

ALGORITHMS FOR VLSI
PHYSICAL DESIGN AUTOMATION

THIRD EDITION

This Page Intentionally Left Blank

ALGORITHMS FOR VLSI
PHYSICAL DESIGN AUTOMATION

THIRD EDITION

Naveed A. Sherwani
Intel Corporation.

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47509-X
Print ISBN: 0-7923-8393-1

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©1999 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht

To my parents
Akhter and Akram Sherwani

This Page Intentionally Left Blank

Contents

Foreword xvii

Preface xix

Acknowledgements xxvii

1 VLSI Physical Design Automation 1
3
7
9

1.1
1.2
1.3
1.4
1.5

VLSI Design Cycle
New Trends in VLSI Design Cycle
Physical Design Cycle
New Trends in Physical Design Cycle
Design Styles
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6

Full-Custom
Standard Cell
Gate Arrays
Field Programmable Gate Arrays
Sea of Gates
Comparison of Different Design Styles

1.6 System Packaging Styles
1.6.1 Die Packaging and Attachment Styles

1.6.1.1
1.6.1.2

Die Package Styles
Package and Die Attachment Styles

1.6.2
1.6.3
1.6.4
1.6.5

Printed Circuit Boards
Multichip Modules
Wafer Scale Integration
Comparison of Different Packaging Styles

1.7
1.8
1.9

Historical Perspectives
Existing Design Tools
Summary

13
15
17
18
20
22
25
25
26
26
26
27
27
29
31
31
32
33
35

39
40
43
43
45

2 Design and Fabrication of VLSI Devices
2.1
2.2

Fabrication Materials
Transistor Fundamentals
2.2.1
2.2.2

Basic Semiconductor Junction
TTL Transistors

viii Contents

2.2.3 MOS Transistors
2.3 Fabrication of VLSI Circuits

2.3.1
2.3.2
2.3.3

nMOS Fabrication Process
CMOS Fabrication Process
Details of Fabrication Processes

2.4
2.5

Design Rules
Layout of Basic Devices
2.5.1
2.5.2
2.5.3

Inverters
NAND and NOR Gates
Memory Cells
2.5.3.1
2.5.3.2

Static Random Access Memory (SRAM)
Dynamic Random Access Memory (DRAM)

2.6
2.7

Summary
Exercises

3 Fabrication Process and its Impact on Physical Design
3.1
3.2

Scaling Methods
Status of Fabrication Process
3.2.1 Comparison of Fabrication Processes

3.3 Issues related to the Fabrication Process
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

Parasitic Effects
Interconnect Delay
Noise and Crosstalk
Interconnect Size and Complexity
Other Issues in Interconnect
Power Dissipation
Yield and Fabrication Costs

3.4 Future of Fabrication Process
3.4.1
3.4.2
3.4.3

SIA Roadmap
Advances in Lithography
Innovations in Interconnect
3.4.3.1
3.4.3.2
3.4.3.3
3.4.3.4

More Layers of Metal
Local Interconnect
Copper Interconnect
Unlanded Vias

3.4.4
3.4.5
3.4.6

Innovations/Issues in Devices
Aggressive Projections for the Process
Other Process Innovations
3.4.6.1
3.4.6.2

Silicon On Insulator
Silicon Germaniun

3.5
3.6
3.7
3.8

Solutions for Interconnect Issues
Tools for Process Development
Summary
Exercises

46
48
51
53
53
58
62
62
64
66
67
69
71
71

75
76
77
77
79
79
80
81
82
82
82
83
85
85
86
87
87
87
87
88
88
89
90
90
90
91
93
94
94

Contents ix

4 Data Structures and Basic Algorithms 97
4.1
4.2

Basic Terminology 99
Complexity Issues and NP-hardness
4.2.1 Algorithms for NP-hard Problems

4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4

Exponential Algorithms
Special Case Algorithms
Approximation Algorithms
Heuristic Algorithms

4.3 Basic Algorithms
4.3.1 Graph Algorithms

4.3.1.1
4.3.1.2
4.3.1.3
4.3.1.4
4.3.1.5
4.3.1.6

Graph Search Algorithms
Spanning Tree Algorithms
Shortest Path Algorithms
Matching Algorithms
Min-Cut and Max-Cut Algorithms
Steiner Tree Algorithms

4.3.2 Computational Geometry Algorithms
4.3.2.1
4.3.2.2

Line Sweep Method
Extended Line Sweep Method

4.4 Basic Data Structures
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8

Atomic Operations for Layout Editors
Linked List of Blocks
Bin-Based Method
Neighbor Pointers
Corner Stitching
Multi-layer Operations
Limitations of Existing Data Structures
Layout Specification Languages

4.5 Graph Algorithms for Physical design
4.5.1 Classes of Graphs in Physical Design

4.5.1.1
4.5.1.2

Graphs Related to a Set of Lines
Graphs Related to Set of Rectangles

4.5.2
4.5.3
4.5.4

Relationship Between Graph Classes
Graph Problems in Physical Design
Algorithms for Interval Graphs
4.5.4.1
4.5.4.2

Maximum Independent Set
Maximum Clique and Minimum Coloring

4.5.5 Algorithms for Permutation Graphs
4.5.5.1
4.5.5.2

Maximum Independent Set
Maximum -Independent Set

4.5.6 Algorithms for Circle Graphs
4.5.6.1
4.5.6.2
4.5.6.3

Maximum Independent Set
Maximum -Independent Set
Maximum Clique

4.6
4.7

Summary
Exercises

100
101
102
102
102
103
104
104
104
106
108
110
110
111
115
115
115
117
117
119
120
122
123
130
131
131
135
135
136
138
138
140
142
142
143
144
144
146
148
148
149
151
151
152

x Contents

5 Partitioning 157
5.1 Problem Formulation

5.1.1 Design Style Specific Partitioning Problems
5.2
5.3

Classification of Partitioning Algorithms
Group Migration Algorithms
5.3.1
5.3.2

Kernighan-Lin Algorithm
Extensions of Kernighan-Lin Algorithm
5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4

Fiduccia-Mattheyses Algorithm
Goldberg and Burstein Algorithm
Component Replication
Ratio Cut

5.4 Simulated Annealing and Evolution
5.4.1
5.4.2

Simulated Annealing
Simulated Evolution

5.5 Other Partitioning Algorithms
5.5.1 Metric Allocation Method

5.6
5.7
5.8

Performance Driven Partitioning
Summary
Exercises

163
166
168
169
170
171
173
174
174
176
177
177
179
183
183
185
187
187

6 Floorplanning and Pin Assignment 191
6.1 Floorplanning

6.1.1 Problem Formulation
6.1.1.1 Design Style Specific Floorplanning Problems

6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7

Classification of Floorplanning Algorithms
Constraint Based Floorplanning
Integer Programming Based Floorplanning
Rectangular Dualization
Hierarchical Tree Based Methods
Floorplanning Algorithms for Mixed Block and Cell De-
signs

6.1.8
6.1.9
6.1.10
6.1.11

Simulated Evolution Algorithms
Timing Driven Floorplanning
Theoretical advancements in Floorplanning
Recent Trends

6.2 Chip planning
6.2.1 Problem Formulation

6.3 Pin Assignment
6.3.1 Problem Formulation

6.3.1.1 Design Style Specific Pin Assignment Problems
6.3.2
6.3.3
6.3.4

Classification of Pin Assignment Algorithms
General Pin Assignment
Channel Pin Assignment

6.4
6.5
6.6

Integrated Approach
Summary
Exercises

193
193
194
194
196
198
200
201

203
203
204
205
206
207
207
207
208
208
209
210
211
214
217
217

Contents xi

7 Placement 219
7.1 Problem Formulation

7.1.1 Design Style Specific Placement Problems
7.2
7.3

Classification of Placement Algorithms
Simulation Based Placement Algorithms
7.3.1
7.3.2
7.3.3
7.3.4

Simulated Annealing
Simulated Evolution
Force Directed Placement
Sequence-Pair Technique

7.3.5 Comparison of Simulation Based Algorithms
7.4 Partitioning Based Placement Algorithms

7.4.1
7.4.2

Breuer’s Algorithm
Terminal Propagation Algorithm

7.5 Other Placement Algorithms
7.5.1
7.5.2
7.5.3
7.5.4

Cluster Growth
Quadratic Assignment
Resistive Network Optimization
Branch-and-Bound Technique

7.6
7.7
7.8
7.9

Performance Driven Placement
Recent Trends
Summary
Exercises

220
223
225
225
226
229
232
233
233
236
236
236
239
240
240
241
241
242
242
243
244
244

8 Global Routing 247
8.1 Problem Formulation

8.1.1 Design Style Specific Global Routing Problems
253
257

8.2 Classification of Global Routing
Algorithms

8.3 Maze Routing Algorithms
8.3.1
8.3.2
8.3.3
8.3.4

Lee’s Algorithm
Soukup’s Algorithm
Hadlock’s Algorithm
Comparison of Maze Routing Algorithms

8.4
8.5
8.6

Line-Probe Algorithms
Shortest Path Based Algorithms
Steiner Tree based Algorithms
8.6.1
8.6.2
8.6.3
8.6.4

Separability Based Algorithm
Non-Rectilinear Steiner Tree Based Algorithm
Steiner Min-Max Tree based Algorithm
Weighted Steiner Tree based Algorithm

8.7 Integer Programming Based Approach
8.7.1 Hierarchical Approach

8.8
8.9
8.10

Performance Driven Routing
Summary
Exercises

260
261
261
263
264
267
269
272
273
274
277
279
281
282
282
286
287
288

xii Contents

9 Detailed Routing
9.1 Problem Formulation

291
293
293
295
297
302
302
303
304
306
306
311
312
316
316
318
320
320
321
321
323
325
329
330
334
338
340
345
345
346
346
348
349
352
353
354
355
358
358
362
362
363

9.1.1
9.1.2
9.1.3
9.1.4
9.1.5

Routing Considerations
Routing Models
Channel Routing Problems
Switchbox Routing Problems
Design Style Specific Detailed Routing Problems

9.2
9.3

Classification of Routing Algorithms
Single-Layer Routing Algorithms
9.3.1 General River Routing Problem

9.3.1.1 General River Routing Algorithm
9.3.2 Single Row Routing Problem

9.3.2.1
9.3.2.2
9.3.2.3
9.3.2.4

Origin of Single Row Routing
A Graph Theoretic Approach
Algorithm for Street Congestion Minimization
Algorithm for Minimizing Doglegs

9.4 Two-Layer Channel Routing Algorithms
9.4.1
9.4.2

Classification of Two-Layer Algorithms
LEA based Algorithms
9.4.2.1
9.4.2.2
9.4.2.3

Basic Left-Edge Algorithm
Dogleg Router
Symbolic Channel Router: YACR2

9.4.3 Constraint Graph based Routing Algorithms
9.4.3.1
9.4.3.2

Net Merge Channel Router
Glitter: A Gridless Channel Router

9.4.4
9.4.5
9.4.6

Greedy Channel Router
Hierarchical Channel Router
Comparison of Two-Layer Channel Routers

9.5 Three-Layer Channel Routing Algorithms
9.5.1
9.5.2
9.5.3
9.5.4

Classification of Three-Layer Algorithms
Extended Net Merge Channel Router
HVH Routing from HV Solution
Hybrid HVH-VHV Router

9.6
9.7

Multi-Layer Channel Routing Algorithms
Switchbox Routing Algorithms
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5

Classification of switchbox routing algorithms
Greedy Router
Rip-up and Re-route Based Router
Computational Geometry Based Router
Comparison of Switchbox Routers

9.8
9.9

Summary
Exercises

Contents xiii

10 Over-the-Cell Routing and Via Minimization 369
370
371
373
373
377
389
396
398
398
400
401

403
407

408

409
410
410
411

417
418
419
422
423
426
427
427
428
429
430
432
433
436
439
439
440
444
444

10.1 Over-the-cell Routing
10.1.1
10.1.2

Cell Models
Two-Layer Over-the-Cell Routers
10.1.2.1
10.1.2.2
10.1.2.3

Basic OTC Routing Algorithm
Planar Over-the-Cell Routing
Over-the-Cell Routing Using Vacant Terminals

10.1.3
10.1.4
10.1.5

Three-Layer Over-the-cell Routing
Multilayer OTC Routing
Performance Driven Over-the-cell Routing

10.2 Via Minimization
10.2.1 Constrained Via Minimization Problem

10.2.1.1 Graph Representation of Two-Layer CVM Prob-
lem

10.2.2 Unconstrained Via Minimization
10.2.2.1

10.2.2.2

10.2.2.3

Optimal Algorithm for Crossing-Channel TVM
Problem
Approximation Result for General k-TVM Prob-
lem
Routing Based on Topological Solution

10.3
10.4

Summary
Exercises

11 Clock and Power Routing
11.1 Clock Routing

11.1.1
11.1.2

Clocking Schemes
Design Considerations for the Clocking System
11.1.2.1 Delay Calculation for Clock Trees

11.1.3 Problem Formulation
11.1.3.1 Design Style Specific Problems

11.1.4 Clock Routing Algorithms
11.1.4.1
11.1.4.2
11.1.4.3
11.1.4.4
11.1.4.5
11.1.4.6

H-tree Based Algorithm
The MMM Algorithm
Geometric Matching based Algorithm
Weighted Center Algorithm
Exact Zero Skew Algorithm
DME Algorithm

11.1.5
11.1.6

Skew and Delay Reduction by Pin Assignment
Multiple Clock Routing

11.2
11.3
11.4

Power and Ground Routing
Summary
Exercises

xiv Contents

12 Compaction
12.1 Problem Formulation

449
450
450
451
452
453
454
460
463
463
463
464
464
467
468
470
473
473
473
474
474
475
476
476

479
480
485
485
489
490
492
493
494
496
497

501
502
505
507
510
512
512
513
514

12.1.1 Design Style Specific Compaction Problem
12.2
12.3

Classification of Compaction Algorithms
One-Dimensional Compaction
12.3.1 Constraint-Graph Based Compaction

12.3.1.1
12.3.1.2
12.3.1.3
12.3.1.4

Constraint Graph Generation
Critical Path Analysis
Wire Jogging
Wire Length Minimization

12.3.2 Virtual Grid Based Compaction
12.3.2.1
12.3.2.2
12.3.2.3

Basic Virtual Grid Algorithm
Split Grid Compaction
Most Recent Layer Algorithm

12.4
12.5

Compaction
Two-Dimensional Compaction
12.5.1 Simulated Annealing based Algorithm

12.6 Hierarchical Compaction
12.6.1 Constraint-Graph Based Hierarchical Compaction

12.7 Recent trends in compaction
12.7.1
12.7.2

Performance-driven compaction
Compaction techniques for yield enhancement

12.8
12.9

Summary
Exercises

13 Physical Design Automation of FPGAs
13.1
13.2
13.3
13.4

FPGA Technologies
Physical Design Cycle for FPGAs
Partitioning
Routing
13.4.1
13.4.2

Routing Algorithm for the Non-Segmented Model
Routing Algorithms for the Segmented Model
13.4.2.1
13.4.2.2

Basic Algorithm
Routing Algorithm for Staggered Model

13.5
13.6

Summary
Exercises

14 Physical Design Automation of MCMs
14.1
14.2
14.3
14.4

MCM Technologies
MCM Physical Design Cycle
Partitioning
Placement
14.4.1
14.4.2

Chip Array Based Approach
Full Custom Approach

14.5 Routing
14.5.1 Classification of MCM Routing Algorithms

Contents xv

14.5.2
14.5.3

Maze Routing 514
515
515
517
517
517
519
519
521
521

Multiple Stage Routing
14.5.3.1
14.5.3.2
14.5.3.3

Pin Redistribution Problem
Layer Assignment
Detailed Routing

14.5.4
14.5.5
14.5.6

Topological Routing
Integrated Pin Distribution and Routing
Routing in Programmable Multichip Modules

14.6
14.7

Summary
Exercises

Bibliography 525

Author Index 563

Subject Index 567

This Page Intentionally Left Blank

Foreword

Since the invention of integrated circuits thirty years ago, manufacturing of
electronic systems has taken rapid strides in improvement in speed, size, and
cost. For today’s integrated circuit chips, switching time is on the order of
nanoseconds, minimum feature size is on the order of sub-microns, transistor
count is on the order of millions, and cost is on the order of a few dollars.
In fact, it was estimated that the performance/cost ratio of integrated circuit
chips has been increasing at the rate of one thousand-fold every ten years,
yielding a total of for the last three decades. A combination of high product
performance and low per-unit cost leads to the very pervasive introduction of
integrated circuit chips to many aspects of modern engineering and scientific
endeavors including computations, telecommunications, aeronautics, genetics,
bioengineering, manufacturing, factory automation, and so on. It is clear that
the integrated circuit chip will play the role of a key building block in the
information society of the twenty-first century.

The manufacture of integrated circuit chips is similar to the manufacture
of other highly sophisticated engineering products in many ways. The three
major steps are designing the product, fabricating the product, and testing the
fabricated product. In the design step, a large number of components are to
be designed or selected, specifications on how these components should be as-
sembled are to be made, and verification steps are to be carried out to assure
the correctness of the design. In the manufacturing step, a great deal of man-
power, and a large collection of expensive equipment, together with painstaking
care are needed to assemble the product according to the design specification.
Finally, the fabricated product must be tested to check its physical function-
ality. As in all engineering problems, there are conflicting requirements in all
these steps. In the design step, we want to obtain an optimal product design,
and yet we also want the design cycle to be short. In the fabrication step, we
want the product yield to be high, and yet we also need to be able to produce
a large volume of the product and get them to market in time. In the testing
step, we want the product to be tested thoroughly and yet we also want to be
able to do so quickly.

The title of this book reveals how the issue of enormous design complexity
is to be handled so that high quality designs can be obtained in a reason-
able amount of design time: We use muscles (automation) and we use brain

xviii

(algorithms). Professor Sherwani has written an excellent book to introduce
students in computer science and electrical engineering as well as CAD engi-
neers to the subject of physical design of VLSI circuits. Physical design is a
key step in the design process. Research and development efforts in the last
twenty years have led us to some very good understanding on many of the
important problems in physical design. Professor Sherwani’s book provides a
timely, up-to-date integration of the results in the field and will be most useful
both as a graduate level textbook and as a reference for professionals in the
field. All aspects of the physical design process are covered in a meticulous
and comprehensive manner. The treatment is enlightening and enticing. Fur-
thermore, topics related to some of the latest technology developments such as
Field Programmable Gate Arrays (FPGA) and Multi-Chip Modules (MCM)
are also included. A strong emphasis is placed on the algorithmic aspect of
the design process. Algorithms are presented in an intuitive manner without
the obscurity of unnecessary formalism. Both theoretical and practical aspects
of algorithmic design are stressed. Neither the elegance of optimal algorithms
nor the usefulness of heuristic algorithms are overlooked. ¿From a pedagogical
point of view, the chapters on electronic devices and on data structures and ba-
sic algorithms provide useful background material for students from computer
science, computer engineering, and electrical engineering. The many exercises
included in the book are also most helpful teaching aids.

This is a book on physical design algorithms. Yet, this is a book that
goes beyond physical design algorithms. There are other important design
steps of which our understanding is still quite limited. Furthermore, develop-
ment of new materials, devices, and technologies will unquestionably create new
problems and new avenues of research and development in the design process.
An algorithmic outlook on design problem and the algorithmic techniques for
solving complex design problems, which a reader learns through the examples
drawn from physical design in this book, will transcend the confine of physical
design and will undoubtedly prepare the reader for many of the activities in
the field of computer-aided design of VLSI circuits. I expect to hear from many
students and CAD professionals in the years to come that they have learned a
great deal about physical design, computer-aided design, and scientific research
from Professor Sherwani’s book. I also expect to hear from many of them that
Professor Sherwani’s book is a source of information as well as a source of in-
spiration.

Urbana-Champaign, September 1992 C. L. Liu

Preface

From its humble beginning in the early 1950’s to the manufacture of circuits
with millions of components today, VLSI design has brought the power of the
mainframe computer to the laptop. Of course, this tremendous growth in the
area of VLSI design is made possible by the development of sophisticated design
tools and software. To deal with the complexity of millions of components and
to achieve a turn around time of a couple of months, VLSI design tools must
not only be computationally fast but also perform close to optimal.

The future growth of VLSI systems depends critically on the research and
development of Physical Design (PD) Automation tools. In the last two decades,
the research in physical design automation has been very intense, and literally
thousands of research articles covering all phases of physical design automation
have been published. The development of VLSI physical design automation also
depends on availability of trained manpower. We have two types of students
studying VLSI physical design: students preparing for a research career and
students preparing for a career in industry. Both types of students need to
build a solid background. However, currently we lack courses and text books
which give students a comprehensive background. It is common to find stu-
dents doing research in placement, but are unaware of the latest developments
in compaction. Those students seeking careers in industry will find that the
VLSI physical design industry is very fast paced. They are expected to be con-
versant with existing tools and algorithms for all the stages of the design cycle
of a VLSI chip. In industry, it is usual to find CAD engineers who work on one
aspect of physical design and lack knowledge of other aspects. For example,
a CAD engineer working in the development of detailed routers may not be
knowledgeable about partitioning algorithms. This is again due to the lack
of comprehensive textbooks which cover background material in all aspects of
VLSI physical design.

Providing a comprehensive background in one textbook in VLSI physical
design is indeed difficult. This is due to the fact that physical design automa-
tion requires a mix of backgrounds. Some electrical engineering and a solid
undergraduate computer science background is necessary to grasp the funda-
mentals. In addition, some background in graph theory and combinatorics is
also needed, since many of the algorithms are graph theoretic or use other
combinatorial optimization techniques. This mix of backgrounds has perhaps

xx

restricted the development of courses and textbooks in this very area.
This book is an attempt to provide a comprehensive background in the

principles and algorithms of VLSI physical design. The goal of this book is to
serve as a basis for the development of introductory level graduate courses in
VLSI physical design automation. It is hoped that the book provides self con-
tained material for teaching and learning algorithms of physical design. All
algorithms which are considered basic have been included. The algorithms are
presented in an intuitive manner, so that the reader can concentrate on the
basic idea of the algorithms. Yet, at the same time, enough detail is provided
so that readers can actually implement the algorithms given in the text and
use them.

This book grew out of a graduate level class in VLSI physical design au-
tomation at Western Michigan University. Initially written as a set of class
notes, the book took form as it was refined over a period of three years.

Overview of the Book

This book covers all aspects of physical design. The first three chapters
provide the background material, while the focus of each chapter of the rest
of the book is on each phase of the physical design cycle. In addition, newer
topics like physical design automation of FPGAs and MCMs have also been
included.

In Chapter 1, we give an overview of the VLSI physical design automation
field. Topics include the VLSI design cycle, physical design cycle, design styles
and packaging styles. The chapter concludes with a brief historical review of
the field.

Chapter 2 discusses the fabrication process for VLSI devices. It is important
to understand the fabrication technology in order to correctly formulate the
problems. In addition, it is important for one to understand, what is doable
and what is not! Chapter 2 presents fundamentals of MOS and TTL transistors.
It then describes simple NAND and NOR gates in nMOS and CMOS.

Chapter 3 presents the status of fabrication process, as well as, process
innovations on the horizons and studies its impact on physical design. We also
discuss several other factors such as design rules, yield, delay, and fabrication
costs involved in the VLSI process.

Basic material on data structures and algorithms involved in the physical
design is presented in Chapter 4. Several different data structures for layout
have been discussed. Graphs which are used to model several different problems
in VLSI design are defined and basic algorithms for these graphs are presented.

Chapter 5 deals with partitioning algorithms. An attempt has been made
to explain all the possible factors that must be considered in partitioning the
VLSI circuits. Group migration, simulated annealing and simulated evolution
algorithms have been presented in detail. The issue of performance driven
partitioning is also discussed.

In Chapter 6, we discuss basic algorithms for floorplanning and pin assign-
ment. Several different techniques for placement such as, simulated annealing,

xxi

simulated evolution, and force-directed are discussed in Chapter 7.
Chapter 8 deals with global routing. It covers simple routing algorithms,

such as maze routing, and more advanced integer programming based methods.
It also discusses Steiner tree algorithms for routing of multiterminal nets.

Chapter 9 is the longest chapter in the book and represents the depth
of knowledge that has been gained in the detailed routing area in the last
decade. Algorithms are classified according to the number of layers allowed for
routing. In single layer routing, we discuss general river routing and the single
row routing problem. All major two-layer channel and switch box routers are
also presented. The chapter also discusses three-layer and multilayer routing
algorithms.

Chapter 10 discusses two ways of improving layouts after detailed routing,
namely, via minimization and over-the-cell routing. Basic algorithms for via
minimization are presented. Over-the-cell routing is a relatively new technique
for reducing routing areas. We present the two latest algorithms for over-the-
cell routing.

The problems of routing clock and power/ground nets are discussed in
Chapter 11. These topics play a key role in determining the layout of high
performance systems. Circuit compaction is discussed in Chapter 12. One di-
mensional compaction, as well as two dimensional compaction algorithms are
presented.

Field Programmable Gate Arrays (FPGAs) are rapidly gaining ground in
many applications, such as system prototyping. In Chapter 13, we discuss
physical design automation problems and algorithms for FPGAs. In particular,
we discuss the partitioning and routing problems in FPGAs. Both of these
problems are significantly different from problems in VLSI. Many aspects of
physical design of FPGAs remain a topic of current research.

Multi-Chip Modules (MCMs) are replacing conventional printed circuit
boards in many applications. MCMs promise high performance systems at
a lower cost. In Chapter 14, we explore the physical design issues in MCMs. In
particular, the routing problem of MCMs is a true three dimensional problem.
MCMs are currently a topic of intense research.

At the end of each chapter, a list of exercises is provided, which range in
complexity from simple to research level. Unmarked problems and algorithms
are the simplest. The exercises marked with (†) are harder and algorithms in
these exercises may take a significant effort to implement. The exercises and
algorithms marked with (‡) are the hardest. In fact, some of these problems
are research problems.

Bibliographic notes can be found at the end of each chapter. In these notes,
we give pointers to the readers for advanced topics. An extensive bibliography
is presented at the end of the text. This bibliography is complete, to the best
of our knowledge, up to the September of 1998. An attempt has been made to
include all papers which are appropriate for the targeted readers of this text.
The readers may also find the author and the subject index at the back of the
text.

xxii

Overview of the Second Edition

In 1992, when this book was originally published, the largest microprocessor
had one million transistors and fabrication process had three metal layers. We
have now moved into a six metal layer process and 15 million transistor micro-
processors are already in advanced stages of design. The designs are moving
towards a 500 to 700 Mhz frequency goal. This challenging frequency goal, as
well as, the additional metal layers have significantly altered the VLSI field.
Many issues such as three dimensional routing, Over-the-Cell routing, early
floorplanning have now taken a central place in the microprocessor physical
design flow. This changes in the VLSI design prompted us to reflect these in
the book. That gave birth to the idea of the second edition.

The basic purpose of the second edition is to introduce a more realistic
picture to the reader exposing the concerns facing the VLSI industry while
maintaining the theoretical flavor of the book. New material has been added
to all the chapters. Several new sections have been added to many chapters.
Few chapters have been completely rewritten. New figures have been added to
supplement the new material and clarify the existing material.

In summary, I have made an attempt to capture the physical design flow
used in the industry and present it in the second addition. I hope that readers
will find that information both useful and interesting.

Overview of the Third Edition

In 1995, when we prepared the 2nd edition of this book, a six metal layer
process and 15 million transistor microprocessors were in advanced stages of
design. In 1998, six metal process and 20 million transistor designs are in pro-
duction. Several manufacturers have moved to 0.18 micron process and copper
interconnect. One company has announced plans for 0.10 micron process and
plans to integrate 200 to 400 million transistors on a chip. Operating frequency
has moved from 266 Mhz (in 1995) to 650 Mhz and several Ghz experimental
chips have been demonstrated. Interconnect delay has far exceeded device de-
lay and has become a dominant theme in physical design. Process innovations
such as copper, low k dielectrics, multiple threshold devices, local interconnect
are once again poised to change physical design once again.

The basic purpose of the third edition is to investigate the new challenges
presented by interconnect and process innovations. In particular, we wanted to
identify key problems and research areas that physical design community needs
to invest in order to meet the challenges. We took a task of presenting those
ideas while maintaining the flavor of the book. As a result, we have added two
new chapters and new material has been added to most of the chapters. A new
chapter on process innovation and its impact on physical design has been added.
Another focus of the book has been to promote use of Internet as a resource,
so wherever possible URLs has been provided for further investigation.

Chapters 1 and 2 have been updated. Chapter 3 is a new chapter on the
fabrication process and its impact. Chapter 4 (algorithms) and Chapter 5

xxiii

(partitioning) have been edited for clarity. Chapter on Floorplanning, Place-
ment and Pin Assignment has been split into Chapter 6 (Floorplanning) and
Chapter 7 (Placement) to bring sharper focus to floorplanning. New sequence
pair algorithms have been added to Chapter 7 (Placement) Chapter 8 and 9
have been edited for clarity and references have been updated as appropriate.
New sections have been added to Chapter 10, Chapter 11 and Chapter 12. In
Chapter 10, we have added material related to performance driven routing. In
Chapter 11, DME algorithm has been added. In Chapter 12, we have added
new compaction algorithms. Chapters 13 (FPGAs) and 14 (MCMs) have been
updated. We have made an attempt to update the bibliography quite exten-
sively and many new items have been added.

In summary, I have made an attempt to capture the impact of interconnect
and process innovations on physical design flow. I have attempted to balance
material on new innovations with the classical content of the 2nd edition. I
hope that readers will find that information both useful and interesting.

To the Teacher

This book has been written for introductory level graduate students. It
presents concepts and algorithms in an intuitive manner. Each chapter contains
3 to 4 algorithms that have been discussed in detail. This has been done so as
to assist students in implementing the algorithms. Other algorithms have been
presented in a somewhat shorter format. References to advanced algorithms
have been presented at the end of each chapter. Effort has been made to make
the book self contained.

This book has been developed for a one-semester or a two-semester course
in VLSI physical design automation. In a one-semester course, it is recom-
mended that chapters 8, 9, 11, and 12 be omitted. A half-semester algorithm
development project is highly recommended. Implementation of algorithms is
an important tool in making students understand algorithms. In physical de-
sign, the majority of the algorithms are heuristic in nature and testing of these
algorithms on benchmarks should be stressed. In addition, the development of
practical algorithms must be stressed, that is, students must be very aware of
the complexity of the algorithms. An optimal algorithm may be imprac-
tical for an input of size 10 million. Several (†) marked problems at the end of
each chapter may serve as mini-projects.

In a two-semester class, it is recommended that all the chapters be included.
Reading state-of-art papers must be an integral part of this class. In particular,
students may be assigned papers from proceedings of DAC and ICCAD or
from IEEE Transactions on CAD. Papers from Transactions typically require
a little more mathematical maturity than the papers in DAC and ICCAD. An
important part of this class should be a two-semester project, which may be
the development of a new algorithm for some problem in physical design. A
typical first part of the project may involve modifying an existing algorithm
for a special application. Some (‡) problems may serve as projects.

In both the courses, a good background in hand layout is critical. It is

xxiv

expected that students will have access to a layout editor, such as MAGIC or
LEDIT. It is very important that students actually layout a few small circuits.
For examples see exercises at the end of Chapter 2.

For faculty members, a teaching aid package, consisting of a set of 400 over-
heads (foils) is available from the author. These are quite helpful in teaching
the class, as all the important points have been summarized on section by sec-
tion basis. In order to obtain these foils, please send an email (or a mail) to
the author, at the address below.

To the Student

First and foremost, I hope that you will enjoy reading this book. Every
effort has been made to make this book easy to read. The algorithms have
been explained in an intuitive manner. The idea is to get you to develop new
algorithms at the end of the semester. The book has been balanced to give
a practical as well as a theoretical background. In that sense, you will find
it useful, if you are thinking about a career in industry or if you are thinking
about physical design as a possible graduate research topic.

What do you need to start reading this book? Some maturity in general
algorithm techniques and data structures is assumed. Some electrical engi-
neering background and mathematics background will be helpful, although not
necessary. The book is self-contained to a great extent and does not need any
supporting text or reference text.

If you are considering a career in this field, I have one important piece of
advise for you. Research in this field moves very fast. As a result, no textbook
can replace state-of-the-art papers. It is recommended that you read papers
to keep you abreast of latest developments. A list of conference proceedings
and journals appears in the bibliographic notes of Chapter 1. I also recom-
mend attending DAC and ICCAD conferences every year and a membership in
ACM/SIGDA, IEEE/DATC and IEEE/TC-VLSI.

To the CAD Professional

This book provides a detailed description of all aspects of physical design
and I hope you have picked up this book to review your basics of physical de-
sign. While it concentrates on basic algorithms, pointers are given to advanced
algorithms as well. The text has been written with a balance of theory and
practice in mind. You will also find the extensive bibliography useful for finding
advanced material on a topic.

Errors and Omissions

No book is free of errors and omissions. Despite our best attempt, this
text may contain some errors. If you find any errors or have any constructive
suggestions, I would appreciate receiving your comments and suggestions. In
particular, new exercises would certainly be very helpful. You can mail your

xxv

comments to:

Naveed Sherwani
Intel Corporation, Mail Stop: JFT-104
2111 N. E. 25th Avenue
Hillsboro, OR 97124-5961

or email them to sherwaan@ichips.intel.com.
A concentrated effort has been made to include all pertinent references to

papers and books that we could find. If you find omissions in the book, please
feel free to remind me.

This book was typeset in Latex. Figures were made using ‘xfig’ and in-
serted directly into the text as .ps files using ‘transfig’. The bibliography was
generated using Bibtex and the index was generated with a program written
by Siddharth Bhingarde.

Portland, March, 1998 Naveed A. Sherwani

This Page Intentionally Left Blank

Acknowledgments

No book is a product of one person. The same is true for this book. First
I must thank all members of the nitegroup who worked tirelessly for days
and nights (mostly nights) for the final six months. First I would like to
thank Siddharth Bhingarde, Surendra Burman, Moazzem Hossain, Chandar
Kamalanathan, Wasim Khan, Arun Shanbhag, Timothy Strunk and Qiong Yu.
Thanks are also to due to nitegroup members who have graduated. In par-
ticular Roshan Gidwani, Jahangir Hashmi, Nancy Holmes, and Bo Wu, who
helped in all stages of this project. Special thanks are due to the youngest
member of nitegroup, Timothy Strunk, who made (almost) all the figures in
the text and brought enthusiasm to the team. Thanks are also due to Anand
Panyam, Konduru Nagesh and Aizaz Manzar for helping in the final stages of
this project. Many students in my class CS520 (Introduction to VLSI design
automation) suffered through earlier version of this book, and I would like to
thank them for their constructive suggestions.

Several colleagues and friends contributed significantly by reviewing several
chapters and using parts of the book in their courses. In this regard, I would
like to thank Jeff Banker, Ajay Gupta, Mark Kerstetter, Sartaj Sahni, and
Jason Cong. I would also like to especially thank Dinesh Mehta and Si-Qing
Zheng. I wish to express my sincere thanks to Malgorzata Marek-Sadowska,
who made very critical remarks and contributions to the improvement in the
quality of the text.

Thanks are due to two special people, who have contributed very generously
in my career and helped in many ways. I would like to thank Vishwani Agrawal
and C. L. Liu for their constant encouragement and sound words of advise.

I would like to thank several different organizations who have contributed
directly to this project. First, I would like to thank Ken Wan, and the rest
of the CTS group at Advanced Micro Devices for helping with many technical
details. I would also like to thank ACM SIGDA for supporting our research
during the last four years. Thanks are also due to Western Michigan University,
and in particular Donald Nelson and Douglas Ferraro, who, despite all costs,
made the necessary facilities available to complete this book. The National
Science Foundation deserves thanks for supporting the VLSI laboratory and
our research at Western Michigan University. I would also like to thank Reza
Rashidi and the staff of FRC laboratory for their help in printing the text and

xxviii

cover design.
I would also like to thank our system manager Patty Labelle, who cheerfully

accepted our occasional abuse of the system and kept all the machines up when
we needed them. I must also thank our department secretaries Phyllis Wolf
and Sue Moorian for being very helpful during all stages of this project.

I must thank my copy editor Frank Strunk, who very carefully read the
manuscript in the short time we gave him. Thanks are also due to Carl Har-
ris, editor at Kluwer Academic Publishers for being understanding and going
beyond his call of duty to help out with my requests.

Finally, I wish to thank my parents and my family for supporting me
throughout my life and for being there when I needed them. They suffered
as I neglected many social responsibilities to complete this book.

Kalamazoo, September, 1992 Naveed A. Sherwani

xxix

Acknowledgments for the Second Edition

The second edition project would not have been possible without the help of
Siddharth Bhingarde, Aman Sureka, Rameshwar Donakanti and Anand Pa-
nyam. In particular, Siddharth worked with me for many many nights on this
project. I am very grateful to these individuals for their help.

Several of my colleagues at Intel helped as reviewers of the chapters. In
this regard, I would like to thank Marc Rose, John Hansen, Dave Ackley, Mike
Farabee, and Niraj Bindal.

Several friends and family members helped by being copy editors. Sabahat
Naveed, Shazia Asif and Akram Sherwani helped by editing many revisions.
Internet played a key role, as many of these revisions were done in Pakistan
and then emailed to me.

I would like to thank Intel Corporation for helping me with this project. In
particular, I would like to thank Atiq Bajwa for making the time available for
me to complete the project.

Portland, March, 1995 Naveed A. Sherwani

xxx

Acknowledgments for the Third Edition

The third edition would not have been possible without the help of Faran
Rafiq, Srinivasa Danda, Siddharth Bhingarde, Niraj Bindal, Prashant Saxena,
Peichen Pan and Anand Panyam. I am very grateful to these individuals for
their help. In particular, I am indebted to Faran Rafiq, who worked tireless
with me and this project would not have been possible without his dedication
and hard work.

I would like to thank Intel Corporation for helping me with the third edition.
In particular, I would like to thank Manpreet Khaira for the Research and
Development environment, which has helped mature many ideas.

I must thank my copy editor Tawni Schlieski, who very carefully read the
new chapters and turned them around in a very short time. I am very thankful
to Carl Harris, editor at Kluwer Academic Publishers for encouraging me to
write the third edition.

Finally, I am very thankful to my wife Sabahat and my daughter Aysel for
their encouragement and support.

Portland, September, 1998 Naveed A. Sherwani

Chapter 1

VLSI Physical Design
Automation

The information revolution has transformed our lives. It has changed our
perspective of work, life at home and provided new tools for entertainment. The
internet has emerged as a medium to distribute information, communication,
event planning, and conducting E-commerce. The revolution is based on com-
puting technology and communication technology, both of which are driven by
a revolution in Integrated Circuit (IC) technology. ICs are used in computers
for microprocessor, memory, and interface chips. ICs are also used in computer
networking, switching systems, communication systems, cars, airplanes, even
microwave ovens. ICs are now even used in toys, hearing aids and implants
for human body. MEMs technology promises to develop mechanical devices
on ICs thereby enabling integration of mechanical and electronic devices on a
miniature scale. Many sensors, such as acceleration sensors for auto air bags,
along with conversion circuitry are built on a chip. This revolutionary devel-
opment and widespread use of ICs has been one of the greatest achievements
of humankind.

IC technology has evolved in the 1960s from the integration of a few transis-
tors (referred to as Small Scale Integration (SSI))o the integration of millions
of transistors in Very Large Scale Integration (VLSI) chips currently in use.
Early ICs were simple and only had a couple of gates or a flip-flop. Some ICs
were simply a single transistor, along with a resistor network, performing a
logic function. In a period of four decades there have been four generations
of ICs with the number of transistors on a single chip growing from a few to
over 20 million. It is clear that in the next decade, we will be able to build
chips with billions of transistors running at several Ghz. We will also be able
to build MEM chips with millions of electrical and mechanical devices. Such
chips will enable a new era of devices which will make such exotic applications,
such as tele-presence, augumented reality and implantable and wearable com-
puters, possible. Cost effective world wide point-to-point communication will
be common and available to all.

2 Chapter 1. VLSI Physical Design Automation

This rapid growth in integration technology has been (and continues to be)
made possible by the automation of various steps involved in the design and
fabrication of VLSI chips. Integrated circuits consist of a number of electronic
components, built by layering several different materials in a well-defined fash-
ion on a silicon base called a wafer. The designer of an IC transforms a circuit
description into a geometric description, called the layout. A layout consists
of a set of planar geometric shapes in several layers. The layout is checked
to ensure that it meets all the design requirements. The result is a set of de-
sign files that describes the layout. An optical pattern generator is used to
convert the design files into pattern generator files. These files are used to
produce patterns called masks. During fabrication, these masks are used to
pattern a silicon wafer using a sequence of photo-lithographic steps. The com-
ponent formation requires very exacting details about geometric patterns and
the separation between them. The process of converting the specification of
an electrical circuit into a layout is called the physical design process. Due to
the tight tolerance requirements and the extremely small size of the individual
components, physical design is an extremely tedious and error prone process.
Currently, the smallest geometric feature of a component can be as small as
0.25 micron (one micron, written as is equal to). For the sake
of comparison, a human hair is in diameter. It is expected that the
feature size can be reduced below 0.1 micron within five years. This small fea-
ture size allows fabrication of as many as 200 million transistors on a 25 mm ×
25 mm chip. Due to the large number of components, and the exacting details
required by the fabrication process, physical design is not practical without the
help of computers. As a result, almost all phases of physical design extensively
use Computer Aided Design (CAD) tools, and many phases have already been
partially or fully automated.

VLSI Physical Design Automation is essentially the research, development
and productization of algorithms and data structures related to the physical
design process. The objective is to investigate optimal arrangements of devices
on a plane (or in three dimensions) and efficient interconnection schemes be-
tween these devices to obtain the desired functionality and performance. Since
space on a wafer is very expensive real estate, algorithms must use the space
very efficiently to lower costs and improve yield. In addition, the arrangement
of devices plays a key role in determining the performance of a chip. Algo-
rithms for physical design must also ensure that the layout generated abides
by all the rules required by the fabrication process. Fabrication rules establish
the tolerance limits of the fabrication process. Finally, algorithms must be effi-
cient and should be able to handle very large designs. Efficient algorithms not
only lead to fast turn-around time, but also permit designers to make iterative
improvements to the layouts. The VLSI physical design process manipulates
very simple geometric objects, such as polygons and lines. As a result, physi-
cal design algorithms tend to be very intuitive in nature, and have significant
overlap with graph algorithms and combinatorial optimization algorithms. In
view of this observation, many consider physical design automation the study
of graph theoretic and combinatorial algorithms for manipulation of geometric

1.1. VLSI Design Cycle 3

objects in two and three dimensions. However, a pure geometric point of view
ignores the electrical (both digital and analog) aspect of the physical design
problem. In a VLSI circuit, polygons and lines have inter-related electrical
properties, which exhibit a very complex behavior and depend on a host of
variables. Therefore, it is necessary to keep the electrical aspects of the ge-
ometric objects in perspective while developing algorithms for VLSI physical
design automation. With the introduction of Very Deep Sub-Micron (VDSM),
which provides very small features and allows dramatic increases in the clock
frequency, the effect of electrical parameters on physical design will play a more
dominant role in the design and development of new algorithms.

In this chapter, we present an overview of the fundamental concepts of
VLSI physical design automation. Section 1.1 discusses the design cycle of a
VLSI circuit. New trends in the VLSI design cycle are discussed in Section 1.2.
In Section 1.3, different steps of the physical design cycle are discussed. New
trends in the physical design cycle are discussed in Section 1.4. Different design
styles are discussed in Section 1.5 and Section 1.6 presents different packaging
styles. Section 1.7 presents a brief history of physical design automation and
Section 1.8 lists some existing design tools.

1.1 VLSI Design Cycle

The VLSI design cycle starts with a formal specification of a VLSI chip,
follows a series of steps, and eventually produces a packaged chip. A typical
design cycle may be represented by the flow chart shown in Figure 1.1. Our
emphasis is on the physical design step of the VLSI design cycle. However, to
gain a global perspective, we briefly outline all the steps of the VLSI design
cycle.

1.

2.

System Specification: The first step of any design process is to lay down
the specifications of the system. System specification is a high level rep-
resentation of the system. The factors to be considered in this process
include: performance, functionality, and physical dimensions (size of the
die (chip)). The fabrication technology and design techniques are also
considered. The specification of a system is a compromise between mar-
ket requirements, technology and economical viability. The end results
are specifications for the size, speed, power, and functionality of the VLSI
system.

Architectural Design: The basic architecture of the system is designed
in this step. This includes, such decisions as RISC (Reduced Instruction
Set Computer) versus CISC (Complex Instruction Set Computer), num-
ber of ALUs, Floating Point units, number and structure of pipelines,
and size of caches among others. The outcome of architectural design
is a Micro-Architectural Specification (MAS). While MAS is a textual
(English like) description, architects can accurately predict the perfor-
mance, power and die size of the design based on such a description.

4 Chapter 1. VLSI Physical Design Automation

Such estimates are based on the scaling of existing design or components
of existing designs. Since many designs (especially microprocessors) are
based on modifications or extensions to existing designs, such a method
can provide fairly accurate early estimates. These early estimates are
critical to determine the viability of a product for a market segment. For
example, for mobile computing (such as lap top computer), low power
consumption is a critical factor, due to limited battery life. Early esti-
mates based on architecture can be used to determine if the design is
likely to meet its power spec.

3.

4.

5.

Behavioral or Functional Design: In this step, main functional units
of the system are identified. This also identifies the interconnect re-
quirements between the units. The area, power, and other parameters
of each unit are estimated. The behavioral aspects of the system are
considered without implementation specific information. For example, it
may specify that a multiplication is required, but exactly in which mode
such multiplication may be executed is not specified. We may use a va-
riety of multiplication hardware depending on the speed and word size
requirements. The key idea is to specify behavior, in terms of input,
output and timing of each unit, without specifying its internal structure.
The outcome of functional design is usually a timing diagram or other
relationships between units. This information leads to improvement of
the overall design process and reduction of the complexity of subsequent
phases. Functional or behavioral design provides quick emulation of the
system and allows fast debugging of the full system. Behavioral design is
largely a manual step with little or no automation help available.

Logic Design: In this step the control flow, word widths, register allo-
cation, arithmetic operations, and logic operations of the design that
represent the functional design are derived and tested. This description
is called Register Transfer Level (RTL) description. RTL is expressed
in a Hardware Description Language (HDL), such as VHDL or Verilog.
This description can be used in simulation and verification. This de-
scription consists of Boolean expressions and timing information. The
Boolean expressions are minimized to achieve the smallest logic design
which conforms to the functional design. This logic design of the system
is simulated and tested to verify its correctness. In some special cases,
logic design can be automated using high level synthesis tools. These tools
produce a RTL description from a behavioral description of the design.

Circuit Design: The purpose of circuit design is to develop a circuit rep-
resentation based on the logic design. The Boolean expressions are con-
verted into a circuit representation by taking into consideration the speed
and power requirements of the original design. Circuit Simulation is used
to verify the correctness and timing of each component. The circuit design
is usually expressed in a detailed circuit diagram. This diagram shows
the circuit elements (cells, macros, gates, transistors) and interconnec-

1.1. VLSI Design Cycle 5

6 Chapter 1. VLSI Physical Design Automation

tion between these elements. This representation is also called a netlist.
Tools used to manually enter such description are called schematic cap-
ture tools. In many cases, a netlist can be created automatically from
logic (RTL) description by using logic synthesis tools.

6.

7.

Physical Design: In this step the circuit representation (or netlist) is
converted into a geometric representation. As stated earlier, this geo-
metric representation of a circuit is called a layout. Layout is created by
converting each logic component (cells, macros, gates, transistors) into a
geometric representation (specific shapes in multiple layers), which per-
form the intended logic function of the corresponding component. Con-
nections between different components are also expressed as geometric
patterns typically lines in multiple layers. The exact details of the layout
also depend on design rules, which are guidelines based on the limitations
of the fabrication process and the electrical properties of the fabrication
materials. Physical design is a very complex process and therefore it is
usually broken down into various sub-steps. Various verification and val-
idation checks are performed on the layout during physical design. In
many cases, physical design can be completely or partially automated
and layout can be generated directly from netlist by Layout Synthesis
tools. Most of the layout of a high performance design (such as a micro-
processor) may be done using manual design, while many low to medium
performance design or designs which need faster time-to-market may be
done automatically. Layout synthesis tools, while fast, do have an area
and performance penalty, which limit their use to some designs. Man-
ual layout, while slow and manually intensive, does have better area and
performance as compared to synthesized layout. However this advan-
tage may dissipate as larger and larger designs may undermine human
capability to comprehend and obtain globally optimized solutions.

Fabrication: After layout and verification, the design is ready for fabri-
cation. Since layout data is typically sent to fabrication on a tape, the
event of release of data is called Tape Out. Layout data is converted (or
fractured) into photo-lithographic masks, one for each layer. Masks iden-
tify spaces on the wafer, where certain materials need to be deposited,
diffused or even removed. Silicon crystals are grown and sliced to pro-
duce wafers. Extremely small dimensions of VLSI devices require that the
wafers be polished to near perfection. The fabrication process consists of
several steps involving deposition, and diffusion of various materials on
the wafer. During each step one mask is used. Several dozen masks may
be used to complete the fabrication process. A large wafer is 20 cm (8
inch) in diameter and can be used to produce hundreds of chips, depend-
ing of the size of the chip. Before the chip is mass produced, a prototype
is made and tested. Industry is rapidly moving towards a 30 cm (12 inch)
wafer allowing even more chips per wafer leading to lower cost per chip.

1.2. New Trends in VLSI Design Cycle 7

8. Packaging, Testing and Debugging: Finally, the wafer is fabricated
and diced into individual chips in a fabrication facility. Each chip is then
packaged and tested to ensure that it meets all the design specifications
and that it functions properly. Chips used in Printed Circuit Boards
(PCBs) are packaged in Dual In-line Package (DIP), Pin Grid Array
(PGA), Ball Grid Array (BGA), and Quad Flat Package (QFP). Chips
used in Multi-Chip Modules (MCM) are not packaged, since MCMs use
bare or naked chips.

It is important to note that design of a complex VLSI chip is a complex
human power management project as well. Several hundred engineers may
work on a large design project for two to three years. This includes architecture
designers, circuit designers, physical design specialists, and design automation
engineers. As a result, design is usually partitioned along functionality, and
different units are designed by different teams. At any given time, each unit
may not be at the same level of design. While one unit may be in logic design
phase, another unit may be completing its physical design phase. This imposes
a serious problem for chip level design tools, since these tools must work with
partial data at the chip level.

The VLSI design cycle involves iterations, both within a step and between
different steps. The entire design cycle may be viewed as transformations of
representations in various steps. In each step, a new representation of the
system is created and analyzed. The representation is iteratively improved to
meet system specifications. For example, a layout is iteratively improved so
that it meets the timing specifications of the system. Another example may be
detection of design rule violations during design verification. If such violations
are detected, the physical design step needs to be repeated to correct the error.
The objectives of VLSI CAD tools are to minimize the time for each iteration
and the total number of iterations, thus reducing time-to-market.

1.2 New Trends in VLSI Design Cycle

The design flow described in the previous section is conceptually simple and
illustrates the basic ideas of the VLSI design cycle. However, there are many
new trends in the industry, which seek to significantly alter this flow. The
major contributing factors are:

1. Increasing interconnect delay: As the fabrication process improves,
the interconnect is not scaling at the same rate as the devices. Devices are
becoming smaller and faster, and interconnect has not kept up with that
pace. As a result, almost 60% of a path delay may be due to interconnect.
One solution to interconnect delay and signal integrity issue is insertion
of repeaters in long wires. In fact, repeaters are now necessary for most
chip level nets. This techniques requires advanced planning since area for
repeaters must be allocated upfront.

8 Chapter 1. VLSI Physical Design Automation

2.

3.

4.

5.

Increasing interconnect area: It has been estimated that a micropro-
cessor die has only 60%-70% of its area covered with active devices. The
rest of the area is needed to accommodate the interconnect. This area
also leads to performance degradation. In early ICs, a few hundred tran-
sistors were interconnected using one layer of metal. As the number of
transistors grew, the interconnect area increased. However, with the in-
troduction of a second metal layer, the interconnect area decreased. This
has been the trend between design complexity and the number of metal
layers. In current designs, with approximately ten million transistors and
four to six layers of metal, one finds about 40% of the chips real estate
dedicated to its interconnect. While more metal layers help in reducing
the die size, it should be noted that more metal layers (after a certain
number of layers) do not necessarily mean less interconnect area. This is
due to the space taken up by the vias on the lower layers.

Increasing number of metal layers: To meet the increasing needs
of interconnect, the number of metal layers available for interconnect is
increasing. Currently, a three layer process is commonly used for most
designs, while four layer and five layer processes are used mainly for
microprocessors. As a result, a three dimensional view of the interconnect
is necessary.

Increasing planning requirements: The most important implication
of increasing interconnect delay, area of the die dedicated to interconnect,
and a large number of metal layers is that the relative location of devices is
very important. Physical design considerations have to enter into design
at a much earlier phase. In fact, functional design should include chip
planning. This includes two new key steps; block planning and signal
planning. Block planning assigns shapes and locations to main functional
blocks. Signal planning refers to assignment of the three dimensional
regions through which major busses and signals will be routed. Timing
should be estimated to verify the validity of the chip plan. This plan
should be used to create timing constraints for later stages of design.

Synthesis: The time required to design any block can be reduced if
layout can be directly generated or synthesized from a higher level de-
scription. This not only reduces design time, it also eliminates human
errors. The biggest disadvantage is the area used by synthesized blocks.
Such blocks take larger areas than hand crafted blocks. Depending upon
the level of design on which synthesis is introduced, we have two types of
synthesis.

Logic Synthesis: This process converts an HDL description of a
block into schematics (circuit description) and then produces its layout.
Logic synthesis is an established technology for blocks in a chip design,
and for complete Application Specific Integrated Circuits (ASICs). Logic
synthesis is not applicable for large regular blocks, such as RAMs, ROMs,
PLAs and Datapaths, and complete microprocessor chips for two reasons;

1.3. Physical Design Cycle 9

speed and area. Logic synthesis tools are too slow and too area inefficient
to deal with such blocks.

High Level Synthesis: This process converts a functional or micro-
architectural description into a layout or RTL description. In high level
synthesis, input is a description which captures only the behavioral as-
pects of the system. The synthesis tools form a spectrum. The syn-
thesis system described above can be called general synthesis. A more
restricted type synthesizes some constrained architectures. For exam-
ple, Digital Signal Processing (DSP) architectures have been successfully
synthesized. These synthesis systems are sometimes called Silicon Com-
pilers. An even more restricted type of synthesis tools are called Module
Generators, which work on smaller size problems. The basic idea is to
simplify the synthesis task, either by restricting the architecture or re-
stricting the size of the problem. Silicon compilers sometimes use the
output of module generators. High level synthesis is an area of current
research and is not used in actual chip development [GDWL92]. In sum-
mary, high level synthesis systems provide very good implementations for
specialized classes of systems, and they will continue to gain acceptance
as they become more generalized.

In order to accommodate the factors discussed above, the VLSI design cycle
is changing. In Figure 1.2, we show a VLSI design flow which is closer to reality.
Due to increasing interconnect delay, the physical design starts very early in
the design cycle to get improved estimates of the performance of the chip, The
early floor physical design activities lead to increasingly improved chip layout
as each block is refined. This also allows better utilization of the chip area
to distribute the interconnect in three dimensions. This distribution helps in
reducing the die size, improving yield and reducing cost. Essentially, the VLSI
design cycle produces increasingly better defined descriptions of the given chip.
Each description is verified and, if it fails to meet the specification, the step is
repeated.

1.3 Physical Design Cycle

The input to the physical design cycle is a circuit diagram and the output
is the layout of the circuit. This is accomplished in several stages such as
partitioning, floorplanning, placement, routing, and compaction. The different
stages of physical design cycle are shown in Figure 1.3. Each of these stages will
be discussed in detail in various chapters; however, to give a global perspective,
we present a brief description of all the stages here.

1. Partitioning: A chip may contain several million transistors. Due to the
limitations of memory space and computation power available it may
not be possible to layout the entire chip (or generically speaking any
large circuit) in the same step. Therefore, the chip (circuit) is normally
partitioned into sub-chips (sub-circuits). These sub-partitions are called

10 Chapter 1. VLSI Physical Design Automation

1.3. Physical Design Cycle 11

blocks. The actual partitioning process considers many factors such as
the size of the blocks, number of blocks, and number of interconnections
between the blocks. The output of partitioning is a set of blocks and
the interconnections required between blocks. Figure 1.3(a) shows that
the input circuit has been partitioned into three blocks. In large circuits,
the partitioning process is hierarchical and at the topmost level a chip
may have 5 to 25 blocks. Each block is then partitioned recursively into
smaller blocks.

2. Floorplanning and Placement: This step is concerned with selecting
good layout alternatives for each block, as well as the entire chip. The
area of each block can be estimated after partitioning and is based ap-
proximately on the number and the type of components in that block. In
addition, interconnect area required within the block must be considered.
The actual rectangular shape of the block, which is determined by the
aspect ratio may, however, be varied within a pre-specified range. Many
blocks may have more general rectilinear shapes. Floorplanning is a crit-
ical step, as it sets up the ground work for a good layout. However, it is
computationally quite hard. Very often the task of floorplanning is done
by a design engineer, rather than a CAD tool. This is due to the fact that
a human is better at ‘visualizing’ the entire floorplan and taking into ac-
count the information flow. Manual floorplanning is sometimes necessary
as the major components of an IC need to be placed in accordance with
the signal flow of the chip. In addition, certain components are often
required to be located at specific positions on the chip.

During placement, the blocks are exactly positioned on the chip. The
goal of placement is to find a minimum area arrangement for the blocks
that allows completion of interconnections between the blocks, while
meeting the performance constraints. That is, we want to avoid a place-
ment which is routable but does not allow certain nets to meet their
timing goals. Placement is typically done in two phases. In the first
phase an initial placement is created. In the second phase, the initial
placement is evaluated and iterative improvements are made until the
layout has minimum area or best performance and conforms to design
specifications. Figure 1.3(b) shows that three blocks have been placed.
It should be noted that some space between the blocks is intentionally
left empty to allow interconnections between blocks.

The quality of the placement will not be evident until the routing phase
has been completed. Placement may lead to an unroutable design, i.e.,
routing may not be possible in the space provided. In that case, another
iteration of placement is necessary. To limit the number of iterations
of the placement algorithm, an estimate of the required routing space is
used during the placement phase. Good routing and circuit performance
depend heavily on a good placement algorithm. This is due to the fact
that once the position of each block is fixed, very little can be done to

12 Chapter 1. VLSI Physical Design Automation

improve the routing and the overall circuit performance. Late placement
changes lead to increased die size and lower quality designs.

3.

4.

5.

Routing: The objective of the routing phase is to complete the intercon-
nections between blocks according to the specified netlist. First, the space
not occupied by the blocks (called the routing space) is partitioned into
rectangular regions called channels and switchboxes. This includes the
space between the blocks as well the as the space on top of the blocks.
The goal of a router is to complete all circuit connections using the short-
est possible wire length and using only the channel and switch boxes.
This is usually done in two phases, referred to as the Global Routing and
Detailed Routing phases. In global routing, connections are completed
between the proper blocks of the circuit disregarding the exact geometric
details of each wire and pin. For each wire, the global router finds a list of
channels and switchboxes which are to be used as a passageway for that
wire. In other words, global routing specifies the different regions in the
routing space through which a wire should be routed. Global routing is
followed by detailed routing which completes point-to-point connections
between pins on the blocks. Global routing is converted into exact routing
by specifying geometric information such as the location and spacing of
wires and their layer assignments. Detailed routing includes channel rout-
ing and switchbox routing, and is done for each channel and switchbox.
Routing is a very well studied problem, and several hundred articles have
been published about all its aspects. Since almost all problems in routing
are computationally hard, the researchers have focused on heuristic algo-
rithms. As a result, experimental evaluation has become an integral part
of all algorithms and several benchmarks have been standardized. Due
to the very nature of the routing algorithms, complete routing of all the
connections cannot be guaranteed in many cases. As a result, a technique
called rip-up and re-route is used, which basically removes troublesome
connections and reroutes them in a different order. The routing phase of
Figure 1.3(c) shows that all the interconnections between the three blocks
have been routed.

Compaction: Compaction is simply the task of compressing the layout
in all directions such that the total area is reduced. By making the
chip smaller, wire lengths are reduced, which in turn reduces the signal
delay between components of the circuit. At the same time, a smaller
area may imply more chips can be produced on a wafer, which in turn
reduces the cost of manufacturing. However, the expense of computing
time mandates that extensive compaction is used only for large volume
applications, such as microprocessors. Compaction must ensure that no
rules regarding the design and fabrication process are violated during the
process. Figure 1.3(d) shows the compacted layout.

Extraction and Verification: Design Rule Checking (DRC) is a process
which verifies that all geometric patterns meet the design rules imposed

1.4. New Trends in Physical Design Cycle 13

by the fabrication process. For example, one typical design rule is the
wire separation rule. That is, the fabrication process requires a specific
separation (in microns) between two adjacent wires. DRC must check
such separation for millions of wires on the chip. There may be several
dozen design rules, some of them are quite complicated to check. After
checking the layout for design rule violations and removing the design
rule violations, the functionality of the layout is verified by Circuit Ex-
traction. This is a reverse engineering process, and generates the circuit
representation from the layout. The extracted description is compared
with the circuit description to verify its correctness. This process is called
Layout Versus Schematics (LVS) verification. Geometric information is
extracted to compute Resistance and Capacitance. This allows accurate
calculation of the timing of each component, including interconnect. This
process is called Performance Verification. The extracted information is
also used to check the reliability aspects of the layout. This process is
called Reliability Verification and it ensures that layout will not fail due
to electro-migration, self-heat and other effects [Bak90].

Physical design, like VLSI design, is iterative in nature and many steps, such
as global routing and channel routing, are repeated several times to obtain a
better layout. In addition, the quality of results obtained in a step depends
on the quality of the solution obtained in earlier steps. For example, a poor
quality placement cannot be ‘cured’ by high quality routing. As a result, earlier
steps have more influence on the overall quality of the solution. In this sense,
partitioning, floorplanning, and placement problems play a more important
role in determining the area and chip performance, as compared to routing
and compaction. Since placement may produce an ‘unroutable’ layout, the
chip might need to be re-placed or re-partitioned before another routing is
attempted. In general, the whole design cycle may be repeated several times to
accomplish the design objectives. The complexity of each step varies, depending
on the design constraints as well as the design style used. Each step of the
design cycle will be discussed in greater detail in a later chapter.

1.4 New Trends in Physical Design Cycle

As fabrication technology improves and process enters the deep sub-micron
range, it is clear that interconnect delay is not scaling at the same rate as the
gate delay. Therefore, interconnect delay is a more significant part of overall
delay. As a result, in high performance chips, interconnect delay must be
considered from very early design stages. In order to reduce interconnect delay
several methods can be employed.

1. Chip level signal planning: At the chip level, routing of major signals
and buses must be planned from early design stages, so that interconnect
distances can be minimized. In addition, these global signals must be
routed in the top metal layers, which have low delay per unit length.

14 Chapter 1. VLSI Physical Design Automation

1.5. Design Styles 15

2. OTC routing: Over-the-Cell (OTC) routing is a term used to describe
routing over blocks and active areas. This is a departure from conven-
tional channel and switchbox routing approach. Actually, chip level sig-
nal planning is OTC routing on the entire chip. The OTC approach
can also be used within a block to reduce area and improve performance.
The OTC routing approach essentially makes routing a three dimensional
problem. Another effect of the OTC routing approach is that the pins
are not brought to the block boundaries for connections to other blocks.
Instead, pins are brought to the top of the block as a sea-of-pins. This
concept, technically called the Arbitrary Terminal Model (ATM), will be
discussed in a later chapter.

The conventional decomposition of physical design into partitioning, place-
ment and routing phases is conceptually simple. However, it is increasingly
clear that each phase is interdependent on other phases, and an integrated
approach to partitioning, placement, and routing is required.

Figure 1.4 shows the physical design cycle with emphasis on timing. The
figure shows that timing is estimated after floorplaning and placement, and
these steps are iterated if some connections fail to meet the timing require-
ments. After the layout is complete, resistance and capacitance effects of one
component on another can be extracted and accurate timing for each compo-
nent can be calculated. If some connections or components fail to meet their
timing requirements, or fail due to the effect of one component on another,
then some or all phases of physical design need to be repeated. Typically,
these ‘repeat-or-not-to-repeat’ decisions are made by experts rather than tools.
This is due to the complex nature of these decisions, as they depend on a host
of parameters.

1.5 Design Styles

Physical design is an extremely complex process. Even after breaking the
entire process into several conceptually easier steps, it has been shown that
each step is computationally very hard. However, market requirements demand
quick time-to-market and high yield. As a result, restricted models and design
styles are used in order to reduce the complexity of physical design. This
practice began in the late 1960s and led to the development of several restricted
design styles [Feu83]. The design styles can be broadly classified as either full-
custom or semi-custom. In a full-custom layout, different blocks of a circuit can
be placed at any location on a silicon wafer as long as all the blocks are non-
overlapping. On the other hand, in semi-custom layout, some parts of a circuit
are predesigned and placed on some specific place on the silicon wafer. Selection
of a layout style depends on many factors including the type of chip, cost, and
time-to-market. Full-custom layout is a preferred style for mass produced chips,
since the time required to produce a highly optimized layout can be justified.
On the other hand, to design an Application Specific Integrated Circuit (ASIC),

16 Chapter 1. VLSI Physical Design Automation

1.5. Design Styles 17

a semi-custom layout style is usually preferred. On a large chip, each block may
use a different layout design style.

1.5.1 Full-Custom

In its most general form of design style, the circuit is partitioned into a
collection of sub-circuits according to some criteria such as functionality of each
sub-circuit. The process is done hierarchically and thus full-custom designs
have several levels of hierarchy. The chip is organized in clusters, clusters
consist of units, and units are composed of functional blocks (in short, blocks).
For sake of simplicity, we use the term blocks for units, blocks, and clusters. The
full-custom design style allows functional blocks to be of any size. Figure 1.5
shows an example of a very simple circuit with few blocks. Other levels of
hierarchy are not shown for this simple example. Internal routing in each block
is not shown for the sake of clarity. In the full-custom design style, blocks
can be placed at any location on the chip surface without any restrictions. In
other words, this style is characterized by the absence of any constraints on
the physical design process. This design style allows for very compact designs.

18 Chapter 1. VLSI Physical Design Automation

However, the process of automating a full-custom design style has a much higher
complexity than other restricted models. For this reason it is used only when
the final design must have minimum area and design time is less of a factor.
The automation process for a full-custom layout is still a topic of intensive
research. Some phases of physical design of a full-custom chip may be done
manually to optimize the layout. Layout compaction is a very important aspect
in full-custom design. The rectangular solid boxes around the boundary of the
circuit are called I/O pads. Pads are used to complete interconnections between
different chips or interconnections between the chip and the board. The spaces
not occupied by blocks are used for routing of interconnecting wires. Initially
all the blocks are placed within the chip area with the objective of minimizing
the total area. However, there must be enough space left between the blocks
so that routing can be completed using this space and the space on top of the
blocks. Usually several metal layers are used for routing of interconnections.
Currently, three metal layers are common for routing. A four metal layer
process is being used for microprocessors, and a six layer process is gaining
acceptance, as fabrication costs become more feasible. In Figure 1.5, note that
width of the M1 wire is smaller than the width of the M2 wire. Also note
that the size of the via between M1 and M2 is smaller than the size of the
via between higher layers. Typically, metal widths and via sizes are larger for
higher layers. The figure also shows that some routing has been completed
on top of the blocks. The routing area needed between the blocks is becoming
smaller and smaller as more routing layers are used. This is due to the fact that
more routing is done on top of the transistors in the additional metal layers.
If all the routing can be done on top of the transistors, the total chip area is
determined by the area of the transistors. However, as circuits become more
complex and interconnect requirements increase, the die size is determined by
the interconnect area and the total transistor area serves as a lower bound on
the die size of the chip.

In a hierarchical design of a circuit, each block in a full-custom design may
be very complex and may consist of several sub-blocks, which in turn may be
designed using the full-custom design style or other design styles. It is easy
to see that since any block is allowed to be placed anywhere on the chip, the
problem of optimizing area and the interconnection of wires becomes difficult.
Full custom design is very time consuming; thus the method is inappropriate for
very large circuits, unless performance or chip size is of utmost importance. Full
custom is usually used for the layout of microprocessors and other performance
and cost sensitive designs.

1.5.2 Standard Cell

The design process in the standard cell design style is somewhat simpler
than full-custom design style. Standard cell architecture considers the layout to
consist of rectangular cells of the same height. Initially, a circuit is partitioned
into several smaller blocks, each of which is equivalent to some predefined
subcircuit (cell). The functionality and the electrical characteristics of each

1.5. Design Styles 19

predefined cell are tested, analyzed, and specified. A collection of these cells is
called a cell library. Usually a cell library consists of 500-1200 cells. Terminals
on cells may be located either on the boundary or distributed throughout the
cell area. Cells are placed in rows and the space between two rows is called
a channel. These channels and the space above and between cells is used to
perform interconnections between cells. If two cells to be interconnected lie in
the same row or in adjacent rows, then the channel between the rows is used for
interconnection. However, if two cells to be connected lie in two non-adjacent
rows, then their interconnection wire passes through empty space between any
two cells or passes on top of the cells. This empty space between cells in a row
is called a feedthrough. The interconnections are done in two steps. In the first
step, the feedthroughs are assigned for the interconnections of non-adjacent
cells. Feedthrough assignment is followed by routing. The cells typically use
only one metal layer for connections inside the cells. As a result, in a two metal
process, the second metal layer can be used for routing in over-the-cell regions.
In a three metal layer process, almost all the channels can be removed and
all routing can be completed over the cells. However, this is a function of the
density of cells and distribution of pins on the cells. It is difficult to obtain a
channelless layout for chips which use highly packed dense cells with poor pin
distribution. Figure 1.6 shows an example of a standard cell layout. A cell
library is shown, along with the complete circuit with all the interconnections,
feedthroughs, and power and ground routing. In the figure, the library consists
of four logic cells and one feedthrough cell. The layout shown consists of
several instances of cells in the library. Note that representation of a layout
in the standard cell design style is greatly simplified as it is not necessary to
duplicate the cell information.

The standard cell layout is inherently non-hierarchical. The hierarchical
circuits, therefore, have to undergo some transformation before this design
style can be used. This design style is well-suited for moderate size circuits and
medium production volumes. Physical design using standard cells is somewhat
simpler as compared to full-custom, and is efficient using modern design tools.
The standard cell design style is also widely used to implement the ‘random or
control logic’ part of the full-custom design as shown in Figure 1.5.

Logic Synthesis usually uses the standard cell design style. The synthesized
circuit is mapped to cell circuits. Then cells are placed and routed.

While standard cell designs are quicker to develop, a substantial initial
investment is needed in the development of the cell library, which may consist of
several hundred cells. Each cell in the cell library is ‘hand crafted’ and requires
highly skilled physical design specialists. Each type of cell must be created
with several transistor sizes. Each cell must then be tested by simulation and
its performance must be characterized. Cell library development is a significant
project with enormous manpower and financial resource requirements.

A standard cell design usually takes more area than a full-custom or a hand-
crafted design. However, as more and more metal layers become available for
routing and design tools improve, the difference in area between the two design
styles will gradually reduce.

20 Chapter 1. VLSI Physical Design Automation

1.5.3 Gate Arrays

This design style is a simplification of standard cell design. Unlike standard
cell design, all the cells in gate array are identical. Each chip is an array of iden-
tical gates or cells. These cells are separated by both vertical and horizontal
spaces called vertical and horizontal channels. The circuit design is modified
such that it can be partitioned into a number of identical blocks. Each block
must be logically equivalent to a cell on the gate array. The name ‘gate array’
signifies the fact that each cell may simply be a gate, such as a three input
NAND gate. Each block in design is mapped or placed onto a prefabricated
cell on the chip during the partitioning/placement phase, which is reduced to
a block to cell assignment problem. The number of partitioned blocks must be
less than or equal to the total number of cells on the chip. Once the circuit

1.5. Design Styles 21

is partitioned into identical blocks, the task is to make the interconnections
between the prefabricated cells on the chip using horizontal and vertical chan-
nels to form the actual circuit. Figure 1.7 shows an ‘uncommitted’ gate array,
which is simply a term used for a prefabricated chip. The gate array wafer is
taken into a fabrication facility and routing layers are fabricated on top of the
wafer. The completed wafer is also called a ‘customized wafer’. It should be
noted that the number of tracks allowed for routing in each channel is fixed.
As a result, the purpose of the routing phase is simply to complete the connec-
tions rather than minimize the area. Two layers of interconnections are most
common; though one and three layers are also used. Figure 1.8 illustrates a
committed gate array design. Like standard cell designs, synthesis can also use
the gate array style. In gate array design the entire wafer, consisting of several
dozen chips, is prefabricated.

This simplicity of gate array design is gained at the cost of rigidity imposed
upon the circuit both by the technology and the prefabricated wafers. The
advantage of gate arrays is that the steps involved for creating any prefabricated
wafer are the same and only the last few steps in the fabrication process actually
depend on the application for which the design will be used. Hence gate arrays
are cheaper and easier to produce than full-custom or standard cell. Similar to
standard cell design, gate array is also a non-hierarchical structure.

The gate array architecture is the most restricted form of layout. This also
means that it is the simplest for algorithms to work with. For example, the
task of routing in gate array is to determine if a given placement is routable.
The routability problem is conceptually simpler as compared to the routing

22 Chapter 1. VLSI Physical Design Automation

problem in standard cell and full-custom design styles.

1.5.4 Field Programmable Gate Arrays

The Field Programmable Gate Array (FPGA) is a new approach to ASIC
design that can dramatically reduce manufacturing turn-around time and cost
for low volume manufacturing [Gam89, Hse88, Won89]. In FPGAs, cells and
interconnect are prefabricated. The user simply ‘programs’ the interconnect.
FPGA designs provide large scale integration and user programmability. A
FPGA consists of horizontal rows of programmable logic blocks which can be
interconnected by a programmable routing network. FPGA cells are more com-
plex than standard cells. However, almost all the cells have the same layout.
In its simplistic form, a logic block is simply a memory block which can be pro-

1.5. Design Styles 23

24 Chapter 1. VLSI Physical Design Automation

grammed to remember the logic table of a function. Given a certain input, the
logic block ‘looks up’ the corresponding output from the logic table and sets its
output line accordingly. Thus by loading different look-up tables, a logic block
can be programmed to perform different functions. It is clear that bits are
required in a logic block to represent a K-bit input, 1-bit output combinational
logic function. Obviously, logic blocks are only feasible for small values of K.
Typically, the value of K is 5 or 6. For multiple outputs and sequential cir-
cuits the value of K is even less. The rows of logic blocks are separated by
horizontal routing channels. The channels are not simply empty areas in which
metal lines can be arranged for a specific design. Rather, they contain prede-
fined wiring ‘segments’ of fixed lengths. Each input and output of a logic block
is connected to a dedicated vertical segment. Other vertical segments merely
pass through the blocks, serving as feedthroughs between channels. Connec-
tion between horizontal segments is provided through antifuses, whereas the
connection between a horizontal segment and a vertical segment is provided
through a cross fuse. Figure 1.9(c) shows the general architecture of a FPGA,
which consists of four rows of logic blocks. The cross fuses are shown as circles,
while antifuses are shown as rectangles. One disadvantage of fuse based FPGAs
is that they are not reprogrammable. There are other types of FPGAs which
allow re-programming, and use pass gates rather than programmable fuses.

Since there are no user specific fabrication steps in a FPGA, the fabrica-
tion process can be set up in a cost effective manner to produce large quan-
tities of generic (unprogrammed) FPGAs. The customization (programming)
of a FPGA is rather simple. Given a circuit, it is decomposed into smaller
subcircuits, such that each subcircuit can be mapped to a logic block. The
interconnections between any two subcircuits is achieved by programming the
FPGA interconnects between their corresponding logic blocks. Programming
(blowing) one of the fuses (antifuse or cross fuse) provides a low resistance bidi-
rectional connection between two segments. When blown, antifuses connect the
two segments to form a longer one. In order to program a fuse, a high voltage is
applied across it. FPGAs have special circuitry to program the fuses. The cir-
cuitry consists of the wiring segments and control logic at the periphery of the
chip. Fuse addresses are shifted into the fuse programming circuitry serially.
Figure 1.9(a) shows a circuit partitioned into four subcircuits, and

Note that each of these four subcircuits have two inputs and one output.
The truth table for each of the subcircuits is shown in Figure 1.9(b). In Fig-
ure 1.9(c), and are mapped to logic blocks and
respectively and appropriate antifuses and cross fuses are programmed (burnt)
to implement the entire circuit. The programmed fuses are shown as filled
circles and rectangles. We have described the ‘once-program’ type of FPGAs.
Many FPGAs allow the user to re-program the interconnect, as many times as
needed. These FPGAs use non-destructive methods of programming, such as
pass-transistors.

The programmable nature of these FPGAs requires new CAD algorithms
to make effective use of logic and routing resources. The problems involved in
customization of a FPGA are somewhat different from those of other design

1.5. Design Styles 25

styles; however, many steps are common. For example, the partition problem
of FPGAs is different than partitioning the problem in all design style while the
placement and the routing is similar to gate array approach. These problems
will be discussed in detail in Chapter 11.

1.5.5 Sea of Gates

The sea of gates is an improved gate array in which the master is filled com-
pletely with transistors. The master of the sea-of-gates has a much higher
density of logic implemented on the chip, and allows a designer to fabricate
complex circuits, such as RAMs, to be built. In the absence of routing chan-
nels, interconnects have to be completed either by routing through gates, or by
adding more metal or polysilicon interconnection layers. There are problems
associated with either solution. The former reduces the gate utilization; the
latter increases the mask count and increases fabrication time and cost.

1.5.6 Comparison of Different Design Styles

The choice of design style depends on the intended functionality of the chip,
time-to-market and total number of chips to be manufactured. It is common to
use full-custom design style for microprocessors and other complex high volume
applications, while FPGAs may be used for simple and low volume applications.
However, there are several chips which have been manufactured by using a mix
of design styles. For large circuits, it is common to partition the circuit into
several small circuits which are then designed by different teams. Each team
may use a different design style or a number of design styles. Another factor
complicating the issue of design style is re-usability of existing designs. It is
a common practice to re-use complete or partial layout from existing chips for
new chips to reduce the cost of a new design. It is quite typical to use standard
cell and gate array design styles for smaller and less complex Application Spe-
cific ICs (ASICs), while microprocessors are typically full-custom with several
standard cell blocks. Standard cell blocks can be laid out using logic synthesis
tools.

Design styles can be seen as a continuum from very flexible (full-custom)
to a rather rigid design style (FPGA) to cater to differing needs. Table 1.1
summarizes the differences in cell size, cell type, cell placement and intercon-
nections in full-custom, standard cell, gate array and FPGA design styles.
Another comparison may be on the basis of area, performance, and the num-
ber of fabrication layers needed. (See Table 1.2). As can be seen from the
table, full-custom provides compact layouts for high performance designs but
requires a considerable fabrication effort. On the other hand, a FPGA is com-
pletely pre-fabricated and does not require any user specific fabrication steps.
However, FPGAs can only be used for small, general purpose designs.

26 Chapter 1. VLSI Physical Design Automation

1.6 System Packaging Styles

The increasing complexity and density of semiconductor devices are the key
driving forces behind the development of more advanced VLSI packaging and
interconnection approaches. Two key packaging technologies being used cur-
rently are Printed Circuit Boards (PCB) and Multi-Chip Modules (MCMs).
Let us first start with die packaging techniques.

1.6.1 Die Packaging and Attachment Styles

Dies can be packaged in a variety of styles depending on cost, performance
and area requirements. Other considerations include heat removal, testing and
repair.

1.6.1.1 Die Package Styles

ICs are packaged into ceramic or plastic carriers called Dual In-Line Pack-
ages (DIPs), then mounted on a PCB. These packages have leads on 2.54 mm
centers on two sides of a rectangular package. PGA (Pin Grid Array) is a pack-
age in which pins are organized in several concentric rectangular rows. DIPs
and PGAs require large thru-holes to mount them on boards. As a result, thru-
hole assemblies were replaced by Surface Mount Assemblies (SMAs). In SMA,

1.6. System Packaging Styles 27

pins of the device do not go through the board, they are soldered to the surface
of the board. As a result, devices can be placed on both sides of the board.
There are two types of SMAs; leaded and leadless. Both are available in quad
packages with leads on 1.27, 1.00, or 0.635 mm centers. Yet another variation
of SMA is the Ball Grid Array (BGA), which is an array of solder balls. The
balls are pressed on to the PCB. When a BGA device is placed and pressed
the balls melt forming a connection to the PCB. All the packages discussed
above suffer from performance degradation due to delays in the package. In
some applications, a naked die is used directly to avoid package delays.

1.6.1.2 Package and Die Attachment Styles

The chips need to be attached to the next level of packaging, called system
level packaging. The leads of pin based packages are bent down and are soldered
into plated holes which go inside the printed circuit board. (see Figure 1.10).
SMAs such as BGA do not need thru holes but still require a relatively large
footprint.

In the case of naked dies, die to board connections are made by attaching
wires from the I/O pads on the edge of the die to the board. This is called the
wire bond method, and uses a robotic wire bonding machine. The active side
of the die faces away from the board. Although package delays are avoided in
wire bonded dies, the delay in the wires is still significant as compared to the
interconnect delay on the chip.

Controlled Collapsed Chip Connection (C4) is another method of attaching
a naked die. This method aims to eliminate the delays associated with the
wires in the wire bond method. The I/O pins are distributed over the die
(ATM style) and a solder ball is placed over the I/O pad. The die is then
turned over, such that the active side is facing the board, then pressure is
applied to fuse the balls to the board.

The exact layout of chips on PCBs and MCMs is somewhat equivalent to
the layout of various components in a VLSI chip. As a result, many layout
problems such as partitioning, placement, and routing are similar in VLSI and
packaging. In this section, we briefly outline the two commonly used packaging
styles and the layout problems with these styles.

1.6.2 Printed Circuit Boards

A Printed Circuit Board (PCB) is a multi-layer sandwich of routing layers.
Current PCB technology offers as many as 30 or more routing layers. Via
specifications are also very flexible and vary, such that a wide variety of com-
binations is possible. For example, a set of layers can be connected by a single
via called the stacked via. The traditional approach of single chip packages on a
PCB have intrinsic limitations in terms of silicon density, system size, and con-
tribution to propagation delay. For example, the typical inner lead bond pitch
on VLSI chips is 0.0152 cm. The finest pitch for a leaded chip carrier is 0.0635
cm. The ratio of the area of the silicon inside the package to the package area

28 Chapter 1. VLSI Physical Design Automation

is about 6%. If a PCB were completely covered with chip carriers, the board
would only have at most a 6% efficiency of holding silicon. In other words,
94% or more of the board area would be wasted space, unavailable to active
silicon and contributing to increased propagation delays. Thru-hole assemblies
gave way to Surface Mount Assemblies (SMAs). SMAs eliminated the need for
large diameter plated-thru-holes, allowing finer pitch packages and increasing
routing density. SMAs reduce the package footprint and improve performance.

The SMA structure reduces package footprints, decreases chip-to-chip dis-
tances and permits higher pin count ICs. A 64 pin leadless chip carrier requires
only a 12.7 mm × 12.7 mm footprint with a 0.635 mm pitch. This space con-
servation represents a twelve fold density improvement, or a four fold reduction
in interconnection distances, over DIP assemblies.

The basic package selection parameter is the pin count. DIPs are used for
chips with no more than 48 pins. PGAs are used for higher pin count chips.
BGAs are used for even higher pin count chips. Other parameters include
power consumption, heat dissipation and size of the system desired.

The layout problems for printed circuit boards are similar to layout prob-
lems in VLSI design, although printed circuit boards offer more flexibility and
a wider variety of technologies. The routing problem is much easier for PCBs
due to the availability of many routing layers. The planarity of wires in each
layer is a requirement in a PCB as it is in a chip. There is little distinction
between global routing and detailed routing in the case of circuit boards. In
fact, due to the availability of many layers, the routing algorithm has to be

1.6. System Packaging Styles 29

modified to adapt to this three dimensional problem. Compaction has no place
in PCB layout due to the constraints caused by the fixed location of the pins
on packages.

For more complex VLSI devices, with 120 to 196 I/Os, even the surface
mounted approach becomes inefficient and begins to limit system performance.
A 132 pin device in a pitch carrier requires a 25.4 to foot-
print. This represents a four to six fold density loss, and a two fold increase in
interconnect distances as opposed to a 64 pin device. It has been shown that
the interconnect density for current packaging technology is at least one order
of magnitude lower than the interconnect density at the chip level. This trans-
lates into long interconnection lengths between devices and a corresponding
increase in propagation delay. For high performance systems, the propagation
delay is unacceptable. It can be reduced to a great extent by using SMAs
such as BGAs. However, a higher performance packaging and interconnection
approach is necessary to achieve the performance improvements promised by
VLSI technologies. This has led to the development of multi-chip modules.

1.6.3 Multichip Modules

Current packaging and interconnection technology is not complementing the
advances taking place in the IC. The key to semiconductor device improvements
is the shrinking feature size, i.e., the minimum gate or line width on a device.
The shrinking feature size provides increased gate density, increased gates per
chip and increased clock rates. These benefits are offset by an increase in
the number of I/Os and an increase in chip power dissipation. The increased
clock rate is directly related to device feature size. With reduced feature sizes
each on-chip device is smaller, thereby having reduced parasitics, allowing for
faster switching. Furthermore, the scaling has reduced on-chip gate distances
and, consequently, interconnect delays. However, much of the improvement
in system performance promised by the ever increasing semiconductor device
performance has not been realized. This is due to the performance barriers
imposed by todays packaging and interconnection technologies.

Increasingly more complex and dense semiconductor devices are driving
the development of advanced VLSI packaging and interconnection technology
to meet increasingly more demanding system performance requirements. The
alternative approach to the interconnect and packaging limits of conventional
chip carrier/PCB assemblies is to eliminate packaging levels between the chip
and PCB. One such approach uses MCMs. The MCM approach eliminates
the single chip package and, instead, mounts and interconnects the chips di-
rectly onto a higher density, fine pitch interconnection substrate. Dies are wire
bonded to the substrate or use a C4 bonding. In some MCM technologies, the
substrate is simply a silicon wafer, on which layers of metal lines have been pat-
terned. This substrate provides all of the chip-to-chip interconnections within
the MCM. Since the chips are only one tenth of the area of the packages, they
can be placed closer together on an MCM. This provides for both higher den-
sity assemblies, as well as shorter and faster interconnects. Figure 1.11 shows

30 Chapter 1. VLSI Physical Design Automation

diagram of an MCM package with wire bonded dies. One significant problem
with MCMs is heat dissipation. Due to close placement of potentially several
hundred chips, a large amount of heat needs to be dissipated. This may require
special, and potentially expensive heat removal methods.

At first glance, it appears that it is easy to place bare chips closer and
closer together. There are, however, limits to how close the chips can be placed
together on the substrate. There is, for example, a certain peripheral area
around the chip which is normally required for bonding, engineering change
pads, and chip removal and replacement.

It is predicted that multichip modules will have a major impact on all
aspects of electronic system design. Multichip module technology offers ad-
vantages for all types of electronic assemblies. Mainframes will need to inter-
connect the high numbers of custom chips needed for the new systems. Cost-
performance systems will use the high density interconnect to assemble new
chips with a collection of currently available chips, to achieve high performance
without time-consuming custom design, allowing quick time-to-market.

In the long term, the significant benefits of multichip modules are: reduc-
tion in size, reduction in number of packaging levels, reduced complexity of
the interconnection interfaces and the fact that the assemblies will clearly be
cheaper and more efficient. However, MCMs are currently expensive to man-
ufacture due to immature technology. As a result, MCMs are only used in
high performance applications. The multichip revolution in the 1990s will have
an impact on electronics as great or greater than the impact of surface mount

1.6. System Packaging Styles 31

technology in the 1980s.
The layout problems in MCMs are essentially performance driven. The par-

titioning problem minimizes the delay in the longest wire. Although placement
in MCM is simple as compared to VLSI, global routing and detailed routing
are more complex in MCM because of the large number of layers present in
MCM. The critical issues in routing include the effect of cross-talk, and delay
modeling of long interconnect wires. These problems will be discussed in more
detail in Chapter 12.

1.6.4 Wafer Scale Integration

MCM packaging technology does not completely remove all the barriers of
the IC packaging technology. Wafer Scale Integration (WSI) is considered as
the next major step, bringing with it the removal of a large number of barriers.
In WSI, the entire wafer is fabricated with several types of circuits, the circuits
are tested, and the defect-free circuits are interconnected to realize the entire
system on the wafer.

The attractiveness of WSI lies in its promise of greatly reduced cost, high
performance, high level of integration, greatly increased reliability, and signifi-
cant application potential. However, there are still major problems with WSI
technology, such as redundancy and yield, that are unlikely to be solved in the
near future. Another significant disadvantage of the WSI approach is its inabil-
ity to mix and match dies from different fabrication processes. The fabrication
process for microprocessors is significantly different than the one for memories.
WSI would force a microprocessor and the system memory to be fabricated on
the same process. This is significant sacrifice in microprocessor performance or
memory density, depending on the process chosen.

1.6.5 Comparison of Different Packaging Styles

In this section, we compare different packaging styles which are either being
used today or might be used in future. In [Sag89] a figure of merit has been
derived for various technologies, using the product of the propagation speed
(inches/) and the interconnection density (inches/sq. in). The typical
figures are reproduced here in Table 1.3. The figure of merit for VLSI will need
to be partially adjusted (downward) to account for line resistance and capaci-
tance. This effect is not significant in MCMs due to higher line conductivity,
lower drive currents, and lower output capacitance from the drivers.

MCM technology provides a density, performance, and cost comparable to
or better than, WSI. State-of-the-art chips can be multiple-sourced and tech-
nologies can be mixed on the same substrate in MCM technology. Another
advantage of MCM technology is that all chips are pretestable and replaceable.
Furthermore, the substrate interconnection matrix itself can be pretested and
repaired before chip assembly; and test, repair, and engineering changes are
possible even after final assembly. However, MCM technology is not free of all
problems. The large number of required metallurgical bonds and heat removal

32 Chapter 1. VLSI Physical Design Automation

are two of the existing problems. While WSI has higher density than MCM, its
yield problem makes it currently unfeasible. The principal conclusion that can
be drawn from this comparison is that WSI cannot easily compete with tech-
nology already more or less well established in terms of performance, density,
and cost.

1.7 Historical Perspectives

During the 1950s the photolithographic process was commonly used in the
design of circuits. With this technology, an IC was created by fabricating
transistors on crystalline silicon. The design process was completely manual.
An engineer would create a circuit on paper and assemble it on a breadboard
to check the validity of the design. The design was then given to a layout
designer, who would draw the silicon-level implementation. This drawing was
cut out on rubylith plastic, and carefully inspected for compliance with the
original design. Photolithographic masks were produced by optically reducing
the rubylith design and these masks were used to fabricate the circuit [Feu83].

In the 1970s there was a tremendous growth in circuit design needs. The
commonly used rubylith patterns became too large for the laboratories. This
technology was no longer useful. Numerically controlled pattern generation
machinery was implemented to replace the rubylith patterns. This was the
first major step towards design automation. The layouts were transferred to
data tapes and for the first time, design rule checking could be successfully
automated [Feu83].

By the 1970s a few large companies developed interactive layout software
which portrayed the designs graphically. Soon thereafter commercial layout
systems became available. This interactive graphics capability provided rapid
layout of IC designs because components could quickly be replicated and edited,
rather than redrawn as in the past [Feu83]. For example, L-Edit is one such
circuit layout editor commercially available. In the next phase, the role of com-
puters was explored to help perform the manually tedious layout process. As
the layout was already in the computer, routing tools were developed initially
to help perform the connections on this layout, subject to the design rules
specified for that particular design.

As the technology and tools are improving, the VLSI physical design is

1.8. Existing Design Tools 33

moving towards high performance circuit design. The high-performance circuit
design is of highest priority in physical design. Current technology allows us
to interconnect over the cells/blocks to reduce the total chip area, thereby
reducing the signal delay for high performance circuits. Research on parallel
algorithms for physical design has also drawn great interest since the mid 80s.
The emergence of parallel computers promises the feasibility of automating
many time consuming steps of physical design.

In the early decades, most aspects of VLSI design were done manually. This
elongated the design process, since any changes to improve any design step
would require a revamping of the previously performed steps, thus resulting in
a very inefficient design. The introduction of computers in this area accelerated
some aspects of design, and increased efficiency and accuracy. However, many
other parts could not be done using computers, due to the lack of high speed
computers or faster algorithms. The emergence of workstations led to the de-
velopment of CAD tools which made designers more productive by providing
the designers with ‘what if’ scenarios. As a result, the designers could analyze
various options for a specific design and choose the optimal one. But there
are some features of the design process which are not only expensive, but also
too difficult to automate. In these cases the use of certain knowledge based
systems is being considered. VLSI design became interactive with the avail-
ability of faster workstations with larger storage and high-resolution graphics,
thus breaking away from the traditional batch processing environment. The
workstations also have helped in the advancement of integrated circuit tech-
nology by providing the capabilities to create complex designs. Table 1.4 lists
the development of design tools over the years.

1.8 Existing Design Tools

Design tools are essential for the correct-by-construction approach, that is get
the design right the very first time. Any design tool should have the following
capabilities.

layout the physical design for which the tool should provide some means
of schematic capture of the information. For this either a textual or
interactive graphic mode should be provided.

physical verification which means that the tool should have design rule
checking capability.

some form of simulation to verify the behavior of the design.

There are tools available with some of the above mentioned capabilities. For
example, BELLE (Basic Embedded Layout Language) is a language embedded
in PASCAL in which the layout can be designed by textual entry. ABCD (A
Better Circuit Description) is also a language for CMOS and nMOS designs.
The graphical entry tools, on the other hand, are very convenient for the de-
signers, since such tools operate mostly through menus. KIC, developed at

34 Chapter 1. VLSI Physical Design Automation

the University of California, Berkeley and PLAN, developed at the University
of Adelaide, are examples of such tools. Along with the workstations came
peripherals, such as plotters and printers with high-resolution graphics output
facilities which gave the designer the ability to translate the designs generated
on the workstation into hardcopies.

The rapid development of design automation has led to the proliferation
of CAD tools for this purpose. Some tools are oriented towards the teaching
of design automation to the educational community, while the majority are
designed for actual design work. Some of the commercially available software is
also available in educational versions, to encourage research and development
in the academic community. Some of the design automation CAD software
available for educational purposes are L-Edit, MAGIC, SPICE etc. We shall
briefly discuss some of the features of L-Edit and MAGIC.

L-Edit is a graphical layout editor that allows the creation and modification
of IC mask geometry. It runs on most PC-family computers with a Graphics
adapter. It supports files, cells, instances, and mask primitives. A file in L-
Edit is made up of cells. An independent cell may contain any number of
combinations of mask primitives and instances of other cells. An instance is a
copy of a cell. If a change is made in an instanced cell, the change is reflected in

1.9. Summary 35

all instances of that cell. There may be any number of levels in the hierarchy.
In L-Edit files are self-contained, which means that all references made in

a file relate only to that file. Designs made by L-Edit are only limited by the
memory of the machine used. Portability of designs is facilitated by giving a
facility to convert designs to CIF (Caltech Intermediate Format) and vice versa.
L-Edit itself uses a SLY (Stack Layout Format) which can be used if working
within the L-Edit domain. The SLY is like the CIF with more information
about the last cell edited, last view and so on. L-edit exists at two levels, as a
low-level full-custom mask editor and a high-level floor planning tool.

MAGIC is an interactive VLSI layout design software developed at the
University of California, Berkeley. It is now available on a number of systems,
including personal computers. It is based on the Mead and Conway design
style. MAGIC is a fairly advanced editor. MAGIC allows automatic routing,
stretching and compacting cells, and circuit extraction to name a few. All
these functions are executed, as well as concurrent design rule checking which
identifies violations of design rules when any change is made to the circuit
layout. This reduces design time as design rule checking is done as an event
based checking rather than doing it as a lengthy post-layout operation as in
other editors. This carries along with it an overhead of time to check after every
operation, but this is certainly very useful when a small change is introduced
in a large layout and it can be known immediately if this change introduces
errors in the layout rather than performing a design rule check for the whole
layout.

MAGIC is based on the corner stitched data structure proposed by Ouster-
hout [SO84]. This data structure greatly reduces the complexity of many edit-
ing functions, including design rule checking. Because of the ease of design
using MAGIC, the resulting circuits are 5-10% denser than those using conven-
tional layout editors. This density tradeoff is a result of the improved layout
editing which results in a lesser design time. MAGIC permits only Manhattan
designs and only rectilinear paths in designing circuits. It has a built-in hier-
archical circuit extractor which can be used to verify the design, and has an
on-line help feature.

1.9 Summary

The sheer size of the VLSI circuit, the complexity of the overall design pro-
cess, the desired performance of the circuit and the cost of designing a chip
dictate that CAD tools should be developed for all the phases. Also, the de-
sign process must be divided into different stages because of the complexity of
entire process. Physical design is one of the steps in the VLSI design cycle. In
this step, each component of a circuit is converted into a set of geometric pat-
terns which achieves the functionality of the component. The physical design
step can further be divided into several substeps. All the substeps of physical
design step are interrelated. Efficient and effective algorithms are required to
solve different problems in each of the substeps. Good solutions at each step

36 Chapter 1. VLSI Physical Design Automation

are required, since a poor solution at an earlier stage prevents a good solution
at a later stage. Despite significant research efforts in this field, CAD tools
still lag behind the technological advances in fabrication. This calls for the
development of efficient algorithms for physical design automation.

Bibliographic Notes
Physical design automation is an active area of research where over 200 papers
are published each year. There are several conferences and journals which deal
with all aspects physical design automation in several different technologies.
Just like in other fields, the Internet is playing a key role in Physical design
research and development. We will indicate the URL of all key conferences,
journals and bodies in the following to faciliate the search for information.

The key conference for physical design is International Symposium on Phys-
ical Design (ISPD), held annually in April. ISPD covers all aspects of physical
design. The most prominent conference is EDA is the ACM/IEEE Design Au-
tomation Conference (DAC), (www.dac.com) which has been held annually for
the last thirtyfive years. In addition to a very extensive technical program,
this conference features an exhibit program consisting of the latest design tools
from leading companies in VLSI design automation. The International Con-
ference on Computer Aided Design (ICCAD) (www.iccad.com) is held yearly
in Santa Clara and is more theoretical in nature than DAC. Several other
conferences, such as the IEEE International Symposium on Circuits and Sys-
tems (ISCAS) (www.iscas.nps.navy.mil) and the International Conference on
Computer Design (ICCD), include significant developments in physical design
automation in their technical programs. Several regional conferences have been
introduced to further this field in different regions of the world. These include
the IEEE Midwest Symposium on Circuits and Systems (MSCAS), the IEEE
Great Lakes Symposium on VLSI (GLSVLSI) (www.eecs.umich.edu/glsvlsi/)
the European Design Automation Conference (EDAC), and the International
Conference on VLSI Design (vcapp.csee.usf.edu/vlsi99/) in India. There are
several journals which are dedicated to the field of VLSI Design Automa-
tion which include broad coverage of all topics in physical design. The pre-
mier journal is the IEEE Transactions on CAD of Circuits and Systems (ake-
bono.stanford.edu/users/nanni/tcad). Other journals such as, Integration, the
IEEE Transactions on Circuits and Systems, and the Journal of Circuits, Sys-
tems and Computers also publish significant papers in physical design automa-
tion. Many other journals occasionally publish articles of interest to physical
design. These journals include Algorithmica, Networks, the SIAM journal of
Discrete and Applied Mathematics, and the IEEE Transactions on Computers.

The access to literature in Design automation has been recently enhanced by
the availability of the Design Automation Library (DAL), which is developed
by the ACM Special interest Group on Design Automation (SIGDA). This
library is available on CDs and contains all papers published in DAC, ICCAD,
ICCD, and IEEE Transactions on CAD of Circuits and Systems.

1.9. Summary 37

An important role of the Internet is through the forum of newsgroups,
comp. lsi. cad is a newsgroup dedicated to CAD issues, while specialized groups
such as comp. lsi. testing and comp. cad. synthesis discuss testing and syn-
thesis topics. Since there are very large number of newsgroups and they keep
evolving, the reader is encouraged to search the Internet for the latest topics.

Several online newslines and magazines have been started in last few years.
EE Times (www.eet.com) provides news about EDA industry in general. In-
tegrated system design (www.isdmag.com) provides articles on EDA tools in
general, but covers physical design as well.

ACM SIGDA (www.acm.org/sigda/) and Design Automation Technical Com-
mittee (DATC) (www.computer.org/tab/DATC) of IEEE Computer Society
are two representative societies dealing with professional development of the
people involved, and technical aspects of the design automation field. These
committees hold conferences, publish journals, develop standards, and support
research in VLSI design automation.

This Page Intentionally Left Blank

Chapter 2

Design and Fabrication of
VLSI Devices

VLSI chips are manufactured in a fabrication facility usually referred to as a
“fab”. A fab is a collection of manufacturing facilities and “clean rooms”, where
wafers are processed through a variety of cutting, sizing, polishing, deposition,
etching and cleaning operations. Clean room is a term used to describe a closed
environment where air quality must be strictly regulated. The number and
size of dust particles allowed per unit volume is specified by the classification
standard of the clean room. Usually space-suit like overalls and other dress
gear is required for humans, so they do not contaminate the clean room. The
cleanliness of air in a fab is a critical factor, since dust particles cause major
damage to chips, and thereby affect the overall yield of the fabrication process.
The key factor which describes the fab in terms of technology is the minimum
feature size it is capable of manufacturing. For example, a fab which runs a
0.25 micron fabrication process is simply referred to as a 0.25 micron fab.

A chip consists of several layers of different materials on a silicon wafer. The
shape, size and location of material in each layer must be accurately specified
for proper fabrication. A mask is a specification of geometric shapes that need
to be created on a certain layer. Several masks must be created, one for each
layer. The actual fabrication process starts with the creation of a silicon wafer
by crystal growth. The wafer is then processed for size and shape with proper
tolerance. The wafer’s size is typically large enough to fabricate several dozen
identical/different chips. Masks are used to create specific patterns of each
material in a sequential manner, and create a complex pattern of several layers.
The order in which each layer is defined, or ‘patterned’ is very important.
Devices are formed by overlapping a material of certain shape in one layer by
another material and shape in another layer. After patterning all the layers,
the wafer is cut into individual chips and packaged. Thus, the VLSI physical
design is a process of creating all the necessary masks that define the sizes and
location of the various devices and the interconnections between them.

The complex process of creating the masks requires a good understanding

40 Chapter 2. Design and Fabrication of VLSI Devices

of the functionality of the devices to be formed, and the rigid rules imposed by
the fabrication process. The manufacturing tolerances in the VLSI fabrication
process are so tight that misalignment of a shape in a layer by a few microns can
render the entire chip useless. Therefore, shapes and sizes of all the materials
on all the layers of a wafer must conform to strict design rules to ensure proper
fabrication. These rules play a key role in defining the physical design problems,
and they depend rather heavily on the materials, equipment used and maturity
of the fabrication process. The understanding of limitations imposed by the
fabrication process is very important in the development of efficient algorithms
for VLSI physical design.

In this chapter we will study the basic properties of the materials used in
the fabrication of VLSI chips, and details of the actual fabrication process. We
will also discuss the layout of several elementary VLSI devices, and how such
elementary layouts can be used to construct the layout of larger circuits.

2.1 Fabrication Materials

The electrical characteristics of a material depend on the number of ‘avail-
able’ electrons in its atoms. Within each atom electrons are organized in con-
centric shells, each capable of holding a certain number of electrons. In order
to balance the nuclear charge, the inner shells are first filled by electrons and
these electrons may become inaccessible. However, the outermost shell may or
may not be complete, depending on the number of electrons available. Atoms
organize themselves into molecules, crystals, or form other solids to completely
fill their outermost shells by sharing electrons. When two or more atoms hav-
ing incomplete outer shells approach close enough, their accessible outermost
or valence electrons can be shared to complete all shells. This process leads
to the formation of covalent bonds between atoms. Full removal of electrons
from an atom leaves the atom with a net positive charge, of course, while the
addition of electrons leaves it with a net negative charge. Such electrically
unbalanced atoms are called ions.

The current carrying capacity of a material depends on the distribution
of electrons within the material. In order to carry electrical current, some
‘free’ electrons must be available. The resistance to the flow of electricity is
measured in terms of the amount of resistance in ohms per unit length or
resistivity. On the basis of resistivity, there are three types of materials, as
described below:

1. Insulators: Materials which have high electrical resistance are called
insulators. The high electric resistance is due to strong covalent bonds
which do not permit free movement of electrons. The electrons can be
set free only by large forces and generally only from the surface of the
solid. Electrons within the solids cannot move and the surface of the
stripped insulator remains charged until new electrons are reintroduced.
Insulators have electrical resistivity greater than millions of The
principle insulator used in VLSI fabrication is silicon dioxide. It is used to

2.1. Fabrication Materials 41

electrically isolate different devices, and different parts of a single device
to satisfy design requirements.

2. Conductors: Materials with low electrical resistance are referred to
as conductors. Low resistance in conductors is due to the existence of
valence electrons. These electrons can be easily separated from their
atoms. If electrons are separated from their atoms, they move freely at
high speeds in all directions in the conductor, and frequently collide with
each other. If some extra electrons are introduced into this conductor,
they quickly disperse themselves throughout the material. If an escape
path is provided by an electrical circuit, then electrons will move in the
direction of the flow of electricity. The movement of electrons, in terms of
the number of electrons pushed along per second, depends on how hard
they are being pushed, the cross-sectional area of the conductive corridor,
and finally the electron mobility factor of the conductor. Conductors can
have resistivity as low as and are used to make connections
between different devices on a chip. Examples of conductors used in VLSI
fabrication include aluminum and gold. A material that has almost no
resistance, i.e., close to zero resistance, is called a superconductor. Several
materials have been shown to act as superconductors and promise faster
VLSI chips. Unfortunately, all existing superconductors work at very
low temperatures, and therefore cannot be used for VLSI chips without
specialized refrigeration equipment.

3. Semiconductors: Materials with electrical resistivity at room tem-
perature ranging from to are called semiconductors.
The most important property of a semiconductor is its mode of carrying
electric current. Current conduction in semiconductors occurs due to two
types of carriers, namely, holes and free electrons. Let us explain these
concepts by using the example of semiconductor silicon, which is widely
used in VLSI fabrication. A silicon atom has four valence electrons which
can be readily bonded with four neighboring atoms. At room tempera-
tures the bonds in silicon atoms break randomly and release electrons,
which are called free electrons. These electrons make bonds with bond
deficient ionized sites. These bond deficiencies are known as holes. Since
the breaking of any bond releases exactly one hole and one free electron,
while the opposite process involves the capture of one free electron by
one hole, the number of holes is always equal to number of free electrons
in pure silicon crystals (see Figure 2.1). Holes move about and repel one
another, just as electrons do, and each moving hole momentarily defines
a positive ion which inhibits the intrusion of other holes into its vicinity.
In silicon crystals, the mobility of such holes is about one third that of
free electrons, but charge can be ‘carried’ by either or both. Since these
charge carriers are very few in number, ‘pure’ silicon crystal will conduct
weakly. Although there is no such thing as completely pure crystalline
silicon, it appears that, as pure crystals, semiconductors seem to have no
electrical properties of great utility.

42 Chapter 2. Design and Fabrication of VLSI Devices

Semiconductor crystals can be enriched either in holes or electrons by
embedding some atoms of certain other elements. This fact makes it
possible to build useful devices. An atom of phosphorus has five valence
electrons, whereas an atom of boron has three valence electrons. Atoms
of either kind can be locked into the silicon lattice, and even a few atoms
can make a dominant contribution. Once placed into a silicon lattice, the
fifth valence electron of each phosphorus atom is promptly freed. On the
other hand, if a boron atom is placed into a silicon lattice, the covalence
deficit of a boron atom is no less promptly covered by a neighborly silicon
atom, which takes a hole in exchange and passes it on. With enough
phosphorus (or boron) atoms per crystal, the number of free electrons or
holes in general circulation can be increased a million fold.

This process of substituting other atoms for some of the semiconductor
atoms is called doping. Semiconductors doped with electron donors such
as phosphorus are said to be of the n-type, while boron doping, which re-
sults in extra holes, produces p-type semiconductors. Though the doping
elements give semiconductors desirable characteristics, they are referred
to as impurities. Doping of silicon is easily accomplished by adding just
the right amount of the doping element to molten silicon and allowing
the result to cool and crystallize. Silicon is also doped by diffusing the
dopant as a vapor through the surface of the crystalline solid at high

2.2. Transistor Fundamentals 43

temperature. At such temperatures all atoms are vibrating significantly
in all directions. As a result, the dopant atoms can find accommodations
in minor lattice defects without greatly upsetting the overall structure.
The conductivity is directly related to the level of doping. The heavily
doped material is referred to as or Heavier doping leads to higher
conductivity of the semiconductor.

In VLSI fabrication, both silicon and germanium are used as semicon-
ductors. However, silicon is the dominant semiconductor due to its ease
of handling and large availability. A significant processing advantage of
silicon lies in its capability of forming a thermally grown silicon dioxide
layer which is used to isolate devices from metal layers.

2.2 Transistor Fundamentals

In digital circuits, a ‘transistor’ primarily means a ‘switch’- a device that
either conducts charge to the best of its ability or does not conduct any charge
at all, depending on whether it is ‘on’ or ‘off’. Transistors can be built in a
variety of ways, exploiting different phenomenon. Each transistor type gives
rise to a circuit family. There are many different circuit families. A partial
list would include TTL (Transistor-Transistor Logic), MOS (Metal-Oxide-
Semiconductor), and CMOS (Complimentary MOS) families, as well as the
CCD (Charge-Coupled Device), ECL (Emitter-Coupled Logic), and (Inte-
grated Injection Logic) families. Some of these families come in either p or n
flavor (in CMOS both at once), and some in both high-power and low-power
versions. In addition, some families are also available in both high and low
speed versions. We restrict our discussion to TTL and MOS (and CMOS), and
start with basic device structures for these types of transistors.

2.2.1 Basic Semiconductor Junction

If two blocks, one of n-type and another of p-type semiconductor are joined
together to form a semiconductor junction, electrons and holes immediately
start moving across the interface. Electrons from the n-region leave behind a
region which is rich in positively charged immobile phosphorus ions. On the
other hand, holes entering the interface from the p-region leave behind a re-
gion with a high concentration of uncompensated negative boron ions. Thus
we have three different regions as shown in Figure 2.2. These regions establish
a device with a remarkable one-way-flow property. Electrons cannot be intro-
duced in the p-region, due to its strong repulsion by the negatively charged
ions. Similarly, holes cannot be introduced in the n-region. Thus, no flow of
electrons is possible in the p-to-n direction. On the other hand, if electrons are
introduced in the n-region, they are passed along towards the middle region.
Similarly, holes introduced from the other side flow towards the middle, thus
establishing a p-to-p flow of holes.

The one-way-flow property of a semiconductor junction is the principle of

44 Chapter 2. Design and Fabrication of VLSI Devices

the diode, and it can be used to develop two types of devices: unipolar and
bipolar. Unipolar devices are created by using the semiconductor junction,
under suitable external conditions, to modulate the flow of charge between two
regions of opposite polarity. On the other hand, bipolar devices are created,
under suitable external conditions, by isolating one semiconductor region from
another of opposite majority-carrier polarity, thus permitting a charge to flow
within the one without escaping into the other.

Great numbers of both types of devices can be made rather easily by doping
a silicon wafer with diffusion of either phosphorus or boron. The silicon wafer
is pre-doped with boron and covered with silicon dioxide. Diffused regions are
created near the surface by cutting windows into a covering layer of silicon diox-
ide to permit entry of the vapor, as shown in Figure 2.3. Phosphorus vapor, for
example, will then form a bounded n-region in a boron doped substrate wafer
if introduced in sufficient quantity to overwhelm the contribution of the boron
ions in silicon. All types of regions, with differing polarities, can be formed
by changing the diffusion times and diffusing vapor compositions, therefore
creating more complex layered structures. The exact location of regions is
determined by the mask that is used to cut windows in the oxide layer.

2.2. Transistor Fundamentals 45

In the following, we will discuss how the semi-conductor junction is used
in the formation of both TTL and MOS transistors. TTL is discussed rather
briefly to enable more detailed discussion of the simpler, unipolar MOS tech-
nology.

2.2.2 TTL Transistors

A TTL transistor is an n-p-n device embedded in the surface of p-type semi-
conductor substrate (see Figure 2.4(a), the p-substrate is not shown). There
are three regions in a TTL transistor, namely the emitter, the base, and the
collector. The main idea is to control the flow of current between collector
(n-region) and emitter by using the base (p-region). The basic
construction of a TTL transistor, both in its ‘on‘ state and ‘off’ state, along
with its symbol is shown in Figure 2.4. In order to understand the operation
of a TTL transistor, consider what happens if the regions of the transistor are
connected to a battery as shown in Figure 2.4(a). A few charge carriers
are removed from both base and collector; however, the depletion zones at the
emitter-base and base-collector interfaces prevent the flow of currents of sig-
nificant size along any pathway. Now if another battery with a small voltage

is connected as shown in Figure 2.4(b), then two different currents begin to
flow. Holes are introduced into the base by while electrons are sent into
the emitter by both and The electrons in the emitter cross over into

46 Chapter 2. Design and Fabrication of VLSI Devices

the base region. Some of these electrons are neutralized by some holes, and
since the base region is rather thin, most of the electrons pass through the base
and move into the collector. Thus a flow of current is established from emitter
to collector. If is disconnected from the circuit, holes in the base cause the
flow to stop. Thus the flow of a very small current in the modulates
the flow of a current many times its size in the

2.2.3 MOS Transistors

MOS transistors were invented before bipolar transistors. The basic princi-
ple of a MOS transistor was discovered by J. Lilienfeld in 1925, and O. Heil
proposed a structure closely resembling the modern MOS transistor. How-
ever, material problems failed these early attempts. These attempts actually
led to the development of the bipolar transistor. Since the bipolar transistor
was quite successful, interest in MOS transistors declined. It was not until
1967 that the fabrication and material problems were solved, and MOS gained
some commercial success. In 1971, nMOS technology was developed and MOS
started getting wider attention.

MOS transistors are unipolar and simple. The field-induced junction pro-
vides the basic unipolar control mechanism of all MOS integrated circuits. Let
us consider the n-channel MOS transistor shown in Figure 2.5(a). A p-type
semiconductor substrate is covered with an insulating layer of silicon dioxide
or simply oxide. Windows are cut into oxide to allow diffusion. Two sep-
arate n-regions, the source and the drain, are diffused into the surface of a
p-substrate through windows in the oxide. Notice that source and drain are
insulated from each other by a p-type region of the substrate. A conductive
material (polysilicon or simply poly) is laid on top of the gate.

If a battery is connected to this transistor as shown in Figure 2.5(b), the poly
acquires a net positive charge, as some of its free electrons are conducted away
to the battery. Due to this positive charge, the holes in the substrate beneath
the oxide are forced to move away from the oxide. As a result, electrons begin
to accumulate beneath the oxide and form an n-type channel if the battery
pressure, or more precisely the gate voltage is increased beyond a threshold
value As shown in Figure 2.5(b), this channel provides a pathway for the
flow of electrons from source to drain. The actual direction of flow depends
on the source voltage and the drain voltage If the battery is now
disconnected, the charge on the poly disappears. As a result, the channel
disappears and the flow stops. Thus a small voltage on the gate can be used to
control the flow of current from source to drain. The symbols of an n-channel
MOS gate are shown in Figure 2.5(c). A p-channel MOS transistor is a device
complementary to the n-channel transistor, and can be formed by using an
n-type substrate and forming two p-type regions.

Integrated systems in metal-oxide semiconductor (MOS) actually contain
three or more layers of conducting materials, separated by intervening layers
of insulating material. As many as four (or more) additional layers of metal
are used for interconnection and are called metal1, metal2, metal3 and so on.

2.2. Transistor Fundamentals 47

Different patterns for paths on different levels, and the locations for contact
cuts through the insulating material to connect certain points between levels,
are transferred into the levels during the fabrication process from masks. Paths
on the metal level can cross poly or diffusion levels in the absence of contact
cuts with no functional effects other than a parasitic capacitance. However,
when a path on the poly level crosses a path on the diffusion level, a transistor
is formed.

The nMOS transistor is currently the preferred form of unipolar integra-
tion technology. The name MOS survives the earlier period in which gates were
made of metal (instead of poly). Aluminum is the metal of choice for all conduc-
tivity pathways, although unlike the aluminum/oxide/semiconductor sandwich
that provides only two topological levels on which to make interconnections,
the basic silicon-gate structures provide three levels, and are therefore more
compact and correspondingly faster. Recent advances in fabrication have al-
lowed the use of up to four (or more) layers of metal. However, that process is
expensive and is only used for special chips, such as microprocessors. Two or
three metal technology is more commonly used for general purpose chips.

The transistors that are non-conducting with zero gate bias (gate to source
voltage) are called enhancement mode transistors. Most MOS integrated cir-
cuits use transistors of the enhancement type. The transistors that conduct

48 Chapter 2. Design and Fabrication of VLSI Devices

with zero gate bias are called depletion mode transistors. For a depletion mode
transistor to turn off, its gate voltage must be more negative than its thresh-
old voltage (see Figure 2.6). The channel is enriched in electrons by an implant
step; and thus an n-channel is created between the source and the drain. This
channel allows the flow of electrons, hence the transistor is normally in its
‘on’ state. This type of transistor is used in nMOS as a resistor due to poor
conductivity of the channel as shown in Figure 2.6(d).

The MOS circuits dissipate DC power i.e., they dissipate power even when
the output is low. The heat generated is hard to remove and impedes the
performance of these circuits. For nMOS transistors, as the voltage at the gate
increases, the conductivity of the transistor increases. For pMOS transistors,
the p-channel works in the reverse, i.e., as the voltage on the gate increases,
the conductivity of the transistor decreases. The combination of pMOS and
nMOS transistors can be used in building structures which dissipate power
only while switching. This type of structure is called CMOS (Complementary
Metal-Oxide Semiconductor). The actual design of CMOS devices is discussed
in Section 2.5.

CMOS technology was invented in the mid 1960’s. In 1962, P. K. Weimer
discovered the basic elements of CMOS flip-flops and independently in 1963, F.
Wanlass discovered the CMOS concept and presented three basic gate struc-
tures. CMOS technology is widely used in current VLSI systems. CMOS is an
inherently low power circuit technology, with the capability of providing a lower
power-delay product comparable in design rules to nMOS and pMOS technolo-
gies. For all inputs, there is always a path from ‘1’ or ‘0’ to the output and
the full supply voltage appears at the output. This ‘fully restored’ condition
simplifies circuit design considerably. Hence the transistors in the CMOS gate
do not have to be ‘ratioed’, unlike the MOS gate where the lengths of load and
driver transistors have to be adjusted to provide proper voltage at the output.
Another advantage of CMOS is that there is no direct path between VDD and
GND for any combination of inputs. This is the basis for the low static power
dissipation in CMOS. Table 2.1 illustrates the main differences between nMOS
and CMOS technology. As shown in the table, the major drawback of CMOS
circuits is that they require more transistors than nMOS circuits. In addition,
the CMOS process is more complicated and expensive. On the other hand,
power consumption is critical in nMOS and bipolar circuits, while it is less of a
concern in CMOS circuits. Driver sizes can be increased in order to reduce net
delay in CMOS circuits without any major concern of power. This difference
in power consumption makes CMOS technology superior to nMOS and bipolar
technologies in VLSI design.

2.3 Fabrication of VLSI Circuits

Design and Layout of VLSI circuits is greatly influenced by the fabrication
process; hence a good understanding of the fabrication cycle helps in designing
efficient layouts. In this section, we review the details of fabrication.

2.3. Fabrication of VLSI Circuits 49

50 Chapter 2. Design and Fabrication of VLSI Devices

Fabrication of a VLSI chip starts by growing a large silicon crystal ingot
about 20 centimeters in diameter. The ingot is sliced into several wafers, each
about a third of a millimeter thick. Under various atmospheric conditions,
phosphorus is diffused, oxide is grown, and polysilicon and aluminum are each
deposited in different steps of the process. A complex VLSI circuit is defined
by 6 to 12 separate layer patterns. Each layer pattern is defined by a mask.
The complete fabrication process, which is a repetition of the basic three-step
process (shown in Figure 2.7), may involve up to 200 steps.

1. Create: This step creates material on or in the surface of the silicon wafer
using a variety of methods. Deposition and thermal growth are used to
create materials on the wafer, while ion implantation and diffusion are
used to create material (actually they alter the characteristics of existing
material) in the wafer.

2. Define: In this step, the entire surface is coated with a thin layer of light
sensitive material called photoresist. Photoresist has a very useful prop-
erty. The ultraviolet light causes molecular breakdown of the photoresist
in the area where the photoresist is exposed. A chemical agent is used to
remove the dis-integrated photoresist. This process leaves some regions
of the wafer covered with photoresist. Since exposure of the photoresist
occurred while using the mask, the pattern of exposed parts on the wafer
is exactly the same as in the mask. This process of transferring a pattern
from a mask onto a wafer is called photolithography and it is illustrated
in Figure 2.8.

3. Etch: Wafers are immersed in acid or some other strong chemical agent
to etch away either the exposed or the unexposed part of the pattern,
depending on whether positive or negative photoresist has been used.
The photoresist is then removed to complete the pattern transfer process.

This three step process is repeated for all the masks. The number of masks
and actual details of each step depend on the manufacturer as well as the

2.3. Fabrication of VLSI Circuits 51

technology. In the following analysis, we will briefly review the basic steps in
nMOS and CMOS fabrication processes.

2.3.1 nMOS Fabrication Process
The first step in the n-channel process is to grow an oxide layer on lightly

doped p-type substrate (wafer). The oxide is etched away (using the diffu-
sion mask) to expose the active regions, such as the sources and drains of all
transistors. The entire surface is covered with poly. The etching process us-
ing the poly mask removes all the poly except where it is necessary to define
gates. Phosphorus is then diffused into all uncovered silicon, which leads to
the formation of source and drain regions. Poly (and the oxide underneath it)
stops diffusion into any other part of the substrate except in source and drain
areas. The wafer is then heated, to cover the entire surface with a thin layer of
oxide. This layer insulates the bare semiconductor areas from the pathways to
be formed on top. Oxide is patterned to provide access to the gate, source, and
drain regions as required. It should be noted that the task of aligning the poly
and diffusion masks is rather easy, because it is only their intersections that
define transistor boundaries. This self-alignment feature is largely responsible
for the success of silicon-gate technology. The formation of a depletion mode

52 Chapter 2. Design and Fabrication of VLSI Devices

transistor requires an additional step of ion implantation.
A thin covering of aluminum is deposited over the surface of the oxide,

which now has ‘hills’ and ‘valleys’ in its structure. Etching then removes all
but the requisite wires and contacts. Additional metal layers may be laid on
top if necessary. It is quite common to use two layers of metal. At places
where connections are to be made, areas are enlarged somewhat to assure good
interlevel contact even when masks are not in perfect alignment. All pathways
are otherwise made as small as possible, in order to conserve area. In addition
to normal contacts, an additional contact is needed in nMOS devices. The
gate of a depletion mode transistor needs to be connected to its source. This
is accomplished by using a buried contact, which is a contact between diffusion
and poly.

The final steps involve covering the surface with oxide to provide mechanical
and chemical protection for the circuit. This oxide is patterned to form windows
which allow access to the aluminum bonding pads, to which gold wires will be
attached for connection to the chip carrier. The windows and pads are very

2.3. Fabrication of VLSI Circuits 53

large as compared to the devices.

2.3.2 CMOS Fabrication Process

CMOS transistors require both a p-channel and an n-channel device. How-
ever, these two types of devices require two different substrates. nMOS tran-
sistors require a p-type substrate, while pMOS transistors require a n-type
substrate. CMOS transistors are created by diffusing or implanting an n-type
well in the original p-substrate. The well is also called a tub or an island. The
p-channel devices are placed in the n-well. This is called the n-well CMOS pro-
cess. A complementary process of p-well CMOS starts with an n-type substrate
for pMOS devices, and creates a p-well for nMOS devices. The structure of a
CMOS transistor is shown in Figure 2.9 (p-substrate is not shown). A twin-tub
CMOS process starts with a lightly doped substrate and creates both a n-well
and a p-well.

As compared to the nMOS process, the CMOS process requires a additional
mask for ion implanting to create the deep p-wells, n-wells, or both.

2.3.3 Details of Fabrication Processes

The complete fabrication cycle consists of the following steps: crystal growth
and wafer preparation, epitaxy, dielectric and polysilicon film deposition, oxi-
dation, diffusion, ion implantation, lithography and dry etching. These steps
are used in a generic silicon process, however they are similar to those of other
technologies. Below, we discuss details of specific fabrication processes.

1. Crystal Growth and Wafer Preparation: Growing crystals es-
sentially involves a phase change from solid, liquid, or gas phases to a
crystalline solid phase. The predominant method of crystal growth is
Czochralski (CZ) growth, which consists of crystalline solidification of
atoms from the liquid phase. In this method, single-crystal ingots are
pulled from molten silicon contained in a fused silica crucible.

Electronic-grade silicon, which is a polycrystalline material of high purity,
is used as the raw material for the preparation of a single crystal. The

54 Chapter 2. Design and Fabrication of VLSI Devices

conditions and the parameters during the crystal-pulling operation de-
fine many properties of the wafer, such as dopant uniformity and oxygen
concentration. The ingots are ground to a cylindrical shape of precisely
controlled diameter and one or more flats are ground along its length.
The silicon slices are sawed from the ingot with an exact crystallographic
orientation. Crystal defects adversely affect the performance of the de-
vice. These defects may be present originally in the substrate or may be
caused by subsequent process steps. The harmful impurities and defects
are removed by careful management of the thermal processes.

2. Epitaxy: This is the process of depositing a thin single-crystal layer
on the surface of a single-crystal substrate. The word epitaxy is derived
from two Greek words: epi, meaning ‘upon’, and taxis, meaning ‘ordered’.
Epitaxy is a Chemical Vapor Deposition (CVD) process in which a batch
of wafers is placed in a heated chamber. At high temperatures (900° to
1250°C), deposition takes place when process gases react at the wafer
surface. A typical film growth rate is about The thickness
and doping concentration of the epitaxial layer is accurately controlled
and, unlike the underlying substrate, the layer can be made oxygen- and
carbon-free. A limitation of epitaxy is that the degree of crystal perfection
of the deposited layer cannot be any better than that of the substrate.
Other process-related defects, such as slip or impurity precipitates from
contamination can be minimized.

In bipolar device technology, an epi-layer is commonly used to provide a
high-resistivity region above a low-resistivity buried layer, which has been
formed by a previous diffusion or ‘implant and drive-in’ process. The
heavily doped buried layer serves as a low-resistance collector contact,
but an additional complication arises when epitaxial layers are grown
over patterned buried layer regions. To align the subsequent layers in
relation to the pattern of the buried layer, a step is produced in the
pre-epitaxial processing.

3. Dielectric and Polysilicon film deposition: The choice of a par-
ticular reaction is often determined by the deposition temperature(which
must be compatible with the device materials), the properties, and certain
engineering aspects of deposition (wafer throughput, safety, and reactor
maintenance).

The most common reactions for depositing silicon dioxide for VLSI cir-
cuits are:

Oxidizing silane (silicon hydrate) with oxygen at 400°-450°C.

Decomposing tetra-ethoxysilane at 650° to 750°C, and reacting
dichlorosilane with nitrous oxide at 850° to 900°C.

Doped oxides are prepared by adding a dopant to the deposition reaction.
The hydrides arsine, phosphine, or diborane are often used because they

2.3. Fabrication of VLSI Circuits 55

4.

are readily available gases. However, halides and organic compounds can
also be used. Polysilicon is prepared by pyrolyzing silane at 600° to
650°C.

Oxidation: The process of oxidizing silicon is carried out during the
entire process of fabricating integrated circuits. The production of high-
quality IC’s requires not only an understanding of the basic oxidization
mechanism, but also the electrical properties of the oxide. Silicon dioxide
has several properties:

Serves as a mask against implant or diffusion of dopant into silicon.

Provides surface passivation.

Isolates one device from another.

Acts as a component in MOS structures.

Provides electrical isolation of multilevel metalization systems.

Several techniques such as thermal oxidation, wet anodization, CVD etc.
are used for forming the oxide layers.

When a low charge density level is required between the oxide and the
silicon, Thermal oxidation is preferred over other techniques. In the ther-
mal oxidation process, the surface of the wafer is exposed to an oxidizing
ambient of or at elevated temperatures, usually at an ambient
pressure of one atmosphere.

5. Diffusion: The process in which impurity atoms move into the crystal
lattice in the presence of a chemical gradient is called diffusion. Various
techniques to introduce dopants into silicon by diffusion have been studied
with the goals of controlling the dopant concentration, uniformity, and
reproducibility, and of processing a large number of device wafers in a
batch to reduce the manufacturing costs. Diffusion is used to form bases,
emitters, and resistors in bipolar device technology, source and drain
regions, and to dope polysilicon in MOS device technology. Dopant atoms
which span a wide range of concentrations can be introduced into silicon
wafers in the following ways:

Diffusion from a chemical source in vapor form at high temperatures.

Diffusion from doped oxide source.

Diffusion and annealing from an ion implanted layer.

6. Ion Implantation: Ion implantation is the introduction of ionized
projectile atoms into targets with enough energy to penetrate beyond
surface regions. The most common application is the doping of silicon
during device fabrication. The use of 3-keV to 500-keV energy for doping
of boron, phosphorus, or arsenic dopant ions is sufficient to implant the
ions from about 100 to 10,000A° below the silicon surface. These depths

56 Chapter 2. Design and Fabrication of VLSI Devices

7.

place the atoms beyond any surface layers of 30A° native and there-
fore any barrier effect of the surface oxides during impurity introduction
is avoided. The depth of implantation, which is nearly proportional to
the ion energy, can be selected to meet a particular application.

With ion implantation technology it is possible to precisely control the
number of implanted dopants. This method is a low-temperature process
and is compatible with other processes, such as photoresist masking.

Lithography: As explained earlier, lithography is the process delin-
eating the patterns on the wafers to fabricate the circuit elements and
provide for component interconnections. Because the polymeric materials
resist the etching process they are called resists and, since light is used
to expose the IC pattern, they are called photoresists.

The wafer is first spin-coated with a photoresist. The material proper-
ties of the resist include (1) mechanical and chemical properties such as
flow characteristics, thickness, adhesion and thermal stability, (2) optical
characteristics such as photosensitivity, contrast and resolution and (3)
processing properties such as metal content and safety considerations.
Different applications require more emphasis on some properties than on
others. The mask is then placed very close to the wafer surface so that it
faces the wafer. With the proper geometrical patterns, the silicon wafer is
then exposed to ultraviolet (UV) light or radiation, through a photomask.
The radiation breaks down the molecular structure of areas of exposed
photoresist into smaller molecules. The photoresist from these areas is
then removed using a solvent in which the molecules of the photoresist
dissolve so that the pattern on the mask now exists on the wafer in the
form of the photoresist. After exposure, the wafer is soaked in a solution
that develops the images in the photosensitive material. Depending on
the type of polymer used, either exposed or nonexposed areas of film are
removed in the developing process. The wafer is then placed in an ambi-
ent that etches surface areas not protected by polymer patterns. Resists
are made of materials that are sensitive to UV light, electron beams, X-
rays, or ion beams. The type of resist used in VLSI lithography depends
on the type of exposure tool used to expose the silicon wafer.

8. Metallization: Metal is deposited on the wafer with a mechanism sim-
ilar to spray painting. Motel metal is sprayed via a nozzle. Like spray
painting, the process aims for an even application of metal. Unlike spray
painting, process aims to control the thickness within few nanometers.
An uneven metal application may require more CMP. Higher metal lay-
ers which are thick may require several application of the process get
the desired height. Copper, which has better interconnect properties is
increasing becoming popular as the choice material for interconnect. Cop-
per does require special handling since a liner material must be provide
between copper and other layers, since copper atoms may migrate into
other layers due to electr-migration and cause faults.

2.3. Fabrication of VLSI Circuits 57

9.

10.

11.

Etching: Etching is the process of transferring patterns by selectively
removing unmasked portions of a layer. Dry etching techniques have
become the method of choice because of their superior ability to control
critical dimensions reproducibly. Wet etching techniques are generally
not suitable since the etching is isotropic, i.e., the etching proceeds at the
same rate in all directions, and the pattern in the photoresist is undercut.
Dry etching is synonymous with plasma-assisted etching, which denotes
several techniques that use plasmas in the form of low pressure gaseous
discharges. The dominant systems used for plasma-assisted etching are
constructed in either of two configurations: parallel electrode (planar)
reactors or cylindrical batch (hexode) reactors. Components common to
both of these include electrodes arranged inside a chamber maintained
at low pressures, pumping systems for maintaining proper vacuum levels,
power supplies to maintain a plasma, and systems for controlling and
monitoring process parameters, such as operating pressure and gas flow.

Planarization: The Chemical Mechanical Planarization (CMP) of sili-
con wafers is an important development in IC manufacturing. Before the
advent of CMP, each layer on the wafer was more un-even then the lower
layer, as a result, it was not possible to icrease the number of metal layers.
CMP provides a smooth surface after each metalization step. CMP has
allowed essentially unlimited number of layers of interconnect. The CMP
process is like “Wet Sanding” down the surface until it is even. Contact
and via layers are filled with tungsten plugs and planarized by CMP. ILD
layers are also planarized by CMP.

Packaging: VLSI fabrication is a very complicated and error prone
process. As a result, finished wafers are never perfect and contain many
‘bad’ chips. Flawed chips are visually identified and marked on the wafers.
Wafers are then diced or cut into chips and the marked chips are dis-
carded. ‘Good’ chips are packaged by mounting each chip in a small
plastic or ceramic case. Pads on the chip are connected to the legs on
the case by tiny gold wires with the help of a microscope, and the case is
sealed to protect it from the environment. The finished package is tested
and the error prone packages are discarded. Chips which are to be used
in an MCM are not packaged, since MCM uses unpackaged chips.

The VLSI fabrication process is an enormous scientific and engineering
achievement. The manufacturing tolerances maintained throughout the pro-
cess are phenomenal. Mask alignment is routinely held to 1 micron in 10
centimeters, an accuracy of one part in which is without precedent in in-
dustrial practice. For comparison, note that a human hair is 75 microns in
diameter.

58 Chapter 2. Design and Fabrication of VLSI Devices

2.4 Design Rules

The constraints imposed on the geometry of an integrated circuit layout, in
order to guarantee that the circuit can be fabricated with an acceptable yield,
are called design rules. The purpose of design rules is to prevent unreliable, or
hard-to-fabricate (or unworkable) layouts. More specifically, layout rules are
introduced to preserve the integrity of topological features on the chip and to
prevent separate, isolated features from accidentally short circuiting with each
other. Design rules must also ensure thin features from breaking, and contact
cuts from slipping outside the area to be contacted. Usually, design rules need
to be re-established when a new process is being created, or when a process is
upgraded from one generation to the next. The establishment of new design
rules is normally a compromise between circuit design engineers and process
engineers. Circuit designers want smaller and tighter design rules to improve
performance and decrease chip area, while process engineers want design rules
that lead to controllable and reproducible fabrication. The result is a set of
design rules that yields a competitive circuit designed and fabricated in a cost
effective manner.

Design rules must be simple, constant in time, applicable in many pro-
cesses and standardized among many fabrication facilities. Design rules are
formulated by observing the interactions between features in different layers
and limitations in the design process. For example, consider a contact window
between a metal wire and a polysilicon wire. If the window misses the polysili-
con wire, it might etch some lower level or the circuit substrate, creating a fatal
fabrication defect. One should, undoubtedly, take care of basic width, spacing,
enclosure, and extension rules. These basic rules are necessary parts of every
set of design rules. Some conditional rules depend on electrical connectivity
information. If, for instance, two metal wires are part of the same electrical
node, then a short between them would not affect the operation of circuit.
Therefore, the spacing requirement between electrically connected wires can
be smaller than that between disconnected wires.

The design rules are specified in terms of microns. However, there is a key
disadvantage of expressing design rules in microns. A chip is likely to remain
in production for several years; however newer processes may be developed.
It is important to produce the chip on the newer processes to improve yield
and profits. This requires modifying or shrinking the layout to obey the newer
design rules. This leads to smaller die sizes and the operation is called process
shifting. If the layout is specified in microns, it may be necessary to rework the
entire layout for process shifting. To overcome this scaling problem, Mead and
Conway [MC79] suggested the use of a single parameter to design the entire
layout. The basic idea is to characterize the process with a single scalable
parameter called lambda defined as the maximum distance by which a
geometrical feature on any one layer can stray from another feature, due to over-
etching, misalignment, distortion, over or underexposure, etc, with a suitable
safety factor included. is thus equal to the maximum misalignment of a
feature from its intended position in the wafer. One can think of as either

2.4. Design Rules 59

some multiple of the standard deviation of the process or as the resolution of
the process. Currently, is approximately In order
to simplify our presentation, we will use lambda.

Design rules used by two different fabrication facilities may be different due
to the availability of different equipment. Some facilities may not allow use of
a fourth or a fifth metal layer, or they may not allow a ‘stacked via’. Usually,
design rules are very conservative (devices take larger areas) when a fabrication
process is new and tend to become tighter when the process matures. Design
rules are also conservative for topmost layers (metal4 and metal5 layers) since
they run over the roughest terrain.

The actual list of design rules for any particular process may be very long.
Our purpose is to present basic ideas behind design rules, therefore, we will
analyze simplified nMOS design rules. Table 2.2 lists basic nMOS design rules.
We have omitted several design rules dealing with buried contact, implant, and
others to simply our discussion.

As stated earlier, design rules are specified in fractions of microns. For
example, separation for five metal layers may be

and respectively. Similar numbers are specified for each rule.
Such rules do make presentation rather difficult, explaining our motivation
to use the simpler lambda system. Although the lambda system is simple,
sometimes it can become over-simplifying or even misleading. At such places
we will indicate the problems caused by our simplified design rules.

In order to analyze design rules it is helpful to envision the design rules as
a set of constraints imposed on the geometry of the circuit layout. We classify
the rules in three types.

1. Size Rules: The minimum feature size of a device or an interconnect
line is determined by the line patterning capability of lithographic equip-
ment used in the IC fabrication. In 1998, the minimum feature size is

Interconnect lines usually run over a rough surface, unlike the
smooth surface over which active devices are patterned. Consequently,
the minimum feature size used for interconnects is somewhat larger than
the one used for active devices, based on patternability considerations.
However, due to advances in planarization techniques, roughness problem

60 Chapter 2. Design and Fabrication of VLSI Devices

of higher layers is essentially a solved problem.

The design rule must specify the minimum feature sizes on different layers
to ensure a valid design of a circuit. Figure 2.10 shows different size rules
for feature sizes in different layers.

2.

3.

Separation Rules: Different features on the same layer or in different
layers must have some separation from each other. In ICs, the intercon-
nect line separation is similar to the size rule. The primary motivation is
to maintain good interconnect density. Most IC processes have a spacing
rule for each layer and overlap rules for vias and contacts. Figure 2.10
also shows the different separation rules in terms of

Overlap Rules: Design rules must protect against fatal errors such as
a short-circuited channel caused by the mismigration of poly and diffu-
sion, or the formation of an enhancement-mode FET in parallel with a
depletion-mode device, due to the misregistration of the ion-implant area
and the source/drain diffusion as shown in Figure 2.11. The overlap rules
are very important for the formation of transistors and contact cuts or
vias.

Figure 2.12 shows the overlap design rules involved in the formation of a
contact cut.

In addition to the rules discussed above, there are other rules which do not
scale. Therefore they cannot be reported in terms of lambda and are reported
in terms of microns. Such rules include:

2.4. Design Rules 61

1.

2.

3.

4.

5.

6.

The size of bonding pads, determined by the diameter of bonding wire
and accuracy of the bonding machine.

The size of cut in overglass (final oxide covering) for contacts with pads.

The scribe line width (The line between two chips, which is cut by a
diamond knife).

The feature distance from the scribe line to avoid damage during scribing.

The feature distance from the bonding pad, to avoid damage to the de-
vices during bonding.

The bonding pitch, determined by the accuracy of bonding machine.

We have presented a simple overview of design rules. One must study
actual design rules provided by the fabrication facility rather carefully before

62 Chapter 2. Design and Fabrication of VLSI Devices

one starts the layout. CMOS designs rules are more complicated than nMOS
design rules, since additional rules are needed for tubs and pMOS devices.

The entire layout of a chip is rarely created by minimum design rules as
discussed above. For performance and/or reliability reasons devices are de-
signed with wider poly, diffusion or metal lines. For example, long metal lines
are sometimes drawn using using two or even three times the minimum design
rule widths. Some metal lines are even tapered for performance reasons. The
purpose of these examples is to illustrate the fact that layout in reality is much
more complex. Although we will maintain the simple rules for clarity of pre-
sentation, we will indicate the implications of complexity of layout as and when
appropriate.

2.5 Layout of Basic Devices

Layout is a process of translating schematic symbols into their physical rep-
resentations. The first step is to create a plan for the chip by understanding the
relationships between the large blocks of the architecture. The layout designer
partitions the chip into relatively smaller subcircuits (blocks) based on some
criteria. The relative sizes of blocks and wiring between the blocks are both es-
timated and blocks are arranged to minimize area and maximize performance.
The layout designer estimates the size of the blocks by computing the number
of transistors times the area per transistor. After the top level ‘floorplan’ has
been decided, each block is individually designed. In very simple terms, layout
of a circuit is a matter of picking the layout of each subcircuit and arranging it
on a plane. In order to design a large circuit, it is necessary to understand the
layout of simple gates, which are the basic building blocks of any circuit. In
this section, we will discuss the structure of various VLSI devices such as the
Inverter, NAND and NOR gates in both MOS and CMOS technologies.

2.5.1 Inverters

The basic function of an inverter is to produce an output that is complement
of its input. The logic table and logic symbol of a basic inverter are shown in
Figure 2.13(a) and (d) respectively. If the inverter input voltage A is less
than the transistor threshold voltage then the transistor is switched off and
the output is pulled up to the positive supply voltage VDD. In this case the
output is the complement of the input. If A is greater than the transistor
is switched on and current flows from the supply voltage through the resistor
R to GND. If R is large, could be pulled down well below thus again
complementing the input.

The main problem in the design of an inverter layout is the creation of
the resistor. Using a sufficiently large resistor R would require a very large
area compared to the area occupied by the transistor. This problem of large
resistor can be solved by using a depletion mode transistor. The depletion mode
transistor has a threshold voltage which is less than zero. Negative voltage is
required to turn off a depletion mode transistor. Otherwise the gate is always

2.5. Layout of Basic Devices 63

turned on. The circuit diagram of an inverter is shown in Figure 2.13(c). The
basic inverter layout on the silicon surface in MOS is given in Figure 2.13(b).
It consists of two polysilicon (poly) regions overhanging a path in the diffusion
level that runs between VDD and GND. This forms the two MOS transistors of
the inverter. The transistors are shown by hatched regions in Figure 2.13(b).
The upper transistor is called pull-up transistor, as it pulls up the output to 1.
Similarly, the lower transistor is called the pull-down transistor as it is used to
pull-down the output to zero. The inverter input A is connected to the poly
that forms the gate of the lower of the two transistors. The pull-up is formed by
connecting the gate of the upper transistor to its drain using a buried contact.
The output of the inverter is on the diffusion level, between the drain of the
pull-down and the source of the pull-up. The pull-up is the depletion mode
transistor, and it is usually several times longer than the pull-down in order
to achieve the proper inverter logic threshold. VDD and GND are laid out in
metal1 and contact cuts or vias are used to connect metal1 and diffusion.

The CMOS inverter is conceptually very simple. It can be created by con-
necting a p-channel and a n-channel transistor. The n-channel transistor acts
as a pull-down transistor and the p-channel acts as a pull-up transistor. Fig-
ure 2.14 shows the layout of a CMOS inverter. Depending on the input, only
one of two transistors conduct. When the input is low, the p-channel transistor
between VDD and output is in its “on” state and output is pulled-up to VDD,
thus inverting the input. During this state, the n-channel transistor does not
conduct. When input is high, the output goes low. This happens due to the
“on” state of the n-channel transistor between GND and output. This pulls the

output down to GND, thus inverting the input. During this state, p-channel
transistor does not conduct. The design rules for CMOS are essentially same
as far as poly, diffusion, and metal layers are concerned. Additional CMOS
rules deal with tub formation.

2.5.2 NAND and NOR Gates

NAND and NOR logic circuits may be constructed in MOS systems as a
simple extension of the basic inverter circuit. The circuit layout in nMOS, truth
tables, and logic symbols of a two-input NAND gate are shown in Figure 2.15
and NOR gate is shown in Figure 2.16.

In the NAND circuit, the output will be high only when both of the inputs
A and B are high. The NAND gate simply consists of a basic inverter with an
additional enhancement mode transistor in series with the pull-down transis-
tor (see Figure 2.15). NAND gates with more inputs may be constructed by
adding more transistors in series with the pull-down path. In the NOR circuit,
the output is low if either of the inputs, A and B is high or both are high. The
layout (Figure 2.16) of a two-input NOR gate shows a basic inverter with an
additional enhancement mode transistor in parallel with the pull-down transis-
tor. To construct additional inputs, more transistors can be placed in parallel
on the pull-down path. The logic threshold voltage of an n-input NOR circuit
decreases as a function of the number of active inputs (inputs moving together
from logic-0 to logic-1). The delay time of the NOR gate with one input active

64 Chapter 2. Design and Fabrication of VLSI Devices

2.5. Layout of Basic Devices 65

is the same as that of an inverter of equal transistor geometries, except for
added stray capacitance. In designing such simple combined circuits, a single
pull-up resistor must be fixed above the point of output.

The layouts of CMOS NAND and NOR gates are shown in Figure 2.17 and
Figure 2.18 respectively. It is clear from Figure 2.17, that both inputs must be
high in order for the output to be pulled down. In all other cases, the output
will be high and therefore the gate will function as a NAND. The CMOS NOR
gate can be pulled up only if both of the inputs are low. In all other cases,
the output is pulled down by the two n-channel transistors, thus enabling this
device to work as a NOR gate.

2.5.3 Memory Cells

Electronic memory in digital systems ranges from fewer than 100 bits from a
simple four-function pocket calculator, to bits for a personal computer.
Circuit designers usually speak of memory capacities in terms of bits since a
unit circuit (for example a filp-flop) is used to store each bit. System designers
in the other hand state memory capacities in the terms of bytes (typically 8-9
bits) or words representing alpha-numeric characters, or scientific numbers. A
key characteristic of memory systems is that only a single byte or word is stored

66 Chapter 2. Design and Fabrication of VLSI Devices

2.5. Layout of Basic Devices 67

or retrieved during each cycle of memory operation. Memories which can be
accessed to store or retrieve data at a fixed rate, independent of the physical
location of the memory address are called Random Access Memories or RAMs.
A typical RAM cell is shown in Figure 2.19.

2.5.3.1 Static Random Access Memory (SRAM)

SRAMs use static CMOS circuits to store data. A common CMOS SRAM
is built using cross-coupled inverters to form a bi-stable latch as shown in
Figure 2.20. The memory cell can be accessed using the pass transistors P1 and
P2 which are connected to the BIT and the BIT' lines respectively. Consider
the read operation. The n-MOS transistors are poor at passing a one and the
p-transistors are generally quite small (large load resistors). To overcome this
problem, the BIT and the BIT' lines are precharged to a n-threshold below
VDD before the pass transistors are switched on. When the SELECT lines
(word line) are asserted, the RAM cell will try to pull down either the BIT
or the BIT' depending on the data stored. In the write operation, data and
it’s complement are fed to the BIT and the BIT' lines respectively. The word
line is then asserted and the RAM cell is charged to store the data. A low
on the SELECT lines, decouples the cell from the data lines and corresponds

to a hold state. The key aspect of the precharged RAM read cycle is the
timing relationship between the RAM addresses, the precharge pulse and the
row decoder (SELECT line). A word line assertion preceding the precharge
cycle may cause the RAM cell to flip state. On the other hand, if the address
changes after the precharge cycle has finished, more than one RAM cell will be
accessed at the same time, leading to erroneous read data.

The electrical considerations in such a RAM are simple to understand as
they directly follow the CMOS Inverter characteristics. The switching time of
the cell is determined by the output capacitance and the feedback network.
The time constants which control the charging and discharging are

where is the total load capacitance on the output nodes and and
are the transconductance parameters for the n and p transistors respectively.

68 Chapter 2. Design and Fabrication of VLSI Devices

2.5. Layout of Basic Devices 69

Minimizing the time constants within the constraints of the static noise margin
requirements gives a reasonable criterion for the initial design of such cells.

2.5.3.2 Dynamic Random Access Memory (DRAM)

A DRAM cell uses a dynamic charge storage node to hold data. Figure 2.21
shows a basic 1-Transistor cell consisting of an access nMOS MEM, a storage

When the Select is set to high, gets charged up to the bit line voltage
according to the formula,

where is the charging time constant. The 90% voltage
point is reached in a low-high time of and is the minimum
logic 1 loading interval. Thus a logic one is stored into the capacitor. When a
logic zero needs to be stored, the Select is again set to high and the charge on

decays according to the formula,

where is discharge time constant. The 10% voltage point
requires a high-low time of Thus it takes longer to

load a logic 1 than to load a logic 0. This is due to the fact
that the gate-source potential difference decreases during a logic 1 transfer.

The read operation for a dynamic RAM cell corresponds to a charge sharing
event. The charge on is partly transferred onto Suppose
has an initial voltage of The bit line capacitance is initially charged
to a voltage (typically 3V). The total system charge is thus given by

When the SELECT is set to a high voltage, M

capacitor and the input capacitance at the bit line

becomes active and conducts current. After the transients have decayed, the
capacitors are in parallel and equilibrate to the same final voltage such that

Defining the capacitance ratio yields the final voltage as

If a logic 1, is initially stored in the cell, then and

Similarly for volts,

Thus the difference between a logic 1 and a logic 0 is

The above equation clearly shows that a small r is desirable. In typical 16 Mb
designs, and giving

Dynamic RAM cells are subject to charge leakage, and to ensure data in-
tegrity, the capacitor must be refreshed periodically. Typically a dynamic re-
fresh operation takes place at the interval of a few milliseconds where the
peripheral logic circuit reads the cell and re-writes the bit to ensure integrity
of the stored data.

High-value/area capacitors are required for dynamic memory cells. Recent
processes use three dimensions to increase the capacitance/area. One such

70 Chapter 2. Design and Fabrication of VLSI Devices

2.6. Summary 71

structure is the trench capacitor shown in Figure 2.22. The sides of the trench
are doped and coated with a thin 10 nm oxide. Sometimes a thin oxynitride
is used because its high dielectric constant increases the capacitance. The cell
is filled with a polysilicon plug which forms the bottom plate of the cell storage
capacitor. This is held at VDD/2 via a metal connection at the edge of the
array. The sidewall forms the other side of the capacitor and one side of
the pass transistor that is used to enable data onto the bit lines. The bottom
of the trench has a plug that forms a channel-stop region to isolate adjacent
capacitors.

2.6 Summary

The fabrication cycle of VLSI chips consists of a sequential set of basic steps
which are crystal growth and wafer preparation, epitaxy, dielectric and polysil-
icon film deposition, oxidation, lithography, and dry etching. During the fab-
rication process, the devices are created on the chip. When some fixed size
material crosses another material, devices are formed. While designing the de-
vices, a set of design rules has to be followed to ensure proper function of the
circuit.

2.7 Exercises

1.

2.

3.

Draw the layout using nMOS gates with minimum area for the circuit
shown in Figure 2.23. For two input nMOS NAND gates, assume the
length of pull-up transistor to be eight times the length of either pull-
down. (Unless stated otherwise, use two metal layers for routing and
ignore delays in vias).

Compute the change in area if CMOS gates are used in a minimum area
layout of the circuit in Figure 2.23.

For the circuit shown in Figure 2.24, generate a layout in which the
longest wire does not have a delay more than 0.5 psec. Assume that the

4.

†5.

width of the wire is the height is the thickness of the oxide
below the wire is and

Layout the circuit given in Figure 2.23 so that the delay in the longest
path from input to output is minimized. Assume CMOS process
and assume each gate delay to be 2 nsec.

In order to implement a memory, one needs a circuit element, which can
store a bit value. This can be done using flip-flops. A D flip-flop is shown
in Figure 2.25. Memories can be implemented using D flip-flops as shown
in Figure 2.26. A 2 x 2 bit memory is shown in the figure. The top two
flip-flops store word 0, while the bottom two flip flops store the word 1.
A indicates the address line, if A = 0 the top two bits consisting of top
word 0 are selected, otherwise the bottom word is selected. CS, RD and
OE indicate chip select, read and output enable signals, respectively,
and are two input lines, while and indicate output lines.

(a)

(b)

(c)

Layout the 4 bit memory shown in Figure 2.26.

Calculate the read and write times for this memory in CMOS
process. Assume gate delay to be 2 nsec.

Estimate the total area (in microns) for a 256 KByte memory using
CMOS process.

72 Chapter 2. Design and Fabrication of VLSI Devices

2.7. Exercises 73

6. (a)

(b)

(c)

Draw the circuit diagram of a half-adder.

Draw the layout of the of the half-adder with minimum area.

How many such chips may be fabricated on a wafer of diameter
10 cm ? (Assume scrap edge distance,)

7. For the function

(a)

(b)

Draw the logic circuit diagram.

Generate a minimum area layout for the circuit.

8.

9.

10.

Estimate the number of transistors needed to layout a k-bit full adder.
Compute the area required to layout such a chip in nMOS and CMOS.

Skew is defined as the difference in the signal arrival times at two differ-
ence devices. Skew arises in the interconnection of devices and in routing
of a clock signal. Skew must be minimized if the system performance is to
be maximized. Figure 2.27 shows a partial layout of a chip. Complete the
layout of chip by connecting signal source to all the terminals as shown
in the Figure 2.27. All paths from the source to the terminals must be of
equal length so as to have zero skew.

Suppose a new metal layer is added using present design rules. How many
design rules would be needed ?

11. Compute the number of masks needed to produce a full custom chip using
k-metal layer CMOS technology.

Bibliographic Notes
Weste and Eshraghian[WE92] cover CMOS design from a digital system level
to the circuit level. In addition to the traditional VLSI design technologies it
covers the emerging BiCMOS technology. Mead and Conway [MC79] discuss
the physical design of VLSI devices. The details about the design rules can also
be found in [MC79]. Advanced discussion on VLSI circuit and devices can be
found in [Gia89]. The book by Bakoglu [Bak90] covers interconnects and the
effects of scaling on device dimensions in detail. The basic functions of nMOS
and CMOS VLSI devices are discussed in [Muk86].

74 Chapter 2. Design and Fabrication of VLSI Devices

Chapter 3

Fabrication Process and its
Impact on Physical Design

The biggest driving force behind growth in the semiconductor, computer,
networking, consumer electronics, and software industries in the last half cen-
tury has been the continuous scaling, or miniaturization, of the transistor.
Computers and other electronic devices have become smaller, more portable,
cheaper, easier to use, and more accessible to everyone. As long as we can make
the transistor faster and smaller, make the wires that interconnect them less
resistive to electrical current, and make each chip denser, the digital revolution
will continue.

The manufacture of ICs, like any other high volume manufacturing business,
is very cost sensitive. The yield of the fab must be very high to be profitable.
So in any given process generation, semiconductor manufacturers use process
equipment and critical dimensions that allow them acceptable yields. As more
and more chips are manufactured and tested in a process, the process matures
and the yield of the process increases. When the yield increases, more aggressive
(that is, smaller) critical dimensions can be used to shrink the layout. This
process of shrinking the layout, in which every dimension is reduced by a factor
is called scaling. In general, scaling refers to making the transistors, and the
technology that connects them, smaller. As a transistor becomes smaller, it
becomes faster, conducts more electricity, and uses less power, the cost of
producing each transistor goes down, and more of them can be packed on a
chip.

If a chip is scaled, it leads to a smaller die size, increased yield, and increased
performance. Suppose a chip in 0.25 micron process generation is x microns
wide and x microns high. Assume a shrink factor of 0.7 from 0.25 to 0.18
micron process. Therefore, on 0.18 process, we can essentially produce a 0.7x
micron wide and 0.7x micron high chip. That is, the scaled chip is half the size
of the original chip, in terms of area. It will have better yield, due to smaller
die size and it will have better performance due to faster transistors and shorter
interconnect.

76 Chapter 3. Fabrication Process and its Impact on Physical Design

As transistors are scaled, their characteristics (such a delay, leakage current,
threshold voltage, etc) also scale but not uniformly. For example, power may
not scale with device size. In particular, by middle of next decade, it is expected
that the leakage current of a transistor will be of the same value whether the
transistor is on or off.

The biggest concern in scaling, is the mismatch in the scaling of devices and
interconnect. Interconnect delay is not scaling at the same rate as the device
delay. As a result, it has become a more dominant factor in overall delay. This
has fundamentally changed the perspective of physical design. Earlier it was
possible to lay down the devices and interconnect them and be sure that the
design would work. It was possible to ignore the delay in the interconnect, as it
was 5 – 10% of the overall delay. As interconnect has now become 50 – 70% of
the overall delay, it was necessary to find optimal locations for devices so that
interconnect delay is as small as possible. This has led to the consideration
of physical design (in particular interconnect planning) at very early stages
of design (even at architectural level), as well as throughout the VLSI design
cycle.

As a result of the potential side effects, it is important to be aware of process
technology and innovations, so as to understand the impact on physical design.
The purpose of this chapter is to explain the process scaling, process innova-
tions, process side-effects and their impact on physical design. Our focus is to
identify potential future physical design problems due to process. Section 3.1
discusses the scaling methods, Section 3.2 presents the status of fabrication
process (circa 1998). Section 3.3 is dedicated to issues with the process such
as the parasitics effects, interconnect delay and noise, power dissipation, and
yield, among others. In Section 3.4, we discuss the future of the process and
innovations that might solve the current and future process related problems.
Section 3.5 discusses the solutions and options for interconnect problems. Fi-
nally, Section 3.6 discusses CAD tools needed to help in process development.

3.1 Scaling Methods

There are two basic types of scaling to consider. One is full scaling, in which
all device dimensions, both surface and vertical, and all voltages are reduced
by the same factor. Other type is called the constant-voltage scaling, wherein
only device dimensions are scaled, while maintaining voltage levels. These two
methods are compared in Table 3.1, where the scaling factor is specified as S.

In full scaling, devices improve in speed, dissipate less power and can be
packed closer together. As a result, high speed chips that integrate large num-
bers of transistors are made possible. However, devices cannot be scaled down
beyond a certain limit. This limit is imposed by a number of second order
effects which arise due to simple scaling technique.

In constant voltage scaling, ICs can be used in existing systems without
multiple power supplies. In addition, the gate delay is reduced by an additional
factor of S. On the other hand, constant voltage scaling leads to higher power

3.2. Status of Fabrication Process 77

dissipation density, and increments in electric fields, which may lead to oxide
breakdown problems.

Except for features related to bonding pads and scribe lines, all other fea-
tures can be scaled. If the design is not limited by the pad-size, the layout
can be scaled and then pads of original size can be placed around the shrunken
layout.

3.2 Status of Fabrication Process

In 1998, the standard production fabrication process is the 0.25 micron
CMOS process. It has a 1.8V VDD and 4.2 nm oxide. Transistors use com-
plementary doped poly and Shallow Trench Isolation (STI). In terms of inter-
connect, process supports 5-6 layers of aluminum interconnect using (typically)
a Ti/Al-Cu/Ti/TiN stack. Some manufacturers provide a local interconnect
layer as well. The key feature of interconnect is the high aspect ratio metal lines
for improved resistance and electro-migration. Contact and via layers are filled
with tungsten plugs and planarized by CMP. ILD layers are also planarized by
CMP. New processes support copper layers for interconnect.

3.2.1 Comparison of Fabrication Processes

In this section, we compare 0.25 micron processes of leading manufactur-
ers. Table 3.2 shows the key features of production fabrication processes of
five leading semiconductor manufacturers. The five processes are listed from
IBM (International Business Machines), AMD (Advanced Micro Devices), DEC
(Digital Equipment Corporation, which is now part of Intel and Compaq), TI
(Texas Instruments) and Intel Corporation.

Several interesting observations can be made about the processes.

1. Synergy between Metal Layers: Some manufacturers have syngerized the
metal layers. For example, DEC’s CMOS-7 process has (1:2) ratio be-
tween two lower metal layers and three higher metal layers. Similarly,
TI’s CO7 has (1:3) ratio between first four layers and the last layer.
While Intel’s process favors syngergy between M2 and M3 and there is

78 Chapter 3. Fabrication Process and its Impact on Physical Design

2.

3.

no obvious relationship between these layers and higher layers. The other
other extreme is IBM’s essentially gridded approach for four higher lay-
ers. Only M1 is os smaller pitch, possibly to help cell density. Metal
synergy may help in routing, as routes are on certain tracks and vias can
be only on the routing grids. The importance of routing grid is related to
methodology for wire sizing. In particular, the method, by which routers
provide wide wire and tapering capability.

Local interconnect: While some manufacturers have provided local inter-
connect for better cell density (50%), other have opted to forego it since
it may cost almost as much as a full layer but provides limited routing
capability.

Use of higher metal layers: Table 3.2 clearly shows a divergence in the
width of the higher metal layers. Note that AMD, TI, and Intel use very
wide wires on higher metal layers. These layers provide high performance
for long global interconnect. While IBM and DEC provide smaller width
lines, possibly leaving the option for the designer to use a wider than
minimum width wire, if necessary. However, this does allow process to
provide optimal performance from wires in higher layers.

Table 3.3 shows details about the spacing between interconnect and aspect
ratio of the interconnect for Intel’s P856 process. First note that the thickness
of metal lines varies widely. M1 is quite narrow at 0.48 um, while M5 is quite
thick at 1.9 um. Aspect ratio of a wire is the ratio of its thickness to its
width. Note that the interconnect aspect ratio is almost as high as 2.0 for
some layers. That is, M2 (and M3) is twice as thick as it is wide. Higher
aspect ratio provides better interconnect performance on smaller widths but
also introduces the wall-to-wall capacitance.

3.3. Issues related to the Fabrication Process 79

3.3 Issues related to the Fabrication Process

Process scaling has allowed a high level of integration, better yields (for a
constant die size), lower costs and allowed larger die sizes (for a constant yield).
As a result, process has also introduced several problems and issues that need
to be addressed. In this section, we will discuss these process related issues.

The first set of issues is related to parasitics effects, such as stray capac-
itances. The second set of issues is related to interconnect, which poses two
type of problems, delay/noise and signal integrity which may limit maximum
frequency. Other interconnect problems are associated with size and complex-
ity of interconnect. The amount of interconnect needed to connect millions
of transistors runs into hundreds of thousands of global signals and millions
of local and mid-distance signals. The sheer size of interconnect needs to be
addressed, otherwise the die size grows to accommodate the interconnect. This
larger die size may make the design project more costly or even infeasible.
This is due to that fact that larger die may have longer interconnect and may
not allow the chip to reach its targeted frequency. Other issues include power
dissipation and yield.

3.3.1 Parasitic Effects

The proximity of circuit elements in VLSI allows the inter-component ca-
pacitances to play a major role in the performance of these circuits. The stray
capacitance and the capacitance between the signal paths and ground are two
major parasitic capacitances. Another parasitic capacitance is the inherent ca-
pacitance of the MOS transistor. This capacitance has to be accounted for,
as it has more effect than the parasitic capacitance to the ground. All MOS
transistors have a parasitic capacitance between the drain edge of the gate and
drain node. In an inverter, this capacitance will be charged in one direction for
one polarity input and in the opposite direction for the opposite polarity input.
Thus, on a gross scale its effect on the system is twice that of an equivalent
parasitic capacitance to ground. Therefore, gate-to-drain capacitances should
be doubled, and added to the gate capacitance and the stray capacitances, to
account for the total capacitance of the node and thus for the effective delay
of the inverter.

80 Chapter 3. Fabrication Process and its Impact on Physical Design

Interconnect capacitance is of two types; between wires across layers and
between wires within layers. The former is more significant than the later.
The interconnect capacitance within layers can be reduced by increasing the
wire spacing and by using power lines shielding. Whereas, the interconnect
capacitance across layers can be reduced by connecting wires in adjacent layers
perpendicular to each other.

3.3.2 Interconnect Delay

The calculation of delay in a layout depends on a variety of parameters. The
delays in a circuit can be classified as gate delay and interconnect delay. Both
the gate and the interconnect delay depend on parameters such as the width
and length of poly, thickness of oxide, width and length of metal lines, etc.
Details on this topic can be found in [Bak90]. The process of extracting these
parameters is called extraction. The tool that computes the delay using these
parameters and a suitable delay model is often referred as an RC-extractor. We
will restrict this discussion to the calculation of interconnect delays.

Historically, interconnect delay was considered to be electrically negligible.
Currently interconnections are becoming a major concern in high performance
ICs and the RC delay due to interconnect is the key factor in determining the
performance of a chip. The resistance of wires increases rapidly as chip size
grows larger and minimum feature size reduces. Resistance plays a vital role
in determining RC delay of the interconnection.

The relative resistance values of metal, diffusion, poly, and drain-to-source
paths of transistors are quite different. Diffused layers and polysilicon layers
have more than one hundred times the resistance per square area of the metal
layer. The resistance of a uniform slab of conducting material is given by:

where is the resistivity, and and are the width, thickness, and
length of the conductor. The empirical formula for the interconnection capac-
itance is given by:

where, C is the capacitance of the conductor, is the spacing of chip
interconnections, is the thickness of the oxide, is the dielectric
constant of the insulator, and is the permittivity
of free space. Various analytical models for two-dimensional interconnection
capacitance calculations can be found in [Cha76, ST83]. Path capacitance could
be computed by adding via capacitances to the net capacitances.

3.3. Issues related to the Fabrication Process 81

The expressions given above show that the interconnect delay is the more
dominant delay in current technology. Consider a 2 cm long, thick wire,
having a thick oxide beneath it in an chip fabricated using technol-
ogy. The resistance of such a wire is and its capacitance is approximately
4.0 pF. As a result, it has a distributed RC constant of 2.4 nsec. This delay
is equivalent to a typical gate delay of 1 to 2 nsec in technology. In this
technology, the maximum die size was limited to 1 cm × 1 cm and therefore
the gate delays dominated the interconnect delays. On the other hand, a sim-
ilar calculation for technology shows that if only sub-nanosecond
delays are allowed, the maximum wire length can be at most 0.5 cm. Since, the
gate delays are sub-nanosecond and the die size is 2.5 cm × 2.5 cm, it is clear
that interconnect delays started dominating the gate delay in process
generation.

The delay problem is more significant for signals which are global in nature,
such as clock signals. A detailed analysis of delay for clock lines is presented
in Chapter 11.

3.3.3 Noise and Crosstalk

When feature sizes and signal magnitudes are reduced, circuits become more
susceptible to outside disturbances, resulting in noise. Noise principally stems
from resistive and capacitive coupling. Smaller feature sizes result in reduced
node capacitances. This helps to improve circuit delays; however, these nodes
also become more vulnerable to external noise, especially if they are dynami-
cally charged. The coupling between neighboring circuits and interconnections
and the inductive noise generated by simultaneous switching of circuits are
most prevalent forms of internal noise. As chip dimensions and clock frequency
increase, the wavelengths of the signals become comparable to interconnection
lengths, and this makes interconnections better ‘antennas.’

Noise generated by off-chip drivers and on-chip circuitry is a major problem
in package and IC design for high-speed systems. The noise performance of a
VLSI chip has three variables: noise margin, impedance levels, and charac-
teristics of noise sources. Noise margin is a parameter closely related to the
input-output voltage characteristics. This is a measure of the allowable noise
voltage in the input of a gate such that the output will not be affected. Noise
margin is defined in terms of two parameters: Low Noise Margin(LNM) and
High Noise Margin(HNM). The LNM and HNM are given by:

Where and are low and high input voltages and and are low
and high output voltages respectively.

One of the forms of noise is crosstalk, which is a result of mutual capacitance
and inductance between neighboring lines. The amount of coupling between
two lines depends on these factors. The closeness of lines, how far they are

82 Chapter 3. Fabrication Process and its Impact on Physical Design

from the ground plane, and the distance they run close to each other. As a
result of crosstalk, propagation delay increases and logic faults occur. The
delay increases because the overall capacitance of the line increases which in
turn augments the RC delay of the line.

3.3.4 Interconnect Size and Complexity

The number of nets on a chip increases as the number of transistors are in-
creased. Rent’s rule is typically used to estimated the number of pins in a block
(unit, cluster, or chip) and number of transistors in that block (unit, cluster
or chip). Rent’s rule state that the number of I/Os needed are proportional to
the number of transistors N and a constant K, which depends on the ability
to share signals. Rent’s rule is expressed as:

where C is the average number of signal and control I/Os. K is typically 2.5
for high performance systems, and n is a constant in the range of 1.5 to 3.0.
Originally, Rent’s rule was observed by plotting I/Os versus transistors count
of real systems. Since that time, several stochastic and geometric arguments
have also been proposed that support Rent’s rule.

It is quite clear from Rent’s rule that the signal complexity at all levels of
the chip stays ahead of the integration level (number of transistors, sub-circuits,
etc).

3.3.5 Other Issues in Interconnect

Several other issues in interconnect may also cause some problems. Higher
aspect ratio wires that are used to provide better performance for higher layers
also cause more cross (wall to wall) capacitance. As a result, signals that may
conflict need to be routed spaced from each other. Another issue is inductance
modeling and design. As chip frequency reaches GHz and beyond, wires start
acting like transmission lines and circuits behave like RLC circuits. In addition,
use of different dielectrics, that are used on different layers complicates the
delay, noise and inductance modeling.

3.3.6 Power Dissipation

Heat generation and its removal from a VLSI chip is a very serious concern.
Heat generated is removed from the chip by heat transfer. The heat sources
in a chip are the individual transistors. The heat removal system must be
efficient and must keep the junction temperature below a certain value, which
is determined by reliability constraints. With higher levels of integration, more
and more transistors are being packed into smaller and smaller areas. As a
result, for high levels of integration heat removal may become the dominant
design factor. If all the generated heat is not removed, the chip temperature
will rise and the chip may have a thermal breakdown. In addition, chips must

3.3. Issues related to the Fabrication Process 83

be designed to avoid hotspots, that is, the temperature must be as uniform as
possible over the entire chip surface.

CMOS technology is known for using low power at low frequency with
high integration density. There are two main components that determine the
power dissipation of a CMOS gate. The first component is the static power
dissipation due to leakage current and the second component is dynamic power
dissipation due to switching transient current and charging/discharging of load
capacitances. A CMOS gate uses 0.003 mW/MHz/gate in ‘off’ state and 0.8
mW/MHz/gate during its operation. It is easy to see that with one million
gates, the chip will produce less than a watt of heat. In order to accurately
determine the heat produced in a chip, one must determine the power dissipated
by the number of gates and the number of off chip drivers and receivers. For
CMOS circuits, one must also determine the average percent of gates active at
any given time, since heat generation in the ‘off’ state is different than that
of ‘on’ state. In ECL systems, power consumption is typically 25 mW/gate
irrespective of state and operating frequency. Current heat removal system
can easily handle 25 to 100W in a high performance package. Recently, MCM
systems have developed, which can dissipate as much as 600W per module.

Power dissipation has become a topic of intense research and development.
A major reason is the development of lap-top computers. In lap-top computers,
the battery life is limited and low power systems are required. Another reason
is the development of massively parallel computers, where hundreds (or even
thousands) of microprocessors are used. In such systems, power dissipation and
corresponding heat removal can become a major concern if each chip dissipates
a large amount of power.

In recent years, significant progress has been in made in development of low
power circuits and several research projects have now demonstrated practical
lower power chips operating at 0.5 V. In some microprocessors, 25-35% power
is dissipated in the clock circuitry, so low power dissipation can be achieved
by literally ‘switching-off’ blocks which are not needed for computation in any
particular step.

3.3.7 Yield and Fabrication Costs

The cost of fabrication depends on the yield. Fabrication is a very compli-
cated combination of chemical, mechanical and electrical processes. Fabrication
process requires very strict tolerances and as a result, it is very rare that all the
chips on a wafer are correctly fabricated. In fact, sometimes an entire wafer
may turn out to be non-functional. If a fabrication process is new, its yield is
typically low and design rules are relaxed to improve yield. As the fabrication
process matures, design rules are also improved, which leads to higher density.
In order to ensure that a certain number of chips per wafer will work, an up-
per limit is imposed on the chip dimension X. Technically speaking, an entire
wafer can be a chip (wafer scale integration). The yield of such a process would
however be very low, in fact it might be very close to zero.

Wafer yield accounts for wafers that are completely bad and need not be

84 Chapter 3. Fabrication Process and its Impact on Physical Design

tested. The prediction of the number of good chips per wafer can be made on
the basis of how many dies (chips) fit into a wafer and the probability of
a die being functional after processing (Y). The cost of an untested die is
given by

where, is the cost of wafer fabrication. The number of dies per wafer
depends on wafer diameter and the maximum dimension of the chip. It should
be noted that product is equal to total number of “good” dies per wafer

The number of dies of a wafer is given by

where D is the diameter of the wafer (usually 10 cm), and is the useless scrap
edge width of a wafer (mm). The yield is given by:

where, A is the area of a single chip, is the defect density, that is, the defects
per square millimeter, and c is a parameter that indicates defect clustering.

The cost of packaging depends on the material used, the number of pins,
and the die area. The ability to dissipate the power generated by the die is the
main factor which determines the cost of material used.

Die size depends on technology and gates required by the function and
maximum number of dies on the chip, but it is also limited by the number of
pins that can be placed on the border of a square die.

The number of gates in a single IC is given by:

where, P is the total number of pads on the chip surface, is the area of
an I/O cell and is the area of a logic gate. It should be noted that a gate
is a group of transistors and depending on the architecture and technology,
the number of transistors required to form a gate will vary. However, on the
average there are 3 to 4 transistors per gate.

The number of pads required to connect the chip to the next level of in-
terconnect, assuming that pads are only located at the periphery of the chip
is

where, S is the minimum pad to pad pitch.
An optimal design should have the necessary number of gates well dis-

tributed about the chip’s surface. In addition, it must have minimum size, so
as to improve yield.

The total fabrication cost for a VLSI chip includes costs for wafer prepa-
ration, lithography, die packaging and part testing. Again, two key factors

3.4. Future of Fabrication Process 85

determine the cost: the maturity of process and the size of the die. If the
process is new, it is likely to have a low yield. As a result, price per chip will
be higher. Similarly, if a chip has a large size, the yield is likely to be low due
to uniform defect density, with corresponding increase in cost.

Fabrication facilities can be classified into three categories, prototyping fa-
cilities (fewer than 100 dies per lot), moderate size facilities (1,000 to 20,000
dies per lot) and large scale facilities, geared towards manufacturing 100,000+
parts per lot.

Prototyping facilities such as MOSIS, cost about $150 for tiny chips (2.22 mm
× 2.26 mm) in a lot of 4, using CMOS process. For bigger die sizes
(7.9 mm × 9.2 mm) the cost is around $380 per die, including packaging. The
process is significantly more expensive for CMOS. The total cost for
this process is around $600 per square mm. MOSIS accepts designs in CIF
and GDS-II among other formats, and layouts may be submitted via electronic
mail. For moderate lot sizes (1,000 to 20,000) the cost for tiny chips (2 mm ×
2 mm) is about $27 in a lot size of 1,000. For large chips (7 mm × 7 mm), the
cost averages $65 per chip in a lot of 1000. In addition, there is a lithography
charge of $30,000 and a charge of $5,000 for second poly (if needed). These
estimates are based on a two metal, single poly CMOS process and
include the cost of packaging using a 132 Pin Grid Array (PGA) and the cost
of testing. The large scale facilities are usually inexpensive and cost between
$5 to $20 per part depending on yield and die size. The costs are included
here to give the reader a real world perspective of VLSI fabrication. These cost
estimates should not be used for actual budget analysis.

3.4 Future of Fabrication Process

In this section, we discuss the projected future for fabrication process. We
also discuss several innovations in lithography, interconnect and devices.

3.4.1 SIA Roadmap

Fabrication process is very costly to develop and deploy. A production fab
costs upwards of two billion dollars (circa 1998). In the early 1990’s, it became
clear that process innovations would require joint collaboration and innova-
tions from all the semiconductor manufacturers. This was partly due to the
cost of the process equipment and partly due to the long time it takes to in-
novate, complete research and development and use the developed equipment
or methodologies in a real fab. Semiconductor Industry Association (SIA) and
SRC started several projects to further research and development in fabrication
process.

In 1994, SIA started publishing the National Technology Roadmap for Semi-
conductors. The roadmap provides a vision for process future. In 1997, it was
revised and key features are listed in table 3.4. (note that 1000 nanometers =
1 micron).

86 Chapter 3. Fabrication Process and its Impact on Physical Design

3.4.2 Advances in Lithography

Currently, it is possible to integrate about 20 million transistors on a chip.
Advances in X-ray lithography and electron-beam technology indicate that
these technologies may soon replace photolithography. For features larger than

X-ray beam lithography can be used. For smaller devices, a scanning
tunneling electron microscope may be used. It has been shown that this tech-
nique has the possibility of constructing devices by moving individual atoms.
However, such fabrication methods are very slow. Just based on X-ray lithogra-
phy, there seems to be no fundamental obstacle to the fabrication of one billion
transistor integrated circuits. For higher levels of integration there are some
limits. These limits are set by practical and fundamental barriers. Consider
a MOS transistor with a square gate on a side and oxide
layer thickness. At 1V voltage, there are only 300 electrons under the gate,
therefore, a fluctuation of only 30 electrons changes the voltage by 0.1 V. In

3.4. Future of Fabrication Process 87

addition, the wave nature of electrons poses problems. When device features
reach electrons start behaving more like waves than particles. For
such small devices, the wave nature as well as the particle nature of electrons
has to be taken into account.

3.4.3 Innovations in Interconnect

As discussed earlier, interconnect poses a serious problem as we attempt to
achieve higher levels of integration. As a result, several process innovations are
targeted towards solution of the interconnect problems, such as delay, noise,
and size/complexity.

3.4.3.1 More Layers of Metal

Due to planarization achieved by CMP, from a pure technology point of view,
any number of metal layers is possible. Hence, it is purely a cost/benefit trade-
off which limits addition of layers. An increasing number of metal layers has a
significant impact on the physical design tools. In particular, large numbers of
layers stresses the need for signal planning tools.

3.4.3.2 Local Interconnect

The polysilicon layer used for the gates of the transistor is commonly used as
an interconnect layer. However the resistance of doped polysilicon is quite high.
If used as a long distance conductor, a polysilicon wire can represent significant
delay. One method to improve this, that requires no extra mask levels, is to
reduce the polysilicon resistance by combining it with a refractory metal. In
this approach a Sillicide (silicon and tantalum) is used as the gate material. The
sillicide itself can be used as a local interconnect layer for connections within
the cells. Local interconnect allows a direct connection between polysilicon and
diffusion, thus alleviating the need for area intensive contacts and metal. Also
known as Metal 0, local interconnect is not a true metal layer. Cell layout can
be improved by 25 to 50% by using local interconnect. However, CAD tools
need to comprehend restrictions to use M0 effectively.

3.4.3.3 Copper Interconnect

Aluminum has long been the conductor of choice for interconnect, but as the
chip size shrinks it is contributing to interconnect delay problem, due to its high
resistance. Although Copper is a superior conductor of electricity, it was not
being used earlier for interconnect because not only does copper rapidly diffuse
into silicon, it also changes the electrical properties of silicon in such a way as
to prevent the transistors from functioning. However, one by one, the hurdles
standing in the way of this technology have been overcome. These ranged
from a means of depositing copper on silicon, to the development of an ultra
thin barrier to isolate copper wires from silicon. Several manufacturers have

88 Chapter 3. Fabrication Process and its Impact on Physical Design

introduced a technology that allows chip makers to use copper wires, rather
than the traditional aluminum interconnects, to link transistors in chips.

This technique has several advantages. Copper wires conduct electricity
with about 40 percent less resistance than aluminum which translates into
a speedup of as much as 15 percent in microprocessors that contain copper
wires. Copper wires are also far less vulnerable than those made of aluminum
to electro-migration, the movement of individual atoms through a wire, caused
by high electrical currents, which creates voids and ultimately breaks the wires.
Another advantage of copper becomes apparent when interconnect is scaled
down. At small dimensions, the conventional aluminum alloys can’t conduct
electricity well enough, or withstand the higher current densities needed to
make these circuits switch faster. Copper also has a significant problem of
electro-migration. Without suitable barriers, copper atoms migrate into silicon
and corrupt the whole chip.

Some manufacturers claim that the chips using Copper interconnects are less
expensive than aluminum versions, partly because copper is slightly cheaper,
but mainly because the process is simpler and the machinery needed to make
the semiconductors is less expensive. However other chip manufacturing com-
panies are continuing with aluminum for the time being. They believe that the
newer dual Damascene process with copper requires newer, and more expensive
equipment. The equipment is required to put down the barrier layer - typically
tantalum or tantalum nitride - then a copper-seed layer, and the electroplating
of the copper fill.

There a several possible impacts of copper on physical design. One impact
could be to reduce the impact of interconnect on design. However, most de-
signers feel that copper only postpones the interconnect problem by two years.
Copper interconnect also may lead to reduction in total number of repeaters
thereby reducing the impact on floorplan and overall convergence flow of the
chip.

3.4.3.4 Unlanded Vias

The concept of unlanded via is quite simple. The via enclosures were required
since wires were quite narrow and alignment methods were not accurate. For
higher layers, where wire widths are wider, it is now possible to have via enclo-
sure within the wire and, as a result, there is no need for an extended landing
pad for vias. This simplifies the routing and related algorithms.

3.4.4 Innovations/Issues in Devices

In addition to performance gains in devices due to scaling, several new in-
novations are in store for devices as well. One notable innovation is Multi-
Threshold devices. It is well known that the leakage current is inversely pro-
portionate to the threshold voltage. As operating voltage drops, leakage current
(as a ratio to operating voltage) increases. At the same time, lower devices
do have better performance, as a result these can be used to improve speed. In

3.4. Future of Fabrication Process 89

critical paths, which might be limiting to design frequency, devices of lower
can be used. Process allows dual devices. This is accomplished by multiple
implant passes to create different implant densities. Most manufacturers plan
to provide dual rather than full adjustable multiple although techniques
for such devices are now known.

3.4.5 Aggressive Projections for the Process

Several manufacturers have released roadmaps, which are far more aggressive
than the SIA roadmap. In this section, we discuss two such projections.

Several manufacturers have indicated that the frequency projections of SIA
are too conservative. Considering that several chips are already available at
600-650 MHz range and some experimental chips have been demonstrated in
the one Gigahertz frequency range. It is quite possible that frequencies in
the range of 2-3.5 Ghz may be possible by year the 2006. A more aggressive
projection based on similar considerations is presented in Table 3.5.

Texas Instruments has recently announced a 0.10 micron process well ahead
of the SIA roadmap. Drawn using 0.10-micron rules, the transistors feature an
effective channel length of just 0.07-micron and will be able to pack more than
400 million transistors on a single chip, interconnected with up to seven l ayers
of wiring. Operating frequencies exceeding 1 gigahertz (GHz), internal voltages
as low as 1 V and below. The process uses copper and low K dielectrics. TI
has also developed a series of ball grid array (BGA) packages that use fine
pitch wire bond and flip chip interconnects and have pin counts ranging from
352 to 1300 pins. Packages are capable of high frequency operations in the
range of 200 megahertz through more than one gigahertz. Power dissipation in
these packages ranges from four watts to 150 watts. TI plans to initiate designs
in the new 0.07-micron CMOS process starting in the year 2000, with volume
production beginning in 2001.

90 Chapter 3. Fabrication Process and its Impact on Physical Design

3.4.6 Other Process Innovations

The slowing rate of progress in CMOS technology has made process tech-
nologists investigate its variants. The variants discussed below have little or
no impact on physical design. These are being discussed here to provide a
perspective on new process developments.

3.4.6.1 Silicon On Insulator

One important variant is Silicon On Insulator (SOI) technology. The key
difference in SOI as compared to bulk CMOS process is the wafer preparation.
In SOI process, oxygen is implanted on the wafer in very heavy doses, and then
the wafer is annealed at a high temperature until a thin layer of SOI film is
formed. It has been shown that there is no difference in yield between bulk and
SOI wafers. Once the SOI film is made on the wafer, putting the transistor on
the SOI film is straightforward. It basically goes through the same process as
a similar bulk CMOS wafer. There are minor differences in the details of the
process, but it uses the exact same lithography, tool set, and metalization.

There are two key benefits of SOI chips: Performance and power.

1.

2.

Performance: SOI-based chips have 20 to 25% cycle time and 25 to 35%
improvement over equivalent bulk CMOS technology. This is equivalent
to about two years of progress in bulk CMOS technology. The sources of
increased SOI performance are elimination of area junction capacitance
and elimination of “body effect” in bulk CMOS technology.

Low power: The ability of SOI as a low-power source originates from the
fact that SOI circuits can operate at low voltage with the same perfor-
mance as a bulk technology at high voltage.

Recently, fully-functional microprocessors and large static random access
memory chips utilizing SOI have been developed. SOI allows designers to
achieve a two-year performance gain over conventional bulk silicon technology.

3.4.6.2 Silicon Germaniun

Wireless consumer products have revolutionized the communications market-
place. In order to service this new high-volume market, faster, more powerful
integrated circuit chips have been required. For many of these applications,
silicon semiconductors have been pushed to the 1 to 2 GHz frequency domain.
However, many new RF applications require circuit operation at frequencies
up to 30 GHz, a regime well out of the realm of ordinary silicon materials.
Compound III-V semiconductors (those made from elements from groups III
and V in the periodic table) such as GaAs have been used successfully for such
chips. These materials, however, are very expensive. Moreover, silicon technol-
ogy has long proven to be very high-yielding by comparison to devices made
with GaAs materials. So the chip manufacturers have chosen to enhance the
performance of silicon to capitalize on the cost advantages and compete with

3.5. Solutions for Interconnect Issues 91

III-V compound semiconductor products. One such enhancement technique is
to add small amounts of germanium to silicon in order to create a new ma-
terial (SiGe) with very interesting semiconducting properties. Unfortunately,
the germanium atom is 4% larger than the silicon atom; as a result, growing
this material has been very tricky. A technique of using ultra-high vacuum
chemical vapor deposition (UHV-CVD) to grow these films has proven to be
key in overcoming these difficulties. The result has been the ability to produce
high-performance SiGe heterojunction bipolar transistors. Conventional silicon
devices have a fixed band gap of 1.12 eV (electron-Volt) which limits switching
speed, compared to III-V compound materials such as GaAs. However, with
the addition of germanium to the base region of a bipolar junction transistor
(BJT) and grading the Ge concentration across the transistor base region, it is
possible to modify the band gap to enhance performance of the silicon transis-
tor. The potential benefits of SiGe technology are significant. One key benefit
is that Silicon Germanium chips are made with the same tools as silicon chips.
This means millions of dollars won’t have to be invested in new semiconduc-
tor tools, as is typically the case when a shift is made from one generation
of chip technology to the next. A number of circuit designs have been fabri-
cated with SiGe technology in order to demonstrate its capability for RF chips.
Among the circuits that have been measured are: voltage-controlled oscillators
(VCOs), low-noise amplifiers (LNAs), power amplifiers, mixers, digital delay
lines.

3.5 Solutions for Interconnect Issues

In this section, we briefly review possible options for the solution of inter-
connect problems.

1. Solutions for Delay and Noise: Several solutions exist for delay and
noise problems. These include use of better interconnect material, such
as copper, better planning to reduce long interconnect and use of wire
size and repeaters.

(a) Better interconnect materials: Table 3.6 gives the values of at dif-
ferent for two different materials when the value of R is
The resistivity values for aluminum and polysilicon are
and respectively. From this table, it is clear that as
compared to poly, aluminum is a far superior material for routing.
Interconnect delays could also be reduced by using wider wires and
inserting buffers. There is a wide range of possible values of polysil-
icon resistance (as shown above) for different commercial purposes.
If a chip is to be run on a variety of fabrication lines, it is desirable
for the circuit to be designed so that no appreciable current is drawn
through a long thin line of polysilicon.
As stated earlier, copper is the best option in terms of delay and
incorporation into the leading processes.

92 Chapter 3. Fabrication Process and its Impact on Physical Design

(b)

(c)

(d)

(e)

Early Planning/Estimation: If interconnects needs are comprehended
at an early stage, it is possible to avoid long interconnect and chan-
nels. Interconnect planning should plan all major busses and identify
areas of congestion.

Interconnect Sizing: Typically minimum size wire for a given layer
(especially higher layer) are not capable of meeting the performance
needs and they needs to be sized. Lower metal layers need to be
sized typically for reliability (current carrying capacity) reasons.
Several algorithms have now been proposed to optimally size (or
taper) wires. Some router can size and taper on the fly.

Repeater Insertion and design: If interconnect is too long, repeaters
have to be inserted to meet delay or signal shape constraints. Typ-
ically, repeaters need to be planned, since they need to placed.

Shielding and Cross Talk avoidance: Crosstalk, and hence noise, can
be reduced by making sure that no two conflicting lines are laid out
parallel for longer than a fixed length. The other method to reduce
crosstalk is to place grounded lines between signals. The effect of
crosstalk and noise in MCMs is discussed in Chapter 14.

2. Solutions for size and complexity of Interconnect There are fun-
damentally three ways to deal with the sheer amount of interconnect.

(a)

(b)

More metal layers: Industry has steadily increased number of rout-
ing layers. Due to CMP, it is virtually possible to add as many layers
as needed. Addition of a new layer is purely a cost/benefit trade-off
question and not a technology question. Addition more layers have
a negative effect on the lower layers, as vias cause obstacles in lower
layers. In general, benefit of each additional layer decreases, as more
and more layers are added.

Local interconnect: As pointed out earlier, cell density can be im-
proved by providing local interconnect layer. Local interconnect still
remain questionable due to the routing limitations. Many manufac-
turers prefer to add lower layers for routing.

3.6. Tools for Process Development 93

(c) Metal Synergy: To improve utilization of metal system, metal grids
may be aligned and strictly enforced. This will allow maximum
number of wires routable in a given die area. However, this scheme
is applicable to lower frequency designs, where performance or reli-
ability needs do not dictate wide ranges of wire sizes.

In addition to these ideas, one may consider more exotic ideas:

(a)

(b)

(c)

Pre-Routed Grids: If all the wiring is pre-assigned on a six or eight
layer substrate and routing problems is reduced to selection of appro-
priate tracks (and routes), then we can optimize placement to maxi-
mize usage of routing resources. This is akin to programmable MCM
discussed in Chapter 14. However, unlike programmable MCM, such
a routing grid will be used for planning and detailing the layout and
only the used part of the grid will be actually fabricated.

Encoding of signals: We can encode a signal in less number of bits
for long busses. This will reduce the number of bits in long busses at
the cost of time to transmit the message and overhead for encoding
and decoding.

Optical Interconnect: Although not feasible in the near future, opti-
cal interconnect may one day provide reliable means for distributing
clock, thereby freeing up routing resources.

3.6 Tools for Process Development

In earlier sections of this chapter, we have discussed the impact of process
innovations on CAD tools (in particular physical design tools). However, an
emerging area of research and development is related to tools that help in design
of the process. Given the complexity of choices and range of possibilities that
technology offers, process decisions are very complex.

Currently, process decisions are made by a set of experts based on extra-
polations from previous process generations. This extra-polation methods has
worked up to this point mainly because the technology did not offer too many
choices. It is significantly easier to decide if we want to migrate to a four layer
process from a three layer process, if the bonding method, type of vias and
dielectrics are not changing.

In general, two types of tools are needed.

1. Tools for Interconnect Design: The key decisions that need to be made
for any process interconnect include: number of metal layers, line widths,
spacing and thickness for each layer, type and thickness of ILD, type of
vias, and bonding method. CAD tools are needed that can re-layout (or
estimate re-layout of) a design, based on the options listed above. For
example, should we have a seven layer process or a better designed six
metal layer process can only be answered if a CAD tool can re-layout a
target design with six and seven metal layers and compare the results.

94 Chapter 3. Fabrication Process and its Impact on Physical Design

2. Tools for Transistor design: Complex parameters are involved in tran-
sistor design. Lack of tools to help design the transistor may lead to
non-optimal design. CAD tools are needed which can simulate the oper-
ation of a transistor by changing the settings of these parameters. Such
tools may allow use of less efficient transistors for better area utilization.

3.7 Summary

Physical design is deeply impacted by the fabrication process. For example,
chip size is limited by a consideration of yield: the larger the chip, the greater
the probability of surface flaws and therefore the slimmer the chances of finding
enough good chips per wafer to make batch production profitable. A good deal
of physical design effort thus goes into the development of efficient structures
that lead to high packing densities. As a result, physical designer must be very
educated about the fabrication process. A designer must take into account
many factors, including the total number of gates, the maximum size of die,
number of I/O pads and power dissipation, in order to develop chips with good
yield.

The fabrication process has made tremendous strides in the past few decades
and it is continuing to reduce feature size and increase both the chip size and
performance. While the SIA roadmap calls for 0.01 micron process in the year
2006, many feel that it may happen much sooner. Such aggressive approaches
have kept the semi-conductor industry innovating for the last three decades
and promise to continue to motivate them in the next decade.

In this chapter, we have reviewed scaling methods, innovations in fabri-
cations process, parasitic effects, and the future of fabrication process. In-
terconnect is the most significant problem that needs to be solved. We need
faster interconnect and more interconnect to complete all the wiring required
by millions of transistors. In this direction, we have noted that innovations like
copper interconnect, unlanded vias, and local interconnect have a significant
effect on physical design.

3.8 Exercises

1.

2.

3.

Given a die of size 25 mm × 25 mm and estimate the total
number of transistors that can be fabricated on the die to form a circuit.

Estimate the maximum number of transistors that can be fabricated on
a die of size 25 mm × 25 mm when

Estimate the total power required (and therefore heat that needs to be
removed) by a maximally packed 19 mm × 23 mm chip in CMOS
technology. (Allow 10% area for routing and assume 500 MHz clock
frequency).

3.8. Exercises 95

4.

5.

6.

7.

Assuming that the heat removal systems can only remove 80 watts from
a 19 mm × 23 mm chip, compute the total number of CMOS transistors
possible on such a chip, and compute the value of for such a level of
integration. (Assume 500 MHz clock frequency.)

Assuming a 15 mm × 15 mm chip in 0.25 micron process where intercon-
nect delay is 50% of the total delay, consider a net that traverses the full
length of the chip diagonally. What is maximum frequency this chip can
operate on ?

What will happen to the frequency of the chip in problem 3 if we migrate
(process shift) it to 0.18 micron process? (assume 0.7 shrink factor and
discuss assumptions made about the bonding pads and scribe lines which
do not scale).

What will happen to the frequency of the chip in problem 3 if we migrate
(process shift) it to 0.18 process?

Bibliographic Notes
The International Solid-State Circuits Conference (ISSCC) is the premier con-
ference which deals with new developments in VLSI devices, microprocessors
and memories. The IEEE International Symposium on Circuits and Systems
also includes many papers on VLSI devices in its technical program. The
IEEE Journal of Solid-State Circuits publishes papers of considerable interest
on VLSI devices and fabrication. Microprocessor reports is a valuable source
of information about process, comparisons between microprocessors and other
related news of the semi-conductor industry. Several companies (such as IBM,
DEC, Intel, AMD, TI) have internet sites that provide significant information
about their process technology and processors.

This Page Intentionally Left Blank

Chapter 4

Data Structures and Basic
Algorithms

VLSI chip design process can be viewed as transformation of data from HDL
code in logic design, to schematics in circuit design, to layout data in physi-
cal design. In fact, VLSI design is a significant database management prob-
lem. The layout information is captured in a symbolic database or a polygon
database. In order to fabricate a VLSI chip, it needs to be represented as a
collection of several layers of planar geometric elements or polygons. These ele-
ments are usually limited to Manhattan features (vertical and horizontal edges)
and are not allowed to overlap within the same layer. Each element must be
specified with great precision. This precision is necessary since this information
has to be communicated to output devices such as plotters, video displays, and
pattern-generating machines. Most importantly, the layout information must
be specific enough so that it can be sent to the fab for fabrication. Symbolic
database captures net and transistor attributes. It allows a designer to rapidly
navigate throughout the database and make quick edits while working at a
higher level. The symbolic database is converted into a polygon database prior
to tapeout. In the polygon database, the higher level relationship between the
objects is somewhat lost. This process is analogous to conversion of a higher
level programming language (say FORTRAN) code to a lower level program-
ming language (say Assembly) code. While it is easier to work at symbolic
level, it cannot be used by the fab directly. In some cases, at late stages of the
chip design process, some edits have to be made in the polygon database. The
major motivation for use of the symbolic database is technology independence.
Since physical dimensions in the symbolic database are only relative, the de-
sign can be implemented using any process. However, in practice, complete
technology independence has never be reached.

The layouts have historically been drawn by human layout designers to
conform to the design rules and to perform the specified functions. A physical
design specialist typically converted a small circuit into layout consisting of a
set of polygons. These manipulations were time consuming and error prone,

98 Chapter 4. Data Structures and Basic Algorithms

even for small layouts. Rapid advances in fabrication technology in recent
years have dramatically increased the size and complexity of VLSI circuits. As
a result, a single chip may include several million transistors. These techno-
logical advances have made it impossible for layout designers to manipulate
the layout databases without sophisticated CAD tools. Several physical design
CAD tools have been developed for this purpose, and this field is referred to
as Physical Design Automation. Physical design CAD tools require highly spe-
cialized algorithms and data structures to effectively manage and manipulate
layout information. These tools fall in three categories. The first type of tools
help a human designer to manipulate a layout. For example, a layout editor
allows designers to add transistors or nets to a layout. The second type of tools
are designed to perform some task on the layout automatically. Example of
such tools include channel routers and placement tools. It is also possible to
invoke a tool of second type from the layout editor. The third type of tools
are used for checking and verification. Example of such tools include; DRC
(design rule checker) and LVS verifier (layout versus schematics verifier). The
bulk of the research of physical design automation has focused on tools of the
last two types. However, due to broad range and significant impact the tools of
second type have received the most attention. The major accomplishment in
that area has been decomposition of the physical design problem into several
smaller (and conceptually easier) problems. Unfortunately, even these prob-
lems are still computationally very hard. As a result, the major focus has been
on development on design and analysis of heuristic algorithms for partitioning,
placement, routing and compaction. Many of these algorithms are based on
graph theory and computational geometry. As a result, it is important to have
a basic understanding of these two fields. In addition, several special classes
of graphs are used in physical design. It is important to understand properties
and algorithms about these classes of graphs to develop effective algorithms in
physical design.

This chapter consists of three parts. First we discuss the basic algorithms
and mathematical methods used in VLSI physical design. These algorithms
form the basis for many of the algorithms presented later in this book. In the
second part of this chapter, we shall study the data structures used in layout
editors and the algorithms used to manipulate these data structures. We also
discuss the formats used to represent VLSI layouts. In the third part of this
chapter, we will focus on special classes of graphs, which play a fundamental
role in development of these algorithms. Since most of the algorithms in VLSI
physical design are graph theoretic in nature, we devote a large portion of
this chapter to graph algorithms. In the following, we will review basic graph
theoretic and computation geometry algorithms which play a significant role
in many different VLSI design algorithms. Before we discuss the algorithms,
we shall review the basic terminology.

4.1. Basic Terminology 99

4.1 Basic Terminology

A graph is a pair of sets G = (V, E), where V is a set of vertices, and E is
a set of pairs of distinct vertices called edges. We will use V(G) and E(G) to
refer to the vertex and edge set of a graph G if it is not clear from the context.
A vertex is adjacent to a vertex if is an edge, i.e., The
set of vertices adjacent to is An edge is incident on the
vertices and which are the ends of The degree of a vertex is the
number of edges incident with the vertex

A complete graph on vertices is a graph in which each vertex is adjacent
to every other vertex. We use to denote such a graph. A graph is called
the complement of graph G = (V, E) if H = (V, F), where,

A graph is a subgraph of a graph G if and only if and
If and then is a vertex induced

subgraph of G. Unless otherwise stated, by subgraph we mean vertex induced
subgraph.

A walk P of a graph G is defined as a finite alternating sequence
of vertices and edges, beginning and ending with vertices, such

that each edge is incident with the vertices preceding and following it.
A tour is a walk in which all edges are distinct. A walk is called an open

walk if the terminal vertices are distinct. A path is a open walk in which no
vertex appears more than once.

The length of a path is the number of edges in it. A path is a path if
and A cycle is a path of length where A cycle

is called odd if it's length is odd, otherwise it is an even cycle. Two vertices
and in G are connected if G has a path. A graph is connected if all pairs
of vertices are connected. A connected component of G is a maximal connected
subgraph of G. An edge is called an cut edge in G if its removal from G
increases the number of connected components of G by at least one. A tree is
a connected graph with no cycles. A complete subgraph of a graph is called a
clique.

A directed graph is a pair of sets where V is a set of vertices and
is a set of ordered pairs of distinct vertices, called directed edges. We use the
notation for a directed graph, unless it is clear from the context. A directed
edge is incident on and and the vertices and are called the
head and tail of respectively. is an in-edge of and an out-edge of
The in-degree of denoted by is equal to the number of in-edges of
similarly the out-degree of denoted by is equal to the number of out-
edges of An orientation for a graph G = (V, E) is an assignment of direction
for each edge. An orientation is called transitive if, for each pair of edges
and there exists an edge If such a transitive orientation exists
for a graph G, then G is called a transitively orientable graph. Definitions of
subgraph, path, walk are easily extended to directed graphs. A directed acyclic
graph is a directed graph with no directed cycles. A vertex is an ancestor
of (and is a descendent of) if there is a directed path in G. A
rooted tree (or directed tree) is a directed acyclic graph in which all vertices

100 Chapter 4. Data Structures and Basic Algorithms

have in-degree 1 except the root, which has in-degree 0. The root of a rooted
tree T is denoted by root(T). The subtree of tree T rooted at is the subtree
of T induced by the descendents of . A leaf is a vertex in a directed acyclic
graph with no descendents.

A hypergraph is a pair (V, E), where V is a set of vertices and E is a family
of sets of vertices. A hyperpath is a sequence of
distinct vertices and distinct edges, such that vertices and are elements
of the edge Two vertices and are connected in a hypergraph
if the hypergraph has a hyperpath. A hypergraph is connected if every
pair of vertices are connected.

A bipartite graph is a graph G whose vertex set can be partitioned into two
subsets X and Y, so that each edge has one end in X and one end in Y; such a
partition (X , Y) is called bipartition of the graph. A complete bipartite graph is
a bipartite graph with bipartition (X , Y) in which each vertex of X is adjacent
to each vertex of Y; if |X| = and |Y| = , such a graph is denoted by
An important characterization of bipartite graphs is in terms of odd cycles. A
graph is bipartite if and only if it does not contain an odd cycle.

A graph is called planar if it can be drawn in the plane without any two
edges crossing. Notice that there are many different ways of ‘drawing’ a planar
graph. A drawing may be obtained by mapping a vertex to a point in the
plane and mapping edges to paths in the plane. Each such drawing is called
an embedding of G. An embedding divides the plane into finite number of
regions. The edges which bound a region define a face. The unbounded region
is called the external or outside face. A face is called an odd face if it has odd
number of edges. Similarly a face with even number of edges is called an even
face. The dual of a planar embedding T is a graph such the

v is a face in T} and two vertices share an edge if their corresponding
faces share an edge in T.

4.2 Complexity Issues and NP-hardness

Several general algorithms and mathematical techniques are frequently used
to develop algorithms for physical design. While the list of mathemat-
ical and algorithmic techniques is quite extensive, we will only mention the
basic techniques. One should be very familiar with the following techniques to
appreciate various algorithms in physical design.

1.

2.

3.

4.

5.

Greedy Algorithms

Divide and Conquer Algorithms

Dynamic Programming Algorithms

Network Flow Algorithms

Linear/Integer Programming Techniques

4.2. Complexity Issues and NP-hardness 101

Since these techniques and algorithms may be found in a good computer
science or graph algorithms text, we omit the discussion of these techniques
and refer the reader to an excellent text on this subject by Cormen, Leiserson
and Rivest [CLR90].

The algorithmic techniques mentioned above have been applied to various
problems in physical design with varying degrees of success. Due to the very
large number of components that we must deal with in VLSI physical design
automation, all algorithms must have low time and space complexities. For
algorithms which must operate on the entire layout even quadratic
algorithms may be intolerable. Another issue of great concern is the constants
in the time complexity of algorithms. In physical design, the key idea is to
develop practical algorithms, not just polynomial time complexity algorithms.
As a result, many linear and quadratic algorithms are infeasible in physical
design due to large constants in their complexity.

The major cause of concern is absence of polynomial time algorithms for
majority of the problems encountered in physical design automation. In fact,
there is evidence that suggests that no polynomial time algorithm may exist for
many of these problems. The class of solvable problems can be partitioned into
two general classes, P and NP. The class P consists of all problems that can be
solved by a deterministic turing machine in polynomial time. A conventional
computer may be viewed as such a machine. Minimum cost spanning tree,
single source shortest path, and graph matching problems belong to class P.
The other class called NP, consists of problems that can be solved in polyno-
mial time by a nondeterministic turing machine. This type of turing machine
may be viewed as a parallel computer with as many processors as we may
need. Essentially, whenever a decision has several different outcomes, several
new processors are started up, each pursuing the solution for one of the out-
comes. Obviously, such a model is not very realistic. If every problem in class
NP can be reduced to a problem P, then problem P is in class NP-complete.
Several thousand problems in computer science, graph theory, combinatorics,
operations research, and computational geometry have been proven to be NP-
complete. We will not discuss the concept of NP-completeness in detail, in-
stead, we refer the reader to the excellent text by Garey and Johnson on this
subject [GJ79]. A problem may be stated in two different versions. For ex-
ample, we may ask does there exist a subgraph H of a graph G, which has a
specific property and has size or bigger? Or we may simply ask for the largest
subgraph of G with a specific property. The former type is the decision version
while the latter type is called the optimization version of the problem. The
optimization version of a problem P, is called NP-hard if the decision version
of the problem P is NP-complete.

4.2.1 Algorithms for NP-hard Problems

Most optimization problems in physical design are NP-hard. If a problem
is known to be NP-complete or NP-hard, then it is unlikely that a polynomial
time algorithm exists for that problem. However, due to practical nature of the

102 Chapter 4. Data Structures and Basic Algorithms

physical design automation field, there is an urgent need to solve the problem
even if it cannot be solved optimally. In such cases, algorithm designers are
left with the following four choices.

4.2.1.1 Exponential Algorithms

If the size of the input is small, then algorithms with exponential time com-
plexity may be feasible. In many cases, the solution of a certain problem be
critical to the performance of the chip and therefore it is practical to spend
extra resources to solve that problem optimally. One such exponential method
is integer programming, which has been very successfully used to solve many
physical design problems. Algorithms for solving integer programs do not have
polynomial time complexity, however they work very efficiently on moderate
size problems, while worst case is still exponential. For large problems, algo-
rithms with exponential time complexity may be used to solve small sub-cases,
which are then combined using other algorithmic techniques to obtain the global
solution.

4.2.1.2 Special Case Algorithms

It may be possible to simplify a general problem by applying some restrictions
to the problem. In many cases, the restricted problem may be solvable in
polynomial time. For example, the graph coloring problem is NP-complete for
general graphs, however it is solvable in polynomial time for many classes of
graphs which are pertinent to physical design.

Layout problems are easier for simplified VLSI design styles such as stan-
dard cell, which allow usage of special case algorithms. Conceptually, it is
much easier to place cells of equal heights in rows, rather than placing arbi-
trary sized rectangles in a plane. The clock routing problem, which is rather
hard for full-custom designs, can be solved in time for symmetric struc-
tures such as gate arrays. Another example may be the Steiner tree problem
(see Section 4.3.1.6). Although the general Steiner tree problem is NP-hard,
a special case of the Steiner tree problem, called the single trunk steiner tree
problem (see exercise 4.7), can be solved in time.

4.2.1.3 Approximation Algorithms

When exponential algorithms are computationally infeasible due to the size
of the input and special case algorithms are ruled out due to absence of any
restriction that may be used, designers face a real challenge. If optimality is not
necessary and near-optimality is sufficient, then designers attempt to develop an
approximation algorithm. Often in physical design algorithms, near-optimality
is good enough. Approximation algorithms produce results with a guarantee.
That is, while they may not produce an optimal result, they guarantee that the
result would never be worse than a lower bound determined by the performance
ratio of the algorithm. The performance ratio of an algorithm is defined as

where is the solution produced by the algorithm and is the optimal

4.2. Complexity Issues and NP-hardness 103

solution for the problem. Recently, many algorithms have been developed with
very close to 1. We will use vertex cover as an example to explain the concept

of an approximation algorithm.
Vertex cover is basically a problem of covering all edges by using as few

vertices as possible. In other words, given an undirected graph G = (V,E),
select a subset such that for each edge either or or
both are in and has minimum size among all such sets. The vertex cover
problem is known to be NP-complete for general graphs. However, the simple
algorithm given in Figure 4.1 achieves near optimal results. The basic idea is
to select an arbitrary edge and delete it and all edges incident on and

. Add and to the vertex cover set S. Repeat this process on the new
graph until all edges are deleted. The selected edges are kept in a set R.

Since no edge is checked more than once, it is easy to see that the algorithm
AVC runs in O(| E |) time.

Theorem 1 Algorithm AVC produces a solution with a performance ratio of
0.5.

Proof: Note that no two edges in R have a vertex in common, and |S| = 2 × |R|.
However, since R is set of vertex disjoint edges, at least | R | vertices are needed
to cover all the edges. Thus

In Section 4.5.6.2, we will present an approximation algorithm for finding
maximum k-partite subgraph in circle graphs. That algorithm is used
in topological routing, over-the-cell routing,via minimization and several other
physical design problems.

4.2.1.4 Heuristic Algorithms

Faced with NP-complete problems, heuristic algorithms are frequently the
answer. A heuristic algorithm does produce a solution but does not guaran-

104 Chapter 4. Data Structures and Basic Algorithms

tee the optimality of the solution. Such algorithms must be tested on vari-
ous benchmark examples to verify their effectiveness. The bulk of research in
physical design has concentrated on heuristic algorithms. An effective heuris-
tic algorithm must have low time and space complexity and must produce an
optimal or near optimal solution in most realistic problem instances. Such algo-
rithms must also have good average case complexities. Usually good heuristic
algorithms are based on optimal algorithms for special cases and are capable of
producing optimal solutions in a significant number of cases. A good example
of such algorithms are the channel routing algorithms (discussed in chapter 7),
which can solve most channel routing problems using one or two tracks more
than the optimal solution. Although the channel routing problem in general is
NP-complete, from a practical perspective, we can consider the channel routing
problem as solved.

In many cases, an time complexity heuristic algorithm has been devel-
oped, even if an optimal or time complexity algorithm is known
for the problem. One must keep in mind that optimal solutions may be hard
to obtain and may be practically insignificant if a solution close to optimal can
be produced in a reasonable time. Thus the major focus in physical design has
been on the development of practical heuristic algorithms which can produce
close to optimal solutions on real world examples.

4.3 Basic Algorithms

Basic algorithms which are frequently used in physical design as subalgo-
rithms can be categorized as: graph algorithms and computational geometry
based algorithms. In the following, we review some of the basic algorithms in
both of these categories.

4.3.1 Graph Algorithms

Many real-life problems, including VLSI physical design problems, can be
modeled using graphs. One significant advantage of using graphs to formulate
problems is that the graph problems are well-studied and well-understood.
Problems related to graphs include graph search, shortest path, and minimum
spanning tree, among others.

4.3.1.1 Graph Search Algorithms

Since many problems in physical design are modeled using graphs, it is im-
portant to understand efficient methods for searching graphs. In the following,
we briefly discuss the three main search techniques.

1. Depth-First Search: In this graph search strategy, graph is searched
‘as deeply as possible’. In Depth-First Search (DFS), an edge is selected
for further exploration from the most recently visited vertex . When
all the edges of have been explored, the algorithm back tracks to the

4.3. Basic Algorithms 105

previous vertex, which may have an unexplored edge. Figure 4.4 is an
outline of a depth-first search algorithm. The algorithm uses an array
MARKED () which is initialized to zero before calling the algorithm to
keep track of all the visited vertices.

It is easy to see that the time complexity of depth-first search is O(| V | +
|E|). Figure 4.2(c) shows an example of the depth first search for the
graph shown in Figure 4.2(a).

Breadth-First Search: The basic idea of Breadth-First Search (BFS)
is to explore all vertices adjacent to a vertex before exploring any other
vertex. Starting with a source vertex , the BFS first explores all edges
of , puts the reachable vertices in a queue, and marks the vertex as
visited. If a vertex is already marked visited then it is not enqueued. This
process is repeated for each vertex in the queue. This process of visiting
edges produces a BFS tree. The BFS algorithm can be used to search
both directed and undirected graphs. Note that the main difference be-

2.

106 Chapter 4. Data Structures and Basic Algorithms

3.

tween the DFS and the BFS is that the DFS uses a stack (recursion is
implemented using stacks), while the BFS uses a queue as its data struc-
ture. The time complexity of breadth first search is also O(|V| + |E|).
Figure 4.2(b) shows an example of the BFS of the graph shown in Fig-
ure 4.2(a).

Topological Search: In a directed acyclic graph, it is very natural
to visit the parents, before visiting the children. Thus, if we list the
vertices in the topological order, if G contains a directed edge ,
then appears before in the topological order. Topological search can
be done using depth first search and hence it has a time complexity of
O(|V | + |E |) . Figure 4.3 shows an example of the topological search.
Figure 4.3(a) shows an entire graph. First vertex A will be visited since
it has no parent. After visiting A , it is deleted (see Figure 4.3(b)) and
we get vertices B and C as two new vertices to visit. Thus, one possible
topological order would be A, B, C, D, E, F.

4.3.1.2 Spanning Tree Algorithms

Many graph problems are subset selection problems, that is, given a graph
G = (V,E), select a subset such that has property Some
problems are defined in terms of selection of edges rather than vertices. One
frequently solved graph problem is that of finding a set of edges which spans
all the vertices. The Minimum Spanning Tree (MST) is an edge selection
problem. More precisely, given an edge-weighted graph G = (V, E), select
a subset of edges such that induces a tree and the total cost of
edges is minimum over all such trees, where is the cost
or weight of the edge

There are basically three algorithms for finding a MST:

1.

2.

3.

Boruvka’s Algorithm

Kruskal’s Algorithm

Prim’s Algorithm.

4.3. Basic Algorithms 107

We will briefly explain Kruskal’s algorithm [Kru56], whereas the details of other
algorithms can be found in [Tar83]. Kruskal’s algorithm starts by sorting the
edges by nondecreasing weight. Each vertex is assigned to a set. Thus at
the start, for a graph with vertices, we have sets. Each set represents a
partial spanning tree, and all the sets together form a spanning forest. For
each edge from the sorted list, if and belong to the same set, the
edge is discarded. On the other hand, if and belong to disjoint sets, a
new set is created by union of these two sets. This edge is added to the
spanning tree. In this way, algorithm constructs partial spanning trees and
connects them whenever an edge is added to the spanning tree. The running
time of Kruskal’s algorithm in O(| E| log |E |) . Figure 4.5 shows an example of
Kruskal’s algorithm. First edge (D, F) is selected since it has the lowest weight
(See Figure 4.5(b)). In the next step, there are two choices since there are two
edges with weight equal to 2. Since ties are broken arbitrarily, edge (D, E) is
selected. The final tree is shown in Figure 4.5(f).

108 Chapter 4. Data Structures and Basic Algorithms

4.3.1.3 Shortest Path Algorithms

Many routing problems in VLSI physical design are in essence shortest path
problems in special graphs. Shortest path problems, therefore, play a significant
role in global and detailed routing algorithms.

1.

2.

Single Pair Shortest Path: This problem may be viewed as a vertex
or edge selection problem. Precisely stated, given an edge-weighted graph
G = (V, E) and two vertices select a set of vertices
including such that P induces a path of minimum cost in G. Let

be the weight of edge we assume that for each

Dijkstra [Dij59] developed an algorithm for single pair shortest
path, where is the number of vertices in the graph. In fact, Dijkstra’s
algorithm finds shortest paths from a given vertex to all the vertices in
the graph. See Figure 4.6 for a description of the shortest path algorithm.
Figure 4.7(a) shows an edge weighted graph while Figure 4.7(b) shows the
shortest path between vertices B and F found by Dijkstra’s algorithm.

All Pairs Shortest Paths: This problem is a variant of SPSP, in which
the shortest path is required for all possible pairs in the graph. There are
a few variations of all pairs shortest path algorithms for directed graphs.
Here we discuss the Floyd-Warshall algorithm which runs in time
and is based on a dynamic programming technique.

The algorithm is based on the following observation. Given a directed
graph G = (V, E), let Consider a subset

for some . For any pair of vertices
consider all paths from to with intermediate vertices from and
let be the the one with minimum weight (an intermediate vertex of
a path is any vertex of other than and).
The Floyd-Warshall algorithm exploits the relationship between path
 and the shortest path from to with intermediate vertices from

Let be the weight of a shortest path from to
with all intermediate vertices from For a path

from to is one with no intermediate vertices, thus having at most
one edge, hence A recursive formulation of all pairs
shortest path problem can therefore be given as:

The all pairs shortest path problem allows many paths to share an edge.
If we restrict the number of paths that can use a particular edge, then the
all pairs shortest path problem becomes NP-hard. The all pairs shortest
path problem plays a key role in the global routing phase of physical
design.

4.3. Basic Algorithms 109

110 Chapter 4. Data Structures and Basic Algorithms

4.3.1.4 Matching Algorithms

Given an undirected graph G = (V, E), a matching is a subset of edges
such that for all vertices at most one edge of is incident on

. A vertex is said to be matched by matching if some edge in is incident
on ; otherwise is unmatched. A maximum matching is a matching with
maximum cardinality among all matchings of a graph, i.e., if is a maximum
matching in G, then for any other matching in Figure 4.8
shows an example of matching. A matching is called a bipartite matching if the
underlying graph is a bipartite graph. Both matching and bipartite matching
have many important applications in VLSI physical design. The details of
different matching algorithms may be found in [PS82].

4.3.1.5 Min-Cut and Max-Cut Algorithms

Min-cut and Max-cut are two frequently used graph problems which are
related to partitioning the vertex set of a graph.

The simplest Min-cut problem can be defined as follows: Given a graph
G = (V, E), partition V into subsets and of equal sizes, such that the
number of edges is minimized. The set is also
referred to as a cut. A more general min-cut problem may specify the sizes of
subsets, or it may require partitioning V into different subsets. The min-cut
problem is NP-complete [GJ79]. Min-cut and many of its variants have several
applications in physical design, including partitioning and placement.

The Max-cut problem can be defined as follows: Given a graph G = (V, E),
find the maximum bipartite graph of G. Let be the maximum
bipartite of G, which is obtained by deleting K edges of G, then G has a
max-cut of size |E| – K.

Max-cut problem is NP-complete [GJ79]. Hadlock [Had75] presented an
algorithm which finds max-cut of a planar graph. The algorithm is formally
presented in Figure 4.9. Procedure PLANAR-EMBED finds a planar embed-
ding of G, and CONSTRUCT-DUAL creates a dual graph for the embedding.
Procedure CONSTRUCT-WT-GRAPH constructs a complete weighted graph
by using only vertices corresponding to odd faces. The weight on the edge

 indicates the length of the shortest path between vertices and v in

4.3. Basic Algorithms 111

Note that the number of odd faces in any planar graph is even. Procedure
MIN-WT-MATCHING pairs up the vertices in R. Each edge in matching rep-
resents a path in G. This path actually passes through even faces and connects
two odd faces. All edges on the path are deleted. Notice that this operation
creates a large even face. This edge deletion procedure is repeated for each
matched edge in M. In this way, all odd faces are removed. The resulting
graph is bipartite.

Consider the example graph shown in Figure 4.10(a). The dual of the graph
is shown in Figure 4.10(b). The minimum weight matching of cost 4 is (3, 13)
and (5, 10). The edges on the paths corresponding to the matched edges, in M,
have been deleted and the resultant bipartite graph is shown in Figure 4.10(d).

4.3.1.6 Steiner Tree Algorithms

Minimum cost spanning trees and single pair shortest paths are two edge
selection problems which can be solved in polynomial time. Surprisingly, a
simple variant of these two problems, called the Steiner minimum tree problem,
is computationally hard.

The Steiner Minimum Tree (SMT) problem can be defined as follows: Given
an edge weighted graph G = (V, E) and a subset select a subset
such that and induces a tree of minimum cost over all such trees.

The set D is referred to as the set of demand points and the set is
referred to as Steiner points. In terms of VLSI routing the demand points are
the net terminals. It is easy to see that if D = V , then SMT is equivalent to
MST, on the other hand, if |D| = 2 then SMT is equivalent to SPSP. Unlike
MST and SPSP, SMT and many of its variants are NP-complete [GJ77]. In
view of the NP-completeness of the problem, several heuristic algorithms have

112 Chapter 4. Data Structures and Basic Algorithms

been developed.
Steiner trees arise in VLSI physical design in routing of multi-terminal nets.

Consider the problem of interconnecting two points in a plane using the shortest
path. This problem is similar to the routing problem of a two terminal net.
If the net has more than two terminals then the problem is to interconnect
all the terminals using minimum amount of wire, which corresponds to the
minimization of the total cost of edges in the Steiner tree. The global and
detailed routing of multi-terminal nets is an important problem in the layout
of VLSI circuits. This problem has traditionally been viewed as a Steiner
tree problem [CSW89, HVW85]. Due to their important applications, Steiner
trees have been a subject of intensive research [CSW89, GJ77, Han76, HVW85,
HVW89, Hwa76b, Hwa79, LSL80, SW90]. Figure 4.11(b) shows a Steiner tree
connecting vertices A, I, F, E, and G of Figure 4.11 (a).

The underlying grid graph is the graph defined by the intersections of the
horizontal and vertical lines drawn through the demand points. The problem
is then to connect terminals of a net using the edges of the underlying grid
graph. Figure 4.12 shows the underlying grid graph for a set of four points.
Therefore Steiner tree problems are defined in the Cartesian plane and edges
are restricted to be rectilinear. A Steiner tree whose edges are constrained
to rectilinear shapes is called a Rectilinear Steiner Tree (RST). A Rectilinear

4.3. Basic Algorithms 113

Steiner Minimum Tree (RSMT) is an RST with minimum cost among all RSTs.
In fact, the MST and RSMT have an interesting relationship. In the MST, the
cost of the edges are evaluated in the rectilinear metric. The following theorem
was proved by Hwang [Hwa76b].

Theorem 2 Let and be the costs of a minimum cost
rectilinear spanning tree and rectilinear Steiner minimum tree, respectively.
Then

As a result, many heuristic algorithms use MST as a starting point and
apply local modifications to obtain an RST. In this way, these algorithms can
guarantee that weight of the RST is at most of the weight of the optimal
tree [HVW85, Hwa76a, Hwa79, LSL80]. Consider the example shown in Fig-
ure 4.13. In Figure 4.13(a), we show a minimum spanning tree for the set of

114 Chapter 4. Data Structures and Basic Algorithms

4.3. Basic Algorithms 115

four points. Figure 4.13(b), (c), (d), and (e) show different Steiner trees that
can be obtained by using different layouts of edges of spanning tree. Layout
of edges should be selected so as to maximize the overlap between layouts and
hence minimize the total length of the tree. Figure 4.13(e) shows a minimum
cost Steiner tree.

4.3.2 Computational Geometry Algorithms

One of the basic tasks in computational geometry is the computation of the
line segment intersections. Investigations to solve this problem have continued
for several decades, with the domain expanding from simple segment inter-
sections to intersections between geometric figures. The problem of detecting
these types of intersections has practical applications in several areas, including
VLSI physical design and motion-planning in robotics.

4.3.2.1 Line Sweep Method

The detailed description of line sweep method and its many variations can
be found in [PS85]. A brief description of the line sweep method is given in
this section. The line segments are represented by their endpoints, which
are sorted by increasing x-coordinate values. An imaginary vertical sweep line
traverses the endpoint set from left to right, halting at each x-coordinate in
the sorted list. This sweep line represents a listing of segments at a given x-
coordinate, ordered according to their y-coordinate value. If the point is a left
endpoint, the segment is inserted into a data structure which keeps track of the
ordering of the segment with respect to the vertical line. The inserted segment
is checked with its immediate top and bottom neighbors for an intersection.
An intersection is detected when two segments are consecutive in order. If
the point is a right endpoint, a check is made to determine if the segments
immediately above and below it intersect; then this segment is deleted from
the ordering. This algorithm halts when it detects one intersection, or has
traversed the entire set of endpoints and no intersection exists. Consider the
example shown in Figure 4.15. The intersection between segments A and C will
be detected when segment B is deleted and A and C will become consecutive.
A description of the line sweep algorithm is given in Figure 4.14.

The sorting of endpoints can be done in time. A balanced
tree structure is used for T, which keeps the y-order of the active segments;
this allows the operations INSERT, DELETE, ABOVE, and BELOW to be
performed in time. Since the for loop executes at most times, the
time complexity of the algorithm is .

4.3.2.2 Extended Line Sweep Method

The line sweep algorithm can be extended to report all intersecting pairs
found among line segments. The extended line sweep method performs the
line sweep with the vertical line, inserting and deleting the segments in the
tree ; but when a segment intersection is detected, the point of intersection

116 Chapter 4. Data Structures and Basic Algorithms

4.4. Basic Data Structures 117

is inserted into the heap of sorted endpoints, in its proper x-coordinate
value order. The sweep line will then also halt at this point, the intersection
is reported, and the order of the intersecting segments in is swapped. New
intersections between these swapped segments and their nearest neighbors are
checked and points inserted into if this intersection occurs. This algorithm
halts when all endpoints and intersections in have traversed by the sweep
line, and all intersecting pairs are reported.

The special case in which the line segments are either all horizontal or ver-
tical lines was also discussed. A horizontal line is specified by its y-coordinate
and by the x-coordinates of its left and right endpoints. Each vertical line is
specified by its x-coordinate and by the y-coordinates of its upper and lower
endpoints. These points are sorted in ascending x-coordinates and stored in .

The line sweep proceeds from left to right; when it encounters the left
endpoint of a horizontal segment , it inserts the left endpoint into the data
structure . When a vertical line is encountered, we check for intersections
with any horizontal segments in , which lie within the y-interval defined by
the vertical line segment.

4.4 Basic Data Structures

A layout editor is a CAD tool which allows a human designer to create
and edit a VLSI layout. It may have some semi-automatic features to speed
up the layout process. Since layout editors are interactive, their underlying
data structures should enable editing operations to be performed within an
acceptable response time. The data structures should also have an acceptable
space complexity, as the memory on workstations is limited.

A layout can be represented easily if partitioned into a collection of tiles. A
tile is a rectangular section of the layout within a single layer. The tiles are not
allowed to overlap within a layer. The elements of a layout are referred to as
block tiles. A block tile can be used to represent p-diffusion, n-diffusion, poly
segment, etc. For ease of presentation, we will refer to a block tile simply as
a block. The area within a layout that does not contain a block is referred to
as vacant space. Figure 4.16 shows a simple layout containing several blocks.
Later, in the chapter we will introduce a method that partitions the vacant
space into a series of vacant tiles.

4.4.1 Atomic Operations for Layout Editors

The basic set of operations that give a designer the freedom to fully manipu-
late a layout, is referred to as the Atomic Operations. The following is the list
of atomic operations that a layout editor must support.

1.

2.

Point Finding: Given the coordinate of a point determine
whether lies within a block and, if so, identify that block.

Neighbor Finding: This operation is used to determine all blocks
touching a given block .

118 Chapter 4. Data Structures and Basic Algorithms

3.

4.

5.

6.

7.

8.

9.

10.

Block Visibility: This operation is used to determine all blocks visible,
in the and direction, from a given block . Note that this operation
is different from the neighbor finding operation.

Area Searching: Given a fixed area A, defined by its upper left corner
, the length , and the width determine whether A intersects with

any blocks . This operation is very useful in the placement of blocks.
Given a block to be placed in a particular area, we need to check if other
blocks are currently residing in that area.

Directed Area Enumeration: Given a fixed area A, defined by its
upper left corner , length , and width visit each block intersecting
A exactly once in sorted order according to its distance from a given side
(top, bottom, left, or right) of A.

Block Insertion: Block insertion refers to the act of inserting a new
block B into the layout such that B does not intersect with any existing
block.

Block Deletion: This operation is used to remove an existing block B
from the layout. In an iterative approach to placement, blocks are moved
from one location to another. This is done by inserting the block into a
new location and then deleting the block at its previous location.

Plowing: Given an area A and a direction , remove all blocks from
A by shifting each in direction while preserving ordering between
the blocks.

Compaction: Compaction refers to plowing or “compressing” of the
entire layout. If compaction is along the x-axis or y-axis then the com-
paction is called 1-dimensional compaction. When the compaction is
carried out in both x- and y-direction then it is called 2-dimensional
compaction.

Channel Generation: This operation refers to determining the vacant
space in the layout and partitioning it into tiles.

4.4. Basic Data Structures 119

4.4.2 Linked List of Blocks

The simplest data structure used to store the components of a layout is a
linked list, where each node in the list represents a block. The linked list
representation is shown in Figure 4.17. Notice that the blocks are not stored
in any particular order, as none was specified in the original description of
the data structure; however, it is clear that a sorted or self-organizing list will
improve average algorithmic complexity for some of the atomic operations. The
space complexity of the linked list method is where is the number of
blocks in the layout.

For illustration purpose, we now present an algorithm for neighbor finding
using the linked list data structure. Given a block , the neighbors of are
all the blocks that share a side with . Each block is represented in the list
by its location (coordinate of upper left corner), height, width, text to describe
the block, and a pointer to the next node (block) in the list. The algorithm
finds the neighbors on the right side of the given block, however, the algorithm
can be easily modified to find all the neighbors of a given block. The input to
the algorithm is a specific block , and the linked list of all blocks. A formal
description of the algorithm for neighbor finding is shown in Figure 4.18.

Linked list data structures are suitable for a hierarchical system since each
level of hierarchy contains few blocks. However, this data structure is not
suitable for non-hierarchical systems and for hierarchical systems with a large
number of blocks in each level. The major disadvantage of this structure is that
it does not explicitly represent the vacant space. However, the data structure
can be altered to form a new representation of the layout in which the vacant
space is stored as a collection of vacant tiles. A vacant tile maintains the same
geometric restrictions that are implied by the definition of a tile. Converting
the vacant space into a collection vacant tiles can be done by extending the
upper and lower boundaries of each block horizontally to the left and to the
right until it encounters another block or the boundary of the layout as shown
in figure 4.19. This partitions the entire area into a collection of tiles (block
and vacant), organizing the vacant tiles into maximal horizontal strips, thus
allowing the entire area of the layout to be represented in the linked list data
structure. We call this data structure the modified linked list.

120 Chapter 4. Data Structures and Basic Algorithms

4.4.3 Bin-Based Method

The bin-based data structure does not keep information pertaining to the
vacant space and does not create vacant tiles. In the bin-based system, a
virtual grid is superimposed on the layout area as shown in Figure 4.20. The
grid divides the area into a series of bins which can be represented using a
two-dimensional array. Each element in the array ((row,col)) contains all
the blocks that intersect with the corresponding bin. In Figure 4.20, (2,3)
contain blocks D,E,F,G, and H while (2,4) contain blocks G and H. The
space complexity for the bin-based data structure is , where denotes
the total number of bins and is the number of blocks.

Clearly, the bin-based data structure can be viewed as an augmented ver-
sion of the linked list data structure in which a time-space compromise has
been made to improve the average case performance on several of the atomic

4.4. Basic Data Structures 121

operations. However, it is easy to construct pathological examples which cause
the worst-case performance of the bin-based structure to degenerate to that of
the linked list. This is possible since the bin size is fixed, while the block size
may vary. If we insert blocks into the layout such that all the blocks fall in the
same bin, the performance of the bin-based data structure is equivalent to that
of the linked list for most atomic operations, and worse than the linked list in
the neighbor finding, area searching, and directed area enumeration operations,
since bins containing no blocks must be tested. The worst case complexity for
these operations is

As in the linked list data structure, we now present an algorithm to find the
neighbors of a given block. This algorithm finds the neighbors on the right side
of the given block. However, the algorithm can easily be extended to find all
the neighbors of a given block. The input to the algorithm is a specific block
A and the set of bins A formal description of the algorithm is shown in
Figure 4.21.

In general, the bin-based data structure is highly sensitive to the time-space
tradeoff. For instance, if the bins are small with respect to the average size
of a block, the blocks are likely to intersect with more than one bin, thereby
increasing storage requirements. Furthermore, many bins may remain empty,
creating wasted storage space. If the bins are too large the average case per-
formance will be reduced since the linked lists used to store blocks in each bin
will be very long. Obviously, the best case is when each bin contains exactly
blocks, and no block is stored in more than one bin.

Even though the bin-based method can be used to locate all blocks within an
area (bin), it does not allow for any representation of locality. In order to find
the block closest to another, it may be necessary to search other surrounding
bins, and in the worst case all the bins. Because the bin-based data structure
does not represent the vacant space, operations such as compaction are tedious
and time consuming.

122 Chapter 4. Data Structures and Basic Algorithms

4.4.4 Neighbor Pointers

Most operations in a layout system require local block information to perform
efficiently. Both the linked list and bin-based data structures do not keep
local information, such as neighboring blocks. To overcome this limitation,
the neighbor pointer data structure was developed. The neighbor pointer data
structure represents each block by its size (upper left hand corner, length, and
width) as well as the pointers to all of its neighbors. The space complexity
of the data structure is bounded by Figure 4.22 shows how neighbor
pointers are maintained for Block A.

The neighbor pointer data structure is designed to perform well on plowing
and compaction operations, unlike the linked list and bin-based structures.
Plowing operation can be performed easily since each block directly stores
information about its neighbors. In other words, for any block all blocks
affected by moving can be referenced directly. Since compaction is a form
of plowing, it can also be performed easily using the neighbor pointer data
structure. Figure 4.23, shows how the neighbor pointers of block A are updated
when block B is moved.

The primary disadvantage of neighbor pointers is that the data structure is
difficult to maintain. A simple modification to the layout may require all the
pointers in the data structure be updated. For instance, a plow operation may
modify the neighbors of each block and, in this case, updating the pointers
could take as much as time. Furthermore, block insertion and deletion
operations each take time. Since vacant space is not explicitly represented,

4.4. Basic Data Structures 123

channel generation cannot be performed without extensive modification to the
data structure.

4.4.5 Corner Stitching

Corner stitching is a radically different data structure used for IC layout
editing [Ous84]. Corner stitching is novel in the sense that it is the first data
structure to represent both vacant and block tiles in the design. As in the
neighbor pointer structure, information about the relative locations of blocks
is stored; however, unlike neighbor pointers, the corner stitch data structure
can be updated rapidly.

The corner-stitch data structuring technique provides various powerful op-
erations such as stretching, compaction, neighbor-finding, and channel finding.
These operations are possible in the order of the number of neighbors, which

124 Chapter 4. Data Structures and Basic Algorithms

in the worst case would be the order of the size of the layout; i.e., the number
of objects in the layout. The advantage of corner stitch data structure is that
it permits easy modification to the layout.

The two main features of the corner stitch data structure pertain to the
way in which it keeps track of vacant tiles and how the tiles are linked. To
partition the vacant space into a collection of vacant tiles, the vacant space
must be divided into maximal horizontal strips (as discussed in section 4.4.2).
Hence the whole layout is represented as tiles (vacant and block).

Tiles are linked by a set of pointers called corner stitches. Each tile contains
four stitches, two at its top right corner and two at the bottom left corner as
shown in Figure 4.24. The pointers at these two corners are sufficient to perform
all operations. The corner stitch method stores both the vertical and horizontal
pointers. Each tile also stores the same number of pointers, irrespective of the
number of neighbors it has. In this structure, vacant tiles can assume any
size, and this helps in naturally adapting to the variations in the size of the
blocks. In other words, a new block, created over a set of a vacant tiles, will
result in a number of vacant tiles to be split, thus enabling the layout to be
updated easily. The pointers in each of the four directions provide a type of
sorting similar to that of the neighbor pointers. Figure 4.25, shows how corner
stitches link the tiles of a layout. The stitches exceeding the boundary of the
layout have been omitted in the figure, but the data structure represents them
as NULL pointers.

The record structure used in this section to represent a tile is the same as
the one shown in Figure 4.17 with the exception that the single pointer used
to link the tiles will be replaced with the corner stitch pointers (rt, tr, bl, lb).
It should also be noted that we define the upper left corner of the layout to be
point (0,0).

In the following we present the various operations that can be performed
on a layout using the corner stitch data structure.

1. Point Finding: a point the following sequence of steps finds a path
through the corner stitches from the current point to traversing the
minimum number of tiles.

(1) The first step is to move up or down, using rt and lb pointers until

4.4. Basic Data Structures 125

a tile is found whose vertical range contains the destination point.

(2)

(3)

Then, a tile is found whose horizontal range contains the destination
point by moving left or right using tr or bl pointers.

Whenever there is a misalignment (the search goes out of the vertical
range of the tile that contains the destination point) due to the above
operations, steps 1 and 2 has to be iterated several times to locate
the tile containing the point.

This operation is illustrated in Figure 4.27. In worst case, this algorithm
traverses all the tiles in the layout. On an average though, tiles will
be visited. This algorithm handles the inherent asymmetry in designs by
readjusting the misalignments that occur during the search.

Figure 4.26 shows a formal description of the algorithm for point finding.
The input to the algorithm is a specific block B, and the coordinates of
the desired point .

126 Chapter 4. Data Structures and Basic Algorithms

2. Neighbor Finding: Following algorithm finds all the tiles that touch
a given side of a given tile. This is also illustrated in Figure 4.28.

(1) From the tr pointer of the given tile the algorithm starts traversing
using the lb pointer downwards until it reaches a tile which does not
completely lie within the vertical range of the given tile.

3. Area Search: Given an area, the following algorithm reports if there
are any blocks in the area. This is illustrated in Figure 4.29.

(2)

(3)

(4)

(1) First the tile in which the upper left corner of the given area is
located.

If the tile corresponding to this corner is a space tile, then if its right
edge is within the area of interest, the adjacent tile must be a block.

If a block was found in step 2, then the search is complete. If no
block was found, then the next tile touching the right edge of the
area of interest is found, by traversing the lb stitches down and then
traversing right using the tr stitches.

Steps 2 and 3 are repeated until either the area has been searched
or a block has been found.

4. Enumerate all Tiles: Given an area, the following algorithm reports
all tiles intersecting that area. This is illustrated in Figure 4.30.

(1) The algorithm first finds the tile in which the upper left corner of
the given area is located. Then it steps down through all the tiles
along the left edge, using the same technique as in area searching.

(2) The algorithm enumerates all the tiles found in step 1 recursively
(one tile at a time) using the procedure given in lines (R1) through
(R5).

(R1)

(R2)

(R3)

(R4)

(R5)

Number the current tile (this will generally involve some appli-
cation specific processing).
If the right edge of the tile is outside of the search area, then
the algorithm returns from the R procedure.
Otherwise, the algorithm uses the neighbor-finding algorithm to
locate all the tiles that touch the right side of the current tile
and also intersect the search area.
For each of these neighbors, if the bottom left corner of the
neighbor touches the current tile then it calls R to enumerate
the neighbor recursively (for example, this occurs in Figure 4.30
when tile 1 is the current tile and tile 2 is the neighbor).
Or, if the bottom edge of the search area cuts both the current
tile and the neighbor, then it calls R to enumerate the neighbor
recursively (in Figure 4.30, this occurs when tile 8 is the current
tile and tile 9 is the neighbor).

5. Block Creation: The algorithm given below creates a block of given
height and width on a certain given location in the plane. An illustration
of how the vacant tiles will change when block E is added to the layout
is given in Figure 4.31. Notice that the vacant tiles remain in maximal
horizontal strips after the block has been added.

(1) First of all the algorithm checks if a block already exists by using
the area search algorithm.

4.4. Basic Data Structures 127

(2)

(3)

(4)

(5)

It then finds the vacant tile containing the top edge of the area
occupied by new tile.

The tile found in step (2) is split using the horizontal line along the
top edge of the new tile. In addition, the corner stitches of the tiles
adjoining the new tile are updated.

The vacant tile containing the bottom edge of the new block is found
and split in the same fashion as in step (3) and corner stitches of
the tiles adjoining adjoining the new tile are updated.

The algorithm traverses down along the left side and right side of
the area of the new tile respectively, using the same technique in
step (3) and updates corner stitches of the tiles as necessary.

6. Block Deletion: The following algorithm deletes a block at a given
location in the plane. An illustration of how the vacant tiles will change
when block C is deleted from the layout is given in Figure 4.32. Notice
that the vacant tiles remain in maximal horizontal strips after the block
has been deleted.

(1)

(2)

(3)

First, the block to be deleted is changed to a vacant tile.

Second, using the neighbor finding algorithm for the right edge of
the deleted tile find all the neighbors. For each vacant tile neighbor,
the algorithm either splits the deleted tile or the neighbor tile so
that the two tiles have the same vertical span and then merges them
horizontally.

Third, find all the neighbors for the left edge of the deleted tile. For
each vacant tile neighbor the algorithm either splits the deleted tile
or the neighbor tile so that the two tiles have the same vertical span
and then merges them horizontally. After each horizontal merge, it

128 Chapter 4. Data Structures and Basic Algorithms

4.4. Basic Data Structures 129

performs a vertical merge if possible with the tiles above and below
it.

4.4.6 Multi-layer Operations

Thus far, the operations have been limited to those that concern only a single
layer. It is important to realize that layouts contain many layers. More im-
portantly, the functionality of the layout depends on the relationship between
the position of the blocks on different layers. For instance, Figure 4.33 shows
a simple transistor formed on two layers (polysilicon and n-diffusion) accom-
panied by a separate segment on the n-diffusion layer. If each layer is plowed
along the positive as shown in Figure 4.34, the original function of the
layout has been altered as a transistor has been created on another part of the
layout.

Design rule checking is also multilayer operation. In Figure 4.34, an illegal
transistor has been formed. Even though the design rules were maintained
while plowing on a single layer, the overall layout has an obvious design flaw.

130 Chapter 4. Data Structures and Basic Algorithms

If proper design rule checking is to take place, then the position of the blocks
on each layer must be taken into consideration.

4.4.7 Limitations of Existing Data Structures

When examining the different data structures described in this chapter, it is
easy to see that there is no single data structure that performs all operations
with good space and time complexity. For example, the linked list and bin-
based data structures are not suitable for use in a system in which a large
database needs to be updated very frequently. Although the simpler data
structures, like the linked list, are easy to understand, they are not suitable for
most layout editors. On the other hand, more advanced data structures, such
as the corner stitch, perform well where the simpler data structures become
inefficient. Yet, they do not allow for the full flexibility needed in managing
complicated layouts.

A limitation that all the data structures discussed share, is that they only
work on rectangular objects. For example, the data structures do not support
objects that are circular or L-shaped. New data structures, therefore, need to
be developed that handle non-rectangular objects. Also as parallel computation
is becoming more popular, new data structures need to be developed that can
adapt to a parallel computation environment.

4.4.8 Layout Specification Languages

A common and simple method of producing system layouts is to draw them
manually using a layout editor. This is done on one lambda grid using familiar
color codes to identify various systems layers. Once the layout has been drawn,
it can then be digitized or translated into machine-readable form by encoding
it into a symbolic layout language. The function of a symbolic layout language,
in its simplest form, is similar to that of macro-assembler. The user defines
symbols (macros) that describe the layout of basic system cells. The function
of the assembler for such a language is to scan and decode the statements and
translate them into design files in intermediate form. The effectiveness of such
languages could be further increased by constructing an assembler capable of
handling nested symbols. Through the use of nested symbols, system layouts
may be described in a hierarchical manner, leading to very compact descriptions
of structured designs.

Caltech Intermediate Form (CIF) is one of the popular intermediate forms
of layout description. Its purpose is to serve as a standard machine-readable
representation from which other forms can be constructed for specific output
devices such as plotters, video displays, and pattern-generation machines. CIF
provides participating design groups easy access to output devices other than
their own, enables the sharing of designs, and allows combining several designs
to form a larger chip. A CIF file is composed of a sequence of commands, each
being separated by a semi-colon (;). Each command is made up of a sequence
of characters which are from a fixed character set. Table 4.1 lists the command

4.4. Basic Data Structures 131

symbols and their forms.
A more formal listing of the commands is given in Figure 4.35. The syntax

for CIF is specified using a recursive language definition as proposed by [Wir77].
The notation used is similar to the one used to express rules in programming
languages and is as follows: the production rules use equals (=) to relate identi-
fiers to expressions; vertical bar (|) for or; double quotes (“ ”) around terminal
characters; curly braces ({ }) indicate repetition any number of times including
zero; square brackets ([]) indicate optional factors (i.e., zero or one repetition);
parentheses () are used for grouping; rules are terminated by a period (.).

The number of objects in a design and the representation of the primitive
elements make the size of the CIF file very large. Symbolic definition is a way
of reducing the file size by equating a commonly used command to a symbol.
Layer names have to be unique, which will ensure the integrity of the design
while combining several layers which represent one design.

CIF uses a right-handed coordinate system where increases to the right
and increases upward. CIF represents the entire layout in the first quadrant.
The unit of measurement of the distance is usually a micrometer Be-
low are several examples of geometric shapes expressed in CIF. Note that the
corresponding example correspond to the respective shape in Figure 4.36.

(a)

(b)

Boxes: A box of length 30, width 50, and which is centered at (15,25),
in CIF is B 30 50 15 25; (See Figure 4.36(a))

In this form the length of the box is the measurement of the side that is
parallel to the and the width of the box is the measurement of the
side that is parallel to the .

Polygons: Polygon with vertices at (0,0), (20,50), (50,30), and (40,0) in

132 Chapter 4. Data Structures and Basic Algorithms

4.4. Basic Data Structures 133

CIF is P 0 0 20 50 50 30 40 00; (See Figure 4.36(b))

For a polygon with sides, the coordinates of vertices must be specified
through the path of the edges.

(c) Wires: A wire with width 20 and which follows the path specified by
the coordinates (0,10), (30,10), (30,30), (80,30) in CIF is W 20 0 10 30
10 30 30 80 30; (See Figure 4.36(c))

For a wire, the width must be given first and then the path of the wire
is specified by giving the coordinates of the path along its center. For an
object to qualify as a wire, it must have a uniform width.

As shown by the representation of a polygon, CIF will describe shapes
that do not have Manhattan or rectilinear features. It is actually possible to
represent a box that does not have Manhattan features. This is done using
a direction vector. This eliminates the need for any trigonometric functions
such as sin, cos, tan, etc. It is also easy to incorporate in the box description.
The direction vector is made up two integer components, the first being the
component of the direction vector along the and the second being the
same along the . The direction vector (1 1) will rotate the box 45°
counterclockwise as will (2 2), (50 50), etc. The direction vector pointing to
the can be represented as direction (10). With this new information a
new descriptor can be added to box called the direction. Figure 4.37 shows a
box with length 25, width 60, center 80,40 and direction -20, 20. When using
direction, the length is the measure of the side parallel to the direction vector,
and width is the measure of the side perpendicular to the direction vector. The
direction vector is optional and if not used defaults to the positive .

B 25 60 80 40 -20 20;

To maintain the integrity of the layers for these geometric objects they
must be labeled with the exact name of the fabrication mask (layer) on which
it belongs. Rather than repeating the layers specified for each object, it is
specified once and all objects defined after it belong to the same layer.

134 Chapter 4. Data Structures and Basic Algorithms

4.5. Graph Algorithms for Physical design 135

Using CIF, a cell can be defined as a symbol by using the DS and DF
commands. If an instance of a cell is required, the call command for that cell
is used. The entire circuit is usually described as a group of nested symbols.
A final call command is used to instantiate the circuit.

One of the popular layout description language used in the industry is
GDSII.

4.5 Graph Algorithms for Physical design

The basic objects in VLSI design are rectangles and the basic problems in
physical design deal with arrangement of these rectangles in a two or three
dimensional space. The relationships between these objects, such as overlap
and distances, are very critical in development of physical design algorithms.
Graphs are a well developed tool used to study relationships between objects.
Naturally, graphs are used to model many VLSI physical design problems and
they play a very pivotal role in almost all VLSI design algorithms. In this
section, we will define various graphs which are used in modeling of physical
design problems.

4.5.1 Classes of Graphs in Physical Design

A layout is a collection of rectangles. Rectangles, which are used for routing,
are thin and long and the width of these rectangles can be ignored for the sake
of simplicity. In VLSI routing problems, such simple models are frequently
used where the routing wires are represented as lines. In such cases, one needs
to optimally arrange lines in two and three dimensional space. As a result,
there are several different graphs which have been defined on lines and their

relationships. Rectangles, which do not allow simplifying assumptions about
the width, must also be modeled. For placement and compaction problems,
it is common to use a graph which represents a layout as a set of rectangles
and their adjacencies and relationships. As a result, a graph may be defined to
represent the relationships between the rectangles. Thus we have two types of
graphs dealing with lines and rectangles. Complex layouts with non-rectilinear
objects require more involved modeling techniques and will not be discussed.

4.5.1.1 Graphs Related to a Set of Lines

Lines can be classified into two types depending upon the alignment with
axis. We prefer to use the terminology of line interval or simply interval for
lines which are aligned to axis. An interval is represented by its left and
right endpoints, denoted by and respectively. Given a set of intervals

we define three graphs on the basis of the different relationships
between them.

We define an overlap graph as

In other words, each vertex in the graph corresponds to an interval and an
edge is defined between and if and only if the interval overlaps with
but does not completely contain or reside within

We define a containment graph where the vertex set V is
the same as defined above and a set of edges defined below:

In other words an edge is defined between and if and only if the interval
completely contains the interval
We also define an interval graph where the vertex set V is

the same as above, and two vertices are joined by an edge if and only if their
corresponding intervals have a non-empty intersection. It is easy to see that

An example of the overlap graph for the intervals in Fig-
ure 4.38(a) is shown in Figure 4.38(b) while the containment graph and the
interval graph are shown in Figure 4.38(c) and Figure 4.38(d) respectively.
Interval graphs form a well known class of graphs and have been studied ex-
tensively [Gol80].

Overlap, containment and interval graphs arise in many routing problems,
including channel routing, single row routing and over-the-cell routing.

If lines are non-aligned, then it is usually assumed (for example, in channel
routing) that all the lines originate at a specific -location and terminate at a
specific -location. An instance of such a set of lines is shown in Figure 4.39(a).
This type of diagram is sometimes called a matching diagram.

Permutation graphs are frequently used in routing and can be defined by
matching diagram. We define a permutation graph where the

136 Chapter 4. Data Structures and Basic Algorithms

4.5. Graph Algorithms for Physical design 137

vertex set V is the same as defined above and a set of edges defined below:

An example of permutation graph for the matching diagram in Figure 4.39(a) is
shown in Figure 4.39(b). It is well known that the class of containment graphs
is equivalent to the class of permutation graphs [Gol80].

Two sided box defined above is called a channel. The channel routing prob-
lem, which arises rather frequently in VLSI design, uses permutation graphs to
model the problem. A more general type of routing problem, called the switch-
box routing problem, uses a four-sided box (see Figure 4.40(a)). The graph
defined by the intersection of lines in a switchbox is equivalent to a circle graph
shown in Figure 4.40(b). Overlap graphs are equivalent to circle graphs. Circle
graphs were originally defined as the intersection graph of chords of a circle,

can be recognized in polynomial time [GHS86].

4.5.1.2 Graphs Related to Set of Rectangles

As mentioned before, rectangles are used to represent circuit blocks in a
layout design. Note that no two rectangles in a plane are allowed to overlap.
Rectangles may share edges, i.e., two rectangles may be neighbors to each other.
Given a set of rectangles corresponding to a layout in a
plane, a neighborhood graph is a graph G = (V , E), where

The neighborhood graph is useful in the global routing phase of the design
automation cycle where each channel is defined as a rectangle, and two channels
are neighbors if they share a boundary. Figure 4.41 gives an example of a
neighborhood graph, where for example, rectangles A and B are neighbors in
Figure 4.41 (a), and as a result there is an edge between vertices A and B in
the corresponding neighborhood graph shown in Figure 4.41 (b).

Similarly, given a graph G = (V , E), a rectangular dual of the graph is a set
of rectangles where each vertex corresponds to
the rectangle and two rectangles share an edge if their corresponding
vertices are adjacent. Figure 4.42(b) shows an example of a rectangular dual
of a graph shown in Figure 4.42(a). This graph is particularly important in
floorplanning phase of physical design automation. It is important to note that
not all graphs have a rectangular dual.

4.5.2 Relationship Between Graph Classes

The classes of graphs used in physical design are related to several well known
classes of graphs, such as triangulated graphs, comparability graphs, and co-
comparability graphs, which are defined below.

138 Chapter 4. Data Structures and Basic Algorithms

4.5. Graph Algorithms for Physical design 139

An interesting class of graphs based on the notion of cycle length is triangu-
lated graphs. If is a cycle in G, a chord of C is an edge
e in E(G) connecting vertices and such that for any = 1,…, k.
A graph is chordal if every cycle containing at least four vertices has a chord.
Chordal graphs are also known as triangulated graphs. A graph G = (V, E)
is a comparability graph if it is transitively orientable. A graph is called a
co-comparability graph if the complement of G is transitively orientable.

Triangulated and comparability graphs can be used to characterize interval
graphs. A graph G is called an interval graph if and only if G is triangulated
and the complement of G is a comparability graph. Similarly, comparability
and co-comparability graphs can be used to characterize permutation graphs.
A graph G is called a permutation graph if and only if G is a comparability
graph and the complement of G is also a comparability graph.

The classes of graphs mentioned above are not unrelated, in fact, interval
graphs and permutation graphs have a non-empty intersection. Similarly the
classes of permutation and bipartite graphs have a non-empty intersection. On
the other hand, the class of circle graphs properly contains the class of permu-
tation graphs. In Figure 4.43 shows the relationship between these classes.

4.5.3 Graph Problems in Physical Design

Several interesting problems related to classes of graphs discussed above arise
in VLSI physical design. We will briefly state the definitions of these problems.

140 Chapter 4. Data Structures and Basic Algorithms

4.5. Graph Algorithms for Physical design 141

An extensive list of problems and related results may be found in [GJ79].

Independent Set Problem
Instance: Graph G = (V, E), positive integer

Question: Does G contain an independent set of size K or more, i.e., a subset
such that and such that no two vertices in are joined by

an edge in E ?
Maximum Independent Set (MIS) problem is the optimization version of the
Independent Set problem. The problem is NP-complete for general graphs and
remains NP-complete for many special classes of graphs [GJ79, GJS76, MS77,
Pol74, YG78]. The problem is solvable in polynomial time for interval graphs,
permutation graphs and circle graphs. Algorithms for maximum independent
set for these classes are presented later in this chapter.

An interesting variant of the MIS problem, called the -MIS, arises in var-
ious routing problems. The objective of the -MIS is to select a subset of
vertices, which can be partitioned into independent sets. That is, the se-
lected subset is -colorable.

Clique Problem
Instance: Graph G = (V , E), positive integer
Question: Does G contain a clique of size K or more, i.e., a subset
such that and such that every two vertices in are joined by an
edge in E ?
Maximum clique problem is the optimization version of the clique problem.
The problem is NP-complete for general graphs and for many special classes
of graphs. However, the problem is solvable in polynomial time for chordal
graphs [Gav72] and therefore also for interval graphs, comparability graphs [EPL72],
and circle graphs [Gav73], and therefore for permutation graphs.

The maximum clique problem for interval graphs arises in the channel rout-
ing problem.

Graph K-Colorability
Instance: Graph G = (V , E), positive integer

Question: Is G K- colorable, i.e., does there exist a function
such that whenever

The minimization of the above problem is more frequently used in physical
design of VLSI. The minimization version asks for the minimum number of
colors needed to properly color a given graph. The minimum number of colors
needed to color a graph is called the chromatic number of the graph. The
problem is NP-complete for general graphs and remain so for all fixed It
is polynomial for K = 2, since that is equivalent to bipartite graph recognition.
It also remains NP-complete for K = 3 if G is the intersection graph for straight
line segments in the plane [EET89]. For arbitrary K, the problem is NP-
complete for circle graphs. The general problem can be solved in polynomial
time for comparability graphs [EPL72], and for chordal graphs [Gav72].

142 Chapter 4. Data Structures and Basic Algorithms

As discussed earlier, many problems in physical design can be transformed
into the problems discussed above. Most commonly, these problems serve as
sub-problems and as a result, it is important to understand how these problems
are solved. We will review the algorithms for solving these problems for several
classes of graphs in the subsequent subsections.

It should be noted that most of the problems have polynomial time complex-
ity algorithms for comparability, co-comparability, and triangulated graphs.
This is due to the fact these graphs are perfect graphs [Gol80]. A graph
G = (V, E) is called perfect, if the size of the maximum clique in G is equal
to the chromatic number of G and this is true for all subgraphs H of G. Per-
fect graphs admit polynomial time complexity algorithms for maximum clique,
maximum independent set, among other problems. Note that chromatic num-
ber and maximum clique problems are equivalent for perfect graphs.

Interval graphs and permutation graphs are defined by the intersection of
different classes of perfect graphs, and are therefore themselves perfect graphs.
As a result, many problems which are NP-hard for general graphs are poly-
nomial time solvable for these graphs. On the other hand, circle graphs are
not perfect and generally speaking are much harder to deal with as compared
to interval and permutation graphs. To see that circle graphs are not perfect,
note that an odd cycle of five or more vertices is a circle graph, but it does not
satisfy the definition of a perfect graph.

4.5.4 Algorithms for Interval Graphs

Among all classes of graphs defined on a set of lines, interval graphs are
perhaps the most well known. It is very structured class of graphs and many
algorithms which are NP-hard for general graphs are polynomial for interval
graphs [Gol77]. Linear time complexity algorithms are known for recognition,
maximum clique, and maximum independent set problems among others for
this class of graphs [Gol80]. The maximal cliques of an interval graph can be
linearly ordered such that for every vertex the cliques containing
occur consecutively [GH64]. Such an ordering of maximal cliques is called a
consecutive linear ordering. An O(| V | + | E |) algorithm for interval graph
recognition that produces a consecutive linear ordering of maximal cliques is
presented in [BL76]. In this section, we review algorithms for finding maximum
independent set and maximum clique in an interval graph.

4.5.4.1 Maximum Independent Set

An optimal algorithm for computing maximum independent set of an interval
graph was developed by Gupta, Lee, and Leung [GLL82]. The algorithm they
presented is greedy in nature and is described below in an informal fashion.
The algorithm first sorts the end points in ascending order of their values.
It then scans this list from left to right (i.e., in ascending order of their values)
until it first encounters a right endpoint. It then outputs the interval having
this right endpoint as a member of a maximum independent set and deletes

4.5. Graph Algorithms for Physical design 143

all intervals containing this point. This process is repeated until there is no
interval left in the list. It can be easily shown that the algorithm produces a
maximum independent set in a interval graph and the time complexity of the
algorithm is dominated by sorting the intervals that is O(log). The time
complexity of the algorithm is thus O(log), where n is the total number of
intervals.

Theorem 3 Given an interval graph, the MIS can be found in time,
where n is the total number vertices in the graph.

In [YG87], an optimal algorithm for finding the maximum k-colorable sub-
graph in an interval graph has been presented. We present an outline of that
algorithm.

The set of the interval is processed from left to right in increasing order
of endpoints. For a vertex let denote its corresponding interval, having
a maximum k-colorable subgraph for a set of nodes already processed.
The next node v is added to if contains no clique with more
than k nodes, and is discarded otherwise.

It can be easily shown that this greedy algorithm indeed finds the optimal
k-colorable independent set in an interval graph. For details, refer to [YG87].

4.5.4.2 Maximum Clique and Minimum Coloring

Since interval graphs are perfect, the cardinality of a minimum coloring is
the same as that of maximum clique in interval graphs. The algorithm shown
in Figure 4.44 finds a maximum clique in a given interval graph. The input to
the algorithm is a set of intervals representing an interval
graph. Each interval is represented by its left end point and right end
point

In the algorithm shown in Figure 4.44, SORT-INTERVAL sorts the list of
end points of all the intervals and generates an array A[i] to denote whether

144 Chapter 4. Data Structures and Basic Algorithms

the endpoint at the position i in the sorted list is a left endpoint or right
endpoint. A[i] = L if the corresponding end point is a left endpoint. Note that
the algorithm finds the size of the maximum clique in a given interval graph.
However, the algorithm can easily be extended to find the maximum clique. It
is easy to see that the worst case complexity of the algorithm is where
n is the total number of intervals. The time complexity of the algorithm can
be reduced to O(n log n) by keeping track of the minimum of the right end
points of all the intervals. The left edge algorithm (LEA) described in detailed
routing (chapter 7) is a simple variation of the algorithm in Figure 4.44.

4.5.5 Algorithms for Permutation Graphs

The class of permutation graphs was introduced by Pnnueli, Lempel, and
Even [PLE71]. They also showed that the class of permutation graphs is tran-
sitive and introduced an algorithm to find the maximum clique [EPL72].
In [Gol80], Golumbic showed an O(n log n) time complexity algorithm for find-
ing the chromatic number in a permutation graph.

Permutation graphs are also a structured class of graphs similar to interval
graphs. Most problems, which are polynomial for permutation graphs, are also
polynomial for interval graphs. In this section, we present an outline of several
important algorithms related to permutation graphs.

4.5.5.1 Maximum Independent Set

The maximum independent set in a permutation graph can be found in
O(n log n) time [Kim90]. As mentioned before, permutation graphs can be
represented using matching diagrams as shown in Figure 4.39.

The binary insertion technique can be used on a matching diagram to find a
maximum independent set in a permutation graph. Given a permutation

of n numbers N = (1, 2 , . . . , n) corresponding to a permutation
graph, note that an increasing subsequence of P represents an independent set
in the permutation graph. Similarly, a decreasing subsequence of P represents
a clique in the permutation graph. Therefore, to find a maximum independent
set, we need to find a maximum increasing subsequence of P. It is necessary
to know the the relations of the positions of numbers in the permutation. A
stack is used to keep track of the relations. The algorithm works as follows:

The sequence N is scanned in increasing order. In the jth iteration, j is
placed on the top of the stack i whenever j does not intersect with the front
entries of the stack q, but intersects with the front entry of stack r, where

and i and m is the total number of stacks during jth
iteration. If j does not intersect with any of the front entries of the stacks
1, 2 , . . . , m, then the stack m + 1 is created and j is placed on top stack m + 1.
It is easy to see that the stack search and insertion can be done using binary
search in O(log n) time.

Once the numbers are placed in stacks, stacks can be scanned from bottom
up to get a maximum increasing subsequence. We illustrate the algorithm by

4.5. Graph Algorithms for Physical design 145

means of an example shown in Figure 4.45(a). Initially, the permutation P is
given as (10, 5, 1, 3, 12, 11, 4, 7, 6, 9, 2, 8). The top row is processed from left to
right. First 1 is placed on the stack 1. Then 2 is placed on stack 2, because
2 does not intersect with 1. After that the 3 goes on top of stack 2, since it
intersects with 2 but does not intersect with 1 on top of stack 1. The 4 is
placed in front of a new stack 3. Then the 5 intersects with all of the front
entries of all the stacks, thus 5 is placed in front of the stack 1. In this way, all
the numbers are placed in 5 stacks as shown Figure 4.45(b). Now the stacks
are scanned starting from stack 5 to stack 1. One number from each stack is
selected so that the numbers are in decreasing order. If 9 from stack 5, 7 from
stack 4, 4 from stack 3, 3 from stack 2, and 1 from stack 1 is selected then the
generated set {9, 7, 4, 3, 1} is a maximum independent set of the corresponding
permutation graph. Note the total number of stacks is equal to the chromatic
number of the permutation graph.

In [LSL90], Lou, Sarrafzadeh, and Lee presented a time com-
plexity algorithm for finding a maximum two-independent set in permutation
graphs. Cong and Liu [CL91] presented an time complexity

146 Chapter 4. Data Structures and Basic Algorithms

algorithm to compute a maximum weighted k-independent set in permutation
graphs where m is bounded by In fact, their algorithm is very general and
applicable to any comparability graph.

4.5.5.2 Maximum k-Independent Set

The complement of a permutation graph is a permutation graph. Hence,
MKIS problem in graph G is equivalent to maximum k-clique problem in
In this section, we discuss an time algorithm for finding the maximum
k-clique in a permutation graph presented by Gavril [Gav87]. In fact, this
algorithm is very general and applicable to any comparability graph.

The basic idea of the algorithm is to convert the maximum k-clique prob-
lem in a comparability graph into network flow problem. (See [Tar83] for an
excellent survey of network flow algorithms.) First a transitive orientation
is constructed for a comparability graph G = (V, E), resulting in a directed
graph A directed path in is also called as a chain. Note
that each chain in corresponds to a clique in G since G is a comparabil-
ity graph. Next, each vertex in V is split into two vertices. Assume that

Then each vertex corresponds to two vertices and
in a new directed graph There is a directed edge between
and for all A cost of -1 and capacity of 1 are assigned to the

edge for all In addition, there is a directed edge between
and if there exists a directed edge in A cost of 0 and capacity
of 1 are assigned to the edge Four new vertices s (source), t (sink),

and are introduced as well as the directed edges and for all
and are added. A cost of 0 and capacity of 1 are assigned

to the edge and A cost of 0 and capacity of k are assigned to
the edges and The graph so constructed is called a
network where and

Then the maximum k-clique problem in the graph G is equivalent to the
min-cost max-flow problem in the network The flow in a directed graph
has to satisfy the following.

1.

2.

The flow f(e) associated with each edge of the graph, can be assigned a
value no more than the capacity of the edge.

The net flow that enters a vertex is equal to the net flow that leaves the
vertex.

The absolute value of flow that leaves the source, e.g. is called
the flow of The min-cost max-flow problem in the directed graph is
to find the assignment of f(e) for each edge such that the flow of
is maximum and the total cost on the edges that the flows pass is minimum.
Notice that the capacity on the directed edge is k. Thus, the maximum
flow of is k. In addition, flow that passes or has value 1, since the
capacity on the directed edge is one for each of Note

4.5. Graph Algorithms for Physical design 147

that a flow in corresponds to a chain in The maximum flow in is
k, thus the maximum number of the chains in is k, and vice versa. The
absolute value of the cost on each flow is equal to the number of vertices on the
chain corresponding to the flow. Thus the minimum cost on all flows results in
maximum number of vertices in the chains in and hence maximum number
of vertices in the cliques in G.

An example of a permutation graph G is given in Figure 4.46(b). The
transitive orientation of G is given in Figure 4.46(c) while the network is
shown in Figure 4.46(d). The min-cost max-flow while k = 2 is highlighted
in Figure 4.46(d). The chains corresponding to the min-cost max-flow are
highlighted in Figure 4.46(c). The maximum 2-clique is {5, 6, 7} and {2, 4}.

The time complexity of the algorithm is dominated by the time complexity
of the algorithm to find the min-cost max-flow in a network which is
where n is the number of vertices in the graph [Law76]. The weighted version
of the MKIS problem can be solved by algorithm presented in [SL93].

148 Chapter 4. Data Structures and Basic Algorithms

4.5.6 Algorithms for Circle Graphs
Circle graphs are used for solving certain problems in channel routing and

switchbox routing. Circle graphs are not prefect and less structured than in-
terval and permutation graphs. Many problems, such as the maximum bi-
partite subgraph problem, which are polynomial for interval and permutation
graphs are NP-complete for circle graphs. However, there are still many prob-
lems that can be solved in polynomial time for circle graphs which are NP-
complete for general graphs. For example, polynomial time complexity algo-
rithms are known for maximum clique and maximum independent set prob-
lems on circle graphs [Gav73], as well as for the weighted maximum clique
problem [Hsu85], but the chromatic number problem for circle graphs remains
NP-complete [GJMP78]. In the following, we review the circle graph algorithms
used in VLSI design.

4.5.6.1 Maximum Independent Set

The problem of finding maximum independent set in a circle graph can also
be solved in polynomial time. In [Sup87], Supowit presented a dynamic pro-
gramming algorithm of time complexity for finding maximum indepen-
dent set in a circle graph.

Given is a set C of n chords of a circle, without loss of generality, it is
assumed that no two chords share the same endpoint. Number these endpoints
of the chords from 0 to 2n – 1 clockwise around the circle. Let G = (V, E)
denote a circle graph where ab is a chord}. Let denote the
subgraph of the circle graph G = (V, E), induced by the set of vertices

Let M(i, j) denote a maximum independent set of If then
is the empty graph and, hence The algorithm is an application
of dynamic programming. In particular, M(i, j) is computed for each pair i, j;

is computed before if To compute M(i, j), let k be
the unique number such that or If k is not in the range [i, j –1],
then and hence M(i, j) = M(i, j – 1). If k is in the range [i, j – 1],
then there are two cases to consider:

1.

2.

If then by definition of an independent set, M(i, j) contains
no vertices such that and

If then

Thus M(i, j) is set to the larger of the two sets M(i, j – 1) and
The algorithm is more formally stated in Figure 4.47.

4.5. Graph Algorithms for Physical design 149

Theorem 4 The algorithm MIS finds a maximum independent set in a circle
graph in time

4.5.6.2 Maximum k-Independent Set

In general a k-independent set can be defined as a set consisting of k disjoint
independent sets, and a maximum k-independent set (k-MIS) has the maximum
number of vertices among all such k-independent sets. Although, a MIS in
circle graphs can be found in polynomial time, the problem of finding a k-MIS
is NP-complete even for k = 2 [SL89a]. Since the problem has many important
applications in routing and via minimization described in the later chapters,
it is required to develop some provably good approximation algorithm for this
problem.

In [CHS93], Cong, Hossain, and Sherwani present an approximation al-
gorithm for a maximum k-independent set in the context of planar routing
problem in an arbitrary routing region. The problem is equivalent to finding a
maximum k-independent set in a circle graph. The approximation algorithm
for k = 2, was first presented by Holmes, Sherwani and Sarrafzadeh [HSS93]
and later extended to the case of k = 4 in [HSS91]. In this section, we present
the approximation result in the context of a circle graph.

Given a graph the algorithm finds k independent sets one
after another denoted by such that is a maximum indepen-
dent set in and is a maximum independent set in for 2
where is inductively defined as:

and and and

Clearly, the algorithm reduces the problem of k-MIS to a series compu-
tations of MIS in a circle graph. Since in circle graphs, the complexity of
computing 1-MIS is the total time complexity of this approximation
algorithm is

150 Chapter 4. Data Structures and Basic Algorithms

Consider the circle graph shown in Figure 4.48. Clearly, the 2-MIS of
the graph is {(1,3),(2,4)}. The maximum independent sets in the graph are
{(1,3),(2,4),(2,3)}. In the MKIS algorithm, the MIS is chosen randomly, and a
bad selection of a MIS ({(2, 3)} in this case) may not lead to an optimal 2-MIS
for the graph. If {(2,3)} is chosen then either we can choose 1 or 4. Thus,
the total number of nets chosen is three while the optimal has four nets. A
similar reasoning would show that the algorithm is non-optimal for the k-MIS
problem.

The algorithm is formally stated in Figure 4.49.
For any heuristic algorithm for k-MIS, the performance ratio of is

defined to be where is the size of the k-independent set obtained by
the algorithm and is the k-MIS in the same graph. The lower bound
on the performance ratio is established based on the following theorem.

Theorem 5 Let be the performance ratio of the algorithm MKIS for k-MIS.
Then,

Corollary 1 Given a circle graph G, MKIS can be used to approximate a
maximum bipartite set of G with a performance bound of at least 0.75.

4.6. Summary 151

It is easy to see that the function is a decreasing
function. Moreover,

where Therefore, we have

Corollary 2 For any integer k, the performance ratio of the algorithm MKIS
for k-MIS is at least

Although the approximation result presented above is for circle graphs, this
equally applicable to any class of graphs where the problem of finding MIS is
polynomial time solvable.

Another variation of the MIS problem in circle graphs is called k-density
MIS. Given a set of intervals, the objective of k-density MIS is to find an
independent set of intervals with respect to overlap property such that the
interval graph corresponding to that set has a clique of size at most k.

4.5.6.3 Maximum Clique

Given a circle graph G = (V, E), it is easy to show that for every vertex
the induced subgraph is a permutation graph, where,

For each maximum clique can be found using the algorithm presented for
maximum clique in a permutation graph. Let be the maximum clique in

then the maximum clique in G is given by for all It is
easy to see that the time complexity of this algorithm is

4.6 Summary
A VLSI layout is represented as a collection of tiles on several layers. A cir-

cuit may consists of millions of such tiles. Since layout editors are interactive,
their underlying data structures should enable editing operations to be per-
formed within an acceptable response time. Several data structures have been
proposed for layout systems. The most popular data structure among these is
corner stitch. However, none of the data structures is equally good for all the
operations. The main limitation of all the existing data structures is that they
only work on rectangular objects. In other words, the data structures do not
support any other shaped objects such as circular, L-shaped. Therefore, de-
velopment of new data structure is needed to handle different shaped objects.

152 Chapter 4. Data Structures and Basic Algorithms

Also, as parallel computation becomes practical, new data structures need to
be developed to adapt to the parallel computation environment.

Due to sheer size of VLSI circuits, low time complexity is necessary for
algorithms to be practical. In addition, due to NP-hardness of many problems,
heuristic and approximation algorithms play a very important role in physical
design automation.

Several special graphs are used to represent VLSI layouts. The study of
algorithms of these graphs is essential to development of efficient algorithms
for various phases in VLSI physical design cycle.

4.7 Exercises

1.

2.

3.

4.

5.

Design an algorithm to insert a block in a given area using the modified
linked list data structure. Note that you need to use area searching
operation to insert a block and a modified linked list to keep track of the
vacant tiles.

Design an algorithm to delete a given block from a given set of blocks
using modified linked list data structure. Note that once a block is deleted
the area occupied by that block becomes vacant tile and the linked list
must be updated to take care of this situation.

Design algorithms using a linked list data structure to perform the plow-
ing and compaction operations.

Solve the problem 3 using a modified linked list.

The problem of connectivity extraction is very important in circuit ex-
traction phase of physical design. It is defined as follows. Given a set of
blocks in an area, let us assume that there is
a type associated to each circuit. For example, all the blocks can of one
type and all the vacant tiles could be of another type. Two blocks and

are called connected if there is a sequence of distinct blocks
of the same type such that

and is a neighbor of is a neighbor of
and so on and finally is a neighbor of

(a)

(b)

Design an algorithm using a modified linked list data structure to
extract the connectivity of two blocks.

Design an algorithm using a corner stitch data structure to find the
connectivity of two blocks.

†6. The existing data structure can be modified to handle layouts in a mul-
tilayer environment. Consider the following data items associated to a
tiles in a multilayer environment:

record Tile =

4.7. Exercises 153

coordinate;
height;
width;
type;
text;
layer;

end record

(a)

(b)

Design an algorithm to move the entire layout in one direction.

Following problem 5, find the connectivity of any two blocks in a
multilayer environment using corner stitch data structure.

7.

8.

Modify algorithm NEIGHBOR-FINDl to find all the neighbors of a given
block using a linked list data structure.

Modify algorithm NEIGHBOR-FIND2 to find all the neighbors of a given
block using bin-based data structure.

†9.

10.

11.

12.

Assume a layout system that allows 45° segments, i.e., the blocks could
be 45° angled parallelogram as well as rectangular. Modify the corner
stitch data structure to handle this layout system. Are four pointers still
sufficient in this situation ?

Given a family of sets of segments where is the
set of segments belonging to net on a layer.

Determine if there is a connectivity violation by developing an algorithm
which finds all such violations.

For the set of intervals shown in Figure 4.50, find maximum independent
set, maximum clique, and maximum bipartite subgraph in the interval
graph defined by the intervals.

For the matching diagram shown in Figure 4.51, find its permutation
graph. Find maximum independent set, minimum number of colors re-
quired to color it, and maximum bipartite subgraph in this permutation
graph.

154 Chapter 4. Data Structures and Basic Algorithms

13. For the switchbox shown in Figure 4.52, find maximum independent set,
maximum clique, and maximum bipartite subgraph in the permutation
graph defined by the matching diagram.

†14.

†15.

†16.

17.

†18.

19.

Prove that the algorithm MAX-CLIQUE correctly finds the size of the
maximum clique in an interval graph.

Improve the time complexity of the algorithm MAX-CLIQUE to O(n log n).
The algorithm should also be able to report a maximum clique.

Prove that the algorithm MIS for finding a maximum independent set in
circle graphs does indeed find the optimal solution.

Develop a heuristic algorithm for finding a maximum bipartite subgraph
in circle graphs.

Implement the approximation algorithm for finding a k-independent set in
circle graphs. Experimentally evaluate the performance of the algorithm
by implementing an exponential time complexity algorithm for finding a
k-independent set.

Develop an efficient algorithm to find a k-density MIS in circle graphs.

4.7. Exercises 155

20.

†21.

22.

23.

†24.

Steiner trees play a key role in global and detail routing problems. Con-
sider the following Single Trunk Steiner Tree problem. A single trunk
Steiner tree consists of a single horizontal line segment and all the points
are joined by short vertical line segments. An example of a single trunk
Steiner tree is shown in Figure 4.53.

Given a set of n points in a plane, develop an O(n) algorithm for the
minimum cost single trunk Steiner tree.

Prove that for n = 3, single trunk Steiner tree is indeed an optimal
rectilinear Steiner tree.

For n = 4, give an example which shows that single trunk Steiner tree is
not an optimal rectilinear Steiner tree.

Single trunk Steiner tree can be easily generalized to k-trunk Steiner
tree problem, which consists of k non-overlapping horizontal trunks. An
example of a two trunk Steiner tree is shown in Figure 4.54.

Develop an efficient algorithm for 2-trunk Steiner tree problem.

Does there exist an algorithm for the k-trunk Steiner tree problem,
for a small constant c?

156 Chapter 4. Data Structures and Basic Algorithms

†25.

†26.

27.

†28.

Implement Hadlock’s Algorithm for finding max-cut in a planar graph.

Prove that Hadlock’s algorithm is optimal by showing it deletes minimum
number of edges.

Given a set of rectangles in a plane, develop an efficient algorithm to
detect if any two rectangles intersect or contain each other.

Given a switch box, develop an efficient algorithm to find the minimum
diameter of rectilinear Steiner trees. The diameter of a tree is the maxi-
mum distance between any two of its vertices.

Bibliographic Notes
The paper by John Ousterhout on the corner stitch data structure [Ous84] gives
details of different algorithms used to manipulate a layout. The corner stitch
data structure has been extended in various ways to account for nonrectilinear
shapes and interaction of objects in different layers. In [Meh94] D. P. Mehta
presented a technique for estimating the storage requirements of the Rectan-
gular Corner Stitching data structure and the L-shaped Corner Stitching Data
Structure on a given circuit by studying the circuit’s geometric properties.

However, there are no efficient data structures to express the true three
dimensional nature of a VLSI layout. The details of CIF can be found in Mead
& Conway [MC79].

Cormen, Leiserson and Rivest [CLR90], present an in depth analysis of
graph algorithms. Tarjan [Tar83] provides excellent reference for graph match-
ings, minimum spanning trees, and network flow algorithms. Computational
geometry algorithms are discussed in detail by Preparata and Shamos [PS85].
The theory of NP-completeness is discussed in great detail in Garey and John-
son [GJ79].

General graph concepts have been described in detail in [CL86]. Algorithms
and concepts for the perfect graphs, interval graphs, permutation graphs, and
circle graphs can be found in [Gol80].

Chapter 5

Partitioning

Efficient designing of any complex system necessitates decomposition of the
same into a set of smaller subsystems. Subsequently, each subsystem can be
designed independently and simultaneously to speed up the design process.
The process of decomposition is called partitioning. Partitioning efficiency can
be enhanced within three broad parameters. First of all, the system must be
decomposed carefully so that the original functionality of the system remains
intact. Secondly, an interface specification is generated during the decomposi-
tion, which is used to connect all the subsystems. The system decomposition
should ensure minimization of the interface interconnections between any two
subsystems. Finally, the decomposition process should be simple and efficient
so that the time required for the decomposition is a small fraction of the total
design time.

Further partitioning may be required in the events where the size of a sub-
system remains too large to be designed efficiently. Thus, partitioning can be
used in a hierarchical manner until each subsystem created has a manageable
size. Partitioning is a general technique and finds application in diverse areas.
For example, in algorithm design, the divide and conquer approach is routinely
used to partition complex problems into smaller and simpler problems. The
increasing popularity of the parallel computation techniques brings in its fold
promises in terms of provision of innovative tools for solution of complex prob-
lems, by combining partitioning and parallel processing techniques.

Partitioning plays a key role in the design of a computer system in general,
and VLSI chips in particular. A computer system is comprised of tens of
millions of transistors. It is partitioned into several smaller modules/blocks
for facilitation of the design process. Each block has terminals located at the
periphery that are used to connect the blocks. The connection is specified by
a netlist, which is a collection of nets. A net is a set of terminals which have to
be made electrically equivalent. Figure 5.1 (a) shows a circuit, which has been
partitioned into three subcircuits. Note that the number of interconnections
between any two partitions is four (as shown in Figure 5.1(b)).

A VLSI system is partitioned at several levels due to its complexity. At

158 Chapter 5. Partitioning

the highest level, it is partitioned into a set of sub-systems whereby each sub-
system can be designed and fabricated independently on a single PCB. High
performance systems use MCMs instead of PCBs. At this level, the criterion
for partitioning is the functionality and each PCB serves a specific task within
a system. Consequently, a system consists of I/O (input /output) boards,
memory boards, mother board (which hosts the microprocessor and its asso-
ciated circuitry), and networking boards. Partitioning of a system into PCBs
enhances the design efficiency of individual PCBs. Due to clear definition of
the interface specified by the net list between the subsystems, all the PCBs
can be designed simultaneously. Hence, significantly speeding up the design
process.

If the circuit assigned to a PCB remains too large to be fabricated as a
single unit, it is further partitioned into subcircuits such that each subcircuit
can be fabricated as a VLSI chip. However, the layout process can be simplified
and expedited by partitioning the circuit assigned to a chip into even smaller
subcircuits. The partitioning process of a process into PCBs and an PCB into
VLSI chips is physical in nature. That is, this partitioning is mandated by the
limitations of fabrication process. In contrast, the partitioning of the circuit
on a chip is carried out to reduce the computational complexity arising due to
the sheer number of components on the chip. The hierarchical partitioning of
a computer system is shown in Figure 5.2.

The partitioning of a system into a group of PCBs is called the system level
partitioning. The partitioning of a PCB into chips is called the board level
partitioning while the partitioning of a chip into smaller subcircuits is called
the chip level partitioning. At each level, the constraints and objectives of the
partitioning process are different as discussed below.

System Level Partitioning: The circuit assigned to a PCB must sat-
isfy certain constraints. Each PCB usually has a fixed area, and a fixed
number of terminals to connect with other boards. The number of ter-
minals available in one board (component) to connect to other boards
(components) is called the terminal count of the board (component). For
example, a typical board has dimensions 32 cm×15 cm and its terminal
count is 64. Therefore, the subcircuit allocated to a board must be man-
ufacturable within the dimensions of the board. In addition, the number
of nets used to connect this board to the other boards must be within
the terminal count of the board.

The reliability of the system is inversely proportional to the number of
boards in the system. Hence, one of the objectives of partitioning is to
minimize the number of boards. Another important objective is the op-
timization of the system performance. Partitioning must minimize any
degradation of the performance caused by the delay due to the connec-
tions between components on different boards. The signal carried by a
net that is cut by partitioning at this level has to travel from one board
to another board through the system bus. The system bus is very slow
as the bus has to adhere to some strict specifications so that a variety

159

of different boards can share the same bus. The delay caused by signals
traveling between PCBs (off-board delay) plays a major role in determin-
ing the system performance as this delay is much larger than the on-board
or the on-chip delay.

Board Level Partitioning: The board level partitioning faces a differ-
ent set of constraints and fulfills a different set of objectives as opposed
to system level partitioning. Unlike boards, chips can have different sizes
and can accommodate different number of terminals. Typically the di-
mensions of a chip range from 2 mm×2 mm to 25 mm×25 mm. The
terminal count of a chip depends on the package of the chip. A Dual
In-line Package (DIP) allows only 64 pins while a Pin Grid Array (PGA)
package may allow as many as 300 pins.

While system level partitioning is geared towards satisfying the area and
the terminal constraints of each partition, board level partitioning ven-
tures to minimize the area of each chip. The shift of emphasis is at-
tributable to the cost of manufacturing a chip that is proportional to its
area. In addition, it is expedient that the number of chips used for each
board be minimized for enhanced board reliability. Minimization of the

160 Chapter 5. Partitioning

161

number of chips is another important determinant of performance because
the off-chip delay is much larger than the on-chip delay. This differential
in delay arises because the distance between two adjacent transistors on
a chip is a few while the distance between two adjacent chips is in
mm. In addition to traversing a longer distance, the signal has to travel
between chips, and through the connector. The connector used to attach
the chip to the board typically has a high resistance and contributes sig-
nificantly to the signal delay. Figure 5.3 shows the different kinds of delay
in a computer system. In Figure 5.3(b), the off-board delay is compared
with the on-board delay while the off-chip delay is compared with the
on-chip delay in Figure 5.3(c).

Chip Level Partitioning: The circuit assigned to a chip can be fabri-
cated as a single unit, therefore, partitioning at this level is necessary. A
chip can accommodate as many as three million or more transistors. The
fundamental objective of chip level partitioning is to facilitate efficient
design of the chip.

After partitioning, each subcircuit, which is also called a block, can be
designed independently using either full custom or standard cell design
style. Since partitioning is not constrained by physical dimensions, there
is no area constraint for any partition. However, the partitions may be
restrained by user specified area constraints for optimization of the design
process.

The terminal count for a partition is given by the ratio of the perimeter
of the partition to the terminal pitch. The minimum spacing between
two adjacent terminals is called terminal pitch and is determined by the
design rules. The number of nets which connect a partition to other
partitions cannot be greater than the terminal count of the partition. In
addition, the number of nets cut by partitioning should be minimized to
simplify the routing task. The minimization of the number of nets cut
by partitioning is one of the most important objectives in partitioning.

A disadvantage of the partitioning process is that it may degrade the
performance of the final design. Figure 5.4(a) shows two components A
and B which are critical to the chip performance, and therefore, must be
placed close together. However, due to partitioning, components A and B
may be assigned to different partitions and may appear in the final layout
as shown in Figure 5.4(b). It is easy to see that the connection between
A and B is very long, leading to a very large delay and degraded perfor-
mance. Thus, during partitioning, these critical components should be
assigned to the same partition. If such an assignment is not possible, then
appropriate timing constraints must be generated to keep the two critical
components close together. Chip performance is determined by several
components forming a critical path. Assignment of these components to
different partitions extends the length of the critical path. Thus, a major
challenge for improvement of system performance is minimization of the
length of critical path.

162 Chapter 5. Partitioning

5.1. Problem Formulation 163

After a chip has been partitioned, each of the subcircuits has to be placed
on a fixed plane and the nets between all the partitions have to be in-
terconnected. The placement of the subcircuits is done by the placement
algorithms and the nets are routed by using routing algorithms.

At any level of partitioning, the input to the partitioning algorithm is a
set of components and a netlist. The output is a set of subcircuits which
when connected, function as the original circuit and terminals required for each
subcircuit to connect it to the other subcircuits. In addition to maintaining
the original functionality, partitioning process optimizes certain parameters
subject to certain constraints. The constraints for the partitioning problem
include area constraints and terminal constraints. The objective functions for
a partitioning problem include the minimization of the number of nets that
cross the partition boundaries, and the minimization of the maximum number
of times a path crosses the partition boundaries. The constraints and the
objective functions used in the partitioning problem vary depending upon the
partitioning level and the design style used. The actual objective function and
constraints chosen for the partitioning problem may also depend on the specific
problem.

5.1 Problem Formulation

The partitioning problem can be expressed more naturally in graph theo-
retic terms. A hypergraph G = (V, E) representing a partitioning problem can
be constructed as follows. Let be a set of vertices and

be a set of hyperedges. Each vertex represents a com-
ponent. There is a hyperedge joining the vertices whenever the components
corresponding to these vertices are to be connected. Thus, each hyperedge is
a subset of the vertex set i.e., In other words, each
net is represented by a hyperedge. The area of each component is denoted
as The modeling of partitioning problem into hypergraphs
allows us to represent the circuit partitioning problem completely as a hyper-
graph partitioning problem. The partitioning problem is to partition V into

164 Chapter 5. Partitioning

where

Partition is also referred to as a cut. The cost of partition is called the cut-
size, which is the number of hyperedges crossing the cut. Let be the cut-
size between partitions and Each partition has an area Area

and a terminal count Count The maximum and the mini-
mum areas, that a partition can occupy, are denoted as and
respectively. The maximum number of terminals that a partition can have
is denoted as Let be a set of hyperpaths. Let
be the number of times a hyperpath is cut, and let and represent
the minimum and the maximum number of partitions that are allowed for a
given subcircuit.

The constraints and the objective functions for the partitioning algorithms
vary for each level of partitioning and each of the different design styles used.
This makes it very difficult to state a general partitioning problem which is
applicable to all levels of partitioning or all design styles used. Hence in this
section we will list all the constraints and the objective functions and the level
to which they are applicable. The partitioning problem at any level or design
style deals with one or more of the following parameters.

1.

2.

Interconnections between partitions: The number of interconnec-
tions at any level of partitioning have to be minimized. Reducing the
interconnections not only reduces the delay but also reduces the interface
between the partitions making it easier for independent design and fab-
rication. A large number of interconnections increase the design area as
well as complicate the task of the placement and routing algorithms. Min-
imization of the number of interconnections between partitions is called
the mincut problem. The minimization of the cut is a very important
objective function for partitioning algorithms for any level or any style of
design. This function can be stated as:

is minimized
0

Delay due to partitioning: The partitioning of a circuit might cause
a critical path to go in between partitions a number of times. As the
delay between partitions is significantly larger than the delay within a
partition, this is an important factor which has to be considered while
partitioning high performance circuits. This is an objective function for
partitioning algorithms for all levels of design. This objective function
can be stated mathematically as:

is minimized

5.1. Problem Formulation 165

3.

4.

5.

Number of terminals: Partitioning algorithms at any level must
partition the circuit so that the number of nets required to connect a
subcircuit to other subcircuits does not exceed the terminal count of the
subcircuit. In case of system level partitioning, this limit is decided by
the maximum number of terminals available on a PCB connector which
connects the PCB to the system bus. In case of board level partitioning,
this limit is decided by the pin count of the package used for the chips.
In case of chip level partitioning, the number of terminals of a subcircuit
is determined by the perimeter of the area used by the subcircuit. At
any level, the number of terminals for a partition is a constraint for the
partitioning algorithm and can be stated as:

Area of each partition: In case of system level partitioning, the
area of each partition (board) is fixed and hence this factor appears as
a constraint for the system level partitioning problem. In case of board
level partitioning, although it is important to reduce the area of each
partition (chip) to a minimum to reduce the cost of fabrication, there is
also an upper bound on the area of a chip, Hence, in this case also, the
area appears as a constraint for the partitioning problem. At chip level,
the size of each partition is not so important as long as the partitions are
balanced. The area constraint can be stated as:

Number of partitions: The number of partitions appears as a con-
straint in the partitioning problem at system level and board level par-
titioning. This prevents a system from having too many PCBs and a
PCB from having too many chips. A large number of partitions may ease
the design of individual partitions but they may also increase the cost of
fabrication and the number of interconnections between the partitions.
At the same time, if the number of partitions is small, the design of these
partitions might still be too complex to be handled efficiently. At chip
level, the number of partitions is determined, in part, by the capability
of the placement algorithm. The constraint on the number of partitions
can be stated as,

Multiway partitioning is normally reduced to a series of two-way or bipar-
titioning problem. Each component is hierarchically bipartitioned until
the desired number of components is achieved. In this chapter, we will re-
strict ourselves to bipartitioning. When the two partitions have the same
size, the partitioning process is called bisectioning and the partitions are
called bisections.

166 Chapter 5. Partitioning

An actual model representing the partitioning problem to be solved at sys-
tem level or board level requires that the area constraint, interconnection con-
straint and constraint on the number of partitions be satisfied. Therefore,
constraints and apply. If the performance of the system
is also a criterion, then the objective function is also applicable. At chip
level, the partitioning algorithms usually have as an objective function.
In case of high performance circuits, objective function is also applicable.

An important factor, not discussed above, is modeling of a net. So far, we
have assumed that a net is modeled as a hyperedge. However, hyperedges are
hard to handle and the model is sometimes simplified. One way of simplifying
the model is to represent each hyperedge by a clique of its vertices. However
using this method increases the number of times the edges cross boundaries
substantially as shown in Figure 5.5(a). There are other ways to represent
hyperedges. For example, we can use a tree to represent a hyperedge as shown
in Figure 5.5(b), but doing this destroys the symmetric property of the clique
model. In general, net modeling is a hard problem and no satisfactory solution
has been proposed.

5.1.1 Design Style Specific Partitioning Problems

The problems formulated above represent a general approach to partition-
ing. However, partitioning algorithms for different design styles have different
objectives. In this section, we will discuss the partitioning problems for each
design style. Partitioning problems for FPGAs and MCM will be discussed in
Chapters 11 and 12, respectively.

1. Full custom design style: In a full custom design style, partitions
can be of different sizes and hence there are no area constraints for the
partitioning algorithms. Thus, the partitioning in full custom design
style has the most flexibility. During chip level partitioning, the number
of terminals allowed for each partition is determined by the perimeter

5.1. Problem Formulation 167

2.

3.

of the block corresponding to a partition. Thus, the estimated terminal
count for a partition is given by

where, is the perimeter of the block corresponding to the partition
and is the terminal pitch. Since, the cost of manufacturing a circuit is
directly proportional to the layout size, it is essential to keep the area of
the layout to a minimum. The area of circuit layout is the sum of the areas
occupied by components, areas used for routing the nets, and the unused
areas. Since the areas occupied by the components are fixed, it is only
possible to minimize the routing areas and unused areas. The routing
area will be largely used by the nets that go across the boundaries of the
blocks. The amount of unused areas will be determined by the placement.
Therefore in addition to the terminal constraints, partitioning algorithms
have to minimize the total number of nets that cross the partition bound-
aries. A partitioning algorithm for full custom design has objective func-
tion subject to the constraints and The full custom
design style is typically used for the design of high-performance circuits,
e.g., design of microprocessors. The delay for high-performance circuits is
of critical importance. Therefore, an additional objective function
is added to the partitioning problem for the full custom design style.

Standard cell design style: The primary objective of the partitioning
algorithms in standard cell design style is to partition the circuit into a
set of disjoint subcircuits such that each subcircuit corresponds to a cell
in a standard cell library. In addition, the partitioning procedure is non-
hierarchical. The complexity of partitioning depends on the type of the
standard cells available in the standard cell library. If the library has only
a few simple cell types available, there are few options for the partitioning
procedure and the partitioning problem has to satisfy constraints
and However, if there are many cell types available, some of
which are complex, then the partitioning problem is rather complicated.
The objective function to be optimized by the partitioning algorithms for
standard cell design is For high performance circuits, and

are used as combined objective functions.

Gate array design style: The circuit is bipartitioned recursively until
each resulting partition corresponds to a gate on the gate array. The
objective for each bipartitioning is to minimize the number of nets that
cross the partition boundaries.

In future VLSI chips, the terminals may be on top of the chip and there-
fore terminal counts have to be computed accordingly. In addition, due to
ever-reducing routing areas, the transistors will get packed closer together and

168 Chapter 5. Partitioning

thermal constraints may become dominant, as they are in MCM partitioning
problems.

5.2 Classification of Partitioning Algorithms

The mincut problem is NP-complete, it follows that general partitioning
problem is also NP-complete [GJ79]. As a result, variety of heuristic algorithms
for partitioning have been developed. Partitioning algorithms can be classified
in three ways. The first method of classification depends on availability of
initial partitioning. There are two classes of partitioning algorithms under this
classification scheme:

1.

2.

Constructive algorithms and

Iterative algorithms.

The input to a constructive algorithms is the circuit components and the
netlist. The output is a set of partitions and the new netlist. Constructive
algorithms are typically used to form some initial partitions which can be im-
proved by using other algorithms. In that sense, constructive algorithms are
used as preprocessing algorithms for partitioning. They are usually fast, but
the partitions generated by these algorithms may be far from optimal.

Iterative algorithms, on the other hand, accept a set of partitions and the
netlist as input and generate an improved set of partitions with the modified
netlist. These algorithms iterate continuously until the partitions cannot be
improved further.

The partitioning algorithms can also be classified based on the nature of
the algorithms. There are two types of algorithms:

1.

2.

Deterministic algorithms and

Probabilistic algorithms.

Deterministic algorithms produce repeatable or deterministic solutions. For
example, an algorithm which makes use of deterministic functions, will always
generate the same solution for a given problem. On the other hand, the prob-
abilistic algorithms are capable of producing a different solution for the same
problem each time they are used, as they make use of some random functions.

The partitioning algorithms can also be classified on the basis of the process
used for partitioning. Thus we have the following categories:

1.

2.

3.

Group Migration algorithms,

Simulated Annealing and Evolution based algorithms and

Other partitioning algorithms.

5.3. Group Migration Algorithms 169

The group migration algorithms [FM82, KL70] start with some partitions,
usually generated randomly, and then move components between partitions to
improve the partitioning. The group migration algorithms are quite efficient.
However, the number of partitions has to be specified which is usually not
known when the partitioning process starts. In addition, the partitioning of
an entire system is a multi-level operation and the evaluation of the partitions
obtained by the partitioning depends on the final integration of partitions at
all levels, from the basic subcircuits to the whole system. An algorithm used
to find a minimum cut at one level may sacrifice the quality of cuts for the
following levels. The group migration method is a deterministic method which
is often trapped at a local optimum and can not proceed further.

The simulated annealing/evolution [CH90, GS84, KGV83, RVS84] algo-
rithms carry out the partitioning process by using a cost function, which clas-
sifies any feasible solution, and a set of moves, which allows movement from
solution to solution. Unlike deterministic algorithms, these algorithms accept
moves which may adversely effect the solution. The algorithm starts with a ran-
dom solution and as it progresses, the proportion of adverse moves decreases.
These degenerate moves act as a safeguard against entrapment in local min-
ima. These algorithms are computationally intensive as compared to group
migration and other methods.

Among all the partitioning algorithms, the group migration and simulated
annealing or evolution have been the most successful heuristics for partitioning
problems. The use of both these types of algorithms is ubiquitous and extensive
research has been carried out on them. The following sections include a detailed
discussion of these algorithms. The remaining methods will be discussed briefly
later in the chapter.

5.3 Group Migration Algorithms

The group migration algorithms belong to a class of iterative improvement
algorithms. These algorithms start with some initial partitions, formed by us-
ing a constructive algorithm. Local changes are then applied to the partitions
to reduce the cutsize. This process is repeated until no further improvement
is possible. Kernighan and Lin (K-L) [KL70] proposed a graph bisectioning
algorithm for a graph which starts with a random initial partition and then
uses pairwise swapping of vertices between partitions, until no improvement is
possible. Schweikert and Kernighan [SK72] proposed the use of a net model so
that the algorithm can handle hypergraphs. Fiduccia and Mattheyses [FM82]
reduced time complexity of K-L algorithm to O(t), where t is the number of ter-
minals. An algorithm using vertex-replication technique to reduce the number
of nets that cross the partitions was presented by Kring and Newton [KN91].
Goldberg and Burstein [GB83] suggested an algorithm which improves upon
the original K-L algorithm using graph matchings. One of the problems with
the K-L algorithm is the requirement of prespecified sizes of partitions. Wei
and Cheng [WC89] proposed a ratio-cut model in which the sizes of the par-

170 Chapter 5. Partitioning

titions do not need to be specified. The algorithms based on group migration
are used extensively in partitioning VLSI circuits. In the following sections,
these algorithms are discussed in detail.

5.3.1 Kernighan-Lin Algorithm

The K-L algorithm is a bisectioning algorithm. It starts by initially par-
titioning the graph G = (V, E) into two subsets of equal sizes. Vertex pairs
are exchanged across the bisection if the exchange improves the cutsize. The
above procedure is carried out iteratively until no further improvement can be
achieved.

Let us illustrate the basic idea of the K-L algorithm with the help of an
example before presenting the algorithm formally. Consider the example given
in Figure 5.6(a). The initial partitions are

Notice that the initial cutsize is 9. The next step of K-L algorithm is
to choose a pair of vertices whose exchange results in the largest decrease of
the cutsize or results in the smallest increase, if no decrease is possible. The
decrease of the cutsize is computed using gain values i) of vertices The
gain of a vertex is defined as

where i) is the number of edges of vertex i that do not cross the bisection
boundary and) is the number of edges that cross the boundary. The
amount by which the cutsize decreases, if vertex changes over to the other

5.3. Group Migration Algorithms 171

partition, is represented by D(i). If and are exchanged, the decrease of
cut size is . In the example given in Figure 5.6, a suitable vertex
pair is (3, 5) which decreases the cutsize by 3. A tentative exchange of this pair
is made. These two vertices are then locked. This lock on the vertices prohibits
them from taking part in any further tentative exchanges. The above procedure
is applied to the new partitions, which gives a second vertex pair of (4, 6). This
procedure is continued until all the vertices are locked. During this process,
a log of all tentative exchanges and the resulting cutsizes is stored. Table 5.1
shows the log of vertex exchanges for the given example. Note that the partial
sum of cutsize decrease over the exchanges of first vertex pairs is given in
the table e.g., g (1) = 3 and g(2) = 8. The value of for which gives the
maximum value of all is determined from the table. In this example,
and g(2) = 8 is the maximum partial sum. The first pairs of vertices are
actually exchanged. In the example, the first two vertex pairs (3, 5) and (4, 6)
are actually exchanged, resulting in the bisection shown in Figure 5.6(b). This
completes an iteration and a new iteration starts. However, if no decrease of
cutsize is possible during an iteration, the algorithm stops. Figure 5.7 presents
the formal description of the K-L algorithm.

The procedure INITIALIZE finds initial bisections and initializes the pa-
rameters in the algorithm. The procedure IMPROVE tests if any improvement
has been made during the last iteration, while the procedure UNLOCK checks
if any vertex is unlocked. Each vertex has a status of either locked or unlocked.
Only those vertices whose status is unlocked are candidates for the next tenta-
tive exchanges. The procedure TENT-EXCHGE tentatively exchanges a pair
of vertices. The procedure LOCK locks the vertex pair, while the procedure
LOG stores the log table. The procedure ACTUAL-EXCHGE determines the
maximum partial sum of , selects the vertex pairs to be exchanged and
fulfills the actual exchange of these vertex pairs.

The time complexity of Kernighan-Lin algorithm is The Kernighan-
Lin algorithm is, however, quite robust. It can accommodate additional con-
straints, such as a group of vertices requiring to be in a specified partition. This
feature is very important in layout because some blocks of the circuit are to be
kept together due to the functionality. For example, it is important to keep all
components of an adder together. However, there are several disadvantages of
K-L algorithm. For example, the algorithm is not applicable for hypergraphs,
it cannot handle arbitrarily weighted graphs and the partition sizes have to
be specified before partitioning. Finally, the complexity of the algorithm is
considered too high even for moderate size problems.

5.3.2 Extensions of Kernighan-Lin Algorithm

In order to overcome the disadvantages of Kernighan-Lin Algorithm, several
algorithms have been developed. In the following, we discuss several extensions
of K-L algorithm.

172 Chapter 5. Partitioning

5.3. Group Migration Algorithms 173

5.3.2.1 Fiduccia-Mattheyses Algorithm

Fiduccia and Mattheyses [FM82] developed a modified version of Kernighan-
Lin algorithm. The first modification is that only a single vertex is moved across
the cut in a single move. This permits the handling of unbalanced partitions
and nonuniform vertex weights. The other modification is the extension of the
concept of cutsize to hypergraphs. Finally, the vertices to be moved across
the cut are selected in such a way so that the algorithm runs much faster. As
in Kernighan-Lin algorithm, a vertex is locked when it is tentatively moved.
When no moves are possible, only those moves which give the best cutsize are
actually carried out.

The data structure used for choosing the next vertex to be moved is shown
in Figure 5.8. Each component is represented as a vertex. The vertex (com-
ponent) gain is an integer and each vertex has its gain in the range –pmax to

, where pmax is the maximum vertex degree in the hypergraph. Since
vertex gains have restricted values, ‘bucket’ sorting can be used to maintain a
sorted list of vertex gains. This is done using an array BUCKET [-pmax, …,
pmax], whose entry contains a doubly-linked list of free vertices with gains
currently equal to . Two such arrays are needed, one for each block. Each
array is maintained by moving a vertex to the appropriate bucket whenever its
gain changes due to the movement of one of its neighbors. Direct access to each
vertex, from a separate field in the VERTEX array, allows removal of a vertex
from its current list and its movement to the head of its new bucket list in con-
stant time. As only free vertices are allowed to move, therefore, only their gains
are updated. Whenever a base vertex is moved, it is locked, removed from its
bucket list, and placed on a FREE VERTEX LIST, which is later used to reini-
tialize the BUCKET array for the next pass. The FREE VERTEX LIST saves
a great deal of work when a large number of vertices (components) have per-
manent block assignments and are thus not free to move. For each BUCKET
array, a MAXGAIN index is maintained which is used to keep track of the
bucket having a vertex of highest gain. This index is updated by decrementing
it whenever its bucket is found to be empty and resetting it to a higher bucket
whenever a vertex moves to a bucket above MAXGAIN. Experimental results
on real circuits have shown that gains tend to cluster sharply around the ori-
gin and that MAXGAIN moves very little, making the above implementation
exceptionally fast and simple.

The total run time taken to update the gain values in one pass of the above
algorithm is , where is the number of terminals in the graph G. The F-M
algorithm is much faster than Kernighan-Lin algorithm. A significant weakness
of F-M algorithm is that the gain models the effect of a vertex move upon the
size of the net cutsize, but not upon the gain of the neighboring vertices. Thus
the gain does not differentiate between moves that may increase the probability
of finding a better partition by improving the gains of other vertices and moves
that reduce the gains of neighboring vertices. Krishnamurthy [Kri84] has
proposed an extension to the F-M algorithm that accounts for high-order gains
to get better results and a lower dependence upon the initial partition.

174 Chapter 5. Partitioning

5.3.2.2 Goldberg and Burstein Algorithm

Experimental results have shown that the quality of the final bisection ob-
tained by iterative bisection algorithms, such as K-L algorithm, depends heavily
on the ratio of the number of edges to the number of vertices [GB83]. The K-
L algorithm yields good bisection if the ratio is higher than 5. However, if
the ratio is less than 3, the algorithm performs poorly. The ratio in a typical
problem of VLSI design is between 1.8 and 2.5. As a result, Goldberg and
Burstein suggested an improvement to the original K-L algorithm or other bi-
section algorithms by using a technique of contracting edges to increase that
ratio.

The basic idea of Goldberg-Burstein algorithm is to find a matching M
in graph G, as shown in Figure 5.9(a). The thick lines indicate the edges
which form matching. Each edge in the matching is contracted (and forms a
vertex) to increase the density of graph. Contraction of edges in M is shown
in Figure 5.9(b). Any bisection algorithm is applied to the modified graph and
finally, edges are uncontracted within each partition.

5.3.2.3 Component Replication

Recall that the partitioning problem is to partition V into such
that

In component (vertex) replication technique, the condition that

is dropped. That is, some vertices are allowed to be duplicated in two or more
partitions. The vertex replication technique, presented by Kring and New-
ton [KN91], can substantially reduce the number of nets that cross boundaries
of partitions. Figure 5.10(a) shows a partitioning of a circuit without vertex
replication. However, when the inverters are replicated, as in Figure 5.10(b),

5.3. Group Migration Algorithms 175

the cutsize is reduced. When a component is replicated, it is copied into both
subcircuits and its output are generated locally and do not contribute to the
cutsize. Replication does require the inputs to the component to be available on
both sides of the partition. If inputs are not available on both sides, the inputs
must be propagated across the partition and will contribute to the cutsize.

Once a vertex has been replicated, it tends to remain so and nets connected
to the components remain in both subcircuits. Thus, while vertex replication
does reduce the cutsize, it tends to reduce the ability to further improve the
partition. To achieve good results with this technique, it is critical to limit
component replication to where it is most useful by actively limiting the number
of replicated components.

The replications of vertices must be done very carefully as in some situa-
tions, vertex replication may outweigh the benefit of a reduced cutsize. For
example, the added redundancy may increase the circuit area, fault rate and
testing. Also, vertex replication cannot be adopted by an arbitrary algorithm.
Only those algorithms which carry out partitioning at component level can
combine vertex replication techniques to reduce the cutsize. When vertex repli-
cation is used in algorithms which deal with more than one components at a
time [Kri84], the vertex replication technique can actually increase the cutsize.
However, there are cases, especially at the system level, where vertex repli-
cation is of great advantage. The algorithm has been tested for two types of
circuits, combinational circuits and industrial circuits. The results are summa-
rized in Table 5.2 in which the net cutsize reduction is the percentage reduction
in the total number of partitioned nets when compared to partitions obtained
without component replication. The component replication is the percentage
of the total number of replicated components to the total number of compo-

176 Chapter 5. Partitioning

nents. Table 5.2 clearly shows that vertex replication can substantially reduce
the number of partitioned nets without significantly increasing the size of the
circuit.

5.3.2.4 Ratio Cut

The Kernighan-Lin algorithm yields partitions of comparable sizes, but these
sizes are predefined before partitioning. Since, there are natural clustering
structures in the circuit, predefining the partition size may not be well suited
for partitioning circuits, since there is no way to know the cluster size in circuits
before partitioning. To remedy this situation, Wei and Cheng proposed the
ratio cut as a new metric in order to locate natural clusters in the circuit and
at the same time force the partitions to be of equal sizes [WC89]. Given a
hypergraph G = (V, E) , let be the capacity of an edge connecting node
i and node j. Let be a cut that separates a set of nodes from its
complement where The capacity of this cut is equal to

The ratio of this cut is defined as
where and denote the cardinalities of subsets and respectively.

5.4. Simulated Annealing and Evolution 177

The ratio cut is the cut that generates the minimum ratio. The maximum
flow minimum cut method [FF62] prefers very uneven subsets which naturally
give the lowest cost. Instead of minimizing the cost the ratio cut based
approach minimizes the ratio to alleviate this hidden size effect. Cuts
that go through weakly connected groups and groups of similar sizes correspond
to smaller ratios. In this way, the minimization of all cuts according to their
corresponding ratios balances the effect of minimizing the cost and the effect
of keeping the resulting partitions of similar sizes.

Like many other partitioning problems, finding the ratio cut in a hyper-
graph belongs to the class of NP-complete problems [MS86]. Therefore, a good
and fast heuristic algorithm is needed. A heuristic based on Fiduccia and
Mattheyses algorithm was proposed in [WC89].

5.4 Simulated Annealing and Evolution

Simulated annealing and evolution belong to the probabilistic and iterative
class of algorithms. The simulated annealing algorithm for partitioning is the
simulation of the annealing process used for metals. As in the actual annealing
process, the value of temperature is decreased slowly till it approaches the
freezing point. The simulated evolution algorithm, simulates the biological
process of evolution. Each solution is called a generation. The generations
are improved in each iteration by using operators which simulate the biological
events in the evolution process.

5.4.1 Simulated Annealing

Simulated Annealing is a special class of randomized local search algorithms.
The optimization of a circuit partitioning with a very large number of compo-
nents is analogous to the process of annealing, in which a material is melted
and cooled down so that it will crystallize into highly ordered state. The en-
ergy within the material corresponds to the partitioning score. In an annealing
process, the solid-state material is heated to a high temperature until it reaches
an amorphous liquid state. It is then cooled very slowly according to a spe-
cific schedule. If the initial temperature is high enough to ensure a sufficiently

178 Chapter 5. Partitioning

random state, and if the cooling is slow enough to ensure that thermal equilib-
rium is reached at each temperature, then the atoms will arrange themselves
in a pattern that closely resembles the global energy minimum of the perfect
crystal.

Early work on simulated annealing used Metropolis algorithm [MRR53].
Since then, much work has been done in this field [CH90, GS84, KGV83,
RVS84]. Simulated annealing process starts with a random initial partition-
ing. An altered partitioning is generated by exchanging some elements between
partition. The resulting change in score, is calculated. If (repre-
senting lower energy), then the move is accepted. If then the move is
accepted with probability The probability of accepting an increased score
decreases with the increase in temperature t. This allows the simulated anneal-
ing algorithm to climb out of local optimums in search for a global minimum.
This idea is presented as a formal algorithm given by Figure 5.11.

The SELECT function is used to select two random components, one from
each partition. These components are considered for exchange between the two

5.4. Simulated Annealing and Evolution 179

partitions. The EXCHANGE function is used to generate a trial partioning and
does not actually move the components. The SCORE function calculates the
cost for the new partitioning generated. If the cost is reduced, this move is
accepted and the components are actually moved using the MOVE function.
The cost evaluated by the SCORE function can be either the cutsize or a
combination of cutsize and other factors which need to be optimized. If the
cost is greater than the cost for the partitioning before the component was
considered for the move, the probability to accept this move is calculated using
the RANDOM function. If the move is accepted, the MOVE function is used
to actually move the components in between the partitions.

Simulated annealing is an important algorithm in the class of iterative,
probabilistic algorithms. The quality of the solution generated by the simulated
annealing algorithm depends on the initial value of temperature used and the
cooling schedule. Temperature decrement, defined above as is a geometric
progression where is typically 0.95. Performance can be improved by using
the temperature decrement function, However, initial temperature
and cooling schedule are parameters that are experimentally determined. The
higher the initial temperature and the slower the cooling schedule the better
is the result but time required to generate this solution is proportional to the
steps in which the temperature is decreased.

5.4.2 Simulated Evolution

Simulated Evolution is in a class of iterative probabilistic methods for com-
binatorial optimization that exploits an analogy between biological evolution
and combinatorial optimization.

In biological processes, species become better as they evolve from one gen-
eration to the next generation. The evolution process generally eliminates
the “bad” genes and maintains the “good” genes of the old generation to
produce “better” new generation. This concept has been exploited in iter-
ative improvement techniques for some combinatorial optimization problems
[CP86, KB89, SR90, SR89]. In this kind of approach, each feasible solution to
the problem is considered as a generation. The bad genes of the solution are
identified and eliminated to generate a new feasible solution.

In the following discussion, we present a simulated evolution method, Stochas-
tic Evolution (SE) developed by Saab and Rao [SR90]. SE is introduced as a
general-purpose iterative stochastic algorithm that can be used to solve any
combinatorial optimization problems whose states fit the certain state model
given below.

The state model is defined as follows. Given a finite set M of movable ele-
ments and a finite set L of locations, a state is defined as a function
satisfying certain state-constraints. Also, each state S has an associated cost
given by COST(S). The SE algorithm retains the state of lowest cost among
those produced by a procedure called PERTURB, thereby generating a new
generation. Each time a state is found which has a lower cost than the best
state so far, SE decrements the counter by R, thereby increasing the number

180 Chapter 5. Partitioning

of its iterations before termination. The general outline of the SE algorithm is
given in Figure 5.12.

PERTURB Procedure: In the biological processes, each gene of a specie in
the current generation has to prove its suitability under the existing environ-
mental conditions in order to remain unchanged in the next generation. The
PERTURB procedure implements this feature by requiring that each movable
element in the current state S has to prove that its location
is suitable to remain unchanged in the next state of the algorithm. Using
the state function model described above, the moves are described as follows.
Given S and a move from S with respect to is just a change in the
value of i.e., a move generates a new function such that

while for all A move from a
state 5 generates a function which may not be a state since it may
violate certain state-constraints. This function has to be converted into a state
before next iteration begins. The cost function should be suitably extended
to include such functions. During each call to PERTURB, the elements of the
set M of movable elements are scanned in some ordering. The choice of this
ordering is problem-specific.

When element is being scanned, we assume be the
existing function that may or may not satisfy the state-constraints. A unique
sub-move, which is a move from S, is associated with that generates a
new function such that The details of the sub-
move associated with m will be given in below for the partitioning problem.
Define as the reduction in cost after the
sub-move is performed. The procedure PERTURB decides whether or not
to accept the sub-move associated with the element This decision is made
stochastically by using a non-positive control parameter as follows. The value
of is compared to a integer randomly generated in the interval [p, 0].
If then the sub-move to is accepted; otherwise, the sub-move is
rejected. Since sub-moves with positive gains are always accepted. The
algorithm then scans the next element in M. The final function S generated
after scanning all elements of M may not satisfy the state-constraints of the
problem. In such a case, a function MAKE-STATE(S) is called to reverse the
fewest number of latest sub-moves accepted so that all the state-constraints
are satisfied. The outline of PERTURB procedure can be outlined as given by
Figure 5.12.

Some modifications to the above structure of PERTURB are possible. For
example, only a subset of M may be scanned in order to save computation
time.

The UPDATE procedure: This procedure is used for updating the value of
the control parameter Initially, is set to a negative value close to zero so
that only moves with small negative gains are performed. It has been observed
that moves with large negative gains tend to upset the optimization process
and only increase the running time of the algorithm. Hence, the value of is

5.4. Simulated Annealing and Evolution 181

182 Chapter 5. Partitioning

reduced only when necessary. During each iteration, the cost of the new
state is compared to the cost of the previous state. If both costs are same,

is decremented. Otherwise, is reset to its initial value. The parameter is
decremented to give the algorithm a chance to escape a local minimum via an
uphill climb. The procedure UPDATE is given in Figure 5.12.

Choice of R: The stopping criterion parameter R acts as the expected number
of iterations the SE algorithm needs to achieve the objective. The quality of
the final state obtained increases with the increase of R. If R is too large, then
SE wastes time during the last iterations because it cannot find better states.
On the other hand, if R is too small, then SE might not have enough time to
improve the initial state.

Let us now discuss the application of SE to partitioning. Using the state
model described above, movable elements of a state is the set of vertices, that
is M = V, and locations of states are the two partitions, that is, L = 1,2. A
partition therefore is a function where the two partitions of the
vertex set are the subsets and A state (or a bisection) is a partition which
satisfy the state-constraint Then, the PERTURB procedure scans
the vertex set V in some order, i.e., if and are two vertices and then

is scanned before The sub-move in PERTURB from S that is associated
with a vertex is a move that transfers from its current partition to
the other partition. More precisely, is an onto function
such that representing that vertex is transferred from one
partition to another partition and for all representing
that all the location of other vertices remain unchanged. Note that in
general, represents a partition which may or may not be a bisection. After all
the vertices have been scanned and the decisions to make the corresponding
sub-moves have been made, the resulting function S may not be a state, which
means that it may not represent a bisection. Suppose then
MAKE-STATE(S) generates a state from S by reversing the last appropriate

sub-moves performed.

The time complexity of SE is proportional to the time required for the
computation of the sub-moves and gains associated with each movable element
of M. Suppose is an upper bound on the time required for each sub-move and
gain computation, then each iteration of SE runs in time. Since
is either a constant or is linear in the problem size, the SE algorithm for these
problems requires either linear or quadratic time per iteration.

The simulated evolution and simulated annealing algorithms are computa-
tion intensive. The key difference between these two kinds of algorithms is that
the simulated evolution uses the history of previous trial partitionings. There-
fore, it is more efficient than simulated annealing. However, it takes more space
to store the history of the previous partitioning than the simulated annealing.

5.5. Other Partitioning Algorithms 183

5.5 Other Partitioning Algorithms

Besides the group migration and simulated annealing/evolution methods,
there are other partitioning methods. In this section, we will present the metric
allocation algorithm. The references to other algorithms are provided at the
end of the chapter.

5.5.1 Metric Allocation Method
Initial work on measuring the connectivity with a metric was carried out by

Charney and Plato [CP68]. They showed that using electrical analog of the
network minimizes the distance squared between the components. Partition-
ing starts after all the values of the metric have been computed; these values
are calculated from eigenvalues of the network. This method is described by
Cullum, Donath, and Wolfe [CDW75].

The basic metric allocation partitioning algorithm starts with a set V of
the nodes and a set of the nets. A metric value over V x V
is computed. Nodes in V are then partitioned into subsets such
that sum of the areas in is less than or equal to A for all and the number of
nets with members both internal to and external to is less than T for all ,
where, A and T represent the area and terminal constraint for each partition,
respectively. The algorithm given in Figure 5.13 determines if a k-way partition
can be done to satisfy the requirements.

The function CONSTRUCT-ST is used to construct the spanning trees for
each net in the netlist. All the edges of these spanning trees are added to a
set L by using the function ADD-EDGES. The procedure SORT-ASCENDING
sorts L in an ascending order on the metric used. Each vertex is assigned
to a individual group by the function INITIALIZE_GROUPS. The groups
to which vertices and joined by edge belong are collapsed to form
a single group if the area and terminal count restriction is not violated. The
merging process is carried out by MERGE-GROUPS. This routine also keeps
track of the order in which the groups are merged. The function AREA is
used to calculate area of a group while function COUNT gives the number of
terminals in a group. If such mergings of the groups reduce the number of
groups to K or less, the set of groups is returned by the algorithm. If after
merging all possible groups, if the number of groups is greater than K, then
the smallest group is selected by using function SELECT_SMALL. An attempt
is made to merge this group with another group which causes the least increase
in area and terminal count of the resulting group. If such a group is found the
flag merge_success is set to TRUE. The function STORE-MIN is used to store
the group which causes the smallest increase in area and terminal count. The
function RESTORE-MIN returns the group which is stored by STORE-MIN.
If the smallest group consists of only a single component and merge_success
is FALSE, the algorithm returns a null set indicating failure. If the smallest
group consists of more than one component and the merge_success flag is set to
FALSE, function SELECT_LARGE is used identify the largest group among

,

184 Chapter 5. Partitioning

5.6. Performance Driven Partitioning 185

all groups. This group is decomposed into two subgroups by using function
DECOMPOSE and procedure is repeated.

5.6 Performance Driven Partitioning

In recent years, with the advent of the high performance chips, the on-chip
delay has been greatly reduced. Typically on-chip delay is in the order of a few
nanoseconds while on-board delay is in the order of a few milliseconds. The
on-board delay is three orders of magnitude larger than on-chip delay. If a
critical path is cut many times by the partition, the delay in the path may be
too large to meet the goals of the high performance systems. The design of a
high performance system requires partitioning algorithms to reduce the cutsize
as well as to minimize the delay in critical paths. The partitioning algorithms,
which deal with high performance circuits, are called as timing (performance)
driven partitioning algorithms and the process of partitioning for such circuits
is called timing (performance) driven partitioning.

For timing driven partitioning algorithms, in addition to all the other con-
straints, timing constraints have to be satisfied. Discussion on these types of
partitioning problems for FPGAs can be found in Chapter 11. Timing driven
partitioning plays a key role in MCM design and will be discussed in Chap-
ter 12.

The partitioning problem for high performance circuits can be modeled
using directed graphs. Let G = (V , E) be a weighted directed graph. Each
vertex represents a component (gate) in the circuit and each edge
represents a connection between two gates. Each vertex has a weight
specifying the gate delay associated with the gate corresponding to Each
edge has a delay associated with it, which depends on the partitions to
which and belong. The edge delay, specifies the delay
between and The delay associated with edge is if the edge is
cut at chip level. If the edge is cut at board level the delay associated with the
edge is and it is if the edge gets cut at system level. This problem is very
general and is still a topic of intensive research.

A timing driven partitioning addresses the problem of clustering a circuit
for minimizing its delay, subject to capacity constraints on the clusters. The
early work on this problem was done by Stone [Sto66]. When the delay inside
a cluster is assumed to be negligible compared to the delay across the clusters,
then the following algorithm by Lawler, Levitt and Turner [LLT69], which uses
a unit delay model, can be used. The circuit components are represented by
a group of vertices or nodes and the nets are represented as directed edges.
Each vertex, has a weight, attached to it indicating the area of the
component. A label, is given to each node, to identify the cluster to
which the node belongs. The labeling is done as follows: All the input nodes are
labeled 0. A node, all of whose predecessors have been labeled, is identified.
Let be the largest predecessor label, be the total weight of all the

, and M be the largest weight that can be accommodated in a

186 Chapter 5. Partitioning

cluster. If label of vertex is set to k, i.e.,
otherwise, vertex gets the label, k + 1. After all the vertices are labeled, a
vertex, is identified such that none of the successors of have the same
label as . The vertex and all its form a cluster. The vertex

is called the root of the cluster. Similar procedure is carried out till all the
vertices are clustered. This clustering mechanism may cause a vertex to be in
more than one cluster in which case it has to be replicated appropriately. The
label for any vertex ,as defined above, is the maximum delay of the signal
when the signal reaches the vertex after assuming the delay inside a cluster
is zero. Thus the above model represents the minimization of the maximum
delay of signal under the area constraints when the delay inside a cluster is
assumed zero. Figure 5.14 shows a digraph representing a circuit. The number
above a vertex indicates the weight of the vertex while the number below a
vertex denotes the label of the vertex. M is set equal to 4. Clusters formed
are also shown in Figure 5.14.

The clusters (e.g., chips) have large capacities, and very likely, the criti-
cal path inside a cluster will be comparable to the total delay of the circuit.
Therefore, to be more general, it is better to use more realistic delay model. In
a general delay model, each gate of the combinational circuit has a delay as-
sociated with it. Considering this problem, Murgai, Brayton and Sangiovanni-
Vincentelli [MBV91] proposed an algorithm to reduce this delay. The key idea
is to label the vertices (gates) according to the clusters’ internal delay. Then
number of clusters is minimized without increasing the maximum delay. Mini-
mizing the number of clusters and vertices reduces the number of components
and hence the cost of the design. The number of clusters is minimized by
merging, subject to a capacity constraint.

5.7. Summary 187

5.7 Summary

Partitioning divides a large circuit into a group of smaller subcircuits. This
process can be carried out hierarchically until each subcircuit is small enough
to be designed efficiently. These subcircuits can be designed independently
and simultaneously to speed up the design process. However, the quality of the
design may suffer due to partitioning. The partitioning of a circuit has to be
done carefully to minimize its ill effects. One of the most common objectives
of partitioning is to minimize the cutsize which simplifies the task of routing
the nets. The size of the partitions should be balanced. For high performance
circuits, the number of times a critical path crosses the partition boundary has
to be minimized to reduce delay. Partitioning for high performance circuits is
an area of current research, especially so with the advent of high performance
chips, and packaging technologies.

Several factors should be considered in the selection of a partitioning al-
gorithm. These factors include difficulty of implementation, performance on
common partitioning problems, and time complexity of the algorithm. Group
migration method is faster and easier to implement. Metric allocation method
is more costly in computing time than group migration method, and hardest
to implement since it requires numerical programming. The results show that
simulated annealing usually takes much more time than the Kernighan-Lin
algorithm does. On a random graph, however, the partitions obtained by sim-
ulated annealing are likely to have a smaller cutsize than those produced by the
Kernighan-Lin algorithm. Simulated evolution may produce better partition
than simulated annealing, but it has larger space complexity. The algorithms
for bipartitioning presented in this chapter are practical methods. They are
mainly used for bipartitioning, but can be extended to multiway partitioning.

5.8 Exercises

1.

†2.

3.

†4.

Partition the graph shown in Figure 5.15, using Kernighan-Lin algorithm.

Extend Kernighan-Lin algorithm to multiway partitioning of graph.

Apply Fiduccia-Mattheyses algorithm for the graph in Figure 5.15 by
considering the weights for the vertices, which represent the areas of the
modules. Areas associated with the vertices are:

and The
areas of the two partitions should be as equal as possible. Is it possible
to apply the Kernighan-Lin algorithm in this problem?

For the graph in Figure 5.16, let the delay for the edges going across
the partition be 20 nsec. Each vertex has a delay which is given below.
Consider vertex as the input node and vertex as the output node.
Partition the graph such that the delay between the input node and

188 Chapter 5. Partitioning

output node is minimum and the partitions have the same size. The
delays for the vertices are

and

Apply the vertex replication algorithm to the graph given in Figure 5.16.

Implement Fiduccia-Mattheyses and the Kernighan-Lin algorithms for
any randomly generated instance, and compare the cutsize.

Implement the Simulated Annealing and Simulated Evolution algorithms
described in the text. Compare the efficiency of these two algorithms
on a randomly generated example. In what aspects do these algorithms
differ?

5.

†6.

†7.

5.8. Exercises 189

8.

†9.

‡10.

†11.

†12.

Compare the performance of the Simulated Annealing algorithm for dif-
ferent values of a.

Consider the tree shown in Figure 5.17, which represents a critical net.
Partition the tree into four partitions, two of which will be on one chip
and the other two partitions on another chip. Let the delay values of
each vertex be the same as that in problem 3. Let the interchip delay
be 20 nsec and the delay between the two partitions on the same chip be
10nsec. The objective is to partition the tree into four partitions such
that the longest delay path from the root of the tree to any of its leaves
is minimized and the number of vertices on each partition is as equal as
possible.

Suggest modifications to the Kernighan-Lin algorithm to speed up the
algorithm.

In the application of vertex replication technique, as the vertex replication
percentage increases, the cutsize decreases. However, at the same time,
the layout area increases as well. Is it possible to get a graph showing
the relation between cutsize and circuit area as the component replication
percentage varies? Use a randomly generated example. From your result,
can you obtain an optimal strategy such that the trade off between cutsize
and layout area is compromised?

Implement the ratio cut algorithm. Is it possible to use the vertex repli-
cation technique in the ratio cut model?

Bibliographic Notes
Many other partitioning approaches have been proposed in solving circuit par-
titioning problems, such as network flow [FF62], and eigenvector decomposition
[FK86, Hal70] etc. The maximum flow minimum cut algorithm presented by

190 Chapter 5. Partitioning

Ford and Fulkerson [FF62] is an exact algorithm for finding a minimum cost
bipartitions for a network without considering the area constraints for the par-
titions. In many cases, e.g., system level partitioning, the partitioning problem
with objective to reduce the number of interconnections, does not represent the
actual problem because the area constraints are not considered in this model.
Certain algorithms simplify the partitioning problem by restricting the range
of the circuits that can be partitioned e.g., partitioning algorithms for pla-
nar graphs [Dji82, LT79, Mil84]. Partitioning problem in planar graphs has
been discussed in [LT79]. But clearly all circuits cannot be represented as
planar graphs. Hence, planar graph algorithms are not very practical in the
partitioning of VLSI circuits.

There is an interesting trend in which an interactive man-machine ap-
proach is used in solving partitioning problems. Interested readers should read
[HMW74, Res86]. A ‘Functional Partitioning’ which takes into ac-
count certain structural qualities of logic circuits, namely loops and reconverg-
ing fan-out subnets, can be found in [Gro75]. A new objective function to
reduce the number of pins was presented in [Hit70].

A partitioning which intends to form partitions with equal complexity,
e.g., similar in terms of area, yield and speed performance, was introduced
in [YKR87]. A partitioning model was formulated in which components are
assigned probabilities of being placed in bins, separated by partitions. The
expected number of nets crossing partitions is a quadratic function of these
probabilities. Minimization of this expected value forces condensation of the
probabilities into a ‘definite’ state representing a very good partitioning [Bia89].

A neural network model was proposed in [YM90] for circuit bipartition-
ing. The massive parallelism of neural nets has been successfully exploited to
balance the partitions of a circuit and to reduce the external wiring between
the partitions. A constructive partitioning method based on resistive network
optimization was developed in [CK84]. Another partitioning technique called
clustering was presented in [CB87, Joh67, McF83, McF86, Raj89, RT85]. The
simulated annealing algorithm described in this chapter, generates one move
at random, evaluates the cost of the move, and then accepts it or rejects it.
Greene and Supowit [GS84] proposed an algorithm whereby a list of moves is
generated and the moves are taken from the list by a random selection pro-
cess. In [CLB94] J. Cong, Z. Li, and R. Bagrodia present two algorithms in
the acyclic multi-way partitioning approach.

Chapter 6

Floorplanning and Pin
Assignment

After the circuit partitioning phase, the area occupied by each block (sub-
circuit) can be estimated, possible shapes of the blocks can be ascertained and
the number of terminals (pins) required by each block is known. In addition,
the netlist specifying the connections between the blocks is also available. In
order to complete the layout, we need to assign a specific shape to a block and
arrange the blocks on the layout surface and interconnect their pins according
to the netlist. The arrangement of blocks is done in two phases; Floorplanning
phase, which consists of planning and sizing of blocks and interconnect and
the Placement phase, which assign a specific location to blocks. The inter-
connection is completed in the routing phase. In the placement phase, blocks
are positioned on a layout surface, in a such a fashion that no two blocks are
overlapping and enough space is left on the layout surface to complete the in-
terconnections. The blocks are positioned so as to minimize the total area of
the layout. In addition, the locations of pins on each block are also determined.

The input to the Floorplanning phase is a set of blocks, the area of each
block, possible shapes of each block and the number of terminals for each block
and the netlist. If the layout of the circuit within a block has been completed
then the dimensions (shape) of the block are also known. The blocks for which
the dimensions are known are called fixed blocks and the blocks for which
dimensions are yet to be determined are called flexible blocks. Thus we need to
determine an appropriate shape for each block (if shape is not known), location
of each block on the layout surface, and determine the locations of pins on the
boundary of the blocks. The problem of assigning locations to fixed blocks on
a layout surface is called the Placement problem. If some or all of the blocks
are flexible then the problem is called the Floorplanning problem. Hence, the
placement problem is a restricted version of the floorplanning problem. If one
asks for planning of the interconnect in addition to floorplanning, then it is
referred to as the chip planning problem . Thus floorplanning is a restricted
version of chip planning problem. The terminology is slightly confusing as

192 Chapter 6. Floorplanning and Pin Assignment

floorplanning problems are placement problems as well but these terminologies
have been widely used and accepted. It is desirable that the pin locations are
identified at the same time when the block locations are fixed. However, due
to the complexity of the placement problem, the problem of identifying the pin
locations for the blocks is solved after the locations of all the blocks are known.
This process of identifying pin locations is called pin assignment.

Chip planning, Floorplanning and Placement phases are very crucial in
overall physical design cycle. It is due to the fact, that an ill-floorplanned
layout cannot be improved by high quality routing. In other words, the overall
quality of the layout, in terms of area and performance is mainly determined in
the chip planning, floorplanning and placement phases. In this chapter we will
review Floorplanning and pin assignment algorithms. Algorithms for placement
will be discussed in the subsequent chapter.

There are several factors that are considered by the chip planning, floorplan-
ning, pin assignment and placement algorithms. These factors are discussed
below:

1. Shape of the blocks: In order to simplify the problem, the blocks are
assumed to be rectangular. The shapes resulting from the floorplanning
algorithms are mostly rectangular for the same reason. The floorplanning
algorithms use aspect ratios for determining the shape of a block. The
aspect ratio of a block is the ratio between its height and its width. Usu-
ally there is an upper and a lower bound on the aspect ratios, restricting
the dimensions that the block can have. More recently, other shapes such
as L-shapes have been considered, however dealing with such shapes is
computationally intensive.

Routing considerations: In chip planning, it is required that routing
is considered as an integral part of the problem. In placement and floor-
planning algorithms it maybe sufficient to estimate the area required for
routing. The blocks are placed in a manner such that there is sufficient
routing area between the blocks, so that routing algorithms can complete
the task of routing of nets between the blocks. If complete routing is not
possible, placement phase has to be repeated.

Floorplanning and Placement for high performance circuits: For
high performance circuits the blocks are to be placed such that all critical
nets can be routed within their timing budgets. In other words, the
length of critical paths must be minimized. The floorplanning(placement)
process for high performance circuits is also called as performance driven
floorplanning(placement).

Packaging considerations: All of these blocks generate heat when the
circuit is operational. The heat dissipated should be uniform over the
entire surface of the group of blocks placed by the placement algorithms.
Hence, the chip planning, floorplanning and placement algorithms must
place the blocks, which generate a large amount of heat, further apart

2.

3.

4.

6.1. Floorplanning 193

from each other. This might conflict with the objective for high perfor-
mance circuits and some trade off has to be made.

Pre-placed blocks: In some cases, the locations of some of the blocks
may be fixed, or a region may be specified for their placement. For
example, in high performance chips, the clock buffer may have to be
located in the center of the chip. This is done with the intention to reduce
the time difference between arrival time of the clock signal at different
blocks. In some cases, a designer may specify a region for a block, within
which the block must be placed.

5.

In this chapter, we will discuss floorplanning and pin assignment problems
in different design styles. Section 6.1 discusses the Floorplanning problem
and algorithms for the floorplanning problems. Section 6.2 presents a brief
introduction to chip planning, while pin assignment is discussed in Section 6.3.
In Section 6.4, we discuss integrated approach to these problems.

6.1 Floorplanning

As stated earlier, Floorplanning is the placement of flexible blocks, that is,
blocks with fixed area but unknown dimensions. It is a much more difficult
problem as compared to the placement problem (discussed in Chapter 7). In
floorplanning, several layout alternatives for each block are considered. Usually,
the blocks are assumed to be rectangular and the lengths and widths of these
blocks are determined in addition to their locations. The blocks are assigned
dimensions by making use of the aspect ratios. The aspect ratio of a block is
the ratio of the width of the block to its height. Usually, there is an upper and
a lower bound on the aspect ratio a block can have as the blocks cannot take
shapes which are too long and very thin. Initial estimate on the set of feasible
alternatives for a block can be made by statistical means, i.e., by estimating
the expected area requirement of the block. Many techniques of general block
placement have been adapted to floorplanning. The only difference between
floorplanning and general block placement is the freedom of cells’ interface
characteristic. Like placement, inaccurate data partly affects floorplanning.
In addition to the inaccuracy of the cost function that we optimize, the area
requirements for the blocks may be inaccurate.

Floorplanning algorithms are typically used in hierarchical design. This is
due to the fact that, although the dimensions of each leaf of the hierarchical
tree may be known, the blocks at the node level in the tree are flexible, i.e.,
they can take any dimension. Hence, the floorplanning algorithms are used at
each of the nodes in the tree so that the area of the layout is minimum and the
position of all the blocks are identified.

6.1.1 Problem Formulation

The input consists of circuit blocks, with area
respectively. Associated with each block are two aspect ratios and which

194 Chapter 6. Floorplanning and Pin Assignment

give the lower and the upper bound on the aspect ratio for that block. The
floorplanning algorithm has to determine the width and height, of each
block such that In addition to finding the shapes of the
blocks, the floorplanning algorithm has to generate a valid placement such that
the area of the layout is minimized.

A slicing floorplan is a floorplan which can be obtained by recursively par-
titioning a rectangle into two parts either by a vertical line or a horizontal line.
The cut tree obtained by min-cut algorithm is known as slicing tree. A slicing
tree is a binary tree in which each leaf represents a partition and each internal
node represents a cut. Consider the floorplan as shown in Figure 6.1. Partitions
are labeled with letters and cutlines are labeled with numbers. Figure 6.1(b)
shows the slicing tree for the floorplan in Figure 6.1 (a). Figure 6.1(c) is the
slicing tree indicating the cut direction. Figure 6.1(d) shows a floorplan for
which there is no valid slicing tree.

A floorplan is said to be hierarchical of order , if it can be obtained by
recursively partitioning a rectangle into at most parts. The hierarchy of
a hierarchical floorplan can be represented by a floorplan tree. Figure 6.2
shows a hierarchical floorplan of order 5 and its floorplan tree. Each leaf in
the tree corresponds to a basic rectangle and each internal node corresponds
to a composite rectangle in the floorplan. An important class of hierarchical
floorplans is the set of all slicing floorplans.

6.1.1.1 Design Style Specific Floorplanning Problems

Floorplanning is not carried out for some design styles. This is due to the
fixed dimensions of blocks in some design styles.

1.

2.

3.

Full custom design style: Floorplanning for general cells is the same
as discussed above.

Standard cell design style: In standard cell design style, the dimen-
sions of cells are fixed, and floorplanning problem is simply the placement
problem. For large standard cell design, circuit is partitioned into several
regions, which are floorplanned, before cells are placed in regions.

Gate array design style: Like standard cells, the floorplanning prob-
lem is same as placement problem.

6.1.2 Classification of Floorplanning Algorithms

Floorplanning methods can be classified as follows:

1.

2.

3.

4.

Constraint based methods.

Integer programming based methods.

Rectangular dualization based methods.

Hierarchical tree based methods.

6.1. Floorplanning 195

196 Chapter 6. Floorplanning and Pin Assignment

5.

6.

Simulated Evolution algorithms

Timing Driven Floorplanning Algorithms

These methods will be discussed in the following subsections.
Beside the methods stated above, several simple methods may be used, such
as min-cut method. The process of min-cut can be used to construct a sized
floorplan. The first phase of min-cut method i.e., bipartition of a weighted
graph, helps in constructing the floorplan. The weight of the vertex roughly
estimates the area taken up by the block. This weight may represent the area
of the corresponding ceil in general-cell placement. The initial sized floorplan
represents an empty base rectangle whose area is the total of all weights of the
vertices of the weighted graph and each node in the tree represents a rectangular
room in the layout area. All the floorplans that can be generated with min-cut
bipartitioning are slicing floorplans.

6.1.3 Constraint Based Floorplanning

This method, proposed by Vijayan and Tsay [VT91], constructs a floorplan
of optimal area that satisfies (respects) a given set of constraints. A set of

6.1. Floorplanning 197

horizontal and vertical topological (i.e., ordering) constraints is derived from
the relative placement of blocks. Given a constraint set, it is usually the case
that there is no reason to satisfy all the constraints in the set. This is especially
true when a majority of the blocks have flexible shapes. A floorplan is said
to respect a constraint, if for each pair of blocks, the floorplan satisfies at
least one constraint (horizontal or vertical). A constraint set is said to be
overconstmined if it has many redundant constraints. It is desirable to derive a
complete constraint set from the input relative placement and then to remove
those redundant constraints that result in reduction of floorplan area.

A topological constraint set of a set of blocks is given by two directed acyclic
graphs is the horizontal constraint graph and is the vertical
constraint graph. In order to reduce the floorplan area, the heuristic iteratively
removes a redundant constraint from the critical path of either or and
also iteratively reshapes the blocks on the critical paths of the two graphs.
Critical path is the longest path in or The input to the algorithm is
a constraint set of the set of blocks. To minimize the floorplan area,
repeat steps 1 and 2 until there is no improvement in the floorplan area.

1.

2.

Step 1: Repeat the following steps until no strongly redundant edges on
or exist. and are topologically sorted and swept. Either
or whichever is more critical is selected, where and are

the critical paths of and respectively. The strongly redundant
edge on the selected critical path is eliminated.

Step 2: The current shapes of the blocks are stored and a path, either
or is selected depending on which of the two is more critical. All the
flexible blocks on the selected path are reshaped. and are scanned
again to construct the new floorplan. If the newly generated floorplan is
better than the previous one the stored block shapes are updated. All
the steps described above are repeated, a specified number of times.

Each pass of the algorithm constitutes one execution of two steps. Con-
straint reduction takes place in step 1 and step 2 does the reshaping of the
blocks. If the chip dimensions are fixed, the passes are repeated until the tar-
get dimensions are reached. Otherwise the passes can be repeated until there is
improvement in the floorplan area. Typically three or four passes are required.

The purpose of removing a redundant edge on the critical path is to break
the path into two smaller paths. A good choice for such a redundant edge is
the one which is nearest to the center point of the path. The above heuristic
removes only one redundant constraint from a critical path at each iteration,
and thus seeks to minimize the number of constraints removed. An edge can be
checked for strong redundancy in constant time if we maintain the adjacency
matrix of and It takes time to set up adjacency matrices. A
topological sort of a directed acyclic graph with nodes and edges takes

time. The number of topological sorts executed depends on the
number of redundant edges removed, the user-specified value for the number
of reshaping iterations, and the number of passes.

198 Chapter 6. Floorplanning and Pin Assignment

6.1.4 Integer Programming Based Floorplanning

In this section an integer programming formulation for generating the floor-
plan developed by Sutanthavibul, Shragowitz and Rosen [SSR91] is presented.

The floorplanning problem is modeled as a set of linear equations using 0 / 1
integer variables. Two types of constraints are considered: the overlap con-
straints and the routability constraints. The overlap constraints prevent any
two blocks from overlapping whereas the routability constraints estimate the
routing area required between the blocks. For the critical nets, net lengths are
specified which should not be exceeded. The length of the net depends on the
timing budget of that net. The critical net constraints ensure that the length
of the critical nets does not exceed this specified value. We now describe how
the constraints can be developed.

1. Block overlap constraints for fixed blocks: Given two fixed (rigid)
blocks, and which should not overlap, we have four possible ways
to position the two blocks so as to avoid overlap. Let
and be the 4-tuples associated with blocks and
respectively, where gives the location of the block, is the width
of the block and is the height of the block. The block can be
positioned to the right, left, above or below block These conditions
transformed into equations given below:

To satisfy one of these equations, two 0-1 integer variables and
are used for each pair of blocks. Two bounding functions W and H are
defined such that, and W can be equal to

which is the maximal allowed width of the chip or
Similarly, the maximal allowed height of the chip or

Equation set (1) can be rewritten with the introduction of
the integer variables to generate the ‘or’ condition as,

As the integer variables and can take either 0 or 1 values, only
one of the above equations in (2) will be active and other equations will
be true depending on the value of and For example, when

the first equation in (2) becomes active and all other equations
are true.

6.1. Floorplanning 199

where is the height to be minimized. To allow rotation of the blocks
so as to optimize the solution, another integer variable is used for each
block. is 0 when the block is in its initial orientation and 1 when
the block is rotated by 90°. The constraints for the fixed blocks can be
rewritten as:

where, M = max(W , H). Constraints (3) are rewritten as:

where is the height to be minimized. The floorplanning problem, for
fixed blocks without taking into consideration either routing areas or crit-
ical nets can be solved by finding the minimum subject to constraints
(4) and (5).

2. Block overlap constraints for flexible blocks: So far we discussed
about fixed blocks. We can now see how constraints for flexible blocks can
be developed. The flexible blocks can take rectangular shapes within a
limited aspect ratio range i.e. its width and height can be varied keeping
the area fixed. The non-linear area relation is linearized about the point
of maximum allowable width by applying the first two members of the
Taylor series giving,

where,

where is a continuous variable for block The overlap constraints
for a flexible block and a fixed block can be written as:

Using two integer variables and per block pair as was done for
fixed blocks, the ‘or’ condition between the equations can be satisfied.

200 Chapter 6. Floorplanning and Pin Assignment

The same set of equations can be extended to get overlap constraints be-
tween two flexible blocks. Using the same technique, the interconnection length
constraints and routing area constraints can be developed. This set of equa-
tions are the input to any standard linear programming software package such
as LINDO. The locations of the blocks and their dimensions are variables, the
values of which are calculated by the software depending on the constraints
and the objective function.

In [CF98], authors present a new convex programming formulation of the
area minimization with a lesser numbers of variables and constraints than pre-
vious papers.

6.1.5 Rectangular Dualization

The partitioning process generates a group of subcircuits and their intercon-
nections. This output from a partitioning algorithm can be represented as a
graph G = (V, E) where the vertices of the graph correspond to the subcir-
cuits and the edges represent the interconnections between the subcircuit. The
floorplan can be obtained by converting this graph into its rectangular dual and
this approach to floorplanning is called rectangular dualization. A rectangular
dual of graph G = (V, E) consists of non-overlapping rectangles which satisfy
the following properties:

1.

2.

Each vertex corresponds to a distinct rectangle

For every edge the corresponding rectangles and are
adjacent in the rectangular dual.

When this method is directly applied to the graph generated by partitioning,
it may not be possible to satisfy the second property for generating the rect-
angular dual.

The problem of finding a suitable rectangular dual is a hard problem. In
addition, there are many graphs which do not have rectangular duals. A further
complication arises due to areas and aspect ratios of the blocks. In rectangular
dualization, areas and aspect ratios are ignored to simplify the problem. As
a result, the output cannot be directly used for floorplanning. Kozminski and
Kinnen [KK84] have presented an algorithm for finding a rectangular dual of a
planar triangulated graph. Usually, the graph is processed only if a rectangular
dual for the graph exists. Bhasker and Sahni [BS86] have extended the
approach in [KK84] to present a linear time algorithm for finding a rectangular
dual of a planar triangulated graph.

A planar triangular graph (PTG) G is a connected planar graph that sat-
isfies the following properties:

1.

2.

3.

every face (except the exterior) is a triangle.

all the internal vertices have a degree

all cycles that are not faces have length

6.1. Floorplanning 201

Given a PTG, a planar digraph is constructed which is a directed graph. Once
a planar digraph is constructed, it can be converted into a floorplan as shown
in Figure 6.3. Lokanathan and Kinnen [LK89] presented a procedure for floor-
planning that minimizes routing parasitics using rectangular dualization. The
use of rectangular dualization maximizes adjacency of blocks that are heavily
connected or connected by critical nets.

6.1.6 Hierarchical Tree Based Methods

Hierarchical tree based methods represent a floorplan as a tree. Each leaf
in the tree corresponds to a block and each internal node corresponds to a
composite block in the floorplan. A floorplan is said to be hierarchical of order ,
if it can be obtained by recursively partitioning a rectangle into at most parts.
Physical hierarchy can be generated in two ways: top-down partitioning or

202 Chapter 6. Floorplanning and Pin Assignment

bottom-up clustering. Partitioning assumes that the relative areas (or number
of nodes) Within partitions, at a given level of hierarchy, may be fixed during
a top down construction of a decomposition tree (or partitioning tree). There
is no justification, except convenience, for this assumption. The optimal choice
of relative areas varies from problem instance to problem instance, but there is
no way to determine a desirable ratio, in top-down construction. Placements
performed by min-cut method, a popular partitioning algorithm, often creates
lot of vacant space or white space. Clustering on the other hand is a bottom-up
algorithm for constructing a decomposition tree (or cluster tree).

In [DEKP89] a hierarchical floorplanner for arbitrary size rectangular blocks
using the clustering approach has been proposed. At each level of the hierarchy,
highly connected blocks (or clusters of blocks) are grouped together into larger
clusters. At each level, the number of blocks is limited to five so that sim-
ple pattern enumeration and exhaustive search algorithms can be used later.
Blocks (or block clusters) which are connected by edges of greater than average
edge weight are grouped into a single cluster, if the resulting cluster has less
than five members.

After forming the hierarchical clustering tree, a floorplanner and a global
router together perform a top-down traversal of the hierarchy. Given an overall
aspect ratio goal and I/O pin goal, at each level of the hierarchy, the floorplan-
ner searches a simple library of floorplan templates and considers all possible
room assignments which meet the combined goals of aspect ratios and I/O pins.
At each level, the global routing problem is formulated as a series of minimum
steiner tree problems in partial 3-trees. The global routing solution at the cur-
rent level is used as the I/O pin goal for the floorplan evaluation, and as base for
the global routing refinement at the next level. This floorplanning and global
routing create constraints on the aspect ratio of the rooms, and gives assign-
ments of I/O pins on the walls of the rooms, which are recursively transmitted
downward as sub-goals to the floorplanner and global router. While evaluating
the cost of a given floorplan template and room assignment, both chip area
and net path length are considered. When undesirable block shapes and pin
positions are detected, alternate floorplan templates and room assignments are
tried by backtracking and using automatic module generators. This algorithm
performs better than other well-known deterministic algorithms and generates
solutions comparable to random-based algorithms.

Ting-Chi Wang and D. F. Wong [WW90] have presented an optimal al-
gorithm for a special class of floorplans called hierarchical floorplans of order
5. Two types of blocks have been considered; L-shaped and rectangular. The
algorithm takes a set of implementations for each block as input and identi-
fies the best implementation for each block so that the resulting floorplan has
minimum area.

6.1. Floorplanning 203

6.1.7 Floorplanning Algorithms for Mixed Block and Cell
Designs

All the algorithms discussed in the previous section can be used for floor-
planning of Mixed Block and Cell (MBC) designs. These designs can be viewed
as a set of blocks in a sea of cells. This is a popular ASIC layout design style.
However, these algorithms were not implemented as a part of any tool which
can generate floorplans for MBC designs. In this section, we describe some of
the algorithms that were developed as a part of a tool specifically designed for
floorplanning of MBC designs.

In [AK90], a heuristic algorithm has been developed for MBC designs. The
algorithm employs a combined floorplanning, partitioning and global routing
strategy. The main focus of the algorithm is in reducing the white space costs
and the wiring cost. In [Sec88], the simulated annealing approach is used to
solve the floorplanning problem for MBC designs. In [UKH85], “CHAMP”, a
floorplanning tool for MBC designs using the hierarchical approach has been
presented. In [USS90, cL93], the floorplanning problem for MBC de-
signs has been considered. All existing floorplanning algorithms, except [cL93],
for the MBC designs restrict the block shapes to rectangular in order to simplify
the problem at hand. Even in [cL93], only the pre-designed block shapes are
considered to be rectilinear and the shapes generated for soft modules are al-
ways rectangular with varying aspect ratios. None of the existing floorplanning
algorithms for MBC designs take advantage of the flexibility of the standard
cell regions.

6.1.8 Simulated Evolution Algorithms

[RR96] describes a Simulated Evolution (Genetic) Algorithm for the Floor-
plan Area Optimization problem. The algorithm is based on suitable tech-
niques for solution encoding and evaluation function definition, effective cross-
over and mutation operators, and heuristic operators which further improve
the method’s effectiveness. An adaptive approach automatically provides the
optimal values for the activation probabilities of the operators. Experimental
results show that the proposed method is competitive with the most effective
ones as far as the CPU time requirements and the result accuracy is considered,
but it also presents some advantages. It requires a limited amount of memory,
it is not sensible to special structures which are critical for other methods, and
has a complexity which grows linearly with the number of implementations.
Finally, it is demonstrated that the method is able to handle floorplans much
larger (in terms of number of basic rectangles) than any benchmark previously
considered in the literature.

In a Multi-Selection-Multi-Evolution (MSME) scheme for par-
allelizing a genetic algorithm for floorplan optimization is presented and its
implementation with MPI and its experimental results are discussed. The ex-
perimental results on a 16 node IBM SP2 scalable parallel computer have shown
that the scheme is effective in improving performance of floorplanning over that

204 Chapter 6. Floorplanning and Pin Assignment

of a sequential implementation. The parallel version could obtain better results
with more than 90parallel program could reduce both chip area and maximum
path delay by more than 8also speed up the evolution process so that there
could be higher probability of obtaining a better solution within a given time
interval.

The genetic algorithm (GA) paradigm is a search procedure for combinato-
rial optimization problems. Unlike most of other optimization techniques, GA
searches the solution space using a population of solutions. Although GA has
an excellent global search ability, it is not effective for searching the solution
space locally due to crossover-based search, and the diversity of the popula-
tion sometimes decreases rapidly. In order to overcome these drawbacks, the
paper [TKH96] proposes a new algorithm called immunity based GA (IGA)
combining features of the immune system (IS) with GA. The proposed method
is expected to have local search ability and prevent premature convergence.
IGA is applied to the floorplan design problem of VLSI layout. Experimental
results show that IGA performs better than GA.

6.1.9 Timing Driven Floorplanning

With increasing chip complexities and the requirement to reduce design time,
early analysis is becoming increasingly important in the design of performance
critical CMOS chips. As clock rates increase rapidly, interconnect delay con-
sumes an appreciable portion of the chip cycle time, and the floorplan of the
chip significantly affects its performance.

[SYTB95] presents a timing-influenced floorplanner for general cell IC de-
sign. The floorplanner works in two phases. In the first phase the modules
are restricted to be rigid and the floorplan to be slicing. The second phase of
floorplanner allows modification to the aspect ratios of individual modules to
further reduce the area of the overall bounding box. The first phase is imple-
mented using genetic algorithm while in the second phase, a constraint graph
based approach is adopted.

In [YSAF95] a timing driven floorplanning program for general cell layouts
is presented. The approach used combines quality of force directed approach
with that of constraint graph approach. A floorplan solution is produced in
two steps. First a timing and connectivity driven topological arrangement is
obtained using a force directed approach. In the second step, the topological
arrangement is transformed into a legal floorplan. The objective of the sec-
ond step is to minimize the overall area of the floorplan. The floorplanner is
validated with circuits of sizes varying from 7 to 125 blocks.

[NLGV95] describes a system for early floorplan analysis of large designs.
The floorplanner is designed to be used in the early stages of system design, to
optimize performance, area and wireability targets before detailed implemen-
tation decisions are made. Unlike most floorplanners which optimize timing by
considering only a subset of paths this floorplanner performs static timing anal-
ysis during the floorplan optimization process, instead of working on a subset
of the paths. The floorplanner incorporates various interactive and automatic

6.1. Floorplanning 205

floorplanning capabilities.

6.1.10 Theoretical advancements in Floorplanning

In [PL95] P. Pan and C. L. Liu propose two area minimization methods for
general floorplans with respect to the floorplan sizing problem.

The traditional algorithm for area minimization of slicing floorplans due to
Stockmeyer has time and space complexity in the worst case. For more
than a decade, it has been considered the best possible. [Shi] presents a new
algorithm of worst-case time and space complexity , where is the
total number of realizations for the basic blocks, regardless whether the slicing
is balanced or not. It has also been shown that is the lower bound
on the time complexity of any area minimization algorithm. Therefore, the
new algorithm not only finds the optimal realization, but also has the optimal
running time.

In [PSL96], the complexity of the area minimization problem for hierarchi-
cal floorplans has been shown to be NP-complete (even for balanced hierarchical
floorplans). A new algorithm has been presented for determining the nonredun-
dant realizations of a wheel. The algorithm has time cost and space
cost if each block in a wheel has at most realizations. Based on the
new algorithm for wheel, the authors have designed a new pseudo-polynomial
area minimization algorithm for hierarchical floorplans of order-5. The time
and space costs of the algorithm are and respec-
tively, where is the number of basic blocks and M is an upper-bound on
the dimensions of the realizations of the basic blocks. The area minimization
algorithm was implemented. Experimental results show that it is very fast.

In [CT], the authors have found an lower bound for area optimization
of spiral floorplans. Let F be a spiral floorplan where each of its five basic
rectangles has implementations. It has been shown that there can be as
many as useful implementations generated for F, in the worst case. This
implies that the previously known algorithm is almost optimal.

In [PL], the authors have presented two area minimization methods for
general floorplans, which can be viewed as generalizations of the classical algo-
rithm for slicing floorplans of Otten (1982) and Stockmeyer (1983) in the sense
that they reduce naturally to their algorithm for slicing floorplans. Compared
with the branch-and-bound algorithm of Wimer et al (1989), which does not
have a nontrivial performance bound, these methods are provably better than
an exhaustive method examined for many other examples.

[HL97] presents a formal algebraic specification (in SETS notation) that is
appropriate for VLSI physical design layout and capable of representing both
the floorplan topology and the modules’ dimensions. The specification pro-
posed allows a concise and rigorous representation of arbitrarily complex com-
posite floorplans. This algebraic description unifies-under a rotation-invariant
single-expression formalism-slicing and non-slicing generalized wheels floor-
plans. As needed by specific floorplan algorithms, it supports either a topology-
dimensionless description or the introduction of module dimensions. Finally, it

206 Chapter 6. Floorplanning and Pin Assignment

allows an eightfold reduction-over previous representations-of the total number
of floorplan solutions considered in floorplanning problem algorithms.

In [KD97] a new method of non-slicing floorplanning is proposed, which
is based on the new representation for non-slicing floorplans, called bounded
slicing grid (BSG) structure. The authors have developed a new greedy al-
gorithm based on the BSG structure, running in linear time, to select the
alternative shape for each soft block so as to minimize the overall area for gen-
eral floorplan, including non-slicing structures. A new stochastic optimization
method, named genetic simulated annealing (GSA) for general floorplanning
is proposed. Based on BSG structure, SA-based local search and GA-based
global crossover is extended to L-shaped, T-shaped blocks and high density
packing of rectilinear blocks is obtained.

In [DSKB95], it is shown that for any rectangularly dualizable graph, a
feasible topology can be obtained by using only either straight or Z-cutlines
recursively within a bounding rectangle. Given an adjacency graph, a potential
topology, which may be nonslicible and is likely to yield an optimally sized
floorplan, is produced first in a top-dozen fashion using heuristic search in AND-
OR graphs. The advantage of this technique is four-fold: (i) accelerates top-
down search phase, (ii) generates a floorplan with minimal number of nonslice
cores, (iii) ensures safe routing order without addition of pseudo-modules, and
(iv) solves the bottom-up algorithm efficiently for optimal sizing of general
floorplans in the second phase.

[TY95] addresses the problem of minimizing wiring space in an existing slic-
ing floorplan. Wiring space is measured in terms of net density, and the existing
floorplan is adjusted only by interchanging sibling rectangles and by mirroring
circuit modules. An exact branch and bound algorithm and a heuristic are
given for this problem. Experiments show that both algorithms are effective in
reducing wiring space in routed layouts.

6.1.11 Recent Trends

Several new trends are emerging in floorplanning, we discuss a few of them.
Interactive floorplanning can improve productivity, improve performance and
reduce die size. In [EK96a] an interactive floorplanner based on the genetic
algorithm is presented. Layout area, aspect ratio, routing congestion and max-
imum path delay are optimized simultaneously. The design requirements are
refined interactively as knowledge of the obtainable cost tradeoffs is gained
and a set of feasible solutions representing alternative and good tradeoffs is
generated. Experimental results illustrate the special features of the approach.

In [YTK95], a hybrid floorplanning methodology is proposed. Two hier-
archical strategies for avoiding local optima during iterative improvement are
proposed: (1) Partial Clustering, and (2) Module Restructuring. These strate-
gies work for localizing nets connecting small modules in small regions, and
conceal such small modules and their nets during the iterative improvement
phase. This method is successful in reducing both area and wire length in
addition to reducing the computational time required for optimization. Al-

6.2. Chip planning 207

though the method only searches slicing floorplans, the results are superior to
the results obtained even with non-slicing floorplans.

In [WC95], a new approach to solve a general floorplan area optimization
problem is proposed. By using the analogy between a floorplan and a resistive
network, it has been shown that a class of zero wasted area floorplan can be
achieved under the shape constraint of continuous aspect ratio. However, in
many practical designs, each module may have constraints on its dimensions
such as minimum length or width. In this paper, the authors have defined
the floorplan area minimization problem under the constrained aspect ratio
and give necessary conditions for the realization of zero wasted area floorplan
under the shape constraints. A set of optimization methods is developed to
minimize the wasted area if no zero wasted area floorplan is achievable.

6.2 Chip planning

Both floorplanning and placement problems either ignore the interconnect or
consider it as a secondary objective. Chip planning is an attempt to integrate
floorplanning and interconnect planning. The basic idea is to comprehend
impact of interconnect as early as possible.

6.2.1 Problem Formulation

The input consists of circuit blocks, with area
respectively. Associated with each block are two aspect ratios and
which give the lower and the upper bound on the aspect ratio for that block.
In addition, we have signals. For each signal we have criticality,
width, source and sink. The chip planning algorithm has to determine the
width and height, of each block and layout of each signal such that

In addition to finding the shapes of the blocks, the chip planning
algorithm has to generate a valid placement for blocks and interconnect such
that the area of the layout is minimized.

6.3 Pin Assignment

The purpose of pin assignment is to define the signal that each pin will re-
ceive. Pin assignment may be done during floorplanning, placement or after
placement is fixed. If the blocks are not designed then good assignment of nets
to pins can improve the placement. If the blocks are already designed, it may
be possible to exchange a few pins. This is because some pins are function-
ally equivalent and some are equipotential Two pins are called functionally
equivalent, if exchanging the signals does not effect the circuit. For example,
exchanging two inputs of a gate does not effect the output of the gate. Two
pins are equipotential if both are internally connected and hence represent the
same net. The output of the gate may be available on both sides, so the out-

208 Chapter 6. Floorplanning and Pin Assignment

put signal can be connected on any side. Figure 6.4 shows both functionally
equivalent pins and equipotential pins.

6.3.1 Problem Formulation

The purpose of pin assignment is to optimize the assignment of nets within
a functionally equivalent pin groups or assignment of nets within an equipo-
tential pin group. The objective of pin assignment is to reduce congestion or
reduce the number of crossovers. Figure 6.5 illustrates the effectiveness of pin
assignment. Note that a net can be assigned to any equipotential pin within
a set of functionally equivalent pins. The pin assignment problem can be for-
mally stated as follows: Given a set of terminals and a set of
pins m > n. Each is assigned to pin
Let be the set of pins which are equipotential and equivalent to the
objective of pin assignment is to assign each to a pin in such that a
specific objective function is minimized. The objective functions are typically
routing congestions. For standard cell design, it may be the channel density.

6.3.1.1 Design Style Specific Pin Assignment Problems

Pin assignment problems in different design styles have different objectives.

1. Full custom design style: In full custom, we have two types of pin
assignment problems. At floorplanning level, the pin location along the
boundary of the block can be changed as the block is assigned a shape.
This assignment of pins can reduce routing congestions. Thus, not only
we can change pin assignment of pins, we can also change the location of
pins along the boundary. At placement level, the options are limited to
assigning the nets to pins. Notice that in terms of problem formulation,

6.3. Pin Assignment 209

we can declare all pins of a flexible block as functionally equivalent to
achieve pin assignment in floorplanning.

Standard cell design style: The pin assignment problem for stan-
dard cells is essentially that of permuting net assignment for functionally
equivalent pins or switching equipotential pins for a net.

Gate array design style: The pin assignment problem for gate array
design style is the same as that of standard cells.

2.

3.

Assignment problems mostly occur in semi custom design styles such as
gate arrays or standard cells.

In gate array design, the cells are pre-fabricated and are arranged on the
master. Pin assignment problem in this type of design style is to assign to each
terminal a functionally equivalent slot such that wiring cost is minimized. Slots
in this case are the pin locations on pre-designed (library) cells. In standard
cells, however, equipotential pins appear as feedthroughs. Since no wiring
around the cell is needed, the wire length decreases with the use of feedthroughs.

6.3.2 Classification of Pin Assignment Algorithms

The pin assignment techniques are classified into general techniques and
special pin assignment techniques. General techniques are applicable for pin

210 Chapter 6. Floorplanning and Pin Assignment

assignment at any level and any region within a chip. Such techniques are
applied at board level as well as chip level. On the other hand, the special
pin assignment technique can be used for assignment of pins within a specific
region such as channel or a switchbox.

6.3.3 General Pin Assignment

There are several methods in this category as discussed below:

1. Concentric Circle Mapping: To planarize the interconnections, this
method models the pin assignment problem by using two concentric cir-
cles [Kor72]. The pins on the component being considered are repre-
sented as points on the inner circle whereas the points on the outer circle
represent the interconnections to be made with other components. The
concentric circle mapping technique solves the pin assignment problem
by breaking it into two parts. The first part is the assignment of pins to
points on the two circles and in the second part the points on the inner
and outer circles are mapped to give the interconnections.

For example, consider the component and the pins shown in Figure 6.6(a).
The two circles are drawn so that the inner circle is inside all the pins

6.3. Pin Assignment 211

2.

3.

on the component being considered while the outer circle is just inside
the pins that are to be connected with the pins of this component. This
is shown in Figure 6.6(b). Lines are drawn from the component center
to all these pins as shown in Figure 6.6(c). The points on the inner and
outer circle are defined by the intersection of these lines with the circles
(Figure 6.6(d)). The pin assignment is completed by mapping the points
on the outer circle to those on the inner circle in a cyclic fashion. The
worst and the best case assignment are shown in Figure 6.6(e) and (f).

Topological Pin Assignment: Brady [Bra84] developed a technique
which is similar to concentric circle mapping and has certain advantages
over the concentric circle mapping method. With this method it is easier
to complete pin assignment when there is interference from other compo-
nents and barriers and for nets connected to more than two pins. If a net
has been assigned to more two pins than the pin closest to the center of
the primary component is chosen and all other pins are not considered.
Hence in this case only one pin external to the primary component is
chosen. The pins of the primary component are mapped onto a circle as
in the concentric circle method. Then beginning at the bottom of the
circle and moving clockwise the pins are assigned to nets and hence they
get assigned in the order in which the external pins are encountered. For
nets with two pins the result is the same as that for concentric circle
mapping.

Nine Zone Method: The nine zone method, developed by Mory-Rauch,
is a pin assignment technique based on zones in a Cartesian coordinate

system [MR78]. The center of the coordinate system is located inside a
group of interchangeable pins on a component. This component is called
pin class. A net rectangle is defined by each of the nets connected to the
pin class. There are nine zones in which this rectangle can be positioned
as shown in Figure 6.7. The positions of these net rectangles are defined
relative to the coordinate system defined by the current pin class.

6.3.4 Channel Pin Assignment

In design of VLSI circuits, a significant portion of the chip area is used for
channel routing. Usually, after the placement phase, the positions of the ter-
minals on the boundaries of the blocks are not completely fixed and they still
have some degree of freedom to move before the routing phase begins. Fig-
ure 6.8 shows how channel density could be reduced by moving the terminals.
Figure 6.8(a) shows a channel which needs three tracks. By moving the pins,
the routing can be improved such that it requires one track as shown in Fig-
ure 6.8 (b). The channel pin assignment problem is the problem of assigning
positions for the terminals, subject to constraints imposed by design rules and
the designs of the previous phases, so as to minimize the density of the chan-
nel. The problem has various versions depending on how the pin assignment

212 Chapter 6. Floorplanning and Pin Assignment

constraints are specified. Many special cases of this problem have been inves-
tigated. In [GCW83], Gopal, Coppersmith, and Wong considered the channel
routing problem with movable terminals.

In [YW91] the channel pin assignment problem in which assignment of ter-
minals is subject to linear order position constraints is solved using a dynamic
programming formulation by Yang and Wong. Their method is described
briefly below. Except minor changes for clarity, the discussion is essentially the
same as it appears in [YW91].

Since the terminals are linearly ordered we have a set of terminals at the top
given by TOP in which the terminals Similarly the terminal
set for terminals at the bottom is given by BOT in which the terminals are
ordered Each terminal on the top and on the
bottom have a corresponding set given by and which indicate the possible

6.3. Pin Assignment 213

positions these terminals can occupy. A solution to this problem is called an
 if it assigns exactly to the first

columns of the channel where and correspond to a auxiliary column and
two trivial nets which consist of only one terminal are introduced. The main
idea used by the algorithm is to first compute a density function using dynamic
programming and then use backtracking to reconstruct an optimal solution.

Let L be the length of the channel and N be the number of nets to be routed.
The set of terminals on the top boundary of the channel is denoted as TOP,
and the set of terminals on the bottom boundary of the channel is denoted as
BOT. In this implementation, separation constraints and position constraints
are not considered and but the terminals are definitely allowed to be within a
certain position only i.e. the length L of the channel. The solutions
can be classified into the following four types, according to pin assignment at
column as illustrated in Figure 6.9.

Type 0: No terminal is assigned to either endpoints of column as shown
in Figure 6.9(a).

Type 1: Only is assigned to the top endpoint of column as shown in
Figure 6.9(b).

Type 2: Only is assigned to the bottom endpoint of column as shown
in Figure 6.9(c).

Type 3: Both and are assigned to column as shown in Figure 6.9(d).

Let be the density of the channel considering terminals at the
top and terminals at the bottom after consideration of columns. Let

and be the local densities (crossing numbers) at

214 Chapter 6. Floorplanning and Pin Assignment

column considering nets at the top and nets at the bottom for Type
1, Type 2 and Type 3 solutions respectively. Let denote the set
of nets with one terminal in and one terminal
in and the net containing if
it is not trivial. Let denote the set of nets with one terminal in

and one terminal in
and the net containing if it is not trivial. Let denote

the set of nets with one terminal in and one
terminal in and the net containing

or if it is not trivial and if they do not belong to the same net. Hence we
have

The algorithm for optimal channel pin assignment is shown in Figure 6.10.
It is easy to see that the time complexity of the algorithm Linear-CPA is O(pql).

6.4 Integrated Approach

The various stages in the physical design cycle evolved as the entire prob-
lem is extremely complex to be solved altogether at once. But over the years,
with better understanding of the problems, attempts are made to merge some
steps of the design cycle. For example, floorplanning was considered as a prob-
lem of just finding the shapes of the blocks without considering routing areas.
Over the years, the floorplanning problem has been combined with the place-
ment problem [DEKP89, SSR91, WL86]. The placement problem is sometimes
combined with the routing problem giving rise to the ‘place and route’ algo-
rithms [Esc88, FHR85, SSV85, Sze86].

In this section, the approach used by Dai, Eschermann, Kuh and Pedram
in BEAR [DEKP89] is described briefly. BEAR is a macrocell-based layout
system. The process of floorplanning is carried out in the following three steps:

1.

2.

Clustering: In this step, a hierarchical tree is constructed. Blocks that
are strongly connected are grouped together in a cluster. Each cluster
can have a limited number of blocks within it. The clustering process
considers the shapes of the blocks to avoid a mismatch within the cluster.
This step is repeated to build the cluster tree.

Placement: In this step, the tree is traversed top-down. The target
shape and terminal goals for the root of the cluster tree is specified.
This information is used to identify the topological possibility for the

6.4. Integrated Approach 215

216 Chapter 6. Floorplanning and Pin Assignment

clusters at the level below. This in turn sets the shape and terminal
goals for the immediate lower levels in the hierarchy till at the leaf level
the orientations of the blocks are determined. For each of the topologies,
the routing space is determined. The selection of a particular topology
is based on the area and the shape of the resulting topology and the
connection cost. The system is developed so as to allow the user to
control the trade off between the shape, the area and the connection
costs. This strategy works well in case the blocks at the leaf level are
flexible so that the shapes of these blocks can be adjusted to the shape
of the cluster. On the other hand, if the leaf level blocks are fixed then
this top-down approach can give unfavorable results. This is due to the
fact that the information of the shape of these blocks at the leaf level are
not considered by the objective function when determining the cluster
shapes at higher levels of the cluster tree. This is rectified by passing
the shape information from the leaves towards the root of the tree during
the clustering phase. In addition, during the top-down placement step,
a look-ahead is added so that the objective function can examine the
shapes generated during clustering, at a level below the immediate level
for which the shape is being determined.

6.5. Summary 217

3. Floorplan optimization: This an improvement step that resizes se-
lected blocks iteratively. The blocks to be resized are identified by com-
puting the longest path through the layout surface using the routing
estimates done in the previous step.

6.5 Summary

Floorplanning and Pin assignment are key steps in physical design cycle.
The pin assignment is usually carried out after the blocks have been placed to
reduce the complexity of the overall problem.

Several placement algorithms have been presented. Simulated annealing
and simulated evolution are two most successful placement algorithm. Al-
though these algorithms are computationally intensive, they do produce good
placements. Integer programming based algorithms for floorplanning have been
also been successful. Several algorithms have been presented for pin assign-
ment, including optimal pin assignment for channel pin assignment problems.
The output of the placement phase must be routable, otherwise placement has
to be repeated.

6.6 Exercises

1.

2.

3.

Given the following 14 rectangles with their dimensions specified, write
a program that will arrange all these rectangles within 5000 sq. units of
area, if possible, or otherwise minimize the area required. The dimensions
(width x height) of the rectangles are

Recall that the aspect ratio of a block is the ratio of its height and width.
If each rectangle in problem 1 can have three different aspect ratios, find
the appropriate aspect ratio for each rectangle so that the area occu-
pied by the rectangles is minimized. The set of aspect ratios for
is is,

Use the lowest and highest aspect ratios for each rectangle in problem 2
as lower and upper bounds respectively and generate a placement which
occupies minimum area.

218 Chapter 6. Floorplanning and Pin Assignment

† 4.

† 5.

‡ 6.

Apply Simulated Annealing algorithm for pin assignment problem. In
each iteration, pins of each block are permuted and routing congestion is
estimated.

Develop an algorithm for pin assignment of a full custom layout based on
concentric circle mapping.

Implement the channel pin assignment algorithm. Discuss the constraints,
based on functionally equivalent and equipotential pins.

Bibliographic Notes
A floorplanning system designed to work within a hierarchical design envi-
ronment supporting multiple design styles has been discussed in [MTDL90].
A technique for floorplanning and pin assignment of general cell layouts has
been developed in [PMSK90]. A global floorplanning approach has been dis-
cussed in [PD86]. The approach is based on a combined min-cut and slicing
paradigm. A pin assignment algorithm for improving the performance in stan-
dard cell design by improving the longest delay has been discussed in [SL90].
A pin assignment problem for macro-cells is discussed in [YYL88]. An ap-
proach which combines pin assignment and global routing has been developed
in [Con89]. In [KK95], yield issues are considered. Authors demonstrate that
for large area VLSI chips, especially those that incorporate some fault toler-
ance, changes in the floorplan can affect the projected yield. In [KK97], the
authors have demonstrated that the floorplan of a chip can affect its projected
yield in a nonnegligible way, for large area chips with or without fault-tolerance.

In [MAC98], a floorplanner for RF circuits based on a genetic algorithm that
supports simultaneous placement and routing has been developed. In [MK98],
Sequence-pair based placement method for hard/soft/pre-placed modules has
been discussed (also discussed in chapter 7). In [ITK98], a new approach for
the minimum area floorplanning is proposed where the shape of every module
can vary under the constraint of area and floorplan topology. Simulating the
air-pressure mechanics, the algorithms iterate to improve the layout to decide
the shapes and positions of modules. In [CF98], a convex formulation of the
floorplan area minimization problem is presented.

Chapter 7

Placement

Placement is a key step in physical design cycle. A poor placement consumes
larger areas, and results in performance degradation. It generally leads to a
difficult or sometimes impossible routing task. The input to the placement
phase is a set of blocks, the number of terminals for each block and the netlist. If
the layout of the circuit within a block has been completed then the dimensions
of the block are also known. Placement phase is very crucial in overall physical
design cycle. It is due to the fact, that an ill-placed layout cannot be improved
by high quality routing. In other words, the overall quality of the layout, in
terms of area and performance is mainly determined in the placement phase.

The placement of block occurs at three different levels.

1.

2.

System level placement: At system level, the placement problem is to
place all the PCBs together so that the area occupied is minimum. At the
same time, the heat generated by each of the PCBs should be dissipated
properly so that the system does not malfunction due to overheating of
some component.

Board level placement: At board level, all the chips on a board along
with other solid state devices have to be placed within a fixed area of the
PCB. All blocks are fixed and rectangular in shape. In addition, some
blocks may be pre-placed. The PCB technology allows mounting of com-
ponents on both sides. There is essentially no restriction on the number
of routing layers in PCB. Therefore in general, the nets can always be
routed irrespective of the quality of components placement. The objec-
tive of the board-level placement algorithms is twofold: minimization of
the number of routing layers; and satisfaction of the system performance
requirements. For high performance circuits, the critical nets should have
lengths which are less than a specified value and hence the placement al-
gorithms should place the critical components closer together. Another
key placement problem is the temperature profile of the board. The heat
dissipation on a PCB should be uniform, i.e., the chips which generate
maximum heat should not be placed closer to each other. If MCMs are

220 Chapter 7. Placement

3.

used instead of PCBs, then the heat dissipation problem is even more
critical, since chips are placed closer together on a MCM.

Chip level placement: At chip level, the problem can be either chip
planning, placement or floorplanning along with pin assignment. The
blocks are either flexible or fixed, and some of them may be pre-placed.
The key difference between the board level placement problem and the
chip level placement is the limited number of layers that can be used
for routing in a chip. In addition, the circuit is fabricated only on one
side of the substrate. This implies that some ‘bad’ placements maybe
unroutable. However, the fact that a given placement is unroutable will
not be discovered until routing is attempted. This leads to very costly
delays in completion of the design. Therefore, it is very important to
accurately determine the routing areas in the chip-level placement prob-
lems. Usually, two to four layers are used for routing, however, chips
with four or more layers routings are more expensive to fabricate. The
objective of a chip-level placement or floorplanning algorithm is to find
a minimum area routable placement of the blocks. In some cases, a mix-
ture of macro blocks and standard cells may have to be placed together.
These problems are referred to as Mixed block and cell placement and
floorplanning problems. At chip level, if the design is hierarchical then
the placement and floorplanning is also carried out in a hierarchical man-
ner. The hierarchical approach can greatly simplify the overall placement
process.

In the following sections, we will discuss the chip-level placement. The
placement problem for MCMs, which is essentially a performance driven Board
level placement problem, will be discussed in Chapter 14.

In this chapter, we will discuss placement problems in different design styles.
Section 7.1 discusses the problem formulation. Section 7.2 presents the classifi-
cation of placement algorithms. Remaining sections present various algorithms
for the placement problem.

7.1 Problem Formulation
The placement problem can be stated as follows: Given an electrical cir-

cuit consisting of fixed blocks, and a net list interconnecting terminals on the
periphery of these blocks and on the periphery of the circuit itself, construct
a layout indicating the positions of each block such that all the nets can be
routed and the total layout area is minimized. The objective for high perfor-
mance systems is to minimize the total delay of the system, by minimizing the
lengths of the critical paths. It is usually approximated by minimization of the
length of the longest net. This problem is known as the performance (timing)
driven placement problem. The associated algorithms are called performance
(timing) driven placement algorithms.

The quality of a placement is based on several factors:

7.1. Problem Formulation 221

1.

2.

3.

layout area.

completion of routing, and

circuit performance.

The layout area and the routability of the layout are usually approximated
by the topological congestion, known as rat’s nest, of interconnecting wires.
Consider the simple example in Figure 7.1. Two different placements for this
example are shown in Figure 7.2. The topological congestion in Figure 7.2(a)
is much less than that of in Figure 7.2(b). Thus, the placement given in Fig-
ure 7.2(a) can be considered more easily routable than the placement given in
Figure 7.2(b). In many cases, several objectives may contradict each other. For
example, minimizing layout area may lead to increased maximum wire length
and vice versa.

222 Chapter 7. Placement

Let us formally state the placement problem. Let be the
blocks to be placed on the chip. Each has associated with
it a height and a width Let be the set
of nets representing the interconnection between different blocks. Let

represent rectangular empty areas allocated for routing be-
tween blocks. Let denote the estimated length of net The
placement problem is to find iso-oriented rectangles for each of these blocks on
the plane denoted by such that

1.

2.

3.

4.

5.

Each block can be placed in its corresponding rectangle, that is, has
width and height

No two rectangles overlap, that is,

Placement is routable, that is, is sufficient to route all the
nets.

The total area of the rectangle bounding and is minimized.

The total wirelength is minimized, that is, is minimized. In the
case of high performance circuits, the length of longest net max

is minimized.

The general placement problem is NP-complete and hence, the algorithms
used are generally heuristic in nature.

Although the actual wiring paths are not known at the time of placement,
however, a placement algorithm needs to model the topology of the intercon-
nection nets. An interconnection graph structure which interconnects each net
is used for this purpose. The interconnection structure for two terminal trees
is simply an edge between the two vertices corresponding to the terminals. In
order to model a net with more than two terminals, rectilinear steiner trees
are used as shown in Figure 7.3(a) to estimate optimal wiring paths for a net.
This method is usually not used by routers, because of the NP-completeness of
steiner tree problem. As a result, minimum spanning tree representations are
the most commonly used structures to connect a net in the placement phase.
Minimum spanning tree connections (shown in Figure 7.3(b)) allow branching
only at the pin locations. Hence, the pins are connected in the form of min-
imum spanning tree of a graph. Complete graph interconnection is shown in
(Figure 7.3(c)). It is easy to implement such structures. However, this method
causes many redundant interconnections, and results in longer wire length.

The large number of objective functions can be classified into two categories,
net metrics and congestion metric. The net metrics deal with the assumption
that all the nets can be routed without interfering with other nets or with the
components. Usually the length of a net is important as the interconnection
delays depend on the length of the wire. The net metrics only quantify the
amount of wiring and do not account for the actual location of these wires.
The examples of this kind of objective functions are the total length of all nets
and the length of the longest net. The congestion metric is used to avoid the

7.1. Problem Formulation 223

buildup of many nets in a particular area leading to congestion. Example of
congestion metric is the number of nets that intersect with a routing channel.

The layout surface on which the circuit is to be placed is modeled into
either geometric or topological models. For the geometric model, the placement
algorithms tend to accept the layout area as a fixed constraint and tend to
optimize the interconnections. The geometric models are appropriate for design
styles where placement aspects such as size, shape and public pin positions do
not change during the layout process such as PCB design. On the other hand,
the placement systems which model the layout surface as a topological model
assume the constraint to be the completion of interconnections and optimize
the layout area. Topological models are appropriate for more flexible design
styles such as full custom designs.

7.1.1 Design Style Specific Placement Problems

Different design styles impose different restrictions on the layout and have
different objectives in placement problems.

224 Chapter 7. Placement

1.

2.

3.

Full custom: In full custom design style, the placement problem is the
packing problem concerned with placing a number of blocks of different
sizes and shapes tightly within a rectangular area. There is no restriction
on how the blocks can be placed within the rectangle except that no two
blocks may overlap. The primary objective is to minimize the total layout
area. The irregularity of the block shapes is usually the main cause of
unused areas. Since unused area increases the total area, the blocks must
be placed so as to minimize unused areas. The objective of minimizing
the layout area sometimes conflicts with the objective of minimizing the
maximum length of a net. Therefore, in high performance circuit design,
additional constraints on net lengths must also be considered.

Standard cells: The standard cell placement problem is somewhat
simpler than the full custom placement problem, as all the cells have
the same height. Cells are placed in rows and minimizing layout area
is equivalent to minimizing the summation of channel heights and mini-
mizing the width of the widest row. In order to reduce overall area, all
rows should have equal widths. The total area consists of area required
for the cell rows and the area required for routing or the channel area.
The routing area estimates, which determine the channel height, play a
key role in determining the overall area of the design. With the advent
of over-the-cell routing, in which the empty spaces over the standard cell
rows are used for routing, the channels in standard cells have almost dis-
appeared giving rise to channelless standard cell designs. Standard cells
are designed so the power and ground nets run horizontally through the
top and bottom of cells.

Gate arrays: As mentioned in the previous chapter, in case of gate
arrays, the partitioning of a circuit maps the circuit onto the gates of
the gate array. Hence the problem of partitioning and placement is es-
sentially the same in this design style. If partitioning does not actually
assign gate locations, then a placement algorithm has to be used to assign
subcircuits or gates to the slots on the gate array. Given a set of blocks

and set of slots assign each block
to a slot such that no two blocks are assigned to the same slot

and the placement is routable. For high performance designs, additional
constraints on net lengths have to be added.

Another situation, where gate array partitioning and placement may be
different, is when each ‘gate’ in the gate array is a complex circuit. In
this case, the circuit is partitioned such that each subcircuit is equivalent
to a ‘gate’. The placement algorithm is then used to find the actual
assignment. This happens to be the case in FPGAs and is discussed in
Chapter 13.

7.2. Classification of Placement Algorithms 225

7.2 Classification of Placement Algorithms
The placement algorithms can be classified on the basis of :

1.

2.

3.

the input to the algorithms,

the nature of output generated by the algorithms, and

the process used by the algorithms.

Depending on the input, the placement algorithms can be classified into two
major groups: constructive placement and iterative improvement methods. The
input to the constructive placement algorithms consists of a set of blocks along
with the netlist. The algorithm finds the locations of blocks. On the other
hand iterative improvement algorithms start with an initial placement. These
algorithms modify the initial placement in search of a better placement. These
algorithms are typically used in an iterative manner until no improvement is
possible.

The nature of output produced by an algorithm is another way of classifying
the placement algorithms. Some algorithms generate the same solution when
presented with the same problem, i.e., the solution produced is repeatable.
These algorithms are called deterministic placement algorithms. Algorithms
that function on the basis of fixed connectivity rules (or formulae) or deter-
mine the placement by solving simultaneous equations are deterministic and
always produce the same result for a particular placement problem. Some al-
gorithms, on the other hand, work by randomly examining configurations and
may produce a different result each time they are presented with the same
problem. Such algorithms are called as probabilistic placement algorithms.

The classification based on the process used by the placement algorithms
is perhaps the best way of classifying these algorithms. There are two impor-
tant class of algorithms under this classification: simulation based algorithms
and partitioning based algorithms. Simulation based algorithms simulate some
natural phenomenon while partitioning based algorithms use partitioning for
generating the placement. The algorithms which use clustering and other ap-
proaches are classified under ‘other’ placement algorithms.

7.3 Simulation Based Placement Algorithms
There are many problems in the natural world which resemble placement and

packaging problems. Molecules and atoms arrange themselves in crystals, such
that these crystals have minimum size and no residual strain. Herds of animals
move around, until each herd has enough space and it can maintain its predator-
prey relationships with other animals in other herds. The simulation based
placement algorithms simulate some of such natural processes or phenomena.
There are three major algorithms in this class: simulated annealing, simulated
evolution and force directed placement. The simulated annealing algorithm
simulates the annealing process which is used to temper metals. Simulated

226 Chapter 7. Placement

evolution simulates the biological process of evolution while the force directed
placement simulates a system of bodies attached by springs. These algorithms
are described in the following subsections.

7.3.1 Simulated Annealing
Simulated annealing is one of the most well developed placement methods

available [BJ86, GS84, Gro87, Haj88, HRSV86, LD88, Oht86, RSV85, RVS84,
SL87, SSV85]. The simulated annealing technique has been successfully used
in many phases of VLSI physical design, e.g., circuit partitioning. The detailed
description of the application of simulated annealing method to partitioning
may be found in Chapter 5. Simulated annealing is used in placement as an
iterative improvement algorithm. Given a placement configuration, a change to
that configuration is made by moving a component or interchanging locations
of two components. In case of the simple pairwise interchange algorithm, it
is possible that a configuration achieved has a cost higher than that of the
optimum but no interchange can cause a further cost reduction. In such a
situation the algorithm is trapped at a local optimum and cannot proceed
further. Actually this happens quite often when this algorithm is used on real
life examples. Simulated annealing avoids getting stuck at a local optimum by
occasionally accepting moves that result in a cost increase.

In simulated annealing, all moves that result in a decrease in cost are ac-
cepted. Moves that result in an increase in cost are accepted with a probability
that decreases over the iterations. The analogy to the actual annealing process
is heightened with the use of a parameter called temperature T. This parameter
controls the probability of accepting moves which result in an increased cost.
More of such moves are accepted at higher values of temperature than at lower
values. The acceptance probability can be given by where is the
increase in cost. The algorithm starts with a very high value of temperature
which gradually decreases so that moves that increase cost have lower proba-
bility of being accepted. Finally, the temperature reduces to a very low value
which causes only moves that reduce cost to be accepted. In this way, the
algorithm converges to a optimal or near optimal configuration.

In each stage, the configuration is shuffled randomly to get a new config-
uration. This random shuffling could be achieved by displacing a block to a
random location, an interchange of two blocks, or any other move which can
change the wire length. After the shuffle, the change in cost is evaluated. If
there is a decrease in cost, the configuration is accepted, otherwise, the new
configuration is accepted with a probability that depends on the temperature.
The temperature is then lowered using some function which, for example, could
be exponential in nature. The process is stopped when the temperature has
dropped to a certain level. The outline of the simulated annealing algorithm is
shown in Figure 7.4.

The parameters and functions used in a simulated annealing algorithm de-
termine the quality of the placement produced. These parameters and func-
tions include the cooling schedule consisting of initial temperature (init-temp),

7.3. Simulation Based Placement Algorithms 227

final temperature (final_temp) and the function used for changing the tem-
perature (SCHEDULE), inner_loop_criterion which is the number of trials at
each temperature, the process used for shuffling a configuration (PERTURB),
acceptance probability (F), and the cost function (COST). A good choice of
these parameters and functions can result in a good placement in a relatively
short time.

Sechen and Sangiovanni-Vincentelli developed Timber Wolf 3.2, which is
a standard cell placement algorithm based on Simulated Annealing [SSV85].
TimberWolf is one of the most successful placement algorithms. In this algo-
rithm, the parameters and functions are taken as follows. For the cooling sched-
ule, init_temp = 4000000, final-temp = 0.1, and SCHEDULE
where is a cooling rate depending on the current temperature is
taken relatively low when T is high, e.g. when the cooling process
just starts, which means the temperature is decremented rapidly. Then, in
the medium range of temperature, is taken 0.95, which means that the
temperature changes more slowly. When the temperature is in low range,
is again taken 0.8, the cooling procedure go fast again. In this way, there are a
total of 117 temperature steps. The graph for the cooling schedule is shown in
Figure 7.5. The value of inner_loop_criterion is taken according to the size of
the circuit, e.g., 100 moves per cell for a 200-cell circuit and 700 moves per cell
for a 3000-cell circuit are recommended in [SSV85]. The new configuration is
generated by making a weighted random selection from one of the following:

1.

2.

3.

the displacement of a block to a new location,

the interchange of locations between two blocks,

an orientation change for a block.

228 Chapter 7. Placement

The alternative 3 is used only when the new configuration generated by
using alternative 1 is rejected. The ratio of single block displacement to
pair wise interchange should be carefully chosen to give a best overall result.
An orientation change of a block is simply a mirror image of that block’s x-
coordinate. The cost function is taken as:

where cost1 is the weighted sum of estimate length of all nets, cost2 is the
penalty cost for overlapping, and cost3 is the penalty cost for uneven length
among standard cell rows.

Where, and are the horizontal and vertical spans of the min-
imum bounding rectangle of net . Horizontal and vertical weights (HW eight
and VW eight) are introduced so that each net can have different priority to
be optimized, e.g. critical nets can have higher priority, and one direction can
be favored over another direction. The quadratic function in cost2 is used to
penalize more heavily on large overlaps than small ones. Actually overlap is
not allowed in the placement. However, it takes large amount of computer time
to remove all overlapping. So, it is more efficient to allow overlapping during
intermediate placement and use a cost function to penalize the overlapping.

7.3. Simulation Based Placement Algorithms 229

 and are the actual row length and de-
sired row length for the th row, respectively. The factor is used so that the
minimum penalty for the difference in length of rows is factor.

The simulated annealing is one of the most established algorithms for place-
ment problems. It produces good quality placement. However, Simulated An-
nealing is computationally expensive and can lead to longer run times. There-
fore, it is only suitable for small to medium sized circuits.

7.3.2 Simulated Evolution

Simulated evolution (genetic algorithm) is analogous to the natural process
of mutation of species as they evolve to better adapt to their environment. It
has been recently applied to various fields. Readers are referred to the chapter
5 for the description of simulated evolution algorithm used in partitioning.

We use the example of gate array placement problem to explain the simu-
lated evolution algorithm. In gate array placement problem, the layout plane
is divided into slots. The problem of placing cells

where is to assign some to each such that no
two cells are assigned to the same slot. The algorithm starts with an initial set
of placement configurations, which is called the population. This initial place-
ment can be generated randomly. The individuals in this population represent
a feasible placement to the optimization problem and are actually represented
by a string of symbols. The symbols used in the solution string are called
genes. A solution string made up of genes is called a chromosome. A schema is
a set of genes that make up a partial solution. Simulated evolution algorithm
is iterative, and each iteration is called a generation. During each iteration the
individuals of the population are evaluated on the basis of certain fitness tests
which can determine the quality of each placement. Two individuals (corre-
sponding to two possible placement configurations) among the population are
selected as parents with probabilities based on their fitness. The better fitness
an individual has, the higher the probability that it will be chosen. The op-
erators called crossover, mutation and inversion, which are analogous to the
counterparts in the evolution process, are then applied on the parents to com-
bine ‘genes’ from each parent to generate a new individual called the offspring.
The offsprings are then evaluated and a new generation is then formed by in-
cluding some of the parents and the offsprings on the basis of their fitness in a
manner that the size of population remains the same. As the tendency is to se-
lect high fitness individuals to generate offsprings and the weak individuals are
deleted, the next generation tends to have individuals that have good fitness.
The fitness of the entire population improves over the generations. That means
the overall placement quality improves over iterations. At the same time, some
‘bad’ genes are inherited from previous generation even though the probability
of doing so is quite low. In this way, it is assured that the algorithm does not
get stuck at some local optimum. This is the basic mechanism of the algorithm
which results in a good placement. The three genetic operators that are used
for creating offsprings are discussed below.

230 Chapter 7. Placement

1.

2.

3.

Crossover : Crossover generates offsprings by combining schemata of
two individuals at a time. This could be achieved by choosing a random
cut point and generating the offspring by combining the left segment of
one parent with the right segment of the other. However, after doing so,
some blocks may be repeated while some other blocks may get deleted.
This problem has been dealt with in many different ways. The amount of
crossover is controlled by the crossover rate which is defined as the ratio
of the number of offspring produced in each generation to the population
size. The crossover rate determines the ratio of the number of searches in
regions of high average fitness to the number of searches in other regions.

Mutation: This operator is not directly responsible for producing
new offsprings but it causes incremental random changes in the offspring
produced by crossover. The most commonly used mutation is pair-wise
interchange. This is the process by which new genes which did not exist
in the original generation can be generated. The mutation rate is defined
as the percentage of the total number of genes in the population, which
are mutated in each generation. It should be carefully chosen so that it
can introduce more useful genes, and at the same time do not destroy the
resemblance of offsprings to their parents.

Selection: After the offspring is generated, individuals for the next
generation are chosen based on some criteria. There are many such se-
lection functions used by various researchers. In competitive selection all
the parents and offsprings compete with each other and the fittest indi-
viduals are selected so that the population remains constant. In random
selection the individuals for the next generation are randomly selected
so that the population remains constant. This could be advantageous
considering the fact that by selecting the fittest individuals the popula-
tion converges to individuals that share the same genes and the search
might not converge to a optimum. However, if the individuals are chosen
randomly, there is no way to gain improvements from older generation
to new generation. By compromising both methods, stochastic selection
makes selections with probabilities based on the fitness of each individual.

An algorithm developed by Cohoon and Paris [CP86] is shown in Figure 7.6.
The scoring function is chosen to account for total net lengths and to penalize
the placement with high wiring density in the routing channels. The score is
given by:

where

7.3. Simulation Based Placement Algorithms 231

where, is the number of nets intersecting horizontal (vertical) channel
is the mean of is the standard deviation of

The parent choosing function is performed alternatively as either selecting
parents with probabilities proportional to their fitness or selecting parents with
probabilities proportional to their fitness and an additional constraint such that
they have above average fitness. Two crossover operators can be used. One
selects a random cell and brings the four closest neighbors in parent 1
into neighboring slots in parent 2. At the same time, the cells in these slots
in parent 2 are pushed outward until vacant slots are found. The other one
selects a square of × cells from parent 1 where is a random number with
mean of 3 and variance of 1, and copy the square into parent 2. The result of
this copying would result in the loss of some cells. So, before copying, the cells
in parent 2 that are not part of square are being pushed outward into some
vacant slots.

One possible mutation function is to use a greedy technique to improve the

232 Chapter 7. Placement

placement cost. It selects a cell on a net and searches the cell on the
same net that is farthest from cell is then brought close to the cell
The cell which needs to be removed from that slot is pushed outward until a
vacancy is found.

Besides the implementation described above, there are other implementa-
tions, e.g. the genetic approach developed by Chan, Mazumder and Shahookar,
which uses a two-dimensional bitmap chromosome to handle the placement of
macro cells and gate arrays [CMS91]. In addition, the simulated evolution was
investigated in [CM89, KB87, Kli87, SM90a, SM90b].

7.3.3 Force Directed Placement
Force directed placement explores the similarity between placement problem

and classical mechanics problem of a system of bodies attached to springs.
In this method, the blocks connected to each other by nets are supposed to
exert attractive forces on each other. The magnitude of this force is directly
proportional to the distance between the blocks. According to Hooke’s law, the
force exerted due to stretching of the springs is proportional to the distance
between the bodies connected to the spring. If the bodies were allowed to
move freely, they would move in the direction of the force until the system
achieved equilibrium. The same idea is used for placing the blocks. The final
configuration of the placement of blocks is the one in which the system achieves
equilibrium.

In [Qui75], Quinn developed a placement algorithm using force directed
method. In this algorithm, all the blocks to be placed are considered to
be rectangles. These blocks are classified as movable or fixed. Let

be the blocks to be placed, and be the Cartesian coor-
dinates for Let
Let be the total force enacted upon by all the other blocks in the
-direction (-direction). Then, the force equations can be expressed as:

where constant between blocks and and
if The blocks connected by nets tend to move toward each other,

and the force between them is directly proportional to the distance between
them. On the other hand, the force model does not reflect the relationship
between unconnected blocks. In fact, the unconnected blocks tend to repel
each other. So, the above model should be modified to include these repulsion
effects. Since the formulation of the force equation in -direction is the same
as in -direction, in the following, only the formulation in -direction will be
discussed.

7.3. Simulation Based Placement Algorithms 233

where when and when R is the repulsion
constant directly proportional to the maximum of and inversely proportional
to .

In addition, it is also desirable to locate the center of all movable blocks
in some predetermined physical location (usually the geometric center of the
layout plane) so that the placement of blocks is balanced. Physically, it is
equivalent to have the forces acted upon the set of all movable blocks being
removed. Suppose there are movable blocks. Then, the force equations
become:

where is the total external force acted upon the set of all movable blocks
by the fixed blocks and

The placement problem now becomes a problem in classical mechanics and
the variety of methods used in classical mechanics can be applied. To solve for
the set of force equations, one of the methods is to set the potential energy
equal to and apply the unconstrained minimization method,
i.e., Fletcher-Reeves method [FR64], since the solution of the force equations
correspond to the state of zero potential energy of the system.

Besides the implementation presented by Quinn [Qui75], there are various
implementations [AJK82, Got81, HK72, HWA78, Oht86, QB79].

7.3.4 Sequence-Pair Technique

A packing of set of rectangles is nothing but non-overlapping placement of
rectangles. Sequence-pair is a representation of such a packing in terms of a
pair of module name sequences. In algorithms like simulated annealing solution
space is infinite and thus the algorithms stops the search for optimal solution
half-way and outputs the result. A finite solution space which includes an
optimal solution is the key for successful optimization. Sequence-pair technique
generates such a finite solution space. Murata et. al. proved in [MFNK96]
that searching the solution space generated by sequence-pair technique using
simulated annealing placement algorithm where move is change of the sequence-
pair, gives efficient rectangular packing.

A procedure called Gridding is used to encode a placement on a chip to a
sequence-pair. Let P be a packing of modules on chip C. In gridding proce-
dure non-intersecting,non-overlapping lines (lines doesn’t cross boundaries
of modules also) are drawn from south-west corner to north-east corner of the
chip and each line passes through one module diagonally. These lines can be
linearly ordered and this is of sequence-pair Second order of
sequence-pair can be obtained by drawing similar kind of lines from south-east
corner of the chip to north-west corner of the chip.

Given a sequence-pair one of the optimal solution under the con-
straint can be obtained in time by applying the longet path algorithm

234 Chapter 7. Placement

for vertex weighted directed acyclic graphs. A relation (LeftO f, RightO f,
BelowO f, AboveO f) between a pair of modules can be determined based on
the location of modules relative to each other. Prom the given sequence-pair

it is easy to generate such relations between modules of the chip. If
leftof means is left side of will be left side of if

is before in both the orders of sequence-pair.
In Figure 7.7 sequence-pair for the given placement is abcd, cdab.

LeftOf(a) = () , Modules that are after a in both the orders of sequence-pair.
RightOf(a) = (b),Modules that are before a in both the orders of sequence-pair.
AboveOf (a) = (), Modules that are before a in first order and after ’a’ in second
order of sequence-pair.
BelowOf(a) = (c,d), Modules that are after a in first order and before ’a’ in
second order of sequence-pair.

In Figure 7.8 horizontal and vertical constraint graphs are generated for the
sequence-pair abcd, cdab.

A directed and vertex-weighted graph called ”horizontal-constraint graph”
can be constructed using modules as verticies, module widths as weight of

vetices and leftof relation as edges of graph. Similarly using ”below” relation
and height of the block vertical-constraint graph can be generated. For
both the graphs source and sink vertices are out side the chip boundary with

weight of zero. Neither of these graphs contains any directed cycle. Module
pairs that have horizontal edges in do not overlap horizontally and similarly
module pairs that have vertical edges in do not overlap vertically. Thus no
two modules overlap each other in the resultant placement because any pair
of modules are either in horizontal or vertical relation. The width and height
of the chip is determined by the longest path length between the source and
the sink in and Since the width and height of the chip is indepen-
dently minimum, the resultant packing is the best of all the packings under the
constraint. The longest path length calculation on each graph can be done in
O(m2) time, proportional to the number of edges in the graph.

For a given chip C of modules sequence-pairs are possible and
each sequence-pair can be mapped to a packing in time, and atleast one
of the sequence-pair corresponds to the optimal packaging solution. When the
orientation of the block is not fixed then the size of the solution space increases
to

Authors of [MFNK96] applied this technique in a simulated annealing al-
gorithm where move is a change of the sequence-pair. They have used three
kinds of pair-interchanges.

1.

2.

Two module names in for placement optimization.

Two module names in both and for placement optimization.

7.3. Simulation Based Placement Algorithms 235

236 Chapter 7. Placement

3. Width and Height of a module for orientation optimization.

The initial sequence-pair is made as which corresponds to a linear
horizontal arrangement of modules. The temparature was decreased exponen-
tially. Operation 1 was performed with higher probability in higher tempera-
tures and operation 3 was performed with higher probability in lower temper-
atures to achieve better results.

The above technique can be extended to consider wire lengths also.

7.3.5 Comparison of Simulation Based Algorithms

Both the simulated annealing and simulated evolution are iterative and prob-
abilistic methods. They can both produce optimal or near-optimal placements,
and they are both computation intensive. However, the simulated evolution
has an advantage over the simulated annealing by using the history of previous
trial placements. The simulated annealing can only deal with one placement
configuration at a time. In simulated annealing it is possible that a good config-
uration maybe obtained and then lost when a bad configuration is introduced
later. On the other hand, the good configuration has much better chance to
survive during each iteration in simulated evolution since there are more than
one configurations being kept during each iteration. Any new configuration is
generated by using several configurations in simulated evolution. Thus, history
of previous placements can be used. However, the genetic method has to use
much more storage space than the simulated annealing since it has to memorize
all individual configurations in the population. Unlike simulated annealing and
simulated evolution, force directed placement is applicable to general designs,
such as full custom designs. The force-directed methods are relatively faster
compared to the simulated annealing and genetic approaches, and can produce
good placement.

7.4 Partitioning Based Placement Algorithms

This is an important class of algorithms in which the given circuit is re-
peatedly partitioned into two subcircuits. At the same time, at each level of
partitioning, the available layout area is partitioned into horizontal and verti-
cal subsections alternately. Each of the subcircuits so partitioned is assigned
to a subsection. This process is carried out till each subcircuit consists of a
single gate and has a unique place on the layout area. During partitioning, the
number of nets that are cut by the partition is usually minimized. In this case,
the group migration method can be used.

7.4.1 Breuer’s Algorithm

The main idea for Breuer’s algorithm [Bre77a, Bre77b] is to reduce the num-
ber of nets being cut when the circuit is partitioned. Various objective functions

have been developed for this method. These objective functions are as given
below.

1.

2.

3.

Total net-cut objective function: All the nets that are cut by the
partitioning are taken into account. This sum includes all nets cut
by both horizontal and vertical partitioning cut lines. Minimizing this
value is shown to be equivalent to minimizing the semi-perimeter wire-
length [Bre77a, Bre77b].

Min-max cut value objective function: In the case of standard cells
and gate arrays, the channel width depends on the number of nets that
are routed through the channel. The more the number of nets the larger
is the channel width and therefore the chip size. In this case the objec-
tive function is to reduce the number of nets cut by the cut line across
the channel. This will reduce the congestion in channels having a large
number of nets but at the expense of routing them through other chan-
nels that have a fewer number of nets or through the sparser areas of the
channel.

Sequential cut line objective function: A third objective function is
introduced to ease the computation of net cuts. Even though the above
two objective functions represent a placement problem more accurately,
it is very difficult to compute the minimum net cuts. This objective
function reduces the number of nets cut in a sequential manner. After
each partition, the number of nets cut is minimized. This greedy approach
is easier to implement, however, it may not minimize the total number of
nets cut.

In addition to the different objective functions, Breuer also presented several
placement procedures in which different sequence of cut lines are used.

1.

2.

Cut Oriented Min-Cut Placement: Starting with the entire chip,
the chip is first cut by a partition into two blocks. The circuit is also
partitioned into two sub circuits so that the net cut is minimized. All the
blocks formed by the partition are further partitioned by the second cut
line and this process is carried out for all the cut lines. This partitioning
procedure is sequential and easy to implement but it does not always
yield good results because of the following two reasons. Firstly, while
processing a cut line, the blocks created by the previous cut lines have
to be partitioned simultaneously. Secondly, when a cut line partitions a
block into two, the blocks to be placed in one of the partition might not
fit in the partition created by the cut line as it might require more space
than the block to be placed in the other partition (see Figure 7.9(a)).

Quadrature Placement Procedure: In this procedure, each region
is partitioned into four regions of equal sizes by using horizontal and
vertical cut lines alternatively. During each partitioning, the cutsize of
the partition is minimized. As it cuts through the center and reduces the

7.3. Partitioning Based Placement Algorithms 237

238 Chapter 7. Placement

3.

4.

cutsize, this process reduces the routing density in the center. Currently,
this is the most popular sequence of cut lines for min-cut algorithms (see
Figure 7.9(b)).

Bisection Placement Procedure: The layout area is repeatedly
bisected (partitioned into two equal parts) by horizontal cut lines until
each subregion consists of one row. Each of these rows is then repeatedly
bisected by vertical cut lines till each resulting subregion contains only
one slot thus fixing the positions of all blocks. This method is usually
used for standard cell placement and does not guarantee the minimization
of the maximum net cut per channel (see Figure 7.9(c)).

Slice Bisection Placement Procedure: In this method, a suitable
number of blocks are partitioned from the rest of the circuit and assigned
to a row, which is called a slicing, by horizontal cut lines. This process
is repeated till each block is assigned to a row. The blocks in each row
are then assigned to columns by bisecting using vertical cut lines. This
technique is most suitable for circuits which have a high degree of inter-
connection at the periphery since this procedure tends to reduce the wire

congestion at the periphery (see Figure 7.9(d)).

In any procedure described above, if the partitioning is to minimize the
number of nets cut by the partition, a group migration method can be used in
the partitioning process.

7.4.2 Terminal Propagation Algorithm

The partitioning algorithms partitioned the circuit merely to reduce the net
cut. Therefore, the partitioning algorithms cannot be directly used for place-
ment. This is illustrated in Figure 7.10. If the partitioning algorithm were
to be used directly, terminals A and B may move away from each other as a
result of partitioning, as shown in Figure 7.10(b). This not only increases the
net length but increases the congestion in the channels as well. Hence unlike
partitioning algorithms, placement algorithms which are based on partitioning
need to preserve the information regarding the terminals which are connected
and fall into two different partitions because of the cut. This can be done by
propagating a dummy terminal to the nearest point on the boundary, when
a net connecting two terminals is cut, as shown in Figure 7.10(c). When this
dummy terminal is generated, the partitioning algorithm will not assign the two
terminals in each partition, as shown in Figure 7.10(b), into different partitions
as this would not result in a minimum cut. This method called the terminal
propagation method was developed by Dunlop and Kernighan [DK85].

7.3. Partitioning Based Placement Algorithms 239

240 Chapter 7. Placement

7.5 Other Placement Algorithms

In this section, different kind of placement algorithms are described, which
are neither simulation based nor partition based. These include cluster growth,
quadratic assignment, resistive network optimization, and branch-and-bound
algorithms.

7.5.1 Cluster Growth

In this constructive placement algorithm, the bottom-up approach is used.
Blocks are placed sequentially in a partially completed layout. The seed or the
first block is usually selected and placed by the user. After the seed block is
placed, other blocks are selected and placed one by one to complete the layout.
The selection and placement techniques differentiate in various cluster growth
techniques.

In cluster growth algorithm, the block that is highly connected (have the
most connections) to the already placed blocks is selected to be placed. Then,
this block is placed either close to the block that it is highly connected to or
a exhaustive search is carried out for the best possible location for the block.
The outline of the cluster growth algorithm is shown in Figure 7.11.

The random constructive placement is a degenerate form of cluster growth.
In this case, the selection of blocks is made randomly and its position is also
fixed randomly. As this method does not take into account the interconnections
and other circuit features, in most of the cases, it does not produce a good
layout. This method is sometimes utilized to generate a basic layout for an
iterative placement algorithm.

7.5. Other Placement Algorithms 241

7.5.2 Quadratic Assignment

This method solves an abstract version of the gate array placement prob-
lem. It assumes that the blocks are points and have zero area. The cost of
connecting two blocks and given by is stored in a connection matrix.
The distance between slot k and slot l, given by is stored in a distance
matrix. The objective is to map the blocks onto slots such that the product
of connectivity and distance between the slots to which the blocks have been
mapped (which gives the net length), for all the blocks, is minimized. This
objective is equivalent to minimizing the total wire length for the circuit. This
placement problem has been formulated as a quadratic assignment problem by
Hall [Hal70]. If C is the connection matrix and is the sum of all elements in
the th row of C, then a diagonal matrix D can be defined as,

Let a matrix E be defined as E = D - C and and
be row vectors representing the – and – coordinates of

the desired solution. Hall proved that a nontrivial solution is obtained and the
objective function is minimized if the smallest eigenvalues of the matrix E are
chosen. The corresponding eigenvectors X and Y then give the coordinates of
all the blocks.

7.5.3 Resistive Network Optimization

The placement problem has been transformed into the problem of minimizing
the power dissipation in a resistive network by Cheng and Kuh [CK84]. The
objective function, which is the squared Euclidean wire length, is written in
a matrix form. This representation is similar to the matrix representation of
resistive networks. This method can include fixed blocks in the formulation.
Also, blocks with irregular sizes are allowed within cell rows. The algorithm
comprises of subprograms which are used for optimization, scaling, relaxation,
partitioning and assignment. The efficiency of the method comes from the fact
that it takes advantage of the sparsity of the netlist. Slot constraints are used
which guarantee the placement of blocks to be legal and each block is allocated
to one slot. There are upto constraints, where is the number of blocks.
The slot constraints are given by the equation

The algorithm maps the given circuit to a resistive network in which the
pads and fixed blocks are represented as fixed voltage sources. Using the slot
constraints the power dissipation in the circuit is minimized which causes the
blocks to cluster around the center of the chip. The higher order slot constraints
when applied cause the blocks to spread out. This step is called the scaling
step. A repeated partitioning and relaxation then aligns the blocks with the
slot locations.

242 Chapter 7. Placement

7.5.4 Branch-and-Bound Technique

The general branch-and-bound algorithm can be applied to the placement
problem. This method can be used for small circuits as it is a computationally
intensive method. The method assumes that all the feasible solutions and the
scores of these solutions are known. All these solutions make up a set called
the solution set. The solution can be systematically searched. The search can
be actually represented by a tree structure. The leaves of the tree are all the
solutions. The selection of a solution is equivalent to traversing a branch of
the tree and this step is called the branch step. If at any node in this tree a
solution yields a score which is greater than the currently known lowest, then
the search continues in another part of the decision tree. This step is the bound
step. Hence the algorithm actually prunes the decision tree which results in
reduced computation.

Consider a gate array with three slots and three blocks
At the first level of the tree, the root has three branches, each corresponding
to a different placement of in three different slots. All the child nodes of
the root will have two branches, each specifying two positions of in the
remaining two slots. Finally, all grand children of root will have exactly one
branch, specifying the slot for

The branch-and-bound algorithm traverses the tree and computes the cost
of the solution at any given node. The cost can simply be the total wire length
due to the placement of blocks upto that node. If this cost is higher than
another known placement, this subtree need not be explored.

7.6 Performance Driven Placement

The delay at chip level, which depends on interconnecting wires plays a
major role in determining the performance of the chip. As the blocks in a
circuit become smaller and smaller, the size of the chip decreases. As a result,
the delay due to the connecting wire becomes a major factor for high perfor-
mance chips. The placement algorithms for high performance chips have to
generate placements which will allow routers to route nets within the timing
requirements. Such problems are called performance driven placement and the
algorithms are called performance driven algorithms. The performance driven
placement algorithms can be classified into two major categories, one which
use the net-based approach and the other which use the path-based approach.
In path-based approach [Don90, JK89], the critical paths in the circuit are
considered and the placement algorithms try to place the blocks in a manner
that the path length is within its timing constraint. On the other hand, the
net-based approach [DEKP89, Dun84, Oga86, HNY87, MSL89], tries to route
the nets to meet the timing constraints on the individual nets instead of con-
sidering the paths. In this case, the timing requirement for each net has to be
decided by the algorithm. Usually a pre-timing analysis generates the bounds
on the netlengths which the placement algorithms have to satisfy while plac-
ing the blocks. Gao, Vaidya and Liu [GVL91] presented a algorithm for high

7.7. Recent Trends 243

performance placement. The algorithm consists of the following steps:

1.

2.

3.

4.

Upper bounds for the netlengths are deduced from the timing require-
ments which is a part of the input to the algorithm. Each net has a set of
such upper bounds. This provides the algorithm with maximum flexibil-
ity. The timing requirements are expressed by a set of linear constraints
which are solved using convex programming techniques. A new convex
programming algorithm is used for which the computational complexity
depends only on the number of variables rather than the number of linear
constraints.

A modified min-cut placement algorithm is used to obtain the placement
of the blocks. The upper bounds calculated in the previous step guide
the min-cut algorithm in placing the blocks. The min-cut algorithm,
is a modified version of the Fiduccia’s min-cut algorithm which tries to
minimize the number of nets whose lengths exceed their corresponding
upper bounds in addition to minimizing the size of the cutset.

The next step is to check whether all timing requirements are satisfied in
the placement generated by the modified min-cut placement algorithm.

In case all the timing requirements are met, the placement is valid and
is accepted. Otherwise the set of upper-bounds obtained in step 1 is
modified and the steps 2 and 3 are repeated. Most other algorithms
could not handle situations where the placement generated did not meet
the timing specifications.

7.7 Recent Trends

In Very Deep Sub-Micron(VDSM) designs, Placement problem is considered
much more than simply achieving the routability of the design and minimizing
the chip die area . Several other critical issues such as timing, zero clock-
skew, even power distribution are increasing the complexity of the placement
problem exponentially. Since placement phase is one of the early phases of the
IC physical design, lot of attention is paid to placement phase in IC design
cycle.

Timing driven placement is very critical to IC design and some of the
techniques to perform timing driven placement are discussed in
[RMNP97], [SS95], and [SKT97].

Algorithms to estimate the wire lengths are becoming part of placement
algorithms because accurate estimation of wire lengths help to fix the problems
in placement phase itself rather than in routing phase. Estimation of wirelength
during the placement stage helps to understand the routability of the design.
One of the techniques to estimate wire length is discussed in

1. Early Placement to obtain better Wire Load Models(WLM) for synthesis.
WLM is a parameter for the delay estimate for logic synthesis algorithm.

244 Chapter 7. Placement

2.

3.

4.

Placement for Cross talk avoidance.

Placement for Minimizing clock skew.

Placement for even power distribution.

7.8 Summary

Placement is a key step in physical design cycle. Several placement algo-
rithms have been presented. Simulated annealing and simulated evolution are
two most successful placement algorithm. Although these algorithms are com-
putationally intensive, they do produce good placements. Integer programming
based algorithms for floorplanning have been also been successful. Several al-
gorithms have been presented for pin assignment, including optimal pin assign-
ment for channel pin assignment problems. The output of the placement phase
must be routable, otherwise placement has to be repeated.

7.9 Exercises

1.

† 2.

† 3.

‡ 4.

Consider the following blocks.

represents the center to center
distance between blocks and then determine if these blocks can be
placed together so that the distances between the blocks are within their
specified values. The distances that are to be maintained are

Implement the Simulated Annealing algorithm. Consider the graph shown
in Figure 7.12. Each vertex represents rectangle whose dimensions are
specified in problem 1, the edges of the graph represent the connectiv-
ity of the blocks. Use the Simulated Annealing algorithm to generate a
placement.

For the placement obtained in problem 5, implement a pin assignment
algorithm which will reduce the total net length and minimize the max-
imum length of a net. Generate a complete routing for this placement.
The routing can be generated on an uniform grid and two nets can inter-
sect only when they are perpendicular to each other.

Implement the Simulated annealing algorithm for the general cell place-
ment problem.
Hint: Instead of exchanging a big block with a small block, a big block
can be exchanged with a cluster of small blocks.

7.9. Exercises 245

‡ 5.

6.

† 7.

‡ 8.

‡ 9.

 ‡ 10.

‡ 11.

‡ 12.

For a given placement, implement a pin assignment algorithm which will
rotate the pins on the blocks either in clockwise or anticlockwise direction
till the total net length is reduced. While rotating the pins on the blocks,
the order of these pins must be maintained.

For the blocks specified in problem 1 generate the integer program con-
straints to solve the placement problem. Consider some of the blocks as
flexible and solve the floorplanning problem using the integer program.

Implement a placement algorithm for high performance circuits which
takes into account path delays instead of net delays.

Modify the min-cut algorithm to incorporate the terminal propagation
scheme.

Develop Simulated Evolution algorithm for standard cells design.

Develop Simulated Evolution algorithm for full custom designs.

Several industrial libraries allow cells with different cell heights. This
leads to irregular shape channels. Suggest modifications required for ap-
plying the Simulated annealing algorithm to standard cells of uneven
heights.

Implement force directed placement algorithm for gate array design style.

Bibliographic Notes
A linear assignment algorithm for the placement problem has been discussed
in [Ake81]. Two partition/interchange processes are described in [Pat81] for

246 Chapter 7. Placement

solving the placement problem. The graph is partitioned into several smaller
graphs for initial placement in both the methods and finally interchange opti-
mization is carried out. The simulated annealing optimization method has been
adapted to the placement of macros on chips for full custom design in [JJ83].

A hierarchical placement procedure incorporating detailed routing and tim-
ing information has been discussed in The procedure is based on
the min-cut method. Global routing and timing analysis is carried out af-
ter every cut which guides the subsequent cell partitioning. [Leb83] discusses
an interactive program to get a good floorplan. It includes graphical output,
block and pad manipulation and a cost function for estimation of total wire
length. In [MM93] S. Mohan and P. Mazumder present a placement algo-
rithm in the distributed computing environment. In [SSL93] S. Sutanthavibul,
E. Shragowitz, and R. Lin present a timing-driven placement algorithms for
high performance VLSI chips. In [SDS94] Shanbhag, Danda, and Sherwani
presented an algorithm for mixed macro block and standard cell designs. Algo-
rithm for mixed macro-cell and standard-cell placement to minimize the chip
size and interconnection wire length is presented in [XGC97]. Quadratic place-
ment technique is revisited in [ACHY97].

Chapter 8

Global Routing

In the placement phase, the exact locations of circuit blocks and pins are
determined. A netlist is also generated which specifies the required inter-
connections. Space not occupied by the blocks can be viewed as a collection of
regions. These regions are used for routing and are called as routing regions.
The process of finding the geometric layouts of all the nets is called routing.
Nets must be routed within the routing regions. In addition, nets must not
short-circuit, that is, nets must not intersect each other.

The input to the general routing problem is:

1.

2.

3.

4.

Netlist,

Timing budget for nets, typically for critical nets only,

Placement information including location of blocks, locations of pins on
the block boundary as well as on top due to ATM model (sea-of-pins
model), location of I/O pins on the chip boundary as well as on top due
to C4 solder bumps,

RC delay per unit length on each metal layer, as well as RC delay for
each type of via.

The objective of the routing problem is dependent on the nature of the chip.
For general purpose chips, it is sufficient to minimize the total wire length, while
completing all the connections. For high performance chips, it is important to
route each net such that it meets its timing budget. Usually routing involves
special treatment of such nets as clock nets, power and ground nets. In fact,
these nets are routed separately by special routers.

A VLSI chip may contain several million transistors. As a result, tens of
thousands of nets have to be routed to complete the layout. In addition, there
may be several hundreds of possible routes for each net. This makes the routing
problem computationally hard.

One approach to the general routing problem is called Area Routing, which
is a single phase routing technique. This technique routes one net at a time

248 Chapter 8. Global Routing

considering all the routing regions. However, this technique is computationally
infeasible for an entire VLSI chip and is typically used for specialized problems,
and smaller routing regions.

The traditional approach to routing, however, divides the routing into two
phases. The first phase is called global routing and generates a ‘loose’ route
for each net. In fact it assigns a list of routing regions to each net without
specifying the actual geometric layout of wires (see Figure 8.2(a)). The second
phase, which is called detailed routing, finds the actual geometric layout of
each net within the assigned routing regions (see Figure 8.2(b)). Unlike global
routing, which considers the entire layout, a detailed router considers just one
region at a time. The exact layout is produced for each wire segment assigned
to a region, and vias are inserted to complete the layout. In fact, even when
the routing problem is restricted to a routing region, such as channels (see
definition below), it cannot be solved in polynomial time, i.e., the channel

249

routing problem is NP-complete [Szy85].
In this book, we will briefly describe area routing techniques. Basically, we

will follow the two phase approach to routing. In the following, we will discuss
global and detailed routing in more detail. Figure8.3 shows a typical two phase
routing approach.

The global routing consists of three distinct phases; Region definition, Re-
gion Assignment, and Pin assignment. The first phase of global routing is to
partition the entire routing space into routing regions. This includes spaces
between blocks and above blocks, that is, OTC areas. Between blocks there
are two types of routing regions: channels and 2D-switchboxes. Above blocks,
the entire routing space is available, however, we partition it into smaller re-
gions called 3D-switchboxes. Each routing region has a capacity, which is the
maximum number of nets that can pass through that region. The capacity of
a region is a function of the design rules and dimensions of the routing regions
and wires. A channel is a rectangular area bounded by two opposite sides by the
blocks. Capacity of a channel is a function of the number of layers (l), height ()
of the channel, wire and wire , i.e.,
For example, if for channel C shown in Figure 8.1, l = 2,

then the capacity is In a five layer process, only M1, M2 and
M3 are used for channel routing. Note that channel may also have pins in th
middle. The pins in the middle are actually used to make connections to nets
routed in 3D-switchboxes. A 2D-switchbox is a rectangular area bounded on
all sides by blocks. It has pins on all four sides as well as pins in the middle.
The pins in the middle are actually used to make connections to nets routed
in 3D-switchboxes. A 3D-switchbox is a rectangular area with pins on all six
sides. The pins on the bottom are the pins which allow for connections to nets
in channels, 2D-switchboxes and nets using ATM (sea-of-pins) on top of blocks.
The pins on the top may be required to connect to C4 solder bumps.

Consider the five metal layer process and assume that blocks use upto third
metal layer for internal routing. In this case, channel and 2D-switchboxes will
be used in Ml, M2 and M3 to route regions between the blocks. Furthermore,
the M4 and M5 routing space will be partitioned into several smaller routing
regions. The three different routing regions are shown in Figure ref3dswitchbox-
6. Another approach to region definition is to partition the M4 and M5 along
block boundaries. In this case, channels and 2D-switchboxes will be routed in
five metal layers. In addition the regions on top of blocks will be 3D-switchboxes
and need to be routed in M4 and M5.

The second phase of global routing can be called region assignment. The
purpose of this phase to identify the sequence of regions through which a net
will be routed. This phase must take into account the timing budget of each
net and routing congestion of each routing region. After the region assignment,
each net is assigned a pin on region boundaries. This phase of global routing
is called pin assignment. The region boundaries can be between two channels,
channel and 3D-switchbox, 2D-switchbox and a 3D-switchbox among others.
The pin assignment phase allows the regions to be somewhat independent.

After global routing is complete, the output is pin locations for each net on

250 Chapter 8. Global Routing

251

the all the region boundaries it crosses. Using this information, we can extract
the length of the net and estimate its delay. If some net fails to meet its timing
budget, it needs to be ripped-up or global routing phase needs to be repeated.

Detailed routing includes channel routing, 2D-switchbox and 3D-switchbox
routing. Typically channels and 2D-switchboxes should be routed first, since
channels may expand. After channels and 2D-switchboxes have been routed,
the pin locations for 3D-switchboxes are fixed and then their routing can be
completed. Channels are routed in a specific order to minimize the impact of
channel expansion on the floorplan.

After detailed routing is completed, exact wire geometry can be extracted
and used to compute RC delays. The delay model not only considers the
geometry (length, width, layer assignments and vias) of a net, but also the
relationship of this net with other nets. If some nets fail to meet their timing
constraints, they need to be ripped-up or detailed routing of the specific routing
region needs to be repeated.

In this chapter, we discuss techniques for global routing. We will also discuss
some techniques that can be used for area routing. In Chapter 7 we will discuss
the detailed routing techniques. Chapter 8 is dedicated to routing techniques
on top of blocks. Chapter 9 discusses the routing of special nets, such as clock
and power nets.

Global routing has to deal with two types of nets. Critical nets, which
must be routed in high performance layers and other nets. Fir very critical

252 Chapter 8. Global Routing

nets, global router must use a path which takes the nets from its channel (or
2D-switchbox) through 3D-switchboxes to the termination point in a channel
or a 2D-switchbox or C4 bump. Other nets which may not need use of M4
and M5 can be routed through a sequence of channels. Global router must not
allocate more nets to a routing region than the region capacity. Let us illustrate
this concept of global routing by an example. Suppose that each channel in
Figure 8.5 has unit capacity. We consider routing of two nets
and There are several possible routes for net Two such
routes and are shown in Figure 8.6. If the objective is to route just

obviously is a better choice. However, if both and are to be
routed, it is not possible to use for since it would make unroutable.
Thus global routing is computationally hard since it involves trade-offs between
routability of all nets and minimization of the objective function. In fact, we
will see that global routing of even a single multi-terminal net is NP-complete.
In order to simplify presentation, in the rest of the chapter, we will consider
global routing with channels and 2D-switchboxes. We will note exceptions for
3D-switchboxes, as and when appropriate. In addition, we will assume that
timing constraints are translated into length constraints, hence the objective is
to route each net within its length budget.

8.1. Problem Formulation 253

8.1 Problem Formulation

The global routing problem is typically studied as a graph problem. The
routing regions and their relationships and capacities are modeled as graphs.
However, the design style strongly effects the graph models used and as a result,
there are several graph models. Before presenting the problem formulation of
global routing, we discuss three different graph models which are commonly
used.

The graph models for area routing capture the complete layout information
and are used for finding exact route for each net. On the other hand, graph
models for global routing capture the adjacencies and routing capacities of
routing regions. We discuss three graph models viz; grid graph model, checker
board model and the channel intersection graph model. Grid graphs are most
suitable for area routing while the channel intersection graphs are most suitable
for global routing.

1. Grid Graph Model: The simplest model for routing is a grid graph.
The grid graph is a representation of a layout. In this
model, a layout is considered to be a collection of unit side square cells
arranged in a h × w array. Each cell is represented by a vertex
and there is an edge between two vertices and if cells and
are adjacent. A terminal in cell is assigned to the corresponding ver-
tex The capacity and length of each edge is set equal to one, i.e.,
c(e) = 1, l(e) = 1. It is quite natural to represent blocked cells by setting
the capacity of the edges incident on the corresponding vertex to zero.
Figure 8.7(b) shows a grid graph model for a layout in Figure 8.7(a).

Given a grid graph, and a two terminal net, the routing problem is simply
to find a path connecting the vertices, corresponding to the terminals, in
the grid graph. Whereas, for a multi-terminal net, the problem is to find
a Steiner tree in the grid graph.

The more general routing problems may consider k-dimensional grid
graphs, however, the general techniques for routing essentially remain

254 Chapter 8. Global Routing

2.

3.

the same in all grids. In fact, routing in grids, should be considered as
area routing, since the actual detailed route of the net is determined.

Checker Board Model: Checker board model is a more general model
than the grid model. It approximates the entire layout area as a ‘coarse
grid’ and all terminals located inside a coarse grid cell are assigned that
cell number. The checker board graph is constructed in a
manner analogous to grid graph. The edge capacities are computed based
on the actual area available for routing on the cell boundary. Figure 8.8(b)
shows a checker board graph model of a layout in Figure 8.8(a). Note that
the partially blocked edges have unit capacity, whereas, the unblocked
edges have a capacity of 2. Given the cell numbers of all terminals of a
net, the global routing routing problem is to find a routing in the coarse
grid graph.

A checker board graph can also be formed from a cut tree of floorplan.
A block in a floorplan is represented by a vertex and there is an
edge between vertices and if the corresponding blocks and are
adjacent to each other. Note that, unlike the cells in a grid, two adjacent
modules in a cut tree of a floorplan may not entirely share a boundary
with each other. Figure 8.9(b) shows an example of a checker board graph
for a cut tree of a floorplan in Figure 8.9(a).

Channel Intersection Graph Model: The most general and accurate
model for global routing is the channel intersection model. Given a layout,
we can define a channel intersection graph where each
vertex represents a channel intersection Two vertices and

are adjacent in if there exists a channel between and In
other words, the channels appear as edges in Figure 8.10(b) shows
a channel intersection graph for a layout in Figure 8.10(a). Let c(e) and
l(e) be the capacity and length of a channel associated with edge
The channel intersection graph should be extended to include the pins
as vertices so that the connections between the pins can be considered
in this graph. For example, the extended channel intersection graph in

8.1. Problem Formulation 255

Figure 8.11(b) is obtained by adding vertices representing terminals to
the channel intersection graph in Figure 8.10(b).

In the rest of the chapter, the type of routing graph will be clear from
the context and will be denoted as G = (V, E).

The global routing problem of two terminal nets is to find path for each net
in the routing graph such that the desired objective function is optimized. In
addition, the number of nets using each edge (traffic through the corresponding
channel) should not violate the capacity of that edge. For example, the global
routes for nets and are shown as the paths and in Figure 8.11 (b).
It is obvious from the example that routing of one net at a time causes ordering
problem for nets. It is important to note that the overall optimal solution may
consist of suboptimal solutions of individual nets.

For a net with more than two terminals, the path model discussed above
is not appropriate. In fact, global routing of multi-terminal nets can be for-
mulated as a Steiner tree problem. As defined in Chapter 3, a Steiner tree is
a tree interconnecting a set of specified points called demand points and some
other points called Steiner points. The number of Steiner points is arbitrary.
The global routing problem can be viewed as a problem of finding a Steiner
tree for each net in the routing graph such that the desired objective function
is optimized. In addition, the capacity of the edges must not be violated. As
discussed earlier, a typical objective function is to minimize the total length of
selected Steiner trees. In high-performance circuits, the objective function is
to minimize the maximum wire length of selected Steiner trees. A more precise
objective function for high-performance circuits is to minimize the maximum
diameter of selected Steiner trees. The diameter of a Steiner tree is defined as
the maximum length of a path between any two vertices in the Steiner tree. If
there is no feasible solution to an instance of a global routing problem, then
the netlist is not routable as the capacity constraints of some edges can not be
satisfied. In such cases, the placement phase has to be carried out again.

The formal statement of global routing problem is as follows: Given, a net-
list the routing graph G = (V, E), find a Steiner tree

256 Chapter 8. Global Routing

8.1. Problem Formulation 257

for each net such that, the capacity constraints are not violated,
i.e., for all where is the number of
wires that pass through the channel corresponding to edge if is
in it is 0 otherwise). A typical objective function is to minimize the total
wire length where is the length of Steiner tree

In the case of high-performance chips the objective function is to minimize
the maximum wire length Note that minimization of maximum
wire length may not directly reduce the diameter of the Steiner trees. Consider
the example shown in Figure 8.12. The two Steiner trees are both of length 30,
but the Steiner tree shown in Figure 8.12(b) has diameter equal to 20, which
is much smaller that the diameter of the tree shown in Figure 8.12(a).

8.1.1 Design Style Specific Global Routing Problems

The objective of global routing in each design style is different. We will
discuss the global routing problem for full custom, standard cell and gate array.
Global routing problem for FPGA and MCM is discussed in Chapters 11 and
12 respectively.

1.

2.

Full custom: The global routing problem formulation for full custom
design style is similar to the general formulation described above. The
only difference is how capacity constraints guide the global routing solu-
tion. In the general formulation the edge capacities cannot be violated.
In full custom, since channels can be expanded, some violation of capac-
ity constraints is allowed. However, major violation of capacities which
leads to significant changes in placement are not allowed. In such case,
it may be necessary to carry out the placement again.

Standard cell: In the standard cell design style, at the end of the place-
ment phase, the location of each cell in a row is fixed. In addition, the
capacity and location of each feedthrough is fixed. However, the chan-
nel heights are not fixed. They can be changed by varying the distance
between adjacent cell rows to accommodate wires assigned by a global
router. As a result, they do not have a predetermined capacity. On the
other hand, feedthroughs have predetermined capacity. The area of a

258 Chapter 8. Global Routing

standard cell layout is determined by the total cell row height and the
total channel height, where the total cell row height is the summation
of all cell row heights and the total channel height is the summation of
all channel heights. As the total cell row height is fixed, the layout area
could only be minimized by minimizing the total channel height. As a
result, standard cell global routers attempt to minimize the total chan-
nel height. Other optimization functions include the minimization of the
total wire length and the minimization of the maximum wire length.

The edge set of G = (V, E) are partitioned into two disjoint sets
and i.e., Edges in represent feedthroughs, whereas,
edges in represent channels. Capacity of each edge is equal to
the number of wires that can pass through the corresponding feedthrough.
Whereas, the capacity of an edge is set to infinity. Let
represent a edge in channel and let for all =

where p is the total number of channels in the layout.

Thus, the global routing problem is to find a Steiner tree for each net
such that, the capacity constraints are not violated, i.e.,

for all where is the number of
wires that go through the feedthrough corresponding to edge
if is in it is 0 otherwise). The optimization function is either to
minimize the total wire length or to minimize the maxi-
mum wire length or to minimize the total channel height

is the length of Steiner tree

If there is no feasible solution for a global routing problem, feedthrough
capacities are not sufficient, (see Figure 8.13.) Additional feedthroughs
should be inserted in order to allow global routing.

Recently, a new approach, called over-the-cell routing, has been presented
for standard cell design, in which, in addition to the channels and feed-
throughs the over-the-cell areas are available for routing. Availability of
over-the-cell areas changes the global routing problem. In Chapter 8, this
approach is discussed in detail.

3. Gate array: In gate array design style, the size and location of all cells
and the routing channels and their capacities are fixed by the architec-
ture. This is the key difference between gate array and other design
styles. Unlike the full custom design style and standard cell design style
the primary objective of the global routing in gate arrays is to guarantee
routability. The secondary objective may be to minimize the total wire
length or to minimize the maximum wire length. Other than these objec-
tives, the formulation of global routing problem in gate array design style
is same as the general global routing formulation. If there is no feasible
solution to a given instance of global routing problem, the netlist can not
be routed (see Figure 8.14). In this case, the placement phase has to be
carried out again as the capacity of routing channels is fixed in gate array
design style.

8.1. Problem Formulation 259

260 Chapter 8. Global Routing

8.2 Classification of Global Routing
Algorithms

Basically, there are two kinds of approaches to solve global routing problem;
the sequential and the concurrent.

1. Sequential Approach: In this approach, as the name suggests, nets
are routed one by one. However, once a net has been routed it may block
other nets which are yet to be routed. As a result, this approach is very
sensitive to the order in which the nets are considered for routing. Usu-
ally, the nets are sequenced according to their criticality, half perimeter of
the bounding rectangle and number of terminals. The criticality of a net
is determined by the importance of the net. For example, clock net may
determine the performance of the circuit and therefore it is considered
to be a very important net. As a result, it is assigned a high critical-
ity number. The nets on the critical paths are assigned high criticality
numbers since they also play a key role in determining the performance
of the circuit. The criticality number and other factors can be used to
sequence nets. However, sequencing techniques do not solve the net or-
dering problem satisfactorily. In a practical router, in addition to a net
ordering scheme an improvement phase is used to remove blockages when
further routing of nets is not possible. However, this also may not over-
come the shortcoming of sequential approach. One such improvement
phase involves ‘rip-up and reroute’ [Bol79, DK82] technique, while other
involves ‘shove-aside’ technique. In ‘rip-up and reroute’, the interfering
wires are ripped up, and rerouted to allow routing of the affected nets.
Whereas, in ‘Shove-Aside’ technique, wires that will allow completion of
failed connections are moved aside without breaking the existing connec-
tions. Another approach [De86] is to first route simple nets consisting of
only two or three terminals since there are few choices for routing such
nets. Usually such nets comprise a large portion of the nets (up to 75%)
in a typical design. After the simple nets have been routed, a Steiner
tree algorithm is used to route intermediate nets. Finally, a maze rout-
ing algorithm is used to route the remaining multi-terminal nets (such as
power, ground, clock etc.) which are not too numerous.

The sequential approach includes:

(a)

(b)

Two-terminal algorithms:
i. Maze routing algorithms

ii. Line-probe algorithms
iii. Shortest path based algorithms

Multi-terminal algorithms:

i. Steiner tree based algorithms

2. Concurrent Approach: This approach avoids the ordering problem
by considering routing of all the nets simultaneously. The concurrent

8.3. Maze Routing Algorithms 261

approach is computationally hard and no efficient polynomial algorithms
are known even for two-terminal nets. As a result, integer programming
methods have been suggested. The corresponding integer program is
usually too large to be employed efficiently. Hence, hierarchical methods
that work top down are employed to partition the problem into smaller
subproblems, which can be solved by integer programming. The integer
programming based concurrent approach will be presented in this chapter.

8.3 Maze Routing Algorithms

Lee [Lee61] introduced an algorithm for routing a two terminal net on a grid
in 1961. Since then, the basic algorithm has been improved for both speed and
memory requirements. Lee’s algorithm and its various improved versions form
the class of maze routing algorithms.

Maze routing algorithms are used to find a path between a pair of points,
called the source(s) and the target(t) respectively, in a planar rectangular grid
graph. The geometric regularity in the standard cell and gate array design style
lead us to model the whole plane as a grid. The areas available for routing are
represented as unblocked vertices, whereas, the obstacles are represented as
blocked vertices. The objective of a maze routing algorithm is to find a path
between the source and the target vertex without using any blocked vertex.
The process of finding a path begins with the exploration phase, in which
several paths start at the source, and are expanded until one of them reaches
the target. Once the target is reached, the vertices need to be retraced to the
source to identify the path. The retrace phase can be easily implemented as
long as the information about the parentage of each vertex is kept during the
exploration phase. Several methods of path exploration have been developed.

8.3.1 Lee’s Algorithm

This algorithm, which was developed by Lee in 1961 [Lee61], is the most
widely used algorithm for finding a path between any two vertices on a planar
rectangular grid. The key to the popularity of Lee’s maze router is its simplicity
and and its guarantee of finding an optimal solution if one exists.

The exploration phase of Lee’s algorithm is an improved version of the
breadth-first search. The search can be visualized as a wave propagating from
the source. The source is labeled ‘0’ and the wavefront propagates to all the
unblocked vertices adjacent to the source. Every unblocked vertex adjacent to
the source is marked with a label ‘1’. Then, every unblocked vertex adjacent
to vertices with a label ‘1’ is marked with a label ‘2’, and so on. This process
continues until the target vertex is reached or no further expansion of the wave
can be carried out. An example of the algorithm is shown in Figure 8.15. Due
to the breadth-first nature of the search, Lee’s maze router is guaranteed to
find a path between the source and target, if one exists. In addition, it is
guaranteed to be the shortest path between the vertices.

262 Chapter 8. Global Routing

The input to the Lee’s Algorithm is an array B, the and
vertex. , denotes if a vertex is blocked or unblocked. The algorithm uses
an array L, where denotes the distance from the source to the vertex .
This array will be used in the procedure RETRACE that retraces the vertices
to form a path P, which is the output of the Lee’s Algorithm. Two linked lists
plist (Propagation list) and nlist (Neighbor list) are used to keep track of the
vertices on the wavefront and their neighbor vertices respectively. These two
lists are always retrieved from tail to head. We also assume that the neighbors
of a vertex are visited in counter-clockwise order, that is top, left, bottom and
then right.

The formal description of the Lee’s Algorithm appears in Figure 8.16. The
time and space complexity of Lee’s algorithm is for a grid of dimension
 .

The Lee’s routing algorithm requires a large amount of storage space and its
performance degrades rapidly when the size of the grid increases. There have
been numerous attempts to modify the algorithm to improve its performance
and reduce its memory requirements.

Lee’s algorithm requires up to bits per vertex, where bits are used to
label the vertex during the exploration phase and an additional bit is needed
to indicate whether the vertex is blocked. For an grid,
Acker [Ake67] noticed that, in the retrace phase of Lee’s algorithm, only two
types of neighbors of a vertex need to be distinguished; vertices toward the
target and vertices toward the source. This information can be coded in a
single bit for each vertex. The vertices in wavefront L are always adjacent to
the vertices in wavefront L – 1 and L + 1. Thus, during wave propagation,
instead of using a sequence 1, 2 ,3 , . . . , the wavefronts are labeled by a sequence

8.3. Maze Routing Algorithms 263

like 0, 0, 1, 1, 0, 0, …. The predecessor of any wavefront is labeled differently
from its successor. Thus, each scanned vertex is either labeled ‘0’ or ‘1’. Besides
these two states, additional states (‘block’ and ‘unblocked’) are needed for each
vertex. These four states of each vertex can be represented by using exactly
two bits, regardless of the problem size. Compared to Acker’s scheme, Lee’s
algorithm requires at least 12 bits per vertex for a grid size of 2000 × 2000.

It is important to note that Acker’s coding scheme only reduces the memory
requirement per vertex. It inherits the search space of Lee’s original routing
algorithm, which is in the worst case.

8.3.2 Soukup’s Algorithm

Lee’s algorithm explores the grid symmetrically, searching equally in the
directions away from target as well as in the directions towards it. Thus, Lee’s
algorithm requires a large search time. In order to overcome this limitation,
Soukup proposed an iterative algorithm in 1978 [Sou78]. During each iteration,
the algorithm explores in the direction toward the target without changing the
direction until it reaches the target or an obstacle, otherwise it goes away from

264 Chapter 8. Global Routing

the target. If the target is reached, the exploration phase ends. If the target is
not reached, the search is conducted iteratively. If the search goes away from
the target, the algorithm simply changes the direction so that it goes towards
the target and a new iteration begins. However, if an obstacle is reached, the
breadth-first search is employed until a vertex is found which can be used to
continue the search in the direction toward the target. Then, a new iteration
begins. Figure 8.17 illustrates the Soukup’s algorithm with an example. In
Figure 8.17, the number near a vertex indicates the order in which that vertex
was visited.

Figure 8.18 contains the formal description of Soukup’s Algorithm. The
notation used in the algorithm is similar to that used in the Lee’s algorithm
except for the array L. We use to denote the order in which the vertex
is visited during the exploration phase in this algorithm. Function
returns the direction from to Function NGHBR-IN-DIR returns
the neighbor of which is in the direction from to

The Soukup’s Algorithm improves the speed of Lee’s algorithm by a factor
of 10 to 50. It guarantees finding a path if a path between source and target
exits. However, this path may not be the shortest one. The search method for
this algorithm is a combined breadth-first and depth-first search. The worst
case time and space complexities for this algorithm are both , for a
grid of size .

8.3.3 Hadlock’s Algorithm

An alternative approach to improve upon the speed was suggested by Hadlock
in 1977 [Had75]. The algorithm is called Hadlock’s minimum detour algorithm.
This algorithm uses A* search method.

8.3. Maze Routing Algorithms 265

266 Chapter 8. Global Routing

Hadlock observed that the length of a path (P) connecting source and target
can be given by , where is Manhattan distance between
source and target and (P) is the number of vertices on path P that are directed
away from the target. The length of P is minimized if and only if is minimized
as is constant for given pair of source and target. This is the essence of
Hadlock’s algorithm. The exploration phase, instead of labeling the wavefront
by a number corresponding to the distance from the source, uses the detour
number. The detour number of a path is the number of times that the path has
turned away from the target. Figure 8.20 illustrates the Hadlock’s algorithm
with an example. In Figure 8.20, the number near a vertex indicates the order
in which that vertex was visited.

A formal description of Hadlock’s Algorithm is given in Figure 8.19. Func-
tion DETOUR-NUMBER() returns detour number of a vertex . Procedure
DELETE(nlist, plist) deletes the vertices which are in plist from nlist. Func-

8.3. Maze Routing Algorithms 267

tion MINIMUM-DETOUR(nlist) returns the minimum detour number among
all vertices in the list nlist.

The worst case time and space complexity of Hadlock’s algorithm is
for a grid of size .

8.3.4 Comparison of Maze Routing Algorithms

Maze routing algorithms are grid based methods. The time and space re-
quired by these algorithms depend linearly on their search space.

The search in Lee’s algorithm is conducted by using a wave propagating
from the source. The algorithm searches symmetrically in every direction,
using the breath-first search technique. Thus, it guarantees finding a shortest
path between any two vertices if such a path exists. However, the worst case
happens when the source is located at the center and the target is located at a
corner of routing area, in which all the vertices have to be scanned before the

268 Chapter 8. Global Routing

target is reached, (see Figure 8.21.)
The Soukup’s algorithm remedies the shortcoming of the breadth-first search

method by using a depth-first search until an obstacle is encountered. If an
obstacle is encountered, a breadth-first search method is used to get around
the obstacle. The search time in Soukup’s algorithm is usually smaller than
the Lee’s algorithm due to the nature of depth-first search method. However,
this algorithm may not find a shortest path between the source and target.
In Figure 8.22, the Soukup’s algorithm explores all the vertices and does not
find the shortest path between and . The worst case of Soukup’s algorithm
occurs when the search goes in the direction of the target, which is opposite
the direction of the passageway through the obstacle. Figure 8.23 shows an
example in which Soukup’s algorithm scans all vertices while finding a path
between and .

The Hadlock’s algorithm aims at both reducing the search time and finding
an optimal path between given two vertices. Basically, the Hadlock’s algorithm

8.4. Line-Probe Algorithms 269

is a breadth-first search method. As a result, it finds a shortest path if one
exists. The difference between the Hadlock’s algorithm and Lee’s algorithm is
the way in which the wavefront is labeled. The Hadlock’s algorithm label the
wavefront by the detour number instead of the distance from the source used in
the Lee’s algorithm. In this way, the search can prefer the direction toward the
target to the direction away from the target. This search time is shorter than
the Lee’s algorithm. When the direction of the search goes toward the target
and opposite the passageway through the obstacle, the worst case happens (see
Figure 8.24).

All the maze routers and many of their variations are grid based methods.
Information must be kept for each grid node. Thus, a very large memory
space is needed to implement these algorithms for a large grid. To give an
approximate estimate, a chip of size requires as much as 350
MBytes of memory and 66 seconds to route one net on a 15MIPS workstation.
There may be 5000 to 10000 nets in a typical chip. Such numbers make these
maze routing algorithms infeasible for large chips. In order to reduce the large
memory requirements and run times, line-probe algorithms were developed.

8.4 Line-Probe Algorithms

The line-probe algorithms were developed independently by Mikami and
Tabuchi in 1968 [MT68], and Hightower in 1969 [Hig69]. The basic idea
of a line probe algorithm is to reduce the size of memory requirement by using
line segments instead of grid nodes in the search. The time and space com-
plexities of these line-probe algorithms is O(L), where L is the number of line
segments produced by these algorithms.

The basic operations of these algorithms are as follows. Initially, lists slist
and tlist contain the line segments generated from the source and target re-
spectively. The generated line segments do not pass through any obstacle. If a
line segment from slist intersects with a line segment in tlist, the exploration
phase ends; otherwise, the exploration phase proceeds iteratively. During each
iteration, new line segments are generated. These segments originate from ‘es-
cape’ points on existing line segments in slist and tlist. The new line segments
generated from slist are appended to slist. Similarly, segments generated from
a segment in tlist are appended to tlist. If a line segment from slist intersects
with a line segment from tlist, then the exploration phase ends. The path can
be formed by retracing the line segments in set tlist, starting from the target,
and then going through the intersection, and finally retracing the line segments
in set slist until the source is reached.

The data structures used to implement these algorithms play an important
role in the efficiency considerations of the search for obstructions to probes.
Typically two lists, one for the horizontal lines and one for the vertical lines
are used. The use of two separate lists allows lines parallel to the direction of
the probe to be ignored, thus expediting the search.

The Mikami and the Hightower algorithms differ only in the process of

270 Chapter 8. Global Routing

8.4. Line-Probe Algorithms 271

choosing escape points. In Mikami’s algorithm, every grid node on the line
segment is an ‘escape’ point, which generates new perpendicular line segments.
This search is similar to the breadth-first search, and is guaranteed to find
a path if one exists. However, the path may not be the shortest one. Fig-
ure 8.25 shows a path generated by Mikami’s algorithm. On the other hand,
Hightower’s algorithm makes use of only a single ‘escape’ point on each line
segment. In the simple case of a probe parallel to the blocked vertices, the es-
cape point is placed just past the endpoint of the segment. Figure 8.26 shows a
path generated by Hightower’s algorithm. Hightower has described three such
processes, designed to help the router find a path around different types of
obstacles. The disadvantage in generating fewer escape points in Hightower’s
algorithm essentially means that it may not be able to find a path joining two
points even when such a path exists.

A formal description of these two algorithm is given in Figure 8.27. (As

272 Chapter 8. Global Routing

these two algorithms basically are the same, we just use one description for both
of them.) Procedure GENERATE(,) generates a line-probe from an escape
point , whereas, INSERT(, list) adds a line-probe to the list. Function

returns TRUE if line-probes and intersect, it returns
FALSE otherwise.

Maze routers and many of their variations are grid based methods. Infor-
mation must be kept for each grid node. Thus, a very large memory space is
needed to implement these algorithms for a large grid. The line-probe algo-
rithms, however, require the information to be kept for each line segment. Since
the number of line segments is very small compared to the nodes in a grid, the
required memory is greatly reduced. The key difference between the two line
probe algorithms is that, the Mikami’s algorithm can find a path between any
two vertices if one exists. This path may not be the shortest path. Hightower’s
algorithm may not be able to find a path joining two vertices even if such a path
exists. A comparison of the maze routing algorithms and line-probe algorithms
in their worst cases is given in Table 8.1. (h × denotes the size of grid and L
denotes the number of line segments generated in line-probe algorithms).

8.5 Shortest Path Based Algorithms

A simple approach to route a two-terminal net uses Dikjstra’s shortest al-
gorithm [Dij59]. Given, a routing graph G = (V , E), a source vertex
and a target vertex a shortest path in G joining s and t can be found
in time. The algorithm in Figure 8.28 gives formal description of an
algorithm based on Dijkstra’s shortest path algorithm for global routing a set

of two-terminal nets in a routing graph G. The output of the algorithm is a
set of paths for the nets in A path gives a path for net
The time complexity of the algorithm SHORT-PATH-GLOBAL-ROUTER is

Note that the length of an edge is increased by a factor whenever
a congested edge is utilized in the path of a net. This algorithm is suitable

8.6. Steiner Tree based Algorithms 273

for channel intersection graph, since it assumes that congested channels can be
expanded. If the edge congestions are strict, the algorithm can be modified to
use ‘rip-up and reroute’ or ‘shove aside’ techniques [Bol79, DK82].

8.6 Steiner Tree based Algorithms

Global routing algorithms presented so far are not suitable for global rout-
ing of multi-terminal nets. Several approaches have been proposed to extend
maze routing and line-probe algorithms for routing multi-terminal nets. In one
approach, the multi-terminal nets are decomposed into several two-terminal
nets and the resulting two-terminal nets are routed by using a maze routing
or line-probe algorithm. The quality of routing, in this approach, is dependent
on how the nets are decomposed. This approach produces suboptimal results
as there is hardly any interaction between the decomposition and the actual
routing phase. In another approach, the exploration can be carried out from
several terminals at a time. It allows the expansion process to determine which
pairs of pins to connect, rather than forcing a predetermined net decomposi-
tion. However, the maze routing and line-probe algorithms cannot optimally
connect the pins. In addition, these approaches inherit the large time and
space complexities of maze routing and line-probe algorithms.

The natural approach for routing multi-terminal nets is Steiner tree ap-
proach. Usually Rectilinear Steiner Trees (RST) are used. A rectilinear Steiner
tree is a Steiner tree with only rectilinear edges. The length of a tree is the
sum of lengths of all the edges in the tree. It is also called the cost of the tree.
The problem of finding a minimum cost RST is NP-hard [GJ77]. In view of
NP-hardness of the problem, several heuristic algorithms have been developed.
Most of the heuristic algorithms depend on minimum cost spanning tree. This
is due to a special relationship between Steiner trees and minimum cost span-
ning trees. Hwang [Hwa76a, Hwa79] has shown that the ratio of the cost of a
minimum spanning tree (MST) to that of an optimal RST is no greater than

274 Chapter 8. Global Routing

Let S be a net to be routed. We define an underlying grid G(S) of S (on an
oriented plane) as the grid obtained by drawing horizontal and vertical lines
through each point of S (see Figure 8.29). Let be a complete graph for
S. An MST for net S is a minimum spanning tree of (see Figure 8.29.)
Note that, there may be several MST’s for a given net and they can be found
easily. Using Hwang’s result, an approximation of the optimal RST can be
obtained by rectilinearizing each edge of an MST. Different ways of rectilin-
earizing the edges of T give different approximations. If an edge) of T is
rectilinearized as a shortest path between and on the underlying grid G(S),
then it is called as a staircase edge layout. For example, all the edge layouts in
Figure 8.29 are staircase layouts. A staircase layout with exactly one turn on
the grid G(S) is called as an L-shaped layout. A staircase layout having exactly
two turns on the grid G(S) is called as a Z-shaped layout. For example, the
edge layout of and in Figure 8.29 are L-shaped and Z-shaped layouts
respectively. An RST obtained from an MST T of a net S, by rectilinearizing
each edge of T using staircase layouts on G(S) is called S-RST. An S-RST of T,
in which the layout of each MST edge is a L-shaped layout is called an L-RST
of T. An S-RST of T, in which the layout of each MST edge is a Z-shaped
layout is called a Z-RST of T. An optimal S-RST (Z-RST, L-RST) is an S-RST
(Z-RST, L-RST) of the least cost among all S-RST’s (Z-RST’s, L-RST’s). It
is easy to see that an optimal L-RST may have a cost larger than an optimal
S-RST (see Figure 8.30), which in turn may have a cost larger than the optimal
RST. Obviously, least restriction on the edge layout gives best approximation.
However, as the number of steps allowed per edge is increased it becomes more
difficult to design an efficient algorithm to find the optimal solution.

The organization of the rest of this section is as follows: First, we discuss a
separability based algorithm to find an optimal S-RST from a separable MST.
This is followed by a discussion on non-rectilinear Steiner trees. We also discuss
MIN-MAX Steiner tree that are used for minimizing the traffic in the densest
channels. These three approaches do not consider the presence of obstacles
while finding approximate rectilinear Steiner tree for a net. At the end of this
section, we discuss a weighted Steiner tree approach that works in presence of
obstacles and simultaneously minimizes wire lengths and density of the routing
regions.

8.6.1 Separability Based Algorithm

In [HVW85], Ho, Vijayan, and Wong presented an approach to obtain an
optimal S-RST from an MST, if the MST satisfies a special property called
separability. A pair of nonadjacent edges is called separable if staircase layouts
of the two edges does not intersect or overlap. An MST is called as a separable
MST (SMST) if all pairs of non-adjacent edges satisfy this property. In other
words, such an MST is called to have separability property. If an edge is
deleted from an SMST, the staircase layouts of the two resulting subtrees do
not intersect or overlap each other. Overlaps can occur only between edges that
are incident on a common vertex. This property enables the use of dynamic

8.6. Steiner Tree based Algorithms 275

programming techniques to obtain an optimal S-RST.
The algorithm works in two steps. In the first step, an SMST T is con-

structed for a given net by using a modified Prim’s algorithm [Pri57] in
time. In the second step, an optimal Z-RST is obtained by using

the SMST obtained in the first step in time, where is the
maximum of t(e) over all edges e and t(e) denote the number of edges on the
underlying grid traversed by any staircase layout of an edge e of the
MST T of net According to the Z-sufficiency Theorem in [HVW85], an
optimal Z-RST is an optimal S-RST. The optimal S-RST is used as an approx-
imation of the minimum cost RST. In the rest of this section, we discuss these
two steps in detail.

1. Algorithm SMST: Let denote the complete graph for net
For any vertex and , x (i) and y (i) denote the of vertex
 on a Cartesian plane, and dist denotes the total length of short-
est path between i and . Function W,T), takes the complete

and an array (W) containing weights of edges in as input. It
generates a separable MST T using a modified Prim’s algorithm for MST,
which has a time complexity of The formal description of algo-
rithm SMST appears in Figure 8.31. The time complexity of algorithm
SMST is

276 Chapter 8. Global Routing

2. Algorithm Z-RST: The input to the algorithm is an SMST T of a
net By hanging the input separable MST T by any leaf edge r, a
rooted tree can be obtained. For each edge e in T, let denote the
subtree of that hangs by the edge e. Given a Z-shaped layout z of an
edge e, we let denote the Z-RST of the subtree which has the
minimum cost among all Z-RST’s of in which the layout of the edge e
is constrained to be the Z-shape z. can be computed recursively as
follows: Let be the d child edges of e in the rooted tree

For each child edge and for each possible Z-shaped layout of
the edge recursively compute the constrained optimal Z-RST’s
of the subtrees Let the number of such constrained Z-RST’s for a
subtree be denoted as Taking one such Z-RST for each subtree

and merging these subtree Z-RST’s with the layout z of the edge e,
results in a Z-RST of Since the tree T has the separability property,
the only new overlaps that can occur during this merging are among the
edges which are all incident on a common point. Therefore,
the total amount of overlap in the resulting Z-RST of is the sum of
the overlaps among the layouts of the edges added to the
sum of overlaps in the selected Z-RST’s of the subtrees Enumerate
all combinations of selecting one of the Z-RST’s for each subtree

and for each such combination compute the resulting Z-RST of
The constrained optimal Z-RST of the subtree is simply the
one with the least cost. To compute the optimal Z-RST of the entire
rooted tree recursively compute (as explained above) the constrained
optimal Z-RST’s for each Z-shaped layout z of the root edge r, and
select that Z-RST of the smallest cost, (see Figure 8.32)

A recursive definition of Function LEAST-COST is given Figure 8.33.
Function takes a Z-shaped layout z of
an edge e, and a subtree as input. The output of function LEAST-
COST is the optimal Z-RST(denoted as) of for the z layout of
edge e and the cost (denoted as) of Function CHILD-

8.6. Steiner Tree based Algorithms 277

EDGES-NUM(e) returns the number of child edges of an edge e.

Let be the leaf edge that is used to hang the SMST T, and be the tree
obtained, then the output of the algorithm in Figure 8.34 is the optimal
Z-RST (M) of T and its cost CostM.

The fact that the algorithm Z-RST constructs the optimal S-RST fol-
lows from the separability of the input MST and from the Z-sufficiency
theorem stated below.

Theorem 6 (Z-Sufficiency Theorem): Given an SMST T of a point set
S of cardinality , there exists a Z-RST of T whose cost is equal to the
cost of an optimal S-RST of T.

The worst case time complexity of algorithm Z-RST is
where is the maximum of t(e) over all edges e.

8.6.2 Non-Rectilinear Steiner Tree Based Algorithm

Burman, Chen, and Sherwani [BCS91] studied the problem of global routing
of multi-terminal nets in a generalized geometry called in order to
improve the layout and consequently enhance the performance. The restriction
of layout to rectilinear geometry, and thus only rectilinear Steiner trees, in the
previous Steiner tree based global routing algorithms was necessary to account
for restricted computing capabilities. Recently, because of enhanced computing
capabilities and the need for design of high performance circuit, non-rectilinear
geometry has gained ground. In order to obtain smaller length Steiner trees, the
concept of separable MST’s in was introduced. In edges
with angles for all , are allowed, where is a positive integer.
4 and correspond to rectilinear, 45° and Euclidean geometries respectively.
Obviously, we can see that always includes rectilinear edges and is a
useful with respect to the fabrication technologies. It has been proved [BCS91]

278 Chapter 8. Global Routing

8.6. Steiner Tree based Algorithms 279

that for an even all minimum cost spanning trees in satisfy
the separability property.

Theorem 7 Any minimum spanning tree for a given point set in the plane is
for any even

Therefore, there exists a polynomial time algorithm to find an optimal
Steiner tree in which is derivable from the separable minimum
spanning tree. The experiments have shown that tree length can be reduced
up to 10-12% by using 4-geometry as compared to rectilinear geometry (2-
geometry). Moreover, length reduction is quite marginal for higher geometries.
As a consequence, it is sufficient and effective to consider layouts in 4-geometry
in the consideration of global routing problem. An example of the derivation
of a Steiner tree for a simple two-terminal net in 4-geometry is shown in Fig-
ure 8.35(b) while Figure 8.35(a) shows the derivation of a Steiner tree for the
same net in rectilinear geometry. Clearly, the tree length in 4-geometry is
shorter than the one in the rectilinear geometry.

8.6.3 Steiner Min-Max Tree based Algorithm

The approach in [CSW89] uses a restricted case of Steiner tree in global
routing problem, called Steiner Min-Max Tree (SMMT) in which the maximum
weight edge is minimized (real vertices represent channels containing terminals
of a net, Steiner vertices represent intermediate channels, weights correspond
to densities). They give an time algorithm for
obtaining a Steiner min-max tree in a weighted coarse grid graph G = (V, E).
The weight of an edge in E is a function of current density, capacity, and
measures crowdedness of a border. Each vertex in V is labeled with demand or

280 Chapter 8. Global Routing

(potential) Steiner depending on whether it is respectively a terminal of net
or not. A Steiner min-max tree of G dictates a global routing that minimizes
traffic in the densest channel. While the Steiner min-max tree method tends to
route nets through less crowded channels, it is also desirable to have nets with
short length. Therefore, among all Steiner min-max trees of the given net, we
are interested in those with minimum length. The problem of finding a Steiner
min-max tree whose total length is minimized is NP-hard.

Given, a weighted coarse grid graph G = (V, E) and a boolean array
such that i is true if the vertex corresponds to a terminals of
An SMMT T of can be obtained using algorithm in Figure 8.36. Function
EXIST-ODSV returns TRUE if there exists a one-degree Steiner vertex
in T. Function GET-ODSV returns a one-degree Steiner vertex from T.
REMOVE(v, T) removes vertex and edges incident on it from T.

Theorem 8 Algorithm SMMT correctly computes a Steiner min-max tree of
net in weighted grid graph G = (V, E) in time.

A number of heuristics have been incorporated in the global router based on
the min-max Steiner trees. The nets are ordered first according to their priority,
length and multiplicity numbers. The global routing is then performed in two
phases: the SMMT-phase and the SP-phase. The SP-phase is essentially a
minimum-spanning tree algorithm. The SMMT-phase consists of steps and
the SP-phase consists of steps, where and are heuristic parameters
based on the importance of density and length minimization in a problem,
respectively.

In the SMMT-phase, the nets are routed one by one, using the algorithm
SMMT. At the -th step of the SMMT-phase, if the length of routing of is
within a constant factor, of its minimum length then it is accepted, otherwise,
the routing is rejected. Once a net is routed during SMMT-phase, it will not
be routed again.

8.6. Steiner Tree based Algorithms 281

In the SP-phase, the nets are routed one by one by employing a shortest-
path heuristic and utilizing the results from the SMMT-phase. At the j-th step
we accept a routing only if it is better than the best routing obtained so far.

8.6.4 Weighted Steiner Tree based Algorithm

Several global routing algorithms have been developed that consider mini-
mizing the length of Steiner tree as the primary objective and minimizing the
traffic through the routing areas as the secondary objective and vice versa.
In [CSW92], Chiang, Sarrafzadeh, and Wong proposed a global router that
simultaneously minimizes length and density by using a weighted Steiner tree.
Consider a set of weighted regions in an arbitrary-style
layout, where weight of a region is proportional to its density and area. The
regions with blockages are assigned infinite weights. A weighted Steiner tree is
a Steiner tree with weighted lengths, i.e., an edge with length / in a region with
weight has weighted length . . A weighted rectilinear Steiner tree (WRST)
is a weighted Steiner tree with rectilinear edges. A minimum-weight WRST is
a WRST with minimum total weight.

The 2-approximate algorithm to find an approximation of minimum-weight
WRST is as discussed below: First step of this algorithm is to find an MST
T for a given net using Prim’s algorithm. Let be the edges
of T. In the second step, the edges of T are rectilinearized one by one. In
general, there are more than one possible staircase layouts for an edge of T.
Let be a subset of all possible staircase layouts for
edge Let denotes the staircase layout of edges Let

be the layout obtained by merging and is selected to be
the minimum cost layout among all

The formal description of the algorithm is given in Figure 8.37. Func-
tion finds and function CLEANUP removes over-

282 Chapter 8. Global Routing

lapped layouts. Function gives the total weighted length of
The time complexity of algorithm LAYOUT-WRST is

8.7 Integer Programming Based Approach

The problem of concurrently routing all the nets is computationally hard.
The only known technique uses integer programming. In fact, the general
global routing problem formulation can be easily modified to a 0/1 integer pro-
gramming formulation. Given a set of Steiner trees for each net and a routing
graph, the objective of such an integer programming formulation is to select
a Steiner tree for each net from its set of Steiner trees without violating the
channel capacities while minimizing the total wire length. This approach is well
suited when there is a preferred set of Steiner trees for each net. However, as
the size of input increases the time required to solve corresponding integer pro-
gram increases exponentially. Thus it is necessary to break down the problem
into several small subproblems, solve them independently and combine their
solutions in order to solve the original problem.

8.7.1 Hierarchical Approach

In this section, we discuss the hierarchical based integer program for global
routing, presented by Heisterman and Lengaur [HL91]. Let
denote a set of sets of vertices in the routing graph G = (V,E). Let

denote a set of Steiner trees for Then,
the global routing problem can be formulated as an integer program by taking
an integer variable to denote the number of nets which are routed using

is called a net type and a route for Let denote the number of nets
corresponding to the net type for The following constraints
have to be met:

(completeness constraints)
(capacity constraints)

The variable is a slack variable for edge e which denotes the free capacity
of e. Technology constraints may have to be added to this system. The cost
function to be minimized is

where is the length of the Steiner tree
The resulting integer program is denoted by R. It cannot be solved efficiently

because of its size and NP-hardness of integer programming. Hierarchical global
routing methods break down the integer program into pieces small enough to
be solved exactly. The solutions of these pieces are then combined by a variety

8.7. Integer Programming Based Approach 283

of methods. This results in an approximate solution of the global routing
problem.

Hierarchical methods that work top down are especially effective because
they can take into account global knowledge about the circuit. Top-down
methods start with a cut-tree for the circuit emerging from a floorplanning
phase that uses circuit partitioning methods. The cut-tree is preprocessed so
that each interior node of the tree corresponds to a simple routing graph as
shown in Figure 8.38.

The cut-tree is then traversed top down. At each node a global routing
problem is solved on the corresponding routing graph. The solutions for all
nodes in a level of the cut-tree are combined. The resulting routing influences
the definition of the routing problems for the nodes in the next lower level.

The small integer programs corresponding to the routing problems at each
interior node of the cut-tree can be solved by general integer programming
techniques. However, this solution may be computationally infeasible. In the
best case the linear relaxation of the integer program, i.e., the linear program
obtained by eliminating the integrality constraint has to be solved. Since a
large number of integer programs have to be solved during the course of global
routing, speeding up the computations is necessary. One possibility is to round
off the solution of the linear relaxation deterministically or by random methods.
This may not lead to an optimal solution. So, it is desirable to exactly solve
the integer program corresponding to the routing problem at interior nodes of
the cut-tree. Because integer programs corresponding to small routing graphs
are quite structured, appropriate preprocessing can substantially reduce the
size of the integer programs, and sometimes eliminate them altogether. For
example, there exists a greedy algorithm [HL91] to solve the corresponding
integer programming problem for a small routing graph in Figure 8.39.
This algorithm will be described in the remainder of the section.

We assume that the length of each edge is the distance between the centers
of vertices. In Figure 8.39, a specific floorplan pattern is depicted that is dual
to Figure 8.40 depicts all possible net types and routes for The size
of the integer program that corresponds to is reduced by combinatorial
arguments on the patterns.

A simple greedy preprocessing strategy can be used for reducing the size of
the integer program This strategy is the first phase of the greedy routing

284 Chapter 8. Global Routing

algorithm. It constructs a smaller integer program and is followed by two
more phases. The second phase further reduces the size of and constructs a
small mixed integer program The third phase solves the integer program

During the first phase, for the algorithm routes
nets by using It delete the routed nets from the problem instance and

reduces the capacity of each edge by the number of routed nets crossing
Now if there are still nets left in type then is saturated. This fact

eliminates all routing patterns in Figure 8.40 that include edge After the
deletion, the pattern set for is identical with the pattern set for i = 9,
and the pattern set for is identical with the pattern set for
Thus the net types and are merged with net type and the net types

and are merged with net type Net type cannot be eliminated.
As a result, the original problem has been reduced into a problem with
fewer variables and constraints.

The second phase further reduces The result is a very small mixed
integer program that can be solved with traditional integer programming
techniques. Two cases have to be distinguished.

1. There are no more nets of Type to be routed: In this case,
the integer program only contains nets of types An inspection
of Figure 8.40 shows that for the long routing patterns for
net type also occur as routing patterns for net type This suggests
elimination of the variables corresponding to the long routing patterns
for net types to from The variables then
count the nets of these types that are routed with the short routes. All
other nets of these types should be counted by the variables for net type

This can be achieved by introducing slack variables to denote the
number of nets of type that can not be routed by the short routing
patterns of type for Thus, the completeness constraints
can now be given as:

8.7. Integer Programming Based Approach 285

286 Chapter 8. Global Routing

All the other equations remain the same. This yields the integer program

The integrality constraints in the resulting integer program can be elim-
inated for some variables. Specifically, since all coefficients are integers,
the integrality constraint can be omitted for one variable per constraint.
The number of integer variables is thus reduced and the solution of the
integer program by such techniques as branch-and-bound becomes more
efficient.

There are more nets of Type to be routed: In this case, edge
is saturated after the first phase. This saturation eliminates all routing
patterns containing this edge. The resulting integer program is then
subjected to an analogous reduction procedure as in the first case. Nets
of types that cannot be routed with short routes are subsumed
in type

2.

The third phase of the algorithm solves the small mixed integer program
obtained in Phase 2 and interprets the solution.
In addition to the formulation of the global routing problem as finding a

set of Steiner trees described above, the global routing problem can also be
formulated as finding the optimal spanning forest (a generalization of optimal
spanning trees) on a graph that contains all of the interconnection informa-
tion. Cong and Preas presented a concurrent approach based on this formula-
tion [CP88].

8.8 Performance Driven Routing

With the advent of deep submicron technology, interconnect delay has be-
come an important concern in high performance circuit design. Interconnect
delay is now a significant part of the total net delay. The reduction in feature
sizes has resulted in increased wire resistance and net delay. The increased
proximity between the devices and interconnection wires resulting in increased
cross-talk noise.

The routers should now model the cross-talk noise between adjacent nets
during topology generation. Buffer Insertion, wire sizing, and high performance
topology constructions are some of the techniques adopted to reduce generate
routing for high performance circuits. Zhou and Wong [Won98] considered
crosstalk avoidance during global routing.

Lillis, Cheng, Lin and Ho [CH96] presented techniques for performance
driven routing techniques with explicit area-delay trade-off and simultaneous
wire sizing. In [Buc98] Lillis and Buch present table-lookup methods for im-
proved performance driven routing.

8.9. Summary 287

8.9 Summary

Global routing assigns a sequence of routing channels to each net without
violating the capacity of channels. In addition, it typically optimizes the to-
tal wire length. In high performance circuits, the optimization function is to
minimize the critical RC delay of the nets. Different design style have different
objective functions. In standard cell design style, the optimization function is
to minimize the total channel height. Whereas, in gate array design style the
objective is to guarantee routability.

The global routing algorithms fall roughly into two categories: One is the
sequential approach and the other is the concurrent approach. In sequential
approach, the nets are routed one by one. However, the nets which have been
already routed may block the nets to be routed later. Thus, the order in which
the nets are routed is very important. Maze routing algorithms, line-probe al-
gorithms and Steiner tree based algorithms are important classes of algorithms
in this approach. The first two class of algorithms are used for two-terminal
nets, whereas, the Steiner tree algorithms are used for the multi-terminal nets.
The general rectilinear Steiner tree problem is NP-hard, however, approximate
algorithms have been developed for this problem. The concurrent approach
takes a global view of all nets to be routed at the same time. This approach
requires use of computationally expensive methods. One such method uses
integer programming. Integer program for an overall problem is normally too
large to be handled efficiently. Thus, hierarchical top down methods are used to
break the problem into smaller sub-problems. These smaller sub-problems can
be solved efficiently. The solutions are then combined to obtain the solution of
original global routing problem.

288 Chapter 8. Global Routing

8.10 Exercises

1.

2.

3.

†4.

†5.

6.

†7.

8.

Design and implement an algorithm to find the extended channel inter-
section graph if the size and location of all cells are known.

Assume that several nets have been assigned feed-throughs in a standard
cell layout with K cell rows. A two-terminal net N that starts at a
terminal on cell row and ends at a terminal on cell row has to be
added to this layout, where Design an optimal algorithm
to assign feed-throughs to N such that increase in the overall channel
height of the layout is minimized.

Figure 8.41 shows a grid graph with several blocked vertices. It also
shows terminals of a two-terminal net marked by ‘1’. Use the Lee’s
algorithm to find:

(a)

(b)

the path for

the number of nodes explored in (a).

Use the Soukup’s algorithm to find (a) and (b). Use the Hadlock’s algo-
rithm to find (a) and (b).

Extend Lee’s maze router so that it generates a shortest path from source
to target with the least number of bends.

Design an efficient heuristic algorithm based on maze routing to simulta-
neously route two 2-terminal nets on a grid graph. Compare the routing
produced by this algorithm with that produced by Lee’s maze router by
routing one net at a time.

Give an example for which the Hightower line-probe algorithm does not
find a path even when a path exists between the source and the target.

In Mikami’s line-probe router, every grid node on the line segment is
an escape point on each line segment. Whereas, Hightower’s algorithm
makes use of only single escape point on each line segment. As a result,
Hightower’s algorithm runs faster than Mikami’s algorithm. Also, High-
tower’s algorithm may not be able to find a path even when one exists.
On the other hand, Mikami’s algorithm always finds a path if one exists.
The number and location of escape points plays very important role in
the performance of the router.

Implement a line-probe router which can use number of escape points,
where is a user specified parameter. Use an efficient heuristic for the
location of the escape points.

In Figure 8.42, terminals of two nets and are shown on a grid
graph. Terminals of net are marked by ‘1’ and that of are marked
by ‘2’. Find an MRST for

8.10. Exercises 289

9. For the example in Figure 8.42, find an RST for each net and such
that they do not intersect with each other and

(a)

(b)

the summation of the cost of these two RST’s is minimum,

the maximum of the costs of these two RST’s is minimum.

10.

11.

†12.

†13.

†14.

†15.

†16.

Design an algorithm to determine an MRST of a multi-terminal net in a
 grid graph.

Compute the number of intersection points in an underlying grid of a
set of points in Is it sufficient to consider just the edges of
underlying grid graph to construct a Steiner tree in

Why does the algorithm Z-RST gives an optimal S-RST for a separable
MST? In other words, prove Theorem 6.

Implement the algorithm to find an optimal S-RST for any given net.

Prove Theorem 7 and modify the algorithm Z-RST to use

Prove Theorem 8.

The problem of finding a Steiner tree for a K-terminal net in a grid graph
is known to be NP-complete. Design an efficient heuristic algorithm based
on maze routing for this problem.

Bibliographic Notes
Besides the classes of global routing algorithms described above, there are other
global routing algorithms that use different approaches and have different op-
timization functions. Shragowitz and Keel proposed a global router based on

290 Chapter 8. Global Routing

a multicommodity flow model [SK87]. Vecchi and Kirkpatrick discussed the
global wiring by simulated annealing [VK83]. A practical global router for
row-based layout such as sea-of-gate, gate array and standard cell was devel-
oped by Lee and Sechen in 1988 [LS88]. Karp and Leighton discuss the
problem of global routing in two-dimensional array An interior
point method (Karmarkar’s Algorithm) can be applied to solve the linear pro-
gramming model of global routing problem [HS85, AKRV89, Van91]. A path
selection global router is developed by Hsu, Pan, and Kubitz [HPK87]. A novel
feature of the algorithm is that the active vertices (vertices in the net which
are not yet connected) are modeled as magnets during the path search process.
Several global routing algorithms, including the one based on wave propaga-
tion and diffraction, a heuristic minimum tree algorithm using “common edge”
analysis, an overflow control method, and global rerouting treatment are dis-
cussed in [Xio86]. A simple but effective global routing technique was proposed
by Nair, which iterates to improve the quality of wiring by rerouting around
congested areas [Nai87], A global routing algorithm in a cell synthesis system
was proposed by Hill and Shugard [HS90], which includes detailed geometric
information specific to the cell synthesis problem. The system models diffu-
sion strips, congestion and existing feedthroughs as a cost function associated
with regions on the routing plane.

The placement and routing can be combined together so that every place-
ment can be judged on the basis of the routing cost. Researchers have produced
some useful results in this direction. Burstein and Hong presented an algorithm
to interleave routing with placement in a gate array layout system [BH83]. Dai
and Kuh presented an algorithm for simultaneous floorplanning and global rout-
ing based on hierarchical decomposition [DK87a]. Suaris and Kedem presented
an algorithm for integrated placement and routing based on quadri-section hier-
archical refinement [SK89]. An algorithm which combines the pin assignment
step and the global routing step in the physical design of VLSI circuits is pre-
sented by Cong [Con89]. The sequential algorithms for routing require large
execution time. Jonathan Rose [Ros90] developed a parallel global routing al-
gorithm which route multiple nets in parallel by relaxing data dependencies.
The speedup is achieved at expense of losing some quality of the routing. The
global routing problem is formulated at each level of hierarchy as a series of the
minimum cost Steiner tree problem in a special class of partial 3-trees, which
can be solved optimally in linear time. In [CH94] Chao and Hsu present a new
algorithm for constructing a rectilinear Steiner tree for a given set of points. In

Hong, Xue, Kuh, Cheng, and Huang present two performance-driven
Steiner tree algorithms for global routing which consider the minimization of
timing delay during the tree construction as the goal. In [HHCK93] Huang,
Hong, Cheng, Kuh propose an efficient timing-driven global routing algorithm
where interconnection delays are modeled and included during routing and
rerouting process in order to minimize the routing area as well as to satisfy
timing constraint.

Chapter 9

Detailed Routing

In a two-phase routing approach, detailed routing follows the global routing
phase. During the global routing phase, wire paths are constructed through
a subset of the routing regions, connecting the terminals of each net. Global
routers do not define the wires, instead, they use the original net information
and define a set of restricted routing problems. The detailed router places the
actual wire segments within the region indicated by the global router, thus
completing the required connections between the terminals.

The detailed routing problem is usually solved incrementally, in other words,
the detailed routing problem is solved by routing one region at a time in a
predefined order. The ordering of the regions is determined by several factors
including the criticality of routing certain nets and the total number of nets
passing through a region. A routing region may be channel, 2D-switchbox or
a 3D-switchbox. Channels can expand in Y direction and their area can be
determined exactly only after the routing is completed. If this area is different
than the area estimated by the placement algorithm, the placement has to be
adjusted to account for this difference in area. If the floorplan is slicing then
a left to right sweep of the channels can be done such that no routed channel
has to be ripped up to account for the change of areas. Consider the example
shown in Figure 9.1 (a). In this floorplan, if channel 1 is routed first followed
by routing of channel 2 and channel 3, no rerouting would be necessary. In
fact, complete routing without rip-up of an already routed channel is possible
if the channels are routed in the reverse partitioning order. If the floorplan is
non-slicing, it may not be possible to order the channels such that no channel
has to be ripped up. Consider the example shown in Figure 9.1(b). In order
to route channel 2, channel 1 has to be routed so as to define all the terminals
for channel 2. Channel 2 has to be routed before channel 3 and channel 3
before channel 4. Channel 4 requires routing of channel 1 giving rise to a cyclic
constraint for ordering the channels. This situation is resolved by the use of L-
channels or 2D-switchboxes. L-channels are not simple to route and are usually
decomposed. Figure 9.1(c) shows decomposition of an L-channel into two 3-
sided channels while Figure 9.1(d) shows decomposition of an L-channel into

292 Chapter 9. Detailed Routing

two 3-sided channels and a 2D-switchbox. The area of switchboxes (both 2D
and 3D) is fixed and the main issue is routability. That is, given a specific area
and pin locations for all the nets, is this switchbox routable ?. If a switchbox
is unroutable, then the design must be re-global routed. In terms of routing
complexity, channels are easy to route, 2D-switchboxes are harder and 3D-
switchboxes are hardest to route.

Characteristics of a routing problem largely depend upon the topology of
the routing region. Routing regions consist of one or more layers. In the
general case, even single-layer routing problems are NP-complete [Ric84]. In
multi-layer routing problems, the wires can switch adjacent layers at certain
locations using vias. A via is an electrical connection (contact) between wire
segments on adjacent layers. In many multi-layer models, the layers are re-
stricted to contain either horizontal or vertical segments (a straight piece of
wire placed on a single layer) of a wire. This type of model is known as a
restricted layer model or reserved layer model. Multilayer routing problems are
also NP-complete [Szy85], even when the routing region has a simple shape. For
this reason many of the algorithms for multi-layer routing problems are heuris-
tic in nature. Different detailed routing strategies have been developed with
a variety of objectives, but all the detailed routing problems share some com-
mon characteristics. These characteristics deal with routing constraints. For

9.1. Problem Formulation 293

example, wires must satisfy some geometric restrictions which often concern
wire thickness, separation, and path features. One obvious restriction present
in all routing problems is intersection; that is, no two wires from different nets
are allowed to cross each other on the same layer.

A primary objective function of a router is to meet timing constraints for
each net and complete the routing of all the nets. Channel routers attempt to
minimize the total routing area. Various secondary objective functions have
also been considered, such as, improve manufacturability by minimizing the
number of vias and jogs, improve performance by minimizing crosstalk between
nets and delay for critical nets, among others. Minimizing vias is important,
since vias are difficult to fabricate due to the mask alignment problem. In
addition, via’s increase delay and are therefore undesirable in high-performance
applications. Other objective functions include minimization of the average or
total length of a net, and minimization of the number of vias per net.

In this chapter, we discuss the routing problem and various algorithms
proposed to solve different versions of the routing problem. In the next section,
we first formulate the routing problem and classify different routing problems.

9.1 Problem Formulation

As mentioned earlier, the detailed routing problem is solved by solving one
routing region at a time. The routing area is first partitioned into smaller
regions. Since, the global router only assigns wires to different regions, the
detailed routing problem is to find the actual geometric path for each wire in
a region. The complexity of the routing problems varies due to many factors
including shape of the routing region, number of layers available, and num-
ber of nets. However, the shape of the region is perhaps the most important
factor. Before presenting the routing problem formally, we describe important
considerations and models used in routing.

9.1.1 Routing Considerations

In general, the routing problem has many parameters. These parameters are
usually dictated by the design rules and the routing strategy.

1.

2.

Number of terminals: Majority of nets are two terminal nets, how-
ever, the number of terminals in a net may be very large. This is es-
pecially true for global nets such as clock nets. In order to simplify the
routing problem, traditionally, routing algorithms assume all nets to be
two terminal nets. Each multi-terminal net is decomposed into several
two terminal nets. More recently, algorithms which can directly handle
multi-terminal nets have also been developed.

Net width: The width of a net depends on the layer it is assigned
and its current carrying capacity. Usually, power and ground nets have
different widths and routers must allow for such width variations.

294 Chapter 9. Detailed Routing

3.

4.

5.

6.

7.

Pin locations: In channels, pins are located on the top and bottom
boundaries. In addition, pin may be located on the sides as well as in
the middle of the channel to connect to 3D-switchboxes. The pins on
the sides are assigned by the global router. In 2D-switchboxes, the pin
are located on all four sides as well as in the middle. The most general
form of routing region is a 3D-switchbox, which has pins on all six sides.
The pins of the bottom are assigned by the global router so that nets
are pass from channels and 2D-switchboxes to 3D-switchboxes and vice
versa. The pins on the sides allow nets to pass from one 3D-switchbox to
another. The pins on the top allow nets to connect to C4 solder bumps.

Via restrictions: The final layout of a chip is specified by means of
masks. The chip is fabricated one layer at a time, and the masks for
the various layers must align perfectly to fabricate the features such as
vias which exist in two layers. Perfect alignment of masks is difficult,
and thus vias were normally only allowed between adjacent layers. Even
between two layers, minimization of vias reduces mask alignment prob-
lems. Improvements in the chip manufacturing technology have reduced
mask alignment problems, and today stacked vias (vias passing through
more than two layers) can be fabricated. However, vias still remain a
concern in routing problems and must be minimized to improve yield,
performance and area.

Boundary type: A boundary is the border of the routing region which
contains the terminals. Most detailed routers assume that the bound-
aries are regular (straight). Even simple routing problems which can be
solved in polynomial time for regular boundaries become NP-hard for the
irregular boundary routing problem. Some recent routers [Che86, CK86,
VCW89] have the capability of routing within irregular boundaries.

Number of layers: Almost all fabrication processes allow three or four
layers of metal for routing. Recently, a fifth metal layer has also become
available; however, its usage is restricted due to its cost. Six and seven
layer processes are expected to be available within two to three years.
Most existing detailed routers assume that there are two or three layers
available for routing. Recently, several n-layer routers have also been
developed. Each layer is sometimes restricted to hold either vertical or
horizontal segments of the nets. It is expected that as the fabrication
technology improves, more and more layers will be available for rout-
ing. In our formulation of five metal process, channel and 2D-switchbox
routers must route in Ml, M2 and M3. While, 3D-switchbox router must
route in M4 and M5.

Net types: Some nets are considered critical nets. Power, ground, and
clock nets fall in this category. Power, and ground wires need special
consideration since they are normally wider than signal wires. Clock nets
require very careful routing preference, since the delay of the entire chip
may depend on clock routing. Due to this type of restriction placed on

9.1. Problem Formulation 295

critical nets, they need to be routed before signal nets using specialized
routers or often routed by hand.

9.1.2 Routing Models

For ease of discussion and implementation of net-routing problems, it is often
necessary to work at a more abstract level than the actual layout. In many
cases, it is sufficient to use a mathematical wiring model for the nets and the
rules that they must obey. For instance, wires are usually represented as paths
without any thickness, but the spacing between these wires is increased to allow
for the actual wire thickness and spacing in the layout. The most common
model used is known as the grid-based model. In this model, a rectilinear (or
possibly octilinear) grid is super-imposed on the routing region and the wires
are restricted to follow paths along the grid lines. A horizontal grid line is
called a track and a vertical grid line is called a column. Any model that does
not follow this ‘gridded’ approach is referred to as a gridless model

In the grid-based approach, terminals, wires and vias are required to con-
form to the grid. The presence of a grid makes computation easy but there
are several disadvantages associated with this approach, including the large
amount of memory required to maintain the grid and restricted wire width.
The gridless approach, on the other hand, allows arbitrary location of termi-
nals, nets, and vias. Moreover, nets are allowed arbitrary wire widths. Due
to these advantages, the gridless approach is gaining more popularity than the
grid-based approach [Che86, CK86]. Figure 9.2 illustrates some of the differ-
ences in grid-based and gridless routing.

Routing problems can also be modeled based on the layer assignments of
horizontal and vertical segments of nets. This model is applicable only in multi-
layer routing problems. If any net segment is allowed to be placed in any layer,
then the model is called an unreserved layer model. When certain type of seg-

296 Chapter 9. Detailed Routing

ments are restricted to particular layer(s), then the model is called a reserved
layer model. Most of the existing routers use reserved layer models. In a two-
layer routing problem, if the layer 1 is reserved for vertical segments and layer 2
is reserved for horizontal segments, then the model is called a VH model. Sim-
ilarly, a HV model allows horizontal segments in layer 1 and vertical segments
in layer 2. Two-layer models can be extended to three-layer routing models:
VHV (Vertical-Horizontal-Vertical) or HVH (Horizontal-Vertical-Horizontal).
In the VHV model the first and third layers are reserved for routing the verti-
cal segments of nets and the second layer is reserved for routing the horizontal
segments. On the other hand, in the HVH model, the first and third layers
are reserved for routing the horizontal segments of nets and the second layer is
reserved for routing the vertical segments. The HVH model is preferred to the
VHV model in channel routing because, in contrast with the VHV model, the
HVH model offers a potential 50% reduction in channel height.

Figure 9.3 shows an example of the HVH model using two tracks, the VHV
model using three tracks, and the unreserved model using only one. The HVH
model and unreserved layer models show more than one trunk per track in Fig-
ure 9.3. This is done because the horizontal segments were placed on different
layers, the figure offsets them slightly for a clearer perspective of the routing.
An unreserved layer model has several other advantages over the reserved layer
model. This model uses less number of vias and in fact, in most cases, can lead
to an optimal solution, i.e., a solution with minimum channel height. The un-
reserved routing model also has it disadvantages, such as, routing complexity,
blocking of nets, among others. Generally speaking, reserved layer and gridded
routers are much faster than gridless and unreserved layer routers.

Another unreserved layer model based on use of knock-knees has also been

9.1. Problem Formulation 297

proposed. The knock-knee model allows two nets to share a grid point if they
are in different layers. This model has the advantage of avoiding undesirable
electrical properties caused due to overlap of wire segments, such as capacitive
coupling.

We now discuss the problem formulation for both channel and switchbox
routing problems.

9.1.3 Channel Routing Problems

A channel is a routing region bounded by two parallel rows of terminals.
Without loss of generality, it is assumed that the two rows are horizontal. The
top and the bottom rows are also called top boundary and bottom boundary,
respectively. Each terminal is assigned a number which represents the net to
which that terminal belongs to (see Figure 9.4). Terminals numbered zero are
called vacant terminals. A vacant terminal does not belong to any net and
therefore requires no electrical connection. The net list of a channel is the
primary input to most of the routing algorithms.

The horizontal dimension of the routed channel is called the channel length
and the vertical dimension of the routed channel is called the channel height.
The horizontal segment of a net is called a trunk and the vertical segments that
connect the trunk to the terminals are called its branches. The horizontal line
along which a trunk is placed is called a track. A dogleg is a vertical segment
that is used to maintain the connectivity of the two trunks of a net on two
different tracks. A pictorial representation of the terms mentioned above is
shown in Figure 9.5.

A channel routing problem (CRP) is specified by four parameters: Channel
length, Top (Bottom) terminal list, Left (Right) connection list, and the num-
ber of layers. The channel length is specified in terms of number of columns in
grid based models, while in gridless models it is specified in terms of The
Top and the Bottom lists specify the terminals in the channel. The Top list
is denoted by and the bottom list by

In grid based models, is the net number for the terminal at the
top (bottom) of the th column, or is 0 if the terminal does not belong to any

298 Chapter 9. Detailed Routing

net. In gridless model, each terminal, indicates the net number to
which the th terminal. The Left (Right) Connection list, consist of nets that
enter the channel from the left (right) end of the channel. It is an ordered list
if the channel to the left (right) of the given channel has already been routed.

Given the above specifications, the problem is to find the interconnections
of all the nets in the channel including the connection sets so that the channel
uses minimum possible area. A solution to a channel routing problem is a set
of horizontal and vertical segments for each net. This set of segments must
make all terminals of the net electrically equivalent. In the grid based model,
the solution specifies the channel height in terms of the total number of tracks
required for routing. In gridless models, the channel height is specified in terms
of

The main objective of the channel routing is to minimize the channel height.
Additional objectives functions, such as, minimizing the total number of vias
used in a multilayer routing solution, and minimizing the length of any partic-
ular net are also used. In practical designs, each channel is assigned a height
by the floorplanner and the channel router’s task is to complete the routing
within the assigned height. If channel router cannot complete the routing in
the assigned height, channel has to expand, which changes the floorplan. This
requires routing the channels in a predefined order, so that such expansions
can be accommodated, without major impact on the floorplan.

In grid based models, the channel routing problem is essentially assignment
of horizontal segments of nets to tracks. Vertical segments are used to connect
horizontal segments of the same net in different tracks and to connect the ter-
minals to the horizontal segments. In gridless models, the problem is somewhat
similar except the assignment of horizontal segments is to specific locations in
the channel rather than tracks. There are two key constraints which must be
satisfied while assigning the horizontal and vertical segments.

1. Horizontal Constraints: There is a horizontal constraint between two
nets if the trunks of these two nets overlap each other when placed on the

9.1. Problem Formulation 299

2.

same track. For a net the interval spanned by the net, denoted by
is defined by where is the right most terminal of the net and

is the leftmost terminal of the net. Given a channel routing problem,
a horizontal constraint graph (HCG) is a undirected graph
where

Note that HCG is in fact an interval graph as defined in chapter 3. Fig-
ure 9.6(a) shows a channel routing problem and the associated horizontal
constraint graph is shown in Figure 9.6(b).

The HCG plays a major role in determining the channel height. In a grid
based two-layer model, no two nets which have a horizontal constraint
maybe assigned to the same track. As a result, the maximum clique in
HCG forms a lower bound for channel height. In the two-layer gridless
model, the summation of widths of nets involved in the maximum clique
determine the lower bound.

Vertical Constraints: A net in a grid based model, has a vertical
constraint with net if there exists a column such that the top terminal
of the column belongs to and the bottom terminal belongs to and

In case of the gridless model, the definition of vertical constraint is

300 Chapter 9. Detailed Routing

somewhat similar except that the overlap is between the actual vertical
segments rather than terminals in a column. Given a channel routing
problem, a vertical constraint graph (VCG) is a directed graph

where,

It is easy to see that a vertical constraint, implies a horizontal constraint,
however, the converse is not true. Figure 9.7(b) shows the vertical con-
straint graph for the channel routing problem in Figure 9.7(a).

Consider the effect of a directed path in the vertical constraint graph on
the channel height. If doglegs are not allowed then the length of the longest
path in VCG forms a lower bound on the channel height in the grid based
model. This is due to the fact that no two nets in a directed path may be
routed on the same track. Note that if VCG is not acyclic than some nets must
be doglegged. Figure 9.8(a) shows a channel routing problem with a vertical
constraint cycle while Figure 9.8(b) shows how a dogleg can be used to break a
vertical constraint cycle. Figure 9.8(c) shows vertical constraint cycle involving
four nets. In Figure 9.8(d), we show one possible routing for the example in
Figure 9.8(c).

The two constraint graphs can be combined to form a mixed graph called
the Combined Constraint Graph (CCG) which has the same vertex set as the

9.1. Problem Formulation 301

HCG and VCG while the edge set is the union of and The combined
constraint graph for Figure 9.6(a) is shown in Figure 9.9.

Two interesting graphs related to channel routing problem are the permu-
tation graph and the circle graph. The permutation graph can only be defined
for channel routing problem for two terminal nets and no net has both of its
terminal on one boundary (see Chapter 3). These graphs allow us to consider
the channel routing problem as a graph theoretic problem.

Note that, we do not address the channel routing problem with pins in the
middle of the channel in this book. This problem is largely a research topic
and it is currently solved by using area routers.

302 Chapter 9. Detailed Routing

9.1.4 Switchbox Routing Problems

Switchbox routing problem is a generalization of the channel routing prob-
lem, where terminals are located on all four sides. Switchboxes are formed
in two ways. There maybe be a four sided enclosed region within which the
routing must be completed or a four sided region maybe formed due to the
intersection of two channels. A switchbox is formally defined as a rectangular
region where and are positive integers. Each pair in R is a
grid point. The th column and th row or track are the sets of grid points. The
0th and th columns are the LEFT and RIGHT boundaries respectively. Sim-
ilarly, the 0th and th rows are TOP and BOTTOM boundaries respectively.
The connectivity and location of each terminal are represented as
 or depending upon the side
of the switchbox it lies on, where stands for the coordinate of the terminal
along the edge and is a positive integer specifying the net to which the th
terminal belongs to.

Since it is assumed that the terminals are fixed on the boundaries, the
routing area in a switchbox is fixed. Therefore, the objective of switchbox
routing is not to minimize the routing area but to complete the routing within
the routing area. In other words, the switchbox routing problem is a routability
problem, i.e., to decide the existence of a routing solution. Unlike the channel
routing problem, switchbox routing problem is typically represented by its circle
graph (see Chapter 3).

Note that we do not address the 3D-switchbox routing in this book. This
problem is solved by using area routing approaches. Some concepts and algo-
rithms related to 3D-switchbox and OTC routing will be discussed in Chapter 8.

9.1.5 Design Style Specific Detailed Routing Problems

In this section, we discuss the detailed routing problem with respect to dif-
ferent design styles.

9.2. Classification of Routing Algorithms 303

1.

2.

3.

Full custom: The full custom design has both channels and switchboxes.
As explained earlier, depending on the design, the order in which the
channels and 2D-switchboxes are routed is important. A 3D-switchbox
can only be routed after all the channels and 2D-switches under it have
been routed. The objective of a detailed routing algorithm is to complete
the routing in a manner that each net meets it timing constraint and
minimum area is utilized for routing. Other constraints such as manu-
facturability, reliability and performance constraints are also used.

Standard cells: The standard cell design style has channels of uniform
lengths which are interleaved with cell rows. Hence the detailed routing
problem is reduced to routing channels. Unlike in the full-custom design,
the order in which the channels are routed is not important. This is
possible since global router assigns pins in the feedthroughs. Typically,
regions on top of cells can be used for 3D-switchbox routing. This will
be explained in more detail in Chapter 8. The objective is to route all
the nets in the channel so that the height of the channel is minimized.
Additional constraints such as minimizing the length of the longest net
and restricting length of critical nets within some prespecified limits are
used for high performance standard cell designs.

Gate arrays: The gate arrays have channels of fixed size and hence the
detailed routing algorithms have to route all the nets within the available
routing regions. If the detailed router cannot route all the nets, the
partitioning process may have to be repeated till the detailed routers can
route all the nets. For high performance routing net length constraints
must added.

9.2 Classification of Routing Algorithms

There could be many possible ways for classifying the detailed routing algo-
rithms. The algorithms could be classified on the basis of the routing models
used. Some routing algorithms use grid based models while some other algo-
rithms use the gridless model. The gridless model is more flexible as all the
wires in a design need not have the same widths. Another possible classifica-
tion scheme could be to classify the algorithms based on the strategy they use.
Thus we could have greedy routers, hierarchical routers, etc. to name a few.
We classify the algorithms based on the number of layers used for routing. Sin-
gle layer routing problems frequently appear as sub-problems in other routing
problems which deal with more than one layers. Two and three layer routing
problems have been thoroughly investigated. Recently, due to improvements
in the fabrication process, fourth and fifth metal layers have also been allowed
but this process is expensive compared to three-layer metal process. Several
multi-layer routing algorithms have also been developed recently, which can be
used for routing MCMs which have up to 32 layers.

304 Chapter 9. Detailed Routing

9.3 Single-Layer Routing Algorithms

A general single-layer routing problem can be stated as follows. Given
a routing region, a netlist a set of terminals

where, specifies the th terminal of net
a set of blocks where
are flippable and are not flippable (a block is flippable if
orientation of its terminals is not determined). Also given is a set of design
rule parameters which specify the necessary widths of wire segments and the
minimum spacing between wires. The single-layer routing problem is to find a
set of wire segments inside the routing region which complete the connections
required by the netlist without violating any design rule. Figure 9.10 shows
an instance of a single-layer routing problem. Figure 9.10(a) gives the global
routing of the instance of the problem and Figure 9.10(b) gives the detailed
routing of wires on a single layer.

Although the general single layer routing problem is conceptually easier
than the multi-layer routing problem, it is still computationally hard. In single-
layer routing, the fundamental problem is to determine whether all the nets can
be routed. This problem is called single-layer routability problem and is known
to be NP-complete [Ric84]. Figure 9.11 shows an instance of a single-layer
routing problem that is unroutable.

There are many practical restricted versions of the single-layer routing
problem which are easier to handle than the general single-layer routing prob-
lem [MST83]. For example, consider the following:

1.

2.

3.

There are no flippable blocks, i.e.,

All the blocks are flippable, i.e.,

All the nets are two-terminal nets with no flippable blocks.

9.3. Single-Layer Routing Algorithms 305

4.

5.

6.

All the nets are two-terminals nets with all flippable blocks.

There are no blocks inside the routing region and all nets are two-terminal
nets.

There are no blocks inside the routing region, the nets are two-terminal
and the terminals lie on a single row.

Problems 3, 4, and 5 are commonly known as the variations of river routing.
Problem 6 is known as single row routing problem.

Several special cases of the single layer routing problem can be solved in
polynomial time [BP83, LP83, Ma190, SD81, Tom81].

Although, single layer routing problem appears restricted when one consid-
ers that fabrication technology allows three layers for routing. However, single
layer routing still can be used for power and ground routing, bus routing, over-
the-cell routing and some clock routing problems. During floorplanning, the
sequence of the input and output busses is determined for each block. Since a
bus may have a very large number of nets, it is advisable to pre-route the buses.
Buses are routed such that the output bus of a block is in the same sequence as
that of the input bus of a receiving block. Since the input and output busses
of the blocks have the same sequence, it may be possible to make the intercon-
nections between blocks on a single layer. This also minimizes vias and area
required for bus routing. Power and ground nets are sometimes also routed in
a single layer due to electrical considerations. The power and ground routing
problems will be considered in Chapter 9. In the three layer environment, in
certain regions, the two underlying metal layers may be blocked and only the
top layer is available for routing. In this case, additional nets may be routed
using single layer techniques on the third layer. This is a typical situation in
over the cell routing. We will discuss over-the-cell routing in Chapter 8. Fi-
nally, for high performance circuits, clock nets may be routed in a single layer,

306 Chapter 9. Detailed Routing

as electrical effects of vias are undesirable due to performance considerations.
In this section, we discuss two special cases of single layer routing problem, the
river routing problem and the single row routing problem.

9.3.1 General River Routing Problem

River routing is a special case of the single layer routing under following
assumptions. All the terminals lie on the boundary of the region. Every net
consists of exactly two terminals and there are no blocks in the region. Termi-
nals are located in such a way that no crossover between nets is necessary for
a solution to exist, that is, nets are planar. Figure 9.12 shows an example of a
general river routing problem.

A special case of general river routing problem, which has attracted a lot
of attention is simply called the river routing problem [Hsu83a, JP89, LP83,
MST83, TH90]. It is essentially a single layer channel routing problem for
two terminal nets, such that each net has one terminal on each boundary.
Figure 9.13 shows an example of a river routing problem. We will concentrate
on the general river routing problem and present an algorithm for an arbitrary
shaped rectilinear routing region.

9.3.1.1 General River Routing Algorithm

In this section, we discuss the general river routing algorithm presented by
Hsu [Hsu83a]. This algorithm is capable of routing in arbitrary shaped recti-
linear routing regions and guarantees that a solution will be found if one exists.
The algorithm is gridless and allows arbitrary net widths and wire separations.
Although, the algorithm is developed for two terminal nets, it can be easily
extended for multi-terminal nets. We start by defining some terminology.

Let a path be a alternating sequence of horizontal and vertical segments
connecting two terminals of a net. A terminal is called starting terminal if it
is connected to the first segment of a path. Similarly, the terminal connected

9.3. Single-Layer Routing Algorithms 307

with the last segment is called an ending terminal. Without loss of generality,
it will be assumed that every path is counter-clockwise along the boundary.
Every net has two possible paths along the boundary and therefore there are
the two possible choices of starting terminal for the net. Figure 9.14 shows two
possible paths along the boundary for a net Path has as
its starting terminal and path has as its starting terminal. The general
river routing algorithm routes one net at a time and consists of four phases.
In the first phase, the starting terminal of each net is determined. In the next
phase, net order is determined by the sequence of terminals on the boundaries.
Based on the net order, path searching is done by routing each net, in order, as
close to the boundaries as possible. Unnecessary corners are then removed by
flipping the corners in the last phase. We will now briefly discuss these phases.

Starting Terminal Assignment: As stated earlier, each net has two pos-
sible paths along the boundary. The starting terminal for a net is chosen
independent of all other nets, such that the shorter path is selected. In order
to select a starting terminal for a net, the length of the path in the counter-
clockwise direction is computed and compared to the half of the total length
of the boundary of the routing region. In figure 9.14, terminal is assigned
to be the starting terminal, since path is shorter than path Figure 9.16

308 Chapter 9. Detailed Routing

shows an example of the starting terminal assignment for a netlist.

Net Ordering: Every path is counter-clockwise and begins at the starting
terminal, as a result, the order in which the nets are routed is very important.
A net can only be routed after all the nets ‘contained’ by the net are already
routed. A net is contained by another net if all the terminals of
are on the boundary between the starting and ending terminals of the net
Note that only the counter-clockwise boundary is considered.

To determine the net order, a circular list of all terminals ordered in counter-
clockwise direction according to their positions on the boundaries is generated.
A planarity check is performed to determine if the given instance is routable.
If the given instance is routable, the nets are ordered by NET-ORDERING
algorithm as given below. The basic idea is to just push the starting terminal
of the nets on the stack as they are encountered. A number is assigned to a
net when the algorithm encounters the ending terminal of net and the
top item on the stack is the starting terminal of net This ensures that all
the nets contained in net are assigned a number, before assigning a number
to net Net is then deleted from further consideration and algorithm
continues until all nets have been numbered. The formal description of the
algorithm appears in Figure 9.15.

Consider the example shown in Figure 9.16. Starting at terminal 1, termi-
nals are considered in counter-clockwise order. The net is assigned first, as
its ending terminal is encountered, while the top of the stack has the starting
terminal of The starting terminal of is pushed onto the stack, followed
by pushing of starting terminal of net The net is number second as its
ending terminal is encountered next. The final net ordering for the example in
Figure 9.16 is {1,3,8,7,6,5,2,4}. The ‘s’ next to a terminal indicates that the
terminal is a starting terminal.

Path Searching: Based on the net order, each net is routed as close to the
pseudo-boundary as possible. For the first net, the pseudo-boundary is the
boundary of the region. For the second net, the segments of the first net and
the segments of the boundary not covered by the first net form the pseudo-
boundary. In other words, each time a net is routed, the region available for
routing is modified and the boundary of this region is referred to as pseudo-
boundary. The path of the net is checked for design rule violations by checking
the distances between the counter-clockwise path of the net and the pseudo-
boundary not covered by the net. If a violation occurs, it implies that the given
problem is unroutable. Figure 9.17 shows the pseudo-boundary ‘abcdihgf’ for
net and the path is created by routing as close to ‘abcd’ as possible. The
path is then checked against the remaining segments of the pseudo-boundary,
i.e., ‘ihgf’ for design rule violations.

Corner Minimization: Once the path searching for all nets has been
completed without design rule violation, a feasible solution has been found.
However, the routing technique described above pushes all the paths outward

9.3. Single-Layer Routing Algorithms 309

310 Chapter 9. Detailed Routing

against the boundaries and the excess space is left vacant in the center of the
routing region. Figure 9.18 shows an example of the routing after path search-
ing.

The corner minimization is a systematic method of flipping corners toward
the inside of the routing region. Corners are minimized one net at a time.
The order of the nets for this operation is precisely the reverse of the order
determined by the previous net ordering step. That is, the corners of the paths
are minimized starting with nets from the center of the routing region towards
the boundary of the routing region.

Every corner of a path belongs to one of the eight possible cases as shown
in Figure 9.19. Since every path is routed in the counter-clockwise direction, in
four cases the corners can be flipped towards the inside of the routing region.
Figure 9.19 shows the four cases a, b, c, d which can be respectively transformed

9.3. Single-Layer Routing Algorithms 311

to cases e, f, g, h by flipping towards the inside. The inside of the region is
indicated by a filled dot. A pseudo-boundary is generated in the same way as
in the path searching step and design violation checks are performed before all
corner flips. If the intended corner flip does not create any design rule violation,
the corner is flipped and two corners are eliminated from the path. Otherwise,
this corner is skipped and the next corner of the path is checked. Figure 9.20
shows an example of a path before and after flipping of corners.

9.3.2 Single Row Routing Problem

Given a set of two-terminal or multi-terminal nets defined on a set of evenly
spaced terminals on a real line, called the node axis, the single row routing
problem (SRRP) is to realize the interconnection of the nets by means of non-
crossing paths. Each path consists of horizontal and vertical line segments on
a single layer, so that no two paths cross each other. Moreover, no path is
allowed to intersect a vertical line more than once, i.e., backward moves of nets

312 Chapter 9. Detailed Routing

are not allowed.
For an example consider the net list where

A single row realization of is shown in Figure 9.21.
The area above the node axis is called the upper street while the area be-

low the node axis is called the lower street. The number of horizontal tracks
available for routing in the upper street is called upper street capacity. Simi-
larly the number of horizontal tracks available in the lower street is called the
lower street capacity. Due to symmetry in single row routing, the upper street
capacity is usually equal to the lower street capacity. For a given realization,
the number of the horizontal tracks needed in the upper street is called the
upper street congestion and the number of horizontal tracks needed in
the lower street is called the lower street congestion The term dogleg is
used to describe a bend in a net, when it makes an interstreet crossing. The
between-nodes congestion of a realization is the maximum number of inter-
street crossings between a pair of adjacent terminals. For the realization shown
in Figure 9.21, The net is doglegged once, while
the net is doglegged twice.

The objective function considered most often is to minimize the maxi-
mum of upper and lower street congestions, i.e., minimize where

To minimize the separation between the two adjacent termi-
nals it is sometimes necessary to minimize In practical problems,
and Other objective functions include minimizing the total number
of doglegs in a realization or to minimize number of doglegs in a wire.

9.3.2.1 Origin of Single Row Routing

The SRRP was introduced by So in the layout design of multilayer circuit
boards [So74]. It has received considerable attention [HS84a, KKF79, RS83,
RS84, TKS76, TMSK84, TKS82]. So proposed a systematic approach to the
routing of large multi-layer printed circuit board problem(MPCBP). This ap-

9.3. Single-Layer Routing Algorithms 313

proach consists of a well defined decomposition of the MPCBP into several
independent single layer single row routing problems. The scheme decomposes
the MPCBP routing problem into five phases:

1.

2.

3.

4.

5.

via assignment,

placement of via columns,

layering,

single row routing, and

via elimination,

In the via assignment phase, each multi-terminal net is decomposed into
several two terminal nets. A net whose terminals lies on the same row or
same column is connected by a wire. A net is not directly decomposable if
it contains two terminals not in the same row or same column. In this case
vias are introduced to facilitate decomposition of the net. In the second phase
of decomposition the via columns are permuted to minimize the wire lengths.
Obviously this change is meaningful only if vias appear column-wise. In par-
ticular, in this step, the locations of two via columns are exchanged without
violating any of the net connections.

In the third phase of decomposition, a single row routing problem is decom-
posed into several single row routing problems so that each subproblem can be
routed to satisfy the upper and lower street constraints in a different layer.
Usually, half the available layers are used for realization of the row problems,
and the other half of the available layers is used for the column problems.

Sufficient conditions for a realization with minimum congestion along with
a routing algorithm were presented by Ting, Kuh, and Shirakawa [TKS76].
It was shown that an arbitrary set of nets can be realized if upper and lower
street capacities are unbounded. Kuh, Kashiwabara, and Fujisawa [KKF79],
presented an interval diagram representation of the single row routing problem.
This representation played an important role in the research and development
of several algorithms for the single row routing problem. The interval diagram
representation of an example is given in Figure 9.22. The broken line shown in
Figure 9.22(b) is called the reference line. The layout is obtained by stretching
out the reference line and setting it on top of the node axis. The interval
lines for each net are mapped topologically onto vertical and horizontal paths.
The nets and its segments above the reference line are mapped onto paths in
the upper street, while the nets and its segments below the reference line are
mapped onto paths in the lower street. This process defines a unique realization
as shown in Figure 9.22(c). An important implication of the interval diagram
representation is that it reduces the single row routing problem to finding an
optimal permutation of nets and thus greatly enhances the understanding of
the problem.

Kuh, Kashiwabara, and Fujisawa [KKF79] also proposed an algorithm for
minimizing street congestion. It was based on the number of possible orderings

314 Chapter 9. Detailed Routing

(permutations) of nets that can be considered for routing. Another important
contribution of Kuh, Kashiwabara, and Fujisawa [KKF79] is the development of
necessary and sufficient conditions for the optimal realization of the single row
routing problem. These conditions were based on the idea of the cut number
of a net. The cut number of a terminal is the number of nets passing over that
terminal. The cut number of a net is maximum among all cut numbers of its
terminals. Example in Figure 9.23 shows the concept of cut number. Let be
the cut number of net Then in the Figure 9.23,

and Let and be the maximum and minimum
over the cut numbers of all nets, respectively. Then in the Figure 9.23,
and

The main idea behind the necessary and sufficient condition is the optimal
partitioning of nets at each terminal. A realization is optimal with congestion
equal to if at each terminal with cut number there are at least

nets above and nets passing below that terminal, not counting the
net to which the terminal belongs. In other words, if nets cover a terminal,
then a realization with congestion equal to is optimal only if the nets covering
this terminal can be partitioned into two sets, each containing at least nets.

9.3. Single-Layer Routing Algorithms 315

Although this condition can be used to verify whether a given realization is
optimal, it does not lead to any optimal routing algorithm. In fact there is
strong evidence that no such algorithm may exist. Arnold [Arn82] proved that
the problem of finding a layout with minimum congestion is NP-Hard.

Based on the concept of cut-numbers, a lower bound is also presented
in [KKF79].

Theorem 9 For any feasible realization

In [TMSK84] Trang, Marek-Sadowska, and Kuh proposed a heuristic algo-
rithm for minimizing street congestion. The proposed algorithm is based on
permuting the nets according to their cut number. It is observed that nets
having larger cut numbers should be placed inside, i.e., near the middle of the
permutation, while nets having lower cut numbers should be placed outside,
i.e., at the ends of the permutation. In [DL87b] Du and Liu showed that the
algorithm in [TMSK84] does indeed produce optimal results if all the nets be-
long to one ‘group’. However, if the net list has more than one group than
the algorithm given in [TMSK84] may not produce optimal results. The set of
nets that covers at least one common node is said to form a group. Du and Liu
proposed an algorithm that takes the group structure into account. They use
the idea of local cut number that is, the cut number of a net with respect to
a group. The algorithm routes the largest group first and then tries to route
the nets in the adjacent group while trying to satisfy the heuristic criterion of
placing nets with larger local cut numbers inside and nets with smaller local cut
numbers outside. This algorithm produced better results than the one reported
in [TMSK84].

In [DIN87] Du et al. investigated the problem of minimizing the between-
node congestion which is the congestion between two adjacent nodes. They
developed a fast algorithm for the case when the number of horizontal tracks
available as well as the number of vertical tracks available between adjacent
nodes is fixed. Their algorithm is an extension of Han and Sahni’s algorithm.

316 Chapter 9. Detailed Routing

9.3.2.2 A Graph Theoretic Approach

In [SD89a, SD89b, SDR89, SDR90], Sherwani and Deogun developed a new
graph-theoretic approach to single row routing problems. This approach models
a single row routing problem with three graphs, an overlap graph, a contain-
ment graph and an interval graph. It was found that several relationships exist
between the properties of an SRRP and the graph representation. In [SD89a],
a new heuristic algorithm has been developed based on this approach. This
algorithm achieves substantially better results than the existing algorithms.
In [SD89b], new lower bounds for SRRP have been developed and in [SDR89]
the problem of single row routing with a restricted number of doglegs is inves-
tigated.

We will briefly discuss the principle results obtained by the graph theoretic
approach. Let R be a set of evenly spaced terminals on the node axis. Let

be a set of two-terminal nets defined on R. Each net
can be uniquely specified by two distinct terminals and called the left

touch point and the right touch point, respectively, of Abstractly, a net
can be considered as an interval bounded by left and right touch points. Thus
for a given set of nets, an interval diagram depicting each net as an interval can
be easily constructed. Given an interval diagram corresponding to an SRRP,
we can define an interval graph containment graph and overlap graph

The definitions of these graphs may be found in chapter 3.
The approach presented in [SD89a] uses modified cut numbers. The cut

number is a very important criterion in determining the position of a net in
the final routing. Usually only cliques are considered in computation of cut-
numbers. For improving the utility of cut-numbers, they consider not only
cliques but also the clique intersections. Two cliques are said to have high
clique intersection if the number of nets they have in common is at least equal
to one-half of the maximum size of the two cliques, otherwise cliques have
low clique intersection. If the clique intersection is relatively high between
two cliques, these cliques are collapsed to form a bigger pseudo-clique. For
routing purposes a pseudo-clique is treated as a clique. This operations of
clique collapsing continues until all clique intersections are relatively low. The
cut-number of a net with respect to its pseudo-clique is called the modified
cut-number. It is easy to see that this approach behaves like Trang et al.’s
algorithm if all clique intersections are high while behaving like Du et al.’s
algorithm if all clique intersections are low. In addition, it even produces a
good solution for problem sets for which some clique intersections are high and
some clique intersections are low.

9.3.2.3 Algorithm for Street Congestion Minimization

In [SD89a], an algorithm to minimize the street congestion was developed.
The basic function of the algorithm, denoted as SRRP_ROUTE, is to find
maximal pseudo-cliques in the interval graph representing the sub-problem
under consideration. This goal is accomplished by finding and collapsing maxi-
mal cliques. If the clique intersection of the two neighboring (pseudo-)cliques is

9.3. Single-Layer Routing Algorithms 317

high then these are combined and a pseudo-clique is formed. All modified cut-
numbers are computed according to the pseudo-cliques. First, the maximum
pseudo-clique is routed using a greedy approach similar to the approach
used in [TMSK84]. Other pseudo-cliques to the left and right of this maximum
pseudo-clique are then routed. An outline of the algorithm is in Figure 9.24.

In the following, we give a brief description of the main procedures of SRRP-
ROUTE:

Procedure FIND-CLIQUES: This procedure decomposes the given
problem into several smaller single-row-routing problems by identifying
the linear ordering of cliques of the interval graph

Procedure COMBINE-CLIQUES: This procedure finds the clique
intersections between adjacent cliques, and forms a pseudo-clique if the
clique intersection is high. This process is carried out until all clique
intersections between all pseudo cliques are low. The clique collapsing
parameter can be changed.

Procedure SOLVE: This procedure returns a permutation of the nets
of a sub-problem obtained by placing them according to the greedy heuris-
tic based on the modified cut numbers. This procedure is used to route
the maximum pseudo-clique.

Procedure INSERT: This procedure combines solutions of two adja-
cent sub-problems to produce a solution for the larger problem defined
by the combination of the two sub-problems. It inserts the new nets
belonging to the new clique into the existing solution so that nets with
higher modified cut numbers are assigned to inner tracks, while nets lower
modified cut numbers are assigned to outer tracks.

318 Chapter 9. Detailed Routing

The number of nets in any sub-problem cannot be greater than n. Moreover,
procedure SOLVE has a time complexity of . Procedure INSERT
has a time complexity of . The first loop thus takes time.
Similarly, the second loop also takes Therefore, the worst case
time complexity of the algorithm is

9.3.2.4 Algorithm for Minimizing Doglegs

The problem of finding a layout without doglegs is of interest because of the
limited amount of inter-pin distance available in IC’s. This problem has been
considered before by Raghavan et al., [RS84] when an algorithm for checking
feasibility of routing without doglegs was developed. The authors however
did not present a characterization. Using the graph model, in [SD89a] a
characterization of single row routing problems which can be solved without
doglegs is presented.

Theorem 10 An SRRP can be routed without any doglegs if and only if the
corresponding overlap graph is bipartite.

Similarly, a sufficient condition for routing with at most one dogleg per net
was also established.

Theorem 11 An SRRP can be realized with at most one dogleg per net if the
corresponding containment graph is null.

Using this graph representation, three algorithms for minimum-bend single
row routing problem have recently been reported [SWS92]. It was shown that
the proposed algorithms have very tight performance bounds. In particular, it
is proved that the maximum number of doglegs per net is bounded by O(k),
where is the size of the maximum clique in certain graph representing the
problem. Expected value of is and in practical examples = 0(1),
where is the number of nets.

We will briefly describe one of the algorithms, which is based on the decom-
position of the given SRRP into several smaller SRRPs so that interval graph
for each subproblem is null. This operation is called independent set decomposi-
tion of The motivation for this algorithm is derived from the fact that using
the interval graph representing a SRRP, the problem can be decomposed into

 subproblems and each one of these subproblems can be routed without any
doglegs. The key therefore, is to combine the routing of these subproblems such
that maximum number of doglegs per net is minimized. The independent set
decomposition of can be achieved by using the algorithm to find maximum
clique in an interval graph described in Chapter 3. Using the independent
sets, an algorithm, denoted K-DOGLEG-I is presented, which combines the
routing of these sets into a routing for the given SRRP. The formal description
of the algorithm is in Figure 9.25.

Theorem 12 The Algorithm K-DOGLEG-I routes a given net list L with at
most doglegs per net in time, where and is the total
number of nets.

9.3. Single-Layer Routing Algorithms 319

320 Chapter 9. Detailed Routing

Proof: Given a net list , the algorithm decomposes it into independent net
lists and routes the first independent net list on the upper
street and the second independent set on the lower street. This operation
can be completed without any doglegs. Then the algorithm inserts all the nets
in the remaining – 2 independent net lists into the existing layout. Since
inserting one independent net list causes at most O(1) more doglegs to each
net in the layout, hence inserting all the remaining – 2 independent net lists
causes at most O(k) more doglegs to each net in the layout. So the total dogleg
number per net is O(k). On the other hand, in an interval graph, is equal to

Therefore, the algorithm K-DOGLEG-I can route a given net list with at
most doglegs per net.

All operations of the K-DOGLEG-I algorithm, except the track finding
operation can be carried out in constant time. Each find operation can be
accomplished by a binary search in time. Therefore the total time
complexity is

9.4 Two-Layer Channel Routing Algorithms

Two-layer channel routing differs from single-layer routing in that two planar
set of nets can be routed if vias are not allowed, and a non-planar set of nets
can be routed if vias are allowed. For this reason, checking for routability is
unnecessary, as all channel routing problems can be completed in two layers of
routing if vias are allowed. Therefore, the key objective function is to minimize
the height of the channel.

For a given grid-based channel routing problem, any solution to the problem
requires at least a minimum number of tracks. This requirement is called the
lower bound for that problem. Since the lower bound is the minimum number
of tracks that is required, it is unnecessary to reduce the number of tracks
beyond the lower bound and therefore, it is important to calculate the lower
bound of the number of tracks before solving a particular routing instance.
Following theorem presents the lower bounds for channel routing problems
assuming two-layer reserved layer routing models with no doglegs allowed. Let

and represent the maximum clique in the HCG and the longest path
in VCG, respectively for a routing instance.

Theorem 13 The lower bound on the number of tracks of a two-layer dogleg
free routing problem is

For grid-less channel routing problems, the width of nets must be taken into
account while computing and

9.4.1 Classification of Two-Layer Algorithms

One method of classifying two-layer channel routing algorithms would be
to classify them based on the approach the algorithms use. Based on this
classification scheme we have:

9.4. Two-Layer Channel Routing Algorithms 321

1.

2.

3.

4.

LEA based algorithms: LEA based algorithms start with sorting the
trunks from left to right and assign the segments to a track so that no
two segments overlap.

Constraint Graph based routing algorithms: The constraint based routing
algorithms use the graph theoretic approach to solve the channel rout-
ing problem. The horizontal and vertical constraints are represented by
graphs. The algorithms then apply different techniques on these graphs
to generate the routing in the channel.

Greedy routing algorithm: The greedy routing algorithm uses a greedy
strategy to route the nets in the channel. It starts with the leftmost
column and works towards the right end of the channel by routing the
nets one column at a time.

Hierarchical routing algorithm: The hierarchical router generates the
routing in the channel by repeatedly bisecting the routing region and
then routing each net within the smaller routing regions to generate the
complete routing.

In the following subsection, we present a few routers from each category.

9.4.2 LEA based Algorithms

The Left-Edge algorithm (LEA), proposed by Hashimoto and Stevens [HS71],
was the first algorithm developed for channel routing. The algorithm was
initially designed to route array-based two-layer PCBs. The chips are placed
in rows and the areas between the rows and underneath the boards are divided
into rectangular channels. The basic LEA has been extended in many different
directions. In this section, we present the basic LEA and some of its important
variants.

9.4.2.1 Basic Left-Edge Algorithm

The basic LEA uses a reserved layer model and is applicable to channel rout-
ing problems which do not allow doglegs and any vertical constraints. Conse-
quently, it does not allow cyclic vertical constraints.

The left-edge algorithm sorts the intervals, formed by the trunks of the
nets, in ascending order, relative to the coordinate of the left end points of
intervals. It then allocates a track to each of the intervals, considering them one
at a time (following their sorted order) using a greedy method. To allocate an
interval to a track, LEA scans through the tracks from the top to the bottom
and assigns the net to the first track that can accommodate the net. The
allocation process is restricted to one layer since the other layer is used for the
vertical segments (branches) of the nets. The detailed description of LEA is in
Figure 9.26. Figure 9.27 shows a routing produced by LEA. Net is assigned
to track 1. Net is assigned to track 2 since it intersects with and cannot
be assigned to track 1. Net is similarly assigned to track 3. Net is

322 Chapter 9. Detailed Routing

assigned to track 1 since it does not intersect with The following theorem
which establishes the optimality of LEA is easy to prove.

Theorem 14 Given a two-layer channel routing problem with no vertical con-
straints, LEA produces a routing solution with minimum number of tracks.

The input to the algorithm is a set of two-terminal nets
Procedure FORM-INTERVAL forms interval set from

N. Once the intervals are formed, FORM-HCG forms the horizontal constraint
graph HCG from Note that the HCG is a interval graph corresponding
to interval set Procedure DENSITY computes the maximum clique size
in HCG. This maximum clique size is a lower bound on the given channel
routing problem instance. SORT-INTERVAL sorts the intervals in in the
ascending order of their -coordinate on their left edge. Procedure VERTICAL-
SEGMENT connects the vertical segments with the corresponding horizontal
segment. The time complexity of this algorithm is , which is the time
needed for sorting intervals.

The assumption that no two nets share a common end point is too restric-
tive, and as a result LEA is not a practical router for most channel routing
problems. The restrictions placed on the router in order to achieve optimal re-
sults are not practical for most channel routing problems. However, LEA can
be used to route PCB routing problems with vertical constraints since there is
sufficient space between the adjacent pins to create a jog. LEA is also useful
as a initial router for routing of channels with vertical constraints. The basic

9.4. Two-Layer Channel Routing Algorithms 323

idea is to create a layout with design rule violations and then use clean up
procedures to remove the violations.

9.4.2.2 Dogleg Router

One of the drawbacks of LEA is that it places an entire net on a single track.
It has been observed that this leads to routings with more tracks than necessary.
Consider Figure 9.28(a), which shows a simple channel routing problem that
has been routed using LEA and uses three tracks. On the other hand, if a
dogleg is introduced in net the same problem can be routed using only two
tracks. We recall that a dogleg is a vertical segment that is used to maintain
the connectivity of two trunks (subnets) that are on two different tracks. The
insertion of doglegs, may not necessarily reduce the channel density. A badly
placed dogleg can lead to an increase in channel density. Finding the smallest
number and locations of doglegs to minimize the channel density is shown to
be NP-complete [Szy85].

Deutsch [Deu76] proposed an algorithm known as dogleg router by observing
that the use of doglegs can reduce channel density. The dogleg router is that
it allows multi-terminal nets and vertical constraints. Multi-terminal nets may
have terminals on both sides of the channel and often form long horizontal
constraint chains. In addition, there are several critical nets, such as clock nets,
which pose problems because of their length and number of terminals. These
type of nets can be broken into a series of two-terminal subnets using doglegs
and each subnet can be routed on a different track. Like LEA, the Dogleg
router uses a reserved layer model. Restricting the doglegs to the terminal
positions reduces the number of unnecessary doglegs and consequently reduces
the number of vias and the capacitance of the nets. The dogleg router cannot
handle cyclic vertical constraints.

The dogleg router introduces two new parameters: range and routing se-
quence. Range is used to determine the number of consecutive two-terminal

324 Chapter 9. Detailed Routing

subnets of the same net which can be placed on the same track. Increasing the
range parameter will result in fewer doglegs. The routing sequence specifies
the starting position and the direction of routing along the channel. Unlike
LEA, the routing can start from any end and work towards the opposite end.
Different results can be obtained by starting at different corners: top-left, top-
right, bottom-left, bottom-right. Furthermore, instead of starting from the top
to the bottom or from the bottom to the top, the algorithm can alternate be-
tween topmost and bottommost tracks. This scheme results in eight different
routing sequences: top-left bottom-left, top-left bottom-right, top-right

bottom-left, top-right bottom-right, bottom-left top-left, bottom-left
top-right, bottom-right top-left, and bottom-right top-right. (The left

side of the arrow indicates the starting corner and the right side of the arrow
indicates the alternate corner). Consider the example shown in Figure 9.29(a).
If the range is set to 1 and we set the routing sequence to top-left bottom-
right, then Figure 9.29(b) shows routing steps in dogleg router. Notice that
nets and use doglegs.

The complexity of the algorithm is dominated by the complexity of LEA. As
a result, the complexity of the algorithm is , where n is the total
number of two-terminal-nets after decomposition and is the total number of
tracks used. Note that the parameter’s range and routing sequence can be
changed to get different solutions of the same routing problem. A large value
of range keeps the number of doglegs smaller. If the number of two-terminal
subnets of a net is less than the value of a range, then that net is routed
without any dogleg. Varying the routing sequence can also lead to a reduced

9.4. Two-Layer Channel Routing Algorithms 325

channel height. Dogleg router can easily be extended to gridless routing model.
Experimentally dogleg routers achieve far superior results as compared to LEA,
often requiring very few tracks beyond the channel density.

9.4.2.3 Symbolic Channel Router: YACR2

LEA does not allow vertical constraints thereby making it impractical for
most of the channel routing problems. If a given channel is routed using LEA,
then vertical constraint violations may be introduced by the router which need
to be removed to get a legal routing solution. Note that a vertical constraint
violation is a localized problem and may be resolved by anyone of the two
methods:

1.

2.

local rip-up and reroute

localized maze routing.

In the second approach, vacant space surrounding the column in which vertical
constraint violation occurred can be used to resolve the violation. Usually
several horizontal segments of tracks as well as several vertical columns are not
used for routing of any nets. Since the general maze routing technique is very
time consuming and vertical constraint violations are local in nature, special
maze routing techniques can used to remove vertical constraint violations. In
case any vertical constraint violations cannot be resolved, new tracks can be
added to resolve the constraints.

Based on these observations, Reed, Sangiovanni-Vincentalli, and Santa-
mauro [RSVS85] proposed YACR2 (Yet Another Channel Router). In order
to explain how vertical constraint violations are handled in YACR2 we de-
fine the concept of vertical overlap factor, which indicates the total number
of tracks that a vertical constraint violation spans. Precisely stated, let us
assume that column has a vertical constraint violation between net that
has to be connected to the top boundary and net that has to be connected

326 Chapter 9. Detailed Routing

to the bottom boundary. Also assume that is assigned to track and
is assigned to track Track is above track and tracks are numbered
in increasing order from top to bottom boundary. Then vertical constraint

For any column if there is no vertical constraint
violation in then The basic idea of YACR2 is to select nets in
an order and assign nets to tracks in a way such that is as minimum
as possible for each column After assigning nets to tracks, specialized maze
routing techniques are used to resolve the violations. If a vertical constraint
violation cannot be resolved using maze routing technique, additional tracks
are used to complete the routing.

The algorithm works in four different phases. First three phases are essen-
tially for assigning nets to tracks with the objective of minimizing for
each column In attempt to minimize the algorithm starts with the
nets belonging to the maximum density column. After assigning tracks to the
nets belonging to the maximum density column, it uses LEA to assign tracks to
nets that are to the right of the maximum density column and then assigns to
the nets that are to the left of the maximum density column. A modified LEA
is used to assign tracks that are to the left of the maximum density column. It
can be thought of as a right-edge algorithm, since it works from right to left.

As mentioned earlier that the goal of selecting and assigning nets to tracks
is to minimize the total number of vertical constraint violations so that it is
easy for the simplified maze routers to complete the routing. However, it is
impossible to determine all the vertical constraint violations caused by the
placement of a certain net. In fact some of the vertical constraint violations
may occur between the net under consideration and nets yet to be routed.
Since the nets are routed without doglegs, the vertical constraint graph can be
used to estimate the possibility of an assignment giving rise to a violation, and
the difficulty involved in removing the violation if it occurs. The techniques
of selecting and assigning nets used in [RSVS85] are rather complicated and
readers are referred to [RSVS85] for the details. It should be noted that any
technique will work; however, may be very high for some column making
vertical constraint violation resolution steps rather complicated.

After track assignments of horizontal segments, at the end of phase III,
has been achieved, appropriate vertical segments are placed in the columns
with = 0. In phase IV, the columns with vertical constraint violations
are examined one at a time to search for legal connection between the nets
and their terminals. Instead of applying the general purpose maze routing
technique, three different maze routing techniques are applied to resolve the
vertical constraint violations in this phase. These three techniques (strategies)
are called mazel, maze2, and maze3. At each column with a vertical constraint
violation, mazel strategy is used first. If mazel fails to resolve the violation,
maze2 is applied. If maze2 fails, then maze3 is applied to resolve the violation.
In case all three strategies fail, the channel is enlarged by adding one track and
the process is repeated.

To explain how the maze routing techniques work, let us assume that column
has a vertical constraint violation between net that has to be connected to

9.4. Two-Layer Channel Routing Algorithms 327

the top boundary and net that has to be connected to the bottom boundary.
Also assume that is assigned to track and is assigned to track Tack

is above track
The Mazel technique checks for either one of the following:

1.

2.

3.

No vertical segments exist between and on column or

In this case a jog is used in net in track to resolve the violation
(see Figure 9.30(a) and (b));

No vertical segment exist between and on column or

In this case a jog is used in net in track to resolve the violation
(see Figure 9.30(c) and (d));

No vertical segment exist between and some between and
on column and between and on column or vice versa.

In this case net uses jogs in tracks and and net uses jogs
in tracks and to resolve vertical constraint violation (see Fig-
ure 9.30(e) and (f)).

In case mazel technique cannot resolve the vertical constraint violation,
maze2 technique is used in attempt to resolve the violation. Maze2 checks for
one of the following:

1.

2.

A track, column pair such that: (a) there are no horizontal seg-
ments in track between columns and (b) there are no vertical
segments in between and (c) the horizontal segment of net in
track either crosses column or can be extended to without causing
a horizontal constraint violation; and (d) is above

In this case, net uses a dogleg in track to resolve the violation as
shown in Figure 9.31 (a) and (b).

A track, column pair such that: (a) there are no horizontal seg-
ments in track between columns and (b) there are no vertical
segments in between and (c) the horizontal segment of net in
track either crosses column or can be extended to without causing
a horizontal constraint violation; and (d) is below

In this case, net uses a dogleg in track to resolve the violation as
shown in Figure 9.31(c) and (d).

If none of the conditions in maze2 techniques are satisfied, maze3 technique
is applied. As opposed to the local maze routing, the pattern based approach
of YACR2 is efficient and avoids long routes; at the same time, it is limited in
scope as opposed to local maze routing techniques. If none of the maze routing
techniques can resolve vertical constraint violations, new tracks are added to
complete the routing.

328 Chapter 9. Detailed Routing

9.4. Two-Layer Channel Routing Algorithms 329

9.4.3 Constraint Graph based Routing Algorithms

Consider a channel routing problem with no vertical constraints. Obviously,
the number of tracks needed is determined by the maximum clique in the
horizontal constraint graph(HCG). In this case, LEA produces optimal results,
if no doglegs are allowed. In presence of vertical constraints, the length of the
longest path in vertical constraint graph(VCG) also plays a key role in
determining the channel height. In particular, the nets which lie on long paths
in the vertical constraint graph, must be carefully assigned to tracks. In order
to explain the effect of long vertical chains, let us define length of ancestor and
descendent chains of a net Let represent in VCG. Let denote
the length of the longest path from a vertex of zero in-degree to in VCG.
Similarly, let denote the length of longest path from to a vertex of zero

330 Chapter 9. Detailed Routing

out-degree in VCG. It is easy to see that

Consider the nets and as shown in Figure 9.32. If and are assigned
to the same track then the channel height is given by

In other words, if we consider and as a new net, then a new vertical
constraint chain is created which consists of longer of two ancestor chains and
longer of two descendent chains.

Figure 9.32(a) shows the effect of assigning two nets to the same track with-
out considering the constraint chains. The channel height for this solution is
equal to 6. A better assignment resulting in a channel height of 4 is shown in
Figure 9.32(b). Based on the above equation, we make the following observa-
tion. In order to minimize the effect of vertical constraint chains on channel
height, two nets may be assigned to the same track only if both of them have
small ancestor chains, or both of them have small descendent chains. Several
algorithms have been developed which are based on this observation. In this
section, we discuss the first constraint graph based algorithm and its grid-less
variant.

9.4.3.1 Net Merge Channel Router

In 1982, Yoshimura and Kuh [YK82] presented a new channel routing al-
gorithm (YK algorithm) for two-layer channel routing problems based on net
merging. This work was the first attempt to analyze the graph theoretic struc-
ture of the channel routing problem. YK algorithm considers both the horizon-
tal and vertical constraint graphs and assigns tracks to nets so as to minimize
the effect of vertical constraint chains in the vertical constraint graph. It does

9.4. Two-Layer Channel Routing Algorithms 331

not allow doglegs and cannot handle vertical constraint cycles. The YK algo-
rithm partitions the routing channel into a number of regions called zones based
on the horizontal segments of different nets and their constraints. The basic
observation is that a column by column scan of the channel is not necessary as
nets within a zone cannot be merged together and must be routed in a separate
track. This observation improves the efficiency of the algorithm. The algorithm
proceeds from left to right of the channel merges nets from adjacent zones. The
nets that are merged are considered as one composite net and are routed on a
single track. In each zone, new nets are combined with the nets in the previous
zone. After all zones have been considered, the algorithm assigns each com-
posite net to a track. The key steps in the algorithm are zone representation,
net merging to minimize the vertical constraint chains, and track assignment.
Throughout our discussion, we will use the example given in [YK82], since that
example serves as a benchmark.

1. Zone Representation of Horizontal Segments: Zones are in fact
maximal clique in the interval graph defined by the horizontal segments
of the nets. The interval graph of the net list in Figure 9.33(a) is shown
in Figure 9.33(e). In terms of an interval graph the clique number is the
density of the channel routing problem.

In order to determine zones, let us define S(i) to be the set of nets whose
horizontal segments intersects column i. Assign zones the sequential num-
ber to the columns at which S(i) are maximal. These columns define
zone 1, zone 2, etc., as shown in the table 9.33(c), for the example in Fig-
ure 9.33. The cardinality of S(i) is called local density and the maximum
among all local densities is called maximum density which is the lower
bound on the channel density. In should be noted that a channel routing
problem is completely characterized by the vertical constraint graph and
its zone representation.

2. Merging of Nets: Let and be the nets for which the following
two conditions are satisfied:

1.

2.

There is no edge between and in HCG.

There is no directed path between and in VCG.

If these conditions are satisfied, net and net can be merged to form
a new composite net.

The operation of merging net and net modifies the VCG by shrink-
ing node and and node into node and updates the zone repre-
sentation by replacing net and net by net which occupies the
consecutive zones including those of net and net

Let us consider the example shown in Figure 9.33(a). Net and net
are merged and the modified VCG along with the zone representation

is shown in Figure 9.34. The updated vertical constraint graph and the
zone representation correspond to the net list in Figure 9.34, where

332 Chapter 9. Detailed Routing

9.4. Two-Layer Channel Routing Algorithms 333

and are replaced by net The algorithm, given in Figure 9.35
merges nets as long as two nets from different zones can be merged.

In each iteration, the nets ending in zone are added to the list L. While
the nets starting in are kept in list R. Function MERGE then merges
two list L and R so as to minimize the increase in the longest path length
in VCG. The list returned by function MERGE consists of all the nets
merged by the function. These nets are not considered further.

In Figure 9.36 we illustrate how the vertical constraint graph is updated
by the algorithm NET-MERGE. The length of the longest path in VCG
is 4 and size of the maximum clique is 5, therefore any optimal solution
takes at least 5 tracks. In first iteration, and
There are three possible net mergings, and Merging

334 Chapter 9. Detailed Routing

and creates a path of length 5, merging and creates a path of
length 4, while merging and creates a path of length 4. Therefore
either or may be formed. Let us merge and Similarly,
in second iteration net and net are merged. In the fourth iteration

and are merged. The final graph is shown in Figure 9.36(e). The
track assignment is straight forward. Each node in the final graph is
assigned a separate track. For example, track 1 can be assigned to net

Similarly, tracks 2 and 3 can be assigned to nets and net
respectively. For net and net either track 4 or 5 can be

assigned.

It should be noted that finding optimal net pairs for merging is a hard
problem. This is due to the fact that the future effects of a net merge
cannot be determined.

It is possible to improve the YK algorithm by allowing some look ahead or
doing rip-up and re-merge operations. In 1982, YK algorithm represented a
major step forward in channel routing algorithms. It formulated the problem
and provided a basis for future development of three layer and multi-layer
algorithms. It has been extended to three layer and gridless environment.
These extended routers will be discussed later in the chapter.

9.4.3.2 Glitter: A Gridless Channel Router

All the algorithms presented thus far in the channel routing are grid-based.
The main drawback of grid-based algorithms is that it is difficult to route nets
with varying wire widths.

Chen and Kuh [CK86] first proposed a gridless variable-width channel
router called Glitter. Glitter can utilize multiple layer technology and design
rules. Terminals can be located at arbitrary positions and can be located
on off-grid points. No columns or tracks are used in routing. Only the wire
width, spacing, and via size are under consideration are used. Nets are allowed
to have different wire widths to satisfy special design needs and improve the
performance of the circuits. Glitter is a reserved-layer model routing algorithm.

9.4. Two-Layer Channel Routing Algorithms 335

336 Chapter 9. Detailed Routing

The basic idea of Glitter is somewhat similar to net merge algorithm. In-
stead of computing the longest vertical constraint chains in terms of tracks,
the actual height of the vertical constraint chains is computed and used for
assigning nets to locations in the channel.

Another key observation is that if each edge in the combined constraint
graph is directed, then they specify a routing. Thus the routing problem is
reduced to a problem of assigning directions to edges in the combined constraint
graph.

Glitter uses vertical and horizontal constraint graphs to form a graph called
weighted constraint graph. The weighted constraint graph combines all the ver-
tical and horizontal constraints into the same graph, where each node represents
a horizontal net or subnet, each directed edge represents a vertical constraint,
and each undirected edge represents a horizontal constraint. The weight of the
edge between node A and node B is the minimum vertical distance required
between net A and net B. If net A needs to be placed above net B, then the
edge should be directed from node A to node B.

To build the weighted constraint graph, vertical and horizontal constraints
for each pair of nets (subnets) are checked. If there is more than one constraint,
the larger weight will overrule the smaller, and the directed edge will overrule
the undirected edge. If there are two contradictory directed edges (there is
cycle in VCG), a dogleg must be introduced to break the cycle.

The upper boundary and the lower boundary are also represented by nodes
in the weighted constraint graph. Since every net must be placed below the
upper boundary, a directed edge will be generated from the upper boundary
to each net. Similarly, there is a directed edge from each net to the lower
boundary. The weight for a boundary constraint edge is the minimum distance
required between the boundary and each net.

Figure 9.37(a) shows a simple example of the variable-width channel-routing
problem. In the following analysis, we have assumed the following design rules
for the example. The minimum wire spacing in layer 1 and 2 is assumed to be
3 and 2, respectively, the via size is assumed to be 2 x 2, and the minimum
overlap width that each layer must extend beyond the outer boundary of the
via is assumed to be 1. If the vertical wire width is 4 for every net and the
horizontal wire width for each net is specified in Figure 9.37, then we can
check the vertical and horizontal constraints for each pair of nets (subnets),
and calculate the minimum distance required between them. For example,
net 6 must be placed above net 2 by a minimum distance of 7, so there is a
directed edge from node 6 to node 2 and the weight of this edge is 7. On the
other hand, net 1 should be placed either above or below net 4 because their
horizontal spans overlap each other. So there is an undirected edge between
node 1 and node 4, and the minimum distance (edge weight) required is 6. The
complete weighted constraint graph is shown in Figure 9.37(c).

After the weighted constraint graph is generated, the channel-routing prob-
lem can be formulated as follows. Given a weighted constraint graph, assign a
direction to each undirected edge such that 1) no cycles are generated and 2)
the total weight of the maximum weighted directed path (longest path) from

9.4. Two-Layer Channel Routing Algorithms 337

338 Chapter 9. Detailed Routing

the upper boundary to the lower boundary is minimized. In a graph which has
 undirected edges, there are possible solutions.

Since the routing solution can always be obtained by assigning directions to
undirected edges, the ordering of edge selection becomes very important. For
each undirected edge in the weighted constraint graph, suppose the assignment
of one direction will result in cycles. The only choice then is to assign the other
direction. Those edges are called critical edges, and they should be assigned
directions first.

The ancestor weight ancw(i) of node i is the total weight of the maximum
weighted ancestor chain of node . Similarly, the descendant weight of
node is the total weight of the maximum weighted descendant chain of node
.

The label of each undirected edge(i,j) is defined as the maximum of
 and . The label is

a measure of the total weight of the maximum weighted directed path which
passes through if an improper direction is assigned to . The
label is defined as if the undirected edge is a critical edge. If a label is larger
than the maximum density of the channel, the meaning of this label becomes
significant because it may be the new lower bound for minimum channel height.
Undirected edge with a large label should therefore be assigned a proper direc-
tion as early as possible, so that the increase of the lower bound is less likely
to occur.

Selection of nodes in the graph is based on the ancestor and descendent
weights. If an unprocessed node has no ancestors (or all its ancestors have
been processed), it can be placed close to the upper boundary (i.e., closer than
other unprocessed nodes), and all the undirected edges connected to this node
can be assigned outgoing directions. Similarly, if an unprocessed node does
not have descendants (or all its descendants have been processed), it should be
placed close to the lower boundary, and all the undirected edges connected to
it can be assigned incoming directions. The unprocessed nodes with minimum

 or are the candidates to be selected. A node is said to be
processed if it has been placed close to the upper or lower boundary. An edge is
said to be processed if it has been assigned a direction. The routing is complete
when all the nodes (or edges) are processed.

The algorithm can be easily extended to accommodate irregularly-shaped
channels by adding the boundary information to the weighted constraint graph.
The Top node will represent the uppermost boundary, and the Bottom node
will represent the lowermost boundary. The weight of boundary constraint
edges should be modified to include the amount of indentation.

9.4.4 Greedy Channel Router

Assigning the complete trunk of a net or a two-terminal net segment of a
multiterminal net severely restricts LEA and dogleg routers. Optimal channel
routing can be obtained if for each column, it can be guaranteed that there is
only one horizontal track per net. Based on this observation, one approach to

9.4. Two-Layer Channel Routing Algorithms 339

reduce channel height could be to route nets column by column trying to join
split horizontal tracks (if any) that belong to the same net as much as possible.

Based on the above observation and approach, Rivest and Fiduccia [RF82]
developed greedy channel router. This makes fewer assumptions than LEA and
dogleg router. The algorithm starts from the leftmost column and places all
the net segments of a column before proceeding to the next right column. In
each column, the router assigns net segments to tracks in a greedy manner.
However, unlike the dogleg router, the greedy router allows the doglegs in any
column of the channel, not necessarily where the terminal of the doglegged net
occurs.

Given a channel routing problem with columns, the algorithm uses sev-
eral different steps while routing a column. In the first step, the algorithm
connects any terminal to the trunk segment of the corresponding net. This
connection is completed by using the first empty track, or the track that al-
ready contains the net. In other words, minimum vertical segment is used to
connect a trunk to terminal. For example, net 1 in Figure 9.38(a) in column 3
is connected to the same net. The second step attempts to collapse any split
nets (horizontal segments of the same net present on two different tracks) us-
ing a vertical segment as shown in Figure 9.38(b) A split net will occur when
two terminals of the same net are located on different sides of the channel and
cannot be immediately connected because of existing vertical constraints. This
step also brings a terminal connection to the correct track if it has stopped on
an earlier track. If there are two overlapping sets of split nets, the second step
will only be able to collapse one of them.

In the third step, the algorithm tries to reduce the range or the distance
between two tracks of the same net. This reduction is accomplished by using a
dogleg as shown in Figure 9.39(a) and (b). The fourth step attempts to move
the nets closer to the boundary which contains the next terminal of that net.
If the next terminal of a net being considered is on the top (bottom) boundary
of the channel then the algorithm tries to move the net to the upper(lower)
track. In case there is no track available, the algorithm adds extra tracks and
the terminal is connected to this new track. After all five steps have been
completed, the trunks of each net are extended to the next column and the
steps are repeated. The detailed description of the greedy channel routing

340 Chapter 9. Detailed Routing

algorithm is in Figure 9.40.
The greedy router sometimes gives solutions which contain an excessive

number of vias and doglegs. It has, however, the capability of providing solution
even in presence of cyclic vertical constraints. The greedy router is more flexible
in the placement of doglegs due to fewer assumptions about the topology of
the connections. An example routed by the greedy channel router is shown in
Figure 9.41.

9.4.5 Hierarchical Channel Router

In [BP83], Burstein and Pelavin presented a two layer channel router based
on the reduction of the routing problem in grid to the routing in
grid and consistent utilization of ‘divide and conquer’ approach.

Let, denote the cell in row and column in an grid
G. The terminals are assumed to be in the top and the bottom rows of the
grid. Let, denote the horizontal boundary shared by the cell and

. Let, denote the vertical boundary shared by the cell
and . Each boundary in G has a capacity, which indicates the number
of wires that can pass through that boundary.

In this approach, a large routing area is divided into two rows of routing
tiles. The nets are routed globally in these rows using special types of steiner
trees. The routing in each row is then further refined by recursively dividing
and routing each of the rows. More specifically, the the routing grid
is partitioned into two subgrids; the top and the bottom
subgrid. Each column in these subgrids is considered as a supercell. As a
result, two rows of supercells are obtained, i.e., a grid is obtained, (see
Figure 9.42.) Capacity of each vertical boundary in this grid will be the sum
of corresponding boundary capacities in the original grid. The nets are routed
one at a time in this grid, (see Figure 9.43.) Each row of the
is then partitioned into a grid. The terminal positions for the routing
in the new subproblems is defined by the routing in the previous level
of hierarchy (see Figure 9.44). This divide and conquer approach is continued
until single cell resolution is reached.

In the following, we discuss the algorithm for routing a net in the
grid.

9.4. Two-Layer Channel Routing Algorithms 341

342 Chapter 9. Detailed Routing

9.4. Two-Layer Channel Routing Algorithms 343

Wiring Within Grid: Let, p be a boolean matrix, such
that, is true if net has a terminal in . Let, an array of size
n, such that, indicates the cost that must be added to the cost of a net
if it crosses the boundary . Let, be a matrix such that

indicates the cost which must be added to the cost of a net if it crosses
the boundary . Each element of and is a function of the capacity
and utilization of the corresponding boundary; higher the ratio of utilization to
the capacity, higher the cost of crossing of that boundary. Such a cost function
reduces the probability of utilization of a congested boundary in the routes of
the remaining nets. The algorithm to find a minimum cost tree for a net in

 grid is a recursive algorithm. This algorithms requires definitions of
following terms:

1.

2.

3.

4.

It is the minimum cost tree which interconnects the following set
of cells:

i.e., it is a minimum cost tree connecting the cells in first columns that
have terminals of and cell .

It is the minimum cost tree which interconnects the following set
of cells:

i.e., it is a minimum cost tree connecting the cells in first columns that
have terminals of and cell .

It is the minimum cost tree which interconnects the following set
of cells:

i.e., it is a minimum cost tree connecting the cells in first columns that
have terminals of cell (7(1,) and cell (7(2,).

It denotes a minimum cost forest, containing two different trees
and uses cell (7(1,), uses (7(2,) and the set

Let, and denote the column number of leftmost and rightmost cells, i.e.,

is computed recursively from as discussed be-
low:

344 Chapter 9. Detailed Routing

1.

2.

Basis: Trees for = can be computed trivially and they serve
as basis for recursion. For and consists of a single
vertex and respectively. consists of the disjoint
pair of vertices and . Whereas, consists of a path

, where, and

is minimum.

Note that if the costs of all horizontal edges are same then is

Recursive Step: Suppose for are con-
structed. In order to construct we simply enumerate all possible
extensions from and select the cheapest one. An ex-
ample in Figure 9.45 shows and computation of
by extending for net 3.

The above algorithm routes a net in O(nlogm) time.
In the higher levels of refinement the cost of crossing a boundary is higher

as the boundaries are partially utilized in the lower level of hierarchy. As a
result, the cost of later routes will be large. If the cost of a route is larger
than a user specified value LRG, the routes are allowed to detour outside the
channel, i.e., vertical tracks are added at the left or right ends of the channel.

, .

9.5. Three-Layer Channel Routing Algorithms 345

9.4.6 Comparison of Two-Layer Channel Routers

Extensive research has been done on two layer channel routing. No algorithm
is suitable for all problems and applications. Table 9.1 summarizes different
features of two-layer routers discussed in this section.

As we have noted earlier, all algorithms are not equally good for all channel
routing problems. Therefore, many benchmark channel routing examples have
been proposed. The most famous benchmark is the Deutsch difficult example.
Table 9.2 summarizes the routing results by different algorithms presented in
this section on Deutsch difficult example. The table is reproduced from [PL88].
As it is clear from the table that YACR2 produces best routing for Deutsch
difficult example both in terms of tracks and vias. However, YACR2 is consid-
erably more complicated to implement as compared to Greedy router, which
produces close to optimal results on most practical examples. In fact, it pro-
duces a solution within one or two tracks of the optimal.

9.5 Three-Layer Channel Routing Algorithms

The two-layer channel routing problem has been studied extensively in the
past decade. In fact there are several two-layer channel routers that can produce
solutions very close to the optimal solution (one or two tracks more than the
minimum number of tracks required). About five years ago, a third metal layer
became feasible. Most of the current gate-array technologies use three layers
for routing. For example, the Motorola 2900ETL macrocell array is a bipolar
gate array which uses three metal layers for routing. DEC’s Alpha chip also

346 Chapter 9. Detailed Routing

uses three metal layer for routing. Intel’s 486 chip used a three metal layer
process and original Intel pentium was also fabricated on a similar process.
As a consequence, a considerable amount of research has also been done on
three-layer channel routing problem.

9.5.1 Classification of Three-Layer Algorithms

The three-layer routing algorithm can be classified into two main categories:
The reserved layer and the unreserved layer model. The reserved layer model
can further be classified into the VHV model and the HVH model.

Following theorems show the lower bounds of channel routing problem in
three-layer reserved layer routing model, in terms of the maximum clique size
in HCG and the longest path in VCG of the corresponding routing problem.

Theorem 15 In the three layer VHV model, the lower bound on the number
of tracks for a routing problem is

Theorem 16 In the three layer HVH model, the lower bound on the number
of tracks for a routing problem is

Note that in VHV routing, the vertical constraints between nets no longer
exist. Therefore, the channel height which is equal to the maximum density
can always be realized using LEA. Almost all three-layer routers are extensions
of two-layer routers. The net-merge algorithm by Yoshimura and Kuh [YK82]
has been extended by Chen and Liu [CL84]. The gridless router Glitter [CK86]
has been extended to Trigger by Chen [Che86].

Cong, Wong and Liu [CWL87] take an even general approach and ob-
tain a three-layer solution from a two-layer solution. Finally, Pitchumani and
Zhang [PZ87] partition the given problem into two subproblems and route
them in VHV and HVH models. In this section, we discuss several three-layer
channel routing algorithms.

9.5.2 Extended Net Merge Channel Router

In [CL84], Chen and Liu presented a three-layer channel router based on the
net merging method and the left edge algorithm used in a two-layer channel

9.5. Three-Layer Channel Routing Algorithms 347

routing algorithm by Yoshimura and Kuh [YK82].
As there are no vertical constraints in VHV and therefore the left edge

algorithm is sufficient. In the HVH routing, vertical constraint still exist. As a
result, there should not be a directed path in the VCG between nets that are
placed in both first and third layers on the same track. The merging algorithm
presented in [YK82] can be extended to the HVH problem. In three-layer
routing, in addition to merging nets in the same layer between different zones
the nets in the same zone between different layers can also be merged. Two
types of merging are defined as follows:

1.

2.

Serial merging: If there is no horizontal and vertical constraints be-
tween and then they can be placed on the same layer and the same
track. This operation is called as serial merging.

Parallel merging: If nets and net have horizontal constraints
and if they do not have vertical constraints then they can be placed on
the same track but in different layers. In case of HVH model, one of them
is placed in the first layer, whereas the other is placed in the third layer.
This operation is referred to as parallel merging

As in two-layer routing, the merging procedure is the essential element of the
whole algorithm where two sets of nets are merged. Let
and be two sets of nets to be merged. Two nets

and are merged such that lies in the longest path in
VCG before merging and farthest away from either the source node or the sink
node, and is neither ancestor nor descendent of and after merging
and the increase of longest path in VCG is minimum.

If the merging is done between two adjacent zones and + 1, then is
the set of nets which terminates at zone , is the set of nets that begin at
zone + 1.

Let us define the following:

1.

2.

3.

4.

Let be the set of nets which begin at zone + 1.

is the number of nets in

Let be the set of nets which include: (a) nets which terminate at
zone . (b) nets which are placed on a track with no horizontal segment
of nets on the other layer.

is the number of nets in

Before merging nets, all the nets in have been placed on certain tracks,
while nets in have not yet been placed on any track. Therefore, if net

merges with any net in no new track appears. Otherwise,
if net merges with another net in then a new track appears.
Therefore, if it is possible for the old tracks (where nets in T are placed)
to contain all the nets in In such a case, in order to avoid the increase
in the number of tracks, the parallel merging between nets in should be

348 Chapter 9. Detailed Routing

avoided. Conversely, if the old tracks are not enough to contain all
the nets in at least one new track appears. Parallel merging between nets
in is allowed only in this case.

The details of the merging algorithm are given in Figure 9.46
As a special case, when merging starts, a parallel merging is made between

all the nets which pass through the starting zone.

9.5.3 HVH Routing from HV Solution

In [CWL87], Cong, Wong, and Liu presented a general technique that sys-
tematically transforms, a two-layer routing solution into a three-layer routing
solution. We will refer to this algorithm as CWL algorithm.

The focus of the CWL algorithm is very similar to the YK algorithm. In
YK algorithm, nets are merged so that all merged nets forming a composite
net are assigned to one track. The objective is to minimize the number of
composite nets. In CWL algorithm, composite nets are merged together to
form super-composite nets. The basic idea is to merge two composite nets such
that the number of super-composite nets is minimized. Two composite nets in

9.5. Three-Layer Channel Routing Algorithms 349

a super-composite net can then be assigned to two different layers on the same
track. In order to find the optimal pair of composite nets that can be merged to
form super-composite nets, a directed acyclic graph called track ordering graph,
TVCG = (V , E) is defined. The vertices in V represent the composite(tracks)
in a given two layer solution. The directed edges in G(S) represent the ordering
restrictions on pairs of tracks. Composite interval must be routed above
composite interval if there exists a net and such that and

have a vertical constraint. Thus TVCG is in fact a vertical constraint graph
between tracks or composite intervals. The objective of CWL algorithm is to
find a track pairing which reduces the total number of such pairs. Obviously,
we must have at least pairs. It is easy to see that the problem of finding
an optimal track pairing of a given two layer solution S can be reduced to the
problem of two processor scheduling in which tracks of V are tasks and TCVG
is the task precedence graph. Since the two processor scheduling problem can be
optimally solved in linear time [Gab85, JG72], the optimal track permutation
can also be found in linear time. Figure 9.47(b) shows the track ordering graph
of the two-layer routing solution, shown in Figure 9.47(a), obtained by using
a greedy router. Figure 9.47(c) shows an optimal scheduling solution for the
corresponding two-processor scheduling problem.

The key problem is the number of tracks which are not paired. This happens
due to adjacent vias. If adjacent vias can be removed between two non-paired
tracks so that the tracks can be paired together, it would lead to saving of two
empty tracks. The basic idea is to move the via aside and then a maze router
can be used to connect the portion of the net containing with the portion of
the net containing the horizontal segment (see Figure 9.48).

In order to successfully merge non-paired tracks, we must minimize the
number of adjacent vias between two tracks. This is accomplished by properly
changing the processor (layer) assignment of tasks (tracks). It is easy to see
that if tracks and are assigned to be routed in the th track then the layer
on which a particular track gets routed is still to be decided. In other words,
for each track, we have two choices. However, the choice that we make for
each track can affect the number of adjacent vias. This problem can be solved
by creating a graph, which consists of vertices representing both the possible
choices for the track. Thus, each track is represented by two vertices. Four
vertices of two adjacent tracks are joined by edges. Thus each edge represents
a possible configuration of two adjacent tracks. Each edge is assigned a weight
which is equal to the number of adjacent vias if this configuration represented by
the edge is used. It is easy to see that problem of finding optimal configuration
can be reduced to a shortest path problem. Thus, the problem can be optimally
solved in time. Figure 9.47(d) shows the graph described above for the
problem in Figure 9.47(c).

9.5.4 Hybrid HVH-VHV Router

In [PZ87], Pitchumani and Zhang developed a three-layer channel router
that combines both a HVH and a VHV model based on the idea of partitioning

350 Chapter 9. Detailed Routing

9.5. Three-Layer Channel Routing Algorithms 351

the channel. In this approach the channel can be thought of as two separate
channels, not necessarily of the same size. One portion (upper or lower) is
routed using the VHV and the other portion is routed using the HVH model.
A transition track is usually needed between the two portions. The algorithm
does not allow any dogleg. One of the important feature of this algorithm is
that the pure HVH and VHV can be treated as special cases of this hybrid
approach. This is due to the fact that, in the extreme case, one of the portions
may constitute the whole channel and the other may be nonexistent. Obviously,
no transition track is needed in this case. As a consequence, the result of this
approach is the best between pure HVH and VHV approaches.

The height of a channel depends on two parameters, and If
then VHV is best suited for that channel, since it use only

number of tracks. On the other, if then HVH is best suited
for that channel, since it use only number of tracks. Figure 9.49(a) and
(b) shows the two cases when HVH and VHV routing models generate optimal
solution. and are two dummy nodes signifying top and bottom of the
channel. In practice, many channel routing problems are in fact a combination
of both HVH and VHV, as shown in Figure 9.49(c).

The hybrid algorithm partitions the given netlist into two netlist, such that
each netlist is best suited for either VHV or HVH style of routing. It then
routes them separately thus obtaining two sub-solutions. The algorithm then
inserts transition tracks to complete the connections between the two routed
sub-solutions. The hybrid algorithm consists of the following steps:

1.

2.

3.

choose VHV-HVH or HVH-VHV model;

partition the set of nets into two sets; the HVH-set, the set of nets to be
routed in the HVH portion and the VHV-set, those to be routed in VHV
portion of the channel;

route the nets.

The key problem is the partitioning of the channel. It is important to note that
not all partitions are routable in the hybrid scheme. It is easy to show that
for a net in a partition, all the nets that have vertical constraints with this net
must also be in the same partition for a valid routable partition. Based on this

352 Chapter 9. Detailed Routing

observation, any routable partition can be represented by a cut of the VCG
with s and t on opposite sides of the cut, with all the nodes above the cut in
upper-set and all the nodes below the cut in lower-set. Figure 9.50 shows an
example of a cut inducing a routable partition; upper-set is and
lower-set is The details of the partitioning algorithm based on
the weighted cost function may be found in [PZ87].

To illustrate hybrid routing, we use the same example as in [PZ87]. Fig-
ure 9.51(a) gives the netlists, while Figure 9.51(b) shows a hybrid routing with
VHV (two tracks) in the upper region and HVH (three tracks) for the lower
region. The routing uses six tracks (including the transition track), while pure
VHV requires eight tracks and pure HVH uses seven. In some cases, the termi-
nal connections of nets may be such that vertical runs that cross the boundary
between the regions can change layers on one of the regular tracks; in such
cases, the transition track may be removed as shown in Figure 9.51.

9.6 Multi-Layer Channel Routing Algorithms

As the VLSI technology improves, more layers are available for routing. As
a result, there is a need for developing multilayer routing algorithms. It should
be noted that many standard cell designs can be completed without channel
areas by using over-the-cell techniques (see Chapter 8). It may be noted that
many over-the-cell routing problems are similar to channel routing problems.
In case of full custom, perhaps four layers would be sufficient to obtain layouts
without any routing areas on the real estate. However, new technologies such

9.7. Switchbox Routing Algorithms 353

as MCM requires true multilayer capabilities since as many as 64 layers may
be used.

In [Ham85], Hambrusch presented an algorithm for a n-layer channel router.
The number of layers, the channel width, the amount of overlap and the number
of contact points are four important factors for routing multi-terminal nets in
multi-layer channels. An insight into the relationship between these four factors
is also presented in [Ham85].

In Braun developed a multi-layer channel router called Chameleon.
Chameleon is based on YACR2. The main feature of Chameleon is that it uses
a general approach for multilayer channel routing. Stacked vias can be in-
cluded or excluded, and separate design rules for each layer can be specified.
The Chameleon consists of two stages: a partitioner and a detailed router. The
partitioner divides the problem into two and three-layer subproblems such that
the global channel area is minimized. The detailed router then implements the
connections using generalizations of the algorithms employed in YACR2.

In [ED86], Enbody and Du presented two algorithms for -layer channel
routing that guarantee successful routing of the channel for greater that 3.

9.7 Switchbox Routing Algorithms

A switchbox is a generalization of a channel and it has terminals on all
four sides. Switchbox routing problem is more difficult than a channel routing
problem, because the main objective of channel routing is to minimize the
channel height, whereas the objective of switchbox routing is to ensure that all
the net are routed.

354 Chapter 9. Detailed Routing

9.7.1 Classification of switchbox routing algorithms

Switchbox routers can be classified as,

1.

2.

3.

Greedy Routers,

Rip up and Reroute Routers and

Others.

Greedy routers are essentially extension of the Greedy channel router. Rip
up and Reroute routers employ some algorithm for finding routes for nets and
modifying the routes to accommodate additional nets. Several other tech-
niques, such as computational geometry, simulated evolution have also been
applied to switchbox routing. In this section, we review one algorithm from

9.7. Switchbox Routing Algorithms 355

each category. In this section we describe four different algorithms for switch-
box routing. BEAVER [CH88] is an excellent router based on computational
geometry.

9.7.2 Greedy Router

In [Luk85], Luk presented a greedy switchbox router, which is an extension
of the greedy channel router [RF82]. As opposed to a channel, which is open on
the left and the right side, a switchbox is closed from all four sides. Moreover,
there are terminals on the left and right boundaries of a switchbox. Thus in
addition to the terminals on the upper and lower boundaries, the presence of
terminals on the left and right boundaries of the switchbox need to be consid-
ered while routing. This is achieved by the following heuristic:

1.

2.

Bring in left terminals: The terminals on the left boundary are
brought to the first column as horizontal tracks.

Jog to right terminals: The step in greedy channel router in which
the nets are jogged to their nearest top or bottom terminal is modified
for the nets that have a terminal on the right boundary. Such nets are
jogged to their target rows, in addition to jogging to the next top or
bottom terminal. Jogging a net to the next top or bottom terminal is
referred to as whereas, jogging a net to its target row is referred
to as A target row of a net is a row of its terminal on the right
boundary. The nets are jogged to their target rows according to the
following priority.

(a)

(b)

(c)

First choice is a net whose right side of the target row and the
vertical track between the net and target row is empty.

Second choice is a net whose right side of the target row is empty. In
addition, the priority is also based on how close a net can be jogged
to its target row.

Third choice is a net that can be brought closer to its target row.

Ties are resolved by giving higher priority to a net which is further from its
target row. The cyclic conditions at this step can be broken by allowing a net
to cross its target row. (see Figure 9.52.) Note that the optimal way to reach
the target row for a net is to jog once as each jogging wastes a vertical track,
too many joggings may result in running out of tracks. Excessive jogging can
be avoided by allowing a net to jog to its target row only if it can be brought
to or beyond half way between its initial position and the target row.

Several schemes of using and have been suggested for a net
having terminals on the right and top/bottom boundaries.

1. Scheme 1: For a net that has a terminal on the right boundary is
performed until it reaches its target row. The top and bottom terminals
are connected by branching out some net segments (see Figure 9.53(a)).

356 Chapter 9. Detailed Routing

2.

3.

4.

Scheme 2: is used until all top and bottom terminals are con-
nected, is used from the column where the last top/bottom ter-
minal appears (see Figure 9.53(b)).

Scheme 3: In this scheme and are used in parallel.
Branching out is avoided by either using or at each column
(see Figure 9.53(c)).

Scheme 4: This scheme involves a combination of several schemes. If
the rightmost top/bottom terminal of a net is in the rightmost of the
switchbox, scheme 1 is used for that net. Otherwise, scheme 2 is used
(see Figure 9.54).

Determining Scan Direction: Determining scan direction is equivalent
to assigning left edge to one of the edges of the switchbox. Let
and be the opposite pairs of edges of the switchbox. The objective
of this step is to assign one of these pairs as the left-right pair and the other as
the top-bottom pair. This operation is divided into two steps. In the first step,
the top-bottom and the left-right pairs are assigned without identifying left or
right edges in the left-right pair. In the second step the left and the right edges
are identified.

The following measures are defined to achieve the first step. The augmented
density of is defined as the overall minimum number of tracks required to
maintain the connectivity of the terminals on opposite pair of edges in as in

9.7. Switchbox Routing Algorithms 357

358 Chapter 9. Detailed Routing

the channel routing problem, plus the tracks required to connect the nets on
the edges in with the nets on The augmented channel density ratio for

is defined as the ratio of the number of tracks available between
and to the augmented density of In a similar manner the augmented

channel density of can be defined. As the property of the greedy heuristic
is to minimize the number of tracks perpendicular to the scan direction, it is
obvious to assign the left-right pair to the pair that has smaller augmented
channel density ratio.

Let be the left-right edge pair assigned in the last step. The
edges in are assigned the left and the right edges based on the following
rules:

1.

2.

An edge in which has more terminals and especially multiple terminals
is selected as left edge. This reduces the burden on and fanout
operations.

An edge in which is close to less congested region is selected as right
edge. As a result, more free vertical tracks will be available to join split
nets and fanout to target terminals.

The formal description of the GREEDY-SB-ROUTER appears in Figure 9.55.

9.7.3 Rip-up and Re-route Based Router

Shin and Sangiovanni-Vincentelli [SSV86] proposed a switchbox router based
on an incremental routing strategy. It employs maze-running but has an addi-
tional feature of modifying already-routed nets. Some nets are even ripped-up
and re-routed. It is this feature of MIGHTY that makes it suitable for channel
and switch box routing. The cost function used for maze routing penalizes long
paths and those requiring excessive vias. MIGHTY consists of two entities: a
path-finder and a path-conformer. It is possible for the router to go into a loop
in the modification phase. This can be avoided by using some sort of time-out
mechanism. The overview of Algorithm MIGHTY is in Figure 9.56.

The worst case time complexity of the algorithm is more than
where and are the number of terminals and nets, respectively

and L is the complexity of the maze routing algorithm.

9.7.4 Computational Geometry Based Router

In [CH88], Cohoon and Heck presented a switchbox routing algorithm called
BEAVER, based on a delayed layering scheme with computational geometry
techniques. The main objectives of BEAVER are the via and wire length
minimization. BEAVER is an unreserved layer model routing algorithm. While
routing a net, BEAVER delays the layer assignment as long as possible. One of
the important features of BEAVER is that it uses priority queue to determine
the order in which nets are interconnected. An overview of BEAVER is given
in Figure 9.57.

9.7. Switchbox Routing Algorithms 359

It can be seen from the algorithm that BEAVER uses up to three methods
to find interconnections for nets: 1) corner router, 2) line sweep router, and 3)
thread router.

Corner router: The corner router tries to connect terminals that form a
corner connection. Such a connection is formed by two terminals if (1) they
belong to the same net, (2) they lie on the adjacent sides of the switchbox,
and (3) there are no terminals belonging to the net that lie between them on
the adjacent sides. The corner router is also a preferred router since it is the
fastest and because its connections tend to be part of the minimum rectilinear
steiner tree for the nets.

During the initialization of the corner priority queue, each net is checked to
see if it has a corner connection. A corner connection can be simply made by

360 Chapter 9. Detailed Routing

examining the control of the terminals that comprise the corner. If the section
of the control overlap, then the corner can be realized. Nets with one or two
corners need no further checks. However, straightforward connection of four
corner nets can introduce cycles. There are two types of cycles as shown in
Figure 9.58.

An overlap cycle is removed by routing only three of the corners. A four-
terminal cycle can be removed by routing only three of the corners. When the
corner router has to decide upon one of two such corners to route, the one with
least impact on the routability of other nets if preferred.

Linesweep router: The line sweep router is invoked when no more corner
connections can be made. However, if after current net’s linesweep realization,
some other corner connection become realizable, then the linesweep router is
temporarily suspended until the corner priority queue gets emptied. For each
net five possibilities are considered: a wire with single bend, a single straight
wire, a dogleg connection with a unit-length cross piece, three wires arranged
as a horseshoe, and three wires in a stair arrangement. These are shown in
Figure 9.59.

To reduce the number of vias, straight line wires are preferred to dogleg
connections, dogleg to single-bend connections and single bend to two-bend
connections. In looking for its connections, the linesweep router uses the com-
putational geometry technique of plane sweeping. One approach is to use scan-
lines to find straight line connections between disjoint subnets of the net in
question. It works in time. BEAVER uses three scan lines that

9.7. Switchbox Routing Algorithms 361

sweep the plane in tandem: one across the column, one across the row and
a third to detect doglegs. Also, it employs bounding function to reduce the
computational complexity. If some nets still remain unrealized, the control of
existing nets is reduced and the process is repeated a second time. All remain-
ing nets are then routed by a thread router.

Thread router: This router is invoked very sparingly. It is a maze-type
router that seeks to find minimal length connections to realize the remaining
nets. Since, this router does not restrict its connection to any preferred form,
it will find a connection if one exists. Whenever a net consists of more
than one routable subnets, a maze expansion, on the lines of Soukup router is
initiated. The expansion starts from a small subnet that has not been used
in an endeavor to minimize the wire-length and number of vias.

Layer Assignment: This phase primarily aims at minimizing the number
of additional vias introduced. Since, at this stage, all grid points that any wire
passes through are known, it is possible to optimally assign unlayered wires to
a particular layer. BEAVER can also very easily extend this to achieve metal-
maximization. A simple set of heuristics, based on coloring the grid points as
red or black is presented in [CH88].

362 Chapter 9. Detailed Routing

9.7.5 Comparison of Switchbox Routers

Table 9.3 compares performance of the switchbox routers discussed in this
chapter. It is apparent from the Table 9.3 that BEAVER routes the augmented
dense switchbox with minimum number of vias, whereas, there is no significant
difference in the wire lengths.

9.8 Summary

Detailed routing is one of the most fundamental steps in VLSI physical de-
sign cycle. The detailed routing problem is solved by routing the channels and
switchboxes. Channel routing and switchbox routing problems have been stud-
ied extensively and several routing algorithms have been proposed by many
researchers.

Routing results may differ based on the selection of routing models. A
routing model can be grid-based where wires follow paths along the grid lines
or gridless, where wires can be placed at any place as long as the design rules are
not violated. Another model is be based on the layer assignments of different
net segments. In reserved layer model, segments are allowed only to a particular
layer(s). Most of the existing routers use reserved layer model. A model is
unreserved if any segment is allowed to be placed in any layer.

The most widely considered objective function for routing a channel is the
minimization of channel density. Other objectives are to minimize the length
of routing nets and to minimize the number of vias. A routing algorithm must
take into consideration the following: net types, net width, via restrictions,
boundary types, number of layer available, degree of criticality of nets.

9.9. Exercises 363

The main objective of (channel) routing is to minimize the total routing
area. Most successful routers are simple in the approach. Greedy is one of
the most efficient and easiest to implement channel routing algorithm. As the
number of layers increase, the routing area used decreases. However, it should
be noted that adding a layer is usually very expensive. In most of the cases, the
routing area can virtually be eliminated using four layers by using advanced
over-the-cell and over-the-block routing techniques discussed in [SBP95].

The objective of switchbox routing is to determine the routability. Several
switchbox routing algorithms have been developed. Greedy and rip-up and
reroute strategies have lead to successful routers.

9.9 Exercises

†1.

2.

3.

4.

†5.

†6.

‡7.

‡8.

‡9.

10.

Develop a river routing algorithm for a simple channel when the channel
height is fixed. Note that a simple channel is the one with straight line
boundaries. Given a channel routing problem, the router should first
check if the given problem can be routed for a given channel height. In
case it cannot be routed, the router should stop, otherwise the router
should find a solution.

Prove that every single row routing problem is routable if no restrictions
are placed on the number of doglegs and street congestions.

Given the net list in part (c) of Figure 9.61, find a single row routing such
that the street congestion on both the streets is less than or equal to 3.

For the net list in Figure 9.61, does there exist a solution for which the
between-node congestion is no more than 1 ?

Prove Theorem 9.

Prove Theorem 10. Extend this theorem to multi-terminal single row
routing problems.

Prove Theorem 11. Does there exist a necessary and sufficient condition
for SRRP with at most doglegs per net ?

Does there exist a necessary and sufficient condition for SRRP for

Consider the two row routing problem given in Figure 9.60. Given two
rows of terminals separated by tracks, the objective is to find a single
layer routing with minimum congestions in the upper and lower streets.
Note that the number of tracks in the middle street is fixed.

Give an instance of a channel routing problem in a two layer restricted
(HV) model in which,

(a) The channel height is greater than

364 Chapter 9. Detailed Routing

9.9. Exercises 365

(b)

(c)

The channel height is greater than

The channel height is greater than both and

11.

12.

13.

14.

15.

Give an instance of channel routing problem in two layer Manhattan
model in which there are cyclic constraints.

Prove with an example that it is possible to get better results in channel
routing by using an unrestricted model than the restricted model for a
two layer channel routing problem using the Manhattan model.

Give an example of a channel routing problem for which the greedy router
performs better than the hierarchical router.

Give an example of a channel routing problem for which the hierarchical
router performs better than the greedy router.

Route the channel given in Figure 9.61 (a) using the following routers and
compare their results:

(a)

(b)

(c)

(d)

(e)

LEA.

Dogleg router.

Y-K algorithm.

Greedy channel router.

Hierarchical channel router.

YACR2.

16.

17.

18.

In the greedy router, while joining split nets in a column, more than one
nets can be joined. Formulate the problem of finding maximum number
of nets that can be joined in a single column. Develop an time
complexity algorithm for this problem, where is the total number of
tracks in the channel.

In the greedy channel router, while a column is being routed, segments
of split nets are brought closer by using doglegs in case they cannot be
joined. Develop an efficient strategy that will maximize the number of
nets that can be brought closer.

Give an instance of channel routing problem in three-layer HVH model
in which,

(a)

(b)

(c)

The channel height is greater than

The channel height is greater than

The channel height is greater than both and

19. Route the channel routing problem given in Figure 9.61 (a) using extended
net merge algorithm by Chen and Liu.

(f)

366 Chapter 9. Detailed Routing

20.

21.

22.

23.

24.

Show that in the hybrid HVH-VHV routing, the lower bound for the
channel density is where is the size of the maximum clique
in the corresponding HCG.

Show that given a CRP, if in the corresponding VCG, then
every partition is routable in hybrid routing.

Develop a unreserved layer switchbox router when the terminals are lo-
cated in any metal layer.

Develop a algorithms for routing in a three dimensional routing grid with
planer upper surface and non-planer lower surface. Assume that the
terminals are located at the lower surface.

Solve exercise 23 when the grid has non-planer upper surface.

Bibliographic Notes
The general single-layer routing problem was shown to NP-complete in [Ric84].
In [BP83, LP83, SD81, Tom81], several restricted single-layer routing
problems have been solved optimally. River routing was defined in
and refined by Leiserson and Pinter [LP83]. Several extensions of the general
river routing algorithm have been proposed [JP89, TH90]. In [JP89], river
routing algorithm is extended to handle multiple, parallel channels. The river
routing is called feed-through river routing, because wires must pass through
gaps that are to be created between the components in each row. In [TH90],
Tuan and Hakimi presented a variation of river routing that minimizes the
number of jogs.

Tsukiyama et. al [TKS82], considered the restricted version of the via
assignment problem where no net has more than one point in any given column.
In [TK78], another restricted version in which each net is forced to use vias from
the same via column is considered. Both [TKS82] and [TK78] have shown that,
with their respective restrictions, deciding whether via columns are sufficient
to realize the netlist is an NP-Hard problem.

The layering problem was shown to be NP-Hard by Sahni, Bhatt, and
Raghavan [SBR80]. As a consequence, heuristic algorithms have been stud-
ied for this problem. In practice max and therefore heuristic
algorithms for the restricted layering problem, in which has
been considered by several researchers [GKG84, HS84a, TKS82]. The algo-
rithm given in [TKS82] generates solutions with number of layers , where,

where l* is the optimal number of layers. In [HS84a], Han
and Sahni presented two fast algorithms for layering. These algorithms con-
sider one net at a time starting from the leftmost net. A net is assigned to
the first layer in which the channel capacity allows its insertion. If this net
cannot be assigned to any layer, a new layer is started. It was reported that
these algorithms perform better than the algorithm proposed in [TKS82], that
is, they use less layers. It was also reported that these algorithms are much
faster than the one proposed in [TKS82]. Recently, Gonzalez et. al [GKG84]
reported some results on layering; it is not, however, clear how their algorithm

9.9. Exercises 367

compares with earlier algorithms. It appears to be similar to the algorithm
given in [HS84a].

Tsui and Smith [TI81] gave another formulation of single row routing prob-
lem. They considered only two terminal nets and obtained some necessary and
sufficient conditions for the routability of a net list if upper and lower street
capacities are known. Their idea is based on the number of blockages that a
net would encounter in case all nets are laid out in the same street.

Han and Sahni [HS84a] proposed linear time algorithms for the special
case of SRRP when the number of tracks available for routing is restricted to
one, two or three. In 1983 they extended their work and presented simpler
algorithms than that of [HS84b]. They introduced the notion of incoming per-
mutation being the relative ordering of nets with respect to a certain terminal.
The algorithm makes a left to right scan on the terminals. If a new net is start-
ing at the terminal under consideration this net is inserted in all the incoming
permutations to get a set of new permutations. The permutations which do not
meet the street congestion requirement are deleted from further consideration.
Thus, the main idea of the algorithm in [HS84a, HS84b] is to keep track of all
legal permutations. Obviously, this algorithm is only practical for small values
of upper and lower street capacities because of its exponential nature.

Raghavan and Sahni [RS84] investigated the complexity issues of single row
routing problem and the decomposition process for the multi-layer circuit board
problem. In [RS84] it is shown that the via assignment problem considered
by [TK78] remains NP-Hard even for They also prove that the problem
of via column permutation is NP-Hard and remains so even if 2 via columns
are allowed per net for decomposing. It is also shown that the problem of
minimizing the total number of vias used is NP-Hard. The problem of finding
a layout with minimum bends (doglegs) is also proved to be NP-Hard [RS84].

In [HS71], Hashimoto and Stevens first introduced the channel routing prob-
lem. Another column-by-column router has been proposed by Kawamoto and
Kajitani [KK79] that guarantees routing with upper bound on the number
of tracks equal to the density plus one, but additional columns are needed to
complete the routing. Ho, lyenger and Zhenq developed a simple but efficient
heuristic channel routing algorithm [HIZ91]. The algorithm is greedy in nature
and can be generalized to switchboxes and multi-layer problems.

Some other notable effort to solve switchbox problem have been reported
by Hamachi and Ousterhout (Detour) [HO84]. This approach is an extension
of the greedy approach for channel routing. In [Joo86], Joobbani proposed a
knowledge based expert system called WEAVER for channel and switchbox
routing. In [LHT89], Lin, Hsu, and Tsai presented a switchbox router based
on the principle of evolution. In [GH89], Gerez and Herrmann presented a
switchbox router called PACKER. This router is based on a stepwise reshaping
technique. WEAVER [Joo86] is an elaborate rule-based expert system router
that often produces excellent quality routing at the cost of excessive computa-
tion time. SILK [LHT89] a switchbox router based on the simulated evolution
technique. A survey and comparison of switchbox routers has been presented
by Marek-Sadowska [Sad92]. In [CPH94] Cho, Pyo, and Heath presented a

368 Chapter 9. Detailed Routing

parallel algorithm, using a conflict resolving method has been developed for
the switchbox routing problem in a parallel processing environment.

Chapter 10

Over-the-Cell Routing and
Via Minimization

The current trend in VLSI design is to develop high performance chips. The
main objective of physical design is satisfy the performance needs while mini-
mizing the die size. Historically, the gate delays limited the chip performance.
The developments in fabrication process technology in the past two decades
have resulted in a phenomenal decrease in feature sizes, and introduced addi-
tional metal layers for interconnections (routing). Deep sub-micron processes
with five to seven metal layers for interconnections are now available for de-
sign of high performance and high density chips. The number of devices in a
chip have increased from about a thousand devices in the early 70’s to over
twenty million devices now. The increase in the number of devices has led to a
significant increase in number of interconnections. Interconnect delays, which
were considered to be insignificant earlier, have now become comparable, if not
more prominent than the gate delays.

With the availability of five to seven metal layers for interconnections, three
dimensional routing techniques are necessary to satisfy the performance and
density goals. The number of metal layers provide the third dimension. There-
fore, for interconnect planning, routing volume needs to be considered, instead
of just the routing area. The space in all metal layers across the entire die,
both over active areas and in channels need to efficiently utilized for routing.
This concept was first introduced in standard cell designs. Several existing
channel routers can produce solutions only one or two tracks beyond optimum
for most channels. Despite this fact, as much as 10% of the area in a typical
layout was still consumed by routing. Considering a fixed placement, in view
of this ‘optimality’ of channel routers, further reduction is only possible if some
nets can be routed ‘outside’ the channel (as the area allocated for the standard
cells is inherently fixed by the circuit design). In particular, the metal layers
available over the cell rows can be used for the routing. This technique is called
over-the-cell routing. The over-the-cell routing style for standard cell designs
has become both practical and important as more and more metal layers are

370 Chapter 10. Over-the-Cell Routing and Via Minimization

made available for routing.
Over-the-cell routing concept is used across the entire chip and it is not

feasible to design complex high performance microprocessor chips (100Mhz to
1GHz) without adopting over-the-cell routing techniques. This book describes
basic OTC routing algorithms for standard cell designs and advanced concepts
can be found in [SBP95].

After a chip is completely routed, the layout is functionally complete and
can be sent for fabrication. However, the layout is usually improved to reduce
the possibility of fabrication errors, reduce the total chip area and therefore,
improve performance. In most current technologies, two or more layers are
available for routing. Most of the existing routing algorithms use a large number
of vias to complete the routing. This is due to the fact that most routers use
a reserved layer model. However, vias are undesirable from fabrication as well
as circuit performance point of view and therefore, the number of vias should
be kept as small as possible.

Significant volume of research exists on techniques for reduction of the num-
ber of vias in a completed detailed routing by re-assigning the wire segments
to different layers. This kind of via minimization is called Constrained Via
Minimization (CVM). Via minimization has also been considered without the
restriction of completed routing. In this approach, the actual layout of wires
can be changed and thus offers more flexibility as compared to the CVM ap-
proach. This via minimization approach is called Unconstrained Via Minimiza-
tion (UVM) or Topological Via Minimization (TVM).

In this chapter, we discuss the problem of over-the-cell routing and via
minimization to improve detailed routing solutions. In Section 10.1, we discuss
the problem of over-the-cell routing. Both CVM and UVM problems have been
considered in Section 10.2.

10.1 Over-the-cell Routing

The total layout area in the standard cell design style is equal to the sum of
the total cell area and the total channel area. For a given layout, the total cell
area is fixed. Thus, the total area of a layout can only be reduced by decreasing
the total channel area. As several channel routers have been developed that
complete channel routing with the number of tracks very close to the channel
density, further improvement in the layout area is impossible if routing is done
only in channels.

Internal routing of cells is typically completed using one metal layer. There-
fore, the higher metal layers (M2 and M3) over-the-cell are un-utilized. The
area in M2 and M3 can be utilized for routing of nets in order to reduce the
channel height. As the number of layers allowed for routing increases, the over-
the-cell routing problem becomes important. Since the conventional channel
routing problem is known to be NP-hard [Szy85], and the over-the-cell channel
routing problem is a generalization of the conventional channel routing prob-
lem, it is easy to see that the over-the-cell channel routing problem is also

10.1. Over-the-cell Routing 371

NP-hard [GN87].
Several algorithms for over-the-cell routing have been presented, and the

technique has proven to be very effective [CL88, CPL93, HSS93, LPHL91].
In the following, a review of algorithms for over-the-cell channel routing is
presented. We start by describing the physical constraints for over-the-cell
routing.

10.1.1 Cell Models

Based on the locations of the terminals there are four major classes of cell
models : Boundary Terminal Models (BTM), and the Center Terminal Models
(CTM), the Middle Terminal Model (MTM) and the Target Based Cell Model
(TBC). Each of these classes contain several cell models based on the variations
in other routing parameters, i.e., the number of metal layers and permissibility
of vias in over-the-cell areas.

Boundary Terminal Model(BTM): This is the traditional cell model.
This was introduced when only two metal layers were available for rout-
ing. In BTM, there are two parallel horizontal diffusion rows, one for the
P-type transistors and the other for N-type transistors. The first metal
layer (Ml) is used to complete connections which are internal to the cells.
The power and ground rails are in M2 layer, adjacent to each other, in
the center of the cell row. Terminal rows are available in all layers and are
located on the boundaries of the cells [HSS93]. This leaves a rectangu-
lar, over-the-cell routing area for each terminal row of the standard cells.
The number of tracks available for over-the-cell routing is determined by
the height of these rectangular areas and may vary depending on the cell
library used. The entire over-the-cell area may be used for routing in the
third metal (M3) layer. This model is used by most existing over-the-cell
routers [CPL93, HSS93, HSS91]. This class of cell models is referred to as
BTM or class of Boundary Terminal Models. (See Figure 10.1(a)). BTM
contains, 2BTM (2 layer process), 3BTM-V (3 layer process when vias
are not allowed in over-the-cell areas), and 3BTM+V (3 layer process
when vias are allowed in over-the-cell areas).

Center Terminal Model(CTM): This class of cell models is quite dif-
ferent than BTM in terms of terminal location. In CTM, the terminals
are located in M2, in the middle of the cell. The power and ground rails
are in Ml near the top and bottom cell boundaries respectively. Connec-
tions within the cell are completed in Ml. Thus, M2 is only blocked by
terminals, and M3 is completely unblocked (See Figure 10.1(b)). Over-
the-cell routers may use two rectangular regions (about thirteen tracks
wide) in M2 and M3.

Middle Terminal Model(MTM: This model differs from the BTM
and CTM in terms of terminal locations. In MTM, the terminals are
located in two rows, one row is located tracks below the upper cell

372 Chapter 10. Over-the-Cell Routing and Via Minimization

boundary and another is located tracks above the lower cell boundary.
As in CTM, in MTM, terminals are available only in M2 and the power
and ground rails are in Ml near the top and bottom cell boundaries
respectively (See Figure 10.2). Both terminals in a column of a cell are
equi-potential. Intra-cell routing is completed in poly and Ml, and does
not block M2. As opposed to two rectangular regions in CTM, over-the-
cell routers for MTM may use three rectangular regions in M2 and M3
as discussed below:

1.

2.

3.

T area: track wide area between the upper cell boundary and
the upper terminal row,

C area: track wide area between the lower terminal row and the
upper terminal row,

B area: track wide area between the lower terminal row and the
lower cell boundary.

Target Based Cell (TBC): TBC is designed to effectively utilize the
over-the-cell areas for routing. The terminals are in the form of long
vertical strips in Ml layer, called targets. The exact location of the in-
terconnection contacts on the targets is determined by the routing algo-
rithm. The power and ground lines are located in Ml layer at the top
and bottom cell boundaries, respectively. The TBC cells have targets of
non-uniform heights and are placed arbitrarily, as shown in Figure 10.3.
Since the power and ground lines and the targets are located in Ml layer,
the over-the-cell areas in M2 and M3 areas are completely unblocked.

10.1. Over-the-cell Routing 373

10.1.2 Two-Layer Over-the-Cell Routers

The two-layer routing problem essentially boils down to selection of two
planar sets of segments. One of them is routed in the upper over-the-cell area
and the other is routed in the lower over-the-cell region. The nets that are
not selected are routed in the channel area. In the following, we discuss two
algorithms for over-the-cell routing.

10.1.2.1 Basic OTC Routing Algorithm

In [CL90], Cong and Liu presented an algorithm for the over-the-cell channel
routing. It divides the problem into the following three steps:

1.

2.

routing over the cells,

choosing net segments in the channel, and

374 Chapter 10. Over-the-Cell Routing and Via Minimization

3. routing in the channel.

The first step is formulated in a very natural way as the problem of find-
ing a maximum independent set of a circle graph. Since the later problem
can be solved in quadratic time optimally, an efficient optimal algorithm is ob-
tained for the first step. Also, the second step is formulated as the problem of
finding a minimum density spanning forest of a graph. The minimum density
spanning forest problem is shown to be NP-hard, so, an efficient heuristic algo-
rithm is presented which produces very satisfactory results. A greedy channel
router [RF82] is used for the third step.

There are two routing layers in the channel, and there is a single routing
layer over-the-cells for inter-cell connections. Clearly, the over-the-cell routing
must be planar.

The first step of the over-the-cell channel routing problem is to connect ter-
minals on each side of the channel using over-the-cell routing area on that side.
The same procedure is carried out for each side (upper or lower) of the channel
independently. Let denote the terminal of net at column j. In a given
planar routing on one side of the channel, a hyperterminal of a net is defined to
be a maximal set of terminals which are connected by wires in the over-the-cell
routing area on that side. For example, for the terminals in the upper side of
the channel in Figure 10.4, is a hyperterminal of net 5.
is also a hyperterminal. Obviously, when the routing within the channel step
(the third step) is to be done, all the hyperterminals of a net need to be con-
nected instead of connecting all the terminals of the net, because the terminals
in each hyperterminal have already been connected in the over-the-cell routing
area. Intuitively, the fewer hyperterminals are obtained after routing over the
cells, the simpler the subsequent channel routing problem. Thus the first step
of the problem can be formulated as routing a row of terminals using a single
routing layer on one side of the row such that the number of hyperterminals is
minimum.

After the completion of the over-the-cell routing step, the second step is to
choose net segments to connect the hyperterminals that belong to the same

10.1. Over-the-cell Routing 375

net. A net segment is a set of two terminals of the same net that belong to
two different hyperterminals. For example, for the two hyperterminals of net 1
on the opposite sides of the channel in Figure 10.5, there are four possible net
segments that can be used to connect these two hyperterminals (indicated by
dashed edges), while only one of them is needed to complete the connection.
Thus the second step of the problem is to choose net segments to connect all the
hyperterminals of each net such that the resulting channel density is minimum.

After the net segments for all the nets are chosen, the terminals specified
by the selected net segments are connected using the routing area in the chan-
nel. The problem is now reduced to the conventional two-layer channel routing
problem. A greedy channel router [RF82] is used for this step. Other two-layer
channel routers may also be used.

Net Selection for OTC Routing: The first step of the over-the-cell chan-
nel routing problem is to route a row of terminals using a single routing layer
on one side of the channel such that the resulting number of hyperterminals
is minimized. This problem is called the multi-terminal single-layer one-sided
routing problem (MSOP).

MSOP can be solved by a dynamic programming method in time,
where c is the total number of columns in the channel. Given an instance I of
MSOP, let denote the instance resulting from restricting I to the interval

. Let denote the set of all the possible routing solutions for .
Let:

where (S) is the number of hyperterminals of degree in S. If there is no
terminal at column , clearly, . Otherwise, assume that
the terminal at column i belongs to net . Let be the column
indices of other terminals that belong to net in interval . Then, it is
easy to verify that

It is easy to see that this recurrence relation leads to an time dynamic
programming solution to MSOP.

376 Chapter 10. Over-the-Cell Routing and Via Minimization

Channel Segment Selection: After the over-the-cell routing, a set of hy-
perterminals is obtained. The terminals in each hyperterminal are connected
together by over-the-cell connections. The next problem is to choose a set
of net segments to connect all the hyperterminals of each net such that the
channel density is minimized. This problem can be transformed to a special
spanning forest problem, as discussed below.

For an instance I of the net segment selection problem, the connection
graph G= (V , E) is defined to be a weighted multi-graph. Each node in V
represents a hyperterminal. Let and be two hyperterminals that belong
to the same net For every terminal in and for every terminal
in there is a corresponding edge in E, and the weight of this edge

is the interval (assume that otherwise, it will be .
Clearly, if contains terminals and contains terminals, then there are

parallel edges connecting and in G. Furthermore, corresponding
to each net in I there is a connected component in G.

For example, the connected component corresponding to net 3 in the ex-
ample in Figure 10.4 is shown in Figure 10.6. Given an instance I of the net
segment selection problem, since all the hyperterminals in the same net are to
be connected together for every net in I, it is necessary to find a spanning forest
of CG(I). Moreover, since the objective is to minimize the channel density, the
density of the set of intervals associated with the edges in the spanning forest
must be minimized.

Therefore, the net segment selection problem can be formulated as Mini-
mum Density Spanning Forest Problem (MDSFP). Given a weighted connection
graph G = (V, E) and an integer D, determine a subset of edges that
form a spanning forest of G, and the density of the interval set
is no more than D.

In [CL90], it was shown that this problem is computationally hard.

Theorem 17 The minimum density spanning forest problem is NP-complete.

In view of NP-completeness of the MDSFP, an efficient heuristic algorithm
has been developed for solving the net segment selection problem [CL90]. The

10.1. Over-the-cell Routing 377

heuristic algorithm works as follows. Given an instance I of the net segment
selection problem, a connection graph G = (V , E) is constructed. For each edge

the relative density of e, called , is defined to be , where
d(e) is the density of the set of intervals which intersect with the interval ,
and d(E) is the density of the interval set The relative density
of an edge measures the degree of congestion over the interval associated with
the edge. The algorithm repeatedly removes edges from E until a spanning
forest is obtained.

10.1.2.2 Planar Over-the-Cell Routing

In [DMPS94] Danda, Madhwapathy, Panyam and Sherwani presented an
algorithm to select a maximum planar subset of nets in M2 in BTM standard
cell designs.

Figure 10.7(b) shows the set of nets that are suitable for routing over the
cell row In a HCVC (Horizontally Connected Vertically Connected) model
[CPL93], the main problem in two layer over the cell routing is to select a
maximum planar subset of nets which are suitable for routing in a single layer,
available over the cell rows. The remaining connections are completed in the
channel. Authors call this problem as the Two Row Maximum Planar Subset
(TRMPS) problem. Figure 10.7(c) shows the maximum planar subset of nets,
that can be routed over which is an optimal solution, for the instance of the
TRMPS problem, shown in Figure 10.7(b). Notice, that the tracks are shared
between the top row nets and the bottom row nets, so as to efficiently utilize
the over-the-cell area.

The TRMPS problem, is formally defined as follows. Given two rows of
terminals and and two sets of nets

378 Chapter 10. Over-the-Cell Routing and Via Minimization

and where
and tracks between the two rows, find the maximum planar subset

of the two sets in tracks. Authors presented a dynamic
programming approach to solve this problem.

Let L denote the total number of columns in a cell row, numbered from
left to right. In BTM-HCVC, the terminals are located at the intersection
points of the upper or the lower horizontal boundaries of a cell row and the
vertical columns. If a terminal is not used by any net, then that terminal is
called a vacant terminal. If both the upper and lower terminals of a column
are vacant, then that column is called a vacant abutment. The total number
of tracks available in the OTC area of a cell row, for routing, is denoted by

 (cell height), and the tracks are numbered from top to bottom. Then, an
instance of the TRMPS problem can be formally represented as a 7-tuple

An instance of the TRMPS problem is called as a
Canonical Instance, if there are no vacant abutments in that instance. If is
the number of nets in a canonical instance then the number of columns (L),
can be at most . This is because, in the worst case, each column has at most
one vacant terminal, either in the top or the bottom terminal row.

Canonical instances with two terminal nets are considered as input to the
problem. A net is denoted by a pair of terminals. A net where

is called a top net. Similarly, a net where is called
a bottom net. span of a two terminal net is defined as the absolute difference
between the column numbers on which the terminals of the net are located.
For example, the span of the net is given by,

A region of a cell row is defined as a rectangular region of the cell row,
containing the columns in the range [1,m], where A net (or

is said to be completely contained in the region if
Let denotes the optimal TRMPS solution in a rectangular region

The solution is computed for all using a dynamic program-
ming technique. Finally, the T(L) solution gives the optimal solution, for a
given instance of the TRMPS problem. In order to compute the solu-
tion, the region is partitioned into two or three sub regions. depending on
the existence of top nets and bottom nets, completely contained in with
one of their terminals at column j, as shown in Figure 10.8.

Let be the only net with a terminal at column j, and which
is completely contained in In this case, is divided into an L-shaped
region R, and a rectangular region r which consists of a single row of terminals
(Figure 10.8(a)). The optimal T(j) solution, may or may not contain If

is included, then the is summation of the optimal solutions in the
L-shaped region R and the rectangular region r, and the net itself. If is
not included, then the solution is the same as the solution. The
maximum of the above two solutions, is taken as the optimal solution.

Let and be the nets with terminals at column
, and which are completely contained in Then, the optimal T(j) solution

10.1. Over-the-cell Routing 379

may include

1.

2.

3.

4.

None of the nets and In this case, the solution is the
same as the solution.

Only the net In this case, the solution can be computed as
shown in Figure 10.8(a).

Only the net In this case also, the solution can be computed
as shown in Figure 10.8(a).

Both the nets and In this case, if then is partitioned
into an L-shaped region R, and two rectangular regions and which
consist of a single row of terminals (Figure 10.8(b)). If i = m, then
is partitioned into a rectangular region R, which consists of two rows of
terminals, and two rectangular regions and which consist of a single
row of terminals (Figure 10.8(c)). Then, the is simply summation
of the optimal solutions in the regions R, and and the nets and

The optimal solution, is the maximum among all the above four solutions.
From the above discussion, it is clear that, the single row solutions and the

solutions in the L-shaped regions need to be computed, before computing the
two row solutions. Our algorithm consists of the following three phases.

1.

2.

In the first phase, single row solutions of the terminal rows and
are computed individually. Each single row solution of a terminal row,
is an (i , j , t) solution, where and These solu-
tions are denoted as and for top and bottom terminals
respectively.

In this phase, the maximum two row planar subset for the given
terminal rows is computed, where by using a dynamic program-
ming approach. Here, the and solutions, computed in
the first phase will be used. As described above, finding the solution
also involves finding the maximum planar subset in L-shaped regions.

380 Chapter 10. Over-the-Cell Routing and Via Minimization

3.The solution obtained in phase 2, gives the number of nets in the optimal
solution for a given instance of the TRMPS problem. In this phase, the
actual planar subset of nets in the optimal solution, is determined by
backtracking.

From a routing perspective, this problem is equivalent to assigning the
maximum number of intervals to tracks such that, if interval is assigned
to track f, then no interval assigned to tracks 1, 2 , . . . , f – 1 should intersect
columns i and j. Let MIS(i,j,f) denote the solution of the OFPR problem
resulting from restricting the intervals to be in the range of and allowing
f tracks for routing, where and The solu-
tion is computed using dynamic programming. Notice that, computation of
M I S (i , j , f) can be any of the following cases.

1.

2.

3.

If j is vacant, then

There exists a net with terminals j and m but Then,

There exists a net with terminals j and m such that then
the following two cases are possible:

10.1. Over-the-cell Routing 381

(a)

(b)

Excluding the net in the solution leads to

Including the net in the solution results in

As shown in Figure 10.9, if one has to check if including will
lead to a better solution or not. Therefore,

The complexity of this algorithm is given by the following theorem, stated
in [CPL93].

Theorem 18 [CPL93] The two-terminal net OFPR problem can be solved in
time, where n is the number of nets and k is the number of available

tracks.

Using the above algorithm the maximum subsets and are
computed, for the top and bottom terminal rows respectively, and all the in-
termediate solutions are stored.

Since, computing the T(j) solution, involves computing the solutions in
L-shaped regions, let us discuss a scheme to represent an L-shaped region.

Figure 10.10 shows two types of L shaped regions. For instance, an L-shaped
region shown in Figure 10.10(a), is denoted by the 3-tuple , where

1.

2.

3.

i is the column number of the terminal which is the rightmost corner
of the L-shaped region, in the top terminal row.

j is the column number of the terminal which is the rightmost corner
of the L-shaped region, in the bottom terminal row.

f is the track, that forms part of the horizontal boundary of the L-shaped
region (See Figure 10.10(a)).

The maximum planar subset in the L-shaped region, shown in Figure 10.10(a),
is denoted by L(i, j ,f) . Following the same convention described above, the
inverted L-shaped region, shown in Figure 10.10(b) is denoted by (j , i , f) , and
the solution in this region is denoted by L(j, i , f) . The method of computing
solutions in L-shaped regions will be described later.

While computing the T(j) solution in the rectangular region the algo-
rithm deals with the following three cases.

Case 1: There exists a top net which is completely contained in
(Figure 10.11(a)).

382 Chapter 10. Over-the-Cell Routing and Via Minimization

Case 2: There exists a bottom net which is completely contained
in (Figure 10.11(b)).

Case 3: There exists a top net and a bottom net
which are completely contained in (Figure 10.11(c)).

Let us consider each of the above listed cases in detail.

Case 1: Depending on whether the net is in the optimal solution,
or not, the algorithm has to deal with the following sub-cases.

Case 1(a): Excluding the net leads to

Case 1(b): If the net is included, such that, it is assigned to a track
then the following solution, which is denote by

By considering all possible track assignments, the track to which can
be assigned is found, so as to maximize the solution. Then, the
solution obtained by choosing which is denoted as is given by,

The optimal solution will then be the maximum of the two solutions
obtained by including and excluding the net Therefore,

Case 2: This is symmetric to Case 1.

10.1. Over-the-cell Routing 383

Case 3: Here, the following three sub-cases are possible as shown in Fig-
ure 10.12.

For each of the above three sub-cases, the following four solutions are
computed.

Two row solution of which does not consist of the nets
and

Two row solution of which consists of only the net

Two row solution of which consists of only the net

Two row solution of which consists of both the nets
and

The maximum of and solutions is the optimal T(j) so-
lution. If both the nets and are included in the optimal solution
T(j), then a simple observation, regarding the track assignment of the
nets and is stated in the following lemma.

Lemma 1 If and are two nets, which are
completely contained in and the optimal solution has the net

in track and in track such that then,

1. if then, the solution in which, the net is
assigned to a track is also an optimal solution.

384 Chapter 10. Over-the-Cell Routing and Via Minimization

2.

3.

if then, the solution in which, the net is
assigned to a track is also an optimal solution.

if then, the solution in which, the net is
assigned to a track and the solution in which, the net is
assigned to a track are also optimal solutions.

Let us now consider the three sub-cases listed above, in detail.

Case 3(a): In this case, since column l is to the left
of column m (Figure 10.12(a)). The solution, in which both the
nets are excluded is given by,

The solution can be computed as follows. Suppose, the net
is assigned to track then, the following solution, which is

10.1. Over-the-cell Routing 385

called as

By trying all possible track assignments, the track to which can be
assigned is found, so as to maximize the solution. The
solution is given by,

The solution can be computed in a similar manner as

The solution can be computed as follows. From lemma 1, it
is clear that in the optimal solution, the nets and are
assigned to adjacent tracks. Suppose, the net is assigned to track f,
and in track f + 1, then the following solution, which is called as
is obtained.

The adjacent tracks, to which and can be assigned is found, so as
to maximize

Then, the optimal T(j) solution will be the maximum of and
solutions. Therefore,

Case 3(b): This is symmetric to Case 3(a).

Case 3(c): In this case, (Figure 10.12(c)). Here,
the and solutions are the same as for Case 3(a) and
Case 3(b) However, the solution differs slightly. According to the
Lemma 1, the nets and can be assigned to adjacent tracks (say f
and f + 1 respectively). Then the will be

By trying all possible track assignments, one can find two adjacent tracks,
on which and can be placed so as to maximize the solution.
Therefore,

Then the optimal solution is given by,

386 Chapter 10. Over-the-Cell Routing and Via Minimization

Authors have the following theorems on the time complexity and optimality
of ALGO-TRMPS.

Theorem 19 The time complexity of ALGO-TRMPS is
where n is the number of nets, k is the number of tracks available on over-the-
cell area and f (k ,n) is the time to compute solution in each L-shaped region.

Theorem 20 Given an instance of TRMPS problem, ALGO-TRMPS pro-
duces an optimal solution.

In the following paragraphs a detailed description of computing the maxi-
mum planar subset in an L-shaped region is given.

The L (i , j , f) solutions can be classified into the following four types de-
pending on the existence of a bottom net which is completely contained in
with as one of its terminals.

Case 1: There is no bottom net, which is completely contained in with
as one of its terminals (Figure 10.13(a)). In this case

10.1. Over-the-cell Routing 387

Case 2: There is a net which is completely contained in
such that, i.e., column m is to the right of column i,
as shown in Figure 10.13(b). Excluding the net leads to,

Let us assume that, the L(i , j , f) solution that includes the net is
maximum, by assigning to track such that Also notice
that the optimal L(i, j ,f) solution cannot consist of any other nets, that
lie entirely in the L-shaped region, represented by (i,j, f), in the shaded
area shown in Figure 10.13(b). If any such net exists, then the L (i , j , f)
solution, which includes the net would not be planar. Therefore the
L (i , j , f) solution remains maximum, even if is assigned to track
such that Therefore, one can assign to track f +1. Now,
the L(i, j , f) solution, which includes consists of

1.

2.

3.

the nets enclosed by which is the single sided solution

the net itself, and

The solution of the L-shaped region, represented by L(i – l,m –l, f).

The L(i, j, f) solution that includes which is denoted as is
given by

The optimal L (i , j , f) solution will be, the maximum of the solutions
obtained by excluding and including the net Therefore,

Case 3: There is a net which is completely contained in
such that, i.e., column m and column i are the same,
as shown in Figure 10.13(c). This is similar to the Case 1, except that,
the L(i , j , f) solution, which includes the net consists of the single
row solution, in the region enclosed by the net and the two row
solution T(i – 1). Therefore, the L(i, j , f) solution is given by,

Case 4: There is a net which is completely contained in
such that, i.e., column m is to the left of column i,
as shown in Figure 10.13(d). Excluding the net leads to,

388 Chapter 10. Over-the-Cell Routing and Via Minimization

Suppose the net is assigned to track then The L(i, j, f)
solution, that includes the net in track denoted by

is consists of

1.

2.

3.

the nets enclosed by which is the single sided solution

the net itself, and

The solution of the L-shaped region, represented by (i,m – 1 , f) .

Therefore the L(i,j, f) solution, which includes in track is given
by

By varying f from f + 1 to k, one can find the track, to which can
be assigned, so as to maximize the L (i , j , f) solution. Then, the L (i , j , f)
solution by choosing which is denoted is given by

The optimal L(i , j , f) solution will be, the maximum of the solutions
obtained by excluding and including the net Therefore

The solutions in an inverted L-shaped region (where i > j) , can also be
computed in a similar manner.

The computation of each T(j) solution, involves the computation of solu-
tions in several L-shaped regions. Therefore, the worst case running time of
the algorithm ALGO-TRMPS, depends on the the number of L-shaped regions.
The following lemma is on the number of L-shaped regions.

Lemma 2 In canonical representation the number of L-shaped regions is
where k is the number of tracks and n is the number of nets.

Lemma 3 Each L (i , j , f) solution ,where and is
computed once and it takes constant time to compute the solution.

Theorem 21 The computation time of ALGO-LMPS is where k is
the number of tracks in a cell row, and n is the number of nets.

Theorem 22 Given an Instance ALGO-LMPS produces an optimal solu-
tion.

10.1. Over-the-cell Routing 389

Theorem 23 Given an instance ALGO-TRMPS provides an optimal solu-
tion to the two row maximum planar subset problem.

Theorem 24 The complexity of the ALGO-TRMPS is where k is the
number of tracks available over-the-cell area and n is the number of nets.

Figure 10.14 presents the algorithm formally.

10.1.2.3 Over-the-Cell Routing Using Vacant Terminals

In [HSS93], Holmes, Sherwani and Sarrafzadeh presented a new algorithm
called WISER, for over-the-cell channel routing. There are two key ideas in
their approach: use of vacant terminals to increase the number of nets which
can be routed over the cells, and near optimal selection of ‘most suitable’ nets
for over the cell routing. Consider the example shown in Figure 10.15(a). Four
tracks are necessary using a conventional channel router or an over-the-cell
router. However, using the idea of vacant terminals, a two-track solution can
be obtained (see Figure 10.15(b)). Furthermore, it is clear that the selection of
nets which minimize the maximum clique, in horizontal constraint graph

390 Chapter 10. Over-the-Cell Routing and Via Minimization

is not sufficient to minimize the channel height. For example, channel height
for the routing problem shown in Figure 10.15 is determined strictly by
that is, longest path in the VCG (vertical constraint graph). Thus, the nets
which cause long paths in VCG should be considered for routing over the cells
to obtain a better over the cell routing solution.

An informal description of each of the six steps of algorithm is given below.

1.

2.

3.

4.

5.

6.

Net Classification: Each net is classified as one of three types which,
intuitively, indicates the difficulty involved in routing this net over the
cells.

Vacant Terminal and Abutment Assignment: Vacant terminals
and abutments are assigned to each net depending on its type and weight.
The weight of a net intuitively indicates the improvement in channel
congestion possible if this net can be routed over the cells.

Net Selection: Among all the nets which are suitable for routing over
the cells, a maximum weighted subset is selected, which can be routed in
a single layer.

Over-the-Cell Routing: The selected nets are assigned exact geometric
routes in the area over the cells.

Channel Segment Assignment: For multi-terminal nets, it is possible
that some net segments are not routed over the cells, and therefore, must
be routed in the channel. In this step, ‘best’ segments are selected for
routing in the channel to complete the net connection.

Channel Routing: The segments selected in the previous step are
routed in the channel using a greedy channel router.

10.1. Over-the-cell Routing 391

The most important steps in algorithm WISER are net classification, va-
cant terminal and abutment assignment, and net selection. These steps are
discussed in detail below. Channel segment assignment is done using an algo-
rithm similar to the one presented in [CL90]. The channel routing completed
by using a greedy channel router [RF82].

Vacant Terminals and Net Classification: The algorithm WISER was
developed to take advantage of the physical characteristics indigenous to cell-
based designs. One such property is the abundance of vacant terminals. A
terminal is said to be vacant if it is not required for any net connection. Exam-
ination of benchmarks and industrial designs reveals that most standard cell
designs have 50% to 80% vacant terminals depending on the given channel. A
pair of vacant terminals with the same x-coordinate forms a vacant abutment
(see Figure 10.15). In the average case, 30% - 70% of the columns in a given
input channel are vacant abutments. The large number of vacant terminals
and abutments in standard cell designs is due to the fact that each logical ter-
minal (inputs and outputs) is provided on both sides of a standard cell but, in
most cases, need only be connected on one side. It should be noted that the
actual number of vacant terminals and abutments and their locations cannot
be obtained until global routing is completed.

To effectively utilize the vacant terminals and abutments available in a chan-
nel, algorithm WISER categorizes nets according to the proximity of vacant
terminals and abutments with respect to net terminals. Before classification,
each k-terminal net is decomposed into k – 1 two-terminal nets at adja-
cent terminal locations. Let be a four-terminal net.
The notation is used to refer to the terminal on row r (top or bottom) at
column , Net is decomposed into 3 two-terminal nets:

and Each two-terminal net
where and is then classified as a type I,
type II or a type III net. The type of a net intuitively indicates the difficulty
involved in routing that net over the cell rows. In other words, type III nets
are hardest to route, while type I are easiest to route over the cells.

Definition 1 Net is a type I net if and at least
one of the terminals and is not vacant.

Definition 2 Net is a type II net if the terminals and
are both vacant.

Definition 3 Net is a type III net if neither
nor is vacant, and there exists at least one vacant abutment a within the
span of

The three net types are illustrated in Figure 10.16. A typical channel of a
standard cell design contains about 44% type I nets, 41% type II nets, and
10% type III nets.

Observing that type I and type II nets constitute a majority of nets in the
channel, one might suggest that it is sufficient to consider only these net types

392 Chapter 10. Over-the-Cell Routing and Via Minimization

when routing over the cells rows. However, this is not the case, since removing
type III nets from the channel is critical in minimizing the length of the longest
path in the vertical constraint graph.

The basic algorithm given in section 10.1.2.1 for over-the-cell channel rout-
ing attempts to minimize only the density due to horizontal constraint graph.
Since channel height depends on both and it is clear that using

as the sole criterion for selecting nets is not as effective. In WISER, a net
weighting function, which incorporates both the channel density
and VCG path length criteria is used to assess the suitability of a given net
for over-the-cell routing. The weight of a net is computed
based on the relative density of the channel in the interval and the
ancestor and descendant weights of the net n. The relative density of net
can be computed by where is the maximum of the local
densities at each terminal location t where The ancestor weight
of a net denoted by is the length of the longest path from a node
t in the vertical constraint graph with zero in-degree to the node and the
descendant weight of denoted by is the length of the longest path
from to a node s in VCG with zero out-degree. The general net weighting
function is given below:

where and are experimentally determined constants. Since the weight of
a net indicates the reduction possible in and if is routed over
the cell rows, the ‘best’ set of nets to route over the cells is one with maximum
total weight.

Vacant Terminal and Abutment Assignment: After classification and
weighting, nets are allocated a subset of vacant terminals or vacant abutments,
depending on their type, to help define their routing paths in the area over the
cell rows. It should be noted that type I nets, which have both of their terminals
on the same boundary of the channel, can be routed in the area over the cells
without using vacant terminals as shown in Figure 10.17. Therefore, the vacant
terminal/abutment assignment problem is a matter of concern only for type II

10.1. Over-the-cell Routing 393

and type III nets. For type II nets, the vacant terminals are ‘reserved’ for a
net. That is, only a particular net may use a particular vacant terminal; as a
result, vacant terminal assignment for type II nets is actually a net selection
problem. On the other hand, a type III net may use any abutment within its
span and therefore vacant abutment assignment problem for type III nets can
be viewed as a matching problem.

Theorem 25 The vacant terminal assignment problem for type II nets is NP-
complete.

Using theorem 25, it can be shown that the problem of finding an optimal
routing using only k tracks in over-the-cell area is also NP-complete. However,
if the value of k is restricted to one (k = 1), the problem is reduced to finding
a maximum-weighted bipartite subgraph in an interval graph, which can be
solved in polynomial time. The complexity of the problem for a fixed k (k
being a small constant), however, for arbitrary k, the following result can be
established.

Theorem 26 The vacant abutment assignment problem for type III nets is
NP-complete.

Corollary 3 The vacant terminal assignment problem for type II nets remains
NP-complete when the number of tracks available over each cell row is restricted
to k.

In view of NP-completeness of the vacant abutment assignment problem for
type III nets, a greedy heuristic is used. This heuristic is based on certain nec-
essary conditions for the rout ability of a pair of type III nets. These necessary
conditions are depicted in Figure 10.18. These necessary conditions basically
check the planarity of pairs of nets. The formal description of the algorithm

394 Chapter 10. Over-the-Cell Routing and Via Minimization

is given in Figure 10.19. The main idea of this algorithm is to assign vacant
abutments to nets according to their weight. The ‘heaviest’ nets are considered
first. It is easy to see that the algorithm ASSIGN-ABUTMENTS produces a
feasible solution in time.

Provably Good Algorithm for Net Selection: The net selection problem
can be stated as follows. Given a set of of nets, select a maximum-weighted
subset of nets such that all the nets in can be routed in the area
over the cell rows in planar fashion. Algorithm WISER uses a graph theoretic
approach to net selection. An overlap graph is constructed for intervals of
nets in set It is easy to see that net selection problem reduces to the problem
of finding a maximum-weighted bipartite subgraph in the overlap graph

However, the density of the nets in each partite set must be bounded by a
constant k, which is the number of tracks available in the over the cell region.
The problem of computing is known to be NP-complete [SL89a]. As a
result, a provably good algorithm is used for net selection. This algorithm is
guaranteed to find a solution within 75% of the optimal.

Let denote the partite sets of the graph B. The vertices of corre-
spond to nets which will be routed over the upper row of cells, and the vertices
of represent nets which will be routed over the lower row of cells. It is easy
to see that there are several restrictions on assignment of vertices to partite
sets. For example, a vertex corresponding to a type I net which has both
of its terminals on the upper cell row, may not be assigned to partite set
because nets represented in are routed over the lower row of cells. On the
other hand, a vertex corresponding to a type I net with terminals on the
lower cell row may only belong to As noted earlier, vertices representing
type II nets may be assigned to either partite set since these nets can be routed
over either the upper or lower cell row. A type III net is partitioned into
two type I nets at the location of its designated abutment. Each of these nets

10.1. Over-the-cell Routing 395

is considered as a separate net in and must be assigned to a fixed partite
set as in the case of other type I net. The basic idea of the algorithm is similar
to that of the algorithm MKIS in Chapter 3 and we call this algorithm FIS.
The lower bound of the algorithm is 75% of the optimal solution. However,
experimentally, the algorithm typically gives solutions which are at least 91%
of the optimal result and in the average case, the performance of the algorithm
is very close to the optimal solution (98% of the optimal solution).

Channel Segment Selection and Channel Routing: Channel segment
selection is same as that discussed in [CL90]. When channel segment assign-
ment is completed, a channel router is used to complete the connections within
the channel. For this purpose, a greedy channel router is used, which typically
achieves results at most one or two tracks beyond the channel density [RF82].

The formal description of algorithm WISER appears in Figure 10.20. On
PRIMARY I benchmark from MCNC, WISER produces a solution with the
total number of track equal to 206 as opposed to the solution with 187 tracks
produced by the greedy channel router and 449 track solution produced by the

396 Chapter 10. Over-the-Cell Routing and Via Minimization

earlier OTC router.

10.1.3 Three-Layer Over-the-cell Routing

Holmes, Sherwani, and Sarrafzadeh [HSS91] introduced two models for
three-layer, over-the-cell channel routing in the standard cell design style. For
each model, an effective algorithm is proposed. Both of the algorithms achieve
dramatic reduction in channel height. In fact, the remaining channel height is
normally negligible. The novelty of this approach lies in use of ‘vacant’ termi-
nals for over-the-cell routing. For the entire PRIMARY 1 example, the router
reduces the routing height by 76% as compared to a greedy 2-layer channel
router. This leads to an overall reduction in chip height of 7%.

Wu, Holmes, Sherwani, and Sarrafzadeh [WHSS92] presented a three-layer
over-the-cell router for the standard cell design style based on a new cell model
(CTM) which assumes that terminals are located in the center of the cells
in layer M2. In this approach, nets are first partitioned into two sets. The
nets in the first set are called critical nets and are routed in the channel using
direct vertical segments on the M2 layer, thereby partitioning the channel into
several regions. The remaining nets are assigned terminal positions within
their corresponding regions and are routed in a planar fashion on M2. This
terminal assignment not only minimizes channel density but also eliminates
vertical constraints and completely defines the channel to be routed. In the
next step, two planar subsets of nets with maximum total size are found and
they are routed on M3 over-the-cell rows. The rest of the nets are routed in
the channel using a HVH router.

Terai, Nakajima, Takahashi and Sato [TTNS94] presented a new model
for over-the-cell routing with three layers. The model consists of two channels
and routing area over a cell row between them. The channel has three layers,
whereas the over-the-cell area has two layers available for routing. An over-the-
cell routing algorithm has been presented that considers over-the-cell routing
problem as a channel routing problem with additional constraints.

Bhingarde, Panyam and Sherwani [BPS93] introduced a new three-layer
model for, over-the-cell channel routing in standard cell design style. In this
model the terminals are arranged in the middle of the upper and the lower half
of the cell row. They develop an over-the-cell router, called MTM router, for
this new cell model. This router is very general in nature and it not only works
for two- and three- layer layouts but can also permit/restrict vias over-the-cell.

Bhingarde, Khawaja, Panyam and Sherwani [BKPS94] presented a hybrid
greedy router for the TBC model. The routing algorithm consists of two key
steps; terminal position assignment and 2-3-2 layer irregular boundary chan-
nel routing. An optimal O(KL) algorithm for terminal position selection is
presented. The algorithm determines exact terminal locations on each target
in the entire cell row. The routing environment for the TBC Router typi-
cally consists of a 3-layer channel area enclosed by two 2-layer non-uniform
boundary over-the-cell routing regions. The TBC router generates smaller lay-
outs for benchmarks, primarily due to smaller layout widths. For example,

10.1. Over-the-cell Routing 397

398 Chapter 10. Over-the-Cell Routing and Via Minimization

for PRIMARY I benchmark, all three models TBC, CTM and MTM, generate
channelless layouts, however, TBC layout has minimum area due to smaller
layout width.

10.1.4 Multilayer OTC Routing

With the advent of multi-layer processes more OTC area is now available for
routing and hence, further reduction in the layout height can be accomplished.
Bhingarde, Madhwapathy, Panyam and Sherwani [BMPS94] presented an ef-
ficient four layer OTC router, for a cell model similar to TBC, called Arbitrary
Terminal Model(ATM). In this cell model, the terminals can be placed at any
arbitrary locations in the cell. Freed from fixed terminal placement restrictions,
cell designers can aim to design with minimum width. Figure 10.21 shows ATM
based designs. The routing algorithm is based on the following four key steps;
(1) The nets spanning multiple rows are decomposed into net segments belong-
ing to single rows. All the terminals belonging to a single row are connected
by a single horizontal metal segment, and a terminal is selected on each seg-
ment for completing the net connectivity. (2) Generation of intervals for same
row and critical nets. (3) Interval assignment and same row routing and (4)
Selection of an appropriate position for placing the same row and critical net
intervals in each cell row. This approach was further generalized so that it can
be used not only for different cell models, but also for full custom layouts and
thin film MCM’s.

10.1.5 Performance Driven Over-the-cell Routing

Despite the dramatic performance of OTC routers, a major shortcoming of
the existing routers is the increase in the total wire length and the length of
the longest net. Careful analysis of existing results shows that the total wire
length may be increased by as much as 20% in [CPL93] and 35% in [HSS93].
Although no results on wire length are reported, it is very likely that the net
length also increases in case of [LPHL91]. However, it is possible that the
net length in [LPHL91] is less than the corresponding net lengths reported
in [CPL93, HSS93]. This may be due to the fact that the main objective of
their router is to minimize the number of routing tracks used in the over-the-cell
area, as well as in the channel.

Natarajan, Holmes, Sherwani, and Sarrafzadeh [NSHS92] presented a
three-layer over-the-cell channel routing algorithm (WILMA3) for high perfor-
mance circuits. This router not only minimizes the channel height by using
over-the-cell areas but also attempts to route all nets within their timing re-
quirements. This algorithm is based on two ideas. Firstly, it optimizes the track
assignment of each net with respect to delay. It identifies the track bound for
each net which ensures that the wire length is no greater than the length of
the net if routed in the channel. Using this track bound, nets are selected
for over-the-cell routing. Secondly, 45° segments are used to route the nets
over-the-cells to further reduce the net length.

10.1. Over-the-cell Routing 399

The basic idea of the algorithm is as follows: all the multi-terminal nets are
decomposed into two-terminal nets and classified. Then weights are assigned to
each net. The weight of a net intuitively indicates the improvement in channel
congestion possible if this net can be routed over the cells. A channel router
is then used to obtain the channel density if routed in the channel. For
each net track in which is routed is recorded. An over-the-cell router
is used to obtain the channel density for over-the-cell routing. For each
net the track bound is computed, which ensures that if the net is routed
over-the-cell at a track less than or equal to it will have a wire length less
or equal to the net length when routed in the channel. This is based on the
estimated channel heights and Among all the nets which are suitable
for routing over the cells, four (two) maximum-weighted planar subsets are
selected, subject to the track bound constraint for the three-layer (two-layer)
model. Once the nets are selected, a set of vacant terminals (vacant abutments)
in the case of Type II (Type III) nets are assigned to each net depending
on its weight. These vacant terminal/abutment locations will later be used to
determine an over-the-cell routing for Over-the-cell routing is done with
45° segments and rectilinear segments. In order to avoid design rule violations,
any net routed over-the-cell on track must contain a vertical segment of

400 Chapter 10. Over-the-Cell Routing and Via Minimization

length before 45° segments can be used. The net segments that have not
been routed in the area over the cells are routed in the channel. After the
channel routing is done the channel density due to over-the-cell routing of
nets is obtained. If is set equal to and the process is repeated.

The iterative process mentioned above takes place very rarely as for most
examples the algorithm can complete the routing using no more tracks than

However, in cases when is indeed greater than it has been observed
that it is usually one or at most two tracks.

10.2 Via Minimization

Vias are necessary to establish multi-layer connections. Many routers use a
simple reserved layer model and produce routing solution with a large number
of vias. However, there are numerous reasons for minimizing the number of
vias in a layout:

1.

2.

3.

4.

In integrated circuit fabrication, the yield is inversely related to the num-
ber of vias. A chip with more vias has a smaller probability of being
fabricated correctly.

Every via has an associated resistance which affects the circuit perfor-
mance.

The size of the via is usually larger than the width of the wires. As a
result, more vias lead to more routing space.

Completion rate of routing is also inversely related to the number of vias.

Despite all these reasons, existing routers and design tools consider the min-
imization of the number of tracks in channel routing, completion of switch-
box routing, and wire length minimization as their primary objectives. Via
minimization is either completely ignored or de-emphasized. As a result, via
minimization came as an ‘afterthought’ in routing.

Before discussing the via minimization problem in detail, let us define some
related concepts. A plane homotopy (also called a sketch) consists of a set
of simple curves in the routing region. The two endpoints of a curve are the
terminals of a net. Two curves may intersect at a finite number of points, i.e.,
overlap of wires is not allowed. A k-layer homotopy (or simply a homotopy) is
obtained by mapping pieces of the curves of the plane homotopy into one of the
k layers. Vias are established at points where a curve changes layer and no two
distinct curves intersecting on the same layer (see Figure 10.22 for two different
homotopies of the same problem). If the topology of the plane homotopy is
fixed, then the problem is called CVM. In other words, in CVM problem, we
are given a set of wire segments (the placement of wire segments has already
been determined by some router) and k layers for routing. The problem is to
assign each segment to one of the layers without changing the topology so that
the number of vias required is minimized. In UVM problem, the placement and

10.2. Via Minimization 401

the layer assignment of segments are not given. The problem is to both place
the segments and also assign the layers so as to minimize the total number
of vias. In other words, UVM is an integrated approach to routing and via
minimization.

Intuitively, the UVM problem is harder than CVM problem. This is so
because each UVM has many different homotopies, each resulting in a different
optimal number of vias. Thus solving the UVM problem requires finding such
a homotopy, which leads to a global minimum number of vias. In the following
sections, we discuss both the CVM and the UVM problem.

10.2.1 Constrained Via Minimization Problem

In multi-layer routing problems, vias are required when two nets are crossing
each other on a single layer. A via candidate is a maximal piece of wire, that
does not cross or overlap with any other wire, and can accommodate at least
one via. A wire segment is a piece of a wire connecting two via candidates. A
wire segment cluster (or simply cluster is a maximal set of mutually crossing
or overlapping net segments. For example, Figure 10.23 shows an instance of
CVM problem. The points other than terminals, where two or more segments
of a net meet and are electrically connected are called junctions. The number of
segments which meet at a particular junction is referred to as junction degree.
A crossing is a point where two net segments of two different nets intersect.
A layer assignment is valid if no two segments of two different nets cross at a
point in the same layer.

A routing solution is called a partial routing solution if the physical locations
of the net segments is given, however, the layer assignments are not specified.
Also, a valid layer assignment must exist for a partial routing solution. A
complete routing solution consists of a set of net segments, a set of vias, and a
valid layer assignment which correctly realizes the interconnection requirements
specified by the netlist. A valid layer assignment for Figure 10.23 is shown in
Figure 10.24.

Given the above definitions, the CVM problem can be formally stated as

402 Chapter 10. Over-the-Cell Routing and Via Minimization

10.2. Via Minimization 403

follows. Given a partial routing solution for a particular routing problem on k
layers, find a complete routing solution with minimum number of vias for the
corresponding partial routing solution. Since the CVM problem is to assign net
segments to layers, the problem is also called the layer assignment problem. We
use the terms layer assignment and complete routing solution interchangeably.

In 1971, Hashimoto and Stevens [HS71] first formulated the two-layer CVM
problem as a graph-theoretic max-cut problem. The problem was initially
thought to be NP-complete which led other researchers to develop heuristic
algorithms [CK81, SV79]. In [SV79], Stevens and VanCleemput used a sim-
ilar but more general graph model than Hashimoto and Stevens model to
develop heuristic algorithm for the two-layer CVM problem. Ciesielski and
Kinnen [CK81] proposed an integer programming method for the same prob-
lem. Chang and Du [CD87] developed a heuristic algorithm by splitting
vertices in a graph. In 1980, Kajitani [Kaj80] showed that the two-layer CVM
problem can be solved in polynomial time when the routing is restricted to a
grid-based model, and all the nets are two-terminal nets. Kajitani identified
the net segment clusters in a layout and showed that the graph in Hashimoto’s
model is planar. Kajitani’s result encouraged other researchers to look for a
polynomial time algorithm for more general case. In 1982, Pinter [Pin82] pro-
posed an optimal algorithm for two-layer CVM problem when the maximum
junction degree is limited to three.

10.2.1.1 Graph Representation of Two-Layer CVM Problem

In this section, we first describe the graph-theoretic representation of the
two-layer CVM problem formulated by Pinter [Pin82]. We also describe the
model presented by Naclerio, Masuda and Nakajima. Note that in each cluster,
once a wire segment is assigned to a certain layer, layer assignment of the rest
of the cluster is forced. Thus there are only two possible ways to assign the wire
segments in a cluster to layers. With a prescribed layer assignment, a cluster
is said to be flipped over, if all the wire segments in the cluster are reassigned
to the opposite layers.

Given a (partial) routing problem, a cluster graph G = (V, E) can be de-
fined, where

corresponds to cluster i} and
clusters i and j are connected to at least one via candidate}

The cluster graph for the layout in Figure 10.23 is shown in Figure 10.25.
If a complete routing solution is given, the weights can be assigned to the

edges of the cluster graph. The weight w(e) associated with each edge of
the cluster graph is defined as follows. Let p be the number of via candidates
connecting the two clusters incident to e, and let q be the number of vias
introduced by the known layer assignment connecting the two clusters. Then
w(e) = 2q – p. In other words, the weight indicates the via reduction that can
be achieved due to flipping over either one of the two clusters. The weights
corresponding to the solution in Figure 10.24 are shown in Figure 10.25.

404 Chapter 10. Over-the-Cell Routing and Via Minimization

An arbitrary layer assignment L can be obtained from a known layer as-
signment by flipping over a set of clusters. Let X be the set of clusters
which are flipped over in to obtain L. If X consists of just one cluster v,
then the change in the number of vias is equal to the weights of all the edges
incident on v. In a general case, the net change of vias is equal to the weights
of edges between the sets X and V – X. This is due to the fact that any two
clusters (or), the via count between the clusters u and v
remains unchanged. However, for and if then
the via count is reduced by w(e). Let q(L) and be the numbers of vias
introduced in the layer assignments L and respectively. Then

where E(X, V — X) is a cut separating X and V – X, i. e., the set of edges
connecting vertices in X and vertices not in X. The above equation is due to
the fact that for any two clusters both in X or both in V – X, the via count
between the two clusters remains unchanged, but for two clusters, one in X
and one in V – X via count is reduced by w(e). In order to minimize the via
count q(L), we want to find a cut E(X,V – X) which maximizes its weight

This problem is equivalent to the max-cut problem. Note
that the edge weights w(e) can be positive or negative, but a maximum cut
always has non-negative weight since X can be empty and for

In case that a maximum weighted cut has weight 0, is an optimal
layer assignment with minimum number of vias. For the cluster graph shown
in Figure 10.25, the vertex sets {2, 4} and {1, 3} determine the maximum cut
of total weight 3. As a result, three vias can be reduced to produce a minimum
via routing by flipping over clusters 2 and 4. The minimum via routing is
shown is Figure 10.26.

Note that the cluster graph is planar if the junction degree is at most three.
In planar graphs the max-cut problem is polynomial time solvable [Had75].
Therefore, the via minimization problem can be solved in polynomial time if
the junction degree is restricted to at most three.

In 1989, Naclerio, Masuda, and Nakajima [NMN89] showed that without

10.2. Via Minimization 405

any restriction on the maximum junction degree, the CVM problem is NP-
complete, by showing a polynomial time transformation from the NP-complete
planar vertex cover problem [GJ79]. They also show that the problem is NP-
complete, even when one or more of the following restrictions are made.

1.

2.

3.

The layout must be grid-based.

Vias can be placed only in the junctions.

The maximum junction degree is limited to six or more.

In 1987, Naclerio, Masuda, and Nakajima [NMN87] presented a different
graph representation of the CVM problem for gridless layouts. In this rep-
resentation, also the maximum junction degree is restricted to at most three.
Given a partial routing solution, a crossing graph G = (V , E) is defined as fol-
lows: Each vertex corresponds to a crossing of two wire segments of two
different nets in the partial routing. Two vertices are adjacent only
if there is an wire segment connecting the crossings corresponding to and

in the partial routing. Figure 10.27(b) shows the derived crossing graph G
corresponding to the partial routing of Figure 10.27(a). It is easy to see that
the crossing graph defined above is planar. Each face, of the planar crossing
graph is a fundamental cycle. If that cycle has an odd length, then we call
that face an odd face. Otherwise the face is called an even face. Since each
edge corresponds to a wire segment in the partial routing and each vertex to a
crossing, the wire segments corresponding to edges that make up a fundamen-
tal cycle in the graph must be assigned to alternating layers to obtain a valid
layer assignment. For an even face, all the wire segments corresponding to the

406 Chapter 10. Over-the-Cell Routing and Via Minimization

edges can be assigned to alternating layers, thus no vias are required for for
that face. Consider the example shown in Figure 10.27. The graph consists of
just one even cycle, and the segments a, b, c, and d can be alternately assigned
to layers 1 and 2 to get a solution with no vias. On the other hand, if the graph
contains an odd cycle, then the wire segments corresponding to the edges of
that cycle cannot be assigned to alternating layers to obtain a valid routing
without vias (see Figure 10.28(a) and (b) for an example of odd face). Note
that each odd cycle require at least one via to obtain a valid routing.

Thus, a partial routing solution can be routed with no vias if and only if
the corresponding crossing graph does not contain any odd faces. That is if
the crossing graph is bipartite. In case the graph contain odd faces, the wire
segments requiring vias can be marked and the corresponding edges in the
graph can be removed and two faces sharing that edge can be merged. If the
remaining graph is odd cycle free, then no further vias would be required to
route the wire segments in the remaining graph. Thus in order to find the
minimum number of wire segments that require vias, it is necessary to find the
minimum number of edges such that the removal of those edges results in a
bipartite subgraph.

Note that the problem is also equivalent to find a maximum cut the planar
crossing graph. Hadlock’s algorithm [Had75] can be used to find the maximum
bipartite subgraph from a planar graph. The algorithm presented by Hadlock
removes the minimum number of edges from the graph to remove all the odd
cycle by forming the dual of the planar graph.

The crossing graph can be extended to handle multiterminal nets as long
as the junction degrees are restricted to at most three. In that case, each
junction is also represented as a vertex in the crossing graph. The details of
the description may be found in [NMN87].

All the optimal algorithms mentioned above are based on Hadlock’s maxi-

10.2. Via Minimization 407

mum cut algorithm for planar graphs [Had75]. Since Hadlock’s algorithm re-
quires finding all-pair shortest paths and finding a maximum weighted matching
of a dense graph, all the algorithms have time complexity where n is
the total number of net segments.

In 1988, Kuo, Chern, and Shih [KCS88] presented an time
complexity optimal algorithm for the CVM problem. The algorithm they
proposed was based on Pinter’s graph model. In 1990, Barahona [Bar90] also
presented a simpler time complexity optimal algorithm for the
two-layer CVM problem.

10.2.2 Unconstrained Via Minimization

As mentioned before, the unconstrained via minimization (UVM) problem
(also known as topological via minimization (TVM) problem) is concerned with
finding a plane homotopy of wires so that the total number of vias are min-
imized [CL91, Hsu83b, LSL90, Sad84, RKN89, SL89a, SHL90]. The physical
dimensions of the wires, terminals, and vias are not considered in the UVM
problem. The general TVM problem in k layers (k-TVM) may be stated as
follows. Given a set of nets, number of layers k and terminal locations, find
a k-layer topological routing solution that completes the interconnections of
all nets using the minimum number of vias. In weighted version of k-TVM
problem (k-WTVM), each net is assigned a positive weight which is a measure
of the priority of the net. The weight of a via represents the weight of the
corresponding net. The problem is to minimize the total weight of vias used in
the routing.

The TVM problem was first introduced by Hsu in [Hsu83b], and it was
conjectured that TVM problem is NP-hard. Hsu considered a simple 2-TVM
problem for two-terminal nets and formulated the problem using circle graphs.

408 Chapter 10. Over-the-Cell Routing and Via Minimization

It was shown that the 2-TVM problem is equivalent to finding a maximum
bipartite subgraph in the corresponding circle graph. The independent sets
of the bipartite subgraph can be routed in two layers without any vias. The
remaining nets can be routed using vias. This result established the fact that
TVM problem can be solved by routing maximum number of nets without any
vias and the rest of the nets using as few vias as possible.

Marek-Sadowska [Sad84] proved that the TVM problem is NP-complete.
Following theorem was also proved by Marek-Sadowska for two-terminal net
TVM problems:

Theorem 27 There exists a solution to an arbitrary instance of topological via
minimization problem such that each net uses at most one via.

The above theorem shows that the TVM problem can be solved by maximizing
the number of nets that can be routed without any vias (i.e., in planar fashion).

In 1989, Sarrafzadeh and Lee [SL89a] showed that the problem of finding
a maximum bipartite subgraph in a circle graph is NP-complete which in turn
proves that even a simple 2-TVM problem is NP-complete. As a result, several
special classes of the TVM problem have been considered. Sarrafzadeh and
Lee [SL89a] and Cong and Liu [CL91] considered the crossing-channel TVM
problem. In the crossing-channel TVM problem, the routing region is a simple
channel. All the nets are two-terminal nets and no net has both of its terminals
on the same boundary. Crossing-channel k-TVM and k-WTVM problems are
solvable in polynomial time [CL91, LSL90, RKN89, SL89a].

10.2.2.1 Optimal Algorithm for Crossing-Channel TVM Problem

Note that a crossing channel is equivalent to a matching diagram and its
permutation graph can easily be found (see Chapter 3). As a result, the prob-
lem of finding maximum independent sets in permutation graphs become a key
problem. Sarrafzadeh and Lee [SL89a] showed that the problem of finding a
maximum 2-independent set in a permutation graph can be solved in polyno-
mial time. Cong and Liu [CL91] showed that the problem of finding a maximum
k-independent set in a permutation graph can be solved in polynomial time.

Given a crossing channel consisting of a set of nets
the TVM problem can be solved by first finding a maximum k-planar subset of
nets. The k-planar subset of nets can be routed in k layers without any vias.
Then using Theorem 27, the remaining nets can be routed in any two adjacent
layers using one via per net.

We now show how the nets can be routed using one via per net by an
example of the 2-TVM problem. Let be a maximum 2-planar subset of
nets for the given problem. Without loss of generality, assume
where Note that any
net must cross nets in and in Since is planar, nets in

can be assigned to layer 1. The p nets in layer 1 partition the region into
p+1 subregions called panels from left to right, where
separates regions and Similarly, nets can be assigned to layer 2

10.2. Via Minimization 409

to form q +1 panels, denoted from left to right. Figure 10.29(a)
shows planar routing of two sets and on layer 1 and layer 2, respectively.

Assume that a net and is in panel Without
loss of generality, let us assume that lies in panel and lies in panel
Consider placing a via in panel and connect to and to Let
the segment connecting to be denoted by and let be in panel

for some l. Without loss of generality, assume that and be
assigned to layer 1. The nets on layer 1 that ‘intersect’
are ‘pushed’ to right, thereby, enlarging the panel (see Figure 10.29(b)).
The segment can be assigned to layer 2 without any difficulty, since
it lies totally within panel If there is more than one net to be routed,
the above mentioned steps can be repeated to route all the nets using one via
per net. The nets can be routed from left to right in O (n) time. Since the
maximum k-independent set in a permutation graph can be found in
time. Therefore, the total complexity is dominated by the problem of finding
maximum k-planar subset of nets. Thus we conclude,

Theorem 28 An optimal solution to a crossing-channel TVM problem can be
found in time.

10.2.2.2 Approximation Result for General k-TVM Problem

If the routing region is more general than a channel, then the two-terminal net
k-TVM problem becomes NP-hard. This is due to the fact that the circle graph
must be used to represent the problem instead of simpler permutation graph.
The k-TVM problem is equivalent to finding a maximum k-independent set in
a circle graph. In chapter 3, we have presented an
algorithm for maximum k-independent set in circle graphs. Using that result,
the following theorem can easily be proven:

Theorem 29 Given a set of nets in a k-layer routing
region, let be the maximum k-planar subset of nets in and be the
k-planar subset of nets found by taking one maximum planar subset at a time,
then

410 Chapter 10. Over-the-Cell Routing and Via Minimization

Based on Theorem 27 and Theorem 29, we conclude,

Theorem 30 Given a set of nets in a k-layer bounded
region, the k-TVM problem can be approximated with with at most

more vias than the minimum number of vias, where where the maxi-
mum k-planar subset of nets in

10.2.2.3 Routing Based on Topological Solution

Since it appears that the CVM problem does not offer enough flexibility for
via minimization, the topological routing might offer a good starting point as
vias are already minimized. It is easy to see that minimum-via topological
routing often uses very long wires for some nets and causes high congestion in
the routing region. Since the geometric routing problem has fixed area, it may
not be possible to transform a high congestion topological routing solution to
geometric routing solution. Therefore, a topological routing solution is needed
that is guaranteed to be transformable into an actual geometric routing solu-
tion. This can be achieved by allowing some extra via’s to keep the topology as
close to the actual geometric solution as possible. In this way, the final topo-
logical routing solution can be easily transformed into actual geometric routing
solution. We denote this problem as routable topological via minimization prob-
lem in k layers (k-RTVM). The major difference between the solutions of TVM
and RTVM problems is that the solution of RTVM problem is guaranteed to
be transformable into actual geometric routing.

In [HS91], Hossain and Sherwani presented a graph-theoretic algorithm
to solve 2-layer routing problem based on topological solution. The algorithm
consists of two different phases. The first phase of the algorithm finds a solution
to 2-RTVM problem. In the second phase, the solution to 2-RTVM problem is
transformed into actual geometric routing.

The algorithm starts with finding a 2-planar subset of nets. Each planar
subset is routed in a separate layer to form panels. If the panels on two layers
are projected on a single layer, the panels intersect and form pseudo-rectangular
regions. The remaining nets are topologically routed by assigning nets to the
regions keeping the topology as close to the actual routing as possible. The
topological routing of the nets is done by finding a weighted shortest path
in the corresponding region adjacency graph defined from the regions. In the
region adjacency graph, each vertex corresponds to a region and two vertices
are adjacent if their corresponding regions share a boundary. Once the nets are
topologically routed, a geometric routing is obtained by iteratively imposing
grid onto each region.

10.3 Summary

The layout area for standard cell design can be reduced by minimizing the
channel height. Over-the-cell routing has been successfully used to achieve
dramatic reductions in the channel heights. In three-layer technology, it is

10.4. Exercises 411

possible to achieve even a channel-less layout. Several algorithms for over-the-
cell routing have been presented. For high performance circuits, an algorithm
has been presented which minimizes the layout height without sacrificing the
performance. A significant research is needed to develop new cell models and
associated over-the-cell routers to achieve the channel-less layouts for high den-
sity circuits.

Via minimization is one of the most important objectives in the detailed
routing. There are two different approaches to minimize the number of vias.
In constraint via minimization problem, the topology of the routing solution is
fixed. Vias can be minimized only by reassigning the net segments to different
layers. On the other hand, in unconstraint via minimization problem, the
objective is to find a routing topology with minimum number of vias. Since
the topology in UVM problem is not fixed, the UVM problem allows much
flexibility than that of the CVM problem. The UVM approach, however, does
not take into consideration the routing constraints; as a result, UVM solutions
are not practical. Since the UVM approach allows a significant reduction on the
number of vias and as the technology is improving and more and more layers
are becoming available, it is expected that topology based routing solution will
be more competitive.

10.4 Exercises

‡1.

2.

3.

‡4.

Given, (a) a single layer rectangular routing region R which has K tracks
and two rows of terminals; one on top side and another on the bottom
side and (b) a set of two-terminal nets Give an efficient algorithm to
find a maximum subset of which can be routed in R.

More utilization of the over-the-cell area is possible if we allow an addi-
tional net type (type IV). Net is a type IV net if
neither nor is vacant, and there exists two vacant terminals

and with and (see Figure 10.30(a)).
Note that Type IV nets are not constrainted to use abutments, however,
they compete with the type II and type III nets for the usage of vacant
terminals. Modify WISER to use type IV nets in addition to type I, II
and III nets.

Further utilization of the over-the-cell area is possible if an additional net
type (type V) is allowed. Net is a type V net
if neither nor is vacant, and there exists two vacant
terminals and with and or and

Note that from Figure 10.30(b) type V can be used for taking
nets away from the congested areas, however, it increases the net length.
Modify WISER to use type V nets in addition to type I, II, III, IV nets.

Given, (a) a single layer rectangular routing region R which has a height of
K tracks, a terminal row on its bottom boundary, and a set of rectangular

412 Chapter 10. Over-the-Cell Routing and Via Minimization

†5.

‡6.

†7.

†8.

9.

10.

blockages and (b) two-terminal nets Give an efficient algorithm to find
a maximum subset of which can be routed in R.

In three-layer technology, when vias are allowed in over-the-cell region,
then the over-the-cell channel routing is similar to 2-layer channel routing
in over-the-cell area and 3-layer channel routing in channel area. For this
case, develop a greedy router that can simultaneously perform channel
routing as well as over-the-cell routing.

In many cell libraries the entire metal layer (M2) is not available for
routing. Instead, it has several blockages representing the routing within
the cell. Also, the terminals may not be aligned in a row. In this case,
the nets that are to be routed in the channel need be brought to the
boundaries of the cell using the available routing regions in M2. Develop
an algorithm for this problem.

In [DMPS94] planar over-the-cell routing algorithm for two terminal nets
was presented. Extend the algorithm to multi-terminal nets.

Prove that 2 layer planar over-the-cell routing problem is NP hard.

Prove that the time complexity of algorithm presented in [DMPS94] is
where k is the number of tracks available in over the cell region

and n is the number of nets.

Given the partial routing in Figure 10.31, do the following:

10.4. Exercises 413

a.

b.

c.

d.

e.

Find all of the via candidates. Note that if a segment spans more
than one gridline, a via can be placed in that segment.

Find any valid layer assignment.

From the layer assignment created in c, develop the cluster graph.

Find the max-cut of the cluster graph derived in c.

Reassign the layers to find the minimum via routing.

11.

‡12.

13.

14.

The performance of a chip can be improved by minimizing the number
of vias per net. Develop an algorithm which routes nets with one via per
net.

Develop a coloring based algorithm to 3 layer constrained via minimiza-
tion.

Develop an algorithm that minimizes the vias in a routing, by making
local changes in the routing with the use of maze patterns.

Develop a router for two-layer crossing channel routing problem to route
all the nets with at most one via per net. The basic idea of the algorithm
is the same as topological routing solution for crossing channels, how-
ever, instead of finding topological solution the router should find actual
detailed routing. The algorithm should first find a maximum 2-planar
subset of nets and route them on two different layers. Then route the
remaining nets using as many columns and tracks required.

414 Chapter 10. Over-the-Cell Routing and Via Minimization

†15.

16.

17.

Develop a two-layer routing algorithm for crossing channel routing prob-
lems based on topological solution. The algorithm should first find a
maximum 2-planar subset of nets and route them on two layers to form
a pseudo grid. The remaining nets are to be routed on the pseudo grid
using a modified maze routing technique.

According to the design rules, the spacing between two adjacent metal
tracks needs be If the vias on adjacent tracks are aligned in a column,
the spacing between the tracks increases to (see Figure 10.32). Develop
an algorithm that offsets the aligned vias to compact a channel.

Solve the instance of MSOP in Figure 10.33 for K = 3.

Bibliographic Notes
The concept of OTC routing was first introduced by Deutsch and Glick in
1980 [DG80]. In [CL88], a symbolic model for over-the-cell channel routing
was presented together with the algorithms for each stage of the entire routing
process. Lin, Perng, Hwang, and Lin presented a linear programming formu-
lation to select a set of nets to route in the channel in order to reduce the
channel density [LPHL91]. In [NESY89], a new design style employing OTC
routing techniques called Quickly Customized Logic (QCL) was introduced for

10.4. Exercises 415

fast turn around times. An over-the-cell gate array channel router was pre-
sented in [Kro83]. Katsadas and Kinnen [KK90] presented a multilayer router
using over-the-cell areas. In citeDLMPST96, algorithms for selecting maximum
planar subset of nets which are suitable for planar OTC routing were presented.
In [Kan96], presents a new triple-layer OTC Channel router for OTC routing
in an irregular cell area.

A detailed description of OTC routing concepts and techniques can be
found in a specialized book on this topic by Sherwani, Bhingarde and Pa-
nyam [SBP95].

In 1983, Chen, Kajitani, and Chan [CKC83] a polynomial time optimum
algorithm for grid-based layouts when the junction degree is also limited to
three. However, they restrict that vias can only be placed at junctions. In 1987,
Naclerio, Masuda, and Nakajima [NMN87] presented an algorithm which has
the same complexity as Chen et al. [CKC83]; however does not require that
the layout should be grid-based or restrict the via locations.

In [SL89a], an time complexity algorithm is presented for the crossing-
channel 2-WTVM problem, where n is the total number of nets. An optimal

time complexity algorithm for crossing-channel 2-TVM problem is
presented in [SL89a]. crossing-channel k-WTVM has been solved in
time [CL91]. This algorithm was improved to in [SL90]. Multi-layer
TVM problem was considered in [SHL90] and it was shown that if the termi-
nals are pre-assigned to layers, then the problem can be solved in time,
where k is the maximum number of terminals of a net in a single layer and n
is the total number of terminals.

Chang and Cong [CC97] presented an efficient heuristic algorithm for the
layer assignment and via minimization problems for multilayer gridless layouts.

This Page Intentionally Left Blank

Chapter 11

Clock and Power Routing

Specialized algorithms are required for clock and power nets due to strict
specifications for routing such nets. It has been noted that it is better to de-
velop specialized routers for these nets rather than over-complicate the general
router. In the worst case, these special nets can be hand-routed. Currently, in
many microprocessors, both of these nets are manually routed and optimized.
However, as chip frequency moves into the multiple gigahertz range, the clock
skew budget will become smaller and smaller and it will be not be possible to
design and route clock without the help of sophisticated and accurate clock
routing tools. Similarly, due to large amounts of power that needs to be pro-
vided to microprocessors, power nets must be very accurately designed and
simulated to predict the power availability in different parts of the chip. As a
result, power routing and analysis will increasingly depend on CAD tools.

In synchronous systems, chip performance is directly proportional to its
clock frequency. Clock nets need to be routed with great precision, since the
actual length of the path of a net from its entry point to its terminals deter-
mines the maximum clock frequency on which a chip may operate. A clock
router needs to take several factors into account, including the resistance and
capacitance of the metal layers, the noise and cross talk in wires, and the type
of load to be driven. In addition, the clock signal must arrive simultaneously
at all functional units with little or no waveform distortion. Another impor-
tant issue related to clock nets is buffering, which is necessary to control skew,
delay and wave distortion. However, buffering not only increases the transistor
count, it also significantly impacts the power consumption of the chip. In some
cases, clock can consume as much as 25% of the total power and occupy 5-10%
of the chip area. Typically, a fixed buffered clock distribution network is used
at the chip level. At a block level, a local clock routing scheme ensures mini-
mal skew and delay. The scheme used in each block can differ, depending on
the design style used in the block. The clock routing problem has significant
impact on overall chip design. Clock frequencies are increasing quite rapidly.
Note that current microprocessors can operate at 500 Mhz to 650 Mhz. It is
expected that 1.5 - 2.0 Ghz microprocessors will be available within two to

418 Chapter 11. Clock and Power Routing

three years (See Chapter 3 for SIA roadmap).
Compared to clock routing, power and ground routing is relatively simple.

However, due to the large amount of current that these nets carry, power and
ground lines are wide. Concerns such as current density and the total area
consumed make it necessary to develop special routers for power and ground
nets. In some microprocessor chips, power and ground lines use up almost
an entire metal layer. Power and ground lines are also used to shield some
signal lines. This is done by routing a signal between two power (and/or
ground) lines. This reduces the cross-capacitance between the signal line and
its adjacent signal lines. As chip design moves into low voltages, power and
ground routing will become a even harder design challenge. In this chapter, we
will discuss the problems associated with clock, power and ground routing and
present the basic routing algorithms for these special nets.

11.1 Clock Routing

Within most VLSI circuits, data transfer between functional elements is syn-
chronized by a single control signal, the processing clock. The clock synchro-
nization is one of the most critical considerations in designing high-performance
VLSI circuits. In the case of microprocessor design, the clock frequency (in
MHz) directly determines the performance or the MIPS (Million Instructions
Per Second) of the microprocessor.

In this equation, NIPC denotes for Number of Instructions issued Per Cycle.
NIPC depends on the architecture of the processor, RISC versus CISC, and
the compilers used for the system. Most modern microprocessors are capable
of multiple issue, and some can issue as many as five instructions per cycle.
Consider a processor, which has a clock frequency of 200 MHz and can execute
two instructions per clock cycle, thus giving it a 400 MIPS rating. If the clock
frequency of the processor can be increased to 400 MHz, 800 MIPS performance
can be obtained. In I/O and memory buses, the clock frequency determines
the rate of data transmission. The data transmission rate is determined by
the product of the clock frequency and the bus width. Thus, it is desirable to
design the circuit with the fastest possible clock. However, increasing the clock
frequency of a chip is a complicated affair.

The clock signal is generated external to the chip and provided to the chip
through the clock entry point or the clock pin. Each functional unit which
needs the clock is interconnected to the clock entry point by the clock net.
Each functional unit computes and waits for the clock signal to pass its re-
sults to another unit before the next processing cycle. The clock controls the
flow of information within the system. Ideally, the clock must arrive at all
functional units at precisely the same time. In this way, all tasks may start
at the same time and data can be transferred from one unit to another in an
optimum manner. In reality, the clock signals do not arrive at all functional

11.1. Clock Routing 419

units simultaneously. The maximum difference in the arrival time of a clock at
two different components is called clock skew. Clock skew forces the designer
to be conservative and use a large time period between clock pulses, that is,
lower clock frequency. The designer uses the clock period which allows for log-
ical completion of the task as well as some extra time to allow for deviations
in clock arrival times. If the designer can be provided a guarantee that the
maximum deviation of the clock arrival time is small, then faster clocks can
be used. The smaller the deviation, the faster the clock. Thus, controlling the
deviation of signal arrival time is the key to improving circuit performance.

In the following sections, we will study the basics of clock design in a digital
system. We will present several algorithms that have been proposed for solving
various problems associated with clock nets. We will restrict ourselves to single
clock systems, and briefly mention the multiple clock systems.

11.1.1 Clocking Schemes

The clock is a simple pulsating signal alternating between 0 and 1. The clock
period is defined as the time taken by the clock signal to complete one cycle
(from one rising edge to the other rising edge). Clock frequency is given as

where is the clock period which is shown in Figure 11.1.
Digital systems use a number of clocking schemes including single-phase

with latches or edge-triggered flip-flops and double-phase clocking with one or
two latches. The most common latch is a D-latch which is an storage element.
It has data D and clock CLK inputs and a data output of Q. While CLK is
high, Q follows D, changing whenever D changes. While CLK is low, Q remains
constant, holding the last value of D (Figure 11.2(a)). An edge-triggered D flip-
flop has the same inputs and outputs as the D latch, but Q changes only on
the rising or falling edge of the CLK (Figure 11.2(b)).

In single phase clocking with latches, the latch opens when the clock goes
high; data is accepted continuously while the clock is high; and the latch closes
when the clock goes down. Single phase clocking schemes are not commonly
used because of their complicated timing requirements, but some high-end VLSI

420 Chapter 11. Clock and Power Routing

designs still use this scheme. The double-phase scheme uses two latches; one
is called the master and the other the slave. The data is first captured by the
master latch and then passed on to the slave latch.

The design of a clock system, as shown in Figure 11.3, must satisfy sev-
eral timing constraints as explained below. When a clock signal arrives at a
sequential register, it triggers the data from one sequential register set to the
next through a logic unit. This unit performs manipulations of data in an ap-
propriate functional manner. For simplicity and without losing generality, we
will assume that the clocking scheme is edge-triggered.

The minimum cycle time must satisfy :

Where the flip-flop delay is the time from the clock edge that captures the
data to the time that the data is available at the output of the flip-flop, time

is the maximum delay through any logic block between two flip-flops, and
setup time, is the amount of time the inputs of a flip-flop should be stable
prior to the clock edge. Finally, is the worst-case skew between the clock
signals, and the maximum amount of time the clock of the receiving flip-flop
can precede the clock of the sending flip-flop.

11.1. Clock Routing 421

Another constraint is the hold time, which is the amount of time the
input must stay stable after the clock edge to guarantee capturing the correct
data. To guarantee that the data is captured, the clock width must be greater
than the hold time:

As a general rule, most systems cannot tolerate a clock skew of more than 10%
of the system clock period. As a result, all clock lines must have equal lengths
from clock entry point to a component, in order to minimize or eliminate clock
skew. It is obvious that in the absence of a proper clock distribution strategy,
different clock lines can have greatly varying lengths. This variation in length
leads to large skews and delays. Skew is also introduced by the variations in the
delay of clock buffers throughout the system because of the process-dependent
transistor and capacitive loading. Skew causes uncertainty in the arrival of
the clock signal at a given functional unit. If it can be guaranteed that the
clock signal always arrives at a given storage element a predetermined amount
of time earlier than it arrives at another storage element, design techniques
can be employed to compensate for such pre-arrival of clock signal. But the
nature of the clock skew is such that the designer does not know which stor-

422 Chapter 11. Clock and Power Routing

age elements will receive the clock early and which storage element will receive
it late. There are two reasons for this uncertainty. First, the logic design is
usually done before the chips are laid out, so the relative positions of storage el-
ements with respect to the clock buffers are not known to the designer. Second,
the random variations in the clock buffer delays, which are due to fabrication
process dependent device parameter variations.

There are three key steps in designing high performance circuits. The first
step in making a design operate at a high clock frequency is to employ a fast
circuit family. With faster circuits, a given amount of logical functions can be
performed in a shorter time. The second step is to provide a fast storage ele-
ment (latch, flip-flop, register) and an efficient clocking scheme. The third step
is to construct a clock distribution scheme with a small skew. As circuits be-
come faster and cycle time is reduced, the actual maximum skew time allowed
is reduced. While selection of faster circuits elements is a logic design decision,
reducing clock skew and efficient clock distribution is within the realm of phys-
ical design. In the following, we consider the factors that influence design of
efficient clock distribution schemes.

11.1.2 Design Considerations for the Clocking System

Clock signal is global in nature and therefore clock lines have to be very
long. The delay caused by long wires is due to their capacitance and resistance.
Long wires have large capacitances and limit the performance of the system.
At low levels of integration, gate capacitance is much greater as compared to
the interconnect capacitance and therefore need not be considered. For high
level of integration, however, the gate capacitance is much smaller as compared
to the interconnect capacitance and as a result, interconnect capacitance must
be taken into account when clock wires are routed. For example, in
nMOS technology, the gate capacitance is equal to capacitance of 1 mm of
wire. Assuming 5 mm side dies, few nets are 1 mm long. On the other hand,
in CMOS technology, the gate capacitance is equal to only 0.1 mm of
wire. Thus gate capacitance is very small as compared to the capacitance of
the long clock line, which may have to traverse as much as 25 mm. In addition
to large capacitive loads, long wires also have large resistances. The resistance
of a conductor is inversely proportional to its cross-sectional area. As chips
are scaled down, the resistance per unit length becomes a major concern. The
delay caused by the combined effect of resistance and capacitance is called
the RC delay, which increases as the square of the scaling factor. In a given
technology, RC delay cannot be reduced by making the wire wider. Although,
R is reduced, but correspondingly C is increased. One effective way of reducing
RC delay is the use of buffers (repeaters), which also help to preserve the clock
waveform. If RC delay of a clock line is 4 × 4 units, then dividing the line in
four equal segments and inserting buffers, the total RC constant is reduced to
1×1 + 1×1 + 1×1 + 1×1 = 4. In this way capacitance is not carried over and
that is how buffers help in reducing delay. The buffers, however, have internal
delays, which must be taken into account when computing the total delay. In

11.1. Clock Routing 423

addition, buffers consume area and power. Despite these disadvantages, clock
buffers play a key factor in the overall layout of high performance designs. In
some processors, clock buffers may occupy as much as 5% of total area and
may consume a significant amount of power. The problem of buffer insertion
has significant attention and good algorithms are now known for both uniform
and non-uniform lines [DFW84, WS92].

Buffers could be used in two different ways in the clock tree. One way is
to use a big centralized buffer, whereas the other is to use distribute buffers
in the branches of the tree. Figure 11.4 (a), and (b) illustrate both buffering
mechanisms.

In case of distributed buffer, it is important to use identical drivers so that
delay introduced by all the buffers is equal in all branches. In addition, it is
important to equalize the load so that every driver sees the same capacitive
load. The clock skew may still be there due to the mismatches among the
drivers because of the device parameter variations across the chip. Using the
identical layout for all the drivers and placing them next to each other and in the
same orientation on the chip reduces the driver delay mismatch. Placing them
in the same orientation guarantees that all are affected similarly by orientation
dependence of the fabrication processing steps.

From the skew minimization point of view, the large centralized buffer is
better than the distributed buffers. However, the area and power consideration
are among other criteria that drive selection of the buffering mechanism.

In addition to RC delay, if the lines are sufficiently long or operate on high
frequencies, then inductance also becomes important and clock lines behave
like transmission lines, thereby changing the delay model. Transmission line
behavior becomes significant when the rise time of a signal is less than or
comparable to the transmission line time-of-flight delay The rise time is
defined as the time required for the signal to move from 10% to 90% of its final
value. The time of flight is expressed as

where is the line length, and is the propagation speed. The rise time of a
signal is determined by two factors: the rate at which the clock driver is turned
on and the ratio of the driver source resistance to line impedance. In present
CMOS systems, transmission line properties are significant only at the module
and board levels; bipolar circuits require transmission line analysis at the chip
carrier level and beyond; GaAs technology requires transmission line analysis
even for on-chip interconnections.

11.1.2.1 Delay Calculation for Clock Trees

The exact computation of the RC delay of a clock tree is quite difficult. It
is, however, not very difficult to approximate the delay. We will use a simple
method for delay calculation for RC tree networks using the Elmore delay
model [LM84b]. We follow the discussion presented by Tsay [Tsa91]. We will
compute the delay for both buffered and unbuffered clock trees.

424 Chapter 11. Clock and Power Routing

Let T be an RC tree, be the node capacitance and be the resistance of
edge . The edge between node and its parent is referred to as edge . Note

since root (node 0) has no parent. Let IS(i) be the set of immediate
successors of node , that is, IS(i) is a set of nodes adjacent to node and
does not contain its parent. Let denote the subtree formed by node i and
its successors.

For an unbuffered tree, the total capacitance of a subtree can be defined
recursively as:

Let N(i,j) be the set of nodes between nodes i and j, including but excluding
. The time delay of the clock signal from root (node 0) to a node is given by:

11.1. Clock Routing 425

The time delay from any node i to one of its successors can be computed as:

It is easy to see that for intermediate node between and , the delay is given
by:

Thus time delay for an unbuffered tree can be computed in linear time using a
depth first search.

For buffered trees, there are several different equivalent circuit models for
the buffer as shown in Figure 11.5. Let denote internal delay of the buffer,

denote its output driving resistance, and denote its input capacitance.
The only difference between a buffered RC tree and a unbuffered RC tree is
the branch delay which accounts for buffer delay. The capacitance for a
buffered RC tree is given by:

Similarly delay between node and node can be computed using:

There are several ways of modeling RC trees, some of them are shown in
Figure 11.6. More widely used model is the as shown in Figure 11.6(b).
Using one branch is modeled as shown in Figure 11.7. From Eq. (11.1),
and by lumping the delay, we can compute the delay of a node as

Where is a immediate successor of and is the leaf node. Our delay model
is now complete as it specifies all the resistances, capacitances and delays, so
that we can compute the delay from root to leaf.

426 Chapter 11. Clock and Power Routing

11.1.3 Problem Formulation

Given the routing plane and a set of points lying within
the plane and clock entry point on the boundary of the plane. We refer to
points by their indices. Let t(i, j) refer to the delay between points and ,
then the Clock Routing Problem(CRP) is to interconnect each such
that:

are both minimized.
Additional objective functions such as minimization of total wire length,

protection from noise and coupling may also be defined. The clock routing
problem has traditionally been studied to minimize skew.

It is important to see that CRP is not a steiner tree problem for global
routing of high performance circuits, since the interconnection distance between

11.1. Clock Routing 427

two clock terminals is of no significance in CRP. The clock routing problem is
critical in high performance circuits. In other circuits, the clock is simply
routed along with rest of the nets, and the router is given a maximum routing
length so that it may route any segment of the clock.

11.1.3.1 Design Style Specific Problems

The clock routing changes significantly in different design styles. The prob-
lem is well studied for full-custom and gate array design styles, but no special
model has been developed for standard cell designs.

1.

2.

3.

Full Custom: The clock routing problem in full custom style depends
on the availability of a routing layer for clocks. If a dedicated layer,
free of obstacles, is available for routing, the clock routing problem in
full custom design is exactly the same as CRP. If obstacles are present,
however, we refer to that problem as the Building Block Clock Routing
Problem(BBCRP).

Given the routing plane and a set of rectangles
lying within the plane and each rectangle has its clock terminal on
its boundary, and the clock entry point on the boundary of the plane.

Then the BBCRP is to interconnect each to so that wires do
not intersect with any rectangles and both skew and delay are minimized.

In microprocessors, a chip level fixed buffered clock distribution is used
to distribute the clock signals to different blocks. Then the problem
described above can be used to locally distribute the clock.

Standard Cell: The clock routing problem in standard cell designs is
somewhat easier than full-custom in some aspects, since clock lines have
to be routed in channels and feedthroughs. Conventional methods do not
work in standard cell design since clock terminals are neither uniformly
distributed (as in full-custom), nor are they symmetric in nature (as in
gate array).

Gate Array: Gate arrays are symmetrically arranged in a plane and
allow the clock to be routed in a symmetric manner as well. The al-
gorithms for clock routing in such symmetric structures have been well
studied and well analyzed.

11.1.4 Clock Routing Algorithms

The skew can be minimized by distributing the clock signal in such a way
that the interconnections carrying the clock signal to functional sub-blocks are
equal in length. A perfect synchronization between the clock signals can be
achieved by delaying the signals equally before they arrive at the sub-blocks.
Note that we do not discuss buffered clock routing algorithms. As stated above,
the problems and their corresponding algorithms should be viewed as local clock
routing algorithms. In microprocessors, these algorithms can be used at a block

428 Chapter 11. Clock and Power Routing

level. In ASICs, due to lower operating frequencies, these algorithms can also
be used for chip level clock. However, even in that case, some buffering has
to be used. In the following we will discuss, skew minimization algorithms.
Minimization of clock skew has been studied by a number of researchers in
recent years. In the following, we review several clock routing algorithms.

11.1.4.1 H-tree Based Algorithm

Consider a special case of CRP, where all the clock terminals are arranged
in a symmetric fashion, as is the case in gate arrays. The clock routing in such
cases can be accomplished with zero skew using the H-tree algorithm. Let us
explain the algorithm with the help of a small example shown in Figure 11.8(a).
Consider the case with four points, and

in a routing plane with l = 6,w = 6. The clock entry point is at
In the H-tree algorithm, is connected to and is connected

to by vertical segments. Let and be the two
middle points of these vertical segments. These middle points are also called
the tapping points. and are connected by a horizontal segment, whose
middle point is Finally, clock entry point is connected to

by a vertical segment. It can be seen that all points are exactly 7 units
from the point hence skew is zero. Since the longest rectilinear distance
between any two points(and) is seven units, this routing is minimum
delay routing as well. Thus, the routing shown in Figure 11.8(a) provides clock
signals to all clock points with zero skew and minimum delay.

This method can be easily generalized to points, where is a power of 4.
The basic 4 point H-structure is duplicated in a recursive fashion. An H-tree
with 16 terminals is shown in Figure 11.8(b). H-tree constructions have been
used extensively for clock routing in regular systolic arrays [FK82, DFW84].

11.1. Clock Routing 429

If the routing is not restricted to being rectilinear, an alternate tree struc-
ture with smaller delay may be used.This tree structure, called the X-Tree,
ensures that skew is zero (see Figure 11.9). However, X-trees are undesirable,
since they may cause cross talk due to close proximity of wires. H-tree clock
lines do not produce corners sharper than 90°, and no two clock lines in an
H-tree are ever in close proximity as a result cross talk is significantly less in
H-tree as compared to X-tree.

The H-tree algorithm is applicable for very special structures. In general,
clock terminals are randomly arranged all over the chip surface and require
much more general algorithms.

11.1.4.2 The MMM Algorithm

Jackson, Srinivasan and Kuh [JSK90] presented a clock routing algorithm
called Method of Means and Medians (MMM) for the CRP. The MMM Al-
gorithm follows a strategy very similar to the H-tree algorithm. The MMM
algorithm recursively partitions a circuit into two equal parts, and then con-
nects the center of the mass of the whole circuit to the centers of mass of the
two sub-circuits.

The algorithm is simple and yields good results. Let be the list of points
sorted according to their x-coordinate. Let be the median in Assign

points in list to the left of to Assign the remaining points to Due
to the geometric nature of the problem, we may consider the partition of the
point set as the partitioning of a region. Thus and partition the original
region by x-median into two sub-regions with an approximately equal number
of points in each sub-region. Similarly, and represent the division of
into two sets about the y-median.

The basic algorithm first splits into two sets (arbitrarily in the x or y

430 Chapter 11. Clock and Power Routing

direction.). Assume that a split of into and is selected. Then, the
algorithm routes from the center of the mass of P to each of the center of mass
of and respectively. The regions and are then recursively split
in the y direction (the direction opposite to the previous one). Thus, splits
between x and y are introduced on the set of points recursively until there is
only one point in each sub-region. An example of this algorithm is shown in
Figure 11.10.

Notice that basic algorithm discussed above ignores the blockages and pro-
duces a non-rectilinear tree. It is also possible that some wires may intersect
with each other. In the second phase, each wire in the tree can be converted
so that it only consists of rectilinear segments and avoids blockages and other
nets.

11.1.4.3 Geometric Matching based Algorithm

Another binary tree based routing scheme is presented by Kahng, Cong and
Robins [KCR93]. In this approach, clock routing is achieved by construct-
ing binary tree using recursive Geometric matching. We call this algorithm
Geometric Matching Algorithm(GMA). Unlike MMM algorithm which is a top
down algorithm, GMA works bottom up. Let us start by defining the geometric
matching.

Given a set of points, a geometric matching on is a set of line
segments whose endpoints are in with no two line segments sharing the
endpoint. Each line segment in the matching defines an edge. The cost of a
geometric matching is the sum of the lengths of its edges.

To construct a tree by recursive matching, a forest of isolated nodes is
considered, each of which is a tree with the clock entry point being the node
itself. The minimum-cost matching on these points yields segments, each
of which defines a subtree with two nodes. As pointed out earlier, the center
point of each segment will be called the tapping point and if the clock signal is
provided at the tapping point, then the signal will arrive at the two endpoints
of the segment with zero skew. The set of tapping points serves as the set
of points for the next iteration of the algorithm. In general, the matching
operation will pair up the clock entry points (i.e., roots) of all the trees in
the current forest. At each level, the algorithm chooses the root of the newly
merged tree to be the tapping point which minimizes the path length skew to
the leaves of the two subtrees. Figure 11.11 shows GMA algorithm running on
8-point set.

When subtrees and are merged into a higher level subtree the
optimal entry point may not be equidistant from the entry point of and
Intuitively, balancing requires sliding the tapping point along the “bar of the
H”. However, it might not always be possible to obtain perfectly balanced path
lengths in this manner. Therefore, H-flipping scheme is used: for each edge
H structure formed by the three edges of is replaced by the H structure

over the same four points which minimizes path length skew, and further
minimizes tree cost.

11.1 Clock Routing 431

432 Chapter 11. Clock and Power Routing

As shown in Figure 11.11(c), two subtrees and are obtained, how-
ever, it is not possible to connect tapping points of and Therefore,

is H-flipped to obtain Finally is merged with as shown in
Figure 11.11(d).

Since the algorithm is based on geometric matching, its time complexity
depends on the matching subroutine. The fastest known algorithms for general
matching are By taking advantage of planar geometry, the algorithmic
complexity can be reduced to

11.1.4.4 Weighted Center Algorithm

The geometric matching algorithm is not applicable to Building Block Lay-
out Problem (BBCRP) since it assumes that a complete layer is available for
routing. Sherwani and Wu presented a new clock routing algorithm [SW91]
called the Weighted Center Algorithm (WCA) for the BBCRP. In WCA, a
weighted Clock Distribution Graph (CDG) for the problem is created. The
vertices of CDG are the clock terminals, while the edges represent the steiner
paths which may be used to connect two terminals. The weights of all the
edges are obtained by the RC time delay calculation. The CDG is a complete
graph, as it is always possible to connect two points in a BBCRP problem. The
weight of the edge is computed using a shortest path algorithm to find
the path followed by delay calculation for that path.

The WCA is greedy in nature and the basic idea of the algorithm is as
follows: Using the clock distribution graph, the algorithm first finds the edge

11.1. Clock Routing 433

 with the minimum weight (minimum delay), replace and with another
vertex which lies on their weighted center (tapping point). The CDG is
updated to reflect new edge costs. Using this new CDG, the algorithm repeats
this process recursively, until all the clock terminals are joined into one global
weighted center. This global weighted center is designated as the clock signal
entry point. Building up the clock distribution in this way, the clock skew
between different clock terminals can be held to minimum. As the clock tree
is built by using smallest edges first (just like the spanning tree algorithm),
therefore the total clock tree wire length is minimized as compared to other
clock distribution schemes. An example of clock routing by WCA is shown
in Figure 11.12. WCA algorithm can be easily extended to multiple layers by
including delays in via in calculation of path delays.

11.1.4.5 Exact Zero Skew Algorithm

Tsay [Tsa91] presented an algorithm for creating a clock tree with exact zero
skew. The algorithm assumes that pairing of points has been done, and con-
cerns itself with finding the tapping point very accurately, based on capacitive
loading of the clock terminals as well as the delay in the sub-trees.

The zero skew algorithm is a recursive and bottom-up in nature. Assume
two sub-trees and as shown in Figure 11.13. This algorithm computes a
tapping point as discussed below.

In order to balance skew in both sub-trees, using Eq. (11.2), we have:

root of is equal to (see Figure 11.13). Similarly, the wire length from
tapping point to root of is given by Let be resistance per
unit length and be the capacitance per unit length of wire. Then,

and Solving equation 11.3 with these
parameters we get

If 0 then tapping point is on the line segment joining two trees. On
the other hand, if or if then tapping point is not on the line segment
and wire elongation is needed. This is done by snaking a short segment of wire
which in essence allows the tapping point to fall on the wire. The actual length
of the snake can be easily determined in the following manner: Let us assume
that and let length of the elongated wire is . Then its resistance is
and its capacitance is In order to balance the skew

where refers to the delay between node and one of the leaves. Note that
the delay would be the same for all leaves. Assuming that the total wire length
between two trees is , then the length of wire from the tapping point to the

434 Chapter 11. Clock and Power Routing

11.1. Clock Routing 435

and therefore is given by

Similarly, we can determine if If is too long then additional
buffer or capacitive terminators must be used to balance the skew.

We explain the algorithm with the help of eight pin example shown in
Figure 11.14. The capacitive loading of each pin is shown in the figure. The
capacitances shown are measured in farads (F) for the ease of calculation.
However, the practical values of capacitances are usually in fifo farads
According to the algorithm, first the tapping point is calculated for and

The calculated location of is (3,21.52), which balances the delay of
the path between and at 1.96 ns. The capacitance of is the sum
of the capacitance at and the capacitance of the wire joining and

i.e., C=8+3+(0.2x 8)=12.6 F. The tapping point for pairs and
is calculated in the same manner. is calculated at (7,15) and its load

capacitance is calculated to be 26.8 F. The delay from tapping point to both
pins and is same, i.e., 3.99 ns. Similarly, tapping points for and

are calculated to be at (25,31) and (30,26) with load capacitances of 5 F
and 30 F, respectively. At this point, we have four subtrees rooted at

and such that and are in one pair and and in another.
Following the same algorithm, we calculate the locations of tapping point
at (7,17.97) with 41.50 F load capacitance. While calculating tapping point for

case is calculated to be 18.28. Therefore, 8.28 is the actual elongation
(as shown in Figure 11.14). In this case the tapping point coincides with

and we find that The wire connecting and
therefore, needs to be elongated. The length of elongation (snaking) for the

The last step is to connect and to get final tapping point, which is
calculated to be at (22.16,17.97). The final solution is shown in Figure 11.14.
Note that the practical values of and are and 0.02 respectively.
The chip width and height units are both in

As discussed above, this algorithm assumes pairing of points and only com-
putes tapping points to construct the clock tree. Pairing of points can be done
by using MMM or GMA if the entire layer is available. If obstacles are present,
then WCA may be used to find point pairs.

11.1.4.6 DME Algorithm

Three independent groups [(Boese and Kahng), (Chao, Hsu and Ho), (Edahiro)]
independently proposed the Deferred Merge Embedding (DME) method in
[BK92, CHH92, Eda91]. DME is a linear - time algorithm which optimally
embeds any given topology in the Manhattan plane, i.e. with exact zero skew
and minimum total wire length. A generic DME is a two phase; bottom up and

436 Chapter 11. Clock and Power Routing

11.1. Clock Routing 437

top down process. The bottom up phase constructs a tree of merging segments
which represent the loci of possible placements of nodes in the tree. The top
down embedding phase determines the exact locations for internal nodes.

Before defining the DME formally, let us review definitions of terms com-
monly used in this section. A manhattan arc is defined to be a line segment,
possibly of zero length, with slope +1 or -1; in other words a Manhattan arc
is a line segment tilted at 45 deg. from the wiring directions. The collection
of points within a fixed distance of manhattan arc is called a tilted rectan-
gular region or TRR whose boundary is composed of manhattan arcs, (see
Figure 11.15(a)). The manhattan arc at the center of the TRR is called its
core. The radius of a TRR is the distance between its core and its boundary.
Note that a manhattan arc is itself a TRR with radius 0. A merging segment
at an internal node is a set of all placements which merge the TRRs of the
child nodes with minimum wire cost.

A formal recursive definition of the merging segment of node
is as follows. If is a sink then (note that this single point is a
manhattan arc). If v is an internal node, then is a set of all placements

which merge and with minimum wire cost, that is, all points
within distance of and within distance of If
and are both manhattan arcs, then is obtained by

core and radius (See Figure 11.15(b)) If and are
both Manhattan arcs, then is also a Manhattan arc [BK92]. Since the
merging segment for each sink is a single point and this a manhattan
arc, by induction all merging segments are Manhattan arcs.

In the bottom up phase, each node is associated with a merging
segment which represents a set of possible placements of v in a minimum-cost
ZST. The merging segment of a node depends on the merging segments of its
two children, hence the bottom-up processing order. More precisely, let and
 be the children of node in G, and let and denote the subtrees

intersecting two TRRs, with core and radius and with

of merging segments rooted at and respectively. We seek placements of
v which allow and to be merged with minimum added wire while
preserving zero skew. This means that we want to minimize + in T,
while balancing delays from l(v) to all leaves in the subtree rooted at . The
values of and which achieve this property are unique. They are
computed and stored for use in the top-down embedding phase of DME. The
details of the bottom up phase are given in 11.16.

Given the tree of merging segments corresponding to G, the top-down phase
chooses exact embeddings of internal nodes in the ZST. For node in topology
G, (i) if is the root node, then DME selects any point in to be or if
v is an internal node other than the root, DME chooses to be any point in

 that is at distance or less from the placement of v’s parent p (the
merging segment was constructed such that
so there must exist some satisfying this condition). In case (ii), can

radius and core The details of the top down phase are given in
11.17.

DME requires an input topology, as a result, several authors have proposed
topology constructions that yield low-cost routing solutions when DME is ap-
plied.

be any point in the intersection of and the square TRR which has

438 Chapter 11. Clock and Power Routing

11.1. Clock Routing 439

11.1.5 Skew and Delay Reduction by Pin Assignment

In [WS91], clock routing is done at pin assignment phase of the layout. If
clock routing is considered at the floorplanning stage of the layout, then some
flexibility in location of the clock terminals is allowed. During layout several
iterative steps in placement and routing phases are allowed. During these re-
design cycles, circuit layout is iteratively improved and design is made ‘more’
rigid. This allows successive re-positioning of clock terminals of functional
block. By appropriately locating the clock terminals total clock skew and de-
lay can be reduced significantly. Movable Clock Terminal Routing Problem
(MCTRP) is a clock routing problem in which the clock terminals of the func-
tional blocks in floorplan can be moved along the block boundaries.

MCTRP basically consists of two subproblems. The first subproblem is to
find the best location for clock terminal of each functional element to minimize
the clock delay. The second subproblem is to find a clock routing such that
the clock signals can reach all the terminals with equal time delay. The first
subproblem is shown to be NP-complete [WS91], and a greedy heuristic algo-
rithm is presented. The second subproblem of interconnecting points to obtain
a minimum skew can be solved by using any algorithm discussed earlier for
BBCRP.

11.1.6 Multiple Clock Routing

Large VLSI systems may use multiple clocks because the existence of multiple
clock phases gives an extra degree of freedom to the timing characteristics of
the synchronizing circuits. The multiple clock routing problem is, however,
more complex because of two types of skew: the intra clock skew within a clock

and the inter clock skew among multiple clocks. Thus, for high performance
circuits, it is necessary to develop a routing algorithm for multiple clocks which
minimizes the delay as well as both types of skews. An additional problem of
routing two phase clock on a single layer is crossing of two clock signals. This
problem is resolved by the use of ‘low resistance’ crossunders.

Let us consider a system with clocks Let us also assume
that there are blocks each requiring one clock input from each clock. Let
be the set of clock terminals. Let denote the terminal of clock
at block Let be the arrival time of clock signal at For any clock
intra clock skew is defined as,

For a block the inter-clock skew is defined as,

For the system, the cross skew is defined as,

Thus the objective of multiple clock routing system is not only to minimize
for each clock but also to minimize between each set of clocks and

the cross skew, of multiple clock system. However, this task is complicated due
to intersection between different clock trees. When two clock trees intersect,
crossunder may be used to pass one signal under the other signal. Crossunders
should be minimized, subject to the constraint that the number of crossunders
should be equalized for multiple clocks, in order to equalize the signal delays.

In [KHS92], Khan, Hossain, and Sherwani proposed zero skew routing for
two clocks. The basic idea is to build the two trees independently. In the first
phase points are paired up and crossunders are assigned to allow two trees to
be routed in a planar fashion. This phase attempts to minimize the cross-skew
by alternating the order in which the crossunders are used. In this way the
number of crossunders are balanced on each path of both trees. In the second
phase, algorithm eliminates intra clock skew in both trees independently, taking
crossunders into account.

11.2 Power and Ground Routing

In VLSI design, almost all the blocks need power supply and need to be
connected to ground as well. The power and ground nets are usually laid out
entirely on the metal layer(s) of the chip due to smaller resistivity of metal as
compared to poly. Since, contacts(vias) also significantly add to the parasitics,
it is also advisable to utilize a planar single-layer implementation of these nets.
It should be noted that the area requirements for power and ground nets depend
on the voltage drop, current density and other constraints. In case of normal
signal nets, the current they carry is very small. Hence, they can be routed

440 Chapter 11. Clock and Power Routing

11.2. Power and Ground Routing 441

with minimum-width wires. Thus minimizing the total wire length also ensures
minimizing the area needed to route them. The same is not true for power and
ground nets.

Routing of power(VDD) and ground(GND) nets consists of two main tasks:
(i) construction of interconnection topology, and (ii) determination of the widths
of the various segments of topologies. In recent years, most of the research and
development efforts have been focused on the topological routing of the power
and ground signals.

For a given placement of arbitrary rectangular blocks on a chip, the problem
of routing power and ground nets is to find two non-intersecting interconnec-
tion trees, each for VDD and GND. The width of trees at any point must be
proportional to the amount of current being drawn by the points in that sub-
tree. We assume that each block has an entry point for VDD and GND. In
standard cell designs VDD and GND are routed by using inter-weaved combs
(as discussed in chapter 1). In fact, VDD and GND are already laid out in the
cells and simply connected on one side with GND and VDD on the other. In
gate arrays, VDD and GND routing is similar to standard cell and is usually
laid out on the master, and not subject to customization.

A simple scheme that is often used for power and ground using two layers
of metal is a grid structure. Several rows of horizontal (M5) wires for both
power and ground run parallel to each other. The vertical wires run in M4 and
connect the horizontal wires. In this way, two grids are formed. All the blocks
simply connect to the nearest power and ground wire. This scheme is shown
in Figure 11.18. The blocks and connections to blocks are not shown for sake
of clarity.

Syed and El Gamal [SG82] proved the necessary and sufficient conditions
for a planar routing of power/ground nets using single pads. Two nets can be
routed on a single layer without crossover only if there exists a cut for each
block in the chip that separates the terminals of one net from the terminals
of the other net. The nets are grown as interdigitated trees. Applying simple
traffic rules to the free channels between modules prevent the two trees from
crossing. An example routing is shown in Figure 11.19.

Another approach is proposed by Moulton [Mou83]. The basic idea of the
proposed algorithm is to partition the chip surface into a VDD region and
a GND region and then to route each net within the appropriate region. It
is easy to see that if all modules are visited once while keeping the VDD to
one side and the GND on the another side, a cycle can be drawn which will
connect all modules to the VDD and GND pads. Thus a Hamiltonian cycle
is drawn, and the algorithm allows this cycle to determine the layout of the
trees. Tree traversal determines how much current might flow through each
wire of the tree. The maximum current of a wire ending in a terminal is the
maximum current of the terminal. The maximum current of other wires is the
sum of its children’s maximum currents. After every wires maximum current
is known, multiplying it by a design-rule constant gives every wires minimum
width. Both the Hamiltonian cycle and Steiner tree operations are, however,
computationally very expensive.

The algorithm proposed by Rothermel and Mlynski [RM81] tends to route
nets interdigitated. It extends one net from the left edge of the chip, and the
other from the right. This routing order of the connecting points is deter-
mined by the horizontal distances of connecting points from the edge of the
chip. Calculation of nets is accomplished by a combined Lee and Line Search
algorithm. At first only points of the left net which lie in the left half of the
chip are routed. Then those points of the right net which lie in the right half
of the chip are routed. This process uses a fast line search algorithm similar
to Hightower’s algorithm [Hig80]. Next, all other points of the two sets are
routed by Lee’s algorithm [Rub74], which takes into account obstacles created
by already routed net segments.

In [HF87], Haruyama and Fussell propose a method for routing non-crossing
VDD and GND trees on a layer which tries to minimize the chip area devoted to
power routing under metal migration and voltage drop constraints. The metal
migration has to be prevented by using a wide enough metal wire. In addition,
the voltage drop has to be kept small, because a large voltage drop between a
pad and a module decreases switching speed and noise margin. The algorithm

442 Chapter 11. Clock and Power Routing

11.2. Power and Ground Routing 443

also takes the width of channels into consideration so that if a channel is too
congested to allow a wire to pass through it, the wire avoids the congested
channel and chooses other channels. The goal is to grow the VDD and the
GND trees by connecting modules, one by one, to trees under construction.
Modules are sorted by their power consumption. First, the pins of the most
power-consuming module are connected to the pads. Subsequent modules are
routed in decreasing order of power consumption. This is a greedy approach
based on the notion that it is better for more power-consuming modules to
have shorter paths, since more power-consuming modules need wider wires in
order to be supplied with more current. At earlier stages in the routing, paths
can generally be shorter, since they are blocked by fewer wires already routed.
A smaller area is thus occupied by a wire. Pins of the second module (and later
considered modules) are connected to non-root vertices of the net (or possibly
to an unconnected pad when there is more than one VDD or GND pad). The
constructed net is a tree whose leaves are pins of modules and whose root is
a pad. When there is more than one VDD or GND pad, the algorithm may
create a forest of multiple trees. The wire area becomes even smaller than when
there is only one VDD pad and one GND pad because the search can find a
shorter path to a power source. This multiple pad method eases the current
load of each pad.

Routing of power and ground nets is often given first priority, because the
power and ground wires are usually laid out entirely on a metal layer(s) due to
its low resistivity, as described above. Signal nets may share the metal layer (s)

with power and ground, but they change layers whenever a power or ground
wire is encountered.

11.3 Summary

Clock routing is one of the factors which determines the throughput of any
chip. In advanced VLSI systems, clock skew caused by interconnection delay,
if not controlled, can lead to significant performance degradation. Ideally, the
clock skew should be less than 5-10 percent of the clock period. Several clock
routing algorithms have been proposed, and it is possible to route a clock very
accurately with exactly zero skew if a complete layer is available. Much research
remains to be done for clock routing problems with obstacles on the routing
layer. Multiple clock routing is another area that promises to be a focus of
attention as more and more designs use multiple clocks. Some radical design
methodologies have been presented (asynchronous self timed systems), which
do away with system level clock. Instead, the flow of information from unit
to unit is based on hand shaking protocols and time stamping of the data.
However, this approach presents considerable design difficulties. Clock signal
serves as a convenient sequence and timing reference and it would be difficult
to design circuits with such sequencing.

Power and ground routing needs special attention because of wire widths.
Power and ground wires carry large amounts of current and as a result wider
wires are used. The width cannot be uniform since current requirement is not
uniform over the chip surface. As a result, wires must be carefully sized to
allow proper current flow. Too thin wires lead to low currents, while too wide
wires may lead to wastage of area.

Currently, Aluminum (Al) is the metal of choice for long interconnect lines,
such as clock, power and ground lines. Al has low resistivity, good adherence to
silicon and silicon oxide, it is easy to bond, pattern and deposit. Furthermore,
Al is low-cost, readily available and easy to purify. Despite these qualities,
Al suffers from a variety of problems, such as, electro-migration and contact
failures. Au, Cu and Ag all have resistivities lower than that of Al. However,
replacing Al with any of them will require a major effort because none of them
are as compatible with integrated circuit processing as Al.

In future, superconductivity and optical interconnect offer alternative to
aluminum wires for clock routing. In particular, optical interconnect allows
fast (speed of light), reliable (no metal migration problems), noise-free and easy
clock distribution. It is possible to distribute a light signal to all the functional
units with zero skew and no delay. However, both superconductor and optical
interconnect are still topics of research and are currently not practical.

11.4 Exercises

1. Generate an instance of CRP by randomly placing points on a plane.
Choose (randomly) one point on the boundary of the plane as the clock

444 Chapter 11. Clock and Power Routing

11.4. Exercises 445

2.

3.

† 4.

5.

6.

entry point. Implement MMM algorithm and test it on the instance
generated.

Implement Geometric Matching algorithm for point set developed in ex-
ercise above. Compare the results with that of MMM Algorithm, in terms
of skew and total wire length.

Generate an instance of BBCRP by randomly placing rectangles on
a plane such that none of the rectangles intersect. Randomly choose
a point on the boundary of each rectangle as its clock terminal. Also
choose (randomly) one point on the boundary of the plane as a clock
entry point. Implement Weighted center algorithm and test it on the
generated problem. Compare the total wire length results for weighted
center algorithm and geometric algorithm.

It is possible to combine geometric matching and weighted center algo-
rithms. The basic idea is to use the clock distribution graph to identify
the paths, and use geometric matching to pair up the points. Modify the
weighted center algorithm to use geometric matching.

Consider the 8 point instance given in Figure 11.20. Find the routing
with exact zero skew. Assume and

For an instance of CRP, randomly assign load capacitances of each point
between 1 F and 20 F. Assume and Implement the

7.

8.

9.

Exact zero skew algorithm and test it on instance generated above. Use
GMA for point pairing.

For a given instance, compute the number of times snaking is required in
Exact zero skew algorithm if MMM algorithm is used for pairing up the
points instead of GMA.

Consider the following instance of MCTRP given in Figure 11.21. Find
clock entry point for each block such that minimum skew algorithm can
route the clock net with minimum wire length. The clock entry point of
chip can be placed anywhere on the boundary.

Consider the points given in Figure 11.22. Find the optimal clock entry
point for this chip.

† 10.

† 1 1 .

Develop an algorithm which finds the optimal clock entry point of the chip
for any instance of BBCRP. Can this problem be solved in polynomial
time ?

We define the following restricted Standard Cell Clock Routing Prob-
lem(SCCRP): Given a grid representing a channel and L clock
terminals on top and bottom, and clock entry point on the right side of
the channel(Figure 11.23). Find a routing with minimum delay and zero
skew. More precisely, the points are located on (0,0), (2,0), . . . ,
 and the clock entry point is located at

446 Chapter 11. Clock and Power Routing

11.4. Exercises 447

† 12.

† 13.

† 14.

Given only one layer for clock routing, prove that there exists a routing
for SCCRP with zero skew if tracks are allowed in the
channel. Prove that the maximum delay in such routing is no more than

Given two layers, prove that there exists a routing for SCCRP with zero
skew if tracks are allowed in the channel. Assume that
vias are ideal, i.e., they do not cause any additional delay.

Given two layers, develop a routing for SCCRP so that the path length
and the number of vias is equal from clock entry point to each terminal.

Bibliographic Notes:
Bakoglu [Bak90] presents an excellent coverage of parameters involved in in-
terconnect. Details of delay computation may also be found there. Another
algorithm for the clock routing problem of building block design has been pre-
sented by Ramanathan and Shin [RS89]. The problem of power and ground
routing has been extensively studied and several related problems have also

been investigated. In [HSVW90a], Ho, Sarrafzadeh, Vijayan and Wong discuss
the problem of minimizing the number of power pads, in order to guarantee
the existence of a planar routing of multiple power nets. They also show that
the general pad minimization problem is NP-complete. They derive a gen-
eral lower bound and present a heuristic for the general problem. They also
present optimal algorithms for some special cases. In [LG87], Lursinsap and
Gajski, consider the problem of power routing in a top-down design approach.
In this approach, a layout is decomposed into cells connected by abutment.
The active cells contain transistors and interconnections, while passive cells
are routing cells. They consider power routing of all active cells so that the
total wire length is minimized, and present an optimal power routing algorithm
for this special problem. In [XK86], Xiong and Kuh present an algorithm which
grows both the VDD (from one side) and the GND trees (from the other side)
simultaneously using a plane sweep algorithm. In [Eda94], Edahiro presents a
bucket algorithm for zero skew routing with linear time complexity on the aver-
age. In [CS93], Cho and Sarrafzadeh introduce a new approach for optimizing
clock tree. In [EL96], a clock buffer placement algorithm is proposed.

448 Chapter 11. Clock and Power Routing

Chapter 12

Compaction

After completion of detailed routing, the layout is functionally complete. At
this stage, the layout is ready to be used to fabricate a chip. However, due
to non-optimality of placement and routing algorithms, some vacant space is
present in the layout. In order to minimize the cost, improve performance and
yield, layouts are reduced in size by removing the vacant space without altering
the functionality of the layout. This operation of layout area minimization is
called layout compaction.

The compaction problem is simplified by using symbols to represent primi-
tive circuit features, such as transistors and wires. The representation of layout
using symbols is called a symbolic layout. There are special languages [Eic86,
LM84a, Mat85] and special graphic editors [Hil84, Hsu79] to describe symbolic
layouts. To produce the actual masks, the symbolic layouts are translated into
actual geometric features. Although a feature can have any geometric shape,
in practice only rectangular shapes are considered.

The goal of compaction is to minimize the total layout area without violat-
ing any design rules, maintaining good layout practices and without violating
designer specified constraints. The last two objectives are usually motivated by
performance verification. The area can be minimized in three different ways:

1.

2.

3.

By reducing the space between features: This can be performed by bring-
ing the features as close to each other as possible. However, the spacing
design rules must be met while moving features closer to each other.

By reducing the size of each feature: The size rule must be met while
resizing the features.

By reshaping the features: Electrical characteristics must be preserved
while reshaping the feature.

Compaction tools are sometimes used as a layout aid. That is, layout is
drawn in larger than minimum area. This reduces the design time. Compaction
is then used to get a close to minimum area layout.

450 Chapter 12. Compaction

Compaction is a very complex phase in physical design cycle. It requires
understanding of many details of the fabrication process such as the design
rules. Compaction is very critical for full-custom layouts, especially for high
performance designs. In this chapter, we discuss the compaction phase of
physical design cycle.

12.1 Problem Formulation

The layout of a VLSI circuit consists of geometric feature (mostly of rect-
angular shape). Each feature belongs to a circuit component or to a wire.
The compaction problem can be stated as: Given a set of geometric features

representing a layout. Each feature, has a mini-
mum size, dictated by the design rules. In addition, minimum separation
between features, between and for is also given.
The objective of compaction is to minimize the total layout area by moving
features close to each other and by resizing the features such that

where size and dist are size of and distance between and
after the compaction, where If the sizes of the features are

assumed to be fixed, then the problem is just to move the features closer to
reduce the layout area.

12.1.1 Design Style Specific Compaction Problem

The scope and impact of compaction on layouts differs depending on the design
style.

Full-custom design style: Compaction is very critical in full-custom
design style. After placement and routing, a large amount of space is left
vacant. The problem is exactly same as the one formulated above. This
is not true if significant part of layout is done by hand.

Standard cell design style: The cell heights are fixed in a standard cell
design. So the height of the layout can be minimized by minimizing
channel height. Thus a restricted type of compaction, called channel
compaction may be used. However, several channel routers produce very
compact routings which cannot be compacted any further.

Gate array design style: Since the position of gates is fixed, compaction
is not applicable to gate array designs, except to optimize wiring.

12.2. Classification of Compaction Algorithms 451

12.2 Classification of Compaction Algorithms

Compaction algorithms can be classified in two different ways. The first
classification scheme is based on the direction of movements of the compo-
nents (features): one-dimensional (1-D) and two-dimensional (2-D). In 1-D
compaction, components are moved only in x- or y-direction. As a result, ei-
ther x- or y-coordinate of the components is changed due to the compaction.
If the compaction is done along x-direction then it is called x-compaction.
Similarly, if the compaction is done along the y-direction, then it is called y-
compaction. Figure 12.1 shows an example of both x- and y-compactions. In
2-D compaction, the components can be moved in both x- and y-direction si-
multaneously. As a result, in 2-D compaction, both x- and y-coordinates of
the components are changed at the same time in order to minimize the layout
area. Figure 12.2 gives an example of a 2-D compaction.

The second approach to classify the compaction algorithms is based on the
technique for computing the minimum distance between features. In this ap-
proach we have two methods, constraint-graph based compaction and virtual
grid based compaction. In constraint-graph method, the connections and sep-

452 Chapter 12. Compaction

arations rules are described using linear inequalities which can be modeled
using a weighted directed graph (constraint graph) as shown in Figure 12.3.
This constraint graph is used to compute the new positions for the components.

On the other hand, virtual grid method assumes the layout is to be drawn
on a grid. Each component is considered attached to a grid line. The com-
paction operation compresses the grid along with all components placed on it
keeping the grid lines straight along the way. The minimum distance between
two adjacent grid-lines depends on the components on these grid lines. The
advantage of virtual grid method is that the algorithms are simple and can be
easily implemented. However, virtual grid method does not produce compact
layouts as compared to the constraint graph method.

In addition, compaction algorithms can also be classified on the basis of the
hierarchy of the circuit. If compaction is applied to different levels of the lay-
out, it is called hierarchical compaction. Any of the above mentioned methods
can be extended to hierarchical compaction. A variety of hierarchical com-
paction algorithms have been proposed for both constraint-graph and virtual
grid method. Some compaction algorithms actually ‘flatten the layout’ by re-
moving all hierarchy and then perform compaction. In this case, it may not be
possible to reconstruct the hierarchy, which may be undesirable.

12.3 One-Dimensional Compaction

In this section, we present two methods of one-dimensional compaction: Con-
straint graph based compaction and virtual grid compaction. One dimensional
compactors are repeatedly used in X and Y directions until no further com-
paction is possible.

12.3. One-Dimensional Compaction 453

12.3.1 Constraint-Graph Based Compaction

The constraint graph G = (V, E), is a weighted graph. Each vertex
represents a component while edges represent constraints. There are two types
of constraints that should be satisfied in the process of compaction: separation
constraints and physical connectivity constraints. Both separation constraints
and physical connectivity constraints can be incorporated into a graph rep-
resenting a 1-D compaction problem. A separation constraint between two
features can be represented using a weighted directed edge between the two
vertices, with weight equal to the minimum separation. For example, if the
two features A and B are required to be at least units apart from each other;
assuming that A is to the left of B, this rule can be written as
where refers to the x-location of component A. The inequality is represented
in the graph as an edge from A to B of weight (see Figure 12.4). Figure 12.5
shows the connectivity constraints that require two components to be within a
distance of each other. A physical connection can be represented as a cycle
of two edges. The condition can be rewritten as two constraints

and which appear in the graph as a pair of
constraints between each with weight – .

The constraint graph includes two additional vertices, L and R, which rep-
resent two physical boundaries (without the loss of generality, left and right).
L can be thought of as a source of the constraint graph, because all other
vertices are, explicitly or implicitly, required to the right of L. Similarly, R
can be considered as the sink of the graph. Figure 12.6 gives an example of a
constraint graph that includes source and sink vertices.

In the process of compaction when the elements are moved by the compactor
it is necessary that the original electrical connections be preserved. Most com-
pactors derive the connectivity from the overlapping regions in the original
layout. In the following, we discuss two types of connectivity constraints and

454 Chapter 12. Compaction

how can they be included in the constraint graph.

1.

2.

Wire-terminal connections: Connectivity constraints for wire-terminal
connections with horizontal wire, vertical wire, and wide vertical wire are
illustrated in Figure 12.7(a), (b), and (c) respectively. These rules ensure
good electrical connections (See Figure 12.8(a)) when compared with the
minimum overlap rules (See Figure 12.8(b)).

Wire-wire constraints: The connection between two wires is also cap-
tured into the graph in a similar way as it is captured for the wire-terminal
connections. Figure 12.9 shows good wire-wire connections in which wires
overlap by their complete width.

After the layout is compacted, a number of vertices could still be relatively
free to move. Therefore, other objectives can be used to determine coordinates
of these vertices, e.g., minimize the total length of the interconnect wires located
on specified layers to reduce resistance and capacitance [Sch83].

The longest path algorithm can be used to assign positions to the vertices
that minimizes the distance from the source to the sink, which is equivalent to
minimizing the layout width in the dimension of compaction.

12.3.1.1 Constraint Graph Generation

As discussed earlier, once the constraint graph is generated, the actual com-
paction is quite simple using the longest path algorithm. However, the first

12.3. One-Dimensional Compaction 455

456 Chapter 12. Compaction

step necessary in constraint graph compaction is to build the constraint graph.
The building of the constraint graph is the most time-consuming part of con-
straint graph based compaction and is in the worst case. This is due
to the fact that, in the worst case, there is an edge between every pair of
vertices in the constraint graph. Only a small subset of the potential edges
are actually needed for constraint graph compaction. A circuit component
group typically will only have spacing requirements with its nearest neighbors.
Many techniques for generating the constraint graph efficiently have been pro-
posed [HP79, Mal87]. In construction of a constraint graph, the connectivity
constraints are generated first. The connectivity constraints can be generated
by scanning all legal connections in the symbolic layout. The connectivity in-
formation is usually stored in a table and the compactor looks up the table to
generate all the constraints. Different types of connectivity constraints include
wire-wire, wire-via, wire-source connectivity constraints.

Separation constraints are generated once per compaction step. The con-
straint generation method used should ideally generate a non-redundant set of
constraints since the cost of solving the constraint graph is proportional to the
number of edges in the graph, or the number of constraints. Several constraint
generation algorithms have been proposed. In the following section, some of
the constraint generation algorithms will be discussed.

1. Shadow-Propagation Algorithm: A widely used and one of the
best known techniques for generating a constraint graph is the shadow-
propagation used in CABBAGE system [HP79]. The ‘shadow’ of a feature

12.3. One-Dimensional Compaction 457

is propagated along the direction of compaction. The shadow is caused by
shining an imaginary light from behind the feature under consideration
(see Figure 12.10). Usually the shadow of the feature is extended in
both sides of the features in order to account for diagonal constraints.
This leads to greater than minimal Euclidean spacings since an enlarged
rectangle is used to account for corner interactions. (See shadow of feature
in Figure 12.10).

Whenever the shadow is obstructed by another feature, an edge is added
to the graph between the vertices corresponding to the propagating fea-
ture and the obstructing feature. The obstructed part of the shadow
is then removed from the front and no longer propagated. The process
is continued until all of the shadow has been obstructed. This process
is repeated for each feature in the layout. The algorithm SHADOW-
PROPAGATION, given in Figure 12.11, presents an overview of the al-
gorithm for x-compaction of a single feature from left to right.

The SHADOW-PROPOGATION routine accepts the list of components
(Comp_list), which is sorted on the x-coordinates of the left corner of
the components and the component (component) for which the con-
straints are to be generated. The procedure, INITIALIZE-SCANLINE,
computes the total length of the interval in which the shadow is to be
generated. This length includes the design rule separation distance. The
y-coordinate of the top and the bottom of this interval are stored in
the global variables, top and bottom respectively The procedure, GET-
NXT-COMP, returns the next component (curr_comp) from Comp_list.
This component is then removed from the list. Procedure LEFT-EDGE
returns the vertical interval of component, curr_comp. If this inter-
val is within the top and bottom then curr_comp can possibly have a
constraint with component. This check is performed by the procedure
IN – RANGE. If the interval for curr_comp lies within top and bottom
and if this interval is not already contained within one of the intervals in

458 Chapter 12. Compaction

2.

the interval set, then the component lies in the shadow of component
and hence a constraint has to be generated. Each interval represents the
edge at which the shadow is blocked by a component. The constraint is
added to the constraint graph by the procedure ADD-CONSTRAINT.
The procedure UNION inserts the interval corresponding to curr-comp
in the interval set at the appropriate position. This process is carried out
till the interval set completely cover the interval from top to bottom or
there are no more components in Comp_list. The Figure 12.12(a) shows
the layout of components. The constraint for component A with other
components is being generated. Figure 12.12(b) shows the intervals in
the interval set as the shadow is propagated. From Figure 12.12(b) it is
clear that the constraints will be generated between components A and
components B, C, and D in that order. As component F lies outside
the interval defined by top and bottom it is not considered for constraint
generation. The interval generated by component E lies within one of
the intervals in the interval set. Hence, there is no constraint generated
between components A and E.

Scanline Algorithm: In [Mal87], Malik presented an efficient algo-
rithm based on scanline method. The scanline is an imaginary horizontal
(or vertical) line that cuts through the layout in x-compaction (or y-
compaction). An example of scanline is shown in Figure 12.13. The scan-
line data structure contains all the rectangles that are cut by this scanline.
The rectangles are stored in non-decreasing order of their x-coordinates
of the left boundaries. The scanline traverses from the top to the bottom
of the layout for x-compaction. Similarly, for y-compaction, the scanline
traverses from the left to the right of the layout. For x-compaction, as the

12.3. One-Dimensional Compaction 459

460 Chapter 12. Compaction

line passes over the top edge of a rectangle, the rectangle is added to the
scanline. Similarly, when the scanline passes over the bottom edge, the
rectangle is deleted from the scanline. Two lists are required to move the
scanline over the layout. One list contains rectangles in non-decreasing
order of their YTOP and one list contains rectangles in non-decreasing
order of their YBOTTOM. Let us denote the two sorted list as topsorted
and bottomsorted, respectively. The algorithm SCANLINE is shown in
Figure 12.14.

Note that the algorithm SCANLINE adds many redundant edges. A
redundant edge is the one that does not affect the longest path from
the source vertex to any other vertex in the graph. Hence the removal
of the redundant edge will not change the constraint graph. Consider
the example shown in Figure 12.15. If the distance between and

is less than the the distance between and plus the
distance between and then the constraint between and

is redundant thus can be removed. The scanline algorithm uses these
measures to remove redundant constraints.

12.3.1.2 Critical Path Analysis

After generation of constraint graph, the next step in constraint graph com-
paction is to determine the critical path through the graph. Let us explain the
role of critical paths in compaction. The goal of one dimensional compaction
is to generate a minimum width layout. The determination of minimum width

12.3. One-Dimensional Compaction 461

layout translates into a longest path problem. The longest path from source to
a vertex is then the coordinate of the vertex. The longest path problem can be
viewed as a shortest path problem by inverting the signs on the edge weights.
As a result, this problem is also called the critical path problem. The edges that
determine the minimum distance between the source and the sink form the crit-
ical path and vertices on the critical path are said to be critical. Tarjan [Tar83]
describes a variety of algorithms to solve longest path problems; many others,
including Lengauer [Len84], Liao and Wong [LW83] describe the application
of various longest path algorithms to compaction. These algorithms calculate
for all the vertices coordinates that are as small as possible. The worst case
complexity of these algorithms is O(|V| × |E|), where V is the set of vertices
in the graph and E is the set of edges. In [LW83], the complexity has been
reduced to L iterations, while the run time of each iteration is O(E). Where
L is the number of negative weighted edges. If the constraint graph has spe-
cial properties, more efficient algorithm can be used. In particular, for acyclic
graphs, the worst case complexity is O(|V| + |E|).

In practical layouts, the run times are almost linear in the number of layout
elements. This is due to locality of the graph, that is, most edges represent
very local constraints in the layout. In addition the number of edges that start
at a vertex is usually quite small.

The algorithms described above can be improved by using a divide and
conquer approach. The basic idea is to divide the graph in smaller subgraphs,
which can be solved independently. A strong component is a subgraph in which
there is a path from every node to every other node. Strong components are
formed by the connectivity constraints; all the features in a strong component
must move more or less together during compaction. If each strong component

462 Chapter 12. Compaction

is reduced to a vertex, then the resulting graph is acyclic. In addition, the
strong components can be assigned an ordering, which allows us to compute
the effect of one strong component on the next one. The source and sink
are modelled as separate strong components. Algorithms for finding strong
components are described by Even [Eve79]; the best algorithm has a worst
case time complexity of O(|V| + |E|). The number of strong components and
the number of vertices in strong components depend on the graph. In practical
layout designs, the strong components are rather small.

Another method of improving the critical path algorithms is by reducing
the total number of vertices and (or) edges of the graph. This reduction should
not change the solution space of the constraint graph, which means that that
all possible solutions that can be obtained directly or with reduction must be
the same. The vertices can be reduced by grouping all the vertices which must
have same relative positions. The edge reduction can be achieved by eliminating
redundant edges. An edge is redundant, if there exists a path between the two
vertices of the edge that does not contain the edge and which is longer (or has
the same length) as the weight of the edge.

There may be vertices in the graph that are not critical and therefore have a
range of legal positions. These vertices are said to have slack. Some secondary
criterion must be used to assign unique positions to these vertices; one common
objective is the minimization of total wire length in the cell. The compactor
can place vertices with slack in such a way to increase circuit performance,
to minimize wire length, to optimize fabrication yield, etc. Schiele [Sch83]
and Eichenberger [Eic86] discuss algorithms that can be used to minimize wire
length. Wire-length minimization significantly reduces the values of parasitic
features associated with wires [Sch85].

12.3. One-Dimensional Compaction 463

12.3.1.3 Wire Jogging

Both automatic jogging of wires and wire length minimization have received
much attention in the last couple of years. This is, in part, due to the re-
cent interest in channel compaction [Deu85]. One of the first approaches to
jogging wires was reported by Hsueh [HP79]. In this approach jogs in wires
were introduced at ‘torque’ points on a wire (see Figure 12.16). Wire jogging
had limited success because it could reduce the size in one direction while,
potentially, increasing the size in the other direction.

12.3.1.4 Wire Length Minimization

Features not on the critical path will typically find themselves pulled towards
a layout edge because they are given their minimal legal spacing. This tends
to increase wire length and reduce circuit performance.

One of the first methods used to reduce wire length was the ‘average slack’
method of Hsueh [HP79]. This approach uniformly distributes the empty space
in a circuit among the features that were not on the critical path. Burns [BN86]
presents a force-based heuristic that not only considers the effect of each wire
layer but it also considers the cumulative effect of multiple wires connecting
adjoining modules. This is effective in minimizing wires in an hierarchical
layout.

12.3.2 Virtual Grid Based Compaction

The virtual grid compaction is a structured approach to compacting layout.
The virtual grid is used to establish the relative placement of circuit features
and does not correspond to physical grid. In this approach, the compactor gives
locations to the virtual grid lines, not to the circuit component themselves.

464 Chapter 12. Compaction

Several compactors have been designed using virtual grid approach. Following
are the two widely used algorithms based on this approach.

12.3.2.1 Basic Virtual Grid Algorithm

In this method, each component is attached to a grid line. Consider the
example shown in Figure 12.17(a). Components A, B, and C are attached to
the first grid line, while D, E, and F are attached to the second grid line. In
the second step, the maximum necessary distance between any two grid lines
is computed. In our example, the distance between C and F is required to be
14. In other words, the grid lines can be at distance 14 to each other without
violating any design rules. In Figure 12.17(b), we show the compacted layout.
This process is repeated for all adjacent grid lines. X-Compaction is usually
followed by Y-Compaction. The basic advantage of virtual grid method is it is
fast.

12.3.2.2 Split Grid Compaction

In [Boy87], Boyer introduced split grid compactor which places distinct circuit
features that fall on the same virtual grid separately, splitting the virtual grids
where necessary. Split grid compactor uses a data structure that allows only
to store the grid points that are of interest. The grid points which contain
features are the ones added to the data structure. This allows fast access to
the circuit features.

Initially, the compactor identifies groups of circuit features falling on the
same virtual grid lines that need to be placed together. Local connectivity is
used to identify the groups. For example, consider a vertical virtual grid line.
There are two situations that might occur: features are connected by a vertical
wire segment or the features are connected by a vertical transistor. In any case,
the features are grouped together. Groups are identified by traversing each vir-
tual grid line. After the circuit features are grouped together, the compaction
is done in two passes: first the x-compaction and then y-compaction. A group
is first compacted by determining the spacing necessary for each component in
the the group. Then each group is placed independently. Features are spaced
with respect to the features in the neighboring groups. Consider the example
shown in Figure 12.18(a). We group A, B, and C together on the first grid line.
On the second grid we form two groups. The first group consists of D and E,
while the second just consists of F. Figure 12.18(b) shows the solution after
compaction.
Compression-Ridge Method: Compression-ridge method was first sug-
gested by Akers, Geyer, and Roberts [AGR70]. In this method, vertical and
horizontal regions of empty spaces, called compression ridges are formed. They
have the following properties:

1. Compression ridge is a constant width band of empty space stretching
from one side of the layout to the other side.

12.3. One-Dimensional Compaction 465

466 Chapter 12. Compaction

12.3. One-Dimensional Compaction 467

2.

3.

Compression ridge can intersect wires that are perpendicular to it. How-
ever, it cannot intersect those wires that are parallel to it.

The width of a compression ridge is such that when the space is removed,
no design rules should be violated in the resulting layout.

The example of compression ridge is shown in Figure 12.19. The compression
ridge is shown by the shaded region in Figure 12.19(a). In this technique,
these compression ridges are subsequently removed from the layout until no
more ridges are found. One method for finding the compression ridges is to
use the virtual split-grid method. The vacant space along the grid line can
be replaced by a rectangular compression ridge. The width of this ridge is the
minimum compression that can be achieved along the grid line. Figure 12.19(b)
shows the layout after removing the compression ridge. Note that compression
ridges are formed from one end of the layout to the other which in the worst
case is very time consuming. Therefore, an efficient algorithm is required to
find the compression ridges. Dai and Kuh [DK87b] proposed an
algorithm for finding compression ridges that allows the largest decrease in
layout width. One of the main advantages of the compression ridge method is
that the compaction can be broken into smaller steps.

12.3.2.3 Most Recent Layer Algorithm

In [BW83], Boyer and Weste presented a virtual grid compaction algorithm
called most recent layer algorithm. The algorithm consists of two different
passes: first in the x-direction, then in the y-direction. The diagonal checks
are done during the y-compaction. The algorithm does not require any back-
tracking and the time complexity of this algorithm is , where is the total
number of features in the layout.

468 Chapter 12. Compaction

For the x-compaction, each horizontal grid line has a set of reference lines
(‘pickets’), one for each layer, to keep track of the right edge of the most recent
placement of a mask feature on that grid line. Initially, a column is placed as
close to the picket as possible (without violating the design rules). The pickets
are then updated. If there is no feature in a layer for a certain column, the picket
position for that layer is not updated (it remains unchanged). To position a
mask feature in a layer, the left edge of the feature is used to determine the
necessary location of that layer with respect to picket. The right edge of the
feature is used to update the pickets. For an illustration, consider the example
shown in Figure 12.20. There are three different pickets for three layers, one
for metal, one for poly, and one for diffusion. Consider the x-compaction in
horizontal virtual grid line . We assume that features in columns 1, 2, 3 are
already placed and the pickets are updated. Now, the feature of the diffusion
layer has to be placed in column 4. Only the picket of diffusion layer will be
used to find the location of this feature. After placing the feature in its minimal
distance position, the picket in diffusion layer is updated to the coordinate of
the right side boundary of the feature.

The y-compaction is done in similar way. However, additional information
is necessary in order to handle the diagonal constraints. The left and right
edges, as well as the upper edges, of the mask features must be recorded in
order to do the diagonal checking.

12.4 Compaction

In [SSVS86], Shin, Sangiovanni-Vincentelli, and Sequin presented a new
compactor based on simulation of zone refining process. Although compactor
is based on simulation of an engineering process, it is a deterministic algorithm
and differs sharply from other simulation based approaches such as simulated
annealing and simulated evolution. The key idea is to provide enough lat-
eral movements to blocks during compaction to resolve interferences. In that
sense, this compactor can be considered compactor, since the
geometry is not as free as in true 2-dimensional compaction.

12.4. Compaction 469

The process of zone refining is used to purify crystal ingots. The basic
idea is to allow limited melting of the crystal and let purities drain out of the
crystal. The zone refining process starts with an already developed ‘impure’
crystal. As shown in Figure 12.21 (a), the crystal is slowly pulled through a
heating element to locally heat the crystal to melting temperature. At the exit
end of the heater, the material re-crystallizes. Since impurities are built into
the crystal lattice at a much slower rate than the crystal material, impurities
have tendency of being left out during re-crystallization process. That is, the
impurities are left in the molten state in the heated zone. Eventually, impurities
are drained out of one end of the crystal.

In terms of layout compaction, the algorithm starts with a layout. The
vacant space in the layout is considered the impurity. Starting from one side,
blocks are considered row by row and are re-arranged after they have been
moved across the open zone. During its movement in the free zone, the blocks
travel through the entire width of the layout and hence may be placed anywhere
along the boundary. In Figure 12.21(b), we show the process of compaction by
zone refining.

The algorithm maintains an XY adjacency graph. In an XY adjacency
graph, vertices represent blocks, while edges represent horizontal and vertical
adjacency. That is, two blocks have a horizontal edge if they share a vertical
boundary. Similarly, two blocks have a vertical edge if they share a horizontal
boundary. The labels on the edges represent the minimum allowable distance
between blocks. Four additional vertices are added to keep all the blocks within
the required bounded rectangle. Note that free space is ignored in computing

470 Chapter 12. Compaction

the neighborhood edges between blocks. Figure 12.22(a) an instance of problem
along with its XY adjacency graph in Figure 12.22(b).

Algorithm assumes that the input is partially compacted layout, which can
be obtained by two applications of a 1-D compactor. It maintains two lists
called floor and ceiling. Floor consists of all the blocks which are visible from
the top and may become a neighbor of future block. Ceiling is a list of all
blocks which can be moved immediately. That is, ceiling is the list of blocks
visible from the bottom. The algorithm selects the lowest block in the ceiling
list and moves it to the place on the floor, which maximizes the gap between
floor and ceiling. This process is continued until all blocks are moved from
ceiling to floor.

Let us illustrate the algorithm with an example in Figure 12.22. Since C is
the lowest block in the ceiling list, it is selected for the move. Figure 12.22(c)
shows that the gap is maximum at the boundary between blocks A and B.
Therefore C is moved between and A and B. The modified layout and the
XY-adjacency graph are shown in Figures 12.22(d) and (e) respectively.

12.5 Two-Dimensional Compaction

Recall that there are three different types of constraints imposed by the de-
sign rules that must be satisfied to obtain a valid layout. These constraints are
size constraints, overlap constraints, and separation constraints. Furthermore,
designer can impose extra constraints known as user defined constraints. Given
a symbolic layout consisting of rectangular features, all these constraints can
be written using linear constraint equations. Let us assume that for each block

two coordinates, and are given for the lower left corner and
the upper right corner, respectively. Let a block has height and width

then the size constraints can be written as:

Wires have a fixed width but variable length. A vertical wire with width
is specified by the constraints:

The constraints for the horizontal wires can be given in the similar way.
In the course of compaction, the algorithm must maintain appropriate con-

nections between blocks and wires and between wires. Wires on the boundary
of a block can slide along the boundary within the range specified by the user,
provided that no constraints are violated. The overlap constraints between a
block and a wire segment can be given as:

12.5. Two-Dimensional Compaction 471

472 Chapter 12. Compaction

Note that is connected to the right boundary of and the range is
(Figure 12.23(a)). The overlap between two wires and as shown in
Figure 12.23(b), can be specified as:

Next the separation constraints can be specified as minimum distance con-
straints between two non-overlapping features. If blocks and are not
supposed to overlap, they must be separated by a certain distance. There are
four possible cases: is on the right of at a distance of at least is on the
left of at a distance of at least is on the top of at a distance of at least

and is below at a distance of at least Thus, one of the following
must be satisfied.

Let and and are non-overlapping features
}. Thus to ensure that the design rules are satisfied, one of the four constraints
in must be satisfied.

Therefore, the constraints can be divided into two classes:

1.

2.

set of constraints, B, that must be satisfied, which include size, overlap
and user defined constraints.

set of constraints, D, that are divided into groups and at least one of the
constraints in each group must be satisfied.

12.6. Hierarchical Compaction 473

After the generation of constraints, the problem can be solved using in-
teger linear programming technique. However, the complexity of the linear
programming technique is exponential thereby making it impractical even for
a moderate size problem.

In [SLW83], Schlag, Liao, and Wong showed that the 2-D compaction
problem is NP-complete and gave a branch-and-bound solution for the problem.
However, again the complexity of the algorithm is in the worst case exponential.

12.5.1 Simulated Annealing based Algorithm

In [HLL88], Hseih, Leong, and Liu proposed a solution to 2-D compaction
using simulated annealing technique. Although this technique produces sub-
optimal solution, this is much faster than branch-and-bound and integer linear
programming technique. The layout can be represented by a valid set of con-
straints. A valid set of constraints is a subset E of constraints that contains all
the constraints from B and at least one constraint from D. We use the notation

where M contains exactly one constraint from each group of D. In
the simulated annealing algorithm, given a solution a move is defined
as selecting a group in D and exchanging the constraints in that group. Two
solutions and are said to be neighbors if can be obtained from
M by interchanging the chosen constraint in one of the groups of D. Clearly,
it is possible to go from one given solution to another by a sequence of moves.

12.6 Hierarchical Compaction

The compactors discussed in the previous sections, perform compaction on
layouts composed from a library of pre-defined features and wire segments.
Since the characteristics of the layout primitives other than their basic shapes
are typically exploited to generate compact layouts, it can be difficult to use
such system for hierarchical design.

Hierarchical compaction can be used for hierarchical designs to reduce the
space and computation time of the layout compaction. In the hierarchical
compaction, transistors, contacts, and modules are treated in the same manner.
In this section, we discuss one hierarchical compaction algorithm based on
constraint-graph generation.

12.6.1 Constraint-Graph Based Hierarchical Compaction

Given a hierarchical symbolic layout, hierarchical constraint graph is gen-
erated at each level of the hierarchy of the design from bottom up. Initially,
constraints are generated for all the leaf cells consisting of basic features. Each
leaf cell is compacted using the corresponding constraint graph and the bound-
ary of the compacted leaf cell is fixed. Once the leaf cell is compacted and the
boundary is fixed, the cell can be treated as a single cell in the next level in
the hierarchy and constraints can be generated for the cells in that level. The

474 Chapter 12. Compaction

compaction is carried out by generating constraints at each level. For an illus-
tration, consider the example of a hierarchical design shown in Figure 12.24.
The layout consists of two levels of hierarchy. In the leaf level, cells and
are compacted by generating their constraint graphs and as shown in
Figure 12.25. Once and are compacted, their layout is represented by a
vertex in the next level of the constraint generation as shown in the graph
in Figure 12.25.

The hierarchy of the design will be preserved if at each level, the boundary of
the compacted cells are kept rectangular. However, keeping the boundary rect-
angular does not produce a good solution. To get better results, the boundary
of the compacted cell at any level can be given any arbitrary rectilinear shape
and the constraint graph may be allowed to have multiple constraint edges be-
tween two vertices, specifying different separation constraints. However, this
approach does not preserve the hierarchy of the layout.

12.7 Recent trends in compaction

In this section, two new trends in compaction are briefly reviewed. These
include performance-driven compaction and compaction techniques for yield
enhancement.

12.7.1 Performance-driven compaction

In [OCK95], authors use an iterative parameterized LP formulation to model
a force-directed wire respacing scheme for compaction under timing constraints
and compaction under peak crosstalk constraints. Although it uses a dis-
tributed delay model that factors in the coupling capacitances of the nets,

12.7. Recent trends in compaction 475

some of the intuition behind the force-directed scheme is lost in translating the
two-dimensional optimization problem into a problem with a one-dimensional
objective function (delay/crosstalk) and a constrained penalty parameter asso-
ciated with the second objective (area).

In [WLLC93], a LP formulation is developed for timing constraints on crit-
ical paths (in addition to regular layout constraints), and then shows how to
solve them efficiently using a graph-based simplex algorithm. The delay model
assumes that the delay of a wire is proportional to its length. First, an LP is
used to find a tight upper bound on the delays of the timing critical paths by ad-
justing the wire lengths. Next, another LP is used to perform one-dimensional
compaction on the layout while ensure that the delay of each of the timing
critical paths remains less than the upper bound determined by the first LP.

12.7.2 Compaction techniques for yield enhancement

Chiluvuri and Koren [CRK95] developed a constraint-graph based compaction
strategy using empirical heuristic desired locations for objects not on critical
paths in the constraint graph to make the spacing between different elements
more uniform, in an effort to decrease the sensitivity of the layout to random
point defects.

476 Chapter 12. Compaction

Bamji and Malavasi [CM96] extended the work done by Chiluvuri and Ko-
ren by using a network flow based formulation for the layout respacing. The
formulation models objectives such as yield, crosstalk or wire length (or their
linear combinations) using a piece-wise linear convex cost function for the edges.

12.8 Summary

Compaction is a very important phase in physical design cycle. The ob-
jective of a compaction algorithm is to reduce the layout area. Research in
symbolic layout compaction has resulted in two major compaction strategies:
the constraint-graph based compaction and the virtual grid based compaction.
Constraint-graph based compactors usually produce smaller area layouts as
compared to the virtual grid compactors, while virtual grid compactors typ-
ically run faster. The speed of both type of algorithms can be improved by
using hierarchy of the layout.

12.9 Exercises

1.

2.

3.

4.

5.

†6.

‡7.

‡8.

For an instance shown in Figure 12.10, generate constraints using scanline
algorithm.

Develop an algorithm to remove the redundant constraints in a constraint
graph.

Symbolic layout of a single cell may described using a unit size. De-
velop an algorithm to produce a full-size layout of a cell from a unit-size
description by adding wires to the cell.

Extend the virtual grid based algorithm to include jog insertion if neces-
sary to reduce the layout area.

Extend the two-dimensional compaction to include jog insertion.

If two neighboring cells have to be connected, then the compaction al-
gorithm can stretch the cells such that their terminals to be connected
lie in the same x- or y-position. This process of stretching cells to align
terminals is known as pitchmatching. Design the necessary constraints to
handle the pitchmatching in a compaction algorithm.

Implement the zone refining algorithm for L-shaped blocks. Note that
rotation, flipping of blocks have to be taken into consideration.

Develop constraints for L-shaped blocks. Can we represent each L-shaped
block as a combination of two rectangles ? What additional constraints
are needed ?

12.9. Exercises 477

9. Consider the channel compaction problem. Channels are compacted in
the y-directions. Which channel routing algorithm produces the most
compactable solution ? Which channel router is easiest to adapt to inte-
grated channel routing and compaction ?

Bibliographic Notes
The first compaction algorithm called shear-line compaction was proposed by
Akers et al. [AGR70]. Symbolic layout and compaction were first combined
in the STICKS system [Wil78]. In [BN87], a constraint generation technique
for hierarchical compaction has been proposed. In [KW84], the compaction
problem was formulated into a mixed integer linear programming problem of a
very special form. Symbolic layout compaction with symmetric constraints was
considered in [OSOT89]. The symmetric constraint maintains the geometrical
symmetry of the circuit components during the compaction.

[SL89b, WLC90] present efficient two-dimensional layout compaction algo-
rithms. In [dDWLS91], a two-dimensional topological compactor with octag-
onal geometry is presented.

Algorithmic Aspects of one dimensional layout compaction are discussed
in [DL87a]. In geometrical compaction in one dimension for chan-
nel routing is considered. In [LV90], an 1-d compaction algorithm
is presented. [DL91] presents on minimal closure constraint generation for sym-
bolic cell assembly. [CH87] explains how to generate incremental compaction
spacing constraints. In [BV93], discusses a method for identifying overcon-
straints during hierarchical compaction. [Ono90] presents layout compaction
with attractive and repulsive constraints. It has been shown in [PDL97] that
the traditional problem of removing redundant constraints to yield the small-
est possible constraint graph in symbolic compaction is NP-hard. However,
if one is also allowed to add new constraints, the smallest possible constraint
graph can be obtained in polynomial time. In [DPLL96], a global strategy for
the elimination of positive cycles in overconstrained graph-based compaction
problems is presented. It uses new polynomial LP-based formulations that
are of independent interest and applicability by themselves. [Koc96] uses local
logic resynthesis specific to the FPGA architecture being compacted to perform
compaction. In [ASST97], a min cost flow based formulation of the compaction
problem (wire length minimization) is presented.

In terms of parallel algorithms, [SC96] presents a parallelization of the ” cut,
compact and merge” approach towards full-chip compaction. In [CTC94] a
parallel algorithm for integrated compaction and wire balancing on a shared
memory multiprocessor has been evaluated.

[Har91, BV92, Mar90, present several schemes for
hierarchical compaction and methods for dealing with large databases. In
[FCMSV92], an efficient methodology for symbolic compaction of analog IC’s
with multiple symmetry constraints is presented.

This Page Intentionally Left Blank

Chapter 13

Physical Design
Automation of FPGAs

Despite advances in VLSI design automation, the time-to-market for even
an ASIC chip is unacceptable for many applications. The key problem is the
time taken due to fabrication of chips, and therefore there is a need to find
new technologies, which minimize the fabrication time. Gate Arrays use less
time in fabrication as compared to full-custom chips, since only routing layers
are fabricated on top of pre-fabricated wafer. However, fabrication time for
gate-arrays is still unacceptable for several applications. In order to reduce
time to fabricate interconnects, programmable devices have been introduced,
which allow users to program the devices as well as the interconnect. In this
way all custom fabrication steps are eliminated.

Programmable Logic Devices (PLDs) are devices that can be programmed
by the user to implement a logic function. These devices offer short turnaround
time and as a result they are becoming increasingly important for systems as
well as system prototypes. In addition, they have a low manufacturing cost
and are fully testable. One such device which is gaining more popularity is
Field Programmable Gate Arrays (FPGAs) .

As discussed in Chapter 1, FPGA is a new approach to ASIC design that can
dramatically reduce manufacturing turn around time and cost. In its simplest
form, an FPGA consists of a regular array of programmable logic blocks inter-
connected by a programmable routing network. A programmable logic block
is a RAM and can be programmed by the user to act as a small logic mod-
ule. Given a circuit, user can program the programmable logic module using an
FPGA programming tool. The key advantage of FPGAs is re-programmability.
The RAM nature of the FPGAs allows for in-circuit flexibility that is most use-
ful when the specifications are likely to change in the final application. In some
applications such as remote sensors, it is necessary to make system updates via
software. In FPGA, a data channel is provided, which allows easy transfer of
the new logic function and reprogramming the FPGA.

The physical design automation of FPGAs involves mainly three steps which

480 Chapter 13. Physical Design Automation of FPGAs

include partitioning, placement and routing. Partitioning problem in FPGAs
is significantly different from the partitioning problems in other design styles.
This problem mainly depends on the architecture in which the circuit has to be
implemented. Placement problem in FPGAs is very similar to the gate array
placement problem. The routing problem in FPGAs is to find a connection
path and program the appropriate interconnection points. In this chapter, we
discuss the architecture of FPGAs, their physical design cycle, and algorithms
used for partitioning and routing problems in FPGAs.

In order to gain a better perspective of the physical design problems related
to FPGAs, we start with a description of FPGA architectures.

13.1 FPGA Technologies

An FPGA architecture mainly consists of two parts: the logic blocks, and the
routing network. A logic block has a fixed number of inputs and one output. A
wide range of functions can be implemented using a logic block. Given a circuit
to be implemented using FPGAs, it is first decomposed into smaller sub-circuits
such that each of the sub-circuit can be implemented using a single logic block.
There are two types of logic blocks. The first type is based on Look-Up Tables
(LUTs), while second type is based on multiplexers.

1. Look-up table based logic blocks: A LUT based logic block is just
a segment of RAM. A function can be implemented by simply loading its
LUT into the logic block at power up. If function needs
to be implemented, then its truth table (shown in Table 13.1) is loaded
into the logic block. In this way, on receiving a certain set of inputs, the
logic blocks simply ‘look up’ the appropriate output and set the output
line accordingly. Because of the reconfigurable nature of the LUT based
logic blocks, they are also called the Configurable Logic Blocks (CLBs).

It is clear that bits are required in a logic block to represent a
bit input, 1-bit output combinational logic function. Obviously, logic

13.1. FPGA Technologies 481

2.

blocks are only feasible for small values of Typically, the value of
is 5 or 6. For multiple output and sequential circuits the value of
is even less.

Multiplexer based logic blocks: Typically a multiplexer based logic
block consist of three 2-to-l multiplexers and one two-input OR gate as
shown in Figure 13.1. The number of inputs is eight. The circuit within
the logic block can be used to implement a wide range of functions. One
such function, shown in Figure 13.2(a) can be mapped to a logic block
as shown in Figure 13.2(b). Thus, the programming of multiplexer based
logic block is achieved by routing different inputs into the block.

There are two models of routing network: the segmented and the non-
segmented.

482 Chapter 13. Physical Design Automation of FPGAs

1. Non-segmented model: A typical non-segmented model is shown
in Figure 13.3. The non-segmented model is set up as a regular grid
of five horizontal and five vertical metal lines passing between switch
blocks (S). The switch blocks are rectangular switch boxes. They are
used to connect the wiring segments in one channel segment to those in
another. Depending on the topology of the S block, each wiring segment
on one side of S may be switchable to either all or some fraction of wiring
segments on each side of the S block. The fewer the wiring segments a
wiring segment can be switched to, the harder the FPGA is to route.
Figure 13.6 and Figure 13.5 are two of the switch box architectures used
by Xilinx for their 4000XC and 2000XC series. In Fig 13.5 a predefined set
of programmable connections based on some probability and statistical
data is used to obtain an efficient and economical switch box routing
architecture. On the other hand, Figure 13.6 shows a more versatile and
efficient routing architecture, but far more expensive to implement.

In addition to the switch blocks, there are the connection blocks (C)
that are used to connect the logic block pins to the routing channels.
Depending on the topology, each L block pin may be switchable to either
all or some fraction of wiring segments that pass through the C block.
Again, the fewer the wiring segments a pin can be switched to, the harder

13.1. FPGA Technologies 483

2.

the FPGA is to route.

Segmented model: In segmented model, the tracks in the channels
contain predefined wiring segments of same or different lengths. Other
wiring segments pass through the channels vertically. Each input and
output of a logic block is connected to a dedicated vertical segment. As
a result, there are no vertical constraints. There are additional global
vertical lines which provide connections between different channels. Con-
nection between two horizontal segments is provided through an antifuse,
whereas the connection between a horizontal segment and a vertical seg-
ment is provided through a cross fuse (see Figure 13.4). Programming
(blowing) one of these fuses provides a low resistance bidirectional con-
nection between two segments. When blown, antifuses connect the two
segments to form a longer one. In order to program a fuse, a high voltage
is applied across it. FPGAs have special circuitry to program the fuses.
The circuitry consists of the wiring segments and control logic at the
periphery of the chip. Fuse addresses are shifted into the fuse program-
ming circuitry serially. When the objective is to fabricate reconfigurable
routing network re-programmable switches can be used instead of fuses.

The segmented model is uniform if the segments in all tracks have same
length and the antifuses in different tracks in a channel are aligned in
columns.

484 Chapter 13. Physical Design Automation of FPGAs

13.2. Physical Design Cycle for FPGAs 485

The segmented model normally has advantage over the non-segmented model
in terms of utilization of routing resources. In the non-segmented model only
one segment of one net can be routed on a track. Whereas, in the segmented
model, the segments of several nets can be assigned to a track as long as no
two net segments are assigned to the same track segment.

The total number of programmable switches in the segmented model is
higher as compared to the number of switches in the non-segmented model.
The delay of a net is directly proportional to the number of programmable
switches used to route that net. The number of programmable switches used
to route a net is higher in segmented model as compared to non-segmented
model. As a result, the non-segmented model is preferred over the segmented
model when the performance is the primary objective.

13.2 Physical Design Cycle for FPGAs

The physical design cycle for FPGAs consists of the following steps:

1.

2.

3.

Partitioning: The circuit to be mapped onto the FPGA has to be
partitioned into smaller sub-circuits, such that each sub-circuit can be
mapped to a programmable logic block. Unlike the partitioning in other
design styles, there are no constraints on the size of a partition. However,
there are constraints on the inputs and outputs of a partition. This is
due to the unique architecture of FPGAs.

Placement: In this step of the design cycle, the sub-circuits which are
formed in the partitioning phase are allocated physical locations on the
FPGA, i.e., the logic block on the FPGA is programmed to behave like
the sub-circuit that is mapped to it. This placement must be carried out
in a manner that the routers can complete the interconnections. This
is very critical as the routing resources of the FPGA are limited. The
placement algorithms for general gate arrays are normally used for the
placement in FPGAs, and therefore, will not be discussed in this chapter.

Routing: In this phase, all the sub-circuits which have been pro-
grammed on the FPGA blocks are interconnected by blowing the fuses
between the routing segments to achieve the interconnections.

Figure 13.7 shows complete physical design cycle of FPGAs. System design
is available as a directed graph which is partitioned in second step. Placement
involves mapping of sub-circuits onto CLBs. Shaded rectangles represent CLBs
which have been programmed. Final step is routing of channels.

13.3 Partitioning

A 1-output LUT based logic block is powerful than a
1-output multiplexer based logic block, as the former can implement all the

486 Chapter 13. Physical Design Automation of FPGAs

13.3. Partitioning 487

logic functions of inputs, whereas the capabilities of later are limited by
the circuitry inside the block. As a result the LUT based logic blocks are more
popular than the multiplexer based logic blocks. Therefore, in this section we
discuss a partitioning problem only for the LUT based logic blocks.

The circuit to be mapped onto the FPGA has to be partitioned into smaller
sub-circuits such that each sub-circuit can be implemented using the logic
blocks. In order to achieve this, we model the boolean network (N) consisting of
AND, OR and NOT gates using directed acyclic graph (DAG) as follows: Let N
be a set of inputs B be a set of AND and OR gates
and C be a set of NOT gates The corresponding DAG is defined
as where such that represents
an input to the network, and such that
represents an AND or OR gate An edge directed from

to represents a connection from the output of to an input of either
through a NOT gate or direct. If connection between and is through
a NOT gate, then a weight 0 is associated with the edge otherwise the
weight of edge is 1. A logic network is shown in Figure 13.8(a) and
corresponding DAG is shown in Figure 13.8(b).

The nodes in are also referred as the input nodes. A node is a

488 Chapter 13. Physical Design Automation of FPGAs

fan-in node of if there is a directed edge from node to node An
input node does not have a fan-in node.

Graph is a subgraph of a graph G = (V, E), if and
The indegree of a directed

subgraph is defined as the number of edges coming into while
the outdegree of is defined as the number of edges coming out of More
precisely,

The partitioning problem can be formally stated as follows: Given a directed
acyclic graph G, maximum number of output terminals of a logic block denoted
as and maximum number of input terminals of a logic block denoted as

partition G into minimum number of vertex sets such that
subgraphs satisfy the constraints

13.4. Routing 489

The partitioning problem is also referred as the mapping problem as it maps
sub-circuits to logic blocks. Note that this partitioning problem is significantly
different than the partitioning problem considered in Chapter 5. In particular,
the number of vertices assigned to any subgraph is not important. The impor-
tant parameter is the number of edges coming in or going out of a subgraph.

In [FRC90], Francis, Rose and Chung presented a dynamic programming
algorithm for partitioning the DAG for which the fan-in of each node does not
exceed The following terms need to be defined in order to explain the
algorithm. A mapping of a node in a tree T, is a circuit of LUTs
which implements the sub-tree of T that is rooted at and extends to the leaf
nodes of T. The cost of a mapping is the number of LUTs needed to implement
that mapping. The root lookup table of a mapping of the node has as its
single output the boolean function of the node The utilization of a lookup
table is the number of inputs U, out of the K inputs that are actually used
in a circuit. If are the fan-in nodes of a node then the
root lookup table of mapping of includes all the fan-in edges of and some
sub-tree rooted at each fan-in node (see Figure 13.9(a)). The term
utilization division is introduced to denote the distribution of the inputs to the
root lookup table among these subtrees. If is the number of leaf nodes in the
sub-tree then the set specifies the utilization division
of the root lookup table. There may be many possible utilization divisions of
the root lookup table of a mapping of a node. Figure 13.9 shows the utilization
{3,1} for the node whereas, Figure 13.9(b) shows the utilization {1,3} for
the same node

Let MinMap be the optimal mapping of node with a root uti-
lization of U. For each leaf node MinMap is set to 0 for all val-
ues of U. Assuming that MinMap is computed for each fan-in node

of an internal node and for all U = 1 to
MinMap can be computed for U = 1 to as discussed below. In
order to compute MinMap compute MinMap for each utilization
division of U by combining with the mappings of fan-in nodes of
MinMap is simply the minimum cost MinMap computed over all
utilization divisions of U. MinMap for all is computed
while visiting the node in a post-order traversal of the tree. This ensures the
condition that the mappings for all fan-in nodes of are already computed.

In the cases when a node in DAG has a fan-in greater than a node
decomposition phase has to be carried out before applying the above algorithm.
The output of the node decomposition is a functionally equivalent DAG in
which all the nodes have fan-in less than Figure 13.10(b) shows a DAG
obtained after decomposition of node in Figure 13.10(a).

13.4 Routing

After all the sub-circuits have been mapped to logic blocks, these sub-circuits
are interconnected by blowing the fuses in the routing channels. Routing of

490 Chapter 13. Physical Design Automation of FPGAs

FPGAs is different from the routing of general blocks because of the segmented
nature of channels. In the following sections, we discuss FPGA routing for
different models.

13.4.1 Routing Algorithm for the Non-Segmented Model

In this section, we discuss the algorithm presented by Brown, Rose and
Vranesic [BRV92]. The routing is completed in two steps.

1.

2.

Global routing: Global routing in FPGAs can be done by using a
global router for standard cell designs. In general, such a global router
divides the multi-terminal nets into two terminal nets and routes them
with minimum distance path. While doing so it also tries to balance
the densities by distributing the connections among the channels. The
global route defines a coarse route for each connection by assigning it
a sequence of channel segments. Figure 13.11(a) shows a sequence of
channel segments that a global route might choose to connect some pin
of logic block at grid location 4,1 to another at 0,1. The global route is
also called as a course grid graph. Note that the coarse grid graph gives
a path between two L nodes through a sequence of S and C nodes.

Detailed routing: Given a course grid graph G = (V, E) for a two
terminal net, the objective of the detailed router is to choose specific

13.4. Routing 491

492 Chapter 13. Physical Design Automation of FPGAs

wiring segments in each channel segment assigned during global routing.
This is achieved in two steps:

(a)

(b)

Expansion of coarse grid graph: In this step, a coarse grid
graph is expanded to record a subset of possible ways of implement-
ing the connection. The expansion is carried out while spanning
the graph in depth first search manner. The formal description of
algorithm is shown in Figure 13.12. Function DFS-COMPLETE(D)
returns TRUE if all the nodes of D are visited during the depth-first-
search. Function CURRENT-DFS-VISIT returns the node
being visited during DFS. Function re-
turns a wire segment that connects to its predecessor. Func-
tion returns the successor of in Function

returns the subtree of rooted at Function
returns ‘C’ if the node represents a C block, it

returns ‘S’ if represents a S block, it returns an ‘L’ otherwise.
If is a C node, is its successor of and a wire segment l
is used to connect to then the function returns a
set of wiring segments that can be used to connect to Simi-
larly, if is an S node, is its successor of and a wire segment
l is used to connect to then the function re-
turns the a set of wiring segments that can be used to connect
to Function DUPLICATE(T) returns a copy of tree T. Pro-
cedure connects the node to the node
in T by a directed edge from to T and labels the connecting
edge by l. Procedure DELETE(G, T) deletes the subtree T from G.
Let denote the graph obtained after expansion of
G = (V, E). Figure 13.11(b) the graph obtained by expanding the
coarse graph in Figure 13.11 (a).

Connection formation: The expanded graph
contains a number of alternative paths. In this step, all these paths
are enumerated, their cost is computed and the minimum cost path
is selected to implement the connection. Cost of a path is the sum-
mation of the cost of edges in that path. The cost of an edge consists
of two parts: and accounts for the competition be-
tween different nets for the same wiring segments, and reflects
the routing delay associated with the routing segment.

13.4.2 Routing Algorithms for the Segmented Model

In this section, we discuss a basic routing algorithm for segmented model.
This is followed by a discussion on a new segmented model called staggered
segmented model and an associated router.

13.4. Routing 493

13.4.2.1 Basic Algorithm

In this section, we discuss an algorithm presented by Green, Roychowdhury,
Kaptanoglu and Gamal for routing in segmented model [GRKG93]. The input
to the routing problem is a set of intervals a set of tracks

Each track extend from column 1 to column N,
and is divided into a set of contiguous segments separated by switches. These
switches are placed between two successive segments.

For each interval we define and to be the
leftmost and the rightmost column in which the interval is present.

We assume that the intervals in are sorted
on their left edges, i.e., for all i < j.

If an interval is assigned to a track then the segments in track
that are present in the columns spanned by the interval are considered occu-
pied. More precisely, a segment s in track is occupied by an interval if

and
A routing of consists of an assignment of each interval to a track

such that no segment is occupied by more than one connection.
The routing in the segmented model can be achieved using the algorithm

SEG-ROUTER presented in Figure 13.13. The algorithm SEG-ROUTER is a
modified left-edge algorithm. The input to the algorithm is the set of intervals

the set of tracks whereas the output is an array A, such that A[i] gives
the number of the track on which the interval is routed. In algorithm SEG-
ROUTER, function GET-SEGMENT (j, c) returns a segment s on track
such that column c is in the span of s. Function OCCUPIED(s) returns TRUE
if the segment s is occupied, it returns FALSE otherwise. Procedure MARK-

marks all the segments on tracks that are occupied by
Figure 13.14(b) shows a routing in a uniform segmented channel, generated by
Algorithm SEG-ROUTER. Figure 13.14(a) shows a routing in a non-segmented
channel, generated by the left edge algorithm. Note that less number of tracks

494 Chapter 13. Physical Design Automation of FPGAs

are used in uniform segmented channel as compared to the non-segmented
channel.

13.4.2.2 Routing Algorithm for Staggered Model

The segmented model can be improved in several ways: Figure 13.14(c) shows
that if the antifuses are staggered the routing of the channel in Figure 13.14(a)
can be completed in 3 tracks. Figure 13.14(d) shows that if the antifuses are
staggered and if different track segments have different lengths then the routing
of the channel in Figure 13.14(a) can be completed in 2 tracks. In this section,
we discuss a staggered segmentation model and its routing algorithm presented
by Burman, Kamalanathan and Sherwani [BKS92].

In this model, a channel is partitioned into several regions. Each region
is characterized by the segment length. The tracks in each region have equal
length segments separated by staggered placement of antifuse switches. There
are three parameters with respect to the new model: number of regions (p),
number of tracks (t), length of segment in each region (l). Determination
of these three parameters is an important step in this segmentation scheme.
These parameters can be determined by a detailed empirical analysis on several
standard benchmarks. A detailed analysis and determination of these param-
eters can be found in [BKS92]. If the length of segments in all the regions is
same then the model is called as the uniform staggered model otherwise it is
called non-uniform staggered model. Note that the model in Figure 13.14(c) is
uniform staggered model, whereas the one in Figure 13.14(d) is non-uniform
staggered model.

Algorithm SEG-ROUTER can be used for routing in the staggered models.
In a uniform segmented model the delay of a net is same irrespective of the
routing track. Whereas, in the staggered models the delay of a net is dependent
on the the routing track as the number of antifuses in the path of a net in
different tracks may be different. The algorithm SEG-ROUTER is not suitable
for the high performance routing as it does not consider the delay of a net. In
the following, we discuss the algorithm FSCR for the high performance routing
in staggered model [BKS92]. The key feature of this routing algorithm is the
assignments of the nets to the appropriate tracks by delay computation and
delay matching techniques. It should be noted that, for minimum delay routing,
it is not sufficient to just minimize delay based on the antifuse elements, but
also capacitance effects due to the unused portion of the segments spanned by
a net segment (also called as hang-over wires) and the unprogrammed switches
must be considered [BKS92].

The algorithm starts routing the longest nets first. This ensures that the
delay due to the longest net is minimized, which is a prerequisite for the high
performance routing systems. For each net, it finds out a track on which
the net can be routed with minimum delay. The original algorithm has three
phases, region selection, track selection and the region reselection [BKS92]. In
Figure 13.15, we present its simplified version. In algorithm FSCR, the func-
tion OK-TO-ASSIGN returns TRUE if all the segments spanned by the

13.4. Routing 495

496 Chapter 13. Physical Design Automation of FPGAs

interval on track are unoccupied. Function
computes the delay in the interval if is routed on the track Function

is same as that used in algorithm SEG-ROUTER.

13.5 Summary

FPGAs are being used as a new approach to ASIC design which offers dra-
matic reduction in manufacturing turnaround time and cost. The physical
design cycle of an FPGA consists of three steps, partitioning, placement and
routing. The FPGA partitioning problem is different from the conventional
area partitioning problem in the sense that it depends on the architecture in
which the circuit has to be implemented. Placement problem is equivalent to
the general gate array placement problem. However, because of the segmented
nature of the FPGA channels, the routing considerations are quite different.
In high performance FPGA designs, the number of antifuse elements along
with unused tracks and antifuses must be given due considerations as part of
the routing phase. A significant amount of research in the direction of physi-
cal design automation has to be done in order to fully utilize the potential of
FPGAs.

13.6. Exercises 497

13.6 Exercises

1.

2.

3.

4.

† 5.

‡ 6.

7.

8.

Given the graph in Figure 13.16, find the minimum number of config-
urable logic blocks with five inputs and one output
required to partition the circuit.

Given a k-array tree of height h, find minimum number of CLBs required
with inputs and outputs.

Develop a bin-packing algorithm for partitioning a set of functional blocks
into minimum number of CLBs.

Given a set of tracks, number of antifuse elements for the new segmenta-
tion model, formulate the mixed integer program to minimize the number
of antifuse elements. While formulating the problem, consider the delay
caused by the antifuse elements and the hang-over wires.

Several factors play a key role in improving the utilization of channel
resources in an FPGA. Three such factors have been discussed in this
chapter. Discuss what other factors may be considered important for de-
signing a channel segmentation model for high performance applications.

Suggest an efficient channel segmentation model for a three layer routing
in FPGAs.

Develop a channel routing algorithm for three layer routing model in
FPGA.

Consider the function
Partition the circuit corresponding to f such that

498 Chapter 13. Physical Design Automation of FPGAs

(a)

(b)

It can be mapped to a minimum number of CLBs. Show the map-
ping.

It can be mapped to a minimum number of logic modules (each
module has three 2-to-l MUX and a OR gate). Show the mapping.

† 9.

10.

In a CLB all combinations have to be stored. Suggest a method which
stores only those entries which generate either a 0 or a 1 output, whichever
is greater without loss of functionality ?

Can the size and number of MUX inside a logic block be increased ar-
bitrarily ? What can be the maximum size of the MUX inside the logic
block ?

Bibliographic Notes
In mis-pga (old) from Murgai, Nishizaki, Shenoy, Brayton, Vincentelli, de-
composition is performed using Roth-Karp method and kernel extraction.
The reduction method used in this algorithm is computationally expensive.
Hill [Hil91] presented a CAD system for the design of Field Programmable Gate
Arrays. New FPGA architecture was developed and the use of FPGAs from the
user point of view. Another technology mapper, Hydra has been described by
Filo, Yang, Mailhot and Micheli [FYMM91]. The approach is similar to mis-pga
and performs a disjoint decomposition followed by a node minimization phase.
The main difference is that both of these phases are driven by the fact that
the Xilinx CLB may realize two outputs also. Xmap and Amap, developed by
Karplus [Kar91a, Kar91b] constructs an if-then-else dag as decomposition of the
function and uses a covering procedure to map it to CLBs. In mis-pga (new) by
Murgai, Shenoy, Brayton and Sagiovanni-Vincentelli [MSBSV91a], a combina-
torial circuit has been described in terms of Boolean equations to realize it using
the minimum number of basic blocks of the target Table Lookup architecture.
Murgai, Shenoy, Brayton and Sagiovanni-Vincentelli [MSBSV91b] presented
delay optimization for programmable gate arrays. The main considerations in
this paper are the number of levels in the circuit and the wiring delay. A two
phase approach was given. The first phase involves delay optimization during
logic synthesis before placement, and the second uses logic resynthesis during
a timing-driven placement technique. Nam-Sung Woo [Woo91] presented a
heuristic method for the reduction and packing. This is based on the notion of
edge visibility and use of global information. The packing method is based on
the degree of the node common input. Ercolani and Micheli [EM91] presented a
technology mapper for electrically programmable gate arrays. This is based on
matching algorithm that determines whether a portion of a combinational logic
circuit can be implemented by personalizing a module. The benefits include,
an increased efficiency in technology mapping, as well as portability to differ-
ent types of electrically programmable gate arrays. In [CD93] Cong, and Ding
present a study of the area and depth trade-off in LUT based FPGA technology
mapping to obtain an area minimized mapping solution. In [FW97] a new in-
tegrated synthesis and partitioning method for multiple-FPGA applications is
presented. In [CHL97] Technology mapping algorithms for minimizing power

13.6. Exercises 499

consumption in FPGA design are studied. In [SRB97] Macro Block Based
FPGA floorplanning has been discussed. [CL97] presents a new recursive bi-
partitiong algorithm targetted for a hierarchical field programmable system.
In [LW97], a new performance and Routability-Driven Router for symmetrical
array based FPGA’s is presented. A variation of gate array called LPGA (Laser
Programmable Gate Array) is a high performance gate array fabricated by laser
micro-machining system allows development of one-day laser prototypes and
two months high volume production. The base wafers are fabricated with all
interconnection metal layers and a proprietary technique is used to selectively
remove specific metalization points to personalize the arrays. Disconnecting
the excess metal links follows an automated cut-list program, generated per
specific design.

This Page Intentionally Left Blank

Chapter 14

Physical Design
Automation of MCMs

MultiChip Modules (MCMs) have been introduced as an alternative packag-
ing approach to complement the advances taking place in the IC technology.
Even though the steps in the physical design cycle of MCMs are similar to those
in PCB and IC design cycle, the design tools for PCB and IC cannot be used
for MCM directly. This is mainly due to the fact that MCM layout problems
are different from both IC layout and PCB layout problems. The existing PCB
design tools cannot handle the dense and complex wiring structure of MCMs.
On the other hand, IC layout tools are inadequate to decipher the complex
electrical, thermal and geometrical constraints of the MCM problems. As a re-
sult, the lack of CAD tools for MCMs is impeding further development in this
area. Most of the commercial CAD tools available are the adapted versions
of existing PCB tools and do not address the real problems associated with
the MCM designs. Let us just consider the problem of routing in MCM. The
signal effects of long lines in terms of crosstalk, noise, and reflections must be
taken into account during routing. In addition, as high speeds are explored,
the transmission line behavior of the interconnect must be modeled accurately
to optimize the layout. All of these conditions have to be met, subject to
the main goal of the interconnect, which is to route the signals between the
chips. In designing CAD tools for MCM, many effects have to be taken into
consideration such as clock skew, power noise disturbance, assembly effects of
thermal mechanical nature that are caused by close positioning of chips, and
limitations of assembly equipment. As a result, the design of multichip modules
involves several disciplines such as electrical, chemical, material and mechanical
engineering.

As MCMs are used for high performance system packaging, all steps in their
physical design are performance driven. This makes the existing delay models
for IC and PCBs inappropriate for MCMs. Therefore, new delay models will
have to be developed for designing MCMs more accurately in order to comply
with the stringent performance requirements.

502 Chapter 14. Physical Design Automation of MCMs

The rest of the chapter has been organized as follows: In order to understand
the issues and problems related to the physical design automation of MCMs
different types of MCM technologies will be briefly described in Section 14.1.
Section 14.2 will outline the different steps involved in the physical design of an
MCM. Partitioning, the first phase of the MCM physical design cycle will be
discussed in Section 14.3. MCM placement is discussed in Section 14.4. MCM
routing problems will be described in Section 14.5.

14.1 MCM Technologies

MCMs, or more precisely, non programmable MCMs, are generally cate-
gorized into the following three, MCM-L, MCM-C, and MCM-D. MCM-L de-
scribes high density, laminated printed circuit boards. MCM-C refers to the
ceramic substrates icluding both cofired and low-dielectric constant ceramics.
MCM-D covers modules with deposited metallic wiring on silicon or ceramic
support substrates. Yet another approach for fast turnaround is Programmable
MCM (PMCM). In this section, we present a brief review of both programmable
and non programmable MCM technologies. The methods for attaching chips
to MCMs will also discussed in this section.

MCM-L (Laminates) is the oldest technology available. MCM-L is essen-
tially an advanced PCB on which bare IC chips are mounted using Chip-On-
Board (COB) technology. The well established PCB infrastructure can be
used to produce MCM-L modules at a low cost. This makes them an attrac-
tive electronic packaging alternative for many low-end MCM applications with
low interconnect densities. MCM-L becomes less cost-effective at higher den-
sities where many additional layers are required. For cost- effectiveness, MCM
technology must increase the functionality of each layer instead of adding more
layers. MCM-L is considered a suitable technology for applications which re-
quire low risk packaging approach and most of the steps have already been
automated.

MCM-C (ceramic) refers to MCMs with substrates fabricated with cofired
ceramic or glass-ceramic techniques. These have been in use for many years
and MCM-C has been the primary packaging choice in many advanced appli-
cations requiring both performance and reliability. Due to excellent thermal
conductivity and low thermal expansion, ceramic substrates have also been
used to serve as the package. Although interconnect densities are in the range
of the same are not enough for high-end applications.

MCM-D (deposited) technology is closest to IC technology. It consists of
substrates which have alternating deposited layers of high density thin-film
metals, and low dielectric materials such as poly or silicon dioxide. MCM-
D technology is an extension of conventional IC technology. It is developed
specifically for high performance applications demanding a superior electrical
performance and a high interconnect density. Since, this technology is relatively
recent, it does not offer either a cost-effective manufacturing infrastructure, or
a high volume application. Therefore, no significant commercial driving force

14.1. MCM Technologies 503

exists. Table 14.1 compares the MCM families in terms of line widths, line
density, line separation, turnaround time and the number of years for which
these technologies have been available.

A full-custom design of an MCM requires significant engineering efforts.
The lack of a mature infrastructure further magnifies the problem, since high
density and high performance multichip modules are still expensive to fabricate
and the cost increases with the number of mask layers. In order to side-step
these difficulties, PMCMs have been introduced to minimize both the engineer-
ing delays and the cost. Programmable MCM approach is somewhat similar to
Field Programmable Gate Arrays (FPGAs) technique. Just like gate arrays,
PMCM wafers are manufactured in large quantities. A PMCM wafer has sites
for chips and several layers of programmable interconnect. The customization
process is carried out by setting programmable switches to establish the con-
nectivity needed by the user. This is done after the chips have been placed on
the chip sites. Thus, the customization consists of only placement of chips and
programming the fuses (just like FPGA) to complete the routing.

Irrespective of the types of the MCM technology used, bare chips have to be
attached to the substrates. Bare chips are attached to the MCM substrates in
three ways, viz., wire bonding, Tape Automated Bonding (TAB) and flip-chip
bonding. In wire bonding (illustrated in Figure 14.1 (a)), the back side of a chip
(nondevice side) is attached to the substrate and the electrical connections are
made by attaching very small wires from the I/O pads on the device side of
the chip to the appropriate points on the substrate. The wires are attached to
the chip by thermal compression. TAB is a relatively new method of attaching
chips to a substrate. It uses a thin polymer tape containing metallic circuitry.
The connection pattern is simply etched on a polymer tape. As shown in
Figure 14.1(b), the actual path is simply a set of connections from inner leads
to outer leads. The inner leads are positioned on the I/O pads of the chips, while
the outer leads are positioned on the connection points on the substrate. The
tape is placed on top of the chip and the substrate and pressed. The metallic
material on the tape is deposited on the chip and the substrate to make the
desired connections. Flip-chip bonding uses small solder balls on the I/O pads
of the chip to both physically attach the chip and make required electrical
connections (see Figure 14.1(c)). This is also called face down bonding, or
Controlled-Collapse Chip Connections (C4).

504 Chapter 14. Physical Design Automation of MCMs

14.2. MCM Physical Design Cycle 505

14.2 MCM Physical Design Cycle

The physical design considerations of an MCM differ significantly from their
counterparts for an IC. The input to the MCM physical design cycle is the
circuit design of the entire system. The output is the MCM layout.The phys-
ical design cycle of an MCM pursues the following steps (also illustrated in
Figure 14.2):

1.

2.

3.

Partitioning: An MCM may contain as many as 100 chips. In turn,
each chip can accommodate a certain number of transistors. The first
assignment herein is to partition the given circuit into subcircuits.The
partitioning should warrant fabrication of each subcircuits on a single
chip. Simultaneously, the number of subcircuits should be equivalent to
or less than the number of chips that the MCM can sustain. Please note
that the MCM designs require performance driven approach. This re-
quirement necessitates consideration of the power and timing constraints
in the partitioning step.These requiremnts shall be in addition to the
traditional I/O constraints and area constraints for chip sites.

Placement: The placement step is concerned with mapping the chips
to the chip sites on the MCM substrate. Placement, of course affects not
only the thermal characteristics of an MCM but also routing efficiency,
which translates directly into manufacturability and cost. The number of
components involved with the chip placement is much less as compared
to the IC placement phase. However, timing and power constraints in
MCM placement problem makes it a significantly different problem com-
pared to the IC placement. Thermal considerations in MCM placement
are important because bare chips are placed closer together and gener-
ate significant amount of heat. When the chip sites are prefabricated,
the MCM placement problem lends itself to gate array based approach.
Another variation of the MCM placement arises when the chips manufac-
tured in different technologies need to be placed on an MCM. A critical
difference between IC placement and MCM placement is allocation of
routing regions. Unlike IC placement, no routing region needs to be allo-
cated in MCMs since routing is done in routing layers and not between
chips.

Routing: After the chips have been placed on the chip sites, the next
phase of the MCM physical design is to connect these chips specified by
the net list. The objective of minimizing routing area in IC design is
no longer valid in MCM routing environment. Instead, the objective of
the MCM routing is to minimize the number of layers, as the cooling
requirement and therefore the cost of an MCM depends on the number
of layers used. Because of the long interconnect wires involved in MCM
design, crosstalk and skin effect become important considerations which
are not of much concern in IC layout. In particular, in MCM-D, skin
effect of the interconnect becomes more severe. The parasitic effects also
degrade the performance if not accounted for in routing of MCMs.

506 Chapter 14. Physical Design Automation of MCMs

14.3. Partitioning 507

Power and ground signals do not complicate global routing because these
signals are distributed on separate layers, and taps to the power supply
layers are easy to make. However, overall dimensions must be tightly
controlled (to fit within the package) and the packaging delay must be
carefully controlled. The routing environment of an MCM can be viewed
as a 3 dimensional space as shown in Figure 14.3.

14.3 Partitioning

As discussed in Chapter 5, the design of a complex system such as computer
system consisting of tens of millions of components necessitates breaking the
system into subsystems using a divide and conquer strategy. This process of
decomposing the system into subsystems is called partitioning. Traditionally,
partitioning has been applied at three levels, system level, board level and
chip level. System level partitioning breaks the system design into sub-circuits
which can fit on a PCB. Board level partitioning partitions each sub-circuit
into a set of chips. The last step in the hierarchy of partitioning, chip level
partitioning decomposes a chip circuit into smaller sub-circuits in order to ease
the task of the chip designer.

With the introduction of multichip modules, the intermediate board level
partitioning is replaced by module level partitioning. We refer to module level
partitioning as MCM partitioning. The module level partitioning is charac-
terized by high performance and high density design. Thus the module level
partitioning is performance driven. The module level partitioning is becoming
an important ingredient for complex design with the rapid increase of the device
density. The device density has, on an average, doubled annually for almost
two decades. It is anticipated that such advances will continue to be made
well into 1990s. This growth in the devices per unit area makes the problem
of MCM partitioning challenging.

The MCM partitioning depends on design style. If an gate array type

508 Chapter 14. Physical Design Automation of MCMs

design style is used, the MCM partitioning problem is similar to the gate array
partitioning problem except each ‘gate’ corresponds to a chip. We refer to this
approach as a chip array approach. If a full custom type approach is used, then
each chip can have a different size and the MCM partitioning is analogous to the
full custom partitioning problem. In the following, we restrict our discussion
to chip array approach.

MCM partitioning is defined as an optimum mapping of the design to a set
of chips (see Figure 14.4). However, as the performance considerations enter
the design, the MCM partitioning process must consider other constraints as
well. So for high performance system designs, MCM partitioning can be defined
as a partition of the design to a set of chips that minimizes the inter-chip wire
crossings subject to timing constraints, area constraints, thermal constraints
and I/O pin count constraints.

An MCM package can be considered to contain a set of equal sized
chips, each chip placed in a chip slot. Each chip has constraints on area

thermal capacity and maximum number of terminals (I/O pins)
A synchronous digital system consists of registers and blocks of combinational
logic. For simplicity, all clock generation and distribution circuits are ignored.
The system can be represented by an edge weighted graph called system graph
G = (V, E) [SKT94], where is the set of nodes representing
registers, is the set of nodes representing combinational blocks, and is
the set of all directed edges, which correspond to signal flow in the system.
Associated to each edge there is a weight representing the total
number of wires between nodes and in V. Associated with each node

we have three parameters, area power consumption and internal
delay Figure 14.5 shows a system graph.

The MCM partitioning problem is to find an optimum mapping
such that the number of total inter-chip connections

is minimized while satisfying the timing constraints, area constraints, terminal

14.3. Partitioning 509

constraints, and thermal constraints. The area and the terminal constraints is
the same as the area and the terminal constraints of IC design partitioning.
However, for the timing constraints, we need to consider the internal delay of
each circuit. The timing and the thermal constraints can be stated as:

1.

2.

Timing constraints: A register-to-register delay through some combi-
national logic blocks must be less than or equal to the cycle time.

for all where is the time delay between
objects and is the given cycle time.

Thermal constraints: The total heat generated by a partition must be
less than or equal to the thermal capacity of the corresponding mapped
slot.

Thermal constraints can be treated in a similar fashion as area constraints.
Therefore, any performance driven partitioning algorithm may be applied by
taking into consideration the thermal constraints. For the gate-array based
approach, where each chip slot is of equal size, any gate-array partitioning
algorithm may be applied with appropriate modifications. Similarly, any high-
performance full custom partitioning algorithm may be applied for the gener-
alized full custom based MCMs. In [SKT94], Shin, Kuh, and Tsay presented a
performance driven integrated partitioning and placement technique for MCMs.

510 Chapter 14. Physical Design Automation of MCMs

They only considered timing and area constraints. Two different delay models
have been considered: 1) constant delay model, and 2) linear delay model. For
constant delay model, their approach is essentially a partitioning algorithm
which will be briefly described below.

In [SKT94], given a system graph, assuming that delay time for the signal
traveling between a combinational block and a register that are grouped into the
same partition is negligible. In addition, the delay time for the signal traveling
between a combinational block and a register that are partitioned into different
groups is a constant. Each group is called a super node and corresponds to a
chip.

For each combinational block the algorithm finds the two registers
and that are adjacent to the block in the system graph. The procedure
of constructing super nodes is shown by an example in Figure 14.6. In this
example, we assume the system cycle time is which requires that the
maximum delay time between any two registers should be less than or equal
to 6. The delay time between a combinational block and a register is assumed
as D = 2. The super nodes are constructed according to the following three
cases.

1.

2.

3.

Both registers must be combined: In this case, the condition
must be satisfied. Consider the example shown in Figure 14.6(a)

with If one of and is assigned to a different partition than
the time delay will be at least 2 + 5 = 7, thus violating the timing

constraint. So, all these vertices have to be included in the same super
node.

At least one of the registers must be combined: In this case, the condi-
tions and must be satisfied. Consider
the example shown in Figure 14.6(b) with If both registers are
assigned to different partitions than the time delay will be 7, thus
violating the timing constraint. In this situation, the super node consists
of combinational block and either one of the registers.

No registers need to be combined: In this case, the condition
must be satisfied. Consider the example shown in Figure 14.6(c)

with the registers can be assigned to any partitions without vi-
olating the timing requirement. Thus, each super node consists of only
one vertex.

The algorithm repeats until no nodes can be combined. At this stage, the
number of super nodes is equal to the number of chips required in the MCM.

14.4 Placement

The thermal and timing considerations in the MCM placement problem make
it significantly different than the IC placement. With the increase in the density
of the individual chip, the thermal requirements have also gone up. High

14.4. Placement 511

speed VLSI chips may generate heat from 40 to 100 watts. In order to ensure
proper operation of the design, such a large amount of heat must be dissipated
efficiently. The heat dissipation of an MCM depends directly on how the chips
are placed. In addition to this, the timing constraints for the design must also
be satisfied. These timing constraints are responsible for the proper operation
of the module at high frequencies. The placement problem in MCM is to
assign chips to the chip sites on the substrates subject to some constraints. If
the placement is not satisfactory, then the subsequent steps of routing will be
inefficient.

Chip level placement determines the relative positions of a large number of
blocks on an IC as well as organizes the routing area into channels. As opposed
to IC placement problem, MCM placement involves fewer components (100-
150 ICs per MCM compared to 10-1000 general cells per IC) and the sizes and
shapes of ICs on an MCM are less variable than the general cells within the IC.
MCM placement is more complex because many interrelated factors determine
layout quality. Wide buses are very prevalent, propagation delays and uniform
power dissipation are much more important. As opposed to IC placement
problem, the main objective of MCM placement is to assign the chips to the
chip sites such that the number of routing layers is minimized. In addition,
other constraints such as timing constraints and thermal constraints make the
MCM placement problem more difficult. The MCM placement problem can be
formally stated as follows: given a set of chips C, and a set of chip sites on the
substrate assign to e.g., find a mapping subject to timing
constraints and thermal constraints and to minimize the number of layers. The
typical values for and range between 4-100.

There are mainly two types of placement related to MCMs, namely, chip
array and full custom.

512 Chapter 14. Physical Design Automation of MCMs

14.4.1 Chip Array Based Approach

The MCM placement approach when the chip sites are symmetric, becomes
very similar to the conventional gate array approach. In this case, the MCM
placement problem is the assignment of the chips to predefined chip sites. How-
ever, the key difference between the IC placement and the MCM placement
problem is the type of constraints involved. Figure 14.7 shows a chip array
MCM substrate. The two approaches to MCM placement problem have been
discussed by LaPotin [LaP91] as part of the early design analysis, packaging
and technology tradeoffs.

14.4.2 Full Custom Approach

One of the important features of the MCMs is that it allows the integration
of mix of technologies. This means, each individual chip can be optimally fab-
ricated using the technology best suited for that chip. Figure 14.8 shows an
arrangement depicting a concept of integration scheme derived from ideas
postulated by McDonald [McD84] and Tewksbury [Tew89]. This concept can
be viewed as an advanced version of the existing MCMs. It is envisioned that
this hypothetical system will respond directly to the cost limitations of VLSI
technologies. The system could be assembled on a large-area active substrate.
The technology of such a substrate could be optimized for yield, power, and
speed of the interconnect. This substrate could dissipate a large percentage
of the total power and could be cost-effective if fabricated with relaxed de-
sign rules in stepper-free, interconnect-oriented technology. The performance-

14.5. Routing 513

critical system components could be fabricated separately on fabrication lines
oriented toward high volume and high performance. They could be attached to
the active substrate with rapidly maturing flip-chip technology. This way only
those system elements that really require ULSI technology (for example, data
path) would be fabricated with the most expensive technologies. It is obvious
that placement problem in 2.5-D integration scheme is that of full-custom ap-
proach. In addition to the usual area constraints, the placer of this type must
be able to complete the task of placement subject to the thermal and timing
constraints.

14.5 Routing

After the chips have been placed on the chip sites, the next phase of the
MCM physical design is to connect these chips specified by the net list. As
mentioned earlier that unlike IC design, performance is the main objective in
MCM design. Therefore, the main objective of routing is to satisfy timing
constraints imposed by the circuit design. Also, the cost of an MCM is directly
proportional to the number of layers used in the design. Thus minimizing the
total number of layers used is also an objective of MCM routing. In particular,
in MCM-D, cross talk, skin and parasitic effect of the interconnect become more
critical. Crosstalk is a parasitic coupling between neighboring lines due to the
mutual capacitances and inductances. In the design of high speed systems,
crosstalk is a primary concern. Excessive crosstalk compromises noise margins,
possibly resulting in false receiver switching. The crosstalk between the lines
can be minimized by making sure that no two lines are laid out in parallel or
next to each other for longer than a maximum length.

In addition to crosstalk, the skin effect is also a major consideration in

514 Chapter 14. Physical Design Automation of MCMs

MCM routing. Skin effect is defined as characteristic of current distribution in
a conductor at high frequencies by virtue of which the current density is greater
near the surface of the conductor than its interior. As the rise time of digital
pulses is reduced to the sub-nanosecond range, the skin effect becomes an im-
portant issue in high speed digital systems. As the frequency, the conductivity,
and permeability of the conductor are increased, the current concentration is
also increased. This results in increasing resistance and decreasing internal in-
ductance at frequencies for which this effect is significant. These effects must
be taken into account while routing long lines.

14.5.1 Classification of MCM Routing Algorithms

The routing of an MCM is a three-dimensional general area routing problem
where routing can be carried out almost everywhere in the entire multilayer
substrate. However, the pitch spacing in MCM is much smaller and the routing
is much denser as compared to conventional PCB routing. Thus traditional
PCB routing algorithms are often inadequate in dealing with MCM designs.

There are four distinguished approaches for general (non-programmable)
MCM routing problems:

1.

2.

3.

4.

Maze Routing

Multiple Stage Routing

Topological Routing

Integrated Pin Distribution and Routing

The routing of programmable MCMs is very similar to that of FPGAs. In this
section, we discuss routing of both MCMs and PMCMs.

14.5.2 Maze Routing

The most commonly used routing method is three dimensional maze routing.
Although this method is conceptually simple to implement, it suffers from
several problems. First, the quality of the maze routing solution is very much
sensitive to the ordering of the nets being routed, and there is no effective
algorithm for determining a good net ordering in general. Moreover, since
the nets are routed independently, global optimization is difficult and the final
routing solution often uses a large number of vias despite the fact that there is
a large number of signal layers. This is due to the fact that maze router routes
the first few nets in planar fashion (using shorter distances), the next few nets
use a few vias each as more and more layers are utilized. The nets routed
towards the end tend to use a very large number of vias since the routing
extends over many different layers. Finally, three dimensional maze routing
requires long computational time and large memory space.

14.5. Routing 515

14.5.3 Multiple Stage Routing

In this approach, the MCM routing problem is decomposed into several sub-
problems. The close positioning of chips and high pin congestion around the
chips require separation of pins before routing can be attempted. Pins on the
chip layer are first redistributed evenly with sufficient spacing between them so
that the connections between the pins of the nets can be made without violating
the design rules. This redistribution of pins is done using few layers beneath
the chip layer. This problem of redistributing pins to make the routing task
possible, is called pin redistribution. After the pins are distributed uniformly
over the layout area using pin redistribution layers, the nets are assigned to
layers on which the assigned nets will be routed. This problem of assigning nets
to layers is known as layer assignment problem. The layer assignment problem
resembles the global routing of the IC design cycle. Similar to the global rout-
ing, nets are assigned to layers in a way such that the routability in layer or in
a group of layers is guaranteed and at the same time the total number of lay-
ers used is minimized. The layers on which the nets are distributed are called
signal distribution layers. The detailed routing follows the layer assignment.
The detailed routing may or may not be reserved layer model. The horizontal
and vertical routing may be done in same layer or different layers. Typically,
nets as distributed in such a way that each pair of layers is used for a set of
nets. This pair is called x – y plane pair since one layer is used for horizontal
segments while the other one is used for vertical segments. Another approach
is to decompose the net list such that each layer is assigned a planar set of nets.
Thus MCM routing problem become a set of single layer problem. Yet another
routing approach may combine the x–y plane pair and single layer approaches.
In particular, the performance critical nets are routed in top layers using single
layer routing because xy-plane pair routing introduces vias and bends which
degrade performance.

We now discuss each of these problems in greater detail in the following
subsections.

14.5.3.1 Pin Redistribution Problem

Pins in chip layer need to be redistributed to help in the routing process.
This is accomplished in pin distribution layers. The pin redistribution problem
can be stated as: Given the placement of chips on an MCM substrate, redis-
tribute the pins using the pin redistribution layers such that one or more of the
following objectives are satisfied (depending the the design requirements):

1.

2.

3.

4.

5.

minimize the total number of pin redistribution layers.

minimize the total number of signal distribution layers.

minimize the cross-talks.

minimize the maximum signal delay.

maximize the number of nets that can routed in planar fashion.

516 Chapter 14. Physical Design Automation of MCMs

It is to be noted that the separation between the adjacent via-grid points
may affect the number of layers required [CS91]. The pin redistribution prob-
lem can be illustrated by the example shown in Figure 14.9. The terminals
of chips need to be connected to the vias shown in Figure 14.9(a). Usually,
it is impossible to complete all the connections. In this case, we should route
as many terminals as possible (shown in Figure 14.9(b)). The unrouted ter-
minals are brought to the next layer and routed in that layer as shown in
Figure 14.9(c). This procedure is repeated until each terminal is connected to
some via. In [CS91], various approaches to pin redistribution problem have
been proposed.

14.5. Routing 517

14.5.3.2 Layer Assignment

The main objective of layer assignment for MCMs is to assign each net in
 - pair of layers subject to the feasibility of routing the nets on a global
routing grid on each plane-pair. This step determines the number of plane
pairs required for a feasible routing of nets and is therefore important step in
the design of the MCM. The cost of fabricating an MCM, as well as the cooling
of the MCM when it is operation, are directly related to the number of plane-
pairs in the MCM, and thus it is important to minimize the number of plane-
pairs. There are two approaches known to the problem of layer assignments
[HSVW90b, SK92]. The problem of layer assignment has been shown to be
NP-complete [HSVW90b].
An approximation algorithm, for minimizing the number of layers, has been
presented by Ho, Sarrafzadeh, Vijayan and Wong [HSVW90b].

14.5.3.3 Detailed Routing

After the nets have been assigned to layers, the next step is to route the
nets using the signal distribution layers. Depending on the layer assignment
approach, the detailed routing may differ. Routing process may be single-
layer routing or - -plane-pair routing. Usually a mixed approach is taken in
which the single-layer routing is first performed for more critical nets, followed
by - -plane-pair routing for less critical nets. Two models can be employed
for –- -plane-pair routing, namely -reserved model and -free model. One
advantage in -free model is that bends in nets do not necessarily introduce
vias where bends in nets introduce vias in -reserved model. The detailed
routing was presented in [LSW94].

14.5.4 Topological Routing

In [DDS91], Dai, Dayan and Staepelaere developed a multilayer router based
on rubber-band sketch routing. This router uses hierarchical top-down parti-
tioning to perform global routing for all nets simultaneously. It combines this
with successive refinement to help correct mistakes made before more detailed
information is discovered. Layer assignment is performed during the partition-
ing process to generate routing that has fewer vias and is not restricted to
one-layer one-direction. The detailed router uses a region connectivity graph
to generate shortest-path rubber-band routing.

The router has been designed primarily for routing MCM substrates, which
consist of multiple layers of free (channelless) wiring space. Since MCM sub-
strate designs have potentially large number of terminals and nets, the router
of this nature must be able to handle large designs efficiently in both time and
space. In addition, the router should be flexible and permit incremental design
process. That is, when small changes are made to the design, it should be able
to be updated incrementally and not recreated from scratch. This allows faster
convergence to a final design. In order to produce designs with fewer vias, the
router should be able to relax the one-layer one-direction restriction. This is an

518 Chapter 14. Physical Design Automation of MCMs

important consideration in high speed designs since the discontinuities in the
wiring caused by bends and vias are a limiting factor for system clock speed.

In order to support the flexibility described above, the router must have an
underlying data representation that models planar wiring in a way that can
be updated locally and incrementally. For this reason, SURF models wiring as
rubber-bands [CS84, LM85]. Rubber-band provides canonical representation
for planar topological wiring. Because rubber-bands can be stretched or bent
around objects, this representation permits incremental changes to be made
that only affect a local portion of the design. A discussion of this representation
has been described in [DKJ90].

Once the topology of the wiring is known, the rubber-band sketch can
be augmented with spokes to express spatial design constraints such as wire
width, wire spacing, via size, etc. [DKS91]. Since successful creation of the
spoke sketch guarantees the existence of a geometrical, wiring (Manhattan or
octilinear), the final transformation to fixed geometry wiring can be delayed
until later in the design process. This allows most of the manipulation to take
place in more flexible rubber-band format. Figure 14.10 shows different views
of the same wiring topology. These represent various states of the rubber-band
representation.

In this context, a topological router has been developed that produces multi-
layer rubber-band sketches. The input to this router is a set of terminals, a
set of nets, a set of obstacles, and a set of wiring rules. These rules include
geometrical design rules and constraints on the wiring topology. The topolog-
ical constraints may include valid topologies (daisy chain, star, etc.) as well
as absolute and relative bounds on segment lengths. The output of the router
is a multilayer rubber-band sketch in which all the points of a given net are
connected by wiring. Although the routability of a sketch is not guaranteed
until the successful creation of spokes. At each stage, the router uses the in-
creasingly detailed information available to generate a sketch without overflow
regions. This increases the chance that the sketch can be successfully trans-
formed into a representation (the spoke sketch) that satisfies all of the spatial

14.5. Routing 519

constraints. In addition the router tries to reduce overall wire length and the
number of vias. A more detailed analysis of routability of a rubber-band sketch
is described in [DKS91].

14.5.5 Integrated Pin Distribution and Routing

In [KC92], Khoo and Cong presented an integrated algorithm SLICE for
routing in MCM. The basic idea is to redistribute pins simultaneously with
routing in each layer, instead of the pins distribution prior to routing. SLICE
performs planar routing on a layer by layer basis. Subsequent to routing on
one layer, the terminals of the unrouted nets are propagated to the next layer.
The routing process is then continued until all the nets are routed.

An important feature of SLICE is computation of planar set of nets for
each layer. The algorithm strives to connect maximum number of nets in each
layer. The algorithm attempts partial routing of nets that cannot be routed
completely in a layer. This facilitates completion of nets in the subsequent
layer with shorter wires. The routing region is scanned from left to right. A
topological planar set of nets is computed for each adjacent column-pair using
maximum weighted non-crossing matching. The matching is comprised of a
set of non-crossing edges that extend from the left column to the right column.
Thereafter, the physical routing between the column-pair is generated based
on the selected edges in the matching. This process is carried out for each
column from left to right. The completion of the planar routing in a layer is
followed by distribution of the terminals of the unrouted nets so that they can
be propagated to the next layer without causing local congestions. The left
to right scanning operation in the planar routing culminates in predominantly
horizontal wires in the solution. A restricted two-layer maze routing technique
is adopted for completion of the routing in vertical direction. Unnecessary
jogs and wires are eliminated after each layer is routed. The terminals of the
unrouted nets are propagated to the next layer. Finally, the routing region is
rotated by 900 so that the scanning direction is orthogonal to the one used in
the previous layer. The process is iterated until all the nets have been routed.
Details of the planar routing, pin redistribution, and maze routing are available
in [KC92].

14.5.6 Routing in Programmable Multichip Modules

Like gate arrays, routability is a key concept in the design of programmable
MCMs. In a programmable MCM design, most if not all, of the masking or
phototooling steps are defined prior to commencement of the system designing.
Initially, a substrate is manufactured in a generic fashion. Subsequently, it is
customized for fulfilling the specific needs of the user. The capability for rout-
ing complex and dense multichip designs requires early designing of a highly
routable wiring topology. An important component for achieving efficient pro-
grammable designs is the design tool that can sustain the dual responsibility
of: one, deciphering the programmable wiring structure; and two, perform-

520 Chapter 14. Physical Design Automation of MCMs

ing the actual routing (customization) needed to realize an application specific
MCM. It is noteworthy that the routing efficiency is a factor of both the base
wiring density and the resource utilization. The base wire density is typically
measured in inches of wire per square inch of the substrate area. The resource
utilization refers to the fraction of available wiring that can be utilized in rout-
ing a design. The total wire length used, relative to the minimum theoretical
routing length, must be accounted for.

Electrical performance is a key ingredient to any programmable custom
MCM design. If the programmable approach fails to meet the performance
goals, then its application objectives will not be accomplished. In many cir-
cumstances, electrical performance of the signal interconnect will be relatively
good even without rigorous design for characteristic impedance, low loss etc.
This can be ascribed to the electrical length of the signal wiring. In most MCM
environments, the same is short as compared to the wavelength/rise times of
the IC signals. The crux of the issue in nearly all cases is capacitive loading
reduction for CMOS systems in order to minimize delay caused by RC time
constraints. In other words, a large fraction of system designs will be needed
to address signal delay more than high bandwidth signal fidelity. This may
not be the case in a more conventional single chip packaging/PC board im-
plementation where physical/electrical lengths of interconnect are longer and
more significant. Perhaps a more compelling issue associated with signal fi-
delity is power distribution. Many signal noise problems develop due absence
of clean power and ground supplies. Due to these, noise is fed forward through
output drivers, which diminishes noise margins at the receivers. This imposes
an additional demand on the design of a programmable MCM. It decrees that
the power distribution scheme must be supportive of high performance, in ad-
dition to being flexible. The power distribution network of the MCM design
is usually predefined and accommodates a myriad of supply voltages, variable
supply potentials, and a variety of both AC/DC current requirements.

Figure 14.11 illustrates a simplified cut-away view of a programmable multi-
chip module with a substrate wherein antifuses have been incorporated. The
substrate is comprised of four metal layers separated by dielectric layers. The
lower two layers are used for power distribution. On the other hand, the upper
two layers are used for an orthogonal wiring grid with permanent vias or an-
tifuses in selected grid interconnections. The uppermost layer also houses the
bonding pads. The bare chips will be electrically connected to these pads upon
completion of the programming. A signal path can be programmed through
the substrate by linking previously uncommitted line elements together via the
antifuses. The interconnection line architecture of actual designs is much more
convoluted than the one presented in the above mentioned simplified example.
However, the principle of programming remains unaltered in either case. Since,
all line elements are accessible from a bonding pad, a programming pulse can
be applied. A programming pulse with a voltage amplitude larger than the
threshold voltage is applied using a wafer prober to a pair of wiring elements
in order to connect them to each other.

14.6. Summary 521

14.6 Summary

The MCM approach to microelectronic packaging has significantly improved
the system performance. Such improvement has been acheived by bridging the
gap between the existing PCB packaging approach and the progressing VLSI
IC technology. The physical design of MCMs is an important ingredient of
the overall MCM design cycle. The density and complexity of contemporary
VLSI/ULSI chips require automation of the physical design of MCMs. Further
developments of MCMs face stuff challenges due to limited research in the area
of development of algorithms requisite for MCM physical design. This is pri-
marily attributable to the fact that MCMs pose an entirely new set of problems
which cannot be solved by existing PCB or IC layout tools. Therefore, consid-
erable research efforts need to be steered towards development of algorithms
for MCM physical design automation.

14.7 Exercises

1. A Multi-Chip Module (MCM) consists of many interconnected bare chips.
Consider a hypothetical MCM with four chip slots. Each slot has five
terminals. Does there exist a 4-way partition of the graph in Figure 14.12,

522 Chapter 14. Physical Design Automation of MCMs

† 2.

† 3.

4.

† 5.

† 6.

‡ 7.

‡ 8.

‡ 9.

each having no more than three vertices and the number of terminals for
each partition is no more than five?

Consider the thermal-driven placement problem in which the chips are
to be placed onto chip sites such that the heat distribution across the
multichip module is uniform. Develop an algorithm for such a placement.

In MCM placement problem, the heat distribution should be uniform
over the MCM. Modify the simulated annealing algorithm described in
Chapter 5 to take the heat effect into account so that it can be used in
MCM placement.

The routing problem for MCMs is three dimensional. Extend maze rout-
ing algorithm for routing a two-terminal net in three-dimensions.

Extend line probe algorithm for global routing a two-terminal net in
three-dimensions.

Let L be the longest possible length of a net that does not cause undue
skin effects. Develop a global router that guarantees the length con-
straints imposed by the skin effects.

Formulate global routing in three-dimensions as a Hierarchical Integer
Program with an objective of optimizing overall wire length.

Develop a heuristic algorithm for pin redistribution such that it minimizes
the net lengths and the number of of layers needed.

Develop a crosstalk-driven router for MCM, which routes all the nets
and also minimizes the crosstalk between the neighboring lines. Assume
that the system is to be assembled on a multichip module using silicon
substrate and silicon dioxide as dielectric layer.

14.7. Exercises 523

† 10. Consider the following channel routing problem motivated by the crosstalk.
Let L be the longest distance two nets can run parallel to each other with-
out causing undue crosstalk problems. Modify Yoshimura-Kuh channel
routing algorithm to minimize the crosstalk.

Bibliographic Notes
A comprehensive introduction to the technology of MCM-based electronic pack-
aging, covering all aspects of MCM, including classification, design, and CAD
tools, and explaining methods and materials used in the design of MCM-based
systems is given in the book Introduction to MCMs [SYB95]. A textbook by
Tummala and Rymaszewski [TR89] covers the fundamental concepts of mi-
croelectronic packaging. A survey of electronic packaging technology appears
in [Tum91]. A mathematical analysis of different system packaging parameters
can be found in [Mor90]. An excellent discussion on die attachment techniques
can be found in the book by Bakoglu [Bak90]. The discussion on early design
analysis can be found in [CL89, LaP91]. Discussion on testing and diagnosis of
multichip modules can be found in [KT91]. A detailed analysis about the skin
effect in thin-film interconnections for ULSI/VLSI packages has been described
in [HT91]. An electrical design methodology for multichip modules is described
by Davidson [Dav84]. An excellent discussion about thermal issues in MCMs
has been presented by Buschbom [Bus90]. In [RP96]an adaptive genetic al-
gorithm for Performance driven MCM Partitioning is presented. In [CL96], a
multilayer, MCM router called MCG, is introduced for x-y routing. The book
[Lic95] is a guide to using multichip modules (MCMs) in the design, testing, and
manufacture of electronic systems and equipment, for students and profession-
als in electronics, computer, and materials engineering. [CF96] presents current
and future techniques and algorithms of high performance multichip modules
(MCMs) and other packaging methodologies. A genetic algorithm for building-
block placement of MCMs and ICs is presented which simultaneously minimizes
layout area and an Elmore-based estimate of the maximum path delay while
trying to meet a target aspect ratio is presented in [EK96b]. In [LGKM96], chip
pad migration is shown as a key component to high performance MCM design.
The book [SK84] collects together a large body of important research work that
has been conducted in recent years in the area of Multichip Module (MCM)
design. All major aspects of MCM physical design are discussed, including
interconnect analysis and modeling, system partitioning and placement, and
multilayer routing. IMAPS-International Microelectronics And Packaging So-
ciety plays a key role in advancing the state of the art in MCM technology by
organizing workshops, conferences and educational tutorials. The www site for
IMAPS is (www.imaps.org).

This Page Intentionally Left Blank

Bibliography

[ACHY97]

[AGR70]

[AJK82]

[AK90]

[Ake67]

[Ake81]

[AKRV89]

[Arn82]

[ASST97]

[Bak90]

C. J. Alpert, T. Chan, D. H. Huang, and I. Markov K. Yan.
Quadratic placement revisited. 34th Design Automation Confer-
ence Proceedings, pages 752–757, June 1997.

S. B. Akers, J. M. Geyer, and D. L. Roberts. Ic mask layout with
a single conductor layer. Proceedings of 7th Design Automation
Workshop, pages 7–16, 1970.

K. J. Antreich, F. M. Johannes, and F. H. Kirsch. A new ap-
proach for solving the placement problem using force models.
Proceedings of the IEEE International Symposium on Circuits
and Systems, pages 481–486, 1982.

J. Apte and G. Kedam. Heuristic algorithms for combined stan-
dard cell and macro block layouts. Proceedings of the 6th MIT.
Conference on Advanced Research in VLSI, pages 367–385, 1990.

S. B. Aker. A modification of lee’s path connection algorithm.
IEEE Transactions on Computers, pages 97–98, February 1967.

S. B. Akers. On the use of the linear assignment algorithm in
module placement. Proceedings of 18th ACM/IEEE Design Au-
tomation Conference, pages 137–144, 1981.

I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga. An im-
plementation of karmarkar’s algorithm for linear programming.
Math. Program., 44:297–335, 1989.

P. B. Arnold. Complexity results for circuit layout on double-
sided printed circuit boards. Undergraduate thesis, Department
of Applied Mathematics, Harvard University, May 1982.

I. Arungsrisangchai, Y. Shigehiro, I. Shirakawa, and H. Taka-
hashi. A fast minimum cost flow algorithm for vlsi layout com-
paction. ISCAS, pages 1672–167, 1997.

H. B. Bakoglu. Circuits, Interconnections, and Packaging for
VLSI. Addison Wesley, 1990.

526 Bibliography

[Bar90]

[BCS91]

[BH83]

[Bia89]

[BJ86]

[BK92]

[BKPS94]

[BKS92]

[BL76]

[BMPS94]

F. Barahona. On via minimization. IEEE Transactions on Cir-
cuits and Systems, 37(4):527–530, April 1990.

D. Braun, J. Burns, S. Devadas, H. K. Ma, K. Mayaram,
F. Romeo, and A. Sangiovanni-Vincentelli. Chameleon: A new
multi-layer channel router. Proceedings of 23rd Design Automa-
tion Conference, IEEE-86:495–502, 1986.

S. Burman, H. Chen, and N. Sherwani. Improved global rout-
ing using Proceedings of 29th Annual Allerton Con-
ference on Communications, Computing, and Controls, October
1991.

M. Burstein and S. J. Hong. Hierarchical vlsi layout: Simulta-
neous placement and wiring of gate arrays. Proceedings of VLSI,
1983.

J. Bianks. Partitioning by probability condensation. Proceedings
of Design Automation Conference, pages 758–761, 1989.

P. Bannerjee and M. Jones. A parallel simulated annealing al-
gorithm for standard cell placement on a hypercube computer.
Proceedings of the IEEE International Conference on Computer
Design, page 34, 1986.

K.D. Boese and A.B. Kahng. Zero skew clock routing trees with
minimum wire length. Proc. IEEE int. conference ASIC, pages
1.1.1–1.1.5, 1992.

M. Beardslee, C. Kring, R. Murgai, H. Savoj, R. K. Brayton,
and A. R. Newton. Slip: A software environment for system
level interactive partitioning. Proceedings of IEEE International
Conference on Computer-Aided Design, pages 280–283, 1966.

S. Bhingarde, R. Khawaja, A. Panyam, and N. Sherwani. Over-
the-cell routing algorithms for industrial cell models. Proceedings
of 7th International Conference on VLSI Design, pages 143–148,
1994.

S. Burman, C. Kamalanathan, and N. Sherwani. New channel
segmentation model and routing algorithm for high performance
fpgas. Proceedings of International Conference on Computer-
Aided Design, pages 22–25, 1992.

K. S. Boothe and G. S. Lueker. Testing for consecutive ones
property, interval graphs and graph planarity using p q-trees al-
gorithm. Journal of Computer and System Science, 13:335–379,
1976.

S. Bhingarde, S. Madhwapathy, A. Panyam, and N. Sherwani.
An efficient four layer over-the-cell router. ISCAS, 1994.

Bibliography 527

[BN86]

[BN87]

[Bol79]

[Boy87]

[BP83]

[BPS93]

[Bra84]

[Bre77a]

[Bre77b]

[BRV92]

[BS86]

[Buc98]

[Bus90]

[BV92]

J. Burns and A. R. Newton. Spares: A new constraint-based ic
symbolic layout spacer. Proceedings of the IEEE Custom Inte-
grated Circuits Conference, pages 534–539, May 1986.

J. L. Burns and A. R. Newton. Efficient constraint generation
for hierarchical compaction. Proceedings of IEEE International
Conference on Computer Design, pages 197–200, 1987.

H. Bollinger. A mature da system for pc layout. Proceedings of
first International Printed Circuit Conference, 1979.

D. G. Boyer. Split grid compaction for virtual grid symbolic
design system. Proceedings of IEEE International Conference on
Computer-Aided Design, pages 134–137, November 1987.

M. Burstein and R. Pelavin. Hierarchical channel router. Proceed-
ings of 20th ACM/IEEE Design Automation Conference, pages
519–597, 1983.

S. Bhingarde, A. Panyam, and N. Sherwani. On optimal cell
models for over-the-cell routing. Proceedings of 6th International
Conference on VLSI Design, Bombay, India, pages 94–99, Jan-
uary 1993.

H. N. Brady. An approach to topological pin assignment. IEEE
Transactions on Computer-Aided Design, CAD-3:250–255, July
1984.

M. A. Breuer. A class of min-cut placement algorithms. Proceed-
ings Design Automation Conference, pages 284–290, 1977.

M. A. Breuer. Min-cut placement. J. Design Automation and
Fault-Tolerant Computing, pages 343–382, October 1977.

S. Brown, J. Rose, and Z. G. Vransic. A detailed router for
field-programmable gate. IEEE Transactions on Computer-Aided
Design, 11:620–628, May 1992.

J. Bhasker and S. Sahni. A linear algorithm to find a rectangular
dual of a planar graph. Proceedings of 21st ACM/IEEE Design
Automation Conference, pages 108–114, 1986.

Lillis Buch. Table-lookup methods for improved performance
driven routing. 35th Design Automation Conference Proceedings,
pages 368–373, June 1998.

M. Buschbom. Mcm thermal challenges. Surface Mount Tech-
nology, pages 30–34, 1990.

C. S. Bamji and R. Varadarajan. Hierarchical pitchmatching
compaction using minimum design. DAC, pages 311–317, 1992.

528 Bibliography

[BV93]

[BW83]

[CB87]

[CC97]

[CD87]

[CD93]

[CDW75]

[CF96]

[CF98]

[CH87]

[CH88]

[CH90]

C. S. Bamji and R. Varadarajan. Mstc: A method for identifying
overconstraints during hierarchical compaction. DAC, pages 389–
394, 1993.

D. G. Boyer and N. Weste. Virtual grid compaction using the
most recent layers algorithm. Proceedings of IEEE International
Conference on Computer-Aided Design, pages 92–93, September
1983.

R. Camposano and R. K. Brayton. Partitioning before logic
synthesis. Proceedings of IEEE International Conference on
Computer-Aided Design, pages 324–326, 1987.

C. Chang and J. Cong. An efficient approach to multi-layer layer
assignment with application to via minimization. 34th Design
Automation Conference Proceedings, pages 600–603, June 1997.

K. C. Chang and D. H. Du. Efficient algorithms for layer assign-
ment problem. IEEE Transactions on Computer-Aided Design,
CAD-6(1):67–78, January 1987.

J. Cong and Y. Ding. A topologically adaptable cellular router.
Proceedings of 30th Design Automation Conference, pages 213–
218, June 1993.

J. Cullum, W. Donath, and P. Wolfe. The minimization of cer-
tain nondifferentiable sums of eigenvalues of symmetric matrices.
Mathematical Programming Study, 3:35–55, 1975.

J. D. Cho and P. D. Franzon. High Performance Design Automa-
tion for Multi-Chip Modules and Packages. World Scientific Pub
Co, 1996.

T. Chen and M. Fan. On convex formulation of the floorplan
area minimization problem. Proceedings of ISPD, pages 124–128,
1998.

C .W. Carpenter and M. Horowitz. Generating incremental
vlsi compaction spacing constraints. Proc. DAC, pages 291–297,
1987.

J. P. Cohoon and P. L. Heck. Beaver: A computational geom-
etry based tool for switchbox routing. IEEE Transactions on
Computer-Aided Design, 7:684–697, June 1988.

A. Chatterjee and R. Hartley. A new simultaneous circuit parti-
tioning and chip placement approach based on simulated anneal-
ing. Proceedings of Design Automation Conference, pages 36–39,
1990.

Bibliography 529

[CH94]

[CH96]

[Cha76]

[Che86]

[CHH92]

[CHL97]

[CHS93]

[CK81]

[CK84]

[CK86]

[CKC83]

Ting-Hai Chao and Yu-Chin Hsu. Rectilinear steiner tree con-
struction by local and global refinement. IEEE Transactions
on CAD of Integrated Circuits and Systems, 13:303–309, March
1994.

Lillis Cheng and Lin Ho. New performance driven routing tech-
nologies with explict area/delay tradeoff and simultaneous wire
sizing. 33rd Design Automation Conference Proceedings, pages
395–400, June 1996.

W. H. Chang. Analytical ic metal-line capacitance formulas.
IEEE Transactions on Microwave Theory and Technology, MTT-
24:608–611, 1976.

H. H. Chen. Trigger: A three layer gridless channel router. Pro-
ceedings of IEEE International Conference on Computer-Aided
Design, pages 196–199, 1986.

T. H. Chao, Y. C. Hsu, and J. M. Ho. Zero skew clock net
routing. ACM/IEEE Design Automation Conference, pages 518–
523, 1992.

Chau-Shen Chen, TingTing Hwang, and C. .L. Liu. Low power
fpga design- a re-engineering approach. DAC, pages 656–661,
1997.

J. Cong, M. Hossain, and N. Sherwani. A provably good mul-
tilayer topological planar routing algorithm in ic layout design.
IEEE Transactions on Computer-Aided Design, January 1993.

M. J. Ciesielski and E. Kinnen. An optimum layer assignment for
routing in ic’s and pcb’s. Proceedings of 18th Design Automation
Conference, pages 733–737, June 1981.

C. Cheng and E. Kuh. Module placement based on resistive net-
work optimization. IEEE Transaction on Computer-Aided De-
sign, CAD-3:218–225, July 1984.

H. H. Chen and E. Kuh. Glitter: A gridless variable-width
channel router. IEEE Transactions on Computer-Aided Design.,
CAD-5(4):459–465, 1986.

R. W. Chen, Y. Kajitani, and S. P. Chan. A graph-theoretic
via minimization algorithm for two-layer printed circuit boards.
IEEE Transactions on Circuits and Systems, CAS-30(5):284–
299, May 1983.

A. Caldwell, A. Kahng, S. Mantik, I. L. Markov, and A. Ze-
likovsky. On wirelength estimations for row-based placement.
Proceedings 1998 International Symposium on Physical Design,
pages 4–11, April 1998.

530 Bibliography

[CL84]

[CL86]

[CL88]

[CL89]

[CL90]

[CL91]

[cL93]

[CL96]

[CL97]

[CLB94]

[CLR90]

[CM89]

[CM96]

[CMS91]

Y. Chen and M. Liu. Three-layer channel routing. IEEE Transac-
tions on Computer-Aided Design, CAD-3(2): 156–163, April 1984.

G. Chartrand and L. Lesniak. Graphs and Digraphs. Wadsworth
and Brooks/Cole Inc., Monterey, 1986.

J. Cong and C. L. Liu. Over-the-cell channel routing. Proceedings
of International Conference on Computer-Aided Design, pages
80–83, 1988.

Y. H. Chen and David P. Lapotin. Congestion analysis for
wirability improvement. Research report, IBM T.J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, NY, 1989.

J. Cong and C. L. Liu. Over-the-cell channel routing. IEEE
Transactions on Computer-Aided Design, pages 408–418, 1990.

J. Cong and C. L. Liu. On the k-layer planar subset problem
and topological via minimization problem. IEEE Transactions
on Computer-Aided Design, 10(8):972–981, 1991.

Tsu chang Lee. A bounded 2d contour searching algorithm for
floorplan design with arbitrarily shaped rectilinear and soft mod-
ules. Proceedings of 30th Design Automation Conference, pages
525–530, June 1993.

Jo Dale Carothers and Donghui Li. Fast coupled noise estima-
tion for crosstalk avoidance in the mcg mcm autorouter. IEEE
Transactions on VLSI systems, 4(3):356–368, September 1996.

VI Chi Chan and David Lewis. Hierarchical parttionong for field
programmable systems. ICCAD 97, pages 428–435, 1997.

Jason Cong, Zheng Li, and Rajive Bagrodia. Acyclic multiway
partitioning of boolean networks. Proceedings of 31st Design Au-
tomation Conference, pages 670–675, June 1994.

T. Cormen, C. E. Leiserson, and R. Rivest. Introduction to Al-
gorithms. McGraw Hill, 1990.

H. M. Chan and P. Mazumder. A genetic algorithm for macro
cell placement. Technical report, Department of Electrical Engi-
neering and Computer Science, University of Michigan, 1989.

Bamji C. and E. Malavasi. Enhanced network flow algorithm for
yield optimization. DAC, 1996.

H. Chan, P. Mazumder, and K. Shahookar. Macro-cell and
module placement by genetic adaptive search with bitmap-
represented chromosome. Integration: the VLSI Journal,
12(1):49–77, November 1991.

Bibliography 531

[Con89]

[CP68]

[CP86]

[CP88]

[CPH94]

[CPL93]

[CRK95]

[CS84]

[CS91]

[CS93]

[CSW89]

[CSW92]

J. Cong. Pin assignment with global routing. Proceedings of
International Conference on Computer-Aided Design, pages 302–
305, 1989.

H. R. Charney and D. L. Plato. Efficient partitioning of compo-
nents. Proceedings of the 5th Annual Design Automation Work-
shop, pages 16.0–16.21, 1968.

J. P. Cohoon and W. Paris. Genetic placement. Proceed-
ings IEEE International Conference On Computer-Aided Design,
pages 422–425, 1986.

J. Cong and B. Preas. A new algorithm for standard cell
global routing. Proceedings of IEEE International Conference
on Computer-Aided Design, pages 176–179, 1988.

T. Cho, S. Pyo, and J. Heath. Parallex: A parallel approach to
switch box routing. IEEE Transactions on CAD of Integrated
Circuits and Systems, 13:684–693, June 1994.

J. Cong, B. Preas, and C. Liu. Physical models and efficient
algorithms for over the cell routing in standard cell designs.
IEEE Transactions on CAD of Integrated Circuits and Systems
, 12:723–734, May 1993.

Chiluvuri, V. K. R., and I. Koren. Layout synthesis techniques for
yield enhancement. IEEE Trans Semiconductor Manufacturing,
8 2:178–187, 1995.

R. Cole and A. Siegel. River routing every which way, but loose.
Proceedings of 25th Annual Symposium on Foundation of Com-
puter Science, pages 65–73, 1984.

J. D. Cho and M. Sarrafzadeh. The pin redistribution problem
in multichip modules. In the Proceedings of Fourth Annual IEEE
International ASIC Conference and Exhibit , pages 9–2.1–9–2.4,
September 1991.

J. Cho and M. Sarrafzadeh. A buffer distribution algorithm for
high speed clock routing. Proceedings of 30th Design Automation
Conference, pages 537–543, June 1993.

C. Chiang, M. Sarrafzadeh, and C. K. Wong. A powerful global
router: Based on steiner min-max trees. Proceedings of IEEE
International Conference on Computer-Aided Design, pages 2–5,
November 7-10 1989.

C. Chiang, M. Sarrafzadeh, and C. K. Wong. A weighted-steiner-
tree-based global router. Manuscript, 1992.

532 Bibliography

[CT]

[CTC94]

[CWL87]

[Dav84]

[DDS91]

[dDWLS91]

[De86]

[DEKP89]

[Deu76]

[Deu85]

[DFW84]

[DG80]

[Dij59]

Cheng-Hsi Chen and I. G. Tollis. An /spl omega/(k/sup 2/)
lower bound for area optimization of spiral floorplans. IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 15 3:358 –360.

R. P. Chalasani, K. Thulasiraman, and M. A. Comeau. Inte-
grated vlsi layout compaction and wire balancing on a shared
memory multiprocessor: Evaluation of a parallel algorithm. Intl
Symp Parallel Architectures, Algorithms and Networks, pages 49–
56, 1994.

J. Cong, D. F. Wong, and C. L. Liu. A new approach to the three-
layer channel routing problem. Proceedings of IEEE International
Conference on Computer-Aided Design, pages 378–381, 1987.

E. E. Davidson. An electrical design methodology for multi-
chip modules. In Proceedings for the International Conference
on Computer Design, pages 573–578, 1984.

W. W. Dai, T. Dayan., and D. Staepelaere. Topological routing
in surf: Generating a rubber-band sketch. Proceedings for the
28th Design Automation Conference , pages 39–44, 1991.

P. de Dood, J. Wawrzynek, E. Liu, and R. Suaya. A two-
dimensional topological compactor with octagonal geometry.
DAC, pages 727–731, 1991.

V. K. De. A Heuristic Global Router for Polycell Layout. PhD
thesis, Duke University, 1986.

W. W. Dai, B. Eschermann, E. Kuh, and M. Pedram. Hierarchi-
cal placement and floorplanning in bear. IEEE Transaction on
Computer-Aided Design, 8:1335–1349, Dec 1989.

D. N. Deutsch. A dogleg channel router. Proceedings of
13th ACM/IEEE Design Automation Conference, pages 425–433,
1976.

D. N. Deutsch. Compacted channel routing. Proceedings of IEEE
International Conference on Computer-Aided Design, Interna-
tional Conference on Computer-Aided Design-85:223–225, 1985.

S. Dhar, M. A. Franklin, and D. F. Wang. Reduction of clock
delays in vlsi structres. Proceedings of IEEE International Con-
ference on Computer Design, pages 778–783, October 1984.

D. N. Deutsch and P. Glick. An over-the-cell router. Proceedings
of Design Automation Conference, pages 32–39, 1980.

E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

Bibliography 533

[DIN87]

[Dji82]

[DK82]

[DK85]

[DK87a]

[DK87b]

[DKJ90]

[DKS91]

[DL87a]

[DL87b]

[DL91]

D. H. C. Du, Oscar H. Ibarra, and J. Fernando Naveda. Single-
row routing with crossover bound. IEEE Transactions on
Computer-Aided Design, CAD-6:190–201, 1987.

H. N. Djidjev. On the problem of partitioning planar graphs.
SIAM Jorunal on Algebraic and Discrete Methods, 3(2):229–240,
1982.

W. A. Dees and P. G. Karger. Automated rip-up and reroute
techniques. Proceedings of Design Automation Conference, 1982.

A. E. Dunlop and B. W. Kerninghan. A procedure for placement
of standard-cell vlsi circuits. IEEE Transactions on Computer-
Aided Design, pages 92–98, January 1985.

W. Dai and E. S. Kuh. Simultaneous floor planning and global
routing for hierarchical building-block layout. IEEE Transactions
on Computer-Aided Design, pages 828–837, September 1987.

W. W. Dai and E. S. Kuh. Global Spacing of Building-Block Lay-
out. Elsevier Science Publisher B. V., Amsterdam, The Nether-
lands, 1987.

W. W. Dai, R. Kong, and J. Jue. Rubber band routing and
dynamic data representation. Proceedings for 1990 International
Conference on Computer Aided Design , pages 52–55, 1990.

D. Dolev, K. Karplus, A. Siege, A. Strong, and J. D. Ullman.
Optimal wiring between rectangle. Proceedings of 13th Annual
ACM Symposium on Theory of Computation, pages 312–317,
May 1987.

W. W. Dai, R. Kong, and M. Sato. Routability of a rubber-band
sketch. Proceedings for the 28th Design Automation Conference
, pages 45–48, 1991.

J. Doenhardt and T. Lengauer. Algorithmic aspect of one-
dimensional layout. IEEE Transaction on Computer-Aided De-
sign, CAD-6(5):863–878, April 1987.

D. H. C. Du and L. H. Liu. Heuristic algorithms for single row
routing. IEEE Transactions on Computers, C-36:312–320, March
1987.

D. Dutt and C.Y. Lo. On minimal closure constraint generation
for symbolic cell assembly. DAC, pages 736–739, 1991.

J. Dao, N. Matsumotu, T. Hamai, C. Ogawa, and S. Mori. A
compaction method for full-chip vlsi layouts. IEEE Transaction
on Computer-Aided Design, DAC:407–412, 1993.

534 Bibliography

[DMPS94]

[Don90]

[DPLL96]

[DSKB95]

[Dun84]

[ED86]

[Eda91]

[Eda94]

[EET89]

[Eic86]

[EK96a]

S. Danda, S. Madhwapathy, A. Panyam, and N. Sherwani. An
optimal algorithm for maximum two planar subset problem. Pro-
ceedings of Fourth Great Lakes Symposium on VLSI, pages 80-85,
March 1994.

W. E. Donath, R. J. Norman, B. K. Agrawal, S.E. Bello
Sang Yong Han, J. M. Kurtzberg, P. Lowy, and R. I. McMillan.
Timing driven placement using complete path delays. Proceed-
ings of 27th ACM / IEEE Design Automation Conference, pages
84–89, 1990.

W. E. Donath. Timing driven placement using complete path de-
lays. Proceedings of 27th ACM/IEEE Design Automation Con-
ference, pages 84–89, 1990.

S. K. Dong, P. Pan, C.Y. Lo, and C.L. Liu. Constraint relaxation
in graph-based compaction. Physical Design Workshop, pages
256–261, 1996.

P. S. Dasgupta, S. Sur-Kolay, and B. B. Bhattacharya. A unified
approach to topology generation and area optimization of general
floorplans. ICCAD-95. Digest of Technical Papers., pages 712–
715, 1995.

A. E. Dunlop. Chip layout optimization using critical path
weighting. Proceedings of 21st ACM / IEEE Design Automation
Conference, pages 133–136, 1984.

R. J. Enbody and H. C. Du. Near-optimal -layer channel rout-
ing. Proceedings of the 23rd Design Automation Conference,
pages 708–714, June 1986.

Masato Edahiro. Minimum skew and minimum path length rout-
ing in vlsi layout design. NEC, Res Devel, 32 4:569–575, 1991.

Masato Edahiro. An efficient zero-skew routing algorithm. Pro-
ceedings of 31st Design Automation Conference, pages 375–380,
June 1994.

G. H. Ehrlich, S. Even, and R. E. Tarjan. Intersection graphs
of curves in the plane. Journal of Combinatorial Theory Series,
21:394–398, April 1989.

P. A. Eichenberger. Fast Symbolic Layout Translation for Cus-
tom VLSI Integrated Circuits. PhD thesis, Stanford University,
Stanford, CA, 1986.

Henrik Esbensen and Ernest S. Kuh. Explorer: An interactive
floorplanner for design space exploration. EuroDAC-96, pages
356–361, 1996.

Bibliography 535

[EK96b]

[EL96]

[EM91]

[EPL72]

[Esc88]

[Eve79]

[FCMSV92]

[Feu83]

[FF62]

[FHR85]

[FK82]

[FK86]

[FM82]

Henrik Esbensen and Ernest S. Kuh. An mcm/ic timing-driven
placement algorithm featuring explicit design space exploration.
Proceedings of the IEEE Multi-Chip Module Conference (MCMC
’96), 1996.

Masato Edahiro and Richard J. Lipton. Clock buffer placement
algorithm for wire-delay-dominated timing model. Proceedings
of The Sixth Great Lakes Symposium on VLSI (GLS-VLSI’ 96),
1996.

S. Ercolani and G. D. Micheli. Technology mapping for elec-
trically programmable gate arrays. Proceeding of 28th Design
Automation Workshop, pages 234–239, 1991.

S. Even, A. Pnnueli, and A. Lempel. Permutation graphs and
transitive graphs. Journal of the ACM, 19:400–410, 1972.

B. Eschermann. Hierarchical placement for macrocells with si-
multaneous routing area allocation. Technical Report Mem.
UCB/ERL M88/49, Univ. Calif., Berkeley, 1988.

S. Even. Graph Algorithms. Computer Science Press, 1979.

E. Felt, E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli.
An efficient methodology for symbolic compaction of analog ic’s
with multiple symmetry constraints. Euro-DAC, pages 148–153,
1992.

M. Feuer. Vlsi design automation: An introduction. Proceedings
of the IEEE, 71(l):l-9, January 1983.

L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

C. Fowler, G. D. Hachtel, and L. Roybal. New algorithms for
hierarchical place and route of custom vlsi. Proceedings of In-
ternational IEEE Conference on Computer-Aided Design, pages
273–275, 1985.

A. L. Fisher and H. T. Kung. Synchronizing large systolic arrays.
Proceedings of SPIE, pages 44–52, May 1982.

J. Frankle and R. M. Karpp. Circuit placement and cost bounds
by eigenvector decomposition. Proceedings of IEEE International
Conference On Computer-Aided Design, pages 414–417, 1986.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristics
for improving network partitions. Proceedings of the 19th Design
Automation Conference, pages 175–181, 1982.

536 Bibliography

[FR64]

[FRC90]

[FW97]

[FYMM91]

[Gab85]

[Gam89]

[Gav72]

[Gav73]

[Gav87]

[GB83]

[GCW83]

[GDWL92]

R. Fletcher and C. M. Reeves. Function minimization by conju-
gate gradients. Computer Journal, 7:149–154, 1964.

R. J. Francis, J. Rose, and K. Chung. Chortle: A technol-
ogy mapping program for lookup table-based field programmable
gate arrays. Proceedings of 27th ACM/IEEE Design Automation
Conference, pages 613–619, 1990.

Han Yang Foo, Jianjian Song, Wenjun Zhuang, H. Esbensen,
and Kuh E.S. Implementation of a parallel genetic algorithm for
floorplan optimization on ibm sp2. High Performance Computing
on the Information Superhighway, 1997. HPC Asia ’97 , pages
456 –459, 1997.

Wen-Jong Fang and Allen C. H. Wu. Multi-way fpga partitioning
by fully exploiting design hierarchy. DAC, pages 518–521, 1997.

D. Filo, J. C. Yang, F. Mailhot, and G. D. Micheli. Technology
mapping for a two-output ram-based field programmable gate
arrays. Proceedings of European Design Automation Conference,
pages 534–538, February 1991.

N. H. Gabow. A almost linear time algorithm for two-processor
scheduling. Journal of the ACM, 29(3):766–780, 1985.

A. El Gamal. An architecture for electrically configurable gate
arrays. IEEE JSSC, 24(2):394–398, April 1989.

F. Gavril. Algorithms for a minimum coloring, maximum clique,
minimum covering by cliques, and maximum independent set of a
chordal graph. SIAM Journal of Computation, 1:180–187, 1972.

F. Gavril. Algorithms for a maximum clique and a maximum
independent set of circle graph. Network, 3:261–273, 1973.

F. Gavril. Algorithms for maximum k-coloring and k-covering of
transitive graphs. Networks, 17:465–470, 1987.

M. K. Goldberg and M. Burstein. Heuristic improvement tech-
nique for bisection of vlsi networks. Proceedings of IEEE Inter-
national Conference on Computer Design, pages 122–125, 1983.

I. S. Gopal, D. Coppersmith, and C. K. Wong. Optimal wiring of
movable terminals. IEEE Transactions on Computers, C-32:845–
858, September 1983.

D. Gajski, N. Dutt, A. Wu, and S. Lin. High Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic Pub-
lishers. Norwell, MA., 1992.

Bibliography 537

[GH64]

[GH89]

[GHS86]

[Gia89]

[GJ77]

[GJ79]

[GJMP78]

[GJS76]

[GKG84]

[GLL82]

[GN87]

[Gol77]

P. C. Gilmore and A. J. Hoffman. A characterization of com-
parability graphs and of interval graphs. Canadian Journal of
Mathematics, 16:539–548, 1964.

S. Gerez and O. Herrmann. Switchbox routing by stepwise refine-
ment. IEEE Transactions on Computer-Aided Design, 8:1350–
1361, Dec 1989.

C. P. Gabor, W. L. Hsu, and K. J. Supowit. Recognizing circle
graphs in polynomial time. Proceedings 26th IEEE Symposium
on Foundation of Computer Science, pages 106–116, 1986.

J. D. Giacomo. VLSI Handbook: Silicon, Gallium Arsenide, and
Superconductor circuits. McGraw Hill, 1989.

M. R. Garey and D. S. Johnson. The rectilinear steiner tree
problem is np-complete. SIAM Journal Applied Mathematics,
32:826–834., 1977.

M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Freeman, San
Francisco, 1979.

M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadim-
itriou. Unpublished results. Technical report, 1978.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified
np-complete graph problems. Theory of Computation , pages
237–267, 1976.

T. F. Gonzalez and S. Kurki-Gowdara. Minimization of the num-
ber of layers for single row routing with fixed street capacity.
IEEE Transactions on Computer-Aided Design, CAD-7:420–424,
1984.

J. Garbers, B. Korte, H. J. Promel, E. Schwietzke, and A. Ste-
ger. Vlsi-placement based on routing and timing information.
Proceedings of European Design Automation Conference, pages
317–321, 1990.

U. I. Gupta, D. T. Lee, and J. Y. T. Leung. Efficient algorithms
for interval graphs. Networks, 12:459–467, 1982.

G. Gudmundsson and S. Ntafos. Channel routing with superter-
minals. Proceedings of 25th Allerton Conference on Computing,
Control and Communication, pages 375–376, 1987.

M. C. Golumbic. Complexity of comparability graph recognition
and coloring. Computing, 18:199–208, 1977.

538 Bibliography

[Gol80]

[Got81]

[GRKG93]

[Gro75]

[Gro87]

[GS84]

[GVL91]

[Had75]

[Haj88]

[Haj88]

[Ham85]

[Han76]

[Han76]

[HF87]

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.
Academic Press, 1980.

S. Goto. An efficient algorithm for the two-dimensional place-
ment problem in electrical circuit layout. IEEE Trans. Circuits
Syst., CAS-28:12–18, January 1981.

J. Greene, V. Roychowdhury, S. Kaptanoglu, and A. E. Gamal.
Segmented channel routing. IEEE Transactions on CAD of In-
tegrated Circuits and Systems, 12:79–95, January 1993.

H. J. Groeger. A new approach to structural partitioning of
computer logic. Proceedings of Design Automation Conference,
pages 378–383, 1975.

L. K. Grover. Standard cell placement using simulated sintering.
Proceedings of the 24th Design Automation Conference, pages
56–59, 1987.

J. Greene and K. Supowit. Simulated annealing without rejected
moves. Proceedings of International Conference on Computer
Design, pages 658–663, October 1984.

T. Gao, P. M. Vaidya, and C. L. Liu. A new performance driven
placement algorithm. Proceedings of International Conference on
Computer-Aided Design, pages 44–47, 1991.

F. Hadlock. Finding a maximum cut of a planar graph in poly-
nomial time. SIAM Journal of Computing, 4, no. 3:221–225,
September 1975.

B. Hajek. Cooling schedules for optimal annealing. Oper. Res.,
pages 311–329, May 1988.

K. M. Hall. An -dimensional quadratic placement algorithm.
Management Science, 17:219–229, November 1970.

S. E. Hambrusch. Channel routing algorithms for overlap models.
IEEE Transactions on Computer-Aided Design, CAD-4(1):23–
30, January 1985.

M. Hanan. On steiner’s problem with rectilinear distance. SIAM
Journal of Applied Mathematics, 30(1):104-114, January 1976.

A. J. Harrison. Vlsi layout compaction using radix priority search
trees. DAC , pages 732–735, 1991.

S. Haruyama and D. Fussell. A new area-efficient power rout-
ing algorithm for vlsi layout. Proceedings of IEEE International
Conference on Computer-Aided Design, pages 38–41, November
1987.

Bibliography 539

[HHCK93]

[Hig69]

[Hig80]

[Hil84]

[Hil91]

[Hit70]

[HIZ91]

[HK72]

[HL91]

[HL97]

[HLL88]

[HMW74]

J. Huang, X. Hong, C. Cheng, and E. Kuh. An efficient timing-
driven global routing algorithm. Proceedings of 30th Design Au-
tomation Conference, pages 596–600, June 1993.

D. W. Hightower. A solution to the line routing problem on a
continous plane. Proc. 6th Design Automation Workshop, 1969.

D. W. Hightower. A generalized channel router. Proceedings of
17th ACM/IEEE Design Automation Conference, pages 12–21,
1980.

D. D. Hill. Icon: A toll for design at schematic, virtual-grid and
layout levels. IEEE Design and Test, 1(4):53–61, 1984.

D. D. Hill. A cad system for the design of field programmable
gate arrays. Proceedings of 28th ACM/IEEE Design Automation
Conference, pages 187–192, 1991.

R. B. Hitchcock. Partitioning of logic graphs: A theoretical anal-
ysis of pin reduction. Proceedings of Design Automation Confer-
ence, pages 54–63, 1970.

T.T. Ho, S.S. lyengar, and S. Q. Zheng. A general greedy chan-
nel routing algorithm. IEEE Transactions on Computer-Aided
Design, 10(2):204–211, February 1991.

M. Hanan and J. M. Kurtzberg. A review of placement and
quadratic assignment problems. SIAM Rev., 14(2):324–342, April
1972.

J. Heisterman and T. Lengauer. The efficient solution of integer
programs for hierarchical global routing. IEEE Transactions on
Computer-Aided Design, CAD 10(6):748–753, June 1991.

C. I. Horta and J. A. Lima. Slicing and non-slicing, unified and
rotation independent, algebraic representation of floorplans. EU-
ROMICRO 97. New Frontiers of Information Technology., Pro-
ceedings of the 23rd EUROMICRO Conference , pages 265 –272,
1997.

T. M. Hsieh, H. W. Leong, and C. L. Liu. Two-dimensional
layout compaction by simulated annealing. Proceedings of IEEE
International Symposium on Circuits and Systems, pages 2439–
2443, 1988.

M. Hanan, A. Mennone, and P. K. Wolff. An interactive
man-machine approach to the computer logic partitioning prob-
lem. Proceedings of Design Automation Conference, pages 70–81,
1974.

540 Bibliography

[HNY87]

[HO84]

[HP79]

[HPK87]

[HRSV86]

[HS71]

[HS84a]

[HS84b]

[HS85]

[HS90]

[HS91]

[Hse88]

[HSS91]

P. S. Hauge, R. Nair, and E. J. Yoffa. Circuit placement for pre-
dictable performance. Proceedings of International Conference
on Computer-Aided Design, pages 88–91, 1987.

G. T. Hamachi and J. K. Ousterhout. A switchbox router with
obstacle avoidance. Proceedings of 21st ACM/IEEE Design Au-
tomation Conference, June 1984.

M. Y. Hsueh and D. O. Pederson. Computer-Aided Layout of
LSI Circuit Building-Blocks. PhD thesis, University of California
at Berkeley., December 1979.

Y. C. Hsu, Y. Pan, and W. J. Kubitz. A path selection global
router. Proceedings of Design Automation Conference, 1987.

M. D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli. An ef-
ficient general cooling schedule for simulated annealing. Proceed-
ings of the IEEE International Conference on Computer-Aided
Design, pages 381–384, 1986.

A. Hashimoto and J. Stevens. Wire routing by optimization chan-
nel assignment within large apertures. Proceedings of the 8th
Design Automation Workshop, pages 155–163, 1971.

S. Han and S. Sahni. A fast algorithm for single row routing.
Technical Report 84-5, Department of Computer Science, Uni-
versity of Minnesota, Minneapolis, 1984.

S. Han and S. Sahni. Single row routing in narrow streets. IEEE
Transactions on Computer-Aided Design, CAD-3:235–241, July
1984.

T. C. Hu and M. T. Shing. A Decomposition Algorithm for Cir-
cuit Routing in VLSI. IEEE Press, 1985.

D. Hill and D. Shugard. Global routing considerations in a cell
synthesis system. Proceedings of Design Automation Conference,
1990.

M. Hossain and N. A. Sherwani. On topological via minimization
and routing. Proceedings of IEEE International Conference on
Computer-Aided Design, pages 532–534, November 1991.

H. Hseih. A 9000-gate user-programmable gate array,. Proceed-
ings of 1988 CICC, pages 15.3.1–15.3.7, May 1988.

N. Holmes, N. Sherwani, and M. Sarrafzadeh. Algorithms for
over-the-cell channel routing using the three metal layer pro-
cess. IEEE International Conference on Computer-Aided Design,
1991.

Bibliography 541

[HSS93]

[Hsu79]

[Hsu83a]

[Hsu83b]

[Hsu85]

[HSVW90a]

[HSVW90b]

[HT91]

[HVW85]

[HVW89]

[Hwa76a]

[Hwa76b]

[HWA78]

N. Holmes, N. A. Sherwani, and M. Sarrafzadeh. Utilisation of
vacant terminals for improved otc channel routing. IEEE Trans-
actions on CAD of Integrated Circuits and Systems, 12:780–792,
June 1993.

M. Y. Hsueh. Symbolic layout and compaction of integrated cir-
cuits. Technical Report UCB/ERL M79/80, Electronics Research
Laboratory, University of California, Berkeley, CA, 1979.

C. P. Hsu. General river routing algorithm. Proceedings of 20th
Design Automation Conference, pages 578–583, June 1983.

C. P. Hsu. Minimum-via topological routing. IEEE Transactions
on Computer-Aided Design, CAD-2(4):235–246, 1983.

W. L. Hsu. Maximum weight clique algorithm for circular-
arc graphs and circle graphs. SIAM Journal of Computation,
14(1):160–175, February 1985.

J. Ho, M. Sarrafzadeh, G. Vijayan, and C. K. Wong. Pad mini-
mization for planar routing of multiple power nets. IEEE Trans-
actions on Computer-Aided Design, CAD-9:419–426, 1990.

J. M. Ho, M. Sarrafzadeh, G. Vijayan, and C. K. Wong.
Layer assignment for multichip modules. IEEE Transactions on
Computer-Aided Design, 9(12):1272–1277, December 1990.

L. T. Hwang and I. Turlik. The skin effect in thin-film intercon-
nections for ulsi/vlsi packages. Technical Report Series TR91-13
, MCNC Research Triangle Park, NC 27709, 1991.

J. M. Ho, G. Vijayan, and C. K. Wong. A new approach
to the rectilinear steiner tree problem. IEEE Transactions on
Computer-Aided Design, 9(2): 185–193, February 1985.

J. M. Ho, G. Vijayan, and C. K. Wong. Constructing the op-
timal rectilinear steiner tree derivable from a minimum span-
ning tree. Proceedings of IEEE International Conference on
Computer-Aided Design, pages 5–8, November 1989.

F. K. Hwang. An o(n log n) algorithm for rectilinear steiner trees.
Journal of the Association for Computing Machinery, 26(1):177–
182, April 1976.

F. K. Hwang. On steiner minimal trees with rectilinear distance.
SIAM Journal of Applied Mathematics, 30(1): 104–114, January
1976.

M. Hanan, P. K. Wolff, and B. J. Agule. Some experimental re-
sults on placement techniques. J. Design Automation and Fault-
Tolerant Computing, 2:145–168, May 1978.

542 Bibliography

[Hwa79]

[ITK98]

[JG72]

[JJ83]

[JK89]

[Joh67]

[Joo86]

[JP89]

[JSK90]

[Kaj80]

[Kan96]

[Kar91a]

[Kar91b]

F. K. Hwang. An o(n log n) algorithm for suboptimal rectilinear
steiner trees. Transactions on Circuits and Systems, 26(1):75–77,
January 1979.

X. Hong, T. Xue, E. Kuh, C. Cheng, and J. Huang. Performance-
driven steiner tree algorithms for global routing. Proceedings of
30th Design Automation Conference, pages 177–181, June 1993.

T. Izumi, A. Takahashi, and Y. Kajitani. Air-pressure-model-
based fast algorithms for general floorplan. Proceedings of the
ASP-DAC ’98, pages 563 –570, 1998.

E. G. Coffman Jr. and R. L. Graham. Optimal scheduling for
two processor systems. Acta Informatica, 1:200–213, 1972.

D. W. Jepsen and C. D. Gelatt Jr. Macro placement by monte
carlo annealing. Proceedings of IEEE International Conference
on Computer Design, pages 495–498, 1983.

M. A. B. Jackson and E. S. Kuh. Performance-driven placement
of cell based ic’s. Proceedings of 26th ACM/IEEE Design Au-
tomation Conference, pages 370–375, 1989.

S. C. Johnson. Hierarchical clustering schemes. Psychometrika,
pages 241–254, 1967.

R. Joobbani. An Artificial Intelligence Approach to VLSI Rout-
ing. Kluwer Academic Publisher, 1986.

A. Joseph and R. Y. Pinter. Feed-through river routing. Integra-
tion, the VLSI Journal, 8:41–50, 1989.

M. A. B. Jackson, A. Sirinivasan, and E.S. Kuh. Clock routing
for high-performance ics. Proceedings of 27th ACM/IEEE Design
Automation Conference, pages 573–579, June 1990.

Y. Kajitani. On via hole minimization of routing in a 2-layer
board. Proceedings of IEEE international Conference on Circuits
and Computers, pages 295–298, June 1980.

Kim Kang. A new triple-layer otc channel router. IEEE Trans-
actions on CAD, 15:1059–1070, September 1996.

K. Karplus. Amap: a technology mapper for selector-based field-
programmable gate arrays. Proceedings of 28th ACM/IEEE De-
sign Automation Conference, pages 244–247, 1991.

K. Karplus. Xmap: a technology mapper for table-lookup field-
programmable gate arrays. Proceedings of 28th ACM/IEEE De-
sign Automation Conference, pages 240–243, 1991.

Bibliography 543

[KB87]

[KB89]

[KC92]

[KCR93]

[KCS88]

[KD97]

[KGV83]

[KHS92]

[Kim90]

[KK79]

[KK84]

[KK90]

R. Kling and P. Bannerjee. Esp: A new standard cell placement
package using simulated evolution. Proceedings of the 24th Design
Automation Conference, pages 535–542, 1987.

R. Kling and P. Banerjee. Esp: Placement by simulated evolu-
tion. IEEE Transactions on Computer-Aided Design, 8(3):245–
256, 1989.

K. Y. Khoo and J. Cong. A fast multilayer general area router
for mcm designs. To appear in IEEE Transactions on Circuits
and Systems, 1992.

A. Kahng, J. Cong, and G. Robins. Matching based models for
high performance clock routing. IEEE Transactions on CAD of
Integrated Circuits and Systems, 12:1157–1169, August 1993.

Y. S. Kuo, T. C. Chern, and W. Shih. Fast algorithm for op-
timal layer assignment. Proceedings of 25th ACM/IEEE Design
Automation Conference, pages 554–559, June 1988.

M. Kang and W. W. M. Dai. General floorplanning with l-shaped,
t-shaped and soft blocks based on bounded slicing grid structure.
Proceedings of the ASP-DAC ’97 Asia and South Pacific, pages
265 –270, 1997.

S. Kirkpatrick, C. D. Gellat, and M.P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, May 1983.

W. A. Khan, M. Hossain, and N. A. Sherwani. Zero skew rout-
ing in multiple clock synchronous systems. Proceedings of IEEE
International Conference on Computer-Aided Design, November
1992.

H. Kim. Finding a maximum independent set in a permutation
graph. Information Processing Letters, 36:19–23, October 1990.

T. Kawamoto and Y. Kajitani. The minimum width routing
of a 2-row 2-layer polycell layout. Proceedings of 16th Design
Automation Conference, pages 290–296, 1979.

K. Kozminski and E. Kinnen. Rectangular dual of a planar graph
for use in area planning for vlsi integrated circuits. Proceedings of
21st ACM/IEEE Design Automation Conference, pages 655–656,
1984.

E. Katsadas and E. Kinnen. A multi-layer router utilizing over-
cell areas. Proceedings of 27th Design Automation Conference,
pages 704–708, 1990.

544 Bibliography

[KK95]

[KK97]

[KKF79]

[KL70]

[K1i87]

[KN91]

[Koc96]

[Kor72]

[Kri84]

[Kro83]

[Kru56]

[KT91]

Z. Koren and I. Koren. The impact of floorplanning on the yield
of fault-tolerant ics. Proceedings of Seventh Annual IEEE Inter-
national Conference on Wafer Scale Integration, pages 329 –338,
1995.

Z. Koren and I. Koren. The effect of floorplanning on the yield of
large area integrated circuits. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 5:3 –14, 1997.

E. S. Kuh, T. Kashiwabara, and T. Fujisawa. On optimum single
row routing. IEEE Transactions on Circuits Systems, vol. CAS-
26:361–368, June 1979.

W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell System Technical Journal, 49:291–307,
1970.

R. M. Kling. Placement by simulated evolution. Ms thesis, Coor-
dinated Science Lab., College of Engr., Univ. of Illinois at Urbana-
Champaign, 1987.

R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson,
U. V. Vazirani, and V. V. Vazirani. Global wire routing in two-
dimensional arrays. Algorithmica, 1987.

C. Kring and A. R. Newton. A cell-replicating approach to
mincut-based circuit partitioning. Proceedings of IEEE Interna-
tional Conference on Computer-Aided Design, pages 2–5, Novem-
ber 1991.

A. Koch. Module compaction in fpga-based regular datapaths.
DAC, pages 471–476, 1996.

N. L. Koren. Pin assignment in auotmated printed circuit board
design. proceedingd of the 9th Design Automation Workshop,
pages 72–79, 1972.

B. Krishnamurthy. An improved mincut algorithm for partition-
ing vlsi networks. IEEE Transactions on Computers, pages 438–
446, 1984.

H. E. Krohn. An over-the-cell gate array channel router. Proceed-
ings of of 20th Design Automation Conference, pages 665–670,
1983.

J. B. Kruskal. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the American
Mathematical Society, 7(1):48–50, 1956.

D. Karpenske and C. Talbot. Testing and diagnosis of multichip
modules. Solid State Technology, pages 24–26, 1991.

Bibliography 545

[KW84]

[LaP91]

[Law76]

[LD88]

[Leb83]

[Lee61]

[Len84]

[LG87]

[LGKM96]

[LHT89]

[Lic95]

[LK89]

[LLT69]

G. Kedem and H. Watanbe. Graph-optimization techniques for ic
layout and compaction. IEEE Transactions on Computer-Aided
Design, CAD-3(1):12–20, 1984.

D. P. LaPotin. Early assessment of design, packaging and tech-
nology tradeoffs. International Journal of High Speed Electronics,
2(4):209–233, 1991.

E. L. Lawler. Combinatorial Optimization. Holt, Rinehart and
Winston, New York, 1976.

J. Lam and J. Delosme. Performance of a New Annealing Sched-
ule. Porceedings of the 25th Design Automation Conference, 306–
311 1988.

A. Leblond. Caf: A computer-assisted floorplanning tool. Pro-
ceeding of 20th Design Automation Conference, pages 747–753,
1983.

C. Y. Lee. An algorithm for path connections and its applica-
tions. IRE Transactions on Electronic Computers, 1961.

T. Lengauer. On the solution of inequality systems relevant to
ic-layout. Journal of Algorithms, 5:408–421, 1984.

C. Lursinsap and D. Gajski. An optimal power routing for top-
down design architecture. Proceedings of the International Con-
ference on Computer Design, pages 345–348, 1987.

James Loy, Atul Garg, Mukkai Krishnamoorthy, and John Mc-
Donald. Chip pad migration is a key component to high per-
formance mcm design. Proceedings of The Sixth Great Lakes
Symposium on VLSI (GLS-VLSI’ 96), 1996.

Y. L. Lin, Y. C. Hsu, and F. S. Tsai. Silk: A simulated evolution
router. IEEE Tranactions on Computer-Aided Design, 8:1108–
1114, October 1989.

James J. Licari. Multichip Module Design, Fabrication, and Test-
ing. McGraw Hill Text, 1995.

B. Lokanathan and E. Kinnen. Performance optimized floor plan-
ning by graph planarization. Proceedings of 26th ACM/IEEE
Design Automation Conference, pages 116–121, 1989.

E. L. Lawler, K. N. Levitt, and J. Turner. Module clustering
to minimize delay in digital networks. IEEE Transactions on
Computers, C-18(1):47–57, January 1969.

546 Bibliography

[LM84a]

[LM84b]

[LM85]

[LP83]

[LPHL91]

[LS88]

[LSL80]

[LSL90]

[LSW94]

[LT79]

[Luk85]

[LV90]

T. Lengauer and K. Mehlhorn. The hill system: A design envi-
ronment for the hierarchical specification, compaction, and sim-
ulation of integrated circuit layouts. Proceedings of the 2nd MIT
Conference on Advanced Research in VLSI, pages 139–149, 1984.

T. M. Lin and C. A Mead. Signal delay in general rc net-
works. IEEE Transactions on Computer-Aided Design, CAD-3,
No. 4:331–349, October 1984.

C. E. Leiserson and F. M. Maley. Algorithms for routing and
testing routability of planar vlsi layouts. Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, pages 69–78,
1985.

C. E. Leiserson and R. Y. Pinter. Optimal placement for river
routing. SIAM Journal of Computing, 12, No. 3:447–462, August
1983.

M. S. Lin, H. W. Perng, C. Y. Hwang, and Y. L. Lin. Chan-
nel density reduction by routing over the cells. Proceedings of
28th ACM/IEEE Design Automation Conference, pages 120–125,
June 1991.

K. W. Lee and C. Sechen. A new global router for row-based lay-
out. Proceedings of IEEE International Conference on Computer-
Aided Design. , November 1988.

D. T. Lee, J. M. Smith, and J. S. Liebman. An o(n log n) heuristic
algorithm rectilinear steiner tree problem. Engineering Optimiza-
tion, Vol. 4(4):179–192, 1980.

R. D. Lou, M. Sarrafzadeh, and D. T. Lee. An optimal algorithm
for the maximum two-chain problem. Proceedings of First SIAM-
ACM Conference on Discrete Algorithms, 1990.

K. F. Liao, M. Sarrafzadeh, and C. K. Wong. Single-layer global
routing. IEEE Transactions on CAD of Integrated Circuits and
Systems, 13:303–309, March 1994.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar
graphs. SIAM Journal of Applied Mathematics, 36(2):177–189,
1979.

W. K. Luk. A greedy switchbox router. Integration, The VLSI
Journal, 3:129–149, 1985.

C. Y. Lo and R. Varadarajan. An 1-d compaction
algorithm. DAC, pages 382–387, 1990.

Bibliography 547

[LW83]

[LW97]

[MAC98]

[Mal87]

[Mal90]

[Mar90]

[Mat85]

[MBV91]

[MC79]

[McD84]

[McF83]

[McF86]

[Meh94]

Y. Z. Liao and C. K. Wong. An algorithm to compact a vlsi
symbolic layout with mixed constraints. IEEE Transactions on
Computer-Aided Design, CAD-2(2):62–69, 1983.

Yuh Sheng Lee and Allen C. H. Wu. A performance and
routability-driven router for fpga’s considering path delays. IEEE
Transactions on Computer-Aided Design, 16(2): 179–185, Febru-
ary 1997.

Rob A. Rutenbar Mehmet Aktuna and L. Richard Carley.
Device-level early floorplanning algorithms for rf circuits. ISPD-
98, pages 57–64, 1998.

A. A. Malik. An efficient algorithm for generation of constraint
graph for compaction. Proceedings of IEEE International Con-
ference on Computer-Aided Design, pages 130–133, 1987.

F. M. Maley. Single-Layer Wire Routing and Compaction. The
MIT Press, 1990.

D. Marple. A hierarchy preserving hierarchical compactor. DAC,
pages 375–381, 1990.

J. M. Da Mata. Allenda: A procedural language for the hierar-
chical specification of vlsi layout. Proceedings of the 22nd Design
Automation Conference, pages 183–189, 1985.

R. Murgai, R. K. Brayton, and A. Sangiovani Vincentelli. On
clustering for minimum delay/area. Proceedings of IEEE In-
ternational Conference on Computer-Aided Design, pages 6–9,
November 1991.

C. Mead and L. Conway. Introduction to VLSI Systems, Chapter
1 MOS Devices and Circuits. Addison Wesley, 1979.

J. F. McDonald. The trail of wafer-scale integration. IEEE Spec-
trum, pages 32–39, October 1984.

M. C. McFarland. Computer-aided partitioning of behavioral
hardware description. Proceedings of Design Automation Con-
ference, pages 472–478, 1983.

M. C. McFarland. Using bottom-up design techniques in the syn-
thesis of digital hardware from abstract behavioral descriptions.
Proceedings of the 23rd Design Automation Conference, pages
474–480, 1986.

D. P. Mehta. L -shaped corner stitching data structures. Pro-
ceedings of the Fourth Great Lakes Symposium on VLSI, pages
34–37, March 1994.

548 Bibliography

[MFNK96]

[Mil84]

[MK98]

[MM93]

[Mor90]

[Mou83]

[MR78]

[MRR53]

[MS77]

[MS86]

[MSBSV91a]

[MSBSV91b]

H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Vlsi mod-
ule placement based on rectangle-packing by the sequence-pair.
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 15:1518–1524, December 1996.

G. L. Miller. Finding small simple cycle separators for 2-
connected planar graph. Proceedings of the 16th Annual ACM
Symposium on Theory of Computing, pages 376–382, 1984.

H. Murata and Ernest S. Kuh. Sequence-pair based placement
method for hard/soft/pre-placed modules. ISPD-98, pages 167–
172, 1998.

S. Mohan and P. Mazumdar. Wolverines: Standard cell place-
ment on a network of workstations. IEEE Transactions on CAD
of Integrated Circuits and Systems, 12:1312–1326, September
1993.

L. L. Moresco. Electronic system packaging: The search for man-
ufacturing the optimum in a sea of constraints. IEEE Trans-
actions on Computers, Hybrids, and Manufacturing Technology,
pages 494–508, 1990.

A. S. Moulton. Laying the power and ground wires on a vlsi
chip. Proceedings of the 20th Design Automation Conference,
pages 754–755, 1983.

L. Mory-Rauch. Pin assignment on a printed circuit board. Pro-
ceedings of the 15th Design Automation Conference, pages 70–73,
1978.

N. Metropolis, A. Rosenbluth, and M. Rosenbluth. Equation
of state calculations by fast computing machines. Journal of
Chemistry and Physics, pages 1087–1092, 1953.

D. Maier and J. A. Storer. A note on the complexity of the su-
perstring problem. Research Report No. 233, Computer Science
Laboratory, Pricnceton University, 1977.

D. W. Matula and F. Shahrokhi. The maximum concurrent flow
problem and sparsest cuts. Technical report, Southern Methodist
Univ., 1986.

R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Improved logic synthesis algorithms for table look
up architectures. Proceedings of International Conference on
Computer-Aided Design, pages 564–567, 1991.

R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Performance directed synthesis for table look up

Bibliography 549

[MSL89]

[MST83]

[MT68]

[MTDL90]

[Muk86]

[Nai87]

[NESY89]

[NLGV95]

[NMN87]

[NMN89]

[NSHS92]

[OCK95]

programmable gate arrays. Proceedings of International Confer-
ence on Computer-Aided Design, pages 572–575, 1991.

M. Marek-Sadowska and S. P. Lin. Timing driven placement.
Proceedings of International Conference on Computer-Aided De-
sign, pages 94–97, 1989.

M. Marek-Sadowska and T. T. Trang. Single-layer routing for
vlsi: Analysis and algorithms. IEEE Transactions on Computer-
Aided Design, pages 246–259, October 1983.

K. Mikami and K. Tabuchi. A computer program for optimal
routing of printed circuit connectors. IFIPS Proc., H47:1475–
1478, 1968.

K. McCullen, J. Thorvaldson, D. Demaris, and P. Lampin. A
system for floorplanning with hierarchical placement and wiring.
Proceedings of European Design Automation Conference, pages
262–265, 1990.

A. Mukerjee. Introduction to NMOS and CMOS VLSI Systems
Design. Prentice Hall, Englewood Cliffs, NJ, 1986.

R. Nair. A simple yet effective technique for global wiring. IEEE
Transanctions on Computer-Aided Design, CAD-6(2), 1987.

K. Nakamura, Y. Enomoto, Y. Suehiro, and K. Yamashita. Ad-
vanced cmos asic design methodologies. Proceedings of Regional
Conferences on Microelectronics and systems, 1989.

V. Narayananan, D. LaPotin, R. Gupta, and G. Vijayan. Pepper
- a timing driven early floorplanner. ICCD ’95. Proceedings.,
pages 230 –235, 1995.

N. J. Naclerio, S. Masuda, and K. Nakajima. Via minimization
for gridless layouts. Proceedings of 24th Design Automation Con-
ference, pages 159–165, June 1987.

N. J. Naclerio, S. Masuda, and K. Nakajima. Via minimiza-
tion problem is np-complete. IEEE Transactions on Computers,
38(11):1604–1608, November 1989.

S. Natarajan, N. Sherwani, N. Holmes, and M. Sarrafzadeh.
Over-the-cell routing for high performance circuits. Proceedings
of 29th ACM/IEEE Design Automation Conference, pages 600–
603, June 1992.

A. Onozawa, K. Chaudhary, and E.S. Kuh. Performance driven
spacing algorithms using attractive and repulsive constraints for
submicron 1si’s. IEEE Transaction on CAD, 14 (06):707–719,
1995.

550 Bibliography

[Oga86]

[Oht86]

[Ono90]

[OSOT89]

[Ous84]

[Pat81]

[PD86]

[PDL97]

[Pin82]

[PL]

[PL88]

[PL95]

[PLE71]

Y. Ogawa. Efficient placement algorithms optimizing delay for
high-speed ecl masterslice 1si’s. Proceedings of 23rd ACM/IEEE
Design Automation Conference, pages 404–410, 1986.

T. Ohtsuki. Partitioning, Assignment and Placement. North-
Holland, 1986.

A. Onozawa. Layout compaction with attractive and repulsive
constraints. DAC, pages 369–374, 1990.

R. Okuda, T. Sato, H. Onodera, and K. Tamaru. An effi-
cient algorithm for layout compaction problem with symmetry
constraints. Proceedings of IEEE International Conference on
Computer-Aided Design, pages 148–151, 1989.

J. Ousterhoust. Corner stitching: A data-structuring technique
for vlsi layout tools. IEEE Transactions on Computer-Aided De-
sign,, CAD-3, January 1984.

A. M. Patel. Partitioning for vlsi placement problems. Proceed-
ings of 18th ACM/IEEE Design Automation Conference, pages
137–144, 1981.

D. P. La Potin and S. W. Director. Mason: A global floorplanning
approach for vlsi design. IEEE Transaction on Computer-Aided
Design, pages 477–489, October 1986.

P. Pan, S. K. Dong, and C.L. Liu. Optimal graph constraint
reduction for symbolic layout compactionn. Algorithmica, 18,
pages 560–574, 1997.

R. Y. Pinter. Optimal layer assignment for interconnect. Pro-
ceedings of IEEE International Conference on Circuits and Com-
puters, pages 398–401, September 1982.

Peichen Pan and C. L. Liu. Area minimization for floorplans.
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 14 1:123 –132.

B. T. Preas and M. J. Lorenzetti. Physical Design Automation
of VLSI Systems, Chap. 1, Introduction to Physical Design Au-
tomation,. Benjamin Cummings, Menlo Park, CA, 1988.

P. Pan and C. L. Liu. Area minimization for floorplans.
IEEE Transactions on CAD of Integrated Circuits and Systems,
14:123–132, January 1995.

A. Pnnueli, A. Lempel, and S. Even. Transitive orientation of
graphs and identification of permutation graphs. Canadian Jour-
nal of Mathematics, 23:160–175, 1971.

Bibliography 551

[PMSK90]

[Pol74]

[Pri57]

[PS82]

[PS85]

[PSL96]

[PZ87]

[QB79]

[Qui75]

[Raj89]

[Res86]

[RF82]

[Ric84]

[RKN89]

M. Pedram, M. Marek-Sadowska, and E. S. Kuh. Floorplanning
with pin assignment. Proceedings of International Conference on
Computer-Aided Design, pages 98–101, 1990.

S. Poljak. A note on stable sets and coloring of graphs. Comment.
Mathematics University Carolina, 15:307–309, 1974.

R. C. Prim. Shortest connection networks and some generaliza-
tions. Bell System Technical Journal, 1957.

C. H. Papadimitriou and K. Steigliz. Combinatorial Optimization
- Algorithms and Complexity. Prentice-Hall, Inc., 1982.

F. Preparata and M. I. Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

P. Pan, W. Shi, and C.L. Liu. Area minimization for hierarchical
floorplans. Algorithmica”, 15:550–571, 1996.

R. Putatunda, D. Smith, M. Stebinsky, C. Puschak, and
P. Patent. Vital: Fully automatic placement strategies for very
large semicustom designs. International Conference on Computer
Design”, pages 434–439, 1988.

V. Pitchumani and Q. Zhang. A mixed hvh-vhv algorithm for
three-layer channel routing. IEEE Transactions on Computer-
Aided Design, CAD-6(4), 1987.

N. R. Quinn and M. A. Breuer. A force directed component
placement procedure for printed circuit boards. IEEE Trans.
Circuits and Syst., pages 377–388, June 1979.

N. R. Quinn. The placement problem as viewed from the physics
of classical mechanics. Proceedings of the 12th Design Automa-
tion Conference, pages 173–178, 1975.

J. V. Rajan. Automatic Synthesis of Microprocessors. PhD thesis,
Carnegie Mellon University, January 1989.

M. L. Resnick. Sparta: A system partitioning aid. IEEE Trans-
actions on Computer-Aided Design, pages 490–498, 1986.

R. Rivest and C. Fiduccia. A greedy channel router. Proceedings
of 19th ACM/IEEE Design Automation Conference, pages 418–
424, 1982.

D. Richards. Complexity of single-layer routing. IEEE Transac-
tions on Computers, C-33(3):286–288, March 1984.

C. S. Rim, T. Kashiwabara, and K. Nakajima. Exact algorithms
for multilayer topological via minimization. IEEE Transactions
on Computer-Aided Design, 8(4):1165–1184, November 1989.

552 Bibliography

[RM81]

[RMNP97]

[Ros90]

[RP96]

[RR96]

[RS83]

[RS84]

[RS89]

[RSV85]

[RSVS85]

[RT85]

H. J. Rothermel and D. A. Mlynski. Computation of power sup-
ply nets in vlsi layout. Proceedings ACM/IEEE Design Automa-
tion Conference, Proceedings of Design Automation Conference-
81:37–47, 1981.

R. V. Raj, N. S. Murty, P. S. Nagendra, and L. M. Patnaik. Ef-
fective heuristics for timing driven constructive placement. Pro-
ceedings of the 10th VLSI Design Conference, Hyderabad, India,
pages 38–43, January 1997.

Jonathan Rose. Parallel global routing for standard cells. IEEE
Transactions on Computer-Aided Design, October 1990.

Srilata Raman and L.M. Patnaik. Performance driven mcm par-
titioning through an adaptive genetic algorithm. IEEE Transac-
tions on VLSI Systems, 4 4:434–443, December 1996.

J. Royle, M. Palczewski, H. VerHeyen, N. Naccache, and
J. Soukup. Geometrical compaction in one dimension for chan-
nel routing. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 140–145, 1987.

M. Rebaudengo and M. S. Reorda. Gallo: a genetic algorithm for
floorplan area optimization. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 15 8:943 –951,
1996.

R. Raghavan and S. Sahni. Single row routing. IEEE Transac-
tions on Computers, C-32:209–220, March 1983.

R. Raghavan and S. Sahni. Complexity of single row routing
problems. IEEE Transactions on Circuits and Systems, CAS-
31(5):462–471, May 1984.

P. Ramanathan and K. G. Shin. A clock distribution scheme for
non-symmetric vlsi circuits. Proceedings of IEEE International
Conference on Computer-Aided Design, pages 398–401, 1989.

F. Romeo and A. Sangiovanni-Vincentelli. Convergence and finite
time behavior of simulated annealing. Proceedings of The 24th
Conference on Decision and Control, pages 761–767, 1985.

J. Reed, A. Sangiovanni-Vincentelli, and M. Santamauro. A
new symbolic channel router: Yacr2. IEEE Transactions on
Computer-Aided Design, CAD-4(3):208–219, 1985.

J. V. Rajan and D. E. Thomas. Synthesis by delayed binding of
decisions. Proceedings of the 22nd Design Automation Confer-
ence, pages 367–373, 1985.

Bibliography 553

[Rub74]

[RVS84]

[Sad84]

[Sad92]

[Sag89]

[SBP95]

[SBR80]

[SC96]

[Sch83]

[Sch85]

[SD81]

[SD89a]

[SD89b]

F. Rubin. The lee path connection algorithm. IEEE Transac-
tions on Computer-Aided Design, CAD-3, No. 4:308–318, Octo-
ber 1974.

F. Romeo, A.S. Vincentelli, and C. Sechen. Research on simu-
lated annealing at berekeley. Proceedings of IEEE International
Conference on Computer Design, pages 652–657, 1984.

M. Marek Sadowska. An unconstrained topological via mini-
mization problem for two-layer routing. IEEE Transactions on
Computer-Aided Design, CAD-3(3):184–190, 1984.

M. Marek Sadowska. Switch box routing: a retrospective. IN-
TEGRATION, The VLSI Journal, 13:39–65, 1992.

M. G. Sage. Future of multichip modules in electronics. Proceed-
ings of NEPCON West 89, 1989.

N. Sherwani, S. Bhingarde, and A. Panyam. Routing in The
Third Dimension: From VLSI Chips to MCMs. IEEE Press,
1995.

S. Sahni, A. Bhatt, and R. Raghavan. Complexity of design
automation problems. Technical Report 80-23, Department of
Computer Science, University of Minnesota, MN, 1980.

J. Shao and R.M.M. Chen. A seamless parallel algorithm for full
chip compaction. ISCAS, pages 787–790, 1996.

W. L. Schiele. Improved compaction by minimized length of
wires. Proceedings of 20th ACM/IEEE Design Automation Con-
ference, pages 121–127, 1983.

W. L. Schiele. Improved compaction by minimized length of
wires. Proceedings of Chapel Hill Conference on VLSI, pages
165–180, May 1985.

A. Siegel and D. Dolev. The seperation for general single-layer
wiring barriers. Proceedings of Carnegie-Mellon Conference on
VLSI Systems and Computations, pages 143–152, October 1981.

N. Sherwani and J. Deogun. A new heuristic for single row rout-
ing problems. Proceedings of 26th ACM Design Automation Con-
ference, pages 167–172, June 1989.

N. Sherwani and J. Deogun. New lower bound for single row
routing problems. Proceedings of 1989 IEEE Midwest Symposium
on Circuits and Systems, August 1989.

554 Bibliography

[SDR89]

[SDR90]

[SDS94]

[Sec88]

[SG82]

[Shi]

[SHL90]

[SK72]

[SK84]

[SK87]

[SK89]

[SK92]

[SKT94]

N. Sherwani, J. Deogun, and A. Roy. Single row routing with
bounded number of doglegs per net. Proceedings of 1989 IEEE
International Symposium on Circuits and Systems, pages 43–46,
May 1989.

N. Sherwani, J. Deogun, and A. Roy. A parallel algorithm for
single row routing problems. Journal of Circuits, Systems and
Computers, 1990.

A. Shanbhag, S. Danda, and N. Sherwani. Floorplanning for
mixed macro block and standard cell designs. Fourth Great Lakes
Symposium on VLSI, pages 80–85, 1994.

C. Sechen. Chip-planning, placement, and global routing of
macro/custom cell integrated circuits using simulated annealing.
Proceedings of the 25th ACM/IEEE Design Automation Confer-
ence, pages 73–80, 1988.

Z. Syed and A. El Gamal. Single layer routing of power and
ground networks in integrated circuits. Journal of Digital Sys-
tems, 6:53–63, 1982.

Weiping Shi. A fast algorithm for area minimization of slicing
floorplans. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 15 12:1525 –1532.

M. Stallmann, T. Hughes, and W. Liu. Unconstrained via min-
imization for topological multilayer routing. IEEE Transactions
on Computer-Aided Design, CAD-1(1):970–980, September 1990.

D. G. Schweikert and B. Kernighan. A proper model for the
partitioning of electrical circuits. Proceedings of the 9th Design
Automation Workshop, pages 57–62, 1972.

M. Sriram and S. M. Kang. On the Structure of Three-Layer
Wirable Layouts, Vol. 2. Jai Press Inc., Greenwich, CT, 1984.

E. Shragowitz and J. Keel. A global router based on multicom-
modity flow model. INTEGRATION: The VLSI Journal, 1987.

P. R. Suaris and G. Kedem. A quadrisection based combined
place and route scheme for standard cells. IEEE Transactions
on Computer-Aided-Design, March 1989.

M. Sriram and S. M. Kang. A new layer assignment approach
for mcms. Technical Report UIUC-BI-VLSI-92-01, The Beckman
Institute, University of Illinois at Urbana-Champaign, 1992.

M. Shin, Ernest S. Kuh, and Ren-Song Tsay. High-performance-
driven system partitioning on multi-chip modules. Kluwer Aca-
demic Publishers, 1994.

Bibliography 555

[SKT97]

[SL87]

[SL89a]

[SL89b]

[SL90]

[SL93]

[SLW83]

[SM90a]

[SM90b]

[So74]

[SO84]

[Sou78]

[SR89]

M. Sarrafzadeh, D. Knol, and G. Tellez. Unification of budgeting
and placement. 34th Proc. DAC, pages 758-761, June 1997.

C. Sechen and K. W. Lee. An improved simulated annealing al-
gorithm for row-based placement. Proceedings of the IEEE Inter-
national Conference on Computer-Aided Design, pages 478–481,
1987.

M. Sarrafzadeh and D. T. Lee. A new approach to topological via
minimization. IEEE Transactions on Computer-Aided Design,
8:890–900, 1989.

H. Shin and C.Y. Lo. An efficient two-dimensional layout com-
paction algorithm. DAC, pages 290–295, 1989.

M. Sarrafzadeh and R. D. Lou. Maximum k-coverings of weighted
transitive graphs with applications. Proceedings of IEEE Inter-
national Symposium on Circuits and Systems, pages 332–335,
1990.

M. Sarrafzadeh and R. D. Lou. Maximum k-covering of weighted
transitive graphs with applications. Algorithmica, 9:84–100,
1993.

M. Schlag, Y. Z. Liao, and C. K. Wong. An algorithm for op-
timal two dimensional compaction of vlsi layouts. Integration,
1(2,3):179–209, September 1983.

K. Shahookar and P. Mazumder. A genetic approach to standard
cell placement. Proceedings of First European Design Automation
Conference, March 1990.

K. Shahookar and P. Mazumder. A genetic approach to standard
cell placement using met a-genetic parameter optimization. IEEE
Trans. Computer-Aided Design, pages 500–511, May 1990.

H. C. So. Some theoretical results on the routing of multilayer
printed-wiring boards. Proceedings of 1974 IEEE International
Symposium on Circuits and Systems, pages 296–303, 1974.

W. Scott and J. Outsterhout. Plowing: Interactive stretching
and compaction in magic. Proceedings of Design Automation
Conference, 1984.

J. Soukup. Fast maze router. Proceedings of 15th Design Au-
tomation Conference, pages 100–102, 1978.

Y. G. Saab and V. B. Rao. An evolution-based approach to par-
titioning asic systems. Proceedings of Design Automation Con-
ference, pages 767–770, 1989.

556 Bibliography

[SR90]

[SRB97]

[SS95]

[SSL93]

[SSR91]

[SSV85]

[SSV86]

[SSVS86]

[ST83]

[Sto66]

[Sup87]

[SV79]

[SW90]

Y. Saab and V. Rao. Stochastic evolution: A fast effective heuris-
tic for some generic layout problems. Proceedings of Design Au-
tomation Conference, pages 26–31, 1990.

Jianzhong Shi, Akash Randhar, and Dinesh Bhatia. Macro block
based fpga floorplanning. VLSI Design ’97, pages 21–26, 1997.

W. Swartz and C. Sechen. Timing driven placement for large
standard cell circuits. 32nd Design Automation Conference Pro-
ceedings, pages 211–215, June 1995.

S. Sutanthavibul, E. Shargowitz, and R. Lin. An adaptive timing-
driven placement for high performance vlsi’s. IEEE Transactions
on CAD of Integrated Circuits and Systems, 12:1488–1498, Oc-
tober 1993.

S. Sutanthavibul, E. Shragowitz, and J. Rosen. An analytical ap-
proach to floorplan design and optimization. IEEE Transaction
on Computer-Aided Design, 10:761–769, June 1991.

C. Sechen and A. Sangiovanni-Vincentelli. The timber wolf place-
ment and routing package. IEEE Journal of Solid-State Circuits,
Sc-20:510–522, 1985.

H. Shin and A. Sangiovanni-Vincentelli. Mighty: a rip-up and
reroute detailed ‘router. Proceedings of IEEE International Con-
ference on Computer-Aided Design, pages 2–5, November 1986.

H. Shin, A. L. Sangiovanni-Vincentelli, and C. H. Sequin. Two-
dimensional compaction by ‘zone refining’. Proceedings of 23rd
Design Automation Conference, pages 115–122, June 1986.

T. Sakurai and T. Tamuru. Simple formulas for two- and three-
dimensional capacitances. IEEE Transactions on Electron De-
vices, ED-30:183–185, 1983.

A. J. Stone. Logic partitioning. Proceedings of Design Automa-
tion Conference, pages 2–22, 1966.

K. J. Supowit. Finding a maximum planar subset of a set of nets
in a channel. IEEE Transactions on Computer-Aided Design,
CAD-6(1):93–94, January 1987.

K. R. Stevens and W. M. VanCleemput. Global via elimination
in generalized routing environment. Proceedings of International
Symposium on Circuits and Systems, pages 689–692, 1979.

M. Sarrafzadeh and C. K. Wong. Hierarchical steiner tree con-
struction in uniform orientations. Research report, Dept. of Elec-
trical Engineering and Computer Science, Northwestern Univer-
sity, 1990.

Bibliography 557

[SW91]

[SWS92]

[SYB95]

[SYTB95]

[Sze86]

[Szy85]

[Tar83]

[Tew89]

[TH90]

[TI81]

[TK78]

[TKH96]

N. A. Sherwani and B. Wu. Clock layout of high performance cir-
cuits based on weighted center algorithm. Proceedings of Fourth
IEEE International ASIC Conference and Exhibit, pages P15–
5.1–5.4, September 1991.

N. Sherwani, B. Wu, and M. Sarrafzadeh. Algorithms for min-
imum bend single row routing. IEEE Transactions on Circuits
and Systems, 39(5):412–415, May 1992.

Naveed Sherwani, Qiong Yu, and Sandeep Badida. Introduction
to Multichip Modules. John Wiley & Sons, 1995.

S. M. Sait, H. Youssef, S. Tanvir, and M. S. T. Benten. Timing
influenced general-cell genetic floorplanner’. Proceedings of the
ASP-DAC ’95/CHDL ’95/VLSI ’95., IFIP International Con-
ference on Hardware Description Languages. IFIP International
Conference on Very Large Scale Integration., Asian and South
Pacific, pages 135 –140, 1995.

A. A. Szepieniec. Integrated placement/routing in sliced layouts.
Proceedings of 23rd ACM/IEEE Design Automation Conference,
pages 300–307, 1986.

T. G. Szymanski. Dogleg channel routing is np-complete. IEEE
Transactions on Computer-Aided Design, CAD-4:31–41, January
1985.

R. Tarjan. Data Structures and Network Algorithmsk. Society
for Industrial and Applied Mathematics, 1983.

S. K. Tewksbury. Wafer-Level System Integration: Implementa-
tion Issues. Kluwer Academic Press, Boston, 1989.

T. Tuan and S. L. Hakimi. River routing with a small number
of jogs. SIAM Journal of Discrete Mathematics, 3(4):585–597,
November 1990.

R. Tsui and R. Smith II. A high density multilayer printed cir-
cuit board router based on necessary and sufficient conditions
for single row routing. Proceedings of 18th ACM/IEEE Design
Automation Conference, pages 372–381, June 1981.

B. S. Ting and E. S. Kuh. An approach to the routing of multi-
layer printed circuit boards. Proceedings of IEEE Symposium on
Circuits and Systems, pages 902–911, 1978.

I. Tazawa, S. Koakutsu, and H. Hirata. An immunity based ge-
netic algorithm and its application to the vlsi floorplan design
problem. Proceedings of IEEE International Conference on Evo-
lutionary Computation, 1996., pages 417–421, 1996.

558 Bibliography

[TKS76]

[TKS82]

[TMSK84]

[Tom81]

[TR89]

[Tsa91]

[TTNS94]

[Tum91]

[TY95]

[UKH85]

[USS90]

[Van91]

B. S. Ting, E. S. Kuh, and I. Shirakawa. The multilayer routing
problem: Algorithms and necessary and sufficient conditions for
the single row, single layer case. IEEE Transactions on Circuits
and Systems, pages 768–778, December 1976.

S. Tsukijama, E. S. Kuh, and I. Shirakawa. An algorithm for sin-
gle row routing with prescribed street congestion. IEEE Transac-
tions on Circuits and Systems, pages 765–772, September 1982.

T. T. K. Trang, M. Marek-Sadowska, and E. S. Kuh. An efficient
single-row routing algorithm. IEEE Transactions on Computer-
Aided Design, vol. CAD-3:178–183, July 1984.

M. Tompa. An optimal solution to a wire-routing problem. Jour-
nal of Computer and System Sciences, 23(2): 127–150, October
1981.

R. R. Tummala and E. J. Rymaszewski. Microelectronics Pack-
aging Handbook. Van Nostrand Reinhold, 1989.

R. Tsay. Exact zero skew. Proceedings of IEEE International
Conference on Computer-Aided Design, pages 336–339, Novem-
ber 1991.

M. Terai, K. Takahashi, K. Nakajima, and K. Sato. A new
approach to over-the-cell channel routing with three layers.
IEEE Transactions on CAD of Integrated Circuits and Systems,
13:187–200, February 1994.

R. R. Tummala. Electronic packaging in the 1990’s-a perspective
from america. In IEEE Transactions on Components, Hybrids,
and Manufacturing Technology, 14(2):262–271, June 1991.

J. T.Mowchenko and Y. Yang. Optimizing wiring space in slicing
floorplans. Proceedings., Fifth Great Lakes Symposium on VLSI,
pages 54 –57, 1995.

K. Ueda, H. Kitazawa, and I. Harada. Champ: Chip floorplan
for hierarchial vlsi layout design. IEEE Transactions on CAD of
Integrated Circuits and Systems , CAD-4:12–22, January 1985.

M. Upton, K. Samii, and S. Sugiyama. Integrated placement for
mixed macro cell and standard cell designs. Proceedings of the
27th ACM/IEEE Design Automation Conference, pages 32–35,
1990.

A. Vannelli. An adaptation of the interior point method for
solving the global routing problem. IEEE Transanctions on
Computer-Aided Design of Integrated Circuits, CAD-10(2), 1991.

Bibliography 559

[VCW89]

[VK83]

[VT91]

[WC89]

[WC95]

[WE92]

[WHSS92]

[Wi178]

[Wir77]

[WL86]

[WLC90]

[WLLC93]

[Won89]

G. Vijayan, H. H. Chen, and C. K. Wong. On vhv-routing
in channels with irregular boundaries. IEEE Transactions on
Computer-Aided Design, CAD-8(2), 1989.

M. P. Vecchi and S. Kirkpatrick. Global wiring by simulated
annealing. IEEE Transactions on Computer-Aided Design of
Integrated Circuits, CAD-2(4), 1983.

G. Vijayan and R. Tsay. A new method for floorplanning us-
ing topological constraint reduction. IEEE Transactions on
Computer-Aided Design, pages 1494–1501, December 1991.

Y. Wei and C. Cheng. Towards efficient hierarchical designs by
ratio cut partitioning. Proceedings of IEEE International Con-
ference on Computer-Aided Design, 1:298–301, 1989.

Kai Wang and Wai-Kai Chen. Floorplan area optimization using
network analogous approach. ISCAS ’95., 1995 IEEE Interna-
tional Symposium, 1:167 –170, 1995.

N. Weste and K. Eshraghian. Principles of CMOS VLSI Design
- A systems perspective, Second Edition. Addison-Wesley, 1992.

B. Wu, N. Holmes, N. Sherwani, and M. Sarrafzadeh. Over-the-
cell routers for new cell models. Proceedings of 29th ACM/IEEE
Design Automation Conference, pages 604–607, June 1992.

J. Williams. Sticks - a graphical compiler for high level Isi design.
Proceedings of AFIPS, pages 289–295, 1978.

N. Wirth. What can we do about the unnecessary diversity of no-
tations for synctactic definitions? Communications of the ACM,
November 1977.

D. F. Wong and C. L. Liu. A new algorithm for floorplan design.
Proceedings of 23rd ACM/IEEE Design Automation Conference,
pages 101–107, 1986.

S. J. Well, J. Leroy, and R. Crappe. An efficient two-dimensional
compaction algorithm for vlsi symbolic layout. Proceedings of
European Design Automation Conference, pages 196–200, 1990.

L. Y. Wang, Y.T. Lai, B.D. Liu, and T.C. Chang. A graph-based
simplex algorithm for minimizing the layout size and the delay
on timing critical paths. ICCAD, pages 196–200, 1993.

S. C. Wong. A 5000-gate cmos epld with multiple logic and
interconnect arrays. Proceedings of 1989 CICC, pages 5.8.1 –
5.8.4, May 1989.

560 Bibliography

[Won98]

[Woo91]

[WS91]

[WS92]

[WW90]

[XGC97]

[Xio86]

[XK86]

[YG78]

[YG87]

[YK82]

[YKR87]

Zhou Wong. Global routing with crosstalk constraints. 35th De-
sign Automation Conference Proceedings, pages 374–377, June
1998.

N. Woo. A heuristic method for fpga technology mapping based
on the edge visibility. Proceedings of 28th ACM/IEEE Design
Automation Conference, pages 248–251, 1991.

B. Wu and N. A. Sherwani. Clock routing for high-performance
circuits using movable clock terminals. Proceedings of Fourth
International Conference on IC Design, Manufacture and Appli-
cation, pages 94–100, September 1991.

B. Wu and N. A. Sherwani. Effective buffer insertion of clock
trees for high-speed vlsi circuits. Microelectronics, 23:291–300,
July 1992.

T. Wang and D. Wong. An optimal algorithm for floorplan area
optimization. Proceedings of the 27th ACM/IEEE Design Au-
tomation Conference, pages 180–186, 1990.

J. Xu, P. Guo, and C. Cheng. Cluster refinement for block place-
ment. 34th Design Automation Conference Proceedings, pages
762–765, June 1997.

J. G. Xiong. Algorithms for global routing. Proceedings of Design
Automation Conference, 1986.

X. M. Xiong and E. S. Kuh. The scan line approach to power and
ground routing. Proceedings of IEEE International Conference
on Computer-Aided Design, pages 6–10, November 1986.

S. Z. Yao, C. K. Cheng, D. Dutt, S. Nahar, and C. Y. Lo. Cell-
based hierarchical pitchmatching compaction using minimal lp.
Trans CAD , 14 (4):523–526, 1995.

M. Yannakakis and F. Gavril. Edge dominating sets in graphs -
unpublished. 1978.

M. Yannakakis and F. Gavril. The maximum k-colorable problem
for chordal graphs. Information Processing Letters, pages 133–
137, January 1987.

T. Yoshimura and E. S. Kuh. Efficient algorithms for channel
routing. IEEE Transactions on Computer-Aided Design, CAD-
1(1):25–30, January 1982.

D. C. Yeh, S. M. Kang, and V. B. Rao. Cmos logic circuit parti-
tioning for equal chip complexity. Proceedings of IEEE Interna-
tional Conference on Computer Design, pages 358–360, 1987.

Bibliography 561

[YM90]

[YSAF95]

[YTK95]

[YW91]

[YYL88]

J. Yih and P. Mazumder. A neural network design for circuit par-
titioning. IEEE Transactions on Computer-Aided Design, pages
1265–1271, 1990.

H. Youssef, S. M. Sait, and K. J. Al-Farra. Timing influenced
force directed floorplanning. Proceedings EURO-DAC ’95., pages
156 –161, 1995.

T. Yamanouchi, K. Tamakashi, and T. Kambe. Hybrid floor-
planning based on partial clustering and module restructuring.
ICCAD-96. Digest of Technical Papers., 1996 IEEE/ACM Inter-
national Conference, pages 478 –483, 1995.

C. Yang and D. F. Wong. Optimal channel pin assignment. IEEE
Transactions Computer-Aided Design, CAD 10(11):1413–1423,
November 1991.

X. Yao, M. Yamada, and C. L. Liu. A new approach to the
pin assignment problem. Proceedings of 25th ACM/IEEE Design
Automation Conference, pages 566–572, 1988.

This Page Intentionally Left Blank

Author Index

Akers, S. B. , 262, 464, 477
Arnold, P. B. , 315
Bagrodia, R., 190
Bakoglu, H. B. , 74, 447, 523
Barahona, F. , 407
Bhasker, J. , 200
Bhatt, A. , 366
Bhingarde, S. , 396, 398, 415
Boyer, D. G. , 464, 467
Brady, H. N. , 211
Brayton, R. K. , 186, 498
Burman, S. , 277, 494
Burns, J. , 463
Burstein, M. , 169, 290
Buschbom, M. , 523
Chan, H. , 232
Chan, S. P. , 415
Chandar, K. , 494
Chang, K. C. , 403
Chao, T., 290
Charney, H. R. , 183
Chen, H. H. , 334
Chen, H. , 277
Chen, R. W. , 415
Cheng, C. , 241, 290
Cheng, C.-K. , 169
Chern, T. C. , 407
Chiang, C. , 281
Cho, J. D. , 448
Cho, T., 367
Ciesielski, M. J. , 403
Cohoon, J. P. , 230, 358
Cong, J. , 145, 149, 190, 286, 373,

408, 415, 430, 498, 519
Conway, L. , 58, 156
Coppersmith, D. , 212
Cormen, T. , 101

Cullum, J. , 183
Dai, W. W. , 214, 290, 467, 517
Danda, S., 246, 377
Davidson, E. E. , 523
Dayan, T. , 517
Deutsch, D. N. , 323, 414
Dijkstra, E. W. , 108, 272
Ding, Y., 498
Donath, W. E. , 183
Du, D. H. C. , 403
Dunlop, A. E. , 239
Edahiro, M., 448
Eichenberger, P. A. , 462
El Gamal, A. , 441, 493
Ercolani , 498
Eschermann, B. , 214
Even, S. , 144, 462
Fiduccia, C. M. , 169, 339
Filo, D. , 498
Fujisawa, T. , 313-314
Fussell, D. ,442
Gajski, D. D. , 448
Gao, T. , 242
Garey, M. R. , 101
Gavril, F. , 146
Geyer, J. M. , 464
Glick, P., 414
Goldberg, M. K. , 169
Gonzalez, T. F. , 366
Gopal, I. S. , 212
Greene, J. , 190, 493
Hadlock, F. O. , 264, 407
Hall, K. M. , 241
Hamachi, G. T. , 367
Han, S. , 367
Haruyama, S. , 442
Hashimoto, A. , 367, 403

564 Author Index

Heck, P. L. , 358
Heath, J., 367
Heisterman, J. , 282
Hightower, D. W. , 269, 442
Hill, D. D. , 290
Ho, J. M. , 274, 448, 517
Ho, T. T., 367
Holmes, N. , 149, 389, 396, 398
Hong, S. J. , 290
Hong, X., 290
Hossain, M. , 149, 410, 440
Hseih, H. , 473
Hsu, C. P. , 290, 306, 407
Hsu, Y. C. , 290, 367
Hsueh, M. Y. , 463
Huang, J., 290
Hwang, F. K. , 113, 273
Iyengar, S. S., 367
Jackson, M. A. B. , 429
Johnson, D. S. , 101
Kahng, A. , 430
Kajitani, Y. , 367, 403, 415
Kang, S. M. , 517
Kaptanoglu, S. , 493
Karmarkar, N. , 290
Karp, R. M. , 290
Karplus, K. , 498
Katsadas, E., 415
Kawamoto, T. , 367
Kedem, G. , 290
Keel, J. , 290
Kernighan, B. W. , 169, 239
Khan, W. A., 440
Khawaja, R., 396
Khoo K.-Y., 519
Kinnen, E. , 200, 403, 415
Kirkpatrick, S. , 290
Kozminski, K. , 200
Kring, C. , 169
Kruskal J. B., 107
Kubitz, W. J. , 290
Kuh, E. S. , 214, 241, 290, 313, 330,

334, 347, 429, 467, 509
Kuo, Y. S. , 407
LaPotin, D. P. , 512
Lawler, E. L. , 185

Lee, C. Y. , 261
Lee, D. T. , 145, 408
Lee, K. W. , 290
Leighton, F. T. , 290
Leiserson, C. E. , 101, 366
Lempel, A. , 144
Lengauer, T. , 282, 461
Leong, H. W. , 473
Levitt, K. N. , 185
Li, Z., 190
Liao, Y. -Z. , 461, 473
Lin, M.-S. , 414
Lin, R., 246
Lin, S. , 169
Lin, Y.-L. , 367
Liu, C. L. , 145, 205, 242, 373, 408,

414, 473
Lou, R. D. , 145
Lursinsap, C. , 448
Madhwapathy, S., 377, 398
Malik, A. A. , 458
Mailhot, F. , 498
Marek-Sadowska, M. , 367, 408
Masuda, S. , 405, 415
Mattheyses, R. M. , 169
Mazumder, P. , 232, 246
Mead, C. , 58, 156
Mehta, D., 156
Metropolis, N. , 178
Micheli, G. D. , 498
Mikami, K. , 269
Mlynski, D. A. , 441
Mohan, S., 246
Mory-Rauch, L. , 211
Moulton, A. S. , 441
Murgai, R. , 186, 498
Naclerio, N. J. , 405, 415
Nair, R. , 290
Nakajima, K. , 396, 405, 415
Natarajan, S. , 398
Newton, A. R. , 169
Nishizaki, Y. , 498
Ousterhout, J. K. , 35, 156, 367
Pan, P. , 205
Pan, Y. , 290
Panyam, A. , 377, 396, 398, 415

Author Index 565

Paris, W. , 230
Pedram, M. , 214
Perng, H.-W. , 414
Pinter, R. Y. , 366, 403, 407
Plato, D. L. , 183
Pnnueli, A. , 144
Preas, B. T. , 286
Preparata, F. , 156
Prim, R. C. , 275
Pyo, S, 367
Quinn, N. R. , 232
Raghavan, R. , 366-367
Ramanathan, P. , 447
Rao, V. B. , 179
Reed, J. , 325
Rivest, R. L. , 101
Roberts, D. L. , 464
Robins, G. , 430
Rose, J. , 290
Rosen, J. , 198
Rothermel, H-J. , 441
Roychowdhury, V. , 493
Rymaszewski, E. J. , 523
Saab, Y. G. , 179
Sahni, S. , 200, 366-367
Sangiovanni-Vincentelli, A. , 186, 227,

325, 358, 468, 498
Santamauro, M. , 325
Sarrafzadeh, M., 145,149, 281, 389,

396, 398, 408, 448, 517
Sato, K. , 396
Schiele, W. L. , 462
Schlag, M. , 473
Schweikert, F. , 169
Sechen, C. , 227, 290
Sequin, C. H. , 468
Shahookar, K. , 232
Shamos, M. I. , 156
Shanbhag, A., 246
Shenoy, N. ,498
Sherwani, N. A. , 149, 246, 277,

377, 389, 396, 398, 410, 432,
440, 494

Shih, W. , 407
Shin, H. , 358, 447, 468
Shin, M. , 509

Shirakawa, I. , 313
Shragowitz, E. , 198, 246, 290
Shugard, D. , 290
Smith II, R. , 367
So, H. C. , 312
Soukup, J. ,263
Sriram, M. , 517
Srinivasan.,, 429
Staepelaere, D. , 517
Stevens, J. , 321, 367, 403
Stevens, K. R. , 403
Stone, A. J. , 185
Suaris, P. R. , 290
Supowit, K. J. , 148, 190
Sutanthavibul, S. , 198, 246
Syed, Z. , 441
Tabuchi, K. , 269
Takahashi, K. , 396
Tarjan, R. E. , 156, 461
Terai, H. , 396
Tewksbury, S. K. , 512
Ting, B. S. , 313
Tsai, F. S. , 367
Tsay, R. , 196, 433, 509
Tsui, R. , 367
Tummala, R. R. , 523
Turner, J. , 185
Vaidya, P. M. , 242
VanCleemput, W. M. , 403
Vecchi, M. P. , 290
Vijayan, G., 196, 274, 448, 498, 517
Wei, Y. , 169
Weste, N., 467
Wolfe, P. , 183
Wong, D. F. , 212, 448
Wong, C. K. , 212, 274, 281, 461,

473, 517
Woo, N. , 498
Wu, B. , 396, 432
Xiong, J. G. , 448
Xue, T., 290
Yang, J. C. , 212
Yoshimura, K. , 347
Yoshimura, T. , 330
Zheng, S. Q. , 367

This Page Intentionally Left Blank

Subject Index

Acker’s coding scheme, 263
algorithm,

approximate, 102, 287, 410
branch and bound, 242, 286
constructive, see placement
deterministic, 225
Dijkstra’s, see path
divide and conquer, 100, 157,

340
dynamic programming, 100, 108,

148, 375
geometric matching, see clock
greedy, 100, 142-143, 283, 317,

321, 339-341, 355, 358, 367
Hadlock’s, see global routing
heuristic, 98, 103, 111, 113, 315-

317, 355, 358, 361, 366
Hightower’s, see global routing
Kruskal’s, see spanning tree
Lee’s, see global routing
left edge, see channel
line sweep, 115, 117, 359-360
maze running, see global rout-

ing
maximum k-independent set, 146
methods of means and median,

see clock
Mikami’s, see global routing
most recent layer, see compaction
neighbor find, 117, 119, 121,

125
point find, 100, 117, 124, 294,

305
polynomial time, 100,117,124,

294, 305
Prim’s, see spanning tree
probabilistic, 225

recursive, 276, 343
scanline, 458
shadow propagation, see com-

paction
simulated evolution, see search
Soukup’s, see global routing
virtual grid, see compaction
weighted center, see clock
zero skew, see clock

architecture,
FPGA, see FPGA
gate array, see gate array

area,
routing, 192, 247

area routing, see area
ASIC, 17, 479
aspect ratio, see block
assignment,

channel segment , 390
layer, 295, 358
pin, see pin

channel, see channel
general, 209

terminal, 308, 390
atomic operations, 117-119, 121, 124
BEAR system, 214
benchmark, 345
bipartitation, see partitioning
bipolar, see transistor
block,

aspect ratio, 193
fixed, 191, 198
flexible, 191, 199

board level,
partitioning, see partitioning
placement, see placement

capacity,

568 Subject Index

channel, see channel
edge, 146

channel, 249
assignment, 211
capacity, 249, 252, 366
height, 258, 363
routing, 249, 390

greedy, 375, 391
left edge, 144, 346-347
YACR2, 325-327

chip level,
partitioning, see partitioning
placement, see placement

clock, 418
frequency, 419
period, 419
routing, 294, 305, 427

geometric matching algorithm,
430

method of means and medi-
ans algorithm, 429

weighted center algorithm, 432
zero skew algorithm, 433

skew, 419
inter, 439
intra, 440
zero, 433

clocking scheme, 419
compaction, 118, 228, 450

compression ridge, 464
graph based, 451, 453
hierarchical, 452, 473
most recent layer algorithm, 467
one dimensional, 451

468
shadow propagation, 456
split grid, 464
two dimensional, 451, 470
virtual grid, 451, 463
x, 451
y, 451

complexity, 100
time, 100
worst case, 318, 358

component, 100

computational geometry, 98, 101, 104,
115

concentric circle mapping, 210
conductor, 41
congestion, 41
constraint,

capacity, 257
horizontal, 298
integrality, 283
overlap, 470
vertical, 299

contact,
burried, 52, 59, 63

cooling schedule, 118, 228, 450
corner stitching, 123-124, 126, 128,

131
crossover, 230, 306
crosstalk, 81
crossunder, 440
cut,

tree, 283
cycle, 419

vertical constraint, 331
decomposition, 313
degree, 99

of a rooted tree, 99
of a vertex, 99

in-degree, 99, 329
out-degree, 99, 330

delay, 422
computation, 423
models, 425
RC, 80, 82, 422

demand points, 111, 255
detailed routing, 248, 291

problem, 291, 293, 362
detour, 266, 344
die attachment,

TAB, 503
flip-chip, 503
wire bonding, 503

dogleg, 297, 312
doping, 42, 44, 54
drain, 46, 52, 79
dual, 138, 200
edge, 99

Subject Index 569

cost, 106, 108, 111, 113
directed, 99
incident, 99

electron, 40, 42-43, 45, 48
escape point, 269
Euclidian,

geometry, 277
fabrication, 39, 47-48, 53, 59, 71, 75

material, 40
nMOS, 51

feedthrough, 257
floorplan, 193

slicing, 194
floorplanning, 191, 283

constraint based, 196
integer program, 198

forest, 107
FPGA,

global routing, 257
full-custom, 293

design style, 15
detailed routing, 15
global routing, 257
partitioning, 166
placement, 224

function, 293
gate array, 20, 98-99, 104, 135, 345

architecture, 20
compaction, 138
design style, 15
global routing, 258, 287, 290
partitioning, 167
placement, 224, 409

gates,
NAND, 62, 64, 66
NOR, 62, 64

global routing, 248, 255
concurrent, 260, 287
hierarchical, 283, 290
in full custom, see full-custom
in gate array, see gate array
in multichip module, see Mul-

tichip Modules
in standard cell, see standard

cell
line probe, 269, 271-273, 287

Hadlock’s algorithm, 264, 266,
268

Hightower algorithm, 269-271
maze running, 260-261, 267, 269,

272-273, 287, 358
Mikami’s algorithm, 269-271
Lee’s algorithm, 111, 261, 263-

264, 267, 269
Soukup’s algorithm, 263-265,

268
parallel, 290
problem, 255
sequential, 260, 287

graph, 20, 98-99, 104, 135, 345
bipartite, 100, 110, 148, 318
channel intersection, 254, 256
checker board, 254
circle, 137, 148
clique, 99, 137, 141-143, 151
co-comparability, 138
coloring, 102, 141, 143
comparability, 138
complete, 99, 274-275
constraint, 456

horizontal, 299
vertical, 300, 390

directed, 99
directed acyclic, 99, 349
grid, 253, 261
interval, 136, 142, 299
models, 253
overlap, 136-137, 316
permutation, 136-137, 140-142,

144, 147, 408
planar, 224, 409
routing, 255
tree, 99
triangulated, 138, 142

H-tree, 428
Hierarchical,

compaction, see compaction
global, see global routing

hole, 41, 43, 46
hyper,

graph, 100
terminals, 374

570 Subject Index

insulator, 40
integer linear program, 261, 282
integration,

large scale, 2
small scale, 2
2.5 dimensional, 512
very large scale, 2
wafer scale, 31

I/O pads, 18, 40, 43, 94
ions, 18, 40, 43, 94
knock-knee, 296-297
Lambda 58

geometry, 277, 279
layer, 130

assignment, 401
diffusion, 44, 47, 54-55
mask, 47, 50
metal1, 46, 63
metal2, 46
meta13, 46
oxide, 40, 43-44, 46-47, 50-51,

54
polysilicon, 46, 50

layout, 2
grid-based, 405
H-tree, 428
mask, 2, 39, 44, 50, 53
symbolic, 449

manhattan, 266
master, 420

sea-of-gates, 25
matrix, 343, 403
max-cut, 110
MCM, see Multichip Modules
metal1, see layer
meta12, see layer
meta13, see layer
methods,

nine zone, 211
rip-up and reroute, 12, 325, 334

min-cut, 110, 164
MOS, 43, 45-47, 55, 63

CMOS, 43, 48, 53, 63, 85
nMOS, 47-48, 51, 53, 64

Multichip Modules, 29, 501
pin redistribution, 515

programmable, 503
routing, 515

detailed, 257
global, 257

type,
C, 502
D, 502
L, 502

mutation, 230
neighbour, 117, 119, 121-122, 126,

138
net, 157

multi-terminal, 253, 323, 353
sequencing, 260
two-terminal, 253

noise, 81
over-the-cell,

models, 371
symbolic, 414

routing, 258, 305, 352, 369-370
high performance, see perfor-

mance driven
in three layers, 396
in two layers, 320, 373

oxidation, 55, 71
parasitic effect, 79
partitioning, 157

bi, 165
circuit, 158
graph, 163
level,

board, 158
chip, 158
system, 158

simulated annealing, 177
simulated evolution, 179

path, 99, 255, 266, 349
critical, 161, 460
directed, 99, 331, 336
length, 99
shortest, 107, 272-273

Dijkstra’s Algorithm, 108, 272
performance driven,

partitioning, 185
placement, 192, 242
routing, 400

Subject Index 571

global, 247, 255, 257, 287
over-the-cell, 398

photolithography, 50, 86
photoresist, 50, 56

pin,
assignment, 192, 207
equipotential, 207
functionally equivalent, 207
in a circuit, 191
redistribution, see Multichip Mod-

ules
type,

topological, 211
placement, 191, 255

cluster growth, 240
Constructive algorithm, 225
force-directed algorithm, 232
level, 219

board, 219
chip, 220
system, 219

resistive network optimization,
241

simulated annealing, 226
simulated evolution, 229

poly, see layer
polysilicon, see layer
power and ground routing, 247, 440
power dissipation, 82
problem,

decision, 101
detailed routing, see detailed rout-

ing
global routing, see global rout-

ing
maximum k-independent set, 146
min-cost max-flow, 146
NP-complete, 101, 249, 252, 292,

304, 323
NP-hard, 101, 294
shortest path, see path

program,
integer, 198

programmable MCM, see Multichip
Modules

queue,

priority, 358
rat’s nest, 221
rip-up and reroute, 12, 260, 273
region,

P, 43
n, 43-44, 46

resistance, 40-41, 80
routability, 252, 363

in gate array’s, 258
routing, 247

area, see area
clock, see clock
detailed, see detailed routing
global, see global routing
ground, see power and ground

routing
non-rectilinear, 277
over-the-cell, see over-the-cell
power, see power and ground

routing
rectlinear, 247, 306
region, 247, 306
river, 363, 366
single layer, 304, 363
single row, 306, 311
switchbox, see switchbox

rubber-band sketches, 517
scaling, 76

constant voltage, 76
full, 76

search, 104, 367
breadth first, 105, 264, 267, 269,

271
depth first, 104, 264, 268

semiconductor, 41-43, 46, 51
separability, 274, 279
short-circuit, 247
shove-aside, 260, 273
silicon,

dioxide, see layer
wafer, 2, 39, 44, 50, 55-56

simulated annealing,
partitioning, see partitioning
placement, see placement

simulated evolution, 104, 367
partitioning, see partitioning

572 Subject Index

placement, see placement
selection, 230

skew, see clock
spanning forest,

minimum density, 376
source, 46, 55
spanning tree, 106

minimum cost, 106
Kruskal’s algorithm, 106-107
Prim’s algorithm, 275

separable, 274
standard cell,

partitioning, 167
placement, 224
global routing, 257, 287

steiner, 102, 111-112
points, 112, 255
tree, see steiner tree

steiner tree, 112, 253, 273, 287
diameter, 255
minimum cost, 290
min-max, 279
rectilinear, 112, 273, 287, 359

L-, 274
S-, 274-275, 277
Z-, 274-276
weighted, 281

subgraph, 99, 142-143, 151
bipartite, 393

substrate,
p, 46, 53

superconductor, 41
SURF routing system, 517
switchbox, 12, 249

routing, 251
temperature,

decrement, 227
terminal, 157

vacant, 297, 391
thermal oxidation, 55
transistor, 43, 45-46, 53, 63, 76

bipolar, 43-44, 48, 54, 345
depletion mode, 48, 62
enhancement mode, 47, 64
unipolar, 43

tree, 99

minimum spanning, 273
separable, 279

rooted, 99
steiner, see steiner

TTL, 43, 45
vertex, 99, 105, 108, 110, 136

adjacent, 99-100, 138
blocked, 261-262
coloring, 102, 405
cover, 102, 405
degree, 99
outdegree, 99

in a hypergraph, 100
unblocked, 261-262

via,
minimization, 400

constrained, 370
topological, 410
unconstrained, 370

stacked, 27, 294
weight, 336
YACR2, see channel
yield, 58
zero skew, see clock
zone,

refining, 469

	Contents
	Foreword
	Preface
	Acknowledgements
	1 VLSI Physical Design Automation
	1.1 VLSI Design Cycle
	1.2 New Trends in VLSI Design Cycle
	1.3 Physical Design Cycle
	1.4 New Trends in Physical Design Cycle
	1.5 Design Styles
	1.5.1 Full-Custom
	1.5.2 Standard Cell
	1.5.3 Gate Arrays
	1.5.4 Field Programmable Gate Arrays
	1.5.5 Sea of Gates
	1.5.6 Comparison of Different Design Styles

	1.6 System Packaging Styles
	1.6.1 Die Packaging and Attachment Styles
	1.6.1.1 Die Package Styles
	1.6.1.2 Package and Die Attachment Styles

	1.6.2 Printed Circuit Boards
	1.6.3 Multichip Modules
	1.6.4 Wafer Scale Integration
	1.6.5 Comparison of Different Packaging Styles

	1.7 Historical Perspectives
	1.8 Existing Design Tools
	1.9 Summary

	2 Design and Fabrication of VLSI Devices
	2.1 Fabrication Materials
	2.2 Transistor Fundamentals
	2.2.1 Basic Semiconductor Junction
	2.2.2 TTL Transistors
	2.2.3 MOS Transistors

	2.3 Fabrication of VLSI Circuits
	2.3.1 nMOS Fabrication Process
	2.3.2 CMOS Fabrication Process
	2.3.3 Details of Fabrication Processes

	2.4 Design Rules
	2.5 Layout of Basic Devices
	2.5.1 Inverters
	2.5.2 NAND and NOR Gates
	2.5.3 Memory Cells
	2.5.3.1 Static Random Access Memory (SRAM)
	2.5.3.2 Dynamic Random Access Memory (DRAM)

	2.6 Summary
	2.7 Exercises

	3 Fabrication Process and its Impact on Physical Design
	3.1 Scaling Methods
	3.2 Status of Fabrication Process
	3.2.1 Comparison of Fabrication Processes

	3.3 Issues related to the Fabrication Process
	3.3.1 Parasitic Effects
	3.3.2 Interconnect Delay
	3.3.3 Noise and Crosstalk
	3.3.4 Interconnect Size and Complexity
	3.3.5 Other Issues in Interconnect
	3.3.6 Power Dissipation
	3.3.7 Yield and Fabrication Costs

	3.4 Future of Fabrication Process
	3.4.1 SIA Roadmap
	3.4.2 Advances in Lithography
	3.4.3 Innovations in Interconnect
	3.4.3.1 More Layers of Metal
	3.4.3.2 Local Interconnect
	3.4.3.3 Copper Interconnect
	3.4.3.4 Unlanded Vias

	3.4.4 Innovations/Issues in Devices
	3.4.5 Aggressive Projections for the Process
	3.4.6 Other Process Innovations
	3.4.6.1 Silicon On Insulator
	3.4.6.2 Silicon Germaniun

	3.5 Solutions for Interconnect Issues
	3.6 Tools for Process Development
	3.7 Summary
	3.8 Exercises

	4 Data Structures and Basic Algorithms
	4.1 Basic Terminology
	4.2 Complexity Issues and NP-hardness
	4.2.1 Algorithms for NP-hard Problems
	4.2.1.1 Exponential Algorithms
	4.2.1.2 Special Case Algorithms
	4.2.1.3 Approximation Algorithms
	4.2.1.4 Heuristic Algorithms

	4.3 Basic Algorithms
	4.3.1 Graph Algorithms
	4.3.1.1 Graph Search Algorithms
	4.3.1.2 Spanning Tree Algorithms
	4.3.1.3 Shortest Path Algorithms
	4.3.1.4 Matching Algorithms
	4.3.1.5 Min-Cut and Max-Cut Algorithms
	4.3.1.6 Steiner Tree Algorithms

	4.3.2 Computational Geometry Algorithms
	4.3.2.1 Line Sweep Method
	4.3.2.2 Extended Line Sweep Method

	4.4 Basic Data Structures
	4.4.1 Atomic Operations for Layout Editors
	4.4.2 Linked List of Blocks
	4.4.3 Bin-Based Method
	4.4.4 Neighbor Pointers
	4.4.5 Corner Stitching
	4.4.6 Multi-layer Operations
	4.4.7 Limitations of Existing Data Structures
	4.4.8 Layout Specification Languages

	4.5 Graph Algorithms for Physical design
	4.5.1 Classes of Graphs in Physical Design
	4.5.1.1 Graphs Related to a Set of Lines
	4.5.1.2 Graphs Related to Set of Rectangles

	4.5.2 Relationship Between Graph Classes
	4.5.3 Graph Problems in Physical Design
	4.5.4 Algorithms for Interval Graphs
	4.5.4.1 Maximum Independent Set
	4.5.4.2 Maximum Clique and Minimum Coloring

	4.5.5 Algorithms for Permutation Graphs
	4.5.5.1 Maximum Independent Set
	4.5.5.2 Maximum k-Independent Set

	4.5.6 Algorithms for Circle Graphs
	4.5.6.1 Maximum Independent Set
	4.5.6.2 Maximum k-Independent Set
	4.5.6.3 Maximum Clique

	4.6 Summary
	4.7 Exercises

	5 Partitioning
	5.1 Problem Formulation
	5.1.1 Design Style Specific Partitioning Problems

	5.2 Classification of Partitioning Algorithms
	5.3 Group Migration Algorithms
	5.3.1 Kernighan-Lin Algorithm
	5.3.2 Extensions of Kernighan-Lin Algorithm
	5.3.2.1 Fiduccia-Mattheyses Algorithm
	5.3.2.2 Goldberg and Burstein Algorithm
	5.3.2.3 Component Replication
	5.3.2.4 Ratio Cut

	5.4 Simulated Annealing and Evolution
	5.4.1 Simulated Annealing
	5.4.2 Simulated Evolution

	5.5 Other Partitioning Algorithms
	5.5.1 Metric Allocation Method

	5.6 Performance Driven Partitioning
	5.7 Summary
	5.8 Exercises

	6 Floorplanning and Pin Assignment
	6.1 Floorplanning
	6.1.1 Problem Formulation
	6.1.1.1 Design Style Specific Floorplanning Problems

	6.1.2 Classification of Floorplanning Algorithms
	6.1.3 Constraint Based Floorplanning
	6.1.4 Integer Programming Based Floorplanning
	6.1.5 Rectangular Dualization
	6.1.6 Hierarchical Tree Based Methods
	6.1.7 Floorplanning Algorithms for Mixed Block and Cell Designs
	6.1.8 Simulated Evolution Algorithms
	6.1.9 Timing Driven Floorplanning
	6.1.10 Theoretical advancements in Floorplanning
	6.1.11 Recent Trends

	6.2 Chip planning
	6.2.1 Problem Formulation

	6.3 Pin Assignment
	6.3.1 Problem Formulation
	6.3.1.1 Design Style Specific Pin Assignment Problems

	6.3.2 Classification of Pin Assignment Algorithms
	6.3.3 General Pin Assignment
	6.3.4 Channel Pin Assignment

	6.4 Integrated Approach
	6.5 Summary
	6.6 Exercises

	7 Placement
	7.1 Problem Formulation
	7.1.1 Design Style Specific Placement Problems

	7.2 Classification of Placement Algorithms
	7.3 Simulation Based Placement Algorithms
	7.3.1 Simulated Annealing
	7.3.2 Simulated Evolution
	7.3.3 Force Directed Placement
	7.3.4 Sequence-Pair Technique
	7.3.5 Comparison of Simulation Based Algorithms

	7.4 Partitioning Based Placement Algorithms
	7.4.1 Breuer’s Algorithm
	7.4.2 Terminal Propagation Algorithm

	7.5 Other Placement Algorithms
	7.5.1 Cluster Growth
	7.5.2 Quadratic Assignment
	7.5.3 Resistive Network Optimization
	7.5.4 Branch-and-Bound Technique

	7.6 Performance Driven Placement
	7.7 Recent Trends
	7.8 Summary
	7.9 Exercises

	8 Global Routing
	8.1 Problem Formulation
	8.1.1 Design Style Specific Global Routing Problems

	8.2 Classification of Global Routing Algorithms
	8.3 Maze Routing Algorithms
	8.3.1 Lee’s Algorithm
	8.3.2 Soukup’s Algorithm
	8.3.3 Hadlock’s Algorithm
	8.3.4 Comparison of Maze Routing Algorithms

	8.4 Line-Probe Algorithms
	8.5 Shortest Path Based Algorithms
	8.6 Steiner Tree based Algorithms
	8.6.1 Separability Based Algorithm
	8.6.2 Non-Rectilinear Steiner Tree Based Algorithm
	8.6.3 Steiner Min-Max Tree based Algorithm
	8.6.4 Weighted Steiner Tree based Algorithm

	8.7 Integer Programming Based Approach
	8.7.1 Hierarchical Approach

	8.8 Performance Driven Routing
	8.9 Summary
	8.10 Exercises

	9 Detailed Routing
	9.1 Problem Formulation
	9.1.1 Routing Considerations
	9.1.2 Routing Models
	9.1.3 Channel Routing Problems
	9.1.4 Switchbox Routing Problems
	9.1.5 Design Style Specific Detailed Routing Problems

	9.2 Classification of Routing Algorithms
	9.3 Single-Layer Routing Algorithms
	9.3.1 General River Routing Problem
	9.3.1.1 General River Routing Algorithm

	9.3.2 Single Row Routing Problem
	9.3.2.1 Origin of Single Row Routing
	9.3.2.2 A Graph Theoretic Approach
	9.3.2.3 Algorithm for Street Congestion Minimization
	9.3.2.4 Algorithm for Minimizing Doglegs

	9.4 Two-Layer Channel Routing Algorithms
	9.4.1 Classification of Two-Layer Algorithms
	9.4.2 LEA based Algorithms
	9.4.2.1 Basic Left-Edge Algorithm
	9.4.2.2 Dogleg Router
	9.4.2.3 Symbolic Channel Router: YACR2

	9.4.3 Constraint Graph based Routing Algorithms
	9.4.3.1 Net Merge Channel Router
	9.4.3.2 Glitter: A Gridless Channel Router

	9.4.4 Greedy Channel Router
	9.4.5 Hierarchical Channel Router
	9.4.6 Comparison of Two-Layer Channel Routers

	9.5 Three-Layer Channel Routing Algorithms
	9.5.1 Classification of Three-Layer Algorithms
	9.5.2 Extended Net Merge Channel Router
	9.5.3 HVH Routing from HV Solution
	9.5.4 Hybrid HVH-VHV Router

	9.6 Multi-Layer Channel Routing Algorithms
	9.7 Switchbox Routing Algorithms
	9.7.1 Classification of switchbox routing algorithms
	9.7.2 Greedy Router
	9.7.3 Rip-up and Re-route Based Router
	9.7.4 Computational Geometry Based Router
	9.7.5 Comparison of Switchbox Routers

	9.8 Summary
	9.9 Exercises

	10 Over-the-Cell Routing and Via Minimization
	10.1 Over-the-cell Routing
	10.1.1 Cell Models
	10.1.2 Two-Layer Over-the-Cell Routers
	10.1.2.1 Basic OTC Routing Algorithm
	10.1.2.2 Planar Over-the-Cell Routing
	10.1.2.3 Over-the-Cell Routing Using Vacant Terminals

	10.1.3 Three-Layer Over-the-cell Routing
	10.1.4 Multilayer OTC Routing
	10.1.5 Performance Driven Over-the-cell Routing

	10.2 Via Minimization
	10.2.1 Constrained Via Minimization Problem
	10.2.1.1 Graph Representation of Two-Layer CVM Problem

	10.2.2 Unconstrained Via Minimization
	10.2.2.1 Optimal Algorithm for Crossing-Channel TVM Problem
	10.2.2.2 Approximation Result for General k-TVM Problem
	10.2.2.3 Routing Based on Topological Solution

	10.3 Summary
	10.4 Exercises

	11 Clock and Power Routing
	11.1 Clock Routing
	11.1.1 Clocking Schemes
	11.1.2 Design Considerations for the Clocking System
	11.1.2.1 Delay Calculation for Clock Trees

	11.1.3 Problem Formulation
	11.1.3.1 Design Style Specific Problems

	11.1.4 Clock Routing Algorithms
	11.1.4.1 H-tree Based Algorithm
	11.1.4.2 The MMM Algorithm
	11.1.4.3 Geometric Matching based Algorithm
	11.1.4.4 Weighted Center Algorithm
	11.1.4.5 Exact Zero Skew Algorithm
	11.1.4.6 DME Algorithm

	11.1.5 Skew and Delay Reduction by Pin Assignment
	11.1.6 Multiple Clock Routing

	11.2 Power and Ground Routing
	11.3 Summary
	11.4 Exercises

	12 Compaction
	12.1 Problem Formulation
	12.1.1 Design Style Specific Compaction Problem

	12.2 Classification of Compaction Algorithms
	12.3 One-Dimensional Compaction
	12.3.1 Constraint-Graph Based Compaction
	12.3.1.1 Constraint Graph Generation
	12.3.1.2 Critical Path Analysis
	12.3.1.3 Wire Jogging
	12.3.1.4 Wire Length Minimization

	12.3.2 Virtual Grid Based Compaction
	12.3.2.1 Basic Virtual Grid Algorithm
	12.3.2.2 Split Grid Compaction
	12.3.2.3 Most Recent Layer Algorithm

	12.4 1½-Dimensional Compaction
	12.5 Two-Dimensional Compaction
	12.5.1 Simulated Annealing based Algorithm

	12.6 Hierarchical Compaction
	12.6.1 Constraint-Graph Based Hierarchical Compaction

	12.7 Recent trends in compaction
	12.7.1 Performance-driven compaction
	12.7.2 Compaction techniques for yield enhancement

	12.8 Summary
	12.9 Exercises

	13 Physical Design Automation of FPGAs
	13.1 FPGA Technologies
	13.2 Physical Design Cycle for FPGAs
	13.3 Partitioning
	13.4 Routing
	13.4.1 Routing Algorithm for the Non-Segmented Model
	13.4.2 Routing Algorithms for the Segmented Model
	13.4.2.1 Basic Algorithm
	13.4.2.2 Routing Algorithm for Staggered Model

	13.5 Summary
	13.6 Exercises

	14 Physical Design Automation of MCMs
	14.1 MCM Technologies
	14.2 MCM Physical Design Cycle
	14.3 Partitioning
	14.4 Placement
	14.4.1 Chip Array Based Approach
	14.4.2 Full Custom Approach

	14.5 Routing
	14.5.1 Classification of MCM Routing Algorithms
	14.5.2 Maze Routing
	14.5.3 Multiple Stage Routing
	14.5.3.1 Pin Redistribution Problem
	14.5.3.2 Layer Assignment
	14.5.3.3 Detailed Routing

	14.5.4 Topological Routing
	14.5.5 Integrated Pin Distribution and Routing
	14.5.6 Routing in Programmable Multichip Modules

	14.6 Summary
	14.7 Exercises

	Bibliography
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Y
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y
	Z

