB space which uses an additive mixing of primary color intensities.
Initially it was used for photographic experiments by James Clerk Maxwell in 1861
using three color-filtered separate takes. Later it became popular for TV, computer
displays and other electronic devices. It bases on the human processing of color
stimuli via three types of retinal cones in the eye. But it was not designed to
produce color codings whose distances reflect perceived color differences. Here,
the CIE (Commission Internationale de 1’Eclairage) L*a*b* color space — also
a three-dimensional color space — has proven to be more adequate (see, e.g. the
experiments conducted by Schwarz et al. (1987)). The first dimension represents
the lightness (L*), the second and third are opponent red-green (a*) and yellow-
blue (b*) color-axes (see Fig. 1). Every visible color is represented in this space,
thus no output-device can display all colors of the L*a*b* color space. The color

www.it-ebooks.info


http://www.it-ebooks.info/

72 S. Frost and D. Baier

Table 1 Overview of the six traditional distance measures used in our experiments. The distance
is calculated on the basis of the normalized histograms w4 and w? with m; = (w/* + w?)/2 and
w; = Z']:l w;. The computational complexity (abbreviated: CC) relates to the number of bins N

Distance Type Formula CC
Euclidean Bin-by-bin dp, (w4, wh) = \/Z, (wit —wk)2 O(N)
distance
Jeffrey Bin-by-bin dy(wi, wh) = O(N)
. wi wh
divergence Y (W’A log (r_n‘,_) +w¥ log (;:‘,_))
in(w w8
Histogram- Bin-by-bin dn(wt, w8) =1— % O(N)
Intersection Y
Quadratic-form Cross-bin dor(w, w8) = O(N?)
\/(WA _ wB)TS(wA _ wB)
Match distance Cross-bin dy(wh,wh)y =3 | vl =B | O(N)
Kolmogorov- Cross-bin dgs(wh, w8y = (max; | Wil — w8 |) O(N)

Smirnov-dist.

similarity functions developed by the CIE are based on so called ‘supplementary
standard colorimetric observers’ to get a relation between the perceived color and
the physical reason for a color-stimulus (Wyszecki and Stiles 1982). It is one of
the common color feature spaces in computer vision (see: Rubner et al. (1997) or
Puzicha et al. (1999)) and even professional image processing software like Adobe
Photoshop uses the L*a*b* color space for internal color processing. The L*a*b*
coordinates can be obtained by transforming RGB coordinates into the XYZ system,
which is able to normalize the colors with respect to the source of illumination. The
second step is a nonlinear transformation from the normalized XYZ-system into
the L*a*b*-system. In this special color space the calculated Euclidean distance
between two colors corresponds to the human perception of color dissimilarity. As
a result the ground distance (Sect. 3.1) for the EMD will be the Euclidean distance,
while using this color space in our experiments.

2.3 Traditional Distance Measures

Puzicha et al. (1999) compared the EMD with seven other distance measures on
histograms w.r.t. image retrieval. They compared the number of correct retrieved
images relative to total number of retrieved images. Unfortunately, their results
don’t solve our problem. For example, Kullback-Leibler divergence yielded a small
percentage of classification errors but because of its asymmetry it is not usable for
hierarchical clustering approaches. Table 1 lists the traditional distance measures
we used in our evaluation. All distances between image A and B make use of the
corresponding normalized histograms w#, w® w.r.t. the L*a*b* color space and
the same color ranges (bins). The quadratic-form distance additionally uses the
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symmetric similarity matrix § € R¥*V with s =1-— % (Rubner et al. 2000),
ij
where g;; is the distance (we used Euclidean dist.) between the positions plA and pf

of the bins i and ;.

3 EMD and its Approximations

3.1 Theoretical Background of Earth Mover’s Distance

The basis for comparing images via minimum histogram transformation costs
was firstly presented by Peleg et al. (1989). Rubner et al. (1997) than introduced
signatures to shrink the problem and firstly named this measure Earth Mover’s
Distance (EMD) according to a common transportation problem, which searches
for the ‘cheapest’ way to put earth from a set of regionally spread piles (suppliers)
to a set of regionally spread holes (demanders). That also makes clear, why empty
bins can be removed; since suppliers without earth or demanders without demands
are unimportant for this problem. Assuming that the color signature of one image
is the available earth distributed across a set of regions (= bins) and the signature
of the second image is the distributed demand across the same set of regions, the
EMD computes the minimum cost that has to be paid to distribute the available
earth according to the demands.

The units of earth transported from a supplier (pile) i to demander (hole)
j are called flow f; and the distance the flow has to take is called ground
distance. The ground distance g; represents the costs to transport one unit of
earth from supplier i to demander j. Usually the Euclidean distance between the
corresponding bin positions is used. Rubner et al. (1997) formally defined the
problem as follows: For two given signatures g1 = {(p{,w{),..., (pﬁA,ng)}
and % = {(pB,wh),..., (pf,B , wf,,,)}, where p/! and pf are the positions and w!
and wf the weights of the bins, with g;; =|| pA — pf |l2 GGif the Euclidean distance is
used as ground distance) we search for the flow, that minimizes transportation costs

NA NB

EMD(q", q®) = min Z Z figij st )

i=1j=1

N4
N4 Y fi<wh Vl<i<N%

i=1

IA

NB
fiz 0 Y fi<w! VI<i
j=1

NA NB

NA NB
o A B
DD Si=min{ Y owly ]

i=1j=1 i=1 j=l1
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s 3 3 Algorithm: EMD,, (h*,h®)
h= h*-h?®
h? 2 hP 2 2 sum = sum(h®) = sum(h®)

r=1, EMD;y,=0

while (sum>e) {
I I . for (i=1...N with: h§>0){

A A I A A B B B B B .. 1f (Ipf-pSi<r && h5<0){
b, b, P, b, Py IS b, P, b, b, . £=min (|nS|, InS])
... hf=h{-f
(h*-h®), (h*-n®), . . . h§=hS+f
1 1 1 1 e EMD;ga=EMDp,+£*r
ro=1 ro=1 r,=2 .. . sum=sum-f
/ \ — ... r=r+1
Bf p, P P B P} 2 R

-}
}Return EMDyg,

Fig. 2 A visualization of the IRA algorithm using a sample calculation (/eft) and the pseudo code
(right). h* and h® are two one-dimensional histograms. (h* — h®), is the difference-histogram.
In the first step, where the radius equals one, there is a hole in a circuit of the pile at position p$
and bin p4C. After filling this holes there is one unit left. In (h* — h®), the radius is increased. The
last hole can be filled because it is in a circuit of the pile at p§

The theoretical computation complexity of the traditional EMD is &'(z*log z%)
where z is the number of non-empty bins if signatures are used. Empirical running
times are given by Rubner et al. (2000). The main advantage of EMD for image
clustering is that it is a cross-bin distance with adjustable ground distances. That
means, the ground distance can be adapted to the corresponding feature space
(e.g. L*a*b*-color space, texture-distributions, etc.). So, in contrast to bin-by-bin
distances, that only compare corresponding bins, the EMD notices if there is a small
color shift between two images and calculates only a small difference between these
images.

3.2 Increasing Radius Algorithm (IRA)

Now we want to introduce our own approximation, the Increasing Radius Algorithm
(IRA), which is much more intelligible than other approximations and fast to
implement. The first step is to calculate the difference-histogram (Fig. 2). Positive
values now will be the piles and negative ones the holes of earth.

The first radius ry = 1. The algorithm runs through the difference histogram and
adds as much mass as possible to all negative bins that are located within a circuit
(with radius rp = 1) around a positive bin. After every iteration the radius will be
increased (r; = 2). In the example in Fig.2 there are two units of earth that are
transported over a ground distance of rp = 1 and one unit that is transported over
a ground distance of r; = 2. The result is a distance between the histograms of
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2% 14 1x%2 = 4, which still has to be divided by the total weight 11. After at
most N2 iterations the algorithm finishes. The results are presented in Sect. 4. At
the moment the Increasing Radius Algorithm (IRA) only works with histograms
up to three dimensions. But we are going to extend of the algorithm for higher-
dimensional feature spaces, where the radius will determine a hyper sphere around
positive bins.

4 Experimental Comparison of Distance Measures

We compared the traditional EMD with six other common distance measures, and
the referred Increasing Radius Algorithm. In image retrieval mostly the number of
correct retrieved images is counted. To make the clustering result comparable we
used the adjusted Rand index (Hubert and Arabie 1985).

For our tests we used 15 holiday pictures from three categories: sunset,
mountains, and cities at night. We did the test with low-level, medium-level, and
high-level failures (see: Table 2). In each test set-up every of the 15 images was
copied 10 times. The copies were changed by normally-distributed failures. In each
case we did one of the following distortions: decreasing resolution, decreasing
contrast, decreasing the red color-band, increasing brightness, and adding Gaussian
noise. We picked out these distortions, because they seem to be common in digital
photography. To make an empirical evaluation we repeated every test set-up five
times with new random values to make a Monte Carlo analysis. We decreased the
resolution e.g. in high-level distortion up to 95 %, but nearly all metrics were robust
to this change. We also decreased the contrast from the original (0:255) range down
to a minimum of (108:147). The brightness was increased up to 192, where the
maximum 255 would be a totally white image. In the case of color distortion we
decreased the percentage of the red color band, what means that the image became
more cyan. The last distortion was to add Gaussian noise with a standard deviation
up to 800 (in high-level case) (Bordese and Alini 2010, pp. 37-38).

In average the EMD yielded the highest adj. Rand indices but also the IRA,
quadratic-form, histogram-intersection, and Jeffrey-div. achieved high values. With
an Intel core i7 2,6 GHz PC (Windows 7) with 4GB of RAM the average
computation times for one distance are shown in Fig. 3 (software was implemented
by our own with C++ using Qt application framework).

5 Conclusion

We found out, that distances that produce good CBIR results are not necessarily
usable for image clustering. But the EMD proved to be an appropriate measure
to cluster images because it is robust to changes in color, resolution, and noise,
it yielded the best average adjusted Rand index (0.91), and for a limited number
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Fig. 3 A log-log plot of average computation times of the five best distance measures of our
experiment in relation to the number of histogram bins

of colors it is even faster than quadratic-form. There are other distances, that are
almost as good as EMD and only take a fraction of the time EMD needed. For
example histogram-intersection and Jeffrey-divergence are bin-by-bin distances and
yielded an average adjusted Rand index of about 0.85. But they only took 0.10 ms to
calculate one distance. Our own Increasing Radius Algorithm achieved the second
best results but it admits of improvement.

In the next time we will check more approximations for their usability in
image clustering and extend our own algorithm for multi-dimensional features and
different ground distances.
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A Hierarchical Clustering Approach
to Modularity Maximization

Wolfgang Gaul and Rebecca Klages

Abstract The problem of uncovering clusters of objects described by relationships
that can be represented with the help of graphs is an application, which arises in
fields as diverse as biology, computer science, and sociology, to name a few. To
rate the quality of clusterings of undirected, unweighted graphs, modularity is a
widely used goodness-of-fit index. As finding partitions of a graph’s vertex set,
which maximize modularity, is NP-complete, various cluster heuristics have been
proposed. However, none of these methods uses classical cluster analysis, where
clusters based on (dis-)similarity data are sought. We consider the lengths of shortest
paths between all vertex pairs as dissimilarities between the pairs of objects in order
to apply standard cluster analysis methods. To test the performance of our approach
we use popular real-world as well as computer generated benchmark graphs with
known optimized cluster structure. Our approach is simple and compares favourably
w.r.t. results known from the literature.

1 Introduction

Graph clustering, sometimes also referred to as community structure detection in
graphs, combines the research areas of graph theory (where binary, symmetric re-
lations between objects are illustrated by undirected, unweighted edges between the
vertices of a graph which represent the objects) and cluster analysis (where groups
of vertices revealing special graph structures have to be found).

While in standard cluster analysis of dissimilarity data homogeneous clusters are
sought that are heterogeneous among each other, in graphs we try to find tightly knit
groups of vertices with few edges between these groups.
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A popular goodness-of-fit index to estimate and compare the quality of this
kind of clusterings in graphs is called modularity, which was suggested in 2004
(see, e.g., Newman and Girvan 2004; Newman 2004a,b; Clauset et al. 2004). Other
suggestions to measure graph clustering solutions are known (see, e.g., Brandes and
Erlebach (Eds.) 2005), but will not be addressed here. A definition of modularity
as well as a discussion concerning approaches using modularity are presented in
Sect. 2. The application of shortest path dissimilarities in order to cluster graphs
is motivated and explained in Sect. 3, where we also propose our approach, which
consists of the following main steps: (1) computation of all shortest path lengths,
(2) application of standard hierarchical clustering, (3) search for possible local
improvements with the help of a vertex exchange algorithm. In Sect.4 we show
how our approach performs on benchmark graphs from the literature with known
cluster structure. Finally, we give a summary as well as a brief outlook in Sect. 5.

2 Modularity as a Goodness-of-Fit Index

By G = (V, E) we denote an undirected, unweighted graph with a set V' of n
vertices and a set £ of m edges that link pairs of vertices, i.e., e = (i,j) € E
with 7, j, € V, where no parallel edges (for each pair of vertices at most one edge
exists) and no loops (e = (i,i),7 € V) are considered. A = (A4;;) with 4;; = 1, if
e =(i,j) € E,and A;; = 0, otherwise, describes the adjacency information of the
graph.

Formally, modularity is defined using the entries A;; of the adjacency matrix
A, the degrees k; of vertices i (number of edges incident to i), and the underlying
graph clustering, where ¢; denotes the cluster that contains vertex 7. In modularity
calculations only relationships between vertices in the same cluster are considered
which is achieved by using the Kronecker-Delta §(c;, c;) (equalto 1if ¢; = c¢;, and
equal to 0, otherwise). Then, as formula for the modularity Q one can use

1 ki-k;
0= %Z (A,,» — Zm’)-S(ci,c,»). (1)

i.j

Note that every edge is incident to exactly two vertices, so 2m is equal to the sum
of all vertex degrees. [—0.5; 1] is a theoretical interval for values of Q (see, e.g.,
Brandes et al. 2007), which depend on the graph’s structure, i.e., two clusterings
in different graphs cannot be compared using modularity. In real-world graphs
(Newman and Girvan 2004) state that optimized values of Q are often elements
of the interval [0.3;0.7].

Modularity has been applied in quite a number of contributions, which shows the
importance of this measure in scientific context. Originally introduced by Newman
and Girvan (2004) as a new goodness-of-fit index along with a divisive hierarchical
graph clustering procedure, Newman (2004a) suggested an agglomerative clustering
method, which merges those two clusters in each agglomerative step whose fusion
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causes the largest increase or smallest decrease of modularity. Brandes et al. (2008)
showed that modularity maximization over all partitions of the vertex set V' is NP-
complete. Therefore, various heuristics to tackle this problem have been proposed.
A modification of Newman’s agglomerative algorithm was given by Schuetz and
Caflisch (2008), which enables the fusion of more than two communities in
each iteration step. Other hierarchical approaches were given by Radicchi et al.
(2004), Xiang et al. (2008) as well as Mann et al. (2008). Algorithms similar to
hierarchical clustering have been proposed by Arenas et al. (2007), Djidjev (2008),
Zhu et al. (2008), and Blondel et al. (2008), who developed different procedures
to coarsen the graph in question. Then, the coarsened copies of the original graph
are either clustered or the coarsest version of the graph is defined as a clustering,
whose cluster solutions are conveyed and refined to fit the original graph using
iterative uncoarsening. Also, approaches using heuristics known from other fields
of research have been applied, for example mathematical optimization (Duch and
Arenas (2005) employ an extremal optimization procedure, Agarwal and Kempe
(2008) express the problem with the help of linear and vector programming).
The application of probabilitic flows on random walks in graphs (Rosvall and
Bergstrom 2008) and matrix factorization (Ma et al. 2010) have also been suggested.
A significant number of authors (see e.g.,.Newman 2006) use spectral clustering
algorithms (see Nascimento and de Carvalho (2010) for a recent overview).

Besides the development of various procedures that aim to find a partition of the
vertex set with highest possible modularity, the concept has also been criticized.
Fortunato and Barthélemy (2007) showed that there is a lower bound to the sizes of
clusters that can be detected using heuristics which strive to maximize modularity.
This lower bound depends on the number of vertices n and the interconnectedness of
the clusters. Variations of modularity were proposed to avoid this weakness (see e.g.,
Li et al. (2008), who suggested a local measure that takes the density of subgraphs
into account). However, the original definition of modularity is still widely used and
extensions to weighted graphs (Newman 2004b) as well as to directed graphs (e.g.,
Arenas et al. 2007; Leicht and Newman 2008; Kim et al. 2010) have been presented.
Good et al. (2010) review the performance of modularity maximization in practical
contexts.

3 A New Heuristic to Find Clusters in Graphs

Given the many contributions in which modularity was used for community struc-
ture detection we considered the following idea to cluster a graph into subgraphs
with closely connected vertices and comparatively few edges between different
subgraphs: In a graph the important information is stored in the adjacency matrix
A = (A;;). While A;; = 1 might be a reason to put vertex i and j into the same
cluster, for a pair of vertices i and j with A;; = O there is no information how
similar i and j might be. They could have a common neighbour but they could also
be in completely different areas of the graph. Therefore, we define the dissimilarity
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between two vertices as length of a shortest path that connects them in the graph.
If no path exists a sufficiently large constant is used to indicate this situation.
Now, the solution of the underlying problem in terms of standard cluster analysis
is straightforward and, as writing restrictions do not allow to describe the single
steps of the new heuristic in mathematical terms, we give the following verbal
explanations: First, we determine the lengths of the shortest paths between all pairs
of vertices in the graph (see, e.g., Floyd 1962; Warshall 1962). Second, we apply
a hierarchical clustering method to the shortest path length matrix computed in the
first step and calculate the modularity for the clusterings given by the hierarchy.
(Average and Weighted Average Linkage were well-suited for our data.) Third, an
exchange algorithm called vertex mover (Schuetz and Caflisch 2008) is applied to
the clustering in the hierarchy with highest modularity, which also provides the
number of clusters needed to check whether improvements by exchange operations
are still possible.

4 Performance on Benchmark Graphs

To test the performance of our approach we used several well-known undirected,
unweighted real-world as well as computer generated benchmark graphs.

Example 1. The first example is a well-known real-world graph by Zachary (1977),
who examined the relations between 34 members of a karate club. Two vertices of
the graph are adjacent, if the corresponding people spent a significant amount of
time together during the examination (see Fig. 1).

By chance there was a dispute between the principal karate teacher (vertex 33)
and the administrator (vertex 1) of the club while Zachary studied the relations
in this group, which caused the club to spilt into two subgroups. This real-life
partition is depicted in Fig. 1 by a black line. The modularity of this spilt is 0.3715.
Interestingly, a better Q for a solution with two clusters is 0.3718. Not only is this
value only slightly larger, the clusters are also almost the same, just for vertex 10 the
group membership has to be changed. This shows that modularity can successfully
be used to predict the clusters of the split of this social network which separated into
two groups. Our approach finds the two-cluster-solution with the better modularity
mentioned above, which was also detected by Newman and Girvan (2004).

Additionally, our method finds the largest known modularity value for a cluster-
ing of this graph which is Q = 0.4198 as also reported by Duch and Arenas (2005).
This value is obtained for the division into four clusters, which is also shown in
Fig. 1, where the four different colors of the vertices indicate the four groups. These
clusters happen to be subgroups of the real-life decomposition that Zachary (1977)
observed.

Example 2. As real-world graphs known from the literature can be very specific
and sometimes need lengthy explanations of the relationships that underly the
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Fig. 1 The Zachary network of friendship ties between members of a karate club

described situation we tested our new method on a class of computer generated
benchmark graphs with built-in community structures introduced by Lancichinetti
et al. (2008). Although the authors argue that there is no guarantee that the bulit-
in community structures constitute solutions with highest modularity these graphs
provide the up-to-now best known benchmarks. They can be constructed for any
choice of the following three parameters: n (the number of vertices), k,, (the average
vertex degree), and u (a mixing parameter which denotes the fraction of a vertex
v’s neighbours not in c¢,). Heterogeneous vertex degrees are modeled by a power
law distribution with parameter t;, heterogeneous cluster sizes are modeled by
a power law distribution with parameter t,. To take into account restrictions for
real-life graphs the authors propose 7; € [2,3], o € [1,2], and report on results
of testgraphs with all four combinations of the extreme cases of t; and 1, for
which a very similar behaviour of the modularity calculation was found in all cases.
Therefore we chose 7; = 2 and 7, = 1. So far we used different numbers of vertices
n € {100; 500; 1,000} with adequate average degrees k,, € {10; 15;20} and mixing
parameters i € {0.1;0.2;0.3;0.4;0.5}. Note that © = 0.1 indicates a strong cluster
structure as 90 % of the neighbours of each vertex v are in the same cluster c¢,, while
in graphs with p = 0.5 half of the neighbours of each vertex are in other clusters
than v. A minimal and a maximal value for the cluster sizes can also be selected. The
software to construct these benchmarks is explained in a read-me file provided by
the authors, in which the cluster sizes are chosen to be in the interval [20, 50], so we
also used these values. In order to better analyze the results found by our method, we
did not only compare our findings with the built-in community structures given by
Lancichinetti et al. (2008), but also implemented the spectral approach proposed by
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Table 1 Results on benchmark graphs by Lancichinetti et al. (2008) with 100 vertices

Benchmark graphs Spectral approach Shortest path approach

n kav 2 m Q Bench (gBench Q Spec (gSpec Rand Q SP | (gSP | Rand
100 10 0.1 503 0.7618 8 0.7618 8 1 0.7618 8 1

100 10 0.2 494 0.6610 8 0.6610 8 1 0.6610 8 1

100 10 03 488 0.5871 9 0.5871 9 1 0.5871 9 1

100 10 04 488 0.4997 11 0.4997 11 1 0.4976 10 0.9836

100 10 0.5 495 0.3977 11 0.3871 8 0.9453  0.3899 10 0.9675

Table 2 Results on benchmark graphs by Lancichinetti et al. (2008) with 500 vertices

Benchmark graphs Spectral approach Shortest path approach
n kav 2 m QBench CgBench QSpec CgSpec Rand QSP CgSP Rand
500 15 0.1 3948 0.8203 14 0.8203 14 1 0.8203 14 1

500 15 0.2 3,889 0.7247 17 0.7247 17 1 0.7247 17 1

500 15 03 3,855 0.6320 17 0.6320 17 1 0.6320 17 1

500 15 04 3918 0.5330 16 0.5207 17 0.9960 0.5330 16 1
500 15 0.5 3,853 04262 15 0.4037 12 09563 04229 14 09921
500 20 0.1 4,663 0.8187 15 0.8187 15 1 0.8187 15 1

500 20 0.2 5,041 0.7262 16 0.7262 16 1 0.7262 16 1
500 20 0.3 4801 0.6167 13 0.6167 13 1 0.6167 13 1
500 20 04 5,065 0.5238 14 0.5238 14 1 0.5238 14 1
500 20 0.5 4906 04202 13 0.4202 13 1 04170 12 09913

Newman (2006) to see which results a known algorithm obtains on these graphs. Of
course, comparisons to other modularity optimizing techniques could be performed.
We selected spectral clustering because of the recent overview of Nascimento and
de Carvalho (2010).

In the Tables 1-3 we present a comparison between the modularity value Q gencn
of the built-in community structures @gencn to the modularity values Qsgpe of
solutions €sp.. found by our implementation of Newmans spectral method and to
Qsp of clusterings Gsp constructed by our own SP (Shortest Path) approach. With
|€’| as cardinality of a clustering ¢, the numbers |€gench|, |Espec|, and |€sp| of the
clusters of the three solutions are given along with the Rand indices (see, e.g., Hubert
and Arabie 1985) comparing the clusterings of the spectral procedure and of our
method with the benchmark solution.

From the 25 (n, ka4, 1, m) benchmark graphs in the Tables 1-3 in three cases
((100, 10, 0.4, 488), (500, 20, 0.5, 4,906), and (1,000, 20, 0.4, 9,731)) the spectral
approach performed slightly better while in seven cases ((100, 10, 0.5, 495), (500,
15, 0.4, 3,918), (500, 15, 0.5, 3,853), (1,000, 15, 0.3, 7,609), (1,000, 15, 0.4, 7,631),
(1,000, 15, 0.5, 7,571), and (1,000, 20, 0.5, 9,581)) our shortest path approach was
in front. In the other 15 cases both approaches showed identical outcomes. These are
convincing results that the enrichment of the adjacency information by shortest path
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Table 3 Results on benchmark graphs by Lancichinetti et al. (2008) with 1,000 vertices

Benchmark graphs Spectral approach Shortest path approach
n kav 2 m Q Bench (gBench Q Spec CgSpec Rand Q SP (gSP Rand
1,000 15 0.1 7,930 0.8594 29 0.8594 29 1 0.8594 29 1
1,000 15 0.2 7,858 0.7624 31 0.7624 31 1 0.7624 31 1

1,000 15 03 7,609 0.6617 30 0.6516 30 0.9969 0.6617 30 1
1,000 15 04 7,631 0.5615 29 0.5522 28 0.9965 0.5583 25 0.9901
1,000 15 05 7,571 0.4639 30 0.4293 16 0.9396 0.4555 21  0.9755

1,000 20 0.1 9834 08585 30 0.8585 30 1 0.8585 30 1
1,000 20 0.2 10,017 0.7582 29 0.7582 29 1 0.7582 29 1
1,000 20 03 9,765 0.6622 30 0.6622 30 1 06622 30 1
1,000 20 04 9,731 0.5659 31 0.5659 31 1 0.5596 25  0.9868

1,000 20 0.5 9,581 0.4633 30 0.4581 24 0.9875 0.4609 23  0.9880

lengths and the application of standard cluster analysis leads to a useful alternative
to known community structure detection techniques.

5 Conclusion

Against the background that finding a partition of a graph’s vertex set with
maximal modularity is a NP-complete problem, we proposed the application of
standard cluster analysis methods developed for dissimilarity data to the problem
of graph clustering. As dissimilarities between pairs of objects, in our case vertices,
are needed, we transformed the adjacency matrix into a matrix of shortest path
lengths between all vertex pairs of the graph. From all clusterings of the hierarchy
that was computed by a standard agglomerative cluster procedure we chose the
one with highest modularity as starting solution for an exchange algorithm. On
several benchmark graphs we obtained promising results showing that our approach
compares favorably with findings from the literature. A next challenge is to transfer
the ideas presented in this paper to directed graphs.

References

Agarwal, G., & Kempe, D. (2008). Modularity-maximizing graph communities via mathematical
programming. European Physical Journal B, 66, 409-418.

Arenas, A., Duch, J., Fernandez, A., & Gomez, S. (2007). Size reduction of complex networks
preserving modularity. New Journal of Physics, 9, 176.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of
community hierarchies in large networks. Journal of Statistical Mechanics, 10, P10008.

Brandes, U., & Erlebach, T. (Eds.). (2005). Network analysis: methodological foundations. In
Lecture notes in computer science (Vol. 3418). Berlin/Heidelberg: Springer.

www.it-ebooks.info


http://www.it-ebooks.info/

86 W. Gaul and R. Klages

Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2007).
On finding graph clusterings with maximum modularity. In Lecture notes in computer science
(Vol. 4769, pp. 121-132). Berlin/Heidelberg: Springer.

Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008).
On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2),
172-188.

Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large
networks. Physical Review E, 70, 066111.

Djidjev, H. N. (2008). A scalable multilevel algorithm for graph clustering and commu-
nity structure detection. In Lecture notes in computer science (Vol. 4936, pp. 117-128).
Berlin/Heidelberg: Springer.

Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal
optimization. Physical Review E, 72, 027104.

Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345-345.

Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of
the National Academy of Sciences, 104(1), 36-41.

Good, B. H., de Montjoye, Y.-A., & Clauset, A. (2010). The performance of modularity
maximization in practical contexts. Physical Review E, 81, 046106.

Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193-218.

Kim, Y., Son, S.-W., & Jeong, H. (2010). LinkRank: finding communities in directed networks.
Physical Review E, 81, 016103.

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community
detection algorithms. Physical Review E, 78, 046110.

Leicht, E. A., & Newman, M. E. (2008). Community structure in directed networks. Physical
Review Letters, 100, 118703.

Li, Z., Zhang, S., Wang, R.-S., Zhang, X.-S., & Chen, L. (2008). Quantitative function for
community detection. Physical Review E, 77, 036109.

Ma, X., Gao, L., Yong, X., & Fu, L. (2010). Semi-supervised clustering algorithm for community
structure detection in complex networks. Physica A, 389, 187-197.

Mann, C. E, Matula, D. W., & Olinick, E. V. (2008). The use of sparsest cuts to reveal the
hierarchical community structure of social networks. Social Networks, 30, 223-234.

Nascimento, M. C., & de Carvalho, A. C. (2010). Spectral methods for graph clustering — a survey.
European Journal of Operational Research, 211(2), 221-231.

Newman, M. E. (2004a). Fast algorithm for detecting community structure in networks. Physical
Review E, 69, 066133.

Newman, M. E. (2004b). Analysis of weighted networks. Physical Review E, 70, 056131.

Newman, M. E. (2006). Finding community structure in networks using the eigenvectors of
matrices. Physical Review E, 74, 036104.

Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks.
Physical Review E, 69, 026113.

Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identi-
fying communities in networks. Proceedings of the National Academy of Sciences, 101(9),
2658-2663.

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105, 1118-1123.

Schuetz, P., & Caflisch, A. (2008). Efficient modularity optimization by multistep greedy algorithm
and vertex mover refinement. Physical Review E, 77, 046112.

Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM, 9(1), 11-12.

Xiang, J., Hu, K., & Tang, Y. (2008). A class of improved algorithms for detecting communities in
complex networks. Physica A, 387, 3327-3334.

Zhu, Z., Wang, C., Ma, L., Pan, Y., & Ding, Z. (2008). Scalable community discovery of large
networks. In Proceedings of the 2008 ninth international conference on web-age information
management, Zhangjiajie, China, pp. 381-388.

Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal
of Anthropological Research, 33(4), 452-473.

www.it-ebooks.info


http://www.it-ebooks.info/

Mixture Model Clustering with Covariates
Using Adjusted Three-Step Approaches

Dereje W. Gudicha and Jeroen K. Vermunt

Abstract When using mixture models, researchers may investigate the associations
between cluster membership and covariates by introducing these variables in a
(logistic) regression model for the prior class membership probabilities. However,
a very popular alternative among applied researchers is a three-step approach in
which after estimating the mixture model (step 1) and assigning subjects to clusters
(step 2), the cluster assignments are regressed on covariates (step 3). For mixture
models for categorical responses, (Bolck et al., Political Anal 12:3-27, 2004) and
(Vermunt, Political Anal 18:450-469, 2010) showed this approach may severely
downward bias covariate effects, and moreover showed how to adjust for this bias.
This paper generalizes their corrections methods to be applicable also with mixture
models for continuous responses, where the main complicating factor is that a
complex multidimensional integral needs to be solved to obtain the classification
errors needed for the corrections. We propose approximating this integral by a
summation over the empirical distribution of the response variables. The simulation
study showed that the approaches work well, except for the combination of very
badly separated components and a small sample size.

1 Introduction

Most applied researchers using mixture models not only aim at finding a meaningful
set of clusters, but also wish to investigate which factors are associated with the
cluster membership of subjects. This profiling of clusters (or latent classes) as a
function of external variables (covariates) can either be achieved using a one-step
approach or a three-step approach (Bolck et al. 2004). In the one-step approach,
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the mixture model is expanded by including the relevant covariates in a regression
model for the prior class membership probabilities (Bandeen-Roche et al. 1997;
Dayton and Macready 1988). The parameters defining the mixture components —
the cluster specific means and (co)variances — and the covariate effects on the cluster
membership are estimated simultaneously. Alternatively, in the much more popular
three-step approach, the analysis is done in a stepwise manner. First, a standard mix-
ture model clustering is performed without covariates; second, the class membership
is predicted, typically using the Bayes modal rule; third, the association between
external variables and the predicted class membership is assessed, for example, via
a logistic regression analysis. Bolck et al. (2004) and Vermunt (2010) showed for
latent class models with categorical responses that this three-step approach may
yield severely downward biased estimates for the covariate effects. These authors
also showed how to adjust for this bias in step 3 by using information on the
classification errors introduced in step 2. Bolck et al. proposed a weighted analysis
with the inverse of the classification errors as weights whereas Vermunt proposed a
maximum likelihood method that takes the classification errors into account.

While the use of mixture models with continuous response variables is very
common, it is not immediately clear how the adjusted three-step methods should
be implemented when the response variables used in the mixture model are not
categorical but continuous. The aim of the current paper is to come up with such a
generalization. The main complicating factor is that the computation of the classi-
fication error matrix needed in step 3 requires solving a complex multidimensional
integral. We propose using Monte Carlo integration for this purpose, which if the
model holds can be replaced by a summation over the observed data points. The
performance of this approach is investigated in a simulation study.

The remainder of this paper is organized as follows. First, the mixture model of
normal distributions is introduced and the estimation of the class memberships and
the quantification of the classification errors is discussed. Subsequently, the relevant
one- and three-step approaches for investigating the association between external
variables and class membership are presented. These approaches are evaluated in a
simulation study. The paper ends with conclusions and practical recommendations.

2 Mixture Modeling and Classification

2.1 Mixture Models

The first step of the three-step approach involves estimating the parameters of a
mixture model without covariates (i.e., the class proportions and the cluster specific
means and (co)variances). Suppose that we have information on p response vari-
ables and that the interest lies in clustering of n observations into k exhaustive and
mutually exclusive homogeneous subgroups (latent classes). Let 7' be an unobserv-
able random variable containing the labels of the k subpopulations with realizations
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t=1,2,3,...,kandlet y;1, yi», ..., yip be the p-dimensional continuous random
variable of interest with joint probability density function f(y;,6) on R¥ for
i =1,2,3,...n, where 0 represents the vector of unknown parameters. The joint
density of y; can be defined as:

k
[0 =Y 7 f(3i.60), e

t=1

where 7w, = P(T =1t), with ZLI n; =1 and 7r; >0V ¢, and where 0; denote the
vector of unknown parameters for cluster 7. Each of the component density functions
are assumed to come from a multivariate normal distribution parameterized by mean
vector u, and variance covariance matrix X;; thatis, 6, = (s, X;). The unknown
parameters are typically estimated using maximum likelihood, using an algorithm
for finding the maximum of the likelihood such as the Expectation-Maximization
algorithm (McLachlan and Peel 2000). Various software packages implementing
mixture of normals are currently available (e.g., Latent GOLD; Vermunt and
Magidson 2005).

2.2 C(lassification Rules and Classification Errors

Once the cluster-specific parameters of the mixture distribution are estimated,
the second step in the three-step approach involve allocating each subject to one
of the k classes. We will denote the predicted class membership by W, with

realizations = 1,2, 3, ..., k. The prediction for observation i is based on the cluster
membership probabilities which can be obtained using Bayes’ theorem:
7 f (i, 0r)
P(T =tly;,0) = ——. ()
l f(i,0)

Let wi; = P(W = s|y;, 0) be the likelihood of being assigned to class s given the
assignment rule that is used. The most common rule is modal assignment, in which
case wj, is a hard indicator; that is,

| 1if P(T =s|y:,0) > P(T =t|y;,0)Vs #1t
"] 0 otherwise

3

is

An alternative rule is proportional assignment, in which case w;; = P(T = s]|y;, 0)
(Vermunt 2010).

Except for the situation in which P(T = t|y;, 8) is either O or 1 for all i, there
will be misclassifications. As discussed in more detail below, the total amount of
classification errors can be quantified as the probability that a respondent belonging
to cluster ¢ is assigned to cluster s, which can be expressed as follows:
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PW =sT =
POW =5IT =1) = (P(Tszt) & )

The numerator of Eq. (4) is the joint marginal probability of W and T', which can
be expressed in terms of the mixture model density. This yields:

PW =sT =1|y.0)f(y.0)dy

P(W:s|T:t):/

P(T =1)
_ / P(T =1y, 0)P(W =s|y.0) f(y.0)dy )
N P(T =1) '

The last step follows from the fact that W is independent of T conditional on y.

A complication factor in the computation of P(W =s|T =t) is that the expres-
sion in Eq.(5) contain an intractable higher-dimensional integral. We propose
solving this integral using Monte Carlo integration, which implies sampling say
m units from f(y, #) and computing the average of this sample. It should, however,
be noted that if the mixture model holds, the sample used to solve integral can also
be the n data points in the sample used to estimate the mixture model. This implies
that P(W = s|T = t) is approximated as follows:

1 Zn: P(T =1y, 0) P(W = s5|yi.0)

POV =sT =0~ - P = . (6)

i=1

3 Relationship Between Class Membership and Covariates

3.1 One-Step Full Information ML Approach

Let z; denote the vector with covariate values for subject i . In the one-step approach,
inclusion of covariates involves expanding the standard mixture model defined in
Eq. (1) as follows (Vermunt and Magidson 2005; Dayton and Macready 1988):

k
fi.0lz) =Y P(T = tlz) f (i, 6). (7)
t=1

As can be seen, the prior class membership probabilities are now a function of
covariates. These probabilities are typically modelled using a logistic regression
equation; that is,

exp()/ot + ZqQ=1 Vthiq)
k .
ZWl:l eXp(VOm + ZqQ=1 )/qmziq)

P(T =t|z) =
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The parameters of the mixture distribution and the covariate effects on the latent
cluster membership can be estimated simultaneously using maximum likelihood
estimation.

3.2 Standard Three-Step Approach

An alternative is to use a three-step procedure. After estimating a standard mixture
model and assigning individuals to classes, the relationship between the predicted
class (W) and external variables is investigated using a standard multinomial logistic
regression model:

eXp(yOS + ZqQ=1 yqsziq)

PW =slz) = : ®)
Z;ﬁ:l eXp(VOm + ZqQ=1 quziq)
The y parameters are estimated by maximizing the log-likelihood function:
n k
10g Lugps = »_ > _wislog P(W = slz;). ©)

i=1s=1

where in the case of modal assignment w;, is the hard indicator defined in Eq. (3).

3.3 Two Adjusted Three-Step Approaches

The standard three-step approach defines a model for the relationship between
external variables and the predicted cluster membership W instead of the true cluster
membership 7', which results in downward biased estimates for the covariate effects.
However, Bolck et al. (2004) and Vermunt (2010) showed how to adjust for this bias
by making use of the known relationship between P(W = s|z;) and P(T = t|z).

More precisely, the adjustment methods described below are based on the
following simple relationship:

k
P(W=s|z,~)=ZP(T=1|Zi)P(W=S|T:t)’ (10)

t=1

where P(W = s|T =t) was defined in Eqs. (4)—(6). It can be seen that P(W =s|z;)
is a weighted sum of P(T =t|z;) where the P(W = s|T =t) serve as weights.
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The logic of the correction method proposed by Bolck et al. (2004) — which
we refer to as the BCH approach — is that if (10) holds, P(T = t|z;) can also be
expressed as a weighted sum of P(W = s|z;); that is,

k
P(T =tlz) =)  P(W = s|z)dy, (11)

s=1

where d;; is an element of the inverse of the k-by-k matrix with elements
P(W =s|T =t). Bolck et al. (2004) proposed re-weighting the data on W (the
class assignment weights w;;) by d; to obtain approximate data on 7. As shown by
Vermunt (2010), the BCH approach can be implemented by creating an expanded
data matrix containing k records per individual. The weight associated with the ¢th
record equals w} = Zf=1 wisdg. A logistic regression model for 7' can now be
estimated by maximizing the following weighted log-likelihood function:

n k
log Lgcn = Y Y wilog P(T =1|z). (12)

i=11t=1

Vermunt (2010) proposed using a sandwich variance estimator to take into account
the weighting and the multiple observations per individual.

Vermunt (2010) proposed another simpler adjusted three-step method. It is based
on the observation that Eq. (10) is in fact the equation of a latent class model with
a single response variable W and with covariates. Since P(W = s|T = t) is
estimated step 2, it can be treated as known in step 3. Because this three-step
approach involves maximizing a standard log-likelihood function in step 3, we refer
to it as the ML approach. More specifically, the parameters for the effects of the
covariates on cluster membership can be estimated by maximizing the following
log-likelihood function:

n k k
log Ly = » Y wilogy  P(T =t|z)P(W = s|T =1) (13)

i=1s=1 t=1

4 Simulation Study

4.1 Simulation Design

A simulation study was conducted to evaluate the performance of the various
approaches for dealing with covariates in mixture models for continuous responses;
i.e., the one-step ML, standard three-step, three-step BCH, and three-step ML
method. Data sets were generated from a three-class mixture model for six
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Table 1 Results averaged

over the nine combinations of Model Estimate SE SD MSE
sanlp]e size and sepa_rati()n Standard 1.013 0.079 0.096 0.852
between components for a y ML correction 1.962 0.210 0.223 0.231
parameter with a true One step 2.043 0.187 0.194 0.200
value of 2 BCH 1.982 0551 0390  0.393

continuous response variables and three covariates. The six responses were assumed
to come from univariate normal distributions within classes. The residual variance
was assumed to be equal across clusters and was used to manipulate the level of sep-
aration between clusters. The two independent factors that were manipulated were
the separation between components, quantified using an entropy based R? measure,
with low (R? = 0.43), medium (R? = 0.66) and high (R? = 0.86) separation, and
sample size (n =500; n = 1,000; n = 10,000). We looked at the averages of the
covariate effects across replications, their standard deviations across replications,
the averages of the standard errors of the estimates, and the mean square errors of
the estimates. The Latent GOLD program Vermunt and Magidson 2005 was used
in all stages of the simulation study such as generating data, estimating parameters
in the various modeling approaches, getting classifications, and preparing expanded
data sets. For this purpose, the program was called in a loop from a batch file.

4.2 Results

Table 1 presents the results averaged over all nine conditions for one of the covariate
effect having a true value of 2. It can be seen that the standard three-step approach
severely underestimates the parameter of interest, whereas both the ML and BCH
correction method reduce the bias considerably. The correction methods drop the
percentage of bias from 50 % in the standard three-step approach to less than 2 %,
which is similar to the bias of the one-step approach. The mean square error (MSE)
of the estimates indicates that the ML correction method is almost as accurate as the
one step method, whereas the BCH method is much less stable.

The performances of the various methods across the different simulation condi-
tions were also investigated. The results reveal that except for the small sample size
(n=500) and low separation (entropy = 0.43) combination, the BCH correction is
found to have less bias than the ML correction and the one-step method. Consistent
with the results of Table 1, the ML correction method is almost as efficient as
the one-step method especially for the better separation and larger sample size
conditions. In sum, the BCH method substantially reduces bias but is less efficient
than the one-step and the ML correction method, while the ML correction provides
estimates of a quality similar to the one-step approach for the more favorable
conditions (larger sample sizes and higher separation levels).
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5 Conclusions

This paper showed how to generalize the correction method for three-step latent
class analysis with categorical response variables proposed by Bolck et al. (2004)
and Vermunt (2010) to be applicable also in mixture models with continuous
response variables. In agreement with theory on Monte Carlo integration, it was
proposed to approximate the integral over the population density for the response
variables by a summation over the observations in the data set at hand. What
is clearly understood from the simulation results is that both the BCH and
ML correction method performs quite well, except when the separation between
components is extremely low and the sample size is small. This is in agreement
with simulation results by Vermunt (2010) for mixture models with categorical
responses. The practical advise to applied research is that one should not to use
an uncorrected three-step method, but instead use one of the adjusted method. Only
with extremely low separation levels combined with small samples, the one-step
approach is clearly the best choice.

One issue requires further research, that is, finding an explanation for the
instability of the BCH method and its overestimation of the SEs when used under
the least favorable conditions. Further extensions of the correction methods would
include situations where other categorical or continuous latent variables are used to
explain the class membership, or more in general to any situation in which results
from a mixture model clustering are used in subsequent analyses. These kinds of
extension seems to be more straightforward with the ML method than with the BCH
method.
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Efficient Spatial Segmentation of Hyper-spectral
3D Volume Data
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Abstract Segmentation of noisy hyper-spectral imaging data using clustering
requires special algorithms. Such algorithms should consider spatial relations
between the pixels, since neighbor pixels should usually be clustered into one group.
However, in case of large spectral dimension (p), cluster algorithms suffer from
the curse of dimensionality and have high memory requirements as well as long
run-times.

We propose to embed pixels from a window of w X w pixels to a feature space
of dimension pw?. The effect of implicit denoising due to the window is controlled
by weights depending on the spatial distance. We propose either using Gaussian
weights or data-adaptive weights based on the similarity of pixels. Finally, any
vectorial clustering algorithm, like k-means, can be applied in this feature space.
Then, we use the FastMap algorithm for dimensionality reduction.

The proposed algorithm is evaluated on a large simulated imaging mass spec-
trometry dataset.
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1 Introduction

Clustering is an excellent tool to divide a dataset into distinct groups. Especially
if no prior knowledge of the underlying structure is given, a representative can be
found for each group. Clustering of image pixels is a method of image segmentation,
where spatial smoothness of the segmentation map is often desired.

Image segmentation is used for mining of matrix assisted laser desorp-
tion/ionisation (MALDI) imaging mass spectrometry (IMS) datasets, to highlight
spatial regions of similar chemical composition (e.g. a tumor region). Given a
thin flat sample, like a biological tissue slice, IMS measures high-dimensional mass
spectra at their spatial points, providing a hyper-spectral image. Each channel in this
hyper-spectral image represents numbers of particles of the corresponding mass-to-
charge ratio (mm/z). With a mass spectrum measured at each pixel, IMS produces
large datasets which are considerable difficult to process with most clustering
algorithms: the number of spectra (pixels) is around 10* to 10° (e.g. 200 x 100
pixels), the length of each spectrum is around 10,000. Figure 1 shows the intensity
plot of a typical mass spectrum. For processing such a large dataset, one should
use suitable dimensionality reduction and incorporate denoising to suppress the
noise. Several strategies have been proposed for the spatial segmentation of an
IMS dataset. Popular choices are feature extraction with principal components
analysis (PCA) and then either hierarchical clustering (Deininger et al. 2008) or
clustering with k-means (McCombie et al. 2005) of features obtained by PCA.
However, clustering can be inefficient due to the number of spectra or returns
implausible results, because spatial relations are neglected. Recently, Alexandrov
et al. (2010) proposed denoising by spatial smoothing of each channel prior to
clustering.

We propose a noise-suppressing efficient segmentation based on a spatially aware
embedding approach. This merges denoising and dimensionality reduction into one
step. We define our embedding function @ based on a window of w x w pixels and
weights {o;; } used in @. The embedding function and the weights are used to project
n spectra of length p into a high dimensional feature space of dimension pw?. The
points in the feature space can be processed with standard clustering algorithms.
Furthermore, we show how to apply the efficient dimensionality reduction algorithm
FastMap (Faloutsos and Lin 1995) to speed up the procedure and to reduce
the memory requirements. We will extend the basic principle of our mapping
strategy to make the procedure edge-preserving. The concept of embedding the
spatial information in the data was reported earlier (Alexandrov and Kobarg 2011),
where we applied it for segmentation of 2D MALDI IMS data. Here, we extend
the proposed procedure to 3D and apply it to a simulated 3D MALDI IMS
dataset.
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Fig. 1 Measured mass spectrum after compensating baseline effect

2 Methods

Throughout this paper we will denote s; = s(x;, y;) € R” as an intensity vector of
a mass spectrum measured at spatial points (x;, y;) € Z?> fori = 1,...,n spectra.
Later we will extend the spatial point to (x;, y;,z;) € Z>.

Probably, the most apparent way to embed the spatial relations between pixels
into a clustering algorithm is to use a distance-based clustering. With distance-based
clustering it is easy to replace the default distance function, such as the Euclidean
distance d(s1, s2) = ||s1 — $2||2 between the intensity vectors, by one working with
a filter window of width w = 2r 4+ 1. A distance function, that uses information
from neighboring spectra in small window of radius r then looks like

drfopy(s1,9° = Y aylls@i+iy+)—s@+in+)l, O

—r<i,j<r

where {a;; } are factors weighting the influence of pixels from the neighborhood. It
is natural to choose weights {o;; } which decrease with increasing i 2+ j 2. For pixels
distant from the neighborhood center the weights will be small. In a neighborhood
of radius r, we define the Gaussian weights as a;; = exp ((—i* — j?)/(26?)) , with
o = (2r + 1)/4 selected according to the two-sigma rule.

Unfortunately, this approach is both time and memory-consuming for datasets
with many spectra, since it requires calculating a distance matrix of size (n> —n)/2
and storage space for each of those values. Therefore, we propose to map the spectra
of length p into a Euclidean feature space .% using a mapping @: R” — .%. The
feature space is selected such that within .% the standard Euclidean distance

[@(s1) — P(s2) |2 = dy a3 (51, 52) (2)

equals the desired distance (1). This can be achieved by using the mapping

B(s) = P(s(x.y) = [Vas = Tk —ry—r)...,
Voo s () STy 0]t G
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which describes the concatenation of spectras(x+i, y+j),i, j = —r,...,r,inthe
neighborhood of spectrum s(x, y) to one single vector. Each neighboring spectrum
is multiplied by a square root of the corresponding weight. Naturally, the feature
space .Z is R”" for such @. If n > p and r is small, then storing the mapped data
of size n x pw? is significantly cheaper than (n? — n)/2 pairwise distances.

In the case of high dimensional data, it is useful to reduce the number of
dimensions and preserve some of its properties i.e. the distance between each
spectrum. Distance preserving projection can be achieved with multidimensional
scaling (MDS, Hastie et al. 2009). However, the original distance matrix D of size
n x n is needed and an eigenvalue decomposition has to be computed. The FastMap
algorithm (Faloutsos and Lin 1995) is a related method better suited in this context
as the computational cost is much smaller. Compared to MDS, FastMap does not
need the full distance matrix D, but only a small subset, so that implementation
wise it can work on the dataset itself. This allows FastMap to be much more memory
preserving than MDS. Instead of O (n?) operations for computing the entire distance
matrix in advance only O(3n) computations per iteration are needed. The iterative
projection of the high-dimensional data into a lower dimensional hyperspace returns
pseudo-Euclidean vectors. The distances between these new vectors are similar to
the inter-distances originally present in the dataset.

The basic idea of FastMap is to use the two p dimensional spectra s, and s
with greatest inter-distance d,, = d(s,, sp) as pivot elements to form a new axis.
Computing the scale

d} —d? +d?
=L bl ab 25:,;) @b i=1,...m, )
on this new axis exploits only the distances from the two rows {d(s,,s;)} and
{d(s», si)}. These rows and the inter-distance d, 5 are the only parts of the distance
matrix needed in Eq. (4), explaining why the dataset itself is sufficient to preserve
the distances. By design of the algorithm, these two rows are even the same ones
needed to find the pivot elements s, and s;, and will be computed on-the-fly.

Before proceeding to a new iteration, the spectra’s projections s; into a p — 1
dimensional hyperspace .7’ orthogonal to the s,-sp-axis are calculated. In this new
iteration pairwise distances d;; = d(5;, 5;) between the projected spectra §;, §; in
2 will be needed. However, as s,-55-axis is orthogonal to .7#” Pythagoras’ theorem
is true and df ;= df ;— (= zi)? holds. Being dependent only on the scales
for each spectrum, this again makes full computation unnecessary. After finishing ¢
iterations of FastMap, the scales z}, v = 1, ..., ¢, correspond to the new coordinates
for all mapped spectra §; = (z,...,z),i = 1,...,n.

Using FastMap’s ability to create a vectorial representation of data while
preserving specified distances between the objects can be exploited in another
setting. Tomasi and Manduchi (1998) proposed bilateral filtering with data adaptive
weights for edge-preserving greyscale image denoising. Being applied in our
context, the weights &;; (x, ¥) = «;; -exp (—%A‘zﬂs(x +i,y+j)—s(x, y)||2)n0t
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only respect the spatial relation, but adjust for differences between spectra, too. The
parameter A controls the strength of smoothing. Due to the usage of the norm, the
effect of A depends on the number of image channels p. Usually p varies from
experiment to experiment, which is not the case for grey or RGB images considered
in bilateral filtering. Therefore, we propose to choose A in each neighborhood such
that min; ; @; = e’ instead of finding a global parameter for each experiment. If
the weights {&;; } are chosen to become structure adaptive, the weights are no longer
constant for two different neighborhoods. However, without constant weights, the
mapping function (3) for embedding spatial information directly into the data does
not work. Consequently, there is no set of vectors that can be clustered directly.
However, FastMap can be used to find vectors which possess pairwise distances
(1) with adaptive weights and still allows to employ the concept of clustering in a
higher, structure aware dimensional space.

All of the employed algorithms scale linearly to the number of present image
pixels. For datasets with three spatial dimensions this is extremely important, as with
each layer the total number of pixels increases. Our proposed algorithm (Alexandrov
and Kobarg 2011) was designed to embed the spatial information directly into
the data. Furthermore, the calculation of the weights and the mapping can be
extended to allow the mapping of three dimensional hyper-spectral data. Hence,
the segmentation problem is separated from the number of spatial dimensions.

3 Results

The proposed method was already applied to 2D real-life imaging mass spectrom-
etry (IMS) data. Here, we will demonstrate the performance of our method with a
simulated 3D IMS dataset. For a detailed description of biological application and
IMS measurement, see Alexandrov et al. (2010). Next step will be to solve several
technical aspects of real-life 3D IMS data, which we will discuss at the end of this

paper.
We simulated a dataset with n = 45 x 45 x 15 spectra located at three spatial
dimensions. The spectra belong to k = 5 classes which form simple geometric

shapes, see Fig.2. These objects are background (1), sticks (2), upper rectangle
(3), ball (4), pyramid (5a), and lower rectangle (5b), with the last two belonging to
the same class. Based on the true class assigned to the voxel, each spectrum was
simulated independently of other voxels. For each class a template spectrum with
d = 6,972 channels was selected from a real-life dataset. The dataset used is a
rat kidney, which is well known for its simplicity. The selection of the template
spectra was based on an initial segmentation of the unsmoothed real-life dataset
into five classes. We selected those five spectra as templates that were closest to the
computed class means. The abundances at p = 145 peak positions found in the
template spectra were used within this class. As in the real world, the peak positions
vary by small differences in atom weight which add up to mass offset errors. This
effect is simulated by using the physical model of particles traversing a flight tube
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Fig. 3 Two selected channel images, along with histogram of intensities
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(Coombes et al. 2005). MALDI spectra have the peaks superimposed to a noise
level that forms a baseline. Such a baseline can be approximated by the sum of two
exponential functions which in turn are characterized by four parameters in total. For
the baselines found in the five template spectra estimation of their parameters is done
according to the method described by House et al. (2011). These parameters are
taken as estimates of the true parameters for baselines in the dataset. In the last step
the function is used as the estimate of the general noise level in the m/z channels
of the spectrum. The effect of noise can be seen in Fig. 3, where two channels are
displayed.

The simulated data was treated like any raw IMS data in the way that standard
preprocessing routines were applied before segmentation was computed. Total ion
count normalization was applied to the data—such that each intensity vector has the
same area under its curve—followed by baseline estimation and their subtraction
(Alexandrov and Kobarg 2011). Furthermore, the number of image channels is
reduced to those that contain peaks in the mass spectra (Alexandrov et al. 2010).
Standard k-means was then applied directly, with constant weights and adaptive
weights, each with a neighborhood of width w = 5.

As can be seen in Fig.4, the objects cannot be discriminated if the dataset is
clustered directly and is rather split within groups. This prevents the upper rectangle
class to be detected even after increasing the number of clusters. While in the case of
k = 6 three structures are well separated from background, the background itself is
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Fig. 4 k-means clustering, without smoothing vs. smoothing (w = 5)

Table 1 Balanced accuracy for clustering results against ground truth
(in percent)

Classes Unsmoothed Smoothed Bilateral
k=4 72.32 98.72 99.38
k=5 56.71 96.30 89.30
k=6 67.40 75.52 76.24

further divided into three groups, none of them related to the rectangle. The class of
stick pixels is lost within the noise for k = 5 even though it can be clearly identified
withk =4ork =6.

Once the approach with spatial information embedding is employed, the segmen-
tation map is not affected by noise. In the case of k = 4, the isolated stick structures
cannot be found by k-means, because the number of classes is too restrictive. As
soon as k > 5, the pixels belonging to this class form their own segment. Also
for k > 5 an artifact starts to appear, namely that the pixels which are located
next to two different classes are all put into the same group. Bilateral filtering
seems to work perfect in the case of k = 4 and z = 6, as there appear no
misclassifications, however z = 8 shows small errors on the edge of both rectangle
classes. Furthermore, for k = 5 classes the weights are too adaptive to the data
and the segmentation map is again affected by noise and an even stronger boundary
effect.

As the true classes are known, the comparison of the clustering results is possible
with standard classification measures based on confusion matrices (Hastie et al.
2009). As each class has different number of members we use the balanced accuracy
ba = %(tp/(tp + fn) +tn/(tn + fp)), which is the mean of sensitivity and
specificity. As can be seen in Table 1, both types of smoothing outperform direct
clustering. The visual deficits of bilateral with k = 5 are also visible in the score.
Even with k& = 6, i.e. more classes than truly exist, they outperform direct clustering.
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During our processing we also recorded the run-times of the individual steps,
here we excluded data loading and preprocessing, as those steps are not affected
by our algorithm. The most computational effort lies in calculating the lower
dimensional representation of the data in the feature space. This step needs
approximately 2 min. Clustering itself of the low dimensional data is carried out in
under 2 s. If the reduction with FastMap was not be employed, k-means would have
to find the clustering of data with the initial pw? dimensional data. In this setting the
algorithm does not finish in under 15 min. However, this paper was aimed to prove
that our algorithm (Alexandrov and Kobarg 2011) can also be applied to IMS data
with three spatial dimensions, which will be the next step. Therefore, none of the
algorithms was optimized towards speed, but simply adapted for the third spatial
dimension.

4 Conclusion

In this paper we showed how to produce smooth 3D segmentation maps for a
noisy hyper-spectral image if spatial relations between pixels are exploited. In
comparison with a plain spectra clustering, our segmentation maps reveal more
spatial features and have higher accuracy with fewer misassignments as compared
with the gold standard. We successfully showed that the embedding of spatial
information into the dataset does not depend on the number of spatial dimensions.
The proposed procedures based on the FastMap dimensionality reduction have
linear computational complexity and linear memory requirements (both in the
number of spectra) and does not depend on the length of spectra. The use of
FastMap allows the integration of spatial and structural information, permitting data
adaptive weights. Additionally it avoids the need to store large data matrices and
it saves computation time during clustering, both by finding a low dimensional
representation of the data in advance.

Even though it has been shown that the segmentation results have high accuracy
compared against the underlying ground truth, several technical issues have to be
solved before the method can be applied to real-life 3D data, where the gold standard
is not given. In the current setting, the distance (1) assumes perfect alignment of all
pixels in a grid. This is usually not the case for real life datasets where each slice
of tissue has to be converted in a common world coordinate system of the unsliced
object. Such an interpolation might cause further, unwanted smoothing to the data.
Furthermore, selection of the smoothing level based on the window size becomes a
problem. While most parts of our algorithm scale linear in the number of inputs, the
window size grows cubic in a three dimensional setting. This implementation issue
has to be solved, before application to real-life data is feasible.
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Cluster Analysis Based on Pre-specified
Multiple Layer Structure

Akinori Okada and Satoru Yokoyama

Abstract Cluster analysis can be divided into two categories; hierarchical and non-
hierarchical cluster analyses. In the present study, a method of cluster analysis
which does not utilize hierarchical nor non-hierarchical procedures is introduced.
The present cluster analysis pre-specifies a structure having multiple layers, e.g.,
the species, the genus, the family, and the order. The highest layer or layer O
has one cluster which all objects belong to. The cluster at layer O has the pre-
specified number of clusters at the next lower layer or layer 1. Each cluster at
layer 1 has the pre-specified number of clusters at the next lower layer or layer 2,
and so on. The cluster analysis classifies the object into one of the clusters at all
layers simultaneously. While the cluster structure is hierarchical, the procedure
is not hierarchical which is different from that of the agglomerative or divisive
algorithms of the hierarchical cluster analysis. The algorithm tries to optimize the
fitness measure at all layers simultaneously. The cluster analysis is applied to the
data on whisky molts.

1 Introduction

There are two categories of cluster analysis; one is the hierarchical cluster analysis
and the other is the non-hierarchical cluster analysis. In the hierarchical cluster
analysis, two clusters are agglomerated into one cluster at each stage in the case
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Fig. 1 Cluster structure having multiple layers

of the agglomerative procedure, or one cluster is divided into two clusters at each
stage in the case of the divisive procedure. At each stage, the object is classified into
one of the clusters. In the non-hierarchical cluster analysis or the partitioning, the
object is classified into one of the clusters of pre-specified number. The algorithms
of both the hierarchical and the non-hierarchical cluster analyses allocate the object
to one of the clusters at each stage or at the pre-specified number of clusters. The
algorithm does not deal with more than one stage nor more than one pre-specified
number of clusters simultaneously.

The cluster analysis introduced in the present study pre-specifies a cluster
structure having layers (Okada and Yokoyama 2010). The highest layer or layer O
has one cluster which all objects belong to. The cluster at layer O consists of clusters
at the next lower layer or layer 1. The cluster at layer 1 consists of clusters at the
next lower layer or layer 2, ---, the cluster at layer n consists of clusters at layer
(n + 1), and so on. The cluster structure having multiple layers is similar to the
structure comprises the species, the genus, the family, and the order (Gordon 1999;
Mirkin 1996) as shown in Fig. 1.

While the cluster structure is hierarchical, the structure is not same as that derived
by the hierarchical cluster analysis (cf. Arabie and Hubert 1994) and its algorithm
is not hierarchical. The object is allocated to one of the clusters at each of all layers
simultaneously. This means that the object is classified into the hierarchical structure
consists of multiple layers, but the algorithm itself is not hierarchical as that of
the hierarchical cluster analysis. The purpose of the present study is to introduce
a cluster analysis method pre-specifying the cluster structure which has multiple
layers, and to apply the cluster analysis to the data on whisky molts.
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2 The Algorithm

The present cluster analysis deals with two-mode two-way data; such as object x
variable or subject x attribute data. The algorithm to fit the cluster structure to two-
mode two-way data is described below. The objective of the algorithm is to allocate
the object to one of the clusters at each layer of the cluster structure specified in
advance, where the sum of squared deviations within the cluster at all layers is
minimized, i.e. the sum of the within cluster sum of squared deviations from the
centroid of the cluster at all layers is minimized. Let the sum of the within cluster
sum of squared deviations from the centroid of the cluster at all layers be SSW;

N
SSW = ZSSWn, 1)

n=1

where SSWhr is the sum of the within cluster sum of squared deviations from the
centroid of the cluster at layer n, and N is the number of layers. SSWn is defined by

Mn
SSWn = Z SSWmn, (2)

m=1

where SSWmn is the sum of the within cluster sum of squared deviations from the
centroid of cluster m at layer n, and Mn is the number of clusters at layer n. SSWmn
is defined by
Jmn P
SSWmn =3 "> (xj1 — Euy)*. 3)

j=l1=1

where Jmn is the number of objects in cluster m at layer n, x j; is the value of object
J along variable ¢, P is the number of variables, and X;.,); is the mean value of
objects in cluster m at layer n along variable ¢.

The algorithm to minimize SSW of Eq. (1) is iterative, which comprises nine
steps. The algorithm below is described when the cluster structure has three layers;
layers 0, 1 and 2, which is the most simple case of the multiple layer cluster structure
(e.g., Fig.2).

e Step 1: Determine the initial center of each cluster at layer 1 by randomly
selecting an object.

* Step 2: Classify the object into the cluster at layer 1 whose center is nearest to
the object.

* Step 3: In each cluster at layer 1, determine the center of each cluster at layer 2
by randomly selecting an object in each cluster.

* Step 4: Classify the object into the cluster at layer 2 whose center (centroid) is
nearest to the object. In this step, the object can be classified into the cluster at
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Fig. 2 Cluster structure of the present study

Layer 0

Cluster B

layer 2 which belongs to the different cluster at layer 1 from the cluster the object
originally belonged to at layer 1.

* Step 5: Determine the centroid of objects in each cluster at layer 1.

* Step 6: Classify the object into the cluster at layer 1 whose centroid is nearest to
the object.

* Step 7: In each cluster at layer 1, determine the centroid of objects in each cluster
at layer 2.

* Step 8: Return to Step 4, and iterate Steps 4 through 7.

* Step 9: Stop the iteration of Steps 4 through 7 when the allocation of the object
to the cluster at all layers stabilized.

3 The Application

In this section, the present cluster analysis is applied to the data on whisky molts
shown in Wishart (2002).

3.1 The Data

The data consists of 35 whisky molts measured on 12 features describing the whisky
molt (body, sweetness, ---, and, floral) on a rating scale. The 35 whisky molts
consists of four types (types D, E, F, and G). They consist of 10 whisky molts of
type D, 9 whisky molts of type E, 10 whisky molts of type F, and 6 whisky molts
of type G. The data are two-mode two-way (whisky molt x feature), and are arrayed
in a 35 x 12 table. The 35 whisky molts are represented in the first and the seventh
columns, and their types are represented in the second and the eighth columns of
Table 1.
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Table 2 The correspondence

between clusters at layer 2 of Type

the present cluster analysis Layer2 D E F G

and the type of the whisky Al 0 9 0 0

molt A2 0 0 0 0
B1 0 0 0 6
B2 0 0 10 O

3.2 The Analysis and the Result

The analysis was done by pre-specifying the model which have one cluster at
layer O, two clusters at layer 1 (clusters A and B), and four clusters at layer 2 where
each cluster at layer 1 consists of two clusters at layer 2 (cluster A at layer 1 consists
of clusters Al and A2 at layer 2, and cluster B at layer 1 consists of clusters B1 and
B2 at layer 2). The pre-specified cluster structure is shown in Fig. 2.

The data were analyzed without any normalization. The resulting clusters at
layers 1 and 2 are shown in Table 1. The third and the ninth columns show the
cluster at layer 1, and the fourth and the 10th columns show the cluster at layer 2.
Table 1 also shows the result of the analysis by k-means cluster analysis (MacQueen
1967) at the 5th, the 6th, the 11th and the 12th columns which will be discussed later.

From Table 2 we can see that there is a perfect correspondence between four
clusters at layer 2 and the type of the whisky molt. At layer 2, cluster A1 corresponds
to type E, cluster A2 corresponds to type D, cluster B1 corresponds to type G, and
cluster B2 corresponds to type F. At layer 1 the correspondence is almost perfect;
cluster A corresponds to types D and E, and cluster B corresponds to types F and
G. The hierarchical relationships between clusters (A and B) at layer 1 and clusters
(Al, A2, B1, and B2) at layer 2 are coincide with the relationships among these
types suggested in Wishart (2002).

4 Discussion

A model of cluster analysis pre-specifying a cluster structure which has multiple
layers and an associated algorithm to fit the model were introduced. While the
algorithm of the cluster analysis is not hierarchical, the resulting tree diagram of
clusters is hierarchical. The application of the model to the data on whisky molts
was done using the model which has two clusters at layer 1, where each of them
consists of two clusters at layer 2.

The present cluster analysis can be regarded as one sort of the constrained clas-
sification (Everitt et al. 2011; Gordon 1996; Murtagh 1985), where the constraint is
given not on the contiguity among objects but on the tree diagram. The constraint
on the tree diagram seems different from those suggested in the past studies, but
assumes a priori hierarchical structure (Arabie and Hubert 1994). The present
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cluster analysis also can be regarded as an equivalence of the external analysis
of multidimensional scaling (Borg and Groenen 2005; Coombs 1964) in cluster
analysis, where the externally given cluster structure is utilized in allocating the
object to the cluster. In the case of multidimensional scaling, the external analysis
is done to facilitate the interpretation of the resulting configuration, for example
by imbedding the ideal point or the ideal vector, or to derive a configuration of
sources based on an externally given configuration of objects (the external analysis
of INDSCAL by Carroll and Chang 1970). In the present cluster analysis, the pre-
specified cluster structure can make it easy to interpret the resulting tree diagram.

The advantageous aspect of the present cluster analysis is that the cluster
structure having multiple layers seems easy to interpret, because layer 1 provides
the classification of objects at the most coarse classification, and the next lower
layer provides the next less coarse or finer classification of objects to the cluster at
layer 2 which is formed by dividing the cluster at layer 1, and so on. One possible
usage of it is to find the primary concern, e.g., brand primary or form primary, of
a market (Arabie and Hubert 1994) by assuming specific cluster structures and by
comparing the goodness of fit of the results.

The algorithm described as steps 1 through 9 in Sect.2 is similar to k-means
algorithm or the simple hill-climbing algorithm of Ball and Hall (1967), where
objects are simultaneously relocated but not singly. But it does not comprise
k-mean algorithms (one k-means algorithm at each layer except layer 0). The
algorithm deals with multiple layers which causes some discrepancies from k-means
algorithm. At lower layers (not layer 0), objects are relocated across all clusters
including those belong to different clusters at the upper layer. The simulated
annealing algorithm might be useful to improve the algorithm (cf. Everitt et al.
2011, p. 123; Gordon 1999, p. 43). While the algorithm determined the initial center
randomly, in the case of examining brand primacy of a market, it is not difficult to
select the initial center based on the supposed structure reflecting brand primacy of
a market.

The data were analyzed by k-means cluster analysis (MacQueen 1967) for k = 2
and k = 4 (two and four clusters). The resulting classification when the number
of clusters is two (k = 2) is shown in the 5th and the 11th columns of Table 1.
That when the number of clusters is four (k = 4) is shown in the 6th and the 12th
columns of Table 1. Table 1 tells that the classification at layer 2 given by the present
cluster analysis and that given by k-means cluster analysis when k = 4 completely
coincide.

Table 1 tells that cluster 1 of k-means cluster analysis when k = 4 corresponds
with cluster A2 and with type D, cluster 2 corresponds with cluster B2 and with type
F, cluster 3 corresponds with cluster Al and with type E, and cluster 4 corresponds
with cluster B1 and with type G. Cluster 1 derived by the k-means cluster analysis
when k = 2 corresponds to types F and G (four anomalies). Cluster 2 corresponds to
types D an E (four anomalies). While layers 1 (clusters A and B) and 2 (clusters A1,
A2, B1, and B2) derived by the present cluster analysis are inherently hierarchical,
clusters 1 and 2 derived by the k-means cluster analysis when k = 2 and clusters 1,
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Table 3 The correspondence k— 4

between clusters when k = 2

and k = 4 of the k-means k

cluster analysis 1 0o 10 2 4
2

2, 3, and 4 derived by the k-means cluster analysis when k = 4 are not hierarchical
as shown in Table 3.

The sum of the within cluster sum of squared deviations from the centroid of
the cluster at layer 2 SSW, = 104.3 (22.9(cluster Al) + 25.0(A2) + 17.7(B1) +
38.7(B2)). The sum of the within cluster sum of squared deviations from the centroid
of the cluster derived by the k-means cluster analysis when k = 4 was also 104.3,
because the layer 2 of the present cluster analysis and the k-means cluster analysis
when k = 4 resulted in exactly the same clusters. The sum of the within cluster
sum of squared deviations from the centroid of the cluster at layer 1 SSW; = 135.7
(67.6(cluster A) + 68.1(B)). The sum of the within cluster sum of squared deviations
from the centroid of the cluster derived by the k-means cluster analysis when
k = 2 was 132.3 (71.6(clusterl) + 60.7(2)), which is smaller than SSW; given
by the present cluster analysis. This is natural, because two clusters given by the
k-means cluster analysis when k = 2 was obtained so that the sum of the within
cluster sum of squared deviations from the centroid of the cluster for the two clusters
was minimized, while the present cluster analysis derived the hierarchical structure
where SSW 4+ SSW, was minimized. The hierarchical structure, which the latter
has to subject, deteriorated the goodness of fit but makes the interpretation of the
resulting tree diagram easier.

The algorithm was executed only on the simplest cluster structure having three
layers. While in principle the algorithm can deal with the cluster structure having
more than three layers, whether the algorithm is effective in dealing with the
structure having more than three layers has to be examined. The algorithm is valid
only for the cluster structure where all clusters at a layer consist of the same number
of clusters at the next lower layer. This is the reason of using the model shown in
Fig.2 in analyzing the data. This limitation restricts the application of the present
cluster analysis. To relax the limitation so that clusters at a layer consist of different
number of clusters at the next lower layer is desirable, which will increase the
versatility of the present cluster analysis.
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Factor PD-Clustering

Cristina Tortora, Mireille Gettler Summa, and Francesco Palumbo

Abstract Probabilistic Distance (PD) Clustering is a non parametric probabilistic
method to find homogeneous groups in multivariate datasets with J variables and n
units. PD Clustering runs on an iterative algorithm and looks for a set of K group
centers, maximising the empirical probabilities of belonging to a cluster of the n sta-
tistical units. As J becomes large the solution tends to become unstable. This paper
extends the PD-Clustering to the context of Factorial clustering methods and shows
that Tucker3 decomposition is a consistent transformation to project original data
in a subspace defined according to the same PD-Clustering criterion. The method
consists of a two step iterative procedure: a linear transformation of the initial data
and PD-clustering on the transformed data. The integration of the PD Clustering
and the Tucker3 factorial step makes the clustering more stable and lets us consider
datasets with large J and let us use it in case of clusters not having elliptical form.

1 Introduction

Organising data into homogeneous groups is one of the most fundamental tasks in
many research domains. To cope with many different analysis conditions, several
clustering approaches and thousands of clustering algorithms have been proposed
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in literature. Cluster analysis is commonly defined as a multivariate problem where
the aim is to identify homogeneous groups of units. In a geometrical view, given
a set of n statistical units represented as points in the multidimensional space
spanned by J variables, clustering aims at finding dense regions in the original
feature space or embedded in a properly defined subspace. We do not consider
hierarchical algorithms in this paper, but only probabilistic and geometric non
hierarchical strategies. Probabilistic approaches assume that data are generated from
a mixture distribution, where each cluster is generated by one (or more) mixture
component. Two main types of methods have been developed in this context,
parametric approaches and non parametric ones. On the other hand, in the geometric
framework, dense regions are defined on the basis of proper distance measures; the
most known algorithm is the k-means (Jain 2010).

In the last two decades, the increased data storage capacity has made even more
large datasets available, where the number of units and the number of variables is
very large. In some web mining applications, for example, there are hundreds of
thousands of variables .

The clustering in high dimensional spaces issue is drawing many researchers’
attention.

A larger number of variables does not necessarily ensure better results and can
mask the existing clusters structure. Several different preprocessing approaches have
been proposed to reduce the dimensionality problem before performing a cluster
analysis. They can be divided into two main strategies: the first one consists in
selecting the most relevant attributes by removing the redundant variables from the
analysis, the other one linearly combines the variables into a reduced number of
latent variables according to the task of the overall analysis. See Parsons et al. for
more details (Parsons et al. 2004). However, strategies combining the dimensionality
reduction and the clustering into one consistent iterative algorithm have recently
been proposed in the literature, both in the probabilistic case (Montanari and Viroli
2011) and in the geometric framework (Vichi and Kiers 2001).

In the probabilistic and non parametric framework, this paper proposes an
integrated clustering approach that combines the Probabilistic Distance (PD) clus-
tering algorithm of Ben-Israel And Iyigun (2008) and the Tucker3 dimensionality
reduction (Kroonenberg 2008) to consistently combine the clustering and the
dimensionality reduction into one iterative procedure.

The paper consists of the following sections. Section 2 provides a description of
Probabilistic Distance Clustering. In Sect. 3 Factor Probabilistic Distance Clustering
is presented and developed. Section 4 contains an application on a real dataset.

2 Probabilistic Distance Clustering

Given a set of n statistical units described by J continuous variables, PD-clustering
is a non hierarchical clustering algorithm that assigns the n units to K clusters
according to the probability of them belonging to the cluster.
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We introduce PD-clustering (Ben-Israel and Iyigun 2008) according to
Ben-Israel and Iyigun notation. Given X a generic data matrix with n units and
J variables, given K clusters that are assumed not empty, PD-Clustering is based
on two quantities: the distance of each data point x; from the K cluster centers cy,
d(x;, cx), and the probabilities for each point to belong to a cluster, p(x;, cx) with
k=1,...,Kandi = 1,...,n. The relation between them is the basic assumption
of the method, the probability of any point to belong to each class is assumed to
be inversely proportional to the distance from the centers of the clusters. Let us
consider the general term x; of X and a center matrix C, of elements c;; with
k=1,...,K,i =1,...,nand j = 1,...,J, the distances between each point
and all centers can be computed according to different criteria; the squared norm
is one of the most commonly used. The quantity d(x;, c;) represents the distance
of the generic point i to the generic center k. The probability p(x;,cx) of each
point to belong to a cluster is computed according to the following assumption:
for any k, given i the product between the distance d(x;, cx) and the probability
p(x;, cx) is a constant F(x;) depending on x;. For short we use py = p(x;, cr) and
di(x;) = d(x;, cx). PD-clustering basic assumption is:

Pixdi(xi) = F(x;). (1

Looking at the (1) we notice that as the distance of the point from the cluster
center decreases, the belonging probability of the point to the cluster increases. The
constant depends only on the point and does not depend on the cluster k.

The quantity F(x;), also called Joint Distance Function (JDF), is a measure of
the closeness of x; from all cluster centers. It measures the classificability of the
point x; with respect to the centers ci, with k = 1, ..., K. The point coincides with
one of the cluster centers if it is equal to zero; in that case the point belongs to the
class with probability 1. If all the distances between the point x; and the centers of
the classes are equal to d;, F(x;) = d;/k and all the belonging probabilities to each
class are equal: py = 1/K. The smaller the JDF value, the higher the probability
for the point to belong to one cluster. The whole clustering problem consists in the
identification of the centers that minimise the JDF. The function in (1) is nonsmooth,
a smoothed version of it is: pizkdk(x,-) = F(x;) (Iyigun 2007). Without loss of
generality the PD-Clustering optimality criterion can be demonstrated according to
K =2.

PD-Clustering aims at finding cluster centers such that:

min (dl (xi)ph + dz(xi)pi22> st.:pit+pi2=1 pi1,pi2 = 0. 2
The Lagrangian of this problem is:

Z(pir. pi, M) = di(x;) pjy + da(xi) piy — A(pit + piz — 1). (3
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Setting to zero the partial derivates with respect to p;; and p;» and considering the
principle p;1di(x;) = piada(x;) Ben-Israel and Iyigun obtain the optimal value of
the Lagrangian (See Ben-Israel and Iyigun 2008 for the proof.):

di(x;)da(x;)

f i’ i’k :—'
(Pin P A) = G o)

“)

This value coincides with the JDF. The matrix of centers that minimises
this principle minimises the JDF too. Substituting the generic value di(x;) with
|lx; — ck||, we can find the equations of the centers that minimise the JDF (and
maximize the probability of each point to belong to only one cluster):

ur (xi)
= = | x, 5
“ i=12:N (Zj:l N“k(xj))x ©)

2
p.
where uy (x;) = dk(l«ii).

As shown before, the value of JDF at any center k is equal to zero and it is
necessarily positive elsewhere. So centers are the global minimiser of the JDF. Other
stationary points may exist because the function is not convex or even quasi-convex,
but they are saddle points.

For the sake of brevity we don’t go into distance choice details; in this paper we
consider the squared form:

J
di(x;) = Z(-xii — c)?, (6)
j=1
wherek = 1,...,Kandi = 1,..., N. Starting from the (6) the distance matrix D

of order n x K is defined, where the general element is dj (x;). Indicating with ¢
the generic center, the final solution JDF is obtained minimising the quantity:

n K n J K
IDF = % Jde(xi)pi =D ) D (xy— c) P

i=1k=1 i=1j=1k=1

n J K
IDF = argmin > 3 > (xy = )’ i @

i=1j=1k=1

An iterative algorithm allows one to compute the solution of PD-clustering
problem. The algorithm properties are illustrated in Iyigun (2007), where the Author
demonstrates the convergences, too. Each unit is then assigned to the kth cluster
according to the highest probability that is computed a posteriori.
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3 Factor PD-Clustering

PD-clustering is stable dealing with a large number of units but it becomes unstable
as the number of variables increases. A linear transformation of original variables
into a reduced number of orthogonal ones can significantly improve the algorithm
performance. The linear transformation of variables and the PD-Clustering need to
optimize a common criterion.

The FPDC consists in an integrated procedure based on the Tucker3 decompo-
sition (Kroonenberg 2008) and PD-Clustering; an algorithm is then proposed to
perform the method.

The minimization problem in (7) corresponds to the Tucker3 decomposition of
the 3-way distance matrix G of general element g = |x;;—cy|, wherei =1,...,n
indicates the units, j = 1, ..., J the variablesand k = 1,..., K the occasions. For
any ¢ an x J a Gy distance matrix is defined. In matrix notation:

G = X — hey, (8

where £ is an nx 1 column vector with all terms equalto 1; X and ¢, (k = 1,..., K)
has already been defined in Sect. 2.

The Tucker3 method decomposes the matrix G in three components, one for each
mode, in a full core array A, and in an error term E:

R 0 S
8ijk = Z Z Z A'rqs(I/lirquvks) + Cijk 9
r=1g=1 s=1

where A, and e are respectively the general term of the three way matrix A of
order R x § x Q and E of order n x J x K; u;, b, and vy, are respectively the
general term of the matrix U of order n x R, B of order J x Q and V of order
KxS§S,withi=1,....,n,j=1,...,J,k=1,...,K.

As in all factorial methods, factorial axes in the Tucker3 model are sorted
according to their explained variability. The first factorial axes explain the greatest
part of the variability; the latest factors represent the ground noise. According to
Kiers and Kinderen (2003), the choice of the parameters R, Q and S is a ticklish
problem as they define the overall explained variability. Interested readers are
referred to Kroonenberg (2008) for the theoretical aspects concerning that choice.
We propose an heuristic approach based on the eigenvalues scree plot to cope with
this crucial issue.

The coordinates x;‘] of the generic unit x; into the space of variables obtained
through a Tucker3 decomposition are obtained by the following expression:

J
X =Y xibjg. (10)
=1
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Finally, on the xi’; coordinates a PD-Clustering is applied in order to solve the
clustering problem (2). Let us start considering the expression (7); it is worth noting
that minimising the quantity:

JDF = 377_, Z,J'=1 Z/f=1(xii - ckj)zpizk st D ZI§=1 pizk =n, (1D

is equivalent to computing the maximum of — ) /_, Z/J‘=l Zle(xij — )’ pa,
under the same constraints.

In Tortora et al. (2011) it is demonstrated that, given py and ci, bj, is obtained
according to a Tucker3 transformation of the distance matrix G minimising the JDF.

An iterative algorithm alternatively calculates c;; and pj on one hand, and b, on
the other hand, until the convergence is reached. It can be summarized in the follow-
ing steps: (i) random initialization of center matrix C; (ii) computation of distance
matrix G; (iii) Tucker3 decomposition of G = UA(V' ® B’); (iv) projection of data
point in the new space X* = XB; (v) PD-clustering of X* uploading C. Steps ii—v
are iterated until the convergence is reached. The minimisation of the quantity in the
formula (11) converges at least to local minima, it can be empirically demonstrated.

A simulation study (Tortora 2011) has demonstrated that difference of variance
among clusters does not affect the algorithm efficiency. Classic PD-clustering
becomes less efficient when the number of elements in each cluster is different,
FPDC results are not affected by this issue. The method performs well in presence
of outliers, it can detect the right clustering structure in presence of 20 % of outliers.
Using FPDC, unit weights are inversely proportional to the distance from the cluster
center, thanks to this characteristic, outliers have a low weight in the determination
of the centers. The Tucker3 method looks for the decomposition that divides clusters
better, according to the partition obtained in the PD-clustering step. Therefore
FPDC, that is based on the two methods, is not affected by outliers.

4 Application on a Real Dataset

The method has been applied to Water Treatment Plant dataset.' This dataset comes
from the daily measures of sensors in a urban waste water treatment plant. The
objective is to classify the operational state of the plant in order to predict faults
through the state variables of the plant at each of the stages of the treatment
process. It is composed of 527 units and 38 variables. The number of clusters K has
been chosen equal to 4. To appreciate the FPDC, a comparative study graphically
compares the following methods: k-means, PD-clustering and Factorial k-means.
Results are shown in Fig. 1. Each method has been iterated 100 times. Applying
k-means at each iteration the value of the within variance has been measured.
Results obtained show that there are two minima, the first is obtained in 39 % of the

Thttp://archive.ics.uci.edu/ml/index.html
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Fig. 1 (a) Value of standardized heterogeneity index at each iteration of the k-means algorithm on

100 iterations; (b) value of standardized JDF at each iteration of the PD-clustering algorithm on
100 iterations
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Fig. 2 (a) Value of standardized heterogeneity index at each iteration of the Factorial k-means
algorithm; (b) value of standardized JDF at each iteration of the FPDC algorithm (on 100 iterations)

cases and the second in 54 %. When PD-clustering is applied, in order to measure
the stability of the method, the JDF has been measured. In this case results are very
unstable.

Applying factorial clustering methods the stability of the results improve, Fig. 2.
In the Factorial k-means output (Vichi and Kiers 2001) there is only one minimum
reached in 37 % of the cases. Factor PD-clustering presents a high improvement of
stability, the modal value is obtained in 58 % and in other cases the value of the JDF
is not far from the modal value.

A Density Based Silhouette plot (DBS) is helpful to evaluate the cluster partition.
According to this method the DBS index is measured for all the observations
x;, all the clusters are sorted in a decreasing order with respect to DBS and

www.it-ebooks.info


http://www.it-ebooks.info/

122 C. Tortora et al.

Fig. 3 DBS plot on clusters
obtained in the modal value
of the JDF on 100 FPDC
iterations
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plotted on a bar graph, Fig. 3. Usually Euclidean distance is used to measure the
distance between cluster centers and each datapoint; however Euclidean distance
is not suitable dealing with probabilistic clustering. A measure of DBS for the
probabilistic clustering method is proposed in Menardi (2011), an adaptation of this
measure for FPDC is the following one:

DBS; = lg(%) (12)

Pimy ’
max;=1,..n Ilog(m)l

Where pj,, is referred to x; that belongs to cluster k and p;,, is the maximum for
m # my. Figure 3 shows the separability of the clusters according to FPDC.

5 Conclusion

Integrated strategies for dimensionality reduction and non hierarchical clustering
have been receiving wide interest as a tool for performing clustering and dimension
reduction simultaneously. In this framework, the present paper proposes a new strat-
egy that combines the Tucker3 analysis with the Probabilistic Distance Clustering.
Simulation studies, whose results are not reported here, have demonstrated that the
algorithm ensures good, and in some cases excellent, improvement in the cluster
solution. We have performed some comparative studies with the Vichi and Kiers’
Factorial k-means algorithm and we have outlined the conditions in which the
Factor PD-clustering outperforms the k-means. At the current developing state, the
procedure has a semi-automatic workflow. Assuming that the parameter K is known
or already defined, Factor PD-clustering requires the choice of the sub-dimensions
to be performed by the analyst using an exploratory strategy.
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Clustering Ordinal Data via Latent Variable
Models

Damien McParland and Isobel Claire Gormley

Abstract Item response modelling is a well established method for analysing
ordinal response data. Ordinal data are typically collected as responses to a number
of questions or items. The observed data can be viewed as discrete versions of
an underlying latent Gaussian variable. Item response models assume that this
latent variable (and therefore the observed ordinal response) is a function of both
respondent specific and item specific parameters. However, item response models
assume a homogeneous population in that the item specific parameters are assumed
to be the same for all respondents. Often a population is heterogeneous and clusters
of respondents exist; members of different clusters may view the items differently.
A mixture of item response models is developed to provide clustering capabilities
in the context of ordinal response data. The model is estimated within the Bayesian
paradigm and is illustrated through an application to an ordinal response data set
resulting from a clinical trial involving self-assessment of arthritis.

1 Introduction

Ordinal data arise naturally in many different fields and are typically collected as
responses to a number of questions or items. A common approach to analysing such
data is to view the observed ordinal data as discrete versions of an underlying latent
Gaussian ‘generating’ variable. Many models such as graded response models and
ordinal regression models (Albert and Chib 1993) make use of this concept of latent
generating variables.

Item response modelling (Fox 2010) is an established method for analysing
ordinal response data. It is assumed that the observed ordinal response to an

D. McParland (<) - I.C. Gormley
University College Dublin, Dublin, Ireland
e-mail: damien.mcparland @ucd.ie; claire.gormley @ucd.ie

B. Lausen et al. (eds.), Algorithms from and for Nature and Life, Studies in Classification, 127
Data Analysis, and Knowledge Organization, DOI 10.1007/978-3-319-00035-0_12,
© Springer International Publishing Switzerland 2013

www.it-ebooks.info


mailto:damien.mcparland@ucd.ie
mailto:claire.gormley@ucd.ie
http://www.it-ebooks.info/

128 D. McParland and I.C. Gormley

item will be level k, say, if the underlying latent variable lies within a specified
interval. Item response models further assume that the latent generating variable
(and therefore the observed ordinal response) is a function of both respondent
specific and item specific parameters. The respondent specific parameters are often
called latent traits. The probability of a certain response from a respondent is related
to both the value of their latent trait and also some item specific parameters.

Item response models assume that the item specific parameters are the same
for all respondents, i.e. a homogeneous population is assumed. Often a population
is heterogeneous however and clusters of respondents exist; members of different
clusters may view the items differently. Here an item response model is embedded in
a mixture modelling framework to facilitate clustering of respondents in the context
of ordinal response data. Under the mixture of item response models the probability
that a respondent gives a certain response depends on their latent trait and on group
specific item parameters. An alternative approach to this problem is given in Von
Davier and Yamamoto (2004).

The mixture of item response models is developed and estimated within the
Bayesian paradigm using Markov chain Monte Carlo methods. A key issue is choos-
ing the optimal model or equivalently, the number of components in the optimal
mixture model. The marginal likelihood is employed here to choose between models
and a bridge sampling approach to estimating the marginal likelihood is used.

The model is illustrated through an application to an ordinal response data set
resulting from a clinical trial involving self-assessment of arthritis pain levels.

The paper proceeds as follows. In Sect. 2 the arthritis pain levels data set used to
demonstrate the model is introduced. Item response models and their extension to a
mixture of item response models are considered in Sect. 3. Section 4 is concerned
with Bayesian model estimation and also model selection. The results from fitting
the model to the illustrative data set are presented in Sect. 5. Finally, discussion of
the model takes place in Sect. 6.

2 Arthritis Pain Data

An ordinal data set is employed to illustrate the mixture of item response models.
The data come from a clinical trial in which patients suffering from rheumatoid
arthritis are randomly assigned to a treatment group or a placebo group. The patients
self-assess their arthritis related pain as 1 (poor), 2 (fair) or 3 (good) at 1 and 5 month
examinations. Some covariate information associated with each patient such as their
age and sex are also recorded. Further details are given in Lipsitz and Zhao (1994)
and Agresti (2010).

Here only the ordinal response data are analysed. Interest lies in determining
if there is an underlying group structure among the group of 289 patients in the
clinical trial. Members of the same group would be expected to have similar arthritis
pain profiles. In particular, whether or not patients in the treatment group are
differentiated from the patients in the placebo group is of interest.
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3 Item Response Models and Mixtures of Item
Response Models

The concepts behind item response models and the proposed extension to a mixture
of item response models are explained in this section.

3.1 Item Response Models for Ordinal Data

Suppose the responses of N individuals to each of J items are observed. Since the
data are ordinal, the set of possible responses to item j is {1,2,..., K;} where K
denotes the number of possible responses to item j. Thus the data can be represented
by an N x J matrix, Y, where y;; is the response of individual i to item .

Corresponding to each ordinal response, y;;, is a latent Gaussian variable, z;;.
A Gaussian link function is used here but other link functions, such as the logit (Fox
2010), can be employed. For each item there exists a vector of threshold parameters
v, = (¥j.0:Vj1s- -+, Vjk;)- This vector is subject to the constraint:

—00 = Vj,Of)/j,l S 5 )/j,Kj = o0
The observed ordinal response, y;;, serves as an indicator to the latent variable z;;:
Yi=k = Vjik-1 =2 S Vjk

In addition to the latent variable, z;;, it is assumed that there exists a latent trait
vector, §,, of dimension ¢ corresponding to each individual. Here g is user specified.
The mean of the conditional distribution of z; is related to this latent trait:

zl0; ~ N(Aj 0, —b;. 1)

In the item response literature the item parameters A; and b; are usually termed
item discrimination parameters and item difficulty parameters respectively. The
conditional probability that a response takes a certain ordinal value can then be
expressed as the difference between two standard Gaussian cumulative density
functions:

P(yy=klA; bj.y . 0;) = Plyjx — AL0, =) — Plyju—1 — (A} 6, — b))]

3.2 A Mixture of Item Response Models (MIRM)
Jor Ordinal Data

A mixture modelling framework can be imposed on the item response model for
cases where there is an underlying group structure in the data. The aim of this
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mixture of item response models is to cluster individuals into their unobservable
groups. Under the MIRM, the latent variable z;; is a mixture of G Gaussian densities:

G
f@) =) me N0, — by 1)

g=1

The probability of belonging to group g is denoted 7, while A,; and b; are group
specific item discrimination and difficulty parameters respectively.

A latent indicator variable, £; = ({;i,...,{;c) is introduced for each individ-
ual i. This binary vector indicates to which group individual i belongs i.e. /;, = 1
if i belongs to group g; all other entries in the vector are 0. Thus, conditional on ¢;,
the probability of observing a particular ordinal response is:

P(yij=klAy by y . 05,1 =1) = @ [ij — (gt — bgf')]
-@ [Vj,k—l - (&;Qz - bg/)]
The augmented likelihood, £ (A, B, I',®, L, Z|Y), is given by:

l—[l_“—[ Zl(hk—lfZijf)/j,k)l(yijzk) N (A

i=1g=1j=1 | | k=1

—~
>~
e~
=
I
S
g
—_
~—

An assumption of local independence is implicit here, i.e. conditional on the latent
trait 6, the J responses by individual i are independent. The responses of different
individuals are also regarded as independent.

4 Parameter Estimation and Model Selection

The Bayesian framework in which the model is estimated, the Markov chain Monte
Carlo (MCMC) algorithm used to fit the model and the bridge sampling algorithm
which facilitates model selection are all described in what follows.

4.1 Prior and Posterior Distributions

To implement the model described above in a Bayesian framework prior distri-
butions must be specified for all unknown parameters. Priors are required for the
threshold parameters Y, the item parameters, A; and b,,, and for the mixing weights
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m(forj =1,...,J and g = 1,..., G). Specifically, a uniform prior is specified
for the threshold parameters and for the other parameters the prior distributions are:

PAy) =MVNy(p,. 22)  plby) = MVNs(p,. 55D p(x) = Dir(e)

The posterior distribution is:
p(A B, I\, 0,L,Z|Y) < L(A, B, I,0,L, Z|Y) p(A) p(B) p(I') p(®) p(L|z) p(x)

where p(A), p(B), p(I") and p(x) are the prior distributions detailed above.
The latent trait variable 8; is assumed to have a standard multivariate Gaussian
distribution; the latent indicator variables /; follow a Multinomial(1, ) distribution.

This model suffers from non-identifiability. To identify the model (as in Johnson
and Albert (1999)) the second element of each of the threshold vectors, v, for j =

1,...,J,is fixed at 0. The model is also rotationally invariant. Therefore, a specific
form is imposed on each matrix of discrimination parameters A, forg =1,...,G.
As in Geweke and Zhou (1996), the first g rows of this matrix are constrained to
have a lower triangular form. In what follows, the free and fixed elements of the jth
row of A, are denoted by Ag; and Ag; respectively.

4.2 Estimation via a Markov Chain Monte Carlo Algorithm

The marginal distributions of the unknown parameters cannot be obtained analyti-
cally for this model so a MCMC algorithm is used to produce estimates of the model
parameters. The algorithm used here is similar to the algorithm proposed in Cowles
(1996). A Gibbs sampler is used to sample all latent variables and parameters, except
the threshold parameters, y .. These are sampled using a Metropolis-Hastings step.

Full conditional distributions for the model parameters and latent variables are:

e 4]... ~Multinomial(1l, p = (p1....., pg)) where

J K
Pg X Tg l—[ Z 1 ()/j,k—l =z = )/j,k) 1(y; = k) N(&gT,'Qi — by, 1)
j=1| k=1
e 7m|...~ Dirichlet(n; + «i,...,ng + ag) where ny = Zf\;l Lig.

e zjl... ~ NT (&;Ql — by, 1) where the distribution is truncated to [y} (y;—1),
Vil

e 0;]... ~ MVN, [D;Ag (gi +Qg) ,D;l] where, z, = (zi1.....zis)" and
Dy = Al A, +1,.
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8]

e 2°[...~MVN {S—l [@;T (;g,. —OIAY + bg,l) + E;‘b] , S—l} where § =
[2_1 + @°T@°] and 1 = (1,...,1)7. The ith row of ©, consists of the

elements of §; which multiply A )k for all individuals i in group g. Similarly &
consists of the elements which multlply A o+ The elements of the jth column of
the N x J matrix Z corresponding to individuals in group g are denoted by Ly

o bgl... ~ N [(ng + 5,07 AT O Ay + 5,2 1) —ggle),(ng + 5,2 _1] where
the rows of ®, are the latent trait vectors @, for all individuals i in group g.

The posterior full conditional distribution of each of the threshold parameters,
¥;k can be shown to be uniform. When there are a large number of observations
in adjacent categories this interval tends to be small which results in minimal
movement of the Gibbs sampler. The algorithm therefore converges slowly. This
difficulty is overcome by sampling from the posterior of the threshold parameters
using a Metropolis-Hastings step, as in Cowles (1996) and Johnson and Albert
(1999). Candidate values v are proposed for y; « from the Gaussian distribution

NT (y(t D , 0%, ), truncated to the interval (v; x—1, y ik +1) where y k +1 is the value

of y;k+1 at iteration (¢ — 1). The tuning parameter ch y 18 selected to achieve
appropriate acceptance rates.

4.3 Model Selection via the Bridge Sampler

Since the proposed model is a finite mixture model, the number of components G in
the mixture must be chosen. A bridge sampling algorithm (Meng and Wong 1996;
Frithwirth-Schnatter 2004) is employed to approximate the marginal likelihood of a
G component model. The marginal likelihood is evaluated for a range of models
with different values of G and the model with the highest marginal likelihood
is chosen as optimal. Here, the posterior mean of the latent Gaussian variable Z
is treated as the ‘observed data’. This approach removes the need to work with
the intractable marginal distribution of the ordinal data, Y, and also the posterior
distribution of the threshold parameters.

In order to use bridge sampling to approximate the marginal likelihood it is
important that the MCMC algorithm mixes well over al